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Abstract 

 

The main aim of this thesis was to investigate the potential of Elminius 

modestus (= Austrominius modestus) for evaluating the performance of fouling-release 

(FR) coatings.  A secondary aim was to explore how the membranous-basis of this 

species influences the fracture mechanics and release from FR coatings in comparison 

to Balanus amphitrite (= Amphibalanus amphitrite), a barnacle with a calcareous-basis 

and widely adopted as a model for antifouling and FR studies.  The critical removal 

stress (CRS) − the force required to remove fouling organisms, normalised by contact 

area − is a standard measure to evaluate FR coatings using either barnacles with 

calcareous-bases or metal studs (‘pseudobarnacles’).  Testing FR coatings against a 

diverse range of fouling organisms is necessary to evaluate the global effectiveness of a 

coating.  

The percentage settlement of cyprids, growth rate, and CRS of laboratory-

cultured barnacles were evaluated on polydimethylsiloxane (PDMS) standard coatings 

(Silastic T-2 and Sylgard 184).  The percentage settlement on the PDMS coatings 

between the two species did not significantly differ, however, there were differences in 

the growth rate and CRS.  When grown on Silastic T-2 and Sylgard 184 and fed 

Tetraselmis suecica algae, E. modestus grew at a faster rate than that of B. amphitrite.  

There was also a significant coating effect on the growth of E. modestus with barnacles 

on Sylgard 184 growing to larger size than those grown on Silastic T-2.  The CRS of E. 

modestus was less than that for B. amphitrite but only for the coating Sylgard 184.   

Using high-speed photography, the separation processes of E. modestus and B 

amphitrite, from Silastic T-2 and Sylgard 184 coatings was observed.  Four distinct 

separation patterns were characterised; lift, peel, adjacent peel and twist.  These were 

based on the location of the initial separation and direction of propagating instabilities 

in respect to the direction of detachment force.  The observed differences in the 

separation patterns between species may have more to do with the variations in shape 

and structure of the barnacle shell than to the type of basis.  However, the flexibility of 

the membranous-basis of E. modestus was important for the propagation of the fracture 

as it hindered the formation of fingering instabilities as they progressed through the 

adhesive interface. 
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The bulk properties of five polysiloxanes and three fluoropolymers were 

modified by changing the polymer chain length and cross-linker density, which 

provided coatings with a modulus ranging from 0.31 to 19.73 MPa.  These were used to 

investigate whether laboratory assays were a good predictor of a coatings performance 

in the field, in terms of settlement/recruitment and CRS.  Two field populations (Fairlie 

Quay and Burnham-on-Crouch) over two years (2010 and 2011) were compared to a 

laboratory culture of E. modestus barnacles.  There were similarities between the 

laboratory settlement/field recruitment and CRS of E. modestus from the two field 

populations and the laboratory culture across the eight coatings.  This made it possible 

to discriminate between the coatings.  Although, the CRS measurements did 

significantly differ between locations and years, where the general pattern from highest 

to lowest in terms of CRS between the locations was Fairlie Quay > laboratory > 

Burnham-on-Crouch.   

These eight coatings were also used to investigate the degree in which the 

elastic modulus of a coating can influence the CRS of E. modestus, compared to the 

CRS of B. amphitrite.  The regression analysis confirmed that as the modulus increases 

the CRS for both species increases.  There were marked differences in the removal of 

barnacles from the high modulus fluoropolymers.  B. amphitrite, unlike E. modestus, 

failed to detach and left the basis on the coating’s surface.  As E. modestus can 

differentiate between the coatings in terms of FR efficacy and was amenable to 

laboratory culture with a comparable growth rate to B. amphitrite, this species is 

recommended as an additional model for FR studies. 
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Chapter 1.  Development of a Test Species for Fouling-Release 

Research: An Introduction. 

 

 

1.1. Introduction 

Biofouling is a term used to describe the collective community of molecular, 

micro- and macrofouling organisms on surfaces immersed in water in the natural 

environment (Wahl 1989; Callow & Callow 2002).  This description relates principally 

to the accumulation of organisms on surfaces in fresh and marine waters.  However, 

biofouling, and the accumulation of a biofilm (an assemblage of molecular and micro 

organisms on a surface {Callow & Callow 2002}), is also prevalent on surfaces in 

living tissues, tooth surfaces, medical devices and implants (Chen et al. 2013).   

The accumulation of a biofouling community particularly concerning that on 

artificial surfaces in the marine environment, for example ship’s hulls and propellers, 

aquaculture systems, coastal power stations, marine sensors, or oil platforms, are 

regarded as being detrimental to the purpose and performance of such structures.  

Potent biocides such as tributyl-tin (TBT) were efficient in ameliorating the effects of 

fouling on ship’s hulls; however, small concentrations (see page 15) of TBT were 

discovered to be lethal to non-target organisms in the marine environment.  

Environmental regulations banning the use of such toxic paints were introduced 

spurring investigations into environmentally benign alternatives, such as silicone 

fouling-release (FR) systems (Afsar et al. 2003; Sun et al. 2004; Wiegemann & 

Watermann 2004).  The success of silicone coatings is assumed to depend on their 

physical surface properties, including but not limited to, surface energy, elastic 

modulus and thickness (Brady & Singer 2000; Anderson et al. 2003; Wendt et al. 2006).  

Measuring the adhesive strength of fouling organisms to silicone coatings is an 

effective method for evaluating the capability of the FR coating (Swain & Schultz 

1996).  Barnacles are said to be the most important species with regard to fouling on 

ship’s hulls (Christie & Dalley 1987; Aldred & Clare 2008; Briand 2009) with their 

presence being reported on up to 84% (Christie & Dalley 1987) and 87% (Woods Hole 
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Oceanographic Institute 1952) of fouled vessels.  Thus barnacles are the main focus of 

many fouling studies.  At present, the majority of research in this area has centred on 

calcareous-based barnacles such as Balanus amphitrite (= Amphibalanus amphitrite) 

(Clare & Høeg 2008).  The issue being that there is a variety of fouling organisms with 

approximately 4000 species identified (Yebra et al. 2004; Holm et al. 2006) each 

possessing a unique adhesive mechanism.  Testing FR coatings with a diversity of 

sessile organisms was deemed necessary to comprehend the global effectiveness of the 

coating (Holm et al. 2006).  The aim of this thesis was to explore the suitability of the 

membranous-based barnacle, Elminius modestus (= Austrominius modestus) 

(Buckeridge 1982), for screening of FR coatings.  This included a comparison between 

laboratory assays and field immersion tests, particularly focusing on the difference in 

the critical removal stress of barnacles from both environments.  In addition, it 

examined how the nature of the membranous-basis influenced the fracture and 

detachment processes of this barnacle from silicone coatings compared to the fracture 

process in the calcareous-based B. amphitrite.   

 

1.2. Biofouling 

The process in which a substrate in the marine environment is colonised is 

complex and dynamic (Wahl 1989).  The colonisation of a new substrate (primary 

succession) starts the moment it is exposed or submerged in natural seawater.  New 

substrates can occur naturally for example when rocks in the intertidal and subtidal 

environments fracture or after a volcanic event which creates lava flows; new surfaces 

can also be created through artificial means by the submersion of structures such as oil 

rigs, aquaculture nets or ship’s hulls (Jenkins & Martins 2010).  When any new 

substrate (natural or artificial) is immersed it begins to absorb organic compounds from 

the water, these consist mostly of macromolecules including glycoproteins and 

polysaccharides (Wahl 1989; Abarzua & Jakubowski 1995).  The accumulation of 

absorbed compounds or ‘conditioning film’ is rapid and is said to occur within seconds 

or minutes after immersion (Clare et al. 1992; Callow & Callow 2002).  Next, the 

surface is colonised by bacteria, cyanobacteria and unicellular algae such as diatoms, a 

process that is alleged to take a matter of hours following immersion (Wahl 1989; 

Abarzua & Jakubowski 1995; Callow & Callow 2002; Dobretsov et al. 2006).  The 
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microbial organisms which become established on a surface form a biofilm and are 

often referred to as microfouling (Callow & Callow 2002; Anderson et al. 2003).  This 

bacterial colonisation can be broken down into two phases; the first a reversible 

attachment phase normally termed ‘absorption’ and the second a non-reversible 

attachment phase called ‘adhesion’ (Wahl 1989; Kerr & Cowling 2003).  The process 

which controls the development of the conditioning film and the initial steps of 

bacterial colonisation include physical forces such as Brownian motion, Van-der-Waals 

forces, gravity and electrostatic interactions (Wahl 1989; Clare et al. 1992; Abarzua & 

Jakubowski 1995).  The adhesion phase involves the production of extracellular 

polymeric substances (EPS) by the bacteria and unicellular algae, which enables them 

to adhere to the substrate.  Wahl (1989) provides a comprehensive explanation for both 

of these processes.   

Eventually a macrofouling community will become established on the surface.  

This can consist of algae and such animals as anemones, bryozoans, hydroids, mussels, 

tubeworms and barnacles (Callow & Callow 2002; Anderson et al. 2003).  Formerly, 

macrofoulers were considered to take several days to weeks to become established on a 

new surface (Wahl 1989).  However, it is now understood that some groups of 

macrofoulers are capable of attaching permanently to a surface within hours, 

supporting the concept that fouling is not a strict sequential or successional process 

(Roberts et al. 1991; Clare et al. 1992).   

The composition of a fouling community on any given surface depends on 

multiple factors including the type of substrate, its colour and topography, local 

hydrodynamics i.e. water flow and turbulence, the temperature and salinity; these are 

often dictated by the geographical location and season (Thomason et al. 1998; 2002a; 

Callow & Callow 2002; Yebra et al. 2004).  There are biological factors which can 

influence the fouling composition such as propagule or larval supply and availability, 

the growth and longevity of the organisms, as well as competition and predation 

(Dayton 1971; Breitburg 1985; Callow & Callow 2002).  Yet the composition of a 

fouling community is subject to change following physical (for example wave exposure) 

or biological disturbances (for example predation) removing settled organisms, creating 

new spaces and allowing for secondary succession of other organisms (Dayton 1971).   
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Fouling on artificial surfaces is a great concern (Armstrong et al. 2000).  One of 

the more high profile sectors particularly troubled with fouling is the shipping industry.  

The collection of fouling organisms on ship’s hulls and propellers increases the 

roughness of the surface, resulting in high frictional resistance and drag.  The frictional 

drag created by fouling along the hull increases with the severity of the fouling, and 

reductions in speed up to 86% have been reported for ships with calcareous 

macrofouling assemblages (Schultz 2007).  Along with the increase in drag, the added 

weight of the fouling can contribute to the reduction of the speed and manoeuvrability 

of the vessel.  To compensate for the reduction in the power of the vessel more fuel is 

consumed.  The fuel consumption for a US naval mid-sized ship with a heavy coverage 

of biofilm (slime) can increase by 10.3%, whereas a ship with coverage of calcareous 

fouling and weeds can increase fuel consumption up to 20.4% (Schultz et al. 2011).  

Considering a heavily fouled vessel the predicted cost of this increase in fuel 

consumption to the US naval fleet can be up to $400M - $540M annually (Schultz et al. 

2011).   

A consequence of this increase in fuel consumption is an increase in greenhouse 

gas (GHG) emissions (International Maritime Organisation 2010).  Until recently, 

international shipping was not included in a Nations CO2 emissions budget due to the 

complex global activities of the shipping industry.  However the International Maritime 

Organisation’s (IMO) Marine Environment Protection Committee (MEPC) have 

introduced new regulations to aid the reduction of GHG emission from international 

shipping.  These regulations added to Annex VI of the International Convention for the 

Prevention of Pollution from Ships (MARPOL) introduces a mandatory Energy 

Efficiency Design Index (EEDI) for new ships and a Ship Energy Efficiency 

Management Plan (SEEMP) for all ships (International Maritime Organisation 2012).  

The EEDI involves technical development to improve the performance and therefore 

improve the fuel efficiency of new ships, whereas the SEEMP involves operational 

developments to improve the efficiency of all vessels (International Maritime 

Organisation 2012).  These regulations were set to come into force from 1
st
 January 

2013 for all vessels over 400 gross tonnage (International Maritime Organisation 2012).  

Vessels which accumulate fouling require frequent dry-docking, where the hull 

is mechanically cleaned, repaired and repainted (Brady & Singer 2000).  These 

processes are costly and generate large volumes of waste (Yebra et al. 2004).  An 
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additional area of concern is that of biosecurity and involves the management and 

control of species invasions (Davidson et al. 2016).  International shipping has been 

credited as being the most common pathway for the introduction of marine invasive or 

non-indigenous species (NIS) specifically via the transportation on ship’s hulls and in 

the ballast water, with the former being the more significant contributor (Reise et al. 

1999; Gollasch 2002; Minchin & Gollasch 2003; Molnar et al. 2008).  Marine invasive 

species have caused ecological and economical damages through competition with 

native and commercial species, introduction of parasites and diseases, and 

fundamentally altering the food webs and community structure (Ruiz et al. 1997; 

Gollasch 2002; Minichin & Gollasch 2003; Molnar et al. 2008; Piola et al. 2009).  For 

example the introduction of the Asian bivalve Potamocorbula amurensis to San 

Francisco Bay (Carlton et al. 1990) or the Eurasian zebra mussel Dreissena 

polymorpha in the Great Lakes (Ricciardi et al. 1997) where both species have altered 

the community structure through competition with other suspension feeding and 

deposit feeding fauna.  The rates of invasions are growing, not only through increased 

reporting and awareness but also through an increase in shipping traffic (Figure 1.1) 

(Ruiz et al. 1997; Minchin & Gollasch 2003; Piola et al. 2009).  Ports and harbours 

where shipping frequency is at its highest have the greatest occurrence and abundance 

of invasive species (Piola et al. 2009).  For example 116 species have been introduced 

in Chesapeake Bay, 137 in the Great Lakes and 253 in San Francisco Bay (as reviewed 

in Ruiz et al. 1997; Reise et al. 1999; Gollasch 2002).  By comparison the North Sea 

has a much lower number of NIS with approximately 80 reported invasive species 

introduced to the area by means of shipping (Reise et al. 1999; Gollasch 2002).  One 

example of a species that has been introduced into the North Sea is focus of this study, 

the barnacle Elminius modestus.  
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Figure 1.1.  Image of global shipping routes.  Data collected for 12 months from October 

2004 of 3374 commercial and research vessels, representing 11% of the merchant ships 

over 1000 tonnes at sea in 2005.  Source: Natural Centre of Ecological Analysis and 

Synthesis, http://www.nceas.ucsb.edu/globalmarine/impacts. 

 

 

1.3.  Elminius modestus: An introduction 

 Elminius modestus (Darwin) (= Austrominius modestus; Buckeridge 1982; see 

Table 1.1) is an acorn barnacle (Figure 1.2A).  The distinguishing characteristics of the 

species include four whitish-grey calcified wall plates that form a low conical shell 

with an average size of 5mm diameter; they possess a wide diamond-shaped operculum 

and a membranous-basal plate (Figure 1.2B) (Moore 1944). 

 

http://www.nceas.ucsb.edu/globalmarine/impacts
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Figure 1.2.  A picture of the barnacle Elminius modestus (A) on the shell of Mytilus edulis 

and an image of the membranous-basis settled on Silastic T-2 (B).  Images taken by 

author. 

 

Table 1.1.  Systematic classification of Elminius modestus including the revised 

classification (highlighted section) of the species.  

 Classification  

(Southward 2008) 

Revision of classification  

(in Buckeridge & Newman 2010) 

Phylum: Arthropoda Arthropoda 

Class Maxillopoda Maxillopoda 

Subclass: Cirripedia Cirripedia 

Superorder: Thoracica Thoracica 

Order: Sessilia Sessilia 

Suborder: Balanomorpha Balanomorpha 

Superfamily: Balanoidea Tetraclitoidea 

Family: Archaeobalanidae Austrobalanidae 

Subfamily: Elminiinae Elminiinae 

Genus: Elminius Austrominius 

Species: modestus modestus 

 

 

The distribution of this barnacle species prior to the 1940s was confined to the 

southern temperate seas, specifically southern Australia and New Zealand (Darwin 

1854; Moore 1944).  Then in 1944 Bishop (1947) first recorded their presence along 

the British coastline in Chichester Harbour.  Subsequent populations were later 

discovered in the rivers Crouch, Colne, Roach and Blackwater during 1946, then along 

the shoreline in Lowestoft, Dorset and Poole in 1947 (Crisp & Chipperfield 1948; 

Knight-Jones 1948).  Crisp (1958) provided a detailed account on the spread of E. 

1 mm 1 mm 

B A 
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modestus throughout the UK and mainland Europe.  Further documented accounts on 

the distribution of E. modestus include north-west and western coast of France (Barnes 

& Barnes 1963; 1969), northern Spain, north and south coasts of Portugal (Barnes & 

Barnes 1963; O’Riordan & Ramsay 1999; 2013), Shetlands (Hiscock et al. 1978), 

Helgoland in Germany (Harms & Anger 1989), Lough Hyne located on the southern 

coast of Ireland (Lawson et al. 2004), the Gulf of Venice (Casellato et al. 2007) and the 

Isle of Sylt in Denmark (Witte et al. 2010).  There are also brief accounts of E. 

modestus in other locations including the Azores and South Africa (Sandison 1950; 

Crisp 1958; Newman & Ross 1976; Buckeridge 1982).  In addition, there is a personal 

observation of E. modestus on the rocky outcrops on Whitley Bay beach, North-East 

England in 2013, which previously has no documented accounts of E. modestus being 

present.  

The distribution of E. modestus is predominantly restricted to north-west 

European and Australian and New Zealand waters (Figure 1.3 and Figure 1.4).  

However, E. modestus has been reported on the hulls of vessels docked in Japan, 

although, no population has yet to be established on Japanese shores, E. modestus is 

considered to be a high risk for future invasions (Otani et al. 2007).  E. modestus have 

also been reported as being a high risk of invasion to the Atlantic coast of North 

America (Carlton et al. 2011). 

The introduction of E. modestus to UK and European coastlines has been 

attributed to remote dispersal as fouling on the hulls of ships (Bishop 1947; 1951; 

Knight-Jones 1948; Stubbings 1950; Crisp 1958; Hiscock et al. 1978).  Samples of E. 

modestus were collected from the hulls of ships docked in Portsmouth during 1944 

(Stubbings 1950) and from the hulls of the S.S. Queen Elizabeth (August, 1946) and 

M.V. Empire Wansbeck (October, 1946) while stationed at Southampton and Harwich, 

respectively (Bishop 1947).  Once established in these locations, E. modestus is thought 

to have spread along the shore by marginal dispersal at a rate of approximately 20 – 

30km/yr (Crisp 1958).   
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Figure 1.3.  Global distribution of Elminius modestus, using the accounts from Moore 1944; Sandison 1950; Crisp 1958; Barnes & Barnes 1963; 1969; 

Newman & Ross 1978; Hiscock et al. 1978; Foster 1982; Harms & Anger 1989; Lawson et al. 2004; Casellato et al. 2007; Witte et al. 2010. 
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Figure 1.4.  Spread of Elminius modestus around Europe using the accounts of Crisp 1958; 

Barnes & Barnes 1963; 1969; Hiscock et al. 1978; Harms & Anger 1989; Lawson et al. 

2004; Casellato et al. 2007; Witte et al. 2010; O’Riordan & Ramsay 2013.  Abundant: 

adult density at ≥ 100dm
-1

, Common: density 10 – 100dm
-1

, Frequent: density 1 – 10dm
-1

, 

Occasional: density 0.01 – 1dm
-1

, Rare: density below 0.01dm
-1

, Present: Elminius 

modestus have been reported but no data on the abundance is available. 

 

E. modestus is an intertidal barnacle more common on the mid to low shore 

(Rainbow 1984).  Their position on the shore has been described by Moore (1944) as 

‘versatile’ as they can occupy a wide range of tidal heights extending to the high water 

mark and the sub-littoral to a depth of ‘5 fathoms’ (9.1m) (Crisp & Chipperfield 1948; 

Knight-Jones 1948).  However, Flowerdew (1984) deemed that the occurrence of E. 
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modestus at these depths was erroneous, claiming that confusion between two Elminius 

species; E. modestus and E. covertus.  These two barnacles occur alongside each other, 

and may explain the apparent large intertidal range, yet Flowerdew (1984) did not offer 

further clarification as to whether E. modestus occupies the lower or upper tidal range.   

E. modestus are able to tolerate fluctuations in salinity and temperature by 

closure of the opercular valves at particular external stimulus and are dominant in 

euryhaline environments such as estuaries and harbours (Moore 1944; Flowerdew 1984; 

Rainbow 1984).  E. modestus are able to reproduce continuously throughout the year; 

provided with optimal conditions they can produce broods of nauplii every ten days 

with the reproductive activity being only slightly reduced during the colder winter 

months (Crisp & Davies 1955).  After settlement, E. modestus can reach maturity and 

reproduce within eight weeks, at an approximate size of 4 – 6mm in diameter (Crisp & 

Davies 1955; Hui & Moyse 1982).  With fast growth rates and short generation times 

there is a continuous supply of larvae, and with gregarious settlement, this barnacle is 

capable of forming dense aggregations; for example Crisp & Davies (1955) recorded the 

settlement of 50 – 100 spat cm
-2

 during a week’s exposure in June and July along the 

river Crouch.  This dense coverage of E. modestus has been claimed to have a 

detrimental impact on native species, primarily other barnacle species, for example, 

competing for space and resources with S. balanoides higher along the shoreline and 

then with B. improvisus below the tidal line (Knight-Jones 1948), this can result in 

changes in the ecosystem structure and its functioning (Bracewell et al. 2012).  In 

contrast, a recent study has demonstrated that E. modestus are able to co-exist with 

native species (Gallagher et al. 2016).  Gallagher et al. (2016) demonstrated that despite 

the relatively high abundances and dominance of E. modestus along the test sites in 

south-west Ireland, this invasive species did not entirely displace or outcompete the 

native species (S. balanoides and Chthamalus montagui).  The co-existence between the 

native and invasive barnacle species could be possible through niche partitioning or 

adaptation of either species to fill an alternative niche (Gallagher et al. 2016).   

Despite the potential co-existence of E. modestus to native species, where E. 

modestus is present, it often dominants new exposed surfaces, which had either been 

created through disturbance and removal of previously settled organisms (Gallagher et 

al. 2015; 2016) or on new artificial structures (Bracewell et al. 2012; 2013).  Artificial 

structures are able to provide a novel environment for opportunistic invasive species 
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and potentially contribute to further dispersal by providing a ‘stepping stone’ across 

unsuitable substrates (Bracewell et al. 2012; 2013).  With the proliferation of artificial 

structures through increasing urbanisation, coastal defences and renewable energy 

initiatives, Bracewell et al. (2013) predicts an increase in the abundance and distribution 

of E. modestus. 

