
Type-2 Fuzzy Logic System

Applications for Power Systems

Iván Castro León

Newcastle University

A thesis submitted for the degree of

Doctor of Philosophy

December 2016

To Cristina

Abstract

In the move towards ubiquitous information & communications technology, an

opportunity for further optimisation of the power system as a whole has arisen.

Nonetheless, the fast growth of intermittent generation concurrently with markets

deregulation is driving a need for timely algorithms that can derive value from these

new data sources. Type-2 fuzzy logic systems can offer approximate solutions to

these computationally hard tasks by expressing non-linear relationships in a more

flexible fashion. This thesis explores how type-2 fuzzy logic systems can provide

solutions to two of these challenging power system problems; short-term load

forecasting and voltage control in distribution networks. On one hand, time-series

forecasting is a key input for economic secure power systems as there are many tasks

that require a precise determination of the future short-term load (e.g. unit

commitment or security assessment among others), but also when dealing with

electricity as commodity. As a consequence, short-term load forecasting becomes

essential for energy stakeholders and any inaccuracy can be directly translated into

their financial performance. All these is reflected in current power systems literature

trends where a significant number of papers cover the subject. Extending the existing

literature, this work focuses in how these should be implemented from beginning to

end to bring to light their predictive performance. Following this research direction,

this thesis introduces a novel framework to automatically design type-2 fuzzy logic

systems. On the other hand, the low-carbon economy is pushing the grid status even

closer to its operational limits. Distribution networks are becoming active systems with

power flows and voltages defined not only by load, but also by generation. As

consequence, even if it is not yet absolutely clear how power systems will evolve in

the long-term, all plausible future scenarios claim for real-time algorithms that can

provide near optimal solutions to this challenging mixed-integer non-linear problem.

Aligned with research and industry efforts, this thesis introduces a scalable

implementation to tackle this task in divide-and-conquer fashion.

ii

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it has

not been the subject of any previous application for a degree, and that all sources of

information have been duly acknowledged. © Copyright 2016, Iván Castro León

iii

Acknowledgements

First, I would like to thank Professor Phil Taylor as without his help, this work would

not be have been possible.

I would also like to acknowledge my colleagues at Newcastle and Durham; Peter

Davison, Jialiang Yi, Pengfei Wang, Calum Cameron, James King, David Greenwood,

Pàdraig Lyons for sharing a lot of interesting discussions, and specially to Emmanouil

Loukarakis and Varvara Alimisi for their unconditional support.

I would also like to thank my family as I know that regardless where I am, I know they

are by my side.

Finally, thanks to Cristina, as this thesis is for you.

iv

List of Publications

Conference papers

• Castro León, I. and Taylor, P.C., 2013, October. Towards autonomic control in

decentralised power systems via distributed type-2 fuzzy systems. In IEEE PES

ISGT Europe 2013 (pp. 1-5). IEEE.

• Castro León, I. and Taylor, P.C., 2015, June. Memetic Type-2 Fuzzy System

Learning for Load Forecasting. In 2015 Conference of the International Fuzzy

Systems Association and the European Society for Fuzzy Logic and Technology

(IFSA-EUSFLAT-15). Atlantis Press.

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Short-Term Load Forecasting . 2

1.3 Voltage Control in Distribution Networks 3

1.4 Type-2 Fuzzy Logic Systems . 6

1.5 Research Objectives . 7

1.6 Thesis Outline . 8

2 Type-2 Fuzzy Logic Systems 9

2.1 Introduction . 9

2.2 Fuzzy Sets . 10

2.3 Type-2 Fuzzy Logic Systems . 13

2.3.1 Fuzzification . 13

2.3.2 Rule-base . 14

2.3.3 Inference . 15

2.3.4 Type-Reducer & Defuzzifier . 15

2.4 Summary . 17

3 Short-Term Load Forecasting in Power Systems 18

3.1 Introduction . 18

3.2 Information-Interaction Feature Selection (Algorithm 1) 21

3.3 Memetic Type-2 Fuzzy Logic Systems (Algorithm 2) 24

3.3.1 Structure of individuals . 24

3.3.2 Fitness computation (Steps 2 & 7) 26

3.3.3 Parent Selection & Deterministic Tournaments (Steps 4 & 8) . . 27

3.3.4 Genetic Operations (Step 5) . 28

3.3.5 Local Optimisation (Steps 6) . 30

vi

3.4 Experimental Setup, Data & Results . 32

3.4.1 Chaotic Systems . 32

3.4.2 Short-Term Load Forecasting . 36

3.5 Summary . 42

4 Voltage Control in Distribution Networks 44

4.1 Introduction . 44

4.2 Hierarchical Type-2 Fuzzy Logic Systems 45

4.3 Experimental Setup, Network Models & Results 51

4.3.1 IEEE57 . 52

4.3.2 AuRA-NMS 33kV . 56

4.3.3 AuRA-NMS 11kV . 56

4.4 Summary . 58

5 Conclusions 59

5.1 Contributions . 60

5.2 Broader Implications & Future Research 61

A Source Code 63

References 72

vii

List of Figures

2.1 Type-1 Fuzzy Sets . 10

2.2 Type-2 Fuzzy Sets. 11

2.3 Type-2 FLS . 15

3.1 Mackey-Glass training & testing datasets. 33

3.2 Mackey-Glass output versus input scattergrams. 33

3.3 Mackey-Glass out-of-sample results for a NN and a type-2 FLS designed

via a memetic algorithm . 35

3.4 Load demands for New South Wales, Victoria & Tasmania regions. . . . 35

3.5 New South Wales region output versus input candidates scattergrams. . 37

3.6 Victoria region output versus input candidates scattergrams. 38

3.7 Tasmania region output versus input candidates scattergrams. 38

3.8 Out-of-sample MAPE in the New South Wales dataset 39

3.9 Out-of-sample MAPE in the Victoria dataset 40

3.10 Out-of-sample MAPE in the Tasmania dataset 41

3.11 One-step-ahead (t+48) forecasts of the different combinations of feature

selectors and AI approaches in the Victoria region from 09/10/2015 to

15/10/2015. 42

4.1 Hierarchical Type-2 FLSs. 46

4.2 Severity, efficiency and availability antecedents. 47

4.3 Intentions surface for severity = 1 . 49

4.4 Intentions surface for severity = -1 . 49

4.5 Intentions surface for availability = 1 . 50

4.6 Intentions surface for availability = -1 . 50

4.7 IEEE57 Network. 53

4.8 IEEE57 - Voltage evolution with no actions performed. 54

4.9 AuRA-NMS 33kV Network. 55

viii

4.10 AuRA-NMS 33kV - Voltage evolution with no actions performed. 57

4.11 AuRA-NMS 11kV Network. 57

4.12 AuRA-NMS 11kV - Worst voltage deviation evolution with no actions per-

formed and with the hierarchical type-2 FLS. 58

ix

Acronyms

AI Artificial Intelligence. 3

ANM Active Network Management. 1

BFGS Broyden-Fletcher-Goldfarb-Shanno Algorithm. 18

DG Distributed Generator. 1

FLS Fuzzy Logic System. 1

FOU Footprint Of Uncertainty. 9

ICT Information Communication Technology. 2

MAPE Mean Average Percentage Error. 34

MF Membership Function. 9

NN Neural Network. 3

OLTC On-Load Tap Changer. 4

STLF Short-Term Load Forecasting. 1

SVR Support Vector Regressor. 3

x

Nomenclature

xi i -th primary input FLS variable

x Vector of primary input FLS variables

p Number of primary input FLS variables

ui i -th secondary input FLS variable

Xi Universe of discourse of the i -th primary input FLS variable

Jxi Primary membership of the i -th primary input FLS variable

µFl ,i Membership function of the type-1 fuzzy set for the l -th rule and i -th input

µ
Fl ,i

Lower membership function of the type-1 fuzzy set for the l -th rule and i -th input

µF̃i Upper membership function of the type-1 fuzzy set for the l -th rule and i -th input

? Fuzzy set t-norm operator

∨ Fuzzy set t-conorm operator

m l ,i Gaussian membership function mean of the l -th rule and i -th input

σl ,i Gaussian membership function deviation of the l -th rule and i -th input

σ l ,i Gaussian membership function lower deviation of the l -th rule and i -th input

σ l ,i Gaussian membership function upper deviation of the l -th rule and i -th input

h l (x) Fuzzy logic system consequent of the l -th rule

cl ,l Left bound of the singleton FLS consequent of the l -th rule

cl ,r Right bound of the singleton FLS consequent of the l -th rule

cl ,i (xi) Multivariate linear regression coefficient of the fuzzy logic system consequent

of the l -th rule and and i -th input

xi

R l Rule l -th

M Number of rules

f l Lower firing level of the l -th rule

f l Upper firing level of the l -th rule

L Left switching point

R Right switching point

cl Left bound of type-reduced set

cr Right bound of type-reduced set

y Output FLS variable

IXi ,S ,Y Information-interaction between the feature Xi , a set of features S , and the

outputY

H (Xi) Entropy of Xi

H (Xi ;Y) Mutual information between the feature Xi andY

H (Xi ;Xj | Y) Conditional mutual information between the features Xi and Xj givenY

ψ(x) Digamma function

β Redundancy parameter

γ Condicional redundancy parameter

εk Variable that represents the maximum norm in all dimensions of the k-th

nearest neighbour

nxi Number of points within εk in the Xi space

dXi Absolute deviation of Xi for a given set

ZXi Z-score of Xi for a given set

prcs Probability of ruleset crossover

prcr Probability of rule crossover

xii

prm Probability of mutation

Aj FLS Aj

P(Aj ,D) Fitness of the FLS Aj given the dataset D

D Dataset

N Number of samples

α Complexity penalty

S (A1,A2) Similarity between A1 and A2

B Hessian approximation

d Search direction

λ Step size

τmax Convergence tolerance

imax Number of iterations

wAj ,l ,i Antecedent/Consequent parameter of the i-th input of the l-th rule of the FLS Aj

vi Voltage deviation in the i-th node

xiii

xiv

1 Introduction

Evolution of power systems towards actively managed systems has led to an

increasing need for two particular power system applications; short-term load

forecasting (STLF) and active network management (ANM) at distribution level. These

two distinctive targets have different associated issues that can be tackled via type-2

fuzzy logic systems (FLSs). Firstly, the non-stationary behaviour of load time-series in

mean and variance with multiple seasonalities in conjunction with many influencing

factors, such as weather, economic activity or social habits. Secondly, the need for

timely solutions to mixed-integer non-linear problems. This chapter provides an

overview and the main research objectives of this thesis.

1.1 Background

Power systems are traditionally operated in a passive fit-and-forget fashion with a

top-down design where power flows are unidirectional from the transmission level to

end-users. However, this is changing. First, the push towards emissions reduction has

led to a significant growth in intermittent distributed generation (DG), which can lead

bi-directional power flows and fluctuation in voltage, pushing the grid closer to its

statutory limits.

This drives a need for active network management (ANM) [1] to mitigate the effects of

these non-dispatchable generators. Second, not only generation is changing,

electrification of heat and transport will steadily increase consumption and its profile

will change with higher peaks [2]. Higher peaks directly translate into capacity

problems. An option to avoid these, is to forecast them to make the necessary

arrangements to mitigate their effects. Thus, it is important to now not only their scale

but also when they will occur. Third, energy markets are also changing, and

potentially exposing end-users to price signals can lead to additional flexibility [3]. This

in turn increases the need for accurate short-term forecasts and efficient system-wide

coordination. Last but not least, the uptake of information and communications

1

technology (ICT) [4, 5, 6, 7] enables this change, as new data sources are available.

All these, forces the power system to move towards smarter ways of meeting the

end-users requirements. To improve network utilisation, reduce operating costs,

increase renewable energy penetration or allow an uptake in new types of demand,

contributions towards STLF and ANM with a particular focus on voltage control at the

distribution level are required. This thesis focuses on the development of these two

particular aspects, and does it by means of type-2 FLSs. In the following we elaborate

on the reasons why we opt for these types of systems.

1.2 Short-Term Load Forecasting

Load forecasting heavily influences electrical power systems planning and operation

in different time-frames: Long-term, medium-term and short-term [8]. Long-term

forecasts define planning strategies according to future demand and policy (i.e.

one/several-year/s-ahead). Medium-term support operation and maintenance (i.e. up

to one/several-month/s-ahead). Short-term forecasts (i.e. one-day-ahead

30-minutes-resolution) [9], are a key input for economic and secure power systems

[10, 11]. There are many tasks that require a precise determination of the future

short-term load with different time-scales and on different hierarchies [12].

Not only, transmission system operators require precise forecasts to make unit

commitment decisions, reduce spinning reserves or schedule maintenance plans

accordingly. Furthermore, they may use load forecasts to prepare backup plans

under-predictions lead to bring new units on-line or shed loads due to insufficient

reserve capacity.

But also, the intensification of electricity market deregulation [13, 14, 15, 16] causes a

need for accurate STLF. In wholesale markets, energy prices may be affected by

fluctuations in demand and/or weather conditions, and notably boosted during

on-peak periods. Among other market players, suppliers require one-day-ahead as

the basis for their trading strategies to ensure they have purchased accurately for their

customers, otherwise they may end up making a loss in the intra-day market for or

even being penalised via cash-out penalties after the gate closure. Aggregators may

need to schedule their flexibility according to load forecasts to provide balancing

services to the former. Therefore, accurate STLF becomes essential for generators,

utilities and consumers and any forecasting inaccuracy can be directly translated into

2

their financial benefits [17, 18, 19]. The importance of STLF will grow as systems get

optimisation becomes wider, as it is a key enabler.

However, obtaining reliable models for STLF is still a challenging task (i.e.

non-stationary time series in mean and variance with multiple seasonalities in

conjunction with many influencing factors, such as weather, economic activity or

social habits).

From the methods that have been proposed in the literature for STLF [20], two broad

categories can be distinguished: traditional methods [21, 22] (e.g. Auto-regressive

integrated moving average, Kalman filtering models, Box-Jenkins models, exponential

smoothing or regression models, among others); and artificial intelligence (AI)

methods [23, 24, 25, 26, 27, 28], such as neural networks (NNs), support vector

regressors (SVRs) and FLSs. The former are restricted by their linearity, although

they are significantly more efficient in terms of computation costs. The latter are

universal approximators and can express non-linear relationships in a more

generalised manner. Even though, there are no consistent comparative results which

indicate their supremacy over traditional methods [29], AI-based approaches are

extensively used for short-term load prediction [30, 31].

In [25], an electricity-domain AI-focused comparative study was performed, indicating

that interval type-2 FLSs outperform type-1 FLSs and NNs in terms of generalisation

power and forecasting error. This improved performance arises from type-2 FLSs

enhanced capability to handle imprecise information [32]. This is achieved through the

use of interval type-2 fuzzy sets rather than “crisp” type-1 fuzzy sets. Furthermore, in

interval type-2 FLSs, a smaller rule-base and fewer fuzzy sets can be used to define

the entire input/output range (i.e. universe of discourse) due to a better trade-off

between modelling accuracy and complexity [32].

Nonetheless, type-2 FLSs in [25] are still constrained as there is room for

improvement in terms how these are defined from selecting their inputs, to establish

their inner structure and parameters.

1.3 Voltage Control in Distribution Networks

Fast growth of intermittent generation in low- and medium-voltage distribution systems

concurrently with arising development of active demand and new types of demand is

radically transforming the role distribution system operators are playing [33, 6]. The

3

move towards a low-carbon economy is pushing the grid status even closer to its

operational limits. Distribution networks are becoming active systems with power flows

and voltages defined not only by load, but also by generation. As a consequence,

problems like voltage excursions and thermal bottlenecks will become more frequent.

These two, voltage excursion and overloading, are inter-related. However, they

operate in different time-scales and solving one does not necessarily solve both.

Thus, while it is not yet absolutely clear how power systems will evolve in the

long-term, all plausible future scenarios indicate a need of improved efficiency and

harnessing available flexibility [34]. Moreover, given that the main objective of every

operator is to maximise the use of their network assets, that is to say, to guarantee

that its previous and present investments are used in the best possible and reachable

fashion. Modernising control via smart grid technologies [35, 36] can provide an

alternative of meeting customer requirements and optimise network operation.

Traditionally, voltage was controlled in distribution networks through the network

design so voltage problems do not arise. There is minimal control and always located

near high-voltage levels. However, as it has been outlined earlier, distribution system

operators will have difficulties in maintaining the voltage within the statutory limits as

the generation/demand ratio changes and becomes erratic.

While network reinforcements remain important to address these and increase

capacity, they may be unaffordable when facing the low-carbon transition since also

many assets are getting close to the end of their predicted life. Furthermore,

operators need to justify the cost in terms of return of investment [37].

Nonetheless, several are the active voltage control devices that already may be

present in distribution networks [1, 38] (e.g. from on-load tap changers to regulators in

synchronous generators). Commonly, the problem is approached with no direct

coordination, where each voltage regulation device by means of local measurements

and a voltage target defines its control actions. For instance, on-load tap changers

(OLTCs) operate in conjunction with automatic voltage control relays. The relay

continuously monitors the secondary voltage and current to adjust the transformer’s

tap ratio and keep the measured voltage at a given target. Two modes are used in

these, voltage fixed set-point and load drop compensation. The latter pursues to

balance the voltage target under different load scenarios to ensure the operation is

appropriate, whilst the former acts regardless the loading level.

An alternative, as networks were mainly designed for load-only ones, especially at

4

low-voltage level, is to limit the real power output of the distributed generators, as

distribution networks are mainly resistive, particularly in low-voltage level, DGs can

significantly rise voltage. However, this curtailment may impact ’first-on-last-off’

contractual policies [38] between the generator and the operator and limits the

significant contribution to CO2 emissions minimisation [39] of distributed generators.

