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“ You should make something. You should bring something into the

world that wasn’t in the world before. It doesn’t matter what it is. It

doesn’t matter if it’s a table or a film or gardening - everyone should create.

You should do something, then sit back and say: “I did that.” ”
Ricky Gervais
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Abstract

Thanks to the breakthroughs in biotechnologies that have occurred during the recent

years, biomedical data is accumulating at a previously unseen pace. In the field of

biomedicine, decades-old statistical methods are still commonly used to analyse such

data. However, the simplicity of these approaches often limits the amount of useful

information that can be extracted from the data. Machine learning methods represent

an important alternative due to their ability to capture complex patterns, within the

data, likely missed by simpler methods.

This thesis focuses on the extraction of useful knowledge from biomedical data using

machine learning. Within the biomedical context, the vast majority of machine learn-

ing applications focus their e↵ort on the generation and validation of prediction models.

Rarely the inferred models are used to discover meaningful biomedical knowledge. The

work presented in this thesis goes beyond this scenario and devises new methodologies

to mine machine learning models for the extraction of useful knowledge.

The thesis targets two important and challenging biomedical analytic tasks: (1) the

inference of biological networks and (2) the discovery of biomarkers. The first task

aims to identify associations between di↵erent biological entities, while the second one

tries to discover sets of variables that are relevant for specific biomedical conditions.

Successful solutions for both problems rely on the ability to recognise complex inter-

actions within the data, hence the use of multivariate machine learning methods. The

network inference problem is addressed with FuNeL: a protocol to generate networks

based on the analysis of rule-based machine learning models. The second task, the

biomarker discovery, is studied with RGIFE, a heuristic that exploits the information

extracted from machine learning models to guide its search for minimal subsets of

variables.

The extensive analysis conducted for this dissertation shows that the networks inferred

with FuNeL capture relevant knowledge complementary to that extracted by standard

inference methods. Furthermore, the associations defined by FuNeL are discovered
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more pertinent in a disease context. The biomarkers selected by RGIFE are found to

be disease-relevant and to have a high predictive power. When applied to osteoarthritis

data, RGIFE confirmed the importance of previously identified biomarkers, whilst also

extracting novel biomarkers with possible future clinical applications.

Overall, the thesis shows new e↵ective methods to leverage the information, often

remaining buried, encapsulated within machine learning models and discover useful

biomedical knowledge.
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Chapter 1: Introduction

1.1 Background and motivation

During the last few decades, the advances in high-throughput technologies have led

to an explosion in the availability of biomedical data, which subsequently increased

the understanding of how those data can be used to improve human life. The analysis

of such a large amount of data can help us in revealing and explaining the complex

mechanisms that characterise biological and medical conditions. However, this goal

can only be achieved if appropriate analytical tools are designed to fully exploit the

large quantity of available information and extract relevant knowledge.

Statistical-based and computational methodologies have been extensively applied for

data analysis in the field of biomedicine, trying to underline di�cult biological and

medical processes [1–3]. However, due to the simplicity of these approaches (e.g. lin-

ear models or univariate techniques), the amount and the kind of information that

can be extracted from the data is limited [4]. Machine learning represents a powerful

alternative that can o↵er better, more robust and flexible solutions and is currently

rising in the field of biomedicine [5]. The advantageous position of machine learning

methods is given by the use of complex multivariate knowledge representations that

allow, when mining the data, to discover interesting patterns that are often missed by

simpler approaches. Thanks to such a rich and diverse knowledge representation, ma-

chine learning approaches are well suited for the analysis of biomedical data that often

are characterised by: large dimensionality (high number of variables), class imbalance

distribution (e.g. many more healthy patients than sick), vast number of samples,

information collected from di↵erent sources (e.g. clinical examination, gene expression

levels, protein abundances), etc. Hence, over the years, the use of machine learning

methods has proven successful in many di↵erent biosciences: medicine [6], biology [7],

chemistry [8], etc.

Machine learning is defined as the set of methods that automatically learn from experi-

ence [9]. Machine learning algorithms analyse the data and generate solutions (models)

to address a large variety of complex problems. Now, once the model is inferred, if we

understand why the algorithm performed certain choices or we interpret the structure

of the solutions, we have the possibility to learn something. The experienced gained
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by the algorithms when analysing the data can help us in improving the understanding

of biomedical questions. For example, the presence of certain features or the relation-

ships between specific components of the computational models are information that

can reveal new unexpected insights. The challenges in identifying and extract this

information provide the primary motivation for this thesis. Inspired by the possibility

to gain new interesting and relevant knowledge, novel methodologies are presented for

the mining of machine learning models generated from biomedical data.

In addition to all these applications, computa-
tional techniques are used to solve other problems,
such as efficient primer design for PCR, biological
image analysis and backtranslation of proteins (which
is, given the degeneration of the genetic code,
a complex combinatorial problem).

Machine learning consists in programming
computers to optimize a performance criterion
by using example data or past experience. The
optimized criterion can be the accuracy provided by
a predictive model—in a modelling problem—,
and the value of a fitness or evaluation function—in
an optimization problem.

In a modelling problem, the ‘learning’ term refers to
running a computer program to induce a model by
using training data or past experience. Machine
learning uses statistical theory when building
computational models since the objective is to

make inferences from a sample. The two main
steps in this process are to induce the model by
processing the huge amount of data and to represent
the model and making inferences efficiently. It must
be noticed that the efficiency of the learning and
inference algorithms, as well as their space and
time complexity and their transparency and inter-
pretability, can be as important as their predictive
accuracy. The process of transforming data into
knowledge is both iterative and interactive. The
iterative phase consists of several steps. In the first
step, we need to integrate and merge the different
sources of information into only one format. By
using data warehouse techniques, the detection and
resolution of outliers and inconsistencies are solved.
In the second step, it is necessary to select, clean and
transform the data. To carry out this step, we need to
eliminate or correct the uncorrected data, as well as

Figure 1: Classification of the topics wheremachine learningmethods are applied.
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Fig 1.1: Example of the possible applications of machine learning in biomedicine as
illustrated in [10].

In biomedicine, machine learning methods have been used to solve many di↵erent tasks

[10]. As presented in Figure 1.1, machine learning applications can be useful within

diverse domains: gene network inference, microarray analysis, pathways investigation,

protein function prediction, phylogenetic tree construction, etc. Among them, this

thesis focuses on proposing new methodologies that can tackle two main analytic tasks:

(1) the inference of biological networks and (2) the discovery of biomarkers (short for

biological markers, that is a measure of a biological state). Both are highly relevant

and challenging tasks in the field of biomedicine [11, 12]. Their successful resolution

requires the ability to capture and exploit the relationships between the entities of
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data. Machine learning, with its rich knowledge representations, can contribute in

proposing alternative solutions to what is currently existing.

As a consequence of the growth of public biomedical data, the scientific community has

been able to disprove theories and beliefs formulated in the past. For example, in 1941

Beadle and Tatum proposed the “one-gene/one-enzyme/one-function” paradigm [13].

Over the years, with the improvement of technologies and the analysis of relevant data,

we learnt how the picture is far more complex. It has been established that biological

processes and diseases are rarely caused by a single molecule, but they are instead

the result of many interactions between several factors. The complicated mechanisms

behind those biological processes and diseases can be modelled by complex networks

to facilitate their comprehension. When coupled with large-scale data, networks have

been proven to provide a useful conceptual framework. Machine learning, with its

ability to discover hidden and relevant patterns, can contribute towards filling the gap

created by traditional methods based on simple and sometimes limiting approaches.

The large amount of information associated with biomedical data motivates the other

research task tackled in this thesis. Modern high-throughput experiments allow the

analysis of the relationships and the properties of many biological entities at once.

Therefore, the observations included in the data result defined in a high dimensional

space. Unfortunately, a vast abundance of irrelevant and sometimes misleading data

is encapsulated within those dimensions. Therefore, there is a need for adequate com-

putational approaches to recognise and filter out insignificant information. The iden-

tification of factors that are important, and potentially can drive a specific condition

or disease, assumes the name of biomarkers discovery. Machine learning methods in

this context become important, as they can e�ciently mine the data and, taking into

account possible dependencies among the variables, discard irrelevant information.

1.2 Overview of the problem

When coming to the use of machine learning in biomedicine, most of the research e↵ort

tends to focus exclusively on the core data mining tasks of building and applying mod-

els [14]. Typical examples in which machine learning is employed are: classification
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problems where the goal is the discrimination of patients that belong to di↵erent cat-

egories such as controls vs. cases [15], regression problems where the aim is to predict

the values of a continuous variable such as the chemical level of a compound [16], clus-

tering problems where di↵erent samples (patients) need to be grouped together based

on common characteristics [17], etc. Quite often the success of the proposed solution

is purely based on performance metrics such as the classification accuracy (i.e. how

many patients can the model correctly classify?). Far less interest and e↵ort have gone

into the knowledge discovery and the hypothesis generation from the analysis of the

data. In this context, machine learning models are simply treated as a “black box”

that, given some data as input provide somehow a “magical” solution as output.

The di�culty in interpreting the machine learning solutions is generating a gap with

the bioscience experts and is preventing a wider adoption of machine learning tech-

niques. Currently, the proposed methods do not always entirely fulfil the needs and

the expectations of the bioscientists. As mentioned earlier, mere “black box” solutions

are not enough anymore. For example, an oncologist is not interested in a model that

can only slightly outperform his ability in identifying cancer cells. On the contrary,

he would be fascinated to discover how the classifier recognises cancer cells and which

criteria it uses to discriminate them from healthy cells. Machine learning models, if

exploited with appropriate techniques, have the potential to fulfil the expressed needs.

Thus, as it is currently a common practice, the usage of machine learning narrowed to

solve core data mining tasks (e.g. predict the category of the samples) is limiting the

advance in the understanding of many biomedical problems, far more can be achieved.

Besides, generic computational algorithms, including machine learning, not always

provide the best solution for biomedical problems. Sometimes they cannot adapt to

better address the problem in hand. For example, in biomarker discovery, the number

of candidates is crucial as the fewer they are, the more likely is to have them experimen-

tally validated. Generic machine learning methods which simply aim to maximise the

predictive performance of the candidate sets, regardless their size, are not always the

best choice. Thus, in this context, better methods are needed. For instance, an algo-

rithm that can trade small drops in predictive performance in favour of a smaller set of

biomarker candidates, so that is more likely to have them experimentally tested. Fur-
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thermore, many methods, based on specific types of knowledge representation, might

be able only to capture a limited kind of information. An intrinsic bias is associated

to each knowledge representation [18], this narrows down the overall information that

each method can extract. Therefore, flexible approaches that can use di↵erent knowl-

edge representations and ideally, can identify the best type based on the data being

analysed, can improve the provided solution.

Overall, there is an increasing need for methodologies that are designed to solve

biomedical problems and can bridge the gap between the generation of computational

models and their interpretability for the gaining of new research insights. The work

proposed in this thesis is intended to fill this gap and tackle the mentioned problems.

1.3 Aims and scope

Overall, this dissertation tries to verify the following research hypothesis:

Research hypothesis

Can we extract relevant knowledge from the analysis of machine learning models

generated from biomedical data?

To test this research hypothesis, the thesis concentrates on the mining and the analysis

of the structure of various machine learning models generated from di↵erent biomedical

data. The aim is to move a step further from the inference of computational mod-

els and verify whether their structure can be used to discover new knowledge. Using

the DIKW (Data, Information, Knowledge, Wisdom) model [19] as a reference, rep-

resented in Figure 1.2, a typical application of machine learning methods would stop

at the model generation (information). Conversely, the research performed through

this dissertation, using biomedical data, explores the output of the model generation

step (information) to discover new insights (knowledge) that potentially can help to

understand complex biomedical problems better (wisdom).

The general process used to extract knowledge from biomedical data is depicted in

Figure 1.3. As evident from the figure, the process of exploiting machine learning

models can result in di↵erent outputs: from biological networks to the identification
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Fig 1.2: The DIKW (Data, Information, Knowledge, Wisdom) pyramid model.

of biomarkers, from patient stratification to phylogenetic tree inference, etc. For ex-

ample, by checking which elements characterise the generated models and how they

are used to perform computational tasks, it is possible to deduce if biological entities

interact with each other or if they are evolutionarily related. Following the steps illus-

trated in Figure 1.3, this dissertation proposes solutions for two important biomedical

problems: (1) the inference of biological networks and (2) the identification of small

sets of predictive biomarkers. The presented methods aim to: discover relevant knowl-

edge and be generic, that is not tailored to handle a specific type of data but instead

capable of dealing with a wide variety of biomedical data.

Biomedical 
data

ML
 algorithm

ML 
model

Knowledge 
extraction

Biological networks

Phylogenetic trees

Patients stratification

Network inference

Biomarker discovery

Patients stratification

Phylogenetic tree

Fig 1.3: The process of knowledge extraction through the analysis of machine learning
(ML) models generated from biomedical data. In bold are highlighted the research
topics on which this thesis is focused.
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1.4 Thesis Structure

This thesis is organised into six chapters: the introduction, a preliminary chapter that

presents the context and the background material on which the dissertation is built

on, three content chapters that describe the contributions of this work to the bio-data

mining field and one final chapter that underlines the conclusions and further work.

The overall structure of the thesis, excluding this introductory chapter, is the following:

Chapter 2 - Background research introduces the key concepts necessary to un-

derstand the content of the dissertation fully. The di↵erent types of biological

data are described and is given an introduction to machine learning. This is

followed by the presentation of the state-of-the-art approaches employed for (1)

the inference of biological networks and (2) the identification of biomarkers. Af-

terwards, is included a description of the common approaches employed for the

biomedical validation of the knowledge extraction process.

Chapter 3 - FuNeL: a protocol for the inference of functional networks

from machine learning models describes FuNeL, a protocol for the inference

of functional networks generated from rule-based machine learning models. The

chapter provides an extensive analysis of the networks inferred with FuNeL using

both synthetic and real-world data. In addition, FuNeL is contrasted with the

state-of-the-art methods for network inference. The comparison is performed

from both a biomedical and a topological point of view.

Chapter 4 - RGIFE: a ranked guided iterative feature elimination heuristic

for biomarkers identification introduces, improves and evaluates RGIFE: a

heuristic for the identification of small sets of biomarkers. The analysis consists of

a thorough validation of the new features implemented in the heuristic. Further-

more, RGIFE is contrasted with classic methods used for biomarker discovery

employing both real-world and synthetic data. The comparison is done in terms

of predictive performance and biomedical relevance of the selected biomarkers.

Chapter 5 - Identification of biomarkers for knee osteoarthritis describes the

application of machine learning techniques to a variety of biomedical data (from
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lipids abundance to clinical measurements) obtained from a knee osteoarthri-

tis study. A machine learning-based pipeline, using RGIFE at its core, is used

to generate predictive models for the presence of knee osteoarthritis. The pro-

posed models are extensively analysed and contrasted with literature findings.

In addition, FuNeL is used to infer networks from a subset of the available data.

Chapter 6 - Conclusions summarises the results and the main findings of the disser-

tation. The chapter also includes a discussion of the limitations of the proposed

methodologies and possible future work.

1.5 Main contributions

The main contribution of this dissertation is the introduction of new methods for the

discovery of relevant knowledge, from machine learning models, for biomedicine. The

research performed for this thesis resulted in the:

• definition and evaluation of a protocol, called FuNeL, for the inference of func-

tional networks from the analysis of rule-based machine learning models, in Chap-

ter 3

• characterisation of a systematic approach to evaluate biological networks based

on biomedical knowledge (gene-disease associations), in Chapter 3

• computational improvements and biomedical validation of RGIFE, a heuristic

for the identification of small sets of biomarkers guided, in its search for the

optimal solutions, by the information extracted from machine learning models,

in Chapter 4

• identification of knee osteoarthritis biomarkers via the application of machine

learning methods to biomedical data and their characterisation in a network

context, in Chapter 5.
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Abstract

This chapter introduces the main concepts behind each step of the knowl-

edge extraction process employed in this dissertation. The chapter covers

the data and the methodologies used to generate both models and hy-

pothesis. Afterwards, the approaches available to evaluate the extracted

knowledge are presented. More in details, the chapter o↵ers an overview of

the type of biological data that can be generated nowadays. In addition,

the state-of-the-art approaches for both the inference of biological networks

and the discovery biomarkers are described. Finally, the chapter provides

an introduction to the methodologies commonly employed to validate the

output of the knowledge extraction process in biomedicine.

2.1 Types of biological data

In 1958, Francis Crick proposed a concept that is believed to provide the underpinning

of all biology: the central dogma of molecular biology [20]. The dogma describes

the flow of genetic information within a biological system. A simplified version of

the dogma is illustrated in Figure 2.1. The DNA is transcribed into RNA strands,

messenger RNA strands are then translated into proteins that are virtually involved

in all the cell functions. Current technologies can provide measurements made on

di↵erent tiers of the central dogma and beyond. Those measurements lead to the

generation of the so called -omics data. The su�x -omics refers to the collective

technologies used to explore the roles, the relationships and the actions of the various

types of molecules that make up the cellular activity of an organism.

As suggested in [22], -omics fields can be grouped as:

• Genomics: probably represents the most mature of the di↵erent -omics fields.

It is defined as the study of the whole genome sequence (the complete DNA

sequence of an organism’s genome) and the information contained therein. A

GWAS, also known as Genome Wide Association Study, provides an examina-

tion of a genome-wide set of genetic variants in di↵erent individuals to check if

any variant is associated with a trait. GWASs mainly focus on the association
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Fig 2.1: The central dogma of molecular biology and the connections with the type of
-omics data obtained from each tier (based on diagram by Lmaps [21]).

between SNPs (Single Nucleotide Polymorphism) and human traits. A SNP is a

variation at a single DNA site, they are the most frequent type of variation that

can be found in the genome and they have been extensively studied to identify

diseases susceptibility and for assessing the e�cacy of drug therapies.

• Transcriptomics: contain information about both the presence and the relative

abundance of RNA transcripts, by that illustrating the active components within

the cell. Microarrays are the most well-established approaches and have been

extensively used in many fields of bioinformatics over the years.

• Proteomics: identify and quantify the cellular levels of each protein being en-

coded by the genome. Proteomics data can be used for di↵erent purposes such

as: biomarkers discovery, analysis of functional pathways and quantification of

proteins [23].

• Metabolomics: seek to analyse the set of metabolites (also known as the

metabolome) of the cell. The metabolome is the output that results from the

cellular integration of the transcriptome and proteome, so it o↵ers both a list
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of metabolite components and functional readout of the cellular state. Among

the metabolomics data, lipidomics are recently receiving much interest, they

have been found to major an important role in many metabolic diseases such as

obesity, atherosclerosis, stroke, hypertension and diabetes [24].

The analysis performed for this dissertation involved only the use of transcrip-

tomics and lipidomics data. However, the methodologies presented are generic

enough to be applied to other types of biological data. Prior to every kind of

analysis on -omics data, several pre-processing steps need to be performed (e.g.

background correction, normalisation, summarisation, etc.) Di↵erent types of

-omics data require di↵erent pre-processing approaches [25]. All the data used

for this dissertation were either taken from public repositories or provided by

clinicians. In both cases, the data were already pre-processed, so there will be

no mention of such techniques in this dissertation.

2.2 Introduction to machine learning

2.2.1 Machine learning paradigms

Many di↵erent definitions have been proposed, over the years, for the term machine

learning. In 1959 Arthur Samuel [26] stated that:

“ Machine learning is the subfield of computer science that gives com-

puters the ability to learn without being explicitly programmed ”It means that machine learning algorithms are able to perform a specific task without

being directly told how to do it. Let’s assume we would like to create a program

that can distinguish between spam and valid email messages. We can define a set of

rules that highlights the messages that contain certain features such as specific words

(e.g. viagra) or explicitly fake adverts. Unfortunately, the generation of an e�cient

set of rules can be di�cult because spammers tend to use strategies to avoid spam

filters (e.g vi@gr@ instead of viagra). In this context, machine learning is the solution

because, given a set of manually labelled good and bad email examples, an algorithm

can automatically learn a set of rules that distinguish them.

- 33 -



Chapter 2: Background Research

Another famous machine learning definition was proposed by Tom Mitchell [9]:

“ Machine Learning as the set of computer algorithms that automati-

cally learn from experience ”
Following this definition, we can define the learning as:

Definition 2.2.1. A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E.

According to this definition, we can reformulate the email problem as the task of

identifying spam messages (task T ) using the data of previously labelled email messages

(experience E) through a machine learning algorithm with the goal of improving the

future email spam labelling (measure P ).

According to how E, P and T are defined, we can identify di↵erent machine learning

paradigms. A classical division of the learning paradigms includes:

• Supervised learning is defined as a learning process where the system is guided

(either automatically or by human interaction) and receives feedback about the

correctness of its performance. In this type of paradigm, the performance mea-

sure P allows the system to improve its learning process continuously.

• Unsupervised learning is characterised by the absence of the performance

feedback P . The machine learning system needs to infer the hidden structure of

the data without any information about the potential solution. It is important,

for the learning system, to avoid the regularities existing in E in order to generate

a well-performing solution.

• Semi-supervised learning is a middle point between the two previous

paradigms where some of the input data are labelled, while some are not.

• Reinforcement learning is a paradigm where the system receives an indirect

feedback about the appropriateness of its response. Di↵erent than in supervised

learning, in reinforcement learning the system only knows that the behaviour

was inappropriate and (usually) how inappropriate it was.
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The next sections will provide more detailed information about the two most used

types of learning: supervised and unsupervised. However, the work presented in this

thesis only employs supervised learning approaches. Therefore, most of the focus of

the chapter will be on this paradigm.

2.2.2 Supervised learning

In supervised learning, the system receives feedback about the correctness of its so-

lution using the information available in the data. More specifically, in supervised

learning, the system tries to solve a problem known as classification. The next sec-

tions will describe the classification problem and the di↵erent types of knowledge

representations that can be used to solve it.

2.2.2.1 The classification problem

In machine learning classification is defined as the problem of identifying the category

to which a new observation belongs based on the similarities with previously analysed

data, for which, the category membership is known. A more formal definition of

classification is:

Definition 2.2.2. Given a set of data points X = {x1, ..., xn

}, each of them belonging
to a finite set of classes Y = {y1, ..., ym}, the task of classification is to generate a
function f : X ! Y which maps elements of X to Y .

Each data point x
i

is commonly called instance (or sample) and is characterised by a

finite set of features F = {f1, ..., fl} that can be either categorical or numerical. Often,

the features are known as attributes or variables, in this dissertation the three names

will be used interchangeably. Each data point x
i

is also associated with a label y
i

which indicates its class from a finite set Y . The goal is to define a model that given

a data point x
i

can determine its label y
i

.

The classification process is summarised in Figure 2.2, it can be split into two phases:

model construction and model usage. In the first phase, given a set of data representing

a target concept, the goal is to build a model that can “explain” the concept. The next

phase consists in using the inferred model to classify future unlabelled samples. It is

crucial to generate a system able to model the concept represented by the instances
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Data Learning 
algorithm

Model

Input Output

Prediction

Fig 2.2: Classification as the task of generating a model to map the input features into
class labels.

rather than just reproduce the instances themselves. If the system has not been able

to capture and generalise the concept of the data, there will be a large generalisation

error, that is the future unseen instances will likely be incorrectly classified. However,

when developing a learning system, future instances are not available; therefore it is

necessary to simulate the model usage phase. By simulating the future behaviour of

the model it is possible to sense whether the learning part was successful and we can

estimate the future generalisation error rate. The simulation can be done by splitting

the available data into two non-overlapping sets called: training and test set. First,

the model is generated by learning from the training set, then the test set is used to

assess if the concept represented by the input data was correctly identified. If the

learning algorithm has inferred an accurate model, then the instances of the test set

will be correctly classified. An overview of the model usage simulation is illustrated in

Figure 2.3.

Data

Training 
set

Test set

Learning 
algorithm

Model Prediction
Predictive 

performance

Fig 2.3: The general approach to build and validate a predictive model.

The validation of a model consists of assessing how well the labels of the test in-

stances (unseen during the learning phase) can be predicted. For binary classification

problems, where the samples belong to only two classes (positive and negative), the

performance of a model are commonly visualised using 2 ⇥ 2 table called confusion

matrix (or contingency table). In biomedicine and bioinformatics, the positive class

usually represents individuals a↵ected by a medical condition (case) or treated with a
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drug, while the negatives represent the controls or healthy patients. As can be seen

in Table 2.1, the confusion matrix summarises the correct and incorrect prediction for

each class.

Real class
Positive Negative

Predicted class
Positive

True positive False positive
(TP) (FP)

Negative
False negative True negative

(FN) (TN)

Table 2.1: Example of a confusion matrix

A variety of metrics is defined from the confusion matrix. Each performance metric

might be more or less informative based on the task T that the classifier is expected

to solve. Some of the most common metrics are:

• accuracy: is probably the most simple and adopted metric. It is defined as the

rate of the correctly classified instances over the total number of instances in the

test set:

accuracy =
TP + TN

TP + TN + FP + FN

• balanced accuracy: can be used in the presence of imbalanced datasets, where

the samples of one class outnumber the samples of the other one. It equally

weights the correct number of classified instances for each class:

balanced accuracy =
1

2

✓
TP

TP + FP
+

TN

TN + FN

◆

• sensitivity, specificity: they respectively measure the proportion of positives

and negatives that are recognised as such. The sensitivity is also known as recall :

sensitivity (recall) =
TP

TP + FN
specificity =

TN

TN + FP

• Gmean: is the geometric mean of sensitivity and specificity [27]. It is commonly

used when the performance of both classes are expected to be considered:

gmean =
p

sensitivity ⇥ specificity
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• Precision: is also called positive predictive value (PPV) and calculates the

ability of not labelling as positive a sample that is negative:

precision =
TP

TP + FP

Many other metrics (e.g. F1-score, Matthews correlation coe�cient, etc.) exist to

assess the predictive performance of machine learning models. In this section, only the

metrics most relevant to this dissertation have been listed.

In a clinical context, the performance of a model is often evaluated via the analysis

of the Receiver Operating Characteristics (ROC) curve. A ROC curve is a plot that

illustrates the performance of the model based on the true and the false positive rate

[28], an example of ROC curve is provided in Figure 2.4. The true positive rate

is equivalent to the sensitivity and represents the ratio of positive instances that are

correctly classified (e.g. percentage of sick people that have been accurately recognised

as a case). The false positive rate indicates the proportion of negative samples that

are incorrectly labelled as cases (e.g. percentage of healthy people diagnosed with

a disease). A ROC curve can be generated only when the classifier can compute a

“score” (real value) for each instance. This score, typically in the range between 0 and

1, is often intended to indicate the probability that an instance has to belong to the a

specific class. The ROC curve is plotted by varying the threshold setting at which the

instances are assigned to a specific class. For example, if the threshold is set to 0.2,

all the samples that received a score (predicted output), equal or higher than 0.2 are

predicted as positive. Once all the test samples have been classified, the sensitivity

and specificity values are calculated and added as data points in the space of the true

and false positive rate. ROC curves are typically used to determine the threshold

that best suits the goal of the research question (e.g. at which value the sensitivity is

maximised while having at least a false positive rate of 0.7). The ROC curve can also

be summarised into a single value by calculating the area under it, called Area Under

the ROC Curve (AUC). The AUC represents the probability that the classifier will

rank a positive instance, randomly picked, higher than a randomly selected negative

one (when assuming that positive samples rank higher than negatives). For a binary

classification problem, a perfect classifier generates an AUC of 1, while a random
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classifier (that assigns with 50% chance one of the two class labels) obtains an AUC of

0.5. Every model providing an AUC lower than 0.5 is considered to perform worse than

a random one. Similar to the ROC curve, the Precision-Recall (PR) curve shows the

performance of a classifier based on precision and recall. The AUPRC (area under the

PR curve) summarises, as the AUC, the performance with a single value that ranges

between 0 and 1. The PR curve represents a valid alternative to the ROC curve, that,

on the other hand, is widely used and adopted in the biomedical field.

Fig 2.4: Example of a ROC curve summarising the performance of a predictive model.

Data are usually heterogeneous, therefore when dividing, often randomly, the instances

into training and test set, one of the two sets might not properly represent the concept

of the data. A standard approach used to reduce the bias of the data being split into

training and test set is the cross-validation. A typical n-fold cross-validation scheme

randomly divides the dataset D in n equally-sized disjoint subsets D1, D2, ..., Dn

. In

turn, each fold is used as test set while the remaining n� 1 are used as training set. A

stratified cross-validation aims to partition the dataset into folds where the original dis-

tribution of the classes is preserved [29]. The drawback of the stratified cross-validation

is that it does not take into account the presence of clusters (similar samples) within

each class. As observed in [30], this might lead to a distorted measure of the perfor-
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mance. When dealing with datasets having a small number of observations, as typical

in a biomedical context, such distortion in performances can be amplified. To solve

this problem, Zeng and Martinez proposed the Distributed Balanced-Stratified Cross

Validation (DB-SCV) scheme [31]. The DB-SCV is designed to assign close-by samples

to di↵erent folds so that each fold will end up with enough representatives of every

possible cluster. When n is equal to the total number of samples, the cross-validation

is known as Leave One Out Cross Validation (LOOCV). Each instance is in turn

used as test set while all the remaining are used for the training phase. Two reasons

make the leave-one-out attractive, first it maximises the number of samples used for

the training phase and therefore increases the chance to have and accurate model.

Secondly, it does not involve random sampling (bias) as the procedure is deterministic

(only one way to divide the dataset with a LOOCV) and there is no need in repeating

it multiple times. On the other hand, it has been demonstrated that such approach

tends to overestimate the performance of the models [30], mainly because no strat-

ification can be applied. Nevertheless, when dealing with small datasets having few

samples, perhaps concentrated in one class, the leave-one-out is one of the few avail-

able options. Regardless the type of cross-validation chosen, the overall performance

of the model are assessed by averaging the performance values obtained in each test

set. Overall, with the cross-validation, it is possible to simulate the model usage and

better estimate how the learning algorithm was able to generalise the concept repre-

sented by the input data. In addition, this process provides a hint on how the model

will perform when dealing with future instances.

2.2.2.2 The knowledge representation in supervised learning

The learning can also be classified according to the knowledge representation used to

reproduce the output [32]. Russell and Norvig [33] stated that:

“ The object of the knowledge representation is to express knowledge in

computer-tractable form, such that it can be used to help agents perform

well. ”
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The main di↵erent knowledge representations that can be found in the supervised

learning are:

• Decision Trees are tree-like graphs that define a series of questions about the

attributes to predict the label of the data samples. An example of a decision

tree, for the classification of stroke risk (low or high), can be seen in Figure 2.5.

Each node of the tree divides the instances according to a test over an attribute;

the leaves correspond to the final predicted label. When decision trees are used

to predict numeric values they are called regression trees. C4.5 is in absolute the

most representative algorithm based on decision trees [34].

Hypertension

Age

Low risk

Physical 
activity

Low risk High risk

Diet scoreLow risk

No Yes

≥ 60< 60

≥ 3.5< 3.5

NoYes

Low risk High risk

Hypercholesterolemia

YesNo

Fig 2.5: Example of a decision tree for a stroke risk classification problem.

• Classification rules consist of a series of rules that assign each instance to a

class if a condition is met. The rule is usually represented using an If-Then form:

“IF condition C Then Class A”. The condition C is called rule antecedent or

precondition and is defined by one or more attribute tests logically combined.

The then part is called rule consequent and consists of the class prediction. A

learning system that employs rules typically produces a set of di↵erent classifi-

cation rules, each one matching a di↵erent area of the input space. An example
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of a classification rule set is represented in Figure 2.6. RIPPER [35] and PART

[36] are two of the most well known rule-based algorithms.

IF age ≤ 30 AND student = “no” ⟶ buy computer = “no”
IF age ≤ 30 AND student = “yes” ⟶ buy computer = “yes”
IF age > 40 AND credit rating = “excellent” ⟶ buy computer = “yes”
IF age ≤ 30 AND credit rating = “fair” ⟶ buy computer = “no”

Fig 2.6: Example of a classification rule set for a computer purchase problem.

The Learning Classifier System (LCS) is a machine learning paradigm introduced

by Holland [37] that exploits evolutionary computation to develop a set of con-

ditional rules (classifiers). LCSs have been extensively used in the biomedical

domain as a powerful tool for knowledge discovery given their elevated inter-

pretability [38]. There exist two main distinct types of LCSs: Michigan-Style and

Pittsburgh-Style. In the Pittsburgh approach each individual is a complete solu-

tion for the classification problem, traditionally an individual is a variable-length

set of rules. Conversely, in the Michigan approach, each individual is a single

rule and the whole population cooperates to solve the classification problem. Al-

though di↵erent, both approaches share the goal of finding sets of classifiers that

provide a solution for the analysed task.

BioHEL (Bioinformatics-Oriented Hierarchical Learning) [39] is a rule-based

evolutionary machine learning system designed to handle large-scale biological

datasets. BioHEL generates sets of classification rules using an approach di↵er-

ent than the Michigan and Pittsburgh style: the iterative rule learning (IRL)

principle. The IRL creates the classification rules sequentially using a standard

genetic algorithm (GA). After every rule is generated (the best individual of

the GA population), the samples from the training set covering that rule are

removed. This learning process is repeated until there are no more examples in

the training set. BioHEL uses an explicit default rule in each rule set, the IRL

process also terminates if the system cannot generate rules that are better than

the default one. The fitness function used by BioHEL is based on the Minimum

Description Length (MDL) principle and is defined to promote accurate, general
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and compact (simple) rules. BioHEL employs a rule representation called At-

tribute List Knowledge Representation (ALKR), illustrated in Figure 2.7. ALKR

has been designed to cope with biomedical data that often are large-scale, noisy,

ambiguous and usually described by a large number of attributes [39]. Each

classifier condition is defined by five structures: (1) the number of represented

attributes (2) a list of the identifiers of the represented attributes, (3) a list

of values for the represented attributes, (4) a list of the positions where each

attribute can be found in the classifier and (5) the class of the classifier. The

rationale behind this design is that most of the successful rules obtained from

biomedical datasets contain only a few key attributes (from the large set of

available ones). Hence, automatically discovering these key attributes and only

keeping track of them, contributes to a substantial speed-up of the learning phase

as it avoids useless match operations with irrelevant attributes. ALKR, rather

than coding all the domain attributes, uses a list containing only the expressed

ones, this avoids irrelevant match operations (computationally expensive) with

non-expressed attributes. In addition, the ALKR structure facilitates important

operations during the learning process such as specialisation and generalisation

that add and remove attributes from the list with a certain probability. Overall,

the ALKR provides competent learning performance and manages to reduce the

system run-time considerably.

0 2 4

0.5 0.7 1 1 0 0.3 0.4

3

0 2 5

3

numAtt

whichAtt

predicates

offsetPred

class

Fig 2.7: Representation of a classifier using ALKR.

• SVM namely Support Vector Machine, belongs to the family of the linear mod-

els, a set of model-based learning approaches that expresses the output as a linear

combination of the input attributes. The SVM is based on the concept of deci-

sion planes that define decision boundaries [40]. A decision plane, or hyperplane,
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tries to separate a set of objects that belong to di↵erent classes. Thus, the SVM

attempts to generate hyperplanes that separate the samples while maximising

the margin, that is the distance between data points from distinct classes. An

SVM example is represented in Figure 2.8 (a). More formally, having {(x
i

, y
i

)}

with i = 1, ...l x
i

2 <d and y
i

,2 {�1, 1}, where x
i

are data points and y
i

are the

corresponding labels, an hyperplane that separates the objects can be defined

as:

f(x) = (w>· x) + b

where w is a d-dimensional coe�cient vector that is normal to the hyperplane and

b is the o↵set from the origin. A linear SVM tries to maximise the margin (the

distance of the points from the hyperplane) by solving the following optimisation

task:

min
w

kwk2

2

subject to:

y
i

(w>· x) + b � 1 i = 1, .., l

This approach works well only when dealing with data that are linearly separable.

If the data are non-linear, SVM, but also other linear classifiers, provides an easy

and e�cient way to overcome the problem. This is known as the “the kernel

trick” [41] and it consists of defining a mathematical function � : Kn ! H

that maps the data into a higher dimensional space where is possible to generate

an hyperplane that separates objects from di↵erent classes. The most common

kernel functions, for two data points x1 and x2 are:

I RBF (Radial basis function): exp
�
� kx1 � x2k2

�

I Polynomial: (x1· x2 + 1)d

I Sigmoid: tanh (x1· x2)

where d and � are user-defined parameters (common default values are 3 and

1/(number of features), respectively).
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• ANN namely Artificial Neural Network [42], is inspired by the natural neurons

and is another example of a linear model. A perceptron represents an artificial

neuron, an ANN simply consists of a set of perceptrons connected to each other.

The output of the ANN is generated as the weighted sum (strength) of the

connections between perceptrons. The set of perceptrons that connects the input

nodes (input layer) with the output nodes is defined as the hidden layer. A typical

ANN with one hidden layer is illustrated in Figure 2.8. The back propagation

algorithm is commonly used to train the ANN and identify the best set of weights

for a particular problem [43]. When having multiple levels of representation, such

as an ANN with many hidden layers, we fall into the class of techniques called

deep learning, nowadays one of the most studied field of machine learning. Deep

learning methods are defined by multiple levels of representation (i.e. layers)

that are generated by composing simple (non-linear) modules (i.e. neurons).

Each module transforms the representation at one level (starting with the input)

into a representation at a higher, slightly more abstract level [44]. With such

composition of layers, very complex functions can be learned, thus very complex

problems can be addressed. Di↵erent types of deep neural networks exist, each

one better suited for a specific task. For example, convolutional networks (neural

networks where the connectivity pattern between the neurons is inspired by the

organisation of the animal visual cortex) are ideal for the analysis of data with

structured variables such as images, text and audio, recurrent networks (neural

networks that contain connection within neurons of the same layer) perform

well in the analysis of sequential data such as text and speech, autoencoders

are special types of neural networks that receive unlabelled data (unsupervised

learning) and aim to transform the input into the output with the least possible

amount of distortion (typically used for dimensionality reduction), etc. Deep

learning is currently the fastest growing field in machine learning, new successful

approaches are continuously proposed to tackle a wide range of problems from

predicting the potential of drug molecules to the analysis of particle accelerator

data. An interesting overview of deep learning can be found in [44], more detailed

information are outside the scope of this thesis.

- 45 -



Chapter 2: Background Research

Hyp
erp

lan
e

Support vector

Support vector

Margin

(a) Support Vector Machine

Input #1

Input #2

Input #3

Input layer Hidden layer Output layer

Output

Weight w i,j

(b) Artificial Neural network

Fig 2.8: Example of linear models: an SVM classifier (left) and a simple artificial
neural network (right).

• Bayesian networks are acyclic directed graphs in which each node represents

a random variable and the edges define probabilistic dependencies among the

corresponding random variables. Bayesian networks can be used as models to

represent the probability that a certain sample belongs to one class:

P (lung cancer = yes|smoking = no, positiveXray = yes) =?

The probability of the event to occur can be calculated by applying the Bayes’

theorem:

P (A | B) =
P (B | A)P (A)

P (B)

where are P (A) and P (B) are the probabilities of observing A and B without

regard to each other, P (A | B) and P (B | A) are the probabilities of observing

the event A given that the event B is true and viceversa. Naive Bayes [45] is the

most simplistic Bayesian network classifier. It has been shown to perform well

on many classification problems despite its simplicity and strong assumptions

[46]. More complex classifiers have been presented based the Bayesian approach.

For example, ABC-Miner learns the structure of a Bayesian network Augmented

Naive-Bayes (a Bayesian network graph with no restrictions on the number of

parents of a node) using Ant Colony Optimisation [47]. Its extension has also

been used for the hierarchical classification of ageing-related proteins [48].
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• Ensembles are the combination of multiple simple models together. The goal

of the ensemble approaches is to obtain better performance than what can be

achieved by the single models alone. In 1994, Leo Breiman proposed an ensemble

technique called bagging (bootstrap aggregating) [49]. Bagging is based on the

idea of improving the classification by combining classifier trained on randomly

generated training sets. The overall classification is performed by weighting the

prediction of the single component of the ensemble. The random forest [50], one

of the most widely used methods in the recent years, couples a bagging technique

with a random selection of features. A random forest is created as an ensemble

of decision trees. Assuming a training set with N samples, each one defined by

M features, each decision tree is generated as follows:

1. Randomly select n samples with replacement, this set will be the training

set for growing the tree.

2. In each node of the tree, given a number m < M , select m variables at

random out of the M . Use the best split on these m to split the node.

3. Grow each tree to the largest extent possible without pruning.

Finally, aggregate the predictions of the trees to obtain the classification for

the test set. The multitude of positive characteristics of the random forest (i.e.

excellent classification performance, an e�cient run time with large datasets,

variable importance estimation, the ability to work with missing values, etc.)

made the method extremely popular not only in the machine learning community.

Another ensemble technique is boosting : the models are iteratively created based

on the samples that were badly classified in the previous iterations. The idea

is to generate complementary models that focus on di↵erent parts of the input

space. Adaboost [51] is one of the earliest most successful examples of ensemble-

classifier based on the boosting approach.

2.2.3 Unsupervised learning

In contrast with supervised learning, unsupervised learning is characterised by the

absence of performance feedback. The system tries to automatically identify patterns
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within the data without any information about the correctness of the solution. The

next paragraphs will describe the most common unsupervised methods employed in a

biomedical context.

Clustering is the task of grouping a set of observations so that the participants

of the same group, called cluster, are more similar to each other than to those in

other clusters, see Figure 2.9 (a). If the clusters are allowed to have sub-clusters, then

it becomes hierarchical clustering where commonly the nested clusters are organised

and visualised as a tree, see Figure 2.9 (b). Clustering is an operation that can be

performed by di↵erent algorithms, using di↵erent definitions of a cluster and di↵erent

measures to assess the similarity between objects. K-means clustering is one of the

simplest and most used clustering algorithms [52]. First, k initial centroids are chosen,

where k is a parameter that indicates the number of desired clusters. Then, each

data point is assigned to the closest centroid, a set of data points assigned to the same

centroid is defined as a cluster. Di↵erent metrics can be used to determine the distance

between clusters, the most common are the Euclidean and the Manhattan distance.

The centroids of the cluster are then updated based on the data points contained in the

cluster. The process is repeated until either no points change clusters, or the centroids

remain the same. The tricky part of K-means is to assign the correct value to k, the

number of clusters should match the data. The Fuzzy K-means is a variance of the

original K-means algorithm where each data point can belong to more than one cluster

with certain probabilities [53]. In biomedicine clustering represents an important tool,

it has been used for many di↵erent problems such as: create a taxonomy of living

things, identify groups of genes with similar biological functions, stratify patients with

similar clinical characteristics, etc.

Association rule mining aims to find frequent and interesting patterns or asso-

ciations among the observations in a dataset. Association rules are defined as an

implication of the form:

X ) Y
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Fig 2.9: Example of clustering: K-means with K=4 and hierarchical clustering.

where X, Y ✓ I and I = i1, i2, ..., in is a set of attributes called item. Association rules

do not di↵er much from the classification rules presented in Section 2.2.1, except that

they predict any attribute, not simply the class attribute, including a combination of

them. A famous association rule, which emerged from the analysis of supermarket

shoppers, is diaper ) beer. A study showed that customers (presumably young men)

who buy diapers also tend to buy beer. Apriori is a classic algorithm for learning

association rules [54]. The algorithm tries to find subsets of attributes which are in

common to at least a minimum number instances. Using a “bottom up” approach,

frequent subsets are extended one item at a time and groups of candidates are tested

against the data. Apriori terminates when no further extensions can be found. Many

other algorithms have been proposed after the Apriori algorithm [55].

PCA namely Principal Component Analysis, is a process that aims to summarise

the original set of variables into a smaller set that collectively explains most of the

variability in the original variables [56]. PCA uses an orthogonal transformation to

convert a set of data points, of possibly correlated variables, in a set of values of

linearly uncorrelated variables called principal components. Thus, the total number of

components is less or equal than the number of original variables. PCA is well known
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as it helps in visualising high dimensional data in 2D plots (when considering only the

first two components), as illustrated in Figure 2.10.
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Fig 2.10: Plot of the first two components from a PCA generated with a 3 class
datasets.

One-class classification also known as unary classification, aims to identify objects

that belong to a specific class [57]. By learning from a training set containing only

data points of a particular class, the model can recognise whether an unseen test point

belongs or not to that class. The one-class classification is commonly adopted for

anomaly (outlier) detection where the goal is to recognise objects that do not conform

to an expected pattern. One-class SVM is probably the most used classifier based on

this unary approach [58].

2.3 Machine learning for the inference of biological
networks

The inference of biological networks is a highly relevant and challenging task in systems

biology and bioinformatics [59]. The analysis of biological phenomena through a net-

work representation nowadays has become a common approach. Biological networks

are graphs in which nodes represent a biological entity (such as genes or proteins), and
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a connection between them indicates some kind of biological relationship, e.g. regula-

tory or functional. Network inference is, in an essence, an attempt to reverse engineer

the biological relationships from the data [60]. Networks, generated from biomedical

data, represent a tool to investigate complex biological systems, not only as individ-

ual components but as a whole. The analysis and study of biological networks have

extended our understanding in many biomedical contexts: from the discovery of the in-

volvement of gene-gene interactions in diseases [61] to the analysis of therapeutic drugs

and their targets [62], from the prediction of protein functions [63] to gene regulations

[64], etc.

Over the years, the adoption of machine learning techniques to address the challeng-

ing tasks of identifying gene-gene associations, and more generally, to infer biological

networks, has continuously gained popularity. This is mainly due to the wide range

of knowledge representations that can be used within machine learning methods (e.g.

classification rules, decision trees, artificial neural networks, SVM kernels, etc.) and

that can lead to a discovery of more complex and diverse relationships. Having such

a large variety of knowledge representation, within machine learning models, the at-

tributes are associated not because they are similar (e.g. have similar expression

profiles), but because together they detect strong patterns.

Di↵erent types of machine learning algorithms have been successfully applied to in-

fer networks and associations from biomedical data. In the next paragraphs are re-

ported some examples, grouped based on the machine learning algorithm used to

generate/infer the networks:

Association rules Martinez-Ballesteros et al. abstracted genetic associations from

association rules [65]. Their approach defines an edge between the elements of the

antecedent and the consequence. The Apriori algorithm, a well-known method for

the inference of association rules, was also employed to resolve KIR gene patterns

associated with haematological malignancies [66].

Decision trees have been successfully used to extract gene-gene dependencies. For

example, in [67, 68] each gene is in turn set as a target gene and a model tree is built
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to predict its expression values using the other genes. Once the tree is constructed,

a linear regression function is generated for every node of the tree. Finally, the edges

are defined among the genes involved in the same linear models.

Random Forest Yoshida and Koike [69] presented a modification of the classical

random forest classifier with the capacity to identify multiple interactions simultane-

ously. Di↵erent than the original approach, multiple attributes are selected at each

node. The possible genetic associations, between SNPs in the presented study, are

represented by the branches of the trees. Each branch accounts for a possible SNP

interaction, if a certain SNP combination appears quite often on a branch, then those

SNPs are likely to interact more strongly. Another approach is known as permuted

random forest (pRF) and selects the top interacting SNP pairs by assessing how much

the removal of an attribute pair influences the random forest classification [70]. One

of the recent network inference DREAM challenge, a series of competitions organised

to foster collaborations and propose new solutions for many questions in biology and

medicine, was won by a team proposing GENIE3 [71], a method based on an ensem-

ble of decision trees. In GENIE3 a model is iteratively created for each gene with

its expression levels set as output values and the expression levels of the other genes

as input values. A rank is then extracted for each model to guide the discovery of

gene-gene interactions.

