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Abstract 

Autism susceptibility gene (ASG) mutations are suspected to perturb developmental pathways 

essential for the correct formation and organisation of the brain.  Many ASG products, 

including neurexins (NRXNs), neuroligins (NLGNs) and SHANKs, have established functions in 

mature synapses.  However, a previous microarray study suggested that ASGs are expressed 

in the human cortex from as early as 8 PCW, when synapses are sparse.   

RNA sequencing of human cortical samples revealed that a number of ASGs that code for cell 

adhesion molecules, enzymes that synthesise neurotransmitters, neurotransmitter receptors, 

molecules involved in neurotransmitter transport, synaptic transmission, cell-cell signalling 

and neuronal differentiation are differentially expressed both spatially and temporally 

between 9 and 12 PCWs.  NRXNs, NLGNs and SHANKs, were studied in further detail using RNA 

sequencing, qPCR and IHC.  Many of the NRXN and NLGN genes showed an increase in 

expression between 8 and 12 PCW and were significantly increased in either the anterior or 

temporal cortex.  The SHANK genes did not increase in expression with age and there was high 

variation between the RNA sequencing data and the qPCR data.  Immunohistochemistry 

revealed that NRXN proteins have distinct distribution patterns within the cortex at these 

ages.  NRXNs 1 and 3 were predominantly found in the cortical plate (CP) whilst NRXN2 

immunopositivity was strongly co-localised with the presynaptic vesicle protein, SYP and the 

marker of outgrowing axons, GAP43, largely found in the pre-subplate, marginal zone and 

intermediate zone.  Regulators of NRXN splicing, were expressed primarily in the CP whereas 

TOP2B, a regulator of NRXN transcription, was found throughout the cortex.   

The distribution of NRXN proteins suggests that, in addition to their established function in 

synaptogenesis, they may have diverse roles in development including axon guidance and 

intercellular communication between proliferating cells and/or migrating neurons. 

 

 

 

 

 

  



III 
 

 

 

 

 

 

 

 

 

Dedication 

For my mum and dad,  

Jean Harkin & Patrick Harkin 

For always believing in me. 

 

 

 

 

 

 

 

 

 

 

  



IV 
 

Acknowledgments 

I am sincerely grateful to Professor Susan Lindsay and Dr Gavin Clowry for their supervision, 

support and encouragement.  I am extremely thankful for the opportunity to join their lab and 

will forever appreciate their time, expertise and understanding.  

 

I would like to thank the Human Developmental Biology Resource (HDBR) team, Dr Steven 

Lisgo, Moira Crosier, Dr Yuzhu Cheng, Lynne Overmann and Dr Janet Kerwin for their 

continued support throughout my time at the Institute of Genetic Medicine.  Their training 

and advice has been invaluable. 

 

I would also like to thank Professor Caroline Austin for her support and advice.  Also, for 

providing the TOP2A and TOP2B antibodies and providing the chance for collaboration.   

 

Thanks to Dr Yaobo Xu for the data processing, quality control and mapping of the RNA 

sequencing data set.  Thanks to Emily Gullon for her assistance with the NLGN data analysis 

and Ayman Alzu’Bi for his immunofluorescence work. Thank you to Professor Peter Scheiffel 

for the donation of the KHDRBS2 and 3 antibodies.   

I greatly appreciate the Anatomical society for funding this research studentship. 

 

I would also like to thank Dr Nahhid Al-Jaberi for his guidance and advice and Emily Gullon, 

Bianca Brandon and Joshua Grieg for their support and friendship.  Also, all of my colleagues 

from the Institute of Genetic Medicine and the Institute of Neuroscience.  

 

Finally, I thank my family and my partner as without their support I would not be in this 

position.  

 

  



V 
 

Table of Contents 

Abstract…………………………………………………………………………………….………….……...I 

Dedication…………………………………………………………………………………………………….II 

Acknowledgments………………………………………………….………………………..………….III 

Table of contents…………………………………………………………………………………………IV  

List of figures……………………………………………………………….…..…………………………..X 

List of tables……………………………………………………….…………..…………………………XIII 

Abbreviations………………………………….…………………………….………………………….XIV 

Statement of contributions………………………………………………………………………XVIII 

Chapter 1 Introduction……………….…………………………………..………………………….…1 

1.1 Human brain development…………………………………………………………………………..………………1 

1.1.1 Development of the telencephalon…………………………………………………………………………….…3 

1.1.2 The complex patterning of the developing cortex…………………………………………………….……4 

1.1.3 Neurogenesis and neuronal differentiation in the cerebral cortex…………………………….……7 

11.4 Synapse formation and stabilisation within the cortex……………………………….………………….9 

1.2 Autism……………………………………………………………………………………………………….………………13 

1.2.1 Autism is a heterogeneous developmental disorder………………………………….……………..…13 

1.2.2 The history of autism genetics……………………………………….…………………………………………16 

1.2.3 Autism susceptibility genes………………………………………………………………………………………18 

1.2.4 Transcriptional and translational changes associated with ASD………………………………..20 

1.2.5 Converging signalling pathways……………………………………………………………………..………..21 

1.3 The synaptic pathophysiology of ASD …………………………………………………………………………27 

1.3.1 NRXN and NLGN structure and function……………………………………………………………….……..28 

1.3.2 Alternative splicing of NRXN genes in development and adults…………………………………….29 



VI 
 

1.3.3 NRXN and NLGN mutations in ASD………………………………………………………………………………32 

1.3.4 SHANK structure and function…………………………………………………………………………….………34 

1.3.5 SHANK mutations in ASD………………………………………………………………………………….………35 

1.4 Rodent and cellular models of ASD…….………………………………………………………………….……37 

1.4.1 NRXN knockout mice as a model of ASD……………………………………………………………….………37 

1.4.2 NLGN knockout mice as a model of ASD………………………………………………………………….……41 

1.4.3 SHANK knockout mice as a model of ASD……………………………………………………………….……44 

1.4.4 Cellular models of ASD…………………………………………………………………………………………………49 

1.5 The importance of autism genetics in translational research……………………………………….50 

1.6 Aims …………………….……………………………………………………………………………………………………52 

Chapter 2 Materials and methods……………………….…………………………………….…53 

2.1 Dissection and Ethical Approvals………………………………………………………………………………..53 

2.1.1 Human Embryonic and fetal brains and ethical approval………………………………………………53 

2.1.2 Embryonic and fetal brain dissection………………………………………………………………….……….53 

2.2 RNA Isolation & Reverse Transcription……………………………………………………………….………56 

2.2.1 RNA Isolation from brain tissue for qPCR…………………………………………………………….……….56 

2.2.2 RNA Isolation from cell cultures…………………………………………………………………………..………56 

2.2.3 Reverse transcription………………………………………………………………………………………….………56 

2.3 Polymerase Chain Reaction (PCR)…………………………………………………….………………….……..57 

2.3.1 Primer Design………………………………………………………………………………………………………..……57 

2.3.2 Non Quantitative Polymerase Chain Reaction (PCR) & Gel Electrophoresis…………….……57 

2.3.3 Quantitative Polymerase Chain Reaction (qPCR)…………………………………………………….……59 

2.3.4 Statistical analysis of differential expression…………………………………………………………..……59 

2.4 Tissue Processing & Sectioning………….......…………………………………………………………….……60 



VII 
 

2.5 Haematoxylin & Eosin (H & E) Histological Staining………………………………………………..……61 

2.6 Immunohistochemistry………………………………………………………………………………………………61 

2.7 Immunocytochemistry (ICC)……………………………………………………………………………………….62 

2.8 Immunohistochemistry Fluorescence…………………………………………………………………….…..62 

2.9 Human Cortical Cell Culture -8 day in-vitro characterisation …………………………………..…..65 

2.10 Knockdown of Neurexin genes in Cell Culture using ICRF-193………………………………..…..65 

2.11 Image Acquisition…………………………………………………………………………………………………….66 

2.11.1 Light Microscopy…………………………………………………………………………………………………….…66 

2.11.2 Fluorescent Microscopy………………………………………………………………………………………….…66 

2.11.3 Slide scanning……………………………………………………………………………………………………………66 

2.12 Quantification -  Cell counts…………………………………………………………………………..…………67 

2.13 RNA Sequencing…………………………………………………………………………………………………….…67 

2.13.1 RNA extraction, library preparation and sequencing performed by AROS Applied 

Biotechnology (Aarhus, Denmark)…………………………………………………………………………………….…67 

2.13.2 Quality control, mapping and differential expression analysis was performed by Yaobo 

Xu at the Newcastle University Bio-informatics unit……………………………………………………….….…68 

2.14 Venn diagrams…………….…………………………………………………………………………………………..68 

2.12 Gene Ontology Analysis….………………………………………………………………………………………..68 

 

Chapter 3 High throughput sequencing analysis of the developing human 

cerebral cortex from 9-12 PCW…………………………….…………………………………………….…….69 

3.1 Aim of study……………………………………………………………………………………………………………….69 

3.2 Results……………………………………………………………………………………………………………………….69 

3.2.1 Brain samples cluster according to anatomical location……………………………………………….69 

3.3.2 Variation between fetuses is greater than variation between cortical regions……………..71 



VIII 
 

3.2.3 A higher number of protein coding genes are upregulated compared to downregulated 

with age………………………………………………………………………………………………………………………………74 

3.2.4 Gene ontology analysis for differentially expressed genes between 9 and 12 PCW 

revealed an enrichment in cellular differentiation………………………………………………………….…….77 

3.2.5 Differentially expressed genes between 9-12 PCW include cell adhesion molecules and 

ASD susceptibility genes………………………………………………………………………………………………………81 

3.2.6 A higher proportion of genes were upregulated in the anterior cortex at 9 PCW 

………………………………..………………………………………………………………………………………………………….82 

3.2.7 The majority of differentially expressed genes at 12 PCW were upregulated in the 

posterior cortex…………………………………………………………………………………………………………………..87 

3.2.8 Analysis of the gene set identified as differentially expressed between the anterior and 

posterior cortex at 9 PCW…………………………………………………………………………………………………….87 

3.2.9 Identified gene expression gradients at 12 PCW…………………………………………………….…….91 

3.3 Discussion………………………………………………………………………………………………………………….95 

3.3.1 Choroid plexus samples were transcriptionally unique compared to other brain 

regions………………………………………………………………………………………………………………………………..95 

3.3.2 Factors affecting the ability to detect significant temporal and regional differences in 

cortical gene expression  ……………………………………………………………………………………………….….…96 

3.3.3 There were fewer differentially expressed genes between cortical regions compared to 

between ages………………………………………………………………………………………………………………….…..98 

3.3.4 Fold change analysis can aid in the identification of biologically relevant genes……….…..98 

3.3.5 The expression of growth factors between 9 and 12 PCW………………………………………….…99 

3.3.6 Morphogens are contributing to the arealisation of the 9 PCW cortex……………………….…99 

3.3.7 A number of autism susceptibility genes are differentially expressed regionally and 

temporally…..…………………………………………………………………………………………………………………….102 

3.3.8 The posterior cortex is transcriptionally more mature than the anterior cortex……...…103 



IX 
 

Chapter 4 Investigating the expression patterns of autism susceptibility genes 

NRXNs, NLGNs and SHANKs, in the developing human cerebral cortex………..105 

4.1 Aim of study…………………………………………………………………………………………………………….105 

4.2 Results…………………………………………………………………………………………………………………….105 

4.2.1 NRXNs, NLGNs and SHANKs were expressed in the cortex between 8 and 12 PCW….…105 

4.2.2 Gene expression values were normalised to three reference genes……………………….….109 

4.2.3 Average expression levels of NRXNs between 8-12 PCW……………………………………………113 

4.2.4 Average expression levels of NLGNs between 8-12 PCW…………………………………………….114 

4.2.5 Average expression levels of SHANKs between 8-12 PCW………………………………………….118 

4.2.6 Identification of gene expression gradients across the cerebral cortex from 8-12 PCW…. 

…………………………………………………………………………………………………………………………….……………118 

4.2.7 Average expression levels of NRXN binding partners between 9-12 PCW…….………….…125 

4.3 Discussion……………………………………………………………………………………………………..…………129 

4.3.1 The expression of many NRXNs and NLGNs increases between 8 and 12 PCW….…………129 

4.3.2 Possible NRXN interactions during early development……………………………………………….131 

4.3.3 NRXN, NLGN and LRRTM gene expression increases in the anterior and temporal cortex 

between 8 and 12 PCW…………………………………………………………………………………………..………….134 

4.3.4 Discrepancies between the data sets and methods of analysis…………………………………..135 

4.3.5 Neurexins and Neuroligins are required for more than synapse formation…………………136 

 

Chapter 5 Investigating the cortical localisation of NRXN proteins in the 

developing human forebrain……………………………………………………….……….……138 

5.1 Aim…………………………………………………………………………………………………………………….……138 

5.2 Results………………………………………………………………………………………………………………….…138 

5.2.1 Markers of cortical lamination………………………………………………………………………………..…138 



X 
 

5.2.2 Laminar expression of NRXNs1-3 in the adult cerebral cortex………………………………….…142   

5.2.3 Laminar expression patterns of NRXN1 between 8-12 PCW…………………………………….…145 

5.2.4 Laminar expression patterns of NRXN2α between 8-12 PCW…………………………………..…146 

5.2.5 Laminar expression patterns of NRXN3 in the cortex between 8-12 PCW………………..…150 

5.2.6 Expression of NRXNs 1-3 in the lateral and medial ganglionic eminences and the 

thalamus at 12 PCW…………………………………………………………………………………………………………..153 

5.3 Discussion………………………………………………………………………………………………………………..155 

5.3.1 In the adult cerebral cortex, the majority of NRXN protein is present in the grey matter… 

………………………………………………………………………………………………………………………………………….155 

5.3.2 NRXNs are expressed outside of synaptogenic regions in the developing cortex…………156 

5.3.3 The role of NRXNs in migration……………………………………………………………………………….…158 

5.3.4 The proposed role of NRXN2 in neurite/ axonal outgrowth……………………………………..…158 

5.4 Summary……………………………………………………………………………………………………………….…159 

 

Chapter 6 Investigating the expression patterns, protein localisation and role 

of proteins associated with NRXN transcription and splicing in the developing 

forebrain………………………………………………………………………………………………………………….…160 

6.1 Aim of study………………………………………………………………………………………………………….…160 

6.1.1 Regulation of NRXN transcription and splicing……………………………………………………………160 

6.2 Results………………………………………………………………………………………………………………….…161 

6.2.1 Genes associated with NRXN transcriptional regulation were expressed in the human 

cortex from 9 PCW………………………………………………………………………………………………………….…161 

6.2.2 Genes identified as regulators of NRXN splicing were expressed in the human cortex from 

9 PCW………………………………………………………………………………………………………………………………..162 

6.2.3 Markers of cell proliferation, MGE and LGE…………………………………………………………….….165 



XI 
 

6.2.4 TOP2A was expressed in regions of cell division…………………………………………………….…..166 

6.2.5 TOP2B is expressed in both proliferative and post- mitotic regions of the cortex…….….167 

6.2.6 TOP2A is more prominent in the Medial Ganglionic Eminence (MGE) than in the Lateral 

Ganglionic Eminence (LGE)………………………………………………………………………………………………..172 

6.2.7 KHDRBS 2 and 3 expression in the pallium and sub-pallium…………………………………..……172 

6.2.8 Topoisomerase inhibition reduced the expression of NRXNs 1 and 2 in cortical cell 

cultures……………………………………………………………………………………………………………………………..174 

6.3 Discussion………………………………………………………………………………………………………………..177 

6.3.1 Expression of topoisomerase enzymes in the proliferative cortical regions……………..…177 

6.3.2 Expression of topoisomerases in post mitotic neurons………………………………………………178 

6.3.3 Increased expression of NRXN transcriptional regulators in the temporal lobe………..…179 

6.3.4 Expression of TOP2 in the sub-pallium…………………………………………………………………….…180 

6.3.5 KHDRBS1 has a distinct expression pattern……………………………………………………………..…181 

6.3.6 KHDRBS2 and 3 are predominantly expressed in the post mitotic cells…………………….…181 

 

Chapter 7 Summary and future work…………….………………………………….………183 

7.1 Main findings of the study………………………………………………………………………………………......184 

7.2 Limitations of the study………………………………………………………………………………………………..185 

7.3 Implications of the findings and reccomendations for future research………………………….187 

References……………………………………………………………………………………………..…190 

Appendix…………………………………………….……………………………………....………..…266 

List of publications………………………………………………………………………………….…291 

 

 



XII 
 

List of Figures 

1.1 Development of the human central nervous system (CNS)……………………………………………….2 

1.2 Gene expression patterns in the developing brain……………………………………………………….……6 

1.3 Generation of the neocortex………………………………………………………………………………………….11 

1.4 The different stages of neural development……………………………………………………………………12 

1.5 Susceptibility genes across chromosomes………………………………………………………………….…..19 

1.6 Canonical Wnt signalling……………………………………………………………………………………………..…25 

1.7 mTOR/ P13K signalling…………………………………………………………………………………………………..26 

1.8 Neurexins and Neuroligins link the pre and post synaptic membranes….…………………………29 

1.9 Structure of α and βNRXN genes and their protein products.………………………………………….32 

2.1 Human brain dissection………………………………………………………………………………………………….55 

3.1 PCA analysis of all sequenced human brain samples……………………………………………………….70 

3.2 Hierarchical clustering of human cortical samples from anterior, central, posterior and 

temporal cortex…………………………………………………………………………………………………………………..73 

3.3 PCA analysis of anterior and posterior samples from 9 and 12 PCW brain samples………….74 

3.4 (A) Venn diagram comparing differentially expressed genes identified using p value <0.05 

and fold change >2. (B) Venn diagram showing the number of ASD susceptibility genes that 

were differentially expressed between 9 and 12 PCW………………………………………………………….78 

3.5 Gene ontology analysis of differentially expressed genes with the largest fold change and 

a p value of <0.05 showing both molecular function and biological process………………………….79 

3.6 Gene ontology analysis of differentially expressed genes with the lowest p values (<0.01) 

showing both molecular function and biological process………………………………………………………80 

3.7 Genes that were differentially expressed between 9 and 12 PCW……………………………………83 

3.8 Genes differentially expressed between the anterior and posterior cortex contain ASGs..…. 

……………………………………………………………………………………………………………………………………………85  



XIII 
 

3.9 Gene ontology analysis of differentially expressed (adjusted p<0.05) genes between 

anterior and posterior cortex at 9 PCW showing both molecular function and biological 

process………………………………………………………………………………………………………………………………..89 

3.10 Genes that were differentially expressed between the anterior and posterior cortex at 9 

PCW…………………………………………………………………………………………………………………………………….90 

3.11 Gene ontology analysis of differentially expressed between anterior and posterior cortex 

at 12 PCW………………………………………………………………………………………………………………………..….92 

3.12 Genes that were differentially expressed between the anterior and posterior cortex at 12 

PCW…………………………………………………………………………………………………………………………………….94 

4.1 Gel electrophoresis confirming the presence of a subset of autism susceptibility genes in 

the developing human cerebral cortex……………………………………………………………………………….108 

4.2 Schematic representations of the exons of autism susceptibility genes…………………………109 

4.3 Expression (Log10 RPKM) of reference genes βACTIN, GAPDH and SDHA obtained from RNA 

sequencing……………………………………………………………………………………………………………….……….111  

4.4 Expression (Ct) of reference genes βACTIN, GAPDH, SDHA obtained from quantitative 

PCR……………………………………………………………………………………………………………………………………112 

4.5 Expression of NRXNs within the cortex between 8 and 12 PCW…………………………………….115 

4.6 Expression of NLGNs within the cortex between 8 and 12 PCW…………………………………….117 

4.7 Expression of SHANKs within the cortex between 8 and 12 PCW……………………………………119 

4.8 Expression of NRXNs 1-3 relative to three reference genes……………………………………………121 

4.9 Expression of NLGNs 1-4X relative to three reference genes…………………………………………123 

4.10   Expression of SHANKs 1-3 relative to three reference genes………………………………………124 

4.11   Average expression of NRXN binding partners relative to three reference genes……….126 

4.12 Expression of NRXN binding partners across the cortex………………………………………………127 

5.1 Schematic of NRXN protein domains and antibody recognition sequence…………………….141 

5.2 Distribution of SYP and NRXN proteins in the adult brain………………………………………………143 



XIV 
 

5.3 NRXN1 protein distribution in the cerebral cortex from 8-12 PCW in comparison to known 

cell type markers……………………………………………………………………………………………………………….145 

5.4 NRXN1 was not co-expressed with synaptic or axonal outgrowth markers……………………146 

5.5 NRXN2 protein distribution in the cerebral cortex from 8-12 PCW in comparison to known 

cell type markers……………………………………………………………………………………………………………….149 

5.6 NRXN2α co-expression with synaptic markers………………………………………………………………150 

5.7 NRXN3 protein distribution in the cerebral cortex from 8-12 PCW in comparison to known 

cell type markers……………………………………………………………………………………………………………….152 

5.8 NRXN3 double labelling in the cortex at 8 and 12 PCW………………………………………………….153 

5.9 Expression of NRXNs in the sub pallium at 12 PCW………………………………………………………155  

6.1 Genes associated with NRXN transcriptional regulation were expressed in the human 

cortex from 9 PCW…………………………………………………………………………………………………………….164 

6.2 Regulators of NRXN splicing, KHDRBS, were expressed in the human cortex from 9 PCW… 

………………………………………………………………………………………………………………………………………….165   

6.3 Antibody recognition sequences used in this study……………………………………………………….167 

6.4 TOP2A and TOP2B Immunopositivity in the human cortex between 8 and 12 PCW……….169 

6.5 Double labelling of TOP2A and TOP2B with cell type specific markers at 12 PCW……….....170 

6.6 TOP2A was more prominent in the Medial Ganglionic Eminence (MGE) than in the Lateral 

Ganglionic Eminence (LGE)………………………………………………………………………………………………..172 

6.7 SLM1 and 2 were expressed most strongly in the post mitotic regions of the cortex………173 

6.8 KHDBR2 and 3 proteins show different patterns of expression in the GE……………………….174   

6.9 Cortical cell cultures…………………………………………………………………………………………………….176 

6.10 Topoisomerase 2 inhibition with ICRF-193 led to a decrease in the expression of NRXN1.... 

………………………………………………………………………………………………………………………………………….177 

 

 



XV 
 

List of Tables 

1.1 Human NRXN, NLGN and SHANK mutations in ASD cases………………………………………………36 

1.2 NRXN knockout mice and their physical, behavioural and molecular consequences………39 

1.3 NLGN knockout mice and their physical, behavioural and molecular consequences………..43 

1.4 SHANK knockout mice and their physical, behavioural and molecular consequences ……..47 

2.1 List of Primers for PCR and qPCR…………………………………………………………………………………….58 

2.2 Standard PCR protocol used for cDNA amplification……………………………………………………….59 

2.3 Components of commonly used solutions………………………………………………………………………62 

2.4 Primary antibodies used for chromogen (DAB), Fluorescence (F) immunohistochemistry 

(IHC) on Paraffin and Immuno cytochemistry (ICC)……………………………………………………………….63 

2.5 Excitation/ emission values (nm) for DAPI and fluorophore signal amplification (TSA™) Plus 

system reagents (Perkin Elmer)……………………………………………………………………………………………66 

3.1 List of brains dissected and used for RNA Sequencing analysis of cortex………………………….72 

3.2 Total number of genes differentially expressed between different ages and region………72 

3.3 Categories of genes that are differentially expressed between 9 and 12 PCW and between 

anterior and posterior cortex………………………………………………………………………………………………75 

3.4 Total number of protein coding genes differentially expressed between different ages and 

regions………………………………………………………………………………………………………………………………..75 

3.5 ASD susceptibility genes differentially expressed between 9 and 12 PCW and the anterior 

and posterior cortex at 9 and 12 PCW…………………………………………………………………………………84 

3.6 List of 17 differentially expressed genes that overlap between anterior and posterior 

cortex………………………………………………………………………………………………………………………………….86 

4.1 List of sample numbers dissected and used for non-quantitative and quantitative PCR…106  

4.2 List of Primers for PCR and qPCR…………………………………………………………………………………..107 

 

 



XVI 
 

Abbreviations 

5hmc 5-hydroxy-methyl-cytosine 

5mc 5-methyl-cytosine 

A1 Primary auditory region 

ADD Attention deficit disorder  

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor  

ANK2 Amkyrin 2 

ANOVA Analysis of variance 

ANR Anterior neural ridge 

APC adenomatous polyposis coli  

ASD Autism spectrum disorder 

ASG Autism susceptibility gene 

BDNF Bone derived neurotropic factor 

BMP Bone morphogenic protein 

bp base pairs 

CA1 Region I of hippocampus proper  

CASK calcium/calmodulin-dependent serine protein kinase 

CBLN1 Cerebellin 1 

CDH4 R Cadherin 

CDH6 Cadherin 6 

CNS Central nervous system 

CNTNAP2 Contactin associated protein like 2 

CNV Copy number variant 

COUPTF1/2 Chicken ovalbumin upstream promoter (COUP) transcription factor 1/2 

CP  Cortical plate 

CPG Cytosine-phosphate-guanine 

CRD Cysteine rich domain 

CS Carnegie stage 

Ct Cycle threshold 

DAB 3,3'-Diaminobenzidine 

DAPI 4',6-diamidino-2-phenylindole 

DKK Dickopf 

DLX Distal-less homeobox 

DNA Deoxyribonucleic acid 

DVL Dishevelled 



XVII 
 

E Embryonic 

EGF Epidermal growth factor 

ELF1 E74 like factor 1 

EMX1/ 2 Empty spiracles homeobox1/2 

EN2 Engrailed homeobox 2 

EPSP Excitatory post synaptic potential 

ER81 E-twenty six (Ets) variant 1 

FBS Fetal calf serum 

FGF Fibroblast growth factor 

FGFR Fibroblast growth factor receptor 

FMR1 Fragile X mental retardation 1 

FMRP Fragile X mental retardation protein 

FOXO1 Forkhead box protein O1 

FP Forward primer 

FRAP Fluorescence recovery after photobleaching 

FZD Frizzled 

GABA Gamma aminobutyric acid 

GABRQ gamma amino butyric acid A receptor theta  

GAD1 Glutamic acid decarboxylase 

GAP43 Growth-associated protein 43 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GE Ganglionic eminence 

GFAP Glial fibrillary acidic protein 

GO Gene ontology 

GO Gene ontology 

GRID Glutamate receptor delta 

GRIP2 Glutamate Receptor Interacting Protein 2  

GRM glutamate receptor metabotropic  

GSH2 Genetic screened homeobox 2 

GSK Glycogen synthase kinase  

H&E Haematoxylin and eosin 

HBSS Hank's balanced salt solution 

HDBR Human Developmental Biology Resource 

hESC human Embryonic stem cell 

HGFR human growth factor receptor 

hIPSC human Induced pluripotent stem cell 



XVIII 
 

HOX Homeobox domain  

HRP Horseradish peroxidase 

IC Internal capsule 

ICC Immunocytochemistry 

IGFBP3 Insulin like growth factor binding protein 3 

IGM Institute of Genetic Medicine  

IHC Immunohistochemistry 

IPSP Inhibitory post synaptic potential 

IQ Intelligent quotient  

ISVZ Inner sub-ventricular zone 

ITG Integrin 

IZ Intermediate zone 

KCC2 K+ Cl- cotransporter 2 

KHDRBS KH domain containing, RNA binding, signal transduction associated 

KLF4 Kruppel-like factor 4 

KO Knock-out 

LGE Lateral ganglionic eminence 

LHX2 LIM homeobox 2 

LIF Leukaemia Inhibitory Factor 

linc long non-coding 

LNS laminin/neurexin/sex hormone-binding globulin-domain 

LRRTM Leucine rich repeat transmembrane  

LTP Long term potentiation 

m messenger   

M1 Primary motor cortex 

MBD Methyl CpG binding domain 

MECP2 Methyl-CpG Binding Protein 2 

mEPSC miniature Excitatory post synaptic current 

MET hepatocyte growth factor receptor (HGFR) 

MGE Medial ganglionic eminence 

mi  micro 

mIPSC mouse Induced pluripotent stem cell 

ml Millilitre 

MMR Measles, mumps, rubella 

MRI Magnetic resonance imaging 

mRNA messenger ribonucleic acid 



XIX 
 

MZ Marginal zone 

n Number 

n number 

NCBI Nation centre for biotechnology information 

ng  Nano gram 

NGN2 Neurogenin2 

NKX2.1 Nk2 homeobox 1 

NLGN Neuroligin 

NMDA N-methyl-D-aspartate  

NMDAR N-methyl-D-aspartate receptor  

no. number 

NPTX1 Neural pentraxin 

NRG Neuregulin 

NRXN Neurexin 

NURR1 Nuclear receptor-related protein 1 

NXPH Neurexophilin 

OCT octamer-binding transcription factor  

OXT  Oxytocin   

OXTR Oxytocin receptor 

P Postnatal day 

P/M Primary motor region 

P13/AKT Phosphatidylinositol-3/ 

PAX6 Paired-box 6 

PCA Principal component analysis 

PCDH Protocadherin 

PCW Post-conceptional weeks 

PCW Post conceptional weeks 

PFA Paraformaldehyde 

PP2A Protein phosphatase 2 

PSD95 Post synaptic density 

PTEN Phosphatase and tensin homolog 

PTPRZ Protein Tyrosine Phosphatase, Receptor Type Z1 

PTX3 Pentraxin related protein 

r ribosomal 

RA Retinoic acid 

RELN Reelin 



XX 
 

RNA ribonucleic acid 

RNA Seq Ribo nucleic acid sequencing 

ROBO Roundabout 

RP Reverse primer 

RPH3A rabphillin 3A  

RPKM Reads per kilo base per million 

RTO Rostral telencephalic organiser 

RTT Rett syndrome 

S1 Primary somatosensory area 

SAM68 Src-Associated substrate in Mitosis of 68 kDa 

SAT1B/2B spermidine/spermine N1-acetyltransferase 1B/ 2B 

SC-CA1 Schaffer-collateral-CA1 pyramidal  

SDHA Succinate dehydrogenase complex subunit A 

SEMA Semaphorin 

SFRP2 Secreted frizzled-related protein 2 

SH3 SRC Homology 3  

SHANK SH3 and multiple ankyrin repeat domains  

SHH Sonic hedgehog 

si  small interfering  

siRNA RNA interference 

SLC32A1 Solute carrier family 32 member 1 

sn small nuclear 

sno small nucleolar  

SNP Single nucleotide polymorphism 

SOX2 Sex determining region Y (SRY) box 2 

SP  Subplate 

SP8 Specificity protein 8 

SVZ Subventricular zone 

SYN2 Synapsin 2 

SYTL5 Synaptogamin like 5 

TBR1/2 T-box brain 1/2 

TBS Tris based buffer 

TGFα Transforming growth factor alpha 

TOP Topoisomerase 

TRD transcription repression domain  

TRKB Tropomyosin receptor kinase B 



XXI 
 

V1 Primary visual area 

VZ Ventricular zone 

WGCNA Weighted correlation network analysis  

Wnt Wingless 

μg Microgram 

μl Microliter 

μm Micrometre 

μM Micro molar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



XXII 
 

Statement of Contributions 

 Chapter 3 

Dissection of those samples sent for RNA sequencing was carried out by the HDBR.   AROS 

Applied Biotechnology (Aarhus, Denmark) carried out the RNA extraction, library preparation 

and sequencing.  The bioinformatician, Dr Yaobo Xu, Newcastle University, carried out the 

quality control of the sequencing reads, mapping of reads to the human genome, the 

creation of RPKM values and the resultant gene list, PCA and hierarchical cluster analysis, 

and finally the differential expression analysis to create gene lists used in the analysis.  All of 

the work regarding the RNA sequencing was carried out under the advice of myself, 

Professor Susan Lindsay and Dr Gavin Clowry and the supervision of Professor Mauro 

Santibanez Koref.  Venn diagrams, gene ontology analysis and general analysis of the data 

set was carried out by myself.   

 Chapter 4 

Dissection of the embryonic and foetal brain, further processing pre RNA collection and the 

majority of primer design, quantitative PCR (qPCR) and analysis was carried out by myself.  

Emily Gullon, MSc, contributed to the primer design and qPCR for the Neuroligin genes.   

 Chapters 5 and 6 

The majority of immunostaining and the analysis was carried out by myself under the 

supervision of Dr Gavin Clowry and Professor Susan Lindsay.  Ayman Alzubi and, to a lesser 

extent, Alex Fererra, under the supervision and guidance of myself, Professor Susan Lindsay 

and Dr Gavin Clowry, double labelled many of  the human cortical sections using fluorescent 

immunohistochemistry.  The processing, majority of tissue sectioning, creation of slides for 

use in IHC and quality control was performed by the HDBR. 

  



1 
 

Chapter 1 Introduction 

1.1 Human Brain development 

Human prenatal development takes, on average, 280 days or 40 weeks.  Conception marks 

the beginning of the embryonic period of development which lasts for approximately 9 

weeks, after which the fetal period of development begins (O'Rahilly and Muller, 2010).  By 

the end of the embryonic period, the forebrain, midbrain, hindbrain and spinal cord are 

established along the anterior/ posterior axis of the neural tube.  The fetal period sees 

further subdivisions of these primary regions.  During early neural development, molecular 

organisers and surrounding tissues secrete morphogens that diffuse outwards creating 

signalling gradients.  Varying concentrations and combinations of these molecules, in 

addition to varying concentrations of agonists, enable the primary patterning of the human 

central nervous system (CNS).  

The neural tube arises from the neuroectoderm, which is a group of cells located along the 

midline of the upper embryonic layer at the end of gastrulation (figure 1.1A).  A mediolateral 

axis is determined by bone morphogenic protein (BMP) signalling, with higher BMP 

concentrations laterally.  The lateral ridges of this region fold inwards and join to create the 

hollow neural tube structure (Copp et al., 2003) with the laterally positioned cells 

constructing the dorsally positioned roofplate of the neural tube whilst the medial cells of 

the neuroectoderm make up the ventrally positioned floorplate.  There is a high 

concentration of Wingless (Wnts) proteins in the roofplate and a high concentration of Sonic 

Hedgehog (Shh) proteins in the floorplate, which diffuse outwards creating signalling 

gradients (figure 1.1B).   In addition to these dorsoventral signalling gradients, 

anteroposterior gradients exist. There is a higher concentration of Wnts at the posterior and 

Shh at the anterior ends of the neural tube (Lumsden and Krumlauf, 1996).   

The cells at the anterior end of the neural tube give rise to the midbrain and forebrain whilst 

the more caudally located cells give rise to the hindbrain and spinal cord.  The complex 

patterning of the most anterior part of the forebrain, the telencephalon, during the late 

embryonic/ early fetal period is discussed further below. 
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Figure 1.1 Development of the human central nervous system (CNS) adapted from Montiel 

& Aboitez (2015).  (A) The human CNS develops from the neuroectoderm that folds inwards 

to form the neural tube.  (B)  This structure is subjected to multiple morphogen gradients 

enabling the distinction of the telencephalon, diencephalon and mesencephalon.  Wnt 

signalling originates from the roof plate creating a dorsal ventral expression gradient.  Shh 

signalling originates from the floor plate creating a ventral –dorsal gradient.  FGF signalling is 

essential in the development of the midbrain-hindbrain boundary.  The developmental 

progression of the telencephalon sees the separation of the pallium and sub-pallium.    
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1.1.1 Development of the telencephalon 

The forebrain becomes further subdivided into the telencephalon and diencephalon.  From 

the telencephalon develops the cerebral cortex and the ganglionic eminences whilst the 

diencephalon structures include the thalamus, sub thalamic nuclei, hypothalamus and 

epithalamus.  The dorsal and ventral regions of the early telencephalon give rise to the 

pallium and sub pallium respectively, which develop into the cerebral cortex, caudate, 

putamen, globus pallidus and nucleus acumbens that we see in the postnatal brain.  The 

pallium and sub pallium contain different sets of transcription factors with Empty spiracles 

homeobox 1 (EMX1), 2 (EMX2), Paired-box 6 (PAX6) and T-box brain (TBR1) expressed 

dorsally and Distal-less homeobox (DLX) and Nk2 homeobox (NKX) genes ventrally which are 

involved in further patterning of these separate regions (Figure 1.2A).   

In part, the division of the pallium and sub pallium occurs due to the opposing effects of the 

transcription factors PAX6 and Glutathione synthetase homeobox2 (GSH2) (Toresson and 

Campbell, 2001, Yun et al., 2001).  Pax6 mutations in mice result in the loss of the dorso/ 

ventral telencephalic boundary and ectopic DLX expression in cells of the cortex (Stoykova et 

al., 1997). Using a β galactosidase reporter, cells of the dorsal telencephalon were found 

misplaced in the sub pallial regions of PAX6sey/sey mutants at E18.5 (Kroll and O'Leary, 2005).    

Gsh1/2 double mutants show ectopic expression of PAX6 and NGN2 and a decreased 

expression of DLX at E12.5 but the expression of NKX2.1 is not affected (Toresson and 

Campbell, 2001).  Mutations in these genes also result in the abnormal expression of 

downstream markers of regional identity such as E-twenty six (Ets) variant 1 (Er81) and 

Specificity protein 8 (Sp8) (Carney et al., 2009).  Another factor in the separation of these 

two regions is the expression of cell adhesion molecules R cadherin (CDH4) and cadherin 6 

(CDH6).  Cells of the sub pallium express CDH4 whilst cells of the pallium express CDH6 and 

when mixed, these cells adhere to those expressing the same cadherin as themselves (Inoue 

et al., 1997, Gotz et al., 1996, Matsunami and Takeichi, 1995).  Fluorescently tagged pallial 

and sub pallial cells collected from PAX6sey/sey mutant mice, after being mixed, show a 

significant reduction in their adherence to cells of the same region.  This is most likely due to 

a decrease in Cdh4 expression in cells of the pallium (Stoykova et al., 1997).  

In addition to GSH1 and 2, the transcription factors NKX2.1 and DLX1 and 2 can also be 

found in the sub-pallial regions (figure 1.2A).  Mice with Nkx2.1 mutations, that render the 

protein non-functional, have missing pallial structures and the striatum, which is derived 
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from the LGE, is expanded suggesting that this protein is essential for the development of 

the MGE and its derivatives (Sussel et al., 1999).  Immunohistochemistry and in situ 

hybridisation in human brain sections shows that in the late embryonic/ early fetal period of 

development, NKX2.1 is confined to the medial ganglionic eminence (MGE) as it is in the 

mouse at E12 (Onorati et al., 2014, Pauly et al., 2013, Sussel et al., 1999).  In humans and 

rodents, DLX2 positive cells are found throughout the sub pallium. Co expression with either 

PAX6 or NKX2.1 identifies cells of the LGE and MGE respectively (Pauly et al., 2013).  Dlx1/2 

double mutant mice show a failure of cells to migrate out of the proliferative regions of the 

sub pallium into the mantle zone (Anderson et al., 1997).  

 

1.1.2 The complex patterning of the developing cortex  

Originally, the protocortex theory proposed that that the cortex develops as a homogenous 

group of cells that receive patterning information from the incoming thalamic efferents 

during the fetal stage of development.  Although these efferents are clearly important in 

cortical regionalisation, the protomap hypothesis, recognises that differences in gene and 

protein expression arise before these efferents innervate the cortex (Rakic and Lombroso, 

1998; reviewed in Sansom and Livesey, 2009a).  Cortical gene and protein expression 

patterns that develop before thalamic input are discussed below.   

Identified organisers that are thought to regulate early patterning include the cortical hem, 

the rostral telencephalic organiser (RTO) and the antihem.  The cortical hem is positioned in 

the dorsomedial telencephalon ( 1.2A) and is a source of BMPs and WNTs (Grove et al., 

1998, Furuta et al., 1997).  Its formation is regulated by LHX2, which also acts to prevent its 

expansion into the cortex (Bulchand et al., 2001).  The absence of the cortical hem in mice 

decreases the size of the cortical hemispheres and perturbs patterning along the rostro-

caudal axis (Caronia-Brown et al., 2014).  Rostral areas were expanded at the expense of 

caudal areas.   

The RTO is positioned rostrally and is a source of FGF signalling (Cholfin and Rubenstein, 

2008, Fukuchi-Shimogori and Grove, 2001).  One of the main signalling molecules secreted 

from the RTO is FGF8, which diffuses towards the caudal telencephalon creating a gradient 

of expression (Assimacopoulos et al., 2012, Garel et al., 2003, Fukuchi-Shimogori and Grove, 

2001).  WNTs and BMP proteins have opposing effects to those of FGF8.  This information 
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suggests that the cortical hem and the RTO release morphogens that create signalling 

gradients that act antagonistically in order to produce the anterior/ posterior axis of the 

cerebral cortex.    

The cells of the antihem, located near the boundary of the LGE and the ventro-lateral 

neocortex, express Transforming growth factor alpha (Tgfα), Neuregulin (NRG) 1 and 3 and 

Fgf7 (Assimacopoulos et al., 2012, Assimacopoulos et al., 2003).  Secreted frizzled-related 

protein 2 (SFRP2), a known Wnt antagonist, is also secreted from the antihem (Kawano and 

Kypta, 2003, Ladher et al., 2000).  It interacts with Wnts via either the C terminal or CRD 

domain (Uren et al., 2000, Lin et al., 1997).  SFRP proteins share similarities with the Frizzled 

(FRZ) proteins which act as receptors for Wnts.  The interaction between SFRP2 and Wnts 

may render the Wnts non-functional by preventing them from binding Frizzled proteins 

(Ladher et al., 2000).   

These primary signalling molecules released from cells within organiser regions can activate 

the production of secondary signalling molecules, via the activation of transcription factors 

that can themselves act as morphogens or can act in a concentration dependent manner.  In 

addition to their role in the formation of the pallial-sub pallial boundary, transcription 

factors play an important role in the arealisation of the cerebral cortex.  In both mice and 

humans, EMX2 expression is higher in the posterior cortex compared to the anterior cortex 

(Bayatti et al., 2008b, Mallamaci et al., 1998, Gulisano et al., 1996) and PAX6 expression is 

higher in the anterior cortex (Bayatti et al., 2008b, Stoykova and Gruss, 1994) (figure 1.2B).  

The PAX6 expression gradient disappears by 9PCW in humans (Bayatti et al., 2008b).  

Homozygous PAX6 sey/sey and homozygous EMX2-/- mutant mice die soon after birth (Bishop 

et al., 2000, Mallamaci et al., 2000) but analysis of the primary visual (V1), motor (P/M), 

auditory (A1) and somatosensory (S1) regions revealed gross abnormalities in cortical 

patterning.  The rostro-lateral regions, F/M and S1, were reduced in PAX6 sey/sey mice 

whereas caudo-medial regions, A1 and V1, were reduced in the EMX2-/- mice (figure 1.2C) 

(Bishop et al., 2002, Bishop et al., 2000, Mallamaci et al., 2000).   
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Figure 1.2 Gene expression patterns in the developing brain (adapted from Schuurmans 

and Guillemot, 2002 & O’Leary & Sahara, 2008).  (A) The telencephalon is divided into the 

pallium and sub pallium due to the opposing expression of Pax6 and Gsh1/2.  Transcription 

factors Tbr1 and Emx1.2 are specific to the dorsal (d) pallium, Dlx1 and 2 are found in the 

lateral ganglionic eminence (LGE) and NKX2.1 is specific to the medial (M) GE. (B) The 

transcription factors Emx2 and Coup-TF1 are expressed in a posterior-anterior gradient 

across the mouse cortex, whilst PAX6 and SP8 show higher expression in the anterior cortical 

regions.  Anterior (A), posterior (P), medial (M) and lateral (L) (C) Wildtype mouse cortex 

contains the primary auditory (A1), visual (V1), somatosensory (S1) and motor (F/M) regions.  

The F/M region of EMX2 and COUP-TF1 Knockout (KO) mice is increased in size reducing the 

size of the other cortical regions.  PAX6 and SP8 KO mice have expanded V1 regions, pushing 

A1, S1 and F/M anteriorly and reducing the size of these areas.   
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Chicken ovalbumin upstream promoter (COUP) transcription factor 1 (Coup-tf1) is expressed 

in a posterior-anterior and lateral -medial gradient (figure 1.2B) and functions to repress 

frontal/ motor cortical regions.  Conditional Coup-tf1 knockout mice, in which the gene is 

only deleted in the cortex, results in F/M cortical areas being greatly expanded at the 

expense of the V1, S1 and A1 regions (figure 1.2C; Armentano et al., 2007).  Sp8 is expressed 

in an anterior- posterior and medial- lateral gradient (figure 1.2B).  Sp8 can also activate the 

transcription of Fgf8.  An Sp8 conditional knockout mouse, like the PAX6 knockout, shows an 

increase in the primary visual area (figure 1.2C; Zembrzycki et al., 2007). 

 

1.1.3 Neurogenesis and neuronal differentiation in the cerebral cortex 

The generation of cortical neurons requires a sufficient number of neural progenitor cells.  

Only when there is an adequate progenitor population can these cells switch their mode of 

division from symmetrical (producing two progenitor cells) to asymmetrical (producing one 

progenitor cell and one differentiating neuronal cell).  This switch occurs in humans around 

E42 (5 weeks) which is when the first neurons begin to appear in the developing brain.  

Neurons continue to be produced through the fetal period of development (Rakic, 1995) 

which is best characterised by the ‘production, migration and differentiation of neurons’.  

Some neurogenesis even continues after birth (Stiles and Jernigan, 2010b). 

The newly formed neuronal cell leaves its progenitors in the proliferative zone and begins to 

travel into the neocortex (figure 1.3).  As more and more neuronal cells are produced, the 

neocortex expands and eventually we can see the formation of a six-layered structure 

consisting of a mixture of old and newly formed neurons.  The formation of this structure is 

described as ‘inside out’ due to the fact that the most recently formed neurons migrate past 

older neurons to form the more peripheral layers (Tiffin and Goffinet, 2003). 

The preplate is formed by the first neurons that leave the proliferative layer.  A further 

population of migrating neurons then splits the preplate into the marginal zone (MZ) and the 

subplate (SP).  These layers play a vital role in the development of the neocortex.  Cajal- 

Retzius cells subside in the MZ and release a protein called Reelin.  Reelin is present at the 

periphery of the newest layer of neuronal cells and signals to cells when to halt migration 

and take up their positions in the neocortex (Valiente and Marín, 2010; Huang, 2009; Bielle 

et al., 2005).  Once migrating cells pass the previously formed layer, they are signalled to 
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stop and therefore form the most superficial layer.  The subplate is required at a later stage 

of cortical development when it plays a role in creating the primary sensory inputs including 

the thalamocortical and corticothalamic pathways (Kostović and Jovanov-Milošević, 2006).   

The six layers of the neocortex are produced after the establishment of the SP and MZ and 

contain different types of neurons.  It is thought that neural progenitors become more 

restricted in the type of neurons that they can produce as development progresses.  

Whereas progenitor cells at the beginning of neurogenesis are capable of becoming any 

layer of the neocortex, cells later in development are restricted to becoming the more 

superficial layers (McConnell and Kaznowski, 1991).   

Immature neurons have a lack of or poorly developed axons and dendrites.  The axons and 

dendrites are branching protrusions of the cell body that enable signalling between cells.  

Dendrites receive electrical signals while axons carry the signals and relay them to other 

neurons by means of synapses. 

Growth cones at the end of each axon allow for extension (Dent and Gertler, 2003).  

Molecules in the vicinity of the growth cone will guide the axon towards target areas and 

synapses with target neurons will form. Myelin sheathes, which are white in colour, insulate 

the axons to allow efficient transduction of the signal.  The grey matter of the brain signifies 

where the cell bodies of neurons are concentrated while the white areas contain the 

myelinated axons.  Grey areas of the brain include but are not limited to the neocortex, the 

cerebellum, the basal ganglia and the thalamus. 

There are two methods of neuronal migration used when cells travel away from the 

ventricular zone.  Somal translocation involves the cell adjusting its shape to reach the outer 

(pial) surface of the brain to aid migration over very short distances (Nadarajah and 

Parnavelas, 2002).  As the brain and therefore, neocortex grows the distance over which the 

neurons have to travel increases.  Especially since newer cells migrate through already 

positioned cells, somal translocation is not feasible.  Radial glial guides are now used to assist 

the migration of newly differentiated neurons into the neocortex (Nadarajah and Parnavelas, 

2002). Radial glial cells can extend their basal process to reach the pial surface whilst 

keeping their cell body in the VZ (figure 1.3).   

Sometimes, cells migrate even longer distances for example those that originate from the 

basal ganglia and finish in the cortex.  This mode of migration is referred to as tangential 
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migration.  The ganglionic eminence consists of three regions – medial, lateral and caudal.  

These regions are the origin of a population of inhibitory cortical interneurons (Anderson et 

al., 2001; Corbin et al., 2001).  The migrating neurons encounter a number of signalling and 

guidance molecules along their way that will direct them to their final positions in the cortex 

(Valiente and Marín, 2010, Huang, 2009, reviewed in Marin and Rubenstein, 2001).   