Although, controlling their reactive power output can provide voltage support, but

given the R/X ratio of distribution networks, this will be insufficient in many cases [40].

Therefore, all these constraints or penalties are limiting the value of DGs.

Nevertheless, due to the complexity of the existing voltage control problem, finding

localised solutions may also cause an increase in power losses or dynamic

interactions inside the network, as OLTCs and DGs can affect each other’s operation.

Therefore, voltage control without direct communication is also tackled by means of

time delays [41]. Hence, devices operate sequentially to avoid interactions. The order

of operations between devices is predefined. Downstream devices in radial networks

as have increasing delays. Hence, devices closer to the end of the feeder operate last

[41].

To further optimise the previous approaches, by means of a few local measurements,

voltage targets can be actively determined. SuperTAPP n+ [42] uses an additional

current measurement on the feeder with DGs to calculate the load share ratio

between feeders with and without generation to estimate a new target. Although it

represents an improvement, it has several drawbacks (e.g. assumes load and

generation patterns are fixed, relies on at least one load-only feeder being available

and assumes network topologies are static). GenAVC [42] relies in network state

estimation through remote measurement units. However its accuracy of the estimates

is correlated with the number of measurement points. It also assumes fixed topology

and load predictability.

As result, all these uncoordinated or localised control strategies are often insufficient

in solving complex voltage control problems and system wide solutions are necessary

[43, 44] to overcome the above mentioned issues. These system wide approaches

due to the ubiquity of ICT can now be more easily deployed [5] allowing for further

optimisation, and therefore this thesis will explore this technical opportunity.

Hence, given a network model [45] and a set of conditions, it is required to find a

solution that keeps all nodes within the statutory limits whilst limiting the number of

operations in the OLTCs and the curtailment of real power in DGs, all in timely

5

fashion. Thus, the voltage control problem via direct coordination, represents a

challenging mixed-integer non-linear problem. Control devices can be either discrete

(e.g. OLTCs, capacitor banks or switchable loads) or continuous (e.g. storage or DGs

among others). This, given the size of distribution networks, can lead to intractability

in terms of time with conventional optimisation approaches. Heuristic approaches are

common in the area and appear to be well suited to this voltage control problem. In

[46, 47] a sensitivity-based greedy search algorithms are proposed which moves

towards the most promising candidate solution until convergence. However, this local

search approach heavily depends on the starting point and may get stuck in a local

minima. Blind search algorithms, like evolutionary ones [48, 49, 50, 51], case-based

reasoning systems [43] or NNs [52] have been also used for this purpose, although

performing a global search can avoid local minima issues, the lack of network

knowledge makes generally these algorithms as impractical as the conventional

optimisation approaches due to the time required to find a solution. Other

soft-computing approaches, particularly using type-1 FLSs and/or multi-agent

systems are [53, 54, 55, 56, 57, 58]. Type-1 FLSs are a proven methodology for

dealing with imprecision and their the key advantage is their ability to solve non-linear

problems and analyse uncertain and qualitative data associated with the process. All

these approaches, appear to be well suited to this application. However, as different

sources of uncertainty that may affect the FLS definition [32] will be increased, any

type-1 approach is limited. Thus, it is necessary to move forward and use fuzzy sets

characterised by fuzzy membership functions like in [59], ergo, use type-2 FLSs which

were introduced in 1975 by Zadeh [60].

1.4 Type-2 Fuzzy Logic Systems

FLSs are considered a standard when dealing with imprecision with many power

system applications (e.g. power electronics, frequency control or energy management

systems among others) [61, 62, 63]. Type-2 FLSs are an emerging paradigm that

seeks to overcome the traditional type-1 FLS limitations through a more generalised

form [32, 59].

This thesis will exploit this ability to handle imprecision and non-linear relationships to

tackle the aforementioned problems. In the power systems scenario, when the target

is to handle the customer participation in the system, changing goals or effects of

6

stochastic generation, patterns may not be certain at all (e.g. environmental

conditions may change or applying the same action may not always lead to the same

result). For instance, even designing an algorithm to control the current scenario with

low penetration of DGs; it is not easy to define the exact functions and parameters

due to the environment variability and the associated uncertainties. It could be the

case that the chosen and totally certain functions are not acceptable anymore. Also,

when trying to develop a forecasting model, complex relationships may not be

captured by absolutely defined systems. All these limitations in the ability to model will

cause degradation in their predictive performance. Also, an algorithm within this

context has as well to be robust in the face of corrupted or noisy measurements or to

the unreliability of the data used to tune the parameters, ergo, the system has to be

fault-tolerant.

Hence, these two problems bring different challenges. In the case of the load

forecasting, when one seeks accuracy improvements, type-2 FLSs are constrained by

the way they are defined. Despite the fact that they are universal approximators, if the

selected inputs, number of rules or parameters are not appropriate, a loss in

predictive performance will arise. On the contrary, in the case of voltage control,

flexibility and scalability are the main targets, even if the result action is not optimal.

Obtaining solutions that solve the voltage excursion in a timely although near-optimal

manner is essential.

1.5 Research Objectives

This thesis, by means of type-2 FLSs and their ability to handle imprecision and

non-linear relationships, contributes in two distinctive power systems applications,

STLF and voltage control in distribution networks.

1. STLF is a challenging problem due to its non-stationary nature and many

influencing factors. Thus, the first objective is to examine and establish how

type-2 FLSs should be designed, from beginning to end for STLF applications

(i.e. from selecting the input variables to establishing their number of rules and

defining how the parameters should be optimised in an automated fashion).

2. Voltage control in distribution networks is a mixed-integer non-linear problem

where heuristics are commonly used to obtain timely solutions. Type-2 FLSs

7

have depicted performance in similar scenarios. Therefore the second objective

is to develop suitable approaches to cope with this task.

1.6 Thesis Outline

• Chapter 2 contains an introduction to type-2 FLSs. Provides insights on their

inner structure, design considerations and summarises their key differences and

advantages when compared with traditional type-1 FLSs.

• Chapter 3 focuses on how type-2 FLSs should be designed, from beginning to

end, for STLF applications. That is to say, from selecting the input variables to

defining how the parameters should be optimised. As result, two novel

techniques are introduced, an information interaction feature selector and a

memetic algorithm. Both algorithms are tested on market-level samples and

compared against common combinations of feature selectors, fuzzy logic

learning schemes and other AI approaches.

• Chapter 4 investigates voltage control in distribution networks. Firstly, it

provides an overview on literature trends, to then focus on how type-2 FLSs can

contribute to coordinated voltage control in distribution networks. In pursuit of

near-optimal real-time solutions, a hierarchical implementation of type-2 FLSs is

introduced, tested and evaluated against other common heuristics.

• Chapter 5 concludes this thesis, summarises the main contributions, broader

implications and key findings. Finally, it identifies research questions that could

effectively extend this work.

8

2 Type-2 Fuzzy Logic Systems

FLSs are considered a standard when dealing with imprecision. As universal

approximators, they have many engineering applications. This chapter provides a

background on fuzzy logic, and in particular on the generalised type-2 FLSs. Including

their inner structure and design considerations. Also, illustrates their advantages

when compared to traditional type-1 counterparts.

2.1 Introduction

Introduced by Zadeh in [64], fuzzy logic is a multi-valued type of logic that contrary to

boolean logic, establishes a continuous range of truth values between 0 and 1. This

ability to handle partial truth, has made fuzzy logic traditionally seen by the AI

community [65] as an approach for managing uncertainty and has numerous

applications in power systems [61, 62, 63].

Fuzzy sets are defined by their membership functions (MFs), which depict a

distribution of possibilities [66]. Thus, MFs, are a key element in their definition.

Traditionally, FLSs are type-1 FLSs, that is to say, their sets are absolutely determined

in shape and position (Figure 2.1). Nonetheless, as one can easily point out, being

certain in their definition confronts their connotation of imprecision.(i.e. all their

degrees of truth are crisp values). Any uncertainty will be translated to certain MFs

which will be unable to directly handle them [32, 67] causing limitations to modelling

and minimising their effects. Therefore, the use of type-1 fuzzy sets in changing or

challenging environments produces an inadequate performance, or the a need to

frequently tune the control parameters [68, 69, 70]. As Figure 2.2 shows, type-2 fuzzy

sets are characterised by their footprint of uncertainty (FOU) [32, 67, 71] which blurs

the exact position and shape of a type-1 MF. Given the aforementioned limitations,

type-2 fuzzy sets, characterised by non-crisp MFs [32, 67] are increasingly gaining

attention in the literature [72].

However, due to its complexity and computational cost, here like in all real

9

Figure 2.1: Type-1 Fuzzy Sets

applications of type-2 fuzzy logic [72, 73] a special case of type-2 is used to avoid

implementation obstacles, which is denoted as interval type-2 [32]. Therefore, two

MFs per set will bound this FOU. Thus, during the thesis type-2 is used to refer to

these interval type-2 FLSs.

The rest of the chapter is organised as follows: Section 2.2 and 2.3 provide an

overview of fuzzy sets and FLSs [32, 59, 74, 75] with a particular focus in the aspects

used in this work. Finally, in Section 2.4 conclusions are drawn.

2.2 Fuzzy Sets

A type-1 fuzzy set is denoted by F , and represented as a set of ordered pairs [32],

F = {x , µF (x)) | x ∈ X } (2.1)

where µF (x) is a MF which establishes graded degrees of truth between 0 and 1 over

the variable x in the universe of discourse X which represents its operational range.

To illustrate this, one can use Figure 2.1 as a voltage control example. The variable x

represents the per unit voltage for a given node of a network. Its state is defined by

three type-1 fuzzy sets F1, F2, and F3 which denote if the voltage is low, acceptable or

high through their crisp MFs µF1(x), µF2(x), and µF3(x). These MFs are gaussian ones

(i.e. N (mF ,σF ; x)) with parameters mF1 = 0.8, mF2 = 1.0, mF3 = 1.2, and σF1 = 0.06,

σF2 = 0.025, σF3 = 0.06 which denote the means and deviations respectively. Thus, for

xn = 0.96, µF1(0.96) = 0.03, µF2(0.96) = 0.28 and µF3(0.96) = 0. That is to say, the

voltage at 0.96 per unit is low with 0.03 and acceptable with 0.28 degrees of truth.

10

Figure 2.2: Type-2 Fuzzy Sets.

Extending this definition, a type-2 fuzzy set is denoted by F̃ , and defined as [32, 67];

F̃ =

∫
x∈X

∫
u∈Jx⊆[0,1]

1 / (x ,u) =
∫
x∈X

[∫
u∈Jx⊆[0,1]

1 /u
] /
x (2.2)

where x ∈ X is the primary variable, u ∈ Jx is the secondary variable, Jx is the primary

membership of x ,
∫ ∫

denotes the union over all admissible x and u , and the

secondary grades of F̃ are all 1. The shaded area in Figure 2.2, denoted as FOU,

defines the imprecision. Thus, the FOU of F̃ is given by the union of all primary

memberships;

FOU (F̃) =
⋃
[x∈X

Jx = {(x ,u) : u ∈ Jx ⊆ [0, 1]} (2.3)

As Jx is an interval set defined by;

Jx =
{
(x ,u) : u ∈

[
µ
F̃
(x), µF̃ (x)

]}
(2.4)

and given in (2.2) and (2.3) FOU (F̃) can also be expressed in those terms as;

FOU (F̃) =
⋃
[x∈X

[
µ
F̃
(x), µF̃ (x)

]
(2.5)

where the upper and lower MFs µF̃ , µ
F̃

of F̃ bound the FOU of F̃ as depicted in

11

Figure 2.2. Hence, (2.5) can be rewritten as,

µF̃ (x) = FOU (F̃) [x ∈ X (2.6)

µ
F̃
(x) = FOU (F̃) [x ∈ X

where FOU , FOU refer to the upper and lower bounds of FOU, ergo the upper and

lower MFs. All these definitions can be again mapped to the previous example using

Figure 2.2. Note now, that the bounded shaded area depicts the different FOUs,

providing uncertainty in the shape and magnitude of the MFs. Again, the variable x

represents the per unit voltage for a given node of a network. Its state is now be

defined by three type-2 fuzzy sets F̃1, F̃2, and F̃3 which are blurred versions of F1, F2,

and F3. . These MFs are gaussian ones with uncertain deviation and parameters (i.e.

[N (mF ,σF ; x),N (mF ,σF ; x)]), mF1 = 0.8, mF2 = 1.0, mF3 = 1.2, σF1
= 0.05, σF2

= 0.02,

σF3
= 0.05, and σF1 = 0.07, σF2 = 0.03, σF3 = 0.07 which denote the means, lower

and upper deviations respectively. Also note that, these fuzzy sets denote again if the

voltage is low, acceptable or high through their interval MFs [µ
F1
(x), µF1

(x)],

[µ
F2
(x), µF2

(x)], and [µ
F3
(x), µF3

(x)]. Hence, now for xn = 0.96, the interval firing levels

for the different sets are [µ
F1
(0.96), µF1

(0.96)] = [0.01, 0.07],

[µ
F2
(0.96), µF2

(0.96)] = [0.14, 0.41], and [µ
F3
(0.96), µF3

(0.96)] = [0, 0]. These now

means that when the voltage 0.96 per unit is low with [0.01, 0.07] and acceptable with

[0.14, 0.41] degrees of truth, blurring the crisp degrees of truth from the Figure 2.1.

Finally, set operations which fuzzy union, intersection and complement, are defined as

follows;

F̃1 ∪ F̃2 = 1
/ ⋃

[x∈X

[
µ
F̃1
(x) ∨ µ

F̃2
(x), µF̃1

(x) ∨ µF̃2
(x)

]
(2.7)

F̃1 ∩ F̃2 = 1
/ ⋃

[x∈X

[
µ
F̃1
(x)? µ

F̃2
(x), µF̃1

(x)? µF̃2
(x)

]
(2.8)

12

F̃ = 1
/ ⋃

[x∈X

[
1 − µ

F̃
(x), 1 − µF̃ (x)

]
(2.9)

where ∨, ? represent t-conorm and t-norm respectively which are generalisation of the

common two-valued logical functions from classical logic for fuzzy logic. Thus, a ? b is

a function from [0, 1][0, 1] to [0, 1] that is commutative, associative, monotonic, where

1 acts as identity element. And a ∨ b is function from [0, 1][0, 1] to [0, 1] which returns

1 − (1 − a ? 1 − b). Also note that the meet and join set operations refer to intersection

and union at each x , respectively. These are relevant for and/or operations.

2.3 Type-2 Fuzzy Logic Systems

FLSs [76, 77], are knowledge-based systems which use linguistic if-then rules and

fuzzy sets to build non-linear mappings. Just like every other expert system [78], they

select an adequate output according to their collection of rules which are the core of

the system. Type-2 FLSs are FLSs which use type-2 fuzzy sets.

The basic structure of a type-2 FLS consists of a fuzzifier, a rule-base, an inference

engine, a type-reducer and a defuzzifier (Figure 2.3). A type-1 FLS differs in that it

does not require the type-reduction step as it uses type-1 fuzzy sets (i.e.

µ(xi) = µ(xi)). Nevertheless, it is considered a special case of type-2 fuzzy sets where

upper and lower MFs match. Hence, the process of mapping a given collection of

inputs to a determined output is called inference, and the fuzzification and

defuzzification are the transformation steps from crisp inputs to fuzzy inputs and

vice-versa. The process starts with the crisp inputs being fuzzified into fuzzy sets

which activate the inference process and the rule-base. Thus, fired rules are

combined to produce output fuzzy sets. These are then combined and map to

type-reduced sets (i.e. intervals which provide a measure of the uncertainty as it flows

through the system) via a type-reducer which leads to the final defuzzification step

into crisp outputs. In the type-1 case, the combined output is directly defuzzified.

2.3.1 Fuzzification

This process aims at converting crisp inputs into input fuzzy sets, a type-2 fuzzy set F̃

is characterised by its FOU bounded by both MFs (Figure 2.2), as explained in

13

Section 2.2.

As consequence, the fuzzification process inherently relies in the blurred shape of the

antecedent MFs (e.g. trapezoidal, triangular or gaussian, among others). According to

[79] where a shape comparison is performed, gaussian MFs need less parameters to

be represented, having therefore less parameters to tune or to optimise. Also,

gaussian shapes are faster for small rule-bases and provide a continuous surface that

allows for gradient-based methods and also favours stability and robustness.

Hence, using for simplicity singleton fuzzification [32] and gaussian MFs with

uncertain deviation as in [25, 26] (Figure 2.2). A MF µF̃ = [µ
F̃
, µF̃] for a given set F

can be defined as;

µ
F̃
= µ

F̃
(x) = N (m,σ; x) = e− 1

2 ((x−m)/σ)
2

(2.10)

µF̃ = µF̃ (x) = N (m,σ; x) = e− 1
2 ((x−m)/σ)

2
(2.11)

2.3.2 Rule-base

If-then rules use interval type-2 fuzzy sets as rule antecedents and intervals as rule

consequents. Hence, considering a system with p inputs and M rules, let the l -th rule

be denoted by R l [32] as;

R l : if x1 is F̃l ,1 , . . . , and xp is F̃l ,p then h l (x) (2.12)

where F̃l ,i represents the type-2 antecedent fuzzy sets and the consequent

parameters of l -th rule, h l (x), can either follow a Takagi-Sugeno inference and be a

multivariate linear regression (i.e. cl ,0 +
∑p
i=1 xi cl ,i) or follow a Mamdani inference and

be a singleton that represents a type-2 fuzzy set (i.e. [cl ,l , cl ,r]) [32]. The use of fuzzy

sets as consequents introduces a computational burden but it allows to describe

mappings in more intuitive manner, therefore this approach is followed in chapter 4.