SVM Chen et al. [72] used an SVM approach that when combined with search

algorithms generates di↵erent models to detect gene-gene interactions. SVM, using a

quadratic kernel, was able to show that multiple SNP sites from several genes, located

in zones of the genome that are far away, are better at predicting patients with breast

cancer than single SNP [73].

Bayesian Networks Most of the molecular measurements are continuous, so they

can be naturally described using continuous Bayesian networks. In the literature,

there have been many examples of inference methods from Gaussian Bayesian networks

where each node represents a continuous variable and it is modelled as a function of

its parents plus and added Gaussian noise [74–76]. Recently GEBN (Grammatical
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Evolution Bayesian Network) was presented [77]. GEBN employs Bayesian Networks

to infer interactions from biological data, the novelty is that at the same time, it also

uses an evolutionary algorithm to reduce the computational cost due to the network

optimisation.

2.4 Similarity-based approaches for the inference
of biological networks

Together with machine learning approaches, other methodologies have been presented

to tackle the problem of inferring meaningful biological networks. One of the earliest

(but still widely used) proposed approaches is based on the “guilt-by-association”prin-

ciple [78]. That is, if two genes show similar expression profiles, it is assumed they are

also biologically related (via a direct or indirect interaction). Initially, this paradigm

was applied to infer networks from transcriptomics data, and this is why in most of the

literature it is known as the co-expression network inference principle. Nevertheless,

it is abstract enough to be applied to all kinds of biological data. This thesis will refer

to this approach simply as “co-expression” and to its application to transcriptomics

(gene expression) data.
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Fig 2.11: The co-expression paradigm identifies associations between genes that have
similar expression profiles across di↵erent samples.

The co-expression paradigm identifies similarity of gene expression patterns under

di↵erent experimental conditions. Two genes are considered to be co-expressed, there-

fore biologically related, if their transcript levels are similar across a set of samples,
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see Figure 2.11. By considering two genes as two random variables X and Y , there

are multiple approaches to measure the relationship between them [79]. Most of the

methods based on the co-expression paradigm utilise two main association measures:

correlation and mutual information (MI).

2.4.1 Correlation-based methods

Correlation is a commonly used association measure. Pearson Correlation Coe�cient

(PCC) is probably the best-known correlation measure of linear dependence between

two variables. When applied to gene expression profiles, it measures the similarity in

the direction of the gene responses across samples. Its main disadvantages are the lack

of distributional robustness (it assumes data normality) and the sensitivity to outliers.

Given a pair of genes x and y, the PCC is calculated as:

PCC(x, y) =

P
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where x
i

and y
i

are the expression values for the genes in a given sample i and x̄ and ȳ

are their mean expressions values. The PCC measures how much a pair of genes tends

to respond in the same (or in the opposite) direction across di↵erent samples. The

value ranges from �1, revealing that the genes respond in totally opposite direction,

to +1, indicating a similar way to behave across the samples. Alternatively, Spearman

correlation, based on ranks, can be used. It measures the extent of a monotonic

relationship between two genes X and Y . Spearman correlation o↵ers more stability to

the outliers, however, the outlier e↵ect was shown to be small in large-scale microarray

data [80], furthermore, in the same study, the two measures performed overall similarly.

A biological network can be created by ranking all the possible gene pairs based on

their correlation value and by finding a threshold that defines which edges to include.

However, the selection of the optimal threshold is a non-trivial problem [81]. A well-

established method for the generation of correlation networks is WCGNA [82], over

the years it has been employed, with successful results, in many di↵erent fields: from

system biology to neuroscience.
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2.4.2 Mutual information-based methods

Complementary to the correlation, the information theory and the mutual informa-

tion can be employed to estimate the association measure between two variables. The

mutual information MI(X;Y ) determines the entropy to quantify the amount of in-

formation that Y contains about X (measured in bits):

MI(X, Y ) =
X
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In contrast to the PCC, mutual information can detect non-linear dependencies. In

its original definition, the mutual information measure was defined for discrete or

categorical variables. Therefore, its application to continuous variables (e.g. gene

expression variables) is challenging. Several strategies have been proposed in the lit-

erature. The most common approach consists on discretising the numeric vector X by

using the equal width method. This approach divides the interval [min(X),max(X)]

into equal-width bins, the resulting discretised vector has the same length as X but

its i-th component provides the bin number in which X
i

falls in. The only parameter

necessary is the number of bins of the equal-width.

ARACNE [83] is a method to generate biological networks by measuring the depen-

dence between two gene expression profiles via the mutual information. ARACNE

calculates MI(X;Y ) for every pair of gene expression profiles X and Y , and applies

the data processing inequality to remove the majority of indirect dependencies. For

each triplet X, Y and Z, the weakest link is removed, that is the edge between X and

Y is removed if:

MI(X;Y )  min(MI(X;Z), MI(Z;Y ))� ✏.

The tolerance threshold ✏ is used to adjust for the variance of the mutual information

estimator. Other approaches were also defined for identifying biological networks using

the mutual information theory: CLR [84], MRNET [85] and RELNET [86].

The Maximal Information Coe�cient (MIC) [87] is yet another proposed measure for

the strength of association between two variables that is closely related to mutual
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information. MIC, in contrast with the classical approaches, based on a single dis-

cretisation strategy to bin the compared variables, chooses individual bins for each

variable, such that the value of mutual information MI(X;Y ) is maximised. Com-

pared to the standard estimation of MI(X;Y ) value used in ARACNE, the optimised

estimation provided by MIC can detect a wider range of non-linear associations. In

addition, MIC has been shown to identify a more diverse variety of association be-

tween variables when compared to PCC, see Figure 2.12. MIC was capable to identify

known and novel relationships from a wide range of datasets such as global health,

gene expression, baseball and human gut microbiota [87].

Fig 2.12: Comparison of the similarity measures calculated with PCC and MIC for
di↵erent type of associations between two variables [88].

2.5 Network inference via the integration of mul-
tiple data

Datasets often present a limited overview about a specific biomedical problem. This is

mainly because some types of experiment can only provide information about a specific

aspect of the cell’s behaviour [89]. Furthermore, di↵erent computational approaches,

when dealing with the same set of data, can lead to di↵erent and complementary

results. Hence, the integration of multiple computational models, biological networks

(or associations) in this instance, can produce more robust solutions. A common

approach is to score each model using a gold standard. For example, Lee et al. assess

the goodness of the proposed (integrated) associations against a gold standard and
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calculates a log likelihood score that generates a network with weighted edges (the

weight represents the sum over all the data sources) [90]. An extension of this approach

uses instead multiple gold standards to infer the overall network and compute an

existence probability for each association [91]. Those type of networks are often termed

as probabilistic functional networks as each edge is weighted with a confidence score

(probability) representing the likelihood of the association. The bias presents in the

experimental data is exploited, rather then be eliminated, in [92], where the authors

integrate information for multiple sources to optimise network predictions relevant for

a specific biological process. An alternative paradigm is the semantic data integration

where all the multiple types of associations (i.e. generated with di↵erent approaches)

are kept and separately identified. The main challenge of semantic networks is to assess

the confidence score for each relationship because each type must be scored separately.

To tackle this problem, Weile et al. [93] proposed a generic solution that, based on

a fully Bayesian method, calculates the probability that each statement is true in the

semantic graph without using gold standard but completely relying on experimental

data.

2.6 Statistical approaches for biomarkers identifi-
cation

Modern technologies allow one to sense the state of large quantities of biological entities

at once. Thus, biomedical data are often characterised by samples that are defined in

a high-dimensional space (thousands of features). Unfortunately, most of those dimen-

sions do not contain any relevant information that describes the phenomena analysed

in the experiment. In addition, several studies revealed that most of the biological

measurements available in the experiments are not helpful when it comes to the clas-

sification of data points into di↵erent categories [94]. Therefore, it is fundamental to

identify, among all the available information, driving factors that can be relevant for

a biological/medical condition. Such a process is widely known as biomarkers dis-

covery, where a biomarker is defined as: “a characteristic that is objectively measured

and evaluated as an indicator of normal biological processes, pathogenic processes, or

pharmacologic responses to a therapeutic intervention” [95].
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When analysing biomedical data, statistical approaches have been extensively ex-

ploited to select important biomarkers. Univariate methods are the most straight-

forward and commonly adopted statistical approach for the biomarker discovery [96].

The idea is to verify the possible association between each factor (variable of the

dataset) and the outcome variable (e.g. presence of cancer, e↵ect of a drug, etc.) via a

statistical test. Traditional approaches utilise statistics measurements, such as mean

or median, to evaluate the di↵erence between groups of individuals, like healthy vs.

unhealthy patients. One of the most basic and used methods is the Student’s t-test,

it verifies whether the means of two population are equal or not. In the context of

biomedical data, the population are represented by samples that belong to di↵erent

categories. The formula of the Student’s t-statistic, for the analysis of a single variable,

is given by:

t =
x̄
A

� x̄
Bq

s

2
A

nA
� s

2
B

nB

where x̄ and s represent the mean and the standard deviation of the populations A and

B, while n indicates the size of each population. From the t-statistic, using appropriate

tables, a p-value can be extracted representing the strength of association between the

variable (factors) and the outcome variable. The Student’s t-test assumes that the

values of the variables are normally distributed and requires a minimum of 20 samples

per category (rule of thumb), and if this is not verified, wrong associations can be

inferred. When the normality assumption does not hold, and the distributions of the

variables are skewed, alternative tests o↵er better statistical power, for example, the

Mann-Whitney U test [97]. If the biomedical data are defined by categorical variables

(e.g. SNPs data), the �2 test can replace the Student’s t-test. ANOVA is a well-known

test used to detect significant factors in a multi-factor model. A multi-factor model

is characterised by a response (dependent) variable (e.g. healthy state) and one or

more factor (independent) variables (e.g. age, BMI, gene expressions, etc.). ANOVA

tests use variances to know whether the means of di↵erent groups are equal or not.

Commonly, ANOVA is employed to evaluate the influence of groups (� 2) of variables

on the response variable; this approach allows to consider interactions and main e↵ects

between factors. Given this characteristic, ANOVA is also viewed as a special case of

linear regression [98].
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When analysing large-scale biomedical datasets, the number of variables can go up to

several thousands, thus a common practice is to couple a univariate standard method

with a more complex multivariate approach [99]. By using a multivariate method,

(e.g. ANOVA or linear regression), potential relationships between factors, missed

by univariate methods, are taken into account. A well-established pipeline for the

identification of biomarkers, used in many clinical studies, includes three main steps:

1. Filtering of irrelevant factors using a univariate analysis

2. Generation of a (risk) prediction model using a multivariate approach

3. Identification of the most important biomarkers within the model

First, the large set of variables included in a biomedical dataset is filtered using one

of the cited univariate approaches. Then, considering only the significant variables

identified at step 1), a multivariate predictive model is generated. Finally, the most

relevant variables within the predictive model are contemplated as possible biomarkers

for the analysed condition. The prediction model is commonly generated using a

logistic regression analysis. Logistic regression provides methods to model binary

response variables, for example, presence of a medical condition [100]. What makes

the logistic regression di↵erent from the linear regression is that it doesn’t measure

the outcome variable directly, but instead it calculates the probability of obtaining a

particular value for the outcome variable. The equation that provides the probability

for an event to occur, in logistic regression, is:

p =
e↵+�x

(1 + e↵+�x)

where �x = �0+�1x1+�2x2 · · ·+�
n

x
n

with �
i

representing the coe�cients (parameters)

for the variable x
i

and ↵ representing a model with no predictor variables. Typically

the values of ↵ and � are determined using the maximum likelihood estimation [100].

Once the model is defined, it is possible to test the statistical significance of each

coe�cient, that is to assess the importance of prediction of each variable (predictor).

The Wald test is a standard choice and it tests the hypothesis that each � = 0.
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Finally, the p-values calculated by this test are used to determine which variables can

be considered as a possible biomarker and can be granted with further investigations.

Given the high dimensionality of biomedical data, often multiple tests are necessary

to identify relevant variables. However, as the number of performed tests increases,

the chance of encountering false positive results (non-significant factors recognised as

significant) rises in parallel. Therefore, a correction for multiple testing is fundamental

to obtain meaningful results. If for each test the significance level ↵ is set to 0.05,

there is 5% chance to accept not significant results. Thus, if 100 tests are performed

together, 5 of them could be found significant by chance, the value increases to 500

when performing 10 000 tests (e.g. checking gene expression values). Multiple testing

is used to address this problem by adjusting the individual p-value (after which is also

called q-value) to keep the overall error rate at the desired level. Di↵erent methods

can be applied [101]. The Bonferroni correction aims to control the family-wise error

rate; it sets the significance cut-o↵ to ↵/n where n corresponds to the total number

of performed tests. So, if all the null hypotheses are true, the probability that the set

(family) of tests includes one or more false positives by chance is 0.05. The Bonferroni

approach can be too conservative (many hypothesis rejected) when the number of

tests is high. A less stringent method that controls the family-wise error rate at an

↵ level is the Bonferroni-Holm correction. The p-values are sorted from smallest to

largest, iteratively the p-values are multiplied (adjusted) by (n � i) where n is the

total number of tests and i indicates the rank of the current test. The procedure stops

when no test is found to be significant. A di↵erent approach is to control the false

discovery rate (FDR), that is the proportion of significant results that are actually

false positives. In other words, the test sets the percentage of false positives results

that you are willing to accept among the significant ones. The Benjamini-Hochberg

is a well-established technique to control the FDR. Given the sorted set of p-values

(from smallest to largest), each p-value is compared to its Benjamini-Hochberg critical

value of (i/n)⇥↵ where i is the rank, n is the total number of tests, and ↵ is the false

discovery rate chosen. The largest p-value lower than (i/n)⇥ ↵ is significant together

with all the p-values smaller than it.
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2.7 Machine learning for biomarkers identification

Along with the traditional statistical methods described in the previous section, ma-

chine learning methods have started to make a great impact in the field of biomarker

discovery [10, 102, 103]. One of the main characteristics of machine learning approaches

is their ability to identify complex patterns (usually with a multivariate approach)

within the data, this become fundamental when analysing phenomena that are the

product of complex chains of interactions among many factors. Given the complexity

and the vast variety of knowledge representations that can be adopted by machine

learning methods, potentially they can overcome the limitations represented by the

traditional statistical methods. The process of selecting relevant features, employed

in machine learning, is called feature selection (or extraction). Thus, the discovery

of biomarkers from biomedical data can be modelled as a feature selection problem.

The leverage due to the dimensionality reduction in machine learning is two-fold: (1)

new driving factors for complex diseases can be easier to identify and (2) the learn-

ing algorithm can obtain better performances at a reduced computational cost when

working in a smaller dimensional space. Traditionally, feature selection approaches

can be summarised within three main groups: filter, wrapper and embedded methods

(see Figure 2.13):

Filter methods evaluate the relevance of feature subsets by analysing the intrinsic

properties of the data. Typically a single attribute or a subset of attributes is evaluated

against the class label. Often, for each feature an importance score is calculated, then

the features with the lowest scores are discarded. Filter techniques o↵er high scalabil-

ity, they are computationally e�cient and they are independent of the classification

algorithm used in the later stages of the analysis. On the other hand, the latter can

be a drawback as the interactions with the classifier are ignored (i.e. the search in the

feature subset space and the search in the hypothesis space are separated). CFS is an

example of a multivariate filter-based feature selection method [104]. By exploiting a

best-first search, it assigns high scores to subsets of features highly correlated to the

class attribute but with low correlation between each other. The information theory

can guide the selection of the best subset of features as in [105], where the search
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Fig 2.13: Taxonomy of feature selection methods: filter, wrapper and embedded
(adapted from [102]).

process is based on a maximum weight and minimum redundancy (MWMR) criterion.

Relief is another renowned filter-type algorithm [106]. First, it randomly samples an

instance from the data, then it picks the nearest neighbour from both the same and the

opposite class. By comparing the values of the attributes of the nearest neighbours to

the sampled instance, Relief defines a relevance scores for each attribute that is used

for the final attribute selection. Relief is based on the idea that relevant attributes

should have similar values for instances of the same class while di↵erentiating between

instances of di↵erent classes.

Wrapper methods di↵erent than the filter approaches, include the model hypoth-

esis search within the feature subset search. The idea is to use a classifier to determine

if a subset of features perform well in the classification task. Many wrapper methods

are coupled with heuristics to help the search for an optimal set of features as the space

of possible feature subsets grows exponentially [107–109]. GA-KDE-Bayes is a fairly

recent evolutionary wrapper method that joins a non-parametric density estimation

method with a Bayesian classifier [110].

Embedded methods provide the search for an optimal subset of features embedded

within the classifier construction. This approach can be seen as a search in the com-

bined space of hypotheses and feature subsets. SVMs have been successfully used to

guide the discovery of feature subsets within the classification task. SVM-RFE (Sup-

port Vector Machine - Recursive Feature Elimination) is probably the most famous

example, an iterative feature reduction method that was designed to deal specifically

with genetic data but that nowadays is employed in many fields [111]. The weight

vector from the SVM classifier is used as ranking criteria, iteratively the features with

the lowest rank are discarded until a small set is obtained. Another approach, named
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kernel-penalized SVM (KP-SVM) is used to optimise the shape of an anisotropic RBF

Kernel by removing the features that have low importance for the classifier [112]. In

[113], to achieve e�cient gene selection from thousands of candidate genes, particle

swarm optimisation was combined with a decision tree classifier. BioHEL [39], pre-

sented in Section 2.2.1, performs an embedded feature selection during the learning

phase. The ALKR automatically identifies the relevant attributes and discards the

irrelevant ones. Hence, BioHEL employs a fine-grained embedded feature selection

as only the most relevant attributes are identified and considered in each rule. In

addition, a feature importance rank, that can drive a further selection phase, can be

generated by counting how many times each attribute has been used (importance) in

the BioHEL classification rules.

2.8 Knowledge integration in machine learning
methods for biomarkers identification

A research path that is emerging involves the integration of prior biological knowledge

into the model inference process [114]. The prior knowledge can assume di↵erent forms:

from cellular pathways to biological and molecular networks. The reason behind this

emerging approach is that by using patterns extracted from prior knowledge, deceptive

information embedded within the data can be identified (e.g. spurious structures)

and help the learning model to be mainly focused on predictive features that are

coherent with the knowledge depicted in pathways or molecular networks. Vlassis and

Glaab presented GenePEN, an algorithm for the identification of gene (or protein) sets

that are both predictive for disease-control datasets and form connected components

within a provided biological network (such as a protein-protein interaction network)

[115]. GenePEN obtained not only similar performing results, compared with other

feature selection methods, when working with in-silico datasets, but also was able to

identify, from Parkinson’s disease data, a subset of genes enriched for that disease. In

[116], driver condition factors were identified by applying a greedy search algorithm

to find subsets of genes, members of the same biological pathway, that maximise a

t-statistic score for the discrimination of control-case samples. The selected genes had

higher discriminative power, across multiple datasets, when compared to gene-based
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classifiers. Kim et al. [117] created a biomarker model for transcriptomics data at

two levels (gene and pathway level) by using a hierarchical feature structure. Finally,

in [118] biomarkers are identified via a two-step procedure. First, a random walk is

performed on a molecular network where the weight of each node corresponds to the

fold change of that gene in the cancer-related expression. Then, network modules (gene

sets) are ranked based on their score (the square of the average weighted expression

for all the members). Overall, this research strategy is showing to be promising and

is leading towards more reliable biomarker discoveries, limiting the risk of overfitting

that can a↵ect pure data-driven approaches.

2.9 Biomedical evaluation of the results

In many fields researchers have the luxury to use ground truth data to verify, in a

simple way, the validity of their computational methods. Ground truth is referred to

a well establish set of data and results that a method is expected to reproduce to be

considered correctly working. Examples are face recognition problems, text mining,

etc. In bioinformatics and system biology this is rarely the case. Problems such as

the identification of transcription factors or the discovery of regulation among genes

are few exceptions. In literature, there exist transcriptional networks (especially for

simple organisms such as E.coli [119]) that the researchers can employ as ground truth.

To assess the performance of a regulatory network inference method, for example,

it is possible to count how many known interactions were identified and how many

false positives (unconfirmed associations) were generated. An alternative is to create

synthetic biological data (and networks) that resemble the real ground truth. The

DREAM challenges, for examples, o↵er some in-silico benchmarks commonly employed

for the analysis of new algorithms [120].

Unfortunately, when it comes to the evaluation of functional networks, which are one

of the main topics of this dissertation, no ground truth network is available. The ideal

solution is to assess the relationship and the role of biological entities via experimental

tests. However, this solution is time-consuming and expensive, and thus rarely feasible.

Therefore, other techniques are necessary to estimate the goodness of new methods.
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Two main approaches are used to tackle this problem: (a) enrichment analysis and

(b) the use of established and confirmed literature knowledge. Both will be briefly

described in the following subsections, their application is not limited to the analysis

of biological networks, but it can be extended to the validation of newly identified

biomarkers. The section about the confirmed literature knowledge will focus on the

description of known associations between gene and biomedical phenomenon (disease).

2.9.1 Enrichment analysis

The enrichment analysis is a method for checking whether a set of biological entities

(mainly genes) have common characteristics based on a statistical approach. The goal

of this process is to assign a biological meaning to groups of genes and provide a tool

for the interpretation of biological results. The enrichment analysis exploits statis-

tical methods to identify biological features (annotations) that are represented in a

particular gene set more than it would be expected by chance. Typically, the annota-

tions of the input set are contrasted with the annotations of elements that belong to a

background set (e.g. human genome). The biological features that statistically appear

more in the input set are called enriched (overrepresented). The most common source

of biological knowledge employed for the overrepresentation analysis is the Gene On-

tology (GO) [121]. The Gene Ontology is a public annotation database which provides

descriptions of molecular functions, biological processes and sub-cellular locations at-

tributed to gene products. In addition to the Gene Ontology, other sources o↵er

biological information: KEGG, MeSH, PubMed, OMIM, etc. KEGG is a database

resource for understanding high-level functions and utilities of the biological system,

such as the cell, the organism and the ecosystem, from molecular-level information,

especially large-scale molecular datasets generated by genome sequencing and other

high-throughput experimental technologies [122]. PubMed is instead a search service

that provides access to over 11 million of scientific references and abstracts related to

biomedical topics.

The general approach for an enrichment analysis is illustrated in Figure 2.14. Many

di↵erent tests can determine the statistical association between a term and a gene set.

Figure 2.14 shows the Fisher Exact test implemented by DAVID [123], a well-known
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Fig 2.14: Example of a gene set enrichment analysis performed using a Fisher exact
test.

enrichment tool. By counting the number of genes, of both the background and the

input set, that are associated with a term (GO:00123 in this case), the Fisher Exact

test provides a p-value that indicates the likelihood of obtaining the gene set-term

association by chance. Other statistical approaches include: binomial test, chi-square

test, hyper-geometric test, etc. [124].

Plenty of tools are publicly available to perform gene set enrichment analysis and vi-

sualise its results. g:Profiler is a public web server for characterising and manipulating

gene lists of high-throughput genomics; it includes data for more than 80 species in-

cluding mammals, plants, fungi, insects, etc. [125]. The analysis is based on multiple

sources of functional evidence, including Gene Ontology terms, biological pathways,

regulatory motifs of transcription factors and microRNAs, human disease annotations

and protein-protein interactions. The PANTHER (Protein Annotation THrough Evo-

lutionary Relationship) classification system combines gene function, ontology, path-

ways and statistical analysis tools to help the analysis of large-scale -omics experiments

[126]. The PANTHER website includes a suite of tools that enable the evaluation of

gene sets according to their function in many di↵erent ways: families and subfam-
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ilies are annotated with GO terms, PANTHER protein class and pathways. Most

importantly, PANTHER is developed by Gene Ontology consortium and is constantly

maintained up to date. EnrichR [127] is yet another enrichment analysis web-based

service that associates prior knowledge (pathways, ontologies, diseases, drugs, tran-

scription) to gene lists. The strength of this tool relies on the visualisation of the

results into di↵erent forms including networks and grid of terms that allow a simpler

and better interpretation of the inferred knowledge.

In the last few years a new approach for enrichment analysis has emerged, similar to

what is described in Section 2.9. It consists of using other sources of knowledge to

provide better and more relevant results. The information encapsulated within biolog-

ical networks (such as protein-protein interaction, molecular networks, gene regulatory

networks, etc.) is exploited to better assess common characteristics among a set of

biological entities. Two main classes of approaches can be identified: (a) methods that

exploit the topology of the networks to check how similar set of genes or protein are

and (b) methods that first identify functionally-related modules within the networks

and then define the biological role of genes or protein from such modules. EnrichNet

[128] belongs to the first class and uses the knowledge associated with biological net-

works to obtain stronger enriched results. EnrichNet maps the input gene set onto an

interaction network and using a random walk, scores distances between the genes and

pathways (taken from a reference database). The XD-score is a network-based asso-

ciation score and is relative to the average distance to all pathways; it also represents

a deviation from the average distance. PINA (Protein Interaction Network Analysis)

[129] belongs instead to the second category and is based on the integration of 6 dif-

ferent PPI databases. The core of PINA consists in identifying clusters of densely

connected nodes which are likely to represent sets of proteins that are functionally

related. The input gene/protein set is then mapped on the clusters and an hyperge-

ometric enrichment test identifies overrepresented clusters. Finally, the input set is

characterised by the annotations of the enriched clusters. TopAnat is instead a tool

to identify enriched anatomical terms from the expression patterns of a list of genes.

Di↵erent than common enrichment tools, it discovers where genes are preferentially

expressed, as compared to a background set, represented by default by all expression
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data in Bgee [130] for the requested species (e.g. human). TopAnat is similar to

a standard Gene Ontology enrichment test, except that it analyses the anatomical

structures where genes are expressed, rather than their GO functional annotations.

When it comes to the interpretation of networks, this can be harder than explaining

the commonalities between sets of biological entities. A trivial adaptation for the

biological interpretation of the networks can be to perform the enrichment analysis on

either the whole set of nodes or on a subset of important nodes. In the latter case,

a solution is to apply a clustering algorithm (such as MCODE [131]) to the network

and select a subset of relevant nodes (e.g. highly interconnected within each other).

Network algorithms have also been developed to identify sets of interconnected nodes

sharing a common phenotype or a consistent response across experimental conditions

[132]. SANTA [133] represents a general approach for the extension of functional

annotations from gene lists to biological networks. The input of SANTA are a gene

set and a network, its goal is to verify the statistical significance of their association.

Based on the guilt-by-association principle and using spatial statistics techniques, the

functional information content of any biological network can be assessed with respect

to a given set of seed genes (for example the set of genes annotated with a specific

GO term). A gene set is called “associated” with the network if it shows a surprising

degree of clustering on the network, otherwise, if it is randomly distributed over the

network, is defined as “non-associated”.

After having performed an enrichment analysis, the final step is to verify whether the

list of overrepresented terms is meaningful in the studied biological context. However,

it is crucial that researchers pay attention to the selection of the enrichment tools.

As shown in a recent publication [134], many enrichment tools provide outdated gene

annotations (a summary of the results is reported in Figure 2.15). An outstanding

example is DAVID [123], a tool referenced by more than 4000 publications in 2015

(and in 80% of the publications considered by Wadi et al. [134]), that until October

2016 was still employing a knowledge base dated 2009. By using tools that are not

up to date, not only the significance and the interpretation of the analysis becomes

unreliable, but new wrong hypothesis can be generated and negatively impact follow-

up studies.
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CORRESPONDENCE

Impact of outdated gene annotations on 
pathway enrichment analysis
To the Editor: Pathway enrichment analysis is a common technique 
for interpreting gene lists derived from high-throughput experi-
ments1. Its success depends on the quality of gene annotations. We 
analyzed the evolution of pathway knowledge and annotations over 
the past seven years and found that the use of outdated resources has 
strongly affected practical genomic analysis and recent literature: 
67% of ~3,900 publications we surveyed in 2015 referenced outdated 
software that captured only 26% of biological processes and path-
ways identified using current resources.

Pathway analysis assesses the statistical enrichment of biological 
processes and pathways in a given gene list on the basis of infor-
mation in Gene Ontology2 (GO) and pathway databases such 
as Reactome3 and PathwayCommons. GO is updated daily and 
Reactome versions are released quarterly, but many software tools 
interpret gene lists using functional information that has not been 
updated for years.

We surveyed the update times of 25 web-based pathway enrich-
ment tools and citations of these tools in 3,879 publications (Fig. 1a 
and Supplementary Tables 1 and 2). Although nine tools (for exam-
ple, g:Profiler4 and PANTHER5) provided gene annotations that had 
been revised within six months (September 2015 through February 
2016), most tools were outdated by several years. Ten (42%) were 

Figure 1 | Outdated pathway analysis resources strongly affect practical genomic analysis and literature. (a) The majority of public software tools for pathway 
enrichment analysis use outdated gene annotations, and the majority of surveyed papers published in 2015 used annotations that were more than five years 
old. (b) Density plots showing the evolution of pathway knowledge (GO + Reactome) between 2009 (left) and 2016 (right). The values for the median gene 
are indicated by green dashed lines. The bottom left group in the 2016 plot corresponds to Reactome pathways. (c) Gene annotation quality is improving 
rapidly as manually curated Reactome annotations are becoming more frequent and fewer genes in GO are IEA. (d) Pathway enrichment analysis of frequently 
mutated GBM genes showing the proportion of results missed in outdated GO annotations. Each bar compares annotations from a given year to 2016 
annotations. (e) Enrichment map of frequently mutated GBM pathways and processes according to gene annotations from 2010 and 2016. Three-quarters of 
current findings are missed in out-of-date analyses (purple). Nodes represent processes and pathways, and edges connect nodes with many shared genes. 
Stars indicate clinically actionable pathways. 
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Fig 2.15: Time of the last update for the most commonly employed and cited enrich-
ment analysis tools. Image taken from [134].

2.9.2 Gene-disease associations

Most of the large-scale datasets that are continuously generated, contain molecular

measures (e.g. gene expression values) extracted from patients or tissues a↵ected by

a particular condition, often a specific disease. Those experiments are performed to

understand the complex mechanism behind diseases and syndromes. Thus, a way to

evaluate the knowledge extracted from those type of data is to check whether the

inferred output can be confirmed by existing information about that specific disease.

A Gene-Disease association (G-D) represents a circumstance where a gene is directly

or indirectly responsible for disease risk via one or more mechanisms [135]. G-D as-

sociations can be identified via experimental techniques, however, many diseases are

multigenic, that is caused and influenced by several genes. Due to this complexity,

finding causal links between a gene and a disease with experimental techniques is ex-

pensive and time-consuming. A solution is o↵ered by the advance of high-throughput

techniques that allow to probe thousands of genes and can return hundred of candidates

genes. Associations between genes and diseases can, for example, be extracted from

techniques such as genome-wide association studies (GWAS). Numerous databases

nowadays gather and integrate these data to provide reliable associations [136]. En-

tries can be obtained either via manual curation of the specialised literature [137], or

through automated text mining approaches [138]. Other portals, such as Malacards

[139] or OpenTargets [140], use data integration techniques to gather G-D associations
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from many di↵erent sources (64 in Malacards) and rank them according to some im-

portance/reliability criteria. In addition, mouse and rat models have also been used

to predict G-D association in humans [141, 142].

Several public databases contain G-D associations, often their knowledge is extracted

directly from a manual curation of specialised literature. OMIM (Online Mendelian

Inheritance in Man) [143] represents a well-established source for associations. CTD

(Comparative Toxigenomics Database) [144] and UniProtKB [145] are sources for G-

D relations as well. Orphanet [146] is yet another source that targets mainly rare

diseases and orphan drugs. As mentioned early, a common approach is to use text

mining techniques to retrieve new G-D associations, examples are BeFree [138] and

SemRep [147]. However, text mining techniques do not guarantee high accuracy as

the manually created data, they are more likely to include true positives associations

together with a large number of false positives. Once retrieved a set of G-D, researchers

can assess their relations within the inferred networks or can evaluate their presence

within a set of biomarkers generated from a disease-associated dataset.

2.10 Summary

This chapter provided an introduction to the concepts that will be used in this dis-

sertation. Each section described the information that characterises each step of the

knowledge extraction process employed in this PhD project. The overall (generic)

pipeline is illustrated in Figure 2.16.

The input of this process can be potentially any type of biomedical data described

in Section 2.1, as long that they are suitable for a classification problem (supervised

learning). A large variety of machine learning algorithms can analyse the data to

generate predictive models (decision trees, linear models, ensemble classifiers, etc.).

Section 2.2.2.2 described several of them, the work presented in this dissertation was

mainly produced using the BioHEL [39] and the random forest [50] classifiers. The

generated models are then mined and analysed so that their structure can provide

information about the processed data. The extracted knowledge can be exploited

for many di↵erent research problems, this dissertation is focused on (a) the inference
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Fig 2.16: A generic pipeline describing the knowledge extraction by the mining of
machine learning models inferred from biomedical data.

and the analysis of biological networks and (b) the discovery of small sets of highly

predictive biomarkers. The typical approaches used to solve this research questions are

presented in Section 2.4–2.3 (networks) and Section 2.6–2.7 (biomarkers). Afterwards,

the output of the knowledge discovery process needs to be validated, it is fundamental

to assess whether the proposed solutions are relevant in a biomedical context. The

enrichment analysis is a traditional method to characterise biological models with

established knowledge, the general approach is described in Section 2.9.1. In addition,

in this thesis, the proposed models were studied and analysed using both the specialised

literature and the disease associations, the latter one is covered in Section 2.9.2. Once

the biological validation step (partially) confirms the validity of the new proposed

computational solution, new research hypothesis can be formulated and potentially

bring to new insights.

- 71 -



3
FuNeL: a protocol for the

inference of functional

networks from machine learning

models

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 The co-prediction paradigm . . . . . . . . . . . . . . . . . . . . 77

3.2.2 The FuNeL protocol . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.4 Co-expression networks . . . . . . . . . . . . . . . . . . . . . . 84

3.2.5 Enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.6 Disease association analysis . . . . . . . . . . . . . . . . . . . . 86

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1 Identification of predefined relationships in synthetic datasets . 88

3.3.2 Topological comparison of the inferred networks . . . . . . . . 89

3.3.3 Complementarity of enriched terms . . . . . . . . . . . . . . . . 93

3.3.4 Quantifying the amount of captured biological knowledge . . . 99

3.3.5 Evaluation of the networks in a disease context . . . . . . . . . 101

3.3.6 Prostate cancer case study: enriched terms . . . . . . . . . . . 103

3.3.7 Prostate cancer case study: disease associations . . . . . . . . . 110

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

- 72 -



Chapter 3: FuNeL: a protocol for the inference of functional networks from machine
learning models

Abstract

This chapter presents FuNeL, a protocol for the inference of functional

networks based on the analysis of rule-based machine learning models. As-

sociations are generated from attributes that collaborate in solving a clas-

sification problem. FuNeL is one of the main contributions of this thesis

and it represents the first example of how, a smart exploitation of machine

learning models, such as classification rules, can generate new knowledge,

in this instance in the form of functional networks.

3.1 Introduction

The behaviour of complex biological systems arises from the cooperation of a large

number of components. The understanding of how biological events occur at a molec-

ular level is one of the main goals of System Biology and an important e↵ort has been

devoted to determine the chain of interactions that controls and mediates biological

processes. Networks are the main tool used to characterise and study these complex

processes and systems. A biological network is a graph in which nodes represent bi-

ological entities such as genes or proteins, and a connection between them indicates

a biological relationship, e.g. regulation or common functions. The inference of these

networks from biomedical and especially from high-throughput (-omics) data, is an

area of intense research.

Most network inference methods focus on the definition of gene regulatory networks,

in which edges represent direct regulatory interactions between genes [71, 83, 148]. Far

less e↵ort has been put into the design of methods to build functional networks where

a connection indicates a functional relationship, e.g. membership in the same pathway,

protein complex or sharing the same function. One of the primary uses of functional

networks is the identification of functional modules based on the nodes connectivity

(subsets of genes with multiple internal connections and a few connections with genes

outside the module that describe, explain or predict a biological process or phenotype)

[131]. Functional networks are also often employed to identify genes that play a major
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role in a specific biomedical context, such as a disease, based on their position in the

networks (e.g. hubs).

A commonly adopted approach is to generate functional networks based on the “co-

expression” principle [78]. A functional relation (via a direct or indirect interaction)

is assumed between two genes when they have similar expression profiles across data

(from here comes the name similarity-based methods). It has been demonstrated that

co-expression networks can e↵ectively identify pathways and candidate biomarkers

[149], or reveal gene modules representing a biological process perturbed in a disease

[150], just to name a few examples. The similarity-based approach remains the dom-

inant method of functional network inference today, with many recent examples of

successful applications [151–154].

Although similarity-based inference methods have been extensively and successfully

used, they detect relationships among genes only when similar expression patterns

emerge. This limits the range of functional relationships that they reveal [4, 155]. A

di↵erent approach, to infer biological networks, that is recently gaining popularity,

involves the use of machine learning techniques. Due to the wide range of knowl-

edge representations used within machine learning methods (e.g. classification rules,

decision trees, artificial neural networks, SVM kernels, etc.), they can discover more

complex and diverse relationships and overcome the limitations of the similarity-based

methods. This is possible because within machine learning models the attributes are

associated not because they are similar (e.g. have similar expression profiles), but

because together they detect strong patterns. Moreover, if the learning is supervised,

it can take advantage of the additional phenotype information (class labels of the

samples, such as case and control) available with the data.

Machine learning can be employed in di↵erent ways and forms to solve the task of

network inference. One approach is to train machine learning models that directly

predict network edges [156]. However, this process requires an experimentally verified

“ground truth”of known interactions and suitable controls that represent a challenging

task on its own. A di↵erent approach is to generate machine learning models from the

biological data and then mine the structure of the models to infer networks. Attributes

co-operate in machine learning models not only when they are “similar” but when
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together meaningful patterns can be extracted. Therefore, such an approach based on

the mining of complex machine learning models could possibly lead one to uncover new

and di↵erent (biological) knowledge, that is likely to escape the traditional similarity-

based approaches. Figure 3.1 aims to illustrate the di↵erences between these two

approaches: on one hand the similarity-based methods, on the other hand, the methods

founded on the knowledge extraction from the machine learning models. The figure

highlights how the two approaches di↵erently analyse the same data and how the

relationships between the entities are extracted.

NETWORK INFERENCE OUTPUTINPUT

X

Y

Samples
X Y

similarity (X,Y) > threshold
X

Y

X Y

X

Y

Classification rules
-omics data

X Y Pheno.

Phenotype information

Cancer Normal

X
Y

Y
X

Machine learning model Knowledge extraction

Edge inferenceProfile similarity 

If X > 0.23 and Y > 0.55: Cancer

Fig 3.1: Two approaches for the functional network inference: one based on the ex-
pression profile similarity and the other based on the extraction of knowledge from
machine learning models. The similarity-based methods construct an network edge
X $ Y when the similarity between the expressions of genes X and Y across the
samples is above a threshold. Methods based on machine learning first build a pre-
dictive model, in this example a rule-based model, using the samples phenotype (class
labels) information and then construct a network edge X $ Y , when genes X and Y
are used together within that model to classify the samples. As these two approaches
lead to di↵erent functional networks, it is possible that they capture complementary
knowledge.

As described in Section 2.3, several types of machine learning have been successfully

applied to accomplish this task: unsupervised learning in the form of association rules

[65], supervised learning using regression (model trees [67, 68]) or classification (ran-

dom forest [69, 70]).

This chapter proposes, describes and analyses a protocol, called FuNeL, for the in-

ference of functional networks based on rule-based machine learning models. FuNeL

generates functional networks using: an optional feature selection process to control
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the size of the networks, a statistical filtering of the predicted associations between

genes using permutation tests and a multi-stage rule-based network inference. The

di↵erent options available within FuNeL, illustrated in Figure 3.2, generate a total of

four protocol configurations.

Original dataset

Feature
selection

Reduced dataset

Rule-based network generation

Permutation test

Rule-based network generation

Second
training

Co-prediction network

YesNo

Yes

No

STAGE

1

2

3

Option 1

4

Option 2

Fig 3.2: The stages of the FuNeL (Functional Network Learning) inference protocol.

In the following sections, firstly FuNeL’s ability to correctly identify existing rela-

tionships is tested using a set of synthetic datasets. Then, FuNeL is evaluated using

eight real-world transcriptomics datasets related to di↵erent types of cancer. For each

dataset, the four di↵erent configurations of the protocol are used to create functional

networks. The inferred networks are tested and compared with co-expression networks

of equivalent size. To have an extensive evaluation of FuNeL, three di↵erent state-of-

the-art methods to generate co-expression networks are used. The di↵erences between

FuNeL and co-expression networks are assessed from two points of view: (1) the en-

riched biological terms and (2) the relationships between genes known to be associated

with a particular type of cancer. Finally, using a prostate cancer dataset as a case
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study, a more detailed biological analysis of the enriched terms and the disease-related

genes is performed. The largest hubs and the most central nodes in the prostate can-

cer co-prediction networks are studied for their involvement in the disease. Literature

support is found for the association between these topologically important genes and

prostate cancer. This is further confirmed by an independent transcriptomics dataset

(not used as a source in the inference process). Overall, the FuNeL inferred networks

are shown to (1) capture relevant biological knowledge that is complementary to the

knowledge associated with di↵erent co-expression networks, and (2) more adequately

represent the relationships between genes associated with the disease targeted by each

dataset.

3.2 Material and Methods

This section thoroughly describes the proposed FuNeL protocol, the datasets from

which the networks were inferred and the experimental design used to evaluate and

compare it with co-expression networks created with three di↵erent algorithms.

3.2.1 The co-prediction paradigm

Rule-based machine learning models have been successfully applied to extract infor-

mation from di↵erent types of biological data: transcriptomics [157], proteomics [158],

lipidomics [159] and protein structure data [160]. In the field of network inference, a

new paradigm, based on rule-based machine learning models, was proposed by Bas-

sel et al. [161]. This paradigm, called co-prediction (in opposition to the classic

co-expression), uses the prediction rules of a classification algorithm to identify rela-

tionships between attributes (e.g. genes). Co-prediction is based on the assumption

that genes within the same classification rules, due to their co-operation in predict-

ing the sample class, have an increased likelihood of being functionally related to

the biomedical process in question (see Figure 3.3). Di↵erent than co-expression, the

co-prediction approach is employed when solving a classification task in supervised

learning. Therefore, it exploits the phenotype information of the data (class labels) to

detect functional relations.
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Fig 3.3: The co-prediction paradigm: the association between the genes is inferred
from their co-occurrence in classification rules.

In [161], the prediction rules were generated by an evolutionary learning classifier called

BioHEL [39]. BioHEL is designed to handle large-scale biological datasets, it gener-

ates rules one by one using a mechanism known as separate-and-conquer. BioHEL is

enhanced for this type of analysis with a sparse knowledge representation containing

a rule-wise embedded feature selection: each rule being generated will only use a very

small fraction of attributes. The relevant attributes for a rule are discovered automat-

ically during the learning process and each di↵erent rule may use a di↵erent subset of

attributes due to its stochastic nature. The co-prediction approach was initially tested,

in [161], using publicly available gene expression data from Arabidopsis thaliana, for

which it was known the seed samples that germinated or not. The functional gene

network generated from those data was termed as SCoPNet: Seed Co-Prediction Net-

work. SCoPNet was able to predict functional associations between genes acting in

the same developmental and signal transduction pathways irrespective of the similarity

in their respective gene expression patterns. Using SCoPNet, four novel regulators of

seed germination were identified and experimentally verified. Furthermore, the net-

work was used to predict interactions at the level of transcript abundance between

these novel and previously described factors influencing Arabidopsis seed germination.

Lately, other researchers have successfully adopted a similar network inference

paradigm by exploiting the classification rules from a Michigan-style learning classifier

systems [162, 163]. This approach was applied to SNPs data and was able to identify

disease risk factors in a bladder cancer.
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3.2.2 The FuNeL protocol

SCoPNet showed that the co-prediction paradigm generates functional networks that

incorporate meaningful biological knowledge and can be employed to formulate new

research hypothesis. However, from a methodological perspective, many questions

remained unanswered about co-prediction:

• Can the co-prediction approach identify known genetic relationships?

• Can the biological significance of the co-prediction networks be quantified?

• What is the impact of data pre-processing on the generated networks?

• Is this methodology able to capture knowledge that escapes other methods?

• Are the discovered functional relationships meaningful in the human disease con-

text?

To address these questions a new network inference protocol called FuNeL (Func-

tional Network Learning) is proposed. FuNeL aims to provide a general framework

for the inference of functional networks based on the co-prediction paradigm by using

rule-based machine learning models. The FuNeL protocol substantially extends the

previous work of [161] by incorporating: (1) statistical filtering of inferred functional

relationships via permutation tests, (2) a multi-stage network generation to maximise

the knowledge extraction, and (3) a configurable feature selection stage to control the

size of the generated networks.

Stages of FuNeL

FuNeL is defined by a total of four stages, as illustrated in Figure 3.2. Two of these

stages are optional (1 and 4), they lead to a total of four di↵erent protocol configura-

tions. If the first optional stage (feature selection) is performed, the original dataset

is reduced to the most relevant attributes. In Stage 2, a rule-based machine learning

is used to infer a network. This network is statistically refined in Stage 3, in which a

permutation test is used to filter out non-significant nodes. The final step, in which
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the network generation is repeated for the second time, is again optional. A time

complexity analysis of the protocol is available in the Section A.4 of Appendix A.

Feature selection (stage 1) When datasets contain a large number of attributes,

a common situation when dealing with biomedical and high-throughput data, some

of them might be irrelevant to the prediction of the target. Discard those attributes

helps the classification algorithm to focus its learning e↵ort only on the ones that

matters. Therefore, the feature selection is the first stage of the inference process. To

pick the relevant attributes, FuNeL employs SVM-RFE: a recursive feature elimination

method based on Support Vector Machines [111]. The choice fell on SVM-RFE as this

algorithm was initially designed to cope with cancer-related transcriptomics data and

over the years it showed its potential in identifying relevant features from biomedical

data. In FuNeL, SVM-RFE uses an SVM algorithm with a linear kernel as prelimi-

nary studies suggested that it can eliminate as much as 90% of the original dataset

attributes, without losing much of the classification accuracy. In Figure 3.4 is illus-

trated the di↵erence in accuracy, calculated using a standard 10-fold cross-validation,

when applying SVM-RFE to the datasets (see Section 3.2.3 for a description of the

datasets employed) and removing 90% of the original set of attributes. When consider-

ing only 10% of the original attributes, the accuracy increased for two datasets, slightly

decreased for three datasets and remained unaltered for the remaining datasets.

Rule-based network inference (stage 2) To infer the rule-based classification

models, BioHEL was used as in [161]. BioHEL generates sets of classification rules

using a genetic algorithm. Figure 3.5 shows an example of a rule set created using

BioHEL from a cancer-related dataset. Each rule is sequentially applied to the test

set samples, if none of them classifies (“fire”) the sample, the default rule is applied.

Due to the stochastic nature of BioHEL’s learning process, each of its runs generates

a di↵erent rule set. This fact is leveraged by creating a large number of alternative

hypotheses of functional relationships via multiple runs of the algorithm. FuNeL runs

BioHEL 10 000 times and infers the network from the consensus of all the generated

rule sets. To do that, all the pairs of attributes that appear together in the same

classification rule are used as the network edges (co-prediction paradigm). Then, each
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Fig 3.4: Changes in the accuracy (calcualated using a 10-fold cross-validation) when
retaining 10% of the original attributes using SVM-RFE.

network node (attribute) receives a score that corresponds to the number of times it

has been used in the rules (node score). datasets

Permutation test (stage 3) Given a list of edges (attribute-attribute associations)

extracted from the rule sets, FuNeL aims to filter out the non-significant nodes. To

determine the node significance, a statistical analysis procedure based on a permuta-

tion test, similar to the one described in [162], is followed. 100 permutated datasets

are generated by randomly shu✏ing the class labels. Next, the co-prediction networks

are inferred (as in Stage 2) from these permutated datasets. Then, for each node, the

distribution of scores across the 100 networks generated from the permutated datasets

If 35742_at is > 29.71 and 32545_r_at is < 1.50 then Tumor
If 38322_at is > 81.32 and 35769_at is > 26.24 then Tumor
If 34097_at is > 25.40 and < 88.84 then Tumor
If 38602_at is < 35.01 then Tumor
If 40853_at is > 11.11 then Tumor
Default rule: Normal

Fig 3.5: Example of a BioHEL classification rule set.
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is calculated. Using a one-tailed permutation test, a p-value is assigned to each node,

to estimate how likely it is to draw its score from the calculated distribution. With

this process it is sure that the nodes with high scores are really tied to the classes

present in the data, and that the network truly represents functional relationships. To

decide if a node is statistically significant a typical ↵ = 0.05 threshold is employed.