 

1.4.   Antifouling 

The problems associated with fouling on shipping vessels is said to have been 

recognised for over 2000 years (Yebra et al. 2004).  One of the earliest examples for 

preventing fouling (referred to as antifouling) comes from a piece of well preserved, 

lead-sheathed timber from a wrecked Phoenician galley dating back to 700 B.C. (Lunn 

1974).  Tar, pitch, tallow and arsenic are just some of the concoctions (Table 1.2) that 

were said to have been used by ancient civilisations (Woods Hole Oceanographic 

Institution 1952; Yebra et al. 2004).  Yet it was not until the use of copper sheathing, 

introduced in the 16
th

 century, that a successful antifouling method existed or was 

recorded.  Yebra et al. (2004) acknowledged that the first authenticated use of copper 

sheathing was on the frigate HMS Alarm in 1761; however, Lunn (1974) quotes 1758 as 

the year this occurred.  The success of copper at preventing fouling involves the release 

of copper ions (Cu
2+

) from its surface when immersed in seawater.  The Cu
2+

 ions are 

bioavailable and are capable of crossing biological membranes into the cells disrupting 

the cells functions and causing a toxic effect (Brooks & Waldock 2009).  Attempts were 

made to sheath iron clad ships in copper following their introduction in the late 18
th

 

century; however, due to the corrosive effect of copper on iron this was not possible and 

the use of copper as an antifoulant was nearly discontinued (Yebra et al. 2004; Almeida 

et al. 2007).  It was this, that is alleged to have renewed interest in antifouling 

compositions (Yebra et al. 2004) and lead to the development of the first antifouling 

paints in the mid 19
th

 century (Almeida et al. 2007).  During the 1950s the first 

organometallic paints (containing tin, arsenic, mercury etc) were developed and 

following numerous advancements gave rise to tributyl-tin (TBT) (Almeida et al. 2007).   
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Table 1.2.  A brief history of antifouling techniques. 

Time period Civilisation/ 

Nation 

Antifouling product Reference 

700 B.C. Phoenicians Lead sheathing Lunn 1974; Yebra et 

al. 2004. 

- 

- 

Phoenicians, 

Carthaginians 

Tar, wax and asphalt 

Pitch 

Almeida et al. 2007. 

500 B.C. - Coatings of arsenic and sulphur 

mixed with oil used to combat 

shipworm 

Yebra et al. 2004. 

300 B.C. Greeks Tar, wax and lead sheathing Yebra et al. 2004; 

Almeida et al. 2007. 

10 A.D Vikings Seal Tar Yebra et al. 2004. 

13
th

 – 15
th

 

Century 

 Pitch blended with oil, resin and 

tallow. 

Yebra et al. 2004. 

1618 Danish One of the first references of copper 

being used underwater on the keel of 

a vessel. 

Lunn 1974; Yebra et 

al. 2004. 

1625 English William Beale patented the use of 

copper as an antifoulant. 

Yebra et al. 2004. 

16
th

 Century Spanish Vessels sheathed with lead to protect 

against shipworm and fouling. 

Lunn 1974. 

1758 -1761  English Copper sheathing was used on the 

Frigate HMS Alarm, by the 

instruction of Admiral Anson. 

Lunn 1974; Yebra et 

al. 2004. 

1780  Copper was widely used in the 

British Navy. 

Lunn 1974; Yebra et 

al. 2004 

1784 French Zinc alloy sheathing was used on Le 

Meilleur Ami  

Lunn 1974. 

18
th

 Century  Introduction of iron clad ships.  

Efficacy of copper sheathing lead to 

attempts to plate iron ships with 

copper, but due to the corrosive 

effect of the copper on the iron, 

copper sheathing was discontinued. 

Lunn 1974; Yebra et 

al. 2004. 

1824 English Sir Humphry Davy demonstrated 

that it’s the dissolution of copper in 

seawater which prevented fouling. 

Yebra et al. 2004. 

Mid 19
th

 

Century 

 Some of the first antifouling paints 

emerged.  

Almeida et al. 2007; 

Anderson et al. 2003; 

Townsin 2003. 

1847 English William John Hay invented a paint 

which contained copper compounds; 

these were isolated from the iron 

hull by the use of a non conductive 

varnish as a binder. 

Yebra et al. 2004. 

1950-1960  First appearance of organometallic 

paints (containing tin, mercury, 

Almeida et al. 2007; 

Yebra et al. 2004. 
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arsenic). Initially used as a co-

toxicant with copper paints. 

1974  English Milne and Hails patented tributyl-tin 

self-polishing co-polymer (TBT-

SPC) paint. 

Milne & Hails 1977; 

Anderson et al. 2003; 

Yebra et al. 2004. 

 

 

1.5.  Tributyl-tin (TBT) 

Tributyl-tin self polishing copolymer (TBT-SPC) patented (Patent GB 

1457590A, International Paint Ltd.) in 1974 by Milne and Hails (Milne & Hails 1976; 

Yebra et al. 2004), was held to be the most effective coating to have been developed 

(Clare et al. 1992; Löschau & Krätke 2005).  These paints were based on an acrylic 

copolymer (usually methyl methacrylate); the TBT groups are bonded to the polymer by 

means of an ester link (Yebra et al. 2004; Almeida et al. 2007; Finnie & Williams 2010).  

Once immersed, the seawater starts to dissolve the surface layer of the paint.  Once this 

layer has been worn away dissolution on the subsequent layer begins.  In the presence 

of a flow of water this dissolution polishes the paints, making it smoother and allows for 

a slow and controlled release rate of the biocide particles (Christie & Dalley 1987; 

International Maritime Organisation 2002; Townsin 2003).  The release rate or 

polishing rate was approximately 5 – 20μm a year (Almeida et al. 2007) and depending 

on the initial thickness of the coating, this could allow for dry docking intervals of up to 

five years (Anderson et al. 2003; Finnie & Williams 2010).  These paints were largely a 

success and by the late 1970s TBT-SPC was universally adopted as the antifouling 

technology for most marine vessels (International Maritime Organisation 2002; Finnie 

& Williams 2010).   

TBT is a biocide and was highly effective at killing a range of aquatic organisms, 

not just those restricted to ship’s hulls.  With their universal use, large quantities of TBT 

were released into the marine environment and many non-target organisms were 

significantly affected (Alzieu 1998).  TBT was and still is persistent in the marine 

environment (Clare et al. 1992).  The half-life of the biocide in seawater, which can be 

highly dependent on pH, temperature, turbidity and light, was estimated to range from a 

few days in warmer, clear waters, to many weeks in turbid cold waters (Alzieu 1998).  

Yet the half-life of TBT in sediment was estimated to be between 1 – 4 years, and 

perhaps as much as 19 years (Alzieu 1998).  In areas where there is increased shipping 
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activity, such as ports and harbours, large concentrations of TBT had the potential to 

accumulate (Armstrong et al. 2000; International Maritime Organisation 2002).  

According to Alzieu (1998) water samples taken in the late 1980s from European 

harbours had high concentrations of TBT ranging from 10 – 1500ngl
-1

 and 

concentrations of the biocide in the harbour sediments ranged from 1 – 2mgkg
-1

 dry 

weight.  However, it only took low concentrations of TBT to cause malformations in 

marine organisms.  Those that were particularly affected included marine bivalves and 

gastropods (Alzieu 1998).  For example, a concentration of 1ngl
-1

 caused the 

development of male characteristics (referred to as imposex) in female dogwhelks 

(Nucella lapillus) resulting in sterility and a decline in the population (Alzieu 1998; 

International Maritime Organisation 2002; Yebra et al. 2004).  Concentrations of 2 – 

20ngl
-1

 were responsible for shell calcification anomalies and reproduction disturbances 

in the oyster Crassostrea gigas.  This had large implications for the Arcachon Bay 

oyster industry, which suffered a decline in production of 7000 tonnes from 1979 to 

1981 and a reported loss of 880 million Francs (Alzieu 1998; Yebra et al. 2004).   

In 1988, the IMO were requested to introduce measures for restricting the use of 

TBT on seagoing vessels (International Maritime Organisation 2002).  In 1990, a 

resolution adopted by the IMO – MEPC recommended that the use of TBT-based paints 

be abolished on non-aluminium hulled vessels less than 25m in length and restrict the 

release rate of the biocide to be no more than 4μg per cm
2
 per day (International 

Maritime Organisation 2002; Yebra et al. 2004).  On the 5
th

 October 2001 at an 

International Convention on Control of Harmful Anti-fouling Systems on Ships, it was 

resolved that following the 1
st
 January 2003 application of TBT-containing antifouling 

paints was to be banned, and that the presence of these paints on ships was eliminated 

from 1st January 2008 (Yebra et al. 2004).  This only came into legal force on the 17
th

 

September 2008 (Finnie & Williams 2010). 

 

1.6.  Alternative antifouling paints 

The mounting environmental concern for TBT-SPC paints in the run-up to the 

ban generated significant investment into the research and development of new, 

‘environmentally friendly’ alternatives (Yebra et al. 2004; Almeida et al. 2007).  The 

void left by TBT was filled by controlled depletion paints (CDP) and tin-free SPC (TF-



 Chapter 1 

16 

 

SPC) coatings such as copper acrylate copolymers and silyl acrylate copolymers (Finnie 

& Williams 2010).  However, these were not as efficient as TBT; for example the 

service life was shorter, they were only suitable in low fouling environments, and the 

release rate was not constant (CDP mostly) (Yebra et al. 2004; Chambers et al. 2006; 

Almeida et al. 2007).  Co-biocides or booster biocides were often incorporated to help 

increase the length and functionality of the paints (Thomas 2001; Chambers et al. 2006).  

The use of such coatings is likely to continue into the foreseeable future, however, 

concern over the environmental impact of the biocidal component of the paints is 

increasing and with the movement towards stricter legislations, the use of some biocidal 

paints will be prohibited (Finnie & Williams 2010; Webster & Chisholm 2010).  There 

was, and is, a need for the development of fully biocide-free, environmentally benign 

alternatives (Almeida et al. 2007).   

 

1.6.1. Novel alternatives 

 There has been, and will continue to be, a considerable effort into the research 

and development of novel non-toxic or low toxicity antifoulants.  The following is a 

concise summary of alternative antifouling technologies: 

 

1.6.1.1.   Micro-topography 

Micro-scale surface topographies can be used to deter the colonisation of fouling 

organisms (Bers & Wahl 2004; Carman et al. 2006; Schumacher et al. 2007; Scardino et 

al. 2008).  By altering the surface topography, the surface wettability can be 

transformed; this consequently affects the adhesion of fouling species to the surface.  

Examples of the topographies which have been tested include simple ridges, pillars and 

pits and Sharklet AF
TM

.  Sharklet AF
TM

 are biologically inspired patterns (biomimetic) 

modelled on the skin of fast-moving sharks.  They have been shown to reduce the 

colonisation of Ulva zoospores by up to 86% (Carman et al. 2006) and barnacle cyprid 

larvae by 97% (Schumacher et al. 2007).  However, the success of the surface at 

preventing settlement is dependent on the dimensions of the geometry of the surface in 

relation to the size of the specific organism (Schumacher et al. 2007; Scardino et al. 
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2008).  The implication of surface topographies for use as a marine antifoulant is 

unclear.  The added roughness of the surface and therefore frictional resistance means 

its application on ship’s hulls seems unlikely, however, there is potential for its 

application on stationary structures and aquaculture systems (Scardino & de Nys 2011).   

 

1.6.1.2.   Natural products 

Certain marine macroalgae and organisms including octocorals and sponges are 

able to resist becoming fouled.  Of the adaptations employed, the use of secondary 

metabolites either produced by the organisms themselves or via micro-organisms living 

on their surfaces, has received substantial attention for their antifouling potential (Clare 

et al. 1992; Armstrong et al. 2000; Rittschof 2000; Hellio et al. 2004; 2005; Dobretsov 

et al. 2006).  The metabolites produced by the marine species have been demonstrated 

to inhibit bacterial growth (Hellio et al. 2001; 2005 Burgess et al. 2003) and the 

settlement of diatoms, tunicates, mussels and barnacle cypris larvae (Clare 1996; 

Armstrong et al. 2000; Hellio et al. 2001; 2004; 2005).  However, to produce sufficient 

quantities for the commercial application of antifouling products, would require vast 

numbers of animals to be collected and destroyed in order to extract enough metabolites 

(Clare 1996; Armstrong et al. 2000).  Instead the culture of micro-organisms that 

produces the metabolites (Clare 1996; Armstrong et al. 2000) or synthetic productions 

of the secondary metabolites (Todd et al. 1993; Qian et al. 2010) have the potential for 

providing a sustainable production, however, there may be difficulties in producing 

sufficient quantities of the compounds (Qian et al. 2010).  Although these products are 

naturally occurring the new chemicals discovered from marine species are still classed 

as toxic and the registration process for these chemicals would be restrictive, expensive 

and time-consuming (Rittschof 2000; Webster & Chisholm 2010).  

 

1.6.1.3.   Enzymes 

 Enzymes, specifically protease enzymes, have shown antifouling potential.  

Enzymes function by hydrolysing the protein, glycoprotein and polysaccharide 

adhesives of fouling organisms (Pettitt et al. 2004).  This has been shown to inhibit the 
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settlement and adhesion of fouling organisms such as the barnacle B. amphitrite and the 

green alga Ulva linza (Pettitt et al. 2004; Aldred et al. 2008; Tasso et al. 2012).  The 

problem being how to incorporate this into a coating for commercial application and 

how long the enzymes stay active in such coatings.  The registration process of the 

enzymes for application in antifouling coatings may also be restrictive, expensive and 

time-consuming (Olsen et al. 2007).   

 

1.7.   Fouling-release coatings 

Fouling-release (FR) coatings were formulated and patented by Milne in 1977 

(GB1470465A International Paint Ltd) (Milne 1977; Anderson et al. 2003).  They 

became commercially available in the 1990s after the launch of Intersleek 425 by 

International Paint Ltd following the successful trial of this coating on the vessels 

‘Tropic Lure’ and the Navy submarine HMAS Collins in 1993 (Finnie & Williams 

2010).  Since the ban on TBT-SPC, the use of FR coatings has become highly favoured 

(Brady 2001; Berglin & Gatenholm 2003; Yebra et al. 2004; Finnie & Williams 2010).   

The initial commercial FR coatings were based on silicones.  Silicones, 

siloxanes or poly(organosiloxanes) are all names for polymers which have a backbone 

with alternating silicon and oxygen atoms with organic side groups such as methyl 

groups (Polydimethylsiloxane, PDMS) (Finnie and Williams 2010).  Fluoropolymers 

are a second group of polymers which are now available as commercial FR coatings; 

fluoropolymers are polymers containing fluorinated groups such as fluorinated 

polyurethanes or perfluoropolyethers (PFPE) (Finnie and Williams 2010).  The 

principle of FR coatings is that they interfere with the organism’s capacity to adhere to 

the coatings surface (Clare 1998; Holm et al. 2006; Wendt et al. 2006).  The adhesion of 

the organisms to the coating is suitably weakened so that they can be easily removed by 

(1) the shear and tensile forces generated as the vessel moves through the water; (2) by 

the weight of the organisms being sufficient allowing them to ‘slough off’ and (3) by 

predatory or grazing fish and crabs (Schultz et al. 1999; Berglin et al. 2003).   

 Of the physical properties regarded as the reason for the coatings FR ability, 

there are three which have been the primary focus and these include the surface energy, 

the elastic modulus and the coatings thickness (Kohl & Singer 1999; Brady & Singer 
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2000; Singer et al. 2000; Anderson et al. 2003; Berglin et al. 2003; Sun et al. 2004; 

Yebra et al. 2004; Chaudhury et al. 2005; Wendt et al. 2006; Kim et al. 2007; 2008).   

 

1.7.1. Surface energy 

The surface free energy or critical surface tension (γ) of a coating is fundamental 

to bioadhesion.  Defined by Anderson et al. (2003) it is “the excess energy of the 

molecules on the surface compared with the molecules in the thermodynamically 

homogeneous interior”.  Molecules in the interior or bulk of the coating are stable 

within a matrix, in which neighbouring molecules are able to interact with one another.  

Molecules at the surface, on the other hand, are unbalanced only being able to react with 

molecules in the bulk, directly adjacent.  The excess energy that results is available to 

interact with molecules approaching the surface, so when immersed in water, it is 

available to interact with water molecules (Callow & Fletcher 1994).  The magnitude of 

the surface energy is determined by the surface’s ability to interact with approaching 

molecules per unit area (Anderson et al. 2003).  Hence surfaces with high energies can 

interact more than surfaces with low energies.   

To calculate the surface energy of a coating, the contact angles (θ) of a series of 

liquids (with known surface tensions) on the coatings’ surface are measured (Baier 1970; 

Callow & Fletcher 1994; Packham 2003).  This can be done using an instrument called 

a goniometer.  On surfaces with high energies, the test liquids will have a tendency to 

spread across the surface, wetting it, resulting in a low contact angle.  Surfaces of this 

type are referred to as hydrophilic.  However, on surfaces with low energies, the test 

liquids have a tendency to bead, providing a higher contact angle (Figure 1.5).  Surfaces 

of this type are referred to as hydrophobic (Callow & Fletcher 1994). 
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Figure 1.5.  Illustration of the contact angle of water on the surface of two silicone coatings 

with (A) a high surface energy and low contact angle (65 θ) and (B) lower surface energy 

and a high contact angle (100 θ).   

 

Relative adhesion to a surface is a function of the surface free energy.  However, 

to predict adhesion the surface energy from the substrate (γs), the water (γw) and their 

interfacial energy (γsw) are required (Brady 1999).  The interfacial energy being 

equivalent to the sum of surface tension of the substrate and the water minus the 

geometric mean of these values multiplied by an interaction constant Φ (Brady 1999) as 

demonstrated by Eq. (1); the Goods-Girifalco equation.  

  2/1
2 wsswwssw                 (1) 

When an adhesive is deposited on a surface, the substrate-water interface is 

interrupted and two new interfaces are created, the substrate-adhesive and adhesive-

water interface (Brady 1999).  The work required to separate the substrate and water, 

otherwise known as the work of adhesion (Wa) is equal to the surface energy of the 

substrate and the water minus the interfacial energy (Callow & Fletcher 1994); 

swwsaW        (2) 

A low surface energy results in low work of adhesion.  However, a crucial 

feature of this relationship, as demonstrated by the Baier curve (Figure 1.6), is that the 

lowest relative adhesion does not occur on surfaces with the lowest surface free energy 

(Baier et al. 1968; Brady 1999; Anderson et al. 2003; Baier 2006).  Rather the lowest 

relative adhesion occurs on surfaces with a surface tension/surface free energy of 22 – 

A B 
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24mN/m, which is approximately equivalent to the dispersive force of water (Baier 

2006; Magin et al. 2010).  

 

 

Figure 1.6.  Baier Curve.  The association between surface free energy and relative 

adhesion.  Source: Brady 1999. 

 

1.7.2. Elastic modulus and thickness 

The elastic modulus of the coating refers to its ability to deform elastically when 

subjected to an external force.  The surface energy is important as it inhibits adhesion.  

However, the elastic modulus and the thickness of the coating are important with regard 

to the removal of fouling organisms.  The process of this removal has often been 

described in terms of fracture mechanics (Brady & Singer 2000).  Fracture mechanics is 

the study of crack propagation and it is used to describe the fracture or crack forming 

between the adhesive of a fouling body and the coating’s surface.  The energy required 

for the formation and completion of the fracture can be calculated using Griffith’s (1921) 

fracture criterion and Kendall’s (1971) model.  Griffith’s (1921) fracture criterion 

explains that the increase in energy needed to propagate a crack the distance  , forming 

two new interfaces with an area of 2A, comes from the difference between the work 

done dW by an external force and the change in stored elastic energy dUe in the stressed 

object.  A necessary condition for the crack to propagate can be described with: 
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             (3) 

Or 

    
     

  
             (4) 

where G is the Griffith fracture energy, W is the work, A is the area, Ue is the 

elastic energy and UT is the total energy.  Using Griffiths fracture principles Eq. (3 & 4), 

Kendall (1971), modelling the adhesion of elastomers, developed a formulae for 

removal of a rigid cylindrical stud on an elastomeric coating.   

       
   

 
 
   

     (5) 

where K is the bulk modulus, Pc is the critical pull-off force and t is the 

thickness (Kendall 1971).  This model demonstrates that as a force or stress is applied to 

the stud, on an elastomeric surface, the surface will deform by a certain degree until the 

stress reaches a critical point in which a fracture will occur.  Surfaces with a high elastic 

modulus are hard with a reduced ability to deform; on these surfaces the type of fracture 

that separates the adhesive and the coating is a shear fracture.  In contrast surfaces with 

a low modulus have a greater ability to deform; the type of fracture that occurs on these 

surfaces is a peel fracture.  The energy required for a peel fracture is less than the 

energy that is needed to complete a shearing fracture (Brady 2001).   

With regard to the influence of thickness on removal force, put simply, the pull-

off force decreases as the thickness of the coating increases (Kohl & Singer 1999; Brady 

& Singer 2000).  However, Kendall’s model (1971) shows that the importance of 

thickness on the critical pull-off force depends on its relationship to the contact area of 

the stud.  When the thickness of the coating is much greater than the contact radius 

(t>>a) the critical pull-off force becomes independent of the thickness (Kim et al. 

2007).   
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For thick coatings (t>>a) Eq. (5) becomes: 

      
      

                (6) 

where v is the Poisson’s ratio.  Using Eq. (6) Brady & Singer (2000) explained 

that surface energy (expressed in Eq. 3 by G), and the elastic modulus are both 

important during a fracture; such that the removal force correlates better to the product 

(Eγ)
1/2

 than to either the modulus (E) or the surface energy (γ)  (Figure 1.7) (Brady & 

Singer 2000).   

 

 

Figure 1.7. Relative adhesion as a function of the square root of the product of critical 

surface energy (γ) and elastic modulus (E).  Source: Brady and Singer 2000.   

 

Kendall’s model has frequently been used to illustrate the removal of biofouling 

organisms specifically barnacles, from FR coatings (Kohl & Singer 1999; Sun et al. 

2004; Wendt et al. 2006; Kim et al. 2007).  
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1.7.3. Chemical composition of fouling-release coatings 

 Silicone and fluoropolymers are two polymers that have been shown to possess 

the necessary properties essential for fouling-release.  However, their different chemical 

structure results in them achieving effective fouling-release through different 

mechanisms (Brady 1999; 2001).  The differences discussed relate to the difference in 

surface energy and modulus of the polymers.  Fluoropolymers limit the bonding of 

adhesives to their surface by their arrangement of the functional groups such as 

perfluoroalkyl.  These groups are cross-linked together which minimises re-arrangement 

within the polymer and this prevents the infiltration of marine adhesives on the surface 

of the polymer.  This causes a weak bond to form with the adhesive, resulting in the 

coating having a lower surface energy than in silicones (Brady 2001; Yebra et al. 2006).  