On the contrary Takagi-Sugeno systems are computationally more efficient and work

well in conjunction with gradient-based optimisation and adaptive techniques. Hence,

used in chapter 3, for mapping the short-term load behaviours. Particularly the ones

from the Class A2-C0, which indicates a special case where the antecedents are

type-2 fuzzy antecedents and consequents are crisp numbers.

14

Figure 2.3: Type-2 FLS

2.3.3 Inference

Hence, with meet under product t-norm [32], given (2.8), (2.10) and (2.12) and an

input set x, the result of the input and antecedent operations for the l -th rule is an

interval type-1 fuzzy set [f l (x), f l (x)], and defined as;

f l (x) =
p∏
i=1

µ
F̃l ,i
(xi) =

p∏
i=1

N (m l ,i ,σ l ,i ; xi) =
p∏
i=1

e−
1
2 ((xi−m l ,i)/σ l ,i)

2
(2.13)

f l (x) =
p∏
i=1

µF̃l ,i (xi) =
p∏
i=1

N (m l ,i ,σ l ,i ; xi) =
p∏
i=1

e−
1
2 ((xi−m l ,i)/σ l ,i)

2
(2.14)

Therefore using the sets from Figure 2.2, for a system with inputs x1, x2 that represent

per unit voltages at two nodes of a distribution network. the firing level of the antecent

of a rule which relates both (i.e. if x1 is F̃1and x2 is F̃2) is the product of its interval

degrees of truth and it will be use later to establish the response of the combination of

rules which conform the FLS.

2.3.4 Type-Reducer & Defuzzifier

These collection of interval rule outputs have to be reduced in order to obtain the

system type-reduced output, which will be defuzzified afterwards. This type-reduced

set is particularly interesting as it provides a measure of the uncertainty as it flows

through the system [80]. In a similar fashion as a confidence interval does it for a

probabilistic system [74]. Thus, the type-reduced set grows as the uncertainty in the

type-2 fuzzy sets does. The interval firing levels increase their difference and

therefore its combination as well. On the contrary, the type-reduced set bounds

equalise as the uncertainty in the type-2 fuzzy sets does, and therefore the interval

15

firing levels also tend to equalise. Hence, it is required if one seeks to cascade

systems and avoid any possible information loss [59].

Hence, given that a centroid in an interval type-2 is an interval type-1 [67, 81], only the

calculation of the two end points is required [yl , yr], i.e.

[cl , cr] ≡
∫
c1∈[cl ,1,cr ,1]

. . .

∫
cM ∈[cl ,M ,cr ,M]

∫
f1∈[fl ,f1]

. . .

∫
f1∈[fM ,fM]

1
/∑M

i=1 fi ci∑M
i=1 fi

(2.15)

where for the center-of-sets, is the most common approach to obtain the type-reduced

set, [cl ,1, cr ,1] are pre-computed and represent the centroid of the l-t h rule, [f l , f l] the

lower and upper firing of the l-t h rule and M the number of rules.

There are several type-reduction algorithms to perform the task of obtaining [cl , cr]

[32, 81, 82, 83, 84]. For instance, computations for [cl , cr] can be simplified by using

uncertainty bounds to obtain an approximation or by using the non-closed

Karnik-Mendel algorithm. The latter, widely common in the literature, calculates the

bounds in an iterative fashion. Starts by sorting {cl ,1, . . . , cl ,1}, {cr ,1, . . . , cr ,1} from

lower to higher respectively. An initial guess of cl , cr is then made using the average

firing of the rules cl =
∑M
i=1 cl ,i (fi + fi)/

∑M
1 (fi + fi), cr =

∑M
i=1 cr ,i (fi + fi)/

∑M
1 (fi + fi), to

then find the switch points L and R and compute cl , cr i.e.

cl ,L ≤ cl ≤ cl ,L+1 (2.16)

cl ,R ≤ cr ≤ cl ,R+1 (2.17)

cl =

∑L
i=1 cl ,i f i +

∑M
i=L+1 cl ,i f i∑L

i=1 f i +
∑M
i=L+1 f i

(2.18)

cr =

∑R
i=1 cr ,i f i +

∑M
i=R+1 cr ,i f i∑R

i=1 f i +
∑M
i=R+1 f i

(2.19)

y =
cl + cr

2
(2.20)

Then the algorithm repeats checks if the new values for cl , cr are the same, otherwise

repeats (2.16-2.19) until cl , cr no longer change. Once these bounds are gathered,

the type-reduced set which combines all the rules firings is obtained, and the system

crisp can also be simply obtained by computing the average of cl and cr . The election

of an average as a method of defuzzification is inspired in the common centroid

16

computation performed in type-1 FLSs.

Alternatively, type-reduction can be bypassed and the crisp output directly obtain from

the rule firing levels and consequents, as in the Nie-Tan (2.22) [85] and NN-based

algorithms [26]. These algorithms have shown a higher degree of prediction accuracy

compared to other type-reduction algorithms [26]. Particularly, the Nie-Tan is broadly

used as it represents a closed-form, that does not require any previous knowledge

and is less computationally intensive.

hi (x) = cl ,0 +
p∑
i=1

xi cl ,i (2.21)

y (x) =
∑M
i=1 f i (x) hi (x) + f i (x) hi (x)∑M

i=1 f i (x) + f i (x)
(2.22)

2.4 Summary

Type-2 FLSs have many substantial advantages when compared to their type-1

counterparts. They provide a smoother control due to the smother shape of the

control surface [71], this is due to the fact that transitions between triggered rules are

less abrupt when compared to type-1 FLS because of the use of interval firings. A

more adaptive system can be obtained by allowing more complex relationships which

are not possible with type-1 fuzzy schemes [69]. Type-1 FLSs are merely reduced

versions of their type-2 counterparts where the upper and lower MFs are the same.

Also, the number of fuzzy sets used [32] can be reduced as the input range can be

covered with a fewer number of sets obtaining similar input-output mappings.

Furthermore, the offer an increase of the system robustness [71] due to its smoother

response profile they handle better disturbances around the controlling point. It

should also be noted that the controller can be thought of as a collection of different

embedded controllers due to the fact, that each input or output is represented through

a large number of type-1 fuzzy sets, all the ones embedded in the interval type-2 [67].

Hence, type-1 sets are just a special case of a type-2 one where there is no

uncertainty, and this scheme represents a generalisation which allows for more

flexible definitions. Therefore, in this case, like in many other real world applications

[72], type-1 fuzzy systems may not handle the system properly.

17

3 Short-Term Load Forecasting in Power Systems

This chapter presents a comprehensive analysis of the design of type-2 FLSs for

STLF applications. Towards improved accuracy and automating the learning process,

two novel techniques are introduced in this thesis, an information-interaction feature

selector and a memetic algorithm. In the former, statistically significant features are

selected based on their relevancy/redundancy ratio; in the latter, the system’s

structure and parameters are simultaneously learnt through a problem-tailored

genetic algorithm with an embedded Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm which acts as a local optimiser. Out-of-sample accuracy improvements for

market-level one-day-ahead 30-minutes-resolution load forecasting are presented,

and compared to other common combinations of feature selection and fuzzy learning.

3.1 Introduction

In [25], an electricity-domain AI-focused comparative study was performed, indicating

that type-2 FLSs outperform type-1 FLSs and NNs in terms of generalisation power

and forecasting error when using a similar number of parameters do define both

systems. Nevertheless, accuracy improvements can still be gathered as the model

identification is carried out in a sub-optimal manner and this fact can inherently limit

their predictive performance. Hence, in type-2 FLSs, as in type-1 FLSs, model

identification process is an important yet challenging problem especially but not

limited to the STLF application. Model identification mainly comprises of three

interwoven tasks; feature selection, structure identification and parameter

determination. The first involves input selection. The second, rule generation,

including input-space partitioning, MF specification, and rule-set optimisation. The

third, involves fine-tuning the MFs which describe rule antecedents and consequents.

However, as the number of inputs to consider increases [86] and patterns are complex

like in STLF, completing these inter-related tasks in a non suitable fashion can strongly

affect the prediction accuracy, as it happens with NNs [87]. Hence, if one follows a

18

conventional approach and performs these tasks in a sequential trial-and-error

manner, model inputs have to be firstly selected. Obviously, irrelevant or redundant

features can degrade the forecasting accuracy by reducing generalisation due to

over-fitting, and also produce intractability issues or longer learning times when

addressing the two remaining tasks (i.e. structure identification and parameter

determination) due to a larger input-space. Note that, for example the selected inputs

could be weather observations/predictions, calendar-based ones, or simply a subset

of lags from the previous week demand which represent the candidate set [19, 31, 88].

There are two main methods to be considered when addressing feature selection in

time-series forecasting; filter and wrapper approaches [9]. The former, select a subset

of inputs based on its relationship with the output to predict using a metric that can be

linear (e.g. Pearson correlation) [89] or non-linear (e.g. mutual information or

symmetrical uncertainty) [90]. The latter, focus on building models in an exhaustive

manner to use the forecast accuracy as a metric for the selection but are more prone

to over-fitting issues. This means that even if they can outperform filter methods in

accuracy, they are much more computationally expensive, as many type-2 FLSs have

to be built. This can be impractical given that their optimal structure is also unknown

and many models for different time horizons have to be built to avoid accumulative

errors [91]. Thus, a key issue to address is which should be the right filtering metric

for type-2 FLSs, if one seeks to increase forecasting accuracy without having to rely

on a computationally expensive exhaustive-search.

Partial auto-correlation [25, 89], LASSO, elastic nets, ridge regressors [92], random

forests [93], correlation-based [90] and mutual information-based [88] filter methods

have been used for this feature selection task or similar ones. However, these

methods are either constrained by a linear approximation to the STLF problem as

short-term load behaviour could be non-linear or they lack an adequate metric that

accounts for relevancy versus redundancy which can lead to over-fitting or

under-fitting issues. Thus, in order to address this limitations in computationally

efficient manner, a bin-less pairwise information-interaction estimator, which accounts

for feature relevancy and redundancy [94] based on k-nearest neighbours sampling

[95, 96] is proposed here. By means of a greedy-search which uses the Hampel

distance [97], a method that selects candidate features until they stop being

statistically significant can be obtained. The Hampel distance is a metric that is used

as a stopping criterion to determine whether an element of a set given its score, it is

19

an outlier or not. Thus, it represents a robust version of the 3 − σ approach to outlier

detection. A candidate feature is considered significant, if according to the Hampel

distance is an outlier within the set of candidates features. All according to their

predictive power and/or shared un-/conditional mutual information.

Once the model inputs are selected, structure identification and parameter

determination can be tackled. Firstly, as it can be considered that each rule defines a

load pattern from a local perspective, clustering techniques that do not require to

specify the number of clusters in the data apriori (e.g. Subtractive clustering [98, 99],

or DBSCAN [100, 101]) can be used here for the structure identification task. Then, a

numerical optimisation (e.g. evolutionary algorithms [25] , or gradient-based methods

[32]) for the previously defined structure has to be carried out. This leads to a costly a

trial-and-error loop if one seeks to improve accuracy, especially if this also involves

also repeating a parametric feature selection process. However, despite the fact that

the model structure cannot be known upfront, both tasks can be carried out

simultaneously using variable-length memetic algorithms [102, 103, 104, 105]. In this

case, a genetic algorithm with tailored individuals’ structure [106], operators and the

BFGS [107, 108], or any other local-search procedure embedded in it. An important

advantage of the BFGS quasi-Newton method is that uses a Hessian approximation

only using the first derivative, which already are complex to gather. Besides, it is a

robust algorithm with super-linear convergence for solving large non-linear

optimisation problems like this one.

Therefore, this chapter makes two distinctive contributions to the design type-2 FLSs

for STLF applications. Firstly, it introduces the aforementioned information-interaction

feature selection procedure. Secondly, it proposes the use of a variable-length

memetic learning mechanism to concurrently learn structure and parameters of type-2

FLSs. Both techniques and their combination, are novel within the power system

data-driven domain, they allow for finding a predictor which accurately models the

data independently from any kind of initial assumption in a time-effective fashion.

Furthermore, accuracy improvements are also obtained as Section 3.4 will illustrate.

Hence, this chapter brings to light the type-2 FLSs generalisation power for STLF

applications.

The rest of the chapter is organised as follows: Section 3.2 and 3.3 describe the

chapter contributions including their different steps, the proposed

information-interaction feature selector and the variable-length memetic learning

20

scheme for their definition. In Section 3.4, both contributions are tested and evaluated

against other common approaches in literature on chaotic systems and load data-sets

from the Australian electricity market. Finally, conclusions and future work are drawn

in Section 3.5.

3.2 Information-Interaction Feature Selection (Algorithm 1)

Filter methods for feature selection play an essential role in type-2 FLSs for STLF.

From a set of candidate inputs such as historical demand, type-of-day or

meteorological conditions, a representative subset is selected for the forecasting task.

As mentioned, this task is commonly performed using partial auto-correlation [25, 89],

LASSO, elastic nets, ridge regressors [92], random forests [93], correlation-based [90]

and mutual information-based [97, 88] filter methods, as discussed in the introduction.

The former rely on the identification of linear dependencies whilst the two last ones

can identify linear and non-linear dependencies. However, if the linearity assumption

between STLF inputs does not hold or an inappropriate metric for redundancy versus

relevancy is not used, the selected inputs can constrain the accuracy of the produced

forecast.

Hence, the use of an information-interaction [94] metric is proposed here to avoid both

limiting factors. The information-interaction metric accounts for features’ relevancy

and any un-/conditional redundancies by relying in on the definition of the differential

entropy (3.1).

H (X) = −
∫
f (x)l og (f (x))dx (3.1)

where X is a random variable with an unknown density function f (x). It provides an

uncertainty measurement, whilst higher order entropies like mutual information

H (Xi ;Xj) and conditional mutual information H (Xi ;Xj |Y), quantify the amount of

information shared between the variables Xi ,Xj given a third oneY . Using these, the

first-order information-interaction between a new feature Xi , a set of already selected

features S , and the output to be predictedY can be defined as (3.2) [94].

IXi ,S ,Y = H (Xi ;Y) − β
∑
Xj ∈S

H (Xi ;Xj) + γ
∑
Xj ∈S

H (Xi ;Xj |Y) (3.2)

21

Therefore, by using (3.2), the utility of a new feature is defined by a trade-off between

its shared information with the output to be predicted and its un-/conditional

correlations with the selected features (i.e. feature relevancy versus feature

redundancy). Positive values imply that the information shared by S andY has been

increased as result of including Xi . The positive parameters β and γ allow for the

parametrisation of these relevancy/redundancy penalties. High order entropies in

(3.2) (i.e. H (Xi ;Xj) and H (Xi ;Xj |Y)) can be estimated without directly binning the

data and estimating the probability distribution through non-parametric bin-less

estimators [95, 109]. The principle behind them is to average local entropy

contributions in the neighbourhood of each point by using the point k -nearest

neighbours. The strength of this bin-less estimation arises from its less difficult to

compute local entropy rather than estimate a probability density [96]. Hence, mutual

information and conditional mutual information for 1-dimensional variables which

represent candidate inputs X or the output to be predictedY can then easily be

estimated independently through their time-series with N samples as (3.3), (3.4).

Ĥk (Xi ;Y) = ψ(N) +ψ(k) −
1
N

N∑
i=1

(ψ(nxi (n) + 1) +ψ(ny (n) + 1)) (3.3)

Ĥk (Xi ;Xj |Y)) = ψ(k) −
1
N

N∑
n=1

(ψ(nxi xj (n) + 1) +ψ(nxi y (n) + 1) −ψ(ny (n) + 1)) (3.4)

where ψ is the digamma function. The estimation process starts by defining a random

variable εk which represents the maximum norm in all dimensions for the the k -th

nearest neighbour. Then by computing the number of points (i.e. nxi , ny , nxi xj , nxi y)

within εk for each sample i when one projects onto the different sub-spaces or joint

spaces. Hence, (3.3), (3.4) only rely on distances between samples, and not on the

space dimension [96].

Hence, once these estimators have been established (3.3, 3.4), the feature selection

procedure can be simply defined as a binary search tree where in each iteration, one

selects and evaluates inputs according to the information interaction metric (3.2). This

combinatorial search is performed via a greedy algorithm with a stopping criterion that

establishes the cardinality of the desired input subset S . Note that an exhaustive

search will become intractable once the cardinality of the candidates set X increases.

22

Algorithm 1 Information-Interaction Feature Selector
1: Initialisation

Set desired input subset S = {}, and the candidates set X with all the eligible
inputs.

2: Input-Output mutual information computation (3.3)
Estimate the mutual information Ĥk (Xi ;Y) between each candidate input Xi ∈ X
the outputY .

3: Initial input selection
Find X? ∈ X with the largest Ĥk (Xi ;Y), set S = {X?} and X = X \ {X?}

4: while X , ∅ do
5: Input-Input mutual information computation (3.3)

For all pairs of inputs Xi ,Xj with Xi ∈ X and Xj ∈ S estimate Ĥk (Xi ,Xj) if it is not
already available.

6: Input-Input conditional mutual information computation (3.4)
For all pairs of inputs Xi ,Xj with Xi ∈ X and Xj ∈ S estimate Ĥk (Xi ,Xj |Y) if it is
not already available.

7: Input selection (3.2)
Find X + = arg maxXi ∈X {IXi ,S ,Y }

8: Stopping criterion (3.6)
If ZX + > 3, then set S = S ∪ {X +} and X = X \ {X +}. Otherwise end search.