Preliminary experiments showed that using significant nodes alone leads to small and

dense networks. By having networks that are highly dense, where each node tends

to be connected to every other node, the reliability on the meaning of the functional

relationships is lost. To counter that, the node pruning is relaxed to keep all direct

neighbours of the significant nodes, so that larger and less dense networks can be

created.

Network construction (stage 4) There are two ways to interpret the result of

the statistical test (option 2 in Figure 3.2). The first is to use the significant nodes

as a filter for the inferred relationships (edges) and remove all the edges between two

non-significant nodes. The second approach is to use the permutation test as a further

feature selection and build a new rule-based machine learning model using only the

significant nodes. This second run of the learning algorithm is then focused only on

the statistically important genes and creates the final network.

As a result of two independent optional stages in the FuNeL protocol, there are four

di↵erent configurations that it can run with (see Table 3.1).

Config. Description

C1 reduced dataset + 1 stage of network generation
C2 original dataset + 1 stage of network generation
C3 reduced dataset + 2 stages of network generation
C4 original dataset + 2 stages of network generation

Table 3.1: Summary of the FuNeL configurations used in the experiments.
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3.2.3 Datasets

Synthetic datasets

To verify if FuNeL is able to correctly identify functional relationships, a set of synthetic

datasets were used. Although there are several generators that model expression data

with genetic relationships, such as GNW used for several DREAM challenges [120],

they generate unlabelled samples (without phenotype information, e.g. case vs. con-

trol). Unfortunately, the class labels are necessary to perform the supervised learning

at the core of FuNeL.

For this reason, the synthetic data were created with the GAMETES instance gen-

erator [164], designed to create genetic datasets with multi-locus disease associations,

where no fewer than n loci can predict a phenotype (disease status). GAMETES gen-

erates genotype data (SNPs array) based on models with specific genetic constraints

(e.g. di↵erent heritabilities or frequencies of the SNPs).

To generate the synthetic datasets, a set of 2-locus configurations was used. This choice

is similar to what employed in the work of Li et al. [70] to evaluate a permutation-

based random forest method for the detection of gene interactions . Specifically, the

genetic models varied in terms of heritability (0.001-0.4) and number of attributes (5-

25), with fixed allele frequency of 0.2 and constant 2 000 samples per dataset equally

distributed between the two classes. For each configuration, from 100 000 random

models, two models were selected with extreme values of the ease of detection metric

(EDM) (the least and the most di�cult). Finally, for each selected model, 50 di↵erent

datasets (GAMETES has a stochastic nature) were generated, obtaining a total of

4 000 datasets.

Real-world datasets

FuNeL was also tested and evaluated using eight publicly available human cancer

microarray datasets (see Table 3.2). These datasets represent a broad range of char-

acteristics in terms of biological information (di↵erent types of cancers), number of

samples (patients or tissues) and attributes (genes). For each dataset, the attributes

were defined by the probes used in the microarray experiment. Generally, a gene can
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be represented by more than one probe, thus an extra post-processing step is needed

to merge the information and generate networks where nodes truly represent genes.

The mapping from the probe IDs to the HUGO gene IDs was done using MADGene

[165]. All the probes mapped to the same gene were merged into the same node, if a

probe was unmapped, it was removed from the network.

Name Attributes Samples Class labels

Dlbcl [166] 2647 77 Dlbcl; Follicular lymphoma
CNS [167] 7129 60 Survivor; Failures
Leukemia [94] 7129 72 AML; ALL
Lung-Michigan [168] 7129 96 Tumor; Normal
Lung-Harvard [169] 12534 181 Mesothelioma; ADCA
Prostate [170] 12600 102 Tumor; Normal
AML [171] 12625 54 Remission; Relapse
Colon-Breast [172] 22283 52 Colon cancer; Breast cancer

Table 3.2: Description of the datasets used to infer networks.

3.2.4 Co-expression networks

One of the main aims of the analysis performed for this part of the dissertation was to

compare FuNeL, a machine learning approach, with the co-expression approach, the

state-of-the-art in terms of biological network generation. The co-expression paradigm

identifies similarity of gene expression pattern under di↵erent experimental conditions.

Co-expression edges are an abstraction of functional relationships between genes and

do not represent physical binding as in protein interaction or gene regulatory networks.

Two genes are considered to be functionally related (co-expressed) if their transcript

levels are similar across the samples.

Three well-known co-expression network inference methods were compared to FuNeL,

each one uses a di↵erent metric to assess gene expressions similarity: Pearson Correla-

tion Coe�cient, ARACNE [83] and MIC [87]. The methods are extensively described

in Section 2.4.

Pearson Correlation Coe�cient (PCC) is a well-known measure of linear depen-

dence between two variables. When applied to gene expression profiles, PCC measures
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the similarity in the direction of genes’ response across samples. Its main disadvan-

tages are the lack of distributional robustness (it assumes data normality) and the

sensitivity to outliers. The PCC-based co-expression networks were generated using

the SciPy Python library [173].

ARACNE The ARACNE method measures the dependence between two gene ex-

pression profiles using mutual information [83]. Given two random variables X and

Y , the mutual information MI(X;Y ) estimates the entropy to quantify the amount

of information that Y contains about X. In opposition to correlation, mutual infor-

mation is able to detect non-linear dependencies. For every pair of genes X and Y ,

ARACNE calculates MI(X;Y ) using their expression profiles and applies a filtering

method, called the data processing inequality, to get rid of the majority of indirect

dependencies. The ARACNE based co-expression networks were generated with the

minet R package [174]. The networks were inferred using the following parameter:

estimator = mi.empirical, dis = equalwidth and ✏ = 0.

Maximal Information Coe�cient (MIC) is a recently proposed measure of the

strength of association between two variables that is strictly connected to mutual in-

formation [87]. Instead of using a single discretisation strategy to bin the compared

variables, it chooses individual bins for each variable, such that the value of mu-

tual information MI(X;Y ) is maximised. Di↵erent than the standard estimation of

MI(X;Y ) value used in ARACNE, the optimised estimation implemented by MIC

can identify a larger set of non-linear associations. MIC based co-expression networks

were generated using the minepy Python library [88] with the following parameters:

↵ = 0.6 (the exponent of the search-grid size that that partitions the data to encap-

sulate the relationship between the two variables) and c = 15 (a number determining

the starting point of the X-by-Y search-grid).

Inference of the co-expression networks counterparts To fairly compare the

co-prediction (FuNeL) and the co-expression networks generated from the same data,

they had to match in size. To accomplish this task, for every co-prediction network C

defined by m edges and n nodes, two co-expression counterparts were generated:
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• SE(C): co-expression network with m edges

• SN(C): co-expression network with n nodes

PCC and MIC directly compute the pairwise similarity between the genes’ expressions.

Given that, SE(C) was generated using the topm gene pairs with the highest similarity

coe�cient. To build SN(C), as many top gene pairs as needed were used, to reach at

least n nodes (as all pairs tied on the similarity value were included, sometimes the

resulting networks had few nodes more).

ARACNE uses a pruning procedure and directly generates a weighted network, not

a list of pairwise similarities. When the resulting network had less than m edges

or n nodes, the default tolerance threshold ✏ was increased to obtain a large enough

network. This was the case for the CNS (✏ = 0.002) and the Dlbcl datasets (✏ = 0.043).

Then, the edge weights were used to select the top gene pairs, as in the case of PCC

and MIC.

3.2.5 Enrichment analysis

An enrichment analysis was conducted to understand the biological information cap-

tured by the generated networks. The enrichment analysis is a statistical-based pro-

cedure for checking whether a set of genes have common characteristics. In this study,

the set of genes was defined by the nodes of the generated functional network. PAN-

THER [175] was the tool employed to perform the enrichment analysis. Because many

statistical tests are performed (one for each term) at the same time, PANTHER was

set to use a Bonferroni correction for multiple testing with ↵ = 0.05. Two categories

of biological knowledge were considered: Gene Ontology (GO) terms and PANTHER

pathways (176 primarily signalling pathways). From the set of GO terms, only the

manually curated annotations, supported by experimental evidence, were selected.

3.2.6 Disease association analysis

To evaluate the predictive power of the generated networks, and to assess their

relevance within a cancer-related context, the relationships between known disease-

associated genes (G-D) were analysed. Two sources for the disease associations were
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employed: Malacards (a meta-database of human maladies consolidated from 64

independent sources) [139] and the union of four manually curated databases (OMIM

[143], Orphanet [146], Uniprot [145] and CTD [144]). Two properties have been

analysed: (1) the proximity of the disease-associated genes within a network and (2)

the number of triangles in a network, containing one or more disease-associated genes.

Higher proximity indicates a stronger functional relationship between genes involved

in the disease. Triangles represent groups of attributes used together across di↵erent

prediction rules, and therefore indicate a strong mutual relationship between the genes

(useful in the discovery of potential new G-D associations). Triangles are also the

smallest non-trivial motifs that can be found in a complex network and often identify

functional units of biological processes in cells [176].

The proximity of disease-associated genes was measured using the average Shortest

Path Length (SPL). The proximity was defined as a ratio of two distances: average

SPL between all pairs of the non-associated genes and average SPL between all pairs

of disease-associated genes A:

1

n

nX

i=1

w
i

SPL(CC
i

\ A)
SPL(A)
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i

=
|CC

i

|P
n
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j
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As the generated networks often were disconnected (had more than 1 connected com-

ponent), a weight w
i

that represents the relative size of a connected component CC
i

was introduced (bigger components have more impact). Components with less than

three nodes or disease-associated genes were not used in the calculation.

3.3 Results

This section presents the analysis performed on the FuNeL functional networks gen-

erated from both real-world and synthetic datasets. First, the ability of FuNeL net-

works to identify predefined relationships between attributes is tested using synthetics

datasets. Then, the FuNeL and the co-expression networks are compared from both a

topological and a biological point of view. Finally, using a prostate cancer dataset as

a case study, the relevance of the biomedical knowledge captured by FuNeL networks

is assessed.
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3.3.1 Identification of predefined relationships in synthetic
datasets

At first, it was assessed if FuNeL networks can capture meaningful associations between

biological entities. This was performed using synthetic datasets generated with GA-

METES. GAMETES is an instance generator that creates synthetic genomic datasets

with multi-locus disease associations that have no fewer than n-loci predicting a phe-

notype. By using a set of 2-locus configurations, GAMETES created datasets in

which the association between two attributes (SNPs) is responsible for the disease

status (class label) of the samples. Those synthetic data were used to assess if Fu-

NeL networks capture the existing relationships between the attributes that determine

the phenotype of each sample. In total, 80 di↵erent model configurations were used,

varying in terms of heritability (proportion of variation that can be ascribed to the

attributes of the models, low heritability means higher noise), number of SNPs (at-

tributes) and ease of detection, and tested the success rate on 50 datasets per model.

Given the small number of attributes available in the synthetic datasets, only the

C2 configuration was used in the tests (no feature selection, single learning phase).

The percentage of successfully identified relationships for each model (across the 50

datasets) is reported in Table 3.3. A success was defined by the presence of an edge

between the interacting pair of SNPs in the inferred network.

5 SNP 10 SNP 15 SNP 20 SNP 25 SNP

Her. L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM

0.001 6 % 16 % 8 % 18 % 4 % 10 % 4 % 12 % 12 % 16 %
0.005 8 % 82 % 0 % 86 % 6 % 80 % 2 % 82 % 8 % 72 %
0.01 8 % 96 % 8 % 100 % 8 % 100 % 12 % 100 % 14 % 100 %
0.05 14 % 100 % 60 % 100 % 42 % 100 % 34 % 100 % 34 % 100 %
0.1 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
0.2 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
0.3 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
0.4 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

Table 3.3: FuNeL success rate in the identification of disease-predicting SNPs. The
datasets di↵ered with respect to heritability, number of SNPs and detection di�culty
(L-EDM models were the hardest, H-EDM the easiest).

As expected, a higher success rate was obtained for models where the relationships were

easy to detect (H-EDM). The performance increased with higher values of heritability

and 100% success rate was obtained for heritability values above 0.05, regardless of
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model di�culty. The overall results are similar to those reported by Li el al. [70],

or even slightly better, as FuNeL’s success rate was una↵ected by the increase in the

number of SNPs as in the presented permutated random forest approach.

3.3.2 Topological comparison of the inferred networks

Comparison of FuNeL networks

The network topology refers to the spatial arrangements of its elements. The analysis of

the topological properties tells us how di↵erent nodes are connected to each other and

how their communication paths look like. There are many aspects and characteristics

that can be evaluated in a network, this analysis was focused on four main measures:

number of nodes, number of edges, clustering coe�cient and diameter. The clustering

coe�cient is a measure of the degree to which nodes in a network tend to cluster

together. It expresses the likelihood that any two nodes with a common neighbour are

themselves connected. The diameter indicates the maximum distance between two

nodes in the network.

Di↵erent FuNeL configurations infer networks that are topologically di↵erent. In Fig-

ure 3.6 are shown the networks generated with di↵erent configurations using the Dlbcl

dataset [166]. All the networks have been visualised with Cytoscape [177] and using

the same layout (Organic layout). At first sight, di↵erences can be noticed in how

the nodes are connected. For a more detailed evaluation, the main topological mea-

sures mentioned earlier were calculated. A summary, dataset by dataset is reported

in Table 3.4. In the Dlbcl networks, C1 and C3 had the same diameter (5), while C2

and C4 resulted more compact and had a smaller diameter equal to 3. Among the

four networks, C1 had by far the highest clustering coe�cient, 0.872, almost twice the

value of C4. In general, when analysing all the FuNeL networks generated with the

real-world datasets, as expected, the configurations having feature selection (C1 and

C3) brought to networks with a smaller number of nodes than when the original set

of attributes is used (C2 and C4). Furthermore, the second phase of machine learning

modelling (C3 and C4) tends to reduce the number of nodes as it uses a reduced set of

attributes as input (only significant nodes and their neighbours from the first training

phase) while increasing both clustering coe�cient and the number of edges.
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Fig 3.6: FuNeL networks generated from the Dlbcl dataset.
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FuNeL Co-expression (SE) Co-expression (SN)

Dataset Cat. C
1

C
2

C
3

C
4

SE(C
1

) SE(C
2

) SE(C
3

) SE(C
4

) SN(C
1

) SN(C
2

) SN(C
3

) SN(C
4

)

Leukemia

Nodes 421 1480 294 988 683 873 843 941 422 1482 293 979
Edges 1529 2294 2154 2646 1529 2294 2154 2646 680 7145 409 2870
Clust.Coef. 0.712 0.155 0.589 0.33 0.333 0.348 0.354 0.341 0.323 0.388 0.303 0.344
Diameter 5 6 4 6 24 18 19 22 16 18 9 20

LungH

Nodes 429 1419 382 1030 578 930 955 1214 432 1413 384 1027
Edges 1068 2317 2398 3410 1068 2317 2398 3410 617 4302 476 2650
Clust.Coef. 0.344 0.298 0.43 0.404 0.356 0.373 0.376 0.372 0.341 0.386 0.296 0.376
Diameter 5 8 5 7 10 23 23 21 6 22 6 23

LungM

Nodes 91 919 48 247 76 280 59 119 90 915 50 248
Edges 134 1858 78 410 134 1858 78 410 224 13574 64 1510
Clust.Coef. 0.379 0.262 0.418 0.457 0.465 0.525 0.446 0.514 0.539 0.523 0.493 0.511
Diameter 3 5 3 3 6 11 6 6 5 14 6 12

CNS

Nodes 501 4257 494 3538 945 2152 1616 2607 501 4261 488 3532
Edges 4302 25069 12769 40840 4302 25069 12769 40840 1553 171052 1502 90395
Clust.Coef. 0.743 0.255 0.521 0.302 0.354 0.389 0.367 0.400 0.346 0.427 0.35 0.421
Diameter 4 7 4 6 21 15 23 13 12 13 14 12

Dlbcl

Nodes 201 1699 201 1617 207 1411 1238 1790 200 1699 200 1614
Edges 848 10471 7351 33170 848 10471 7351 33170 832 24280 832 17865
Clust.Coef. 0.872 0.574 0.642 0.453 0.508 0.438 0.411 0.51 0.501 0.504 0.501 0.481
Diameter 3 5 3 5 2 16 17 14 2 14 2 15

GSE2191

Nodes 890 4802 846 3561 837 1848 1239 1750 897 4799 839 3553
Edges 3290 13424 6469 12074 3290 13424 6469 12074 3711 90410 3292 47806
Clust.Coef. 0.488 0.082 0.317 0.291 0.377 0.409 0.394 0.4 0.382 0.415 0.377 0.417
Diameter 5 9 5 9 25 23 19 21 21 13 25 15

GS3726

Nodes 668 2077 524 1170 879 1300 992 1367 759 2300 573 1170
Edges 1761 3255 2051 3502 1761 3255 2051 3502 1471 9808 1584 3469
Clust.Coef. 0.134 0.0077 0.307 0.109 0.226 0.23 0.223 0.233 0.213 0.287 0.254 0.346
Diameter 8 10 7 8 20 26 20 25 26 15 19 15

Prostate

Nodes 938 4290 704 2277 356 543 322 448 920 4298 702 2287
Edges 3796 10175 3090 6546 3796 10175 3090 6546 33250 914829 16934 24427
Clust.Coef. 0.328 0.245 0.29 0.25 0.565 0.607 0.541 0.584 0.655 0.703 0.641 0.711
Diameter 7 10 6 8 6 9 5 8 8 11 7 12

Table 3.4: Topological properties of FuNeL and Pearson co-expression networks.
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Fig 3.7: FuNeL networks generated from the Lung-Michigan dataset.

Comparison of FuNeL and co-expression networks

FuNeL and co-expression networks were first compared from a topological point of

view. The topological properties described in the previous section were calculated
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FuNeL Co-expression (SE) Co-expression (SN)

Dataset Cat. C
1

C
2

C
3

C
4

SE(C
1

) SE(C
2

) SE(C
3

) SE(C
4

) SN(C
1

) SN(C
2

) SN(C
3

) SN(C
4

)

Leukemia

Nodes 421 1480 294 988 1024 1426 1356 1577 422 1480 294 989
Edges 1529 2294 2154 2646 1529 2294 2154 2646 512 2416 327 1479
Clust.Coef. 0.712 0.155 0.589 0.330 0.002 0.002 0.002 0.002 0.000 0.002 0.000 0.002
Diameter 5 6 4 6 17 19 22 19 9 17 11 19

LungH

Nodes 429 1419 382 1030 907 1614 1653 2066 429 1419 382 1030
Edges 1068 2317 2398 3410 1068 2317 2398 3410 435 1924 375 1250
Clust.Coef. 0.344 0.298 0.430 0.404 0.007 0.006 0.006 0.005 0.013 0.006 0.012 0.007
Diameter 5 8 5 7 23 16 15 13 14 18 10 18

LungM

Nodes 91 919 48 247 143 1321 96 370 91 920 48 247
Edges 134 1858 78 410 134 1858 78 410 72 1127 34 259
Clust.Coef. 0.379 0.262 0.418 0.475 0.000 0.002 0.000 0.009 0.000 0.005 0.000 0.014
Diameter 3 5 3 3 13 17 11 18 11 17 5 11

CNS

Nodes 501 4257 494 3538 2002 4509 3581 5342 502 4257 494 3538
Edges 4302 25069 12769 40840 4302 25069 12769 41661 513 20409 505 12358
Clust.Coef. 0.743 0.255 0.521 0.302 0.004 0.005 0.006 0.026 0.004 0.005 0.004 0.005
Diameter 4 7 4 6 12 8 12 7 20 9 20 12

Dlbcl

Nodes 201 1699 201 1617 380 1452 1191 2236 201 1699 201 1617
Edges 848 10471 7351 33170 848 10471 7351 33890 269 14149 269 12903
Clust.Coef. 0.872 0.574 0.642 0.453 0.136 0.126 0.140 0.176 0.113 0.110 0.113 0.115
Diameter 3 5 3 5 13 9 11 5 12 8 12 9

GSE2191

Nodes 890 4802 846 3561 2574 5226 3846 5027 890 4802 846 3561
Edges 3290 13424 6469 12074 3290 13424 6469 12076 846 10671 794 5564
Clust.Coef. 0.488 0.082 0.317 0.291 0.002 0.002 0.002 0.002 0.004 0.002 0.004 0.002
Diameter 5 9 5 9 19 13 16 13 30 15 30 17

GS3726

Nodes 668 2077 524 1170 1362 2167 1546 2279 668 2166 524 1170
Edges 1761 3255 2051 3502 1761 3255 2051 3502 787 3250 597 1455
Clust.Coef. 0.134 0.077 0.307 0.109 0.024 0.053 0.029 0.050 0.014 0.053 0.016 0.021
Diameter 8 10 7 8 20 20 19 18 15 20 13 19

Prostate

Nodes 938 4290 704 2277 2760 6805 2268 4575 939 4290 704 2277
Edges 3796 10175 3090 6546 3796 10175 3090 6546 1300 6095 1017 3102
Clust.Coef. 0.328 0.245 0.290 0.250 0.005 0.003 0.006 0.003 0.001 0.003 0.002 0.005
Diameter 7 10 6 8 13 13 15 13 12 13 9 15

Table 3.5: Topological properties of FuNeL and ARACNE co-expression networks.

for all the networks. In Figures 3.7 – 3.10 are shown the networks generated using

the di↵erent inference approaches from the Lung-Michigan dataset [168]. To allow a

fair visual comparison, all the networks have been depicted using the same (Organic)

layout. The topological measures for each method and dataset by dataset are reported

in Table 3.4 (PCC), Table 3.5 (ARACNE) and Table 3.6 (MIC)

When contrasting FuNeL and co-expression networks, the SE counterparts have in

general more nodes. On the other hand, SN networks di↵er according to the infer-

ence method used. In fact, ARACNE generated SN counterparts with fewer edges,

while this is true only for SN(C1) and SN(C3) inferred with MIC and Pearson. The

clustering coe�cient is constantly lower in ARACNE networks than in FuNeL, this is

probably due to the pruning phase operated by the method. A similar trend can be

noticed for MIC networks with some exceptions (e.g. Prostate SN(C2) and SN(C4)).

When FuNeL is contrasted with the Pearson Correlation Coe�cient, the networks

generated with feature selection (C1 and C3) have a lower coe�cient than their co-
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FuNeL Co-expression (SE) Co-expression (SN)

Dataset Cat. C
1

C
2

C
3

C
4

SE(C
1

) SE(C
2

) SE(C
3

) SE(C
4

) SN(C
1

) SN(C
2

) SN(C
3

) SN(C
4

)

Leukemia

Nodes 421 1480 294 988 640 807 780 896 421 1480 294 989
Edges 1529 2294 2154 2646 1529 2294 2155 2647 749 6173 432 3096
Clust.Coef. 0.712 0.155 0.589 0.330 0.162 0.182 0.180 0.179 0.138 0.180 0.127 0.175
Diameter 5 6 4 6 18 29 27 29 10 17 8 18

LungH

Nodes 429 1419 382 1030 384 685 703 944 429 1419 382 1030
Edges 1068 2317 2398 3410 1068 2317 2399 3410 1264 5867 1045 3841
Clust.Coef. 0.344 0.298 0.430 0.404 0.349 0.308 0.305 0.302 0.339 0.282 0.343 0.305
Diameter 5 8 5 7 9 13 13 17 7 18 9 19

LungM

Nodes 91 919 48 247 118 626 79 219 91 919 48 247
Edges 134 1858 78 410 134 1858 78 410 93 3109 38 484
Clust.Coef. 0.379 0.262 0.418 0.475 0.212 0.272 0.213 0.306 0.208 0.235 0.153 0.302
Diameter 3 5 3 3 8 18 7 8 6 14 3 7

CNS

Nodes 501 4257 494 3538 1424 3104 2357 3725 501 4257 495 3538
Edges 4302 25069 12769 40840 4305 25131 12771 40850 704 62208 694 36027
Clust.Coef. 0.743 0.255 0.521 0.302 0.124 0.154 0.144 0.159 0.089 0.162 0.091 0.161
Diameter 4 7 4 6 17 11 12 10 11 10 11 10

Dlbcl

Nodes 201 1699 201 1617 475 1140 1047 1453 203 1699 203 1617
Edges 848 10471 7351 33170 848 10471 7362 33172 196 74773 196 59307
Clust.Coef. 0.872 0.574 0.642 0.453 0.111 0.240 0.219 0.319 0.082 0.381 0.082 0.366
Diameter 3 5 3 5 21 13 16 15 11 11 11 11

GSE2191

Nodes 890 4802 846 3561 1700 4129 2617 3883 890 4803 846 3563
Edges 3290 13424 6469 12074 3299 13433 6469 12207 1380 17797 1271 10540
Clust.Coef. 0.488 0.082 0.317 0.291 0.109 0.095 0.098 0.098 0.120 0.095 0.118 0.099
Diameter 5 9 5 9 22 15 18 16 19 15 21 15

GS3726

Nodes 668 2077 524 1170 1271 1921 1357 1996 672 2152 526 1172
Edges 1761 3255 2051 3502 1890 3261 2056 3524 852 3921 538 1705
Clust.Coef. 0.134 0.077 0.307 0.109 0.110 0.100 0.104 0.100 0.126 0.099 0.121 0.117
Diameter 8 10 7 8 23 29 23 28 14 24 14 24

Prostate

Nodes 938 4290 704 2277 687 839 667 773 964 4290 712 2277
Edges 3796 10175 3090 6546 3981 10186 3777 8257 15928 1763794 5254 308709
Clust.Coef. 0.328 0.245 0.290 0.250 0.167 0.278 0.169 0.265 0.313 0.758 0.218 0.661
Diameter 7 10 6 8 7 8 7 8 7 8 7 9

Table 3.6: Topological properties of FuNeL and MIC co-expression networks.

expression counterparts. Finally, a clear pattern emerges when analysing the diameter

of the networks. Co-prediction networks are more compact than co-expression coun-

terparts having up to 3 times lower diameter for MIC and Pearson and up to 7 times

lower for ARACNE.

3.3.3 Complementarity of enriched terms

The results described in Section 3.3.2, illustrate that di↵erent FuNeL configurations

lead to networks with di↵erent topological properties. Next, the di↵erent configura-

tions were evaluated to assess if they generate networks capturing di↵erent biological

knowledge. This evaluation was based on the analysis of the enriched terms associ-

ated with the nodes of each network. To test how unique the biological terms (GO

terms and pathways) over-represented in the inferred FuNeL networks are, the overlap

between terms of networks created with di↵erent configurations was measured. Given
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Fig 3.8: Pearson co-expression networks generated from the Lung-Michigan dataset.
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Fig 3.9: ARACNE co-expression networks generated from the Lung-Michigan dataset.

two networks generated with the configurations C
a

and C
b

, the pairwise terms overlap

was calculated using the Jaccard similarity coe�cient:

O(C
a

, C
b

) =
c

u
a

+ u
b

+ c
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where c is the number common terms, u
a

is the number of unique terms for C
a

and u
b

is the number of unique terms for C
b

.

Gene Ontology Pathways
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2
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— 36.4 — 10.4
C

4

— —

Table 3.7: Average overlap of enriched GO terms and pathways between di↵erent
FuNeL configurations.

Table 3.7 summaries the pairwise overlap between the 4 di↵erent FuNeL configura-

tions. For GO terms is reported the average overlap of the: biological process, cellular

component and molecular function categories. Although configurations that operate

on the same dataset (C1–C3 and C2–C4) shared the most terms/pathways, in general

the overlap is quite far from 100%. Thus, the remaining di↵erence is a result of the

second training stage. Configurations used on di↵erent datasets (i.e. di↵erent set of

attributes) resulted in networks sharing less than 40% GO terms and 20% pathways.

Overall, the values in Table 3.7 suggest that di↵erent steps of the FuNeL protocol

results in networks carrying diverse biological knowledge.
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Fig 3.10: MIC co-expression networks generated from the Lung-Michigan dataset.
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Similarly, the term overlap was calculated between co-prediction and co-expression by

comparing the C
i

networks with their co-expression counterparts SE (C
i

) and SN (C
i

)

(see Table 3.8). The percentages were similar across the di↵erent inference methods.

The overlap in enriched terms was never higher than 62% (still leading to a di↵erence

of terms around 40%) and was the largest for configuration not using feature selection

(C2 and C4). In general, the values were lower for the biological pathways with a

minimum of a mere 2% of shared terms. Low values of terms overlap indicate that the

co-prediction and the co-expression approaches can be seen as complementary. Despite

starting from the same dataset, they generate networks expressing di↵erent biological

information.

Co-expression (SE) Co-expression (SN)

Method Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

Pearson
GO 28.0 41.4 29.7 43.2 31.5 57.6 36.7 48.8

path. 22.3 26.0 25.8 19.0 26.4 40.0 17.5 28.7

ARACNE
GO 34.8 62.1 27.2 56.5 33.3 61.2 27.7 53.5

path. 12.6 46.3 13.9 47.9 8.5 42.3 1.6 35.6

MIC
GO 31.6 51.3 28.3 48.7 30.0 61.4 28.9 52.7

path. 9.7 33.9 14.2 31.5 11.2 46.9 8.0 35.2

Table 3.8: Average overlap of enriched GO terms and pathways between the FuNeL
and co-expression networks. Each co-expression network C

i

was compared to the
corresponding co-expression networks SE(C

i

) and SN(C
i

).

Random networks as a null for comparison

When looking at the reduced overlap of enriched terms between co-prediction and

co-expression networks, a legitimate doubt might arise: could the lack of overlap be

due because co-prediction is not capturing useful information? To tackle this ques-

tion, together with additional analysis presented later on, a set of experiments was

performed using randomly generated networks. For each dataset and each FuNeL net-

work, 100 same-size random networks were created by swapping the genes (nodes) of

the co-prediction network with randomly selected genes from the original set of genes.

Then, an enrichment analysis was conducted on the networks using the same PAN-
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Dataset C
1

C
2

C
3

C
4

Prostate 95.2±85.4 91.2±81.2 77.8±68.4 110.9±101.0
Leukemia 80.9±77.6 15.5±31.2 84.9±83.6 1.6±33.1
Lung-Michigan 59.0±73.3 1.1±5.5 60.0±60.9 10.1±15.8
Dlbcl 74.0±73.5 40.3±39.3 75.6±77.7 38.2±39.1
AML 63.8±71.3 96.6±101.8 100.7±96.3 93.0±101.0
Colon-Breast 67.3±69.9 40.9±39.6 93.9±88.6 43.8±42.1
Lung-Harvard 88.8±95.7 45.8±42.4 148.5±165.3 43.2±44.0
CNS 40.9±48.5 18.0±32.8 3.4±28.2 13.9±31.5

Table 3.9: Average di↵erence in enriched GO terms between FuNeL and random net-
works. The values have been averaged across three GO categories (biological process,
cellular component and molecular function)

THER settings 1. The goal was to check how the terms overlap between co-prediction

and random networks changes in relation to the overlap between co-prediction and

co-expression networks. If FuNeL networks capture irrelevant knowledge, their over-

lap with random networks should appear higher than the overlap with co-expression

networks.

First, as shown in Table 3.9 and Table 3.10, the average number of enriched terms

in random networks was almost consistently lower than in the co-prediction networks,

which suggests that nodes in the networks share more biological information than the

nodes of random networks.

Then, to test if the terms overlap between co-prediction and random networks is

di↵erent than between co-prediction and co-expression networks, a 3-way analysis and

measure the �overlap was performed as:

�overlap = overlap(co-prediction, co-expression)� overlap(co-prediction, random)

Table 3.11 and Table 3.12 show the �overlap for each network and each co-expression

based method. The average overlap percentage of 100 random networks was used and

the resulting �overlap was averaged across all eight datasets. Positive di↵erences rep-

1Unfortunately, this analysis, performed later in time, could not be replicated exactly as in other
parts of the chapter due to changes to the PANTHER web service. The category of experimentally
confirmed GO terms previously used has been removed. Although PANTHER has promised to
restore this category in the future, the only way forward was to use the set of all GO terms instead.
Therefore, for the sake of comparison, the enrichment analysis was repeated for all co-prediction and
co-expression networks.
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Dataset C
1

C
2

C
3

C
4

Prostate 22.1±5.2 2.4±2.1 15.7±4.1 7.5±2.4
Leukemia 3.2±4.8 0.4±1.7 1.7±5.4 -1.2±2.7
Lung-Michigan -0.5±1.8 -0.2±0.6 -2.0±4.2 -0.3±0.7
Dlbcl 3.9±5.3 -1.3±1.8 3.4±5.3 -0.9±1.4
AML 11.5±5.4 13.4±2.7 8.2±4.1 13.8±1.9
Colon-Breast 0.5±0.8 0.8±0.5 4.5±1.7 0.7±0.6
Lung-Harvard 12.8±2.6 1.4±1.0 13.5±3.3 1.3±1.5
CNS -8.2±5.0 -1.8±2.9 -6.5±3.6 -2.5±3.2

Table 3.10: Average di↵erence in enriched pathways between FuNeL and random
networks.

Network Pearons ARACNE MIC

SE(C
1

) -0.5 13.8 9.1
SE(C

2

) -18.6 5.6 -5.4
SE(C

3

) 5.5 13.5 10.9
SE(C

4

) -8.8 14.5 3.3
SN(C

1

) 1.3 1.9 3.8
SN(C

2

) 1.5 2.9 5.0
SN(C

3

) 2.4 0.1 3.5
SN(C

4

) 2.6 3.5 4.0

Table 3.11: Average �overlap in enriched GO terms overlap between FuNeL and
random networks.

Network Pearson ARACNE MIC

SE(C
1

) 3.0 8.0 3.0
SE(C

2

) -1.3 9.0 -7.0
SE(C

3

) 8.0 11.0 1.0
SE(C

4

) -9.0 22.0 4.0
SN(C

1

) 7.0 1.0 4.0
SN(C

2

) 4.0 3.0 8.0
SN(C

3

) -2.0 -5.0 2.0
SN(C

4

) 1.0 8.0 8.0

Table 3.12: Average �overlap in enriched pathways overlap between FuNeL and ran-
dom networks.

resent a larger overlap between co-prediction and co-expression networks than between

co-prediction and random networks.

The overlap with random networks was rarely greater than the overlap with co-

expression networks (mostly for the Pearson method). Negative values for both GO
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terms and pathways were observed for the SE(C2) and SE(C4) networks. As these are

the largest networks (in terms of number of nodes), they contain up to 1/3 of the size

of the original dataset. Therefore, the chance that a random network would include

the same or extremely similar nodes as in the corresponding co-prediction network is

high, leading to a larger overlap of enriched terms. For all the remaining networks

positive values were consistently observed. Given the obtained results, it is possible

to conclude that the knowledge associated with FuNeL networks is di↵erent and more

biologically relevant than what can be achieved by chance.

3.3.4 Quantifying the amount of captured biological knowl-
edge

When comparing the co-prediction and co-expression paradigm, the amount of knowl-

edge captured by di↵erent networks was contrasted. The amount of biological knowl-

edge (number of enriched terms) captured by a network is related to its size (number

of nodes). Therefore, to fairly compare networks of di↵erent sizes, the normalised

Enrichment Score (ES) was used:

ES =
number of enriched terms

number of nodes

The score assesses how much a network contains biologically related nodes. The higher

it is, the larger is the biological similarity between the nodes of a network.

To have a global view of the performance of each inference method in term of ES, a

two-step analysis was performed for each enrichment category. First, using the ES,

the networks generated by each method across the datasets were ordered (lower rank

indicates higher ES) to identify the best performing one. Then, the best performing

networks of each method were compared by calculating their average ES rank across the

eight datasets. A rank-based scheme was necessary given the di↵erent distributions

of ES across the di↵erent datasets. This guarantees a more fair and interpretable

analysis. The full network ranks for each inference method are available in Section A.1

of Appendix A. The results of this analysis, using the best networks for di↵erent

inference approaches, are reported in Table 3.13. MIC performed best when ES was
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calculated using the GO terms (it was ranked first in each of those categories). When

ES was calculated using the biological pathways, C4 and ARACNE SE(C1) shared the

highest rank.

Category FuNeL Pearson ARACNE MIC

GO BP C4 (3) SE(C3) (1.5) SN(C3) (4) SN(C3) (1.5)
GO MF C3 (3.5) SN(C3) (3.5) SN(C3) (2) SN(C3) (1)
GO CC C3 (4) SN(C1) (3) SN(C3) (2) SN(C3) (1)
Patwhays C4 (1.5) SN(C2) (3.5) SE(C1) (1.5) SE(C3) (3.5)

Average 3.00 ± 1.10 2.88 ± 0.90 2.38 ± 1.10 1.75 ± 1.20

Table 3.13: Average ranks based on the Enrichment Score for the best performing
networks of each inference method. For each category and for each method, is reported
the network used in the analysis. The ranks (in brackets) were averaged across all 8
datasets, and the highest ranks are shown with bold font. The last row reports the
average ranks across all the biological categories. The following abbreviations were
used for GO categories: biological process (BP), molecular function (MF) and cellular
component (CC).

Table 3.13 shows that the best performing networks for each method were mostly C3

co-expression counterparts, in particular SN(C3). This is consistent with the result of

the topological analysis where these networks were found to have the lowest number

of nodes and suggests that smaller networks tend to be more enriched. The di↵erence

in performance between the FuNeL configurations is mainly due to the application of

the second machine learning phase (the best networks were C3 and C4).

In addition, another analysis compared each similarity-based inference method against

FuNeL. For each dataset and enrichment category, the networks were ranked from 1

to 12 (4 C
i

+ 4 SE (C
i

) + 4 SN (C
i

)) by decreasing number of enriched terms (lower

rank means higher ES). The ranks, averaged across all eight datasets, are reported

in Table 3.14 for all the three co-expression inference approaches. In this pairwise

analysis there is not a consistent winner across all the enrichment categories, in gen-

eral, FuNeL networks performed similarly to Pearson and ARACNE. MIC seems to

have better results than FuNeL only for GO categories, while FuNeL performed better

when considering the biological pathways. Overall, especially among the top per-

forming networks, the di↵erence in ranks is minimal. Consequently, this ES based

analysis suggests that co-expression and co-prediction networks tend to capture a sim-
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ilar amount of (complementary, according to the results of Section 3.3.3) biological

knowledge.

FuNeL Co-expression (SE) Co-expression (SN)

Method Cat. C
1

C
2

C
3

C
4

SE(C
1

) SE(C
2

) SE(C
3

) SE(C
4

) SN(C
1

) SN(C
2

) SN(C
3

) SN(C
4

)

Pearson

GO BP 7.00 (7.5) 7.00 (7.5) 6.06 (6) 5.88 (3.5) 5.88 (3.5) 5.88 (3.5) 5.12 (1) 5.88 (3.5) 7.06 (9) 7.75 (12) 7.12 (10) 7.38 (11)
GO MF 7.81 (11) 6.19 (5) 5.38 (2) 5.62 (3) 9.12 (12) 6.50 (7.5) 6.50 (7.5) 7.38 (10) 7.19 (9) 6.25 (6) 4.31 (1) 5.75 (4)
GO CC 4.31 (5) 11.00 (12) 4.19 (4) 9.00 (10) 3.88 (2) 6.25 (6.5) 6.25 (6.5) 8.12 (8) 3.19 (1) 9.38 (11) 4.06 (3) 8.38 (9)
Pathways 8.12 (10.5) 4.75 (2) 8.12 (10.5) 4.38 (1) 6.94 (8) 6.50 (6) 6.69 (7) 5.88 (5) 7.62 (9) 5.00 (3) 8.50 (12) 5.50 (4)

ARACNE

GO BP 6.69 (7) 6.94 (10) 6.25 (5.5) 4.75 (1) 6.25 (5.5) 8.12 (11) 6.88 (8.5) 9.25 (12) 5.19 (3) 6.88 (8.5) 5.06 (2) 5.75 (4)
GO MF 7.44 (10) 6.50 (8) 5.69 (3) 6.19 (6.5) 6.00 (5) 8.75 (12) 5.62 (2) 8.62 (11) 5.81 (4) 7.00 (9) 4.19 (1) 6.19 (6.5)
GO CC 4.31 (4) 10.75 (12) 3.44 (3) 8.25 (8) 5.50 (5) 9.38 (10) 6.75 (7) 10.12 (11) 2.44 (2) 8.88 (9) 2.31 (1) 5.88 (6)
Pathways 7.88 (10.5) 5.38 (3) 7.88 (10.5) 5.25 (2) 4.88 (1) 6.25 (6) 5.50 (4) 7.00 (8) 7.56 (9) 6.50 (7) 8.38 (12) 5.56 (5)

MIC

GO BP 7.44 (8.5) 7.88 (11) 7.44 (8.5) 6.38 (5.5) 4.12 (2) 7.00 (7) 6.00 (4) 6.38 (5.5) 4.81 (3) 9.12 (12) 3.94 (1) 7.50 (10)
GO MF 8.50 (12) 8.06 (10) 7.19 (8) 7.75 (9) 3.62 (1) 6.50 (5.5) 5.12 (3) 6.75 (7) 5.31 (4) 8.12 (11) 4.56 (2) 6.50 (5.5)
GO CC 5.19 (6) 11.62 (12) 4.44 (4) 10.12 (10) 4.25 (3) 7.12 (7.5) 5.12 (5) 7.12 (7.5) 3.19 (2) 10.38 (11) 1.69 (1) 7.75 (9)
Pathways 8.75 (12) 5.50 (3) 7.50 (10) 4.75 (1) 6.00 (5) 6.50 (6) 5.00 (2) 6.62 (7) 7.56 (11) 7.00 (9) 6.94 (8) 5.88 (4)

Table 3.14: Average network ranks based on the Enrichment Score. The ranks were
averaged across all 8 datasets. The row-wise rank is given in brackets and the high-
est ranks are shown with bold font. The following abbreviations were used for GO
categories: biological process (BP), molecular function (MF) and cellular component
(CC).

3.3.5 Evaluation of the networks in a disease context

To verify if the topology of the inferred networks is biologically meaningful, it was

analysed how it defines the relationships between genes that are known to be associated

with the disease (cancer) in hand of each dataset. The disease-associated genes were

expected to be more closely connected than other genes and to be present in functional

units, such as triangle motifs. The proximity of the disease-associated genes (i.e. how

closely connected they are compared with non-disease-associated genes) was measured

and it was counted the number of triangular relationships present in each network (i.e.

the percentage of triangles containing one, two or three disease-associated genes). As

presented in Section 3.3.3, a two-step analysis was performed by using the gene-disease

association (G-D) metrics for the ranking. The results are reported in Table 3.15, the

full ranks for each inference method are available in Section A.2 of Appendix A.

The average ranks, for both sources of G-D associations, show that co-prediction out-

performs the other inference paradigms. The proximity of the disease-associated genes

was in general higher in C2 networks. Therefore, the co-prediction paradigm identifies

the core elements of the network more accurately. This result highlights the benefits

of including functional information, whenever these are available, in the network infer-
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Source Cat. FuNeL Pearson ARACNE MIC

Curated

1A C2 (1) SN(C2) (4) SN(C3) (2.5) SN(C2) (2.5)
2A C3 (1) SN(C3) (2) SE(C2) (3) SN(C2) (4)
3A C1 (2) SN(C1) (3) SE(C4) (4) SE(C2) (1)
Proximity C2 (1) SN(C3) (2.5) SE(C4) (2.5) SE(C2) (4)

Average 1.25 ± 0.50 2.88 ± 0.90 3.00 ± 0.70 2.88 ± 1.40

Malacards

1A C2 (1) SN(C2) (4) SN(C4) (3) SE(C4) (2)
2A C2 (1.5) SN(C4) (4) SE(C4) (1.5) SN(C2) (3)
3A C3 (2) SN(C4) (3) SE(C2) (4) SN(C2) (1)
Proximity C2 (1) SE(C4) (4) SE(C4) (3) SE(C2) (2)

Average 1.38 ± 0.5 3.75 ± 0.5 2.88 ± 1.00 2.00 ± 0.80

Table 3.15: Average ranks based on the G-D associations for the best performing
networks of each inference method. For each category and for each method are reported
the network used for the analysis. The ranks (in brackets) were averaged across all
8 datasets, and the highest ranks are shown with bold font. The last row reports
the average ranks across all the categories. The number of disease-associated genes
participating in a triangle is denoted as 1A, 2A and 3A.

ence process (FuNeL is using the class labels assigned to the samples of the dataset),

in contrast to the co-expression approach solely based on gene expression similarity.

There is also a clear di↵erence in the number of disease-associated genes participating

in the triangles; FuNeL networks were ranked higher than the co-expression networks.

The only category in which MIC had a better rank was 3A. However, considering the

low number of triangles defined by three disease-associated genes, many ties a↵ected

the positions in this category. Overall, these results demonstrate the higher ability of

the FuNeL networks in identifying relationships between disease driving factors and

potentially provides a framework for the discovery of new G-D associations.

Similar to the analysis performed when using the ES (Table 3.14), the networks were

also ranked from 1 to 12 (4 C
i

+ 4 SE (C
i

) + 4 SN (C
i

)) using the G-D associations

information. The rankings are reported in Table 3.16 (curated) and Table 3.17 (Malac-

ards). These results further highlight the better performance, in a disease-context, of

the FuNeL networks if contrasted with (di↵erent) co-expression networks.
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FuNeL Co-expression (SE) Co-expression (SN)

Method Cat. C
1

C
2

C
3

C
4

SE(C
1

) SE(C
2

) SE(C
3

) SE(C
4

) SN(C
1

) SN(C
2

) SN(C
3

) SN(C
4

)

Pearson

1A 4.31(3) 3.00 (1) 4.81 (4) 3.25 (2) 8.50 (11) 8.12 (8) 8.38 (9) 6.50 (5) 8.50 (11) 6.50 (5) 7.62 (7) 8.50 (11)
2A 5.19 (3) 6.94(7) 3.88 (1) 5.62 (4) 6.50 (5) 8.00 (11) 7.62 (10) 7.00 (8) 6.62 (6) 7.38 (9) 5.12 (2) 8.12 (12)
3A 6.38 (4) 6.62 (8) 6.50 (6) 7.12 (12) 6.56 (7) 6.81 (10) 6.44 (5) 6.94 (11) 5.94 (1) 6.69 (9) 6.06 (3) 5.94 (1)
Proximity 5.75 (5) 4.63 (1) 5.00 (3) 4.63 (1) 6.75 (7) 8.75 (12) 7.13 (9) 8.50 (11) 6.44 (6) 6.75 (7) 5.69 (4) 8.00 (10)

ARACNE

1A 5.56 (3) 4.38 (1) 6.31 (6) 4.75 (2) 6.81 (7) 7.44 (9) 8.00 (12) 7.62 (11) 6.19 (5) 7.50 (10) 6.12 (4) 7.31 (8)
2A 4.94 (3) 5.19 (4) 3.94 (1) 4.44 (2) 7.62 (9) 6.25 (5) 6.88 (7) 6.31 (6) 8.69 (11) 7.69 (10) 8.69 (11) 7.38 (8)
3A 5.38 (1) 6.00 (4) 5.50 (2) 5.62 (3) 6.94 (8) 6.94 (8) 6.94 (8) 6.94 (8) 6.94 (8) 6.94 (8) 6.94 (8) 6.94 (8)
Proximity 5.50 (4) 4.13 (1) 4.88 (3) 4.50 (2) 8.13 (10) 7.38 (8) 6.88 (7) 5.75 (5) 8.44 (11) 7.38 (8) 8.44 (11) 6.63 (6)

MIC

1A 4.75 (3) 3.12 (1) 5.62 (4) 3.88 (2) 8.12 (10) 6.25 (6) 7.62 (8) 6.50 (7) 9.12 (11) 6.12 (5) 9.12 (11) 7.75 (9)
2A 4.75 (3) 5.94 (4) 3.94 (1) 4.25 (2) 8.06 (9) 6.69 (7) 8.44 (12) 6.56 (6) 8.06 (9) 6.31 (5) 8.31 (11) 6.69 (7)
3A 6.06 (3) 6.31 (5) 6.19 (4) 6.88 (10) 6.69 (8) 5.56 (1) 7.81 (12) 5.81 (2) 6.81 (9) 6.44 (7) 7.06 (11) 6.38 (6)
Proximity 5.81 (4) 4.13 (1) 4.94 (3) 4.38 (2) 7.19 (9) 6.38 (5) 7.06 (7) 7.06 (7) 8.06 (11) 6.88 (6) 7.94 (10) 8.19 (12)

Table 3.16: Average network ranks based on the G-D associations (curated). The
ranks were averaged across all 8 datasets. The row-wise rank is given in brackets and
the highest ranks are shown with bold font. The number of disease-associated genes
participating in a triangle is denoted as 1A, 2A and 3A.