 

1.1.4 Synapse formation and stabilisation within the cortex 

After neurons reach their final position in the neocortex (the outermost part of the cerebral 

cortex), they differentiate further and extend their dendrites and axons to reach areas of the 

brain in which they will eventually develop connections or synapses (figure 1.4B).  The 

human neocortex is thought to contain over 160 × 1012 synapses (Tang et al., 2001). 

Synapses act to relay electrical signals from one neuron to the next.  There are two types of 

synapses, characterized by the distance between the pre and postsynaptic membranes.   

Electrical synapses have a gap of < 4nm and the electrical signal can pass from one cell to 

another due to the presence of membrane channels connecting the two cells (Hormuzdi et 

al., 2004).  Chemical synapses, however, have a larger gap of 20-40nm. An electrical signal/ 

action potential travels along the neuron and down its dendrites until it reaches the 

presynaptic membrane.  An influx of calcium ions causes synaptic vesicles containing 

neurotransmitters such as glutamate to fuse with the pre-synaptic membrane releasing the 

neurotransmitter into the synaptic cleft.  The neurotransmitters then bind to receptors on 

the postsynaptic membrane resulting in a change in membrane potential and influx or efflux 

of ions.  In the case of excitatory synapses, the result is the generation of another action 

potential in the receiving neuron (Benarroch, 2013).   

An excitatory postsynaptic potential (EPSP) is one that increases the likelihood that the 

neuron will fire an action potential.  Neurotransmitters associated with EPSPs such as 

acetylcholine, glutamate and serotonin, once bound to the receptors on the postsynaptic 

terminal, cause depolarisation of the target neuron.  If summation of EPSPs reaches 

threshold then an action potential is generated, transmitting the signal from the original 

neuron.  An inhibitory post synaptic potential (IPSP) reduces the chance that the target 

neuron will fire an action potential by raising (hyperpolarising) the membrane potential and 

thereby increasing the threshold for an action potential to occur.  Gamma aminobutyric acid 
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(GABA) is the major inhibitory neurotransmitter in the brain.  When acting at ionotropic 

GABA-A receptors, it causes a rapid influx of across the postsynaptic membrane, raising the 

membrane potential.  Other inhibitory receptors include g protein coupled receptors, e.g. 

GABA-B receptors that hyperpolarise cells by modulating potassium channel opening, or 

dopamine receptors that attenuate EPSPs generated at excitatory synapses.  Synapses have 

first been shown to form between 7 and 8 post conceptional weeks (PCW) (figure 1.4A; de 

Graaf-Peters and Hadders-Algra, 2006).  The first synapses to form in the cerebral cortex are 

present in the marginal zone followed by those of the sub-plate (SP) (Zecevic, 1998).  

Synaptogenesis increases with the appearance of the cortical plate including a large increase 

between 10-12 PCWs (Zecevic, 1998).  The emergence of synapses and increase in synapse 

production seems to be synchronized across the brain although studies on postnatal brains 

suggest that some brain regions cease synaptogenesis before others (Huttenlocher and 

Dabholkar, 1997).  Following the rapid increase in synaptogenesis and the generation of new 

synaptic connections, there is a successive period of pruning that takes place to eliminate 

unnecessary synapses (figure 1.4B; Huttenlocher et al., 1982, Rakic et al., 1986). 

Neurogenesis in the cortex is thought to cease postnatally except for the few neurons that 

are produced for the olfactory bulb and the hippocampus throughout life.  Recent studies 

however, have shown that elevated transcription of synaptic genes continues up to 5 years 

of age in the prefrontal cortex and may be a defining factor in human evolution (Liu et al., 

2012b).  Some glial progenitors continue to be produced postnatally (figure 1.4A) and injury 

causes their differentiation into mature glial cells such as oligodendrocytes and astrocytes.  

The differentiation of glial cells plays a large role in establishing mature neural circuits.  The 

ongoing differentiation of these cells is likely to assist in the maturation of the human brain 

and its plasticity (Stiles and Jernigan, 2010b).   MRI imaging of children’s brains shows the 

changes in myelination along with the significant changes in structure over the first few 

years of life (Barkovich, 2000, Barkovich, 2005). 

 

 



11 
 

 

Figure 1.3 Generation of the neocortex (adapted from Hoerder-Suabedissen & Molnár., 

2015).  The neocortex begins as a collection of proliferating cells referred to as the 

ventricular zone (VZ) and then also the sub ventricular zone (SVZ).  Some of these cells 

switch their mode of proliferation from symmetric to asymmetric, which produces both 

proliferating cells and cells that begin differentiation.  Radial glial cells extend their processes 

to produce a platform along which differentiating cells can migrate outwards.    

Differentiating cells migrate, via radial glial cells, to form the preplate which is eventually 

split into the sub plate (SP) and marginal zone (MZ) by incoming migratory cells.  These cells 

will form the cortical plate.  The cortex is formed in an ‘inside out’ manner enabling 

progenitor cells to migrate past newly formed cortical layers to establish new layers.  The 

migratory region between the proliferative regions and the sub plate is known as the 

intermediate zone (IZ). 
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Figure 1.4 The different stages of neural development (adapted from Ronan et al., 2013).  

(A)  Early development consists of neurulation, neuronal proliferation, migration and 

differentiation.  This period spans from 2PCW until birth.  Synaptogenesis begins as early as 

8 PCW although this process will be minimal at early stages of brain development and in 

adulthood.   Myelination begins much later than synaptogenesis and persists into adulthood.  

Apoptosis begins at about 12 PCW and continues until approximately 6 months of age.  (B) 

Neural development begins when cells switch from symmetric to asymmetric division.   They 

begin to differentiate and migrate to target positions within the brain.  Neural progenitor 

cells (NPCs) can differentiate into glial cells or neurons.  Neurons will develop axons and 

dendrites and eventually form synaptic connections with other neurons or muscle cells.  Any 

abnormal connections will be pruned by apoptosis. 
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1.2 AUTISM 

1.2.1 Autism is a heterogeneous developmental disorder 

Autism is a developmental disorder and is characterised by impairments in social interaction 

and communication and restrictive, repetitive behaviours (American Psychiatric Association, 

2013).   Autism is now included in the diagnosis of autism spectrum disorder (ASD), which 

also includes Asperger’s syndrome, Rett syndrome, childhood disintegrative disorder and 

other pervasive developmental disorders that don’t fall into any of the above diagnoses 

(Committee on Children with Disabilities, 2001).  Autism can be reliably diagnosed at around 

two years of age, however, some symptoms of autism may present before this age and may 

be useful when trying to analyse the autistic brain at earlier stages of brain development.   

The prevalence of autism differs between countries, likely due to variable methodologies 

(Zaroff & Uhm, 2012).  The majority of autism prevalence research is carried out in the UK 

and US where, on average, the prevalence estimate is around 1% (Baron-Cohen et al., 2009; 

Rice, 2009; Kogan et al., 2008; Baird et al., 2006).  Estimates of ASD are higher than those for 

autism and a review of more recent studies has estimated that the prevalence of ASDs 

including other PDDs is increasing due to amended diagnostic criteria and improved 

awareness (Blumberg et al., 2013; Fombonne, 2009). In addition, there is a higher incidence 

of ASD in males compared to females with current estimates at around 4:1 (Fombonne, 

2009). 

There is an increasing body of evidence showing that the neuroanatomy and 

neurophysiology of the autistic brain differs from that of typically developing children and 

adults.  MRI scans of children’s brains between 1.5 and 5 years of age revealed that both the 

cerebral white and grey matter was enlarged in children with autism at 2.5 years, with the 

most significant increases occurring in the frontal, temporal and cingulate cortex 

(Courchesne et al., 2011; Schumann et al., 2010).  This increase in size is predicted to be due 

to hyperplasia rather than hypertrophy (Carper et al., 2002).  Hazlett et al., (2011) compared 

the cortical thickness of children with autism to those without at age 2 and 6 years and 

found no significant difference (Hazlett et al., 2011).  However, between 3 and 39 years, 

Zielinski et al., (2014) presented evidence of cortical thinning in the individuals with autism 

(Zielinski et al., 2014). In addition to increased size and cell number, there has also been 

observed an increase in cortical folding in the brain of autistic people (Hardan et al., 2004). 
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Anatomical changes have been reported in autistic brains as shown by sulcus mapping 

(Levitt et al., 2003). Functional MRI studies also show significant differences in the activation 

of multiple cortical areas between autistic and typically developing children when processing 

speech (Redcay & Courchesne, 2008), in response to emotional faces (Kim et al., 2015) and 

in social reward learning (Choi et al., 2015). 

Impairments in language have been observed in children with autism and these impairments 

were originally used as one of the diagnostic criteria for the condition (Ritvo & Freeman, 

1977).  They vary in severity from some articulatory errors to not developing language at all, 

and a large number of children with ASD are reported to have delayed language acquisition 

(Boucher, 2012).  Using functional magnetic resonance imaging, Harris et al. (2006) and 

Knaus et al. (2008) have shown a reduced activation of Broca’s area, which controls the 

motor functions required for speech, but an increased activation in Wernicke’s area, which 

controls language comprehension, after semantic processing.  Another feature in many 

people with ASD is intellectual disability (Chakrabarti, 2001; Ghaziuddin, 2000).  While the 

current diagnosis criteria for intellectual disability are being examined, it has been usual in 

the past to use an intelligence quotient test for diagnosis.  Almost 40% of children with ASD 

are also diagnosed with intellectual disability (CDC, 2014).  Diagnosis with both ASD and ID 

can lead to specific adaptive and challenging behaviours not seen in the individual conditions 

and the co-occurrence of the two results in a poor prognosis (Matson & Shoemaker, 2009).  

In contrast to this, Patients with Asperger’s syndrome and high functioning autism present 

with a higher than average IQ and no language impairments (Schopler, 1996).   

Many other medical disorders are commonly reported in people with autism.  The incidence 

of epilepsy in people diagnosed with ASD rages from 6-27% (reviewed in Jeste & Tuchman, 

2015). There is a higher rate of epilepsy in those people with autism who have more severe 

intellectual disability (Amiet et al., 2013) and also the risk of developing epilepsy increases 

with age (Bolton et al., 2011; Hara et al., 2007).  The molecular and cellular links between 

the development of these two conditions revolve around the synaptic theory of autism (see 

section 1.3).  A change in the proportions of inhibitory and excitatory synapses and changes 

in synaptic plasticity and connectivity are risk factors for both autism and epilepsy 

(Brooks=Kayal, 2010).   Autism has also been associated with a higher than usual occurrence 

of schizophrenia, bipolar disorder, attention deficit disorder (ADD), anxiety and depression 

(Mazefsky et al., 2008; Stewart et al., 2006, Gillott et al., 2001, Kim et al., 2000).  Again, a 
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change in the brains circuitry is hypothesised to be responsible for these conditions and 

there is genetic overlap between the conditions (see section 1.2.2).   It is important to 

recognise the presence of comorbid psychiatric conditions in people with ASD as specific 

treatment of each condition is more effective than a single treatment for both.  

Distinguishing between these conditions can be problematic but psychiatric co-morbidity 

estimates reach as high as 72% (Leyfer et al., 2006).   

Immune system dysregulation is a symptom in a number of people with ASD and there have 

been familial links of ASD with multiple immunological conditions including polyendocrine 

autoimmune disorder, maternal asthma, celiac disease, type I diabetes and rheumatoid 

arthritis (Keil et al., 2010; Atladóttire et al., 2009; Mostafa & Kitchener, 2009; Croen et al., 

2005; Money et al., 1971).  Whilst paternal immunological conditions are likely to influence 

prenatal development as a result of heritable factors, maternally, immunological conditions 

can play an environmental role, influencing conditions within the womb.  Maternal 

antibodies have been shown to have an effect on brain growth and social behaviour in the 

offspring of rhesus macaques (Bauman et al., 2013).  Maternal infection in humans is also 

linked with an increased incidence of ASD and schizophrenia (Atladóttir et al., 2010; Brown & 

Derkits, 2010; Libbey et al., 2005).  For an in depth review of immune system dysregulation 

and autism see Bjorklund et al. (2016) and Careager & Ashwood, (2012). 

There are reported gastrointestinal (GI) symptoms in up to 70% of people with ASD 

(Valicenti-McDermott et al., 2006).  There is also evidence that the gut microbiota of autistic 

individuals is different from controls in terms of the proportion of each bacterial species (De 

Angelis et al., 2013).  Whether the GI symptoms are causative or secondary to ASD remains 

unclear.  Research in mice has suggested that prenatally manipulating the gut microbiota 

can result in autistic like symptoms of increased repetitive behaviours and impaired social 

communication and interaction (Hsiao et al. 2013).  A ‘leaky gut’ may enable toxins to leak 

from the gut and elicit an autoimmune response (reviewed in Samsam et al., 2014).  

However, despite the high incidence of GI symptoms reported in ASD, some studies suggest 

that they may be neurobehavioral.  A study by Ibrahim et al. (2009) found no significant 

increase in the incidence of GI symptoms, diarrhoea, gastroesophageal reflux/vomiting, or 

abdominal bloating/discomfort/irritability.     

Autism spectrum disorder, as shown by the variety of co-occurring  symptoms and 

conditions, is best addressed as a spectrum of disorders with different individuals having 
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different needs and therefore, potentially, being suited to different modes of treatment.  In 

addition to the symptoms reported at the time of diagnosis or later on, there are a number 

of symptoms reported in autistic children before the age of diagnosis.  These early 

symptoms preceding the onset of the condition are known as the autistic prodrome.   

Identification of early behavioural abnormalities in autistic children has been possible by 

using home video footage recorded by family members.  By analysing these home videos, 

researchers hope to pinpoint any behavioural abnormalities that could relate to the later 

autistic diagnosis.  However, the home videos differ in both content and length and family 

members do not tend to film ‘abnormal’ behaviour.  Nevertheless, some interesting insights 

have been gained from such studies.  When compared to the videos from children who did 

not develop autism, the autistic children tended to have impairments in sensorimotor 

development, less goal directed actions, reduced social interaction, gaze avoidance, an 

absence of emotional expression, a reduced response to their name and visual stimuli and 

show less pointing (reviewed in Yirmiya & Charman, 2010).  The screening of high risk 

siblings has also provided insight into the prodrome, revealing delays in language, gestural 

communication, repetitive behaviours, abnormal paly behaviour and diminished gaze 

(reviewed in Yirmiya & Charman, 2010).  An ASD prodrome would be a useful tool to predict 

the onset of ASD and to try to treat and possibly prevent the condition(s), or at least the 

more severe symptoms, before they occur. 

 

1.2.2 The history of autism genetics 

Family and twin studies have been used for decades to examine the link between genetics 

and autism.  It is reported that approximately 10-15% of the siblings of autistic individuals 

also suffer from autism which is significant in comparison to its prevalence in the general 

population (Ozonoff et al., 2011).  Comparing the concordance rates of autism between 

monozygotic twins and dizygotic twins has provided more evidence that the condition has a 

high genetic component.  Between 1977 and 1995, separate studies presented a 

concordance percentage of between 36-96 for monozygotic twins compared to 0-24% for 

dizygotic twins (Bailey et al., 1995; Steffenburg et al., 1989; Ritvo et al., 1985; Folstein & 

Rutter, 1977).    More recently, Tick et al., (2016) presented a concordance rate of 98% for 

monozygotic twins and 53% for dizygotic twins.  Other studies have identified a higher than 
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average incidence of cognitive abnormalities in the siblings of autistic individuals (Gizzonio et 

al., 2014; Piven et al., 1997; Baird & August, 1985; Minton et al., 1982; August et al., 1981).   

Research into the genes responsible for the ASD phenotype started with cytogenetic testing 

that aimed to identify their chromosomal loci.  Some studies identified as many as 48% of 

people with autism as having chromosomal abnormalities (Hagerman et al., 1986) whilst 

more recent studies put estimates at between 3-7.4% (reviewed in Bergbaum et al., 2016).  

Chromosomal abnormalities resulting in autism include fragile 16q23, 15q11-13 and 17p11.2 

(reviewed in Lauritsen, 2001).  Changes at these loci are also associated with the syndromes 

Fragile X, Praeder-Willi and Angelman.  Mutations within specific genes located in these 

chromosomal regions are often sufficient to cause the syndrome, for example, mutations in 

the genes FMR1 and UBE3A lead to Fragile X and Angelman syndrome respectively.  The 

association of autism with these separate developmental diagnoses has led to the term 

syndromic ASD in which the diagnosis of autism is often secondary to the previously 

mentioned syndromes.   Other examples of syndromes with a high incidence of autism 

include Rett syndrome and Tuberous Sclerosis caused by mutations in the MECP2 and TSC 

genes.  These syndromes are discussed in more detail in section 1.2.4.   

Alternatively to syndromic autism, there are many cases of non-syndromic or idiopathic 

autism in which autism is the primary diagnosis.  In these cases, it is often harder to pinpoint 

genetic causes.  It became clear that autism was not the result of mutations in a single gene 

due to its pattern of inheritance, its low penetrance and its presence in multiple 

monogenetic syndromes.  Linkage and association studies have helped to further identify 

candidate susceptibility genes.  These techniques identify regions of the DNA sequence that 

likely contain genes that when mutated confer a risk to the condition. The risk loci identified 

from these studies is summarised in Yang & Gill, (2007).  

Attention has shifted to identifying specific susceptibility genes and their specific functions.  

Recent research has examined if autism is caused by common or rare variants or, what is 

most likely, by both (Gupta & State, 2007).  Gaugler et al. (2014) has shown that the 

heritability of autism is predominantly due to common variants.  After the completion of the 

human genome project and the decrease in the cost of genomic technologies, collaborative 

efforts were made to uncover the cellular and molecular mechanisms leading to this highly 

heterogeneous condition.   
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1.2.6 Autism susceptibility genes 

Although autism is thought to be highly heritable (Abrahams and Geschwind, 2008, Beaudet, 

2007), no gene has been labelled as 100% penetrant or causative and environmental 

influences contribute to the severity of the condition (Lyall et al., 2016; Frazier, 2014).  It has 

been shown that with continued support, previously withdrawn individuals can increase 

social communication skills often becoming high functioning members of society (Gilchrist et 

al., 2001, Field et al., 2001). It has recently been hypothesised that the environment can 

have an impact on the post-transcriptional modifications of autism susceptibility genes 

(Wong et al., 2013).  There has also been speculation that exposure to external chemicals 

during development may be causative for example the chemical p-Cresol has been found to 

be increased in the urine of autistic children (Altieri et al., 2011).  Previous links to the MMR 

vaccine have been widely discredited (Farrington et al., 2001, Halsey et al., 2001; Taylor et 

al., 1999).   

 

Genetically, there are more than 500 identified autism susceptibility genes (ASGs; figure 1.5; 

Complete list available at the Simons Foundation database; https://gene.safari.org).  No 

single gene is present in more than 1% of people with autism (Devlin and Scherer, 2012).  

These findings gave rise to the theory that the large number of identified susceptibility genes 

are part of convergent molecular pathways, that when perturbed, result in the ASD 

phenotype (Voineagu et al., 2011, Geschwind, 2008). 

 

(Voineagu et al., 2011) compared microarray data that was generated using samples from 

post mortem brain tissue of autistic and control samples, to search for differentially 

expressed genes.  There were 444 differentially expressed genes detected between the 

cortical samples of ASD patients and matched controls.  Gene ontology enrichment analysis 

of this gene set identified multiple categories including those associated with synaptic 

function, cell adhesion, regulation of cell proliferation and immune and inflammatory 

response.  Furthermore, (Parikshak et al., 2013) applied weighted gain co-expression 

network analysis (WGCNA) to microarray transcriptome data obtained from human brain 

samples collected throughout development from 8 PCW to 12 postnatal months to identify 

co-expression modules.  Genes within these modules have predicted functional 

relationships.  Using 155 ASD susceptibility genes from the Simons Foundation database 

(https://gene.safari.org), the group was able to conclude that ASD susceptibility genes are 

https://gene.safari.org/
https://gene.safari.org/
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highly co-expressed during development and map to modules which contain genes that fall 

within the gene ontology categories synaptic transmission, regulation of neuronal synaptic 

plasticity, cell adhesion, calcium dependant regulation of synaptic transmission, DNA 

binding, chromatin remodelling and transcriptional regulation (Parikshak et al., 2013).  In 

addition to this finding, genes that link these co-expression modules have transcriptional and 

translational regulatory functions and include E74 like factor 1 (ELF1), Forkhead box protein 

O1 (FOXO1), Spermidine/spermine N1-acetyltransferase 1B (SAT1B) and Fragile X mental 

retardation 1 (FMR1) (Parikshak et al., 2013).  

 

 

 

 

 

Figure 1.5 Susceptibility genes across chromosomes (Abrahams et al., 2013).  There are over 

500 ASD susceptibility genes identified that are situated throughout the human genome.  

Some are rare but mutations in these genes usually cause ASD.  These are syndromic 

mutations.  Mutations in other susceptibility genes may not be 100% penetrant but are more 

common.   
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1.2.4  Transcriptional and translational changes associated with ASD 

(Parikshak et al., 2013), by mapping ASGs to human developmental co-expression modules, 

identified that many ASGs encode proteins that fall into the categories of DNA binding, 

chromatin remodelling and transcriptional and translational regulation.  (De Rubeis et al., 

2014) using exome sequencing to identify ASD risk genes also found an enrichment of 

transcriptional and chromatin remodelling pathways.  Two genes associated with syndromic 

autism, Methyl-CpG Binding Protein 2 (MECP2) and FMR1, which are responsible for 

transcriptional and translational changes respectively, are discussed further. 

Epigenetic marks change the chromatin state and the availability of the DNA for 

transcription.  These marks can be in the form of acetylation and methylation, which 

enhance and repress transcription respectively.  Gene enhancer and promoter regions often 

contain CpG islands that are highly methylated (Saxonov et al., 2006).  These epigenetic 

marks begin to occur in the womb during development and can be the products of both 

genetics and environment (Feil and Fraga, 2011).  RNAs initiate the recruitment of proteins 

known as writers, which are responsible for adding the epigenetic mark to the DNA whilst 

readers bind the modified DNA and are able to change the chromatin structure.  Many 

autism susceptibility genes are associated with epigenetic pathways (Zhubi et al., 2014b, 

Lasalle, 2013, Rangasamy et al., 2013). 

MECP2 mutations are the genetic cause of Rett syndrome (RTT) (Percy, 2008, Amir et al., 

1999).  A large number of people with Rett syndrome are also diagnosed with ASD or show 

autistic tendencies (Wulffaert et al., 2009).  The effects of MECP2 mutations are therefore 

contributing to the autistic phenotype.  MECP2 protein contains both a CPG binding domain 

(MBD) (Nan et al., 1997) and a transcription repression domain (TRD) (Lewis et al., 1992), 

which are essential for its function in binding methylated DNA and repressing transcription  

(Li et al., 2013).  MECP2 recognises the methylation marks 5 methyl cytosine (5mC) and 5 

hydroxy-methyl cytosine (5hmC) (Mellén et al., 2012) and is able to repress gene 

transcription via interaction with the SIN3A/ HDAC complex which leads to histone 

deacetylation (Jones et al., 1998).  Many of the genes repressed have established neuronal 

functions including Bone derived neurotropic factor (BDNF), Insulin like growth factor binding 

protein 3 (IGFBP3), Glutamic acid decarboxylase (GAD1), Reelin (RELN), Engrailed homeobox 

2 (EN2), Protocadherin (PCDH) B1 and PCDH7 (James et al., 2014, Miyake et al., 2011, Itoh et 
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al., 2007, Chen et al., 2003, Martinowich et al., 2003).  In addition to this, 5hmC is enriched 

in genes involved with synaptic function in mouse and human brain (Khare et al., 2012). 

ASD susceptibility genes GAD1 and RELN were shown to have increased 5hmc marks at their 

promoters in cells of the cerebellum of autistic patients.  This resulted in increased binding 

to these regions by MECP2 and subsequently their repression (Zhubi et al., 2014a).  GAD1 is 

an enzyme that catalyses the production of the inhibitory neurotransmitter GABA (Roberts 

and Frankel, 1950) and RELN protein is essential for neuronal migration, cell positioning and 

synaptic plasticity (Lakatosova and Ostatnikova, 2012).  The receptor for the 

neurotransmitter oxytocin (OXTR) is another autism susceptibility gene that has roles in 

social recognition, anxiety and depression (LoParo and Waldman, 2015).  Autistic individuals 

show higher OXTR promoter methylation compared to controls which corresponds with a 

decreased expression of oxytocin in the temporal lobe (Gregory et al., 2009).   

Another monogenetic syndrome that shows a high prevalence of autism is Fragile X 

syndrome (Kaufmann et al., 2004, Brown et al., 1982).  Fragile X syndrome arises from 

mutations in the FMR1 gene which codes for FMRP.  FMRP is an RNA binding protein and 

acts as a repressor of translation (Li et al., 2001, Siomi et al., 1993, Ashley et al., 1993).  In 

the mouse brain, using immunoprecipitation followed by microarray analysis of mRNAs 

bound to the protein complex, FMRP was shown to bind  about 4% of mRNA transcripts 

including that of the post synaptic density protein 95 (PSD95) (Brown et al., 2001).  Loss of 

function drosophila mutants present with enlarged synaptic terminals and altered 

neurotransmission (Zhang et al., 2001).  In line with this synaptic malfunction, knockout mice 

and Fragile X patients exhibit delayed maturation of dendritic spines (Irwin et al., 2001, 

Nimchinsky et al., 2001, Comery et al., 1997). 

 

1.2.4 Converging signalling pathways 

In addition to shared molecular functions of ASGs, some of these susceptibility genes code 

for proteins that are key components of molecular signalling pathways.  Multiple signalling 

pathways have been shown to be affected in ASD patients including the Canonical Wnt 

pathway and mTOR signalling.  Wnts are lipid-based molecules that act locally to activate 

Frizzled receptors (FZR) (Wodarz and Nusse, 1998).  The canonical Wnt pathway, also 

referred to as the Wnt/β-Catenin pathway, causes β-catenin to accumulate in the cytoplasm 
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before it is transferred to the nucleus to act as a coactivator of T-cell factor/ lymphoid 

enhancer factor (TCF/LEF) family transcription factors.  If signalling is not activated, 

cytoplasmic β-catenin is broken down by a destruction complex (reviewed in Komiya and 

Habas, 2008).  The destruction complex contains the proteins Axin, adenomatous polyposis 

coli (APC), GSK-3, CK1, protein phosphatase 2A (PP2A) and CK1α (See Stamos and Weis, 2013 

for a review of β-catenin degradation via the destruction complex).  Dishevelled (DVL) 

transfers the signal from the activated receptors to the destruction complex.  Dickkopf 

related protein (DKK) is able to antagonise wnt signalling by inhibiting the low density 

lipoprotein co receptors (LRP) 5/6 (Pinson et al., 2000, Wehrli et al., 2000, Fedi et al., 1999, 

Glinka et al., 1998).  A schematic of canonical Wnt signalling can be seen in figure 1.6. 

Multiple genes within this pathway and upstream and downstream of this pathway, have 

been identified as ASGs including WNT2, APC of the destruction complex, the hepatocyte 

growth factor receptor (MET), PTPRZ and engrailed 2 (EN2)(Wang et al., 2008, Zhou et al., 

2007).  These are shown in figure 1.6.  Mutations in the 7q31-33 chromosome region, which 

contains the WNT2 gene, have been identified as conferring a susceptibility to ASD (Chien et 

al., 2011).   WNT2 mutations were also identified by sequencing the gene in 135 autistic 

individuals and 160 matched controls (Wassink et al., 2001). However, the association 

between WNT2 and ASD was not observed in a later study from  (McCoy et al., 2002) in 

which 217 families were tested for this genetic association suggesting that, like many of the 

other ASGs, WNT2 mutations are rare in ASD. 

A chromosome deletion and resultant deletion of the APC gene was found in a patient 

diagnosed with ASD (Barber et al., 1994) making APC deletion a potential risk factor for the 

condition.  A more recent study, that screened for single nucleotide polymorphisms (SNPs) in 

the APC gene of 177 people with autism and 476 controls, identified an association between  

APC gene and ASD, with a significantly higher number of people with autism showing 

sequence variation in the gene compared to the control group (Zhou et al., 2007).    A further 

analysis of 75 individuals with ASD compared with the same control population as before 

revealed  the same result, with a significantly higher number of people with autism carrying 

the 8636C>A variant compared to the control population (Zhou et al., 2007).  

Hepatocyte growth factor receptor (HGFR/ MET) associates with βcatenin at the cell 

membrane and acts to regulate cell proliferation.  βcatenin phosphorylation by MET causes 

it translocation to the nucleus (Monga et al., 2002).  An association study carried out in 204 
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autistic individuals and their families showed that variation in the MET gene promoter, 

which decreases functionality of the protein by 2 fold, confers a risk to autism (Campbell et 

al., 2006).  Additional association studies have supported this finding (Thanseem et al., 2010, 

Campbell et al., 2009, Jackson et al., 2009).  A decrease in the MET protein was also 

observed in the mothers of autistic children (Heuer et al., 2011).  This decrease in MET 

protein was linked to the presence of maternal antibodies that react with proteins in the 

brain of the fetus, presumably causing the characteristics of ASD. 

Downstream EN2, which plays multiple roles in neural development, is a direct target of Wnt 

signalling, containing three TCF/LEF sites in its promotor region (Sgado et al., 2006, Simon et 

al., 2001, McGrew et al., 1999).  Screening for SNPs in 167 people with autism and their 

families identified that two of those investigated (rs1861972 and rs1861973) were 

significantly associated with the condition (Gharani et al., 2004).  A follow up study, in which 

two additional datasets were screened, identified that the same SNPs in EN2 were 

significantly associated with ASD (Benayed et al., 2005).  Additional studies have confirmed 

an association between variation in the EN2 gene and the autistic phenotype (Yang et al., 

2008, Wang et al., 2008). (Zhong et al., 2003) found no association between an SNP in exon 

1 of EN2 and the ASD phenotype in the 204 families screened suggesting that not all EN2 

mutations confer a risk to the condition.  However, since most ASG mutations are rare, the 

possibility that there may be association at this locus should not be ruled out. 

There are various links proposed between abnormal mTOR signalling and ASD.  Knockout of 

Tsc2 and Fmr1 in mice leads to an overactive mTOR pathway (Sharma et al., 2010, Zeng et 

al., 2011).  In humans, these mutations lead to tuberous sclerosis and Fragile X syndrome 

respectively - conditions that both show a high prevalence of ASD (Hagerman et al., 2010, 

Harrison and Bolton, 1997). 

Mammalian target of rapamycin (mTOR) is a key protein in both the mammalian TORC1 and 

TORC2 complexes.  These are key complexes in nutrient signalling that are rapamycin 

sensitive and insensitive respectively.  The signalling pathways are activated by various 

cellular nutrients and stressors and regulate cell growth, proliferation, survival and cap 

dependant translation (reviewed in Sawicka and Zukin, 2012).  The mTORC1 complex usually 

associated with autism, is able to sense and respond to insulin, growth factors, amino acids, 

oxidative stress and mechanical stimuli (reviewed in Bond, 2016) and its activation results in 

protein translation. 
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A downregulation of AKT/ mTOR signalling has been observed in idiopathic autism.  Proteins 

that participate in mTOR signalling, including mTOR, P13K, AKT and eIF4B, are decreased in 

the fusiform gyrus of autistic individuals (Nicolini et al., 2015).  Proteins downstream of 

mTOR signalling, PSD-95 and TrkB, are also reduced in these individuals.  Rats, at age P35-

P38, exposed to valproic acid show a decrease in expression of genes coding for mTOR 

signalling proteins as well as a decrease in the abundance of these proteins in the temporal 

neocortex (Nicolini et al., 2015).  Human fetal exposure to valproic acid increases the risk of 

developing autism (Christensen et al., 2013), potentially by reducing mTOR gene and protein 

expression levels.   

The mTOR proteins affected in individuals with autism are part of the mTOR/P13K/AKT 

signalling pathway.  In this pathway, the tyrosine kinase receptor (TKR), after binding its 

ligand, stimulates P13K to phosphorylate PIP2.  PIP3 can then recruit AKT to the membrane, 

which is phosphorylated and activated by PDK1 (figure 1.7).   Once activated, AKT can 

activate mTOR signalling (Rafalski and Brunet, 2011).  The inhibition of TSC2 by AKT prevents 

the inhibition of Rheb.  If active, Rheb can then stimulate the phosphorylation of mTOR 

(Inoki et al., 2003) which promotes translation via elF4B (figure 1.7).  EGF, shh, IGF1 and 

insulin have been shown to enhance this pathway (Ojeda et al., 2011, Rafalski and Brunet, 

2011, Peltier et al., 2007) whereas PTEN and GSK3B have been shown to inhibit it (Wyatt et 

al., 2014, Ojeda et al., 2011, Peltier et al., 2007).  P13K/Act/mTOR signalling is essential for 

the proliferation, growth and migration of neural stem cells (Zhou et al., 2011, Groszer et al., 

2001).  Tying in with the synaptic pathophysiology of autism, the mTOR/P13/AKT pathway is 

required for synaptogenesis and synaptic plasticity (Enríquez-Barreto et al., 2014, Martin-

Pena et al., 2006). 
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Figure 1.6 Canonical Wnt signalling (adapted from Kalkman et al., 2012).  WNT proteins are 

ligands for Frizzled (FZD) receptors. Dishevelled (DVL) protein relays signals from the 

receptor ligand complex, to downstream effectors.  Wnt signalling can prevent the 

proteolysis of βcatenin by the destruction complex.  The destruction complex is made up of 

PP1, PP2A, axin, CK1α, GSK3 and APC.  βcatenin, once safe from the destruction complex, 

translocates to the nucleus to bind TCF/LEF proteins, which in turn activate the expression of 

target genes including EN2.  βcatenin phosphorylation by MET also causes its translocation 

to the nucleus. 
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Figure 1.7 mTOR/P13K signalling.  Activation of the IGF and tyrosine kinase receptor can 

stimulate P13K.  P13K, via the phosphorylation of PIP2 at the cellular membrane, triggers 

PDK1 to phosphorylate AKT and inhibit TSC2.  When TSC2 is inhibited, it cannot act to inhibit 

Rheb.  Activated Rheb activates mTOR, which is part of the mTORC1 complex that includes 

the protein RAPTOR.  This complex activates elF4B, which initiates translation of target 

genes.  ERK1/2 can also activate this pathway via the inhibition of TSC2.  PTEN inhibits this 

pathway by dephosphorylating PIP3.  
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1.3 The synaptic pathophysiology of ASD 

The transcriptome analysis studies mentioned in section 1.2.1 identified that genes involved 

in synaptic function, synaptic plasticity and synaptic transmission are greatly enriched in 

autism susceptibility gene lists.  The synaptic pathophysiology of autism is complex as 

neuronal cells require specific combinations of synaptic proteins at specific time periods for 

neurite outgrowth, pathfinding, developing synaptic connections, correct neurotransmitter 

vesicle assembly and transport, correct neurotransmitter release the correct interpretation 

of the signal.   Perturbations in any of these processes can disrupt cortical circuitry and 

interfere with the correct functioning of the human brain (Dawson et al., 2005).   

Magnetic resonance imaging (MRI) can be used to compare the grey and white matter tracts 

in the brains of autistic individuals to the brains of neurotypical individuals.  Functional MRI 

studies have been used extensively to monitor the level of neuronal pathway activation 

when performing various tasks.  Currently, two contradictory theories regarding the 

connectivity of the autistic brain exist, the first being the underconnectivity theory (Just et 

al., 2004; Just et al., 2007).  Multiple studies have shown a decrease in functional 

connectivity between anterior and posterior brain regions (Koshino et al., 2008; Kana et al., 

2006).  However, a more recent study has suggested that autistic brains may have an 

increased number of connections between the anterior and posterior regions (Keehn et al., 

2013).  In addition to abnormal long-range connections, there has been reports of both 

decreased and increased local connectivity.  Using diffusion tensor imaging (DTI) data Shukla 

et al., (2011) showed abnormal short range connectivity in the frontal, parietal and temporal 

lobes of ASD children and fMRI studies have reported increased short range connectivity in 

the frontal and occipital lobes of children with ASD (Solso et al., 2016; Keehn et al., 2013; 

Shih et al., 2010).  Differences in the observations can be due to a number of things including 

methodology, technical equipment used, sample size, the task being measured and the 

variability of the symptoms within the group.   

It is important that we understand how genetic mutations may affect brain connectivity and 

to do this we must first understand the functions of these synaptic autism susceptibility 

genes.  A subset of ASGs present in the synaptic modules, and hypothesised to have an 

effect on the connectivity of the human brain, are discussed below in more detail.  The 

NRXNs, NLGNs and SHANK genes have been at the forefront of the synaptic pathophysiology 

theory (reviewed in Baudouin, 2014). 
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1.3.1 NRXN and NLGN structure and function 

There are three identified NRXN genes (NRXN1, 2 & 3) and five NLGN genes (NLGN1, 2, 3, 4X 

&4Y) in humans. Neurexin (NRXN) and neuroligin (NLGN) proteins are associated with the 

maturation and maintenance of synapses.  Overexpression of NRXN and NLGN genes causes 

an increase in synapse number (Krueger et al., 2012).  Expression of NRXNs or NLGNs alone 

is enough to provoke synapse formation in the pre and post synaptic membranes.  (Graf et 

al., 2004, Scheiffele et al., 2000).  Neurexins (NRXNs) were first identified as mediators of 

neurotransmitter release after being induced to do so by binding α latrotoxin, which is found 

in Black Widow spider venom (Ushkaryov et al., 1992).  They are abundantly expressed in 

adult neural tissue and are not only involved in neurotransmitter release but also recruit pre-

synaptic density proteins to the membrane and link the pre and post synaptic membranes 

via their interaction with neuroligins (NLGNs) which are situated in the post-synaptic cell 

membrane (figure 1.8).  However, NRXN proteins have also been identified in the post-

synaptic density, binding to NLGN1 to inhibit its binding to pre-synaptic NRXNs (Taniguchi et 

al., 2007).  NLGN1 protein is localised to the post synaptic density of excitatory synapses in 

the hippocampus of rats (Song et al., 1999) while NLGN2 protein is found at the post 

synaptic membrane of mainly inhibitory synapses in rat retinal cell culture (Hoon et al., 

2009).  The other NLGN proteins have been found in both although their presence may differ 

across brain regions (Krueger et al., 2012). Therefore, NRXN-NLGN interactions may be more 

complex than we first thought. 
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Figure 1.8 Neurexins and Neuroligins link the pre and postsynaptic membranes (Dölen and 

Bear, 2009).  Neurexins are situated at the presynaptic membrane and binds neuroligins that 

are situated in the postsynaptic membrane.  Neuroligins are able to bind post synaptic 

density proteins and recruit additional proteins such as SHANKs.  Through this network of 

scaffold proteins, NLGNs make molecular links with neurotransmitter receptors such as 

NMDA, AMPA and mGluR.  mGluR can activate the mTOR pathway. 

 

 

1.3.2 Alternative splicing of NRXN genes in development and adults 

The neurexin genes are some of the largest in the human genome reaching up to 1.62Mb 

(Tabuchi and Südhof, 2002).  It is therefore, no surprise that these genes are differentially 

spliced into thousands of isoforms (Missler and Südhof, 1998).  Each neurexin gene codes for 

a longer α and shorter β transcript (figure 1.9).  The α transcript contains six 

laminin/neurexin/sex-hormone binding globulin (LNS) domains and three epidermal growth 

factor (EGF) - like domains.  In comparison, the β transcripts contain no EGF- like domains 

and only the sixth LNS domain (figure 1.9).  These transcripts are transcribed from separate 

promoters.  There are six sites of differential splicing identified in α neurexins (SS#1-SS#6), 
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two of which are also identified in β neurexins (Sugita et al., 2001a, Serova et al., 2015).  α-

NRXNs seem to be conserved between invertebrates and vertebrates but this is not the case 

for βNRXNs and NRXN alterative splicing which are specific to vertebrates (Tabuchi and 

Südhof, 2002).  As organisms became more complex, it is possible that the gene family 

evolved allowing the acquisition of more complex functions.  The addition of a second 

promoter site into the gene, the generation of the βNRXNs, the resulting interactions with 

neuroligins and the thousands of isoforms generated from alternative splicing could have 

contributed to the complexity of the human brain (Tabuchi and Südhof, 2002).  This 

information makes the NRXN family of genes, and those genes that regulate their splicing, 

interesting candidates for studying during human brain development. 

α –neurexins are involved in Ca2+ dependent neurotransmitter release and are not essential 

for synapse formation (Missler et al., 2003).  It is thought that mainly the βNRXNs bind to 

NLGN proteins via their extracellular domain to connect the pre and post synaptic 

membranes, however, certain splice variants of α NRXNs can bind NLGNs (Boucard et al., 

2005).  The intracellular PDZ domain of β NRXNs recruits PDZ domain proteins to the pre-

synaptic membrane.  These events are regulated by alternative splicing of the neurexin 

genes (Ichtchenko et al., 1995, Ichtchenko et al., 1996, Sugita et al., 2001a). 

The STAR family of proteins includes KHDRBS1, KHDRBS2 and KHDRBS3, also referred to as 

SAM68, SLM1 and SLM2 respectively.  They contain an SH3 binding domain as well as a KH 

domain that enables the proteins to bind RNA.  Neurexin mRNA has been identified as a 

target of the STAR proteins and when bound to the NRXN mRNA, they regulate its 

alternative splicing.   

KHDRBS1 has been shown to be widely expressed throughout the brain in a variety of cell 

types (Iijima et al., 2011).  This protein includes an extra 96 amino acid sequence at its N 

terminal that is not found in KHDRBS2 and three (Iijima et al., 2011).  KHDRBS2 protein can 

be found in a restricted number of cells in layers 2, 3 and 5 of the adult mouse cerebral 

cortex as well as in the Purkinje cells of the cerebellum (Iijima et al., 2014).  KHDRBS3 is 

found in the majority of cortical cells but is absent from the neurons of the superior and 

inferior colliculus.  It is also present in the inner granular and the molecular layers of the 

cerebellum (Iijima et al., 2011).  KHDRBS1 and 2 can form protein complexes, however, there 

is no evidence to suggest that KHDRBS1 and 3 form a complex (Iijima et al., 2011). 
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In mice, all of the KHDBRS proteins interact with Nrxns 1 and 3 and prevent the inclusion of 

the AS4 splice site corresponding to exon 20.  SLM1 and 2 also cause the exclusion of exon 

20 in Nrxn2 mRNA, however, SAM68 has no effect on the alternative splicing of Nrxn2 

(Ehrmann et al., 2013, Iijima et al., 2011).  There is also a higher level of exon skipping in the 

cerebral cortex compared to the rest of the brain (Ehrmann et al., 2013).  The inclusion or 

exclusion of exon 20 of NRXNs can consequently affect what proteins they can bind.  NRXN1 

requires the exclusion of exon 20 in order to bind NLGN1 (Dean et al., 2003, Boucard et al., 

2005, Chih et al., 2006) whereas, it requires the inclusion of exon 20 to be able to bind the 

CBLN1:GLUD2 complex (Uemura et al., 2010, Matsuda and Yuzaki, 2011). 

Slm1 knockout mice are viable and fertile and show no behavioural abnormalities (Iijima et 

al., 2011).  Slm1/Sam68 knockout mice and Sam68-/- male mice are viable but not fertile 

(Iijima et al., 2011, Huot et al., 2012).  No alterations in the distribution of synaptic markers 

was detected in the double knockout mice but their brains were slightly smaller than those 

of the wildtype mice.  There was also a loss of a cerebellar fissure and a disorganised 

purkinje cell layer (Iijima et al., 2011).  In E13.5 mice, SLM2 was shown to be present in the 

CP of the cortex and absent from the proliferative regions (Ehrmann et al., 2013).  There is 

also evidence of SLM2 regulated exon skipping in NRXNs during mouse development 

(Ehrmann et al., 2013). 
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Figure 1.9. Structure of α and βNRXN genes and their protein products.  The α and βNRXN 

genes are transcribed from two separate promoters.  The longer α transcript contains six 

splice sites (AS1-6) whilst the β transcript contains only AS4 and AS5.  The αNRXN protein 

contains six laminin G domains, three epidermal growth factor (EGF) domains and a 

transmembrane region at its C terminal end containing a PDZ recognition motif.  The βNRXN 

protein is much shorter sharing only the last laminin G domain and the transmembrane 

region.   

 

 

1.3.3 NRXN and NLGN mutations in ASD 

As previously mentioned, autism is a heterogeneous condition in which there are many 

susceptibility genes.  Mutations in these genes, although rare, include NRXNs and NLGNs 

(reviewed in Buxbaum, 2009).   NLGN3 and 4 mutations were identified in individuals with 

ASD before NRXN mutations.  A screen for NLGN3 and 4X/Y mutations was carried out on 

158 individuals with ASD.  Single strand conformation polymorphism (SSCP) scanning 

detected a single base change in the NLGN3 gene in two brothers with ASD and a frameshift 

mutation in NLGN4X was identified in two unconnected brothers with ASD that were not 

identified in the 200 and 350 control subjects respectively (Jamain et al., 2003).  Subsequent 

studies, however, have failed to identify mutations in these genes in people with autism 
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suggesting that their occurrence is rare (Gauthier et al., 2005, Vincent et al., 2004).  A study 

searching for copy number variants (CNVs) that confer susceptibility to ASD genotyped 859 

people with autism and 1409 control subjects.  There was a significantly higher number of 

CNVs in NLGN1 of the people with autism compared with controls (Glessner et al., 2009).  At 

present, there are no identified NLGN2 mutations in individuals with ASD, although 

sequencing identified mutations in this gene in Schizophrenic patients (Sun et al., 2011). 

After the detection of NLGN3 and 4X mutations in individuals with autism, Feng et al. (2006) 

used SSCP scanning to search for mutations within the βNRXN genes in 264 individuals with 

ASD in addition to 535 controls.  Mutations were identified in the NRXN1β gene of four 

individuals with ASD compared to none of the controls.  A later study using a single 

nucleotide polymorphism (SNP) array to look for linkage and CNVs in over 1000 families who 

had 2 or more members with ASD, identified two female siblings with a deletion in the 

coding region of NRXN1 (Szatmari et al., 2007).  Mutations in NRXN1α as well as β have been 

identified in autistic individuals (Yan et al., 2008, Kim et al., 2008).  A study that sequenced 

the NRXN genes of 142 individuals with autism and 92 controls using the 3730XL DNA 

analyser system, found a frameshift mutation in exon 12 of NRXN2 in 1 of the subjects with 

ASD and none of the controls (Gauthier et al., 2011). These previous studies had failed to 

identify NRXN3 mutations in ASD cases.  However, in 2012, mutations in exons 1 and 10-13 

as well as missense mutations of the NRXN3 gene in individuals with ASD were uncovered 

(Vaags et al., 2012).  Although mutations in the NRXN and NLGN genes confer a susceptibility 

to autism, the mutations are not always fully penetrant and unaffected family members may 

carry the same mutations (Kim et al., 2008, Cukier et al., 2014, Vaags et al., 2012).   

The closely related CNTNAP2/ NRXN4 gene was found to contribute to the condition also 

(Alarcon et al., 2008, Strauss et al., 2006, Arking et al., 2008).  A mutation in this gene causes 

the condition cortical dysplasia-focal epilepsy (CDFE) and is one of syndromes in which many 

of the individuals also exhibit autism.  It is believed to be caused by abnormal neuronal 

migration with almost half of CDFE patients showing cortical dysplasia in MRI analysis.  This 

syndrome, like autism, becomes apparent in early childhood when seizures, hyperactivity, 

language delay and mental retardation develop.  Since its discovery, CNTNAP2 has been 

linked to age at first word by association studies (Alarcon et al., 2008), and to language delay 

and stuttering in CNTNAP2 haploinsufficient people with autism carrying a deletion in the 7q 
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33-35 region (Petrin et al., 2010, Sehested et al., 2010).  A summary of NRXN and NLGN 

mutations in humans can be seen in table 1.1. 

 

1.3.4  SHANK structure and function 

The SHANK gene family consists of three genes (1, 2 and 3) which function as scaffold 

proteins at the post synaptic density (PSD) of excitatory synapses in the brain (Naisbitt et al., 

1999, Tu et al., 1999, Boeckers et al., 2002) (figure 1.8).  These proteins consist of an SH3 

domain, a PDZ domain, a SAM domain, ankyrin repeats and a proline rich area (Sheng and 

Kim, 2000).  In rats, SHANK1 and SHANK2 are expressed throughout the brain whereas 

SHANK3 is more highly expressed in the heart with lower levels in the brain (Lim et al., 

1999).  In humans, SHANK expression has been observed in the brain, digestive tract and 

liver (www.proteinatlas.org). 

Before accumulating at synaptic junctions, SHANK can be found in developing neurites (Du et 

al., 1998, Naisbitt et al., 1999).  SHANK was first identified by the binding of its PDZ domain 

to the scaffold protein GKAP.This interaction is thought to be important in the localisation of 

SHANK to the postsynaptic membrane (Sheng and Kim, 2000).  The presence of SHANK in 

developing neurons and tissue other than brain suggests that it may also additional 

functions for example in cell migration, cytoskeletal organisation and neurite outgrowth in 

non-neuronal and neuronal cells (Du et al., 1998, Naisbitt et al., 1999, Sheng and Kim, 2000). 