9: return S

Hence, given that the cardinality of the subset of relevant features is unknown, as in

[97], a Z-test outlier detection method based on the Hampel distance (3.5) is used as

a robust version of the 3σ approach to outlier detection and in this case as a robust

stopping criteria (Step 8 in Algorithm 1). As previously mentioned, a candidate feature

is considered significant, if according to the Hampel distance is an outlier within the

set of candidates features. All according to their estimated predictive power and/or

estimated shared un-/conditional mutual information.

dXi =
���IXi ,S ,Y − I (50)

Xi ,S ,Y

��� (3.5)

where dXi is the absolute deviation of the information-interaction IXi ,S ,Y of Xi and

I
(50)
Xi ,S ,Y

denotes the median of the information-interaction of all Xi ∈ X . Hence, the

Z-score of the new most suitable candidate X + can now be defined as (3.6).

ZX + =
dX +

1.4826 d (50)
X

(3.6)

where d (50)
X is the median of the absolute distances given by (3.5) for every Xi ∈ X .

Hence, by using this procedure and following the rule ZX + > 3, the statistical

significance of X + can be assessed. If X + is an outlier, it will be added to S (i.e. so

23

selected variables are always safe), and removed from the candidates subset X and

the search procedure will iteratively proceed until X is empty. Otherwise, the search

procedure will stop not including the last X + and providing the subset S where all its

features are outliers according to their Z-score, which relies on (3.2). That is to say,

the obtained subset S contains all the inputs which according to the proposed

information interaction metric are representative and significantly different from the

rest of the candidate features.

3.3 Memetic Type-2 Fuzzy Logic Systems (Algorithm 2)

Traditionally, once all the necessary features are selected, Takagi-Sugeno FLSs are

designed in a sequential fashion. Firstly, the data-set is usually divided according to a

clustering technique, into rule antecedents defining the system structure, sometimes

followed by a least-squares procedure which is used to infer the rule consequents.

Followed by, a numerical optimisation, which generally is a genetic algorithm and/or a

batch gradient descent, is carried out to fine-tune all the system parameters. Finally,

once results are obtained, the structural initial assumptions are exhaustively modified

to analyse whether improvements can be obtained. Therefore, not knowing upfront a

near-optimal structure in terms of accuracy (i.e. how many fuzzy rules are required or

which position or shape should the fuzzy clauses that compose those have),

inherently implies modifying fixed-coded structures (i.e. with a fixed number of design

parameters) which can represent a limiting factor for the technique’s potential.

Therefore, as introduced in Section 3.1, the goal when learning type-2 FLSs is to

concurrently optimise the interwoven structure and parameters, which creates a need

for a variable-coding scheme and the use of memetic algorithms which are

evolutionary ones with and embedded local optimisation. Note that subsections 3.3.1

to 3.3.5, correspond to the structure and the different steps of Algorithm 2.

3.3.1 Structure of individuals

When one seeks to concurrently learn structure and parameters, the interwoven

structure learning and parameter estimation, the need for a variable-coding scheme

arises. Messy genetic algorithms enable this option. Messy genetic algorithms, unlike

conventional genetic algorithms, do allow for flexible coding where individuals are

under-/over-specified with respect to the fuzzy logic system definition [106]. Following

24

Algorithm 2 Memetic Type-2 FLS
1: Initialisation

Set algorithm’s parameters: population size s , number of generations imax , genetic
operator probabilities prcs , prcr , prm and learning rate η. Randomly define the initial
population with {A1, . . . ,As } individuals with random numbers of rules.

2: Fitness computation
Each individual Aj statistical information is computed based on (3.7) for a given
training data-set D .

3: for i ← 0, imax do
4: Parent selection

Individuals are randomly paired, every individual of current population becomes
a parent.

5: Genetic operations
Each pair of parents {A1,A2} are recombined with probabilities prcs , prcr and the
two obtained children {A′1,A

′
2} are then mutated with probability prm respectively.

6: Local optimisation
Each child A′j is optimised via a n-epochs BGFS quasi-Newton procedure for a
given training data-set D .

7: Fitness computation
Each child A′j statistical information is computed based on (3.7) for a given train-
ing dataset D .

8: Deterministic tournaments
Each child competes with one of its parents in order to be included in the next
generation. The individual with best goodness-of-fit of each tournament, which
is defined based on the individuals’ similarity proceeds to the next generation.

9: Rank population
10: return Abest

a similar approach, a population of type-2 FLSs will increasingly evolve to more

complex forms (i.e. the number of rules dynamically increases until optimal

generalisation is achieved). Fuzzy clauses are the key elements of the coding

scheme. However, contrary to [106] antecedents and consequents are divided. Type-2

fuzzy antecedents are represented by their MFs with 4-tuples like (i ,m l ,i ,σ l ,i ,σ l ,i), in

which i is the input index, m l ,i ,σ l ,i ,σ l ,i the mean, upper and lower deviation of an

type-2 gaussian MF with uncertain deviation from the l -th rule. Consequent

parameters are represented by tuples (i , cl ,i) where i represents the input index and

cl ,i its coefficient. In the following text an example of a messy coded rule with 2 inputs

is provided where two collections of unsorted 4-tuples and tuples which represent all

the indices and parameters of its constituting antecedents and consequents

respectively. In this example rule consequent parameters define a multivariate

regression. Hence, by using this coding scheme individuals with different fuzzy sets

and/or different inputs can be used and therefore with different complexities.

25


{(0, cl ,0), (2, cl ,2), (1, cl ,1)}

{(1,m l ,1,σ l ,1,σ l ,1), (2,m l ,2,σ l ,2,σ l ,2)}


↓

µ
F̃l ,1

= N (m l ,1,σ l ,1), µF̃l ,1 = N (m l ,1,σ l ,1), µ
F̃l ,2

= N (m l ,2,σ l ,2), µF̃l ,2 = N (m l ,2,σ l ,2),

h l = cl ,0 + x1cl ,1 + x2cl ,2

↓

R l : if x1 is F̃l ,1 and x2 is F̃l ,2 then h l (x) = cl ,0 +
2∑
i=1

xi cl ,i

Hence, individuals in the genetic algorithm representing type-2 FLSs can be simply

defined by an unsorted and variable number of rules like the one from the previous

example,

{R1, . . . , R l , . . . , RM }

3.3.2 Fitness computation (Steps 2 & 7)

The learning problem can be easily formulated as an optimisation one where the main

objective is to minimise the approximation error whilst avoiding over-fitting issues (i.e.

lack of generality). Thus, as in statistical modelling, one of the most important issues

is to find the right trade-off between the goodness-of-fit and the model complexity [65].

Following the Ockham’s razor principle (i.e. among competing hypotheses, the one

with the fewest assumptions should be selected) as also by limiting the number of

fuzzy rules will help to prevent over-fitting. This is due to fact that the generalisation

ability decreases with the number of rules (i.e. loses the capacity to generalise new

data). However, if it is done too aggressively the model will be unable to produce

accurate predictions, as it is desired to obtain a model that can cover the whole

training data-set D with sufficient antecedents. Several statistical information criteria

have been formulated [65], commonly under a general framework (3.7) which allows

for comparing fuzzy models with different complexities during an evolutionary

procedure.

26

P(Aj ,D) = l og
(

1
N

N∑
k=1

(ŷAj (xk) − y k)2
)
+
α

N
MAj (3.7)

where Aj is the analysed individual (i.e. a type-2 FLS) from the population of solutions,

D the training data-set with N examples like (xk : y k), ŷ kAj the model prediction, y k the

real value for the example k , MAj a complexity metric (e.g. the number of rules of the

individual Aj) and α a positive parameter that forces the second term to tend to zero

as the number of examples increases (Algorithm 2: Steps 2 & 7). Thus, α is therefore

the key factor for avoiding an uncontrolled growth of the individuals size as it

establishes the relative rule cost. Hence, according to this criteria, the best type-2 FLS

will be the one that better fits the training data using the minimum number of rules.

3.3.3 Parent Selection & Deterministic Tournaments (Steps 4 & 8)

The multi-modal nature of concurrent structure identification and parameter estimation

(i.e. explore solutions with variable numbers of rules) makes this optimisation

especially challenging as different minima can be found depending on the rule

number. Therefore, a niching procedure denoted deterministic crowding [110, 111] is

used here to reduce abrupt generational changes in the population reducing the

chances of premature convergence. Thus, parents are randomly grouped in pairs and

when their offspring are obtained, each one competes against one of its parents. The

winner is preserved for the following generation. The matching is decided according to

the individuals similarity and each winner is based on (3.7). Hence, in order to

preserve the diversity within the solutions to be explored by the memetic algorithm, it

is necessary to establish when two individuals are similar. However, one cannot rely in

the direct comparison of their parameters (i.e. genotypes) as individuals can be

composed by different number of rules. To avoid this issue, one can assume that two

individuals are as similar as their produced forecasts (i.e. phenotypes). Thus, rather

than computing the distance between parameters or perform set operations the

distance between produced forecasts is computed. Given a sub-sample D ′ of the

training data-set with N ′ input-output pairs the similarity of two individuals is defined

by (3.8).

27

S (A1,A2) =
1
N ′

N ′∑
k=1

��ŷA1(xk) − ŷA2(xk)
�� (3.8)

Thus, by using this distance-based similarity, two pairs of parent-offspring are

obtained. Only the fittest proceed to the next generation independently from the fact

that they are offspring or not.

3.3.4 Genetic Operations (Step 5)

Crossover and mutation operators are here tailored to enhance the algorithm flexibility

and to un-trap the local search procedure if it reaches a local minimum. A cut & splice

operator as in [106] which acts on two levels is used here. On the rule-set level, to

maximise the exploration, two children rule-sets are originated from two parents

rule-sets not necessarily using the same crossover points. This allows for obtaining

children with different numbers of rules. The following is an example of this rule-set

level cut & splice operation, where two parents A1 and A2 are split producing two sets

of rules each one with different cardinalities. Then, these are distributed among the

two children A′1 and A′2.

A1 = {R1,1, R1,2, | R1,3},A2 = {R2,1, | R2,2, R2,3}

↓

A11 = {R1,1, R1,2},A12 = {R1,3}

A21 = {R2,1},A22 = {R2,2, R2,3}

↓

Randomly distributed

↓

A′1 = {R1,1, R1,2, R2,2, R2,3}, Z ′2 = {R1,3, R2,1}

However, it may occur that meaningful rules from either one or both of the parents

could be lost. There is no need to complete the children as cutting points are forced to

be near the extremes and the local optimisation will repair them. However, despite the

fact that conflicting or redundant rules will be penalised by the fitness function (3.7), it

28

is required to eliminate them from the children. To compensate for their deletion,

random rules are added given a 0.5 probability. This not only enhances the diversity

of solutions within the population, but also helps controlling the population complexity.

However, as in Section 3.3.3, a direct comparison of rule parameters (i.e. genotypes)

is not appropriate. It can occur that rule antecedents covering the same set of

samples N ′ are establish as dissimilar. Thus, one can again rely again on the

distances between their produced outputs (i.e. phenotypes) (3.9).

S (R1, R2) =
1
N ′

N ′∑
k=1

���f 1(xk) + f 1(x
k) − f 2(xk) − f 2(x

k)
��� (3.9)

On the rule level, alike [106], an antecedent/consequent from a randomly picked rule

from the first parent is selected. The second antecedent/consequent must not be a

clone rule, but it must be triggered by similar conditions. Hence, each candidate rule

similarity from the second parent is assessed using (3.9) and the closest non-cloned

rule is selected. Also, two children are generated again. Note that over-specification

and under-specification of certain inputs can occur. For the former, a

first-come-first-served approach is employed and for the latter a random completion

procedure. The following is an example of this rule-level crossover operation for rule

antecedents. This procedure is analogous for the rule consequents.

R1 = {F̃1,1, F̃1,2, F̃1,3, | F̃1,4}, R2 = {F̃2,1, | F̃2,2, F̃2,3, F̃2,4}

↓

R11 = {F̃1,1, F̃1,2, F̃1,3}, R12 = {F̃1,4}

R21 = {F̃2,1}, R22 = {F̃2,2, F̃2,3, F̃2,4}

↓

Randomly distributed & completed, if appropriate

↓

R ′1 = {F̃1,4, F̃2,1, F̃∗,2, F̃∗,3}

R ′2 = {F̃1,1, F̃1,2, F̃1,3, F̃2,2, F̃2,3, F̃2,4}

On the other hand, in this messy-inspired coding scheme mutation, also occurs in

29

different levels and is tailored to the fuzzy modelling needs, for rule-sets, rules and

parameters. In the first ones, a rule or a clause is either randomly removed or

generated based on a randomly selected example. Similarly, in the latter, the

parameters of a randomly selected antecedent or consequent are slightly modified.

Note that all these crossover and mutation operations occur according to predefined

probabilities for rule-set crossover prcs , rule crossover prcr and mutation prm

respectively.

3.3.5 Local Optimisation (Steps 6)

At each iteration of the population-based evolutionary global search, a local search is

carried out to unveil all models accuracy potential and speed up the learning the

global search process. Embedding this local search procedure in the global

evolutionary one, is what makes the proposed methodology belong to the memetic

algorithms family. These methods model natural systems that combine lifetime

learning and evolutionary adaptation [102, 104, 105, 112, 113].

Knowing upfront the model derivatives towards the mean squared error will be

minimised represents an advantage in terms of convergence speed against

derivative-free heuristics, where the steps are taken following a random direction.

Thus, a local optimisation using a n-iterations fine-tuning via a BFGS [107, 108]

quasi-Newton method is applied to each generation offspring, which is outlined in

Algorithm 3. BFGS is an iterative algorithm procedure generally used for solving the

non-linear numerical unconstrained optimisation which matches with the task of

defining the right parameters for a type-2 FLS. Although, suited to the task it appears

no other work has made used for this particular task.

Below are defined the necessary equations for the jacobian computation necessary to

speed up the BFGS algorithm. It should be borne in mind that mean squared error is

used as a performance metric and type-2 MFs with uncertain deviation, Nie-Tan

type-reduction (2.22) and product as t-norm are used here. Hence, if wAj ,l ,i (n) is an

antecedent parameter (i.e. mean mAj ,l ,i , upper spread σAj ,l ,i or lower spread σAj ,l ,i),

the partial derivatives for the i -th antecedent parameter of the l -th rule given a k data

pair (xk : y k) are defined in (3.10)-(3.17).

30

Algorithm 3 Broyden-Fletcher-Goldfarb-Shanno [107]
1: Initialisation

Define initial guess Z0 from the given offspring solution Z , define approximate Hes-
sian matrix B0 ← I and set the rest of the algorithm parameters: maximum number
of iterations imax and maximum convergence tolerance τmax .

2: while i < imax and | |+f (xi) | | > τmax do
3: Get the search direction

di ← −Bi +f (xi).
4: Calculate step size λi via a line-search given dk
5: Update solution

Zi+1 ← Zi + λi dk
6: Update the approximate Hessian

pi ← λidi
qi ← +f (xi+1) − +f (xi)

Bi+1 ← Bi +
qiqT

i

qT
i
pi
−
BipipT

i Bi

pT
i
Bipi

7: return Z

∂ekAj

∂wAj ,l ,i

���
k
=

ekAj (h l (x
k) − ŷ k)∑M

i=1 f i (xk) + f i (xk)
×

(
∂f l (xk)
∂wAj ,l ,i

���
k
+
∂f l (xk)
∂wAj ,l ,i

���
k

)
(3.10)

∂f l (xk)
∂wAj ,l ,i

���
k
=

∂µ
F̃l ,i

∂wAj ,l ,i

���
k

p∏
j=1
j,i

N (m l ,j ,σ l ,j ; x kj) (3.11)

∂f l (xk)
∂wAj ,l ,i

���
k
=

∂µ
F̃l ,i

∂wAj ,l ,i

���
k

p∏
j=1
j,i

N (m l ,j ,σ l ,j ; x
k
j) (3.12)

∂µF̃l ,i
∂mAj ,l ,i

���
k
=
(m l ,i − x ki)
(σ l ,i)2

N (m l ,i ,σ l ,i ; x ki) (3.13)

∂µ
F̃l ,i

∂mAj ,l ,i

���
k
=
(m l ,i − x ki)
(σ l ,i)2

N (m l ,i ,σ l ,i ; x
k
i) (3.14)

∂µF̃l ,i
∂σAj ,l ,i

���
k
=
(m l ,i − x ki)

2

(σ l ,i)3
N (m l ,i ,σ l ,i ; x ki) (3.15)

∂µ
F̃l ,i

∂σAj ,l ,i

���
k
=
(m l ,i − x ki)

2

(σ l ,i)3
N (m l ,i ,σ l ,i ; x

k
i) (3.16)

∂µ
F̃l ,i

∂σAj ,l ,i

���
k
=

∂µF̃l ,i
∂σAj ,l ,i

���
k
= 0 (3.17)

On contrary, if wAj ,l ,i is a linear consequent parameter (i.e. cAj ,l ,i), the partial

derivatives are shown in (3.18).

31

∂ekAj

∂cAj ,l ,i

���
k
=


ekAj (f l (x

k) + f l (xk))∑M
i=1 f i (xk) + f i (xk)

(x ki) if i , 0

ekAj (f l (x
k) + f l (xk))∑M

i=1 f i (xk) + f i (xk)
otherwise

(3.18)

3.4 Experimental Setup, Data & Results

k β γ si ze imax epochs α prcs/cr /m
3 0.75 0.25 30 100 10 10 0.6, 0.1, 0.05

Table 3.1: Design Parameters for Algorithms 1 & 2

3.4.1 Chaotic Systems

Chaotic behaviour can be described as bounded fluctuations of the output of a

non-linear system with high degree of sensitivity to initial conditions [114]. That is to

say, trajectories with nearly identical conditions can differ a lot from each other. The

Mackey-Glass equation (for τ > 17 exhibits chaos) is a non-linear delay differential

equation that has become one of the main benchmarks for AI-based time-series

prediction [32].

dx (t)
d t

=
ax (t − τ)

1 + x (t − τ)c − bx (t) (3.19)

Chosen constants are τ = 17, a = 0.2, b = 0.1 and c = 10 as in [115]. Hence, the

objective is to assess if the proposed learning method is able to produce an type-2

FLS which accurately model xk+6 from a sample of 2000 input-output data pairs, the

first 1000 pairs for training and the remaining ones for testing as shown in Fig. 3.1.