FuNeL Co-expression (SE) Co-expression (SN)

Method Cat. C
1

C
2

C
3

C
4

SE(C
1

) SE(C
2

) SE(C
3

) SE(C
4

) SN(C
1

) SN(C
2

) SN(C
3

) SN(C
4

)

Pearson

1A 5.00 (3) 2.71 (1) 5.93 (4) 3.00 (2) 8.93 (12) 7.86 (9) 8.14 (10) 7.36 (7) 7.64 (8) 6.43 (5) 6.71 (6) 8.29 (11)
2A 5.36 (4) 3.86 (1) 5.21 (3) 4.00 (2) 8.21 (11) 7.14 (8) 7.50 (9) 6.79 (7) 8.57 (12) 6.64 (5.5) 8.07 (10) 6.64 (5.5)
3A 6.64 (7) 6.64 (7) 4.93 (1) 6.64 (7) 6.64 (7) 6.64 (7) 6.64 (7) 6.64 (7) 6.64 (7) 6.64 (7) 6.64 (7) 6.64 (7)
Proximity 5.71 (3) 3.86 (1) 6.68 (7) 4.43 (2) 6.07 (4) 7.14 (8.5) 6.71 (6) 6.29 (5) 7.50 (10) 7.57 (11) 8.71 (12) 7.14 (8.5)

ARACNE

1A 5.00 (3) 3.50 (1) 5.50 (4) 4.38 (2) 6.38 (9) 6.69 (12) 6.44 (10) 6.06 (7) 6.25 (8) 6.00 (6) 6.44 (10) 5.62 (5)
2A 5.44 (5) 4.06 (1) 5.31 (4) 4.81 (3) 6.38 (10) 6.56 (11) 6.75 (12) 4.62 (2) 6.12 (8) 5.94 (6) 6.00 (7) 6.25 (9)
3A 5.94 (8) 5.94 (8) 4.56 (1) 5.94 (8) 5.94 (8) 5.06 (2) 5.94 (8) 5.19 (3) 5.94 (8) 5.94 (8) 5.94 (8) 5.94 (8)
Proximity 6.21 (7) 4.14 (1) 7.50 (9) 5.29 (2) 8.0 (10) 6.29 (8) 6.14 (5) 5.43 (3) 8.00 (10) 6.14 (5) 8.71 (12) 6.14 (5)

MIC

1A 4.75 (3) 2.88 (1) 5.62 (6) 3.25 (2) 7.25 (9) 6.12 (7) 7.38 (11) 5.12 (4) 7.25 (9) 5.12 (4) 7.38 (11) 6.12 (7)
2A 5.19 (6) 3.56 (1) 5.06 (5) 4.19 (2) 8.25 (12) 5.69 (8) 6.62 (9) 4.94 (4) 7.81 (11) 4.69 (3) 6.69 (10) 5.56 (7)
3A 6.62 (11) 6.62 (11) 4.94 (2) 6.62 (11) 6.19 (8) 5.00 (3) 6.31 (9) 5.81 (7) 5.56 (6) 3.81 (1) 5.44 (5) 5.31 (4)
Proximity 5.93 (7) 3.86 (1) 7.36 (9) 4.71 (2) 8.14 (10) 5.14 (4) 5.14 (4) 6.28 (8) 10.07 (11) 5.14 (4) 10.79 (12) 5.43 (6)

Table 3.17: Average network ranks based on the G-D associations (Malacards). The
ranks were averaged across all 8 datasets. The row-wise rank is given in brackets and
the highest ranks are shown with bold font. The number of disease-associated genes
participating in a triangle is denoted as 1A, 2A and 3A.

3.3.6 Prostate cancer case study: enriched terms

To compare in detail the di↵erence in the biological knowledge captured by the co-

prediction and co-expression networks, the global analysis presented earlier was fol-

lowed by a case study focused on a dataset characterised by a single disease – prostate

cancer [170]. Particular focus was put on the specific knowledge captured by one

paradigm but not the other.

In Figures 3.11 and 3.12 are compared the co-prediction and the Pearson co-expression

networks inferred from the prostate cancer dataset. The attention was set on GO terms

and pathways enriched uniquely in one type of network. For the sake of readability,

the generic GO terms (with depth < 9 in the GO hierarchical structure) were filtered

out. C2 was the network with the largest number of unique terms, followed by C4

and SN(C2). A total of 16 GO terms and 21 pathways were unique to co-prediction
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Fig 3.11: Unique enriched GO terms (biological process) for each network configura-
tion. The x-axis shows the 12 investigated networks. The y-axis shows the names of
enriched terms unique to co-prediction or Pearson co-expression networks. Red terms
are associated with co-expression networks, blue with co-prediction. Empty columns
indicate networks with no unique terms.

networks while only 3 GO terms and 4 pathways were specific to co-expression net-

works. A similar disproportion in favour of the co-prediction networks was found when

comparing with MIC and ARACNE networks (see Section A.3.1 of Appendix A for

the complete analysis).

Several of the unique GO terms enriched in the co-prediction networks are related

to prostate cancer, according to the specialised literature. The role of the Protein

ubiquination in prostate cancer was recently analysed and showed an impact for its

treatments [178]. The ERK pathway is involved in the motility of prostate cancer cells

[179]. Prostate cancer cells seem to alter the nature of their calcium influx to promote

growth and acquire apoptotic resistance [180]. Furthermore, the role of calcium home-
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Fig 3.12: Unique enriched biological pathways for each network configuration. The
x-axis shows the 12 investigated networks. The y-axis shows the names of enriched
terms unique to co-prediction or Pearson co-expression networks. Red terms are asso-
ciated with co-expression networks, blue with co-prediction. Empty columns indicate
networks with no unique terms.

ostasis in the majority of the cell-signalling pathways involved in carcinogenesis has

been well established, prostate cancer included [181].

Some enriched pathways specific to co-prediction networks are also highly relevant to

prostate cancer. Several studies showed the involvement of the JAK/STAT pathway in

the prostate cancer development [182, 183]. There is multiple evidence suggesting that

one of the major ageing-associated influences on prostate carcinogenesis is oxidative

stress and its cumulative impact on DNA damage [184, 185]. Finally, FAS (also called

Apo1 or CD95) plays a central role in the physiological regulation of programmed cell

death and has been implicated in the pathogenesis of various malignancies and diseases

of the immune system including prostate cancer [186].

An additional analysis was performed on the biological terms related to the hubs

(highly connected nodes) of the inferred networks. A node v was considered to be a
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hub if its degree was at least one standard deviation above the average network degree,

that is if:

d(v) > µ
d

+ �
d

where d(v) is the degree of the node v (number of direct neighbours), and µ
d

and

�
d

are the mean and standard deviation of the network node degree distribution.

To compare the networks, the top ten most frequent Gene Ontology terms, shared

between each network’s hubs, were used. To make this analysis more specific, the most

generic/common terms (which could be associated with many genes) were discarded,

only the GO terms situated at level 10 or higher in the GO hierarchy, were considered.

Figure 3.13 provides the top ten most frequent GO terms associated to the hubs of

co-prediction and Pearson co-expression networks. Blue terms were found only in co-

prediction networks, red terms were found only in co-expression networks and green

terms were in common.

Terms Pearson ARACNE MIC

Co-prediction 16 18 16
Co-expression 19 20 19
Common 11 9 11

Table 3.18: Unique and common terms from networks’ hubs

In total, 16 unique terms for co-prediction networks were found, 19 unique terms for

co-expression networks and 11 common terms. Table 3.18 summarises the number of

unique and common terms shared between networks created with di↵erent approaches.

The plots associated to the comparison of FuNeL with ARACNE and MIC are available

in the Figure 3.14 and Figure 3.15. The results further highlight biological terms

exclusively associated either with co-prediction and co-expression networks.

An analysis of term overlap was conducted using only the best performing networks

in the curated G-D association analysis (namely C2 for FuNeL, SN(C3) for Pearson,

SE(C4) for ARACNE and SE(C2) for MIC, see Section A.2 in Appendix A for details).

The aim was to further show how the knowledge captured by networks inferred with

di↵erent approaches is partially shared and often highly network-specific. Figure 3.16
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Fig 3.13: Top 10 most frequent biological processes from Gene Ontology found in the
network hubs when comparing FuNeL and Pearson co-expression networks. Blue terms
were found only in co-prediction networks, red terms were found only in co-expression
networks, and green terms were found in both.
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Fig 3.14: Top 10 most frequent biological processes from Gene Ontology found in the
network hubs when comparing FuNeL and ARACNE co-expression networks. Blue
terms were found only in co-prediction networks, red terms were found only in co-
expression networks, and green terms were found in both.
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Fig 3.15: Top 10 most frequent biological processes from Gene Ontology found in the
network hubs when comparing FuNeL and MIC co-expression networks. Blue terms
were found only in co-prediction networks, red terms were found only in co-expression
networks, and green terms were found in both.
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Fig 3.16: Overlap of PANTHER enriched terms between the best performing networks
identified with the G-D association analysis (curated databases). The values represent
the number of enriched terms that are unique or shared between di↵erent networks.
On the left the overlap of GO terms (including all 3 categories: BP, CC and MF), on
the right the overlap of pathways.

shows the number of shared/unique enriched GO terms (including all three GO cat-

egories) and pathways across di↵erent networks. In total 122 GO terms were found

to be captured by all the networks, while only one pathway was in common to all.

The FuNeL network is similar to the ARACNE one, a total of 386 GO terms and 16

pathways were associated to both. Few terms were purely specific of MIC and Pearson

networks, on the contrary a large number of unique terms was related to C2 (143 GO

terms and 17 pathways). Overall, Figure 3.16 emphasises even more the complemen-

tarity between the co-prediction and co-expression approaches regarding the captured

biological knowledge.

3.3.7 Prostate cancer case study: disease associations

The literature and the public cancer databases (not used in the inference process) were

searched to verify if key nodes in the generated networks are associated with prostate

cancer. The node degree (number of connections) and the betweenness centrality

(number of shortest paths between all the pair of nodes that pass through a given

node) were used as a measure of the node importance.
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Literature analysis The top three most connected nodes (hubs) were picked for

each of the four FuNeL networks (configurations). The set contains six genes: GSTM2,

NELL2, CFD, PTGDS, PAGE4 and LMO3. All the genes from this set, except LMO3,

were also found to be the most central nodes (with highest betweenness centrality).

Almost all these genes are related to prostate cancer, according to the specialised

literature:

• NELL2 contributes to alterations in epithelial-stromal homeostasis in benign

prostatic hyperplasia and codes for a novel prostatic growth factor [187], and is

also an indicator of expression changes in cancer samples [188].

• CFD (adipsin gene) is over expressed in PP periprostatic adipose tissue of

prostate cancer patients [189].

• PTGDS (and two other genes) are expressed at consistently lower levels in clini-

cal prostate cancer tissues and form a signature that predicts biochemical relapse

[190].

• PAGE4 modulates androgen receptor signalling, promoting the progression to

advanced lethal prostate cancer [191], and has a significantly lower expression

level in patients with prostate recurrent disease [192].

• LMO3 interacts with p53, a well known gene tumour suppressor in prostate

cancer [193].

The only gene without literature support is GSTM2. It might represent a good target

for further experimental verification.

Validation on independent data To further validate the biological relevance of

the inferred networks, an independent prostate cancer dataset [194] was used from

the collection of data available in the cBioPortal for Cancer Genomics [195]. The

independent data was used to check the genomic alteration of the key topological

genes. The top ten hubs (nodes with the highest degree) and the top ten central nodes

(with highest betweenness centrality) were analysed in the co-prediction network that
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better performed in the gene-disease association analysis using the curated databases:

C2 (see Section A.2 in Appendix A). The genes with highest degree were: PTGDS,

PAGE4, NELL2, GSTM2, PARM1, MAF, LMO3, COL4A6, RBP1 and ABL1. For

the betweenness centrality, the set was almost identical; only RBP1 was replaced

by MYH11. On average the expression in samples was altered in 31.8% cases for

hubs and in 35.6% cases for central nodes. The most altered genes were found to be

downregulated at the mRNA level: COL4A6 (65%), MYH11 (58%), PARM1 (53%)

and GSTM2 (52%). In addition, genomic alterations in several key genes were found

to be strongly co-occurrent (e.g. PTGDS – GSTM2, PAGE4 – COL4A6, PAGE4 –

RBP1, etc.).

Fig 3.17: Distribution of the percentage of genomic alteration in the samples of an
independent dataset for top 10 hubs and central nodes. The topologically important
genes were selected from the best performing networks in the G-D association analysis
on curated datasets.

When repeating the analysis with the best ranked co-expression networks, (namely

SN(C3) for Pearson, SE(C4) for ARACNE and SE(C2) for MIC), on average the

alteration level was consistently lower, at most half of the FuNeL key genes. The per-

centages of alterations are represented as boxplots in Figure 3.17, while the average
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alterations are reported, for each method, in Table 3.19. As Figure 3.17 shows, Fu-

NeL can identify many more genes with a higher percentage of alteration than other

methods. Therefore, the topologically relevant nodes in the best co-prediction net-

work represent genes more strongly related to the prostate cancer that can possibly

be considered as biomarkers, with over two times more frequent genomic alterations.

Genes FuNeL Pearson ARACNE MIC

Hubs 31.8 % 14.2 % 12.3 % 15.2 %
Central nodes 35.6 % 14.7 % 12.2 % 17.1 %

Table 3.19: Average percentage of genomic alteration for top hubs and central nodes
in the independent dataset.

The detailed list of genomic alterations for the top hubs and the central nodes for each

analysed network is available in Section A.3.2 of Appendix A.

3.4 Discussion

This chapter introduced FuNeL: a protocol to infer functional networks based on the

co-prediction paradigm where the structure of a rule-based machine learning model

is used to identify functional relationships between genes. FuNeL generates func-

tional networks using a di↵erent approach than the state-of-the-art methods, com-

monly based on a similarity paradigm. Machine learning is at the core of the FuNeL

protocol, the networks are generated via the mining of machine learning models (rule-

based models in this instance) inferred to solve a classification task. Di↵erent options

in the FuNeL protocol provide a total of 4 di↵erent configurations, each one generat-

ing diverse networks. These have been contrasted with networks generated using the

co-expression paradigm, the most widely adopted similarity-based approach.

Before the comparison with co-expression methods, synthetic data were used to evalu-

ate the ability of FuNeL to retrieve known biological associations. It was fundamental

to assess if the information obtained from the mining of machine learning was indeed

relevant. That is, if the relationships inferred with FuNeL were found to be meaning-

ful. When applied to synthetic datasets, FuNeL was able to identify existing pairwise

relationships between genetic attributes (SNPs). The obtained results were in line,
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and in some cases superior, to a recently proposed approach based on permutated ran-

dom forest [70]. These findings mean that the assumption on which the co-prediction

approach, and in general FuNeL, are based on, was proven to be correct. Attributes

(SNPs) that (statistically) appear together more frequently than by chance in the

BioHEL’s classification rules are also associated within the tested synthetic data.

Encouraged by those findings, it was checked if a rule-based machine learning model,

with its complex knowledge representation, might be used to identify biologically mean-

ingful relationships that escape the standard inference methods. This analysis was

performed using eight real-world cancer-related transcriptomics datasets. FuNeL was

compared with three co-expression inference methods (ARACNE, Pearson and MIC)

by using networks of matching size and generated from the same data. The di↵erences

between co-prediction and co-expression were observed from three points of view: ba-

sic topological properties, enriched biological terms and relationships between known

disease-associated genes.

The comparison of the topological properties revealed the influence of the protocol op-

tions. Not surprisingly, both the feature selection and the second training phase reduce

the size of the networks, but at the same time, increase the clustering coe�cient and

the number of connections. The clustering coe�cient was found to be lower in almost

all the ARACNE networks, probably due to the pruning procedure. It was also lower

in many MIC networks. Moreover, when feature selection was applied, the resulting

networks had higher clustering coe�cient than Pearson co-expression networks with

the same number of edges. Interestingly, all of the co-expression networks were less

compact (lower diameter). This is probably because many attributes appear together

in the same classification rules, reducing the distance from each other in the FuNeL

network.

The di↵erences in networks topology translated into di↵erences in the contained bi-

ological information. The overlap between enriched GO terms and pathways across

protocol configurations was generally low, indicating that di↵erent configurations infer

networks that capture di↵erent biological knowledge. The term overlaps between the

co-prediction networks and their equivalent co-expression counterparts were even lower.

This can be interpreted as evidence that the biological knowledge captured by the two
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paradigms is not entirely redundant, but in large part complementary. Associations

defined by FuNeL are not limited to attributes that show similar expression patterns

but are extended to pairs of attributes that participate in the same classification rule.

Di↵erences between the networks were also observed in the analysis of the connections

between genes known to be related to a specific disease. The disease-associated genes

were more closely connected (higher proximity) in the co-prediction networks, which

means that the disease-related nodes of the network were closer to its core. In addition,

the number of functional units (triangle motifs), that can identify new gene-disease

associations, was found to be higher in the co-prediction networks. Therefore, it can

be concluded that the co-prediction approach better captures the abstract concept of

functional relationship. The superior performance of FuNeL networks in identifying

the disease-associated genes is likely a result of e↵ective use of the class labels of the

samples, which the similarity-based methods ignore. Although it would be tempting

to attribute this performance di↵erence entirely to the use of supervised learning in

FuNeL, it would be an overstatement, as the knowledge of explicit links between genes

and diseases is not available to it in training. The hypothesis is that this is rather a

result of di↵erences in expression values of the disease-associated genes, which taken

together are able to discriminate between sample phenotypes.

To further analyse and compare the two paradigms, a case study on the prostate can-

cer dataset [170] was performed. FuNeL generated networks that were enriched with

knowledge totally missed by all the co-expression networks. Topologically important

genes (nodes) in the co-prediction networks were found: (1) to be altered in a high

percentage of tumour samples in an independent cancer transcriptomic study, and (2)

to be already associated with prostate cancer according to the specialised literature.

Therefore, the co-prediction networks not only capture biological knowledge comple-

mentary to the co-expression networks but also better highlight the important genes

involved in the disease process. The key nodes (hubs and central nodes in this instance)

from FuNeL networks could be considered as candidate biomarkers for the disease of

the data. This is directly linked to their relevance in the BioHEL’s rules. Attributes

frequently appear in the classification rules and become hubs if their expression can be
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used to discriminate the samples of the data. Thus, they are likely to have an major

role in the condition/disease.

3.5 Future work

One of the main limitations of FuNeL is the expensive computational e↵ort required

by the network generation phase that is based on the classification rules created with

BioHEL. A time complexity analysis of the protocol is available in the Section A.4 of

Appendix A. BioHEL belongs to the class of evolutionary machine learning algorithms,

notoriously famous for being relatively slow. Nevertheless, each run of BioHEL (10 000

in the presented analysis) is totally independent, thus the generation of the rule sets

can be trivially parallelised without any extra overhead. Another possible solution

to this problem might be the substitution of BioHEL with other “faster” machine

learning algorithms, such as random forest or decision trees. The analysis of FuNeL

with other supervised approaches would be interesting from two points of view: (1)

to check how those networks would be di↵erent from the BioHEL-based networks and

(2) to assess if those networks would also capture complementary knowledge to that

of similarity-based approaches.

The machine learning step proposed in FuNeL involves the employment of rule-based

models generated with BioHEL. However, this does not represent the only possible

solution. Other machine learning algorithms could be adopted within the learning

phase to replace BioHEL. Among many examples there are unsupervised methods, such

as the Apriori algorithm for association rule learning, or other supervised methods,

such as decision tree algorithms (e.g. C4.5 or random forest). Some adjustment would

be necessary to extract the knowledge from a di↵erent model representation, but the

rest of the protocol could remain unchanged. For example, in the case of the decision

trees, relationships could be inferred between attributes that share the same path from

the root to the leaves of the tree. This potential flexibility in the choice of a learning

algorithm, together with the ability to apply the protocol to di↵erent types of data,

makes FuNeL a powerful tool for network inference.
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The complementarity between co-prediction and co-expression networks has been ex-

tensively shown in this chapter. Given the characteristics of the two approaches, it

seems like a wasted opportunity not try to integrate them. A network resulting from

the union of both approaches could capture a wider amount of knowledge if compared

to its single components. In addition, another possibility would be to exploit the

similarity information within the learning process of the classification rules (BioHEL

in this instance). More specifically, check whether co-expressed attributes can define

meaningful (i.e. highly predictive) classification rules that can be used for the inference

of a co-prediction network

The presented version of FuNeL generates functional networks from single biomedical

datasets. However, it could be extended to handle multiple sources. For example,

it could integrate multiple rule sets produced from a similar biomedical condition

(e.g. prostate cancer or leukaemia) and infer a single functional network. Considering

that some biomedical studies focus on a subset of the population (e.g. patients of a

particular age or from a specific geographic location), the integrated network could be

more representative of the condition than the one inferred from a single dataset. This

integration strategy of combining multiple data as already been proven successful in

providing more relevant and robust solution [196–198].

Summary

This chapter presented FuNeL, a protocol for the inference of functional

networks. The analysis of the networks (prostate cancer in particular) has

shown that an e↵ect of the inference process is the identification of candi-

date biomarkers. Topologically important nodes (hubs and central nodes)

were found to be highly altered in independent data, suggesting a possi-

ble role in the studied condition/disease. In this part of the dissertation,

biomarkers played a minor role and emerged from the analysis of the in-

ferred networks. The following chapter will directly assess the problem of

biomarkers discovery presenting the RGIFE heuristic. While FuNeL anal-

yses machine learning models to generates functional networks, in RGIFE

the models are exploited to identify the best performing subsets of biomark-

ers.
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Abstract

This chapter studies RGIFE, a heuristic for the identification of small sets of

highly predictive biomarkers. RGIFE uses the information extracted from

the structure of machine learning models to discover irrelevant features

that can be discarded without compromising the predictive performance.

The RGIFE heuristic represents an important contribution to the field of

biomedicine, as specifically designed to tackle the problem of biomarkers

discovery and provide small relevant solutions.

4.1 Introduction

In recent years the rapid progress in bio-technologies, together with their cost decrease,

has led to an explosive rise in the availability of good quality biomedical data. For

example, in the last decade, the growth of transcriptomics (ArrayExpress), proteomics

(PRIDE) and metabolomics (Metabolights) data stored at the European Bioinfor-

matics Institute (EMBL-EBI) has been exponential, as illustrated in Figure 4.1. In

2015, the data stored at EMBL-EBI were more than 70 petabytes (1 petabyte =

1000 terabytes) [199]. Because of costs that are no more prohibitive, nowadays many

laboratories, produce large-scale data from biological samples as a routine task. High-

throughput experiments allow the analysis of the relationships and the properties of

many biological entities (e.g. gene, proteins, etc.) at once. As a result, the observations

are defined in a high dimensional space. However, while the cost of bio-technologies is

reasonably low, the costs required for clinical studies are still high. Thus, biomedical

data often contain only a small set of data points. Those two characteristics, when

combined, lead to a problem known as the curse of dimensionality. This phenomenon

was introduced by Bellman [200] to describe a problem generated by the exponential

increase in volume associated with extra dimensions. In a machine learning context, it

implies that a small addition in the data dimensionality requires a substantial increase

in the number of samples to maintain the same quality of classification, regression,

clustering, etc. [201]. Given the di�culties in obtaining large sets of samples (e.g.

patients), coupled with the high dimensionality, the analysis of biomedical data with
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Figure 2. (A) Data accumulation at EMBL-EBI by data type, for example mass spectrometry (MS); (B) Data accumulation by dedicated resource, for
example PRIDE. The y-axis is log-scale, with the slope of the dashed lines indicating a 12-month doubling time. Continued data growth is seen in all types
of data at EMBL-EBI and all data resources. In all data resources shown here, growth rates are predicted to continue increasing, with notable sustained
exponential growth in PRIDE, the European Genome-phenome Archive (EGA) and MetaboLights: all have doubling times of around 12 months. All
three contributing platforms show rates that are increasing over time, with data growing exponentially with around a 12-month doubling time.

Fig 4.1: Data accumulation at EMBL-EBI [199].

machine learning techniques is a challenging task. In addition, biomedical data are

often noisy. The noise can arise from the equipment used to perform the experiments,

from human errors or from the stochasticity that might a↵ect the biological phenom-

ena being analysed. As a result, there is a need for relevant analytic techniques that

deal with these noisy and high-dimensional data.

One of the major research fields in bioinformatics and biomedicine involves the discov-

ery of driving factors from disease-related datasets. They are also known as biomarkers

and have been described as: “a characteristic that is objectively measured and evaluated

as an indicator of normal biological processes, pathogenic processes, or pharmacologic

responses to a therapeutic intervention” [95]. The challenging part, when looking for

biomarkers, is the ability to identify and discard the irrelevant information (e.g. genes

whose role is not important for the progress of a disease) so that important factors

can emerge. Statistical methods have been traditionally used in biomedical studies to

select the variables responsible for the presence of a disease, using both univariate [96]

and multivariate approaches [99] (see Section 2.6 for more details).

Along with the traditional statistical methods, machine learning has been extensively

and successfully employed, in many di↵erent forms, to solve the problem of biomarkers

- 120 -



Chapter 4: RGIFE: a ranked guided iterative feature elimination heuristic for
biomarkers identification

discovery over the years [10]. Machine learning has been used in the form of ensemble

methods [202], particle swarm optimisation [113], deep neural networks [203], etc.

Feature selection, in machine learning, is defined as the process of selecting relevant

variables to be used in the model construction. By removing useless features, the

machine learning algorithm can generate better models at a lower computational cost.

It is easy to think about the discovery of biomarkers, from biomedical data, as a feature

selection problem. From this perspective, the goal is to identify a subset of features

(biomarkers) that can build models that correctly predict the class of the samples.

Although this is not their primary focus, when applied in biomedicine, feature selection

methods can provide new scientific insights by recognising the factors that determine

the presence of a condition in the data.

Over the years di↵erent feature selection methods have been designed. Some have

been created explicitly to tackle biological problems, others were instead more generic

and could be applied to a broad variety of problems. A popular approach for feature

selection is to rank the attributes based on some importance criteria and then select

only the top ones [103]. However, one of the main drawbacks is that the number of

features to be selected needs to be set up-front and decide its exact value is a not-

trivial problem. Other methods such as CFS [104] or mRMR (minimum Redundancy

Maximum Relevance) [204] are designed to evaluate the goodness of a given subset

of variables in relation to the class/output variable. When coupled with a feature

subset search mechanism (e.g. BestFirst), they can automatically identify the optimal

number of attributes to be selected.

A large class of feature selection methods is based on an iterative reduction process.

The basic concept of these methods is to iteratively remove the useless feature(s)

until a stopping condition is reached. The most known and used iterative reduction

algorithm is the SVM Recursive Feature Elimination (SVM-RFE) [111]. It iteratively

repeats three steps: (1) trains an SVM classifier, (2) ranks the attributes based on

the weights of the classifier and (3) removes the bottom ranked attribute(s). SVM-

RFE was initially designed to work with transcriptomics data, but nowadays it is

commonly used in many di↵erent contexts. Several approaches have been presented

after this method [205–207].
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This chapter focuses on RGIFE (Ranked Guided Iterative Feature Elimination):

a heuristic for the identification of reduced biomarker signatures. RGIFE employs

an iterative process for the biomarkers identification similar to SVM-RFE as the fea-

tures are ranked based on their importance (contribution) within the machine learning

model. However, two main characteristics di↵erentiate the methods: (a) in RGIFE the

removed features not always are the ones at the bottom of the importance rank and

(b) in RGIFE the use of the soft-fail allows, under certain circumstances, to consider

an iteration successful when it su↵ered a drop in performance, as long as it is within a

tolerance level. The work presented here is a substantial extension of the work by Swan

et al. [208] where the heuristic was first introduced. Every aspect of the original work

has been thoroughly revisited by: (1) using a di↵erent machine learning algorithm to

rank the features and evaluate the feature subsets, (2) introducing strategies to re-

duce the probability to stuck at a local optimum, (3) limiting the stochastic nature of

the heuristic, (4) comparing the method with some well-known approaches commonly

used in bioinformatics, (5) evaluating the performance using synthetic datasets and

(6) validating the biological relevance of the signatures using a prostate cancer dataset

as a case study.

In the next sections, first, the new version of RGIFE is compared with the original

method proposed in [208], then is contrasted with five other algorithms both from

a computational (using synthetic and real-world datasets) and a biomedical point of

view. Afterwards, using a prostate cancer dataset as a case study, the knowledge

associated with the signature (term used to identify a set of biomarkers) generated by

RGIFE is thoroughly evaluated. The analysis performed showed that the new version

of the heuristic outperforms its original version both in terms of prediction accuracy

and number of selected attribute while being less computationally expensive. When

compared with other feature reduction approaches, RGIFE obtained similar prediction

performance while constantly selecting fewer features. The analysis completed on

synthetic data demonstrated the ability of RGIFE to identify relevant attributes while

discarding irrelevant and redundant information. Finally, the case study evaluation

showed a higher biomedical relevance of the genes selected by RGIFE when compared

with other methods.
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4.2 Material and Methods

This section describes in detail the RGIFE heuristic and all the changes implemented in

comparison with the original version. Then, the five di↵erent benchmarking methods

are presented followed by a description of the datasets employed for the comparison.

Finally, the experimental design and the approaches used for analysis of the predictive

performance and the biomedical validation of the signatures are introduced.

4.2.1 The RGIFE heuristic

A detailed pseudo-code that describes the RGIFE heuristic is depicted in Algorithm 1,

while in Figure 4.2 is illustrated its generic iterative nature.

RGIFE is able to analyse and extract biomarker signatures from any type of biomed-

ical dataset. The only requirement is that the samples need to be associated to a

finite set of categories or classes (e.g. control vs. case), that is they can be used for

a classification problem. As briefly mentioned in the introduction, RGIFE removes

attributes if their role in the predictive model is irrelevant. Therefore, the first step of

the heuristic is to estimate the performance of the classifier using the original set of at-

tributes and assess their importance (line 29). Any classifier that ranks the attributes,

based on their relevance in the classification task, can be used in the heuristic. The

original version of the heuristic employed BioHEL [39] as base classifier to generate the

predictive models and the attribute rankings. In this new version of RGIFE, BioHEL

has been replaced with a random forest classifier [50]. This choice was primarily due

to reduce the overall computational cost, as will be shown later (Figure 4.5). The

function RUN ITERATION( ) splits the dataset into training and test data by imple-

menting a k-fold cross-validation (by default k = 10) process to assess the performance

of the current set of attributes. A k-fold cross-validation scheme was preferred, rather

than the leave-one-out used in the previous RGIFE version, because of its better re-

sults when it comes to model selection [30]. In here, to describe the RGIFE heuristic,

the generic term performance will be used to refer to how well the model can predict

the class of the test samples. In reality, within RGIFE many di↵erent measures can

be employed to estimate the model performance (accuracy, F-measure, AUC, etc.).
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Algorithm 1 RGIFE: Rank Guided Iterative Feature Elimination

Input: dataset data, cross-validation repetitions N
Output: selected attributes
1:

2: function reduce data(data)
3: numberOfAttributes current number of attributes from data
4: . If blockSize is larger than the attributes reduce it (and check for soft-fail)
5: if (startingIndex+ blockSize) > numberOfAttributes then
6: blockRatio = blockRatio⇥ 0.25
7: blockSize = blockRatio⇥ numberOfAttributes
8: end if
9: attributesToRemove attributesRanking[startingIndex : (startingIndex+

blockSize)]
10: reducedData remove attributesToRemove from data
11: startingIndex = startingIndex+ blockSize
12: return reducedData
13: end function
14:

15: function run iteration(data)
16: for N times do
17: . generate training and test set folds from data
18: performances cross-validation over data
19: attributesRank  get the attributes ranking from the models
20: end for
21: performance = average(performances)
22: attributesRank = average(attributesRank)
23: return performance, attributesRank
24: end function
25:

26: blockRatio = 0.25
27: blockSize = blockRatio⇥ (attributes in data)
28: startingIndex = 0
29: performance, attributesRank = run iteration(data)
30: referencePerformance = performance
31:

32: while blockSize � 1 do
33: data = reduce data(data)
34: numberOfAttributes current number of attributes from data
35: performance, attributesRank = run iteration(data)
36: if performance < referencePerformance then
37: failures = failures+ 1
38: if (failures = 5) OR (all attributes have been test) then
39: if there exist a soft-fail then
40: referencePerformance = softFailPerformance
41: numberOfAttributes, selectedAttributes  attributes of the

dataset at the softFail iteration
42: blockSize = blockRatio⇥ numberOfAttributes
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43: else
44: blockRatio = blockRatio⇥ 0.25
45: blockSize = blockRatio⇥ numberOfAttributes
46: end if
47: failures = 0; startingIndex = 0
48: end if
49: else
50: referencePerformance = performance
51: selectedAttributes current attributes from data
52: blockSize = blockRatio⇥ numberOfAttributes
53: failures = 0; startingIndex = 0
54: end if
55: end while
56: return selectedAttributes

The N parameter indicates how many times the cross-validation process is repeated

with di↵erent training/test partitions, to minimise the potential bias introduced by

the randomness of the data partition. The generated model (classifier) is then ex-

ploited to rank the attributes based on their importance within the classification task.

Afterwards, the block of attributes at the bottom of the rank is removed and a new

model is trained over the remaining data (lines 33-35). The number of attributes to

be removed in each iteration is defined by two variables: blockRatio and blockSize.

The former represents the percentage of attributes to remove (that decreases under

certain conditions), the latter indicates the absolute number of attributes to remove

and is based on the current size of the dataset. Then, if the new performance is equal

or better than the reference (line 49), the removed attributes are permanently elimi-

nated. Otherwise, the attributes just removed are placed back in the dataset. In this

case, the value of startingIndex, a variable used to keep track of the attributes been

tested for removal, is increased. As a consequence, RGIFE evaluates the removal of the

next blockSize attributes, ranked (in the reference iteration) just after those placed

back. The startingIndex is iteratively increased, in increments of blockSize, if the

lack of the successive blocks of attributes keeps decreasing the predictive performance

of the model. With this iterative process, RGIFE evaluates the importance of di↵erent

ranked subsets of attributes. Whenever either all the attributes of the current dataset

have been tested (i.e. have been eliminated and the performance did not increase), or

there has been more than 5 consecutive unsuccessful iterations (i.e. performance was
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degraded), blockRatio is reduced by a fourth (line 44). The overall RGIFE process is

repeated while blockSize (number of attributes to remove) is � 1.

Consider soft-fail as success 

Data

Generate  
predictive 

model

Attributes 
ranking

Improved
performance

Best performing
attributes

Yes No

No

Yes

Remove attributes

Attribute importance (ranking)

i j

Attributes to remove
Update removal window: 

IF: all attribute tested:
      - reduce block size
ELSE:
      - increase indexes (i, j)

> 5 fails AND 
exist soft-fail

Generate  
predictive 

model

Attributes 
ranking

Fig 4.2: The iterative nature of the RGIFE heuristic and its overall behaviour.

An important characteristic of RGIFE is the concept of thesoft-fail. After five unsuc-

cessful iterations, if some past trial failed and su↵ered a “small” drop in performance

(one misclassified sample more than the reference iteration) it is still considered suc-

cessful (line 40). The reason behind this approach is that by accepting a temporary

small degrade in performance, the probability of incurring in a local optimum is re-

duced. Thus, the likelihood of obtaining better solutions is increased. Given the

importance of the soft-fail, as illustrated later in Section 4.3.4, in this new RGIFE

implementation, the searching for the soft-fail is not only performed when five con-

secutive unsuccessful trials occur, as in the original version, but it occurs before every

reduction of the block size. Furthermore, the iterations that are tested for the presence

of a soft-fail are extended. While before only the last five iterations were analysed,

now the searching window is expanded up to the most recent between the reference

iteration and the iteration in which the last soft-fail was found.
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4.2.1.1 Relative block size

One of the main changes introduced in this new version of the heuristic is the adoption

of a relative block size. The term block size defines the number of attributes that are

removed in each iteration. In [208], the 25% of the attributes was initially removed,

then whenever having: all the attributes been tested, or five consecutive unsuccessful

iterations, the block size was reduced by a fourth. However, the analysis suggested that

this approach was prone to get stalled early in the iterative process and prematurely

reduce the block size to a very small number. This scenario either slows down the

iterative reduction process because successful trials will only remove few attributes

(small block size), or it prematurely stops the whole feature reduction process if the size

of the dataset being analysed becomes too small (few attributes) due to large chunks

of attributes being removed (line 32 in Algorithm 1). To address this problem, the new

implementation of the heuristic introduces the concept of the relative block size. By

using a new variable called blockRatio, the number of attributes to be removed is now

proportional to the size of the current attribute set being processed, rather than to the

original attribute set. While before the values of blockSize were predefined (given the

original attribute set), now they vary based on the size of the data in hand. Preliminary

tests (not reported) showed that this block size policy is much more reliable.

4.2.1.2 Parameters of the classifier

RGIFE can be used with any classifier that can provide an attribute ranking after

the training process. The presented version of RGIFE uses a random forest classifier

that is known for its robustness to noise and its e�ciency, so it is ideally suited to

tackle biomedical data. Furthermore, as suggested in [209], random forest tends not to

overfit, incorporates interactions among predictor variables, can be easily used when

the number of features is extremely larger than the observations and can tackle both

binary and multi-class problems. The current version of the heuristic is implemented in

Python and uses the random forest classifier available in the scikit-learn library [210].

In this package the attributes, by default, are ranked based on the gini impurity. The

gini impurity represents the expected error rate at a node M if the category label is

selected randomly from the class distribution present at M . The feature importance

- 127 -



Chapter 4: RGIFE: a ranked guided iterative feature elimination heuristic for
biomarkers identification

is calculated as the sum over the number of splits (across every tree) that include the

feature, proportionally to the number of samples it splits. Default values for all the

parameters of the classifier are used within the heuristic, except for the number of

trees (set to 3000 because it provided the best results in preliminary tests not reported

here). The attribute importance based on entropy was also tested, but considering that

it did not produce any improvement in performance, the default criteria was chosen.

4.2.1.3 RGIFE policies

The current version of the heuristic uses a random forest as core classifier, rather

than BioHEL as originally proposed [208]. The random forest is a stochastic ensemble

classifier as each decision tree is built by using a random subset of features. As a

consequence, RGIFE inherits this stochastic nature, that is each run of the algorithm

results in a potentially di↵erent optimal subset of features. The presence of multiple

optimal solutions is a common scenario when dealing with high dimensional -omics

data [211]. Therefore, this situation is addressed by running RGIFE multiple times

and using di↵erent policies to select the final model (signature):

• RGIFE-Min: the final model is the one with the smallest number of attributes

• RGIFE-Max : the final model is the one with the largest number of attributes

• RGIFE-Union: the final model is the union of the models generated across

di↵erent executions

In the presented analysis the signatures were identified from 3 RGIFE runs.

4.2.2 Benchmarking algorithms

RGIFE has been compared with five well known feature selection algorithms: CFS

[104], SVM-RFE [111], ReliefF [212], Chi-Square [213] and L1-based feature selection

[214]. These algorithms were chosen in order to cover the di↵erent approaches that

can be used to tackle the feature selection problem, each of them employs a di↵erent

strategy to identify the best subset of features.
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CFS is a multivariate correlation-based feature selection method. By exploiting a

best-first search, it assigns high scores to subsets of features highly correlated to the

class attribute but with low correlation between each other. Similarly to RGIFE, CFS

automatically identifies the best size of the signature.

SVM-RFE is a well known iterative feature selection method that employs a back-

wards elimination procedure. The method ranks the features by training an SVM

classifier (linear kernel) and discarding the least important (last ranked). SVM-RFE

has been successfully applied in classification problems with -omics and in general

biomedical datasets.

ReliefF is an extension of the Relief algorithm proposed by Kira and Rendell [106].

ReliefF is a supervised learning algorithm that considers global and local feature

weighting by computing the nearest neighbours the samples. The feature importance

is calculated by checking which features di↵ers (in terms of values) between samples

of di↵erent classes. This method is well employed due to its fast nature as well with

its simplicity.

Chi-Square is a univariate feature selection approach that computes chi-squared

(�2) stats between each feature and class. The score can be used to select the K

attributes with the highest values for the chi-squared statistic calculated from the

classes.

L1-based feature selection uses a linear model penalised with the L1 norm to

identify relevant attributes [214]. The L1 norm tends to generate sparse solutions

(models) where many of the estimated coe�cients are zero. The features with a non-

zero coe�cient are selected because of their importance when predicting the outcome

(class label) of the samples. A linear support vector classifier (SVC) was used to

generate the linear penalised model.
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The L1-based feature selection was evaluated using the scikit-learn implementation of

the SVC [210], the other benchmarking algorithms were tested with their implemen-

tation available in WEKA [215]. Default parameters were used for all the methods.

4.2.3 Datasets

Synthetic datasets

The ability of RGIFE to identify relevant features was tested using a large set of

synthetic datasets. The main characteristics of the data are available in Table 4.1.

Di↵erent possible scenarios (correlation, noise, redundancy, non-linearity, etc.) were

covered using the datasets employed in [103] as a reference (the LED data were not used

as they consist of a 10-class dataset that does not reflect typical biological problem).

CorrAL is a dataset with 6 binary features (i.e. f1, f2, f3, f4, f5, f6) where the class

value is determined as (f1 ^ f2) _ (f3 ^ f4). The feature f5 is irrelevant while f6

is correlated to the class label by 75%. In addition, the data contains 93 irrelevant

features randomly added [216].

XOR-100 includes 2 relevant and 97 irrelevant (randomly generated) features. The

class label consists of the XOR operation between two features: (f1 � f2) [216].

Parity3+3 describes the problem where the output is f(x1, ...xn

) = 1 if the number

of x
i

= 1 is odd. The Parity3+3 extends this concept to the parity of three bits and

uses a total of 12 attributes [103].

Monk3 is a typical problem of the artificial robot domain. The class label is defined

as (f5 = 3 ^ f4 =) _ (f5 6= 4 ^ f2 6= 3) [217].

SD1, SD2 and SD3 are 3-class synthetic datasets where the number of features

(around 4 000) is higher than the number of samples (75 equally split into three

classes) [218]. These characteristic try to reflect the problematic of microarray data.

They contain both full class relevant (FCR) and partial class relevant (PCR) features.
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FCR attributes serve as candidate biomarkers to distinguish all the cancer types, while

PCR discriminates subsets of cancer types. SD1 includes 20 FCR and 4 000 irrelevant

features. The FCR attributes are divided into two groups of ten, genes in the same

group are redundant. The optimal solution consists of any two relevant feature coming

from di↵erent groups. SD2 includes 10 FCR, 30PCR and 4 000 irrelevant attributes.

The relevant genes are split in groups of ten; the optimal subset should combine one

gene from the set of FCRs and three genes from the PCRs, each one from a di↵erent

group. Finally, SD3 contains only 60 PCRs and 4 000 irrelevant features. The 60

PCRs are grouped by ten, the optimal solution consists of six genes, one from each

group. Collectively, SD1, SD2 and SD3 will be referred as the SD datasets.

Madelon is a dataset used in the NIPS’2003 feature selection challenge [219]. The

relevant features represent the vertices of a 5-dimensional hypercube. 495 irrelevant

features are added either from a random gaussian distribution or multiplying the rel-

evant features by a random matrix. In addition, the samples are distorted by flipping

labels, shifting, rescaling and adding noise. The characteristic of Madelon is the pres-

ence of many more samples (2400) than attributes (500).

Name Attributes Samples Characteristics

CorrAL [216] 99 32 Corr.; F � S
XOR-100 [216] 99 50 N.L; F � S
Parity3+3 [103] 12 64 NL
Monk3 [217] 6 122 No.
SD1 [218] 4020 75 F � S
SD2 [218] 4040 75 F � S
SD3 [218] 4060 75 F � S
Madelon [219] 500 2400 N.L; No.

Table 4.1: Description of the synthetic datasets used in the experiments. Corr. stands
for correlation, N.L indicates nonlinearity, F� S is used for datasets where the number
of features is higher than the number of samples and No. represents noisy data.

Furthermore, two biological conditions (control and case) synthetic microarray datasets

were generated using themadsim R package [220]. Madsim is a flexible microarray data

simulation model that creates synthetic data similar to those observed with common

platforms. Twelve datasets were created using default parameters but varying in
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terms of number of attributes (5 000, 10 000, 20 000 and 40 000) and percentage

of up/down regulated genes (1%, 2% and 5%). Each dataset contained 100 samples

equally distributed in controls and cases.

Real-world datasets

RGIFE was evaluated using ten di↵erent cancer-related transcriptomics datasets, see

Table 4.2). These datasets represent a broad range of characteristics in terms of

biological information (di↵erent types of cancers), number of samples and number of

attributes (genes).

Name Attributes Samples

Prostate-Sboner [221] 6144 281
Dlbcl [166] 7129 77
CNS [167] 7129 60
Leukemia [94] 7129 72
Prostate-Singh [170] 12600 102
AML [171] 12625 54
Colon-Breast [172] 22283 52
Bladder [222] 43148 166
Breast [223] 47293 128
Pancreas [224] 54675 78

Table 4.2: Description of the real-world datasets used in the experiments.

4.2.4 Experimental design

4.2.4.1 Relevant features identification

The scoring measure proposed by Bolon et. al [103] was used to compute the e�cacy of

the di↵erent feature selection methods in identifying important features from synthetic

data. The Success index aims to reward the identification of relevant features and

penalise the selection of irrelevant ones:

Success Index = 100⇥
✓
R

s

R
t

� ↵
I
s

I
t

◆
;↵ = min

⇢
1

2
,
R

t

I
t

�

where R
s

and R
t

are the number of relevant features selected and the total number of

relevant features. Similarly, I
s

and I
t

represent the number of selected and the total

number of irrelevant features.
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4.2.4.2 Predictive performance validation

While CFS and the L1-based feature selection automatically identify the optimal set

of features, the other algorithms require to specify the number of feature to retain.

To obtain a fair comparison, this parameter was set to be equal to the number of

attributes selected by the RGIFE’s Union policy (as it generates by definition the

largest signature among the policies).