Fluoropolymers also have limited rotation of the C – C backbone of the polymer 

because of the presence of the fluorine atoms.  This means the fluoropolymers have 

limited flexibility and a much higher elastic modulus than silicones (Brady 2001; Yebra 

et al. 2006).  Silicones, in addition, have a longer bond length between the Si – O bond 

and a larger bond angle between the Si – O – Si link than along the C – C fluoropolymer 

chain in fluoropolymers.  The silicones backbone also has a low rotation energy which 

results in high chain flexibility (Figure 1.8).  All this contributes to the silicone having a 

very low modulus (Brady 1999; Finnie & Williams 2010; Webster & Chisholm 2010).   
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Figure 1.8.  An example of the typical molecular structure of a fluorocarbon 

(poly(tetrafluoroethylene)) and a silicone (polydimethylsiloxane), illustrating the 

difference in A) link length, B) bond length, C) bond angle and D) rotation energy 

(adapted from Brady 1999). 

 

1.8.  Recent developments in fouling-release research 

 Many of the past and present commercial FR coatings are based on silicones.  

Nevertheless, silicones do have disadvantages; they are mechanically weak and are 

therefore easily damaged; they are only beneficial to high-speed vessels (> 15 knots) in 

order for fouling to be released (Kavanagh et al. 2001; Marabotti et al. 2009; Callow & 

Callow 2011).  They have poor adhesion to substrates and require a tie-coat primer, 

increasing the expense and application time (Webster & Chisholm 2010).  Recent focus 

has been to try and improve the mechanical properties of silicone FR coatings without 

detracting from their FR properties (Beigbeder et al. 2008; Marabotti et al. 2009; 

Kaffashi et al. 2012).  A brief summary of some of the avenues being investigated 

includes reinforcing the silicone polymer matrix with fillers such as carbon nanotubes, 

natural sepiolite (Beigbeder et al. 2008) and silica (Kaffashi et al. 2012).  These have all 

shown some promise in improving the mechanical properties of the silicone coatings.  
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However, in the case of silica, the introduction of the filler changed the bulk properties 

by increasing the elastic modulus and thus reduced the FR properties of the coating.  

Another avenue included the combination of silicones with polyurethane (Ekin et al. 

2007; Pieper et al. 2007; Fang et al. 2010; Sommer et al. 2010).  Adding polyurethane 

to the silicone improves its adhesion to substrates and increases the silicones 

mechanical resistance (Ekin et al. 2007).  However, when they were immersed in water 

the urethane groups rearrange near the surface altering the wettability and converted the 

coating from a hydrophobic one to a hydrophilic one (Pike et al. 1996).  The addition of 

cross-linkers to stabilise siloxane-polyurethane have been shown to prevent the 

rearrangement of the urethane groups and have demonstrated excellent FR properties 

and perform equally well in laboratory assays and in field trials (Ekin et al. 2007; Pieper 

et al. 2007; Fang et al. 2010; Sommer et al. 2010; Stafslien et al. 2016).  Also under 

investigation are combined silicone and fluorinated polymers.  The idea was to combine 

the advantages of both silicones and fluoropolymers (Marabotti et al. 2009).  

Fluorosilicones have shown significant improvements on release characteristics against 

fouling algae and barnacles when compared to a silicone coating (Marabotti et al. 2009).   

The examples discussed above are all based on hydrophobic systems; an 

additional area of research is on amphiphilic coating systems (Krishnan et al. 2006; 

Martinelli et al. 2011; 2012; Wang et al. 2011).  Amphiphilic coatings possess both 

hydrophobic and hydrophilic functionalities across its surface, the level of complexity 

this creates on a surface has been demonstrated to inhibit the adhesion of marine fouling, 

specifically the green macroalgae Ulva linza, the diatom Navicula incerta and cyprids 

of the barnacle Balanus amphitrite (Krishnan et al. 2006; Martinelli et al. 2011; 2012; 

Wang et al. 2011; Zhou et al. 2014).  The early amphiphilic coatings were composed of 

hyperbranched fluoropolymers and poly(ethylene glycol) (PEG) (Gudipati et al. 2004); 

and today a FR coating based on a similar system is available on the commercial market 

(Intersleek ® 900) (Finnie & Williams 2010).  More recent formulations demonstrating 

significant potential includes diblock or triblock copolymers which combine a 

polysiloxane block and an amphiphilic PEGylated-fluoroalkyl modified polystyrene 

block often dispersed in a PDMS matrix (Martinelli et al. 2011; 2012; Zhou et al. 2014; 

Stafslien et al. 2015), in an attempt to combine the benefits of both amphiphilic and 

silicone coating systems.   
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1.9.  Methods for assessing fouling-release coatings 

 The physical properties (e.g. hardness, tensile strength, texture, modulus), 

chemical properties (e.g. surface energy, toxicity) and finally, biofouling property 

(Swain 1997), of every new coating formulation needs to be rigorously tested to 

evaluate its performance.  The biofouling property regards the ability of the coating to 

prevent settlement and reduce the adhesion of settled organisms.  This is potentially one 

of the more important qualities, as it assesses whether the coating can do what it is 

designed for. 

 

1.9.1. Pseudobarnacles  

One tool that has been used to measure biofouling properties, specifically the 

adhesion to a coating, is the pseudobarnacle test.  A pseudobarnacle is a cylindrical stud 

that can be epoxy, wood or metal.  The stud is fixed to a coating using synthetic 

adhesives, for example, epoxy adhesive Araldite®.  After this cures, the removal stress 

of the pseudobarnacle from the coating can be measured (Berglin & Gatenholm 1999; 

Kohl & Singer 1999; Singer et al. 2000; Stein et al. 2003; Chisholm et al. 2007; Kim et 

al. 2007).  The removal stress of pseudobarnacles was thought to replicate the removal 

stress of real barnacles on silicone coatings (Berglin & Gatenholm 1999).  

Pseudobarnacles were beneficial as they provided rapid assessment of coatings and 

could be used to demonstrate the fracture process modelled by Kendall (1971).  

However, the synthetic adhesives used for pseudobarnacle tests do not possess 

comparable viscoelastic and multi-layered properties of barnacle adhesives (Sun et al. 

2004).  Barnacles when grown on silicones have been shown to develop an atypical, 

thick ‘gummy’ adhesive and calcareous-based barnacles specifically have been shown 

to develop an abnormal ‘cupped’ basis (Wiegemann & Waterman 2003; 2004; Sun et al. 

2004; Wendt et al. 2006; Ramsay et al. 2008).  The development of cupped basal plates 

is thought to be the result of the growth of the parietal plates of the barnacles exerting a 

downward pressure on the substrate.  This causes the barnacle to lift off the silicone 

coatings which makes the basal plate grow into a cup shape (Wiegemann & Watermann 

2003).  The thick adhesive fills the gap between the cupped basis and the substrate to 

help the barnacle maintain attachment to the substrate (Wiegemann & Waterman 2003; 

Ramsay et al. 2008).  Adhesives with a thicker ‘gummy’ state have been shown to 
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possess a lower modulus than the typical adhesive produced, and this can influence the 

adhesion of barnacles (Sun et al. 2004).  Furthermore, Kendall’s (1971) model assumes 

that the stud is rigid, however the calcareous-basis of the barnacle Balanus amphitrite 

exhibits a flexural rigidity of 0.002NM, this was orders of magnitude less than that of a 

pseudobarnacle (Ramsay et al. 2008).  For example, Ramsay et al. (2008) found that a 

steel plate pseudobarnacle with a thickness of 100µm had a flexural rigidity of 

~0.02Nm, which increased to ~20Nm as the thickness of the plate increased to 0.0001m. 

This means during the fracture process and detachment from a coating, there is greater 

flex in a barnacle than in a pseudobarnacle.  This flexure that occurs during the fracture 

reduces the force required to detach a real barnacle rather than a pseudobarnacle (Chung 

& Chaudhury 2005; Ramsay et al. 2008).  Previous comparisons have shown that there 

is a large discrepancy between the removal stress of pseudobarnacles and barnacles 

(Sun et al. 2004).  The use of pseudobarnacles is going out of favour; as they are unable 

to replicate the adhesives properties and growth malformations of barnacles from FR 

coatings and they do not show the same flexural rigidity of barnacles.   

 

1.9.2. Choice of marine organisms 

 Although pseudobarnacles provide rapid assessment, there is a requirement for 

realistic assessment by testing FR coatings with marine fouling organisms.  The 

methods used for measuring the settlement and the removal stress depend on the choice 

of organism being tested.  There are a number of species which have been used to 

evaluate a coating’s performance (Table 1.3); however, there are two primary 

candidates that have been more extensively investigated.  The first is the green 

macroalga Ulva linza (formerly, Enteromopha linza) (Callow et al. 1997; Finlay et al. 

2002; Chaudhury et al. 2005; Cassé et al. 2007; Pieper et al. 2007; Beigbeder et al. 2008; 

Marabotti et al. 2009; Fang et al. 2010; Sommer et al. 2010; Martinelli et al. 2011; 

2012).  This macroalga is a dominant species of the upper intertidal zone along 

shorelines throughout the world and has been reported to be the most common 

macroalga that fouls artificial structures, specifically ship’s hulls (Callow et al. 1997; 

Chaudhury et al. 2005; Marabotti et al. 2009).  The second group frequently used to 

assess FR coatings are barnacles.  Species including Balanus amphitrite (= 

Amphibalanus amphitrite) (Pettitt et al. 2004; Wendt et al. 2006; Beigbeder et al. 2008; 
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Conlan et al. 2008; Kim et al. 2008; Marabotti et al. 2009; Sommer et al. 2010; 

Martinelli et al. 2012; Stafslien et al. 2012), B. eburneus (Wynne et al. 2000; Kavanagh 

et al. 2001; Sun et al. 2004; Holm et al. 2006), B. improvisus (Berglin & Gatenholm 

1999; Singer et al. 2000; Berglin et al. 2001; Wiegemann & Watermann 2004) and 

Elminius modestus (Wiegemann & Watermann 2004; Robson et al. 2009) are just some 

examples of barnacle species used in coating research.  However, B. amphitrite is more 

universally used for testing FR coatings than any other (Aldred & Clare 2008).  The 

distribution of B. amphitrite is widespread throughout the sub-tropics, where it is 

considered a problematic fouling species as it is able to rapidly colonise submerged 

artificial structures (Aldred & Clare 2008; Marabotti et al. 2009).  This species has been 

reported as being an excellent model for laboratory testing as they are able to produce 

larva all year round, and their cyprids readily settle in static conditions (Branscomb & 

Rittshcof 1984; Rittschof et al. 1992; Aldred & Clare 2008).  Barnacles in general are 

considered to be one of the more, if not the most, important groups of organisms fouling 

ship’s hulls (Briand 2009).  Their relatively large size, gregarious settling behaviour and 

their propensity to settle on any hard surface has contributed to this reputation (Christie 

& Dalley 1987; Briand 2009). As the nature of this thesis is to investigate barnacle 

adhesion the following will concern barnacles only.  
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Table 1.3.  A brief account of the marine test species used for removal stress measurements for antifouling and fouling-release research.  

Fouling Group Species Assay type Adhesion method Culture method References 

Bacterium Cellulophaga lytica 

(Cytophaga lytica) 

Percent removal Water Jet Laboratory culture Ekin et al. 2007; Sommer 

et al. 2010; Stafslien et al. 

2015; 2016. 

Halomonas pacifica Percent removal Water Jet Laboratory culture Ekin et al. 2007; Stafslien 

et al. 2015. 

Diatoms Amphora coffeaeformis Percent removal Flow channel Laboratory culture Schultz et al. 2000; 

Holland et al. 2004. 

Craspedostauros australis Percent removal Flow channel  Holland et al. 2004. 

Navicula incerta Percent removal Water Jet Laboratory culture Pieper et al. 2007; 

Sommer et al. 2010; 

Stafslien et al. 2015; 2016. 

 Flow channel  Zhou et al. 2014. 

Naviucla perminuta Percent removal Flow channel Laboratory culture Holland et al. 2004; Pettitt 

et al. 2004; Statz et al. 

2006; Wang et al. 2011. 

Macroalgae Ulva linza (formerly 

Enteromorpha linza) 

Sporeling (~6 day old) 

percent removal  

Water Jet Laboratory culture Finlay et al. 2002; Cassé 

et al. 2007; Ekin et al. 

2007; Pieper et al. 2007; 

Fang et al. 2010; Sommer 

et al. 2010; Wang et al. 

2011. 

Flow channel Pettitt et al. 2004; 

Chaudhury et al. 2005; 

Statz et al. 2006; 

Beigbeder et al. 2008; 
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Marabotti et al 2009; 

Martinelli et al 2011; 

2012; Zhou et al. 2014. 

Ectocarpus crouaniorum Percent removal Flow channel Laboratory culture Evariste et al. 2012.  

Macrofouling 

fauna: 

Barnacles 

Balanus amphitrite Cyprid adhesion  Water jet Laboratory culture Aldred et al. 2010. 

Adult adhesion  ASTM D-5618 Laboratory culture Wendt et al. 2006. 

Automated adhesion 

system 

Beigbeder et al. 2008; 

Marabotti et al. 2009; 

Martinelli et al. 2012. 

Tensile removal 

stress 

 Waterman et al. 1997. 

ASTM D-5618 Reattached: Ekin et al. 2007; Kim et 

al. 2008; Rittschof et al. 

2008; Sommer et al. 2010; 

Stafslien et al. 2012. 

Balanus crenatus Adult adhesion ASTM D-5618 Static immersion site Wiegemann & 

Watermann 2004. 

Balanus eburneus Adult adhesion  ASTM D-5618 Static immersion site Swain & Schultz 1996; 

Wynne et al. 2000; 

Kavanagh et al. 2001; 

2003; 2005. 

Balanus improvisus 

 

 

Cyprid adhesion  

 

 

Tensile strength 

fixing a fibre to the 

cyprid measured 

with a microbalance 

Wild nauplii 

collected and 

cultured in a 

laboratory 

 

Berglin et al. 2001. 

Newly metamorphosed and Tensile strength Berglin et al. 2001. 
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 juvenile barnacles fixing a fibre to the 

barnacle measured 

with a tensiometer 

Adult adhesion ASTM D-5618 Laboratory culture Berglin & Gatenholm 

1999; Larsson et al. 2010. 

Static immersion site Wiegemann & 

Watermann 2004. 

Balanus variegatus Adult adhesion   ASTM D-5618 Static immersion site Kavanagh et al. 2005. 

Elminius modestus Adult adhesion  ASTM D-5618 Static immersion site Wiegemann & 

Watermann 2004; Robson 

et al. 2009. 

 Pseudobarnacles  Automated pull-off 

system 

 Kohl & Singer 1999; 

Chisholm et al. 2007; Kim 

et al. 2007; 2008; Sommer 

et al. 2010; Kaffashi et al. 

2012. 

Tubeworms Hydroides dianthus Adult adhesion ASTM D-5618 Static immersion site Kavanagh et al. 2001; 

Holm et al. 2006. 

Hydroides elegans Adult adhesion  ASTM D-5618 Static immersion site Holm et al. 2006. 

Bivalve mollusc Crassostera virginica Adult adhesion ASTM D-5618 Static immersion site Kavanagh et al. 2001; 

Holm et al. 2006. 

Mytilus galloprovincialis Pediveliger adhesion Flow channel Laboratory culture Carl et al. 2012. 
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1.9.3. Barnacles   

 Barnacles are sessile crustaceans in the subclass Cirripedia.  Within this subclass 

there are four orders; the Ascothoracica, parasitic barnacles of anthozoans and 

echinoderms; Rhizocephala, parasitic barnacles primarily of decapods; Acrothoracica, 

burrowing barnacles and Thoracica (Newman & Ross 1976; Newman 1987).  The latter 

order, which Newman (1987) described as the ‘principle order of the Cirripedia’ 

contains three suborders: the Lepadomorpha, the stalked barnacle; the Verrucomorpha, 

the asymmetrical barnacle and the Balanomorpha, the symmetrical acorn barnacle 

(Newman & Ross 1976; Newman 1987).  The Balanomorpha has the greatest diversity 

of species within it, and include the species more common on the rocky shore and in the 

fouling community on ship’s hulls (Newman & Ross 1976).   

In brief, an acorn barnacle’s life history includes six planktonic nauplius stages 

in which the last five are planktotrophic (feeding), followed by a non-feeding cypris 

stage which settles and metamorphoses into a sessile adult (Figure 1.9) (Clare & 

Matsumura 2000; Phang et al. 2006; Aldred & Clare 2008).  The cyprid is a particularly 

important stage in the barnacle’s lifecycle, as it is the cyprid that explores and selects a 

substratum for its suitability for settlement.  Acorn barnacles are simultaneous 

hermaphrodites possessing both male and female reproductive systems, thus proximity 

between individuals is important in order for the barnacles to cross fertilise, potential 

partners need to be within range of the “acting males” extensible penis (Barnes et al. 

1977; Clare & Matsumura 2000).  Selection of a site for settlement is dependent on 

many factors, for example, the presence of adult conspecifics (Knight-Jones & 

Stevenson 1950; Larman & Gabbot 1975; Barnett & Crisp 1979), presence and age of a 

molecular film and biofilm (Wieczorek et al. 1995; Thompson et al. 1998; Olivier et al. 

2000), local hydrodynamics (Rittschof et al. 1984; Eckman et al. 1990), surface contour 

and texture (Wethey 1986; Kerr & Cowling 2003; Schumacher et al. 2007), surface 

chemistry (Roberts et al. 1991; Callow & Fletcher 1994) and surface colour (Yule & 

Walker 1984a; Robson et al. 2009).   

In the process of exploring a surface, a cyprid uses a temporary adhesive 

secreted by the unicellular antennulary cement glands, this serves to hold the cyprid 

onto the substratum to prevent it being dislodged (Clare & Matsumura 2000; 

Khandeparker & Anil 2007).  As a cyprid explores a surface with their antennules, they 
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leave behind “footprints” of temporary adhesive, these acts as a settlement cue to 

subsequent exploring larvae (Walker & Yule 1984).  Once a suitable site has been 

selected the cyprid settles and using a proteinaceous cement it attaches permanently to a 

surface.  The cyprid then metamorphoses into the juvenile barnacle.  It can take several 

days for the adult adhesive to be released as the secondary cement glands develop; in 

the barnacle Semibalanus balanoides, for example, this can take up to 40 days after 

settlement (Yule & Walker 1987).  Once developed the adult adhesive is released 

through a system of ducts opening at the periphery of the basis of the barnacle forming 

rings of cement as the barnacle grows/moults (Yule & Walker 1987; Wiegemann 2005).   

 

 

Figure 1.9.  Life cycle of a barnacle, displaying six nauplii stages, a non-feeding cyprid 

stage and metamorphosis to a juvenile and adult barnacle. 
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1.9.3.1.  Laboratory culture of barnacles 

 A laboratory culture of barnacles involves the lifecycle of the barnacle, from 

nauplii stage I (being released from adult barnacles) to nauplii stage VI through to the 

cyprid stage and settlement and eventually to adult, being completed under controlled 

laboratory conditions.  Although not every barnacle species can be cultured in a 

laboratory, for example, S. balanoides.  S. balanoides, a boreo-arctic species, has an 

annual breeding cycle and a very long larval development time (Barnes 1962), the 

attempts at culturing this species in a laboratory have so far been unsuccessful (Kirby 

2006).  Whereas B. amphitrite, a sub-tropical barnacle, has been shown to be an 

excellent laboratory species especially for evaluating antifouling and FR technologies.  

With a well maintained adult broodstock B. amphitrite are capable of reproducing all 

year round producing multiple batches of nauplii.  This barnacle has a short larval 

development time with the nauplii metamorphosing into cyprids after 5 days of being 

fed daily on a diet of the diatom Skeletonema spp., incubated at 28ºC (Rittschof et al. 

1992; Hellio et al. 2004).   

B. amphitrite cyprids from laboratory cultures are often used to evaluate the 

capacity of antifouling technologies to inhibit settlement; for example, in toxicity assays 

(Rittschof et al. 1992); microtopography (Schumacher et al. 2007; Aldred et al. 2010); 

enzymes (Pettitt et al. 2004; Tasso et al. 2012) and now FR coatings (Beigbeder et al. 

2008; Marabotti et al. 2009; Wang et al. 2011; Martinelli et al. 2012).  However to 

evaluate FR coatings the critical removal stress (CRS) of the organism from the coating 

is the desired measurement.  The CRS of laboratory cultured cyprids (Berlin et al. 2001; 

Aldred et al. 2010), newly metamorphosed barnacles (Berglin et al. 2001) and adult 

barnacles grown in the laboratory (Waterman et al. 1997; Wendt et al. 2006; Beigbeder 

et al. 2008; Marabotti et al. 2009; Martinelli et al. 2012) are current methods used to 

assess antifouling technologies and FR coatings. 

However, Briand (2009) stated that “no laboratory bioassay could hope to 

replicate such a complex process” that is biofouling, suggesting that laboratory 

adhesion assays are not valid.  The settlement process of barnacles is influenced by 

multiple factors (see section 1.9.3.) each of these being potentially inhibitory or 

facilitatory.  For example, the presence of a 1 – 3 day old biofilm, as Wieczorek et al. 

(1995) demonstrated, can inhibit the settlement of B. amphitrite, however as the film 
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aged it was shown to facilitate cyprid settlement.  The presence of a biofilm has also 

been shown to increase the adhesion and CRS of cyprids from a surface (Neal & Yule 

1994a; Zardus et al. 2008).  Once the barnacles have settled and have been recruited 

into the fouling community they are subjected to external physical and biotic factors, for 

example water turbulence/flow and predation, which have been shown to influence the 

barnacles adhesion to the substratum (Swain et al. 1998).   If the CRS of barnacles can 

be influenced by multiple physical, chemical and biological factors such as the 

settlement and post-recruitment processes are influenced by, laboratory assays would 

not replicate the true performance of coatings on ship’s hulls and therefore may not be 

valid (Briand 2009).  

 

1.9.3.2.  Field immersion trials 

The use of static immersion sites in the field for natural colonisation is common 

practice for testing recruitment and CRS to antifouling and FR coatings (Becka & Loeb 

1984; Swain et al. 1992; 2000; Swain & Schultz 1996; Wood et al. 2000; Wynne et al. 

2000; Kavanagh et al. 2001; 2003; Sun et al. 2004; Wiegemann & Watermann 2004; 

Holm et al. 2006; Robson et al. 2009).  Field immersion trials may best reflect the 

recruitment and CRS of marine organisms found on the hulls of ships, and therefore 

provide a more realistic idea of the coating performance.  However, field trials are 

criticised for being costly, requiring a large volume of coating samples.  It has also been 

claimed that field trials require several months submersion time to allow for 

colonisation and growth for adhesion testing (Webster et al. 2007; Rittschof et al. 2008; 

Stafslien et al. 2012).  There are problems with seasonality of specific fouling 

organisms for example the barnacle S. balanoides, whose strict reproduction cycle sees 

this species only releasing nauplii in time for the spring diatom bloom (Barnes 1962).  