Selected set of inputs are {xk−18, xk−12, xk−6, xk } (Fig. 3.2). Table 3.1 depicts the

design parameters, these remain fixed during both experiments. The key for their

selection is achieving a balance between the selection threshold, weighting factors

and cut & splices rates to obtain a slow growth of the population complexity. Hence, a

comparison with a NN and type-2 FLSs defined via different structure and parameter

learning combinations was then performed. NN parameters are defined via mean

squared error cross-validation procedure using the training dataset. To determine the

32

Figure 3.1: Mackey-Glass training & testing datasets.

Figure 3.2: Mackey-Glass output versus input scattergrams.

33

Method Structure & Parameters MAPE
NN Cross-Validation & BFGS 1.546 %

DBSCAN & BGFS 0.405 %
DBSCAN & Genetic Algorithm 0.391 %

Type-2 FLS Subtractive Clustering & BGFS 0.302 %
Subtractive Clustering & Genetic Algorithm 0.277 %
Memetic Algorithm 0.226 %

Table 3.2: Mackey-Glass out-of-sample results

structure, subtractive clustering and DBSCAN were used for this tasks, each time

contrary to the memetic case, their parameters were established through

cross-validation procedure using silhouette [116] as a metric. Although impractical in

real applications due to its computational effort, it represents the best-case scenario

for both. Finally, to establish the FLS parameters, a genetic algorithm and BFGS were

used, which represent a global and local heuristic, respectively. All to explore the

initial suitability of the approach to the STLF problem. Results can be found in Table

3.2 where the mean average percentage error (MAPE) over 10 experiments is used

as performance index. These results depict the competence of the proposed scheme

(Algorithm 2) to carry out time-series forecasting (Fig. 3.3). Improvements over the

NN and other fuzzy learning schemes are mainly due to the use of a more competent

model structure and parameters to generalise (Table 3.2 & Figure 3.3).

34

Figure 3.3: Mackey-Glass out-of-sample results for a NN and a type-2 FLS designed
via a memetic algorithm

Figure 3.4: Load demands for New South Wales, Victoria & Tasmania regions.

Hence, Table 3.2 results indicate that type-2 FLSs in all cases produced better

predictors for the Mackey-Glass time series. Figure 3.3 depicts that the differences

between the memetic FLS and the NN occur on the peaks where the NN forecast is

not able to adequately model the Mackey-Glass series. Besides, two additional

conclusions can then be directly extracted from Table 3.2, the global search performed

by the genetic algorithm and the memetic algorithm offered better results due to the

fact that BFGS can converge to a local optima. Regarding the system structure,

subtractive clustering produced slightly better results than DBSCAN, probably due to

the fact that DBSCAN presents problems when separating nearby clusters properly

and then the densities vary. Finally, the memetic algorithm managed to obtained a

more suited number of rules than the other clustering approach. Nevertheless, all

improvements in MAPE decrease as results get closer to optimal solution.

35

3.4.2 Short-Term Load Forecasting

The objective here is to obtain a one-day-ahead, 30-minutes-resolution load predictor

relying only on historical load data. The data-set used corresponds to the Australian

electricity market (New South Wales, Victoria & Tasmania regions) electric demands

from 2015. As in [26], these regions were selected because their load patterns and

scale differ in each month, making testing less subjective. Also the different regions

vary in size, being possible to assess how the forecasts evolve according to the

market volume (Figure 3.4) and non-linearity (Figures 3.5, 3.6, 3.7). Only historical

load data was considered here for the model feature selection, particularly load lags

from the previous week.

Although, the consideration of seasonalities, special days or meteorological time

series can substantially improve the forecasting accuracy, this testing decision was

made in order to show the model’s ability to generalise in more challenging conditions.

Thus, the last quarter was removed from the training sample to perform the necessary

out-of-sample testing. Using only the last quarter for testing as the number of special

days and load patterns make the forecasting problem more challenging. That is to

say, daily forecasts for the days of the last quarter of 2015 with a

30-minutes-resolution are performed. Besides, as in practice, these will follow a

non-recursive procedure to avoid error accumulation, forecasts are produced for

t + 48 which trivially represents the most challenging horizon. The average of the

MAPE over 10 trials is again used here as performance metric.

Several models have been developed using different feature selection mechanisms to

compare against the proposed information interaction mechanism (Algorithm 1) and

memetic algorithm (Algorithm 2); partial auto-correlation, LASSO, elastic nets, ridge

regressors, random forests, all these following a wrapper cross-validation procedure;

and MRMR as filter method. To determine the structure, subtractive clustering and

DBSCAN, and finally to establish the system parameters again using silhouette; a

genetic algorithm and BFGS, which represent a global and local heuristic,

respectively. Also, for comparative purposes NNs [23] and SVRs [28] using the

mentioned feature selection methods were developed. All these testing procedures

are required to assess if indeed there are accuracy improvements by using the

proposed feature selection procedure (Algorithm 1) and the proposed variable-length

memetic algorithm (Algorithm 2).

36

Figure 3.5: New South Wales region output versus input candidates scattergrams.

Datasets are managed by means of pandas library functions and dataframes [117]. A

pandas dataframe is a 2-dimensional labeled data structure with columns of not

necessarily from the same type. Hence, data is imported into this object which one

can easily relate to a tabular object which allows for queries, function mapping. This

library also allows to produce figures and compute moving window statistics. Note

that in this application due to the volume of data is not necessary to limit the

dataframe size and iterate over the dataset.

37

Figure 3.6: Victoria region output versus input candidates scattergrams.

Figure 3.7: Tasmania region output versus input candidates scattergrams.

Figures 3.8 - 3.10 summarise the series out-of-sample forecasting results. Both

algorithms, when combined, depict MAPE reductions ranging from 0.07 % to 2.63 %,

0.03 % to 3.19 0.13 % to 0.81 % in the New South Wales, Victoria and Tasmania

datasets respectively. Besides, when not combined both are clustered towards the

best performance side. When assessing the proposed algorithms individually,

accuracy improvements are generally constrained. This is due to the learning

dependencies between the system inputs and its structure. Also when improvements

are minimal it is due the proposed combination is matching the best achievable

performance. Nevertheless, the rest of combinations were not as consistent in

performance and represent the impracticalities of a trial-and-error scheme without any

guarantee of success. With all the disadvantages that implies in terms of

computational costs. Differences between datasets can be explained in Figures 3.5 -

3.7 where regardless the magnitude of the demand the linearity of the sample

determines any ability to produce better forecasts and consequently smaller MAPEs

are gathered. This also explains why the partial autocorrelation method for feature

selection worked better in the Tasmania sample than in the other two. Regarding the

38

Figure 3.8: Out-of-sample MAPE in the New South Wales dataset

39

Figure 3.9: Out-of-sample MAPE in the Victoria dataset

40

Figure 3.10: Out-of-sample MAPE in the Tasmania dataset

41

Figure 3.11: One-step-ahead (t + 48) forecasts of the different combinations of feature
selectors and AI approaches in the Victoria region from 09/10/2015 to 15/10/2015.

performance of other feature selectors, the performance of random forests should be

highlighted as they provide the best alternative to the information interaction one.

Regarding the latter, the results also illustrate the validity of the introduced information

interation feature selector when working with NNs as this combination is also

consistently among the best solutions. Nevertheless, it produced inferior performance

than the combination information interation feature selector and the memetic FLS

approach. Also, SVRs produce worse results than the FLSs and NNs when the the

non-linearity in the dataset was higher (i.e. Victoria and New South Wales). In this

case, regarding the FLS structure, only memetic algorithm produced consistently

better results and differences between subtractive clustering and DBSCAN were not

consistent. Finally, as in the Mackey-Glass case, the global search performed by the

genetic algorithm and the memetic algorithm offered better results. Neverthess, in this

case again differences decrease as results get closer to optimal solution.

3.5 Summary

This chapter has introduced a novel method to automatically design type-2 FLSs for

STLF applications. The method is able to identify its constituent features, and

concurrently learn its parameters and structure without any kind of initial assumption.

This is achieved by means of two novel techniques within the STLF and power

systems data-driven domains; an information interaction feature selection procedure

(Algorithm 1) and a variable-length memetic learning scheme (Algorithm 2).

Moreover, when they are combined as shown in Section 3.4, they can provide MAPE

42

improvements which consistently provide the best achievable type-2 fuzzy model and

accuracy improvement when compared to other combinations of feature selectors,

AI-models and a fuzzy learning approaches. As a result of these improvements, gains

in power system operational efficiency and market competitiveness can be achieved.

But mainly, there is potential to enhance and automate other power systems

data-driven applications.

43

4 Voltage Control in Distribution Networks

Voltage regulation in power systems at distribution level is becoming a challenging

problem in terms of control due to new types of demand and intermittent generation.

Whilst the goal is to maintain the voltage within the security standards in those

operating conditions, an efficient management of the system is as well required. This

chapter aims to introduce the use of type-2 FLSs in power systems operation &

control, as a suitable scheme for coordinated voltage regulation. Also, its

implementation within a hierarchical agent architecture is also investigated. This

allows for different levels of coordination between high and low level goals, handling

the system’s complexity.

4.1 Introduction

Being a key aspect is to obtain timely solutions as closest as possible to the optimal

one in order to operate the distribution network as is practicable, achievable and

beneficial as possible. The use of traditional mathematical approaches such as robust

optimisation become unpractical as scale increases. Hence, following a similar

approach to [59], hierarchical type-2 FLSs which incorporate technical, commercial

and social perceptions/contexts into the decision-making process can enable

performance improvements when compared to other heuristic approaches common in

the literature.

This chapter makes a significant contribution as it introduces the use of type-2 FLSs

in power systems operation, as a more suitable scheme to cope with significant levels

of distributed generation. It appears that little or no other work in the literature has

investigated type-2 within this purpose. Furthermore, its implementation within a

hierarchical architecture allows for different levels of coordination, handling the

system’s complexity.

The rest of the chapter is organised as follows: Section 4.2 outlines the chapter

contribution, the proposed hierarchical FLSs for voltage control in distribution

44

networks. In Section 4.3, this is tested and evaluated against other common

approaches in literature on three different distribution network models with load and

distributed generation profiles. Finally, conclusions and future work are drawn in

Section 4.4.

4.2 Hierarchical Type-2 Fuzzy Logic Systems

Type-2 FLSs are especially appropriate to deal with imprecision as they are

essentially universal approximators suited to model non-linear continuous processes.

All these imply that in terms of power systems, suitable scenarios or devices are the

ones where processes or tasks are continuous rather that discrete. This is mainly by

the fact that FLSs are inherently continuous and discrete problems might imply a

information loss in the response discretisation. Besides, type-2 FLSs rather than

type-1 are particularly appropriate for problems hard to model because different

non-stationary statistical attributes such us inaccuracies in the voltage sensitivity or

the noise measurement cannot be expressed ahead of time mathematically for all

conditions. One could easily point out, that given the non-discrete nature of many

controllers and their non-linear relation with the network’s sensitivity factors, any kind

of pre-calculation will lead to inaccuracies. Thus, in those situations where a fast

response is needed, computation time can be saved by means of type-2 FLSs.

Therefore, their application will probably stand out more clearly in meshed networks

rather than radial ones as interactions are less obvious.

Furthermore, in terms of behaviour coordination, type-2 FLSs due to their non-crisp

characterisation a smoother response will be obtained due to their less responsive

nature when compared to type-1 schemes. Hence, in arbitration situations when

conflicting situations arise, this could reduce the number of negotiations. A example of

this, could be the efficiency coordination among two different control actions.

However, type-2 FLSs as any other rule-based FLS struggle to handle a vast number

of variables (i.e. curse of dimensionality). As the number of rules grows exponentially

as it does the number of inputs. This strongly affects its scalability and therefore its

application.

Inspired by [59], where a solution is provided to a similar problem in a mobile robots

scenario, a hierarchical control problem decomposition is proposed to change the

behaviour of rule growth (i.e. it will increase linearly, not exponentially) and provide a

45

Figure 4.1: Hierarchical Type-2 FLSs.

control scheme where a high-level FLS modulates, according to a specific context, the

goals of a collection of low-level FLSs which are working independently. However,

low-level FLSs in this case instead of tackling an specific scenario, they are going to

be controlling an specific device to achieve a particular goal.

By exploiting this particular hierarchical architecture on power systems in a scalable

way, the control task can be tackled in divide-and-conquer fashion and even

integrated within a multi-agent system [78, 118], where each agent is a type-2 FLS

(Figure 4.1). Thus, by increasing the levels in the structure, introducing new high-level

agents above the previous ones, the system has increased capability to operate

efficiently in real-time by channelling operations and information flow.

Additionally, according to a range of goals, zones of control or tasks, different levels of

coordination can be established (e.g. for a given zone of control which helps limiting

the problem complexity, a high-level agent may have the goal to maintain the voltage

within the limits, another to perform thermal control. So, by adding another high-level

agent above them, coordination between different algorithm goals can be obtained).

Furthermore, by increasing the degree of branching of the hierarchical structure, the

system can be adapted to the network and by enlarging the number of levels; the

system will have greater functionality. Furthermore, this approach allows agents to

work in parallel inside the zone, increasing the flexibility to react to each change in the

network.

By operating in a similar manner as [55], a solution is produced to fulfil the global goal

46

Figure 4.2: Severity, efficiency and availability antecedents.

in a timely fashion. Although here, local goals are also satisfied within a more flexible

algorithm that allows for complementary contexts. Type-1 MFs need to be

appropriately tuned for each network in order to avoid convergence problems. Also,

as in [55] all signals are normalised to [−1, 1]. Hence, Algorithm 4 starts by collecting

the measurements and fuzzifiying only the most severe voltage violation. The

high-level system provides a measure of sensitivity to each low-level system. Then,

each individual low-level system reacts to the voltage deviation (i.e. severity)

proposing an interval of actions to solve the problem (i.e. type-reduced fuzzy set)

depending on their availability and efficiency (i.e. sensitivity) to solve the problem as

Table 4.1 illustrates. MFs for high and low antecedents for each of these inputs are

depicted in Figure 4.2. The complex three-dimensional interval of intention surfaces,

unachievable for their type-1 counterparts are depicted in Figures 4.3 - 4.6, where in

blue and are presented the bounds of the type-reduced set as in (2.15). These can be

considered as soft mappings of Table 4.1 as relates severity, efficiency and availability.

Figures 4.3 - 4.4 illustrate symmetrical intentions depending on the sign of the voltage

violation and the local sensitivity factors. Also in both cases, curves saturate towards

the extremes showing smooth slopes, which directly translate into smoother controller

actions. Figures 4.5 - 4.6 depict control bottlenecks shapes that occur when the

controller is at its operational end-points and an intention is not possible. And how the

options widen as efficiency indicates a different direction. Also, the final action will be

within the red and blue section and will depend on the rest of controllers available and

their state. Oscillating between the most helpful action to solve the problem given the

control budget and the local utility or desire of each controller.

Given this collection of type-reduced sets, the local goals of the low-level systems

47

(e.g. reduce number of tap operations, satisfy the desired consumers demand or

maximise utility of DGs), and a given context (e.g. decision according to severity or

economical targets). This context established whether to satisfy or not the local goals.

The way the context works not differs much from a selection priority index [119] which

maps the requirements with the control budget and decides which action to deploy

(i.e. Table 4.2). For example, the budget is the sum of local sensitivities that is used

as an approximation as actions can cancel each other or flows within the network may

change affecting voltage levels. Thus, all these inputs are mapped into crisp actions

as in [59] and applied and validated using a Matpower network model [45]. This

process is continuously re-run until the violation is solved according to the network

model, there no changes in the solution or until a maximum number of iterations is

reached. Oscillations in voltage magnitude, but also interactions between devices

may appear during the solution calculation due to the fact that removing one violation

could cause another one to occur. Sequential validation can help avoid trailing

problems as the system would backtrack. Also, the maximum number of iterations

defines a time limit and was set in order to identify scenarios where a feasible solution

cannot be obtained due to the limits of controllability.

Efficiency Availability Severity Intention
Negative Negative Negative Negative
Negative Negative Positive Positive
Negative Positive Negative Zero
Negative Positive Positive Zero
Positive Negative Negative Zero
Positive Negative Positive Zero
Positive Positive Negative Positive
Positive Positive Positive Negative

Table 4.1: Low-Level Rule-Base

Budget Need Action
Negative Negative Intention
Negative Positive Intention
Positive Negative Desire
Positive Positive Intention

Table 4.2: Context Rule-Base

48

Figure 4.3: Intentions surface for severity = 1

Figure 4.4: Intentions surface for severity = -1

49

Figure 4.5: Intentions surface for availability = 1

Figure 4.6: Intentions surface for availability = -1

50

Algorithm 4 Hierarchical Type-2 FLS
1: Initialisation

Gather voltage deviations {v1, . . . ,vn }.
2: while convergence , True do
3: Efficiency retrieval

Given the worst voltage violation v ∗ ∈ {v1, . . . ,vn } collect devices { ∂v ∗∂y1
, . . . , ∂v

∗

∂ym
}

sensitivity under current conditions.
4: for yi ∈ {y1, . . . , yn } do
5: Intentions computation

Using the device efficiency ∂v ∗

∂yi
, its availability ai , obtain an interval of intentions

[x1,l , x1,r] by means of a type-2 FLS.
6: Action determination

Given a set local goals {x ∗1, . . . , x
∗
1}, a set of intervals of intentions

{[x1,l , x1,r], . . . , [xm,l , xm,r]}, and a predefined context for arbitration, a set of crisp
actions S is determined by means of a type-2 FLS.