The most common metric to assess the performance of a feature selection method is

by calculating the accuracy when predicting the class of the samples. A typical n-fold

cross-validation scheme randomly divides the dataset D in n equally-sized disjoint

subsets D1, D2, ..., Dn

. In turn, each fold is used as test set while the remaining n� 1

are used as training set. If the folds are forced to maintain the original distribution of

the classes, the cross-validation is named as stratified. However, the stratified cross-

validation does not take into account the presence of similar samples (clusters) within

each class. This might lead to a distorted measure of the performances [30]. Dealing

with transcriptomics datasets that have a small number of observations (e.g. CNS has

only 60 samples), this distortion might also be be amplified. To avoid this problem,

the DB-SCV (Distributed-balanced stratified cross-validation) scheme was adopted

[31]. The original DB-SCV scheme was modified so that the residual samples are

randomly assigned to the folds. A dataset with m samples, when using a n-fold cross-

validation scheme has in total (m mod n) residual samples. By randomly assigning

the residual samples to the folds, rather than sequentially as in the proposed DB-

SCV, the validation schema can better estimate the predictive performance of unseen

observations. A 10-fold DB-SCV was employed within RGIFE (line 17-18) with N =

10, the model performance was estimated using the accuracy metric).

All the feature selection methods were tested using a 10-fold DB-SCV scheme. The

methods were applied to the training sets and the results (selected attributed) were

mirrored to the test sets. The predictive performance were assessed using four clas-

sifiers: Random Forest (RF), Gaussian Naive Bayes (GNB), Support Vector Ma-

chine (SVM) (with a linear kernel) and K-nearest neighbour (KNN). Each classifier

uses di↵erent approaches and criteria to predict the label of the samples, therefore
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the predictive performance of each method was tested in various classification scenar-

ios. The random forest uses an ensemble of decision trees to perform the prediction,

the SVM tries to define an hyperplane that maximises the distance between objects

of di↵erent classes, GNB is a naive bayes classifier that assume that the continuous

values associated with each class are distributed according to a Gaussian distribution.

Finally, the KNN classifies the instances by looking at the K closest neighbours. All

the classifiers were employed using the scikit-learn implementation with default pa-

rameters, except for the depth of the random forest trees, which was set to 5 to avoid

overfitting (given the relatively small number of attributes in each signature). The

stochastic nature of RF was addressed by generating ten di↵erent models for each

training set and defining the predicted class via a majority vote.

4.2.4.3 Biomedical relevance analysis of the signatures

The biomedical importance of the signatures, generated by di↵erent methods, was

validated using the Prostate-Singh dataset [170] as a case study. The biomedical

relevance was assessed examining the role of the signatures’ genes: in a cancer-related

context, in a set of independent prostate-related datasets and within a Protein Protein

Interaction (PPI).

Gene-disease associations To assess the relevance of the signatures within a

cancer-related context, it was checked whether their genes were already known to

be associated with a specific disease (G-D association). From the literature, it was

retrieved the list of genes known to be associated with prostate cancer. Two sources of

information were used: Malacards (a meta-database of human maladies consolidated

from 64 independent sources) [139] and the union of 4 manually curated databases

(OMIM [143], Orphanet [146], Uniprot [145] and CTD [144]). Using the number of

disease-associated genes included in the signatures, precision, recall and F-measure

were calculated. The precision is the fraction of genes that are associated to the

disease, while the recall is the fraction of disease-associated genes (from the original

set of attributes) included in the signature. Finally the F-measure is calculated as the

harmonic mean of precision and recall.
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Gene relevance in independent datasets The public prostate cancer databases

were searched to verify if the genes selected by the di↵erent methods are relevant also

in data that were not used for the inference of the signatures. Eight prostate cancer

related datasets were selected from the cBioPortal for Cancer Genomics [195]: SUC2,

MICH, TCGA, TGCA 2015, Broad/Cornell 2013, MSKCC 2010, Broad/Cornell 2012

and MSKCC 2014. The aim was to check if the selected genes were genomically altered

in the samples of the independent data. For each method and each independent

dataset, was calculated the average fraction of samples with genomic alterations for

the identified biomarkers. To consider the di↵erent size of each signature, the values

have been normalised across methods (i.e. divided by the number of selected genes).

Signature induced network A part of the validation of the signatures was based

on its analysis in a network context. Possible interactions between the genes selected

by RGIFE were assessed. To verify it, a signature induced network was generated

from a PPI network by aggregating all the shortest paths between all the genes in the

signature. If multiple paths existed between two genes, the path that overall (across

all the pairs of genes) was the most used was included. The paths were extracted from

the PPI network employed in [115] that was assembled from 20 public protein inter-

action repositories (BioGrid, IntAct, I2D, TopFind, MolCon, Reactome-FIs, UniProt,

Reactome, MINT, InnateDB, iRefIndex, MatrixDB, DIP , APID, HPRD, SPIKE, I2D-

IMEx, BIND, HIPPIE, CCSB), removing non-human interactions, self-interactions

and interactions without direct experimental evidence for a physical association.

4.3 Results

This section presents the analysis performed to evaluate the RGIFE heuristic. First,

RGIFE is compared with its original version proposed by Swan et al. Then, five well-

established approaches are used to benchmark RGIFE from both a computational and

a biomedical point of view. The comparison is performed analysing synthetic and

real-world (cancer-related transcriptomics) datasets. Finally, using a prostate cancer

dataset as a case study, the relevance of the biomedical knowledge associated with the

genes selected by RGIFE is assessed.
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4.3.1 Comparison with the original heuristic

The presented RGIFE heuristic is an extension of the work proposed in [208]. The

main substantial changes involved: the use of a di↵erent base classifier (from Bio-

HEL [39] to a random forest) and therefore a di↵erent attributes ranking criteria,

the adoption of di↵erent block size policy (from absolute to relative) and the employ-

ment of a more robust validation scheme within the reduction process (from LOOCV

to DB-SCV). Therefore, the first natural step for the validation of the new RGIFE

(RGIFE-RF) was to compare it to its original version, in here named RGIFE-BH. The

predictive performance of the signatures identified by the two versions were compared

using a 10-fold cross-validation. That is, calculating the accuracy of the attributes

selected from the training set when trying to predict the class of the test set samples.

In Figure 4.3 is shown the distribution of accuracies obtained using the 10 datasets

presented in Table 3.2. The accuracy of RGIFE-BH is calculated as the average of the

values obtained over three runs of RGIFE-BH (same number of executions employed

to identify the final models with RGIFE-RF). The predictive performance was assessed

with four di↵erent classifiers. Across di↵erent datasets and classifiers, RGIFE-BH per-

formed similarly or worse than the new proposed policies based on a random forest.

To establish whether the di↵erence in performance was statistically significant, the

Friedman rank based test was used followed by a Nemenyi post-hoc correction. This

is a well-known approach in the machine learning community when it comes to the

comparison of multiple algorithms over multiple datasets [225]. The Friedman test

is a non-parametric equivalent of the repeated-measures ANOVA to evaluate the sig-

nificance of di↵erences between multiple means (i.e. multiple classifiers). The ranks,

for all the tested classifiers, are provided in Table 4.3. The attributes selected by

RGIFE-BH performed quite well when using a random forest, while for the remain-

ing tested classifiers the performance were low. In particular, RGIFE-BH obtained

statistically significant worse results (confidence level of 0.05), compared with RGIFE-

Union, when analysed with the KNN classifier. Overall, the best new RGIFE policy

appears to be RGIFE-Union being ranked as first with all the tested classifiers except

with SVM-Linear, second best in that instance.
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Fig 4.3: Distribution of the accuracies, calculated using a 10-fold cross-validation, for
di↵erent RGIFE policies. Each subplot represents the performance, obtained with ten
di↵erent datasets, assessed with four classifiers.

It might be tempting to associate the better performance of the new heuristic with

the usage of a better base classifier. However, this is not the case as, when tested with

a standard 10-fold cross-validation (using the presented 10 transcriptomics datasets

with the original set of attributes), random forest and BioHEL obtained statistically

equivalent accuracies when using the Wilcoxon rank-sum statistic (a non-parametric

test which ranks the di↵erences in performances of two classifiers for each dataset and

compares the ranks). In fact, on average, the accuracy associated with the random

Classifier RGIFE-Min RGIFE-Max RGIFE-Union RGIFE-BH

Random Forest 3.15 (4) 2.60 (3) 1.85 (1) 2.40 (2)
SVM-Linear 3.10 (4) 1.60 (1) 2.40 (2) 2.90 (3)
Gaussian naive bayes 2.70 (3) 2.65 (3) 1.75 (1) 2.90 (4)
KNN 2.70 (3) 2.20 (2) 1.80 (1) 3.30 (4)*

Table 4.3: The average performance ranks obtained by each RGIFE policy across the
ten datasets using four classifiers. The highest ranks are shown in bold. * indicates
statistically worse performance.
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forest was only higher by 1.62 when compared to the performance of BioHEL. The

accuracies obtained by the methods are presented in Table 4.4.

Dataset Random Forest BioHEL

Prostate-Sbo. 74.0 ± 02.3 74.9 ± 03.1
Dlbcl 59.7 ± 19.1 55.3 ± 17.1
Leukemia 98.6 ± 04.3 94.6 ± 06.9
CNS 63.7 ± 11.7 64.5 ± 11.6
AML 68.7 ± 15.8 62.5 ± 11.7
Prostate-Singh 91.3 ± 10.3 91.4 ± 08.3
Pancreas 89.8 ± 05.1 87.3 ± 06.2
Bladder 80.6 ± 02.1 80.0 ± 02.8
Colon-Breast 94.7 ± 11.1 92.7 ± 12.4
Breast 86.0 ± 07.1 87.7 ± 07.9

Table 4.4: BioHEL and random forest classification accuracy for each dataset calcu-
lated using a 10-fold cross-validation with the original set of attributes.

Afterwards, the number of attributes selected by di↵erent RGIFE policies were con-

trasted when using di↵erent datasets. Figure 4.4 provides the average number of

attributes selected, across the folds of the cross-validation, by the original and the

new proposed version of RGIFE. The attributes associated with RGIFE-BH are av-

eraged across its three di↵erent executions. In each of the analysed dataset, the new

version of the heuristic was able to obtain a smaller subset of predictive attributes

while providing higher accuracies. The better performance of the new heuristic is

likely the result of the less aggressive reduction policy introduced by the relative block

size. By removing chunks of attributes whose sizes are proportional to the volume

of the dataset being analysed, the heuristic is more prone to improve the predictive

performance across iterations. Moreover, by guaranteeing more successful iterations,

a smaller set of relevant attributes can be identified. The di↵erence is particularly

evident when analysing the largest datasets (in Figure 4.4 the datasets are sorted by

increasing size).

Random forest is a faster classifier than BioHEL that is based on evolutionary learning.

Thus, when comparing the execution time required by the new version of RGIFE and

its original form, a huge improvement could be noticed. In Figure 4.5 are reported the

average number of seconds, across the three executions of RGIFE for the 10-fold cross-
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Fig 4.4: Comparison of the number of selected attributes by di↵erent RGIFE policies.
For each dataset is reported the average number of attributes obtained from the 10-fold
cross-validation together with the standard deviation.

validation experiments, required to select the optimal biomarker set. Across datasets of

di↵erent size, in terms of number of attributes and samples, the new implementation

of RGIFE is always at least 100 times faster than the heuristic based on BioHEL.

The largest boost in performance was seen when analysing the Colon-Breast dataset.

The di↵erences, in execution time, seems to become slightly milder as the number of

attributes in the datasets increase.

Overall, the changes introduced in the proposed version of RGIFE greatly improved its

performance in terms of: computational time, number of selected attributes, predictive

ability of the generated signatures.

4.3.2 Analysis of the RGIFE iterative reduction process

RGIFE is an iterative reduction heuristic where each iteration ends with two possible

outputs: the predictive performance is either better/equal, compared to the reference

iteration, or worse. Because of this, it is possible to visualise the behaviour of the whole
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Fig 4.5: Comparison of the execution time (measured in seconds) between the original
(RGIFE-BH) and the improved (RGIFE-RF) version of the heuristic. For each dataset
is reported the number of seconds, from the 10-fold cross-validation tests, together with
the standard deviation, required to identify the best performing attributes. The timing
associated to each fold was calculated as the average across three di↵erent executions
of RGIFE.

reduction process graphically. In Figure 4.6 it is illustrated the application of RGIFE

to two datasets: Breast [223] and AML [171]. The plot shows the reduction process

generated from three di↵erent runs of RGIFE to obtain the biomarker signature. A

di↵erent colour represents a di↵erent output for the iteration: green and blue show

an improvement (or equality) of the performance, blue is used when the removed

attributes had not the lowest attribute importance (were not the bottom ranked).

Red indicates a decrease in predictive performance, while a yellow square marks the

identification of a soft-fail (a past iteration that su↵ered a small drop in performance).

RGIFE looks for soft-fails if all the attributes have been tested (e.g. iteration 9 on

Run 1 for AML) or there are five consecutive decreases in performance (e.g. iteration

41 on Run 3 for AML).
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The Figure 4.6 shows the presence of several yellow marks, this is likely the result of

the new strategies introduced to let the heuristic working with smaller data. In fact,

di↵erently than the original version, RGIFE now additionally performs a search for

soft-fails before the block size is reduced. Furthermore, the iterations evaluated for the

presence of a soft-fails are not anymore limited to the past five trials (as in the original

version), but are extended up to the reference one (or the last trial in which a soft-fail

was found). In many cases, after a soft-fail, RGIFE was able to produce smaller models

with higher predictive capacity (e.g. iteration 37 on Run 1 and iteration 19 on Run

2 for Breast). Figure 4.6 also helps in highlighting the importance of restoring blocks

of attributes back after an unsuccessful trial, which is an integral and novel part of

RGIFE but not used in similar methods such as SVM-RFE. Across iterations, in both

datasets, many blue squares are visible and indicate an increase of performance when

the removed attributes were not the last ranked (lower attribute importance). Most

of the methods based on an iterative reduction paradigm only remove the bottom

placed features, however, as shown in Figure 4.6, discarding higher ranked features

might lead to a better predictive model (e.g. iteration 14 on Run 1 for Breast). The

examples just provided have emphasised the key role played by two of the main novel

features introduced by the RGIFE heuristic: (a) the relevance of placing back features

whose removal negatively a↵ects the overall performance and (b) the importance of

the soft-fail and its ability to drive the reduction process towards an easier and simpler

solution.

4.3.3 Identification of relevant attributes in synthetic datasets

A large set of synthetic data was used to assess the ability of each method to identify

relevant features in synthetic datasets. The Success Index was used to determine the

success of discarding irrelevant features while focusing only on the important ones.

Table 4.5 reports a summary of this analysis, the values correspond to the average

Success Index obtained when using a 10-fold cross-validation. The last rows report

the average Success Index and rank across the di↵erent datasets. The higher the

Success Index, the better the method, 100 is its maximum value. In Section B.1 of
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Appendix B are reported the accuracies of each method using four di↵erent classifiers.

Dataset RGIFE-Min RGIFE-Max RGIFE-Union CFS ReliefF SVM-RFE Chi-Square L1

CorrAL 59.93 (8) 77.11 (5) 87.07 (1) 84.57 (2) 72.04 (6) 64.53 (7) 82.06 (4) 84.11 (3)
XOR-100 89.99 (1) 79.88 (3) 89.88 (2) 24.72 (6) 49.86 (5) 14.84 (7) 9.84 (8) 79.30 (4)
Parity3+3 44.44 (3.5) 44.44 (3.5) 76.67 (1.5) -5.93 (6) 76.67 (1.5) -15.93 (8) -8.52 (7) 5.56 (5)
Monk3 84.17 (2.5) 84.17 (2.5) 84.17 (2.5) 62.50 (6) 84.17 (2.5) N/A 59.17 (7) 73.33 (5)
Madelon 59.98 (5) 77.98 (4) 87.97 (3) 17.99 (8) 89.97 (2) 23.97 (7) 39.97 (6) 99.01 (1)

Average 67.70 72.72 85.15 36.77 74.54 21.85 36.50 68.26
Average Rank 4.0±2.7 (5) 3.6±1.0 (3.5) 2.0±0.8 (1) 5.6±2.2 (6) 3.0±2.0 (2) 7.3±0.5 (8) 6.4±1.5 (7) 3.6±1.7 (3.5)

Table 4.5: Average Success Index calculated using a 10-fold cross-validation. In brack-
ets are reported the rank of each method. The last row reports the average Success
Index and rank across the five datasets. The highest indexes are shown in bold. N/A
is used for SVM-RFE when analysing the Monk3 dataset as the method cannot deal
with categorical attributes.

RGIFE-Union is the method with the highest average Success Index, followed by

RGIFE-Max and ReliefF. The Union policy clearly outperforms the other methods

when analysing the Parity3+3 and the XOR-100 datasets. Overall, SVM-RFE seemed

unable to discriminate between relevant and irrelevant features. Low success was also

observed for CFS and Chi-Square. For the analysis of the SD datasets [218] are

reported measures that are more specific for the problem. The SD datasets are char-

acterised by the presence of relevant, redundant and irrelevant features. For each

dataset, Table 4.6 includes the average number of: selected features, features within

the optimal subset, irrelevant and redundant features.

Dataset Metrics RGIFE-Min RGIFE-Max RGIFE-Union CFS ReliefF SVM-RFE Chi-Square L1

SD1

Selected 113.3 253.6 289.5 24.3 289.5 289.5 289.5 144.2
OPT(2) 0.2 0.8 0.9 1.5 2.0 2.0 1.7 2.0
Redundant 0.0 2.7 2.7 0.3 9.0 8.7 5.4 5.3
Irrelevant 114.1 248.4 284.2 23.1 270.5 271 278.5 132.6

SD2

Selected 103.4 279.7 319.4 23.1 319.4 319.4 319.4 137.1
OPT(4) 0.6 1.1 1.2 2.7 3.9 4.0 2.8 4.0
Redundant 0.6 2.4 2.6 0.1 9 8.9 3.6 3.5
Irrelevant 102.6 271.4 310.4 20.7 281.4 281.4 301.8 117.9

SD3

Selected 114.6 284.3 337.3 24.4 337.3 337.3 337.3 143.4
OPT(6) 1.0 2.6 3.8 3.4 4.8 4.2 3.5 6.0
Redundant 1.0 4.1 6.1 0.1 9.0 4.0 7.4 3.5
Irrelevant 113.2 267.8 312.9 21.1 292.0 306.6 309.2 119.2

Table 4.6: Summary of the analysis on the SD datasets. The values are averaged from
a 10-fold cross-validation. OPT(x) indicates the average number of selected features
within the optimal subset.

The L1-based feature selection was the only method always able to select the mini-

mum number of optimal features, however it also picked a large number of irrelevant
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features. On the other hand, CFS was capable of avoiding redundant and irrelevant

features while selecting a high number of optimal attributes. ReliefF, SVM-RFE and

Chi-Square performed quite well for SD1 and SD2, but not all the optimal features

were identified in SD3. The RGIFE policies performed generally poorly on the SD

datasets. Among the three policies, RGIFE-Union selected the highest number of op-

timal features (together with a large amount of irrelevant information). Despite that,

the number of redundant features was often lower than methods which selected more

optimal attributes. Interesting, when analysing the accuracy obtained by each method

(reported in Section B.1 Appendix B), it can be observed that the attributes selected

by RGIFE-Union, although not completely covering the optimal subsets, provide the

best performance for SD2 and SD3 (with random forest and GNB classifier). Finally,

Table 4.7 shows the results from the analysis of the data generated with madsim [220].

The values have been averaged from the results of the data containing 1%, 2% and

5% of up/down regulated genes. Di↵erent from the SD datasets, there is not an opti-

mal subset of attributes, therefore only the average number of relevant and irrelevant

(not up/down-regulated genes) features are reported. The accuracies of each method

(available in Section B.1 of Appendix B) were constantly equal to 1 for most of the

methods regardless the classifier used to calculate them. Exceptions are represented by

RGFE-Max, RGIFE-Min and Chi-Square. All the RGIFE policies performed better

than CFS and L1 in terms of relevant selected attributes. Few up/down regulated at-

tributes, compared with the dozens of the other two methods, were enough to obtain a

perfect classification. In addition, RGIFE never used irrelevant genes in the proposed

solutions. The other methods, whose number of selected attributes was set equal to

that used by RGIFE-Union, performed equally well.

Overall, the analysis completed using synthetic datasets highlighted the ability of

RGIFE, in particular of RGIFE-Union, to identify important attributes from data

with di↵erent characteristics (presence of noise, nonlinearity, correlation, etc.). Good

performance was also reached from data similar to microarray datasets (madsim).

On the other hand, the SD datasets led to unsatisfactory RGIFE results. This can

be attributed to the low number of samples (only 25) available for each class that
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can generate an unstable internal performance evaluation (based on a 10-fold cross-

validation) of the RGIFE heuristic.

Attributes Metric RGIFE-Min RGIFE-Max RGIFE-Union CFS ReliefF SVM-RFE Chi-Square L1

5 000
Rel. 1.0 1.2 2.7 54.9 2.7 2.7 2.7 18.4
Irr. 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0

10 000
Rel. 1.0 1.5 3.1 68.4 3.1 3.1 3.1 22.1
Irr. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 000
Rel. 1.0 1.3 3.2 96.4 3.2 3.2 3.2 29.2
Irr. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

40 000
Rel. 1.0 1.5 3.5 133.8 3.5 3.5 3.5 28.2
Irr. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.7: Summary of the analysis on the madsim datasets. The values represent the
average from the analysis of data containing 1%, 2% and 5% of up/down-regulated
genes. For each set of data are reported the average number of relevant (up/down-
regulated) and irrelevant attributes (from a 10-fold cross-fold validation).

4.3.4 Comparison of the predictive performance with other
feature selection methods

Having established the better performance provided by the presented heuristic com-

pared with its original version, and encouraged by the results obtained using synthetic

datasets, RGIFE was evaluated with real-world biomedical data. For each dataset and

base classifier, the accuracy of the biomarker signatures generated by each method

was calculated. Then, the methods were ranked in ascending order (the higher the

rank, the higher the accuracy). Table 4.8 reports all the resulting accuracies and the

ranks (in brackets), the last column shows the average rank across the datasets. With

3 out of 4 classifiers, the presented heuristic was the first ranked (1 RGIFE-Max, 2

RGIFE-Union). ReliefF was the first ranked when evaluated with random forest (RF),

while it performed quite poorly when using SVM. Similarly, RGIFE-Max was first and

second ranked respectively with SVM and KNN, while it was the second and the third-

worse with RF and gaussian naive bayes (GNB). In general, as already deducted from

Table 4.3, RGIFE-Union is the best performing policy in terms of predictive capac-

ity being ranked as first when tested with KNN and GNB. Conversely, RGIFE-Min

constantly performed badly across di↵erent classifiers and datasets. To statistically

compare the performances of the methods, the Friedman test was used again. In all

the four scenarios there was no statistical di↵erence in the performances of the tested
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methods. The only exception was ReliefF (first ranked) that statistically outperformed

RGIFE-Min when using random forest (confidence level of 0.05).

4.3.5 Analysis of the signatures size

The size (number of the selected attributes) of the signatures generated by the RGIFE

policies, CFS and the L1-based feature selection were compared. With methods such

as ReliefF or SVM-RFE, the comparison is meaningless because the number of the

selected features is a parameter that needs to be set up-front. The results, dataset

by dataset, are shown in Figure 4.7. Each bar represents the average number of

chosen features across the ten training sets of the cross-validation process described in

Section 4.2.4.2. There is a clear and remarkable di↵erence in the number of selected

attributes by RGIFE and CFS, this is extreme in datasets such as Colon-Breast and

Pancreas. The L1-based feature selection performed quite badly when applied to the

smallest dataset (Prostate-Sboner). A large standard deviation can be noticed in the

Leukemia dataset. This is due to a large signature (around 500 attributes) identified by

RGIFE. This large number of attributes is associated with an early stopping condition

reached by RGIFE (the block size was reduced too soon due to the impossibility to

improve the performance of the reference iteration). As expected, the best performing

policy is RGIFE-Min. When applying the Friedman test to the average signature

size of the methods, RGIFE-Min and RGIFE-Max were statistically better than CFS

and the L1-based approach with a confidence level of 0.01. Moreover, RGIFE-Min

also statistically outperformed RGIFE-Union. Although the Union policy did not

statistically outperform the other two methods, the results in Figure 4.7 show how it

consistently selected fewer features.

4.3.6 Biomedical relevance of the signatures

When feature selection is applied to biomedical data, with the aim of discovering

new biomarkers, the signature not only has to be small and highly predictive, but

it also needs to contain relevant features. In this analysis, dealing with cancer tran-

scriptomics datasets, it was necessary to assess if the selected genes are relevant in a

disease/biological context. This goal was achieved using the Prostate-Singh dataset
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Fig 4.7: Comparison of the number of selected attributes by the RGIFE policies,
CFS and L1-based feature selection. For each dataset is reported the average number
of attributes obtained from the 10-fold cross-validation together with the standard
deviation.

[170] as a case study. In the first part of this section, RGIFE is compared with the

other methods, while later on, the focus is set on the signature generated by RGIFE-

Union (the best performing policy). The signatures identified by each method are

available in the Section B.2 of Appendix B.

Gene-disease association analysis

A similar approach to the analysis performed for the evaluation of FuNeL (Sec-

tion 3.2.6) was used to assess the relevance of the signatures in a disease context.

While in Chapter 3 the disease-associated genes were employed to analyse their rela-

tionship within FuNeL networks, in this section their presence within the signatures

is evaluated. More specifically, it was assessed how many of the signature genes were

already associated with prostate cancer. Precision, recall and F-score were calculated

for each signature (see Section 4.2.4.3) using the information from two di↵erent sources

(Malacards and manually curated data). The higher those metrics are, the better a

feature selection algorithm performs as it can identify the relevant disease-associated
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genes from the large set of original attributes. Figure 4.8 shows the performances for

all the signatures generated in the case study.

Fig 4.8: Analysis in a disease-context of the signatures selected by the methods. The
G-D associations were retrieved from two di↵erent sources. Each metric is referred to
the number of disease-associated genes available in the signatures.

When using the curated sources for the associations, RGIFE-Union had the higher

precision followed by Chi-Square and RGIFE-Min. The other methods performed

similarly except for SVM-RFE. High precision means that several genes selected by

RGIFE-Union are already known to be relevant in prostate cancer. The recall was in

general low for every method and was the highest for the L1-based feature selection

(which also generates the largest signatures). Likewise, L1-selected attributes provided

the largest F-measure, while similar values emerged for CFS and RGIFE-Union. The

remaining approaches all scored low values. Using Malacards, and contrasting the

performance with the curated analysis, SVM-RFE had higher precision, while similar

(RGIFE-Min and ReliefF) or worse performances were obtained by the other methods.

An important decrease was noticed for the L1-based feature selection and Chi-Square.

Recall and F-measure did not vary a lot. In general, RGIFE policies tended to have

higher or similar precision than the compared methods. RGIFE-Union provided overall

the best results outperforming SVM-RFE, ReliefF and Chi-Square, its signature had
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higher precision than CFS and L1 that, on the other hand, obtained higher recall

(helped by the large number of selected attributes) and F-measure. RGIFE-Max and

RGIFE-Min o↵ered reasonable precision values while having a low recall; this is likely

the result of the small set of attributes identified by the two policies.

Genomic alteration of the signatures in independent datasets

The genes selected by each method were checked if relevant in prostate cancer-related

data that were not used during the learning process. The genomic alterations (muta-

tion, deletion and amplification) of each signature were analysed in eight independent

data, available from the cBioPortal [195]. The alterations averaged across the genes of

the signatures are reported, dataset by dataset, in Figure 4.9. The L1-based feature se-

lection method was excluded from this analysis as it generated a signature larger than

the limit of 100 genes allowed for the queries in cBioPortal. To take into account the

di↵erent size (number of attributes) of each signature, the percentages of alterations

have been normalised. The methods are ranked by the increasing percentage of alter-

ation (the same colours are used in di↵erent datasets). The bottom-right plot shows

the average rank of each method across all the datasets (higher rank means higher al-

teration). The two methods selecting genes that are highly altered in independent data

are SVM-RFE and RGIFE-Union, with the last one clearly outperforming the others in

SUC2, TGCA 2015 and Broad/Cornell 2013. Among the other algorithms, RGIFE-

Max and CFS perform quite badly, overall they are the bottom ranked, while the

remaining methods obtained similar performances. This analysis shows that RGIFE-

Union selects genes that are not only highly predictive in the analysed dataset but

also are largely altered in datasets, containing samples that are a↵ected by the same

disease, not used during the learning process.

In the next sections, the focus will be on the analysis of the signature generated by the

RGIFE-Union policy (the best performing). The selected signature consists of 21 genes:

ANXA2P3, TGFB3, CRYAB, NELL2, MFN2, TNN, KIAA1109, PEX3, ATP6V1E1,

HPN, HSPD1, LMO3, PTGDS, SLC9A7, SERPINF1, KCNN4, EPB41L3, CELSR1,

GSTM2, EPCAM, ERG.
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Fig 4.9: Normalised genomic alteration percentages of the signatures inferred for the
case study. The alterations refer to the samples available from eight prostate cancer
related datasets. The bottom-right plot shows the average ranks across the datasets.
Higher rank indicates higher average alterations. The abbreviations and the colors for
the plots are defined in the legend of the central subplot.

Gene-disease association from the specialised literature

The specialised literature was used to verify if the genes of the RGIFE signature are

already associated with prostate cancer. Interestingly, many of them seem related to

prostate cancer. Just to cite few examples:

• NELL2 is an indicator of expression changes in prostate cancer samples [188],

it also contributes to alterations in epithelial-stromal homeostasis in benign pro-

static hyperplasia and codes for a novel prostatic growth factor [187].

• ANXA2P3 (annexin II) was di↵erentially expressed in prostate carcinoma sam-

ples from USA and India [226].

• TGFB3 is expressed in metastatic prostate cancer cell lines and induces the

invasive behaviour in these cell [227].
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• CRYAB expression values can be used to discriminate between cancerous and

non-cancerous prostatic tissues [228]

• HSPD1 was part of a four gene expression signature to detect Gleason grade 3

and grade 4 cancer cells in prostate tissue [229].

• EPB41L3 has a potential role as a target for treatment of advanced prostate

cancer [230].

Afterwards, an enrichment analysis was performed on the RGIFE-Union signature.

The enrichment analysis is a statistical-based method to assess if a set of genes share

common biological characteristics. The analysis was conducted with the PANTHER

classification system [175]; the knowledge base consisted of the PANTHER pathways:

a set of 176 primarily signalling pathways. Four pathways resulted statistically (con-

fidence value of 0.05) overrepresented in the signature:

• Heterotrimeric G-protein signalling pathway-rod outer segment phototransduc-

tion (P00028)

• B cell activation (P00010)

• T cell activation (P00053)

• Heterotrimeric G-protein signalling pathway-Gi alpha and Gs alpha mediated

pathway (P00026)

Their role in prostate cancer appear to be relevant from the specialised literature. In

particular, the family of heterotrimeric proteins is involved in prostate cancer invasion

[231] and the (G protein)-coupled receptors (GPCRs) may contribute to tumour growth

[232]. B-cells are increased in prostate cancer tissues according to a research by Woo

et al. [233] and lymphotoxin derived by those cells can promote castration-resistant

prostate cancer [234]. Finally, chimeric antigen receptor-engineered T cells have the

potential to be used for the treatment of metastatic prostate cancer [235].
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Signature induced network

As a further validation for the RGIFE heuristic, a signature induced biological network

(see the section 4.2.4.3 for details) was studied. The aim was to check the relationships

among the signature genes in a PPI network context. The network generated using

the RGIFE-Union genes resulted in 93 nodes and 190 edges, see Figure 4.10. The

network was tested for biological enrichment, that is if the nodes share some biological

characteristics, using two di↵erent tools: ClueGO [236] and EnrichNet [128].

Fig 4.10: The network generated by aggregating all the shortest paths, between the
genes of the RGIFE-Union signature, selected from the PPI networks employed in
[115].

ClueGO is a Cytoscape plug-in that visualises the non-redundant biological terms

for groups of genes in a functionally grouped network. KEGG pathways were used

as the biological knowledge base. The result of the enrichment analysis for the nodes

of the signature induced network is shown in Figure 4.11, only pathways that are

statistically enriched (p-value < 0.05) are reported. The edges between nodes represent

the relationship between terms based on their shared genes. The size of the node

reflects the enrichment significance of the node, while the colour gradient shows the
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Fig 4.11: Graphical visualisation of the enrichment terms (KEGG pathways found
by ClueGO) associated to the signature induced network nodes. Edges represent the
relationship between terms based on their shared genes. The size of the node indicates
the enrichment significance, the colour gradient is proportional to the genes associated
with the term. Only terms enriched with p-value < 0.05 are shown.

gene proportion of each cluster associated with the term. One of the highest enriched

terms is pathways in cancer, this further confirms the role of the selected genes in

a cancer context. Among many cancer-related terms, the presence of the prostate

cancer pathway is particularly relevant as the signature was inferred from prostate

cancer data. Finally, MAPK is a further pathway already associated, in the literature,

with prostate cancer [237].

EnrichNet The signature induced network was also validated with an enrichment

tool that uses a di↵erent approach than ClueGO. EnrichNet is a gene set analysis
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Pathway/process

hsa05210:Colorectal cancer
hsa05216:Thyroid cancer
hsa05213:Endometrial cancer
hsa05212:Pancreatic cancer
hsa05219:Bladder cancer
hsa05220:Chronic myeloid leukemia
hsa04520:Adherens junction
hsa05130:Pathogenic Escherichia coli infection
hsa05020:Prion diseases

Table 4.9: Enriched KEGG pathways (with statistically significant XD-score) identified
by EnrichNet.

tool that combines network and pathway analysis methods. It maps gene sets onto

an interaction network and, using a random walk, scores distances between genes

and pathways (taken from a reference database). The XD-score is a network-based

association score relative to the average distance to all pathways. The list of pathways

with a statistical significant XD-score (using the STRING network as background

PPI) is reported in Table 4.9. Several types of cancer are associated with the induced

network, among them it appears colorectal cancer that, according to Malacards, is

linked with prostate cancer. Within the list of terms with a significant overlap with

the pathways (not reported here) also emerges the prostate cancer pathway.

4.4 Discussion

This chapter presented and thoroughly analysed RGIFE: a ranked guided iterative

feature elimination heuristic that aims to select small sets of highly predictive features

from biomedical datasets. The main di↵erences between RGIFE and other iterative

reduction algorithms are: (1) the presence of a back-tracking step that allows to “place

back” the features when their removal causes a decrease in the classification perfor-

mance, (2) the optimal number of selected features is automatically identified rather

than being specified up-front and (3) the presence of soft-fails (iterations accepted if the

classification performance drops within a tolerance level). To cope with the stochastic

nature of RGIFE, three di↵erent policies have been proposed (RGIFE-Union, RGIFE-

Min and RGIFE-Max) to select the final signature. The evaluation of RGIFE has been
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performed using ten cancer-related transcriptomics datasets together with a large set of

synthetic data. In addition, RGIFE was contrasted with five other methods commonly

used to find new biomarkers.

The presented heuristic is an improvement of the original method proposed by Swan

et al. [208]. The heuristic has gone under substantial changes to address the problems

of the original version, mainly its large computational time and the high probability

of incurring in local optimum solutions. The major changes implemented in this new

version include: the use of a di↵erent base classifier (from BioHEL to a random for-

est), a dynamic selection of the number of attributes to remove at each iteration, an

extended search and usage of the soft-fails and a more robust validation scheme to

be used within the heuristic. The updated RGIFE version outperformed the original

method in terms of: prediction accuracy, number of selected attributes and computa-

tional time. Better prediction accuracy and a smaller number of selected attributes

are likely the results of both the new relative block size criteria and the extended usage

of soft-fails. With these new features, the heuristic performs a less greedy attribute

filtering, analyses smaller set of data and identifies simpler solutions in an easier way.

The relative block size leads to a less greedy search in the feature space, it requires

more iterations to determine the optimal signature, but avoid getting stuck at a local

optimum. The improved behaviour can be explained looking at cases when large

chunks of attributes are removed. When this happens, it is likely that the reference

performance does not improve as a lot of information (attributes) is not considered.

Consequently, due to many consecutive unsuccessful iterations, the shrinking of the

block size might occur too fast and result in a large final set of predictive attributes,

as shown in Figure 4.4. This can be avoided by iteratively reducing the number of

attributes to be removed (relative block size).

The ability of RGIFE to identify relevant attributes was tested using many di↵erent

synthetic datasets. RGIFE-Union clearly outperformed the other five feature selec-

tion methods in the analysis of synthetic dataset with di↵erent characteristics: noise,

nonlinearity, correlation, etc. The heuristic was proven good in selecting relevant fea-

tures while discarding irrelevant information. The other two policies performed slightly

worse but in line with the other methods. When analysing datasets that aim to reflect
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the problematics of microarray data, opposite results were obtained. Compared with

CFS and L1-based feature selection, the RGIFE policies constantly selected fewer rel-

evant attributes (up/down-regulated genes), while producing a perfect classification,

when applied to the madsim data [220]. On the other hand, poorer performance were

obtained by RGIFE in the analysis of the SD datasets [218]. The bad results of RGIFE

are likely to be associated with the low number of samples (25 for each of the three

classes) available in the SDs datasets. When dealing with only a few samples, both

the predictive performance and the attribute importance, used by RGIFE to evaluate

feature subsets, become unstable. Noisy attributes are misinterpreted as relevant and

eventually are chosen in the final solution. In addition, the problem of the small num-

ber of instances was also amplified by the double cross-validations: external to assess

the performance of each method and internal in RGIFE to estimate the goodness of

the feature sets. However, quite interesting, the accuracy provided by the RGIFE se-

lected attributes, when determined with a random forest and a Gaussian Naive Bayes

classifier, was the best for SD2 and SD3.

When RGIFE was compared with the other approaches, using the real-world datasets,

no statistical di↵erence was found in the predictive performance. While the Union and

Max policies had similar results, RGIFE-Min clearly had worse accuracy performance.

This poor behaviour probably is caused by the extremely small number of selected

attributes (up to 15 and 18 times lower if compared with RGIFE-Max and RGIFE-

Union respectively). In the context of biomarker discovery, a suitable method needs

to minimise the number of proposed attributes while maintaining good predictive

performance. RGIFE-Min seems to over-reduce the number of attributes and lead

to low predictive performance. On the other hand, when contrasting the number of

selected attributes by the RGIFE policies, CFS and the L1-based feature selection,

a clear di↵erence emerged. All the three policies selected fewer features than the

other two approaches, for RGIFE-Max and RGIFE-Min this di↵erence was statistically

significant. RGIFE-Union did not statistically outperform CFS and L1, however, for

most of the tested dataset, it selected far fewer features, in particular for datasets

with larger numbers of attributes. This is likely a consequence of the RGIFE iterative

process that is totally di↵erent from the other approaches. The importance within
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the classification task is used to identify features not helpful in the discrimination

of the samples that could be removed. This leads to a final solution that provides

high performance while using fewer attributes. Furthermore, in this context the soft-

fail also plays an important role because by accepting a small degrade in performance

during the learning phase, more attributes are discarded while a good predictive power

is maintained.

Good predictive performance is not enough when proposing a biomarker discovery

method, a biological and clinical validation is fundamental. For this purpose, a prostate

cancer dataset was used. The specialised literature and the enrichment analysis per-

formed with PANTHER supported the evidence that the genes chosen by the best

performing policy (RGIFE-Union) are relevant in prostate cancer. The relevance in

a disease context was further confirmed when using the gene-disease associations re-

trieved from di↵erent sources.

With RGIFE, attributes appear in the final model because their (combined) removal

causes a drop in predictive performance. Therefore, the biomedical validation suggests

that sets of attributes that together are computationally important (because with

their values correct predictions can be made) are also key factors from a biomedical

point of view. This might be obvious for an univariate approach where a gene, whose

regulation is a↵ected by a disease, will be selected because its expression values will

greatly di↵er between controls and cases. On the other hand, when using a multivariate

approach, as within RGIFE, such findings were not obvious at the beginning. Overall,

the combination of multiple factors, which lead to the correct prediction, seems to

reflect the complex role they play in the biomedical condition.

The analysis of the genomic alterations in independent tumour samples (prostate can-

cer datasets from cBioPortal [195]) showed that RGIFE-Union and SVM-RFE pick

genes that are highly altered. A great average alteration in samples not used in the

learning process demonstrates that RGIFE selects genes that are not exclusively tied

to the training dataset, but that are potentially informative for the disease. CFS, by

definition, selects attributes that are highly correlated with the class label but low cor-

related with each other. The performed analysis suggests that uncorrelated attributes

in one dataset tend to not be altered in independent data. This may hint at the ability
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of RGIFE in select genes that are less “tied” to the training data and shows a more

general importance for the disease. However, further analysis using other datasets

(and other types of cancer) need to be performed to confirm this suggestion.

Among the five tested feature selection methods, Chi-Square is the only univariate

one, the remaining methods (RGIFE included) are multivariate. RGIFE-Union regu-

larly outperformed Chi-Square in terms of prediction accuracy, disease-relevance and

independent data analysis. These suggest that a simple univariate approach is not

enough when dealing with high-dimensional data. As already mentioned, biologi-

cal and biomedical conditions are often the product of multiple factors that inter-

act/cooperate together. Therefore, by looking at single entities (one at the time)

complex interactions are missed, is then di�cult to obtain good results both in predic-

tion and in biomedical terms and provide reliable biomarkers. Driven by these findings,

a multivariate approach is recommended when studying biomedical data that reflect

complex conditions.

From a computational point of view, RGIFE is a heuristic for the identification of

biomarkers that: (1) performs as good as the compared feature selection methods

and (2) consistently selects fewer attributes. From a biomedical perspective, RGIFE

extracts genes that: (1) share common biological characteristics and are enriched for

pathways important from a clinical point of view, (2) are relevant in a disease context

according to both the specialised literature and two di↵erent sources of G-D asso-

ciations and (3) are highly altered in related independent datasets not used for the

signature identification process. Altogether, the presented heuristic is a useful and

powerful tool for the identification of small predictive sets of biomarkers. RGIFE-

Union was found to be the best RGIFE policy leading to good predictive accuracy and

relevant biomarkers. However, RGIFE-Min could result useful when lower predictive

performance can be tolerated in favour of an extremely small number of biomarkers

(more suitable to test with in vitro / in vivo experiments).

In the next section some future ideas, on how to improve the discovery process, will

be presented.
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4.5 Future work

One of the main advantages of RGIFE is its extreme flexibility in terms of attribute

ranking and estimation of the predictive power of the biomarker signatures. In the pre-

sented analysis, RGIFE uses a random forest classifier coupled with the gini impurity

as metric of the feature importance. However, many other classification algorithms

can be employed. In fact, from a purely technical point of view, it is extremely easy to

switch from a random forest to a single decision tree or a gradient boosting classifier

(or any other classifier implemented in scikit-learn that provides an attribute impor-

tance score). This requires the modification of a single line of code. Therefore, the

performances and the complementarity of di↵erent classifiers and feature importance

metrics could be tested. Furthermore, given that a regression classifier can be em-

ployed as a part of the RGIFE heuristic, it would be possible to apply it to regression

problems such as time-series data, common in biomedicine.

In Section 4.3.5, and more specifically in Figure 4.7, RGIFE is shown to be really

excellent at identifying small panels of biomarkers. However, the standard deviation

of the number of selected features remains large for some datasets. This is particu-

larly evident in the case of the Leukemia [94] dataset, where, one of the three runs

of RGIFE selected around 500 predictive attributes. This is the result of an early

stopping condition reached by RGIFE. It happens when the reference performance

cannot be matched for many consecutive iterations and no soft-fails are present. A

large number of unsuccessful trials leads to a fast decrease of the block size and in

consequence to an early stop. A possible solution to this problem could be a dynamic

configuration of the base classier tailored to the dataset being analysed (e.g. the num-

ber of attributes). In the performed experiments, the random forest (base classifier)

had a fixed configuration (i.e. 3000 trees, unlimited depth of the decision trees, etc.).

However, for di↵erent dataset sizes, di↵erent random forest configurations might per-

form better. An implementation of RGIFE that automatically adjusts the parameters

of its base classifier could solve the problems of the early stop. Nonetheless, this would

require a large number of samples, with which a parameter tuning could be performed.

Unfortunately, this is a rare circumstance when dealing with biomedical data.
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The replacement of BioHEL with a faster base classifier (random forest) have led to

a substantial decrease in the computational cost. The improved version of RGIFE

requires up to 100 times less time to identify the best biomarkers. Compared to CFS,

RGIFE demanded similar execution times for large datasets (such as Pancreas [224],

Bladder [222] or Breast [223]), but was far slower for smaller datasets. The detailed

results of the complexity analysis are available in the Appendix B.3. The other feature

selection methods were instead faster for all the datasets. Therefore, RGIFE could still

benefit from a reduction of its overall computational time. At the current stage, the

performance of each iteration is assessed via a 10-fold cross-validation repeatedN times

(default = 10). Given that the training of each fold can be executed separately and,

given that the repetitions of the cross-validation are independent, the estimation of the

performance on each fold could be done in parallel. In addition, an even faster classifier

could be employed in place of the random forest, for example, decision trees. However,

this solution needs to be thoroughly tested to guarantee that similar performance can

be reached.

Although three di↵erent policies were proposed to identify the best predictive signa-

ture, the stochastic nature of RGIFE might still lead to di↵erent optimal solutions, es-

pecially if the analysed data contain a large number of features or are particularly noisy.

Various reasons can lead to noisy data: errors introduced by the technology, wrong

assignment of the class labels, intrinsic noise of the studied process/condition, etc. In

general, the stochastic behaviour of the heuristic not necessarily represents a draw-

back. In fact, in the presence of multiple optimal solutions [211], RGIFE has higher

chances to identify equally well performing diversified sets of biomarkers. Nonetheless,

in order to reduce the variability of the inferred signatures, a fixed attributes ranking

could be used across the iterations. That is, the attributes to be removed in each

iteration could be selected according to the importance ranking from the first iteration

(calculated using the original dataset). This procedure has been suggested in [238],

where it is stated that a re-calculation of the feature importance, as currently done for

RGIFE, is much greedier and provides worse performance.

Finally, as mentioned in Chapter 2, an emerging research path involves the integration

of prior biological knowledge in the model inference process. In the case of RGIFE, it
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could mean the integration of biological knowledge in the reduction process. That is,

the selection of features to be removed could be (partially) based on external knowl-

edge. Practically, there could be a version of RGIFE where the attributes associated

with the disease that characterises the data (extracted from the specialised literature

or portals such as Malacards [139]), become hard to discard. Another option would

be to adjust the rank of the attributes to take in account their role in a molecular

context (e.g. node degree within a PPI network). Ultimately, the block of attributes

to be removed could be selected based on the shared biological characteristic, that is

looking at the number of common GO terms or biological pathways in which they are

involved.

Summary

This chapter has presented RGIFE, a machine learning based heuristic

for the discovery of biomarkers. RGIFE has been extensively tested and

evaluated using cancer-related transcriptomics data. In the next chapter,

RGIFE will be used to analyse datasets that integrate information from

multiple biomedical sources. The analysis will focus on evaluating RGIFE

with di↵erent types of data, in particular having: (a) missing values, (b)

categorical attributes, (c) information from heterogeneous sources and (d)

imbalanced distribution of the samples (i.e. negative instances substantially

outnumbering the positive instances).
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Abstract

This chapter describes the application of machine learning techniques,

mainly RGIFE, for the identification of biomarkers for knee osteoarthritis

in overweight women. The RGIFE heuristic shows its flexibility when

applied to biomedical data a↵ected by missing values and imbalanced class

distributions. Pursuing one of the aims of the thesis, both RGIFE and

FuNeL are shown to be e↵ective in extracting relevant knowledge from

biomedical data of di↵erent forms (not limited to transcriptomics data as

illustrated in Chapter 3 and 4). In addition, the inferred predictive models

are extensively exploited and analysed to better contextualise the role and

the importance of the proposed biomarkers.