There are also environmental factors such as fluctuating sea temperatures which can 

result in low larval availability and poor recruitment (Harms & Anger 1989; Gallagher 

et al. 2015), and problems with predation removing organisms which had settled (Swain 

et al. 1998; Rittschof et al. 2008).   

Laboratory assays would not be affected by weather, predation or low larval 

availability.  Laboratory evaluations are considered to be beneficial as they are able to 

down-select coating formulations for field tests, thus reducing the number of different 



 Chapter 1 

37 

 

samples needed to be immersed in the field (Swain 1997; Rittschof et al. 2008; 

Martinelli et al. 2012; Stafslien et al. 2012).  There are a few studies that have compared 

the discriminatory abilities of barnacle cyprids from laboratory cultures and in the field, 

often comparing the percentage settlement in the laboratory to the percentage coverage 

or the total number recruited from the field (Rittschof & Costlow 1989; O’Connor & 

Richardson 1996; Thompson et al. 1998; Matsumura et al. 2000; Martinelli et al. 2012).  

Where settlement is defined as the permanent transition of planktonic larvae to the 

benthic community, and recruitment being defined as when the presence of the ‘recruits’ 

(the species being studied) have been observed on the substratum (Keough & Downes 

1982; Pawlik 1992).  However, there has yet to be a study that compares the CRS of 

adult barnacles settled and grown in the laboratory to those settled and grown in the 

field.  One study did investigate the removal stress of re-attached calcareous-based 

barnacles to those recruited from the field on polyurethane coatings (Stafslien et al. 

2016).  Re-attached barnacles are ones that are reared from cyprid stage, settled on a 

polysiloxane elastomer for example Silastic ® T-2 until they reach > 5mm in diameter, 

they are then removed and placed on a new test coating where they begin to re-attach 

themselves (Rittschof et al. 2008; Stafslien et al. 2012).  Re-attached barnacles have 

been shown to have a positive correlation to results from the field (Rittschof et al. 2008: 

Stafslein et al 2016).  As Stafslien et al. (2016) discusses, the adhesion of laboratory re-

attached B. amphitrite correlated well for five out of eight coatings to the adhesion of B. 

amphitrite from one field site tested.  However, they were a much lower degree of 

correlation between the adhesion of laboratory re-attached B. amphitrite to the adhesion 

two different calcareous-based barnacles species (B. crenatus and B. eburneus) from 

two alternative field sites.   

One objective of this thesis (Chapter 4) was to provide a view into laboratory 

and field assays, comparing the CRS of membranous-based E. modestus barnacles from 

two field sites in two years to a laboratory culture of E. modestus barnacles, settled and 

grown on the test coatings.  With the intention to validate whether laboratory assays can 

discriminate between coatings in a way that is representative of that which would be 

seen in the field. 
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1.10.  Critical removal stress of barnacles 

The CRS of barnacles and other fouling organisms to a coating is calculated by 

measuring the force required to completely remove the organism, normalised by its 

contact area.  This is referred to as the adhesion strength or the critical removal stress 

(CRS) and is measured in megapascals (MPa) (Callow & Fletcher 1994; Swain et al. 

2000; Wiegemann & Watermann 2004).   

 

1.10.1.  Critical removal stress of adult barnacles 

The CRS of barnacles and pseudobarnacles can be a measure of the stress 

needed to pull-off the organism from the coating, this is the tensile stress (Grenon et al. 

1979; Becka & Loeb 1984; Swain et al. 1992; Watermann et al. 1997; Chisholm et al. 

2007; Kim et al. 2007).  However, the use of shear or push-off stress as measured 

following the ASTM D-5618 (1994), is more common at present (Watermann et al. 

1997; Swain et al. 2000; Kavanagh et al. 2001; Sun et al. 2004; Wiegemann & 

Watermann 2004; Wendt et al. 2006; Conlan et al. 2008; Martinelli et al. 2012; Stafslien 

et al. 2012).  The ASTM D-5618 (1994) is the “Standard Test Method for the 

Measurement of Barnacle Adhesion in Shear”.  It is the standard method which uses a 

probe to apply a force parallel to the surface, to the base of a single barnacle, at rate of 

approximately 4.5Ns
-1

 (1 lb s
-1

) (ASTM D-5618 1994; Kavanagh et al. 2001).  The 

probe is attached to a spring force gauge which measures the force (N) required to 

detach the animal.  The CRS is then calculated by dividing this force by the size of the 

barnacles’ base plate.  The recommended size of barnacles suggested in the ASTM D-

5618 ranges between 5 to 20mm in diameter, as size begins to become a factor affecting 

the accuracy of the CRS measurements for barnacles outside this size range (Kavanagh 

et al. 2001).  Motorised adaptations of the force gauge have been developed (Stein et al. 

2003; Wendt et al. 2006; Kim et al. 2008; Stafslien et al. 2012) including a fully-

automated computer controlled equivalent (Conlan et al. 2008).  The fully-automated 

method is beneficial as it is capable of a high-through-put of samples, provides an 

accurate measure of the basal area of the barnacle and is capable of measuring the CRS 

of barnacles with a smaller diameter of 3.6mm thus requiring a shorter period for 

growth (Conlan et al. 2008). 
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The ASTM D-5618 is specific for measuring barnacles, but it has been adapted 

and used to measure the removal force of other calcified fouling organisms, such as the 

tubeworms Hydroides dianthus and H. elegans, and the oyster Crassostera virginica 

(Kavanagh et al. 2001; Holm et al. 2006) (see Table 1.3).   

It should be noted that the removal force calculated by Kendall’s (1971) model 

is a tensile force.  However, using the relationship: 

         (7) 

where T refers to a tensile force and S is a shear force (Wynne et al. 2000); 

Kendall’s (1971) model can be adapted and used to estimate the removal force in shear.    

 

1.10.2.  Removal stress of cyprids 

 The cyprid is the critical stage for selecting a settlement site, and being able to 

remove settled cyprids and newly metamorphosed barnacles would be very beneficial.  

However, due to the soft body of the cyprid and newly metamorphosed barnacles the 

method used for adult adhesion measurement is not suitable.  The adhesion of cyprids 

has previously been measured by fixing a fibre to the side of a cyprid using synthetic 

adhesive and measuring the tensile force required to detach the cyprid from a surface 

using a microbalance (Yule & Walker 1984a; Berglin et al. 2001).  This method has 

also been used on newly metamorphosed barnacles (Berglin et al. 2001).  However, the 

use of water-jetting (impact pressure) and flow channels (wall shear) which are often 

used for testing the adhesion of biofilm and macroalgal fouling (see Table 1.3) (Schultz 

et al. 2000; Finlay et al. 2002; Pettitt et al. 2004; Chaudhury et al. 2005; Beigbeder et al. 

2008) have also been used successfully for measuring cyprid adhesion to test coatings 

(Eckman et al. 1990; Zardus et al. 2008; Aldred et al. 2010).   

 

1.11.  Research gap 

 There is a large diversity of marine fouling organisms with approximately 4000 

separate species identified (Yebra et al. 2004; Holm et al. 2006); so the variety of 
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different mechanisms for adhesion is extensive.  The challenge for paint manufacturers 

is to develop a coating that will significantly inhibit the adhesion of all these organisms 

(Brady 1999; Brady & Singer 2000; Holm et al. 2006).  Therefore it is necessary to 

screen FR coatings against as wide a diversity of fouling organisms as possible (Holm 

et al. 2006).   

 With regard to barnacle adhesion studies a significant proportion have centred 

on barnacles with a calcareous-basis, for example the model species B. amphitrite 

(Pettitt et al. 2004; Wendt et al. 2006; Beigbeder et al. 2008; Conlan et al. 2008; Kim et 

al. 2008; Marabotti et al. 2009; Sommer et al. 2010; Martinelli et al. 2012; Stafslien et 

al. 2012); but also including B. eburneus (Wynne et al. 2000; Kavanagh et al. 2001; Sun 

et al. 2004; Holm et al. 2006), B. improvisus (Berglin & Gatenholm 1999; Singer et al. 

2000; Berglin et al. 2001; Wiegemann & Watermann 2004) and B. crenatus 

(Wiegemann & Watermann 2004).  While other species of barnacles such as E. 

modestus and S. balanoides which have a membranous-basis, have been mostly 

neglected in FR studies.  The literature that is available on the species E. modestus has 

speculated that the membranous-basis would influence the removal of the barnacle from 

FR coatings (Wiegemann & Watermann 2004; Robson et al. 2009).  It has been 

mentioned above that the flexibility of the calcareous-basal plate influences the removal 

stress of barnacles from silicone coatings when compared to the rigid pseudobarnacle 

studs, where the greater the flexibility the less force is required for removal (Chung & 

Chaudhury 2005).  The membranous-basis of barnacles such as E. modestus would have 

a greater flexibility than calcareous-based barnacles and therefore would require even 

less force for removal as established by Wiegemann & Watermann (2004).  

 Griffith’s (1921) fracture criterion and Kendall’s (1971) model of fracture 

mechanics no longer seem suitable for predicting the detachment of real barnacles from 

silicone coatings (Sun et al. 2004; Ramsay et al. 2008).  Recent efforts have been 

directed towards developing an understanding of the release behaviour of real barnacles 

from silicones in order to devise a new model more suitable for the detachment of real 

barnacles (Kavanagh et al. 2005; Hui et al. 2011).  Kavanagh et al. (2005) investigated 

the release mechanisms in two calcareous-based barnacles (B. eburneus and B. 

variegatus) from PDMS coatings using a high-speed camera.  Whereby it was possible 

to visualise the viscous properties of the adhesive, detailing its characteristics and 

behaviour during detachment as well as visualising the fracture process and crack 
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propagation.  As the flexibility of the structure is important for the fracture process, the 

release mechanics of membranous-based barnacles can be assumed to behave 

differently than calcified barnacles.  One objective of this thesis (Chapter 3) was to 

investigate how the basal structures, calcified or membranous, influenced the release 

mechanics and fracture behaviour of barnacles.   

 

1.11.1.   Elminius modestus: As a test species 

 E. modestus have successfully been cultured under laboratory conditions for 

studies in settlement behaviour specifically in relation to con- and allo-specific 

settlement cues (Moyse 1960; Tighe-Ford et al. 1970; Billinghurst et al. 2001; Kirby 

2006).  However, there has not been research into the adhesion of E. modestus in 

relation to FR coatings using laboratory-reared barnacles.  Current adhesion studies on 

E. modestus have used static field immersion sites to settle and grow barnacles to 

adulthood (Wiegemann & Watermann 2004; Robson et al. 2009).  At present no 

commercial FR coating has been developed through the testing phase using a barnacle 

with a membranous-basis.  However barnacles with a membranous-basis (Semibalanus 

spp and Elminius spp) are important members of fouling communities (Moyse 1960; 

Buckeridge 1982; Southward 2008).  Elminius modestus, for example, is important due 

to its abundance and dominance in the fouling community on natural and artificial 

structures and due to its successful invasion of European waters it is an ecologically and 

economically important species (Crisp & Chipperfield 1948; Knight-Jones 1948; Crisp 

1958).  Thus in this capacity, the development of E. modestus as a test species is 

warranted and, moreover, it would provide a valuable comparative species for studies of 

adult adhesion.   

 

1.12. Thesis objectives 

The objectives of this thesis were: 

1) To ascertain the potential of a laboratory culture of E. modestus to evaluate 

FR coatings.  This step involved an investigation in the practicality of E. modestus as a 

test species for laboratory cultures.  This focused on the settlement of laboratory-
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cultured cyprids, the length of time required to grow the barnacles to a testable size for 

CRS, the minimum size of E. modestus barnacles needed for CRS (Chapter 2).  The 

calcareous-based barnacle B. amphitrite was used as a comparator to measure the 

performance of E. modestus against.  

2) To examine how the membranous-basis influenced the adhesion and removal 

of barnacles from coatings compared to a calcareous-basis (Chapter 3).  A high-speed 

camera was used to investigate the fracture process of E. modestus from two PDMS 

coatings and compared this to the fracture of B. amphitrite.  This provided a detailed 

account of the separation processes of the two barnacle species. 

3) To compare the use of laboratory assays and field immersion trials for 

evaluating FR coatings (Chapter 4).  This included comparisons of the settlement and 

recruitment, and critical removal stress (CRS) of E. modestus reared in the laboratory 

and field environments.  Furthermore, experiments to examine why there were potential 

differences in the CRS of the barnacles between the two culture environments were 

undertaken.  This included examining the CRS of E. modestus grown on PDMS 

coatings at a range of different temperatures (12, 15, 19, 20°C) and on a biofilmed and 

an un-biofilmed surface.  An additional objective was to investigate the CRS of a 

second membranous-based species, Semibalanus balanoides, from FR coatings in 

comparison to E. modestus.  S. balanoides have a strict annual breeding season and 

cannot be cultured in a laboratory (Kirby 2006), thus it was necessary to use field 

immersion for settlement on the test coatings 

 4) The final objective was to examine the CRS of E. modestus from silicone and 

fluoropolymers with different surface and bulk properties (Chapter 5).  This was to 

measure how the coating’s properties influenced the adhesion of this membranous-

based barnacle compared to B. amphitrite.  This concluded whether E. modestus was 

capable of discerning between coatings for FR evaluations and whether it was suitable 

as a test species for future FR research.  
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Chapter 2: An Assessment of Elminius modestus (Darwin) - a 

Barnacle with a Membranous-Basis - as a Model 

Species for Evaluating Fouling-Release Coatings. 

 

 

2.1.  Abstract 

Adult barnacles with a calcareous basis such as Balanus amphitrite are highly 

utilised in assessing the efficacy of fouling-release (FR) coatings through settlement and 

adhesion analysis.  In contrast, species with a membranous-basis, for example Elminius 

modestus, are mostly neglected for such studies.  The aim of this chapter was to 

examine the practicality of E. modestus for a laboratory culture and as a model test 

species, compared to the barnacle B. amphitrite.  The percentage settlement of cyprids, 

rate of growth and critical removal stress (CRS) of adult barnacles from Silastic T-2 and 

Sylgard 184 silicone test coatings for E. modestus and B. amphitrite were evaluated.  

The CRS was measured using both the ASTM D 5618-94 method and an automated 

version of the test in shear.  The percentage settlement on the silicone test coatings of 

the two test species did not differ.  However, settlement across the repeated cultures for 

both species showed distinct variations and was un-predictable.  When grown on 

Silastic T-2 and Sylgard 184, and fed Tetraselmis suecica algae, E. modestus grew at a 

faster rate than B. amphitrite.  There was also a significant coating effect on the growth 

of E. modestus with barnacles on Sylgard 184 growing to larger size than those grown 

on Silastic T-2.  The CRS of E. modestus was less than that for B. amphitrite but only 

for Sylgard 184.  These differences likely reflect the differences in the respective basis-

substratum interfaces (hard-hard vs. hard-soft) for the two species.  It was concluded 

that E. modestus does provide a valuable comparative species for studies on adult 

barnacle adhesion in the context of FR studies. 
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2.2.  Introduction  

Elminius modestus (= Austrominius modestus) (Buckeridge 1982) has been 

described as an important fouling organism (Knight-Jones & Crisp 1953; Southward 

2008).  E. modestus is able to reproduce almost continuously throughout the year and 

has a short larval development period.  It is therefore amenable to culture in the 

laboratory (Moyse 1960; Tighe-Ford et al. 1970; Billinghurst et al. 2001; Kirby 2006).  

With the call for testing new coatings with a broader range of fouling species (Holm et 

al. 2006), the previously expressed opinion that E. modestus is a candidate for such tests 

(Moyse 1960) should be revisited.  

A method currently employed to evaluate the efficacy of fouling-release (FR) 

coatings is to measure the critical removal stress (CRS) of the barnacles attached to 

them, i.e. the force per unit area of basis required to completely remove the barnacle 

from the coating (Swain & Schultz 1996; Swain et al. 2000; Wiegemann & Watermann 

2004).  The ASTM D-5618 (1994) is a standard for measuring barnacle adhesion in 

shear.  Balanus amphitrite (= Amphibalanus amphitrite) (Clare & Høeg 2008) in 

particular has become a model species for fouling studies, principally that of laboratory-

based assessments in settlement and adhesion (Rittschof et al. 1984; 1992; Hellio et al. 

2004; Aldred & Clare 2008; Conlan et al. 2008).  Other species that have been used in 

fouling studies, but which have focussed on barnacles that have settled in the field, 

include Balanus crenatus (Wiegemann & Watermann 2004), B. eburneus (Swain et al. 

2000; Kavanagh et al. 2005), B. improvisus (Singer et al. 2000; Wiegemann & 

Watermann 2004) and E. modestus (Wiegemann & Watermann 2004; Robson et al. 

2009).  E. modestus has a membranous-basis whereas the aforementioned barnacles all 

have a calcareous-basis.  A solid (basis)-coating interface may be expected to behave 

differently than a soft (membrane)-coating interface in terms of fracture mechanics yet 

only a limited number of studies have employed E. modestus (Wiegemann & 

Watermann 2004; Robson et al. 2009).  These studies were done at static field 

immersion sites where settlement and growth of barnacles to adulthood occurred on test 

coatings in the natural environment.  However, field tests of coatings generally require a 

larger volume of test material and are criticised for being relatively time consuming 

compared to laboratory tests (Webster et al. 2007).  Laboratory evaluations are 

considered useful for down-selecting coatings for field tests and for empirical studies of 
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model coatings (Swain 1997; Rittschof et al. 2008; Martinelli et al. 2012; Stafslien et al. 

2012).   

Presently, no commercial fouling-release coating has been developed through 

the testing phase using a barnacle with a membranous-basis.  Yet barnacle genera with a 

membranous-basis (Semibalanus spp and Elminius spp) are important members of 

fouling communities (Moyse 1960; Buckeridge 1982; Southward 2008).  The 

development of E. modestus as a test species is justified and it would provide a valuable 

comparative species for studies of adult adhesion.   

The aim of this chapter was to examine the practicality of E. modestus as a test 

species including laboratory cultures.  To achieve this, this chapter focused on the 

settlement of laboratory-cultured cyprids, the length of time required growing the 

barnacles to a testable size for CRS measurements and the minimum size of E. modestus 

barnacles needed to determine CRS.  To rate the performance of E. modestus, the 

settlement, growth and CRS was compared to that of the calcareous-based barnacle, B. 

amphitrite.  Finally, CRS values of E. modestus from two standard silicone coatings 

was measured and compared to those of B. amphitrite.  The hypotheses to be tested are 

1) that E. modestus is suitable as a test species and comparable in terms of settlement 

and growth to B. amphitrite, but due to its membranous-basal plate, 2) E. modestus 

would more easily be removed (lower CRS) from silicone elastomer coatings.  

 

 

2.3.  Materials and methods 

2.3.1.  Coating preparation  

Glass microscope slides (76mm x 26mm x 1mm, Fisherbrand) were coated with 

Silastic® T-2, and Sylgard® 184 (Dow Corning).  These are both commercially 

available polydimethylsiloxanes (PDMS) often used as standards in fouling-release 

studies, but should not be confused with commercial FR coatings (Sun et al. 2004; 

Holm et al. 2005; Statz et al. 2006; Wendt et al. 2006; Conlan et al. 2008; Ramsay et al. 

2008; Rittschof et al. 2008).  The coatings were sourced by International Paint Ltd., 

Felling, UK and prepared at Newcastle University, UK.  These coatings were used for 

the settlement, growth and CRS measurements. 
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Microscope slides were acid-washed in 70% nitric acid solution for 12 hrs then 

rinsed with reverse osmosis (RO) water and air dried.  These slides were fixed in rows 

to adhesive vinyl sheets on a level surface.  A base coat of Dow Corning 1200OS 

Primer (polydimethylsiloxane tetrapropyl orthosilicate) was applied using laboratory 

blue roll and then dried.  This primes the glass surface to allow the silicones to adhere to 

the microscope slides.  Silastic T-2 and Sylgard 184 both consist of a two-part system of 

a base and a curing agent.  For Silastic T-2, a ratio of 100 parts of the base silicone to 10 

parts of the curing agent was mixed thoroughly in aluminium containers and applied to 

the microscope slides using an extra smooth, gloss paint roller.  Sylgard 184 was 

supplied as a two-part liquid component kit, in which the volume of base and curing 

agent was pre-measured with set ratio of 10:1, Part A (base silicone) to Part B (curing 

agent).  The mixing and application to the microscope slides were as before for Silastic 

T-2.  Once the slides had been coated with the respective silicones they were left to cure 

for up to 48 hrs at room temperature (~19°C).  The thicknesses of the coatings were 

measured using digital callipers at six points across each slide (Conlan et al. 2008).  

Before use, all coated slides were leached in RO water for 14 days, with a change of 

water after 7 days.  After leaching, the slides were rinsed in fresh RO water and 

immersed in artificial seawater (ASW, 32 – 34 salinity Tropic Marin) for 1 hr.  The 

slides were then air dried and used immediately for settlement assays.   

 

2.3.2.  Maintenance of adult barnacles 

Six white polypropylene pipes (3 x 300mm long, 3 x 350mm long, all 40mm in 

diameter, from RS Components) were suspended from a raft at Burnham-on-Crouch, 

Essex (51º 37.5’ N, 0º 49.3’ E) on 8
th

 April 2009 for colonisation by E. modestus.  On 

29
th

 March 2010 the pipes together with their fouling were collected and transported 

back to the laboratory aquarium at Newcastle University, UK.  These provided the adult 

brood stock that all subsequent laboratory cultures were raised from.  The adults were 

maintained in 2 plastic aquarium tanks (one 21 x 28 x 37cm containing 18L, the second 

22 x 25 x 47cm containing 20L of ASW) in an aquarium system with re-circulating 

ASW, at 19 ± 1 ºC on a 16:8 hour light and dark (L:D) cycle.  The individual tanks were 

aerated and the barnacles were fed newly hatched Artemia sp. nauplii (Great Salt Lake 

Brine Shrimp Co.) daily.  Every two weeks the tanks and adults were cleaned with fresh 

water, removing any build-up of detritus with a stiff bristled brush.  
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Adult B. amphitrite were obtained from Duke University Marine Laboratory, 

Beaufort, North Carolina, USA.  New populations of adults were received 

approximately every 5 – 7 months.  These were maintained in semi-static culture at 

Newcastle University in ~15L of aerated 1µm filtered, UV-treated seawater, at 28ºC on 

a 16:8 L:D cycle; the seawater was collected from the North-East coast of England.  The 

adults were fed Artemia sp., and were cleaned and the water changed daily. 