The proline rich region of the SHANK proteins has been shown to bind the scaffold proteins 

Homer and contactin (figure 1.8).  The SAM domains at the C terminus of each protein may 

allow SHANKS to bind one another creating an increased number of available domains for 

PSD and scaffold protein binding (Sheng and Kim, 2000).  The SHANK transcripts have also 

been shown to be alternatively spliced during development (Lim et al., 1999, Boeckers et al., 

2002).  This likely affects the binding of other proteins to SHANK proteins and therefore, 

shapes the structure of the PSD complex. 

 

 

 

 

http://www.proteinatlas.org/
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1.3.5 SHANK mutations in ASD 

SHANK1 mutations in autistic cases have only been identified recently (Sato et al., 2012).  

Deletions in the SHANK1 gene affecting the first 20 exons were common between three 

related individuals of different generations and one un-related subject.  The same SHANK1 

mutations were found in two females of the first family but they did not present with ASD 

characteristics (Sato et al., 2012).  Further genotyping of 509 ASD and Intellectual disability 

(ID) subjects identified 23 and 7 missense variants respectively.  Some of the fathers of the 

autistic individuals also shared the SHANK1 mutations without consequence.  Although these 

mutations are found in non-autistic individuals, they are only present in families in which 

some members suffer from ASD.  In both experiments, none of the controls have SHANK1 

mutations.  This suggests that SHANK1 is an autism susceptibility gene but, like NRXN and 

NLGN genes, is not completely penetrant.   

A study looking for links between ASDs and mental retardation identified deletions affecting 

the PDZ domain of SHANK2 as well as several variants in the gene that are not observed in 

non-affected control individuals (Berkel et al., 2010).  Individuals with deletions of the 22q13 

chromosomal region, also known as Phelan McDermid syndrome, present with social deficits 

and many are diagnosed with ASD (Oberman et al., 2015).  Durand et al., (2007) and Waga et 

al., (2014) directly sequenced SHANK3 in ASD patients and identified multiple mutations 

including a deletion breakpoint in intron 8, an insertion in exon 21 a deletion upstream of 

the SH3 domain, a missense mutation of the PDZ domain and a mutation downstream of 

exon 11.  In addition, a 22q deletion was observed that resulted in a chromosomal 

rearrangement that affected 25 genes including SHANK3.  These mutations were not present 

in the control group.   Since not all of the 22q13 genomic region was sequenced, additional 

mutations may contribute to the autistic phenotype in these individuals (Durand et al., 2006; 

Waga et al., 2011).  Despite this evidence for SHANK2 and 3 mutations conferring a risk to 

ASD, one study found no association between mutations in this gene and the condition (Liu 

et al., 2013).  A summary of SHANK mutations in humans can be seen in table 1.1. 
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Table 1.1 Human NRXN, NLGN and SHANK gene mutations in ASD cases 

Gene Mutations References 

NRXN1 NRXN1β mutations in 4 individuals with ASD 

Deletion in the coding region of NRXN1 in two female 

siblings 

(Szatmari et al., 2007) 

NRXN2 NRXN2 frameshift mutation in exon 12 in one 

individual with ASD 

(Gauthier et al., 2011) 

NRXN3 NRXN3 mutations in exons 1 and 10-13 as well as 

missense mutations of the NRXN3 gene in individuals 

with ASD 

(Vaags et al., 2012) 

NLGN1 CNVs in NLGN1 in people with autism  (Glessner et al., 2009) 

NLGN2 No known mutations in ASD  N/A 

NLGN3 Single base change in the NLGN3 gene in two brothers 

with ASD  

Jamain et al., 2003 

NLGN4X Frameshift mutation in NLGN4X was identified in two 

unconnected brothers with ASD 

Jamain et al., 2003 

SHANK1 Deletions in the SHANK1 gene affecting the first 20 

exons found in three related individuals of different 

generations and one un-related subject 

(Sato et al., 2012) 

SHANK2 Deletions affecting the PDZ domain of SHANK2 (Berkel et al., 2010) 

SHANK3 Deletions of the 22q13 chromosomal region 

Deletion breakpoint in intron 8 

An insertion in exon 21 a deletion upstream of the 

SH3 domain 

A missense mutation of the PDZ domain  

A mutation downstream of exon 11.   

(Oberman et al., 2015) 

(Durand et al., 2007) 

(Waga et al., 2014) 
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1.4 Rodent and cellular models of ASD 

Mouse models can be viewed as a high throughput system as they breed well in captivity 

and are relatively easily genetically manipulated.  Models of single gene mutations or 

specific genetic loci changes can be produced to monitor the effects of these mutations in 

vitro (Halladay et al., 2009).  Both behavioural and molecular analysis can be carried out 

which is rarely possible in humans, unless high quality post mortem tissue is obtained.  The 

genetic variability of mouse models can be decreased by using particular strains.  However, 

different strains of mice exhibit differences in behaviours and so for behavioural analysis it is 

important to utilize the appropriate strain (Moy & Nadler, 2008).   

Mouse models of autism display core symptoms of the disorder, which are impaired social 

interaction and repetitive and stereotyped behaviour.  Mice exhibit complex social 

behaviours, which enables detailed behavioural phenotyping.  Some of the behaviours 

analysed in testing include aggressive behaviours, juvenile play, social approach, response to 

a strange versus a familiar mouse, reciprocal social interactions, anxiety, fear, mating and 

rearing of young.  Repetitive behaviours analysed include marble burying and stereotyped 

behaviours such as self-grooming, circling and back flipping (Silverman et al., 2010). 

Following the identification of NRXN, NLGN and SHANK mutations in ASD patients, multiple 

mouse models have been created.  Here, the molecular and behavioural phenotypes of 

these mice will be discussed as well as the generation of cellular models using human 

embryonic stem cells (hESCs) and human induced pluripotent stem cells (hIPSCs). 

 

1.4.1 NRXN knockout mice as a model of ASD 

Triple α-NRXN knockout mice and double knockouts have severely reduced survival rates 

with many unable to survive past day one despite apparently normal prenatal development 

(Missler et al., 2003).  Triple knockouts were anatomically identical to wildtype with no 

differences in brain weight, lamination or synaptic protein distribution.  The density of 

GABAergic synapses was decreased in the brainstem of triple knockout mice and the 

neocortex of double NRXN1α/ 2α knockout mice.  It was also shown that αNRXNs are 

essential for calcium triggered neurotransmitter release.  Cultured hippocampal neurons 

show a decrease in presynaptic Ca2+ currents but the expression of Ca2+ channels at the cell 

surface was comparable to controls (Missler et al., 2003).  Missler et al., (2003) suggests that 
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αNRXNs function to link the organisation of presynaptic neurotransmitter secretion to 

extracellular synaptic events. 

A vector designed to recognise the first exon and part of the promoter of NRXN1α was 

inserted into embryonic stem cells to knock down the gene by homologous recombination.  

Positive clones were then injected into blastocysts and resultant mice were bred to produce 

homozygous genotypes.  αNRXN1-/- mice were viable and fertile with no anatomical or 

phenotype abnormalities and minimal behavioural abnormalities (Geppert et al., 1998). The 

only behavioural effect observed was neglect of their litters causing increased offspring 

mortality.  These findings suggest functional redundancy of the NRXN genes, however, the 

NRXN1β transcript may also have been functional (Geppert et al., 1998).  A later study 

examining the behavioural phenotype of αNRXN1-/- showed there was an increased acoustic 

startle response, decreased prepulse inhibition (PPI), increased repetitive grooming and 

impaired nest building.  This study found no social impairments of the mice and they 

performed better than wildtype in the rotarod test exhibiting enhanced motor learning 

(Etherton et al., 2009).  Using hippocampal slices and CA1 cell cultures to examine the 

molecular phenotype they observed a decrease in spontaneous excitatory synaptic 

transmission and basal excitatory synaptic strength compared with controls.  Whole cell 

voltage-clamp recordings revealed that this was due to a reduced mEPSC frequency that 

affected the inhibitory/ excitatory balance (Etherton et al., 2009). 

NRXN2-/- mice display defects in social behaviour.  In the three-chamber test, knockout mice 

show no preference for the chamber containing an unknown mouse (stranger 1) rather than 

an empty chamber.  When the empty chamber was replaced with a different unfamiliar 

mouse (stranger 2), wildtype mice spent an increased amount of time with stranger 2 over 

stranger 1.  This was not observed in the NRNX2 knockout mice (Dachtler et al., 2014).  

Knockout mice also show increased anxiety in the open maze test spending an increased 

period of time at the periphery compared to wildtype mice (Dachtler et al., 2014).  In the 

elevated plus maze test, knockout mice spend significantly less time in the open arms 

compared to wildtype (Born et al., 2015, Dachtler et al., 2014).  An emergence test places 

mice into a dark enclosure before giving them the option of emerging into a well-lit open 

space.  Wildtype mice took significantly less time to emerge into the open space compared 

to the NRXN2 knockout mice and spent significantly less time in the open space (Dachtler et 

al., 2014).  Molecularly, in contrast to the NRXN1-/- mice, NRXN2 knockout mice have normal 
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PPI.  There is a decrease in the expression of Dlg4, Grin2a, NMDA receptor subunit 2a and 

Munc18-1 in the cortex and hippocampus.  In a separate study from the same group 

examining NRXN2 heterozygous mutant mice, many of the behavioural phenotypes 

observed in the homozygous mutants were abolished (Dachtler et al., 2015).  Interestingly, 

they identified social defects in a NRXN1 heterozygous mutant mouse. 

Homozygous NRXN3α and β knockout mice have been generated (Aoto et al., 2015) as have 

NRXN3 SS#4 inclusion mice (Aoto et al., 2013).  No detailed behavioural analysis has yet 

been carried out on these mice.  (Aoto et al., 2015) generated the Nrxn3α and β knockout 

mice by targeting exons 1 and 18.  Homozygous mutants mostly died at birth and any 

surviving mutants were smaller than their littermates and displayed ataxia and hyperactivity. 

A summary of the physical, behavioural and molecular consequences of NRXN mutations can 

be found in table 1.2.  

 

 

Table 1.2 NRXN knockout mice and their physical, behavioural and molecular 

consequences. 

 Physical Behavioural Molecular 

NRXN1 

 

None observed Neglect of pups (Geppert 

et al., 1998) 

Increased acoustic startle 

response 

Increased repetitive 

grooming  

Impaired nest building  

Enhanced motor learning 

(Etherton et al., 2009) 

 

Decreased prepulse inhibition 

(PPI) 

Reduced mEPSC frequency 

(Etherton et al., 2009) 
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NRXN2 

 

None observed Social impairments in 3 

chamber test (Dachtler et 

al., 2014) 

Increased anxiety in open 

maze, elevated plus maze 

test and emergence test 

(Born et al., 2015; Dachtler 

et al., 2014) 

Decrease in the expression of 

synaptic genes (Dachtler et al., 

2014) 

NRXN3 

 

Severely reduced 

survival rates of 

homozygous 

mutants 

Decreased size 

Ataxia  

(Aoto et al., 2015) 

Hyperactivity 

(Aoto et al., 2015) 

Decrease in mEPSC amplitude 

Decrease in AMPA mediated 

synaptic transmission 

Decrease in mIPSC frequency 

and the evoked mIPSC 

amplitude 

(Aoto et al., 2013) 

 

Triple 

NRXN 

knockout 

Reduced survival 

rates (Missler et al., 

2003) 

 

 Decrease in GABAergic synapse 

density (Missler et al., 2003) 

Decrease in presynaptic Ca2+ 

currents (Missler et al., 2003) 

 

 

This is the first generated mouse model that has abolished the functions of both the α and β 

NRXNs and the effect is more severe than any single knockouts (Born et al., 2015, Dachtler et 

al., 2015, Dachtler et al., 2014, Etherton et al., 2009, Missler et al., 2003, Geppert et al., 

1998).  Hippocampal cultures from these homozygous knockout mice and observed a 

decrease in amplitude of mEPSCs, which was also observed in a Nrxn3 mouse that was 

engineered to include SS#4 (Aoto et al., 2013).  Post synaptic AMPAR mediated synaptic 

transmission is decreased as are the surface levels of GlUA1 and GLUA2 in hippocampal cell 

cultures and in adult hippocampus of homozygous mutants.  This study also observed that 

different brain regions can have different molecular phenotypes caused by the mutation.  
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Olfactory bulb cell cultures showed no change in the mEPSCs or AMPAR mediated synaptic 

transmission of homozygous knockouts compared to wildtype cultures.  Instead mIPSC 

frequency is decreased as is the evoked mIPSC amplitude and this phenotype is independent 

of SS#4 exclusion. 

 

1.4.2 NLGN knockout mice as a model of ASD 

Single NLGN knockout, double NLGN knockout combinations and triple knockout mice have 

been generated by (Varoqueaux et al., 2006).   All mutants, except homozygous triple 

knockouts, were viable and fertile but showed reduced rates of reproduction suggesting 

social deficits.  Homozygous triple knockout mice died soon after birth.  Synaptic protein 

levels are reduced in triple NLGN knockout mice but this does not appear to effect the 

formation of synapses.  Triple NLGN knockout mice show reduced GABAergic and 

glutamatergic synaptic transmission.  (Blundell et al., 2010) studied the single NLGN1 mice in 

more detail and found that there was an increase in NLGN3 expression and a decrease in 

both α and β NRXNs.  There is a reduced NDMA/AMPA ratio in the dorsal striatum of these 

mice and a reduced magnitude of LTP in the hippocampus.  Behaviourally, these mice 

performed the same as wildtype mice in anxiety testing but did show slight social deficits 

and repetitive grooming.  The Morris water maze task revealed that NLGN1 knockout mice 

show deficits in spatial learning and memory.  There is also evidence for reduced excitatory 

synaptic transmission due to a decrease in glutamate receptor proteins in NLGN1 KO mice 

and deficits in LTP and synaptic plasticity (Jedlicka et al., 2015). 

NLGN2 knockout mice experienced both developmental delays and physical differences 

when compared with wildtype and heterozygous mice.  These included reduced body and 

tail length and delayed eye opening and grasping reflex (Wohr et al., 2013).  Isolating pups 

from their mothers prompted vocalisations, which were reduced in NLGN2 mice compared 

to wildtype.  NLGN2 null mice spent less time exploring and in the centre of the open field 

arena and generally were less mobile in other tests compared to wildtype.  Sociability of the 

null mice appeared to be unaffected.  Anxiety testing proved inconclusive as although the 

null mice appeared to exhibit anxiety like behaviours in the lightdark exploration task, this 

could have been due to the reduced mobility of the mutants (Wohr et al., 2013).    
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Interestingly, it has been observed that a substitution mutation in NLGN3 in mice has a 

different effect to NLGN3 knockdown in mice.  The substitution, which is modelled on an 

observed mutation in the human genome (R451C; (Jamain et al., 2003), results in an increase 

in inhibitory synaptic transmission in pyramidal neurons of the somatosensory cortex as 

determined by whole cell recordings.  There were also observed social impairments in the 

substitution mutants that were not observed in the knockout or wildtype mice.  The 

substitution also appeared to enhance spatial learning as shown by the Morris water maze 

task (Tabuchi et al., 2007).  Recapitulating this genotype in another study with mice found no 

ASD associated behavioural abnormalities (Chadman et al., 2008).  Also, in contrast to the 

lack of behavioural abnormalities observed in the NLGN3 knockout mice by Tabuchi et al. 

(2007), the knockout of NLGN3 exon 5 in rats reduced juvenile play compared to wildtype 

(Hamilton et al., 2014).  Mutant rats also exhibited repetitive behaviour in the form of 

chewing through their water bottles.    

Knocking out NLGN4 in mice did not lead to a compensatory increase of other NLGN genes or 

associated binding partners (Jamain et al., 2008).  In a separate study, a NLGN4 mutation 

results in an increase in the NMDAR subunit, NR1, mGluR5 and the cell adhesion molecule 

NCAM as revealed by Western blot analysis.  It is hypothesised that the upregulation of these 

proteins is a compensatory mechanism for the loss of NLGN4.  Patch clamp recordings in single 

cells from the brains of NLGN4 knockout mice also reveal effects in both inhibitory and 

excitatory synapses (Delattre et al., 2013).  A summary of the physical, behavioural and 

molecular consequences of NLGN mutations can be found in table 1.2    
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Table 1.3  NLGN knockout mice and their physical, behavioural and molecular 

consequences. 

 Physical Behavioural Molecular 

NLGN1 

 

Not studied  Deficits in spatial learning 

and memory shown in 

Morris water maze task  

Repetitive grooming 

(Jedlicka et al., 2015) 

Increase in NLGN3 

expression and a decrease 

in both α and β NRXNs 

Reduced NDMA/ AMPA 

ratio 

Reduced LTP magnitude 

(Blundell et al., 2010) 

Decrease in glutamate 

receptor proteins (Jedlicka 

et al., 2015) 

NLGN2 

 

Reduced body and 

tail length 

Delayed eye opening 

and grasping reflex 

Reduced pup 

vocalisations 

(Wohr et al., 2013) 

Reduced mobility in anxiety 

testing 

(Wohr et al.,2013) 

Not studied 

NLGN3 

 

Not studied Reduced social interaction 

with unfamiliar mouse 

Enhanced spatial learning in 

Morris water maze task 

(Tabuchi et al., 2007) 

Increased inhibitory 

synaptic transmission 

(Jamain et al., 2003) 

NLGN4 Not studied Not studied Increase in synaptic 

proteins and cell adhesion 

molecule NCAM (Delattre 

et al., 2013) 
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>1 NLGN 

mutation 

(double and 

triple 

knockouts) 

Fatal / severely 

reduced survival 

rates 

Respiratory failure 

(Varoqueaux et al., 

2006) 

Not studied due to severely 

reduced survival 

Decrease in synaptic 

proteins  

Reduced GABAergic and 

glutamatergic synaptic 

transmission (Varoqueaux 

et al., 2006)  

 

 

 

1.4.3 SHANK knockout mice as a model of ASD 

Shank1 mutant mice have been generated using homologous recombination of a targeting 

vector to exons 14 and 15 that disrupted the PDZ domain of the gene (Hung et al., 2008).  

These mice have been used in multiple studies to look for structural, molecular and 

behavioural differences between mutant and wildtype animals (Silverman et al., 2011, Wohr 

et al., 2011, Hung et al., 2008).  Shank1-/- knockout mice show no obvious structural 

differences in the brain compared to wildtype (Hung et al., 2008).  Quantitative 

immunoblotting of PSD fractions obtained from the forebrain of Shank1-/- mice revealed a 

decrease in the PSD proteins GKAP and Homer1b/c compared to wildtype (Hung et al., 

2008).  Immunohistochemistry performed on dissociated hippocampal cell cultures 

confirmed a decrease in the density of GKAP positive puncta and a more diffuse staining 

pattern of Homer1b/c (Hung et al., 2008).  Electron micrographs of hippocampal neurons 

from Shank1-/- knockout mice revealed that they had thinner PSDs and shorter dendritic 

spines compared to wildtype (Hung et al., 2008).  Reduced basal synaptic transmission was 

observed in acute hippocampal slices from Shank1-/- mice aged 3-5 weeks presumably due to 

a reduced number of functional synapses rather than a reduction in synapse number (Hung 

et al., 2008). 

Shank1 knockout mice were less active in an open field environment and spent less time in 

the more open central regions of the field compared to wild type mice (Silverman et al., 

2011, Hung et al., 2008).  They were also more reluctant to move between light and dark 

chambers in the light/ dark exploration test suggesting anxiety like behaviours of Shank1-/- 
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mice (Silverman et al., 2011, Hung et al., 2008).  Shank1-/- mice bred less and were less 

nurturing (Hung et al., 2008). 

Tone shock fear conditioning showed that Shank1-/- mice froze less than wildtype mice 24 

hours after fear conditioning suggesting a contextual fear memory impairment (Hung et al., 

2008).  However, mutant mice showed enhanced spatial learning uncovered using the eight 

arm radial maze task in which two of the arms contain food.  Shank1-/-  mice made less 

mistakes when remembering which of the eight arms to acquire the food from, however, 

after a 4 week rest period, they performed at the same level as the wildtype mice. 

The three-chambered test in which the mouse has access to both a foreign object and a 

foreign mouse revealed that homozygous and heterozygous Shank1 mutant mice spent 

equal time sniffing the object and the mouse compared to wildtype mice who spent more 

time sniffing the novel mouse (Silverman et al., 2011).  The inverted wire hang test in which 

the time a mouse can hang onto an inverted metal grid using all four limbs is measured as an 

indicator of muscle strength.   Shank1-/- mice fell off faster than wildtype mice (Silverman et 

al., 2011).  There was also reduced ultrasonic vocalisation in Shank1-/- miceand pups took 

longer to flip from their backs to an upright position compared to heterozygous or wildtype 

pups (Wohr et al., 2011). 

Schmeisser et al. (2012) generated SHANK2 knockout mice, with deletions in exons 6 and 7 

corresponding to the PDZ domain that had reduced body weight, normal brain morphology 

and reduced survival compared to wildtype.  However, another study using mice with 

deletions in the same exons showed them to be phenotypically and reproductively normal 

(Won et al., 2012). Won et al., (2012) observed no increase in SHANKs 1 or 3 expression in 

response to the SHANK2 deletion, however, an increase in SHANK3 expression was observed 

in the cortex, hippocampus and striatum of P70 mutant mice in the Schmeisser study.   

Homozygous mutant mice were shown, using the three-chambered test, to exhibit a 

reduction in social interaction compared to wildtype (Won et al., 2012).  The mutant mice 

also decreased the number of ultrasonic vocalisations when interacting with a novel female 

and were less efficient in the pup retrieval assay.  The Morris water maze assay detected an 

impairment in spatial learning and memory (Won et al., 2012) and mutants showed 

extended grooming periods.  In terms of motor skills, SHANK2-/- mice showed hyperactivity 

in the open field test and show increased anxiety behaviours as identified from the elevated 

plus maze test and the light and dark test (Schmeisser et al., 2012, Won et al., 2012).   
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In the hippocampus of SHANK2 mutant mice, electron microscopy showed that these 

mutations in SHANK2 mice had no effect on synapse number, PSD morphology or on basal 

synaptic transmission in Schaffer-collateral-CA1 pyramidal (SC-CA1) synapses.  However, 

high and low frequency stimulation revealed that long-term potentiation (LTP) was impaired 

and long-term depression (LTD) was abolished.  The NDMA/ AMPA ratio was reduced in SC-

CA1 synapses but not in the medial prefrontal cortex (Won et al., 2012).  (Schmeisser et al., 

2012) did not identify any defects in LTD but also identified an increase in the NMDA/ AMPA 

ratio and a small decrease in basal synaptic transmission.  Extracellular field and whole patch 

clamp recordings of hippocampal pyramidal cells in homozygous and heterozygous mutants 

show a decrease in field EPSPs and a reduction in mEPSC frequency.  There is also a small 

decrease in spine density and number, and similarly to (Won et al., 2012), a decrease in 

basal transmission. 

Multiple SHANK3 mutant mice have been generated with mutations in the Ankyrin repeat 

domain, mutations in exons 4-9 and mutations in the PDZ domain.  Mutant mice are viable 

and fertile with normal brain morphology but are smaller than wildtype mice and develop 

lesions on their skin due to excessive grooming (Wang et al., 2011, Bozdagi et al., 2010, Peça 

et al., 2011).  Molecularly, mice show a reduction in basal transmission and a reduced 

amplitude and frequency of mEPSCs in hippocampal CA1 pyramidal neurons and striatal 

medium spiny neurons (Peça et al., 2011).  Immunocytochemistry also shows a decrease in 

AMPA receptor proteins and impaired spine extension after inducing LTP (Bozdagi et al., 

2010).  Analysis of the PSD extracted from the striatum of SHANK3 mutants revealed a 

decrease in PSD associated proteins compared to wildtype (Peca et al., 2010).  Mutants have 

longer dendrites, with a larger surface area although dendritic density is decreased (Peca et 

al., 2010).  Longer dendritic spines were observed in hippocampal slices from SHANK3 

mutants by (Wang et al., 2011), although spine density was indistinguishable from wildtype 

mice. 

Behaviourally, SHANK3 mice show impaired social interaction.  Heterozygous males 

demonstrated less social sniffing and a decrease in the number of ultrasonic vocalisations 

when interacting with oestrus female mice (Bozdagi et al., 2010).  In the three-chambered 

test, SHANK3 mutants spent more time in the chamber with the empty cage rather than the 

chamber containing the novel mouse.  In the open field test, mutants exhibited less social 

sniffing.  In some cases, there is a difference in the behaviour of male and female mutant 
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mice.  Male mutants are more vocal than wildtype mice when presented with a novel mouse 

whereas female mutants are less vocal than wildtype mice (Wang et al., 2011).   A summary 

of the physical, behavioural and molecular consequences of SHANK mutations can be found 

in table 1.4.    

 

 

 

Table 1.4 SHANK knockout mice and their physical, behavioural and molecular 

consequences. 

 Physical Behavioural Molecular 

SHANK1 

 

None 

observed 

Increased anxiety in open maze, 

light  dark tests 

Contextual fear memory 

impairment in tone shock fear 

conditioning  

Enhanced spatial learning in radial 

maze task 

(Silverman et al., 2011; Hung et al., 

2008) 

Less active in open field test 

Decreased muscle strength in wire 

hang test  

Reduced social interaction in 3 

chambered test (Silverman et al., 

2008) 

Reduced ultrasonic vocalisation 

(Wohr et al., 2011 ) 

 

Decrease in the PSD proteins  

Thinner PSDs and shorter 

dendritic spines  

Reduced basal synaptic 

transmission (Hung et al., 

2008) 
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SHANK2 

 

Reduced body 

weight 

Reduced 

survival 

(Schmeisser et 

al., 2012) 

Reduced social interaction in 3 

chambered test Decreased 

ultrasonic vocalisations  

Less efficient in the pup retrieval 

assay 

Impairment in spatial learning in 

Morris water maze task 

Increased grooming (Won et al., 

2012) 

Hyperactivity in the open field test  

Increased anxiety behaviours in 

the elevated plus maze test and 

the light  dark test 

(Schmeisser et al., 2012; Won et 

al., 2012) 

Increase in SHANK3 

expression (Schmeisser et al., 

2012) 

Impaired LTP 

Abolished LTD 

Both reduced and increased 

NDMA/ AMPA ratio  

Decrease in basal transmission 

(Won et al., 2012; Schmeisser 

et al., 2012)  

Decrease in field EPSPs and a 

reduction in mEPSC frequency 

Decrease in spine density and 

number 

(Schmeisser et al., 2012) 

SHANK3 

 

Reduced size 

Skin lesions 

Excessive grooming 

Impaired social interaction as 

shown by interactions with 

oestrous female mouse (Bozdagi et 

al., 2010) 

Reduced social interaction in 3 

chambered test and open field test 

(X. Wang et al., 2011) 

Decrease in AMPA receptor 

proteins 

(Bozdagi et al., 2010) 

Decrease in PSD proteins 

Reduced basal transmission  

Reduced mEPSC amplitude 

and frequency hippocampal 

CA1 pyramidal neurons and 

striatal medium spiny neurons 

Longer dendritic spines 

(Peca et al., 2011) 
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1.4.4 Cellular models of ASD 

Human embryonic stem cells (hESCs) have the potential to become any cell type in the body 

making them an exciting therapeutic agent for a multitude of diseases.  They are derived 

from the inner cell mass of the blastula (Thomson et al., 1998) and their use has been 

controversial due to the ethical implications surrounding the disposal of the remaining 

embryonic cells.  Induced pluripotent stem cells (iPSCs) have managed to bypass these 

ethical implications as they are the reprogrammed versions of somatic cells.  The forced 

expression of the transcription factors Klf-4, Oct4, Sox2 and c-Myc reprograms these cells to 

a pluripotent state (Takahashi et al., 2007, Takahashi and Yamanaka, 2006).  Characteristic of 

stem cells, they express pluripotent markers such as NANOG, OCT4 and SOX2 and can 

differentiate into multiple lineages.  Both hESCs and iPSCs have been differentiated into 

neurons, oligodendrocytes and glial cells although the generation of one of these cell types, 

without the contamination of other neural lineages, has proved problematic.   

Attempts have been made to generate regional specific neuronal progenitor cells and these 

can be characterised by the expression of specific genes.  Forebrain cells are known to 

express OTX1, OTX2 and BF1 and the removal of LIF and inhibition of Wnt signalling can drive 

cells towards this fate (Ying et al., 2003, Watanabe et al., 2005).  Midbrain progenitors 

express TH, RAX, NURR1, PTX3 and LMX1a/b, and PAX2 and can be induced using FGF8 

signalling (Perrier et al., 2004).  Progenitor hindbrain neurons have been shown to express 

the HOX genes and FGF2, SHH and RA signalling can all contribute to their phenotype (Tailor 

et al., 2013, Lee et al., 2000).  Region specific neurons have been further differentiated to 

produce human dopaminergic, cortical, motor and inter-neurons by the addition of 

numerous transcription factors and growth factors and the manipulation of specific 

signalling pathways (Corti et al., 2015). 

Similarly to the mouse models, iPSC lines can be created that contain single gene disruptions 

leading to a reduced level of or absent protein.  Both MECP2 and FMR1 knockout lines have 

been developed.  RTT mutations in iPS cells cause a reduction in spine density and soma size, 

a reduction in synapse number and alterations in both calcium signalling and 

electrophysiological properties (Cheung et al., 2012, Ananiev et al., 2011, Marchetto et al., 

2010).  FMR1 mutations cause a decrease in neurite number and length, alterations in 

calcium signalling and a decrease in synaptic protein expression (Liu et al., 2012a, Sheridan 

et al., 2011).  These cellular models can be used to begin to examine the molecular 
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architecture of ASD, however, these mutations in patients are responsible for additional 

symptoms not present in all cases of ASD.   

Specific ASG gene knockouts would allow a platform to study molecular events present only 

in autistic individuals.  (Zeng et al., 2013) used shRNAmir targeted to knockdown NRXN1 

during the differentiation of hIPSCs into neural stem cells.  RNA sequencing and qPCR was 

used to look at gene expression changes at different time points during differentiation in 

both the NRXN1 knockdown and control cultures.  The time period examined (4 weeks) is 

thought to correspond to 13-16PCW in human development.  NRXN1 knockdown causes 

changes in the cell adhesion and neuronal differentiation pathway.  Knockdown also reduced 

the level of GFAP in the cells suggesting a link with astrocyte differentiation.  Interestingly, 

the expression of NLGNs, PSD95, FMR1, SHANKs and NMDARs were not significantly 

different to their expression in control cultures. 

Pak et al.(2016) created an embryonic stem cell line with conditional NRXN1 mutations using 

recombinant adeno-associated viruses.  After differentiation into excitatory cortical neurons, 

it was found that the release of neurotransmitters was impaired in mutant cells as shown by 

a decrease in mEPSC frequency but not amplitude.  Neuronal differentiation and synapse 

formation was unaffected.  An increase in calcium/calmodulin-dependent serine protein 

kinase (CASK), which is a synaptic scaffold protein found at both the pre and post synaptic 

membranes (Kim and Sheng, 2004), was observed in the mutants. 

However, due to each ASG occurring in less than 2% of autistic cases and the fact that there 

are hundreds of ASGs means that information from single gene knockout cultures may not 

be applicable to the majority of ASD cases.  A grant has been provided to the research group 

of Joachim Hallmayer at Stanford University to reprogram fibroblasts from 200 children with 

ASD and 100 controls and differentiate them into neurons.  The iPSC lines developed from 

autistic patients will be made available to the wider research community (cirm.ca.gov).  

 

1.5. The importance of autism genetics in translational research 

Now that a large number of autism susceptibility genes have been identified using multiple 

approaches (see section 1.2 & 1.3), the focus is switching to identifying the effect that these 

gene mutations have on cellular processes and how these effects can lead to the 

development of autism.  Many research studies have focused on the molecular convergence 
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of these susceptibility genes (Hormozdiari et al., 2015; Willsey et al., 2013; Parikshak et al., 

2013; O'Roak et al., 2012).  We have an incomplete understanding of the roles of many of 

these genes and their expression patterns and functions during human development remain 

poorly researched.  Much of the current understanding of function has been achieved 

through research in animal models and, although valuable, animal models cannot fully 

recapitulate the human phenotype.  Additionally, the response of humans and animals to 

targeted drug treatments differs (Shanks et al., 2009), emphasising the need to develop 

human specific models for drug screening.  Induced pluripotent stem cell models have been 

created from patients who harbour ASD gene mutations, however, studying the function of 

these genes during development can be problematic due to inefficient reprogramming, 

differentiation and the persistent epigenetic marks (McNeish et al., 2015; Vaskova et al., 

2013).  Knowing at what periods of development these genes are expressed will provide 

information as to when specific treatments should be administered. In addition, gene 

expression information from neurotypical brains will provide a benchmark for comparison of 

abnormal tissue that could aid our understanding of the molecular prodrome.  This study 

utilizes human embryonic and fetal material as a model to explore these questions and to 

propose possible roles of a subset of ASD genes during early cortical development.   
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1.6 Aims  

The aims of this project were to: - 

1) Use RNA sequencing to 1) Identify AS genes expressed between 9 and 12 PCW, 2) 

Any genes differentially between 9 and 12 PCW and 3) Genes differentially expressed 

between the anterior and posterior cortex at these ages.  

 

2) Carry out a more detailed examination of the cortical gene and protein expression 

patterns of a subset of ASGs (NRXNs, NLGNs and SHANKs) between 8 and 12 PCW. 

 

3) Examine the expression patterns of genes that affect NRXN transcription and splicing. 

 

4) Find out if topoisomerase inhibitor, ICRF-193, is able to reduce the expression of 

ASDs in human cortical cultures 
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CHAPTER 2 MATERIAL & METHODS 

2.1 Dissection and Ethical Approvals 

2.1.1 Human brain material and Ethical Approval 

The Human Developmental Biology Resource (HDBR), based in Newcastle, UK, has provided the 

embryonic and fetal material used in this study.  The material was collected from pregnancy 

terminations, complying with the highest ethical standards.  Funding for the resource comes from 

the Medical Research Council and Wellcome Trust and it has obtained ethical approvals from the 

NRES Committee North East - Newcastle and North Tyneside 1 (REC reference 08/H0906/21+5) and 

also holds a UK Human Tissue Authority license (licence number 12534).  Material is distributed to 

research project throughout the UK without the need for individual project ethical review (Gerelli et 

al., 2015).  The material collected by the resource ranges in age from 3-20 post conceptional weeks 

(PCW).  All material is karyotyped and about 4% of the samples have an abnormal karyotype, usually 

an extra chromosome 21 or monosomy X. Additionally, 9% of the samples collected display some 

form of phenotypic abnormality (Gerrelli et al., 2015).  The material is not genotyped or molecularly 

examined before being distributed to research projects.   

Adult brain tissue used in this study was provided by the Newcastle Brain Tissue Resource 

which is funded in part by a grant from the UK Medical Research Council (G0400074), by 

NIHR Newcastle Biomedical Research Centre and Unit awarded to the Newcastle upon Tyne 

NHS Foundation Trust and Newcastle University, and as part of the Brains for Dementia 

Research Programme jointly funded by Alzheimer’s Research UK and Alzheimer’s Society. 

 

2.1.2 Embryonic & Fetal Brain Dissection 

For the RNA sequencing study, 192 prenatal human brains were collected by the Human 

Developmental Biology Resource (HDBR) with maternal and ethical consents 

(http://www.hdbr.org).  Age PCWs was determined using the foetal staging guide as 

described by 261Hern (1984).  The brains ranged in age from just over 4 PCW (CS13) to 20 

PCW.  From these brains, 637 samples were dissected from the forebrain, midbrain, 

hindbrain and choroid plexus regions.  From some of the embryos and fetuses spinal cord 

samples were also collected. Depending on the age of the embryo or fetus, the forebrain 

tissues were further dissected into basal ganglia, telencephalon, diencephalon and cortex 

and from 9 PCW the cortex was dissected into strips as described below.   

http://www.hdbr.org/
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For the qPCR study, samples between 8-12 PCW were collected using the above ethical and 

maternal consents.  Age PCWs was determined using the foetal staging guide as described 

by Hern (1984). Whole brains were isolated from the skull and meninges were removed.  The 

hemispheres were split apart (figure 2.1A) allowing the removal of the choroid plexus,  

and subcortical structures to leave only the cerebral cortex.  The temporal lobe, including 

lateral and medial walls was removed and the remaining cortex was divided into sections of 

equal width from the anterior (A) to the posterior (P) pole of the cortex including lateral and 

medial cortical walls (figure 2.1B).  When possible, there were five equal cortical sections, 

however, this varied from three to ten cortical sections. The most anterior (A), central (C) 

and posterior (P) sections as well as the temporal (T) cortex were used in the RNA 

sequencing and the qPCR analysis. Once dissected, sections were immediately frozen and 

stored at -80oC and subsequently used to extract RNA.   
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Figure 2.1 Human brain dissection.  Human foetal brain was severed from the spinal cord 

and removed from the head (A).  Removal of meninges, hindbrain and sub-cortical structures 

exposed the cerebral cortex (B) which was further divided into six sections including the 

anterior, central, posterior and temporal cortex.    
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2.2 RNA Isolation & Reverse Transcription 

2.2.1 RNA Isolation from brain tissue for qPCR  

RNA was extracted from the anterior, central, posterior and temporal cortical sections using 

the QIAgen RNeasy mini kit according to the manufacturer’s protocol.  The concentration 

and quality of RNA was measured using the Nanodrop 8000 (Thermo Fisher Scientific, 

Paisley, UK) to detect spectrophotometric absorbance at 280nm.  To control for RNA purity 

and degradation, 260/230 and 260/280 spectrophotometric ratios were only accepted 

between the ranges of 1.8 and 2.1.  A selection of the RNA was run on the Bioanalyser 2100 

(Agilent, Stockport, UK) and all RNA integrity number (RIN) values measured were above 7.  

 

2.2.2 RNA Isolation from cell cultures 

The media was removed from all wells of a 12 well plate (Thermo Fisher Scientific) and was 

substituted with 500µl of 0.5% Trypsin: EDTA (Thermo Fisher Scientific) for 5 minutes at 

37°C.  Trypsin: EDTA was removed by aspiration and 500µl media (MEM: F12; section 2.7) 

was added to each well and used to manually remove cells from the bottom of the plates by 

pipetting up and down.  Cells were collected and spun down at 8000 rcf for 5 minutes.  The 

supernatant was discarded, lysis solution was added to the pellet (QIAgen RNeasy kit, 

Manchester, UK) and the RNA was extracted according to the manufacturer’s protocol.  The 

concentration and quality of RNA was measured as described previously (section 2.2.1).  

 

2.2.3 Reverse Transcription 

To reverse transcribe the RNA to cDNA, 5µg of RNA, 5mM MgCl2, 0.2µg of random primers 

(Promega, Southampton, UK) and 0.5mM dNTPs (Biolabs ® Inc) were combined and the 

volume made up to 13µl using RNase free water.  The mixture was heated at 65oC for 5 

minutes and cooled on ice for 1 minute.  4µL 5X first strand buffer (10mM Tris-HCl [pH 9.0 at 

25°C]; 50mM KCl; 0.1% Triton® X-100), 1µl 0.1M DTT, 1µl (200 U/µl), SuperscriptTM Reverse 

Transcriptase and 1µl (40U/µl) RNaseOut™ Recombinant Ribonuclease Inhibitor (all 

Invitrogen, Thermo Fisher Scientific, Paisley, UK) were added to the same tube and 

incubated at room temperature for 5 minutes before being heated to 50oC for 60 minutes.  

The reaction was inactivated by heating to 70°C for 15 minutes.  One unit incorporates 1 
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nmol of dTTP into acid-precipitable material in 10 min at 37°C using poly (A) oligo (dT)25 as 

template-primer.  Total cDNA concentration was measured using the Nanodrop 8000 

(Thermo Fisher Scientific) to detect spectrophotometric absorbance at 280nm and 260/230, 

260/280 spectrophotometric ratios were between the accepted range of 1.7-2.1.  cDNA 

samples were then diluted to a concentration of 100ng/µl for use in PCR and qPCR methods. 

 

2.3 Polymerase Chain Reaction (PCR) 

2.3.1 Primer Design 

Sequence specific primer sets were designed using Primer3 software 

(http://frodo.wi.mit.edu/) and obtained from Eurofins MWG Operon 

(http://www.eurofins.co.uk/).  Table 2.1 shows the list of primer sequences used in this 

study. 

 

2.3.2 Non Quantitative Polymerase Chain Reaction (PCR) & Gel Electrophoresis 

The thermal cycle conditions are outlined in table 2.2.  A positive βACTIN control was 

included in each PCR in addition to a 100 bp DNA ladder (Thermo Fisher Scientific, 

Invitrogen™).  PCR products were run by gel electrophoresis on a 1.5% agarose gel (Sigma 

Aldrich, Dorset, UK).  Bands were extracted from the gel using the Qiagen gel extraction kit  

(Qiagen, Crawley, UK) according to the manufacturer’s protocol and sent for direct 

sequencing with their forward primers (Eurofins MWG Operon, Ebersberg, Germany) to 

ensure the correct product had been amplified by each primer pair. 

 

 

 

 

 

 

http://frodo.wi.mit.edu/
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Table 2.1  List of Primers for PCR and qPCR.  NRXN, Neurexin; NLGN, Neuroligin; SHANK, SH3 

and multiple ankyrin domains; SYP, Synaptophysin; *Reference genes βActin; GAPDH, 

Glyceraldehyde-3-phosphate dehydrogenase; SDHA, Succinate dehydrogenase complex 

subunit A. 

Gene Forward Primer 

5’-3’ 

Reverse Primer 

5’-3’ 

Amplicon 

Size (bp) 

NRXN1 aggacattgacccctgtgag ccttcatcccggtttctgta 205 

NRXN2 catcctcctctacgccatgt ttgttcttcttggccttgct 165 

NRXN3  gctgagaacaaccccaata atgctggctgtagagcgatt 179 

NLGN1 tgcaaaggggaactatggac ttgctccaacggttaccttc 177 

NLGN2 cagaagggctgttccagaag gcagacactccacagcttca 150 

NLGN3 agagccatcatccaaagtgg ggatctcagggtcatcagga 244 

NLGN4X tcgctcctcttcctcaacat acactcgtgatcgtgttcca 180 

SHANK1 actctcagcacctggagcat catcctgttctcggtggttt 243 

SHANK2 gtgtacgaacgccaaggaat tgccgctcttcctctgttat 152 

SHANK3 cttcacacaaaggcgaacct ccaccattcttcagcacctt 191 

SYP tctggccacctacatcttcc tcagctccttgcatgtgttc 218 

*βACTIN ctacaatgagctgcgtgtggc caggtccagacgcaggatggc 271 

*GAPDH tgcaccaccaactgcttagc ggcatggactgtggtcatgag 87 

*SDHA tgggaacaagagggcatctg ccaccactgcatcaaattcatg 86 
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Table 2.2 Standard PCR protocol used for cDNA amplification.  

Temperature °C Time No. of cycles 

95 

94 

60 

72 

72 

3 minutes 

15 seconds 

40 seconds 

50 seconds 

5 minutes 

1 

35 

35 

35 

1 

 

2.3.3 Quantitative Polymerase Chain Reaction (qPCR) 

Quantitative PCR reactions were set up in MicroAmp® Optical 384 well reaction plates 

(Invitrogen) and run on the 7900 HT Fast Real-Time PCR System (Applied Biosystems).  A 

reaction volume of 10µl was prepared in each well consisting of 0.5µl of 10 pmol/µl forward 

primer, 0.5µl of 10pmol/µl reverse primer, 5µl SYBR® Green JumpStart Taq Ready Mix 

(Sigma-Aldrich), 1µl 100ng/µl cDNA and 3µl RNase free water.   

Triplicates of each primer pair were run each time along with triplicates of three reference 

genes, βACTIN, GAPDH and SDHA, to which the data were normalised during analysis. 

The thermal cycle protocol was as follows; 95°C for 15 minutes, (95oC for 15 seconds, 60oC 

for 30 seconds, 72°C for 30 seconds, 74°C for 10 seconds) x40 cycles.  Dissociation curve 

analysis (68°C for 10 seconds, 99°C for 10 seconds) at the end of the 40 cycles confirmed the 

absence of non-specific amplification and primer dimers. 

 

2.3.4 Statistical analysis of differential expression 

Raw fluorescent SYBR readings were taken from the 7900 HT Fast machine and analysed in 

the program data miner (http://www.miner.ewindup.info/) created by Zhao & Fernald 

(2005).  The threshold at which the signal crosses the background noise was set manually by 

the program and cycle threshold (ct) and reaction efficiency (E) values were taken for each 

reaction.  An average efficiency value was calculated for each primer pair and used to obtain 

an accurate CT value for each gene.   We can then calculated the relative amount of gene 

http://www.miner.ewindup.info/
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expression from the gene of interest (GOI) by dividing by the geometric mean expression of 

the reference genes, βACTIN, GAPDH and SDHA.  The equation used to produce the relative 

amount of expression for each gene of interest was as follows; 

 

Relative expression = TGOI     =      2ctR x ER      

                                     TR                  2ctGOI x EGOI 

 

Where, 

T       - Amount of original template 

GOI  - Gene of Interest 

R    - Geometric mean of three reference genes 

 

Significance (p<0.05) across ages and between areas of the cortex was calculated using a one 

way Analysis of Variance (ANOVA) test which included significant factors being subject to a 

post-Hoc Tukey test.  SPSS statistics program was used to carry out these tests.  Correlation 

coefficient  

 

 

2.4 Tissue Processing & Sectioning (carried out by the Human Developmental Biology 

Resource)  

Processing and sectioning of embryonic and foetal material for paraffin sections was 

performed by the staff of the Human Developmental Biology Resource (HDBR) in Newcastle.  

After removal, brain tissue was fixed for a minimum of 24 hours in 4% paraformaldehyde 

(PFA) diluted in 0.1 M phosphate buffered saline (PBS).  Tissue processing consisted of 

immersing tissue to be sectioned in 70% alcohol for 15 minutes, 100% ethanol for 45 

minutes, 2 x 100% ethanol for 1 hour, xylene for 45 minutes, 2 x xylene for 1 hour, wax for 

1.5 hours, 2 x wax for 1 hour, 45 minutes. (Shandon Pathcentre Tissue Processor, Thermo 

Scientific, Epsom, UK) before paraffin embedding.  Sagittal or coronal brain sections were cut 

at 8um thick and mounted on slides for use in IHC or ISH. 
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2.5 Haematoxylin & Eosin (H & E) Histological Staining 

Paraffin sections were immersed in xylene for 5 minutes to remove wax and rehydrated in a 

series of ethanol dilutions (100%, 100%, 95%, 70%).  After rinsing in tap water, sections were 

placed into Harris’ Haematoxylin solution (Raymond A Lamb Ltd., Eastbourne, UK) for 30 

seconds-1 minute and then again rinsed in tap water.  The nuclei of cells were ‘blued’ in 

Scots tap water substitute (3.5g sodium bicarbonate, 20g magnesium sulphate, 1L distilled 

water (Sigma Aldrich), placed in eosin (1% aqueous, Raymond A Lamb Ltd) for 10 seconds to 

stain the cytoplasm and rinsed in tap water.  Sections were then dehydrated by serial 

dilutions of ethanol (70%, 95%, 100%, and 100%), immersed in two changes of xylene and 

mounted using DPX (Merck). 

 

2.6 Immunohistochemistry (IHC) 

Paraffin sections were dewaxed by 2 x 10 minute xylene treatment and rinsed in 2 x 100% 

ethanol for 5 minutes.  Endogenous peroxidase activity was blocked by immersion in 

methanol peroxide solution (3ml hydrogen peroxide, Sigma Aldrich, 180ml methanol) for 10 

minutes.  Slides were rinsed in tap water and antigen retrieval was carried out by boiling in 

citrate buffer (tri-sodium citrate, (C6H5Na3O7)2H2O) for 10 minutes.  Sections were 

incubated in 10% normal serum (species in which secondary antibody was raised) diluted in 

TBS (tris buffered saline, Sigma) for 10 minutes at room temperature.  Sections were then 

incubated with the primary antibody diluted in 10% normal serum: TBS overnight at 4oC.  