5.1 Introduction

Osteoarthritis (OA) is a progressive disorder of the joints that features a gradual loss

of cartilage, low-grade synovial inflammation, and the development of cysts and bony

spurs at the borders of the joints. In a 2010 study [239], hip and knee OA was ranked

as the 11th highest contributor to global disability and its prevalence is expected to

increase due to the rise of the worldwide obesity along with the ageing of the popu-

lation. Despite the high prevalence of OA, currently there is no cure for this disease

[240], the available treatments only diminish symptoms such as pain and disability.

Nowadays, knee OA is mainly diagnosed using clinical and radiographic changes gen-

erated by structural damages that occur late in the disease progression. Unfortunately,

these techniques have a relatively large precision error and low sensitivity [241]. Given

the limitations of these imaging-based biomarkers (also known as “dry”), there is an

increased need for identifying new and sensitive biochemical biomarkers (also called

“wet”), other dry biomarkers (such as coming from MRI), or a combination of both that

can early detect OA before structural damages and established clinical OA develop.

D-BOARD is a European partnership, funded with the EU 7th framework programme

of research, to bring together leading academic institutions and European Small and

Medium Enterprises (SMEs) with the goal of finding reliable biomarkers and diagnostic
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tests that can facilitate earlier diagnosis of OA, and inform the prognosis, monitoring

and therapeutic strategies for chronic and disabling forms of this disease. A part of the

work for this PhD project involved the collaboration with the Work Package 5 - WP5

(bioinformatics and data analysis) of the D-BOARD consortium. The goal of WP5

is the application of machine learning and bioinformatics techniques to identify new

relevant knee-OA biomarkers from the analysis of multiple and di↵erent biomedical

data. This chapter presents the analysis performed during the collaboration with the

D-BOARD consortium trying to tackle the problem of biomarkers discovery in a knee

OA context.

Recently, several di↵erent approaches have been presented trying to solve the lack

of early knee OA biomarkers. For example, the levels of serum COMP (Cartilage

Oligomeric Matrix Protein) have been correlated with the development the condi-

tion [242], the incidence of clinical knee OA among middle-aged overweight and obese

women has been linked with the baseline fibulin-3 concentrations [243] while it was

shown to be negatively associated with the concentration of COLL2-1NO2 (a peptide

that represents the combination of collagen type II degradation products (Coll2-1) and

reactive nitrogen and oxygen species (RNOS), NO and O2ấLŠ and can be measured

in urine or serum) at baseline [244]. Finally, adipokines were suggested as predic-

tive biomarkers for early onset post-traumatic knee OA [245]. Lately, together with

traditional clinical, biological and chemical approaches, machine learning and compu-

tational methods started to make an impact in this area [246]. GLMNET (Generalized

Linear Models with elastic NET), a machine learning classifier [247], showed that the

combination of plasma citrullinated protein, anti-cyclic citrullinated peptide antibody

and 4-hydroxyproline provides specific and sensitive detection and discrimination be-

tween early-stage OA and rheumatoid arthritis and between non-rheumatoid arthritis

and good skeletal health. Ashinsky et al. [248] evaluated the ability of machine

learning to discriminate between MRIs of normal and pathological human articular

cartilage. The study employed a multiple linear least-squares regression that suc-

cessfully predicted OARSI (Osteoarthritis Research Society International) scores and

classified plugs with high accuracy (86%). Serum biomarkers have been employed to
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train an artificial neural network that discriminates patients a↵ected by osteoarthritis

and rheumatoid arthritis 100% correctly [249].

In 2009, an important research in the field of knee OA, the PROOF (PRevention of

knee Osteoarthritis in Overweight Females, ISRCTN 42823086) study, was presented

[250]. The objective of the PROOF study was the evaluation of the e↵ect of a tai-

lored diet-and-exercise program, focused on reducing weight, and of oral crystalline

glucosamine sulphate on the incidence of knee osteoarthritis in a high-risk group of

overweight women between 50 and 60 years of age, free of clinical knee osteoarthritis

at baseline. The data collected for the PROOF study have been extensively analysed

by the D-BOARD consortium, in particular, the WP5 used them via the application

of machine learning techniques, to discover new biomarkers for the early detection of

knee OA.

This section of the dissertation is focused on the analysis of the PROOF data study

(collected after 2.5 and 6.5 years from the baseline) using machine learning-based

methods. In particular, it is presented a pipeline for the identification, evaluation and

validation of biomarkers, at which core is placed RGIFE. The proposed approach iden-

tified small highly predictive models defined by a handful of variables whose relevance

was extensively assessed. In addition, the relationship (positive or negative) of each

biomarker with the knee OA incidence was studied. Finally, for a subset of the avail-

able data, a functional network was generated using the FuNeL protocol presented

in Chapter 3. Overall, the analysis revealed the importance of the use of imaging-

based information for the prediction of the disease as well as the dietary information

of each individual. Furthermore, the results confirmed the influence of some known

biochemical markers. When compared with the state-of-the-art, the proposed models

showed better performance in predicting the incidence of OA. The knowledge associ-

ated with FuNeL networks demonstrated a high overlap with the information provided

by RGIFE, confirming the robustness of the proposed methodologies when applied to

the same data.
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5.2 Material and methods

This section describes the characteristics of the data generated from the PROOF study.

Then, each step of the pipeline employed for the identification and evaluation of the

biomarkers is presented.

5.2.1 Datasets and individuals

The data used for the presented analysis comes from the PROOF study: a preventive

randomised controlled trial including 407 middle-aged women with a BMI � 27 kg/m2

free of clinical knee OA at baseline [250]. After 30 months, the preventive e↵ects of a

diet and exercise program and oral glucosamine sulphate were evaluated. Five di↵erent

outcome measures were used to define the presence of knee OA:

• incidence of “combined radiographic and clinical ACR-criteria”

• presence of frequent knee pain:

• lateral JSN (Joint Space Narrowing) of � 1.0 mm

• medial JSN (Joint Space Narrowing) of � 1.0 mm

• incidence of K&L � 2

The American College of Rheumatology (ACR) criteria is a set of rules, defined to

determine the presence of knee OA [251]. For example, using history, physical exami-

nation and radiographic findings, the condition is present if there is pain in the knee

and one of the following statement is true: over 50 years of age, less than 30 minutes

of morning sti↵ness, crepitus on active motion and osteophytes. The chronic knee

pain is self-explanatory, while the lateral and the medial Joint Space Narrowing (JSN)

measures the loss of lateral (or medial) femorotibial cartilage. The presence of OA is

confirmed if, during the analysed time-frame, the space in between joints has decreased

more than a certain threshold (1.0 mm in the PROOF study). Finally, the Kellgren

& Lawrence (KL) system is a method for classifying the severity of knee osteoarthritis
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Mean ± SD or percentage

Age (yr.) 55.7 ± 3.2
BMI (kg/m2) 32.3 ± 4.3
Menopausal status 69%
Western ethnicity 96%
Mild symptoms 45%
Physical activity (SQUASH score) 6912 ± 3704
K&L=1 60%
K&L=2 10%

Table 5.1: Baseline characteristics of the included subjects (N = 365).

(OA) using five grades/scores that combines multiple criteria such as: JSN, presence

of osteophytes, bony deformity, etc. [252].

Each individual, free of knee OA at the baseline (e.g. K&L grade = 0), was anal-

ysed, for the existence of the knee OA after 2.5 years. The baseline characteristics

of the subject included in the PROOF study are shown in Table 5.1 The variables

measurements were taken at baseline while the presence of the condition was assessed

later on. Therefore, the 2.5 years data are considered the result of an incidence study

and an individual was labelled as incident if, after 2.5 years, one of the five outcome

measures was present (e.g. K&L grade � 2). Five di↵erent classification problems

were defined, one for each outcome measure. Each data sample was characterised by

the value of 186 heterogeneous variables (a list of the variables is available in Ap-

pendix C). When some of those variables were used to define the presence of knee

OA, they were removed from the analysis (e.g. ACR value at baseline when using the

ACR criteria to determine the presence of the condition), see Table 5.2 for the spe-

cific number of variables. The information were derived from baseline questionnaires

(including demographics, menopausal status, knee complaints, physical activity level,

quality of live, habitual nutritional intake, and KOOS (Knee injury and Osteoarthri-

tis Outcome Score) questionnaire), radiographs (for obtaining baseline K&L grade,

medial alignment angle, and knee joint shape using active shape modelling), MR im-

ages (scored with semi-quantitative MOAKS system [253] and used to define MRI

OA [254]), physical examination (including pain upon palpation of knee structures,

crepitations, presence of Heberden’s nodes, blood pressure, knee laxity and range of
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motion, warmth of the knee joint, waist circumference, and skinfolds for fat percentage

calculation), and biochemical markers from serum and urine such as the fibulin-3 epi-

topes (fibulin3-1, fibulin3-2 and fibulin3-3) [243], COLL2-1NO2 [244], and C1M and

C2M (collagen type I and II degraded by matrix metalloproteinase) [255]. A detailed

description of the acquisition of non-biochemical variables is given in [250].

OA definition Attributes Incident/non-incident

ACR criteria 185 39 / 315
Knee pain 186 51 / 300
Lateral JSN 186 41 / 311
Medial JSN 186 38 / 314
KL incidence 184 27 / 294

Table 5.2: Summary of the information for the datasets generated from di↵erent knee
OA outcome measures defined after 2.5 years from the baseline (beginning of the
PROOF study).

For a subset of the PROOF study individuals (74 samples), a lipidomics screening was

performed after 6.5 years from the baseline time point. The lipidomics measurements

were performed by two di↵erent partners of the D-BOARD consortium, namely TNO

(Netherlands Organisation for Applied Scientific Research) and UNOTT (University

of Nottingham). The platform employed by TNO screened a total of 294 lipids, while

UNOTT generated data containing information about 32 lipids. The presence of OA

was defined, for the 74 individuals, after 6.5 years from the baseline and using three of

the previously described outcome measures: combined radiographic and clinical ACR-

criteria, chronic knee pain and K&L � 2. Di↵erent than the 2.5 years data, in which

the measurements of the variables were taken at the beginning of the study, the lipids

abundance was assessed at the same time point in which the presence of OA was deter-

mined. This results in a cross-sectional study that can be used to extract biomarkers

that can predict the presence of OA rather than its incidence (e.g. development).

The distribution of samples in OA and non-OA is reported in Table 5.3. Unlike the

data generated after 2.5 years, the lipidomics dataset did not contain missing values,

nor categorical data were present (such as questionnaire answers). Three di↵erent

classification problems, as for the 2.5 years data, were defined using the listed OA

outcome measures.
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OA definition OA/non-OA

ACR criteria 15 / 59
Knee pain 9 / 65
KL incidence 17 / 57

Table 5.3: Distribution of the individuals (class labels) in the datasets generated from
di↵erent knee OA outcome measures defined after 6.5 years from the baseline (begin-
ning of the PROOF study).

The presented data were employed to identify driving factors (biomarkers) for knee

osteoarthritis in overweight women with the help of machine learning methodologies.

Separate analyses were performed using the data associated with the two di↵erent time

points. From now onward, for simplicity, the five knee-OA measures, and the relative

analysis, will be referred as: ACR criteria, knee pain, lateral JSN, medial JSN and

K&L score.

5.2.2 Extension of RGIFE to analyse the PROOF study data

The aim of WP5 of the D-BOARD consortium is the application of machine learning,

and more in general, bioinformatics techniques for the discovery of new knee OA

biomarkers. To solve this research problem, the PROOF data study was analysed with

RGIFE, the heuristic presented in Chapter 4. RGIFE has been shown to be good at

identifying small numbers of predictive relevant features from biomedical data. From

a machine learning point of view, the data resulting from the PROOF study represents

a di�cult task due to (a) the imbalance distribution of the samples (much more case

than controls) and (b) the presence of missing values.

When the number of instances of one class far exceeds the other, problems can arise

because the machine learning algorithm might be tempted to treat the minority ex-

amples as outliers of the majority class and therefore ignore or mistake them. Several

approaches have been proposed to solve the imbalance problem; commonly the aim

is to re-balance the distribution of the samples between the classes. By having an

equal class distribution, the machine learning algorithms tend to learn better from

the data, thus generate more accurate models. The undersampling methods remove

samples from the majority class until it contains as many data point as the minority
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class. However, by using this approach, important samples and relevant information

might be lost. This is particularly problematic when dealing with biomedical data

that already contains a limited number of observations. Conversely, the oversampling

techniques try to re-sample the minority class until it consists of as many samples as

the majority class. This approach was shown, over the years, to be more robust and

suitable.

As common in clinical studies, the PROOF data available from the 2.5 years time point

were a↵ected by the presence of missing (baseline) values. Missing values appear for

di↵erent reasons: patients that did not fully completed a form, faulty reading from lab

machines, human errors in the collection or recording of the data, etc. Missing values

might generate problems when working with machine learning algorithms. In some

case, the algorithms are unable to handle data a↵ected by missing values, in others

they can result in variance underestimation, distribution distortion, and correlation

depression [256]. The overall approach to solve the missing data problem is to impute

them by looking at the closest and most plausible values available in the data.

To apply RGIFE to the PROOF data, a new version of the heuristic was imple-

mented. With such modifications RGIFE can deal with data a↵ected by missing

values and tackle the problem of imbalanced distribution of the samples. The new im-

plementation includes several algorithms for the application of both imbalance learning

(SPIDER, SMOTE, B-SMOTE, etc.) and missing values imputation (mean, K-means,

KNN, etc), all of them are executed using the libraries available from the KEEL tool

suite [257]. Both techniques are put in place before RGIFE generates the model that

evaluate the predictive performance of a feature set. Furthermore, in the updated

RGIFE implementation is possible to set a cost-sensitive learning strategy to be used

by the classifier. The cost-sensitive learning assumes a higher cost (weight) when the

classification errors involve a specific class. By having a large cost when misclassifying

the minority samples, the learning algorithm can put more e↵ort in classifying the

under-represented samples correctly, thus try to overcome the imbalance distribution

issue.

When analysing the 2.5 years data, initial tests were performed trying di↵erent meth-

ods to tackle both the imbalance class distribution and the imputation of missing val-
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ues. The results (not reported here) showed that the best performance was achieved

when applying an oversampling approach with SPIDER [258] and imputing the miss-

ing values with the K-Means algorithm [259]. SPIDER is an oversampling algorithm

that re-balance the class distribution in two steps. In the first step, the samples mis-

classified by a KNN classifier are labelled as noisy. Then, SPIDER strongly amplifies

the minority class instances and it removes the noisy examples from the majority.

Conversely, the K-means imputation algorithm is based on the K-means clustering

and it can be divided into three phases [259]. First, K complete samples (without

missing values) are randomly selected as K centroids. Then, iteratively the partitions

are modified trying to reduce the distance of each sample to its centroid. Finally, the

missing values are imputed based on the cluster information. The samples that are

a member of the same cluster are taken as nearest neighbours of each other, and the

nearest neighbour algorithm is used to replace missing data. Both algorithms were

used setting their parameters to the default values provided by KEEL.

5.2.3 Discovery and evaluation of small sets of biomarkers

When trying to identify biomarkers from biomedical data, the method employed for

their discovery represents the biggest part of the whole process. However, other steps

are necessary to validate and interpret the set of proposed factors. Therefore, a

pipeline, defined by di↵erent methodologies, was put in place to extract, validate and

interpret biomarkers. RGIFE is at the core of this pipeline (illustrated in Figure 5.1),

it provides small sets of variables that can be potentially used as biomarkers. First, it

is necessary to assess the predictive performance of the proposed biomarkers, this is

typically done using a cross-fold validation. Then, from the complete set of data, the

candidate biomarkers are extracted. Those two operations will be described in Sec-

tion 5.2.3.1, while in Section 5.2.3.2 it will be discussed how the predictive performance

of the proposed biomarkers are statistically assessed. Once the list of biomarkers is

defined, a thorough analysis needs to be performed so that their relevance and as-

sociation with the studied condition, knee OA in this instance, can be appraised.

Within the same model, di↵erent biomarkers have di↵erent roles and importance, Sec-

tion 5.2.3.3 will present how this can be assessed. In Section 5.2.3.4, it will be described
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a methodology to estimate the association (positive or negative) of each variable with

the dependence variable, knee OA measure in here. Using literature mining, the pro-

posed prediction models can be compared with the state-of-the-art approaches and

check whether they provide better solutions. Finally, by applying the FuNeL protocol,

it is interesting to validate the role of the biomarkers in functional networks and eval-

uate the relationships between them. The presented pipeline is generic enough to be

applied to a wide variety of biomedical data, furthermore, although RGIFE has been

used in this instance, other biomarkers discovery methods can perfectly fit in it.

Biomedical 
data

Predictive 
performance 

validation
(e.g 10CV)

Biomarker 
extraction

Permutation 
test

Discovery - RGIFE

Variable importance Variable direction

FuNeL network Literature mining

Validation and interpreation

Fig 5.1: The proposed pipeline for the identification, validation and interpretation of
biomarkers.

5.2.3.1 Generation and selection of reduced predictive models using
RGIFE

RGIFE is a flexible and fine tuneable heuristic whose behaviour can be adjusted based

on the type of data being analysed. 30 di↵erent configurations were analysed to per-

form a full search in the space of all the optimal solutions (set of biomarkers) for

each OA definition. Having fixed the oversampling and the missing values imputa-

tion algorithms (when dealing with the 2.5 years data), the configurations di↵ered in

terms of maximum depth of the decision trees within the forest (the number of trees

was set to 3000 as in the analysis performed in Chapter 4) and misclassification costs

(penalisation when misclassifying incidence or OA samples during the learning phase).

For each dataset, the best performing configuration was identified using a standard

M ⇥ n-fold cross-validation. When analysing the 2.5 years data, n was set equal to

10, and the whole cross-validation process was repeated 10 times, that is M = 10.

The repetitions of the validation scheme were performed to minimise the possible
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Fig 5.2: The overall pipeline employed for the identification of the best predictive
models. When analysing the 2.5 years data M = 10 and n = 10, while for the analysis
of the 6.5 years data M = 1 and n = 74 (leave-one-out).

bias introduced by the data being split into training and test set when having such

a limited number of minority samples (e.g. incidence class). On the other hand,

when analysing the 6.5 years data (lipidomics information), a leave-one-out validation

scheme was preferred (i.e. n = 74 and M = 1). The use of LOOCV was necessary

to obtain a robust validation when using a limited number of samples and a reduced

number of OA cases (e.g. 9 using the knee pain OA definition). By ranking the di↵erent

configurations based on their predictive performance (calculated using the AUC: Area

Under the ROC Curve), the best set of parameters, tailored to each di↵erent dataset,

were selected. Finally, using the just mentioned best configuration, RGIFE was applied

to the whole set of samples, to identify the smallest most predictive set of biomarkers.

A summary of the overall analytic pipeline employed for the discovery of the best

models is illustrated in Figure 5.2.

In the process of biomarkers discovery, the key is to find the correct balance between

the size of the inferred model (number of variables) and its performance. Often, the

smaller the size of the model, the lower are its predictive performance. For this study,

the correct trade-o↵ between size and predictive power is guaranteed by selecting and
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analysing the best performing models (higher AUC) containing at most 10 variables.

The maximum size of the models, 10 variables, was suggested by the clinician col-

laborators. Based on the analytic pipeline employed for the identification of the best

biomarkers (see Figure 5.2), in the results section, two di↵erent AUC values, namely

AUC-CV and AUC-Full, are provided. The first one refers to the AUC obtained by

the best performing configuration with the first cross-validation. That is, RGIFE is

applied to the training sets and the AUC is calculated when predicting the class of

the test samples and using only the attributes selected from the training data. On

the other hand, to calculate AUC-Full, first RGIFE is applied to the whole dataset,

then the selected attributes are kept on the training and test sets generated from a

cross-validation scheme (di↵erent than the one employed for AUC-CV, when analysing

the 2.5 years data). Finally, AUC-Full is calculated by predicting the labels of the test

samples across the di↵erent folds. AUC-CV gives us an idea about the predictive

performance of models when analysing totally new and unseen data, while AUC-Full

indicates how well the selected biomarkers discriminate between the two classes of indi-

viduals in the PROOF study data. In addition, AUC-CV is a good estimator to detect

a possible overfitting occurred during the learning training. If the AUC-CV values are

poor (0.5 is the threshold indicating performance worse than a random classifier) while

obtaining good AUC-Full values, it is plausible that the selected biomarkers can de-

tect the condition in the analysed data, but are likely to perform poorly if tested on

completely unseen samples.

5.2.3.2 Permutation tests

A statistical test, based on permutations, was used to assess whether the performance

of each model was statistically significant. The approach is similar to one described

in [162]. For each dataset, 100 permutated copies, where the labels (OA and non-

OA) were randomly assigned to each individual, were generated. Then, for each of

the permutated dataset, the AUC obtained using the biomarkers selected by RGIFE

was calculated. By counting the number of times in which a model provides equal or

higher performance, when trained using random data rather than the original data,

the statistical significance (p-value) of its predictive power (AUC in this instance) was
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calculated. In here, the p-value represents the probability to obtain the original AUC

by chance. In addition, the likelihood to draw the AUC associated with the models

by chance was estimated with a one-tailed permutation test using the distribution of

the permutated AUC values.

5.2.3.3 Variable importance

After having selected the best predictive models, one of the aims was the analysis of the

role and the relevance of each component (variable). Given a model, the least “impor-

tant” variable is the one that, when removed, causes the smallest drop in performance.

The additive value was obtained from the generation of decremental sub-models. S

tarting from the original set of variables, the less contributing one (causing the largest

drop in AUC) was iteratively removed until reaching a single-variable model. More

specifically, from a model with m variables, all the m sub-models defined by (m � 1)

variables were tested to select the one providing the highest AUC (while m � 1).

The AUC was calculated, as in the previous analysis, performing an M ⇥n-fold cross-

validation. Overall, this process ranks the variables in an increasing importance order,

the later a variable is removed the higher is its contribution.

5.2.3.4 Variable direction

From a clinical point of view, when analysing the variables that define a predictive

model, it is fundamental to assess their direction, that is how the value of a variable

can influence the presence of the disease (condition). For example, it is useful to know

how changes in the values of BMI a↵ect the chance to develop knee OA. The variable

direction aims to determine the relations of each variable x with the outcome measure

y (presence of knee OA). That is, how the response y, or its expectation, varies with

the values x
j

assumed by the biomarkers of the predictive models. This problem can

be solved by calculating the partial dependence of each variable. Partial dependence is

a method to visualise the partial relationship between the outcome and the predictors

[260]. The idea is to check the e↵ect of changing the value of a variable x to y while

holding the remaining variables constant. This was obtained by generating a copy of

the data for each possible value x
j

while leaving the other variables as in the original
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data. Then, for each of the data copy, a prediction using only the previously selected

biomarkers was performed. The process generates a range of predictions, for each value

x
j

, that when plotted, describes the relationship between x and y. Each point of the

plot represents the average probability of the samples (calculated across an M⇥n-fold

cross-validation) to belong to the positive class (presence of OA) when fixing the value

of the analysed variable.

5.2.3.5 Inference of functional networks with FuNeL

The primary goal of the D-BOARD project is the identification of novel biomarkers for

the prediction of knee OA. However, the analysis was not limited to the inference of

small panels of biomarkers using RGIFE but was extended to the inference of functional

networks. With the generation of networks that include the relationships among the

variables of the PROOF study data, a better understanding of the knee OA condition

can be provided to the experts of the field. As already mentioned, many diseases and

conditions are the results of complex mechanism and chains of interactions, this can be

captured by the networks generated using the FuNeL protocol presented in Chapter 3.

For this part of the analysis, only the 6.5 years lipidomics data were considered. Two

main reasons are behind this choice. First, the lipidomics data are not a↵ected by

missing values, therefore the application of FuNeL becomes simpler. Although BioHEL

can deal with datasets with missing values, its imputation is quite trivial (mean values

calculated from the training set), therefore it would have been tricky to understand

the impact of missing values in the final networks. In addition, given the heterogenic

nature of the attributes that characterise the 2.5 years (di↵erent types of information

such as food habits and protein abundance), the biological interpretation of those

functional networks would have been more di�cult.

Given the small number of attributes of the lipidomics data, the C2 configuration of the

FuNeL protocol was used: no feature selection and one stage of network generation.

Preliminary tests showed that, probably due to the limited number of samples, the

networks generated from di↵erent executions of FuNeL were quite di↵erent regarding

edges and top hubs. Therefore, to increase the stability of the inferred networks, it

was decided to slightly modify the way in which FuNeL creates the final network.
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Rather than applying a statistical permutation test based on the node score (number

of times an attribute appear in the BioHEL’s rules), the edge score was used (number of

occasions two attributes are expressed together in the same rule). The same approach

was also tested when analysing FuNeL with transcriptomics data, however, in that

instance, the edge score did not contain enough signal. That is, due to the large

number of total attributes in the transcriptomics data (at least 7000), very few edges

resulted having a significant score (p-value < 0.05). Conversely, when applied to

lipidomics data, whose observations are defined in a much lower dimensional space (at

most 294 attributes), the signal associated with the edge score was stronger and led

to a generation of more robust functional networks.

5.3 Results

The updated version of RGIFE (able to deal with missing values and imbalance distri-

bution of the classes) was employed to identify small sets of predictive biomarkers from

the PROOF study data collected at two di↵erent time points: 2.5 and 6.5 years. The

following section will present the models generated from this analysis. For the sake of

readability, the results from data collected at di↵erent time points will be separated.

Furthermore, the lipidomics results will be divided according to the source (partners)

that generated the data.

5.3.1 2.5 years predictive models

Out of all the subjects included in the PROOF study, 365 had a 2.5 years follow-up

data and were selected for the present study. A di↵erent total number of samples was

available for separate knee OA outcome measures. The ACR criteria and chronic knee

pain after 30 months occurred in 39 out 354 (11%) and in 51 out of 351 (15%) women

respectively. The incidence of lateral JSN � 1.0 mm was assessed in 41 (12%) out of

352 women, while medial JSN was seen in 38 (11%) women out of 352. Finally, the

incidence of K&L � 2 was measured in 27 (8%) out of 321 individuals.

When dealing with the 2.5 years data, RGIFE used the K-means imputation algorithm

to process the missing values, while SPIDER was employed, during the learning phase,
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OA measure Variables Cat. AUC-Full AUC-CV p-value

ACR criteria

KL grade � 1 in one or both knees OA

0.788 0.692 < 1e-04

Maximal isometric quadriceps strength CI
Mode 10 (Active Shape Modelling) IM
Mode 15 (Active Shape Modelling) IM
Mode 11 (Active Shape Modelling) IM
Presence of knee pain in the last month PQ
Di�culties when kneeling PQ
C2M concentration BM

Knee pain

KL grade � 1 in one or both knees OA

0.755 0.637 < 1e-04

KL grade � 2 in one or both knees OA
WOMAC function score OA
Maximal isometric quadriceps strength CI
Mode 11 (Active Shape Modelling) IM
Di�culties when jumping PQ
Frequency of biscuits / week FQ

Lateral JSN

Fat percentage CI

0.737 0.549 < 1e-04
Mode 11 (Active Shape Modelling) IM
Mode 10 (Active Shape Modelling) IM
Frequency fruits / week FQ
Concentration of Coll2-1NO2 adj. for creatinine BM

Medial JSN

Quality of life CI

0.731 0.539 < 1e-04

Nr. years since menopause CI
Waist circumference CI
Mode 15 (Active Shape Modelling) IM
Frequency bananas / week FQ
C1M concentration BM

KL incidence

BMI CI

0.823 0.699 < 1e-04
HbA1c concentration CI
Presence of OA on MRI IM
Grinding / clicking sound when moving the knee PQ
Frequency of apples and pears / week FQ

Table 5.4: Summary of the models inferred for each knee OA outcome measure. Vari-
ables are baseline measures divided according to the type of information provided: OA
measures (OA), clinical information (CI), imaging-based information (IM), biochemi-
cal marker (BM), pain questionnaire (PQ) and food questionnaire (FQ) answers. The
AUC column contains two values: AUC-Full and AUC-CV (in brackets). The last
column indicates the permutation test p-value (one tailed).

to address the imbalance distribution of the classes. In Table 5.4 are reported the

models generated (using the pipeline illustrated in Figure 5.2) from the data collected

after 2.5 years from the start of the PROOF study. Di↵erent OA outcome measures

were used to define the incidence of knee OA. The variables are grouped based on their

source of information: OA measures (OA), clinical information (CI), imaging-based

data (IM), biochemical markers (BM), pain (PQ) and food questionnaire (FQ). All

the values assumed by those variables are coming from the baseline assessments.

Figure 5.3 shows the ROC curves (AUC-Full values) generated from each of the inferred

models. The best predictive biomarkers were inferred using the K&L score incidence
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Fig 5.3: The ROC curves generated by the best performing models (2.5 years). The
AUC values refer to the AUC-Full.

OA outcome measure, they lead to an AUC-Full of 0.823. It is interesting how the

best performing model is also the smallest inferred, with only 5 variables. The second

best model is associated with the ACR criteria and provides an AUC-Full of 0.788.

However, it also contains the largest number of variables (8 in total). Finally, the

JSN outcome measures lead to the two lowest performance, respectively 0.731 for

the lateral and 0.737 for the medial compartments. Overall, all the identified models

obtained AUC-CV values larger (calculated with a 10 x 10-fold cross validation) than

what is obtained with a random classifier, suggesting that some valuable pattern were

identified by RGIFE within the data. The rank of the models is equivalent when

considering either AUC-CV and AUC-Full. From a pure machine learning point of

view, it interesting to notice how the top 3 best models were generated using a random

forest classifier with a limited depth (2 for ACR criteria and knee pain, 4 for the

K&L score incidence). Conversely, the worse models were identified when RGIFE was

employing deeper decision trees (depth = 8 for both the JSN data). This might suggest

that when RGIFE is dealing with challenging data and is not able to detect any simple
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pattern (small decision trees within the forest), the best results are achieved with large

trees that are more specific and tight to the data. However, although providing good

AUC-Full values, this might lead to an overfitting problem given the modest AUC-CV

values.

Table 5.4 shows the heterogeneity of the models in terms of variable types. Every model

is defined by at least four di↵erent categories of variables. The imaging-based variables

are important for the ACR criteria model as well for JSN lateral. On the other hand,

to obtain good predictions using the knee pain criteria, OA measures assume a relevant

role. Food related questionnaire data appear in almost every predictive model (ACR

criteria model is the exception). Interestingly, most of them are related to the fruit

intake per week, while in the knee pain model the data are associated with the number

of biscuits (sugar) consumed per week. Finally, it is important to notice the presence

of biochemical markers already associated, from the literature, with the incidence of

knee OA such as C1M [255] and C2M [261] and the concentration of Coll2-1NO2 [244].

To statistically assess the goodness of the AUC associated to each of the inferred

models, a statistical test was used (see Section 5.2.3.2 for details). For all the pre-

sented models, the permutation tests showed that their performance was statistically

significant. None of the models obtained an AUC higher than the values provided in

Table 5.4 when applied to the 100 permutated datasets (empirical p-value = 0). The

statistical significance was also confirmed by the one-tailed permutation test (p-value

< 1e-04 for all the tested models).

5.3.1.1 Additive values of the biomarkers

The additive value of each variable, within the predictive models, was assessed perform-

ing a decremental analysis. The later a variable disappears from the models, the higher

is its contribution when solving the classification task. Figures 5.4 – 5.8 illustrate the

submodels generated using the five di↵erent OA outcome measures. The y-axis of the

figures represents the AUC values, the result of a 10-fold cross-validation repeated 10

times, of each submodel. The variables defining the submodels are described over each

bar, in white is highlighted the variable that is removed in the following decremental
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step. The first bar represents the original model, while the last one shows the single

best performing variable.
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Fig 5.4: Decremental models generated using the ACR criteria for the knee OA inci-
dence.
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Fig 5.5: Decremental models generated using the knee pain for the knee OA incidence.

- 182 -



Chapter 5: Identification of biomarkers for knee osteoarthritis

In Figure 5.4, when using the ACR criteria, the largest drop in AUC (0.075) is asso-

ciated with the removal of C2M, a biomarker whose concentration levels were found

to be di↵erent between OA and healthy subjects [261]. Furthermore, C2M is also

the second last variable to be removed, indicating its important role in the prediction

task. The K&L grade (whether at baseline is � 1 or � 2) represents the most valuable

information in the knee pain model ( Figure 5.5), by themselves, the two variables can

lead to a good AUC of 0.663.
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Fig 5.6: Decremental models generated using the lateral JSN for the knee OA inci-
dence.

The analysis performed on the lateral JSN model, presented in Figure 5.6, highlights

the relevance of the image-associated variables when trying to assess the incidence of

OA. Mode 11 and Mode 1 (Active Modelling Shaping, a statistical model of shapes

which iteratively deform to fit an image, e.g. knee image), are the last dropped vari-

ables, with the former one leading to a decrease of 0.07 regarding the AUC. The plot

in Figure 5.7 suggests a relevant role, in the medial JSN model, for the information

about the weekly intake of bananas. Bananas are high in magnesium and potassium

which help in increasing the bone density, thus their consumption might contribute in

decreasing the probability of developing knee OA. This seems also confirmed by the

negative association between the “Freq. bananas / week” variable and the outcome
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Fig 5.7: Decremental models generated using the medial JSN for the knee OA inci-
dence.

measure depicted in Figure 5.12. Finally, in Figure 5.8, two large decreases in perfor-

mance are associated to food and pain questionnaire derived information, namely the

fruit intake per week and the grinding/clicking of the knee. As observed for the ACR

criteria, the one variable model (presence of patello femoral OA on MRI at baseline)

can lead to a reasonable AUC of 0.617.

5.3.1.2 Biomarkers association with knee OA

The analysis performed to tackle the variable direction question allows us to determine

if the change in intensity (value) of a variable corresponds to an increase of the proba-

bility to be a↵ected by knee OA (for the studied population). In order words, whether

a variable has a positive or a negative association with the OA outcome measure. In

Figures 5.9– 5.13, are illustrated the directions the variables for all the inferred models.

Each data point corresponds to the average probability (calculated across all the sam-

ples via a 10 x 10-fold cross-validation) to belong to the positive (incidence) class. For

binary variables (e.g. K&L score � 1) are shown the distribution of the probabilities

of the two possible values.
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Fig 5.8: Decremental models generated using the K&L score for the knee OA incidence.

Figure 5.9 shows that as expected, the KL1 grade and the variable associated with

the di�culties a↵ecting the women when kneeling, have a positive relationship with

the outcome. That is, large values (e.g. high pain) increase the chance to be a↵ected

by the condition. On the other hand, C2M, a biochemical marker whose levels were

found to di↵er between OA and healthy subjects [261], have a negative relationship

with the output. Similarly, it seems that (muscular) weakness might lead to a higher

probability of knee OA in overweight women. For variables such as Mode 10 is not

possible to define a direct relation with the outcome measure as there is no monotonic

behaviour. The predictive model is likely to contain those variables because, when

coupled together with others, they provide good discrimination of the samples. Finally,

Mode 11 andMode 15 (Active Shape Modelling), X-ray based variables, show opposite

association with the knee OA incidence.

Analogous to what was observed for the ACR criteria, the Figure 5.10 suggests that a

baseline KL2 grade (boolean variable, therefore KL2 grade = 1) increases the proba-

bility for the knee OA incidence. In addition, di�culties when jumping (pain) result

in a higher chance to become a↵ected by the condition. The plot associated with the

number of biscuits eaten per week illustrates a positive relationship with the incidence
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Fig 5.9: Direction of each variable in the ACR criteria model for the incidence of
knee-OA. The x-axis shows the possible values of each variable, the y-axis reports the
average probability to be associated with the positive class (incidence of OA).
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Fig 5.10: Direction of each variable in the knee pain model for the incidence of knee-
OA. The x-axis shows the possible values of each variable, the y-axis reports the
average probability to be associated with the positive class (incidence of OA).
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Fig 5.11: Direction of each variable in the lateral JSN model for the incidence of
knee-OA. The x-axis shows the possible values of each variable, the y-axis reports the
average probability to be associated with the positive class (incidence of OA).

of knee OA. This might imply that a low intake of biscuits, therefore a low quantity

of consumed sugar, can help in preventing the development of the condition. Finally,

intuitively, a higher WOMAC score (the Western Ontario and McMaster Universities

Osteoarthritis Index that assesses pain sti↵ness and physical function in individuals

with knee osteoarthritis), corresponds to higher probability for the presence of knee

OA in the individual.
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Opposite than what observed for the biscuits variable, Figure 5.11 tells that the fre-

quency of fruits has a negative relation with the outcome variable, indicating how the

assumption of fruits might mitigate the presence of knee OA. Two of the Active Shape

Modelling variables, namely Mode 1 and Mode 11 have a positive association with the

lateral JSN incidence outcome, while Mode 10 shows an overall negative relationship.

Additionally, as expected, women with an elevated fat percentage give the impression

to be more a↵ected by the osteoarthritis in the joints. Finally, the most interesting

remarks can be made on the association between the concentration of Coll2-1NO2 with

the incidence of knee OA. The identified negative relationship is confirmed by the find-

ings of Landsmeer et al. [244], where the PROOF study data analysis, performed with

a binary logistic regression, showed that small values of Coll2-1NO2 were related to a

greater incidence of knee OA.

The Waist circumference plot, created from the medial JSN model and available in

Figure 5.12, can be associated with Fat percentage plot in Figure 5.11. Large values for

both variables hint a prominent overweight condition, that can lead to higher chances

for the joint inflammation to appear. Interesting, the PROOF data suggests how the

knee OA tends to be more developed in the time frame close to the menopause. In fact,

the partial dependence analysis shows that as the number of years since the occurring of

menopause increases, the overall probability decreases. Finally, as already previously

highlighted in this section, higher fruit intake, bananas in this instance, might lead to

a reduction in the chance of developing knee OA.

In Figure 5.13, the BMI and the frequency of apples and pears per week confirm all the

conclusion drawn so far. The plot indicates that a higher amount of fruit that can be

seen as an overall healthier diet can decrease the possibility of knee inflammation. The

frequency of grinding or clicking sounds when moving the knee, from the PROOF study

samples, seems to be negatively associated with the incidence of knee OA. In addition,

the analysis of MRI (at baseline) might provide insights about the development of

knee OA in the individuals (overweight women in this instance).
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Fig 5.12: Direction of each variable in the medial JSN model for the incidence of
knee-OA. The x-axis shows the possible values of each variable, the y-axis reports the
average probability to be associated with the positive class (incidence of OA).

5.3.1.3 Comparison with literature findings

To check if the proposed biomarkers can improve the state-of-the-art solutions, the

specialised literature was searched. The aim was to compare the inferred models with

what is currently reported in the literature. After a thorough mining, only two mod-

els (knee pain and K&L score incidence) were found comparable with the literature

findings. For a fair evaluation, for each identified literature study, only the AUC cal-

culated using an internal validation (some studies also used external data to assess

their performance) was considered. If multiple models (having a di↵erent subset of
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Fig 5.13: Direction of each variable in the K&L score incidence predictive model for
the incidence of knee-OA. The x-axis shows the possible values of each variable, the y-
axis reports the average probability to be associated with the positive class (incidence
of OA).
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Ref. AUC OA defintion Attributes

[262] 0.790 KL grade < 2 B/L and KL � 2 at F.U.

Gender
Age
BMI
Knee pain
KL score 1 at B/L

[263] 0.690 KL grade < 2 B/L and KL � 2 at F.U.

Gender
Age
BMI
Occupational risks
Family osteoarthritis
Previous knee injury

[264] 0.740 KL grade < 2 B/L and KL � 2 at F.U.

Gender
Age
BMI
Minimum JSW
Osteophyte

Table 5.5: Summary of the K&L score incidence models found in the specialised liter-
ature. JSW: Joint Space Width, B/L: baseline, F.U.: follow-up.

variables) were available, the best performing one selected. All the identified models

were generated using the same learning approach: a univariate analysis followed by

a multivariate logistic regression method. A summary of the literature finding is re-

ported in Table 5.5 for the K&L score incidence, while Table 5.6 shows the models

associated with knee pain. In [262–264] there was no description of the validation

protocol employed to generate the reported AUC values. Therefore, it is assumed, as

standard practice for clinical studies, that the published AUCs are equivalent to the

AUC-Full values. In [265] is mentioned that a “10-fold cross-validation strategy has

been used as a feature selection strategy”, however, it is not specified if the reported

AUCs were calculated with such procedure or using the whole set of samples for learn-

ing. The internal validation (AUC-Full from 10 x of 10-fold cross-validation) of the

RGIFE selected models indicated an AUC of 0.823 with the K&L score incidence and

an AUC of 0.755 when using the knee pain (see Figure 5.3).

The model for the prediction of K&L score incidence has higher predictive perfor-

mance than all the models available in the specialised literature while using the same

or fewer variables, see Table 5.5. A superior performance can also be clearly noticed
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Ref. AUC OA defintion Attributes

[264] 0.600 Painful knee at B/L; painful knee at F.U

Age
Pain intensity
Minimum JSW
Osteophyte

[265] 0.623 Chronic right knee pain
Osteophytes (OARSI grades 0–3) femur medial compartment
Chondrocalcinosis (grades 0-1) medial compartment

[265] 0.740 Chronic right knee pain
Osteophytes (OARSI grades 0–3) femur medial compartment
Osteophytes (OARSI grades 0–3) femur lateral compartment
Chondrocalcinosis (grades 0-1) medial compartment

Table 5.6: Summary of the knee pain models found in the specialised literature. JSW:
Joint Space Width, B/L: baseline, F.U.: follow-up.

when comparing the knee pain model with the literature, Table 5.6. Di↵erent than

for the K&L score incidence, the knee pain model is larger (7 attributes) and more

heterogeneous (imaging-based information, food and pain questionnaire data, OA and

clinical information). The PROOF study analysed overweight middle-aged women,

therefore information such as gender or age, that are consistently used in the litera-

ture, would not be emerge as relevant. Nevertheless, it is interesting to see how BMI

constantly appears across the K&L score incidence literature models as well as in the

5-variables model. Overall, this comparison showed how the proposed biomarkers, for

two knee OA outcome measures, perform better than the current models available in

the literature while being similar or smaller in terms of size.

5.3.2 6.5 years predictive models

Out of all the subjects included in the PROOF study, only 74 had a 6.5 years follow-up

lipidomics data. A di↵erent total number of subjects was available for di↵erent knee

OA outcome measures. The OA assessed with the ACR criteria and chronic knee pain

after 6.5 years occurred in 15 (20%) and in only 9 out of 74 (12%) women respectively.

The incidence of K&L � 2 was measured in 17 (23%) out of 74 individuals. Given

the small number of OA samples available in the lipidomics data, the 10 x 10-fold

cross-validation scheme (as employed in the analysis of the 2.5 years data) was ruled

out. Instead, a leave-one-out validation was preferred (the number of folds is equal

to the number of samples, 74 in this instance). Initially, the performance of the pre-

dictive models was tested using a 10 x 5-fold cross-validation. However, this provided

an elevated instability of AUC when duplicating the experiments with di↵erent repe-
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titions of the validation process (large standard deviation values). Therefore, the only

remaining option was the LOOCV, which if on the one hand provides more robust

estimations, it also tends to over-estimate the prediction performance of the models

[30]. Furthermore, di↵erent than for the analysis of the 2.5 years data, the lipidomics

data were not a↵ected by missing values, thus RGIFE was only coupled with SPIDER

to tackle the imbalance class distribution (together with a cost-sensitive learning). To

identify the best set setting of RGIFE (across 30 di↵erent configurations) for each of

the analysed data, the same pipeline used for the 2.5 years data was employed (Fig-

ure 5.2). For the sake of readability, the results section will be divided according to

the source that generated the lipidomics data.

OA measure Variables AUC-Full AUC-CV p-value

ACR criteria
C16:0-Cer

0.921 0.757 < 1e-04C24:2-Cer
C18:0-ChE

Knee pain

C22 3-2

0.855 0.443 0.0001
C38:4-DG
C40:6-DG
C60:6-TG

KL incidence

C18 3-w

0.910 0.561 3.00e-04
C36:1-PC
C42:7-PC
C38:5-PCplas
C22:4-ChE

Table 5.7: Summary of the models inferred for each knee OA outcome measure when
using TNO lipidomics data. The last column indicates the permutation test p-value
(one tailed).

5.3.2.1 Selected models from TNO data

Table 5.7 reports the models extracted from the analysis of the TNO lipidomics data

using three knee OA outcome measures. For each model are provided both the AUC-

Full and the AUC-CV, with the latter useful to identify possible overfitting during the

learning phase.

Figure 5.14 shows instead the ROC curves generated by the models of Table 5.7. All the

inferred sets of lipids provide high AUC-Full values, however, when observing the AUC-
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Fig 5.14: The ROC curves generated by the best performing models (6.5 years). The
AUC values refer to the AUC-Full.

CV, bad performance emerge for the knee pain models. Having an AUC-CV lower than

0.5 (random classification) means that the learning phase was not able to extract any

significant pattern from the data that could be later used to correctly predict the

category of unseen data (test samples). The reduced AUC values for this model are

likely due to the few positive individuals (9 against 65 non-OA) available when defining

the presence of knee OA using the chronic pain measure. With such a small number

of positive observations, it is almost impossible for the machine learning methods to

identify meaningful patterns from the data. Conversely, the model generated using

the ACR criteria performed well providing an AUC-CV of 0.757 and an AUC-Full

of 0.921 by using only three lipids. Finally, the lipids selected using the K&L score

incidence criteria lead to an interesting AUC-Full of 0.910 coupled by a lower AUC-

CV of 0.561. All the inferred models were defined by a small number of lipids. This

suggests that many of the original 249 variables do not contain any useful information

for the prediction of the knee-OA presence. When using the permutation test, none of

the inferred models was outperformed, in terms of AUC, by models generated using

random datasets (empirical p-value = 0). Similarly, the one-tailed test also provided
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low p-values when contrasting the original AUC-Full values with the performances

obtained with the random datasets. The p-values calculated for each model with the

one-tailed test, are shown in Table 5.7, all of them are lower than the classical standard

↵ value of 0.01, indicating significant performance for the proposed models.

Fig 5.15: Plot of the first two components of the PCA performed using the biomarkers
extracted from the (normalised) ACR criteria lipidomics data.

The good discriminative power of the biomarkers extracted using the ACR criteria

measure is also shown by the plot associated to the Principal Component Analy-

sis (PCA) in Figure 5.15. The PCA is a method that aims to emphasise variation

and bring out strong patterns in a dataset. When considering only the first two com-

ponents, it is possible to generate a plot and assess how well they discriminate and

cluster samples that belong to di↵erent classes. In Figure 5.15 the majority of the

OA-a↵ected individual are clustered together (centre of the plot) when using the two

main components extracted from the selected biomarkers. Two (positive) outliers are

also clearly visible on the right-hand side of the plot. In the PCAs generated from

the other two datasets, the individuals of di↵erent classes tended to overlap making

di�cult the identification of “pure” clusters of data points, thus they are not reported.
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5.3.2.2 Additive values of the biomarkers from TNO data

To assess the relative importance of each biomarker, within the predictive models,

decremental models were composed by removing the variable whose dismiss led to the

smallest drop in performance. The AUC of each decremental model was calculated via

a LOOCV. Figures 5.16 – 5.18 are shown the submodels associated to each OA outcome

measure. When using the ACR criteria, a single lipid (C16 0 Cer) guarantees a high

AUC of 0.713, while the removal of C18 0 ChE bring the largest drop in performance.