 

2.3.3.  Larval culture  

2.3.3.1.  Elminius modestus 

The method used for the culture of E. modestus was modified from the protocol 

established by Kirby (2006).  Initially, the adult barnacles were cleaned and gently 

scrubbed using a stiff bristled brush under freshwater.  They were removed from water 

overnight, but were covered by moistened laboratory blue roll and the tanks were 

covered with aluminium foil to prevent desiccation.  The following morning, the adults 

were returned to the tanks that had been filled with 50µm-filtered ASW.  External to the 

tanks, a point fibre-optic cold light source was positioned close to the water’s surface.  

After being released from the adults the phototactic nauplii swam towards this light.  

The larvae were then collected by pipette and transferred to a beaker containing ASW 

and Skeletonema marinoi (Seasalter Shellfish (Whitstable) Ltd., UK).  Once collected, 

the nauplii were counted.  Larval releases of a 4 hr duration produced between 12,000 

and 35,000 nauplii.  The nauplii were transferred to 7L of 1µm filtered (glass fibre filter) 

ASW treated with antibiotics (21.9mgl
-1

 penicillin G and 36.5mgl
-1

 streptomycin 

sulphate; Sigma Aldrich (Rittschof et al. 1992)) and aerated.  A maximum of 20,000 

nauplii was added to each 7L of ASW.  The culture was maintained in an incubator set 

at 22 ± 1°C with a 12:12 L:D cycle.  The nauplii were fed with 600ml S. marinoi daily 

at a concentration of ca. 1 x 10
5
 cell ml

-1
 (Kirby 2006).   

On day four of the culture the larvae were removed using a tier of mesh filters 

(300µm, 250µm and 160µm).  Nauplii that were retained in the 250µm and 300µm 

filters were placed in 7L of fresh 1µm filtered ASW treated with antibiotics and 

returned to the 22°C incubator.  Following the protocol established by Kirby (2006), 

any nauplii retained in the 160µm filter were discarded to minimise asynchronous 

cultures.  E. modestus larvae reached the cypris stage on day seven or eight of the 
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culture.  The cyprids were filtered as described previously and retained on the 250µm 

filter.  These cyprids (aged day zero) were used immediately for settlement assays as 

cyprids of this age provided the optimal level of settlement (Kirby 2006) (cf. B. 

amphitrite below).  

 

2.3.3.2.  Balanus amphitrite  

 The procedures for release and collection of nauplii followed those described for 

E. modestus.  On collection the nauplii were transferred to 7L of 1µm filtered seawater, 

maintained at 28°C on a 16:8 L:D cycle, treated with antibiotics (see above) and fed S. 

marionoi.  Cyprids were present after five days of incubation.  The culture was filtered 

through the mesh series (300µm, 250µm and 160µm) and cyprids retained in the 300µm 

and 250µm filters were stored for three days in the dark at 5 – 6°C prior to settlement 

assays (Rittschof et al. 1992; Billinghurst et al. 1998). 

 

2.3.4.  Influence of the culture medium on the settlement of Elminius modestus 

Preliminary attempts to culture E. modestus were carried out to assess the 

influence of the culture medium on the settlement of cyprids.  After collection and 

collation of the nauplii (> 12,000), the culture was divided in two.  Half was placed in 

7L of 1µm filtered ASW and half in 7L of 1µm filtered seawater (FSW); both were 

treated with antibiotics as before.  The cultures were maintained at 22 ± 1°C with a 

12:12 L:D cycle and fed S. marinoi daily.  On day four of the culture, the separate 

cultures were filtered through the filter series and returned to fresh ASW and FSW, 

respectively.  After the appearance of cyprids, settlement assays (see below) were 

conducted using sterile, polystyrene 24-well plates (Iwaki®) with ten cyprids per well 

containing 2ml of the appropriate culture medium filtered to 0.2µm.  The experiment 

was repeated three times. 
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2.3.5.  Settlement assays 

2.3.5.1.  24-well plate assays 

The competence of laboratory-reared E. modestus cyprids to settle was initially 

assessed using untreated, sterile, polystyrene 24-well plates (Iwaki®).  To test for 

competency to settle, ten cyprids were placed in each well (n = 12) with 2ml of 0.2µm 

filtered ASW.  After 24 and 48 hrs of incubation at 22 ± 1°C, the number of settled 

cyprids was counted and the average percentage of individuals settled per well was 

calculated.  For each culture of cyprids, the competence to settle was assessed in this 

manner as a baseline for settlement on coated surfaces.   

For comparison, settlement of laboratory-reared B. amphitrite cyprids was 

assessed against settlement of E. modestus cyprids.  The culture of E. modestus was run 

in parallel to the culture of B. amphitrite for each culture number, so the settlement 

assay was performed at the same time.  As with E. modestus, ten B. amphitrite cyprids 

were placed in each well (n = 12) with 2ml of 0.2µm filtered ASW.  After 24 and 48 hrs 

of incubation at 28 ± 1°C, the percentages of settled individuals were calculated and the 

average recorded.  The settlement of three repeat cultures of B. amphitrite and E. 

modestus were compared.   

 

2.3.5.2.  Settlement on coated surfaces 

The propensity for E. modestus cyprids to settle on standard silicone coatings 

was assessed.  For this, eight slides coated with Silastic T-2 and eight slides coated with 

Sylgard 184 housed in quadriPERM® culture vessels, were each seeded with 20 cyprids.  

These were pipetted into a 2ml droplet of 0.2µm filtered ASW centred on the coated 

slides.  The settlement of B. amphitrite cyprids was assessed for comparison on a 

different set of Silastic T-2 and Sylgard 184 coated slides.  The settlement of three 

repeat cultures of E. modestus and B. amphitrite cyprids, the same three repeat cultures 

of cyprids used for the settlement on the 24-well plates, were used for the settlement on 

the silicone surfaces.  Slides with cyprids of E. modestus and B. amphitrite were 

incubated at 22 ± 1°C and 28 ± 1°C, respectively for 48 hrs when the numbers of settled 

individuals were recorded.  Having an increased number of cyprids within the 2ml 
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droplet should increase the prospect for settlement on the silicone coatings (Clare et al. 

1994; Elbourne et al. 2008).   

After recording the number of settled individuals, 15ml of Tetraselmis suecica 

was added to each chamber of the culture vessels.  The newly settled juvenile barnacles 

were then grown on for use in CRS tests, whereby they were maintained at their 

respective temperatures on a 12:12 L:D cycle and fed 15ml of T. suecica (~3 x 10
5
 cells 

ml
-1

) three times a week (Monday, Wednesday and Friday); their water being changed 

at each feeding. 

 

2.3.6.  Growth measurements 

The growth of 1) a single culture of E. modestus, and 2) a culture of E. modestus 

grown in parallel to a culture of B. amphitrite, all on Silastic T-2 and Sylgard 184 

coated microscope slides, was measured over time.  The basal areas of the E. modestus 

and B. amphitrite barnacles were recorded starting 7 days after settlement and then on a 

weekly basis for a minimum 18 weeks.  Over the growth period barnacles needed to be 

removed to prevent overcrowding.  From the first and second cultures of E. modestus a 

total of 35 and 19, and 25 and 17 barnacles were removed from the Silastic T-2 and 

Sylgard 184 coatings, respectively.  From the B. amphitrite culture a total of 36 and 29 

barnacles were removed over the growth period from Silastic T-2 and Sylgard 184, 

respectively.  The barnacles which were removed, were selected based on their 

proximity to another individual barnacle or to the edge of the slide.  The silicone-coated 

microscope slides with the settled barnacles were scanned (HP Scanner 5400C) from 

beneath the slides at a resolution of 1200dpi.  The area (mm
2
) of the basis of each 

barnacle was calculated from digital images using ImageJ software (Rasband 1997; 

Abramoff et al. 2004).  With the first culture of E. modestus at 14 weeks, when the 

average basal diameter was ~3mm (basal area ~7mm
2
), Artemia sp. were fed to the 

barnacles maintained in quadriPERM® culture vessels.  However, subsequent to this 

change of diet there was 40% mortality in the dishes.  Consequently, the feed reverted 

to T. suecica.  The second culture of E. modestus and single culture of B. amphitrite 

were settled and grown at the same time and maintained on the same diet of T. suecica. 
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2.3.7.  Critical removal stress measurements 

2.3.7.1.  Influence of size of Elminius modestus on the critical removal stress 

To assess the minimum size for E. modestus, the CRS from multiple cultures of 

cyprids settled on Silastic T-2 were collated.  Four batches of Silastic T-2 (produced at 

different times) were used for the settlement of the cyprids.  These were grown for 

varying lengths of time between 13 to 28 weeks, to produce a range of individuals with 

sizes from ~2.57mm to 5.78mm in diameter.  The CRS was measured using the ASTM 

D-5618-94 (a manual method) and a bespoke, automated instrument (Advanced 

Analysis and Integration Ltd, Manchester, UK) according to Conlan et al. (2008).  

Briefly, this entailed a sample slide with settled barnacles being placed within a 

motorised platform above an inbuilt camera which captured a silhouette image of the 

barnacles and the software determined the barnacles basal area (mm
2
).  The platform 

moves towards a fixed push-off bar, where the rate of advance of the platform was set at 

a constant speed of 90mm min
-1

.  When the platform came into contact with the 

barnacle the force (N) needed to remove the barnacle from the slides surface/coating 

was recorded.  The in-built software standardises the removal force (N) by dividing it 

by the basal area (mm
2
) to provide the CRS measurements of megapascals (MPa).  For 

the manual method, a hand-held spring force gauge (PSM-2K, IMADA Co. Ltd, 0.2kg 

KgF) was used to measure the force (N) to remove the barnacles.  The instrument was 

positioned at the base of the barnacle and the force applied parallel to the surface at a 

rate of ~ 4.5Ns
-1 

as per the ASTM D-5618 (1994) standard for measuring barnacle 

adhesion in shear.  The barnacles were scanned (HP Scanner 5400C) prior to 

detachment and ImageJ software (Rasband 1997; Abramoff et al. 2004) was used to 

calculate the basal area (mm
2
) from the digital images.  The manual and automated 

methods were used to measure the CRS of 196 and 135 barnacles, respectively.  The 

CRS data was pooled and ranked in order of magnitude and the averages were taken of 

every 10 (automated method) and 15 individuals (hand-held force gauge).  The data for 

E. modestus that were incompletely removed, where the basal membrane remained 

attached to the surface, were discarded.   

 

 

 



 Chapter 2 

 

52 

 

2.3.7.2.  The critical removal stress of Elminius modestus and Balanus amphitrite   

For the critical removal stress (CRS) measurements, one culture of E. modestus 

cyprids and one culture of B. amphitrite cyprids were settled and grown on separate 

Silastic T-2 and Sylgard 184 coated microscope slides.  The barnacles were grown for a 

period of 20 weeks, with an approximate average size of 4.5mm and 3.9mm in diameter 

for E. modestus and B. amphitrite, respectively.  The CRS was measured using the 

automated method (Conlan et al. 2008).   

 

2.3.8.  Statistical analysis 

2.3.8.1.  Laboratory settlement assays 

 Data sets were arcsine transformed and tested for a normal distribution 

(Kolmogorov-Smirnov test) (Ennos 2012) and a homogeneous variance (Levene’s test) 

(Quinn & Keough 2002).  Two, two-factor repeated measures ANOVAs with a 0.05 

significance level and a post hoc Tukey’s comparison including repeat cultures (3 

repeats) and time (24 hr and 48 hr) as co-factors in both tests (Quinn & Keough 2002), 

was used to test the null hypotheses: 1) there was no difference in the percentage 

settlement of E. modestus cyprids cultured in ASW or FSW and 2) there was no 

difference in the percentage settlement of E. modestus and B. amphitrite cyprids.  A 

three-factor ANOVA with 0.05 significance level and a post hoc Tukey’s comparison 

including repeated cultures (3 cultures), time (24 hr and 48 hr) and species (E. modestus 

and B. amphitrite) as co-factors, was used to test the null hypothesis that there was no 

difference in the percentage settlement of E. modestus cyprids and B. amphitrite cyprids. 

 

2.3.8.2.  Growth 

 The data sets were checked for a normal distribution and a homogeneous 

variance using a Kolmogorov-Smirnov test (Ennos 2012) and Levene’s test (Quinn & 

Keough 2002), respectively.  For the single culture of E. modestus, a repeated measures 

ANOVA with a 0.05 significance level and a Bonferroni pairwise comparison was used 

to compare the size (basal area) of the barnacles at 6, 12, 18 and 28 weeks, on Silastic 

T-2 and Sylgard 184 coated surfaces.  This was to test the null hypothesis that there was 

no difference in the growth of E. modestus on Silastic T-2 compared to Sylgard 184.  A 
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two-factor repeated measures ANOVA with a 0.05 significance level and a Bonferroni 

pairwise comparison was used to measure the growth of E. modestus and B. amphitrite 

at 6, 12 and 18 weeks, on the two silicone coatings (Silastic T-2 and Sylgard 184).  This 

was to test the null hypothesis that there was no difference in the growth of E. modestus 

compared to the growth of B. amphitrite across the two coatings.  

 

2.3.8.3.  Critical removal stress  

 The null hypothesis examined was that there was no difference in the CRS of the 

two barnacle species when grown on the test coatings.  Data were transformed using 

log10 after an initial Kolmogorov-Smirnov and a Levene’s test showed that the 

distribution and variance were neither normal nor homogeneous.  A three-factor nested 

ANOVA with a 0.05 significance level was then used on the transformed data, 

including the interaction effect of species x coating (Quinn & Keough 2002).  

 

 

2.4. Results 

2.4.1.  Influence of the culture medium on the settlement of Elminius modestus 

The settlement data were normally distributed (24 hrs: df = 15, D = 0.143, P = 

0.094 and 48 hrs: df = 15, D = 0.119, P = 0.150) with homogeneous variance (24 hrs: 

df1 = 2, df2 = 13, F = 0.27, P = 0.845 and 48 hrs: df1 = 2, df2 = 13, F = 1.10, P = 0.418).  

The null hypothesis that there was no difference in the percentage settlement of E. 

modestus cyprids cultured in ASW to the percentage settlement of cyprids cultured in 

FSW, was confirmed.  Therefore, the culture medium had no influence on the settlement 

of E. modestus cyprids (df = 1, F = 0.027, P = 0.871) (Figure 2.1; Table 2.1).  However, 

there was a difference in the percentage settlement between each of the three repeat 

cultures (df = 2, F = 21.938, P ≤ 0.001).  The percentage settlement of cyprids from 

culture 2 was higher than the settlement of cyprids from cultures 1 and 3.  The 

settlement of cyprids from culture 1 was higher than the settlement of cyprids from 

culture 3 (culture 1 vs 2 Tukey’s P = 0.003; culture 1 vs 3 Tukey’s P = 0.006; culture 2 

vs 3 Tukey’s P ≤ 0.001).  There was also an interaction effect of water x culture number 

(df = 2, F = 0.7362, P = 0.007).  This suggests that there was a difference in the 
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settlement of cyprids between the two types of water, Figure 2.1, reveals that the 

clearest difference in the percentage settlement of cyprids in ASW compared to FSW 

was for culture 1 at 48 hrs in which ASW was higher than FSW.  The replicate assays 

were, however highly variable and this was especially the case for the other cultures and 

times.   

In addition the percentage of settled cyprids increased over time, with a 

significantly greater percentage settling after 48 hrs than after 24 hrs (df = 1, F = 28.295, 

P < 0.001).  However the interaction of time x culture number (df = 2, F = 3.178, P = 

0.075), water x time (df = 1, F = 2.270, P = 0.144) and water x time x culture number 

(df = 2, F = 1.718, P = 0.199) demonstrates that this was not the case across the three 

repeat cultures for both types of water; settlement did not increase significantly from 24 

to 48 hrs in all circumstances. 

 

 

Figure 2.1.  Mean percentage settlement (±1 SD) of Elminius modestus cyprids cultured in 

1µm filtered artificial seawater (ASW) and 1µm filtered seawater (FSW) at 24 and 48 hrs 

in polystyrene well plates.   
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Table 2.1.  ANOVA table of results for the settlement of Elminius modestus cultured in 

1µm filtered artificial seawater (ASW) and 1µm filtered seawater (FSW).  

 Sum of 

Squares 

Mean Square df F-value P-value 

Water 0.001 0.001 1 0.027 0.871 

Culture number 2.121 1.060 2 21.938 ≤ 0.001 

Time 0.498 0.498 1 28.295 ≤ 0.001 

Time x culture 

number 

0.112 0.059 2 3.178 0.075 

Water x culture 

number 

0.662 0.331 2 7.632 0.007 

Water x time 0.041 0.041 1 2.270 0.144 

Water x time x 

culture number 

0.062 0.031 2 1.718 0.199 

 

 

2.4.2.  Settlement of Elminius modestus and Balanus amphitrite 

The data were normally distributed (24 hrs: df = 70, D = 0.178, P = 0.051 and 48 

hrs: df = 70, D = 0.117, P = 0.095) with homogeneous variance (24 hrs: df1 = 4, df2 = 

66, F = 1.702, P = 0.147 and 48 hrs: df1 = 4, df2 = 66, F = 1.185, P = 0.326).  The null 

hypothesis that the percentage settlement of E. modestus cyprids would be equal to the 

percentage settlement of B. amphitrite was not supported.  There was a significant 

difference in the settlement between the two barnacle species, with the settlement of B. 

amphitrite being higher than that of E. modestus (df = 1, F = 9.971, P = 0.003) (Figure 

2.2; Table 2.2).  However, the interaction of species x culture number demonstrates that 

this was not the case across all three repeat cultures, with the percentage settlement of E. 

modestus and B. amphitrite being equal in some but not all circumstances (df = 2, F = 

2.595, P = 0.090).  From Figure 2.2, the percentages of settled cyprids between the two 

species for culture 1 and 2 were similar.   

There were significant differences in the settlement across the three repeat 

cultures for both species, with the settlement of culture 1 being less than that for culture 

2 and culture 3 (culture 1 vs 2 Tukey’s P = 0.002; culture 1 vs 3 Tukey’s P < 0.001 and 

culture 2 vs 3 Tukey’s P = 0.075).  For E. modestus and B. amphitrite the percentage of 

settled cyprids increased over time with a significantly greater percentage settling after 

48 hrs than after 24 hrs (df = 1, F = 137.00, P < 0.001).  The interaction effect of time x 

culture number shows this to be true across all three of the repeat cultures (df = 2, F = 
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10.038, P < 0.001).  However the interaction effects of species x time (df = 1, F = 0.042, 

P = 0.838) and species x time x culture number (df = 2, F = 1.834, P = 0.176) suggests 

that the differences between the settlement after 24 and 48 hrs are not equally 

significant for both E. modestus and B. amphitrite across the three cultures.  From 

Figure 2.2, there appears to be a greater difference in the settlement of E. modestus 

between 24 and 48 hrs specifically for cultures 2 and 3.   

 

 

Figure 2.2.  Mean percentage settlement (±1 SD) of Elminius modestus and Balanus 

amphitrite cyprids in Iwaki 24-well plates after 24 and 48 hrs. 

 

Table 2.2.  ANOVA table of results for the settlement of Elminius modestus and Balanus 

amphitrite.  

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 0.477 0.477 1 9.971 0.003 

Culture number 1.533 0.767 2 19.120 ≤ 0.001 

Time 1.718 1.718 1 137.691 ≤ 0.001 

Species x culture 

number 

0.248 0.124 2 2.595 0.090 

Time x culture 

number 

0.251 0.125 2 10.038 ≤ 0.001 

Species x time 0.001 0.001 1 0.042 0.838 

Species x time x 

culture number 

0.037 0.018 2 1.838 0.176 
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 The settlement data for E. modestus and B. amphitrite on silicone coated slides 

were normally distributed (df = 95, D = 0.099, P = 0.200) with homogeneous variance 

(df1 = 11, df2 = 84 F = 2.013, P = 0.056).  The null hypothesis that the percentage 

settlement of E. modestus cyprids on silicone coatings would be equal to the settlement 

of B. amphitrite cyprids was confirmed.  The settlement of E. modestus on the silicone-

coated slides (Figure 2.3) was consistent with the settlement of B. amphitrite (df = 1, F 

= 4.713, P = 0.062) (Table 2.3).  The settlement between the two silicone coatings was 

also consistent (df = 1, F = 2.513, P = 0.117).  However, the settlement between the 

repeat cultures of E. modestus and B. amphitrite cyprids differed (df = 2, F = 5.809, P 

= 0.004), with settlement of cyprids from culture 1 being lower than for cyprids from 

culture 2 (culture 1 vs 2 Tukey’s P = 0.003; culture 1 vs 3 Tukey’s P = 0.099; culture 2 

vs 3 Tukey’s P = 0.402).  The interaction effects between species x coating (df = 1, F = 

2.850, P = 0.095), species x culture number (df = 2, F = 0.655, P = 0.528), culture 

number x coating (df = 2, F = 0.316, P = 0.730) and culture number x coating x species 

(df = 2, F = 0.530, P = 0.590) had no significant influence on the percentage settlement 

of the barnacles.   

 

 

Figure 2.3. Mean percentage settlement (±1 SD) of Elminius modestus and Balanus 

amphitrite cyprids on Silastic T-2 and Sylgard 184 coated microscope slides after 48 hrs. 
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Table 2.3.  ANOVA table of results for the settlement of Elminius modestus and Balanus 

amphitrite cyprids settled on Silastic T-2 and Sylgard 184 coated microscopes slides.  

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 0.059 0.059 1 4.713 0.062 

Culture number 0.238 0.119 2 5.809 0.004 

Coating 0.051 0.051 1 2.513 0.117 

Species x culture 

number 

0.026 0.013 2 0.644 0.528 

Species x coating 0.058 0.058 1 2.850 0.095 

Culture number x 

coating 

0.013 0.006 2 0.316 0.730 

Species x culture 

number x coating 

0.022 0.011 2 0.530 0.590 

 

 

2.4.3. Growth  

Figure 2.4 illustrates the average growth of E. modestus from the first culture on 

Silastic T-2 and Sylgard 184 over a period of 28 weeks.  The growth data for E. 

modestus on both coatings presented a normal distribution (df = 58, D ≥ 0.963, P ≥ 

0.093) with homogeneous variance (df1 = 2, df2 = 56, F ≥ 1.523, P ≥ 0.222).  The focus 

of this statistical test was to compare the growth of barnacles between two silicone 

coatings, the null hypothesis being that the basal growth of E. modestus barnacles on 

Silastic T-2 was equal to that on Sylgard 184.  This hypothesis was not confirmed, there 

was a difference in the basal area of E. modestus barnacles grown on the two silicone 

coatings, with those grown on Sylgard 184 growing to a larger size (df = 1, F =23.646, 

P ≤ 0.001) (Table 2.4).  However, the interaction effect of coating x time was not 

significant, suggesting the difference in the size of the barnacles between the two 

coatings was not significant at every time point tested (df = 3, F = 0.749, P = 0.524).  