The following day, the primary was removed by 2 x 5 minute washes in TBS.  Biotinylated 

secondary antibody appropriate to the primary antibody, diluted in 10% normal serum: TBS 

was then applied to the sections for 30 minutes at room temperature.  To remove the 

secondary there were a further 2 x 5 minute washes in TBS before the tertiary ABC-HRP 

complex was applied for 30m minutes (Vector Laboratories).  Following final 2 x 5 minute 

washes, the sections were reacted with DAB (Vector Laboratories) for 10 minutes and 

washed thoroughly in running tap water for 10 minutes.  The slides were put through a 

series of ethanol dehydrations (70%, 95%, 100%, and 100%) and mounted using DPX. 
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Table 2.3 Components of commonly used solutions 

Solution Components pH Concentration 

TBS 8.75g NaCl 

6.50g Trizma base 

800ml distilled H2O 

7.5 - 

Citrate Buffer 5.88g of (C6H5Na3O7)2H2O tri-sodium citrate  

2L distilled H20 

6 0.1M 

 

 

2.7 Immunocytochemistry (ICC) 

Cells were fixed for 20 minutes in 4% PFA/ PBS and then washed 3 times in TBS before 

overnight incubation at 4°C with a specific primary antibody diluted in 0.1% Triton X/ TBS 

(See table 2.4 for details of primary antibodies). 

Cells were then washed 3 times with 0.1% Triton X/ TBS and incubated with the appropriate 

biotinylated secondary antibody (table 2.4) for 2 hours at 4°C.  Cells were washed 3 times in 

Triton X/ TBS and incubated with Streptavidin-HRP (Vector Laboratories) diluted 1/50 in TBS 

for 1 hour at 4°C before a further three washes in Triton X/ TBS.  The cell cultures were then 

incubated with ImmPACT DAB (3, 3’-diaminobenzidine) Peroxidase (HRP) Substrate (Vector 

Laboratories) for up to 10 minutes and rinsed in three TBS washes.  The cell cultures were 

finally stained with DAPI nucleic acid stain (Invitrogen) diluted 1/10,000 TBS, washed two 

times in TBS and kept in TBS in the dark at 4°C until images were obtained (section 2.8). 

 

2.8 Immunohistochemistry- Fluorescence 

As for non-fluorescent IHC, paraffin sections were dewaxed in xylene, rinsed in 100% ethanol 

and endogenous peroxidase activity was blocked with methanol peroxide solution. Slides 

were rinsed in tap water and antigen retrieval was carried out by boiling in citrate buffer 

before incubation in 10% normal serum.  Sections were then incubated with the primary 

antibody overnight at 4oC.  The following day, the primary was removed by 2 x 5 minute 
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washes in TBS and the appropriate secondary antibody, HRP conjugate (ImmPRESS™ HRP IgG 

(Peroxidase) Polymer, made in horse/ goat, Vector Labs) applied for 30 minutes.  2 x 5 

minute washes in TBS removed the secondary antibody and the slides were incubated with 

Tyramide signal amplification (TSA™) fluorescein Plus system reagent (Perkin Elmer, London, 

UK) at a concentration of 1/500 in the dark for 10 minutes. Slides were washed twice in TBS 

before being subjected to microwave antigen retrieval in citrate buffer for a second time.  

Normal serum was applied to the slides for 10 minutes before incubating them with the 

second primary antibody for 2 hours at room temperature.  The primary was removed by 2 x 

5 minute washes in TBS before incubation for 30 minutes with the secondary HRP 

conjugated antibody.  An additional 2 x 5 minute washes in TBS removed the secondary 

before incubation with Tyramide signal amplification (TSA™) CY3 Plus system reagent (Perkin 

Elmer) in the dark for 10 minutes.  Sections were washed twice for 5 minutes in TSA before 

applying 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (Thermo Fisher Scientific) 

for 5 minutes.  Slides were then rinsed twice in TSA and mounted using Vectashield Hardset 

Mounting Medium (Vector Laboratories).  

 

Table 2.4 Primary antibodies used for chromogen (DAB), Fluorescence (F) 

immunohistochemistry (IHC) on Paraffin and Immuno cytochemistry (ICC)  

Primary 

antibodies 

Host species & 

Company 

Antibody 

dilution 

Secondary 

antibodies 

References 

GAP43  Mouse 

monoclonal,  

Sigma G9264  

1/10,000 Horse anti mouse 

Vector 

Laboratories 

Bayatti et al., 2008a  

Eyre et al. 2000 

Koutcherov et al. 2003 

Clowry et al. 2005 
 

Ki67 Mouse 1/150 Horse anti mouse 

Vector 

Laboratories 

Meyer et al. 2002 

Chan et al. 2006 

Pax6 Rabbit polyclonal,  

Covance PRB-

278P  

1/1500 Goat anti rabbit 

Vector 

Laboratories 

Bayatti et al., 2008 
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NKX2.1 Dako, 

Cambridgeshire, 

UK 

1/150 Horse anti mouse 

Vector 

Laboratories 

Harkin et al., 2016 

TOP2A Rabbit polyclonal 

Prof. Austin 

1/800 Goat anti rabbit 

Vector 

Laboratories 

Harkin et al., 2016 

TOP2B Rabbit polyclonal 

Prof. Austin 

1/800 Goat anti rabbit 

Vector 

Laboratories 

Harkin et al., 2016 

NRXN1 

 

 

Rabbit polyclonal, 

Santa Cruz 

Sc14334 

1/300 Goat anti rabbit 

Vector 

Laboratories 

Kim et al., 2008 

NRXN2 

 

Rabbit polyclonal, 

Abcam Ab34245 

1/2000 Goat anti rabbit 

Vector 

Laboratories 

Borsics et al., 2010 

NRXN3 

 

 

Rabbit polyclonal, 

Sigma Aldrich 

Prestige 

HPA002727 

1/300 Goat anti rabbit 

Vector 

Laboratories 

Human protein atlas 

SYP Mouse monoclonal 

Sigma Aldrich 

1/1000 Horse anti mouse 

Vector 

Laboratories 

Bayatti et al., 2008 

TBR1 

 

Rabbit 

Polyclonal,  

Abcam ab31940  
 

1/1500 Goat anti rabbit 

Vector 

Laboratories 

Bayatti et al., 2008 

KHDBRS2 Rabbit polyclonal 1/5000 Goat anti rabbit 

Vector 

Laboratories 

Iijima et al., 2014  
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KHDBRS3 Guinea pig 

polyclonal 

1/10,000 Anti guinea pig 

Vector 

Laboratories 

Iijima et al., 2014 

 

 

2.9 Human Cortical Cell Culture -8-Day In-vitro characterisation 

The brain was isolated from a 10-12 PCW foetus and the meninges and subcortical 

structures were removed.  The anterior 50% of the cerebral cortex, excluding temporal lobe, 

was detached, cut into smaller pieces and immersed in 0.05% trypsin: ethylene diamine 

tetra-acetic acid (EDTA) (Life Technologies Ltd, Paisley, UK) and 10% foetal calf serum (Sigma 

Aldrich) diluted in Ca2+, Mg2+ free Hank’s balanced salt solution (HBSS)(Life Technologies)for 

20 minutes.  The cells were then pelleted at 1400 rpm for 5 minutes and re-suspended in 

fresh 10% FCS: HBSS solution.  The cells were gently dissociated by trituration through a 

10ml and 5 ml pipette and transferred through a 70μm pore cell strainer (VWR, 

Leicestershire, UK).  The cells were pelleted at 1400 rpm for 5 minutes and re-suspended in 

Minimal Essential Media (MEM) (Life Technologies) supplemented with 10% FCS.  Cells were 

plated onto Poly-L-Lysine (Sigma Aldrich, Poole, UK) coated 12 well plates (VWR) at a density 

of 200,000 cells/ cm2. The media was changed after 24 hours to MEM/ 1:1Ham’s F12 

Nutrient Mix with L glutamine (Life Technologies) supplemented with 1/50 B27 (Life 

Technologies) and Gentamicin solution (Sigma Aldrich).  Cells were grown in this media for a 

further 6 days for cell characterisation and media was changed every 2 days. On days 1, 3, 5 

and 7 of culture in the above conditions, cells were fixed in 4% PFA: PBS for 20 minutes and 

subjected to imaging (section 2.11) and Immunocytochemistry (section 2.7). 

 

2.10 Knockdown of Neurexin genes in Cell Culture using ICRF-193 

Cells were isolated, dissociated and pelleted as outlined in section 2.9.1.  Cells were then re-

suspended in MEM/ 1:1Ham’s F12 Nutrient Mix with L glutamine (Life Technologies) 

supplemented with 1/50 B27 (Life Technologies) that also contained a concentration of 

either 5, 50 or 100μM ICRF-193 topoisomerase 2 inhibitor (biomol, Hamburg, Germany) 

dissolved in DMSO.  Control sample media contained 1% DMSO.  Cells were plated at a 

density of 200,000 cells/ cm2 onto Poly-L-Lysine (Sigma Aldrich, Poole, UK) coated 12 well 
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plates (VWR) and cultured for 48 hours.  Cells were either fixed in 4% PFA: PBS for 20 

minutes and images were captured (section 2.11) or RNA was extracted (section2.2.2) and 

subjected to reverse transcription (section 2.2.3) and qPCR (section 2.3.3).   

 

2.11 Image Acquisition 

2.11.1 Light Microscopy 

Images were captured using a Zeiss Axioimager Z2 Apotome and Axioimager Z2 4.8.1 

software (IHC) and the Axiovert 200 (ICC) using the Axioplan Z2 software.  Objectives 1.25x, 

5x, 10x, 20x, 40x Oil.  Both microscopes were attached with Axioplan microscope digital 

camera.  Adobe Photoshop was used to prepare figures with resolution set at 300 pixels per 

inch. 

 

2.11.2 Fluorescent Microscopy 

Images were captured using either the Zeiss Axioplan 2 or the Zeiss Axio Imager Z1. The 

fluorophores used were DAPI, Fluorescein and CY3 and their emission values can be seen in 

table 2.5.   

 

2.11.3 Slide scanning 

Images were scanned using the Leica SCN400 Slide Scanner (Newcastle Biomedicine Biobank 

Imaging facility).  Final images for publication were produced using Adobe Photoshop CS6 

software, resolution 300 pixels per inch. 

Table 2.5 Excitation/ emission values (nm) for DAPI and fluorophore signal amplification 

(TSA™) Plus system reagents (Perkin Elmer). 

Fluorophore Excitation/Emission (nm) 

DAPI 358⁄461 

TSA Plus Fluorescein 494/517 

TSA Plus CY3 550/570 
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2.12 Quantification - Cell counts 

For each primary antibody, three separate wells of cultured cells from one foetal cortex 

were immunoperoxidase stained and then counter-stained with DAPI (section 2.8).  For each 

well, both bright field (DAB stain) and 405nm laser line (DAPI) images were captured for 

three random fields of vision using a Plan NeoFluar 20x /0.50 optical lens.  Images were 

uploaded into Image J (https://imagej.nih.gov/ij/) and the number of cells stained by DAB 

and DAPI were counted and recorded.  DAB stained cells were calculated as a percentage of 

the DAB plus DAPI stained cells, as DAPI could not penetrate cells stained with DAB.  This 

was repeated for three separate brains. 

 

2.13 RNA Sequencing 

2.13.1 RNA extraction, library preparation and sequencing performed by AROS Applied 

Biotechnology (Aarhus, Denmark) 

RNA was extracted from the tissue samples according to the company’s protocol and the 

quality was assured using the Agilent Bioanalyzer.  Poly (A) was performed on the samples to 

pull out the polyadenylated transcripts from the sample.  This ensures that only the coding 

transcripts are sequenced and not the ribosomal RNA.   

The RNA library was prepared using the guidelines produced for the TruSeq Stranded mRNA 

LT sample prep kit (Illumina part # 15031047 Rev. E).  RNA was reverse transcribed to cDNA 

and was fragmented, before PCR amplification.  Libraries were quality controlled with 

respect to concentration and size profile.  The libraries contain approximately 120 

nucleotides of adapter sequence and the remaining size of the library is derived from the 

input RNA. 

Library pools were loaded onto a paired-end flow cell of the Illumina HighSeq 2000 platform 

and each pool was loaded onto one lane of the flow cell. At least 80% of the bases in a 101 

Paired End run had Q30 or above. The data output corresponded to an average of 90 M 

reads and a minimum of 63M reads. 

 

 

https://imagej.nih.gov/ij/
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2.13.2 Quality control, mapping and differential expression analysis was performed by 

Yaobo Xu at the Newcastle University Bio-informatics unit  

The quality of sequencing reads was firstly checked with FastQC (Andrews).  The 12 bp on 

the left ends and 4 bp of the right ends of all reads were clipped off with Seqtk (Li) to remove 

GC-content biased bases.  Autoadapt (Shuttleworth 2013) was then used to remove low 

quality bases (Q < 20) and contaminations from standard Illumina (Illumina, Inc.  California, 

U.S.) paired-end sequencing adaptors on 3’ ends of reads.  Autoadapt uses FastQC to identify 

the exact sources of contaminations and uses cutadapt (Martin, 2011) to remove them 

automatically.  Poly-N tails were trimmed off from reads with an in house perl script.  Only 

reads that were at least 20bp in length after trimming were kept.  These high quality reads 

were then mapped to the human reference genome hg19 with Tophat2 (Kim et al., 2013).  

Number of reads mapped to genes were counted using HTSeq-count (Anders & Huber, 

2014).   Differentially expressed genes were then identified with Bionconductor Gentleman 

et al., 2004) package DESeq2 (Love et al., 2014).  RPKMs of genes were calculated and 

normalized using cqn (Hansen et al., 2013). 

 

2.14 Venn diagrams 

Venn diagrams developed from an interactive tool (Oliveros, 2007) were used to compare 

overlapping genes between two lists of differentially expressed genes.  The tool was made 

available through the following website: -  https://www.stefanjol.nl/venny. 

 

2.15 Gene Ontology Analysis 

Gene ontology analysis was carried out using the tool provided on the Gene ontology 

consortium website (http://geneontology.org/).   Assigning GO terms to genes is based on 

annotations contributed to the GO consortium, which are subject to guidelines and standard 

operating procedures and are being continually updated.   

 

 

 

https://www.stefanjol.nl/venny
http://geneontology.org/
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Chapter 3 High throughput sequencing analysis of the developing human 

cerebral cortex from 9-12 PCW 

 

3.1 Aim of study 

The aim of this study was to compare the transcriptomes, generated by RNA sequencing 

methodology, of 9, 11 and 12 PCW human cerebral cortex samples and in doing so to 

identify spatial and temporal changes in gene expression associated with this developmental 

period. 

 

3.2 Results 

3.2.1 Brain samples cluster according to anatomical location 

Human embryonic and fetal brains were collected by the Human Developmental Biology 

Resource (HDBR) and dissected as described in chapter 2.1.2.  These samples were sent to 

AROS Applied Biotechnology where whole genome sequencing on the Illumina HighSeq 2000 

platform.  RNA extraction, library preparation and RNA sequencing on the Illumina HighSeq 

2000 platform was performed by AROS Applied Biotechnology as previously described 

(chapter 2.13.1).  The mapped data was sorted according to its anatomical location.  Samples 

labelled ‘brain’ were neural tissue but were not identifiable by anatomical location.  PCA 

analysis was carried out by Dr Yaobo Xu (IGM, Newcastle University) on the 637 resulting 

RNA datasets to look for underlying structure within the data.  In PCA analysis, datasets with 

more similar gene expression profiles appear closer together on the resulting plot whereas 

samples with less similar gene expression profiles are further apart as components are 

separated by the variance.  Two variables; brain region and expression value (RPKM) were 

examined using PCA analysis (figure 3.1).  Samples from the same brain region would be 

expected to cluster together if this was the variable that was having the largest effect on the 

expression levels.  Each sample was given an identifying colour.  Forebrain, midbrain, 

hindbrain and spinal cord, choroid plexus and unidentified brain samples were assigned the 

colours dark green, purple, blue, light green and red respectively to make them easier to 

visualise (figure 3.1).  Choroid Plexus samples very clearly separated out from the rest of the 

samples forming a light green cluster (figure 3.1).  The expression profiles of hindbrain and 
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forebrain samples were more similar to each other than they were to choroid plexus 

samples, however, they clearly formed separate blue and dark green clusters (figure 3.1).  A 

small number of hindbrain samples appeared intermingled with the forebrain samples and 

vice versa, but, in general, forebrain samples had identifiably different gene expression 

profiles compared with hindbrain samples.  Midbrain samples were dispersed mostly within 

the hindbrain cluster but midbrain samples can also be found in the forebrain cluster.  The 

unidentified neural tissue samples labelled ‘brain’ were dispersed throughout the other four 

clusters, suggesting that they are derived from neural tissue across all of these regions 

(figure 3.1). 

 

 

Figure 3.1 PCA analysis of all sequenced human brain samples (Dr Yaobo Xu, Newcastle 

University).  Samples were separated based on variance.  Two variables, brain region and 

expression value (RPKM) were examined.  Choroid plexus samples (khaki green) were the 

most distinct set of samples.  Forebrain (green) and hindbrain (blue) samples separated out 

with some slight overlap.  Midbrain samples (purple) and unidentified brain samples (red) 

fell within the forebrain and hindbrain clusters.   
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3.2.2 Variation between fetuses was greater than variation between cortical regions  

As my project focussed on cortical development only, the RNAseq datasets from the cortex 

were analysed further.  Many of the cortical samples had been further dissected (as 

described in section 1.2.2) and the analyses below were carried out on RNAseq datasets 

from the anterior, central, posterior and temporal cortex tissue samples from 9 and 12 PCW 

fetal brains.  The brain identification numbers, age, sex and hemisphere used can be seen in 

table 3.1. 

Hierarchal clustering was carried out by Dr Yaobo Xu on the RNAseq datasets from the 64 

dissected cortical samples.  Samples were assigned colours based on their cortical region, 

age and sex to visualise whether these factors contributed to a similarity in expression 

profiles.  None of these factors caused clustering of the samples into expected groups (figure 

3.2).  Although age and sex showed a higher degree of clustering than cortical region, the 

samples clustered according mainly to which individual they were collected from.  This 

implied that variation between individuals was greater than the variation between either 

cortical regions or between males and females.  Human variation between individuals is 

known to be very high (The Genomes Project, 2015) and so this finding was expected.  

PCA analysis, carried out by Dr Yaobo Xu, was used to look more specifically at the RNAseq 

datasets from the anterior and posterior cortical samples at both 9 and 12 PCW.  At 9 PCW, 

there was a clear separation of anterior and posterior samples suggesting that there are 

regionally imposed transcriptional profiles (figure 3.3A).  At 12 PCW there was some 

separation between anterior and posterior samples (figure 3.3B) again suggesting that at 12 

PCW, regionally imposed transcriptional differences between the anterior and posterior 

cortex exist. 
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Table 3.1 List of brains dissected and used for RNA Sequencing analysis of cortex 

Identification 

no. 

Age (PCW) Sex 

F – Female, M - Male 

Hemispheres used 

L – Left, R - Right 

11845 9 M L & R 

11873 9 F L & R 

11851 9 F L & R 

11930 11 F L & R 

11942 11 F L & R 

11833 11 F R 

1123 11 Unknown L 

1111 11 Unknown Unknown 

1110 11 Unknown Unknown 

11834 12 M L & R 

11885 12 M L & R 

12007 12 M L & R 

1118 12 Unknown Unknown 

 

Table 3.2 Total number of genes differentially expressed between different ages and regions  

Adjusted P value <0.05 

Differential expression 

analysis comparisons 

Total number of genes 

that are differentially 

expressed 

Number of genes 

significantly  

upregulated 

Number of genes 

significantly  

downregulated 

9 - 12 PCW 4153 1819 2334 

Anterior- Posterior at 9 PCW 146 36 110 

Anterior- Posterior at 12 

PCW 

185 168 17 
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Figure 3.2 Hierarchical clustering of human cortical samples from anterior, central, 

posterior and temporal cortex (carried out by Dr Yaobo Xu).  Samples that are from the 

same cortical region, from the same age brain or are the same sex do not have largely similar 

gene expression profiles. 
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Figure 3.3 PCA analysis of anterior and posterior samples from 9 and 12 PCW brain 

samples (carried out by Dr Yaobo Xu).  PCA analysis revealed that there was a 

transcriptional separation of anterior from posterior samples at both (A) 9 and (B) 12 PCW, 

although the separation required a larger variance and a third principal component for 9 

PCW.       

 

3.2.3 A higher number of protein coding genes are upregulated compared to 

downregulated with age 

Despite the highest genetic variability being between individuals, it was still possible to 

isolate genes that were differentially expressed between ages and between cortical regions.  

Firstly, differential expression analysis was carried out (as described in section 2.14.2) to 

identify genes that differ in expression significantly (p<0.05) between 9 and 12 PCW.  For this 

analysis, the RPKM values for each gene from the anterior, central, posterior and temporal 

regions of the cortex were combined for each age.  This analysis yielded a total of 1819 

genes that were upregulated and 2334 genes that were downregulated (table 3.2).  The 

gene list included protein coding genes, pseudogenes, long non-coding (linc) RNA, micro (mi) 

RNA, ribosomal (r) RNA, small nuclear (sn) RNA, small nucleolar (sno) RNA and antisense 

transcripts (table 3.3). 



75 
 

Table 3.3. Categories of genes that are differentially expressed between 9 and 12 PCW and 

between anterior and posterior cortex.  Differential analysis and mapping reads to the 

human genome carried out by Dr Yaobo Xu, Newcastle University. 

Gene name % of differentially 

expressed genes 

between 9-12 

PCW  

% of differentially 

expressed genes 

between anterior-

posterior at 9 PCW 

% of differentially 

expressed genes 

between anterior-

posterior at 12 PCW 

Protein Coding 39 75 82 

Processed pseudogene 13 <1 3 

Long non-coding (linc) RNA 13 12 9 

Antisense 9 5 2 

Micro (mi) RNA 4 0 <1 

Sense intronic 4 0 1 

TEC 3 <1 <1 

Unprocessed pseudogene 3 <1 <1 

Small nuclear (sn) RNA 3 0 0 

Miscellaneous (misc)  RNA 3 0 0 

Small nucleolar (sno) RNA 2 0 <1 

Processed transcript 1 2 1 

Transcribed processed 

pseudogene 

1 0 <1 

Transcribed unprocessed 

pseudogene 

1 2 0 

Ribosomal (r) RNA 1 0 0 

Sense overlapping <1 0 0 

Unitary pseudogene <1 1 0 
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Human mitochondrial 

transfer (Mt t) RNA 

<1 0 0 

pseudogene <1 0 0 

Translated unprocessed 

pseudogene 

<1 0 0 

IG C Gene <1 0 0 

3 prime overlapping nc RNA <1 0 0 

TRC gene <1 <1 0 

 

 

Table 3.4 Total number of protein coding genes differentially expressed between different 

ages and regions. Differential analysis and mapping reads to the human genome carried out 

by Dr Yaobo Xu, Newcastle University. 

Differential expression 

analysis comparisons 

Total number of genes 

that are differentially 

expressed 

Number of genes 

significantly  

upregulated 

Number of genes 

significantly  

downregulated 

9 - 12 PCW 1637 1013 624 

Anterior- Posterior at 9 PCW 109 29 80 

Anterior- Posterior at 12 

PCW 

151 144 7 
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Due to the very large number of differentially expressed genes, only the 1637 protein coding 

genes were examined further.  There were a larger number of protein coding genes 

upregulated (1013) with age compared to downregulated (624) with age (table 3.4).  This 

was not the case when considering all categories of reads, which gave a higher fraction of 

downregulated compared to upregulated genes (table 3.2).  P value and fold change can 

both be used as indicators as to how likely the change in expression seen is significant.  We 

decided on a cut off adjusted P value of less than 0.05 for assessing biologically significant 

changes.  The top 200 protein coding genes with the highest fold change and an adjusted p 

value <0.05 can be seen in supplementary table 3.1 and the top 200 protein coding genes 

with the most significant P value can be seen in supplementary table 3.2.  Of these two 

datasets generated, 81 genes (40%) were present in both suggesting that less than half of 

the genes with the most significant P values, also had the largest fold changes (figure 3.4A; 

Supplementary table 3.3). 

 

3.2.4 Gene ontology analysis for differentially expressed genes between 9 and 12 PCW 

reveals an enrichment in cellular differentiation  

Gene ontology analysis (chapter 2.14.4) was carried out on the top 200 protein coding genes 

with the highest fold change from 9 to 12 PCW as well as the top 200 with the lowest p 

value.  Both the molecular function and the biological processes were examined in the 

enrichment analysis.  For molecular function, the list of genes with the highest fold change 

contained a higher than expected number of genes whose proteins had G-protein coupled 

amine receptor activity (figure 3.5).  In terms of biological processes, the most enriched 

terms included tissue development and cell differentiation (figure 3.5).  The top 200 protein 

coding genes with the most significant p values were also subjected to GO analysis.  There 

were fewer suggested biological processes in this analysis with the enriched processes being 

multicellular organismal development and tissue development (figure 3.6). No molecular 

function categories could be distinguished from this gene set.   
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Figure 3.4 (A) Venn diagram comparing differentially expressed genes identified using p 

value <0.05 and fold change >2.  The top 200 differentially expressed genes with the lowest 

p values compared with the top 200 differentially expressed genes with the largest fold 

changes.  There were 81 genes that were identified as differentially expressed between 9 

and 12 PCW that had both the lowest p values and the highest fold change.  All 200 fold 

genes had a p value <0.05.  (B) Venn diagram showing the number of ASD susceptibility 

genes that were differentially expressed between 9 and 12 PCW.  74 identified ASD 

susceptibility genes were differentially expressed between 9 and 12 PCW in the developing 

human cortex.    
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Figure 3.5 Gene ontology analysis of differentially expressed genes with the largest fold 

change and an adjusted p value of <0.05 showing both molecular function and biological 

process.  The identified molecular function category identified from this gene list was G 

protein coupled amine receptor activity.  Biological process categories identified included 

but were not limited to tissue development, cell differentiation and multicellular organismal 

development.  The ‘Homo sapiens’ column states the total number of human genes that are 

present in this category.  The ‘#’ column shows the number of genes from this category that 

were present in the gene list.  The ‘expected’ column states the number of genes you would 

expect to find by chance in a gene list of this size for that category.  ‘Fold enrichment’ is the 
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number of genes present in the list divided by the expected number of genes in each 

category.  P value shows if the fold enrichment is significant.  P<0.05 showed that there was 

a significantly higher number of genes in that particular category identified in the gene list. 

 

 

Figure 3.6  Gene ontology analysis of differentially expressed genes with the lowest p 

values (<0.01) showing both molecular function and biological process.  There were no 

identified molecular function categories identified from this gene list.  Biological process 

categories identified were tissue development and regulation of multicellular organismal 

process.  The ‘Homo sapiens’ column states the total number of human genes that are 

present in this category.  The ‘#’ column shows the number of genes from this category that 

were present in the gene list.  The ‘expected’ column states the number of genes you would 

expect to find by chance in a gene list of this size for that category.  ‘Fold enrichment’ is the 

number of genes present in the list divided by the expected number of genes in each 

category.  P value shows if the fold enrichment is significant.  P<0.05 showed that there was 

a significantly higher number of genes in that particular category identified in the gene list. 
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3.2.5 Differentially expressed genes between 9-12 PCW include cell adhesion molecules 

and ASD susceptibility genes 

Genes encoding cell adhesion molecules were among those identified as differentially 

expressed between 9 and 12 PCW (figure 3.7A).  Cadherins and protocadherins mediate cell-

cell recognition and adhesion (reviewed in Harris and Tepass, 2010).  Integrins function to 

connect the cytoskeleton to the extra-cellular matrix and mediate signalling (Juliano, 2002).  

The majority of these genes were upregulated between 9 and 12 PCW with only CDH19 and 

ITGBL1 being downregulated (figure 3.7A).  The highest fold increases were observed with 

PCDH11Y and ITGB5 increasing more than 2 fold from 9 to 12 PCW.   

Genes whose protein products are associated with the autism susceptibility genes neurexins 

were identified in this data set (table 3.5).  Neurexophilin 1 (NXPH3), Leucine rich repeat 

transmembrane 1 (LRRTM1) and contactin associated protein like 2 (CNTNAP2) have been 

shown to either interact with NRXN or, in the case of CNTNAP2, is a member of the NRXN  

superfamily acting as a cell adhesion molecule, containing epidermal growth factor repeats 

and laminin G domains (Rodenas-Cuadrado et al., 2014).  Both NXPH3 and LRRTM1 were 

upregulated with age whereas CNTNAP2 decreased in expression with age (figure 3.7B).  

Within the 1635 genes identified as differentially expressed between 9 and 12 PCW, almost 

5% (74 genes) were autism susceptibility genes (figure 3.4B).  The list of ASGs that were 

differentially expressed between 9 and 12 PCW can be seen in table 3.5.  Of these ASD 

susceptibility genes, the majority increase in expression with age (supplementary table 3.4).  

Semaphorin 7A (SEMA7A) increased in expression from 9-12 PCW (figure 3.7C).  In neurons it 

has been shown to promote axon growth (Jeroen Pasterkamp et al., 2003) and is required 

for the maturation of cortical circuits (Carcea et al., 2014). 

Transcription factors special AT sequence binding protein 2 (SAT2B) and NK2 homeobox 2 

(NKX2.2) were both upregulated in the developing cortex from 9-12 PCW (figure 3.7C).  

SATB2 has been previously identified as a layer V marker (Ip et al., 2011) and can regulate 

transcription of genes such as CTIP2 by altering the chromosomal structure.  It is required for 

the correct extension of corticocortical fibres through the corpus callosum (Alcamo et al., 

2008).  It was upregulated between 9 and 12 PCW (figureE 3.7C) which is expected due to 

the formation of layer V in the cortical plate.  NKX2.2 protein is required for the switch in 

progenitor cell differentiation from neurons to produce oligodendrocytes (Zhou et al., 2001).   
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3.2.6 A higher proportion of genes were upregulated in the anterior cortex at 9 PCW 

Differential expression analysis was then carried out to identify genes that significantly differ 

in expression between the anterior and posterior cortex at both 9 and 12 PCW.  The number 

of genes that were differentially expressed between these cortical regions was significantly 

less than those differentially expressed between ages (table 3.2).  At 9 PCW, 146 genes were 

differentially expressed between anterior and posterior cortex, of which 75% of them were 

protein coding (table 3.3).  110 genes were significantly more highly expressed in the 

anterior cortex compared to the posterior cortex whereas only 36 genes were significantly 

more highly expressed in the posterior compared to the anterior cortex (table 3.2, 

supplementary table 3.4).   
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Figure 3.7 Genes that were differentially expressed between 9 and 12 PCW.  (A) Cell 

adhesion molecules cadherins, protocadherins and integrins appeared in the list (table) of 

differentially expressed genes between 9 and 12 PCW.  Of the cell adhesion genes, only 

CDH19 and ITGB11 are downregulated with age, being higher in expression at 9 PCW 

compared to 12 PCW.  (B)  Genes associated with NRXNs were differentially expressed 

between 9 and 12 PCW.  NXPH3 and LRRTM1 were both upregulated at 12 PCW compared 

to 9 PCW and CNTNAP2 was downregulated. (C) SEMA7, SATB2 and NKX2.2 were 

upregulated with age.  SEMA7 plays a role in integrin mediated signalling and cell migration.   

Transcription factors SATB2 and NKX2.2 were involved in chromatin remodelling and axon 

guidance respectively.   
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Table 3.5 ASD susceptibility genes differentially expressed between 9 and 12 PCW and the 

anterior and posterior cortex at 9 and 12 PCW 

9-12 PCW Anterior- Posterior 

9 PCW 

Anterior – 

Posterior 12 PCW 

ACHE 

ADAMTS18 

AGAP1 

ALDH1A3 

ALOX5AP 

ASTN2 

AVPR1A 

BCAS1 

BRCA2 

C12orf57 

CD38 

CD44 

CDH22 

CNTNAP2 

DEAF1 

DLGAP3 

DNAH10 

DPP10 

DSCAM 

EEF1A2 

EPHB6 

F13A1 

FABP3 

FRMPD4 

GADD45B 

 

GALNT14 

GAS2 

GLRA2 

GRID2 

GRID2IP 

GRIN2A 

GRIN2B 

GRM4 

GRM7 

GSTM1 

HEPACAM 

HLA-B 

HTR3A 

IL1RAPL2 

ITGB3 

KCNJ12 

LMX1B 

LPL 

LRRC1 

MEF2C 

MOCOS 

MYH4 

NFIX 

NPAS2 

NRG1 

 

NXF5 

PACS1 

PCDHA1 

PER1 

POU3F2 

PRICKLE2 

PTGER3 

PTGS2 

PVALB 

RBMS3 

SATB2 

SERPINE1 

SEZ6L2 

SH3KBP1 

SIK1 

SLC16A3 

SLC6A4 

SLIT3 

SNTG2 

STX1A 

THBS1 

TRPC6 

USP45 

WNT2 

CDH9 

FOLH1 

FRK 

HTR2A 

IL1RAPL2 

PCDH8 

PDE1C 

POU3F2 

ROBO1 

SYN2 

CACNA1D 

CNTN6 

DLX1 

DNAH10 

ERBB4 

GABRA1 

GABRQ 

GAD1 

GRM4 

GRM7 

KIRREL3 

NRXN3 

PCDH19 

PTGS2 

PTPRT 

SLIT3 

SYN3 

 

 

 

 



85 
 

 

Figure 3.8 Genes differentially expressed between the anterior and posterior cortex 

contain ASGs.  (A) Venn diagram comparing differentially expressed genes between the 

anterior and posterior cortex at 9 PCW and 12 PCW.  At 9 PCW, 146 genes were differentially 

expressed between the anterior and posterior cortex.  At 12 PCW, 185 genes were 

differentially expressed between the anterior and posterior cortex.  17 of these genes were 

differentially expressed between the anterior and posterior cortex at both 9 and 12 PCW.  

(B) Venn diagram showing the number of ASD susceptibility genes that were differentially 

expressed between the anterior and posterior cortex at 9 PCW and (C) 12 PCW.  10 and 17 

identified ASD susceptibility genes are differentially expressed between the anterior and 

posterior cortex at 9 PCW and 12 PCW respectively.   
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Table 3.6 List of 17 differentially expressed genes that overlap between anterior and 

posterior cortex 

 

Gene Name 

 

Gene Type 

9 PCW 12 PCW 

Log 2 fold  P adjusted Log 2 fold  P adjusted 

CYP26A1 

LAMP5 

AE000661.37 

 

LRRTM3 

PIP5K1B 

CYP26B1 

GIPR 

CNIH3 

ARAP2 

RP11-517P14.7 

 

LRRC9 

C11orf63 

SYNJ2 

CA8 

SYNM 

NPY5R 

CHRNA3 

Protein coding 

Protein coding 

Processed 

transcript 

Protein coding  

Protein coding 

Protein coding 

Protein coding 

Protein coding 

Protein coding  

Unprocessed  

pseudogene 

Protein coding 

Protein coding 

Protein coding 

Protein coding 

Protein coding 

Protein coding 

Protein coding 

3.03 

2.49 

2.29 

 

2.25 

1.69 

1.69 

1.67 

1.64 

1.61 

1.41 

 

1.41 

1.35 

1.24 

1.20 

1.19 

1.13 

1.54 

3.75E-12 

2.16E-07 

6.61E-07 

 

1.07E-07 

4.78E-08 

3.67E-05 

0.007744 

2.68E-05 

0.003659 

0.00345 

 

0.008442 

0.028916 

0.005558 

0.016209 

0.029353 

0.033269 

8.82E-06 

1.14 

1.51 

1.23 

 

1.06 

1.37 

1.12 

1.80 

1.20 

1.36 

1.07 

 

1.04 

1.32 

1.36 

1.75 

1.15 

1.53 

1.02 

 

0.042762 

0.002314 

0.025233 

 

0.017628 

0.001322 

0.019668 

0.0002 

0.019277 

0.001466 

0.013836 

 

0.00747 

0.005681 

0.000432 

0.000125 

0.003113 

0.001127 

0.017992 

*Red = higher expression in the anterior cortex, blue = higher expression in the posterior cortex 
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3.2.7 The majority of differentially expressed genes at 12 PCW were upregulated in the 

posterior cortex 

At 12 PCW, 168 genes were significantly more highly expressed in the posterior cortex 

compared to the anterior cortex, whilst only 17 genes were significantly more highly 

expressed in the anterior cortex compared to the posterior cortex (table 3.2, supplementary 

table 3.5).  Looking at only the protein coding genes showed the same pattern with a higher 

number of genes significantly higher in expression in the posterior compared to anterior 

cortex at 12 PCW (table 3.4). 

To compare if genes involved in anterior-posterior arealisation at 9 PCW were overlapping 

with the genes involved in anterior-posterior arealisation at 12 PCW, the two data sets were 

compared.  This yielded only 17 genes that were differentially expressed to a significant 

degree between the anterior and posterior cortex at both 9 and 12 PCW (figure 3.8A, table 

3.5).  This suggests that not only are the gene expression patterns of the anterior and 

posterior different at both 9 and 12 PCW, but that the gene expression profiles of both the 

anterior and posterior cortex change from 9-12 PCW.  Of those 17 genes that changed 

significantly in expression at both 9 and 12 PCW, the majority of them show a transient wave 

of gene expression, being higher in expression in the anterior cortex at 9 PCW and then 

higher in the posterior cortex at 12 PCW.   

 

3.2.8 Analysis of the gene set identified as differentially expressed between the anterior 

and posterior cortex at 9 PCW 

Gene ontology analysis was carried out on the differentially expressed genes between 

anterior and posterior at 9 PCW (figure 3.9).  The molecular function analysis at 9 PCW 

showed an enrichment for ion binding.  The biological processes analysis showed an 

enrichment of genes involved in tissue development, anatomical structure morphogenesis, 

organ development and developmental process (figure 3.9).   

Genes involved in cortical arealisation could code for proteins that act morphogenetically, 

for example Bone morphogenic proteins (BMPs), Wingless-type MMTV integration site 

family (Wnts) and fibroblast growth factors (FGFs) (see chapter 1.1).  Alternatively, they may 

be genes that are up and down-regulated as a result of morphogen gradients and act to 

further define cortical regions by controlling the cellular processes occurring in that region 
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either directly or indirectly for example transcription factors such as SP8 (see chapter 1.1).  

At 9 PCW, FGFR3 and the Wnt receptor Frizzled class receptor 7 (FZD7) were significantly 

upregulated in the posterior cortex, whereas, WNT3 was significantly upregulated in the 

anterior cortex (figure 3.10A).  FGF3 has been identified as a marker of the posterior cortex 

in both rodents and humans (Moldrich et al., 2011, Bayatti et al., 2008a).  WNTs have 

distinct roles in cell-cell signalling during morphogenesis of the developing neural tube 

(Dorsky et al., 1998, Ikeya et al., 1997) and in the patterning of the developing cortex of mice 

(Shimogori et al., 2004), but their roles as morphogens in the human cortex at these ages is 

largely unexplored.   

A previous microarray study investigating expression gradients in the developing human 

brain (Bayatti et al., 2008a) identified cell adhesion molecules as being upregulated 

anteriorly.  Members of the cadherin and protocadherin superfamilies CDH7, CDH9, PCDH8, 

PCDH17 appear in the differentially expressed genes from anterior-posterior cortex at 9 PCW 

(figure 3.11B).  CDH7, PCDH8 and PCDH17 are more highly expressed in the anterior cortex 

whereas CDH9 is more highly expressed in the posterior cortex (figure 3.10A).  PCDH17 was 

identified previously as an anterior marker (Ip et al., 2010) but the study did not identify the 

three other adhesion molecules.  LRRTM3, a neurexin binding protein, is also higher in 

expression in the anterior cortex (figure 3.10A).   

Due to previous studies suggesting that autism susceptibility genes are expressed at these 

ages in the human cortex (Ip et al., 2010), we wanted to see if any ASGs changes in 

expression between the anterior and posterior cortex.  If this was the case, these genes may 

be contributing to cortical arealisation.  It was found that there were 10 ASD susceptibility 

genes differentially expressed between the anterior and posterior cortex (figure 3.8A, table 

3.5).  The majority of these are higher in expression in the anterior cortex with only CDH9 

and the synaptic vesicle protein, synapsin II (SYN2) being higher in expression in the 

posterior cortex (figure 3.10B).  ASD susceptibility genes that are upregulated in the anterior 

cortex include but are not limited to roundabout axon guidance receptor homolog 1 (ROBO1) 

which is involved in axon guidance and cell migration (Kidd et al., 1998), serotonin receptor 5 

hydroxytryptamine receptor 2A (HTR2A) and the transcription factor pou class 3 homeobox 2 

(POU3F2) which labels neural progeny switching from deep-layer Ctip2 (+) identity to Satb2 

(+) upper-layer fate (Dominguez et al., 2013) (figure 3.10B).   

 



89 
 

 

Figure 3.9 Gene ontology analysis of differentially expressed (adjusted p<0.05) genes 

between anterior and posterior cortex at nine PCW.  The molecular function category 

identified in this gene list was ‘ion binding’.  The biological process categories identified from 

the gene list in order of most to least significant were ‘tissue development’, ‘anatomical 

structure morphogenesis’, ‘organ development’, ‘anatomical structure development’, 

developmental process’ and ‘single organism developmental process’. 

 

‘Homo sapiens’ column states the total number of human genes that are present in this 

category.  ‘#’ column shows the number of genes from this category that were present in the 

gene list.   ‘expected’ column states the number of genes you would expect to find by chance 

in a gene list of this size for that category.  ‘Fold enrichment’ is the number of genes present 

in the list divided by the expected number of genes in each category.  P<0.05 shows that 

there was a significantly higher number of genes in that particular category identified in the 

gene list than would be identified by chance. 
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Figure 3.10 Genes that were differentially expressed between the anterior and posterior 

cortex at 9 PCW.  (A) Genes that were differentially expressed between anterior and 

posterior cortex include the cell adhesion molecules CDH7, CDH9, PCDH8, PCDH17 and 

LRRTM3.  Signalling molecules WNT3, FZD7 and FGFR3 were also differentially expressed 

between the anterior and posterior.  Of these genes CDH9, FZD7 and FGFR3 had a 

significantly higher expression level in the posterior cortex.  (B) A number of autism 

susceptibility genes were differentially expressed between 9 and 12 PCW, the majority of 

which were significantly higher in expression in the anterior cortex.  CDH9 and SYN2 were 

significantly higher in the posterior cortex.   

*Significance adjusted p<0.05. 
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3.2.9 Identified gene expression gradients at 12 PCW 

Gene ontology analysis was carried out on the genes identified as differentially expressed 

between the anterior and posterior cortex at 12 PCW (figure 3.11).  The molecular function 

analysis yielded an enrichment of genes in the categories of neurotransmitter receptor 

activity, signalling receptor activity, signal transducer activity and molecular transducer 

activity.  Molecular function analysis included an enrichment in the functions of 

neurotransmitter transport, synaptic transmission, cell-cell signalling, neuron differentiation 

and the regulation of signalling (figure 3.10). 

Since GO analysis revealed that a large number of differentially expressed genes code for 

proteins that function in neurotransmitter production, uptake and release and these are also 

highly represented in the list of ASGs, we examined these in more detail.  The list includes 

solute carrier family 32 member 1 (SLC32A1), glutamate decarboxylase 1 (GAD1) and 

synapsin 3 (SYN3).  SLC32A1 is involved in the uptake of GABA and glycine into synaptic 

vesicles (McIntire et al., 1997), GAD1 catalyses the production of GABA (Fenalti et al., 2007) 

and SYN3 has been associated with neurotransmitter release (Feng et al., 2002).  The 

glutamate transporter solute carrier family member 17 member 8 (SLC17A8), synaptogamin 

like 5 (SYTL5) and rabphillin 3A (RPH3A) also appear in the list of differentially expressed 

genes and are predicted to have roles in synaptic vesicle trafficking (Colvin et al., 2010, Seal 

et al., 2008, Li et al., 1994).  All are significantly (p<0.05) more highly expressed in the 

posterior cortex compared to the anterior cortex (figure 3.12A). 

Both inhibitory and excitatory neurotransmitter receptors appear in the list of differentially 

expressed genes.  The GABA receptor subunits, gamma amino butyric acid A receptor theta 

(GABRQ) and (GABRA1) and the glutamate receptors, glutamate receptor metabotropic 

(GRM) 4, GRM7 and GRIN2C were identified as being significantly more highly expressed in 

the posterior cortex compared with the anterior cortex at 12 PCW (figure 3.12B).  Glutamate 

Receptor Interacting Protein 2 (GRIP2) is also more highly expressed in the posterior cortex 

at 12 PCW (figure 3.12B).  Genes encoding cell adhesion molecules Neurexin 3 (NRXN3), 

cadherin 6 (CDH6), protocadherin 19 (PCDH19) also appears to be significantly (p<0.05) more 

highly expressed in the posterior cortex at 12 PCW (figure 3.12C).  In total, there were 17 

genes that have been identified as differentially expressed between anterior and posterior 

cortex at 12 PCW that are autism susceptibility genes (figure 3.8C, table 3.5).    
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Figure 3.11 Gene ontology analysis of differentially expressed genes between anterior and 

posterior cortex at 12 PCW.  See page 93 for figure legend. 
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Figure 3.11 Gene ontology analysis of differentially expressed genes between anterior and 

posterior cortex at 12 PCW.  The molecular function categories identified in this gene list in 

order of most to least significant was ‘neurotransmitter receptor activity’, ‘receptor 

signalling activity’, ‘signal transducer activity’, receptor activity’ and ‘molecular transducer 

activity’.  The biological process categories identified from the gene list in order of most to 

least significant included but were not limited to ‘neurotransmitter transport’, ‘synaptic 

transmission’, ‘cell-cell signalling’, ‘neuron differentiation’, ‘generation of neurons’ and ‘cell 

communication’. 

‘Homo sapiens’ column states the total number of human genes that are present in this 

category.  ‘#’ column shows the number of genes from this category that were present in the 

gene list.   ‘expected’ column states the number of genes you would expect to find by chance 

in a gene list of this size for that category.  ‘Fold enrichment’ is the number of genes present 

in the list divided by the expected number of genes in each category.  P<0.05 shows that 

there was a significantly higher number of genes in that particular category identified in the 

gene list than would be identified by chance. 
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Figure 3.12 Genes that were differentially expressed between the anterior and posterior 

cortex at 12 PCW. (A) Genes whose protein products have functions in neurotransmitter 

production, uptake and release were significantly more highly expressed in the posterior 

cortex compared to the anterior cortex. (B) Genes that encode neurotransmitter receptors 

were significantly more highly expressed in the posterior cortex compared to the anterior 

cortex.  (C) Genes that encode cell adhesion molecules were significantly more highly 

expressed in the posterior cortex compared to the anterior cortex.   

Significance = adjusted p<0.05 
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3.3 Discussion  

3.3.1 Choroid plexus samples are transcriptionally unique compared to other brain regions 

High throughput sequencing of cDNA has increased in popularity over the past decade and 

has significantly reduced in cost.  It has overtaken microarray studies to become the most 

accurate method for detecting changes in expression across the whole genome (Robinson et 

al., 2015, Naumova et al., 2013, Mortazavi et al., 2008).   

By sequencing 557 samples taken from different brain regions as well as samples from the 

cerebral choroid plexus and spinal cord, we were able to see that the gene expression 

profiles of a number of these samples, in particular from the forebrain, hindbrain and 

choroid plexus, correlated with the region of the brain that they were taken from.  This 

suggests that these parts of the developing brain have distinct patterns of gene expression 

that are contributing to regional identity.  Distinct gene expression profiles and clustering for 

gross anatomical brain structures has been shown in both the adult (Roth et al., 2006) and 

the developing brain (Oldham et al., 2006). 

Choroid plexus samples were found to be substantially different in their expression profiles 

compared to forebrain, midbrain and hindbrain.   The choroid plexus is a network of blood 

vessels surrounded by epithelial cells that are responsible for the production of cerebral 

spinal fluid.  This structure is found within the ventricles of the brain (Lun et al., 2015).  The 

epithelial cells of the choroid plexus secrete growth factors, neuropeptides and cytokines 

including BDNF, TGFα, TGFβ and IGF-II (Emerich et al., 2004, Chodobski and Szmydynger-

Chodobska, 2001).  These molecules have important roles in brain development and 

abnormal production can be pathological (Stopa et al., 2001).  The choroid plexus also 

secretes neuroprotective factors, essential for neuronal survival and repair (Emerich et al., 

2004) functions to remove waste substances and it has been shown more recently, 

influences neural progenitors and may have roles in brain regionalisation during 

development (reviewed in Lun et al., 2015) .  The telencephalic, diencephalic and hindbrain 

choroid plexus emerge as distinct structures before the telencephalic and diencephalic 

choroid plexus merge (reviewed in Dziegielewska et al., 2001).   Lineage specification 

involves the repression of neural genes in the neuroepithelial cells and the upregulation of 

basic helix-loop-helix transcription factors (Imayoshi et al., 2008).  Given that the choroid 

plexus consists of non-neural cells, some of which are mesodermal in origin, it is expected 

that it would have the most divergent transcriptome.  
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The human brain develops from the neural progenitor cells of the ectodermal layer that is 

specified during gastrulation.  These progenitor cells lie along the rostral axis of the 

developing embryo forming, what is referred to as, the neural plate.  In the third gestational 

week (GW) the neural tube arises from the folding of the neural plate and its subsequent 

closure (reviewed in (Copp et al., 2003).  The cells located caudally will give rise to the 

hindbrain and spinal cord whilst the cells located rostrally will give rise to the forebrain 

(Stiles and Jernigan, 2010a).  Given that the cells of the hindbrain and forebrain are 

separated in the neural tube at 3 GW, by 8 PCW they will have been subjected to distinct 

signalling environments (chapter 1.1) and the difference in the transcriptional profiles of the 

hindbrain and forebrain samples reflects this.  The midbrain progenitor cells, which have 

been positioned between the forebrain and hindbrain during development, are likely to have 

been partly subjected to the signalling environments of both the forebrain and hindbrain 

cells and so it is unsurprising that they are the least distinct population of cells in the RNA 

seq data.  