7: return S

4.3 Experimental Setup, Network Models & Results

The objective here is to ensure voltage deviation at all buses remains within the

statutory limits in three different distribution networks; IEEE57, AuRA-NMS 33kV [120]

and a reduced version of AuRA-NMS 11kV. The former two are meshed whilst the

latter is radial. Different scenarios will be tested in order to evaluated the hierarchical

type-2 FLSs performance. In the meshed networks, a comparison only using OLTCs

against a type-1 hierarchical FLS, a genetic algorithm, a local controller and greedy

algorithm is performed. The first performs a blind-search with a population of 100, a

maximum of 100 generations, deterministic tournaments for parent selection and 0.7

and 0.3 as crossover and mutation rates. In the second each OLTC monitors and

controls a specific bus according to voltage target and a dead-band around it (i.e, acts

as soon as the voltage of this bus abandons this predefined dead-band). The third is a

sensitivity-based heuristic. At each iteration selects the most promising action

according to the device voltage sensitivity.

Furthermore, in the meshed networks another comparison will be performed also

adjusting the real power in DGs. This time only against hierarchical type-1 FLS and a

greedy algorithm, as the other are not suited to this mixed-integer non-linear problem.

Mixed-integer because of the nature of the different controllers available, that is to say

DGs and OLTCs, and non-linear as the squared relation between the power flow into

load impedances and applied voltages. Therefore the variables in this voltage control

problem are the operational range in which each one of the DGs and OLTCs is, the

51

most severe voltage violation and the local sensitivity of each one of the DGs and

OLTCs towards the most severe voltage violation. Given all these variables, each

low-level FLS from this hierarchical scheme will produce an interval of intentions each

iteration. These intentions depict the offerings to solve the problem of each FLS, and

will be modulated and defuzzified into crisp outputs (e.g. DG output).

In both meshed network cases, the voltage limits are set to ±6% and it is assumed

that all the network transformers are OLTCs with 0.01 step size and range ±20. As

performance metrics, the number of operations, the largest deviation and curtailment

in the cases where DGs are used. Data is also scaled by three in the latter to force

coordinated solutions. Finally, only 30 tap moves should occur per OLTC per time

period, as more would be unachievable under real conditions. With regards to the

radial network, different assumptions are made to increase the case difficulty and to

obtain a more challenging scenario in a radial network. The loads and the DGs were

considered as totally random, varying uniformly in at each iteration of the 1000

generated. Three type of control devices are here considered, OLTCs, real power

control in DGs and demand-side control. Loads at each feeder have different scaling

factors to produce unbalanced situations, and have a random ratio to provide

demand-side response (i.e. three random values will determine the controllable

interval and the desired demand within it). Therefore, the numbers of controllable

loads change in every iteration as well as their control conditions, no forecast is

considered. Thus, the control objective or global goal is to efficiently maintain the

voltage deviation within the limits as well as, reduce number of tap operations, satisfy

the desired consumers demand and maximise the utility of DGs. Finally, the voltage

limits were set to ±2%. Further details on the specifics of each case are described in

following subsections.

4.3.1 IEEE57

This meshed test network has 57 buses, 7 DGs, 15 OLTCs and 42 loads. A few

modifications have been made. 4 additional windfarms with capacities 7.5, 9.5, 12

and 14 MVA are connected to buses 33, 57, 30 and 32 respectively using the same

scaled half-hourly real windfarm export profile. A schematic of the unmodified network

is given in Figure 4.7. Load profile data, also with 30-minutes-resolution have been

used [121]. As result, Figure 4.8 depicts the voltage evolution of all 57 buses when no

52

Figure 4.7: IEEE57 Network.

53

Figure 4.8: IEEE57 - Voltage evolution with no actions performed.

action is perform, just to illustrate that the voltage distribution across all nodes over

time is nearly as wide as the operational deadband.

Method No. Operations Max. Deviation [p.u.]
Local Control 1062 0.2839
Genetic Algorithm 3623 0.0544
Greedy Algorithm 29 0.0664
Hierarchical Type-1 FLS 34 0.0641
Hierarchical Type-2 FLS 25 0.0596

Table 4.3: IEEE57 results - OLTCs only.

Method No. Operations Max. Deviation [p.u.] Curtailed [MW]
Greedy Algorithm 38 0.0597 949.517
Hierarchical Type-1 FLS 52 0.0597 980.174
Hierarchical Type-2 FLS 36 0.0596 799.801

Table 4.4: IEEE57 results - OLTCs & DGs.

Tables 4.3 and 4.4 summarise the IEEE57 network results. Type-2 FLSs depict a

smoother behaviour with arises from Figures 4.3 - 4.6 with lower number of tap

operations and fewer curtailment of the DGs. All fulfilling the goal to keep the voltage

within the limits except for the local controllers. Operating with fixed targets, they

continuously trailed due to their interactions. That is to say, OLTCs overreacted and

cancel each other because of the meshed nature of the network and the not obvious

sign of the local sensitivity factors. The genetic algorithm had convergence issues and

did not provide timely solutions as it required an unachivable number of operations.

Type-1 FLSs obtained similar performance as the greedy approach although with a

greater number of operations as the MFs were not optimal. This occurred in both

scenarios, with and without DGs. Finally, the hierarchical Type-2 FLS not only

managed to achieve the lowest voltage violation but as well with the lowest number of

54

Figure 4.9: AuRA-NMS 33kV Network.

55

operations and curtailing an inferior amount of generation.

4.3.2 AuRA-NMS 33kV

This meshed test network [120] has 40 buses, 10 loads and 9 DGs, 2 hydro and 9

windfarms. Hydro plants with capacities of 20 MVA each one, and windfarms with

capacities, 2, 3, 10, 15, 15, 20, 20 and 25 MVA respectively. A schematic is given in

Figure 4.9. Again time-series data has 30-minutes and except for the hydro are

profiles are the same as in the IEEE57 case. Also, the network has 19 OLTCs with the

same characteristics. Figure 4.10 depicts the voltage evolution of all 40 buses without

any action being perform to again illustrate that in this case the network is heavily

loaded.

Method No. Operations Max. Deviation [p.u.]
Local Control 7058 0.2839
Genetic Algorithm 4682 0.0599
Greedy Algorithm 32 0.6000
Hierarchical Type-1 FLS 43 0.0965
Hierarchical Type-2 FLS 31 0.0596

Table 4.5: AuRA-NMS 33kV results - OLTCs only.

Method No. Operations Max. Deviation [p.u.] Curtailed [MW]
Greedy Algorithm 46 0.0596 820.449
Hierarchical Type-1 FLS 102 0.0596 788.912
Hierarchical Type-2 FLS 41 0.0596 776.146

Table 4.6: AuRA-NMS 33kV results - OLTCs & DGs.

Tables 4.5 and 4.6 illustrate the AuRA-NMS 33kV network results. Similar conclusions

can be obtained. As in the IEEE57 case, the local and genetic approaches can be

discarded because of the very same reasons. The local control did not manage to

solve the voltage control problem and the genetic algorithm did not do it in a timely

manner. Type-2 FLSs produce again an improved solution in terms of operation and

the amount of curtailed generation. Furthermore, in the OLTCs only case was the only

one the achieve an adequate solution.

4.3.3 AuRA-NMS 11kV

This test network is a simplification of an existing 11kV UK radial network from the

AuRA-NMS project [120]. The network has 3 OLTCs are dependant in their operation,

56

Figure 4.10: AuRA-NMS 33kV - Voltage evolution with no actions performed.

Figure 4.11: AuRA-NMS 11kV Network.

40 buses and is composed of two radial feeders, each with several loads. The top

feeder also has two DGs. Both are connected to a grid infeed at 33 kV through three

transformers.

In Figure 4.12 simulation results are shown. Note the existing variability on the most

severe voltage violation along iterations, neither load nor generation dominant, is

mainly explained by the inherent uncertainty in the case generation (i.e. a sequence

of random scenarios). Nonetheless, hierarchical type-2 FLSs were capable of

maintaining all voltages within ±2% on the 1000 tested iterations using pre-computed

sensitivity factors in less than 5 iterations per case. According to the obtained results,

the objective of obtaining timely solutions to his coordinated problem was successfully

achieved. Hierarchical type-2 FLSs were able to adapt to controllability changes

without modifying their initial parameters or rule-base.

57

Figure 4.12: AuRA-NMS 11kV - Worst voltage deviation evolution with no actions per-
formed and with the hierarchical type-2 FLS.

4.4 Summary

This chapter has introduced a novel method to flexible address voltage control in

distribution networks. Thus, according to the obtained results, coordination between

devices, global and local objectives was successfully achieved (e.g. maintain voltage

within the limits whilst reducing the number of tap operations, satisfying and

maximising the utility of DGs). Type-2 FLSs were able to consistently over-performed

their type-1 counterparts and other alternatives such a greedy sensitivity-based

search. As a result of these improvements, operational life of OLTCs can be extended

and/or DG penetration increased.

58

5 Conclusions

Type-2 FLSs have many substantial advantages when compared to their type-1

counterparts and provide a smoother control due to the smother shape of the control

surface [71]. The modulated response is less abrupt when compared to type-1 FLS

because of the use of interval firings. Hence, when compared to type-1 FLS a more

adaptive system can be obtained by allowing more complex relationships as Figures

4.3 - 4.6 depicted. Type-1 FLSs have to be considered as merely reduced versions of

type-2 FLSs where the upper and lower MFs are the same. Another advantages

worth to mention is that the input range can be covered with a fewer number of sets

obtaining similar input-output mappings, this means that with fewer degrees of

freedom similar relationships can be achieved. Furthermore, the offer an increase of

the system robustness and handle better disturbances around the controlling point.

Therefore, in the power system case, like in many other real world applications, type-2

FLSs offer capable solutions to deal with non-linear mappings where imprecision is

inherent.

Besides, how these are designed is essential. Being able to identify its constituent

features, and concurrently learn its parameters and structure without any kind of initial

assumption, enables performance improvements. This can be achieved by means of

two novel techniques introduced in this thesis that are tailored to the STLF domain; an

information interaction feature selection procedure (Algorithm 1) and a variable-length

memetic learning scheme (Algorithm 2). Results in Section 3.4 depict these

improvements in terms of MAPE that can unveil gains in power system operational

efficiency and market competitiveness. These to algorithms not only consistently

provide the best achievable type-2 fuzzy model and MAPE when compared to other

combinations of feature selectors, AI-models and a fuzzy learning approaches. But

also, enable the opportunity to enhance and automate other power systems

data-driven applications.

Finally when dealing with voltage control in distribution networks. According to the

59

results in Section 4.3, coordination between devices maximising local utility is

possible by means of a hierarchical implementation of type FLSs. The voltage can be

maintained within the operational limits whilst minimising the OLTC operations and

DG curtailment. As a result of these improvements, OLTCs operational life can be

extended as well as the environmental and economical benefits of DGs can be

increased.

The rest of the chapter enumerates this thesis contributions and key findings.

Additionally, discusses broader implications and future research directions that could

effectively extend this work.

5.1 Contributions

This thesis contributes with a novel framework to automatically design type-2 fuzzy

logic systems for modelling applications, and load forecasting in particular. This along

with the voltage control for distribution networks implementation bring to light the

capabilities of type-2 fuzzy logic systems to directly derive benefits to energy

stakeholders in two distinctive areas.

1. An information interaction feature selection procedure is introduced, novel within

the power systems domain that as more generic approach overcomes the

limitations of other entropy-based selectors. Also, appropriately selecting

features allows for improving accuracy and decreases training time.

2. A memetic algorithm to concurrently learn the structure and parameters of a

type-2 fuzzy logic systems is introduced, novel within the model identification

domain. It consistently provides superior performance unconstraining fuzzy logic

systems modelling capabilities.

3. A scalable implementation of type-2 fuzzy logic systems that allows the voltage

control task to be tackled in divide-and-conquer fashion and even integrated

within a multi-agent systems.

Also of importance, within each of these mechanisms, through the proposed

formulations and solution approaches, several smaller research contributions arise

from the present work;

60

1. Load forecasting comparison in distinctive market regions of a combination of

feature selectors and artificial intelligence algorithms and fuzzy learning

schemes.

2. Use of the BFGS gradient-based parameter optimisation and jacobian definition

for the its implementation on type-2 fuzzy logic systems which use Nie-Tan

type-reduction.

3. Use of entropy metrics to compute a measure of fuzzy rule similarity in an

empirical fashion.

4. Messy coding implementation for type-2 fuzzy logic systems that allows for

concurrent optimisation of systems with different numbers of rules.

5. Comparison of type-2 fuzzy logic systems for voltage control against common

approaches and its type-1 counterpart in 2 different distribution meshed

networks.

5.2 Broader Implications & Future Research

1. There are many other tasks that require precise forecasting techniques (e.g.

wholesale prices or wind generation among other) [122, 123]. Type-2 fuzzy logic

systems have demonstrated their performance on short-term load forecasting

when thesis contributions were used. Then, it could exploited in all these other

challenging time-series forecasting problems.

2. Extending the load forecasting automated design methodology to enable

probabilistic forecasting via direct learning of prediction intervals. This has many

applications especially in wind forecasting to improve realiability [124].

3. Another interesting problem is to explore load forecasting at sub-regional levels

and assess how small the sample can before the predictive performance will

start to degrade. This will open opportunities to aggregators and suppliers to

further optimise their portfolio.

4. Integration of all the contributions introduced here, to enable model predictive

control, demand-response scheduling for services provision or even through

61

learning explore how to avoid the need for using a load flow engine as a

validator.

62

A Source Code

language

1 import pandas as pd

2 import numpy as np

3 from copy import deepcopy

4 from scipy import optimize, spatial

5 from random import choice, randrange, random

6 from sklearn.utils.random import sample_without_replacement

7 from scipy.spatial import cKDTree

8 from scipy.special import digamma

9 from pypower.runpf import runpf

10

11 def avgdigamma(points, dvec):

12 # This part finds number of neighbors in some radius in the marginal space returns

expectation value of <psi(nx)>

13 N = len(points)

14 tree = cKDTree(points)

15 avg = 0.

16 for i in range(N):

17 dist = dvec[i]

18 num_points = len(tree.query_ball_point(points[i],dist-1e-15,p=float(’inf’)))

19 avg += digamma(num_points) / N

20 return avg

21

22 def mi (X, Y, k = 3, base = 2.718281828459045):

23 # Mutual information ’k’-nearest neigbors estimator for the time-series ’X’ and ’Y’

which are 1D-arrays. Add noise to input time-series to break degeneracy

24 x = (X + 1e-10 * np.random.rand(len(X))).reshape(len(X), 1)

25 y = (Y + 1e-10 * np.random.rand(len(Y))).reshape(len(Y), 1)

26 # Define joint space

27 xy = np.hstack([x,y])

63

28 # Define kd-tree for quick nearest-neighbor lookup

29 tree = cKDTree(xy)

30 # Find k-nearest neighbors distances for every point in ’t’ using the ’Minkowski’

distance with ’p = inf’

31 dvec = [tree.query(point, k + 1, p = float(’inf’))[0][k] for point in xy]

32 # Return the average number of neighbors of each point from ’j’ according to its

distance ’d’ in the marginal space

33 return (-avgdigamma(x, dvec) - avgdigamma(y, dvec) + digamma(k) + digamma(len(x)))

/ np.log(base)

34

35 def cmi (X, Y, Z, k = 3, base = 2.718281828459045):

36 # Conditional Mutual information ’k’-nearest neigbors estimator for the time-series

’X’, ’Y’ and ’Z’ which are 1D-arrays. Add noise to input time-series to break

degeneracy

37 x = (X + 1e-10 * np.random.rand(len(X))).reshape(len(X), 1)

38 y = (Y + 1e-10 * np.random.rand(len(Y))).reshape(len(Y), 1)

39 z = (Z + 1e-10 * np.random.rand(len(Z))).reshape(len(Z), 1)

40 # Define joint spaces

41 xyz = np.hstack([x,y,z])

42 xz = np.hstack([x, z])

43 yz = np.hstack([y,z])

44 # Define kd-tree for quick nearest-neighbor lookup

45 tree = cKDTree(xyz)

46 # Find k-nearest neighbors distances for every point in ’t’ using the ’Minkowski’

distance with ’p = inf’

47 dvec = [tree.query(point, k + 1, p = float(’inf’))[0][k] for point in xyz]

48 # Return the average number of neighbors of each point from ’j’ according to its

distance ’d’ in the marginal space

49 return (-avgdigamma(xz, dvec) - avgdigamma(yz, dvec) + avgdigamma(z, dvec) +

digamma(k)) / np.log(base)

50

51 def info_interaction (training, reduction=10, beta=1.0, gamma=0.25):

52 # Prepare data

53 x = training[[k for k in range(training.shape[1]) if ’Demand +’ not in training.

columns[k]]].as_matrix()

54 y = training[’Demand + 48’].as_matrix()

55 # Get subsample

64

56 s = sample_without_replacement(x.shape[0], x.shape[0] / reduction)

57 # Rank all candidates

58 ranking = np.array(sorted([[mi(x[s,j], y[s]), j] for j in range(x.shape[1])], key=

lambda j:j[0], reverse=1))

59 # Define initial subset

60 subset = [ranking[0][1]]

61 # Compute information for input-output, input-to-input & input-input given ’output’

according to ’subset’