The basal area of E. modestus changed over the 28 weeks; at each measurement (6, 12, 

18 and 28 weeks) the size of E. modestus was significantly larger than the time before 

i.e. the average size of barnacles at 12 weeks were larger than barnacles at 6 weeks, 

barnacles at 18 weeks were larger than those at 12 (and 6) weeks and barnacles at 28 

week were larger than those at 18 (and 6 and 12) weeks (df = 3, F =  324.792, P ≤ 

0.001; all pairwise comparisons P ≤ 0.001).   
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Figure 2.4.  The mean weekly growth rate (± 1 SD) of Elminius modestus on Silastic T-2 

and Sylgard 184 (n ≥ 31 and 28, T2 & Sylgard, respectively). 

 

Table 2.4.  ANOVA table of results for the growth of Elminius modestus on Silastic T-2 

and Sylgard 184 coated microscope slides.  

 Sum of 

Squares 

Mean Square df F-value P-value 

Time 3414.258 1138.086 3 324.792 ≤ 0.001 

Coating 109.140 109.140 1 23.646 ≤ 0.001 

Coating x time 7.876 2.625 3 0.749 0.524 

 

 

Figure 2.5 shows the average growth of E. modestus and B. amphitrite cultures 

on Silastic T-2 and Sylgard 184.  The growth data for E. modestus and B. amphitrite on 

both coatings presented a normal distribution (E. modestus; df = 48, D ≥ 0.150, P ≥ 

0.200 and B. amphitrite; df = 48, D ≥ 0.176, P ≥ 0.124) with homogeneous variance (E. 

modestus; df1 = 4, df2 = 44, F ≥ 3.147, P ≥ 0.067 and B. amphitrite; df1 = 4, df2 = 44, 

F ≥ 3.571, P ≥ 0.056).  The null hypothesis that the growth of E. modestus was equal to 

the growth of B. amphitrite across the two coatings, was not supported (df = 1, F = 

38.658, P ≤ 0.001) (Table 2.5).  The basal area of E. modestus was found to be 

significantly greater than the basal area of B. amphitrite, indicating a quicker rate of 
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growth.  Overall, the basal areas of the barnacles significantly increased over the growth 

period (df = 2, F = 107.410, P ≤ 0.001), however the pairwise comparison shows that 

this was only significant between barnacles at 6 and 12 weeks, in which the latter was 

larger than the former (P ≤ 0.001), whereas, the size of barnacles at 18 weeks were not 

significantly larger than those at 12 weeks (P = 0.268).  The interaction effect of time x 

species was significant, indicating that there was a distinct difference between the basal 

area of the two barnacle species across the three time periods (df = 2, F = 16.841, P ≤ 

0.001).  There was also a significant difference due to the coating, in which the basal 

areas of the barnacles were larger for those grown on Sylgard 184 than on Silastic T-2 

(df = 1, F = 12.176, P = 0.001).  Although the interaction effects of coating x species 

(df = 1, F = 0.279, P = 0.598), time x coating (df = 2, F = 0.098, P = 0.906), and time x 

coating x species (df = 2, F = 0.120, P = 0.887) demonstrates that this was not the case 

in all circumstances.  From these interactions, it suggests that the differences between 

the two silicone coatings were not significant for both barnacle species or at each time 

point.  In Figure 2.5 there appears to be a greater difference in the size of E. modestus 

between the two coatings than for B. amphitrite, and that the differences in size between 

the coatings is less distinct at 6 weeks than it is at 12 and 18 weeks, and this is more 

apparent for E. modestus. 
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Figure 2.5.  The mean weekly growth rate (± 1 SD) of Balanus amphitrite and Elminius 

modestus cultured in 2009 on Silastic T-2 (A) and Sylgard 184 (B).  The total number of 

barnacles used to measure growth is presented in Table 2.6. 
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Table 2.5.  ANOVA table of results for the growth of Elminius modestus and Balanus 

amphitrite on Silastic T-2 and Sylgard 184 coated microscope slides.  

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 404.095 404.095 1 38.658 ≤ 0.001 

Time 18000.996 900.498 2 107.410 ≤ 0.001 

Coating 127.281 127.281 1 12.176 0.001 

Time x species 282.389 141.195 2 16.841 ≤ 0.001 

Time x coating 1.650 0.825 2 0.098 0.906 

Coating x species 2.921 2.921 1 0.279 0.598 

Time x species x 

coating 

2.017 1.009 2 0.120 0.887 

 

 

Table 2.6.  Numbers (n) of Balanus amphitrite and Elminius modestus barnacles at 6, 12 

and 18 weeks, on Sylgard 184 and Silastic T-2 coated microscope slides.  Total number of 

barnacles collated from multiple slides.  

Weeks Balanus amphitrite Elminius modestus 

Sylgard 184 Silastic T-2 Sylgard 184 Silastic T-2 

number of 

barnacles 

number 

of slides 

number of 

barnacles 

number 

of slides 

number of 

barnacles 

number 

of slides 

number of 

barnacles 

number of 

slides 

6 66 12 100 11 42 12 30 12 

12 59 12 63 10 40 12 26 10 

18 53 12 51 10 33 10 21 9 

 

 

2.4.4.  Critical removal stress measurements  

2.4.4.1.  Influence of size of Elminius modestus on the critical removal stress 

The diameter of the bases of the 135 barnacles tested using the automated 

machine, ranged from 2.5mm to 5.8mm with CRS values of 0.041MPa to 0.335MPa.  

Both size and CRS ranges were greater than the barnacles removed using the manual 

method.  Of the 196 barnacles removed using the manual method, the diameter of the 

barnacles varied from 2.9mm to 5.1mm with a range in the CRS from 0.048 MPa to 

0.228MPa (Figure 2.6). 
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Figure 2.6.  The critical removal stress of Elminius modestus from Silastic T-2 when using 

the (A) automated method (n = 135) and (B) manual method (n = 196) as a function of 

basal area.  The averages (± variance) were calculated from every 10 (A) and 15 (B) 

individuals which were ranked according to size.   
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The variability in the CRS of barnacles removed using the automated method 

reduced initially for barnacles approximately 4.1mm in diameter (~13mm
2
), as seen by 

a decrease in the variance.  For the manual method, the variability in the CRS reduced 

for barnacles approximately 3.6mm in diameter (~10mm
2
).  (For comparison data on B. 

amphitrite see Conlan et al. 2008).   

 

2.4.4.2.  A comparison of critical removal stress of Elminius modestus and Balanus 

amphitrite   

The CRS data were transformed using log10, after which they were normally 

distributed (df = 129, D = 0.043, P = 0.200) with homogeneous variance (df1 = 27, df2 

= 101, F = 1.446, P = 0.097).  The null hypothesis that the CRS of the two barnacle 

species would be equal, was not supported.  The CRS of E. modestus was significantly 

less than that of B. amphitrite (df = 1, F = 4.046, P = 0.046) (Figure 2.7; Table 2.7).  

The interaction effect of species x coating (df = 1, F = 1.104, P = 0.295) shows that this 

is not the case for both silicone coatings; there was only a significant difference between 

the two barnacle species for one of the silicone coatings – Sylgard 184 (Figure 2.7).  

Nevertheless, the two coatings did not differ significantly with respect to the CRS 

values overall (df = 1, F = 0.249, P = 0.619).   

The CRS data was generated using barnacles across eight slides per coating, yet 

there were no nesting effects due to a difference between slides for barnacles removed 

from Silastic T-2 and Sylgard 184 (df = 7, F = 1.034, P = 0.432).   
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Figure 2.7.  The mean critical removal stress (± 95% confidence interval) of Elminius 

modestus and Balanus amphitrite from Silastic T-2 and Sylgard 184 using the automated 

method.  Numbers (n) of barnacles presented above the columns.  Data presented in the 

graph are the original, un-transformed data. 

 

Table 2.7.  ANOVA table of results for the critical removal stress of Elminius modestus 

and Balanus amphitrite on Silastic T-2 and Sylgard 184 coated microscope slides.  

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 0.108 0.108 1 4.046 0.046 

Coating 0.007 0.007 1 0.249 0.619 

Coating x species 0.029 0.029 1 1.104 0.295 

Slide number 0.318 0.045 7 1.034 0.432 

 

 

2.5. Discussion  

The aim of this chapter was to examine the potential of laboratory cultures of E. 

modestus for evaluating the performance of FR coatings.  This was accomplished by 

focusing on the settlement of laboratory-cultured cyprids, the length of time required to 

grow the barnacles to a testable size for critical removal stress (CRS) measurements and 

comparing these to the performance of the calcareous-based barnacle B. amphitrite.  

Within this study the settlement of E. modestus on polystyrene surfaces and silicone 

coatings was consistent with that of B. amphitrite under most circumstances.  The 
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growth rate of E. modestus was higher than that of B. amphitrite, with E. modestus 

reaching a larger size after 18 weeks when fed on a diet of T. suecica.   

The minimum size recommended for CRS measurements of E. modestus using 

the automated machine is 4.1mm in diameter.  This is 0.5mm more than the minimum 

size of B. amphitrite recommended by Conlan et al. (2008) (3.6mm in diameter).  

Finally, the CRS values of adult barnacles from two silicone coatings (Silastic T-2 and 

Sylgard 184) were investigated.  The CRS of E. modestus was less than that of B. 

amphitrite for only one of the two coatings, Sylgard 184. 

 

2.5.1.  Influence of the culture medium on the settlement of Elminius modestus 

Kirby (2006) working on E. modestus and Rittschof et al. (1984; 1992) working 

on B. amphitrite used natural filtered seawater (FSW) to culture barnacle larvae to the 

cyprid stage.  This was initially the preferred method in this study, with FSW having 

elements understood to be essential for the development of cyprids, which could not be 

replicated in artificial seawater (ASW).  Preliminary trial cultures were undertaken 

using FSW.  However, due to unforeseen circumstances (a failure with the seawater 

pump system, occurring on more than one occasion) FSW was unavailable.  

Consequently, cultures of E. modestus using ASW were attempted and did successfully 

yield cyprids.   

It became necessary to understand whether or not, and if so, to what degree, the 

culture medium influenced the development and ultimately the settlement of the cyprids.  

This study found that the settlement of cyprids reared in FSW did not differ from those 

that were reared in ASW.  However, it was evident that the settlement between the three 

repeat cultures differed significantly, with those from the third culture producing the 

lowest percentage of settled individuals.   

Previous studies have demonstrated that the concentration of algae is important 

for the development of barnacle nauplii and the settlement of the cyprids (Qiu & Qian 

1997; Thiyagarajan et al. 2002).  If the food supply is low, the nauplii may not receive 

sufficient energy to moult through the naupliar stages and metamorphose to the cyprid 

stage, increasing the development time.  The larvae may also be unable to build up the 

lipid and protein reserves required to transform from cyprid to the juvenile barnacle thus 
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reducing settlement (Moyse 1960; Tighe-Ford et al. 1970; Thiyagarajan et al. 2002; 

Maréchal et al. 2012).  However the quality of the algae is also important for the 

reproductive development and larval fitness of marine invertebrates (Ban et al. 1997; 

Caldwell et al. 2002; 2005).  Investigations have shown that diatoms such as 

Skeletonema spp. and Nitzschia spp. can reduce the egg viability and hatching success 

in other marine invertebrates including several copepod species (from the genera 

Acartia, Calanus, Centropages and Temora) (Ban et al. 1997; Miralto et al. 1999), the 

brine shrimp Artemia salina (Caldwell et al. 2003), the echinoderms Paracentrotus 

lividus (Miralto et al. 1999), Psammechinus miliaris and Asterias rubens (Caldwell et al. 

2002; 2005), and the polychaetes Nereis virens and Arenicola marina (Caldwell et al. 

2002; 2005).  These diatoms can produce toxic substances including aldehydes (for 

example 2, 4-decadienal) which are released when the cells are damaged through 

activities such as grazing (Miralto et al. 1999; Caldwell et al. 2002; 2005).   

Skeletonema spp. was used in this investigation as previous studies have shown 

that cyprids reared on this diatom appear after a shorter period of time (the shortest 

being 5 days) and are able to readily settle (Moyse 1963) in comparison to other 

diatoms species investigated, including Phaeodactylum spp. (Wisely 1960; Moyse 1963) 

or the flagellates Isochrysis spp. and Rhodomonas spp. (Stone 1988).  The repeat 

cultures in the present study were given the same volumetric quantity of algae with an 

approximate concentration of 1 x 10
5
 cell ml

-1
.  However, the effect of grazing pressure 

in the cultures and thus the potential release of any toxic aldehydes, which is not likely 

due to the strain of Skeletonema spp. selected, may none-the-less be a factor 

contributing to the variation in the settlement success between the different cultures.  

Additional comparisons on the settlement of these two barnacle species whilst 

monitoring the algae quantity and quality could provide evidence to explain the 

variability between the cultures. 

Despite the difference between the repeat cultures, it may be concluded that the 

culture medium (ASW or FSW) does not influence the settlement of E. modestus 

cyprids.  This is beneficial as laboratories would not necessarily be restricted to having 

a supply of natural seawater in order to culture cyprids and that ASW and FSW could 

be interchanged depending on availability. 
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2.5.2.  Settlement of Elminius modestus and Balanus amphitrite 

Rittschof et al. (1984) stated that B. amphitrite was an ‘excellent model 

organism’ for use in antifouling studies, in part due to their ‘predictable settlement’.  

The settlement of E. modestus on the two silicone coatings (Silastic T-2 and Sylgard 

184) was consistent with that of B. amphitrite.  However, there were differences in the 

settlement between the two barnacle species on the polystyrene surfaces, with the 

settlement of B. amphitrite being higher than that of E. modestus, although not for every 

culture repeat.  The consistent settlement on the silicone coatings between the two 

species does show an indication of the potential of E. modestus as a model species, 

especially in examining the influence of coatings, but, in assays using polystyrene 

surfaces, for example toxicity assays (Rittschof et al. 1992), E. modestus may be less 

suitable as a model species.  Settlement in this study did not conform to the 

‘predictable’ pattern that Rittschof et al. (1984) described for B. amphitrite, with both 

species showing an equal degree of variability between the three repeat cultures.  As 

mentioned above, the quantity and quality of the algae used as feed could be influencing 

the development of the nauplii and subsequent settlement of the cyprids.  There may be 

other aspects of the experimental set-up of the cyprid culture which may influence 

settlement, for example light and turbulence of the cultures (Barnes & Barnes 1982; 

Pawlik 1992; Franco et al. 2016).  These factors have previously been shown to 

influence the growth of nauplii and their development to the cyprid stage, and therefore 

the settlement rates.  On the other hand, the type of assay used may have contributed to 

the variable settlement rates.  Settlement assays utilising polystyrene 24-well plates and 

microscope slides (for drop assays) have been highlighted as having poor settlement 

rates and high variability.  This has been attributed to the cyprids becoming ‘trapped’ 

within the air/seawater interface or, with regard to drop-assays, having restricted 

movements in a confined droplet of water (Qiu et al. 2008; Petrone et al 2011; Di Fino 

et al. 2014).  Settlement assays using Falcon
TM

 (1006) Petri-dishes or glass vials are 

alternatives to 24-well plates and are said to provide a greater volume of water and a 

larger area for cyprid exploration and settlement, and in the case of the Falcon
TM

 (1006) 

Petri-dishes can remove the air/seawater interface thus preventing the cyprids becoming 

trapped (Rittschof et al. 1984; Qiu et al. 2008; Petrone et al 2011; Di Fino et al. 2014).  

Petri-dishes and glass vials have been shown to have superior and more reliable 

settlement rates when compared to 24-well plates with B. amphitrite cyprids (Qiu et al. 

2008; Petrone et al 2011) and B. improvisus cyprids (the Falcon (1006) Petri-dish assay, 
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only) (Di Fino et al. 2014).  Whether these alternative methods would improve the 

settlement rate and reliability when assessing the competency of cyprids of E. modestus, 

warrants investigation.   

 

2.5.3.  Growth 

The time required to grow E. modestus to a suitable size to measure the CRS 

was monitored.  The recommended size for measuring the CRS in shear for B. 

amphitrite is between 5 – 20mm in diameter (ASTM D-5618 1994; Swain 1997), 

however, E. modestus is a smaller barnacle.  In nature the average diameter has been 

reported at 5mm (Moore 1944) with the largest specimens being discovered with 

diameter of up to 10 (Darwin 1854) and 13mm (Moore 1944).  By comparison the 

average basal diameter of adult B. amphitrite can range between 7.3 and 15.5mm 

(Barnes et al. 1970).  The natural average size of E. modestus is within the parameters 

set by the ASTM D-5618 (1994) test method, and therefore in theory this test method 

could be used with E. modestus.  However, previous work on the CRS of E. modestus 

included smaller individuals than recommended (Wiegemann & Watermann 2004; 

Robson et al. 2009).  For example, Wiegermann & Watermann (2004) tested E. 

modestus with an average diameter of 4.5mm that were grown in the field for six weeks 

on Sigma Glide.  By comparison the Balanus spp. tested in their study attained an 

average basis diameter of 8mm after the six weeks of field immersion. 

Under laboratory feeding regimes (T. suecica and Artemia sp.) B. amphitrite can 

grow to the recommended size for testing of 5mm in 12 weeks (Wendt et al. 2006, 

Conlan et al. 2008).  In this study, E. modestus attained an average basis diameter of 4.4 

± 1mm and 4.7 ± 1mm diameter on Silastic T-2 and Sylgard 184, respectively, in 28 

weeks growing approximately 0.54 and 0.63mm
2
 per week, for Silastic T-2 and Sylgard 

184, respectively.  The 12-week time frame for B. amphitrite growth is with the 

inclusion of Artemia sp. nauplii in the feed mix.  Artemia sp. nauplii are a common 

source of food for laboratory reared B. amphitrite (Wendt et al. 2006, Conlan et al. 2008, 

Rittschof et al. 2008), being introduced to the barnacles after 2 – 3 weeks when they 

have reached an approximate basal diameter of 2mm.  Artemia sp. was added to the feed 

of E. modestus when they had reached approximately 3mm diameter; larger than that 

recommended for B. amphitrite and therefore assumed to be capable of feeding on the 
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nauplii.  Indeed nauplii did become depleted and orange faecal pellets were present in E. 

modestus culture vessels suggesting the barnacles were feeding on them.  However, 

after introducing Artemia sp. nauplii, there was a 40% mortality of the barnacles.  

Consequently the food was switched back to T. suecica, only.   

The growth rate of a second culture of E. modestus was monitored and this time 

in parallel with a culture of B. amphitrite, in which they were both fed T. suecica at the 

same time and same concentrations.  When E. modestus was fed just T. suecica its 

weekly average growth on Silastic T-2 and Sylgard 184 was 0.83 and 0.94mm
2
 reaching 

4.36 and 4.65mm diameter in 18 weeks, respectively.  When B. amphitrite was fed just 

T. suecica its average weekly growth on Silastic T-2 and Sylgard 184 was 0.55 and 

0.64mm
2
, reaching an average diameter of 3.86 and 4.01mm in 19 weeks, respectively.  

E. modestus attained a much larger size than B. amphitrite after the growth period, 

suggesting a much faster rate of growth.  However, it is important to comment on the 

population density of the cultures tested.  Although the populations were not uniform 

throughout for each slide and coating tested, there was a greater number of B. amphitrite 

per slide than for E. modestus on equivalent slides.  With an increased population size 

there can be a slower rate of growth as the competition for food and space increases 

(Crisp 1960).  Therefore, the slower rate of growth of B. amphitrite in this study may be 

due to an increase in competition for food and less space for basal growth.  The 

interaction of population density and basal area was not investigated in this study, 

therefore the extent of the influence of population on the overall growth of the barnacles 

is uncertain.  Crisp (1960) noted that differences in growth (measured by weight) of 

Semibalanus balanoides caused by changes in population density were “rather small”, 

as individuals which were crowded grew in height not basal area and thus weight was 

not greatly affected.  The basal area was measured in this investigation as it was thought 

to be least disruptive to the barnacle specimens, i.e. involve the least amount of 

handling time of the slides and a short time out of the water.  Although for a more 

robust investigation into the growth of the different barnacle species, measures of height 

in addition to basal area would be beneficial.   

The same concept of population size can be used to explain the difference in 

growth of E. modestus from culture 1 on the Silastic T-2 and Sylgard 184 coatings.  

There were fewer individuals per slide coated with Sylgard 184, than on Silastic T-2, 

therefore there was less competition between individuals with a potentially quicker rate 
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of growth.  But this is not the case for the second culture of E. modestus, in which there 

were more individuals on the Sylgard 184, but they grew at a faster rate than those on 

less populated Silastic T-2.  The growth of B. amphitrite was not affected by the type of 

coating.  This suggests that E. modestus was more sensitive to the type of coating than B. 

amphitrite. 

Negating population densities, and merely considering the practicality of 

growing barnacles for screening FR coatings, the growth rate of E. modestus in the 

second culture was still slow in comparison to published accounts of B. amphitrite in 

the laboratory (when fed Artemia sp.) (Wendt et al. 2006).  This in turn would result in 

a slower throughput of coating test samples.  In this study the incorporation of the 

preferred feed (Artemia sp.) led to 40% mortality.  A different culture set-up, in which 

the barnacles are maintained in larger volumes of seawater either aerated or with a flow 

system may reduce the mortality and improve the growth rate.  For example, as 

demonstrated with S. balanoides, an increase in hydrodynamic flow and turbulence 

increases the cirral beats and thus feeding, which can consequently increase the rate of 

growth (Barnes & Barnes 1982: Sanford et al. 1994).  This is a topic that would benefit 

from further investigation, in order to establish a laboratory protocol that would provide 

a faster rate of growth for laboratory-cultured of E. modestus.  

 

2.5.4.  Critical removal stress 

 The basal area of such barnacles as S. balanoides, B. improvisus, B. eburneus 

and E. modestus has previously been reported to influence the force (N) required for 

detachment (Yule & Walker 1984b; Berglin et al. 2001; Kavanagh et al. 2001; Robson 

et al. 2009).  The ASTM D-5618 (1994) test method recommends 5 – 20mm in diameter, 

as barnacles with basal diameters outside this range result in larger variances in the CRS 

measurements.  Conlan et al. (2008) recommended a minimum size for B. amphitrite of 

3.6mm diameter (basis) using the automated method.  This was beneficial as it could 

reduce the growth time of B. amphitrite from 12 weeks to between 7 and 9 weeks 

(Conlan et al. 2008).  The automated method is perhaps better suited to CRS 

measurements for the smaller and slower growing E. modestus.  The minimum 

diameters of the basis recommended for E. modestus in this study were 4.1mm for the 

automated method and 3.6mm for the hand-held force gauge; results from the manual 
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method are consistent with those established for B. amphitrite (Conlan et al. 2008).  The 

time required to grow E. modestus individuals to a testable size in the laboratory could 

be reduced to approximately 10 – 18 weeks, based on the two cultures of E. modestus.   