 

3.3.2 Factors affecting the ability to detect significant temporal and regional differences in 

cortical gene expression   

Looking more specifically at the cerebral cortex samples between 9 and 12 PCW, it was 

shown that they do not cluster according to age (PCW), sex or regional identity.  Previously,  

Kang et al. (2011) found that age contributed more to variability than sex, ethnicity and inter 

sample variation and PCA analysis by the group showed that 8-10 PCW samples clustered 

separately from 11-13 PCW samples.  However, this PCA analysis was carried out on 

sequencing data from all brain regions rather than just cortical samples at these ages.    

It is hard to assign functional identity to particular cortical region at this age as many 

structures are undefined and relating developing regions to post-natal structures would be 

inaccurate.  This was overcome by referring to the regions as anterior, central, posterior and 

temporal.  It has been observed that gradients of gene expression are developing across the 

cortex in order to specify cell fate (Ip et al., 2011, Bayatti et al., 2008a) and, ultimately, to 

produce the distinct cortical structures that we recognise in the adult brain.  However, 

differences in gene expression between the regions were not apparent from the hierarchal 

clustering.  Rather, variation between samples is higher than variation within the samples.  

This was expected firstly because neurons, in particular, of the different cortical regions are 
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more similar in function to each other than they are to neurons of sub cortical brain regions 

and secondly, they have had less time to become transcriptionally different, having all 

originated from a small group of rostrally located neural tube cells.  It is also more difficult to 

control for post mortem delay and external environmental influences when working with 

human samples.  These factors will have an effect on the signalling environment that the 

cells of the cortex are subjected to and they could mask smaller transcriptional differences 

that could exist between cortical regions, or between samples of different sex, or age.  

Although PCA analysis managed to separate anterior cortical samples from posterior cortical 

samples at both 9 and 12 PCW, cluster analysis suggests that individual variation is the main 

contributing factor to this.  (Kang et al., 2011) did not look at transcriptional patterns within 

the cortex but instead grouped all cerebral cortex samples together. 

Multiple software packages exist to aid in the identification of differentially expressed genes 

between two sample groups.  These packages assess not only the average change in 

expression values between the two groups but also the variability in expression values 

between replicates within a group (Seyednasrollah et al., 2015).  As RNA sequencing 

technology has advanced, it is now common practice to have a minimum of 3 replicates per 

sample group.  An increased number of replicates makes it easier to identify significant 

differences in expression between two sample groups.  This makes any gene expression 

differences detected more robust. 

The DESeq software package used in this study is based on a negative binomial model 

(Anders and Huber, 2010).  It takes into account existing biological inter-sample group 

variation when creating lists of differentially expressed genes.  However, these software 

packages can seem conservative due to their requirements for identifying differences when 

producing the gene lists.  A conservative approach will minimise the number of false 

positives yet may fail to identify a number of differentially expressed genes that become lost 

in the noise.  Compared to other well-known differential expression software packages such 

as Cuffdiff 2 and edgeR, DESeq falls between the two, being more conservative than edgeR 

but less conservative than Cuffdiff 2.   Increasing the number of sample replicates will usually 

increase the number of genes that are differentially expressed as well as decreasing the 

number of false positives (Seyednasrollah et al., 2015).  Another problem with this type of 

differential expression analysis is that many of the genes identified as differentially 

expressed will have extremely low levels of expression.  Often, a cut-off value for expression 
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is decided but studies have detected protein for genes with RPKM values below this 

threshold value (Nagaraj et al., 2011, Mortazavi et al., 2008).  An increased read length in 

addition to increased sequencing depth enables a more accurate RPKM value to be obtained 

and subsequently differential expression analysis should yield fewer false positive results. 

 

3.3.3 There were fewer differentially expressed genes between cortical regions compared 

to between ages 

Despite the lack of clustering by age/ cortical region, differential expression analysis 

between 9 and 12 PCW and between the anterior and posterior cortex was able to identify 

genes that changed in expression across the conditions.  It was revealed that a higher 

number of genes differ in expression temporally compared to spatially.  In agreement with 

this finding, (Miller et al., 2014) analysed the transcriptional profiles of 15-21 PCW human 

brains using an Agilent microarray and found that there were major differences between 

proliferative cells and post-mitotic cell types; however, the areal differences were more 

subtle.  The number of proliferative cells decreases with age whereas, the number of post-

mitotic cells increases with age.  The majority of these differentially expressed genes 

between 9 and 12 PCW increased in expression at 12 PCW and GO analysis revealed that 

they fell into the categories of ion binding and cell differentiation.  Kang et al., (2011) found 

that in the developing human brain, gene expression profiles differ between developmental 

milestones and that between 10 and 13 PCW, there is an increase in the expression of genes 

involved in neuronal differentiation, proliferation and cell migration.  Therefore, between 9 

and 12 PCW, the changes in gene expression may reflect a switch in the 

neurodevelopmental trajectory. 

 

3.3.4 Fold change analysis can aid in the identification of biologically relevant genes  

Just over 40% of the top 200 genes with the most significant (lowest) p value obtained from 

the differential expression analysis also had the highest fold change between 9 and 12 PCW.  

Despite this high overlap, GO analysis of these two data sets identified many more biological 

processes for the data set with the highest fold change.  (McCarthy and Smyth, 2009) have 

suggested that applying fold change parameters to a set of significantly differentially 

expressed genes in a process known as TREAT will reduce the false discovery rate and 
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identify more biologically relevant genes.  Although TREAT was not used here, it is clear that 

the genes identified as significantly different (p<0.05) that also had the largest fold change, 

were the most biologically interesting as shown by the gene ontology analysis (discussed 

further in sections 3.3.5 and 3.3.6).  The GO analysis using the genes with the highest fold 

change identified cell differentiation as an enrichment term.  Between the ages of 9 and 12 

PCW, the post mitotic cortical plate is expanding with an increasing number of cortical cells 

exiting the cell cycle and beginning differentiation.   

 

3.3.5 The expression of growth factors between 9 and 12 PCW 

Growth factors and morphogens are essential in mammalian development (Sansom and 

Livesey, 2009b).  Just as select combinations of these molecules are able to pattern the 

developing embryo and induce the formation of different anatomical structures, the 

temporal and spatial differential expression of such molecules in the brain contribute to its 

regionalisation and maturation (chapter 1.1).   

FGFs 1, 10 and 16 were upregulated with age, whereas FGF2 expression decreased.  In mice, 

FGF10 is involved in regulating the differentiation of radial glia and thereby controls the 

expansion of the progenitor pool (Sahara and O'Leary, 2009).   At the beginning of cerebral 

cortex formation, neural stem cells of the ventricular zone (VZ) divide symmetrically to 

expand the cortical cell population.  These stem cells eventually differentiate into radial glial 

cells that divide asymmetrically, to produce a proliferative RG cell and one that will cease 

division and migrate out of the VZ to reside in the SVZ or the CP (Lui et al., 2011).  The knock 

down of Fgf10 in mice causes an increase in the size of the anterior cerebral cortex (Sahara 

and O'Leary, 2009), presumably due to a failure of neural stem cells to differentiate into 

radial glial cells and switch their mode of cell division from symmetric to asymmetric.  An 

increase in FGF10 with age would suggest that there are fewer neural stem cells dividing 

symmetrically in the 12 PCW cortex.  FGF2 is expressed in the VZ of the cerebral cortex and 

is hypothesised to play a role in the expansion of the neural stem cell population as FGF2 

null mice have a reduced number of cortical neurons in adults (Vaccarino et al., 1999).  FGF2 

is expressed in the VZ of the cerebral cortex and is hypothesised to play a role in the 

expansion of the neural stem cell population as Fgf2 null mice have a reduced number of 

cortical neurons in adults (Vaccarino et al., 1999).  The decrease in its expression observed in 
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this study correlates with the increased expression of FGF16 and these two growth factors 

may act antagonistically to control the number of proliferating cells in the VZ. 

FGF16 is required for cell proliferation in the forebrain of zebrafish embryos but also 

GABAergic neuron specification (Miyake et al., 2014).  FGF1 binds to FGFR1 to induce 

neuronal differentiation and neurite outgrowth in PC12 cells (Lin et al., 1997).  It is also 

produced by astrocytes (Ito et al., 2005) including radial glial cells.  We have observed an 

increase in genes that are associated with cell differentiation between 9 and 12 PCW (figure 

3.5) and the increase in the expression of FGF16 and FGF1, if their functions are similar to 

those in mice, may induce neuronal differentiation in the human brain.  It is plausible that 

these morphogens act to upregulate the expression of genes involved in specific aspects of 

neuronal differentiation for example neurite outgrowth and the production and organisation 

of synaptic proteins. 

The expression patterns of these growth factors suggests that 9-12 PCW is a critical period of 

human cortical development that sees an increase in asymmetric division in line with a 

reduction of progenitor cell division.  During this period, growth factors may act to 

upregulate genes required for neuronal differentiation. 

 

3.3.6 Morphogens are contributing to the arealisation of the 9 PCW cortex  

Two theories, the protomap and the protocortex hypothesis, likely both contribute to the 

phenomenon of cortical patterning.  The protocortex hypothesis states that patterning relies 

on extrinsic signalling input from the innervating thalamic fibres (O'Leary, 1989, Van der 

Loos and Woolsey, 1973) whereas the protomap hypothesis suggests intrinsic cortical 

signalling is responsible (Rakic, 1999).  Thalamic afferents have not yet innervated the cortex 

at the period of development in this study and so gene expression gradients can only be 

established in accordance with the protomap hypothesis.  The protomap theory of 

arealisation predicts that signalling centres lie along the telencephalic vesicles and release 

morphogens such as FGFs, Wnts and BMPs (chapter 1.1; Fukuchi-Shimogori and Grove, 

2001).  FGF8 and EMX2 have previously been shown to produce rostral and caudal cortical 

cell fates respectively (Cholfin and Rubenstein, 2008) however; these signalling molecules 

were not identified from the differential expression analysis between the anterior and 

posterior cortex in this study.  We have identified SP8 as an anteriorly expressed gene at 9 
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PCW.  In mice SP8 has been shown to bind regulatory elements of Fgf8 and also to induce 

downstream targets of FGF8.  This regulatory function of Sp8 is inhibited by Emx2 (Sahara et 

al., 2007).  Morphogen gradients tend to disappear with age, leaving behind gradients of 

downstream targets (Bayatti et al., 2008b).  Although an EMX2 mRNA gradient was detected 

previously at this developmental stage using in situ hybridisation (Bayatti et al., 2008b), the 

difference in EMX2 gene expression may not have been large enough to be detected by the 

differential expression analysis software.  This study, however, was able to identify SP8 as 

being upregulated anteriorly in humans, confirming the expression pattern shown in mice.  

At 9 PCW, a number of additional genes encoding signalling molecules and receptors were 

identified as differentially expressed between the anterior and posterior cortex.  Anteriorly, 

WNT3 was upregulated.  The Wnt family of genes are usually associated with a posterior 

neural identity (McGrew et al., 1995) but Wnt3 has been shown to be required for the 

formation of the mouse hippocampus (Lie et al., 2005) and also for the development of the 

posterior forebrain (Braun et al., 2003).  However, little is known about its role in cortical 

arealisation.  Dlx2 expression can be induced by blocking Wnt expression (Braun et al., 

2003), however, DLX2 was also anteriorly upregulated at 9 PCW as has been shown by (Al-

Jaberi et al., 2015) suggesting that the increased WNT3 expression in the anterior cortex at 9 

PCW does not reduce the expression of DLX2 in humans. 

Caudal markers included FGFR3, which had previously been identified as contributing to a 

caudal cell fate (Moldrich et al., 2011), and FZD7.  Frizzled receptors are bound by Wnt 

proteins to initiate the canonical Wnt pathway (chapter 1.2.3).  The differential expression of 

WNT receptors at 9 PCW could enable controlled WNT signalling without the need for 

gradients of the protein.  It is expected that WNT proteins, whose mRNAs were not 

identified in this differential expression analysis, will be able to bind FZD7 to promote the 

differentiation of caudal cell types. 

At 12 PCW, only FGF1 was identified as differentially expressed between the anterior and 

posterior cortex.   FGF1 expression is higher in the anterior cortex and is also upregulated 

with age.  It has been shown to induce neuronal differentiation and neurite outgrowth in 

PC12 cells (Lin et al., 1997).  Cortical Wnt signalling decreases with age (Harrison-Uy and 

Pleasure, 2012) and this decrease in expression is expected for FGFs and BMPs also as the 

increased surface area of the cortex and the signalling centres of the brain are less influential 

on overall expression gradients.  It is likely that at these later developmental stages, the 
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main arealisation markers are the downstream targets of morphogens that further 

differentiate cortical regions as diffusion of a signal through a large mass of cells would be 

difficult.  

            

3.3.7 A number of autism susceptibility genes were differentially expressed regionally 

and temporally 

During this early period of cortical development, we have shown that a number of ASD 

genes were present and that they were differentially expressed between the anterior and 

posterior cortex at both 9 and 12 PCW in addition to changing in expression with age (table 

3.5).  These ASD susceptibility genes code for proteins that have a range functions in the 

adult brain including cell adhesion, synaptogenesis and synaptic stabilisation, 

neurotransmitter release, synaptic vesicle transport, neurotransmitter receptors and 

neuronal differentiation.  However, at these early stages of development, synapses are 

either absent or immature (de Graaf-Peters and Hadders-Algra, 2006) suggesting that these 

genes are expressed prior to synapse formation. 

In addition to synaptic proteins, ASD susceptibility genes include those that encode cell 

adhesion molecules.  Cadherins and protocadherins are involved in tissue morphogenesis 

(Halbleib and Nelson, 2006), and their functions expand beyond mechanical adhesion 

between cells.  Our analysis comparing gene expression in the anterior and posterior cortex 

at 9 and 12 PCW yielded a number of cadherin and protocadherin family genes.  CDH7 forms 

transient adhesions with contacting cells (Dufour et al., 1999), regulates unbranched axonal 

outgrowth in cranial motor cells (Barnes et al., 2010) and is present in migratory neural crest 

cells (Nakagawa and Takeichi, 1995).  Mutations in PCDH8 and PCDH11Y, identified as 

differentially expressed between anterior and posterior cortex, have been identified as 

susceptibility genes for multiple neurological disorders (Durand et al., 2006, Giouzeli et al., 

2004, Bray et al., 2002).  Cell adhesion genes have previously been associated with 

arealisation.  CDH6, identified as having a higher expression in the posterior cortex at 12 

PCW, is suggested to be involved in establishing the protomap in mice (Terakawa et al., 

2013) whereas, PCDH19 knockout causes a disruption in columnar organisation of the 

zebrafish optic tectum (Cooper et al., 2015).   
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Potentially, as ASGs appear to be expressed between 9 and 12 PCW, ASD symptoms could 

arise as a result of perturbations in the expression of these genes at this developmental 

period.  The patterning of the human cortex is a process that occurs throughout 

development, however, during 9-12 PCW, before thalamic axons arrive, the cortex is largely 

under its own control and deviations from normal gene expression patterns could have 

substantial effects on neuronal differentiation, migration, circuitry and function.      

 

3.3.8 The posterior cortex is transcriptionally more mature than the anterior cortex 

In the adult brain, Roth et al. (2006) showed that there were no gene expression differences 

identified between the different regions of the cerebral cortex, however, multiple studies 

have identified genes that are differentially expressed across cortical regions during 

development (Al-Jaberi et al., 2015, Ip et al., 2010, Bayatti et al., 2008a).  The transcriptome 

of the prenatal cortex is more complex than that of the adult brain and a higher percentage 

of the genome is expressed (Kang et al., 2011).  A smaller number of genes were identified 

as significantly different between the anterior and posterior cortex at 9 and 12 PCW in 

comparison to the large number of genes differentially expressed temporally.  At 9 PCW, the 

majority of the differentially expressed genes are more highly expressed in the anterior 

cortex than the posterior cortex as in previous studies (Ip et al. 2010).  At 12 PCW, there was 

a shift in this pattern and the majority of differentially expressed genes were more highly 

expressed in the posterior cortex compared to the anterior cortex. A number of the genes 

identified as being more highly expressed in the anterior cortex also appeared in the list of 

genes upregulated in the anterior cortex in a previous microarray study (Ip et al., 2010).  

The set of genes identified as differentially expressed between the anterior and posterior 

cortex at 9 and 12 PCW are largely independent. As mentioned, 10-12 PCW represents a new 

developmental milestone (Kang et al., 2011).  Only a very small proportion of these genes 

are differentially expressed at both 9 and 12 PCW adding weight to the theory that these 

two developmental ages are transcriptionally separate.  It is therefore apparent that cortical 

patterning at 9 PCW requires one set of genes to be anteriorly upregulated whilst patterning 

at 12 PCW requires a completely different set of genes to be posteriorly upregulated.  GO 

analysis of the differentially expressed genes at 9 PCW failed to identify any biological 

processes that are neuron specific, whereas at 12 PCW there were many biological processes 

identified specifically related to neurons.  These genes involved with neuron specific 
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processes are posteriorly upregulated, suggesting that the posterior cortex is maturing faster 

than the anterior cortex.  The prefrontal cortex is evolutionarily more recent and is present 

in primates (Teffer and Semendeferi, 2012, Smaers et al., 2011).  Its existence in non-human 

primates is controversial (Uylings et al., 2003) but it is clearly expanded in humans and its 

maturation is also much slower than the maturation of the visual and auditory cortex 

(Thompson-Schill et al., 2009).    

The small number of genes that are differentially expressed at both time points appear to 

reverse their direction of expression from being upregulated in the anterior cortex at 9 PCW 

to being upregulated in the posterior cortex at 12 PCW.  This graded expression is unlikely to 

be in response to morphogen gradients and instead may be due to a domino effect.  The 

upregulation of these genes in the anterior at 9 PCW may cause the production of diffusible 

signals that signal to adjacent cells to upregulate the expression of the same gene.  By 12 

PCW, this upregulation signal could have propagated to posterior of the cortex whilst the 

expression at the anterior has been subsequently reduced/ silenced.  This theory is similar to 

those proposed for the temporally progressive BMP patterning in mouse embryos (Tucker et 

al., 2008) and the segmentation clock mechanism (reviewed in Gibb et al., 2010). 
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CHAPTER 4 

Investigating the expression patterns of autism susceptibility genes NRXNs, 

NLGNs and SHANKs, in the developing human cerebral cortex  

4.1 Aim of study 

The aim of this study was to decipher the spatial and temporal gene expression patterns of a 

subset of autism susceptibility genes across the cortex from 8-12 PCW. 

Autism susceptibility genes from the NRXN, NLGN and SHANK families, implicated in synapse 

development and maintenance, were investigated in this study.  Microarray and RNA 

sequencing studies have previously suggested that members of these gene families may be 

expressed in the developing cortex from as early as 8 PCW (Ip et al., 2011); brainspan.org).   

 

4.2 Results 

4.2.1 NRXNs, NLGNs and SHANKs were expressed in the cortex between 8 and 12 PCW 

Samples were collected with maternal and ethical consents by the HDBR resource at 

Newcastle University (http://www.hdbr.org).  The identifying number, age, sex and cerebral 

hemispheres used for each sample can be seen in table 3.1 for RNA sequencing and table 4.1 

for qPCR analysis respectively.  At least three brains were used per age, with both 

hemispheres included in as many cases as possible.  The cerebral cortex was dissected as 

previously described into anterior, central, posterior and temporal regions (2.1.2).  mRNA 

was extracted from the dissected cortical regions of 8-12 PCW brains, was reverse 

transcribed and either sequenced (2.13) or used for non-quantitative and quantitative PCR 

reactions (2.3).  The primer sets used for control genes and genes of interest in both non-

quantitative and quantitative PCR can be seen in table 4.2.    

A standard PCR reaction was used to ensure, firstly, that the genes of interest were 

detectable in the developing cerebral cortex from 8-12 PCW, using the designed primer sets 

and secondly that the primers amplified the correct section of cDNA.  Following gel 

extraction, fluorescent bands were sequenced.  NRXNs 1-3, NLGNs 1-4X and SHANKs 1-3 

were detectable using the designed primer sets at 8, 10 and 12 PCW (figure 4.1).  All 

amplification products had the correct band size (figure 4.1) and the correct DNA sequence 

http://www.hdbr.org/
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according to sequencing results (not shown).  This demonstrates that they were all 

expressed in the developing human cortex between 8 and 12 PCW.  The region of each gene 

that these amplification products map to can be visualised in figure 4.2.  

 

 

 

Table 4.1 List of sample numbers dissected and used for non-quantitative and quantitative 

PCR  

Sample no. Age (PCW) Sex 

F – Female 

M - Male 

Hemispheres used 

L – Left 

R - Right 

11688 8 F L & R 

1511 8 M L 

11691 8 M L & R 

11653 10 M R 

11703 10 M L & R 

1649 10 M R 

1484 10 M R 

11652 12 F L & R 

11853 12 M L 

11683 12 F R 
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 Table 4.2 List of Primers for PCR and qPCR.  NRXN, Neurexin; NLGN, Neuroligin; SHANK, SH3 and 

multiple ankyrin domains; SYP, Synaptophysin; *Reference genes BACTIN, β-Actin; GAPDH, 

Glyceraldehyde-3-phosphate dehydrogenase; SDHA, Succinate dehydrogenase complex subunit A. 

Gene Forward Primer 

5’-3’ 

Reverse Primer 

5’-3’ 

Amplicon 

Size (bp) 

NRXN1 aggacattgacccctgtgag ccttcatcccggtttctgta 205 

NRXN2 catcctcctctacgccatgt ttgttcttcttggccttgct 165 

NRXN3 ggctgagaacaaccccaata atgctggctgtagagcgatt 179 

NLGN1 tgcaaaggggaactatggac ttgctccaacggttaccttc 177 

NLGN2 cagaagggctgttccagaag gcagacactccacagcttca 150 

NLGN3 agagccatcatccaaagtgg ggatctcagggtcatcagga 244 

NLGN4X tcgctcctcttcctcaacat acactcgtgatcgtgttcca 180 

SHANK1 actctcagcacctggagcat catcctgttctcggtggttt 243 

SHANK2 gtgtacgaacgccaaggaat tgccgctcttcctctgttat 152 

SHANK3 cttcacacaaaggcgaacct ccaccattcttcagcacctt 191 

SYP tctggccacctacatcttcc tcagctccttgcatgtgttc 218 

*BACTIN ctacaatgagctgcgtgtggc caggtccagacgcaggatggc 271 

*GAPDH tgcaccaccaactgcttagc ggcatggactgtggtcatgag 87 

*SDHA tgggaacaagagggcatctg ccaccactgcatcaaattcatg 86 
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Figure 4.1.  Gel electrophoresis confirming the presence of a subset of autism susceptibility 

genes in the developing human cerebral cortex.  The expression of (A) NRXNs 1-3,  (B) 

NLGNs 1-4X and (C) SHANKs 1-3 was detected in the cortex between 8-12 PCW using gene 

specific primers.  mRNA was extracted from tissue samples taken from the anterior, central, 

posterior and temporal regions of the human cerebral cortex.  This RNA was pooled and 

reverse transcribed for use in non-quantitative PCR reactions.  Data shown at 10 PCW.    

 

β β 

β 
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Figure 4.2. Schematic representations of the exons of autism susceptibility genes.  (A) 

NRXNs, (B) NLGNs and (C) SHANKs.  Grey bars represent gene exons and are to scale.  Green 

bars represent the coding sequence of the genes and red bars represent the gene region 

amplified by the designed PCR primers. 

 

4.2.2 Gene expression values were normalised to three reference genes 

For the RNA sequencing data, after normalisation for gene length (2.13), the expression 

values of different genes within a sample were directly comparable.  However, in order to 

compare gene expression values across samples, the Bioconductor package DeSeq 2 was 

employed (2.13.2) to account for the variance and the mean of reads per gene across the 

samples and assumed a negative binomial distribution  (Anders and Huber, 2010).  Due to 

the stringent parameters set by such programs, it is difficult to detect small, yet significant 

differences between samples (Anders & Huber, 2010).  Of the NRXN, NLGN and SHANK 

genes, only NRXN3 was identified as differentially expressed between 9 and 12 PCW using 

this method.  For a more accurate comparison with the NRXN, NLGN and SHANK qPCR data, 

RPKM values obtained from sequencing were normalised to the expression values of the 
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same three reference genes, ACTINβ, GAPDH and SDHA used for the qPCR data analysis.  

These three genes are essential for normal cellular functions and, therefore, are thought to 

be constant in expression across cell type and across all experimental conditions (Gubern et 

al., 2009, de Kok et al., 2005).   

Quantitative PCR is seen as the ‘gold standard’ of nucleic acid quantification and was used to 

validate results obtained from RNA sequencing data and to identify differentially expressed 

genes between different cortical regions.   The comparative CT method assumes that the 

transcript amplification efficiency values of all primers are 100% and so instead, we used an 

equation based on the Pfaffl method (Pfaffl, 2001) which takes into account the difference in 

primer efficiencies.  We employed the program data miner 

(http://www.miner.ewindup.info/) to determine transcript amplification efficiency values for 

each primer set using the raw fluorescent SYBR readings (chapter 2.3.4).  These final 

expression values were then normalised to the same 3 reference genes as used for the RNA 

sequencing making the two methods comparable.   

For the RNA sequencing data, the log10 of the average RPKM values for the 3 reference 

genes were compared across conditions (age PCW) and across cortical region.  The highest 

expression values were observed for ACTINβ and GAPDH whilst SDHA had a significantly 

lower (p<0.05) RPKM value in comparison across all ages and cortical regions (figure 4.3).  

For each sample, the pattern of expression of these three genes remained the same all ages 

and cortical regions  

For the qPCR data, the Ct values (obtained using the data miner program) were compared.  

These control genes showed the same expression patterns at 8, 10 and 12 PCW as well as in 

the anterior, central, posterior and temporal regions of the cortex (figure 4.4).  Statistical 

analysis confirmed that SDHA had the highest cycle threshold (Ct) value (p<0.05) and 

therefore, the lowest expression level compared to ACTINβ and GAPDH whose Ct values 

were not statistically different from each other (figure 4.4).  Changing the age of the sample 

or the cortical region had no effect on the patterns of expression exhibited by the three 

reference genes making them ideal candidates for normalisation calculations. 

 

 

 

http://www.miner.ewindup.info/
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Figure 4.3.  Expression (Log10 RPKM) of reference genes βACTIN, GAPDH and SDHA 

obtained from RNA sequencing.  The expression values of each of the three reference genes 

obtained after RNA sequencing and used throughout this study were not significantly 

different between 9, 11 and 12 PCW or between the anterior, central, posterior and 

temporal regions of the cortex.   βACTIN and GAPDH were also not significantly different 

from each other, having RPKM values of more than 1000.  The SDHA value across samples 

was less than 100 RPKM and was significantly lower than that of the other two reference 

genes. *significance p<0.05 

* 
* * * 

* 

* 

* * * 

* * * 
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Figure 4.4. Expression (Ct) of reference genes βACTIN, GAPDH, SDHA obtained from 

quantitative PCR. Lower CT values represent a higher level of expression. The expression 

values of each of the three reference genes obtained after qPCR and used throughout this 

study were not significantly different between 9, 11 and 12 PCW or between the anterior, 

central, posterior and temporal regions of the cortex.  The expression of βACTIN and GAPDH 

was not significantly different.  The SDHA expression value was often, but not always, 

significantly lower than that of the other two reference genes. * significance p<0.05 
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4.2.3 Average expression levels of NRXNs between 8-12 PCW  

To obtain average gene expression values for NRXNs 1-3, NLGNs 1-4X and SHANs 1-3 within 

the cerebral cortex, the values from the anterior, central, posterior and temporal regions of 

a particular age, sample and hemisphere were combined.  The number of brains used for 

RNA seq and qPCR at each age can be seen in tables 4.1 and 4.2.  The expression values were 

normalised to the expression of the three reference genes.  The primer sets used for 

reference genes and genes of interest in quantitative PCR can be seen in table 4.2.    

Due to sample availability, the brains we were able to obtain for RNA sequencing were 9, 11 

and 12 PCW of age.  The brains used for qPCR were 8, 10 and 12 PCW.  The differences in 

age PCW must be taken into consideration in the comparisons between the two sets of data. 

At 9PCW in the human cortex, the RNA sequencing data revealed that the expression levels 

of NRXNs 1 and 2 showed similar levels of expression but were 10 fold higher than the 

expression of NRXN3 (figure 4.5A).  They reached a relative expression level of 0.1 which 

indicates that the level of expression is 10% that of the mean reference gene expression.  At 

11 and 12 PCW, this pattern of NRXN expression remained with NRXNs 1 and 2 being 

significantly more highly expressed than NRXN3 (P<0.05; figure 4.5A).  However, by 12 PCW, 

NRXN1 and 2 expression was each more than 15% of the reference gene expression.  For 

both NRXNs 1 and 2, linear correlation co-efficients showed that age and expression were 

significantly positively correlated (p<0.05; figure 4.5A).  NRXN1 showed the greatest change 

in expression from 9-12 PCW, increasing by almost 2 fold whilst the change in NRXN2 

expression was less than 1.5 fold.  NRXN3 did not significantly increase in relative expression 

with age. 

The qPCR data indicates that at 8 PCW, NRXN2 expression was significantly higher than 

NRXNs 1 and 3 with a relative expression value reaching 0.1 (p<0.001; figure 4.5B).  At this 

earlier stage of development, although NRXN1 seemed comparable to NRXN3 in its level of 

expression, the line of best fit in the regression analysis would suggest that its relative 

expression increased to a level closer to that of NRXN2 by 9 PCW (figure 4.5B).  By 10 PCW, 

the relative expression values of NRXNs 1 and 2 were similar and were significantly higher in 

expression than that of NRXN3 (p<0.05; figure 4.5B).  The expression of NRXN1 had 

dramatically increased over 5 fold to become the predominantly expressed NRXN (figure 

4.5B).    At 12 PCW, NRXN1 remained the predominantly expressed NRXN with a relative 

expression value reaching almost 30% of the value of the reference gene expression (figure 
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4.5B).  This is 0.5 fold higher than the expression value obtained from the RNA seq data.  

However, the error bars show that the data obtained by qPCR was more variable than that 

obtained by RNA seq.  NRXN2 relative expression at 12 PCW was just less than 0.2 which is 

similar to the expression value obtained from the RNA seq data.   Both NRXN1 and NRXN2 

were significantly more highly expressed than NRXN3 at this age (p<0.01). 

From 8-12 PCW, all three NRXN genes significantly increase in expression (p<0.05; figure 

4.5B).  NRXN1 shows the greatest change in expression from 8-12 PCW, increasing by over 

10 fold, whilst the change in NRXN3 expression with age is less obvious (< 2 fold).  NRXN2 

showed a uniform increase in expression during this developmental period, increasing just 

over 2 fold from 8-12 PCW. 

 

4.2.4 Average expression levels of NLGNs between 8-12 PCW 

In the human cortex, the RNA sequencing data indicated that NLGNs 1 and 3 significantly 

increase in expression between 9 and 12 PCW (p<0.01; figure 4.6A).  NLGN2, however, 

significantly decreased in expression between 9-12 PCW (p<0.01).  NLGN4X relative 

expression remained constant. 

NLGN2 was more highly expressed than NLGNs 1, 3 or 4X.  Its expression equalled more than 

half of that of the reference genes at 9 PCW (figure 4.6A).  The next most highly expressed 

NLGN gene at this age, NLGN3, had a relative expression 5 fold less than NLGN2.  The NLGN 

genes with the lowest relative expression levels at 9 PCW were NLGN1 and NLGN4X whose 

expression levels were 10 fold less than that of NLGN2.  Although the average relative 

expression levels of NLGNS 1, 3 and 4X were different, these differences were not significant.  

At 11 PCW, NLGN2 was still the predominantly expressed NLGN gene and was significantly 

more highly expressed than NLGNs 1, 3 and 4X (figure 4.6A).  NLGN3 was also now 

significantly more highly expressed than NLGNs 1 and 4X at this age.  NLGNs 1 and 4X 

showed no significant difference in their relative expression levels compared to 9 PCW and 

remained the NLGN genes with the lowest relative expression values. 
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Figure 4.5 Expression of NRXNs within the cortex between 8 and 12 PCW. (A) Analysis of 

RNA sequencing data revealed that NRXN3 had a significantly lower expression value relative 

to the three reference genes than NRXNs 1 and 2.  The expression of NRXN3 did not change 

significantly between 9 and 12 PCW. (B) Quantitative PCR revealed that the expression of 

NRXN3 was significantly lower than that of NRXNs 2 and 3 at 10 and 12 PCW and that it 

significantly increased in expression with age.  Both NRXNs 1 and 2 showed a significant 

increase in expression between 8 and 12 PCW.  *significance values p<0.05, n=54-55 Error 

bars represent standard error of the mean 

A 
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The expression patterns exhibited by NLGNs 1-4X at 12 PCW remained more or less the 

same as at 11 PCW.  However, NLGN1 and NLGN4X expression became significantly different 

from each other (figure 4.6A).  At 12 PCW, NLGN1 expression was 2 fold higher than NLGN4X 

expression, reaching almost 10% of the reference gene expression. 

The NLGN qPCR data conflicted with the RNA sequencing data, showing that all NLGNs 

appeared to increase in expression from 8-12 PCW (figure 4.6B).  However, only NLGNs 2 

and 4X showed a significant increase with age (p<0.05) according to the correlation co-

efficient between age and expression values.  At 8 and 10 PCW, NLGN1, rather than NLGN2, 

was the predominantly expressed NLGN and was significantly higher in expression than 

NLGNs 2, 3 and 4X (p<0.05; figure 4.6B).  NLGNs 2 and 3 had the lowest expression values of 

the NLGN genes from 8-12 PCW.  NLGN3 had a higher relative expression value than NLGN2 

at 8 and 12 PCW, however, this difference was not significant.  NLGNs 2, 3 and 4X show 

more than a 2 fold increase in relative expression from 8-12 PCW.  NLGN1, despite being the 

most highly expressed NLGN shown by the qPCR data, increased in expression less than 2 

fold from 8-12 PCW (figure 4.6B).  By 12 PCW, the relative expression values of NLGNs 3 and 

4X had increased so that they were no longer significantly lower in expression than NLGN1.  

NLGN1 was still significantly higher (p<0.05) in expression than NLGN2. 

The NLGN genes showed a similar relative expression range to the NRXN genes (between 

0.05 and 0.5).  Only half of the NLGN genes significantly increased with age and the qPCR 

data did not correspond well with the RNA seq data unlike the NRXNs where at least two of 

the three NRXN genes increased in expression with age and the two experimental methods 

yielded the same overall patterns of expression. 
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Figure 4.6 Expression of NLGNs within the cortex between 8 and 12 PCW.  (A) Analysis of 

RNA sequencing data suggested that NLGN2 expression was significantly higher than NLGNs 

1, 3 and 4X expression but decreased significantly between 9 and 12 PCW.   The expression 

of NLGNs 2 and 4X significantly increased with age.   (B) Quantitative PCR revealed that 

NLGN1 had a higher relative expression than the other NLGN genes.  NLGN2 and 4X 

significantly increased in expression with age.  *significance values p<0.05, RNA Seq n=63, 

qPCR n=49 
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4.2.5 Average expression levels of SHANKs between 8-12 PCW 

Relative expression of the SHANKs was found to be considerably higher when measured by 

RNA seq than by qPCR.  SHANKs 1, 2 and 3 did not significantly increase in expression from 9-

12 PCW (figure 4.7A).  The RNA seq data showed that SHANK1 was significantly (p<0.05) 

more highly expressed than SHANKs 2 and 3 at 9, 11 and 12 PCW, and reached a relative 

expression level similar to that of NLGN2 (figure 4.7A).  SHANK1 was almost 10 fold more 

highly expressed than SHANK2.  At 9 PCW, SHANKs 2 and 3 were significantly different in 

expression from each other with SHANK3 having a twofold higher relative expression level, 

however this significant difference in expression was lost at 11 and 12 PCW (figure 4.7A). 

The qPCR data for SHANK1 and 3 did not confirm the findings of the RNA seq data.  At 8, 10 

and 12 PCW, SHANK2 was significantly more highly expressed than SHANKs 1 and 3, with a 5 

fold higher relative expression value at 8 and 12 PCW (p<0.05; figure 4.7B).  The relative 

expression values for SHANK2 are less than 10 % of the expression of the reference genes.  

This level of expression was comparable with that of NRXN3 and NLGN4X.  SHANKs 1 and 3 

relative expression values, given by qPCR experiments, were significantly lower than those of 

SHANK2 (p<0.05).  These genes did not significantly differ in expression from each other at 8, 

10 and 12 PCW.  SHANKs 1, 2 and 3 did not show a significant change in expression with age 

(figure 4A & B).  

 

4.2.6 Identification of gene expression gradients across the cerebral cortex from 8-12 PCW 

Expression levels, relative to the three reference genes, of NRXNs 1-3 were examined across 

the cortex between 8 and 12 PCW.  Both RNA sequencing and qPCR data were considered. 

The RNA seq data suggested that at 9 PCW, NRXN2 was significantly more highly expressed 

in the posterior cortex compared to the anterior cortex (figure 4.8A).  However, this was not 

confirmed by the qPCR data.  At 8 PCW, there were no significant differences in NRXNs 1, 2 

and 3 expression between the anterior, central, posterior and temporal regions of the cortex 

(figure 4.8B).   
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Figure 4.7 Expression of SHANKs within the cortex between 8 and 12 PCW.  (A) RNA 

sequencing data suggests that SHANK1 was significantly more highly expressed than SHANKs 

2 and 3.  There was no increase in expression of the SHANK genes with age.  (B) Quantitative 

PCR data suggested that SHANK2 had a significantly higher expression than SHANKs 1 and 3.  

There were no significant differences identified in SHANK gene expression between 8 and 12 

PCW.  *significance values p<0.05, RNA Seq n=63, qPCR n=30-55 

 

 

A 

 

 

 

 

 

 

 

 

 

B 



120 
 

At 11 PCW, the expression of NRXN1 in the temporal lobe was higher than the other cortical 

regions but this was not statistically significant (figure 4.8C).  The qPCR data at 10 PCW, 

however, showed that NRXN1 expression in the temporal lobe was significantly higher than 

in the posterior cortex (figure 4.8D).  The RNA seq data also suggested that NRXN2 

expression was higher in the posterior and temporal regions compared to the central cortex 

but again this could not be confirmed by qPCR. 

At 12 PCW, there were conflicting results regarding the expression of NRXN1.  The RNA seq 

data indicated that the expression of NRXN1 was significantly (p<0.05) higher in the 

temporal lobe compared to the anterior cortex (p<0.05; figure 4.8E).  Conversely, the qPCR 

data shows that NRXN1 expression was significantly higher in the anterior cortex compared 

to the posterior cortical region (p<0.05; figure 4.8E).  The expression of NRXNs 2 and 3 did 

not differ significantly between these cortical regions at 12 PCW in either data set. 

At 9 and 11 PCW, NLGN3 expression was significantly (p<0.05) higher in the temporal lobe 

compared to the central region in the RNA data (p<0.05; figure 4.9A & C).  The relative 

expression value of NLGN3 is higher in the temporal region compared to the central region  

in the qPCR data also, however, this difference is not significant (figure 4.9B).  The qPCR 

identified a difference in expression of NLGN3 between the anterior and central cortical 

regions (figure 4.9D).  It was significantly more highly expressed in the anterior compared to 

the central cortex (figure 4.9D).  Both sets of data indicate that the central region of the 

cortex showed a reduced expression of NLGN3 (figure 4.8C-D) but this difference is not 

significant in the RNA seq data.  By 12 PCW, no expression gradients were identified for 

NLGN3 (figure 4.8E & F).  NLGN1 was significantly more highly expressed in the anterior 

cortex compared to the central, posterior and temporal regions in the RNA seq data but this 

finding was not validated by the qPCR data (p<0.05; figure 4.9E & F).   The NLGN gene 

expression data was more variable than the NRXN data as shown by the larger error bars.  

The RNA sequencing experiments suggested that there was a higher relative expression of 

SHANK1 in the temporal lobe compared to the other cortical regions (figure 4.10A, C, E).  

However, statistically, this was only significant at 9 PCW between temporal and central 

regions (p<0.05; figure 4.10A).  There were no other statistically significant differences in the 

expression of SHANKs 1-3 across the cortex (figure 4.10).  
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Figure 4.8 Expression of NRXNs 1-3 relative to three reference genes. (A) At 9PCW, the 

expression of NRXN2 in the posterior cortex was significantly higher than that of the anterior 

cortex.  (B) Quantitative PCR did not identify any NRXN expression gradients at 8 PCW.  (C) 

At 11 PCW, RNA seq identified that there was significantly less expression of NRXN2 in the 

central cortex compared to the posterior and temporal regions.  (D) RNA seq identified a 
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significantly increased expression of NRXN1 in the temporal cortex.  (E) At 12 PCW, NRXN 

expression was significantly higher in the temporal cortex compared to the anterior cortex 

(F) qPCR identified a significantly higher expression of NRXN1 in the anterior cortex at 12 

PCW.   

*significance p<0.05, n=3-10 for RNA seq data and 3-5 for qPCR data 

 

 

Figure 4.9 Expression of NLGNs 1-4X relative to three reference genes.  

(A) At 9PCW, the expression of NLGN3 in the temporal cortex was significantly higher than 

that of the central cortex.  (B) Quantitative PCR did not identify any NRXN expression 

gradients at 8 PCW.  (C) At 11 PCW, RNA seq identified that there was significantly higher 

expression of NLGN3  in the temporal cortex compared to the central cortex.  (D) RNA seq 

identified no significant differences in NLGN expression across the cortex at 11 PCW.  (E) At 

12 PCW, NLGN1 expression was significantly higher in the anterior cortex.  (F) RNA seq 

identified no significant differences in NLGN expression across the cortex at 12 PCW. 

*significance p<0.05, n=3-10 for RNA seq data and 3-5 for qPCR data 

 

 

Figure 4.10   Expression of SHANKs 1-3 relative to three reference genes. 

(A) At 9PCW, the expression of SHANK1 in the temporal cortex was significantly higher than 

that of the central cortex.  (B) qPCR identified no significant differences in SHANK expression 

across the cortex at 8 PCW.  (C) RNA Seq analysis identified no significant differences in 

SHANK expression across the cortex at 11 PCW.   (D) qPCR identified no significant 

differences in SHANK expression across the cortex at 10 PCW.  (E)  RNA Seq analysis 

identified no significant differences in SHANK expression across the cortex at 12 PCW. (F) 

qPCR identified no significant differences in SHANK expression across the cortex at 12 PCW. 

*significance p<0.05, n=3-10 for RNA seq data and 3-5 for qPCR data 
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Figure 4.9 Expression of NLGNs 1-4X relative to three reference genes.  

See page 122 for legend. 
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Figure 4.10   Expression of SHANKs 1-3 relative to three reference genes. 

See page 122 for figure legend. 
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4.2.7 Average expression levels of NRXN binding partners between 9-12 PCW 

The RNA seq data largely corresponded with that of the qPCR data for NRXN expression.  The 

expression of NLGNs varied between the two data sets but overall, appeared to show high 

expression in the cortex as did the NRXN genes.  In order to get an idea of what other 

proteins could be interacting with NRXNs at this developmental stage, we examined the 

expression of genes known to code for NRXN binding partners relative to the same three 

reference genes as examined previously.  It is important, in order to understand the 

functions that NRXN proteins are playing at this developmental stage, to have an idea of 

what proteins they are interacting with.  A very low level or an absence of gene expression 

would suggest that the protein products are not present at this time. 

Cerebellin 1 precursor (CBLN1) and cerebellin 2 precursor (CBLN2) genes are both expressed 

in the cortex between 9 and 12 PCW but have different expression profiles.  CBLN2 

expression does not change significantly during this period whereas, CBLN1 expression 

significantly decreases (p<0.05; figure 4.11A).  The expression of CBLN1 is also significantly 

higher than CBLN2 at 9, 11 and 12 PCW (supplementary table 4.), reaching relative 

expression levels comparable those of NRXNs in the RNA seq data.   NXPH1, like CBLN2, has a 

relative expression value less than 0.05 (5% of reference gene expression) and this value 

does not significantly change between 9 and 12 PCW (figure 4.11A). 

Leucine rich repeat transmembrane neuronal (LRRTM) genes encode type I transmembrane 

proteins (Laurén et al., 2003) that have similar functions to NLGNs, can bind the PDZ domain 

of post synaptic density proteins and interact with NRXN proteins across the synaptic cleft 

(Wright and Washbourne, 2011).    All four members of the LRRTM family were expressed in 

the cortex between 9 and 12 PCW and all showed a significant increase in expression during 

this time period (p<0.05; figure 4.11B).  LRRTM2 had the highest relative expression value of 

the four genes and increased almost 3 fold between 9 and 12 PCW.  LRRTM1 had the lowest 

relative expression levels of the gene family (<2%), however, it increased over 6 fold 

between 9 and 12 PCW (figure 4.11B). 
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Figure 4.11   Average expression of NRXN binding partners relative to three reference 

genes.  (A) NXPH1 and CBLN2 do not increase in expression between 9 and 12 PCW.  CBLN 

significantly decreases in expression between 9 and 12 PCW. (B) All of the LRRTM genes 

significantly increase in expression  between 9 and 12 PCW.  By 12 PCW, LRRTM2 was 

expressed more highly in the cortex than the other LRRTM genes. 

*significance p<0.05, n=63  
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Figure 4.12 Expression of NRXN binding partners across the cortex.  See page 128 for figure legend. 
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Figure 4.12 Expression of NRXN binding partners across the cortex.  (A) At 9PCW, the expression 

of LRRTM2  in the temporal cortex was significantly higher than that of the anterior and 

central cortex.   The expression of LRRTM3 was significantly higher in the anterior cortex.   

(B) At 11 PCW, RNA seq identified that there was significantly higher expression of LRRTM2 

in the temporal cortex compared to the central cortex.  There was also a significantly higher 

expression of LRRTM3 in the anterior cortex.  (C) At 12 PCW, RNA seq a significantly higher 

expression of LRRTM3 in the temporal cortex compared to the anterior cortex.  No 

expression gradients were identified for NXPH1, CBLN1, CBLN2, LRRTM1 or LRRTM4 in the 

cortex between 9 and 12 PCW. 

*significance p<0.05, n=3-10  

 

 

 

No expression differences were identified between the anterior, central, posterior and 

temporal regions of the cortex for the CBLN genes or for NXPH1 (figure 4.12).  There were, 

however, significant regional expression differences identified in the LRRTM family.  LRRTM2 

expression in the temporal cortex was significantly higher than expression in both the 

anterior and central cortex at 8 PCW, and the central cortex at 11 PCW (p<0.05; figure 4.12A 

& B).  By 12 PCW, these differences in expression were no longer significant.   LRRTM3 

expression in the anterior cortex is significantly higher than the expression in the central, 

posterior and temporal regions at 9 and 11 PCW (p<0.05; figure 4.12A & B).  However, by 12 

PCW, the expression in the anterior cortex appears to have decreased whilst the expression 

in the temporal cortex has increased to a significantly higher level than that of the anterior 

(p<0.05; figure 4.12C). 
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4.3 Discussion 

Mapping the expression patterns of autism susceptibility genes in the early fetal brain gives 

us an insight into what developmental processes their protein products may be involved in.  

Information showing how these genes change temporally and spatially across the cortex can 

be related back to the knowledge that we have about these developmental periods.  

Distinguishing between normal and abnormal gene expression patterns in human brains is 

essential in order to be able to predict the development of these complex conditions.   

We present here, for the first time, a detailed analysis of the expression levels of a subset of 

autism susceptibility genes in the normally developed human cortex from 8-12 PCW.  By 

employing PCR, RNA sequencing and quantitative PCR, this study has confirmed that these 

genes are expressed in the developing cerebral cortex during this important developmental 

period, which sees the establishment and expansion of the transient sub plate and the 

cortical plate (Bayatti et al., 2008a, Bystron et al., 2008).  Thalamocortical fibres have not yet 

innervated the cortex (Bystron et al., 2008) meaning that neuronal differentiation is under 

intrinsic cortical control. 