This is not true for the Figure 5.17 and Figure 5.18, where both single-lipid models

obtain low performance. The largest drop in AUC, for all three OA outcome measures,

occurs when removing the second last important variable. Finally, for both K&L score

and knee pain, using only two lipids it is possible to obtain and AUC-Full of 0.711 and

0.651 for knee pain and K&L respectively. Overall, the submodels analysis indicates

that with the abundance of very few lipids, selected from the original set of 294, is

possible to achieve a good prediction of knee OA presence in overweight women.

C16_0_Cer 

C18_0_ChE

C24_2_Cer
C16_0_Cer 

C18_0_ChE

C16_0_Cer 

Fig 5.16: Decremental models generated using the ACR criteria to define the knee OA
presence.
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C40_6_DG

C60_6_TG

C22_3-2

C38_4_DG

C40_6_DG

C60_6_TG

C22_3-2
C40_6_DG

C60_6_TG

C40_6_DG

Fig 5.17: Decremental models generated using the knee pain to define the knee OA
presence.

C22_4_ChE

C42_7-PC

C36_1-PC

C18_3-w_

C38_5_PCplas

C22_4_ChE

C42_7-PC

C36_1-PC

C18_3-w_

C22_4_ChE

C22_4_ChE

C42_7-PC

C36_1-PC C22_4_ChE

C42_7-PC

Fig 5.18: Decremental models generated using the K&L score to define the knee OA
presence.
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Fig 5.19: Direction of each lipid in the ACR criteria predictive model for the presence
of knee-OA. The x-axis shows the abundance of each lipid, the y-axis reports the
average probability to be associated with the positive class (presence of OA).

5.3.2.3 Biomarkers association with knee OA from TNO data

In contrast with the analysis of the biomarkers extracted from the 2.5 years data (see

Section 5.2.3.4), for several lipids it was not possible to identify a direct association

with the knee OA outcome measure. In Figures 5.19 – 5.21 are provided the partial

dependency plots for the variables of all the inferred models. Two of the three lipids

extracted with the ACR criteria definition show a
V
-shape relationship, where an

higher probability of developing the knee OA is associated with mid-range values of

the lipid. In other words, the lipids have a positive association up to a threshold
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values after which it becomes negative (large values). Conversely, C24 2 Che, shows

an association in the form of a
W

where the chance of knee OA decreases to a minimum,

usually associate with mid-range values for the lipid, before rising again. This type of

relationship can be split into a negative association followed, after a threshold value,

by a positive one.

Fig 5.20: Direction of each lipid in the knee pain predictive model for the presence of
knee-OA. The x-axis shows the abundance of each lipid, the y-axis reports the average
probability to be associated with the positive class (presence of OA).

A clear association is instead visible for the lipidomics selected from the chronic knee

pain OA definition, Figure 5.20. A well defined negative relationship is plotted for

C60 6 TG and C22 3 2, while a positive dependence emerges for C38 4 DG. Finally,

C40 6 DG seems to provide a
W

association, in fact, there is a big increase in with

the probability of incurring in the condition for values higher than 0.010.

Figure 5.21 illustrates the partial dependence plots for the lipids in the K&L score

incidence model. The majority of them have a negative association with the outcome

measure, while only one, C38 5 PCplas, shows a positive relationship. Finally, a peak

at the value of 0.8 characterises the
V
-shape dependence of C36 1 PC.
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Fig 5.21: Direction of each lipid in the K&L score incidence predictive model for the
presence of knee-OA. The x-axis shows the abundance of each lipid, the y-axis reports
the average probability to be associated with the positive class (presence of OA).
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5.3.2.4 Functional networks from TNO data

Using the FuNeL protocol, functional networks were generated from the lipidomics

datasets. The goal was to go beyond the pure list of biomarkers and generate some

networks that can help in better understanding the mechanism behind the characteri-

sation of knee OA. Before the generation of the networks, it was necessary to assess the

predictive value of the BioHEL’s rules generated from the lipidomics data. In fact, a

network generated from classification rules that cannot well discriminate the samples,

OA and non-OA in this instance, simply risks to be overfitting. Therefore, the AUC of

10 000 rule sets generated by BioHEL was calculated using a leave-one-out validation

scheme. The resulting values were: 0.696 for the ACR criteria, 0.602 for the knee pain

and 0.529 for K&L score incidence. When comparing those values to the performance

of RGIFE, in Table 5.7, lower, but still good, performance were obtained when using

the ACR criteria data. Conversely, by using all the attributes (no feature selection

was performed before BioHEL), a better AUC was achieved for knee pain, while a

slightly worse classification occurred with the K&L score incidence measure. Overall,

the AUCs obtained by BioHEL represent a good result considering the di�culty of the

data and that neither cost-sensitive learning or oversampling was performed during

the learning process.

Having assessed the predictive value of BioHEL’s classification rules, three functional

networks were generated from the TNO lipidomics data. A summary of the main

topological properties of the functional networks is provided in Table 5.8. Each network

is illustrated in the Appendix C. FuNeL contains an embedded feature selection process

based on the classification rules generated by BioHEL. Attributes that are not relevant

for the classification task do not emerge in BioHEL’s rule and consequently in the

network. Moreover, attributes (lipids) that do not belong to statistically significant

OA definition Nodes Edges Diameter Clust. Coe↵. Density Avg. Degree

ACR criteria 222 1032 6 0.359 0.042 9.29
Knee pain 239 958 8 0.225 0.034 8.01
KL incidence 261 1361 5 0.359 0.040 10.42

Table 5.8: Summary of the main topological properties of the networks generated from
the TNO lipidomics.
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OA measure Biomaker Degree Network avg. degree SPL (biomarkers) SPL (others)

ACR criteria
C16:0-Cer 116

9.29 1.33 2.57C24:2-Cer 1
C18:0-ChE 72

Knee pain

C22 3-2 2
8.01

1.50 2.80
C38:4-DG 91
C40:6-DG 17
C60:6-TG 8

KL incidence

C18 3-w 24
10.43

2.00 2.44
C36:1-PC 138
C42:7-PC 1
C38:5-PCplas 58
C22:4-ChE 9

Table 5.9: Role of the RGIFE selected lipids within the FuNeL networks. For each
biomarker is reported the node degree. In addition is shown the average shortest
path length between the RGIFE-selected lipids and between all the other nodes in the
network.

edges are not represented by a node. As a consequence, all the inferred networks

contain fewer lipids than the original set available in the data. The density is the

property that measures how many edges are in a network compared to the maximum

possible number of edges between all the nodes and ranges between 0 (no edges)

and 1 (complete graph). The low values reported in Table 5.8 show that, although the

representation of the networks might suggest that FuNeL generated some sorts of hair-

balls, where all the nodes are connected to each other, the number of edges between

the lipids is limited (in the range of thousands). The clustering coe�cient is relatively

low for all the networks and indicates the presence of few triangular relationships

between the lipids. Finally, the diameter reveals small networks for ACR criteria and

K&L score incidence, where the two farthest nodes are separated by 5 and 6 edges

respectively. Conversely, the network generated from the knee pain data is slightly

larger with a diameter of 8.

The networks were then used to assess the role and the position of the lipids selected

by RGIFE. In Table 5.9 are reported, for each lipid, the number of neighbours in the

network (i.e node degree). Most of the proposed biomarkers are central hubs in the

FuNeL networks, that is they are connected with many other lipids. Particular impor-

tance is assumed by C16 0 Cer, C38 4 DG and C36 1-PC respectively in the ACR

criteria, knee pain and K&L score incidence network. When comparing their degree

with the average node degree of the networks reported in Table 5.8, a clear di↵erence
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emerges, up to 10 times more connections. In addition, it was checked “how close”

the proposed biomarkers are, from each other, within the FuNeL network. Similarly

to what measured with the proximity of the disease-associated genes in Chapter 3,

the average distance (shortest path length) between the RGIFE-selected lipids was

contrasted with the average distance between the remaining lipids of FuNeL networks.

The values of Table 5.9 indicates a higher proximity of the RGIFE-selected biomarkers

if compared with the average distance between any other pair of lipids. Greater prox-

imity represents a stronger functional relationship between the proposed biomarkers,

in other words, they are at the core of the co-prediction networks. From a machine

learning point of view, the importance of those results is two-fold: (1) it shows that

the proposed biomarkers are identified as influential in the PROOF study data by two

di↵erent machine learning methods employing a diverse knowledge representation and

(2) it proves the robustness of the proposed methods (RGIFE and FuNeL) as similar

knowledge, although represented in di↵erent form, is extracted from the same data.

As already mentioned earlier, it is di�cult to extract some insights by looking at the

whole network (see Appendix C). Therefore, a clustering algorithm was applied to

identify a set of strongly connected nodes. MCODE, a Cytoscape plugin that finds

clusters (highly interconnected regions) in a network [131], was used for this purpose.

In Figure 5.22 are illustrated the highest ranked clusters, found by the MCODE algo-

rithm (used with default parameters), for the three inferred TNO networks. With a

red circle are highlighted the RGIFE-selected lipidomics within the major clusters. In

the knee pain cluster, no biomarkers were present. However, they were present in the

lower ranked clusters (not shown here). Overall, Figure 5.22 visually shows the large

number of connections that involves C16 0 Cer and C18 0 ChE in the ACR criteria

network and C36 1-PC and C38 6 PCplas in the K&L score incidence network. Once

again, this reveals that several of the proposed lipids seems to play a relevant role in

di↵erent models extracted from the analysis of the PROOF data study.

5.3.2.5 Selected models from UNOTT data

When analysing the data generated from UNOTT, the biomarkers selected by RGIFE

obtained poor values of AUC-CV, respectively:
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C46_2_TG
C18_1-SPM

C30_1_DG
C18_0-SPM

C16_0_Cer

C58_1_TG

C32_2_DGC16_0_ChE C32_1_DG

C50_4_TG

C52_5_TG

C36_3-PC_(2)

C22_5_ChE

C48_2_TG

C30_0_DG

C18_0_ChE C50_3_TG

C50_4_TG

C18_0_ChE

LIP_sum_all_SPMs

SN1-C22_1-LPC

C18_3_ChE

C38_5-PC_(3)

C52_8_TG

C18_0-SPM

C26_0_Cer

C54_0_TG

C34_5_DG

C36_1_DG

C17_1_ChE

C34_1-PC

C34_4_DG

C38_6_PCplas

C48_0_TG

C16_1_ChE

C16_2_ChE

C38_6_DGC36_1-PC

C50_1_TG

C40_6_DG

C52_1_TG

C56_6_TG

KL incidence

Knee pain

ACR criteria

Fig 5.22: The main clusters identified by the MCODE algorithms within the FuNeL
networks generated from the TNO lipidomics data. In red are highlighted the lipids
selected by RGIFE.

• ACR criteria: 0.363

• Knee pain: 0.282

• K&L score: 0.463

The low values tell that RGIFE was not able to identify good patterns, within the

data, that can be helpful when predicting the label (OA / non-OA) of unseen samples.

Given the bad performances, it was necessary to verify that the low AUC values were

not due to a poor behaviour of RGIFE. Thus, two other feature extraction algorithms

were tested: SVM-RFE [111] and CFS [104]. As introduced in Chapter 4, SVM-RFE

requires setting upfront the number of features to select. This value was set to 10

because this represents the largest model that the collaborators in the D-BOARD
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projects aim to analyse. The AUCs values when using CFS were: 0.395, 0.456, 0.550

respectively for ACR criteria, knee pain and KL score incidence. Lower performance

were obtained by SVM-RFE: 0.369, 0.165 and 0.431. Overall, even if the lipids selected

by CFS seemed to predict slightly better the presence of the knee OA with the UNOTT

data, the general values were still quite low and suggest a potential overfitting during

the learning phase. Given that not only RGIFE but other machine learning approaches

were unable to extract relevant biomarkers from the UNOTT data, no further analysis

was performed (as presented for the TNO data). The rationale of this choice is that

the signatures extracted from the UNOTT data would simply be relevant for the small

(74) set of samples within the PROOF study, quite unlikely they would result powerful

in determining the presence of the condition in other individuals from di↵erent cohorts.

5.3.2.6 Merging TNO and UNOTT data

The lipidomics analysis performed by the TNO and UNOTT were carried out on the

same set of individuals. More importantly, both lipid analyses were performed using

the plasma samples collected at the same data point. Therefore, it was interesting,

especially from a machine learning point of view, to check whether by merging both

sources of information, better predictive models could be identified. The resulting

datasets contained a total of 329 lipids. RGIFE was applied using the same leave-one-

out validation scheme employed in the previously proposed experiments. The summary

of the TNO+UNOTT models is shown in Table 5.10.

The AUC-CV values for the ACR criteria and knee pain models are essentially the

same that were obtained when considering only the TNO lipids. Furthermore, the

biomarkers extracted using the TNO+UNOTT data are identical to the ones identified

when studying only TNO data (see Table 5.7). This result further highlights the

irrelevant information, in terms of knee OA presence prediction, encapsulated within

the UNOTT lipidomics data. Moreover, the best performing RGIFE configurations

were similar when extracted from the TNO and TNO+UNOTT data. For ACR criteria

it slightly varied from (depth = 8, cost = 2) to (depth = Unlimited, cost = 2), while

for the knee pain it changed from (depth = 4, cost = 1) to (depth = 2, cost = 2)

confirming the robustness of RGIFE. On the other hand, a bit counter-intuitive, is
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OA measure Variables AUC-Full AUC-CV p-value

ACR criteria
C16:0-Cer

0.927 0.760 1.38e-05C24:2-Cer
C18:0-ChE

Knee pain

C22 3-2

0.863 0.450 0.0001
C38:4-DG
C40:6-DG
C60:6-TG

KL incidence

C18 3-w

0.954 0.447 0.0008

C40:4-PC-(2)
C38:5-PCplas
C36:6-DG
C50:0-TG
Resolvin-D1

Table 5.10: Summary of the inferred models for each knee OA outcome measure when
using TNO+UNOTT lipidomics data. The last column indicates the permutation test
p-value.

visible a decrease in performance when using the K&L score incidence measure. The

drop of AUC-CV by 0.12 can be probably due to an overfitting of the heuristic, the

additional information brought by the UNOTT lipids are likely to have “destroyed”

the patterns that characterised and were found by RGIFE within the TNO data. The

K&L score incidence model presented in Table 5.10 shares only two lipids with the

model generated from the TNO data. Out of the 6 biomarkers, only one belongs to the

UNOTT data: Resolvin-D1. Nevertheless, it is interesting to observe how the family

of this lipid can be relevant for the knee OA. In fact, other researchers have recently

shown that targeting the D-series resolvin receptor system provides robust analgesics

e↵ects for the treatment of osteoarthritic pain [266].

5.4 Discussion

This chapter presented the analysis performed for the collaboration with the D-

BOARD consortium. The work consisted in the definition of a generic pipeline for the

identification, validation and evaluation of novel biomarkers for knee osteoarthritis

(OA) in overweight women. The analysed data were derived from the PROOF study

[250], a project that aimed to assess the e↵ect of a diet-and-exercise program, com-
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bined with the oral assumptions of crystalline glucosamine sulphate, on the incidence

of knee osteoarthritis overweight women aged between 50 and 60 years of age. Data

were collected at two di↵erent time points: after 2.5 and 6.5 years from the baseline

(start of the study).

Out of all the subjects included in the PROOF study, 365 had a 2.5 years follow-up

where the incidence (development) of knee OA was defined using five di↵erent out-

come measures. Each individual was characterised by variables containing: clinical

and imaging-based information, food routine, pain presence and biochemical markers

concentration. Di↵erent than the traditional approaches, mostly based on the com-

bination of univariate filtering and multivariate logistic regression, machine learning

techniques were employed to identify knee OA-related biomarkers and generate pre-

dictive models. The multivariate machine learning approach, represented by the use

of RGIFE, resulted in five small (at most 8 variables) highly predictive (AUC > 0.7)

models. Overall, the best model was inferred with the K&L scale for the definition of

the presence of (patello femoral) OA, probably one of the most adopted measure. The

worst performance was obtained when using the data labelled with JSN (Joint Space

Narrowing) criteria. Possibly, the bad results can be explained by the di�culty in

assessing the JSN from the X-ray that can bring to errors when defining the presence

of OA, thus provide misleading data from which is hard to learn.

All the inferred models contained variables covering most of the di↵erent categories

of information collected for the PROOF study. In contrast to many reports about

knee OA, the PROOF study includes, together with “classic” clinical, imaging-based

and pain information, variables that describe the daily food routine of the subjects.

Those variables appeared in almost all the models, suggesting an important role when

trying to discriminate incident and non-incident samples. Fruit intake information

were present in many models, in particular they were valuable for the K&L score

incidence model where their removal caused a significant drop in AUC (almost 10%).

The variable direction analysis, also known as partial dependence analysis, allowed

to assess the association between each biomarker and the OA incidence. From the

outcome of this investigation some expected output emerged. Both BMI and waist

circumference were positively related to the outcome, the higher the value assumed by
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those variables, seen as a significant overweight, the greater the chance to develop the

condition. Similar, a large intake of fruit, that can be interpreted as an overall health-

ier diet, help in decreasing the chance to develop knee OA. Conversely, less obvious

was the negative association between the years since the menopause and the incidence

of OA as well as the grinding sounds when moving the knee. The variable direction

analysis was another example of how machine learning models contain relevant knowl-

edge that can be exploited to gain new insights. In this case, the models were built

under certain constraints (fixing the value assumed by each biomarker) and looking

on how their structure, and consequently their predictions changed, it was assessed

if the concentration of a specific biomarker might increase or decrease the chance of

developing the condition.

The partial dependence analysis also helped in confirming the importance of certain

“wet” biomarkers of extracellular matrix tissue turnover. Both ACR criteria, medial

and lateral JSN based prediction models contained blood or urine-based biomarkers.

C1M and C2M seemed to be negatively associated with the incidence OA defined

by ACR criteria and medial JSN, in a similar way, COLL2-1NO2 showed a negative

relationship with incidence OA defined by lateral JSN. Previous studies have found

correlations between OA severity and C1M [255] and a di↵erence in C2M levels between

OA and healthy subjects [261]. Furthermore, the negative association between COLL2-

1NO2 and OA incidence is in line with a previous study also performed in the PROOF

cohort [244], thus providing some degree of validation. These findings suggest that

assessment of structural degradation products from the extracellular matrix in body

fluids may provide valuable information on the development OA and prediction of

disease incidence in high-risk groups.

The analysis of the inferred models revealed that the knowledge associated with the

imaging-based variables provides valuable information. Each model uses at least

one variable related to imaging-based techniques. In addition, a positive association

emerged between the presence of OA on MRI at baseline and the incidence of knee OA

when using the K&L grade definition. Overall, this highlights a need in re-evaluating

a proper use of imaging information in primary care settings, especially when treat-

ing subjects at risk for future knee OA development. Nevertheless, it needs to be
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stressed that not all the imaging-based variables included in the final models are easy

to obtain in primary care, such as the outcomes of statistical shape modelling (“Mode

x” variables). Hopefully, the relevant role of MRI features for the prediction of knee

OA incidence in the model might direct the design of new studies that focus on early

detection or early treatment of knee OA among a high-risk group of overweight and

obese women.

For two of the OA outcome measures (knee pain and K&L score incidence), compara-

ble models were found in the literature. The performance of the models inferred with

RGIFE resulted superior to all the models proposed as state-of-the-art. The number of

biomarkers was lower or equal with the K&L score incidence while slightly higher for

the chronic knee pain model. All the selected studies the same approach: univariate

analysis followed by logistic regression. As already noticed in Chapter 4, RGIFE with

its multivariate approach o↵ers better predictive performance than the traditional uni-

variate methods (Chi-Square in Chapter 4). Better results are likely to occur because

simple univariate methods seem unable to capture the complex mechanism behind

knee OA; by checking the association of each single factor with the outcome variable,

interactions that might trigger the presence of the condition are missed. This recom-

mends a need in pushing for the adoption of appropriate computational techniques

when dealing with clinical, and more in general, biomedical studies. Traditional sta-

tistical methods, often due to their simple approaches, seem to discover only a reduced

amount of knowledge and this might limit the finding of new research insights. The

thorough validation performed in this dissertation confirms machine learning as a valid

and powerful alternative that can lead to better scientific discoveries.

Some of the PROOF study individuals, 74 in total, were available for follow-up analy-

sis after 6.5 years from the baseline. Using this data, result of a cross-sectional study,

biomarkers can be detected to predict the existence of knee OA (at a specific time

point rather than incidence as for the 2.5 years data). The 74 subjects were used for

a lipidomics screening, the presence of knee OA was determined with three outcome

measures: ACR criteria, chronic knee pain and K&L grade. Two di↵erent lipidomics

screenings were performed by two D-BOARD partners: TNO and UNOTT. The appli-

cation of RGIFE, and two other feature extraction methods, to the UNOTT data, did
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not lead to good predictive models. The AUC of the selected biomarkers was below

the random classification threshold of 0.5. The poor results, confirmed by di↵erent

biomarker discovery methods, hints that the lipids targeted by UNOTT are not in-

volved in the developing of knee OA. However, low AUC values could also be caused

by the small amount of information available for each sample (only 32 lipids). When

having both a limited number of features and samples, it is hard for machine learning

algorithms to extract patterns that can generalise the phenomena described within the

data. On the contrary, when using the TNO data, better predictive models could be

generated by RGIFE. The best predictive lipids were selected using the ACR criteria.

Better performance from the TNO data might due to a the di↵erent set of lipids target

by the screening technology.

Given that both TNO and UNOTT data were generated from samples collected at

the same time point, the information was merged into a single dataset and analysed.

The biomarkers extracted with the ACR criteria and knee pain measures led to the

same signatures inferred when using only the TNO data. Conversely, RGIFE selected

di↵erent, and worse performing, biomarkers from the K&L score data. In this in-

stance, the addition of the UNOTT data probably inhibited RGIFE from finding the

same patterns extracted when dealing only with the TNO data. Overall, the study of

TNO+UNOTT data has been two-fold. On one side, the same biomarkers emerged

from the analysis of di↵erent (incremental) data, suggesting an important role of the

selected lipids for knee OA among overweight women. On the other hand, it has proven

the robustness of RGIFE and its capacity to identify the most predictive attributes

even when irrelevant information (UNOTT lipids) are added. This robust behaviour

can be the result of the multiple repetitions (10 times) of the cross-fold validation per-

formed in each iteration of the heuristic. The repetitions assure that possible flukes,

due to the data being split into training and test set (possibly accentuated when hav-

ing only a few samples as in this case) are mitigated. This translate in a more robust

attribute ranking that guides to a more accurate filtering of the variables.

Di↵erent than the 2.5 years, the lipidomics data were not a↵ected by missing values

and were only characterised by continuous values (lipids abundance). Therefore, (lipid)

functional networks were generated using FuNeL. The classification rules inferred by
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BioHEL, that is at the core of FuNeL, showed low performance when using UNOTT

data, thus the networks were only created from the TNO data. Most of the lipids

selected by RGIFE resulted being hubs of the FuNeL networks and part of the main

cluster. Furthermore, the proposed biomarkers were at the core of the inferred net-

works, as they tended to be closer (shorter path between each other) than any other

pair of nodes. From a machine learning perspective, this result showed that, although

using di↵erent knowledge representations and providing the output in di↵erent forms,

RGIFE and FuNeL, when analysing the same data, extract consistent information.

In this thesis, only two types of knowledge representation were analysed (rule-based

and random forest). However, the results hint that, regardless how it is presented,

relevant information is always available within the models. Nevertheless, appropriate

techniques are fundamental to exploit the structure of the models and maximise the

knowledge extraction.

5.5 Future work

The biomarkers extracted from the 2.5 years data contain two types of variables: early

signs (e.g. pain while jumping) and risk factors (e.g. BMI or waist circumference).

The presented analysis was performed using the information collected for the PROOF

study, all the available variables were included without distinction. In the future, a

separate analysis could be performed considering only one type of variable. This would

allow to generate either a set of markers for early OA or a predictive model that would

provide a risk score for the development of knee OA within a few years. In addition,

this would provide di↵erent models to be applied based on the available information

for each tested subject.

In this dissertation, the evaluation of the lipidomics models has been limited to the

study of the predictive performance and the partial dependence analysis. Similarly, the

networks inferred from the TNO data were only used to study topological properties

and analyse the relationships between the variables selected by RGIFE. In future, the

developed models deserve to be studied more in details to assess the role of the selected

lipids better, especially involving a close collaboration with the clinical expert of knee
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OA. For example, the association between the lipid abundance and the presence of

knee OA requires a further study. The non-linear associations (
V

and
W

shapes) need

to be better understood and evaluated so that the role of each lipid can be properly in-

terpreted. There is a limitation in the biomedical and clinical evaluation that machine

learning experts can provide. Moreover, the interpretation of lipidomics data, di↵erent

than transcriptomics, is fairly new and not many tools are available to clinically and bi-

ologically evaluate the role of specific lipids. Given the limited availability of methods

that can perform enrichment analysis from sets of lipids, a simple over-representation

test (e.g. using an hyper-geometric statistical test) could be implemented to check

whether the selected biomarkers share some biological characteristics.

Overall, all the inferred models performed quite well for the prediction of knee OA.

The performance can be considered as “fair” (AUCs is between 0.70 - 0.80) and “good”

(AUCs between 0.80-0.90). Compared to the models from the specialised literature,

similar or better performance were observed. However, this validation process is lim-

ited and is necessary to evaluate the predictive power using an independent set of

individuals (external validation). Given that the new validation data will unlikely in-

clude all the variables employed by the inferred models, the role of the decremental

analysis is fundamental. Based on the new variables available, the performance of the

best fitting sub-model could be easily extracted from the decremental analysis and

compared with the AUCs obtained from the new samples.

Looking at the analysis performed in this chapter, it is quite straight forward to ask

whether the merging of the 2.5 years and 6.5 years data might generate a dataset

from which better models can be extracted. From a machine learning point of view,

the union of di↵erent data into a single one is a common process that often leads to

the generation of better models because more information become available for each

sample. However, from a clinical point of view, the merging of information obtained

at di↵erent time points generates meaningless data. In fact, models inferred from

such data would not be usable on a daily basis as they would require information

collected at di↵erent time points. Nevertheless, in the near future, the collaborators of

the D-BOARD might be able to provide new data (obtained after 6.5 years from the

baseline) containing the same set of variables available in the 2.5 years data. Those
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data could be analysed on their own but also merged with the lipidomics information to

determine if a better predictive performance could be achieved. The 6.5 years clinical

data could also be used as validation of the current biomarker signatures to check

whether their performance decrease if tested with measurements collected at a later

time point. Furthermore, it would be worth checking if RGIFE would select the same

biomarkers.

Summary

This chapter has presented the application of machine learning-based

methodologies for the analysis of knee osteoarthritis data. While in

Chapter 3 and Chapter 4, RGIFE and FuNeL have been mainly tested

with transcriptomics data, in here they have demonstrated their ability in

dealing with di↵erent types of biomedical data. The results revealed that,

although presenting the extracted knowledge in di↵erent forms, FuNeL

and RGIFE, when applied to the same data, unveil consistent information.

Overall, the analysis proposed in this chapter have further confirmed the

importance of exploiting the information encapsulated within machine

learning models to gain new relevant biomedical knowledge.
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6.1 Summary

In the last decade, thanks to the constant reduction of the bio-technologies costs,

we have seen that biomedical data accumulates at an increasing speed. Appropri-

ate computational approaches are necessary to make sense of this large abundance of

information. In the biomedical field, decades-old statistical-based methods are still

commonly used to analyse the data and extract meaningful knowledge. However, due

to the design simplicity of these methods, the information that they can extract from

biomedical data is often limited. Machine learning represents an important alterna-

tive to statistical-based methods, with a rich and versatile knowledge representation,

di↵erent and more interesting patterns can be found in the data.

This thesis was focused on the analysis of biomedical data with machine learning

methodologies. In particular, the presented work expanded and improved the typical

use of machine learning in biomedical context. While in many applications the gener-

ation of (predictive) computational models represents the end point, in here it became

the input for the process of knowledge discovery. The structure of the inferred models

was mined to gain new insights about specific biomedical problems. The rationale is

that by understanding how machine learning algorithms can solve analytical problems,

we can learn how to better address biomedical tasks. In particular, the thesis tried to

verify the following research hypothesis:

Research hypothesis

Can we extract relevant knowledge from the analysis of machine learning models

generated from biomedical data?

This research hypothesis was tested focusing on two main biomedical analytical tasks:

(1) the inference of biological networks and (2) the discovery of biomarkers. Both

research topics require the ability to correctly identify and interpret complex inter-

actions between di↵erent factors present in the data. The first problem focuses on

the inference of functional associations between biological entities (genes, proteins,

lipids, etc.), the second one demands the identification of sets of entities (biomarkers)

that together can drive/influence a specific biomedical condition. Machine learning,

- 216 -



Chapter 6: Conclusions

using complex knowledge representations, is particularly suited for both tasks. This

dissertation presented di↵erent methods to mine machine learning models, generated

from biomedical data, and solve both problems. In addition, given the large variety

of biomedical data (from -omics to clinical data, from image to questionnaire informa-

tion) that are continuously generated, a further aim of the thesis was the proposal of

flexible methodologies able to deal with such an assortment of data and not tailored

for a particular format.

6.2 Evaluation of the research question

The research question was tested with thorough analysis presented in Chapter 3,

Chapter 4 and Chapter 5. Machine learning models were exploited, with di↵erent

approaches, to generate functional networks and propose biomarkers from biomedical

data.

In Chapter 3 the problem of the network inference was tackled presenting FuNeL.

FuNeL is a protocol that identifies functional associations by mining the classification

rules generated with BioHEL [39]. It employs the co-prediction inference paradigm

where biological entities that participate in the same classification rules (generated to

discriminate between di↵erent samples such as controls vs. cases) are hypothesised

to be functionally related. Di↵erent than the commonly employed similarity-based

methods, within machine learning models the entities are related not because they

are similar (e.g. have similar expression profiles), but because together they detect

strong patterns. The success in the test performed using synthetic data provided a

first hint on the ability of FuNeL to identify relevant associations between biological

entities. When tested with eight real-world datasets, FuNeL networks were shown to

be complementary, in terms of biological characteristics, to the networks generated

with three state-of-the-art similarity-based methods. In addition, the co-prediction

was proven to better capture the concept of functional relationship when using gene-

disease associations. In FuNeL networks, disease-associated genes were found more

closely connected and present in functional units. The research hypothesis considered

in the thesis was further evaluated using a prostate cancer dataset as a case study.
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The biomedical relevance of the knowledge associated with the FuNeL networks was

confirmed by (a) the specialised literature and (b) the analysis of an independent set

of data.

Chapter 4 introduced significant improvements in RGIFE, a heuristic for the identi-

fication of small sets of highly predictive biomarkers. Originally presented in [208],

RGIFE was extensively revamped to address two main drawbacks: large computa-

tional time and undesired local optimums. Di↵erent than in FuNeL, within RGIFE

the machine learning models are exploited to guide the search for the optimal set of

biomarkers. Based on an iterative feature elimination paradigm, RGIFE mines the

structure of machine learning models, generated to solve a classification task, to define

a feature ranking and remove the irrelevant ones. First, the newly introduced features

(see Section 4.2.1 for details) were shown to improve the performance of the origi-

nal RGIFE both in terms of computational time and number of selected biomarkers.

When compared with well-known approaches used for biomarker discovery, RGIFE of-

fered statistically similar predictive performance while constantly using fewer features.

The use of a sophisticated multivariate knowledge representation (random forest) led

to better performance when contrasted with a simple univariate method (i.e. Chi-

Square). Furthermore, when applied to synthetic datasets, RGIFE showed the ability

to identify relevant features among irrelevant and redundant information. The genes

extracted by RGIFE from a prostate cancer dataset revealed higher relevance, in a

disease context, to that of other methods for biomarker discovery. This chapter pro-

vided an answer to the research hypothesis showing that, not only the genes extracted

by RGIFE were enriched for biological pathways known to be associated with prostate

cancer (according to specialised literature), but also were highly genomically altered

in other independent datasets (not used for the inference of the signature).

In Chapter 5 biomedical data were analysed trying to identify biomarkers for knee

osteoarthritis (OA). The presented work was part of the collaboration with the D-

BOARD consortium, that aims to discover new biomarkers to predict the presence of

knee osteoarthritis in overweight women. RGIFE was used to generate small di↵erent

highly predictive models (with less than 8 biomarkers). In addition, using the infor-

mation extracted from the machine learning models, the identified biomarkers were
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extensively characterised by studying their importance (additive value to the predic-

tive model) and their association with the presence of the condition. The result of this

analysis highlighted the importance of image-based biomarkers and, even more impor-

tantly, confirmed the relevance for the incidence prediction of knee OA, of well-known

biochemical markers. Contrasted with the models available in the literature (generated

with a statistical approach based on a univariate analysis followed by a multivariate

logistic regression), the proposed models were shown better performing. This further

confirmed the importance of using machine learning techniques when dealing with a

complex condition such as OA. Simple statistical approaches are not powerful enough

to provide valuable and strong solutions. Finally, the chapter illustrated the robust-

ness of the methods proposed in this thesis. FuNeL was applied to a subset of data

(lipidomics data) and most of the topologically relevant nodes (hubs) of the networks

coincided with the variables (lipids) selected by RGIFE. These findings suggest that,

although using a di↵erent knowledge representation and providing information in a

diverse form, when applied to the same data the methods extract similar insights.

Overall, the thesis’ research hypothesis was validated in the three research chapters.

The results obtained clearly showed that machine learning models can be mined to

infer relevant knowledge. Moreover, the use of machine learning unveils information

that would be totally missed when using traditional statistical-based approaches.

This thesis was focused on methods that generate biological networks and discover

predictive biomarkers. However, the same “mining” approach can be used to address

other challenging problems in the biomedical fields (protein structure prediction, phy-

logenetic tree construction, etc. see Figure 1.1).

6.3 Contribution to the area of bio-data mining

The main contributions of this dissertation to the area of biomedicine and bio-data

mining are:

• development of the FuNeL protocol for the inference of functional networks from

the analysis of rule-based machine learning models (in Chapter 3)
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• demonstration that machine learning-based inference methods generate networks

that are topologically di↵erent than co-expression and capture dissimilar and

complementary biomedical knowledge. The di↵erence between networks have

also been assessed using a novel evaluation approach based on gene-disease as-

sociations (in Chapter 3)

• improvement of a machine learning-based heuristic, called RGIFE, to select small

panels of highly relevant biomarkers. Demonstration that methods specifically

designed to solve the problems of biomarker discovery perform better than more

generic machine learning approaches (in Chapter 4)

• identification and characterisation of knee-osteoarthritis biomarkers, via the use

of a machine learning-based methods, from di↵erent types of biomedical data.

In addition, confirmation of the relevance of established biochemical markers (in

Chapter 5).

Furthermore, it is important to highlight that the two main methods proposed in

this thesis, FuNeL and RGIFE, are generic enough to be easily modified and used

with other machine learning algorithms. The network inference stage of the FuNeL

protocol (see Section 3.2.2) can use other (rule-based) machine learning classifiers

while maintaining the other steps for the generation of di↵erent functional networks.

Similarly, the RGIFE heuristic presented in Chapter 4, although tested only with a

random forest, can be coupled with another classifier that provides a feature ranking.

Moreover, despite the fact that the proposed approaches were tested mainly using

transcriptomics data, other types of biomedical data can be employed. This was

partially shown in Chapter 5 where both FuNeL and RGIFE were applied to lipidomics

and clinical data. The only requirements, for both methods, is that data points are

assigned to di↵erent categories and can be used for a classification problem.

6.4 Limitations

The work presented in this dissertation has some limitations that will be covered in

the next sections.
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6.4.1 Computational time

The methods proposed in this thesis, although able to generate meaningful outputs

and discover relevant knowledge, have not been designed aiming for execution speed.

FuNeL uses BioHEL at the core of its network inference, a classifier based on evo-

lutionary learning whose execution is computationally expensive. The generation of

a single co-prediction network (in terms of rule sets inference) on itself is relatively

fast, but the permutation test, requiring many iterations, represents a time-consuming

element. However, given the independence of each BioHEL run, FuNeL can be triv-

ially parallelised to reduce its overall computational time (see Appendix A.4 for the

complete analysis). Optimisation in the core rule learning process of BioHEL or the

use of a faster classifier would also be a solution to tackle this limitation.

The improved version of RGIFE uses a random forest instead of BioHEL as proposed

in its original form [208]. As expected, the choice of a faster classifier dramatically

decreased the computational time required by the heuristic. This makes RGIFE now

comparable with CFS in terms of speed, when dealing with large datasets. However,

other methods such as ReliefF and SVM-RFE are still faster. Similar to FuNeL,

RGIFE has an independent component in the execution of each iteration (based on

M ⇥ n-fold cross-validation), therefore its runs can also be parallelised. In addition, a

speed-up in performance could be obtained using an even faster classifier (e.g. decision

tree), only if this would not decrease the performance of the heuristic.

6.4.2 Co-prediction paradigm

The co-prediction paradigm defines functional associations between entities that are

used in the same classification rule. If more than two attributes are present in the

same rule, associations are inferred between all the possible pairs of attributes. When

the rules contain many attributes, the co-prediction infers a large clique per each

rule. This might lead to functional networks defined as large sets of connected cliques.

Such a problem is partially mitigated by the use of the permutation test that removes

spurious edges. In the analysis performed in Chapter 3, when BioHEL was applied

to transcriptomics dataset, the number of attributes per rule was hardly more than
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4. Thus, the mentioned problem of having networks defined by multiple cliques did

not occur. However, if applied to other types of data that require complex rules (with

many attributes) to perform a correct classification, the co-prediction approach might

need to be adjusted. One solution could be to assess how often subsets of attributes

(more than 2) appear together in other rules. An alternative could be the adoption of

a pruning procedure similar to the one used by ARACNE (see Section 2.4) to remove

spurious connections.

6.4.3 Data pre-processing

The transcriptomics data used for the analysis of FuNeL and RGIFE (Chapter 3

and Chapter 4) were found in public repositories, they were already pre-processed

and “ready-to-use”. On the other hand, the D-BOARD data (2.5 years) required

the imputation of missing values. A limited preliminary analysis was performed to

establish the e↵ect of di↵erent strategies to solve this problematic, as it was out of the

scope of this thesis. The missing values were imputed using the K-Means algorithm.

Similarly, the class imbalance problem was addressed with the SPIDER oversampling

algorithm. However, many other imputation methods are available [256] and di↵erent

strategies can be used to tackle the imbalance problem [267]. Although it is unlikely

that di↵erent pre-processing approaches can substantially alter the overall predictive

performance of the models, other biomarker sets could emerge.

6.4.4 Lack of ground truth and field limitations

One of the main limitations in bio-data mining is the lack of established knowledge

or a ground-truth that could be systematically and automatically used to assess the

correctness of computational approaches. Without ground truth, the correctness is

limited to special cases for which the expected output is known or can be related to

established knowledge. A common alternative is the validation on synthetic data such

as partly employed in Chapter 3 and Chapter 4. Unfortunately, there is a limit to

how well synthetic data can represent the complex characteristics of biomedical phe-

nomena. An example is given by the analysis of the SD datasets [218]. Although the

RGIFE-Union policy was not able to identify the entire optimal subset of features, it
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still obtained the highest accuracy when tested with two classifiers. Given this restric-

tions, the community should start putting more e↵ort into the identification of new

strategies for the evaluation of new proposed methods. For example, the analysis of

biological networks should not be limited to the study of the main clusters. Additional

validation, based on the analysis of the relationships between disease-associated genes

could be performed (as described in Chapter 3 and Chapter 4). This would provide a

better understanding and interpretation of novel network inference methods. Overall,

although it is understandable that the proposed problems are di�cult and challenging,

the design of new validating solutions seems a necessary step on the way to refining

most of the methods proposed in the fields of bio-data mining.

6.5 Future work

Di↵erent future research steps can be pursued from the work presented in this disser-

tation. In the next sections, some future research directions will be presented.

6.5.1 Integration of FuNeL and RGIFE

The dissertation was focused on the analysis and the problematics associated with two

biomedical analytical tasks: the inference of functional networks and the discovery

of biomarkers. This resulted in the presentation of two novel approaches namely

FuNeL and RGIFE. Chapter 5 showed that the information extracted by the two

methodologies, although presented in di↵erent forms, are mutually confirmed. Because

FuNeL and RGIFE infer related knowledge, their union could lead to the discovery of

more robust and relevant insights. A straightforward combination would use RGIFE

instead of SVM-RFE in the feature selection step of FuNeL (see Figure 3.2). However,

given that RGIFE tends to select a small number of features, the resulting networks

could be very small and dense. If a larger network would be required, RGIFE could

implement an “early stopping condition” so that more attributes could be used for the

inference stage.

Another approach could use both knowledge representations during the inference of

the functional associations. Specifically, the feature importance ranking (performed
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by RGIFE using a random forest) could guide the generation of the classification rules

(with BioHEL). In this instance, the most important attributes could be preferred to

form the classification rules or could be less likely to be removed during the generalisa-

tion step of the genetic algorithm (the process of randomly remove attributes from the

rules to avoid over-fitting). Alternatively, the FuNeL knowledge could guide the search

performed by the RGIFE heuristic. The topological properties of the inferred network,

such as node degree or centrality, could help in defining the importance ranking used

by RGIFE. Key nodes, such as hubs and central nodes, would have lower chance to be

removed during the iterative process.

6.5.2 Knowledge integration for a better learning

An emerging research path involves the integration of biological knowledge during the

model generation process [114, 115, 268]. That is, the learning process is biased/guided

by some established information (received externally). This prior knowledge can be

expressed in multiple forms such as cellular pathways or biological and molecular

networks. Using patterns present in external sources of information, it is easier to

identify the artefacts in the data (e.g. spurious structures). The inference process can

then focus on the features that are consistent with the established knowledge. For

example, the relationship between two genes with common biological characteristics

(e.g. GO terms) or involved in the same pathways, could be used directly in FuNeL

or could be “preferred” during the rule learning process. Similarly, disease-associated

genes could be used as the seed for the generation of the classification rules in BioHEL,

that will be lately served to create co-prediction networks.

When it comes to RGIFE, an approach would be to weight more heavily the vari-

ables sharing many biological features, or associated with the same disease, to make

their combined removal harder. In the Section 6.5.1 it has been suggested to use the

(topological) information extracted from co-prediction networks to guide the RGIFE

removal. Alternatively, the feature removal could be influenced by one (or the combi-

nation) of the many molecular networks available in the literature such as STRING,

HIPPO, I2D, etc.
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6.5.3 Exploring the role of di↵erent knowledge representa-
tions

Another unexplored avenue is the use of machine learning algorithms that adopt a

di↵erent knowledge representation. Other rule-based classifiers can be placed at the

core of FuNeL, the Apriori algorithm [54] is the simplest example. However, FuNeL

is not exclusive of rule-based machine learning, and the co-prediction approach could

be extended to other types of knowledge representation. The co-prediction paradigm

defines associations within features that participate in the same classification model,

thus features that “co-operate” in solving a classification problem. Therefore, associ-

ations could be extracted from a random forest linking the attributes present in the

same tree. If using a single decision tree, relationships could be identified analysing

the paths from the root to the leaves of the tree. Possibly, even linear models, if

trained on di↵erent subsets of the data (to obtain multiple models covering di↵erent

parts of the solution space), could be explored for the co-prediction principle. Finally,

it would be interesting to assess how di↵erent types of knowledge representation used

by BioHEL can a↵ect the resulting FuNeL networks. BioHEL uses rules that define a

hyper-rectangle in the feature space, however di↵erent kind of representations are suit-

able for the classifier (e.g. ratio of predicates). This research topic has started to be

explored in [269] where the e↵ects of four knowledge representations have been evalu-

ated within FuNeL networks. The results show that di↵erent representations generate

networks of varying sizes and with relatively low overlap between important nodes.

On the other hand, the overlap between enriched terms of di↵erent networks is much

higher. Overall, this work suggests the importance of not restricting the biological

data analytic process to a reduced/specific type of knowledge representation, because

it will only be able to provide partial knowledge. Nevertheless, further and more de-

tailed (e.g. focused on a specific biomedical problem) analysis need to be performed to

fully understand the e↵ect of di↵erent knowledge representations. Similar remarks can

be expressed for RGIFE. The heuristic is generic enough to be implemented with any

classifier that estimates a feature importance. Many approaches could be a target for

future analysis: from the traditional standard algorithms (e.g. decision trees or SVM)

to the new largely embraced methods such as XGBoost [270] or deep neural networks.
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6.5.4 Application to other fields

In this dissertation, it was extensively demonstrated how the proposed methods can

be successfully utilised with various data from the biomedical domain. However, given

the flexibility and the generality of the introduced methods, they could be applied to

extract knowledge in di↵erent domains. For example, the process of drug discovery

and repositioning is currently attracting a lot of interest. One of the recent DREAM

challenges, in which I participated [16], asked the researchers to predict the individual

variability in cytotoxic response based on genomic and transcriptional profiles. If the

input data are categorised according to the treatment (e.g. placebo vs. drug), one

could use RGIFE to identify the most a↵ected factors (e.g. genes or lipids). Addi-

tionally, a process of drug repositioning could be seeded from functional associations

between biological entities (e.g. genes). Mainly, a drug targeting a gene could also be

used to target other genes functionally associated with it.

Biomedicine is not the only field in which is important to identify driving factors from

large-scale datasets. With the advent of the big data era, many other research areas

require computational approaches to make sense of the collected data. For example,

in the field of economics, Hal R. Varian used di↵erent machine learning methods to

examine a dataset of 72 countries to see which variables were significant predictors for

the economic growth [271]. Using RGIFE, a similar approach could be successfully

applied to the huge amount of data produced by the stock market, trying to discover

new predictors for the market trends. Experts in economics might also be interested

in the identification of new associations between predictive variables. By generating

FuNeL networks from economics datasets one might discover, perhaps without much

surprise, that the GDP level is linked with the life expectancy. On the other hand,

unexpected relationships might be identified and provide new hints to the field experts.

This section contains only few example, however, overall, I believe that the proposed

approaches, but in general the analysis of machine learning models, have the potential

to extract interesting knowledge from various types of data and contribute to the

generation of new research hypothesis in a vast variety of fields.
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A.1 Enrichment score analysis

In this section are reported the network average rankings, based on the Enrichment

Score, across the 8 datasets for every inferring method. The networks are ranked

between 1 and N (where N = 4 for FuNeL and N = 8 for Pearson, ARACNE and

MIC: 4 SE(C
i

) + 4 SN(C
i

)). For this analysis were considered Gene Ontology terms

(biological process (BP), molecular function (MF) and cellular component (CC)) and

biological pathways. The last row of each table represents the average rank across

di↵erent biological categories, in bold are highlighted the best performing networks.

Cat. C1 C2 C3 C4

GO BP 3 4 2 1
GO MF 4 2.5 1 2.5
GO CC 2 4 1 3
Pathways 4 2 3 1

Average 3.25 ± 0.96 3.125 ± 1.03 1.75 ± 0.96 1.88 ± 1.03

Table A.1: Average ranks based on ES across the 8 datasets for the networks generated
with FuNeL.

Pearson (SE) Pearson (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

GO BP 2 4 1 3 6 7 5 8
GO MF 8 3.5 5 6 7 3.5 1 2
GO CC 2 5 4 6 1 8 3 7
Pathways 6 5 4 3 7 1 8 2

Average 4.5 ± 3.00 4.38 ± 0.75 3.5 ± 1.73 4.5 ± 1.73 5.25 ± 2.87 4.88 ± 3.22 4.25 ± 2.99 4.75 ± 3.20

Table A.2: Average ranks based on ES across the 8 datasets for the networks generated
with Pearson.