62 xy ={k[1]:k[0] for k in [[mi(x[s,j[1]],y[s]),j[1]] for j in ranking[1:]]}

63 xx ={subset[-1]:{k[1]:k[0] for k in [[mi(x[s,j[1]],x[s,subset[-1]]),j[1]] for j in

ranking[1:]]}}

64 xxy={subset[-1]:{k[1]:k[0] for k in [[cmi(x[s,j[1]],x[s,subset[-1]],y[s]),j[1]] for

j in ranking[1:]]}}

65 # Explore subsets with cardinality lower than 20

66 for i in range (20 - 1):

67 ranking = sorted([p for p in [[xy[k[1]] + sum([- beta * xx [j][k[1]] + gamma *

xxy[j][k[1]] for j in subset]), k[1]] for k in ranking[1:]]], reverse =

True)

68 # If empty, then stop

69 if ranking == []: break

70 # Compute Hampel distances for termination criterion

71 d = np.abs([k[0] - np.median([k[0] for k in ranking]) for k in ranking])

72 # If not an outlier, then stop

73 if (d[0] / (1.4826 * np.median(d))) <= 3: break

74 # Otherwise, add & continue

75 subset +=[ranking[0][1]]

76 xx [subset[-1]] ={k[1]: k[0] for k in [[mi(x[s,j[1]],x[s,subset[-1]]),j[1]]

for j in ranking[1:]]}

77 xxy[subset[-1]] ={k[1]: k[0] for k in [[cmi(x[s,j[1]],x[s,subset[-1]],y[s]),j

[1]] for j in ranking[1:]]}

78 # Return

79 return {’features’ : training[[k for k in range(training.shape[1]) if ’Demand +’

not in training.columns[k]]].columns[subset]}

80

81 def generate (no_rules, no_inputs): return [add_rule (no_inputs) for k in xrange(

no_rules)]

82

65

83 def add_rule (no_inputs):

84 return [np.sort(np.random.rand(no_inputs+1, 1))[:,::-1], np.hstack([np.random.rand(

no_inputs, 1), np.sort(np.random.rand(no_inputs , 2) * 0.33, axis=1)[:,::-1]])]

85

86 def flat (system):

87 return np.hstack([np.hstack([system[k][0].flatten(), system[k][1].flatten()]) for k

in range(len(system))])

88

89 def hierarchical (system, no_inputs):

90 # Rules division given the no. parameters per rule

91 rule = np.array([system[k:k+(4*no_inputs+1)] for k in range(0, len(system), (4*

no_inputs+1))])

92 # Consequents and Antecedents division

93 return [[rule[k][:no_inputs+1].reshape(no_inputs+1,1), rule[k][no_inputs+1:].

reshape(no_inputs ,3)] for k in range(len(rule))]

94

95 def prediction (system, x, y, no_inputs):

96 # Adjust structure

97 system = hierarchical (system , no_inputs)

98 no_rules = len(system)

99 # Get errors

100 firing_up = np.array([np.exp(-0.5 * (x.T - system[k][1][:,0]) ** 2.0 / (system[k

][1][:,1]) ** 2.0).prod(axis=1).T for k in xrange(no_rules)])

101 firing_lo = np.array([np.exp(-0.5 * (x.T - system[k][1][:,0]) ** 2.0 / (system[k

][1][:,2]) ** 2.0).prod(axis=1).T for k in xrange(no_rules)])

102 output = np.array([system[k][0][:,0].dot(np.vstack([np.ones([1, x.shape[1]]), x

])) for k in xrange(no_rules)])

103 return np.nan_to_num(((firing_up * output).sum(axis=0) + (firing_lo * output).sum(

axis=0)) / (firing_up + firing_lo).sum(axis=0))

104

105 def jacobian (system, x, y, no_inputs):

106 # Adjust structure

107 jacobian = hierarchical (np.zeros_like(system), no_inputs)

108 system = hierarchical (system , no_inputs)

109 no_rules = len(system)

110 # Get errors

66

111 firing_up = np.array([np.exp(-0.5 * (x.T - system[k][1][:,0]) ** 2.0 / (system[k

][1][:,1]) ** 2.0).prod(axis=1).T for k in xrange(no_rules)])

112 firing_lo = np.array([np.exp(-0.5 * (x.T - system[k][1][:,0]) ** 2.0 / (system[k

][1][:,2]) ** 2.0).prod(axis=1).T for k in xrange(no_rules)])

113 output = np.array([system[k][0][:,0].dot(np.vstack([np.ones([1, x.shape[1]]), x

])) for k in xrange(no_rules)])

114 prediction = np.nan_to_num(((firing_up * output).sum(axis=0) + (firing_lo * output)

.sum(axis=0)) / (firing_up + firing_lo).sum(axis=0))

115 error = (prediction - y)

116 # Compute derivatives for each parameter of each rule

117 rule = (output - prediction) / (firing_up + firing_lo).sum(axis=0)

118 l_sample = np.vstack([np.ones([1, x.shape[1]]), x])

119 options = [np.array([l for l in range(0, x.shape[0]) if l != n]) for n in range

(0, x.shape[0])]

120 for k in range(len(system)):

121 # Consequents

122 jacobian[k][0] = 2.0 * (error * (l_sample * (firing_up[k] + firing_lo[k]))

/ (firing_up + firing_lo).sum(axis=0)).mean(axis=1)

123 # Antecedents

124 if len(options) == 1:

125 rest_up = 1.0

126 rest_lo = 1.0

127 else:

128 rest_up = np.array([(np.exp(-0.5*((x[o,:].T - system[k][1][o,0]) ** 2.0 / (

system[k][1][o,1]) ** 2.0)).T).prod(axis=0) for o in options])

129 rest_lo = np.array([(np.exp(-0.5*((x[o,:].T - system[k][1][o,0]) ** 2.0 / (

system[k][1][o,2]) ** 2.0)).T).prod(axis=0) for o in options])

130 gaussian_up = np.exp(-0.5 * ((x.T - system[k][1][:, 0]) ** 2.0 / (system[k

][1][:, 1]) ** 2.0)).T

131 gaussian_lo = np.exp(-0.5 * ((x.T - system[k][1][:, 0]) ** 2.0 / (system[k

][1][:, 2]) ** 2.0)).T

132 exp_mean_up = ((x.T - system[k][1][:, 0]) / (system[k][1][:, 1]) ** 2.0).T

133 exp_mean_lo = ((x.T - system[k][1][:, 0]) / (system[k][1][:, 2]) ** 2.0).T

134 exp_sigm_up = ((x.T - system[k][1][:, 0]) ** 2.0 / (system[k][1][:, 1]) ** 3.0)

.T

135 exp_sigm_lo = ((x.T - system[k][1][:, 0]) ** 2.0 / (system[k][1][:, 2]) ** 3.0)

.T

67

136 jacobian[k][1][:,0] = 2.0*(error*rule[k]*(rest_up*gaussian_up*exp_mean_up +

rest_lo*gaussian_lo*exp_mean_lo)).mean(axis=1)

137 jacobian[k][1][:,1] = 2.0*(error*rule[k]*(rest_up*gaussian_up*exp_sigm_up)).

mean(axis=1)

138 jacobian[k][1][:,2] = 2.0*(error*rule[k]*(rest_lo*gaussian_lo*exp_sigm_lo)).

mean(axis=1)

139 # Return jacobian in flat-form

140 return flat(jacobian)

141

142 def mse (system, x, y, no_inputs):

143 # Return Mean Squared Error

144 return ((prediction (system, x, y, no_inputs) - y) ** 2.0).mean()

145

146 def fls (training, testing, p, q, no_rules, features, method:

147 # Define model

148 no_inputs = len(features)

149 system = flat(generate (no_rules, no_inputs))

150 x = (training[features].T).as_matrix()

151 y = (training[’output’]).as_matrix()

152 if method == ’BFGS’:

153 system = minimize(mse, system, args = (x, y, no_inputs), method = ’BFGS’, jac =

jacobian, options = {’maxiter’: 200})[’x’]

154 else:

155 system = memetic (x, y, no_inputs)

156 # Get predictions

157 y = testing[’t + 6’].as_matrix()

158 y_ = prediction(system, (testing[features].copy().T).as_matrix(),(testing[’output

’].copy()).as_matrix(), no_inputs)

159 y = (y * (p - q)) + q

160 y_ = (y_ * (p - q)) + q

161

162 # Return

163 return {’prediction’: y_,

164 ’RMSE’ : (((y - y_) ** 2.0).mean()) ** 0.5,

165 ’MAPE’ : np.round(100*(np.absolute(np.divide((y - y_), y))).mean(), 5),

166 ’FLS’ : system}

167

68

168 def memetic (x, y, no_inputs, iterations=50, size=20):

169 # Initial population

170 population = [generate(2, no_inputs) for k in range(size)]

171 # Ranking & Elite

172 ranking = sorted([[fitness(k, x, y, no_inputs), k] for k in population], key=

lambda j: j[0], reverse = False)

173 elite = ranking[0]

174 # Loop

175 for i in range(iterations):

176 # Only if it’s not the very last one

177 if i != iterations - 1:

178 # Check elite

179 elite = deepcopy(ranking[0]) if ranking [0][0] < elite[0] else deepcopy(

elite)

180 # Distribute in pairs

181 selection = deepcopy(ranking) ; np.random.shuffle(selection)

182 selection = [[selection[i], selection[i+1]] for i in range(0, size, 2)]

183 # Next generation

184 population = [evolve (i, x, y, no_inputs) for i in selection]

185 # Rank

186 ranking = [k for k in population]

187 ranking = [k[0] for k in ranking] + [k[1] for k in ranking]

188 ranking = sorted(ranking, key=lambda j: j[0], reverse = False)[:size]

189 # Return

190 return flat(elite[1])

191

192 def grouper(sequence):

193 result = [] # will hold (members, group) tuples

194 for item in sequence:

195 for members, group in result:

196 if members.intersection(item): # overlap

197 members.update(item)

198 group.append(item)

199 break

200 else: # no group found, add new

201 result.append((set(item), [item]))

202 # Unify

69

203 lst = [group for members, group in result]

204 for i in range(len(lst)):

205 if len(lst[i]) == 1: lst[i] = lst[i][0]

206 else:

207 tmp = []

208 for j in lst[i]: tmp += j

209 lst[i] = list(set(tmp))

210 return lst

211

212 def fitness (system, x, y, no_inputs, alpha=5.0):

213 # Return AIC

214 return np.log(mse (flat(system), x, y, no_inputs)) + alpha * (len(system) / np.

float(x.shape[1]))

215

216

217 def switch_point (d,x):

218 #Returns the switch point of a list ’d’ given ’x’

219 for k in range(len(d)-1) :

220 if d[k] < x <= d[k+1]: break

221 return k

222

223 def COS (rb, y, bo):

224 # Returns the right or left bound of the type-reduced set through a center-of-sets

type-reducer based on KM algorithm, being ’rb’ the rulebase firings as a np.

array, ’y’ the output and ’bo’ a boolean that determines which bound is going

to be computed. Get ’output’ and sort it in increasing order

225 Y = {n: y[n,1] if bo == 0 else y[n,0] for n in range(y.shape[0])}

226 # Initialise firing levels

227 F = [(rb[n,0] + rb[n,1]) * 0.5 for n in Y]

228 # Compute y

229 y1, y2 = sum([(Y[n] * F[n]) for n in Y]) / sum(F), 100

230 # Loop

231 for n in y:

232 # Check condition (y = y’)

233 if abs(y2-y1) > 1e-6 : break

234 else : y1 = y2

235 # Find switch point

70

236 k = switch_point(Y, y1)

237 # Compute f

238 if bo == 0: F = [(rb[n,0]) if n <= k else (rb[n,1]) for n in Y]

239 else: F = [(rb[n,1]) if n <= k else (rb[n,0]) for n in Y]

240 # Compute y’

241 y2 = float(sum([(Y[n] * F[n]) for n in Y])) / float(sum(F))

242 # Return

243 return y1

71

References

[1] Energy Networks Association EA Technologies. Assessing the impact of low

carbon technologies on great britain’s power distribution networks, 2012.

[2] Pranab J Baruah, Nicholas Eyre, Meysam Qadrdan, Modassar Chaudry, Simon

Blainey, Jim W Hall, Nicholas Jenkins, and Martino Tran. Energy system

impacts from heat and transport electrification. Proceedings of the Institution of

Civil Engineers-Energy, 167(3):139–151, 2014.

[3] UK Department for Energy and Climate Change. Future potential for dsr in gb,

2015.

[4] Nicola Bui, Angelo P Castellani, Paolo Casari, and Michele Zorzi. The internet

of energy: a web-enabled smart grid system. IEEE Network, 26(4):39–45, 2012.

[5] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald

Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura,

Mark Harrison, M Eisenhauer, et al. Internet of things strategic research

roadmap. O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker,

A. Bassi, et al., Internet of Things: Global Technological and Societal Trends,

1:9–52, 2011.

[6] C.W. Gellings. Power to the people. Power and Energy Magazine, IEEE,

9(5):52–63, Sept 2011.

[7] H. Farhangi. A road map to integration: Perspectives on smart grid

development. Power and Energy Magazine, IEEE, 12(3):52–66, May 2014.

[8] S. Rahman and O. Hazim. A generalized knowledge-based short-term

load-forecasting technique. IEEE Transactions on Power Systems,

8(2):508–514, May 1993.

72

[9] Muhammad Qamar Raza and Abbas Khosravi. A review on artificial intelligence

based load demand forecasting techniques for smart grid and buildings.

Renewable and Sustainable Energy Reviews, 50:1352 – 1372, 2015.

[10] D. Bunn and E. Farmer. Comparative Models for Electrical Load Forecasting.

John Wiley and Sons, 1985.

[11] D.K. Ranaweera, G.G. Karady, and R.G. Farmer. Economic impact analysis of

load forecasting. Power Systems, IEEE Transactions on, 12(3):1388–1392, Aug

1997.

[12] Heiko Hahn, Silja Meyer-Nieberg, and Stefan Pickl. Electric load forecasting

methods: Tools for decision making. European Journal of Operational

Research, 199(3):902–907, 2009.

[13] Einar Hope and Torstein Bye. Deregulation of electricity markets. Economic

and Political Weekly, 40(50), Dec 2005.

[14] Severin Borenstein and James Bushnell. Electricity restructuring: Deregulation

or reregulation? Competition policy center, working paper series, Competition

Policy Center, Institute for Business and Economic Research, UC Berkeley,

2000.

[15] Torstein Bye and Einar Hope. Deregulation of electricity markets: the norwegian

experience. Economic and Political Weekly, pages 5269–5278, 2005.

[16] Rafał Weron. Electricity price forecasting: A review of the state-of-the-art with a

look into the future. International Journal of Forecasting, 30(4):1030–1081,

2014.

[17] B. F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K. A. Loparo, and D. J.

Maratukulam. Analysis of the value for unit commitment of improved load

forecasts. IEEE Transactions on Power Systems, 14(4):1342–1348, Nov 1999.

[18] D.W. Bunn. Forecasting loads and prices in competitive power markets.

Proceedings of the IEEE, 88(2):163–169, Feb 2000.

[19] Fahad Javed, Naveed Arshad, Fredrik Wallin, Iana Vassileva, and Erik

Dahlquist. Forecasting for demand response in smart grids: An analysis on use

73

of anthropologic and structural data and short term multiple loads forecasting.

Applied Energy, 96:150 – 160, 2012. Smart Grids.

[20] H. K. Alfares and M. Nazeeruddin. Electric load forecasting: literature survey

and classification of methods. International Journal of Systems Science,, 33(1),

2002.

[21] James W Taylor and Patrick E McSharry. Short-term load forecasting methods:

An evaluation based on european data. Power Systems, IEEE Transactions on,

22(4):2213–2219, 2007.

[22] I.S. Moghram and S. Rahman. Analysis and evaluation of five short-term load

forecasting techniques. Power Systems, IEEE Transactions on,

4(4):1484–1491, Nov 1989.

[23] H.S. Hippert, C.E. Pedreira, and R.C. Souza. Neural networks for short-term

load forecasting: a review and evaluation. Power Systems, IEEE Transactions

on, 16(1):44–55, Feb 2001.

[24] V.H. Ferreira and A.P. Alves da Silva. Toward estimating autonomous neural

network-based electric load forecasters. Power Systems, IEEE Transactions on,

22(4):1554–1562, Nov 2007.

[25] A. Khosravi, S. Nahavandi, D. Creighton, and D. Srinivasan. Interval type-2

fuzzy logic systems for load forecasting: A comparative study. Power Systems,

IEEE Transactions on, 27(3):1274–1282, Aug 2012.

[26] A. Khosravi and S. Nahavandi. Load forecasting using interval type-2 fuzzy

logic systems: Optimal type reduction. Industrial Informatics, IEEE Transactions

on, 10(2):1055–1063, May 2014.

[27] S. Jurado, J. Peralta, A. Nebot, F. Mugica, and P. Cortez. Short-term electric

load forecasting using computational intelligence methods. In Fuzzy Systems

(FUZZ), 2013 IEEE International Conference on, pages 1–8, July 2013.

[28] Wei-Chiang Hong. Electric load forecasting by support vector model. Applied

Mathematical Modelling, 33(5):2444 – 2454, 2009.

74

[29] K. Metaxiotis, A. Kagiannas, D. Askounis, and J. Psarras. Artificial intelligence

in short term electric load forecasting: a state-of-the-art survey for the

researcher. Energy Conversion and Management, 44(9):1525 – 1534, 2003.

[30] Elias Kyriakides and Marios Polycarpou. Short Term Electric Load Forecasting:

A Tutorial, pages 391–418. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007.

[31] S. Li, P. Wang, and L. Goel. A novel wavelet-based ensemble method for

short-term load forecasting with hybrid neural networks and feature selection.

IEEE Transactions on Power Systems, 31(3):1788–1798, May 2016.