 

4.3.1 The expression of many NRXNs and NLGNs increases between 8 and 12 PCW 

Genes that significantly increased in expression with age according to both the RNA seq and 

qPCR data included NRXNs 1 and 2 and depending on the data set, NRXN3 and all four 

NLGNs.  The gene expression patterns of NRXNs and NLGNs have not previously been 

examined in humans at these developmental stages.  NRXN1 and NLGN3 are known to 

increase in expression in the cortex during postnatal development before decreasing in 

expression during aging in mice (Kumar and Thakur, 2015).  This decrease in expression with 

age correlates with a decrease in synaptic plasticity (Sibille, 2013, Bloss et al., 2011, Dumitriu 

et al., 2010).  Other studies using cell models have shown that the expression of some 

NRXNs and NLGNs increases during differentiation.  Studies of differentiated human neural 

progenitor cells (NPCs) found that after 4 days in culture, there was a significant increase in 

NRXN1, NLGN3 and NLGN4X (Konopka et al., 2012) and mouse NPCs, taken directly from the 

cortical SVZ and cultured in differentiation media for 7 days, showed an increase in NRXN2 

expression (Gurok et al., 2004).   
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This study confirmed that these genes, in particular NRXNs 1 and 2 and NLGNs 1 and 2, are 

expressed at very high levels within the cortex between 8 and 12 PCW.  During this 

developmental period, the formation of synapses is only just beginning and they are 

confined to the sub-plate and marginal zone which makes up a relatively small proportion of 

the cortex (Bystron et al., 2008, Konig and Marty, 1981, Konig et al., 1975, Molliver et al., 

1973).  It has been proven that a large number of synaptic genes are expressed in cultured 

subplate neurons from rats before they are plated on a feeder layer and induced to form 

synaptic connections.  However, less than 10% of these are differentially regulated during 

the early stages of synaptogenesis and it is only at later time periods that an increased 

number of known synaptic markers change in expression (McKellar and Shatz, 2009).  NRXN3 

and NLGN2 were identified as being upregulated at the later periods of synaptic 

differentiation (up to 96 hours after feeder layer exposure) rather than the initial periods of 

synaptogenesis (up to 24 hours).   

 SHANK genes do not increase in expression with age, although they are expressed in the 

cortex during this developmental time period.  SHANK proteins contribute to the post 

synaptic density of the post synaptic membrane in mature synapses, linking this structure to 

the actin cytoskeleton (Qualmann et al., 2004).  Post synaptic density genes, in addition to 

presynaptic release genes do not appear to be upregulated during the early stages of 

synaptogenesis and are likely to act as markers of later synaptic development (McKellar & 

Shatz, 2009).  SHANK2 expression is highest of the three genes in the qPCR data.  It has been 

shown previously, in rats, to be the first of the three genes to be expressed at the PSD 

(Grabrucker et al., 2011).  SHANK2 is associated with neuronal differentiation and neurite 

outgrowth in the retina via ERK1/2 activation (Kim et al., 2009).  It is co-localised with 

neurofilament but is present in all retinal layers.  The Kim (2009) study showed that SHANK2 

increased as the retina differentiates and blocking ERK signalling decreased SHANK2 

expression.  SHANK2 is unlikely to be involved in the differentiation of cortical neurons via 

the ERK1/2 signalling at this developmental period as there is no increase in expression with 

age and RNA sequencing did not detect ERK1/ 2 gene expression (supplementary link).  

However, the fact that it is being transcribed, possibly at a higher level than the other SHANK 

genes, suggests that it may be required for neuronal differentiation and neurite outgrowth 

at later, but imminent, developmental stages. 
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Therefore, NRXNs and NLGNs appear to be part of a group of synaptic genes that are 

separate both transcriptionally and functionally to the group that includes SHANKs.  Indeed, 

the expression pattern of the presynaptic vesicle marker synaptophysin is not identical to 

that of NRXN1 and NLGN3 in the postnatal cortex.  In rodents, SYP began to decrease in 

expression from 10 post-natal weeks whereas a decrease in NRXN and NLGN protein was not 

observed until after 30 weeks (Kumar and Thakur, 2015).   

Previous studies have shown that the expression of ‘synaptic’ genes occurs before the 

formation of synapses and this suggests that they may be involved in other functions of 

neuronal cells.  The increase in expression of NRXNs and NLGNs between 8 and 12 PCW 

correlates with an increase in multiple developmental processes in addition to 

synaptogenesis including neuronal differentiation, neurite outgrowth and synaptic plasticity 

(Bystron et al., 2008) and an increase in neuronal migration.  Neurexin and neuroligin 

proteins, and those that they interact with, could be contributing to any of these processes.  

The level of expression of these genes, in comparison to other synaptic proteins such as the 

SHANK family of genes, suggests that they have functions other than synaptogenesis and 

synaptic stabilisation at this developmental period.  

 

4.3.2 Possible NRXN interactions during early development 

Neurexins have a number of binding partners including Neuroligins (NLGNs), LRRTMs, 

Cerebellins (Cblns), Neurexophilins (NXPHs) and dystroglycans (DEGs; Reissner et al., 2014; 

Matsuda and Yuzaki, 2011; Siddiqui et al., 2010; Sugita et al., 2001b; Missler et al., 1998; 

Ichtchenko et al., 1996; Ichtchenko et al., 1995).  At the presynaptic membrane NRXNs 1 and 

2 are increasing in expression between 8-12 PCW.  NRXN binding partners that are also 

increasing in expression are LRRTM family proteins, DLG1 and some of the NLGN genes.  As 

we have shown here with NRXNs, LRRTM genes show differential expression throughout 

development in mice.  LRRTM1 and 3 are expressed in the mouse forebrain at E9 (Haines & 

Rigby, 2007) but LRRTM2 and 4 are not.  LRRTM2 is expressed later in development than the 

other LRRTM genes at 10 days post coitum (dpc).  All LRRTM proteins can induce pre-

synaptic differentiation in contacting axons in culture as well as recruiting post-synaptic 

proteins to neuronal sites where they are over-expressed (Linhoff et al., 2009).    However, 

LRRTM2 has been shown to be the most effective member of the family for inducing synapse 

formation (Linhoff et al., 2009).  The corresponding patterns of gene expression for NRXNs 
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and LRRTMs between 9 and 12 PCW, suggests that their proteins are not only present at this 

stage but that they are interacting to induce the recruitment of synaptic machinery.  The 

knockdown of all NRXN genes in culture reduces the synaptogenic potential of the LRRTM 

proteins (Um et al., 2016).  Only LRRTM4 and 3 mutations have been associated with autism, 

although LRRTM1 and 2 mutations have been associated with Schizophrenia and Bipolar 

disorder respectively (de Wit & Ghosh, 2014).  The differential splicing of LRRTM3 and 4 can 

affect the binding properties of the proteins (Um et al., 2016).   

It has been suggested that the function of NRXN proteins depend on the protein that they 

bind on the post-synaptic membrane (Clarke & Eapen., 2014).  Depending on which NLGN is 

bound; the interaction can induce the recruitment of post synaptic density proteins to the 

membrane and evoke either inhibitory or excitatory synapse development.  NLGN1 is found 

primarily at glutamatergic synapses whereas, NLGN2 is found primarily at GABAergic 

synapses (Graf et al., 2004).  The increase in NLGN1 and the decrease in NLGN2 identified 

from the RNA seq data would suggest that there is an increase in the formation of excitatory 

synapse development and a decrease in the formation of GABAergic synapse development.  

The first mature synapses are expected to be GABAergic (Hennou et al., 2002), although this 

does not necessarily mean all synaptic outputs are inhibitory.  During development, GABA 

can also be depolarising as expression of the potassium chloride transporter member 5 

(KCC2) is initially low during development.  In mature neurons it is the action of KCC2 in 

maintaining high intracellular chloride concentrations that permits the opening of chloride 

channels via GABAergic receptors to have a hyperpolarising effect (Rivera et al., 1999).   

CBLNs bind NRXNs enabling them both to form complexes with certain post-synaptic 

proteins.  For example, in the mouse cerebellum, Nrxn1 interacts with GluRδ2 via Cbln1 

(Uemura et al., 2010).   Also, CBLN1 acts to form synaptic connections between Purkinje cells 

and parallel fibres in the cerebellum by mediating the interaction between NRXNs and GRID2 

(Mishina et al., 2012).  In this study CBLN1, like NLGN2, decreased in expression between 9 

and 12 PCW suggesting that it is not, at this stage, the main NRXN binding protein.  CBLN1 

appears to decrease postnatally, when synapse production has decreased, in the human 

brain but remains high in the cerebellar cortex (brainspan.org).  Contrastingly, CBLN2 

expression is higher postnatally than prenatally and is not enriched in the cerebellar cortex 

(brainspan.org).  CBLN2 in this study does not change in expression between 9 and 12 PCW, 

although it is expressed. According to the RNAseq data, CBLN4 is not expressed between 9 
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and 12 PCW.  CBLN4 has a lower binding affinity to NRXNs than CBLNs 1 and 2.  An increased 

affinity for NRXNs is seen when binding complexes contain both CBLN1 and CBLN4 (Wei at 

al., 2012), however CBLN4 is hypothesised to have other binding partners.  CBLN1 and 2 are 

able to induce inhibitory pre-synaptic differentiation in cortical cells but the extracellular 

region of NRXN1β is able to prevent this pre-synaptic differentiation.  CBLN4 has a lower 

binding affinity for the NRXNs than CBLN1 and 2, but all three require the presence of SS4 

for binding. CBLNs 1 and 2 have a higher binding affinity for NRXN1 variants in comparison to 

NRXN2 (Joo et al., 2011) and Cbln1 and 2 bind Nrxns 1α and 2α in vitro but have a lower 

affinity for Nrxn3α (Wei et al., 2012).  Despite their proven affinity for NRXN binding and 

their presence in the cortex between 9 and 2 PCW, they don’t appear to be major candidates 

for NRXN binding at this developmental stage.  Although there may be interactions between 

NRXNs and CBLNs 1 and 2, the increase in NRXN expression suggests an increase in protein 

abundance that is not matched by CBLN1 and 2 expression. 

The final NRXN binding partners to be examined were DAG1 and NXPH1.  These two proteins 

have been shown to compete for binding of NRXN1α (Reissner et al., 2014). Nxph1 is found 

only at inhibitory synapses in mice (Batista-Brito et al., 2008) and dystroglycan is also 

associated with inhibitory synapses in the mouse hippocampus (Levi et al., 2002; Pribiag et 

al., 2014).  The DAG1 gene codes for both α and βDAG which are extracellular and 

transmembrane proteins respectively.  In addition to competing with NXPH for binding sites, 

αDAG is able to bind Nrxn1α at LNS2 to prevents the binding of Nlgn at LNS6.  This study has 

identified DAG1 as increasing in expression between 9 and 12 PCW although neither DAG1 

or NXPH1 are differentially expressed between cortical regions as the NRXNs are.  It is also 

not known whether the increased DAG1 expression with age is giving rise to α or β protein 

forms.  Although these genes are expressed in the cortex and DAG1 increases in expression 

with age, there is limited evidence to suggest that they play a pivotal role in cortical 

development through their interactions with NRXN proteins.  Rather, this study suggests that 

it is the NLGN and LRRTM genes that mimic the expression profiles of NRXNs and may be, 

therefore, likely to be the main proteins influencing NRXN function from 9 to 12 PCW. 

All of these NRXN ligands mentioned bind to either LNS2 or LNS6 which is present in βNRXNs 

(Siddiqui et al., 2010; Sujita et al., 2001; Missler et al., 1998).  NXPH can bind NRXNs with or 

without SS4 but the other binding partners are more specific.  NLGNs, LRRTMs, and DAGs 

require the removal of SS4 whereas CBLNs need SS4 present in order to bind NRXNs.  It 
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would be interesting to examine the absence or presence of this splice site in the cortical 

samples and to examine whether its inclusion/exclusion differs between ages and/ or 

cortical regions.  This would provide valuable and additional insight into what ligands are 

potentially binding NRXNs at this developmental stage. 

 

4.3.3 NRXN, NLGN and LRRTM gene expression increases in the anterior and temporal 

cortex between 8 and 12 PCW 

The qPCR data for NRXN1 and NLGN3 as well as the RNA seq data for NLGN1, LRRTM2 and 

LRRTM3 suggests that there is significantly higher expression of these genes in the anterior 

and/ or temporal cortex between 9 and 12 PCW.  The dysfunction of both the anterior and 

temporal cortex is associated with multiple neurodevelopmental and psychiatric conditions 

(reviewed in Schwarzbold et al., 2008; de Oliveira et al., 2010; Trimble, 2002) including ASD, 

depression, dis-inhibition, impaired social judgement and obsessive compulsive disorder.  

Individuals with tuberous sclerosis have benign tumour growth on the temporal lobe from 

birth as a result of mutations in either TSC1 or TSC2.  These gene mutations and/ or tumours 

can cause mental retardation, a lack of adaptive social behaviours, a lack of recognition of 

the significance of people, objects or events and a hypersensitivity to visual stimuli (Hetzler 

& Griffin, 1981), resulting in additional ASD diagnoses (Benvenuto et al., 2009).   

If higher expression of these genes between 9 and 12 PCW is important for the normal 

development of the brain then ablation of these gradients in the anterior and temporal 

cortex could be a risk factor for autism.  These gradients of expression may be necessary to 

establish the correct circuitry within and between different cortical regions.  Welchew et al. 

(2005) observed abnormal functional connectivity in the brains of Asperger’s patients 

compared to controls.  Fronto-striatal circuits are affected in people with Fragile X 

syndrome, many of which are also diagnosed with ASD (Hoeft et al, 2007).  In ASD, there are 

an increased number of connections in the frontal lobe (Courchesne & Pierce, 2005). 

Abnormalities in fronto-temporal circuitry is also a risk factor for schizophrenia (Winterer et 

al., 2003; Meyer-Lindenburg et al., 2001; Jennings et al., 1998; Frith et al., 1995).  ASD and 

schizophrenia share many of the same susceptibility genes, including NRXN1 (Kirov et al., 

2009), some of which are transcriptionally co-regulated (Ellis et al., 2016).    
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A reduction in ASG expression, may contribute to the loss of cell-cell contacts if they have a 

role as cell adhesion molecules during development.  This in turn would disrupt vital 

connections being established, particularly those required for long range connections with 

other cortical regions and sub-cortical structures.  The same effect would be observed if a 

decrease in NRXN or NLGN expression prevented axonal outgrowth or prevented the 

recognition of these axonal outgrowths by post synaptic counterparts leading to failure to 

establish these long range connections. 

Despite the interesting possibilities if there were higher expression of NRXNs and their 

binding partners in anterior and/ or temporal cortical regions, this study did not definitively 

show that expression gradients are present for specific genes.  The RNA seq and the qPCR 

data suggest that gradients may be present, with expression particularly higher in the 

anterior or temporal lobes, however, the two sets of data are inconsistent.  This study has 

been an interesting insight into the gene expression patterns of ASGs in the developing 

cortex and has no doubt provided inferences as to where the expression of these genes may 

be increased.   

 

4.3.4 Discrepancies between the data sets and methods of analysis 

Although increases in expression were detected for the NLGN genes in both data sets, the 

significant differences across time identified in the RNA sequencing data were not validated 

by the qPCR data.  The RNA sequencing data showed a significant increase in expression 

between 9 and 12 PCW for NLGNs 1 and 3 but not NLGN4X.  Conversely, qPCR identified this 

increase as significant in NLGN4X but not NLGNs 1 and 3.  An increased sample size could 

possibly resolve the discrepancies between the two methods.  It was expected that, due to 

the significant increase in expression of their binding partners, NRXNs, the expression of 

NLGNs would also increase.   

The expression of NLGN2 appeared to significantly decrease with age in the RNA seq data 

but significantly increased with age in the qPCR data.  NLGN2 is thought to function at 

inhibitory GABAergic synapses (Babaev et al., 2016; Hoon et al., 2009) interacting with 

NRXN1.  NLGN2 expression is decreased following chronic stress in the hippocampus of adult 

rats (van der Kooij et al., 2014) and roles in neural circuit remodelling and the synaptic 

inhibitory/ excitatory balance have been proposed due to changes in aggressive behaviour 



136 
 

following increases/ decreases in its expression (ref).  It is important to note that due to 

sample availability, sample sizes were small (n=3-10) and the brain samples used for RNA 

sequencing were not the same set of samples as those used for qPCR.  Therefore, it is 

possible that differences between the two sample groups, investigated using two separate 

techniques, may be due to factors other than those that we have tested for such as 

environmental influence and changes in response to stress.  Post mortem delay differed 

between samples as well as the conditions that each embryo/ foetus is subjected to within 

the womb.  In addition to post mortem delay, pH has a large effect on gene expression 

(Birdsill et al., 2011).  The pH of each brain was not recorded during dissection but would be 

an interesting piece of information for future studies.  Due to the small sample sizes there is 

also a degree of caution required when relating the results to the general population.  

Sample availability is an obvious limitation to this study; however, human material offers a 

complex and unique insight into the development of the human brain.  

Our analysis, normalising RPKM expression values to three reference genes, failed to identify 

NRXN3 as differentially expressed between the anterior and posterior cortex.  The qPCR data 

set disagreed with the pattern of expression for NRXN3.  Rather than being more highly 

expressed in the posterior as in the RNA seq data, the qPCR data suggests that it is more 

highly expressed in the anterior cortex although neither finding is statistically significant.  

This highlights differences between expression values obtained in the qPCR and the RNA seq 

data.  Also differences between using the software package and manually comparing 

expression to three reference genes in the ability to detect significant changes in gene 

expression.  In this case the manual method, although it identifies that NRXN3 has a higher 

expression in the posterior cortex than other brain regions, appears to be more stringent. 

 

4.3.5 Neurexins and Neuroligins are required for more than synapse formation 

The discovery of an increasing number of proteins with synaptogenic activity supports the 

findings that the NRXN-NLGN interactions are not essential in the process of synapse 

formation (Missler et al., 2003).  Although synapses develop normally in αNRXN knockout 

mice, the absence of protein does elicit behavioural phenotypes suggesting more subtle 

roles for these proteins in brain development.     
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The process of synaptic maturation involves the transcription and translation of proteins 

required for functional synapses, the recruitment of these proteins to the synaptic 

membranes (Giagtzoglou et al, 2009), organisation of these proteins and their interaction 

with each other within and across synaptic membranes. 

As well as the current established functions of NRXN proteins as presynaptic cell adhesion 

molecules, they are likely involved in the organisation of the presynaptic release machinery.  

Triple αNRXN knockdown mice, although they are not viable, have the correct number of 

synapses at birth but neurotransmitter release is severely inhibited (Missler et al, 2003).  

αNRXNs have observed functions in calcium dependant neurotransmitter release (Missler et 

al., 2003).  Although synaptogenesis may be aided by the extra-cellular interactions of these 

proteins, NRXNs may also have roles beyond this.  Indeed it has been shown that in the 

absence of individual NRXN proteins, rodents have functional synapses (Missler et al., 2003). 

Although gene expression patterns are informative and give us an indication as to how much 

protein there will be relative to other genes, it is more convincing to visualise the proteins 

directly using immunohistochemistry/ immunofluorescence.  In the next chapter these 

techniques will be discussed as will potential roles of neurexins in the developing cortex. 
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CHAPTER 5 

Investigating the cortical localisation of NRXN proteins in the developing 

human forebrain 

5.1 Aim  

The aim of this study was to map the distribution of NRXN proteins within the human 

forebrain between 8 and 12 PCW.   

5.2 Results 

5.2.1 Markers of cortical lamination 

The transcription factor PAX6 is a marker of proliferative radial glia within the ventricular 

zone (VZ) and sub-ventricular zone (SVZ) of the cerebral cortex (Gomez-Lopez et al., 2011, 

Bayatti et al., 2008b, Kerwin et al., 2004).  Radial glia serve as a means of migration for post 

mitotic neurons from the proliferative regions to the CP (see section 1.2; Nadarajah and 

Parnavelas, 2002).  Radial glia also migrate from the VZ to the SVZ and proliferate.  The 

developing primate sub ventricular zone of the cortex contains both an inner and outer 

region.  The inner sub-ventricular zone is that contacting the VZ, while the oSVZ is situated 

between the VZ and the IZ.  The outer SVZ is thought to have enabled the expansion and 

evolution of the human brain (reviewed in Lui et al., 2011).  PAX6 controls the length of the 

cell cycle and prevents the expression of post mitotic neuronal markers (Estivill-Torrus et al., 

2002).  The anti-PAX6 primary used in this study has previously correctly shown 

immunopositivity in the VZ and SVZ of the human cerebral cortex (Bayatti et al., 2008b, 

Manuel and Price, 2005).  Antibody details can be found in table 2.4. 

T box brain 1 (TBR1), another transcription factor, is a marker of post mitotic glutamatergic 

neurons that reside in the cortical plate (CP) and subplate (SP).  TBR1 protein expression is 

also seen in a subset of cells of the SVZ and IZ as they transition from TBR2 positive 

intermediate progenitor cells into post mitotic cells that begin migration to the cortical plate 

(Englund et al., 2005).  In particular, it is required for the differentiation of layer VI of the 

cerebral cortex (Bedogni et al., 2010).  Validation of the anti-TBR1 primary used in this study 

has been carried out previously, showing immunopositivity in the CP and some cells of the 

SVZ and IZ and an absence of immunopositivity in the proliferative cortical regions (Bayatti 

et al., 2008b).  Antibody details can be found in table 2.4. 
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Growth associated protein 43 kDa (GAP43) is present in axonal growth cones (Benowitz and 

Routtenberg, 1997) and between 8 and 12 PCW, these growing axons are present in the 

subplate (SP), marginal zone (MZ) and intermediate zone (IZ) of the cerebral cortex.  

Synaptophysin (SYP) is also expressed in these cortical regions and is a marker of synapse 

formation (Tarsa and Goda, 2002).  SYP is the most abundant synaptic vesicle protein 

(Takamori et al., 2006) and is required for their efficient endocytosis (Kwon and Chapman, 

2011).  The SYP and GAP43 primary antibodies used in this study have been validated in 

previous studies with SYP showing punctate synaptic staining (Bayatti et al., 2008a, Clowry et 

al., 2005) and GAP43 immunopositivity in growing axons of the MZ, SP and IZ of the human 

cortex (Ip et al., 2011, Bayatti et al., 2008a).  Antibody details for both SYP and GAP43 can be 

found in table 2.4. 

Neurexin antibodies used in this study have never before been used in prenatal brain tissue, 

however, all have been used for previous publications.  Anti-NRXN1 shows immunopositivity 

in the cell membranes of mouse cortical cell cultures (Kumar and Thakur, 2015) and also of 

rat pancreatic cells (Suckow et al., 2008).  Western blots revealed an 84kDa band (Kim et al., 

2008).   Anti-NRXN2 recognises the alpha transcript and immunopositvity has been observed 

in the neuropil and pyramidal cells of the adult human cerebral cortex (Borsics et al., 2010).   

Immunoblots have also been used to quantify NRXN2 protein levels in rat SCN cells using this 

antibody (Shapiro-Reznik et al., 2012).  The NRXN3 antibody used in this study was used by 

the Human protein atlas and showed immunopositivity in the human cerebral cortex 

(Berglund et al., 2008).  The region of the protein recognised by each NRXN antibody can be 

seen in figure 5.1. 
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Figure 5.1 Schematic of NRXN protein domains and antibody recognition sequence.  The 

anti-NRXN1 antibody used in this study recognised both the alpha and beta proteins.  The 

recognition sequence fell within the last LNS domain of αNRXN1 but outside of this region in 

βNRXN1.  Anti-NRXN2 only recognised αNRXN2.  Anti-NRXN3 recognised both αNRXN3 and 

βNRXN3.  The recognition sequence spanned the end of the last LNS domain of both NRXN3 

proteins. 

 

 

5.2.2 Laminar expression of NRXNs1-3 in the adult cerebral cortex   

For further characterisation of the NRXN antibodies, paraffin sections from adult brains were 

immunostained with anti-NRXN1, 2 and 3.  Images were obtained from sections taken from 

the external pyramidal layer of the prefrontal cortex and the white matter region beneath 

(figure 5.2).  Haematoxylin and eosin (H&E) stained the nucleus and cytoplasm respectively 

of cells within the adult cerebral cortex (figure 5.2A).   Immunohistochemistry revealed that 

the majority of NRXN immunoreactivity was observed in the grey matter of the cortex, which 

contains the neuronal cell bodies.  SYP showed strong immunopositivity in punctate 

structures abutting the surface of neuronal cell bodies of the cortical grey matter and was 
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absent from the white matter (figure 5.2B).  This staining pattern was very similar to that of 

NRXN3 which was seen in punctate structures contacting the neuronal surface but was 

absent from the inside of cells and from the white matter (figure 5.2E).   

NRXN1 and NRXN2 had a slightly different staining pattern to that of NRXN3.  NRXN1, and to 

an extent NRXN2, stained the cytoplasm of pyramidal neurons (figure 5.2C & D), that were 

also stained by eosin in figure 5.2A.  The punctate staining for NRXN2 was more pronounced 

than that of NRXN1 within the cortical neuropil.  There was an absence of nuclear staining in 

the SYP and NRXN2 and 3 stains (figures 5.2C-E).  Punctate staining, in what appears to be 

the neuropil, could be seen after staining with SYP and NRXNs 1, 2 and 3 (figure 5.2F).  This is 

likely to be presynaptic terminal staining.  SYP is found at presynaptic vesicles and is required 

for their efficient endocytosis (Kwon & Chapman, 2011).  NRXNs, in particular the β form, are 

associated with the presynaptic membrane acting as a linker molecule to the postsynaptic 

membrane.  The α forms of NRXNs have roles in presynaptic neurotransmitter release (Craig 

& Kang, 2007; Missler et al, 2003).  

The white matter of the brain, which consists mainly of neuroglia and myelinated axons, 

showed reduced NRXN 1-3 immunopositivity compared to the grey matter of the prefrontal 

cortex (figure 5.2). There was, however, some immunopositivity to NRXNs 1 and 2 in the 

white matter region (figure 5.2C & D), in particular for NRXN2 which stained a number of 

oligodendrocytes.   
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Figure 5.2 Distribution of SYP and NRXN proteins in the adult brain. 

(A) Haematoxylin and eosin staining showed the cellular distribution in both the grey and 

white cortical brain matter. (B) Membranous SYP staining was present in only the grey matter 

of the cortex. (C) NRXN1 staining was present in the grey mater including the pyramidal cell 

bodies and in the white matter to a lesser extent.  (D) NRXN2 staining was present in the grey 

and white matter of the cortex including the pyramidal cell bodies.  (E) NRXN3 staining was 

similar to that of SYP, being present in the grey cortical matter and mostly absent from the 

white matter.  (F) Punctate staining (black arrows) could be seen in SYP and NRXN 1-3 stains.  

Scale bar represents 50µm. 
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5.2.3 Laminar expression patterns of NRXN1 between 8-12 PCW 

NRXN1 protein was distributed throughout the cortex at 8 PCW, however, there were 

regions of cells that showed a denser staining pattern (figure 5.3). In particular, the post- 

mitotic cortical plate (CP) and the apical surface of the proliferative ventricular zone (VZ) 

showed high levels of NRXN1 immunopositivity.  The subplate is a cell sparse region, as was 

shown by the H&E stain, but cells scattered throughout it expressed NRXN1 quite strongly.   

Axons in the SP, at this stage in development, are mostly cortical afferents.  SYP 

immunopositivity was strongest in the SP between 8-12 PCW (figure 5.3).  Double labelling 

of NRXN1 and SYP at 8 PCW showed that they were not co-expressed in cells of the SP, 

although both appeared to be expressed in the extracellular neuropil (figure 5.4Aii).  The 

cells of the intermediate zone (IZ), sub-ventricular zone (SVZ) and the remaining ventricular 

zone (VZ) did show NRXN1 expression, however, it was not as apparent as in the CP and 

apical surface IZ regions.  Although expressed in the VZ/ SVZ, double labelling with PAX6 

revealed that NRXN1 and PAX6 immunopositivity did not overlap (figure 5.4Ai), possibly due 

to being present in different cellular locations.  PAX6 is a transcription factor and the protein 

is found in the cell nucleus.  There is no evidence that NRXN1 is present in the nucleus in the 

VZ/ SVZ and therefore, may be confined to the cell cytoplasm/ membrane.  Alternatively, 

NRXN1 immunopositive cells could signify cells at a later stage of differentiation that have 

progressed from the early progenitor cell state. 

At 10 PCW, the protein expression of NRXN1 was more evenly distributed across the cortex 

(figure 5.3B).  The pattern of expression was similar to that of the H&E stain suggesting that 

at this age, NRXN1 protein can be found in all cortical cells of the CP, IZ, SVZ and VZ.  There 

was, however, a reduction of NRXN1 protein in the SP.   
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Figure 5.3 NRXN1 protein distribution in the cerebral cortex from 8-12 PCW in comparison 

to known cell type markers.   

(A) At 8 PCW, NRXN1 was expressed in both proliferative and post mitotic cells as defined by 

PAX6 and TBR1 expression respectively.  It was absent from the sub-plate (pSP) as shown by 

SYP expression.  (B) NRXN1 was found in most cell types of the cortex at 10 PCW as shown by 

the haematoxylin stain including those stained by SYP and GAP43, although the staining was 

less intense.  (C) At 12 PCW, NRXN1 protein was similarly distributed throughout the cortex, 

however, it was apparent that the protein is more concentrated in the superficial layers of the 

post mitotic CP. Scale bar represents 100µm. 
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Figure 5.4 NRXN1 was not co-expressed with synaptic or axonal outgrowth markers.  

(A) NRXN1 did not overlap in expression with the transcription factor PAX6 (i) although it was 

expressed in regions of cell proliferation or cells that express SYP at 8 PCW (ii) at 8 PCW. (B)  

By 12 PCW, NRXN1 protein was concentrated in the superficial layers of the CP and did not 

overlap in expression with cells expressing GAP43 in the SP/ IZ.  (C)   Cells expressing SYP did 

not express NRXN1 at 12 PCW (i, ii).  NRXN1 expressing cells were present in the proliferative 

layers VZ and SVZ regions of the cortex but the quantity of protein was not as high as that in 

the CP (iii). Scale bar represents 100µm 
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At 12 PCW, NRXN1 protein was again distributed throughout the cortex (figure 5.3C).  

However, immunostaining was still reduced in the SP region.  Double labelling with SYP 

revealed that, although immunopositivity was observed for both proteins in the SP and IZ, 

they were not expressed in the same cells or same regions within cells (figure 5.3C).  NRXN1 

immunostaining was more prominent in the CP at this age, in particular the outermost 

regions of the CP (figure 5.3).  NRXN1 immunopositive cells were present in the intermediate 

zone although there was no co-expression with the axonal growth cone marker GAP43 

(figure 5.3B; 5.4B).  There was also strong SYP and GAP43 immunostaining of neurites in the 

MZ at 12 PCW but they showed no co-localisation with NRXN1 at 12 PCW.  NRXN1 was 

clearly expressed in the CP and to a lesser extent in the SP, IZ and proliferative regions.  The 

lack of co-localisation with neurite markers in the SP/ IZ suggests that the protein was not 

yet present in the cell membrane or neuropil, but possibly in the cell bodies, which is in 

contrast to the punctate immunostaining seen in the adult cortex. 

 

5.2.4 Laminar expression patterns of NRXN2α between 8-12 PCW 

NRXN2α protein was found at the highest levels in the subplate (SP), marginal zone (MZ) and 

apical ventricular zone (VZ) at 8 PCW (figure 5.5).  This pattern of expression was similar to 

that of SYP, which was expressed in the MZ and SP regions of the cortex (figure 5.5A).  Both 

SYP and GAP43 immunopositivity was observed in the MZ, SP and the intermediate zone (IZ), 

however, GAP43 immunopositivity was more apparent in the IZ compared to the SP whereas 

SYP was more apparent in the SP (figure 5.5A).  NRXN2α immunopositivity, like SYP, was 

more apparent in the SP, however, double labelling of NRXN2α and GAP43 showed that 

these proteins were co-localised in the neurites of the MZ and the SP/IZ (figure 5.6Aii).  

There were cells immunopositive for NRXN2α scattered throughout the other regions of the 

cortex at this age including in the PAX6 immunopositive VZ and SVZ and the TBR1 

immunopositive CP (figure 5.5).  However, protein expression in these regions was less 

intense than in the MZ, SP and IZ.  Double labelling with the transcription factors PAX6 and 

TBR1 showed that NRXN2α was located outside of the cell nucleus (figure 5.6Ai & iii) as 

there was no co-expression observed.  Since there are very few cell processes in these 

regions at this age, NRXN2α protein is likely localised to the cell bodies and/ or the cell 

membranes. 
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At 10 PCW, the NRXN2α protein distribution had changed from 8PCW.  Immunopositivity 

was most apparent in the outer layers of the cortical plate (CP) and intermediate zone (IZ) 

(figure5.5B).  The MZ, SP, SVZ and VZ contained NRXN2α protein but the immunopositive 

staining was less intense than in the CP and IZ regions. 

By 12 PCW NRXN2α protein was minimal in the VZ although there was some immunostaining 

at the apical surface of the VZ and in the SVZ (figure 5.5C).  The SP and the IZ were 

immunopositive for NRXN2α (figure 5.5C).  Double labelling revealed that in these regions, 

cells co-expressed NRXN2α and SYP/ GAP43 in neuronal processes (figure 5.6B & C).  The 

cells in the area of the IZ nearest to the SP showed the greatest NRXN2α/ GAP43 co-

expression (figure 5.6C) Double labelling also revealed a decline in co-expression of these 

two proteins in the regions of the IZ nearest the SVZ (figure 5.6Ci).  NRXN2α protein was 

present in the CP, in particular the intermediate layer of the CP (figure 5.5C; 5.6Bii) most 

likely in the cell bodies/ cell membrane due to lack of neuropil in this region.  At 12 PCW, the 

GAP43/NRXN2α co-expression in the MZ had disappeared (figure 5.6C). 
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Figure 5.5 NRXN2 protein distribution in the cerebral cortex from 8-12 PCW in comparison 

to known cell type markers.   

(A) At 8 PCW, NRXN2 was expressed in both proliferative and post mitotic cells but was more 

concentrated in the sub-plate (pSP) as shown by SYP expression.  (B)  At 10 PCW, NRXN2 was 

concentrated in the outermost region of the CP as well as the SP.  (C) By 12 PCW, NRXN2 

protein was more concentrated in the superficial layers of the post mitotic CP, the SP and IZ 

and was hardly found in the proliferative VZ.  Scale bar represents 100µm. 
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Figure 5.6 NRXN2α co-expression with synaptic markers. (Ai) At 8PCW, NRXN2α did not 

show co-expression with PAX6 in the proliferative cortical regions. (ii) NRXN2α was co-

expressed with GAP43 in the MZ and the growing axons of the SP/IZ. (iii) NRXN2α expression 

was not co-expressed with TBR1 as the proteins appeared to be present in different cellular 

regions.  (B)  At 12PCW, NRXN2α was co-expressed with SYP in the SP and (C) NRXN2α was 

also co-expressed with GAP43 in the SP and regions of the IZ nearest the SP, but not in the 

MZ. Scale bar represents 100µm. 
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5.2.5 Laminar expression patterns of NRXN3 in the cortex between 8-12 PCW 

NRXN3 had a very distinct pattern of expression at 8PCW.  It was found only in the post 

mitotic CP that was also immunostained by the transcription factor TBR1 (figure 5.7A).  

Double labelling revealed that whilst TBR1 was confined to the nucleus and NRXN3 was 

present in the cell bodies/ cell membranes (figure 5.8B).  Proliferative cells in the VZ and SVZ 

marked by PAX6 and neurites of the SP and IZ shown by SYP immunostaining were not 

immunopositive for NRXN3 (figure 5.7A).  Double labelling with SYP revealed a complete 

separation of the two proteins within the cortex (figure 5.8A). 

At 10 PCW, the protein begun to appear in cells of the SP, IZ, SVZ and VZ regions (figure 

5.7B). Nevertheless, the majority of NRXN3 protein was observed in the cortical plate.  The 

pattern of NRXN3 expression at 12 PCW was similar to that of 10 PCW.  Although the NRXN3 

protein could be seen in the VZ, SVZ, and IZ, the majority of the protein was found in the CP.  

When compared to SYP immunostaining in the SP (figure 5.7C), there is a lack of NRXN3 

immunopositivity in this region.  As with NRXN1, NRXN3 appeared to be more intense in the 

outermost region of the CP compared to the innermost regions (figure 5.7C). Double 

labelling of TBR1 and NRXN3 suggested there was some co-localisation of the two proteins in 

this earliest forming layer.  However, the many of the cells in the CP did not show co-

expression of these two proteins (figure 5.8D) suggesting different cellular localisation.   

Double labelling with PAX6 also showed some co-expression in the VZ (figure 5.8C) 

suggesting that NRXN3 was in the nucleus of these cells or that PAX6 was in the cell bodies. 
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Figure 5.7 NRXN3 protein distribution in the cerebral cortex from 8-12 PCW in comparison 

to known cell type markers.  (A) At 8 PCW, NRXN3 immunopositivity was similar to that of 

TBR1, showing immunopositivity in the post mitotic CP but not in the SVZ. The apical VZ was 

also immunostained for NRXN3.  (B) At 10 PCW, NRXN3 immunopositivity was present, to a 

lesser extent, in the other regions of the cortex, but not at the apical surface of the VZ.  The 

outermost regions of the CP showed the strongest immunopositivity.  (C) At 12 PCW, NRXN3 

immunopositivity was strongest in the outermost CP regions but was absent from the SP.  

Scale bar represents 100µm. 
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Figure 5.8 NRXN3 double labelling in the cortex at 8 and 12 PCW. (A) Double labelling using 

NRXN3 and SYP antibodies at 8 PCW showed no overlapping expression. (B) Although both 

expressed in the CP at 8 PCW, NRXN3 and TBR1 were not co-expressed.  Immunopositivity of 

the transcription factor TBR1 was observed in the nucleus whilst NRXN3 immunopositivity 

was observed outside of this region, most likely in the cell membranes or cell bodies.  (C) At 

12 PCW, NRXN3 showed co-expression with PAX6 in the VZ but not the SVZ.  (D) At 12 PCW, 

NRXN3 and TBR1 are both expressed in the CP but co-expression is minimal.   Scale bar 

represents 100µm 
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5.2.6 Expression of NRXNs 1-3 in the lateral and medial ganglionic eminences and the 

thalamus at 12 PCW 

NRXN1 immunoreactivity was seen throughout both the medial and lateral ganglionic 

eminences (figure 5.9B).  Immunostaining was most dense along the VZ of the GE.  NRXN1 

protein was also found in the cells of the caudate nucleus.  This is a more cell sparse region 

in comparison to the LGE and MGE and contains post mitotic cells migrating away from the 

proliferative GE region.  The internal capsule was NRXN1 negative.  This is a white matter 

structure in which both corticofugal axons and thalamocortical axons extend through 

(reviewed in Molnar et al., 2012). 

NRXN2 immunopositivity was seen in the proliferative regions of both the lateral and medial 

GE (figure 5.9C).  Like NRXN1, the post mitotic cells of the caudate nucleus were 

mmunopositive for NRXN2.    The axons tracts of the internal capsule were immunopositive 

for NRXN2 as they were for GAP43 and the synaptic transmembrane protein CASK.  GAP43 

protein was absent from both the lateral and medial GE.  CASK immunopositivity was similar 

to that of NRXN2 being present in the proliferative regions as well as the post mitotic regions 

containing a high density of growing axons. 

NRXN3 immunopositivity was observed in both the medial and lateral GE (figure 5.9D).  Like 

NRXN1, NRXN3 immunostaining was most dense along the ventricular zone of both the LGE 

and the MGE.  Fewer cells within the caudate and putamen were immunopositive for NRXN3 

than they were for NRXNs 1 and 2.  The axons of the internal capsule, as with NRXN1, did not 

express NRXN3. 
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Figure 5.9 Expression of NRXNs in the sub pallium at 12 PCW.  (A) H&E stain showing the 

cell dense staining of the medial ganglionic eminence (MGE) and lateral ganglionic eminence 

(LGE).  The caudate (Ca) and the putamen (Pu) are less cell dense regions.  There are no 

nuclei in the internal capsule (IC). (B) NRXN1 immunopositivity was observed throughout the 

sub-pallium but was absent from the IC.  (C) NRXN2α immunopositivity was observed 

throughout the sub pallium including in the axon tracts of the IC.  (D) NRXN3 

immunopositivity was strongest in the MGE and LGE but there was no NRXN3 

immunostaining in the IC. (E) CASK immunostaining was found throughout the sub-pallium 

including the IC.  (F) Growing axons within the post mitotic regions of the Ca and putamen 

are GAP43 immunopositive, as are the outgrowing axons of the IC.  Scale bar represents 

1mm.  
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5.3 Discussion 

Neurexins have been identified as presynaptic cell adhesion molecules that are able to link 

the pre and post synaptic membranes via their interaction with multiple post synaptic 

proteins (Reissner et al., 2014; Lee et al., 2012; Siddiqui et al., 2010; Zhang et al., 2010; 

Missler et al., 1998).  αNRXNs are also involved in the release of neurotransmitters and aid in 

the organisation of secretory granules and their secretion in non-neuronal tissues (Mosedale 

et al., 2012; Dudanova et al., 2006).  We have provided, for the first time, evidence that 

NRXN proteins are present in human neural cells pre-synaptogenesis and that, due to their 

cortical localisation and cellular protein co-expression, they may have roles in 

differentiation, migration and axonal/ dendritic outgrowth. 

 

5.3.1 In the adult cerebral cortex, the majority of NRXN protein is present in the grey 

matter  

NRXN protein was present predominantly in the grey matter of the adult cerebral cortex.  

The grey matter of the cerebral cortex contains the majority of neuronal cell bodies and is 

the region of the cortex in which the majority of synapses are present as confirmed by the 

expression pattern of the pre-synaptic marker synaptophysin (figure 5.1).  The punctate 

staining pattern observed for the NRXN proteins is often associated with synapses and is 

thought to be representative of mature synaptic boutons (Fletcher et al., 1991).  In addition 

to the synaptic like staining, NRXN1 and 2 proteins were also present in the pyramidal cells 

of the adult cerebral cortex.  Ichtchenko et al. (1995) showed that NRXNs excluding splice 

site #4 are enriched in the pyramidal cell layer of the hippocampus.   

The white matter of the adult brain consists of the myelinated axons.  As there are very few 

neuronal cell bodies and therefore, very few interactions between pre and post synaptic 

membranes in this region, the absence of neurexin protein was expected.  However, NRXN2 

protein was present in the white matter fibres of the cortex and NRXN1 in a number of cell 

bodies, possibly astrocytes or oligodendrocytes, within the white matter.  Indeed, it has 

been previously shown that NRXNs are not confined to neuronal synaptic terminals and are, 

in fact, present in non-neuronal perineurial cells which are epithelial cells and at axon-glial 

interactions (Russel & Carlson, 1997).  The knockdown of Nrxn1 expression in iPS cells 

decreases the expression of the astrocyte marker, GFAP (Zeng et al., 2013) and mouse 
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models of other neurodevelopmental conditions such as Ret syndrome and schizophrenia  

have implicated glial cell dysfunction in the pathology of the condition (reviewed in 

Yamamuro et al., 2015).  

Due to the predictable staining pattern of NRXNs in the grey matter of the adult cortex, it 

was surprising that these proteins were present in the developing cortex in regions that do 

not contain synapses (see sections 5.3-5.10). 

 

5.3.2 NRXNs are expressed outside of synaptogenic regions in the developing cortex 

NRXNs are mainly associated with the development and maintenance of synapses (Graf et 

al., 2004; Scheiffele et al., 2000), which at this developmental stage, are only present in the 

SP, MZ and IZ (figure 5.2).  In this study, NRXN immunopositivity was observed in the 

proliferative, migratory and post mitotic regions of the developing cortex between 8 and 12 

PCW.  Double labelling of NRXN1 and SYP, revealed that, although some cells of the SP and 

MZ are immunopositive for NRXN1, there is no co-expression of these two markers (figure 

5.4).  NRXN3 protein is also absent from cells that express SYP (figure 5.8).  It is only NRXN2 

that was co-expressed with SYP in cells of the cerebral cortex (figure 5.6).  NRXN2 knock 

down in mice causes a decrease in the expression of genes associated with excitatory and 

inhibitory synaptic transmission as well as reducing the frequency excitatory miniature post-

synaptic currents (mEPSCs) (Born et al., 2015; Dachtler et al., 2014).  The morphological 

structure of the brain remains unaffected (Born et al., 2015). 

In the VZ of the cerebral cortex, radial glial progenitor cells extend processes and shuttle 

between the basal and apical surface during asymmetric division (Tramontin et al., 2003).  

NRXN1 immunopositivity appears more pronounced at the apical surface of the VZ at 8 PCW 

(figure).  The cell is usually in the M/G2 phase of cell division at this point of their interkinetic 

division (Del Bene., 2011).  NRXN1 protein expression may peak during this phase of the cell 

cycle, which allows for protein synthesis and cell growth.  It may also symbolise that the 

NRXNs, despite their presence in proliferative regions, are confined to cells that have longer 

cell cycles i.e. those that are in the process of differentiation.  It has been previously 

suggested that, due to their large size, there would be no time for transcription of these long 

genes in rapidly dividing cells (Rowen et al., 2002).  As discussed in the previous chapter and 
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in the literature, all three NRXN genes increase in expression during neuronal differentiation 

(Konopka et al., 2012; Gurok et al., 2004).   

Neural progenitor cells reside in the VZ and SVZ of the cerebral cortex dividing symmetrically 

(Huttner & Kosodo, 2005) to increase the number of progenitor cells.  Progenitor cells can 

switch to asymmetrical division giving rise to both progenitor cells and differentiating 

neurons.  After surpassing their progenitor like state, these differentiating cells aim to 

migrate into the cortical plate either by somal translocation or by migrating along these 

radial glial fibres.  At this point, cells need to establish polarity.  Previously it was expected 

that NRXNs played a part in a later stage of neuronal differentiation in which cells had 

ceased migration, made contact with adjacent cells and had begun to organise synaptic 

proteins to the cell membrane.  We suggest, however, that NRXN1 from 8 PCW and NRXN3 

from 12 PCW are important in much earlier stages of neuronal differentiation as the protein 

is clearly present in the regions of proliferation. 

The most intense NRXN1 and NRXN3 immunostaining is observed in the post mitotic cells of 

the cortical plate (figure 5.2, 5.6), in particular the outermost CP compared to the innermost 

layers.  Due to the cortical plate forming in an ‘inside out manner’, the outermost layers 

consist of the most recently migrated neural progenitor cells.  The inner and outer regions of 

the CP can be distinguished by their gene expression patterns, with the outermost cells 

showing an increase in the expression of genes associated with metabolism whilst the 

innermost layers show an increase in genes associated with synaptic connections (Miller et 

al., 2014).   

During differentiation of neuronal precursors into mature neurons, cells switch their mode 

of metabolism from glycolytic to oxidative (reviewed in Kim et al., 2014).  Stem cells are 

known to show a decreased amount of oxidative phosphorylation in comparison to their 

differentiated counterparts (Varum et al., 2011).  It has been proposed that this metabolic 

switch occurs just prior to the switch from proliferation to differentiation (Homem et al., 

2014).  It is possible that NRXNs could induce this switch or, vice versa, the switch in 

metabolism could induce the expression of NRXNs. 
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5.3.3 The role of NRXNs in migration 

The presence of NRXN1 and 3 proteins in cells of the VZ, SVZ and IZ may suggest that they 

have functions in cellular migration after cells cease division.  Cell adhesion molecules are 

important in neuronal migration.  During neural crest migration, cadherins, integrins and 

IgCAMs are both up and down-regulated in a tightly controlled process of gene expression 

(reviewed in McKeown et al., 2013).  The expression of the different gene family members 

differs depending on the migration pathway.  Due to the importance of cell adhesion 

molecules in neuronal migration, it is plausible that neurexins could play a role in the 

migration of neurons from the VZ to the CP. 

Certainly, mutations in CNTNAP2, which is similar in structure to NRXNs 1-3 and classed as 

an autism susceptibility gene, have been implicated in neuronal migration defects (Strauss et 

al., 2006).  MRI scanning identified focal malformations in the temporal lobe and striatum of 

three people with CNTNAP2 mutations.  Cortical thickening and abnormal neuronal 

clustering was observed and ectopic neurons were observed within the sub-cortical white 

matter.  The knock down of Cntnap2 in mice also causes abnormal neuronal migration 

(Penagarikano et al., 2011).  Cells lacking this protein show reduced migration through the 

deep layers of the mouse cortex and can be found ectopically in the corpus callosum at P14.   