=

ARACNE (SE) ARACNE (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

GO BP 4 7 5.5 8 2 5.5 1 3
GO MF 4 8 4 7 2 6 1 4
GO CC 3 7 5 8 2 6 1 4
Pathways 1 4 2 6 7 5 8 3

Average 3.00 ± 1.41 6.50 ± 1.73 4.13 ± 1.55 7.25 ± 0.96 3.25 ± 2.50 5.63 ± 0.48 2.75 ± 3.50 3.50 ± 0.58

Table A.3: Average ranks based on ES across the 8 datasets for the networks generated
with ARACNE.
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MIC (SE) MIC (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

GO BP 2 6 4 5 3 8 1 7
GO MF 1 6 4 7 3 8 2 5
GO CC 3 5.5 4 5.5 2 8 1 7
Pathways 2.5 4 1 5.5 8 5.5 7 2.5

Average 2.13 ± 0.85 5.38 ± 0.95 3.25 ± 1.50 5.75 ± 0.87 4.00 ± 2.71 7.38 ± 1.25 2.75 ± 2.87 5.38 ± 2.14

Table A.4: Average ranks based on ES across the 8 datasets for the networks generated
with MIC.

A.2 Disease association analysis

In this section are presented the network average rankings across the 8 datasets for

every inferring method based on the gene-disease association (G-D) properties: partic-

ipation in triangular relationship and proximity. Two sources of disease associations

were used: Malacards [139] (a meta-database of human maladies consolidated from 64

independent sources) and manually curated databases (OMIM [143], Orphanet [146],

Uniprot [145] and CTD [144]). The networks are ranked between 1 and N (where

N = 4 for FuNeL and N = 8 for Pearson, ARACNE and MIC: 4 SE(C
i

) + 4 SN(C
i

)).

The number of disease-associated genes participating in a triangle is denoted as 1A,

2A and 3A. The last row of each table represents the average rank across di↵erent

metrics, in bold are highlighted the best performing networks.

Malacards

Cat. C1 C2 C3 C4

1A 3 1 4 2
2A 4 1 2 3
3A 3 3 1 3
Proximity 3 1 4 2

Average 3.25 ± 0.50 1.50 ± 1.00 2.75 ± 1.50 2.50 ± 1.49

Table A.5: Average ranks based on Malacards G-D associations across the 8 datasets
for the networks generated with FuNeL.
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Pearson (SE) Pearson (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

1A 8 5 6 3 4 1 2 7
2A 7 4 5 3 8 2 6 1
3A 6.5 6.5 6.5 6.5 3 2 4 1
Proximity 1.5 5 3 1.5 7 6 8 4

Average 5.75 ± 2.90 5.13 ± 1.03 5.13 ± 1.55 3.50 ± 2.12 5.50 ± 2.38 2.75 ± 2.22 5.00 ± 2.58 3.25 ± 2.87

Table A.6: Average ranks based on Malacards G-D associations across the 8 datasets
for the networks generated with Pearson.

ARACNE (SE) ARACNE (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

1A 4 8 7 5.5 2.5 2.5 5.5 1
2A 7 6 8 1 4 3 2 5
3A 5.5 1 5.5 2 5.5 5.5 5.5 5.5
Proximity 7 3 5 1 6 2 8 4

Average 5.88 ± 1.44 4.50 ± 3.11 6.38 ± 1.38 2.38 ± 2.14 4.50 ± 1.58 3.25 ± 1.55 5.25 ± 2.47 3.88 ± 2.02

Table A.7: Average ranks based on Malacards G-D associations across the 8 datasets
for the networks generated with ARACNE.

MIC (SE) MIC (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

1A 6 3 7.5 1 5 2 7.5 4
2A 8 3 5 2 7 1 6 4
3A 7 2 8 6 5 1 3 4
Proximity 6 1 2 5 7 4 8 3

Average 6.75 ± 0.96 2.25 ± 0.96 5.63 ± 2.75 3.50 ± 2.38 6.00 ± 1.15 2.00 ± 1.41 6.13 ± 2.25 3.75 ± 0.50

Table A.8: Average ranks based on Malacards G-D associations across the 8 datasets
for the networks generated with MIC.
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Curated databases

Cat. C1 C2 C3 C4

1A 3 1 4 2
2A 3 4 1 2
3A 1 2.5 2.5 4
Proximity 4 1 3 2

Average 2.75 ± 1.26 2.13 ± 1.44 2.67 ± 1.25 2.50 ± 1.00

Table A.9: Average ranks based on curated G-D associations across the 8 datasets for
the networks generated with FuNeL.

Pearson (SE) Pearson (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

1A 8 4 6.5 1.5 6.5 1.5 3 5
2A 2 7 5.5 3 4 5.5 1 8
3A 5 7 4 8 1 6 3 2
Proximity 4 8 2.5 7 5 2.5 1 6

Average 4.50 ± 2.50 6.50 ± 1.73 4.63 ± 1.75 4.88 ± 3.12 5.13 ± 2.32 3.88 ± 2.21 2.00 ± 1.15 5.25 ± 2.50

Table A.10: Average ranks based on curated G-D associations across the 8 datasets
for the networks generated with Pearson.

ARACNE (SE) ARACNE (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

1A 3 5 8 6 2 4 1 7
2A 5 1 2 3 7.5 6 7.5 4
3A 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
Proximity 6 5 4 1 7.5 3 7.5 2

Average 4.63 ± 1.25 3.88 ± 1.93 4.63 ± 2.50 3.63 ± 2.14 5.38 ± 2.66 4.38 ± 1.25 5.13 ± 3.09 4.38 ± 2.06

Table A.11: Average ranks based on curated G-D associations across the 8 datasets
for the networks generated with ARACNE.

MIC (SE) MIC (SN)

Cat. C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

1A 6 2 4 3 8 1 7 5
2A 7 3 8 1.5 5.5 1.5 5.5 4
3A 4 1 8 2 6 5 7 3
Proximity 5.5 1 3 4 7 2 8 5.5

Average 5.63 ± 1.25 1.75 ± 0.96 5.75 ± 2.63 2.63 ± 1.11 6.63 ± 1.11 2.38 ± 1.80 6.88 ± 1.03 4.38 ± 1.11

Table A.12: Average ranks based on curated G-D associations across the 8 datasets
for the networks generated with MIC.
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A.3 Case study: prostate cancer dataset

In this section are reported the additional results from the analysis performed using

the prostate dataset [170] as a case study that were not included in the main sections

of the thesis. In particular is shown: (1) the unique enriched terms of co-prediction

and co-expression networks, (2) the overlap between GO terms associated to the hubs

of networks generated with di↵erent methods and (3) the average percentages of alter-

ation for key nodes of both co-prediction and co-expression networks in an independent

dataset.

A.3.1 Overlap of networks enriched terms

In Figure A.1 and A.2 are shown the non-overlapping terms between FuNeL networks

and, respectively, ARACNE and MIC networks. For the sake of readability the generic

GO terms (with depth < 9 in the GO hierarchical structure) are filtered out.

When comparing ARACNE and FuNeL, 16 unique pathways were found for co-

prediction networks and 8 for co-expression. In terms of unique GO terms, the overlap

was more balanced, 7 for co-prediction networks and 9 for co-expression networks.

C2 and C4, generated without feature selection, had the largest number of unique

pathways, while SE(C2) was related with the highest number of terms for ARACNE.

The comparison of FuNeL networks with MIC co-expression generated many empty

columns for the GO terms because several networks resulted having no unique enriched

terms. All the unique GO terms (15) associated to MIC were related to SN(C2) (and

with SN(C4) in two cases), while FuNeL had more networks having paradigm-specific

terms (12). As noticed for in the ARACNE comparison, FuNeL networks are more

enriched in biological pathways: 16 against 8 unique terms for MIC co-expression.
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A.3.2 Genomic alteration in independent dataset

In this section are included additional information from the analysis of an independent

prostate cancer study [170] available in the cBioPortal for Cancer Genomics [195]. In

particular are reported the full list of alterations for the topologically important genes

analysed in the Section 3.3.7. The Figures A.3–A.10 show the percentage of altered

tumour samples for top 10 hubs (nodes with highest degree) and top 10 central nodes

(with highest betweenness centrality) in the best performing networks according to the

gene-disease association analysis (using the information from the curated databases).

The selected networks are C2 for FuNeL, SN(C3) for Pearson, SE(C4) for ARACNE

and SE(C2) for MIC. For all of them the alterations of both hubs and central nodes

are shown.

PTGDS 45%

PAGE4 28%

LMO3 11%

GSTM2 52%

NELL2 9%

COL4A6 65%

MAF 24%

ABL1 11%

RBP1 20%

PARM1 53%

Genetic Alteration Deep Deletion Missense Mutation mRNA Upregulation mRNA Downregulation

Fig A.3: Percentage of alterations in tumour samples from an independent cancer
genomic study. Genes with highest degree (hubs) in C2 network are shown.
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PTGDS 45%

PAGE4 28%

GSTM2 52%

LMO3 11%

MAF 24%

NELL2 9%

ABL1 11%

COL4A6 65%

PARM1 53%

MYH11 58%

Genetic Alteration Deep Deletion Missense Mutation mRNA Upregulation mRNA Downregulation

Fig A.4: Percentage of alterations in tumour samples from an independent cancer ge-
nomic study. Genes with highest betweenness centrality (central nodes) in C2 network
are shown.

PCBP3 5%

HAUS5 19%

PSG1 16%

LGALS9 9%

KAT7 5%

POU4F1 1%

SLC9A1 44%

PAX8 4%

ODF1 20%

BCR 19%

Genetic Alteration Amplification Deep Deletion mRNA Upregulation mRNA Downregulation

Fig A.5: Percentage of alterations in tumour samples from an independent cancer
genomic study. Genes with highest degree (hubs) in Pearson SN(C3) network are
shown.

SBNO2 22%

CADM4 25%

WBSCR22 39%

FOXE1 11%

KAT7 5%

POU4F1 1%

PSG1 16%

PCBP3 5%

DHRS1 4%

HAUS5 19%

Genetic Alteration Amplification mRNA Upregulation mRNA Downregulation

Fig A.6: Percentage of alterations in tumour samples from an independent cancer
genomic study. Genes with highest betweenness centrality (central nodes) in Pearson
SN(C3) network are shown.
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IL10RA 16%

THRA 33%

ALAS2 4%

SAMD14 1%

RHBDL1 8%

PSG1 16%

DDX11 14%

GNAS 13%

BTF3 13%

KIFC3 5%

Genetic Alteration Amplification mRNA Upregulation mRNA Downregulation

Fig A.7: Percentage of alterations in tumour samples from an independent cancer
genomic study. Genes with highest degree (hubs) in ARACNE SE(C4) network are
shown.

IL10RA 16%

THRA 33%

PSG1 16%

SAMD14 1%

BTF3 13%

GNAS 13%

ALAS2 4%

RHBDL1 8%

MYBPC3 4%

DDX11 14%

Genetic Alteration Amplification mRNA Upregulation mRNA Downregulation

Fig A.8: Percentage of alterations in tumour samples from an independent cancer
genomic study. Genes with highest betweenness centrality (central nodes) in ARACNE
SE(C4) network are shown.

WBSCR22 39%

ADAM15 12%

GP2 7%

COPS6 14%

RIMS2 16%

ATP1B2 18%

CEP170B 21%

POU4F1 1%

HAUS5 19%

PCBP3 5%

Genetic Alteration Amplification Deep Deletion mRNA Upregulation mRNA Downregulation

Fig A.9: Percentage of alterations in tumour samples from an independent cancer
genomic study. Genes with highest degree (hubs) in MIC SE(C2) network are shown.
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ADAM15 12%

WBSCR22 39%

COPS6 14%

CEP170B 21%

CPNE6 34%

GP2 7%

ATP1B2 18%

EFNA3 9%

UBE3B 13%

PAX8 4%

Genetic Alteration Amplification Deep Deletion mRNA Upregulation mRNA Downregulation

Fig A.10: Percentage of alterations in tumour samples from an independent cancer
genomic study. Genes with highest betweenness centrality (central nodes) in MIC
SE(C2) network are shown.

A.4 Time complexity analysis

The FuNeL protocol has four stages (see Figure 3.2): (1) feature selection (optional),

(2) rule-based network generation, (3) permutation test and (4) second rule-based

network generation (optional).

The running time for the whole pipeline depends on the rule set generation time

(execution time of BioHEL), as the optional feature selection stage can be seen as

running in constant time. Two main factors that influence the rule set generation

time are: (1) the number of attributes and (2) the number of samples.

An execution time analysis of BioHEL was performed using the largest (in terms of

number of attributes) Colon-Breast dataset [172]. In the feature selection stage were

retained: 20, 200, 2000, 10 000 and 20 000 attributes. From each of these 5 datasets

100 random subsets of 50, 40, 30, 20 and 10 samples were generated. Finally, BioHEL

was executed 1000 times to obtain 1000 rule sets for each dataset. Figure A.11 shows

the running times averaged across 100 000 runs (1000 runs for each of the 100 datasets).

The total execution time of FuNeL configurations C1 and C2 is calculated as:

T1 = (rule sets⇥ t(atts1, samples)) + (permutation runs⇥ t(atts1, samples))

where rule sets is the number of inferred rule sets, permutation runs is the number

of randomised datasets used in the permutation test and t(atts1, samples) represents
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Fig A.11: Average execution times of a single BioHEL run for a given number of
samples and attributes.

execution time of a single BioHEL run, that linearly depends on the size of a dataset

measured in number of attributes and samples.

Configurations C3 and C4 require an additional run of BioHEL (step 4), and their total

execution time is:

T2 = T1 + (rule sets⇥ t(atts2, samples))

where atts2 is the number of attributes after the permutation test (atts1  atts2).

It is important to notice that each run of BioHEL is independent, thus the generation

of the rule sets can be trivially parallelised without any extra overhead. Given n

computational cores, the total execution times could be reduced to:

T
real1 =

T1

n
T
real2 =

T2

n
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B.1 Predictive performance with synthetic datasets

The predictive performance of the attributes selected by each method were tested using

di↵erent synthetic datasets. Table B.1 shows the accuracies, obtained from a 10-fold

cross-validation, using the datasets described in [103]. N/A is used for SVM-RFE

when tested with the Monk3 dataset because the method cannot deal with categorical

attributes. In Table B.2 are reported the accuracies calculated from the analysis of the

madsim data [220]. Each row includes the average values associated to the analysis of

datasets having 1%, 2% and 5% of up/down regulated attributes (genes).

Class. Dataset RGIFE-Min RGIFE-Max RGIFE-Union CFS Relief SVM-RFE Chi-Square L1

RF

CorrAL 0.675 0.725 0.758 0.675 0.758 0.783 0.658 0.733
XOR-100 1.000 1.000 1.000 0.500 0.480 0.500 0.420 0.580
Parity3+3 1.000 1.000 1.000 0.521 0.933 0.429 0.474 0.502
Monk3 0.935 0.935 0.935 0.935 0.910 N/A 0.935 0.935
Madelon 0.869 0.868 0.874 0.805 0.866 0.787 0.835 0.744
SD1 0.240 0.319 0.333 0.414 0.452 0.478 0.437 0.421
SD2 0.389 0.639 0.635 0.521 0.456 0.466 0.477 0.458
SD3 0.317 0.626 0.626 0.428 0.476 0.473 0.487 0.526

SVM

CorrAL 0.633 0.625 0.658 0.608 0.642 0.725 0.600 0.658
XOR-100 0.598 0.700 0.707 0.500 0.400 0.480 0.500 0.360
Parity3+3 0.348 0.348 0.348 0.550 0.319 0.502 0.500 0.505
Monk3 0.828 0.828 0.828 0.813 0.820 N/A 0.837 0.789
Madelon 0.598 0.600 0.600 0.557 0.600 0.593 0.595 0.562
SD1 0.238 0.293 0.281 0.437 0.386 0.376 0.369 0.398
SD2 0.371 0.349 0.351 0.395 0.626 0.459 0.473 0.473
SD3 0.306 0.358 0.393 0.353 0.469 0.461 0.492 0.515

KNN

CorrAL 0.575 0.600 0.625 0.758 0.733 0.758 0.625 0.608
XOR-100 0.987 0.962 0.973 0.560 0.460 0.460 0.500 0.520
Parity3+3 0.219 0.219 0.219 0.550 0.936 0.486 0.560 0.543
Monk3 0.887 0.887 0.887 0.902 0.894 N/A 0.877 0.878
Madelon 0.698 0.694 0.699 0.868 0.913 0.828 0.894 0.805
SD1 0.292 0.350 0.352 0.423 0.453 0.442 0.414 0.374
SD2 0.436 0.393 0.419 0.421 0.487 0.470 0.476 0.446
SD3 0.352 0.375 0.441 0.462 0.510 0.545 0.520 0.546

GNB

CorrAL 0.608 0.600 0.633 0.650 0.708 0.717 0.600 0.683
XOR-100 0.602 0.689 0.691 0.480 0.420 0.480 0.480 0.420
Parity3+3 1.000 1.000 1.000 0.567 0.233 0.486 0.500 0.488
Monk3 0.894 0.894 0.894 0.887 0.887 N/A 0.894 0.887
Madelon 0.698 0.694 0.699 0.699 0.703 0.688 0.699 0.675
SD1 0.21 0.278 0.249 0.437 0.463 0.477 0.411 0.382
SD2 0.283 0.666 0.666 0.451 0.533 0.458 0.443 0.474
SD3 0.293 0.667 0.667 0.346 0.494 0.473 0.499 0.498

Table B.1: Accuracies obtained by each method across the synthetic datasets using
four classifiers. The highest accuracies are shown in bold. RF: random Forest, KNN:
K-nearest neighbour, GNB: Gaussian Naive Bayes.
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Class. Attributes RGIFE-Min RGIFE-Max RGIFE-Union CFS Relief SVM-RFE Chi-Square L1

RF

5 000 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.977 0.980 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.993 0.993 1.000 1.000 1.000 1.000 1.000 1.000
40 000 0.983 0.993 1.000 1.000 1.000 1.000 0.997 1.000

SVM

5 000 0.990 0.987 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.983 0.987 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.990 0.990 1.000 1.000 1.000 1.000 1.000 1.000
40 000 0.987 0.993 1.000 1.000 1.000 1.000 0.997 1.000

KNN

5 000 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.977 0.987 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.987 0.990 1.000 1.000 1.000 1.000 0.997 1.000
40 000 0.997 0.987 1.000 1.000 1.000 1.000 1.000 1.000

GNB

5 000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 000 0.983 0.993 1.000 1.000 1.000 1.000 1.000 1.000
20 000 0.990 0.993 1.000 1.000 1.000 1.000 1.000 1.000
40 000 0.987 0.997 1.000 1.000 1.000 1.000 0.997 1.000

Table B.2: Accuracies obtained by each method across the madsim datasets using
four classifiers. The highest accuracies are shown in bold. RF: random Forest, KNN:
K-nearest neighbour, GNB: Gaussian Naive Bayes.

B.2 Signatures analysed in the case study

In here are reported the signatures (list of genes) extracted by each method when

analysing the Prostate-Singh [170] dataset within the case study. SVM-RFE, Chi

Square and Relief were set to select as many genes as extracted by RGIFE-Union (21).

• RGIFE-Min: EPB41L3, HPN, HSPD1, PTGDS, NELL2, TGFB3, GSTM2

• RGIFE-Max: TNN, KCNN4, CELSR1, KIAA1109, PEX3, HPN, MFN2,

ATP6V1E1, HSPD1, PTGDS, SLC9A7, NELL2

• RGIFE-Union: ANXA2P3, TGFB3, CRYAB, NELL2, MFN2, TNN,

KIAA1109, PEX3, ATP6V1E1, HPN, HSPD1, LMO3, PTGDS, SLC9A7,

SERPINF1, KCNN4, EPB41L3, CELSR1, GSTM2, EPCAM, ERG

• SVM-RFE: HPN, HSPD1, MAF, S100A4, JUNB, SERPINB5, C7, TBC1D2B,

SDC1, IPO5, SFRP1, PGCP, PEX3, SPTB, FOXO1, GSTA4, CD38, RBBP6,

SERINC5, VCAN, C5orf13

• Relief : HPN, HSPD1, NBL1, MAF, DPYSL2, C7, PEX3, TGFB3, CFD,

TARP, PAGE4, XBP1, PTGDS, PDLIM5, RBP1, LMO3, SERPINF1, DPT,

FAM107A, SERINC5, TACSTD2
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• Chi-Square: HPN, NELL2, HSPD1, RBP1, PTGDS, CALM1, CDKN1C,

PDLIM5, CFD, SERPINF1, TARP, COX7A1, GSTM2, CRYAB, RPLP0,

TGFB3, ANGPT1, EPCAM, VCL, TMSB15A, LMO3

• CFS: RPL13, RPLP0, HBB, RPL6, HOXB3, TSPAN2, MCF2L2, PHEX,

CNKSR2, CPA3, PLA2G7, SCGN, COL13A1, CHD9, EPB41L3, MEIS2,

CREB3L1, ZFP161, ADORA2A, GLCE, SLC35A2, DDHD2, WIF1, HEPH,

TMSB15A, DIXDC1, KIAA0427, PEX3, ZNF146, TRIM23, HPN, PITX1,

SLC1A1, PENK, RBP1, C14orf2, TUBB2A, MAP1LC3B, CALCOCO2,

CYP1B1, SLC25A6, ORAI2, GSTA4, AHR, SERPINF1, COBLL1, STK38L,

SLC7A5, MRPL40, DST, JUNB, GSTP1, LGALS1, SPTAN1, ABI1, SPON1,

ROCK2, AKR1B1, TSC22D3, GPM6A, PLAGL1, PLA2G2A, CKS1B,

PDLIM5, HSPD1, LMO3, S100A4, PKD2, PTGDS, CDKN1C, CRMP1,

CFD, CALR, NELL2, RGS10, ABL1, SERINC5, PMS2L5, MAPK10, GTF2B,

RGN, ERG, SERPINB5, NAP1L3, LAMB1, GSTM2, IL11RA, CYP21A2

• L1-based: AVPR1B, TGM2, TSC22D3, ACTG1, ACTG2, MYH11, LYPLA2,

BGN, HBB, SBF1, B2M, PRB1, MROH5, IGKC, CLSTN1, MYL9, ST5, GRK6,

GADD45B, LYZ, PTGER3, ANXA2P3, PTP4A3, EDN2, ZNF337, MSMB,

IFITM3, P4HB, SLC25A6, IFI30, ATP1B1, KLK2, KLK3, RPL10, RPL13,

CYP3A5, COX6A1, RPL19, LOC91316, ORM1, NME2, CCND1, SFI1, SFN,

NPY, UBB, MAF, ACTB, ACTA2, GRIN2C, RPL8, RPL9, HLA-C, PABPC1,

RPL5, GAPDH, SEPT9, TUBB4B, NDRG1, PAGE4, RPS2P5, C21orf2,

UBE3B, NBL1, ZFP36, MT1H, C4A, TACSTD2, MT1G, C1QL1, NACA,

TPT1, FOS, VCL, UBC, IGL@, IGFBP5, COX7A1, FTO, LGALS3BP, PMP22,

ALDH4A1, SDC1, KRT17, KRT15, KRT13, FLNA, LUZP1, CCL2, RPLP1,

RPLP0, RPL18A, RPS6, RPS3, TXNIP, RPS17, LUM, TMED2, RPL6, TPM1,

RPL13A, FASN, RPL7, CST3, DUSP1, TNFRSF6B, MARCKSL1, RPS24,

ZFP36L1, ZFP36L2, TOP3B, PLA2G2A, LTF, S100A4, RPS4X, CLU, LRP3,

HDGF, ACPP, RPSA, C7, GSTM2, ID1, CTGF, HSP90AA1, PSCA, COX7C,

RPL36A, RBM3, RPS14, TMSB4X, EEF1A1, JUNB, JUND, TARP, ATP11A,

PTGDS, XBP1, HLA-DRA, SERPINA3, RPL29, CEBPD, HSPD1, LDHA,

AMD1, GALNS, PDIA2, IGH@, AAK1, ARR3, HPN, AP2A2, IGHM, VAMP1,
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SORD, E2F4, HAP1, C1QTNF3, CFD, RPL32, MAP3K11, GSTP1, TSPAN1,

PTRF, SYN1, EEF2

B.3 Time complexity analysis

The time complexity of each feature extraction method was tested across ten di↵erent

datasets. The time, measured in second, required to identify the optimal subset of

features was calculated for each method presented in the Chapter 4. Figure B.1 shows

the running times averaged across the experiments performed for the 10-fold cross-

validation. When plotting the times required by RGIFE, for each fold was calculated

the average time obtained by three executions of the heuristic.

Fig B.1: Average execution times (calculated using a 10-fold cross-validation) of each
methods across di↵erent datasets. The datasets are sorted by increasing number of
attributes.

Overall, the methods more time consuming are CFS and RGIFE, they performed

similarly with large datasets (in Figure B.1 the datasets are ranked by increasing
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number of total attributes), while RGIFE was clearly slower for smaller dataset. The

other four methods in general required less computational time with the L1-based

approach that appeared to be the fastest one.
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C.1 PROOF study information

Clinical information

Age

BMI

Ethnicity; Western vs. others

Total cholesterol

Fat percentage

Waist circumference

Concentration of HbA1c

Physical activity level

Quality of life

Menopause status

Years since menopause

Varus laxity left knee in extension

Varus laxity right knee in extension

Valgus laxity left knee in extension

Valgus laxity right knee in extension

Varus laxity left knee in 20� flexion

Varus laxity right knee in 20� flexion

Valgus laxity left knee in 20� flexion

Valgus laxity right knee in 20� flexion

Ateriorpostrior hypermobility left knee

Ateriorpostrior hypermobility right knee

Hypermobility left knee

Hypermobility right knee

Randomized groups to diet and exercise intervention

Randomized groups to placebo-controlled glucosamine intervention

OA information

Presence of Heberden’s nodes in one or both hands
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KL grade � 1 in one or both knees

Varus malalignment (<178�) in one or both knees

Presence of knee injury in one or both knees

Presence of knee pain in one or both knees

Clinical and radiographic ACR-criteria in one or both knees

WOMAC pain score

WOMAC function score

WOMAC sti↵ness score

Selfreported osteoarthritis in other joints

KL grade � 2 in one or both knees

Maximal isometric quadriceps strength

Crepitus on passive or active knee flexion

Pain upon palpation of joint margin

Pain upon palpation of the patellar margin

Number of a↵ected subregions with bone marrow lesions

Number of a↵ected subregions with cartilage defects

Number of a↵ected subregions with osteophytes

Presence of bone marrow lesions (yes vs. no)

Presence of cartilage defects (yes vs. no)

Presence of meniscal abnormalities (yes vs. no)

Presence of osteophytes grade 2 (yes vs. no)

Biochemical markers

Fibulin3-1 concentration

Fibulin3-1 log(concentration)

Fibulin3-1 Zlog(concentration)

Fibulin3-2 concentration

Fibulin3-2 log(concentration)

Fibulin3-2 Zlog(concentration)

Fibulin3-3 concentration

Fibulin3-3 log(concentration)

Fibulin3-3 Zlog(concentration)
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C1M concentration

Log(C1M) concentration

Zlog(C1M) concentration

C2M concentration

Log(C2M) concentration

Zlog(C2M) concentration

Concentration Coll2-1NO2 adj. for creatinine

Zlog(Concentration) Coll2-1NO2 adj. for creatinine

Imaging-based information

Mode 0 (Active shape modelling)

Mode 1 (Active shape modelling)

Mode 2 (Active shape modelling)

Mode 3 (Active shape modelling)

Mode 4 (Active shape modelling)

Mode 5 (Active shape modelling)

Mode 6 (Active shape modelling)

Mode 7 (Active shape modelling)

Mode 8 (Active shape modelling)

Mode 9 (Active shape modelling)

Mode 10 (Active shape modelling)

Mode 11 (Active shape modelling)

Mode 12 (Active shape modelling)

Mode 13 (Active shape modelling)

Mode 14 (Active shape modelling)

Mode 15 (Active shape modelling)

Mode 15 (Active shape modelling)

Presence of OA on MRI

Presence of tibiofemoral OA on MRI

Presence of patellofemoral OA on MRI

Pain questionnaire
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Mode 0 (Active shape modelling)

Mode 1 (Active shape modelling)

Mode 2 (Active shape modelling)

Mode 3 (Active shape modelling)

Mode 4 (Active shape modelling)

Mode 5 (Active shape modelling)

Mode 6 (Active shape modelling)

Mode 7 (Active shape modelling)

Mode 8 (Active shape modelling)

Mode 9 (Active shape modelling)

Mode 10 (Active shape modelling)

Mode 11 (Active shape modelling)

Mode 12 (Active shape modelling)

Mode 13 (Active shape modelling)

Mode 14 (Active shape modelling)

Mode 15 (Active shape modelling)

Mode 15 (Active shape modelling)

Presence of OA on MRI

Presence of tibiofemoral OA on MRI

Presence of patellofemoral OA on MRI

Food questionnaire

Number of days with breakfast

Number of days with lunch

Number of days with dinner

Frequency of milk/ buttermilk per week

Frequency of chocolate per week

Frequency of yogurt per week

Frequency of custard/pudding per week

Number of bread slices/crackers per week

Number of bread slices/crackers with cheese per week

Number of bread slices/crackers with meat per week
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Number of bread slices/crackers with salad spread per week

Number of bread slices/crackers with chocolate per week

Number of bread slices/crackers with sweet filling per week

Frequency of cooked vegetables per week

Unities (50 grams) of cooked vegetables per week

Frequency of raw vegetables per week

Unities (50 grams) of raw vegetables per week

Frequency of fruit juice per week

Glasses of fruit juice per week

Frequency of tangering glasses per week

Pieces of tangering glasses per week

Frequency of citrus pieces per week

Pieces of citrus pieces per week

Frequency of apples/pears per week

Pieces of apples/pears per week

Frequency of bananas per week

Pieces of bananas per week

Frequency of other fruits per week

Pieces of other fruits per week

Frequency of apple sauce per week

Tablespoons of apple sauce per week

Pieces of fruit per day

Frequency of snack per week

Frequency of peanuts/nuts per week

Frequency of cheese per week

Frequency of pastry/cake per week

Frequency of candy bars per week

Frequency of chocolate per week

Frequency of biscuits (raisins) per week

Frequency of biscuits (others) per week

Frequency of co↵ee cups per day
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Co↵ee with milk/sugar

Frequency of tea cups per day

Tea with milk/sugar

Frequency of soda glasses per day

Soda with/without sugar

Week days drinking alchool

Number of alchool glassess per week day

Weekend days drinking alchool

Number of alchool glassess per weekend day

Frequency of more than 4 drinks per drinking time

Table C.1: Complete list of attributes available from the PROOF data study

C.2 Lipidomics functional networks

This section shows the FuNeL networks generated from the 6.5 years lipidomics data.

The networks have been generated using a “modified” version of the FuNeL protocol

presented in Section 3.2.2 (configuration C2). The permutation test was applied using

the edge score (number of times two lipids appear together in the same rule) rather

than the node score (number of time a lipid is used in a classification rules), more

details can be found in Section 5.2.3.5
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Fig C.1: FuNeL network generated using the 6.5 years lipidomics data using the ACR
criteria definition for the incidence of knee OA.
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Fig C.2: FuNeL network generated using the 6.5 years lipidomics data using the Knee
pain criteria definition for the incidence of knee OA.
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[138] À. Bravo, J. Piñero, N. Queralt-Rosinach, M. Rautschka, and L. I. Furlong,
“Extraction of relations between genes and diseases from text and large-scale data
analysis: implications for translational research,” BMC bioinformatics, vol. 16,
no. 1, p. 1, 2015.

[139] N. Rappaport, M. Twik, N. Nativ, G. Stelzer, I. Bahir, T. I. Stein, M. Safran,
and D. Lancet, “Malacards: A comprehensive automatically-mined database of
human diseases,”Current Protocols in Bioinformatics, pp. 1–24, 2014.

[140] “Opentargets.” http://www.opentargets.org, 2016.

[141] D. Smedley, A. Oellrich, S. Kohler, B. Ruef, M. Westerfield, P. Robinson,
S. Lewis, and C. Mungall, “PhenoDigm: analyzing curated annotations to as-
sociate animal models with human diseases,” Database, vol. 2013, pp. bat025–
bat025, may 2013.

[142] N. Rosenthal and S. Brown, “The mouse ascending: perspectives for human-
disease models,”Nature cell biology, vol. 9, no. 9, pp. 993–999, 2007.

[143] A. Hamosh, “Online mendelian inheritance in man (OMIM), a knowledgebase of
human genes and genetic disorders,”Nucleic Acids Research, vol. 33, pp. D514–
D517, dec 2004.

- 266 -

http://www.opentargets.org


[144] A. P. Davis, C. J. Grondin, K. Lennon-Hopkins, C. Saraceni-Richards, D. Sciaky,
B. L. King, T. C. Wiegers, and C. J. Mattingly,“The comparative toxicogenomics
databases 10th year anniversary: update 2015,”Nucleic Acids Research, vol. 43,
pp. D914–D920, oct 2014.

[145] M. Magrane and U. Consortium, “UniProt knowledgebase: a hub of integrated
protein data,”Database, vol. 2011, pp. bar009–bar009, mar 2011.

[146] INSERM, “Orphanet: an online database of rare diseases and orphan drugs.”
http://www.orpha.net, 1997.

[147] “Semrep.” https://skr3.nlm.nih.gov, 2016.

[148] B. Barzel and A.-L. Barabási, “Network link prediction by global silencing of
indirect correlations,”Nat Biotechnol, vol. 31, pp. 720–725, jul 2013.

[149] A. P. Presson, E. M. Sobel, J. C. Papp, C. J. Suarez, T. Whistler, M. S. Rajeevan,
S. D. Vernon, and S. Horvath, “Integrated weighted gene co-expression network
analysis with an application to chronic fatigue syndrome,”BMC Systems Biology,
vol. 2, no. 1, p. 95, 2008.

[150] M. Ray, J. Ruan, and W. Zhang, “Variations in the transcriptome of alzheimer’s
disease reveal molecular networks involved in cardiovascular diseases,” Genome
Biol, vol. 9, no. 10, p. R148, 2008.

[151] V. Ransbotyn, E. Yeger-Lotem, O. Basha, T. Acuna, C. Verduyn, M. Gor-
don, V. Chalifa-Caspi, M. A. Hannah, and S. Barak, “A combination of gene
expression ranking and co-expression network analysis increases discovery rate
in large-scale mutant screens for novelArabidopsis thalianaabiotic stress genes,”
Plant Biotechnology Journal, vol. 13, pp. 501–513, nov 2014.

[152] Y. Yang, L. Han, Y. Yuan, J. Li, N. Hei, and H. Liang, “Gene co-expression
network analysis reveals common system-level properties of prognostic genes
across cancer types,”Nature Communications, vol. 5, feb 2014.

[153] A. T. Silva, P. A. Ribone, R. L. Chan, W. Ligterink, and H. W. Hilhorst, “A
predictive coexpression network identifies novel genes controlling the seed-to-
seedling phase transition inArabidopsis thaliana,” Plant Physiology, vol. 170,
pp. 2218–2231, feb 2016.

[154] A. Kommadath, H. Bao, A. S. Arantes, G. S. Plastow, C. K. Tuggle, S. M. Bear-
son, L. Guan, and P. Stothard, “Gene co-expression network analysis identifies
porcine genes associated with variation in salmonella shedding,”BMC Genomics,
vol. 15, no. 1, p. 452, 2014.

[155] S. Uygun, C. Peng, M. D. Lehti-Shiu, R. L. Last, and S.-H. Shiu, “Utility and
limitations of using gene expression data to identify functional associations,”
PLOS Computational Biology, vol. 12, no. 12, p. e1005244, 2016.

[156] F. Mordelet and J.-P. Vert, “Prodige: Prioritization of disease genes with mul-
titask machine learning from positive and unlabelled examples,” BMC bioinfor-
matics, vol. 12, no. 1, p. 1, 2011.

- 267 -

http://www.orpha.net
https://skr3.nlm.nih.gov


[157] E. Glaab, J. Bacardit, J. M. Garibaldi, and N. Krasnogor, “Using rule-based ma-
chine learning for candidate disease gene prioritization and sample classification
of cancer gene expression data,” PLoS ONE, vol. 7, p. e39932, jul 2012.

[158] A. L. Swan, K. L. Hillier, J. R. Smith, D. Allaway, S. Liddell, J. Bacardit,
and A. Mobasheri, “Analysis of mass spectrometry data from the secretome of
an explant model of articular cartilage exposed to pro-inflammatory and anti-
inflammatory stimuli using machine learning,” BMC Musculoskeletal Disorders,
vol. 14, dec 2013.

[159] H. P. Fainberg, K. Bodley, J. Bacardit, D. Li, F. Wessely, N. P. Mongan, M. E.
Symonds, L. Clarke, and A. Mostyn, “Reduced neonatal mortality in meishan
piglets: A role for hepatic fatty acids?,”PLoS ONE, vol. 7, p. e49101, nov 2012.

[160] J. Bacardit, P. Widera, A. Marquez-Chamorro, F. Divina, J. S. Aguilar-Ruiz,
and N. Krasnogor, “Contact map prediction using a large-scale ensemble of rule
sets and the fusion of multiple predicted structural features,” Bioinformatics,
vol. 28, pp. 2441–2448, jul 2012.

[161] G. W. Bassel, E. Glaab, J. Marquez, M. J. Holdsworth, and J. Bacardit, “Func-
tional network construction in arabidopsis using rule-based machine learning on
large-scale data sets,”THE PLANT CELL ONLINE, vol. 23, pp. 3101–3116, sep
2011.

[162] R. Urbanowicz, A. Granizo-Mackenzie, and J. Moore, “An analysis pipeline with
statistical and visualization-guided knowledge discovery for michigan-style learn-
ing classifier systems,” IEEE Comput. Intell. Mag., vol. 7, pp. 35–45, nov 2012.

[163] R. J. Urbanowicz, A. S. Andrew, M. R. Karagas, and J. H. Moore, “Role of ge-
netic heterogeneity and epistasis in bladder cancer susceptibility and outcome:
a learning classifier system approach,” Journal of the American Medical Infor-
matics Association, vol. 20, pp. 603–612, jul 2013.

[164] R. J. Urbanowicz, J. Kiralis, N. A. Sinnott-Armstrong, T. Heberling, J. M.
Fisher, and J. H. Moore, “GAMETES: a fast, direct algorithm for generating
pure, strict, epistatic models with random architectures,”BioData Mining, vol. 5,
oct 2012.

[165] D. Baron, A. Bihouee, R. Teusan, E. Dubois, F. Savagner, M. Steenman, R. Houl-
gatte, and G. Ramstein, “MADGene: retrieval and processing of gene identi-
fier lists for the analysis of heterogeneous microarray datasets,” Bioinformatics,
vol. 27, pp. 725–726, jan 2011.

[166] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar,
M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval,
K. W. Last, A. Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander,
J. C. Aster, and T. R. Golub, “Di↵use large b-cell lymphoma outcome prediction
by gene-expression profiling and supervised machine learning,”Nature Medicine,
vol. 8, pp. 68–74, jan 2002.

- 268 -



[167] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E.
McLaughlin, J. Y. H. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C.
Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio,
S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov,
E. S. Lander, and T. R. Golub, “Prediction of central nervous system embryonal
tumour outcome based on gene expression,” Nature, vol. 415, pp. 436–442, jan
2002.

[168] D. G. Beer, S. L. Kardia, C.-C. Huang, T. J. Giordano, A. M. Levin, D. E.
Misek, L. Lin, G. Chen, T. G. Gharib, D. G. Thomas, M. L. Lizyness, R. Kuick,
S. Hayasaka, J. M. Taylor, M. D. Iannettoni, M. B. Orringer, and S. Hanash,
“Gene-expression profiles predict survival of patients with lung adenocarcinoma,”
Nature Medicine, jul 2002.

[169] L.-l. H. S. R. G. J. E. B. S. R. W. G. R. D. J. S. R. B. Gavin J. Gordon, Rod-
erick V. Jensen, “Translation of microarray data into clinically relevant cancer
diagnostic tests using gene expression ratios in lung cancer and mesothelioma,”
Cancer Res, 2002.

[170] D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo,
A. A. Renshaw, A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W.
Kanto↵, T. R. Golub, and W. R. Sellers, “Gene expression correlates of clinical
prostate cancer behavior,”Cancer Cell, vol. 1, pp. 203–209, mar 2002.

[171] T. Yagi, “Identification of a gene expression signature associated with pediatric
AML prognosis,”Blood, vol. 102, pp. 1849–1856, sep 2003.

[172] D. Chowdary, J. Lathrop, J. Skelton, K. Curtin, T. Briggs, Y. Zhang, J. Yu,
Y. Wang, and A. Mazumder, “Prognostic gene expression signatures can be mea-
sured in tissues collected in RNAlater preservative,” The Journal of Molecular
Diagnostics, vol. 8, pp. 31–39, feb 2006.

[173] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools
for Python,” 2001–.

[174] P. E. Meyer, F. Lafitte, and G. Bontempi, “minet: A r/bioconductor package for
inferring large transcriptional networks using mutual information,”BMC Bioin-
formatics, vol. 9, no. 1, p. 461, 2008.

[175] P. D. Thomas, “PANTHER: A library of protein families and subfamilies indexed
by function,”Genome Research, vol. 13, pp. 2129–2141, sep 2003.

[176] N. H. Tran, K. P. Choi, and L. Zhang, “Counting motifs in the human interac-
tome,”Nature Communications, vol. 4, aug 2013.

[177] P. Shannon, “Cytoscape: A software environment for integrated models of
biomolecular interaction networks,” Genome Research, vol. 13, pp. 2498–2504,
nov 2003.

- 269 -



[178] Z. Chen and W. Lu, “Roles of ubiquitination and SUMOylation on prostate
cancer: Mechanisms and clinical implications,” IJMS, vol. 16, pp. 4560–4580,
feb 2015.

[179] Y. Gan, C. Shi, L. Inge, M. Hibner, J. Balducci, and Y. Huang, “Di↵erential
roles of ERK and akt pathways in regulation of EGFR-mediated signaling and
motility in prostate cancer cells,”Oncogene, vol. 29, pp. 4947–4958, jun 2010.

[180] G. R. Monteith, “Prostate cancer cells alter the nature of their calcium influx to
promote growth and acquire apoptotic resistance,”Cancer Cell, vol. 26, pp. 1–2,
jul 2014.

[181] M. Flourakis and N. Prevarskaya, “Insights into ca2+ homeostasis of advanced
prostate cancer cells,” Biochimica et Biophysica Acta (BBA) - Molecular Cell
Research, vol. 1793, pp. 1105–1109, jun 2009.

[182] B. E. Barton, J. G. Karras, T. F. Murphy, A. Barton, and H. F.-S. Huang,“Signal
transducer and activator of transcription 3 (stat3) activation in prostate cancer:
Direct stat3 inhibition induces apoptosis in prostate cancer lines,” Molecular
Cancer Therapeutics, vol. 3, no. 1, pp. 11–20, 2004.

[183] E. M. Kwon, S. K. Holt, R. Fu, S. Kolb, G. Williams, J. L. Stanford, and E. A.
Ostrander, “Androgen metabolism and JAK/STAT pathway genes and prostate
cancer risk,”Cancer Epidemiology, vol. 36, pp. 347–353, aug 2012.

[184] A. Minelli, I. Bellezza, C. Conte, and Z. Culig, “Oxidative stress-related aging:
A role for prostate cancer?,”Biochimica et Biophysica Acta (BBA) - Reviews on
Cancer, vol. 1795, pp. 83–91, apr 2009.

[185] L. Khandrika, B. Kumar, S. Koul, P. Maroni, and H. K. Koul, “Oxidative stress
in prostate cancer,”Cancer Letters, vol. 282, pp. 125–136, sep 2009.

[186] T. Drewa, Z. Wolski, Z. Skok, R. Czajkowski, and H. Wisniewska, “The fas-
related apoptosis signaling pathway in the prostate intraepithelial neoplasia and
cancer lesions,”Acta poloniae pharmaceutica, vol. 63, no. 4, pp. 311–315, 2006.

[187] A. G. DiLella, T. J. Toner, C. P. Austin, and B. M. Connolly, “Identification of
genes di↵erentially expressed in benign prostatic hyperplasia,” Journal of Histo-
chemistry & Cytochemistry, vol. 49, pp. 669–670, may 2001.

[188] J. Luo, T. A. Dunn, C. M. Ewing, P. C. Walsh, andW. B. Isaacs,“Decreased gene
expression of steroid 5 alpha-reductase 2 in human prostate cancer: Implications
for finasteride therapy of prostate carcinoma,”The Prostate, vol. 57, pp. 134–139,
aug 2003.

[189] R. Ribeiro, C. Monteiro, R. Silvestre, A. Castela, H. Coutinho, A. Fraga,
P. Principe, C. Lobato, C. Costa, A. C. da Silva, J. M. Lopes, C. Lopes, and
R. Medeiros, “Human periprostatic white adipose tissue is rich in stromal pro-
genitor cells and a potential source of prostate tumor stroma,” Experimental
Biology and Medicine, vol. 237, pp. 1155–1162, oct 2012.

- 270 -



[190] V. C. Thompson, T. K. Day, T. Bianco-Miotto, L. A. Selth, G. Han, M. Thomas,
G. Buchanan, H. I. Scher, C. C. Nelson, N. M. Greenberg, L. M. Butler, and
W. D. Tilley, “A gene signature identified using a mouse model of androgen
receptor-dependent prostate cancer predicts biochemical relapse in human dis-
ease,” International Journal of Cancer, vol. 131, pp. 662–672, jan 2012.

[191] N. Sampson, C. Ruiz, C. Zenzmaier, L. Bubendorf, and P. Berger, “PAGE4 posi-
tivity is associated with attenuated AR signaling and predicts patient survival in
hormone-naive prostate cancer,” The American Journal of Pathology, vol. 181,
pp. 1443–1454, oct 2012.

[192] T. Shiraishi, N. Terada, Y. Zeng, T. Suyama, J. Luo, B. Trock, P. Kulkarni, and
R. H. Getzenberg, “Cancer/testis antigens as potential predictors of biochem-
ical recurrence of prostate cancer following radical prostatectomy,” Journal of
Translational Medicine, vol. 9, no. 1, p. 153, 2011.

[193] S. Larsen, T. Yokochi, E. Isogai, Y. Nakamura, T. Ozaki, and A. Nakagawara,
“LMO3 interacts with p53 and inhibits its transcriptional activity,”Biochemical
and Biophysical Research Communications, vol. 392, pp. 252–257, feb 2010.

[194] B. S. Taylor, N. Schultz, H. Hieronymus, A. Gopalan, Y. Xiao, B. S. Carver, V. K.
Arora, P. Kaushik, E. Cerami, B. Reva, Y. Antipin, N. Mitsiades, T. Landers,
I. Dolgalev, J. E. Major, M. Wilson, N. D. Socci, A. E. Lash, A. Heguy, J. A.
Eastham, H. I. Scher, V. E. Reuter, P. T. Scardino, C. Sander, C. L. Sawyers,
and W. L. Gerald, “Integrative genomic profiling of human prostate cancer,”
Cancer Cell, vol. 18, pp. 11–22, jul 2010.

[195] E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, A. Jacob-
sen, C. J. Byrne, M. L. Heuer, E. Larsson, Y. Antipin, B. Reva, A. P. Goldberg,
C. Sander, and N. Schultz, “The cBio cancer genomics portal: An open platform
for exploring multidimensional cancer genomics data,”Cancer Discovery, vol. 2,
pp. 401–404, may 2012.

[196] C. Liu, F. Rohart, P. T. Simpson, K. K. Khanna, M. A. Ragan, and K.-A. L. Cao,
“Integrating multi-omics data to dissect mechanisms of DNA repair dysregulation
in breast cancer,” Scientific Reports, vol. 6, p. 34000, sep 2016.
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