[32] Jerry M. Mendel. Uncertain Rule-Based Fuzzy Logic System: Introduction and

New Directions. Prentice Hall, 2001.

[33] N. Balta-Ozkan, T. Watson, P. Connor, C. Axon, L. Whitmarsh, R. Davidson,

A. Spence, P. Baker, D. Xenias, L Cipcigan, and G. Taylor. Scenarios for the

development of smart grids in the uk - synthesis report. UK Research Energy

Centre (UKERC), Feb. 2014.

[34] European Research Knowledge Center. Research challenges to increase the

flexibility of power systems.

[35] Energy Networks Association. Active network management, good practice

guide, 2015.

[36] Rodrigo Hidalgo, Chad Abbey, and Géza Joós. A review of active distribution

networks enabling technologies. In IEEE PES General Meeting, pages 1–9.

IEEE, 2010.

[37] Karim L Anaya and Michael G Pollitt. Experience with smarter commercial

arrangements for distributed wind generation. Energy Policy, 71:52–62, 2014.

[38] Tao Xu and PC Taylor. Voltage control techniques for electrical distribution

networks including distributed generation. IFAC Proceedings Volumes,

41(2):11967–11971, 2008.

[39] Guido Pepermans, Johan Driesen, Dries Haeseldonckx, Ronnie Belmans, and

William D’haeseleer. Distributed generation: definition, benefits and issues.

Energy policy, 33(6):787–798, 2005.

75

[40] Q Zhou and JW Bialek. Generation curtailment to manage voltage constraints

in distribution networks. IET Generation, Transmission & Distribution,

1(3):492–498, 2007.

[41] Mats Larsson. Coordinated voltage control in electric power systems. Lund

University, 2001.

[42] M Fila, D Reid, GA Taylor, P Lang, and MR Irving. Coordinated voltage control

for active network management of distributed generation. In 2009 IEEE Power

& Energy Society General Meeting, pages 1–8. IEEE, 2009.

[43] EM Davidson, MJ Dolan, GW Ault, and SDJ McArthur. Aura-nms: An

autonomous regional active network management system for edf energy and sp

energy networks. In IEEE PES General Meeting, pages 1–6. IEEE, 2010.

[44] F Pilo, G Pisano, and GG Soma. Advanced dms to manage active distribution

networks. In PowerTech, 2009 IEEE Bucharest, pages 1–8. IEEE, 2009.

[45] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas. Matpower:

Steady-state operations, planning, and analysis tools for power systems

research and education. IEEE Transactions on Power Systems, 26(1):12–19,

Feb 2011.

[46] Pengfei Wang, Daniel H Liang, Jialiang Yi, Pádraig F Lyons, Peter J Davison,

and Philip C Taylor. Integrating electrical energy storage into coordinated

voltage control schemes for distribution networks. IEEE Transactions on Smart

Grid, 5(2):1018–1032, 2014.

[47] Michael J Krok and Sahika Genc. A coordinated optimization approach to

volt/var control for large power distribution networks. In Proceedings of the 2011

American Control Conference, pages 1145–1150. IEEE, 2011.

[48] Sergi Cabré Ramos. Optimization of the operation of a distribution network with

distributed generation using genetic algorithm. 2014.

[49] Vladimiro Miranda and Nuno Fonseca. New evolutionary particle swarm

algorithm (epso) applied to voltage/var control. In Proceedings of the 14th

power systems computation conference (PSCC), pages 1–6, 2002.

76

[50] J Sugimoto, R Yokoyama, Y Fukuyama, VVR Silva, and H Sasaki. Coordinated

allocation and control of voltage regulators based on reactive tabu search. In

Power Tech, 2005 IEEE Russia, pages 1–6. IEEE, 2005.

[51] Qilian Liang and Jerry M. Mendel. Interval type-2 fuzzy logic systems: theory

and design. IEEE T. Fuzzy Systems, 8(5):535–550, 2000.

[52] AG Madureira and JA Pecas Lopes. Coordinated voltage support in distribution

networks with distributed generation and microgrids. IET Renewable Power

Generation, 3(4):439–454, 2009.

[53] G.N. Taranto, A.B. Marques, and D.M. Falcao. Coordinated voltage control

using fuzzy logic. In Power Engineering Society Summer Meeting, 2002 IEEE,

volume 3, pages 1314–1317 vol.3, Jul. 2002.

[54] A Sajadi, HE Farag, P Biczel, and EF El-Saadany. Voltage regulation based on

fuzzy multi-agent control scheme in smart grids. In Energytech, 2012 IEEE,

pages 1–5. IEEE, 2012.

[55] V. Miranda, A. Moreira, and J. Pereira. An improved fuzzy inference system for

voltage/var control. Power Systems, IEEE Transactions on, 22(4):2013–2020,

Nov. 2007.

[56] D.H. Spatti, I.N. da Silva, W.F. Usida, and R.A. Flauzino. Real-time voltage

regulation in power distribution system using fuzzy control. Power Delivery,

IEEE Transactions on, 25(2):1112–1123, Apr. 2010.

[57] V. Loia, A. Vaccaro, and K. Vaisakh. A self organizing architecture based on

cooperative fuzzy agents for smart grid voltage control. Industrial Informatics,

IEEE Transactions on, PP(99):1–1.

[58] P.H. Nguyen, J. M A Myrzik, and W.L. Kling. Coordination of voltage regulation

in active networks. In Transmission and Distribution Conference and Exposition,

2008. T x00026;D. IEEE/PES, pages 1–6, 2008.

[59] Hani Hagras. A hierarchical type-2 fuzzy logic control architecture for

autonomous mobile robots. IEEE Transactions on Fuzzy Systems,

12(4):524–539, 2004.

77

[60] L.A. Zadeh. The concept of a linguistic variable and its application to

approximate reasoning. Information Sciences, 1:119–249, 1975.

[61] Yong-Hua Song and Allan T Johns. Applications of fuzzy logic in power

systems. i. general introduction to fuzzy logic. Power Engineering Journal,

11(5):219–222, 1997.

[62] Mohammed E El-Hawary. Electric power applications of fuzzy systems.

Wiley-IEEE Press, 1998.

[63] R.C. Bansal. Bibliography on the fuzzy set theory applications in power systems

(1994-2001). Power Systems, IEEE Transactions on, 18(4):1291–1299, Nov

2003.

[64] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[65] J. Yen and Liang Wang. Application of statistical information criteria for optimal

fuzzy model construction. Fuzzy Systems, IEEE Transactions on,

6(3):362–372, Aug 1998.

[66] Lotfi A Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and

systems, 100:9–34, 1999.

[67] J.M. Mendel, R.I. John, and Feilong Liu. Interval type-2 fuzzy logic systems

made simple. Fuzzy Systems, IEEE Transactions on, 14(6):808–821, 2006.

[68] H. Hagras. Type-2 flcs: A new generation of fuzzy controllers. Comp. Intell.

Mag., 2(1):30–43, February 2007.

[69] D. Wu and W.-W. Tan. Type-2 fls modeling capability analysis. In Fuzzy

Systems, 2005. FUZZ ’05. The 14th IEEE International Conference on, pages

242–247, 2005.

[70] Christian Wagner and Hani Hagras. Toward general type-2 fuzzy logic systems

based on zslices. IEEE T. Fuzzy Systems, 18(4):637–660, 2010.

[71] Dongrui Wu Woei Wan Tan. A simplified type-2 fuzzy logic controller for

real-time control. {ISA} Transactions, 45(4):503 – 516, 2006.

78

[72] Hani Hagras and Christian Wagner. Towards the wide spread use of type-2

fuzzy logic systems in real world applications. IEEE Comp. Int. Mag.,

7(3):14–24, 2012.

[73] Hani Hagras and Christian Wagner. Introduction to interval type-2 fuzzy logic

controllers—towards better uncertainty handling in real world applications.

IEEE Systems, Man and Cybernetics eNewsletter, 27, 2009.

[74] Jerry M Mendel, Hani Hagras, and Robert I John. Standard background

material about interval type-2 fuzzy logic systems that can be used by all

authors, 2006.

[75] Dongrui Wu. A brief tutorial on interval type-2 fuzzy sets and systems.

University of Southern California, USA2012, 2010.

[76] Ebrahim H Mamdani and Sedrak Assilian. An experiment in linguistic synthesis

with a fuzzy logic controller. International journal of man-machine studies,

7(1):1–13, 1975.

[77] Michio Sugeno and Takahiro Yasukawa. A fuzzy-logic-based approach to

qualitative modeling. IEEE Transactions on fuzzy systems, 1(1):7–31, 1993.

[78] Ben Coppin. Artificial intelligence illuminated. Jones & Bartlett Learning, 2004.

[79] D. Wu. Twelve considerations in choosing between gaussian and trapezoidal

membership functions in interval type-2 fuzzy logic controllers. In 2012 IEEE

International Conference on Fuzzy Systems, pages 1–8, June 2012.

[80] Roberto Sepúlveda, Oscar Castillo, Patricia Melin, Antonio Rodrı́guez-Dı́az, and

Oscar Montiel. Experimental study of intelligent controllers under uncertainty

using type-1 and type-2 fuzzy logic. Information Sciences, 177(10):2023–2048,

2007.

[81] Nilesh N. Karnik and Jerry M. Mendel. Centroid of a type-2 fuzzy set.

Information Sciences, 132(1–4):195 – 220, 2001.

[82] Hongwei Wu and Jerry M Mendel. Uncertainty bounds and their use in the

design of interval type-2 fuzzy logic systems. IEEE Transactions on fuzzy

systems, 10(5):622–639, 2002.

79

[83] Dongrui Wu and Jerry M Mendel. On the continuity of type-1 and interval type-2

fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 19(1):179–192,

2011.

[84] Dongrui Wu. Approaches for reducing the computational cost of interval type-2

fuzzy logic systems: Overview and comparisons. Fuzzy Systems, IEEE

Transactions on, 21(1):80–99, 2013.

[85] Maowen Nie and Woei Wan Tan. Towards an efficient type-reduction method for

interval type-2 fuzzy logic systems. In Fuzzy Systems, 2008. FUZZ-IEEE 2008.

(IEEE World Congress on Computational Intelligence). IEEE International

Conference on, pages 1425–1432, June 2008.

[86] J. Yen. Fuzzy logic-a modern perspective. Knowledge and Data Engineering,

IEEE Transactions on, 11(1):153–165, Jan 1999.

[87] S. M. Viegas, J. L.and Vieira, R. Melicio, V. M. F. Mendes, and J. M. C. Sousa.

GA-ANN Short-Term Electricity Load Forecasting, pages 485–493. Springer

International Publishing, Berlin, Heidelberg, 2016.

[88] Nantian Huang, Zhiqiang Hu, Guowei Cai, and Dongfeng Yang. Short term

electrical load forecasting using mutual information based feature selection with

generalized minimum-redundancy and maximum-relevance criteria. Entropy,

18(9):330, 2016.

[89] Mashud Rana, Irena Koprinska, and Abbas Khosravi. Feature selection for

interval forecasting of electricity demand time series data. In Petia

Koprinkova-Hristova, Valeri Mladenov, and Nikola K. Kasabov, editors, Artificial

Neural Networks, volume 4 of Springer Series in Bio-/Neuroinformatics, pages

445–462. Springer International Publishing, 2015.

[90] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning.

PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[91] Yonghan Feng and Sarah M. Ryan. Day-ahead hourly electricity load modeling

by functional regression. Applied Energy, 170:455 – 465, 2016.

[92] Bartosz Uniejewski, Jakub Nowotarski, and Rafał Weron. Automated variable

80

selection and shrinkage for day-ahead electricity price forecasting. Energies,

9(8):621, 2016.

[93] Robin Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot. Variable

selection using random forests. Pattern Recognition Letters, 31(14):2225 –

2236, 2010.

[94] Gavin Brown. A new perspective for information theoretic feature selection. In

David V. Dyk and Max Welling, editors, Proceedings of the Twelfth International

Conference on Artificial Intelligence and Statistics (AISTATS-09), volume 5,

pages 49–56. Journal of Machine Learning Research - Proceedings Track,

2009.

[95] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating

mutual information. Phys. Rev. E, 69:066138, Jun 2004.

[96] Greg Ver Steeg and Aram Galstyan. Inferring predictive links in social media

using content transfer. CoRR, abs/1208.4475, 2012.

[97] Robert J. May, Holger R. Maier, Graeme C. Dandy, and T.M.K. Gayani

Fernando. Non-linear variable selection for artificial neural networks using

partial mutual information. Environmental Modelling Software, 23(10–11):1312

– 1326, 2008.

[98] Stephen L Chiu. Fuzzy model identification based on cluster estimation.

Journal of Intelligent & fuzzy systems, 2(3):267–278, 1994.

[99] Agus Priyono, Muhammad Ridwan, Ahmad Jais Alias, Riza Atiq OK Rahmat,

Azmi Hassan, and Mohd Alauddin Mohd Ali. Generation of fuzzy rules with

subtractive clustering. Jurnal Teknologi, 43(1):143–153, 2012.

[100] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A

density-based algorithm for discovering clusters in large spatial databases with

noise. In Kdd, volume 96, pages 226–231, 1996.

[101] S. Beri and K. Kaur. Hybrid framework for dbscan algorithm using fuzzy logic.

In 2015 International Conference on Futuristic Trends on Computational

Analysis and Knowledge Management (ABLAZE), pages 383–387, Feb 2015.

81

[102] Pablo Moscato. On evolution, search, optimization, genetic algorithms and

martial arts - towards memetic algorithms, 1989.

[103] D. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation,

analysis, and first results. Complex Systems, 3(5):493–530, 1989.

[104] Ferrante Neri and Carlos Cotta. Memetic algorithms and memetic computing

optimization: A literature review. Swarm and Evolutionary Computation, 2:1–14,

2012.

[105] Jaume Bacardit and Josep Maria Garrell. Bloat control and generalization

pressure using the minimum description length principle for a pittsburgh

approach learning classifier system. In Learning Classifier Systems, volume

4399 of Lecture Notes in Computer Science, pages 59–79. Springer Berlin

Heidelberg, 2007.

[106] Frank Hoffmann and Gerd Pfister. Evolutionary design of a fuzzy knowledge

base for a mobile robot. International Journal of Approximate Reasoning,

17(4):447–469, 1997.

[107] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited

memory algorithm for bound constrained optimization. SIAM Journal on

Scientific Computing, 16(5):1190–1208, 1995.

[108] Adrian S. Lewis and Michael L. Overton. Nonsmooth optimization via

quasi-newton methods. Mathematical Programming, 141(1):135–163, 2013.

[109] Fernando Pérez-Cruz. Estimation of information theoretic measures for

continuous random variables. In D. Koller, D. Schuurmans, Y. Bengio, and

L. Bottou, editors, Advances in Neural Information Processing Systems 21,

pages 1257–1264. Curran Associates, Inc., 2009.

[110] B. Sareni and L. Krahenbuhl. Fitness sharing and niching methods revisited.

Evolutionary Computation, IEEE Transactions on, 2(3):97–106, Sep 1998.

[111] Jose Joaquin Aguilera, Manuel Chica, Maria Jose del Jesus, and Francisco

Herrera. Niching genetic feature selection algorithms applied to the design of

fuzzy rule-based classification systems. In 2007 IEEE International Fuzzy

Systems Conference, pages 1–6. IEEE, 2007.

82

[112] Joshua Knowles and David Corne. Memetic algorithms for multiobjective

optimization: issues, methods and prospects. In Recent advances in memetic

algorithms, pages 313–352. Springer, 2005.

[113] Yew-Soon Ong, Meng Hiot Lim, and Xianshun Chen. Research

frontier-memetic computation—past, present & future. IEEE Computational

Intelligence Magazine, 5(2):24, 2010.

[114] Martin Casdagli. A dynamical systems approach to modeling input-output

systems. In SFI Studies in the Sciences of Complexity, volume 12, pages

265–281. Addison-Wesley, 1992.

[115] Ho Jae Lee, Jin Bae Park, and Young Hoon Joo. Fuzzy model identification

using a hybrid mga scheme with application to chaotic system modeling. In

Integration of Fuzzy Logic and Chaos Theory, volume 187 of Studies in

Fuzziness and Soft Computing, pages 81–97. Springer Berlin Heidelberg, 2006.

[116] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied

Mathematics, 20:53 – 65, 1987.

[117] Wes McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython. O’Reilly, Beijing, first edition, 2013.

[118] Christian Rehtanz. Autonomous systems and intelligent agents in power

system control and operation. Springer Science & Business Media, 2003.

[119] A. Elmitwally, M. Elsaid, M. Elgamal, and Z. Chen. A fuzzy-multiagent

self-healing scheme for a distribution system with distributed generations. IEEE

Transactions on Power Systems, 30(5):2612–2622, Sept 2015.

[120] P. C. Taylor, T. Xu, N. S. Wade, M. Prodanovic, R. Silversides, T. Green, E. M.

Davidson, and S. McArthur. Distributed voltage control in aura-nms. In IEEE

PES General Meeting, pages 1–7, July 2010.

[121] Northern Powergrid. Customer led network revolution, 2015.

[122] M. A. Hashim, J. Jaafar, and S. M. Taib. New forecasting model using type-2

fuzzy multivariate time series. In 2011 National Postgraduate Conference,

pages 1–4, Sept 2011.

83

[123] I. Riaño and O. E. Perdomo. Electricity price forecasting using a fuzzy system

tuned with a differential evolution algorithm. In 2015 IEEE PES Innovative Smart

Grid Technologies Latin America (ISGT LATAM), pages 792–795, Oct 2015.

[124] P. Pinson and M. O’Malley. Foreword for the special section on wind and solar

energy: Uncovering and accommodating their impacts on electricity markets.

Power Systems, IEEE Transactions on, 30(3):1557–1559, May 2015.

84