 

5.3.4 The proposed role of NRXN2 in neurite/ axonal outgrowth 

NRXN2 and the axonal outgrowth marker GAP43 are co-expressed in cells of the IZ (figure 

5.5) as well as both being expressed in the internal capsule of the sub-pallium. CASK, the 

peripheral plasma membrane protein, is also expressed in the internal capsule.  It was found 

that CASK has the ability to recruit proteins to the plasma membrane to promote neurite 

outgrowth (Watkins et al., 2013), possibly by regulating the actin cytoskeleton (Vessey and 

Karra, 2007).  Both the rearrangement of the cytoskeleton and the endo/exocytosis of 

synaptic vesicles that are separate from those containing neurotransmitters are essential for 

the elongation and stabilisation of neurites and therefore, of axons.  Exocytic vesicles require 

soluble N-ethylmaleimide sensitive fusion attachment protein receptor (SNARE) complexes 

that include syntaxin proteins for their role in neurite outgrowth (Kunwar et al., 2010; 

Zylbersztajin, 2011).  There is evidence of NRXNs directly interacting with syntaxins and 

other presynaptic proteins to regulate neurotransmitter release (O’Connor et al., 1993).  
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Missler et al. (2003), using triple knockout mice, discovered that αNRXN was essential for 

calcium dependant neurotransmitter release.  It has also been shown that NRXN1α 

contributes to secretory granule docking in pancreatic β cells (Mosedale et al., 2012).  Using 

hippocampal cultures from rats, it was shown that NRXN1β can promote neurite outgrowth 

via its interaction with NLGN1 and subsequent activation of FGFR1 (Gjorlund et al., 2012).  

The NRXN-NLGN1 interactions are suspected to stabilize filipodia and contribute to the 

interplay between synaptic stabilisation and dendritic/ axonal outgrowth (Gjorlund et al., 

2012; Xuen Chen et al., 2010).   

 

5.4 Summary 

The small differences in immunostaining patterns of the three NRXN antibodies suggests 

that they are likely to have distinct, as well as overlapping, functions in the adult brain and 

indeed this was shown to be the case in the developing brain also.   Between 8 and 12 PCW, 

although NRXNs 1-3 proteins appeared in many of the same regions, there were also distinct 

differences in the localisation of these proteins that did not necessarily correspond to their 

proposed roles in the generation and maintenance of synapses.  NRXN2 is most similar in 

regional specification to the pre-synaptic marker, SYP and is present in cortical and sub-

cortical regions of axonal outgrowth.  NRXNs 1 and 3 are more likely to be involved in 

neuronal differentiation before the development of synapses and, at this developmental 

stage, do not appear to contribute to synaptogenesis in the cortex.  The realisation that 

NRXNs 1 and 3 have novel roles in development will promote research to elucidate these 

functions.  This will allow us to better understand the pathogenesis of neurodevelopmental 

conditions such as ASD and to develop novel strategies for their treatment. 
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CHAPTER 6 

Investigating the expression patterns, protein localisation and role of proteins 

associated with NRXN transcription and splicing in the developing forebrain  

6.1 Aim of study 

The aim of this study was to explore the expression patterns of genes whose protein 

products regulate NRXN transcription (Topoisomerases/ MECP2) and splicing (STAR 

proteins), within the human cerebral cortex between 8 and 12 PCW.  In addition to this, to 

map the protein localisation of a number of these proteins and analyse the effects of 

reducing topoisomerase 2B expression in human cortical cell cultures on the expression of 

NRXNs. 

 

6.1.1. Regulation of NRXN transcription and splicing 

Neurexins 1-3 are each transcribed from two independent promoters creating the longer 

alpha NRXN and shorter beta NRXN transcripts (chapter 1.3.2).  Knowledge of proteins that 

regulate NRXN transcription is limited although the knock down of methyl CpG binding 

protein 2 (MECP2) and Topoisomerase2 (TOP2) was shown to alter the expression levels of 

these genes (King et al., 2013; Runkel et al., 2013).  The transcriptional regulator MECP2 is 

primarily involved in the silencing of genes (Fuks et al., 2003), although more recently it was 

also identified as a transcriptional activator (Chahrour et al., 2008).  Runkel and colleagues 

discovered that the expression of NRXN is decreased by up to 50% in the brain of MECP2 

knockout mice at P7, suggesting that MECP2 acts as a transcriptional activator of NRXN 

genes in the early postnatal brain.  In contrast to this, they discovered that at P20 MECP2 

knockout mice show increased levels of NRXN expression (Runkel et al., 2013).   

Topoisomerase enzymes govern the topological state of DNA.  TOP1 and TOP3B are involved 

in the breaking of a single strand of the DNA helix to relive topological tension.  

Topoisomerase 2 genes, TOP2A and TOP2B, code for two separate proteins that are required 

for the breaking of both DNA strands to control DNA topology (reviewed in (Nitiss, 2009, 

Wang, 2002).  Neurexins are relatively large genes within the human genome spanning more 

than 1kb (chapter 1.3.2).  The inhibition of topoisomerase 1 (TOP1), using the 

chemotherapeutic agent topotecan, causes a decrease in the expression of NRXNs 1 and 3 
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(King et al., 2013) which are the largest of the NRXN genes, as well as decreasing the 

expression of other long genes in cultured cortical mouse neurons differentiated from iPSCs.  

Inhibiting TOP2B using the inhibitor ICRF-193 also decreases the expression of long genes in 

these cells.  Lentiviral shRNA knockdown of these genes had the same effect suggesting that 

TOP1 and TOP2 are required for the correct expression of NRXNs 1 and 3 in mouse cortical 

neurons (King et al., 2013).  Interestingly, TOP2A did not have an effect on the expression of 

NRXN proteins (King at al., 2013).  These studies suggest that MECP2 and Topoisomerases 

are transcriptional regulators of NRXN genes in mice.  

In addition to the alpha and beta NRXN transcripts generated from two promoters, each 

NRXN gene contains six splice sites that potentially are able to generate thousands of 

isoforms (Treutlein et al., 2014, Tabuchi and Südhof, 2002).  The regulation of NRXN splicing 

is controlled by the STAR family of proteins (consisting of KHDRBS1, 2 and 3) in mice (chapter 

1.3.2).  To date, no other candidates for the control of NRXN splicing have been identified.   

As of yet, no evidence exists to support the role of these proteins in the control of NRXN 

transcription or splicing in the human brain.  We have shown that NRXNs were expressed 

during this developmental period (chapter 4 & 5) and it is essential to explore whether these 

suggested transcriptional regulators are also expressed.  Co-expression of these genes with 

NRXNs would provide evidence for the theories developed in mouse and cellular models that 

TOP2B and STAR proteins also regulate NRXN transcription and splicing during human 

development. 

 

6.2 Results 

6.2.1 Genes associated with NRXN transcriptional regulation were expressed in the human 

cortex from 9 PCW 

Analysis of the RNAseq data (carried out as described in chapter 4.2.3) revealed that 

topoisomerases were expressed in the cerebral cortex between 9 and 12 PCW.  TOP1 was 

expressed at higher levels than TOP3B, reaching almost 40% of the combined reference gene 

expression.  TOP3B expression reached less than 5% that of the reference gene expression.  

There was no significant change in expression of either TOP1 or TOP3B between 9 and 12 

PCWs (figure 6.1A).  The expression patterns of TOP2A and TOP2B were different between 9 

and 12 PCW.  TOP2A appeared to decrease in expression with age whereas TOP2B appeared 
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to increase with age, although neither of these changes is significant (p>0.05) (figure 6.1A).  

TOP2B had a higher relative expression level than TOP1 and TOP2A, being expressed at 

similar levels to the reference genes.  TOP2A also showed a high level of expression, 

reaching half that of the reference genes.  Regulator of transcription, MECP2, was also 

expressed in the cortex between 9 and 12 PCW (figure 6.1A).  There was no significant 

change in expression during this period.  The expression level of MECP2 was less than 10% of 

the control gene expression (figure 6.1A).  There were no significant differences in 

expression identified between the anterior, central, posterior and temporal cortical regions 

at 9, 11 or 12 PCW (figure 6.1 B, C, D). 

 

6.2.2 Genes identified as regulators of NRXN splicing were expressed in the human cortex 

from 9 PCW 

KHDRBS1, 2 and 3 were expressed between 9 and 12 PCW.  KHDRBS1 showed the highest 

level of expression compared to KHDRBS 2 and 3, reaching more than 80% of reference gene 

expression (figure 6.2A).  The expression of KHDRBS2 and 3 was less than 20% of the 

reference gene expression.  KHDRBS2 and 3 expression, but not that of KHDRBS1, 

significantly increased between 9 and 12 PCW (figure 6.2A). 

KHDRBS1 expression was significantly higher in the temporal cortex compared to the central 

cortex at 9 PCW and KHDRBS1 expression in the temporal and posterior cortex was 

significantly higher than in the central cortex at 11 PCW (p<0.05; figure 6.2B & C).  There 

were no identified expression gradients for KHDRBS1 at 12 PCW (figure 6.2D).  There was no 

significant difference in KHDRBS2 expression between the anterior, central, posterior and 

temporal regions of the cortex (p<0.05; figure 6.2B, C & D).  KHDBR3 expression in the 

temporal cortex was significantly increased in comparison to the central and posterior cortex 

at 9PCW and expression in the temporal cortex was significantly higher than in the anterior, 

central and posterior cortex at 11 PCW (p<0.05; figure 6.2B & C).  This expression gradient 

had disappeared by 12 PCW (figure 6.2D).   
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Figure 6.1 Genes associated with NRXN transcriptional regulation were expressed in the 

human cortex from 9 PCW. (A) TOP1, TOP2B and MECP2 did not increase in expression 

between 9 and 12 PCW.  TOP2A significantly decreased in expression during this period 

whilst TOP3B showed a small, but significant increase in expression.  (B) There was no 

significant difference in expression of TOP2A, TOP2B or TOP3B across cortical regions at 

9PCW.  Expression of both TOP1 and MECP2 in the temporal cortex was significantly higher 

than its expression in the central cortex.  (C)  There were no significant differences in the 

expression of any of these genes across the cortex at 11PCW.  (D)  There were no significant 

differences in the expression of TOP2A, TOP2B, TOP3B or MECP2 across the cortex at 12 

PCW.  The expression of TOP1 was significantly higher in the central cortex compared to the 

temporal cortex. *p<0.05; n=between 3 and 10 
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Figure 6.2 Regulators of NRXN splicing, KHDRBS, were expressed in the human cortex from 

9 PCW.  (A) KHDRBS1 was significantly higher in expression that KHDRBS2 and 3 but did not 

increase in expression with age.  KHDRBS2 and 3 both significantly increased in expression 

from 9 to 12 PCW.  (B) There was no significant difference in expression the of KHDRBS2 

across cortical regions.  Expression of KHDRBS1 in the temporal cortex was significantly 

higher than its expression in the central cortex.  The expression of KHDRBS3 in the temporal 

cortex was significantly higher than that of the central and posterior regions.  (C) The 

expression of KHDRBS1 in the temporal cortex was significantly higher than that of the 

central and posterior regions at 11 PCW.  There were no significant differences in the 

expression of KHDRBS2 across the cortex.  KHDRBS3 expression was significantly higher in 

the temporal cortex compared to all other cortical regions examined.  (D)  There were no 

significant differences in the expression of KHDRBS1, 2 and 3 across the cortex at 12 PCW. 

*p<0.05; n=between 3 and 10 
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6.2.3 Markers of cell proliferation, MGE and LGE  

KI-67 (KI67) is a marker of cell proliferation and is present in all phases of the cell cycle 

except G0 (reviewed in Scholzen and Gerdes, 2000).  It is essential for the formation of the 

perichromosomal compartment which is important in the assembly and organisation of the 

nucleolus (Booth et al., 2014).  The antibody against the KI67 protein has been used in 

previous publications (Chan et al. 2006; Meyer et al. 2002b). 

PAX6 and TBR1 antibodies are those described in chapter 5.2.1.  In addition to being a 

marker for proliferating cells of the cortical VZ/ SVZ (Bayatti et al., 2008a, Kerwin et al., 

2004; Magdalena et al., 1998), PAX6 is also a marker for the lateral ganglionic eminence 

(LGE).   

NKX2.1 is a transcription factor and a marker of the medial ganglionic eminence (MGE)  in 

humans (Butt et al., 2008).  NKX2.1 is required to generate neurons of the globulus pallidus  

and ventrally derived interneurons (Flandin et al., 2010). 

Antibodies against TOP2A and TOP2B proteins used in this study were donated by Professor 

Caroline Austin (table 2.).  Each antibody recognised the C terminal domain (figure 6.3A).  

TOP2A recognised residues 1244-1531 and TOP2B recognised residues 1263-1621.  The 

antibodies have been used previously for quantitative immunofluorescence in human cell 

lines (Lee et al., 2016). 

Antibodies to KHDRBS2 and 3 were kindly donated by Professor Scheiffele, University of 

Basle (table 2.4).  Immunogen sequences used to generate the antibodies were 

VNEDAYDSYAPEEWAT (residues 308-324) and PRARGVPPTGYRP (residues 243-256) 

respectively (figure 6.3B).  The antibodies have been used previously for 

Immunofluorescence studies in mouse brain (Iijima et al., 2014). 
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Figure 6.3 Antibody recognition sequences used in this study.  (A) TOP2A and TOP2B 

antibodies were designed to recognise residues 1244-1531 and 1263-1621 of the C-terminal 

domain respectively.  (B) Antibodies against KHDRBS2 and KHDRBS3 recognised residues 

308-324 and residues 243-256 respectively. 

 

 

6.2.4 TOP2A was expressed in regions of cell division 

Although not previously identified as affecting NRXN expression, TOP2A protein expression 

in the developing human cortex was examined using an antibody that recognised the C 

terminal domain (figure 6.3).    Due to sample availability, brains were aged between 9 and 

12 PCW.  During this developmental time period, TOP2A immunoreactivity was identified in 

the proliferative ventricular and sub-ventricular zones of the cerebral cortex that also stain 

positive for the radial glial marker PAX6 (figure 6.4).  A higher proportion of these cells were 

PAX6 positive suggesting that not all radial glial cells express TOP2A.  TOP2A staining was 

stronger at the apical surface of the VZ, as was that of the marker of cell division, KI67 (figure 

6.4).   KI67 protein is most abundant in cells at the G2/M phase of division (Scholzen and 

Gerdes, 2000).  Double labelling with KI67 and TOP2A showed that these two proteins were 

highly co-localised throughout the VZ and SVZ (figure 6.5A).     



167 
 

 

As seen with KI67, there was also a dense staining of TOP2A positive cells in the inner SVZ 

(figure 6.6).  These cells are intermediate progenitor cells that also express TBR2 (Lui et al., 

2011, Bayatti et al., 2008b).  Double labelling with PAX6 and TOP2A revealed that the 

majority of cells showing co-localisation were at the apical surface of the VZ and the inner 

SVZ (figure 6.5C).  Double labelling of TOP2A and TOP2B also showed strong co-localisation 

in these regions (figure 6.5D white arrows).  Very few cells of the intermediate zone (IZ) 

were immunopositive for TOP2A at 9 PCW and even less so by 12 PCW (figure 6.4).  TOP2A 

protein was not detected in the post mitotic cortical plate (CP) between 9 and 12 PCW 

(figure 6.4; figure 6.5E).   

 

6.2.5 TOP2B is expressed in both proliferative and post- mitotic regions of the cortex  

TOP2B immunoreactivity was observed in both the proliferative PAX6 positive regions of the 

cortex and in the post mitotic neurons that are immunopositive for TBR1 (figure 6.4).  TOP2B 

immunopositivity was weaker in the VZ compared to the CP and SVZ at 9PCW but by 11 

PCW, staining was uniform throughout the cortex (figure 6.4).  The ventricular surface of the 

cortex showed strong TOP2B immunopositive staining at 9 PCW (figure 6.4A), however, by 

11 and 12 PCW, this distinctive VZ staining had disappeared (figure 6.4B & C).   

 

Double labelling of TOP2B with the marker of proliferation, KI67 revealed a lack of co-

localisation suggesting that, as these proteins are both nuclear, they are present in different 

cells within the proliferative regions (figure 6.5B). Double labelling with TBR1 showed a high 

level of co-localisation of these two proteins in the CP and in the IZ (figure 6.5Fi, ii & iii).  

TOP2B immunopositivity was strongest in the outer regions of the cortical plate, which 

consist of the most recently migrated post mitotic neurons (figure 6.5Fii).   
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Figure 6.4 TOP2A and TOP2B Immunopositivity in the human cortex between 8 and 12 

PCW.  TOP2A was expressed in the proliferative VZ and SVZ at (A) 8, (B) 11 and (C) 12 PCW 

similar to the expression pattern of KI67, but less dense than that of PAX6.  TOP2B was 

expressed throughout the cortex at (A) 8, (B) 11 and (C) 12 PCW in both the proliferative 

regions and the post mitotic neurons of the cortical plate that were immunopositive for 

TBR1.   
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Figure 6.5 Double labelling of TOP2A and TOP2B with cell type specific markers at 12 PCW. 

(A) TOP2A and KI67 were strongly co-localised in the VZ and SVZ of the human cortex at 12 

PCW. (B) TOP2B and KI67 appeared to be expressed in different cell types in the proliferative 

regions of the cortex.  (C) TOP2A and PAX6 showed co-expression in cells at the apical 

surface of the VZ and the inner SVZ.  (D) TOP2A and TOP2B showed co-expression in cells at 

the apical surface of the VZ and the inner SVZ.  (E) TOP2A and TBR1 were not expressed in 

the same cells, being confined to the regions of proliferation and differentiation respectively.  

(Fi) TOP2B and TBR1 were co-expressed in the cells of the CP and IZ.  (ii) TOP2B 

immunopositive cells were more apparent in the outer regions of the CP.  (iii)  TOP2B 

immunopositive cells were present in the VZ where TBR1 positive cells were absent.  There 

was strong co-expression of these two markers in the SVZ and the IZ. 
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6.2.6 TOP2A is more prominent in the Medial Ganglionic Eminence (MGE) than in the 

Lateral Ganglionic Eminence (LGE). 

The proliferative cells of both the MGE and the LGE showed TOP2A and KI67 

immunopositivity, although this was less dense for both proteins at the LGE:MGE boundary 

(figure 6.6).  TOP2A immunopositivity was stronger in the MGE compared to the LGE (figure 

6.6).  The LGE and MGE were distinguished by their expression of NKX2.1 and PAX6 

respectively (figure 6.6).  

TOP2B immunopositivity was observed throughout the MGE and LGE but, in contrast to 

TOP2A, appeared to be stronger in the LGE (figure 6.6).  The ganglionic eminence, although 

considered a region of cell proliferation, does contain post mitotic cells that migrate out of 

this region. 

 

6.2.7 KHDRBS 2 and 3 expression in the pallium and sub-pallium  

Both KHDRBS 2 and 3 immunopositivity was most apparent in the cortical plate of the cortex 

at 8, 11 and 12 PCW (figure 6.7A, B and C) that was also immunopositive for the 

transcription factor, TBR1.  There was some KHDRBS2 immunopositivity in the proliferative 

regions of the cortex between 8 and 12 PCW (figure 6.7).  KHDRBS2 showed very little 

immunopositivity in the proliferative regions of the cortex, that were immunopositive for 

the radial glial marker PAX6. 

A haematoxylin and eosin (H&E) stain was used to show the cell density of regions within the 

subpallium.  The GE contained the most densely packed cells whilst the caudate was 

comparatively cell sparse (figure 6.8A).  Both KHDRBS2 and 3 immunopositivity was 

observed at the ventricular surface of the ganglionic eminence (figure 6Bi & Ci).  As with the 

cortex, the proliferative regions of the subpallium showed some immunopositivity to 

KHDRBS2 (figure 6.8Bi).  There was an absence of KHDRBS3 staining in the proliferative GE 

(figure 6.8Ci).  Both proteins were observed in the post mitotic caudate region as well as in 

the putamen (figures 6.8ii & iii).  KHDRBS2 stained cells in the caudate appeared larger than 

haematoxylin stained nuclei (figure 6.8Bii).  This could signal the presence of the protein 

outside of the nucleus or a more open chromatin state. 
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Figure 6.6 TOP2A was more prominent in the Medial Ganglionic Eminence (MGE) than in 

the Lateral Ganglionic Eminence (LGE). (A) NKX2.1 showed strong immunopositivity in the 

medial ganglionic eminence (MGE) whereas, (B) PAX6 immunopositive cells were found in 

the lateral ganglionic eminence (LGE).  (C) Both the proliferative MGE and LGE were 

immunopositive for KI67 with less intense staining at the MGE:LGE boundary.  (D) TOP2A 

immunopositivity, like KI67, was shown in both the MGE and LGE but is absent from the 

caudate.   (E) TOP2B immunopositive cells were present in the proliferative MGE and LGE as 

well as the post mitotic caudate.                                    
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Figure 6.7 SLM1 and 2 were expressed most strongly in the post mitotic regions of the 

cortex.  KHDRBS2 showed the most intense staining in the cortical plate as did the marker of 

post mitotic neurons, TBR1 at (A) 8, (B) 10 and (C) 12 PCW.  There was also some 

immunopositivity in the PAX6 positive proliferative VZ and SVZ regions.  The CP was also 

immunopositive for KHDRBS3 at (A) 8, (B) 10 and (C) 12 PCW, however, there was a clear 

reduction of immunostaining in the regions of proliferation. 
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Figure 6.8 KHDBR2 and 3 proteins show different patterns of expression in the GE.  (Ai & ii) 

Haematoxylin and eosin (H & E) staining showed a cell dense region in the proliferative 

MGE/LGE/CGE? and a comparatively reduced cell density of the caudate region.  (iii) The 

putamen is a cell dense region compared to the caudate, with an increased number of 

haematoxylin stained nuclei.   (Bi) The ventricular surface of the GE was immunopositive for 

KHDRBS2 and there were immunopositive cells in both the (ii) caudate and the (iii) putamen.  

Staining in the caudate appeared to be more intense than that of the caudate and the cells 

appeared larger than the haematoxylin stain.  (Ci) There were some KHDRBS3 

immunopositive cells at the ventricular surface of the GE, however, the staining was greatly 

reduced in the proliferative regions of the sub-pallium.  (ii) The majority of the cells of the 

caudate appeared to be immunopositive for KHDRBS3, and (iii) a number of cells in the 

putamen stained positively for the protein. 
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6.2.8 Topoisomerase inhibition reduced the expression of NRXNs 1 and 2 in cortical cell 

cultures 

Cells were isolated from the anterior region of the human cortex at 11 and 12 PCW as 

described in chapter 2.10.  After 24 hours in survival media, cells were bathed in neural 

differentiation media and cultured for 7 days.  Between days 1 and 7, the number of cells 

increased and connections formed between them (figure 6.9A).  Markers of proliferation 

(PAX6), intermediate progenitor cells (TBR2) and post mitotic neurons (TBR1) were used to 

characterise the cell cultures during the seven day period.  Cell counts were carried out as 

described in chapter 2.13.  There was no significant difference during this time period in the 

expression of PAX6 or TBR1 (figure 6.9B).  However, the number of cells expressing TBR2 was 

significantly higher on day 1 than on any of the remaining days (figure 6.9B). 

Cortical cultures were established using cells taken from the anterior cortex of 10-12 PCW 

human brains (chapter 2.).  Three separate cell cultures were used in this study, details of 

which can be seen in table 6.1.  The levels of NRXN expression in these cultures were similar 

to those observed in the 12 PCW brain.  NRXN3 had the lowest relative expression and 

NRXN1 had the highest relative expression.  The expression level of NRXN2 appeared to be 

the most variable between the cell cultures.   ICRF-193 inhibition of TOP2B in neural 

progenitor cells caused a significant decrease in the expression of NRXN1 (p<0.05).  NRXN1 

showed a 1.5 fold decrease in expression (figure 6.).  NRXN2 expression was reduced in 

some cultures but not others.  Although the average expression was decreased, this change 

was not statistically significantly.  NRXN3 expression was unaffected by ICRF-193 inhibition, 

with no significant difference between the treated cultures and the controls (figure 6.10).   
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Figure 6.9 Cortical cell cultures.  (A) Cortical cell cultures isolated from 12 PCW anterior 

cortex at days 1-7 after the addition of neural differentiation media.  Cells increased in 

number and the number of cellular connections increased. (B) Cells expressed the radial glial 

marker PAX6, the post mitotic marker, TBR1 and the intermediate progenitor cell marker, 

TBR2.  The expression of PAX6 and TBR1 remained stable throughout this 7 day period, 

however, TBR2 significantly decreased in expression after the addition of neural 

differentiation media. *p<0.05; n=3 
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Figure 6.10.  Topoisomerase 2 inhibition with ICRF-193 led to a decrease in the expression 

of NRXN1. There was a significant reduction in NRXN1 expression in cell cultures established 

from the prenatal anterior human cortex following treatment with the TOP2 inhibitor ICRF-

193 (p<0.05).  No significant differences in expression were seen after treatment in either 

NRXN2 or NRXN3. N=3 
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6.3 Discussion  

The presence of these proteins in the human cortex between 8 and 12 PCW has not 

previously been reported.  This study has shown that regulator of NRXN transcription, TOP2B 

and regulators of NRXN splicing, KHDRBS2 and 3, were present between 8 and 12 PCW in the 

human pallium and sub-pallium.  We have confirmed the role of TOP2B as a regulator of 

NRXN expression in human cortical cells.  Although a direct role for STAR proteins of NRXN 

splicing was not observed here, the expression of these genes during this developmental 

period and the presence of these proteins in cortical and sub-cortical structures where NRXN 

is also present, suggests that they may have the same role in human development as has 

been shown for mice.    

 

6.3.1 Expression of topoisomerase enzymes in the proliferative cortical regions 

The majority of cells that expressed TOP2A, also expressed KI67 confirming the role of 

TOP2A in cell division (Lodish et al., 2000).  The proportion of dividing cells in the cortex 

decreases between 8 and 12 PCW, which explains the decrease in TOP2A expression with 

age.  Whilst PAX6 expression was also observed throughout the proliferative regions of the 

cortex, it did not overlap in expression with TOP2A protein as KI67 did.  TOP2A was 

predominantly found in cells at the apical surface of the VZ suggesting that it is found in cells 

in the G2/M phase of cell division.  Indeed, it has been shown that TOP2A expression is low 

but gradually increases during the S phase, before peaking at G2/M phase (Negri et al. 1992; 

Woessner et al. 1991; Heck et al. 1988).  In contrast to this, cells in the S phase cells 

throughout the ventricular zone of the coretex have been shown to express PAX6 in mice 

(Englund et al., 2005).  Alternatively, TOP2A/ KI67 expressing cells, that do not express PAX6, 

could have migrated into the cortical proliferative regions from the MGE.  Cells of the MGE 

have been shown to tangentially migrate into the cortex (Lavdas et al., 1999).  Using 

embryonic brain slices, Wichterle et al. (1999) showed that MGE cells migrate towards the 

cortex and that MGE cells, when transplanted into multiple brain regions, are able to 

differentiate into neurons.  Double labelling of KI67 and PAX6 will be required to discover if 

indeed there are dividing cells in the proliferative cortical regions that do not express PAX6.  

Also, using markers such as BrdU and phosphohistone H3 (Englund et al., 2005) to 

distinguish what phase of the cell cyle TOP2A, KI67 and PAX6 immunopositive cells are in. 
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TOP2B protein was also observed in the proliferative regions of the cortex and a proportion 

of these cells express both TOP2A and TOP2B, suggesting that there is an overlap in the 

expression of these proteins, likely at the period when cells transition from a state of cell 

division to the beginnings of differentiation.  Cells that express TOP2B do not express KI67 

adding weight to this theory that TOP2B immunopositive cells are not actively dividing.  

Multiple post mitotic markers, including TBR1, MAP2 and CTIP2 (I at al., 2011; Bayatti et al., 

2008a), that have no known roles in cell division are also expressed in the SVZ.  It has been 

shown previously that in the absence of TOP2A in human cell lines there is an increased rate 

of non-disjunction, which is the failure of sister, chromatids or homologous chromosome to 

separate during cell division (Gruel et al., 1998).  In the absence of Top2b, neurogenesis is 

normal (Yang et al., 2000).   This information, together with our findings, suggests that 

TOP2A, but not TOP2B, is essential for correct cell division.   

 

6.3.2 Expression of topoisomerases in post mitotic neurons 

TOP2B protein was seen throughout the cortex, which correlated with the finding from the 

RNA seq dataset that it was expressed more highly than the other topoisomerase genes.  

The results have confirmed the findings from rodents of Capranico et al. (1992), Tsutsui et al. 

(1993) and Tiwari et al. (2012) that TOP2B is present in post-mitotic neurons.  Unlike TOP2A, 

it was present in the cortical plate of the cortex as has also been shown in rodents 

(Thakurela et al., 2013). This is consistent with the suggestion that TOP2B regulates the 

expression of genes implicated in cell differentiation.   Cells that co-express TOP2B and TBR1 

were more apparent in the superficial layers of the CP where there was also strong NRXN1 

and NRXN3 immunopositivity.  This layer is comprised of cells that have most recently 

migrated here from the proliferative regions of the cortex (Rakic, 2009).  TOP2B protein 

abundance appeared to be reduced in the more mature deep cortical layers and studies in 

mice have shown that Top2b expression in the brain decreases during development 

(Capranico et al., 1992) signifying that Top2B is downregulated in maturing neurons.  

However, despite an increase in neuronal maturation with age, the expression of TOP2B did 

not change significantly between 9 and 12 PCW.  This is likely due to the counter effect of an 

increasing population of early post mitotic cells with high levels of TOP2B expression.   

In the deep layers of the human cortical plate, NRXN proteins were also reduced.  Although 

postnatally NRXN expression remains constant, TOP2B may be an important transcriptional 
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regulator prenatally.  Reducing Top2b expression in rodent cell lines reduces the expression 

of NRXNs 1 and 3, in addition to a number of other long genes >67kb, (Li et al., 2014; King et 

al., 2013) which is unsurprising given their overlapping expression patterns.  In this study, by 

reducing the expression of TOP2B in human cortical cell cultures, we were able to show that 

the expression of NRXN1 was significantly reduced.  NRXN3 was not identified as being 

reduced in expression, despite using the same concentrations of ICRF-193 as was used for 

the King et al. (2013) study.  In part, this could be due to the difference in species and cell 

type.  King et al. (2013) used rodent cortical cells and differentiated human iPS cells whereas 

the cells used in this study were taken directly from 11 and 12 PCW human fetal brains.  

Using both mRNA and protein data, we have provided evidence that TOP2B  and NRXN show 

similar patterns of expression and therefore have the potential to interact between 8 and 12 

PCW.  Knockdown studies in mice have implied that Tob2b has an indirect role in axon 

pathfinding, target finding (Nevin et al., 2011; Yang et al., 2000) and neurite growth (Nur-E-

Kamal et al., 2007) and it is possible that this role may be fulfilled through its regulation of 

Nrxn1 expression.  Similarly, in humans, TOP2B could potentially have indirect roles in these 

processes via the transcriptional regulation of NRXN genes. 

 

6.3.3 Increased expression of NRXN transcriptional regulators in the temporal lobe 

TOP1 and MECP2 showed an increased expression in the temporal lobe compared to the 

central cortex at 9 PCW.  The inhibition of TOP1 by the inhibitor topotecan impairs synaptic 

transmission by reducing the expression of long genes including NRXN1 and NLGN1 (Mabb et 

al., 2014).  Therefore, we would expect an increase in TOP1 expression alongside an increase 

in NRXN1 expression. However, no significant difference in NRXN1 expression in the 

temporal lobe was observed at 9 PCW.  The increase in TOP1 expression may have a delayed 

effect on NRXN1 expression in the cortex.  

MECP2 acts mainly as a transcriptional repressor but has also been shown to act as a 

transcriptional activator.  If MECP2 was to act as a transcriptional repressor of NRXN at this 

age, this would not correlate with the increased levels of NRXN expression in the region.  

Instead, this would suggest that MECP2 is not acting as a transcriptional repressor of NRXNs 

1 and 2.  Looking more closely at the data, the increase in the expression of NRXNs 1 and 2  

in the temporal cortex was not present at 9 PCW, whereas, the increase in MECP2 

expression was only present at 9PCW.  It is therefore, possibly that a decrease in MECP2 
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expression in the temporal cortex after 9 PCW alleviates the transcriptional repression of 

NRXN1 and 2 transcription, leading to an increase in NRXN expression in the temporal 

cortex.   

There was an increase in KHDRBS1 expression in the temporal lobe compared to the central 

cortex at 9 and 11 PCW.  A similar increase was observed in the RNAseq dataset for NRXN2 

and in the qPCR data for NRXN1 at 10 PCW.  The fact that the expression of KHDRBS1 mimics 

that of NRXNs 1 and 2 suggests that there is not differential splicing of these genes by 

KHDRBS1 across the cortex but rather that the increase in the KHDRBS1 protein meets the 

demand of the increased NRXN transcripts.  However, the fact that the expression of the 

other two STAR family genes doesn’t mimic that of NRXNs 1 and 2 gives rise to the possibility 

that there may be different levels of splicing taking place across the cortex.  If the amount of 

KHDRBS2 and 3 proteins remains constant, but NRXN protein increases in the temporal lobe, 

then there would be less opportunity for alternative spicing.  This theory is obviously 

dependant on the increased levels of KHDRBS expression translating to increased protein 

levels as well as assuming that the observed level of STAR proteins was insufficient to keep 

up with the increased amount of NRXN transcripts. 

 

6.3.4 Expression of TOP2 in the subpallium 

TOP2A showed the same expression pattern as KI67 in the ganglionic eminences, being 

present in both the medial and lateral GE, further confirming its role in cell division.  Pallial 

projection neurons, striatal interneurons and cortical inhibitory interneurons are born in the 

MGE (Wang et al. 2014; Hansen et al. 2013; Hernandez‐Miranda et al. 2010; Xu et al. 2008; 

Marin et al. 2000).  This region is more highly developed in primates, likely due to the larger 

cerebral cortex and the requirement of a larger number of interneurons (Hansen et al., 

2013). 

TOP2A was absent from the post mitotic caudate whereas, contrastingly, TOP2B was present 

in this region.  These findings reiterate the staining patterns within the cortex, that whilst 

TOP2A is concerned with cell division, TOP2B is acting in both the proliferative and post-

mitotic regions of the developing human brain.  Previously we showed that NRXNs are 

similarly distributed across these sub-pallial regions and TOP2B could potentially be 

influencing NRXN transcription in sub cortical structures in addition to within the cortex.   
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6.3.5  KHDRBS1 has a distinct expression pattern  

The comparatively higher expression level of KHDRBS1 compared to KHDRBS2 and 3 

corresponds to the protein expression in the cerebral cortex.  While KHDRBS2 and 3 were 

predominantly found in the post mitotic regions of the cortex, KHDRBS1 was distributed 

equally across the post-mitotic and proliferative regions.  Distinct patterns of protein 

expression are also present in postnatal rodent brains with KHDRBS1 being more widely 

distributed throughout the brain compared to the other two proteins (Iijima et al., 2014).  

The significant increase in KHDRBS2 and 3 expression with age is likely due to the expanding 

cortical plate, which is where the majority of KHDRBS2 and 3 immuno-positive cells reside.  

 

6.3.6  KHDRBS2 and 3 are predominantly expressed in the post mitotic cells  

The mRNA and protein expression patterns of KHDRBS2 and 3, being more similar to each 

other than to that of KHDRBS1, suggests overlapping functions.  In rodents, KHDRBS3 

knockout causes an increase in KHDRBS2 expression (Traunmuller et al., 2014) and in yeast it 

has been suggested that these two proteins serve redundant functions in actin cytoskeleton 

organisation (Fadri et al., 2005).  The functions of the STAR family of proteins appear to be 

more complex in neurons than they are in yeast and include the alternative splicing of 

NRXNs.  KHDRBS 2 and 3, unlike KHDRBS 1, do not require depolarising neuronal activity in 

order to exert their function in NRXN splicing (Iijima et al. 2014; Traunmuller et al. 2014; 

Ehrmann et al. 2013; Iijima et al., 2011).  Reduced expression of KHDRBS2 and 3 leads to an 

increase in the inclusion of AS4 in mouse neurons (Traunmuller et al., 2014; Erhmann et al., 

2013; Iijima et al., 2011).  The removal of this splice site is essential for the binding of NRXNs 

to NLGNs.  The majority of KHDRBS2 and 3 protein was found in the post-mitotic regions 

suggesting that the majority of NRXN-NLGN interactions are occurring in this region also. 

The KHDRBS2/3 complex has been shown to affect mTOR signalling, presumably via binding 

to mTORC2 subunits, which can influence the growth of non-proliferating cells including 

neurons (Fadri et al., 2005; Jakinto & Hall, 2003).  Abnormal mTOR signalling, and 

presumably the effect this has on the development of the brain, has been identified as a risk 

factor for autism (chapter 1.). 

Our data suggests that, in the developing human brain, KHDRBS2 and 3 were present in the 

same regions of the cortex, although double labelling has not been carried out to ascertain 
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whether they are expressed in the same cells.  This would corroborate the findings of Iijima 

et al. (2014) that they are suited to regulate splicing in a cell type specific manner, and 

indeed we have seen that KHDRBS2 and 3 immunopositivity at 12 PCW differs in the outer 

regions of the human CP.   There are also differences in the protein localisation within the 

proliferative cortical regions.  Although KHDRBS2 staining is predominantly found in the CP it 

is also present in some cells of the proliferative regions.  KHDRBS2 is able to form complexes 

with KHDRBS1 and KHDRBS1/2 double knock out mice, but not single knockouts, had 

reduced brain sizes and disorganised Purkinje cells in the cerebellum (Iijima et al., 2014).  

The expression of these two proteins in the subpallial regions was different.  There was 

KHDRB2 and KHDRB3 protein expression in the caudate, which correlates with their post 

mitotic CP localisation, but KHDRBS3 protein was more obviously located in the post mitotic 

regions of the sub pallium. This corresponded with its expression in the cortex, where it was 

predominantly expressed in the CP.  Although found in overlapping regions of the cerebral 

cortex, the functions of the STAR family of proteins, particularly in the subpallium, may differ 

due to their interactions with each other and with other proteins.   
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Chapter 7 Summary and Future work 

This thesis aimed to identify autism susceptibility genes that are expressed during 8-12 PCW 

in the human cortex.  We hypothesised that the synaptic adhesion molecules NRXNs and 

NLGNs would be expressed at this developmental time period and also that their protein 

expression may not be limited to synaptogenic regions of the cortex.   It was also 

hypothesised that proteins that regulate NRXN expression would be present in the 

developing brain and that these proteins may be able to be used to manipulate the 

expression of NRXNs in culture.  The findings of this study were expected to be informative 

as to the pathogenesis of autism. 

7.1 Main findings of the study 

RNA sequencing of a collection of brains aged between 9 and 12 PCW was able to generate a 

vast amount of data of which only a portion has been analysed for this thesis.  PCA analysis 

demonstrated that different anatomical brain structures have clearly defined gene 

expression patterns even at this early stage in development.  In addition to the gross 

anatomical differences, we have identified regional and temporal gene expression changes 

within the cortex although these appear to be less obvious transcriptionally, as shown in the 

PCA and cluster analysis.  A larger number of genes change temporally compared to spatially 

suggesting that although the cortex is becoming regionalised between 9 and 12 PCW, the 

structure as a whole is trying to establish itself as separate from the subcortical regions of 

the CNS.A number of autism susceptibility genes were differentially expressed both spatially 

and temporally and the gene sets that are changing with age and across the cortex are 

different.  The expression of these genes during early brain development suggests that 

although the symptoms of ASD do not become apparent until approximately 2 years of age, 

the incorrect expression and/ or function of these molecules between 8 and 12 PCW could 

potentially lead to abnormal brain development and contribute to the autistic phenotype. 

The RNA seq and qPCR NRXN expression data correlated very well showing that NRXN1 and 

NRXN2 increase in expression with age and have high expression levels relative to the 

reference genes whereas NRXN3 has a comparatively lower expression.  The cortical region 

that was most often significantly different from the others was the temporal lobe.  The 

temporal lobe is directly connected to the sub-pallium and is more likely to be the brain 

region that is exposed to the signalling of sub-pallial structures. Alternatively, the dissections 
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may have taken some sub-pallial material that is changing the results.  Indeed, the 

expression of the temporal lobe sample datasets was the most variable of all the cortical 

regions but it was also the largest section of the cortex that was dissected. 

NRXN protein was expressed in multiple cell types across the telencephalon including those 

in proliferative regions and those in post mitotic regions.  The expression patterns of the 

NRXNs, although often overlapping, were also distinct for each protein.  NRXN1 showed the 

broadest expression being present in almost all cells of the forebrain but is absent from the 

neuropil and fibre tracts of the internal capsule.  NRXN2 co-localises with GAP43 and SYP in 

the neuropil of the intermediate zone and subplate  as well as being present in the GAP43 

and CASK positive fibre tracts of the internal capsule.  NRXN3 is present in the neuropil/ cell 

bodies of the post mitotic cells of the cortical plate at 8 PCW but by 12 PCW was also present 

in the proliferative regions.  NRXN3 immunostaining was less apparent in the proliferative 

regions of the sub-pallium and, like NRXN1,  was absent from the internal capsule.  NRXNs 1 

and 2 immunopositivity was always more pronounced in the newly forming outer layer of 

the cortical plate.  Our results suggest that NRXNs have functions outside of their role in 

synaptogenesis at this stage of development.  Cells that reside in the areas in which the 

NRXNs were expressed have roles in proliferation, migration and neuronal differentiation.  

NRXN2 is the strongest candidate for a role in synaptogenesis and axon outgrowth or 

guidance as it overlaps in expression with genes of similar functions. 

We have also shown that the regulators of NRXN transcription, MECP2 and Topoisomerase 

2B, were expressed in the cortex between 9 and 12 PCW.  TOP2B immunopositivity was 

similar to that of NRXN1 being present in both proliferative and post mitotic cells, whereas 

the closely related TOP2A is confined to dividing cells.  We provided evidence that TOP2B 

regulates the transcription of NRXN1 in cortical cell cultures as its inhibition using ICRF-193 

resulted in a significant reduction in NRXN1 expression.  In addition to regulators of NRXN 

transcription, the STAR family genes KHDRBS2 and KHDRBS3 were also expressed in the 

cortex between 9 and 12 PCW.  Like NRXNs 1 and 2, the strongest immunopositivity was 

observed in the cortical plate.  KHDRBS2 was also present in the VZ and SVZ but KHDRBS3 

was greatly reduced in regions of proliferation in both the cortex and the sub-pallium.  This 

suggests that splicing by KHDRBS3 does not take part in proliferative regions between 9 and 

12 PCW.  This may reduce the exclusion of SS#4 in the NRXN transcripts in those regions and 

consequently reduce the ability of NRXNs to bind NLGNs. 
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In summary ASGs are present in the developing cortex between 9 and 12 PCW and their 

functions at these ages are largely unexplored.  The functions of many of the proteins 

encoded by these genes differ between anatomical structures, brain regions and cell types.  

Although studies that delineate functions for these molecules in unrelated brain or other 

anatomical regions are extremely insightful and often transferable, it is possible that these 

proteins have completely novel functions in the neural progenitor cells of the cerebral 

cortex.  The expression patters of the NRXN1 and 3 genes suggest that they are required for 

additional functions that extend beyond synaptogenesis and synaptic stabilisation.  The main 

aim moving forward would be determine what functions the NRXN, NLGN and SHANK 

proteins have between 8 and 12 PCW and how this could relate to the development of 

conditions such as ASD.   We have learnt a lot about the potential functions of these proteins 

from mice however the functions of these proteins in humans and in particular their 

functions during development, are largely unexplored.  In particular roles in cell 

differentiation, cell migration, axonal outgrowth and neuronal proliferation should be 

further examined.  Our cortical cell cultures provide an excellent model system for this work 

and bypass the problems posed by iPSCs such as methylation marks and incomplete 

differentiation.   

 

7.2 Limitations of the study 

One of the main limitations of the study is the small number of samples at each age.  This 

reduces the statistical power making it more difficult to detect differential expression.  

Small, but significant, changes in expression between groups are unlikely to be identified.  

Although the dataset is extremely interesting, caution must be taken in the interpretation of 

the results.  Multiple factors affect the quality and the accuracy of the data including but not 

limited to, the sample preparation, the read length, the sequencing depth and the programs 

used for quality control and mapping of the data.  In addition to problems that can arise 

from the sequencing process, it is important to consider the genetic variation between 

human samples and the effects of termination procedures, substances that the embryo/ 

fetus is exposed to within the womb and the post mortem delay and changes in brain pH 

that can all affect gene expression.  These prove problematic for the qPCR data also and 

since different brains were used for the RNA seq and qPCR, this may explain some of the 

variation seen in the analysis of the NLGN and SHANK genes. 
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In theory, because autism is a condition that, at present, cannot be diagnosed prenatally, 

some of the samples used may harbour mutations that could have led to the development of 

ASD or another neurodevelopmental/ neuropsychiatric condition.  Due to data protection 

and ethical standards, it is not possible to obtain a medical history or any information 

regarding the origins of the sample.  Therefore, it is important to note that it is possible that 

the samples used in this study may have mutations that lead to the observed gene 

expression patterns.   

A limitation when culturing primary human fetal cells is the low proliferation rate.  This 

makes them unsuitable for many gene editing techniques such as Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR; Xiong et al., 2016).  Since they do not 

recover well from freezing, the cultures are again subject to tissue being available. 

 

7.3 Implications of the findings and recommendations for future research 

It will be important for future studies to genotype all samples used and screen for DNA 

abnormalities as well as chromosomal abnormalities to ensure that all results reported 

correspond to the normal human genotype.  Genotyping samples would also enable 

researchers to gather a collection of samples that had genetic mutations in ASD 

susceptibility genes.  This could bypass the ethical implications of obtaining information 

about the women opting for the termination.  

This thesis has presented evidence for alternative functions of NRXN proteins during 

development compared to in the adult brain.  It is likely that many other susceptibility genes 

that are expressed at these ages have alternative or additional functions to those seen in the 

adult brain.  The findings of this thesis suggest that neurons should be seen as more than 

synapses, particularly during the early stages of brain development.  There are many cellular 

processes that neurons exhibit that are independent of synaptogenesis or are required in 

order to differentiate into a mature neuronal cell.  Discovering novel developmental 

functions of ASD susceptibility genes could change the associations observed in the current 

gene module models and elucidate novel signalling pathways or functional hubs that, when 

perturbed, cause the condition.  It also has the potential to provide new targets for the 

development of treatments.   



187 
 

Cell models provide an important platform for studying the functions of ASD genes during 

early development.  Primary fetal brain cultures likely have gene expression profiles and 

characteristics that, compared to neural stem cell models, are more similar to those seen in 

neural progenitor cells in vitro.  Although manipulation of the genetic material of these cells 

is possible, it is not possible to select for those cells that have been manipulated and so 

functional studies are limited.  It will be useful, in future, to direct these cells towards a 

proliferative state by changing the components of the culture media and possibly the cell 

culture vessel.  Creating proliferative stocks of cells obtained from primary cultures will also 

diminish the requirement for fresh tissue.  Human neural stem cell models could also 

provide a platform from which to test the early functions of these ASD susceptibility genes 

as they are undifferentiated, well characterised and more easily manipulated, though not 

without their own limitations (Jakel et al., 2004). 

These findings could help towards developing a molecular prodrome.  If we are able to map 

out gene expression patterns during normal development than we can use deviations in 

expression from these normal ranges as risk factors for the condition.  However, we need to 

consider the ethical implications of presenting this information to families during pregnancy.  

The American Academy of Paediatrics (2016) states that genetic testing should be driven by 

the best interest of the child.  It would be irresponsible for scientists and medical 

professionals to provide information about these genetic mutations until we have a more 

thorough understanding of their effects.  Due to the heterogeneity of the condition, it may 

not be possible to give a definitive diagnosis.  The likelihood of the child developing autism 

would have to be quantified in order for clinicians and families to weigh up the risks of 

treatment and/ or testing versus autism severity and to make informed prenatal treatment 

decisions.  It may be more efficient to search for common upstream targets of these genes 

so that a more efficient and cost effective method of prenatal/ early diagnosis can be 

obtained.  Molecular screening tests are being developed and Schmunk et al., (2017) 

recently developed a high-throughput assay to detect defects in calcium signalling that are 

predictive of autism. 

If individuals are diagnosed with mutations in ASD susceptibility genes, this will likely affect 

their family planning and may also encourage terminations of the pregnancy.  At present, 

unless there is a family history of ASD and a research interest, there are no genetic screens 

for the condition.  There is also a risk of genetic discrimination with families opting to abort a 



188 
 

fetus with an autistic prodrome or to select against genetic traits that could lead to autism.  

In vitro fertilisation techniques aim to use fertilised eggs that are free from genetic 

mutations.  There is a movement of people, referred to as the neurodiversity movement, 

who see ASD not as a disability but rather as a natural difference (Jaarsma & Welin, 2012).  

These individuals do not welcome a ‘cure’ for the condition but instead suggest changing 

how it is viewed and adapting accordingly (Kapp et al., 2013). 