The critical removal stress (CRS) of E. modestus on Sylgard 184 (0.156 MPa ± 

0.017 95% CI) and Silastic T-2 (0.162 MPa ± 0.017 95% CI) was lower than the CRS 

value of B. amphitrite on the same coatings (Sylgard 184; 0.201 MPa ± 0.022 95% CI 

and Silastic T-2; 0.181 MPa ± 0.021 95% CI).  However, this was only significant in the 

case of Sylgard 184.  Wiegemann & Watermann (2004) found the CRS of field-grown 

E. modestus was lower than two field-grown calcareous barnacles: B. improvisus and B. 

crenatus on Sigma Glide (Sigma) silicone.  They speculated that the differences in 

removal stress might relate to size; the Balanus spp. were 8mm diameter whereas E. 

modestus were much smaller at 4.5mm diameter (Wiegemann & Watermann 2004).  

Alternatively, the difference in CRS might have been the result of species-specific 

differences in the adhesive, or a mechanical effect of the calcareous-basis offering a 

greater resistance to detachment.  The CRS values of B. amphitrite from the two 

silicone coatings (Silastic T-2 and Sylgard 184) attained in the study were similar to that 

reported in previous studies (Sun et al. 2004; Holm et al. 2005; Wendt et al. 2006; 

Conlan et al. 2008; Rittschof et al. 2008).  Size is unlikely to be a reason for the 

difference in CRS on the coatings in this study, as both species were on average 4.5 ± 

2mm in diameter.  Therefore, the difference could be a mechanical effect of the type of 

basis or species-specific difference in the adhesives as Wiegemann & Watermann (2004) 

speculated.  However, the reason why only a difference between the CRS of the two 

barnacle species was discernible for Sylgard 184 and not Silastic T-2 is unclear.  The 

two coatings do have minor differences in their bulk properties according to the product 

data information sheets (Dow Corning).  The difference in bases and adhesives may be 

reacting in a different manner to the properties of the coating not only in terms of CRS 

but also growth.  Expanding the number of coatings with variations in their surface and 

bulk properties would provide a better understanding of the relationship between the 

type of basis and the CRS.  

When barnacles with a calcareous-basis are grown on low modulus, low surface 

energy coatings a proportion produce a thick rubbery or ‘gummy’ adhesive as well as a 

concave basis (Berglin & Gatenholm 2003; Sun et al. 2004; Ramsay et al. 2008).  This 

rubbery adhesive has different mechanical properties and chemical content to the 
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adhesive produced by barnacles grown on coatings with a higher modulus (Berglin & 

Gatenholm 2003).  Wiegemann & Watermann (2004) commented that E. modestus, 

when grown on PDMS, produces adhesive that is less thick and hydrated than that 

produced by Balanus spp. on the same coatings.  However, there have been no further 

studies on the adhesive of E. modestus or any other membranous-based barnacle 

specifically when grown on FR coatings (or any other surfaces for that matter).  A 

recent study has been published on the adhesive of a second membranous-based 

barnacle Tetraclia japonica formosana, but not in relation to growth on a coating.  This 

study by Lin et al. (2014) found T.j. formosana to be lacking a common cement protein 

(CP-20K), which is present in calcareous-based barnacles such as B. amphitrite, B. 

albiocostatus and Megabalanus rosa.  It was suggested that the absence of CP-20K in 

T.j. formosana contributes to a difference in the mechanism for substratum attachment 

compared to calcareous-based barnacles (Lin et al. 2014).  Whether this is cement 

protein is present or absent in E. modestus requires further investigation.   

Investigations on the structure and mechanical properties of the adhesive of E. 

modestus using such techniques as atomic force microscopy (AFM) and scanning 

electron microscopy (SEM) to image the structure of the adhesive, and X-ray diffraction 

(XRD) and Fourier transform infrared (FTIR) spectroscopy to understand the 

composition of the adhesive (Wiegemann & Watermann 2004; Dickinson et al. 2009; 

Sullan et al. 2009; Barlow et al. 2010), would be beneficial to elucidate the mechanisms 

of the adhesion of this species in comparison to B. amphitrite.  Furthermore, the nature 

of the adhesive has a pivotal role in the removal process of the barnacle from FR 

coatings.  Examining the adhesive of E. modestus would clarify whether there are 

species-specific differences in the adhesives, which influence the detachment processes.   

 

 

2.6.  Conclusion 

 The practicality of using E. modestus for laboratory culture and as a model test 

species for evaluating FR coatings was explored.  The percentage settlement of E. 

modestus on the two standard silicone coatings was comparable to that of B. amphitrite.  

This was not the case when polystyrene was tested; settlement of E. modestus cyprids 

was lower for some of the repeat cultures.  E. modestus does have potential as a test 
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species in settlement assays especially with regard to silicone coating evaluations, but it 

is clear from the un-predictable settlement results that the settlement assay for this 

species needs to be optimised.  

 The growth rate of E. modestus in this study was shown to be faster than that of 

B. amphitrite, when fed on a diet of T. suecica.  But more interestingly was the coating 

effect on the growth of E. modestus, in which those grown on Sylgard 184 grew larger 

and faster, than those on Silastic T-2.  In addition, the difference in the CRS between 

the two barnacles was only present for Sylgard 184.  E. modestus was more sensitive to 

the coating type than B. amphitrite, and therefore E. modestus is possibly superior to B. 

amphitrite as a test species for discriminating between the performance of coatings.  

Whether this difference reflects the contrasting types of bases (membranous versus 

calcified) requires further investigation.  Nevertheless, it is reasonable to conclude that 

E. modestus is a good model species for laboratory evaluations of FR surfaces.   
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Chapter 3.  High-Speed Video Analysis of the Detachment of 

Barnacles with Membranous and Calcareous Bases. 

 

 

3.1.  Abstract 

The flexibility of a barnacle’s basis is important with regard to the fracture 

mechanics and release properties from an elastomeric coating, as a more flexible basis 

requires less energy for removal.  Using high-speed photography, the separation 

processes of Elminius modestus and Balanus amphitrite, from two polydimethysiloxane 

(PDMS) coatings, (Silastic T-2 and Sylgard 184), were observed under wetted and de-

wetted conditions.  Four distinct separation patterns were characterised: lift, peel, 

adjacent peel and twist.  These were based on the location of the initial separation and 

direction of propagating instabilities in respect to the direction of detachment force.  

The model separation pattern for E. modestus was a lift separation, whereas B. 

amphitrite displayed a peel separation.  The observed differences in the separation 

patterns between species may have more to do with the variations in shape and structure 

of the barnacle’s shell than to the type of basis.  However, the flexibility of the 

membranous-basis of E. modestus was important for the propagation of the fracture as it 

hindered the formation of fingering instabilities as they progressed through the adhesive 

interface.  The time for initial separation occurred sooner and the CRS was lower for E. 

modestus compared to B. amphitrite.  There were also significant interaction effects of 

degrees of wetness and coatings for the removal times and CRS for E. modestus but not 

for B. amphitrite, suggesting that the detachment process of E. modestus may be more 

easily influenced by environmental variations.   
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3.2.  Introduction 

Kendall’s (1971) model for examining the force required to remove a cylindrical 

stud or a pseudobarnacle from an elastomeric coating is often used in studies detailing 

the mechanics of release from fouling-release (FR) coatings (Berglin & Gatenholm 

1999; Kohl & Singer 1999; Singer et al. 2000; Kim et al. 2007).  Many of these studies 

focus on the effect of different permutations of surface and bulk properties (i.e. 

thickness and elastic modulus) of the coatings in terms of release characteristics (Kohl 

& Singer 1999; Berglin et al. 2003; Wendt et al. 2006; Kim et al. 2007).  However, 

Kendall’s model is not appropriate to assess the release mechanics of real barnacles.  

The synthetic adhesives do not possess comparable viscoelastic and multi-layered 

properties of barnacle adhesive (Sun et al. 2004), furthermore, when grown on silicones 

the barnacle adhesive can develop an atypical ‘gummy’ nature (Wiegemann & 

Waterman 2003; Sun et al. 2004; Wendt et al. 2006; Ramsay et al. 2008).  In addition, 

Kendall’s model assumes that the stud is rigid whereas the calcareous-basis of the 

barnacle Balanus amphitrite has flexural rigidity many orders of magnitude less than 

that of pseudobarnacles meaning that there is greater flex in the basis on release 

(Ramsay et al. 2008).  In a model developed by Chung and Chaudhury (2005) it was 

shown that studs with greater flexibility required less force to be removed from an 

elastomer, thereby providing an explanation for the discrepancy between the actual 

removal stress of real barnacles and that predicted by Kendall’s model (Sun et al. 2004).   

Attention has been directed on developing an understanding of the release 

behaviour of real barnacles from silicone coatings in the hope of devising a new model 

more suitable for the detachment process of real barnacles (Kavanagh et al. 2005; Hui et 

al. 2011).  Kavanagh et al. (2005) investigated the release mechanisms in two 

calcareous-based barnacles (Balanus eburneus and B. variegatus) from 

polydimethylsiloxane (PDMS) coatings using a high-speed camera.  It proved possible 

to visualise the viscous properties of the adhesive, detailing its characteristics and 

behaviour during detachment as well as visualising the fracture process and crack 

propagation.  

The work by Ramsay et al. (2008) on the flexibility of barnacle bases and that of 

Kavanagh et al. (2005) on the release mechanisms focussed on barnacles with 

calcareous-bases.  The uncalcified membranous-bases of barnacles such as Elminius 

modestus and Semibalanus balanoides would obviously have greater flexibility than 



 Chapter 3 

77 

 

their calcified counterparts.  It seems reasonable to suggest that the release mechanics of 

membranous-based barnacles will not conform to Kendall’s model.   

The aim of this chapter was to examine and compare the detachment processes 

of the membranous-based barnacle E. modestus and the calcareous-based barnacle B. 

amphitrite from silicone coatings.  A high-speed camera was used to investigate the 

fracture processes of E. modestus and B. amphitrite, from two PDMS coatings.  This 

provided a detailed account and comparison of the separation processes of the two 

barnacle species.  The hypotheses to be tested are: 1) the membranous-basis does 

influence the fracture process; and 2) there are clear differences in the separation of a 

membranous-based barnacle compared to a calcareous-based barnacle from the silicone 

coatings in terms of the timings of the separation processes and critical removal stress.   

 

 

3.3.  Materials and methods 

3.3.1.  Preparation of coated slides and barnacle settlement 

Silastic® T-2 and Sylgard® 184 (Dow Corning) were coated on microscope 

slides to an average thickness of 130µm and 140µm, respectively (see Chapter 2 for 

coating preparation).  The coatings were leached in a tank of static reverse osmosis (RO) 

water with a carbon filter (Fluval filter) for 14 days.  The water was changed after 7 

days.  After leaching, the slides were rinsed in fresh RO water and immersed in artificial 

seawater (ASW, 32-34 salinity Tropic Marin) for 1 hr.  Once removed from ASW, the 

slides were air dried.  Laboratory-cultured E. modestus and B. amphitrite cyprids were 

settled on the coated microscope slides (see Chapter 2 for methods of cyprid culture and 

settlement procedure).  Two cultures of E. modestus and two cultures B. amphitrite 

cyprids were used.  Once settled on the coatings, the barnacles, maintained in 

quadriPERM® culture vessels, were fed 15ml of Tetraselmis suecica three times per 

week.  The water was changed at each feeding.  The first batches of E. modestus and B. 

amphitrite cyprids settled in February 2009 within 2 days of each other and were grown 

for 3 months to a mean size of 4.47mm in diameter (± 0.161 SE) and 3.9mm in diameter 

(± 0.06 SE) (E. modestus and B. amphitrite, respectively).  The second cultures were 

started in October 2009 and were grown for 4 months until their mean size was 5.6mm 
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in diameter (± 0.108 SE) and 5.4mm in diameter (± 0.252 SE) (E. modestus and B. 

amphitrite, respectively).    

Once the barnacles had reached a suitable size for removal experiments (see 

Chapter 2 section 2.5.4.), they were cleaned in fresh water, air dried for 5 minutes and 

then scanned (HP Scanner 5400C) at 1200 dpi resolution.   

 

3.3.2.  High-speed video set-up 

The high-speed video set-up was adapted from a method used by Kavanagh et al. 

(2005), where a built-to-purpose structure was designed around the equipment provided 

by Newcastle University, UK (Figure 3.1).  The set-up involved a single slide being 

positioned on a glass platform above an Olympus i-SPEED digital camera with a 50mm 

lens (SIGMA F2.8 EX DG).  This recorded the detachment process of a barnacle at up 

to 800 frames per second (fps).  A hand-held force gauge (PSM-2K, IMADA, Inc.) was 

used to apply the force in shear to the base of the barnacle’s shell plates in parallel to the 

slides surface, as described in the standardised method, ASTM D-5618 (1994).  A fibre 

optic annular ring light was positioned over the lens to provide sufficient light to 

capture the image due to the cameras very fast shutter speed.  The CRS and time for 

removal were recorded for each barnacle tested.  ImageJ software (Rasband 1997; 

Abramoff et al. 2004) was used to calculate the basal area of each barnacle in order to 

calculate the CRS.  The time for removal was the time taken from the moment the probe 

of the hand-held force gauge contacted the shell of the barnacle, referred to as ‘probe 

contact’ (PC) to the time that the barnacle had been moved by exactly the diameter of 

the shell, referred to as ‘complete separation’ (CS) (Figure 3.2).  The video recorded the 

time for the entire detachment event, the removal time was then calculated by CS – PC.  
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Figure 3.1.   Photograph and schematic diagram (not to scale) of the high-speed image capture 

equipment set-up. 

 

 

Figure 3.2.  Example of ‘time for removal’ recorded from probe contact (A) to complete 

separation (B) as viewed from underneath the basal plate of a barnacle.  Movement of probe 

from left to right indicated by the arrow.  Dashed circle in B indicates the original location of 

the barnacle. 

Probe 

Barnacle 
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Observations of the detachment process were made of de-wetted and wetted 

barnacles.  De-wetted (also referred to as dry) entailed the removal of moisture that 

surrounded the barnacles using laboratory blue roll and air drying for 5 minutes.  

Wetted barnacles were submerged in 2ml of artificial seawater (ASW) mixed with green 

food dye; this formed a droplet of water, not capable of fully submerging an individual 

barnacle but it was sufficient to observe the influence of water on the detachment 

process.  The additional contrast from the food dye made it possible to visualise the 

influx of water underneath the basis (Kavanagh et al. 2005).  The glass platform which 

held the microscope slides had a raised silicone and plastic perimeter which prevented 

the water escaping from the platform and on to the camera below.  

 

3.3.3.  Statistical analysis 

 The times for initial separation and for complete removal, and the CRS of E. 

modestus and B. amphitrite from the two PDMS coatings under de-wetted and wetted 

conditions were recorded and analysed.  The time for initial separation and the CRS 

data were log10 transformed after a Kolmogorov-Smirnov test (Ennos 2012) and 

Levene’s test (Quinn & Keough 2002) revealed that the data sets did not present a 

normal distribution nor an equal variance.  The time for complete removal data did have 

a normal distribution with an equal variance.  Three separate, three-factor nested 

ANOVAs with 0.05 significance levels were used to test the null hypotheses: 1) that the 

initial separation times of E. modestus and B. amphitrite were equal; 2) the times for 

complete removal of E. modestus and B. amphitrite were equal; and 3) the CRS of the 

two barnacle species was equal.  These tests included the interaction effects of species x 

coating, species x wetness and species x wetness x coating.   
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3.4.  Results 

High-speed video recordings were made of the detachment of 59 E. modestus 

and 93 B. amphitrite from the coatings Silastic T-2 and Sylgard 184.  See Table 3.1 for 

the number of barnacles removed per coating and for the numbers removed while de-

wetted and wetted.   

 

Table 3.1.  Total number of Elminius modestus and Balanus amphitrite detached from the 

coatings Silastic T-2 and Sylgard 184, under the de-wetted and wetted condition. 

Barnacle 

species 

Silastic T-2 Sylgard 184 

De-wetted Wetted De-wetted Wetted 

Elminius 

modestus 

21 11 15 12 

Balanus 

amphitrite 

27 16 29 21 

 

 

3.4.1.  Removal process of barnacles from silicones 

Barnacle removal from the silicone coatings followed a 5-step process, 

consistent with that described by Kavanagh et al. (2005): 

1. Initial separation and cavity development; 

2. propagating instabilities;  

3. complex branching separation; 

4. adhesive separation and adhesive failure; 

5. complete removal. 

The initial separation and cavity development refers to the first appearance of a 

separation in the barnacle’s adhesive from the silicone coating (Figure 3.3A).  In some 

instances this takes on the appearance of a cavity or an air pocket, occurring between 

the silicone coating and the barnacle’s basis.  The initial separation does not happen 

immediately upon applying the removal force; it occurs approximately mid-way 

through the length of time needed to detach the barnacle completely.  As soon as the 

cavity develops it rapidly propagates from its source location, commonly around the 

periphery of the shell in an arc shape (Figure 3.3B).  The cavity sometimes propagates 
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in more than one direction taking on a complex branching appearance (Figure 3.3C).  

When the instabilities have extended and the adhesive has separated from more than 

half of the barnacle’s basal area, adhesive failure occurs, whereby the barnacle detaches 

from the coating (Figure 3.3D).  Some of the barnacles rotated as they detached, 

however this appeared to be dependent on the pattern of adhesive detachment and the 

shape of the barnacle.  Figure 3.3 illustrates the basic steps in the separation process of a 

barnacle from a silicone coating.  The four subsequent figures (Figure 3.4, 3.5, 3.6 and 

3.7) are still frames from the high-speed video of the detachment of two B. amphitrite 

and two E. modestus, providing examples of the separation process.  

 

 

Figure 3.3.  Diagrammatic representation of the typical process of a barnacle detaching 

from a silicone coating, exhibiting: A) initial separation and cavity development indicated 

by the blue circle; B) propagating instabilities (the red arrow indicating the direction of 

the spread); C) complex branching separation; and D) adhesive separation. 

  

A
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Figure 3.4.  Detachment of Balanus amphitrite under shear force from Sylgard 184 while 

de-wetted.  The numbers in the lower right corners represent the time in seconds.  The 

black arrow at 0.002 seconds indicates the direction of the applied force.  The initial 

separation began at 0.880 seconds, the location is indicated by the arrow.  This cavity 

propagated in the direction of the dashed black arrow along the periphery of the shell at 

0.925 seconds.  The dashed areas from 1.037 and 1.202 seconds shows the growing 

instability complex moving in the direction indicated by the red arrow at 1.202 seconds.  

At 1.202 seconds an additional cavity front became clear.  By 1.500 seconds the complex 

instabilities covered over 50% of the barnacle’s basis.  At 1.542 seconds, viscous fingering 

separations were clearly visible.  Complete separation occurred at 1.593 seconds, the total 

time for removal being 1.591 seconds.  After separation from the coating, a ring of 

adhesive remained on the silicone surface circled by the dashed ring (times specific to this 

detachment example).   
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Figure 3.5.  Detachment of Balanus amphitrite under shear force from Sylgard 184 while 

wetted.  The numbers in the lower right corners represent the time in seconds.  The black 

arrow at 0.053 seconds indicates the direction of the applied force.  The primary cavity 

appeared at 0.45 seconds.  Secondary instabilities developed at 0.520 seconds; these 

instabilities began to branch-out at 0.553 highlighted by the dashed areas.  The red arrows 

at 0.632 seconds highlight the direction the instabilities moved as they developed.  The 

dashed areas at 0.760, 0.868 and 0.967 seconds highlight the growing instability.  The 

cavity front of the growing complex propagated from the left to the right of the barnacle 

in the same direction as the applied force in the direction indicated by the red arrows at 

1.005 seconds.  At 1.005 seconds, the cavity covered over 50% of the basal area.  Complete 

separation occurred at 1.022 seconds, the total removal time being 0.969 seconds (times 

specific to this detachment example). 
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Figure 3.6.  Detachment of Elminius modestus under shear force from Sylgard 184 while 

de-wetted.  The numbers in the lower right corners represent the time in seconds.  The 

arrow at 0.083 seconds illustrates the direction of applied force.  As the pressure was 

applied, a black line appeared from the edge of the shell indicated by the arrow at 0.100 

seconds.  With increasing pressure this line spread along the periphery of the shell 

illustrated by the dashed line at 0.187 seconds.  At 0.608 seconds a cavity appeared in the 

locations pointed to by the arrows.  The dashed areas at 0.743, 0.797, 0.822, 0.88 and 0.902 

show the development of the growing instability which covered two thirds of the basal 

area.  At 0.912 seconds, a tear in the basal membrane appeared (arrowed), perpendicular 

to the direction of the force.  The last two images shows the movement of the barnacle 

across the coating where it was completely separated at 0.995 seconds.  The removal time 

being 0.912 seconds (times specific to this detachment example).   



 Chapter 3 

86 

 

 

Figure 3.7.  Detachment of Elminius modestus under shear force from Silastic T-2 while 

wetted.  The numbers in the lower right corners represent the time in seconds.  The arrow 

at 0.041 seconds illustrates the direction of the applied force.  As the force increased, a 

black line seen at 0.100 seconds appeared from the edge of the shell.  With increasing 

pressure this line spread along the periphery of the shell indicated by the red arrows.  At 

0.396 seconds a cavity appeared, highlighted by the dashed area.  The growing instability 

complex developed moving in the direction illustrated by the red arrows at 0.456 seconds.  

At 0.577 seconds, a tear in the membranous-basis appeared (arrowed and ringed by a 

solid white line), developing further at 0.579 and 0.590 seconds.  At 0.590 seconds the 

surrounding water began to percolate underneath the basal plate indicated by the white 

arrow.  In subsequent images, the water seeped further under the basis, spreading in the 
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direction indicated by the red arrows and occupying the cavity space.  After 0.677 seconds, 

the water had infiltrated under the basal plate covering over two thirds of the area.  By 

0.763 seconds (not shown in the picture) complete separation had occurred, the removal 

time being 0.722 seconds (times specific to this detachment example).   

 

3.4.2.  Patterns of separation  

The location of the initial separation and the direction of the propagating 

instabilities (step A and B from section 3.4.1) in relation to the direction of the applied 

force and the point of contact of the force gauge probe on the barnacle, differed for each 

individual barnacle.  However, it was possible to categorise them into four patterns of 

separation (Figure 3.8): 

A. Lift separation.  The initial separation occurred in the area of the basis 

furthest from the contact point of the force gauge probe.  The 

instabilities spread towards the probe against the direction of the force, 

either along a single edge of the basis or along both edges.   

B. Peel separation.  The initial separation occurred in the area of the basis 

closest to the probe’s contact point, with the instabilities spreading 

away from the probe in the same direction of the applied force.  