Because of the limited supply of human embryonic and fetal tissue it will be important to 

pool together data from multiple studies.  Improved study design will enable a better use of 

the resources and will ensure that RNA/ DNA is available from the same samples in order to 

validate results.  The published findings that the MMR vaccine was a risk factor for autism 

sparked major public concern about the safety of all vaccinations (Gross et al., 2009).  This 

has subsequently led to a rise in a number of disease cases that were once rare and are 

preventable thanks to vaccination programs.  It is, therefore, vital that the applications of 

research such as this are sensitive to personal opinions and ethical guidelines.   
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Appendix 

Supplementary Table 3.1.  Top 200 protein coding genes that are differentially expressed between 

9PCW and 12 PCW using fold change (p adjusted <0.05) (blue – upregulated, red – downregulated) 

Gene Name Log 2 fold P adjusted 

HSPA6 

PTPRQ 

BCAS1 

KRT31 

CIDEA 

KRT34 

RASL10A 

HTR1A 

OTOR 

KRT33B 

ZFP57 

GPX3 

AQP4 

CRYM 

KRT33A 

SPINK5 

CHRM5 

HSPA1A 

INHBA 

SLCO1C1 

ACY3 

DEFB112 

TMOD1 

HEPACAM 

LIN28B 

GPR50 

HTR2B 

KRT19 

ITGB5 

CCL3L3 

4.789757 

4.295245 

4.216468 

4.120775 

4.035745 

4.016802 

3.855068 

3.810911 

3.637189 

3.500152 

3.47717 

3.330594 

3.253096 

3.163538 

3.152875 

3.144915 

3.135105 

3.059664 

3.050151 

3.03587 

2.991134 

2.978308 

2.9035 

2.879263 

2.865438 

2.855074 

2.82659 

2.815798 

2.797474 

2.77031 

3.02686E-26 

1.47248E-20 

1.61969E-31 

1.52382E-16 

2.63098E-28 

2.53216E-15 

1.07419E-30 

3.02686E-26 

8.38909E-17 

7.06345E-12 

1.09182E-10 

2.98985E-25 

1.2034E-10 

1.81394E-20 

1.37788E-08 

9.09149E-15 

5.69478E-13 

2.62294E-21 

1.21654E-18 

6.57456E-26 

1.0051E-24 

3.61808E-09 

9.06073E-28 

1.23245E-11 

9.06073E-28 

2.53589E-13 

1.82462E-15 

2.39691E-10 

9.36529E-20 

1.30666E-12 
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MAG 

FAP 

CD2 

DAZ2 

TTLL2 

ATP2C2 

HSPA1B 

C3orf80 

DAZ1 

TAAR9 

CCL3 

SV2C 

OSM 

TMC3 

DAZ3 

ADRB1 

LPL 

CRYAB 

EBF2 

GADD45B 

ADIRF 

NDST4 

GPR17 

DIRAS3 

HMGA2 

RAMP3 

RGS6 

NXPH3 

OSTN 

HTR3A 

FA2H 

VSX1 

IL12RB2 

SLC35F2 

ERICH5 

SERPINE1 

2.761447 

2.747006 

2.731503 

2.726465 

2.705767 

2.685292 

2.634536 

2.609697 

2.59296 

2.582372 

2.567333 

2.546575 

2.504266 

2.501266 

2.492306 

2.487501 

2.473995 

2.46982 

2.463912 

2.461292 

2.455737 

2.446381 

2.437764 

2.436985 

2.428826 

2.42796 

2.422529 

2.421848 

2.416467 

2.411307 

2.377963 

2.340006 

2.329874 

2.327911 

2.323898 

2.320634 

2.88455E-07 

2.42919E-12 

1.17217E-06 

1.52308E-06 

1.66424E-18 

1.82576E-17 

7.48666E-17 

1.11569E-08 

5.8732E-06 

3.55933E-07 

6.32138E-13 

8.46655E-16 

1.56731E-10 

4.65308E-07 

1.46396E-05 

3.30174E-12 

4.36254E-21 

2.1389E-06 

3.89506E-10 

1.15003E-21 

1.6506E-05 

3.46265E-19 

1.41841E-08 

4.14963E-17 

1.01582E-13 

8.46829E-08 

1.03774E-19 

8.37792E-13 

6.48328E-10 

6.04459E-07 

1.4195E-06 

2.51674E-09 

1.83695E-06 

3.67506E-19 

1.49827E-12 

1.08846E-23 
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EYA2 

AGT 

SULT1E1 

PAPLN 

KRT13 

SYT10 

KCNK9 

FGF10 

IQCJ-SCHIP1 

CH25H 

UNCX 

MYL4 

TNC 

MOG 

SULT1C2 

TBX21 

FAM163A 

CDC42EP1 

LCE5A 

MT1M 

SLN 

NKX2-2 

FRMPD4 

ARHGAP36 

PTGDR2 

SCNN1G 

TMEM102 

SIX2 

BBOX1 

ADAMTS5 

KRT32 

PCDH11Y 

LHX9 

SPRR2D 

TLR2 

CRYGC 

2.3083 

2.304714 

2.303907 

2.292464 

2.287289 

2.253876 

2.24358 

2.241131 

2.221233 

2.220792 

2.20735 

2.189925 

2.184324 

2.183881 

2.181035 

2.180791 

2.174863 

2.173741 

2.163304 

2.157847 

2.148791 

2.144897 

2.139676 

2.137153 

2.128119 

2.12441 

2.111661 

2.110486 

2.108356 

2.108111 

2.108022 

2.104755 

2.101447 

2.095641 

2.095366 

2.093131 

1.86441E-15 

3.83779E-05 

1.09634E-08 

1.24496E-10 

1.39552E-06 

3.0857E-14 

5.12897E-12 

9.39778E-06 

2.63526E-07 

1.27725E-08 

5.48003E-07 

8.77987E-12 

4.13656E-09 

1.40862E-06 

1.22875E-05 

0.000171936 

6.14639E-07 

8.70251E-11 

8.22105E-05 

1.39312E-05 

5.89218E-09 

2.62651E-11 

9.7448E-10 

6.10509E-07 

1.10302E-12 

2.83834E-13 

3.40225E-09 

0.000181156 

4.573E-05 

3.18695E-16 

0.000174529 

1.4912E-11 

1.04035E-11 

0.000265192 

1.79073E-08 

6.54999E-05 
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GABRP 

SIX1 

FOSL2 

GLRA2 

HAPLN4 

SATB2 

CLDN23 

BNC2 

HS3ST4 

F11 

HLA-C 

HRH2 

LIX1 

FFAR3 

FRMD7 

CDH7 

DCDC2C 

KIF26B 

DMRTB1 

ZFP42 

DEFA1B 

C10orf82 

GPAT2 

NDRG1 

PSMB9 

IFI44L 

TUBA3D 

AC011155.1 

LMX1B 

DLK1 

WFDC1 

CCND1 

RPRM 

SOWAHB 

NR4A2 

HSPA12A 

2.086788 

2.086667 

2.080639 

2.079189 

2.07628 

2.070723 

2.068993 

2.064444 

2.048937 

2.045579 

2.045282 

2.04192 

2.03841 

2.037553 

2.035523 

2.0326 

2.0304 

2.026417 

2.024068 

2.02342 

2.023142 

2.021508 

2.018198 

2.002483 

2.00132 

2.000429 

1.996973 

1.990526 

1.990156 

1.983053 

1.975597 

1.97263 

1.964752 

1.960087 

1.959099 

1.95812 

1.04123E-13 

2.12289E-05 

8.8706E-11 

3.01112E-10 

3.43901E-05 

3.06611E-08 

3.1945E-06 

5.30264E-06 

1.21654E-18 

0.000317099 

2.45145E-12 

2.27641E-10 

3.78511E-10 

0.000357933 

0.000139582 

1.15468E-07 

5.23935E-05 

8.33892E-13 

0.000209034 

0.000313891 

0.000528869 

6.38576E-09 

2.67161E-07 

5.39501E-23 

7.43381E-06 

1.97527E-12 

0.000448678 

4.30033E-06 

0.000515944 

6.65286E-05 

3.87858E-06 

2.25718E-13 

6.10758E-10 

2.51845E-15 

8.01416E-14 

3.17242E-08 
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TAP1 

GSTM1 

L1TD1 

OTOL1 

LGALS3 

DYNC1I1 

GADL1 

RHCG 

SH2D2A 

CFH 

SEMA7A 

OLAH 

LCN2 

HKDC1 

CSF3 

C1orf95 

C6orf141 

MPZL2 

RXRG 

NAPRT 

C2CD4B 

MYH4 

SLC44A4 

CYR61 

FOS 

SHISA9 

NEFM 

CRABP1 

GFY 

LIMCH1 

TSHZ3 

EVA1C 

G0S2 

PRPS1L1 

LRRTM1 

NHS 

1.955397 

1.951048 

1.943111 

1.941835 

1.94036 

1.937347 

1.936371 

1.932235 

1.931472 

1.926696 

1.925203 

1.923195 

1.922863 

1.921033 

1.920389 

1.919961 

1.911174 

1.9057 

1.90109 

1.892101 

1.891664 

1.889875 

1.889602 

1.886435 

1.88246 

1.881594 

1.880194 

1.880164 

1.872993 

1.872801 

1.868857 

1.867855 

1.855041 

1.852949 

1.851177 

1.846459 

1.69388E-12 

1.79921E-09 

1.6178E-11 

0.001051675 

6.29471E-12 

5.30468E-38 

7.54856E-05 

9.02773E-12 

2.51845E-15 

6.22016E-06 

5.50184E-17 

1.90353E-05 

0.00033607 

1.50604E-08 

0.000116954 

1.35004E-17 

1.68013E-05 

0.000800295 

0.000385838 

1.10835E-06 

3.65459E-10 

0.000391397 

1.45388E-05 

3.3257E-21 

2.51179E-12 

2.96285E-12 

5.7098E-08 

5.95828E-06 

1.67664E-05 

1.41115E-23 

5.627E-12 

2.3722E-11 

0.00051163 

0.000309747 

6.78139E-08 

1.10352E-19 
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OR5M8 

OGN 

LEF1 

DEFB110 

VHLL 

COL6A3 

HGF 

SCRG1 

FRMPD2 

C8orf34 

ENOSF1 

TSHZ2 

LUM 

TAS2R10 

GPR64 

HSPB1 

PLAG1 

SALL4 

DNAJB1 

C7 

PLD4 

CPNE8 

DEFA3 

CPLX1 

TRPC6 

FPR1 
 

1.842173 

1.841665 

1.839851 

1.83813 

1.83707 

1.833995 

1.829095 

1.826111 

1.821707 

1.81811 

1.812963 

1.808606 

1.805274 

1.80082 

1.796264 

1.795849 

1.79409 

1.788668 

1.784406 

1.780551 

1.780056 

1.779081 

1.776043 

1.775468 

1.769692 

1.769488 
 

0.001093831 

0.00186276 

1.12736E-09 

0.001796698 

9.52753E-06 

0.000999464 

1.08438E-08 

3.58193E-06 

6.44925E-05 

7.07945E-10 

2.11301E-14 

1.73225E-05 

6.894E-05 

2.14117E-09 

2.81778E-05 

1.36556E-05 

1.89089E-12 

5.72588E-10 

3.05484E-10 

0.001501459 

2.82919E-10 

3.56988E-05 

0.002779504 

8.6088E-08 

7.25162E-08 

2.37489E-12 
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Supplementary Table 3.2.  Top 200 protein coding genes that are differentially expressed between 

9PCW and 12 PCW using P value (fold change >2) 

Gene Name Log 2 fold P adjusted 

HDHD1 

DYNC1I1 

BCAS1 

RASL10A 

CIDEA 

LIN28B 

PSTPIP2 

TMOD1 

SCD5 

MAFF 

HTR1A 

HSPA6 

SLCO1C1 

GPX3 

ZNF658 

ACY3 

LARGE 

TMEM74 

STARD5 

HIF3A 

SERPINE1 

LIMCH1 

NDRG1 

NUDT13 

GADD45B 

WASF1 

HSPA1A 

CYR61 

LPL 

PTPRQ 

CRYM 

DUSP1 

1.036406213 

-1.937347079 

-4.21646826 

-3.855068264 

-4.035745122 

2.865437872 

1.247049312 

-2.903499997 

-1.419099014 

-1.654376105 

-3.810910701 

-4.789756785 

-3.035869614 

-3.330593594 

1.03244712 

-2.991134193 

-1.23692116 

-1.359305117 

-1.687079232 

1.596976634 

-2.320634042 

-1.872800611 

-2.002482897 

1.244054419 

-2.461291738 

-1.504638348 

-3.059663682 

-1.886434695 

-2.473995173 

4.295245357 

-3.163538495 

-1.129791759 

2.81543E-39 

5.30468E-38 

1.61969E-31 

1.07419E-30 

2.63098E-28 

9.06073E-28 

9.06073E-28 

9.06073E-28 

1.07917E-27 

1.51164E-27 

3.02686E-26 

3.02686E-26 

6.57456E-26 

2.98985E-25 

5.36152E-25 

1.0051E-24 

1.0459E-24 

2.67493E-24 

4.96278E-24 

1.05742E-23 

1.08846E-23 

1.41115E-23 

5.39501E-23 

2.65742E-22 

1.15003E-21 

1.22331E-21 

2.62294E-21 

3.3257E-21 

4.36254E-21 

1.47248E-20 

1.81394E-20 

4.16332E-20 
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KCTD12 

ITGB5 

SRSF6 

RGS6 

NHS 

NDST4 

SLC35F2 

EDN1 

TMEM108 

HS3ST4 

INHBA 

TTLL2 

TMEM159 

C1orf95 

GAB2 

APIP 

ATP2C2 

SYTL4 

FAM110B 

DIRAS3 

SEMA7A 

HSPA1B 

FAM149A 

OTOR 

KRT31 

DDIT4 

FLRT1 

NCK2 

SCN11A 

ADAMTS5 

CCNJ 

ADM 

SV2C 

FAM227A 

SLC26A2 

TBC1D8B 

-1.68006269 

-2.797474446 

1.0743457 

-2.422529019 

1.846459295 

2.446380774 

-2.327910539 

-1.383276716 

-1.628263585 

-2.048937259 

-3.050150611 

-2.705766923 

-1.438084747 

-1.919960968 

-1.377893767 

1.141853264 

-2.685291763 

1.118449158 

-1.029880659 

2.436985305 

-1.925202754 

-2.63453646 

-1.098434915 

-3.637188584 

-4.120775404 

-1.599122088 

-1.381080465 

-1.084683862 

1.181506407 

2.108111086 

1.059928847 

-1.716435374 

2.546574702 

1.09627181 

1.146537114 

1.637220293 

9.14605E-20 

9.36529E-20 

9.57695E-20 

1.03774E-19 

1.10352E-19 

3.46265E-19 

3.67506E-19 

4.45242E-19 

4.87966E-19 

1.21654E-18 

1.21654E-18 

1.66424E-18 

4.95828E-18 

1.35004E-17 

1.59839E-17 

1.82576E-17 

1.82576E-17 

1.9742E-17 

1.99311E-17 

4.14963E-17 

5.50184E-17 

7.48666E-17 

7.64179E-17 

8.38909E-17 

1.52382E-16 

2.31166E-16 

2.35519E-16 

2.37454E-16 

3.04383E-16 

3.18695E-16 

4.59961E-16 

5.52721E-16 

8.46655E-16 

9.39765E-16 

9.80205E-16 

1.04264E-15 
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AGAP1 

CRYGS 

HTR2B 

EYA2 

TPH1 

SIK1 

SH2D2A 

SOWAHB 

KRT34 

LDB2 

ACRC 

SPINK5 

C3 

PHLDB2 

AHNAK2 

CCDC173 

ADAMTSL1 

JUN 

SLC9C2 

ENOSF1 

IGSF3 

B3GALT2 

MAT2A 

SYT10 

TDRD7 

GRM3 

SOBP 

PRSS23 

NR4A2 

CLCN5 

APLN 

PLCH1 

DDX26B 

HMGA2 

GABRP 

IL27RA 

-1.422589131 

1.282597393 

-2.826589998 

2.308299509 

1.646422971 

-1.333134736 

-1.931472479 

-1.960087246 

-4.016801799 

-1.390108841 

1.342084915 

3.144914762 

-1.58772598 

1.625391163 

-1.357824211 

1.480312709 

-1.768522459 

-1.651705159 

1.337764398 

1.812963208 

-1.171048211 

-1.337461195 

1.07080628 

2.253876006 

-1.166108991 

-1.733214717 

-1.624788977 

-1.15678247 

-1.959099345 

1.531298943 

-1.353922846 

1.243028579 

1.187741516 

2.42882644 

2.086788024 

-1.582028049 

1.04264E-15 

1.54015E-15 

1.82462E-15 

1.86441E-15 

2.40592E-15 

2.51247E-15 

2.51845E-15 

2.51845E-15 

2.53216E-15 

4.37779E-15 

5.55959E-15 

9.09149E-15 

1.0706E-14 

1.16833E-14 

1.24489E-14 

1.63209E-14 

1.63209E-14 

1.81004E-14 

1.92627E-14 

2.11301E-14 

2.34902E-14 

2.46475E-14 

2.61853E-14 

3.0857E-14 

3.11517E-14 

3.81266E-14 

3.99874E-14 

5.01199E-14 

8.01416E-14 

8.06955E-14 

9.11376E-14 

9.35657E-14 

1.00719E-13 

1.01582E-13 

1.04123E-13 

1.15579E-13 
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PDZD7 

ME3 

LYPD5 

FAM101B 

CCND1 

ANKHD1-EIF4EBP3 

GPR50 

RTN4RL1 

MAPT 

SCNN1G 

TUBB2B 

SMOC1 

MMRN1 

CHRM5 

CCL3 

GABRE 

ATP1A1 

KIF26B 

NXPH3 

PPFIBP2 

LRP5L 

PTGDR2 

TLR3 

CASP1 

MTUS2 

ZNF730 

CCL3L3 

SH3KBP1 

ASTN2 

ERICH5 

RND1 

TRIM67 

TAP1 

MAP3K15 

PLAG1 

IFI44L 

-1.646697369 

-1.058124764 

-1.054422089 

-1.518205101 

1.97263006 

1.327599442 

2.855073641 

-1.75920198 

-1.721959135 

-2.124410007 

-1.085178153 

-1.739225078 

1.594108018 

-3.135105025 

-2.567332649 

1.62782374 

-1.014127683 

-2.026416883 

-2.421847619 

-1.125915165 

-1.336537205 

-2.128118729 

-1.586177556 

-1.684565373 

-1.385670095 

1.537212974 

-2.770310379 

-1.073934725 

-1.752090772 

-2.323898407 

-1.248056037 

-1.509887841 

-1.955396556 

-1.399503664 

1.794090145 

2.000428647 

1.45895E-13 

1.77206E-13 

1.81243E-13 

1.95695E-13 

2.25718E-13 

2.30173E-13 

2.53589E-13 

2.60826E-13 

2.68703E-13 

2.83834E-13 

3.6874E-13 

5.07846E-13 

5.50153E-13 

5.69478E-13 

6.32138E-13 

6.34506E-13 

7.83391E-13 

8.33892E-13 

8.37792E-13 

8.58532E-13 

9.74886E-13 

1.10302E-12 

1.12974E-12 

1.13644E-12 

1.2368E-12 

1.30208E-12 

1.30666E-12 

1.39878E-12 

1.48054E-12 

1.49827E-12 

1.51521E-12 

1.56406E-12 

1.69388E-12 

1.83792E-12 

1.89089E-12 

1.97527E-12 
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NODAL 

FPR1 

FAP 

TMEM178A 

HLA-C 

FOS 

NELL2 

SLA 

STMN4 

KIAA1217 

SHISA9 

B3GALT5 

ADRB1 

ADD3 

UBE2QL1 

GDPD5 

KCNK9 

SLC25A25 

ZC3H12C 

LCOR 

MARCH3 

TSHZ3 

CNTNAP2 

LGALS3 

KRT33B 

IGF2BP1 

CSF1R 

MYL4 

RHCG 

LHX9 

RNF113A 

MGAM 

FAM196A 

HEPACAM 

HMGN5 

PCDH11Y 

-1.414278922 

-1.769487583 

2.747006322 

-1.246773516 

-2.045282181 

-1.882460041 

-1.116779016 

-1.675145546 

-1.557584041 

1.645829508 

-1.881593626 

1.466806477 

-2.487501461 

1.280180859 

-1.571338991 

-1.746077869 

-2.243579859 

-1.113362558 

1.233895254 

1.131537186 

-1.599489806 

-1.868857349 

1.526591651 

-1.9403598 

-3.500151694 

1.22902062 

-1.576729901 

-2.189925097 

-1.932235479 

2.101447191 

-1.263894342 

1.461266409 

-1.568621365 

-2.879262838 

1.349115257 

-2.10475491 

2.12005E-12 

2.37489E-12 

2.42919E-12 

2.45145E-12 

2.45145E-12 

2.51179E-12 

2.59991E-12 

2.70948E-12 

2.80599E-12 

2.92586E-12 

2.96285E-12 

3.30174E-12 

3.30174E-12 

3.36685E-12 

3.78164E-12 

4.64031E-12 

5.12897E-12 

5.13745E-12 

5.18129E-12 

5.21011E-12 

5.21011E-12 

5.627E-12 

6.28785E-12 

6.29471E-12 

7.06345E-12 

7.90029E-12 

8.05227E-12 

8.77987E-12 

9.02773E-12 

1.04035E-11 

1.05318E-11 

1.14704E-11 

1.20969E-11 

1.23245E-11 

1.35957E-11 

1.4912E-11 
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L1TD1 

LARP6 

TRIM66 

CCDC14 

EVA1C 

NKX2-2 

DSEL 

ALS2CR12 

HHIPL1 

CLMN 

KLHL31 

SEMA3C 

PIK3CD 

ADAMTS19 

CMTR2 

TEX15 

HLA-B 

ABCC2 

ZNF518A 

AOAH 

SELPLG 

CDC42EP1 

FOSL2 

PDXK 

1.943111035 

-1.005320705 

1.499279415 

1.120656137 

-1.86785476 

-2.144896738 

-1.346588268 

1.190349976 

-1.108253586 

1.575820013 

1.444083098 

-1.279306443 

-1.220634494 

1.768334633 

1.035337739 

1.764082704 

-1.760599387 

1.262102656 

1.074205262 

-1.187621733 

-1.517286364 

-2.173740896 

-2.080639434 

-1.166511554 

1.6178E-11 

1.84884E-11 

2.1746E-11 

2.28486E-11 

2.3722E-11 

2.62651E-11 

2.79698E-11 

3.09678E-11 

3.12081E-11 

4.10801E-11 

4.14337E-11 

4.23438E-11 

4.97654E-11 

5.34754E-11 

5.60829E-11 

6.25376E-11 

6.25376E-11 

6.57974E-11 

7.3716E-11 

7.98364E-11 

8.64134E-11 

8.70251E-11 

8.8706E-11 

9.16804E-11 
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Supplementary Table 3.3 List of 81 differentially expressed genes that overlap between 9 and 12 

PCW using highest fold change vs smallest P value 

Gene Symbol Log 2 fold  P adjusted 

ACY3 

ADAMTS5 

ADRB1 

ATP2C2 

BCAS1 

C1orf95 

CCL3 

CCL3L3 

CCND1 

CDC42EP1 

CHRM5 

CIDEA 

CRYM 

CYR61 

DIRAS3 

DYNC1I1 

ENOSF1 

ERICH5 

EVA1C 

EYA2 

FAP 

FOS 

FOSL2 

FPR1 

GABRP 

GADD45B 

GPR50 

GPX3 

HEPACAM 

HLA-C 

HMGA2 

HS3ST4 

HSPA1A 

HSPA1B 

HSPA6 

HTR1A 

HTR2B 

IFI44L 

INHBA 

-2.991134193 

2.108111086 

-2.487501461 

-2.685291763 

-4.21646826 

-1.919960968 

-2.567332649 

-2.770310379 

1.97263006 

-2.173740896 

-3.135105025 

-4.035745122 

-3.163538495 

-1.886434695 

2.436985305 

-1.937347079 

1.812963208 

-2.323898407 

-1.86785476 

2.308299509 

2.747006322 

-1.882460041 

-2.080639434 

-1.769487583 

2.086788024 

-2.461291738 

2.855073641 

-3.330593594 

-2.879262838 

-2.045282181 

2.42882644 

-2.048937259 

-3.059663682 

-2.63453646 

-4.789756785 

-3.810910701 

-2.826589998 

2.000428647 

-3.050150611 

1.0051E-24 

3.18695E-16 

3.30174E-12 

1.82576E-17 

1.61969E-31 

1.35004E-17 

6.32138E-13 

1.30666E-12 

2.25718E-13 

8.70251E-11 

5.69478E-13 

2.63098E-28 

1.81394E-20 

3.3257E-21 

4.14963E-17 

5.30468E-38 

2.11301E-14 

1.49827E-12 

2.3722E-11 

1.86441E-15 

2.42919E-12 

2.51179E-12 

8.8706E-11 

2.37489E-12 

1.04123E-13 

1.15003E-21 

2.53589E-13 

2.98985E-25 

1.23245E-11 

2.45145E-12 

1.01582E-13 

1.21654E-18 

2.62294E-21 

7.48666E-17 

3.02686E-26 

3.02686E-26 

1.82462E-15 

1.97527E-12 

1.21654E-18 
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ITGB5 

KCNK9 

KIF26B 

KRT31 

KRT33B 

KRT34 

L1TD1 

LGALS3 

LHX9 

LIMCH1 

LIN28B 

LPL 

MYL4 

NDRG1 

NDST4 

NHS 

NKX2-2 

NR4A2 

NXPH3 

OTOR 

PCDH11Y 

PLAG1 

PTGDR2 

PTPRQ 

RASL10A 

RGS6 

RHCG 

SCNN1G 

SEMA7A 

SERPINE1 

SH2D2A 

SHISA9 

SLC35F2 

SLCO1C1 

SOWAHB 

SPINK5 

SV2C 

SYT10 

TAP1 

TMOD1 

TSHZ3 

TTLL2 

 

-2.797474446 

-2.243579859 

-2.026416883 

-4.120775404 

-3.500151694 

-4.016801799 

1.943111035 

-1.9403598 

2.101447191 

-1.872800611 

2.865437872 

-2.473995173 

-2.189925097 

-2.002482897 

2.446380774 

1.846459295 

-2.144896738 

-1.959099345 

-2.421847619 

-3.637188584 

-2.10475491 

1.794090145 

-2.128118729 

4.295245357 

-3.855068264 

-2.422529019 

-1.932235479 

-2.124410007 

-1.925202754 

-2.320634042 

-1.931472479 

-1.881593626 

-2.327910539 

-3.035869614 

-1.960087246 

3.144914762 

2.546574702 

2.253876006 

-1.955396556 

-2.903499997 

-1.868857349 

-2.705766923 

9.36529E-20 

5.12897E-12 

8.33892E-13 

1.52382E-16 

7.06345E-12 

2.53216E-15 

1.6178E-11 

6.29471E-12 

1.04035E-11 

1.41115E-23 

9.06073E-28 

4.36254E-21 

8.77987E-12 

5.39501E-23 

3.46265E-19 

1.10352E-19 

2.62651E-11 

8.01416E-14 

8.37792E-13 

8.38909E-17 

1.4912E-11 

1.89089E-12 

1.10302E-12 

1.47248E-20 

1.07419E-30 

1.03774E-19 

9.02773E-12 

2.83834E-13 

5.50184E-17 

1.08846E-23 

2.51845E-15 

2.96285E-12 

3.67506E-19 

6.57456E-26 

2.51845E-15 

9.09149E-15 

8.46655E-16 

3.0857E-14 

1.69388E-12 

9.06073E-28 

5.627E-12 

1.66424E-18 
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Supplementary Table 3.4.  List of genes differentially expressed between anterior and posterior 

cortex at 9PCW 

Gene Name Log 2 fold P adjusted 

ZIC3 

DCT 

GADL1 

CYP26A1 

MIR217HG 

LAMP5 

MYBPC1 

DCHS2 

AE000661.37 

LRRTM3 

MOXD1 

TRDC 

HKDC1 

ACTC1 

SPATA13 

ANKRD34B 

GOLGA2P5 

CTD-2140G10.2 

OTOG 

KCNK9 

PIP5K1B 

RORB 

CYP26B1 

GIPR 

LINC00643 

HILS1 

CNIH3 

FAM196B 

RP11-159K7.2 

RLBP1 

CTB-12A17.2 

RP11-844P9.2 

3.316820934 

3.209577832 

3.116578311 

3.033623659 

2.586740936 

2.494707745 

2.487607005 

2.465400441 

2.291916082 

2.251127881 

1.972086114 

1.926029601 

1.888456551 

1.887124989 

1.873128127 

1.781708416 

1.774802282 

1.773493427 

1.770753975 

1.715955148 

1.693719647 

1.691912163 

1.690272228 

1.674604017 

1.6541064 

1.641858318 

1.637172011 

1.63377138 

1.633666305 

1.631551174 

1.617698181 

1.615644149 

4.63E-21 

5.32E-12 

5.69E-16 

3.75E-12 

4.78E-08 

2.16E-07 

2.07E-07 

1.16E-11 

6.61E-07 

1.07E-07 

0.000234356 

0.000234356 

0.000520509 

0.00065774 

0.000218255 

0.000714798 

7.57E-11 

0.000162022 

0.00286286 

2.28E-05 

4.78E-08 

3.28E-05 

3.67E-05 

0.007743684 

0.003310335 

0.009556352 

2.68E-05 

0.008870445 

6.78E-05 

0.010110274 

2.16E-07 

0.000974515 
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ARAP2 

HTR2A 

NRK 

PTER 

SALL3 

CDH7 

IL1RAPL2 

RP11-331K15.1 

SMCR2 

IMPA1P 

TEC 

RP1-137H15.2 

RCAN3 

HHIP 

USH1C 

RP11-849I19.1 

LINC01285 

ETV1 

ROBO1 

CXXC4 

RP11-517P14.7 

SALL4 

LRRC9 

SOCS2 

IGSF11 

GRB14 

RIT2 

RP3-466P17.1 

COL6A4P2 

PCDH17 

MYLK 

WNT3 

C11orf63 

SLC17A6 

NUS1P2 

CCDC175 

1.613256644 

1.600195345 

1.598215971 

1.590798504 

1.585766195 

1.580273883 

1.565916233 

1.524803787 

1.519849323 

1.519264368 

1.505161482 

1.503100791 

1.493077424 

1.489927198 

1.464187669 

1.461171468 

1.45307862 

1.444949634 

1.433814992 

1.418928923 

1.412157586 

1.410132006 

1.409562211 

1.403587248 

1.402476565 

1.400588027 

1.394773327 

1.384298357 

1.37120209 

1.36930736 

1.3647404 

1.361005614 

1.347683637 

1.345440183 

1.344425207 

1.344298448 

0.003659133 

0.00028881 

0.002140384 

8.82E-06 

0.000187245 

1.03E-08 

0.017203942 

0.024192831 

0.026541759 

0.005962805 

0.003384429 

0.028686765 

2.24E-07 

0.032019824 

0.007627456 

0.013848172 

0.022919544 

4.28E-06 

1.45E-07 

0.008983871 

0.003450351 

0.006568306 

0.008442412 

0.000520509 

0.000218255 

0.007214822 

0.014235703 

1.29E-06 

0.009556352 

0.018578223 

0.01015303 

6.67E-05 

0.02891569 

0.00457877 

0.007727407 

0.03037099 
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C18orf42 

POU3F2 

NTN4 

ANKRD29 

EYS 

FOLH1 

RP11-384O8.1 

IGDCC4 

RGAG1 

ZDHHC14 

HOPX 

SYNJ2 

ME1 

VAT1L 

CA8 

PHYH 

CCDC36 

SYNM 

KITLG 

SPAG1 

RP11-1109F11.3 

KCNV1 

PCDH8 

ST8SIA3 

ADCY1 

CRNDE 

RHOJ 

LINC01152 

TOX 

NFIA-AS2 

NPY5R 

RFTN2 

SP8 

RNF125 

RP3-428L16.2 

SOCS2-AS1 

1.337492654 

1.328316267 

1.323537562 

1.317713457 

1.312153194 

1.292304635 

1.291022683 

1.290775688 

1.288926273 

1.273409838 

1.268426033 

1.243243967 

1.229041476 

1.213489668 

1.20485907 

1.20342625 

1.192401559 

1.189627814 

1.186059617 

1.165229985 

1.164827062 

1.164327401 

1.164217503 

1.162692981 

1.161217488 

1.161129637 

1.153188308 

1.14973179 

1.13750851 

1.13592409 

1.133032484 

1.126468384 

1.123387038 

1.121703665 

1.095433337 

1.08176746 

0.0466742 

0.010029015 

0.000234356 

6.15E-07 

0.033268716 

1.18E-07 

0.035095866 

1.72E-06 

0.000858828 

6.82E-06 

0.036219784 

0.005558463 

0.016128379 

0.007327158 

0.016208501 

6.15E-07 

0.018773181 

0.02935281 

0.048343662 

0.019732216 

0.007743684 

0.011400965 

0.036219784 

0.035977285 

0.000206635 

0.00105812 

0.00286286 

0.007214822 

0.034350746 

0.015618075 

0.033268716 

0.034119921 

0.007743684 

0.023689998 

0.005410852 

0.014311841 
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BCAT1 

TENM2 

PDE1C 

AC068057.1 

AF186192.5 

FRK 

NPTX1 

SYN2 

KIAA1324 

FZD7 

ATOH7 

CD27-AS1 

PTPN3 

PPARG 

DPP10-AS1 

CNGA3 

DIRAS3 

FBLN7 

MICAL2 

SHISA6 

RP11-469H8.6 

HRK 

RP11-215G15.5 

DCLK3 

ECEL1 

MKX 

CHST15 

SPINK5 

TAC3 

CHRNA3 

NECAB1 

AC004862.6 

PDPN 

CHODL 

RP1-212P9.2 

DGKK 

1.067781707 

1.0512605 

1.045669936 

1.040251561 

1.029889466 

1.003643089 

-1.026722118 

-1.030678148 

-1.083999781 

-1.090133906 

-1.091872893 

-1.122652691 

-1.184900742 

-1.244819902 

-1.253273096 

-1.269763447 

-1.272498218 

-1.315110144 

-1.364668498 

-1.381317652 

-1.442205554 

-1.451894452 

-1.46059807 

-1.467524864 

-1.479798852 

-1.480895438 

-1.501754861 

-1.509970831 

-1.511082221 

-1.539331212 

-1.592348869 

-1.618431954 

-1.675994324 

-1.681906874 

-1.821408372 

-2.029295282 

0.036219784 

0.008563057 

2.49E-05 

0.011908999 

0.002269008 

0.042375124 

0.034350746 

0.03466247 

0.005378528 

1.87E-07 

0.013848172 

4.43E-05 

0.002393295 

0.000351408 

0.01586224 

3.28E-05 

0.006195153 

0.00105812 

0.033558184 

2.19E-09 

0.013848172 

0.035095866 

0.003659133 

1.32E-07 

0.036726237 

0.028478615 

0.000120101 

0.00105812 

0.021722228 

8.82E-06 

0.015618075 

0.002843333 

3.25E-09 

7.21E-06 

0.000267376 

0.000234356 
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NR2F1 

CDH9 

NR2F1-AS1 

OCA2 

MAS1 

FGFR3 

-2.388162835 

-2.413055811 

-2.430720945 

-2.686241692 

-3.115027474 

-4.827595278 

3.77E-07 

6.15E-07 

5.60E-09 

1.08E-20 

9.56E-24 

1.05E-39 
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Supplementary Table 3.5 List of genes differentially expressed between anterior and posterior cortex 

at 12 PCW 

Gene Name Log 2 fold P adjusted 

SLC17A8 

PDZRN3 

GIPR 

RGS8 

WIF1 

ST8SIA5 

CA8 

SYNDIG1L 

TLL1 

ADAM33 

GRIN2C 

MYBPHL 

GABRQ 

GRM4 

BRINP2 

CNTN6 

RP11-742D12.2 

ZBTB7C 

NPY5R 

KCNMB2 

LAMP5 

KRT19 

RP4-555D20.2 

RP11-13K12.1 

COL12A1 

SLIT3 

LRFN2 

THRB 

UNC5C 

ATP5F1P5 

SERTM1 

ERBB4 

1.986488835 

1.806706571 

1.799005991 

1.798780444 

1.757220095 

1.7517511 

1.744838065 

1.70635595 

1.705672593 

1.663302763 

1.646699383 

1.635050469 

1.618568721 

1.617734366 

1.560318881 

1.554833905 

1.537572916 

1.526508466 

1.526108755 

1.512664046 

1.510964811 

1.499720273 

1.499231581 

1.498550696 

1.494859875 

1.463999332 

1.454279151 

1.447695737 

1.445913097 

1.439007069 

1.438674621 

1.405202114 

2.84E-05 

4.56E-05 

0.00020008 

5.74E-05 

4.56E-05 

5.74E-05 

0.000125193 

0.000382599 

0.000404269 

0.000382599 

0.000404269 

0.000382599 

0.000302197 

4.56E-05 

0.000733991 

0.000738993 

0.001974768 

0.000757096 

0.001127388 

0.000302197 

0.002313725 

0.001154186 

0.001081937 

0.002148024 

4.56E-05 

0.002148024 

0.001550305 

0.00093725 

0.004359524 

0.004667426 

0.000302197 

0.002272964 
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GPR1 

SCGN 

SLC25A45 

DLX6-AS1 

DPF3 

NAALAD2 

SPON1 

NPAS1 

PTGS2 

PIP5K1B 

ARAP2 

EYA1 

NRIP3 

SYNJ2 

ABI3BP 

RCAN2 

KCNC2 

KCNIP4 

CLDN1 

MDGA1 

ADAMTS14 

ABCA1 

ZNF385A 

COLEC12 

KIRREL3 

RARB 

C11orf63 

BEST4 

CDCP1 

ANXA2P2 

TRIM71 

CPNE8 

MGAT4C 

CARD10 

NRXN3 

ITPR2 

1.40425059 

1.400443331 

1.395775832 

1.388336881 

1.384870383 

1.382831785 

1.376416154 

1.37235405 

1.37180351 

1.365153768 

1.3617944 

1.359974198 

1.358255781 

1.355165116 

1.352077848 

1.350648634 

1.349368036 

1.347029962 

1.345659783 

1.343475313 

1.340986243 

1.339803582 

1.33852827 

1.337523218 

1.327766115 

1.325682687 

1.322195873 

1.31798197 

1.313878539 

1.311476069 

1.30893981 

1.305105285 

1.301265076 

1.295989474 

1.29295984 

1.289733894 

0.00388003 

0.003990401 

0.004667426 

0.007336626 

0.001064948 

0.001154186 

0.008428975 

0.00093725 

0.003395648 

0.001321734 

0.001465728 

0.001664042 

0.007162924 

0.00043179 

0.006096373 

0.001013927 

0.008101362 

0.004359524 

0.008901471 

6.22E-06 

0.003656903 

0.001038083 

0.00093725 

0.001974768 

5.74E-05 

0.012219823 

0.005681219 

0.004359524 

0.012993273 

0.01085732 

0.000652415 

0.012361349 

0.000733991 

0.001570893 

0.005648568 

0.000685751 
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RPH3A 

KLHL4 

PRLHR 

TUNAR 

GPNMB 

RP11-796G6.1 

TAC1 

CAMK1G 

LGI4 

ALCAM 

RP11-679B19.1 

SYTL5 

NPY1R 

PLCXD3 

VWA5B1 

GAD1 

UST 

SLC32A1 

GHR 

YPEL2 

AE000661.37 

GRM7 

TBX21 

DLX1 

BCYRN1 

ADARB2 

FBLN5 

PTPRR 

CNIH3 

CBLN2 

GRIP2 

TGFB2 

ZCCHC12 

PTPRT 

PLXNB3 

RP11-449L23.2 

1.285288319 

1.277852901 

1.277759967 

1.277719206 

1.277082488 

1.275441259 

1.266885811 

1.265333112 

1.264412158 

1.263662702 

1.260783522 

1.259641977 

1.255279837 

1.249421627 

1.248784622 

1.247676744 

1.236920339 

1.233817326 

1.233353486 

1.231013973 

1.229042327 

1.227786053 

1.227605344 

1.226381448 

1.213800674 

1.212824829 

1.211648662 

1.205809841 

1.204293076 

1.195416344 

1.194855054 

1.19266424 

1.191655913 

1.191547352 

1.189170959 

1.184536112 

0.007167369 

0.000652415 

0.00595939 

0.012391233 

0.018339787 

0.01779328 

0.018339787 

0.008901471 

0.003789042 

0.000154585 

0.00093725 

0.014099385 

0.002743176 

0.005408338 

0.008101362 

0.014099385 

0.007187283 

0.02207139 

0.00041953 

0.005648568 

0.025233298 

0.022323189 

0.016841981 

0.023500504 

0.018339787 

0.018683871 

0.028460906 

0.000712745 

0.019277258 

0.024641462 

4.09E-05 

0.025029895 

0.012440962 

0.01147044 

0.01640914 

0.031722112 
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GABRA1 

DNAH10 

CSMD3 

PRRT4 

RGS11 

PART1 

LINC00277 

CACNA1D 

DLX5 

FAM222A 

BCL6 

CDH6 

SYNM 

GPR17 

COL15A1 

CYP26A1 

RP11-108M9.3 

ANGPT1 

LGR4 

TC2N 

FGF1 

FREM1 

CYGB 

NTN1 

LMO4 

RP11-272L13.3 

STK32B 

GREB1 

MIR137HG 

HR 

CHRM2 

LINC01305 

PLA2R1 

RP11-517P14.7 

ABCA12 

RP11-351J23.2 

1.183901767 

1.180590732 

1.177546325 

1.177169542 

1.170624572 

1.165997051 

1.165282932 

1.162130738 

1.161394367 

1.159587395 

1.159560332 

1.150651388 

1.14944412 

1.142744109 

1.139621181 

1.136857201 

1.135853334 

1.124975184 

1.124563712 

1.116463449 

1.11483867 

1.104543942 

1.10252841 

1.098538215 

1.094950781 

1.092305026 

1.092082722 

1.090450413 

1.086801138 

1.086247373 

1.086077409 

1.079637519 

1.07685542 

1.074278956 

1.071101725 

1.067483975 

0.028544847 

0.025182785 

0.019668238 

0.00954253 

0.000733991 

0.03819006 

0.013293208 

0.000644946 

0.035536552 

0.030011208 

0.003656903 

0.010297013 

0.003112694 

0.031733934 

0.004667426 

0.042761997 

0.039254064 

0.025828658 

0.030426116 

0.036424633 

0.041315732 

0.030271439 

0.029063441 

0.032962239 

0.023900177 

0.019496855 

0.043585879 

0.048499065 

0.01779328 

0.030639231 

0.030503459 

0.046526097 

0.035536552 

0.013835774 

0.038121398 

0.030271439 
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LRRTM3 

ZMAT4 

HCRTR2 

PLS3 

PCDH19 

RP11-9G1.3 

FZD4 

SYN3 

COLGALT2 

KLHL29 

IFIT3 

ITPR3 

LRRC9 

MLIP 

RP11-713C5.1 

TMEFF2 

LYPD6B 

ZNF114 

MIR770 

KRT13 

ANXA2 

TCEA3 

RP11-490G2.2 

PPP2R1B 

C2orf72 

OLIG2 

RASGRF2 

ETS2 

PTGES3P2 

PAPPA2 

CHRNA3 

RPL12L3 

CTD-2620I22.7 

SLC7A10 

RP11-932O9.10 

CYP26B1 

1.061567548 

1.059851036 

1.057633472 

1.056349203 

1.055149208 

1.04989341 

1.044892984 

1.0447323 

1.044474814 

1.041304475 

1.038473943 

1.037854642 

1.036517003 

1.035815363 

1.034886821 

1.034677096 

1.031651118 

1.029678508 

1.025060559 

1.023614141 

1.023136221 

1.022755603 

1.020095362 

1.014332573 

1.010211126 

1.007006495 

1.005397282 

1.001307274 

-1.002540735 

-1.009824411 

-1.015743977 

-1.027108261 

-1.076004754 

-1.094301561 

-1.096634206 

-1.120025742 

0.017627886 

0.017611929 

0.030579987 

0.013468674 

0.035536552 

0.010345895 

0.00509972 

0.027018371 

0.038121398 

0.012901845 

0.034889917 

0.013293208 

0.00746993 

0.000605117 

0.047739216 

0.031193902 

0.045362743 

0.007675266 

0.031733934 

0.048048637 

0.002587916 

0.042761997 

0.042761997 

0.012391233 

0.04938823 

0.038507579 

0.012325442 

0.000520869 

0.000382599 

0.030627497 

0.017991722 

0.036862095 

0.035536552 

0.044338822 

0.031132905 

0.019668238 
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SNORD15B 

COX7A1 

KIF25-AS1 

MDFI 

RPS12P26 

LLNLF-158E9.1 

RP5-1024C24.1 

CARTPT 

RP11-677M24.1 

-1.122684366 

-1.133388921 

-1.14935424 

-1.167748363 

-1.263538249 

-1.271713817 

-1.3538704 

-1.365887388 

-1.418327114 

0.043099727 

0.005680874 

0.026428148 

0.004113725 

0.008882413 

0.003990401 

0.000600792 

0.001664042 

0.002952903 
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in DNA replication and RNA transcription. Recently, TOP2B has been implicated in the 

transcription of long genes in particular that play crucial roles in neural development and are 

susceptible to mutations contributing to neurodevelopmental conditions such as autism and 

schizophrenia. This study maps their expression in the early foetal human telencephalon 

between 9 and 12 post-conceptional weeks. TOP2A immunoreactivity was restricted to cell 

nuclei of the proliferative layers of the cortex and ganglionic eminences (GE), including the 

ventricular zone and subventricular zone (SVZ) closely matching expression of the 

proliferation marker KI67. Comparison with sections immunolabelled for NKX2.1, a medial 

GE (MGE) marker, and PAX6, a cortical progenitor cell and lateral GE (LGE) marker, revealed 

that TOP2A-expressing cells were more abundant in MGE than the LGE. In the cortex, TOP2B 

is expressed in cell nuclei in both proliferative (SVZ) and post-mitotic compartments 

(intermediate zone and cortical plate) as revealed by comparison with immunostaining for 

PAX6 and the post-mitotic neuron marker TBR1. However, co-expression with KI67 was rare. 

In the GE, TOP2B was also expressed by proliferative and post-mitotic compartments. In situ 

hybridisation studies confirmed these patterns of expression, except that TOP2A mRNA is 

restricted to cells in the G2/M phase of division. Thus, during early development, TOP2A is 

likely to have a role in cell proliferation, whereas TOP2B is expressed in post-mitotic cells and 

may be important in controlling expression of long genes even at this early stage.  
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development. Frontiers of Neuroanatomy (In print) 

HDBR Expression: A Unique Resource for Global and Individual Gene Expression Studies 

during Early Human Brain Development 

This paper describes a new resource, HDBR (Human Developmental Biology Resource) 

Expression, for studying prenatal human brain development. It is unique in the age range (4 

post conception weeks [PCW] to 17PCW) and number of brains (172) studied, particularly 

those under 8PCW (33). The great majority of the samples are karyotyped. HDBR Expression 

is also unique in that both the large-scale data sets (RNA-seq data, SNP genotype data) and 

the corresponding RNA and DNA samples are available, the latter via the MRC-Wellcome 

Trust funded HDBR1(Gerrelli et al., 2015). There are 557 RNA-seq datasets from different 

brain regions, the majority between 4 and 12PCW. During this time the major brain regions 

are established and the early stages of cortex development occur (Bystron et al., 2008; 

O'Rahilly and Muller, 2008). In addition, there are 42 RNAseq data sets from spinal cord and 

29 from cerebral choroid plexus. There are also 243 additional tissue specimens in paraffin 

wax blocks available for individual gene expression studies. For almost all of the brains and 

specimens in wax blocks there are corresponding SNP genotype data. 

Large-scale/high-throughput studies, such as next-generation sequencing, are providing raw 

material in a wide variety of research fields (for review of concepts and methodologies of 

RNA-seq, see Shin et al., 2014). Studies of human development are hampered by difficulties 

in obtaining tissue which means that publicly available large-scale data sets are particularly 

useful because data can be used and re-used (Kang et al., 2011; Zhang et al., 2011; Fietz et 

al., 2012; Miller et al., 2014; Darmanis et al., 2015). 
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Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human 

Cerebral Cortex. 

Abstract 

Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental 

disorder susceptibility genes; mutations presumably upset synaptic stabilization and 

function. However, analysis of human cortical tissue samples by RNAseq and quantitative 

real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed 

expression of all three NRXNs as well as several potential binding partners. However, the 

levels of expression were not identical; NRXN1 increased with age and NRXN2 levels were 

consistently higher than for NRXN3 Immunohistochemistry for each NRXN also revealed 

different expression patterns at this stage of development. NRXN1 and NRXN3 

immunoreactivity was generally strongest in the cortical plate and increased in the 

ventricular zone with age, but was weak in the synaptogenic presubplate (pSP) and marginal 

zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of the pSP, but 

especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative 

splicing modifies the role of NRXNs and we found evidence by RNAseq for exon skipping at 

splice site 4 and concomitant expression of KHDBRS proteins which control this splicing. 

NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse roles 

in development including axon guidance, and intercellular communication between 

proliferating cells and/or migrating neurons. 
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