Barnacles exhibiting this pattern appeared to peel off the silicone 

surface.  Again the instability spread down either one side or both the 

sides of the basis.  

C. Adjacent peel separation.  This is similar to pattern B as the 

instabilities propagated in the same direction as the applied force, but 

the initial separation occurred on the sides of the basis perpendicular to 

the direction of the applied force.  Barnacles exhibiting this pattern 

frequently had two cavities developing at the same time on either side 

of the barnacle. 

D. Twist separation.  The initial separation appeared in two locations, 

often proximal and distal to the point of contact of the probe.  The 

propagating instabilities moved either clockwise or anticlockwise 

around the periphery of the  basis.  Barnacles exhibiting this pattern 

appeared to be twisting off the surface and showed the greatest amount 

of rotation during the detachment process. 



 Chapter 3 

88 

 

 

Figure 3.8.  Four separation patterns of barnacles detaching from silicone coatings.  The 

black arrow indicating the direction of the force and location of the probe of the force 

gauge, the red area indicates the region that the initial cavity develops in and the white 

arrows illustrate the direction of the propagating instabilities.  A) Lift separation; B) peel 

separation; C) adjacent peel separation; and D) twist separation.  

 

 Of the 59 E. modestus tested, 57.5% exhibited separation pattern A.   Pattern B 

was seen for 27.5% of the barnacles and only 7.5% presented pattern C.  No individuals 

exhibited separation pattern D (Figure 3.9).  However, 7.5% of the E. modestus showed 

no distinct separation.  This meant it was not possible to see any cavity development or 

cavity propagation in the video.  Of the 93 B. amphitrite tested, a larger percentage of 

barnacles (39.8%) showed no distinct separation and therefore was not classified under 

A, B, C or D.  Pattern A was exhibited by 20.4% of the barnacles, while 25.8% showed 

pattern B, and 7.5% and 6.5% displayed patterns C and D, respectively.  The wetted and 

de-wetted condition of the barnacles did not appear to influence the pattern of 

separation.  In addition, there did not seem to be any correlation to the type of 

separation pattern and the type of PDMS coating used in this study.  
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Figure 3.9.  The percentage occurrence of separation patterns exhibited by Elminius 

modestus and Balanus amphitrite barnacles during removal from silicone coatings.  

Detachment pattern N is no distinct separation.  Numbers (n) of barnacles = 59 and 93 E. 

modestus and B. amphitrite, respectively.  

 

With E. modestus, an additional feature occurred immediately on application of 

the detachment force and prior to the initial separation that was not present in B. 

amphitrite.  A black line appeared or extended from the edge of the basal margin 

(Figure 3.10).  As the pressure of the force gauge was applied, this feature appeared 

from the basal margin, with increasing pressure the line became more defined, moving 

further away from the basal margin and along the periphery of the basis, eventually 

becoming rougher, more irregular and scalloped in appearance.  This feature was 

present for every E. modestus that was removed whether in the wetted or de-wetted 

condition.   
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Figure 3.10.  Still frames of an Elminius modestus on Sylgard 184 showing the appearance 

of a black line from the edge of the basal margin as the detachment force was applied.  

Direction of force indicated by the white arrow.  With increasing pressure over time, the 

line becomes more defined and eventually more irregular.  The time in seconds is 

presented in the lower left-hand corner of the still frames.   

 

3.4.3.  Initial separation 

Figure 3.11 shows the average time in seconds for the onset of separation in both 

barnacle species.  The data were transformed using log10 to attain a normal distribution 

(df = 96, D = 0.134, P = 0.070) with homogeneous variance (df1 = 6, df2 = 91, F = 

1.887, P = 0.092).  The null hypothesis that the initial separation time for both barnacle 

species would be equal was not supported; the initial separation occurred sooner for E. 

modestus than it did for B. amphitrite (df = 1, F = 14.319, P = 0.007) (Table 3.2).  There 

was also a significant difference in the time of initial separation between barnacles 

removed while wetted compared to de-wetted, with the initial separation occurring 

sooner for barnacles subjected to wetted conditions in contrast to those that were de-

wetted (df = 1, F = 40.563, P = 0.001).  Yet, with regard to the effect of the coating, 

there was no difference in the initial separation time between the two silicone coatings 

(df = 1, F = 2.913, P = 0.161).   

However, the interaction effects of species x wetness (df = 2, F = 14.969, P = 

0.104), coating x species (df = 2, F = 2.514, P = 0.211), coating x wetness (df = 2, F = 
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2.843, P = 0.183), and coating x species x wetness (df = 3, F = 0.035, P = 0.882), 

demonstrate that the differences which were present in the timings between species and 

between degrees of wetness mentioned above, were not present in every circumstance.  

From Figure 3.11, the differences in the time of initial separation between E. modestus 

and B. amphitrite were significant for barnacles removed under wetted conditions, but 

not from de-wetted conditions, and this difference is more apparent for Silastic T-2.  

The differences between wetted and de-wetted conditions were significant for E. 

modestus, but not B. amphitrite, again this difference is more apparent for Silastic T-2.    

The data were gathered from barnacles grown across multiple slides, to account 

for any pseudo-replication, the nested effect of slides was included.  Yet, there was no 

nested effect of the different microscope slides for the initial separation time (df = 7, F = 

5.695, P = 0.804).   

 

 

Figure 3.11.  The mean time in seconds (± 95% confidence intervals) for the initial 

separation to appear during the detachment of Elminius modestus and Balanus amphitrite 

while de-wetted (Dry) and wetted (Wet) from the silicone coatings Sylgard 184 and Silastic 

T-2.  (Data presented in the graph are the original, un-transformed data).  
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Table 3.2.  ANOVA table of results of the time for initial separation of Elminius modestus 

and Balanus amphitrite on Sylgard 184 and Silastic T-2 coated microscopes slides, whilst 

de-wetted and wetted.   

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 0.555 0.555 1 14.319 0.007 

Wetness 4.156 4.156 1 40.563 0.001 

Coating 0.337 0.337 1 2.913 0.161 

Species x wetness 0.523 0.523 2 14.969 1.104 

Coating x species 0.110 0.110 2 2.514 0.211 

Coating x wetness 0.703 0.703 2 2.843 0.183 

Coating x species x 

wetness 

0.005 0.005 3 0.035 0.882 

Slide number 2.101 0.350 7 5.695 0.804 

 

3.4.4.  Propagating instabilities 

The manner in which the instabilities propagated across the basis appeared to 

differ between B. amphitrite and E. modestus.  Figure 3.12 demonstrates a typical 

propagating instability in B. amphitrite, which has the classic form of viscous fingering.  

Viscous fingering is the instability between two fluids of differing viscosities, where the 

fluid with a lower viscosity penetrates with finger-like projections into fluid with a 

higher viscosity (Lemaire et al. 1991; Kavanagh et al. 2005).  In B. amphitrite the 

cavities tended to flow in a more consistent wedge with an almost predictable trajectory; 

the finger-like projections advancing in a smooth motion, and the adhesive separating 

behind the cavity front.  In E. modestus the cavity front had an irregular appearance but 

not with the typical finger-like projections seen in B. amphitrite.  The movement of the 

cavity was more fluid and dynamic; and once the cavity had become established it 

looked and behaved as a bubble underneath the basal membrane.  In some instances the 

bubbles changed the direction of the propagation or produced smaller bubbles that 

pinched off from the larger one.  In both cases, the area behind the bubble, which had 

been separated from the surface, appeared to re-contact with the surface.  Often, as the 

bubble grew, the appearance of the adhesive within the bubble seemed reticulated, 

whereas behind the cavity front in B. amphitrite it appeared more striated.  Although the 

direction of the propagating cavity in E. modestus did appear more random, the bubble 

never crossed the area directly in the centre of the basis (marked by the black dashed 

line in Figure 3.13) where the body of the barnacle was positioned.   
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Figure 3.12.  Propagating instabilities in Balanus amphitrite during removal from Sylgard 

184 while de-wetted.  The dashed black line highlights the cavity front, with the finger-like 

projections developing from picture A to B.   

A 

B 
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Figure 3.13.  Propagating instabilities in Elminius modestus during removal from Sylgard 

184 while de-wetted.  The irregular cavity front highlighted by the dashed red line, 

developed from picture A to B.   
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3.4.5.  Complete separation  

During the final stages of separation, the membranous-basis of E. modestus tore 

perpendicular to the direction of force for 54.5% and 86.4% of all individuals removed 

from Silastic T-2 and Sylgard 184, respectively.   Moreover, shell failure occurred in 

4.5% and 13.6% of individuals on Silastic T-2 and Sylgard 184, respectively.  Shell 

failure comprised of a fracture in the parietal plates that were in contact with the probe 

of the force gauge and preceded tearing of the membranous-basis.  With B. amphitrite 

only 3.9% and 4.16% of barnacles removed from Silastic T-2 and Sylgard 184, 

respectively, showed shell failure where a fracture occurred in the basis, in parallel to 

the direction of force.  The basal failure in B. amphitrite coincided with a fracture in the 

parietal plates.  In addition, when the calcified-basis fractured, a proportion of the plate 

remained fixed to the surface.  In no instance did a proportion of the membranous-basis 

of E. modestus remain on the surface.  

Figure 3.14 shows the times for complete removal of E. modestus and B. 

amphitrite from Silastic T-2 and Sylgard 184 coatings while de-wetted and wetted.  The 

data were normally distributed (df = 91, D = 0.072, P = 0.200), with homogeneous 

variance (df1 = 28, df2 = 62, F = 1.091, P = 0.377).  The null hypothesis that the time 

for complete removal for both barnacle species would be equal was supported; there 

was no significant difference in the removal times between the two barnacle species (df 

= 1, F = 3.737, P = 0.057) (Table 3.3).  Nor were there differences in the times for 

complete removal due to the type of coating (df = 1, F = 0.189, P = 0.665).  However, 

there was an interaction effect of coating x species (df = 2, F = 4.578, P = 0.035).  

Figure 3.14 demonstrates that the complete removal is slower for E. modestus than B. 

amphitrite when removed from Sylgard 184, but not from Silastic T-2.  

There was also an effect of wetness on the time for complete removal.  

Barnacles were removed under wetted conditions sooner than from de-wetted surfaces 

(df = 1, F = 9.382, P = 0.003).  However, the interaction effects of wetness x coating (df 

= 2, F = 0.037, P = 0.859), wetness x species (df = 2, F = 0.024, P = 0.878) and coating 

x species x wetness (df = 3, F = 0.1.294 P = 0.259) show that the difference in timings 

due to wetness was not present in all circumstances.  From Figure 3.14, it would seem 

that the difference due to degrees of wetness was present for E. modestus on Sylgard 

184 and B. amphitrite on Silastic T-2.   
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The data was gathered from barnacles grown across multiple slides, however, 

there was no nested effect of the different microscope slides on the complete removal 

time (df = 7, F = 1.164, P = 0.521).   

 

 

Figure 3.14.  The mean time to complete removal  (± 95% confidence intervals) of 

Elminius modestus and Balanus amphitrite while wetted (Wet) and de-wetted (Dry) from 

the silicone coatings Sylgard 184 and Silastic T-2.   

 

Table 3.3.  ANOVA table of results of the complete removal times of Elminius modestus 

and Balanus amphitrite on Sylgard 184 and Silastic T-2 coated microscopes slides, whilst 

de-wetted and wetted.   

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 0.670 0.670 1 3.737 0.057 

Wetness 1.681 1.681 1 9.382 0.003 

Coating 0.034 0.304 1 0.189 0.665 

Species x wetness 0.004 0.004 2 0.024 0.878 

Coating x species 0.820 0.820 2 4.578 0.035 

Coating x wetness 0.007 0.007 2 0.037 0.848 

Coating x species x 

wetness 

0.232 0.232 3 1.294 0.259 

Slide number 0.877 0.219 7 1.164 0.521 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

Wet Dry Wet Dry 

Sylgard T2 

R
em

o
v
a
l 

ti
m

e 
(s

ec
) 

Coating 

Elminius 

Balanus 



 Chapter 3 

97 

 

3.4.6.  Critical removal stress  

 Figure 3.15 shows the CRS of E. modestus and B. amphitrite from Silastic T-2 

and Sylgard 184 coatings while de-wetted and wetted.  The data was transformed using 

log10 to attain a normal distribution (df = 151, D = 0.057, P = 0.200) with homogeneous 

variance (df1 = 36, df2 = 114, F = 1.516, P = 0.166).  The null hypothesis that the CRS 

of E. modestus and B. amphitrite were equal was not confirmed; the removal force to 

detach E. modestus was significantly less than the force to remove B. amphitrite (df = 1, 

F = 14.287, P ≤ 0.001) (Table 3.4).  There were, however, no significant differences in 

the CRS values between barnacles from wetted and de-wetted conditions (df = 1, F = 

0.130, P = 0.719) and between the barnacles from the two silicone coatings (df = 1, F = 

1.176, P = 0.280).  There was an interaction effect of species x wetness (df = 2, F = 

4.124, P = 0.044) and coating x wetness (df = 2, F = 4.353, P = 0.039) on the CRS of 

barnacles.  There was no interaction effect, however, of coating x species (df = 2, F = 

0.781, P = 0.378) and coating x wetness x species (df = 3, F = 1.590, P = 0.209).  From 

Figure 3.15, the CRS of E. modestus was less than that of B. amphitrite when de-wetted 

but not when wetted.  Also there appears to be a difference in the CRS of wetted and de-

wetted E. modestus on Sylgard 184, in which the former is greater than the latter, but 

not on Silastic T-2.  Yet, coating and degrees of wetness did not influence the CRS of B. 

amphitrite (Figure 3.15).  Furthermore, there was no nested impact of the different 

slides (df = 7, F = 0.001, P = 0.982). 
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Figure 3.15.  The mean critical removal stress (± 95% confidence intervals) of Elminius 

modestus and Balanus amphitrite on Sylgard 184 and Silastic T-2 whilst de-wetted (Dry) 

and wetted (Wet).  (Data presented in the graph are the original, un-transformed data).  

 

Table 3.4.  ANOVA table of results of the critical removal stress of Elminius modestus and 

Balanus amphitrite on Sylgard 184 and Silastic T-2 coated microscopes slides, whilst de-

wetted and wetted.   

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 0.508 0.508 1 14.287 ≤ 0.001 

Wetness 0.005 0.005 1 0.130 0.719 

Coating 0.042 0.042 1 1.176 0.280 

Species x wetness 0.147 0.147 2 4.142 0.044 

Coating x species 0.028 0.028 2 0.781 0.378 

Coating x wetness 0.155 0.155 2 4.353 0.039 

Coating x species x 

wetness 

0.057 0.057 3 1.590 0.209 

Slide number 0.00184 0.00184 7 0.001 0.982 
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3.5.  Discussion  

The aim of this chapter was to examine how the membranous-basis of Elminius 

modestus influenced the process of its detachment from silicone coatings compared to 

that of a calcareous-based barnacle, Balanus amphitrite.  Using a high-speed camera it 

was possible to visualise and describe the detachment process of the two barnacle 

species.  

 

3.5.1.  Removal process of barnacles from silicones 

The removal process involves a series of steps from initial separation, through 

spreading instabilities, to complete removal and these findings were consistent with 

those described by Kavanagh et al. (2005) for the removal of Balanus eburneus and B. 

variegatus.  A new feature noted for E. modestus, however, was the appearance of a 

black line at the basal margin.  This appeared to be an internal structure compressing 

with the application of pressure.  The following diagram (Figure 3.16) shows a section 

through the shell of E. modestus illustrating some internal features close to the 

periphery of the shell.  As this line appears within the growth zone of the basal margin, 

it may be that it was the compression of the basal-secreting cells and/or the epicuticle-

secreting cells.  As the force was applied, these cells were pushed or peeled from the 

shell wall (mural plate), the black colour being a density effect; i.e. with increasing 

pressure the cells compress more, becoming thicker and denser and thus appearing 

black in the image.  As the pressure continues to build, the cells are forced further away 

and together causing them to crumple, in turn making the line become more irregular 

and scalloped in shape over time.  
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Figure 3.16.  Cross sectional diagram of Elminius modestus through the peripheral part of 

the shell: b, basis; bc, basis-secreting cells; gz, growth zone; ep, epicuticle; epc, epicuticle-

secreting cell; mp, mural plate; mpc, mural plate-secreting cells; m, muscle; cf, collagen 

fibres, oh, opercular hinge; op, opercular plate.  Adapted from Bubel (1975).   

 

3.5.2.  Patterns of separation  

One of the differences between B. amphitrite and E. modestus observed in this 

study was the pattern of separation and the proportion of each pattern per species.  The 

incidence of barnacles displaying ‘no distinct fracture’ may in part be due to 

deficiencies in clarity and contrast in the videos, so any separation that occurred could 

have been missed.  Before each detachment event, time was spent focusing the image of 

the basis on the high-speed video control panel.  In spite of this, in some cases as soon 

as the detachment force was applied to the side of the barnacle, the pressure was 

sufficient to move the platform and send the image out-of-focus.  It was not until 

reviewing the detachment events of the first culture that the incidences of poor focus 

became apparent.  For the second cultures of E. modestus and B. amphitrite, additional 

supports were added underneath the platform and extra crossbeams added to the frame 

holding the platform to make the set-up sturdier; this reduced the incidences of poor 

focus.  However, for B. amphitrite there was an additional issue with the concentric 

pattern of the growth bands on the basis adding to problems with the contrast.  The 

presence of these growth bands on the basis made it difficult in some videos to clearly 
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see the separation and contributed to a higher proportion of B. amphitrite with ‘no 

distinct fracture’.  The relatively high number of barnacles tested (93 B. amphitrite and 

59 E. modestus) [Kavanagh et al. (2005) used a combined total of 40 barnacles] 

compensated for the loss of information in some individuals through poor video quality.  

Differences in shell shape and bases of B. amphitrite and E. modestus offer a 

possible explanation for the different separation patterns observed.  The shell of E. 

modestus has a lower profile than that of B. amphitrite, which is taller with mural plates 

approaching closer to the vertical, as illustrated in Figure 3.17.  When applying force to 

a steep (near vertical) side of B. amphitrite it could result in a lifting force causing the 

barnacle to pivot on the side furthest from the probe’s contact point, resulting in peeling 

and separation patterns B and C.  Chaudhury & Kim (2007) illustrated a similar peeling 

process with a rigid glass prism fixed to a silicone elastomer.  The glass prism had a 

vertical surface, which the force was applied to.  The lower angle formed between the 

parietes of E. modestus and the surface may translate to downward pressure on the shell 

when the probe makes contact.  This force could cause the side furthest from the probe 

to lift contributing to a greater proportion of E. modestus with separation pattern A, the 

lift separation.  The model detachment mode for B. amphitrite would therefore be a peel 

separation and the model detachment for E. modestus would be a lift separation.  

However, as stated above, 20% of B. amphitrite also exhibited pattern A.  This was 

likely due to the barnacles ranging in size from small to average for this species (3.2 to 

7.5mm in diameter).  From personal observations, smaller-sized B. amphitrite have a 

relatively shallower profile than the larger specimens.  Therefore, their shape is closer to 

the shell shape of E. modestus and this may explain why 20% of the B. amphitrite 

exhibited pattern A release.  The height of the shell of each barnacle was not recorded in 

this study as this explanation for the variations in separation patterns was developed 

after the experiments.  Further study is therefore required to examine possible relations 

between barnacle dimensions (height, slant height, width of basis) and the type of 

separation.  
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Figure 3.17.  Pictures of Balanus amphitrite (A) and Elminius modestus (B), both collected 

from wild populations illustrating their different shell shapes.  Images taken by author. 

 

The bases of B. amphitrite and E. modestus also differ in shape.  The basal 

margin of E. modestus is undulating, whereas that of B. amphitrite is comparatively 

smooth and circular.  During the detachment of E. modestus, the force-gauge probe 

tended to bridge across two of the major ridges in the shell.  Under these circumstances 

there were two points of contact of the probe on the barnacle and this contributed to a 

more stable contact area and therefore limited the incidence and angle of rotations.  For 

example, when rotations did occur, there was one point of contact rather than two.  In B. 

amphitrite, there was only ever one point of contact, contributing to the increased 

occurrence and degree of rotation.  Examples of B. amphitrite exhibiting pattern D, 

where the barnacles were described as twisting off the coatings, demonstrated the 

greatest degree of rotation.  The greater degree of stability offered by the two contact 

points in E. modestus could explain why no twisting separations occurred.   

1cm 

1cm 

A 

B 
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Each barnacle had a different shape and size, which potentially influenced the 

manner in which they separated from the coatings.  There are, however, other factors to 

consider such as the layer of adhesive between the barnacle and coating and the 

thickness of the coatings.  Kohl and Singer (1999) demonstrated that the separation of 

pseudobarnacles, via tensile forces, from coatings with a thickness gradient from 0.1mm 

to 0.9mm, begins in the area where the coating is at its thickest.  In the present study, 

the coating thickness was intended to be constant; however, despite being prepared on a 

level surface, there were subtle variations in the thickness of the coatings.  

Measurements were taken of the coating thickness at six points across each slide.  The 

thickness of the coating along the length and breadth of every slide varied by an average 

of 40µm for both Silastic T-2 and Sylgard 184 (average from 25 slides per coating).  

This is a much smaller difference than that discussed by Kohl and Singer (1999).  As 

coating thickness was not a primary focus of this study, no tests for correlations 

between the thickness of the coatings and the patterns of separation were attempted, but 

it may warrant consideration in future investigations.   

 

3.5.3.  Propagating instabilities 

Kavanagh et al. (2005) described the appearance of finger-like projections in the 

adhesive, which permeated across the basis during the detachment of B. eburneus and B. 

variegatus from silicone coatings.  These fingering instabilities, or viscous fingering, 

portray the instability between two fluids of differing viscosities, where the one with a 

lower viscosity penetrates into the higher viscosity fluid (Lemaire et al. 1991; Kavanagh 

et al. 2005).  Kavanagh et al. (2005) suggested the adhesive existed as a gradient of 

differing viscosities between the basis and the silicone coating.  This supports the 

description Sun et al. (2004) provided of a multi-layered adhesive produced by 

barnacles when grown on silicones.  Fingering instabilities were identified during the 

detachment of B. amphitrite in this study.  They behaved in a similar manner to the 

description provided by Kavanagh et al. (2005) for B. eburneus and B. variegatus.  

However, the propagating instabilities seen for E. modestus did not take on the 

appearance of typical viscous fingering as seen in B. amphitrite.  For the fingering 

instabilities to occur, the fluids with different viscosities need to be confined between 

two parallel planes (Saffman & Taylor 1958).  In E. modestus, the membranous-basis 

may not offer sufficient resistance to confine the viscous adhesive during detachment 
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and therefore the characteristic finger-like projections are not produced.  This theory 

assumes that the adhesive of E. modestus behaves in the same manner as that of 

Balanus spp. in terms of developing a graded or layered structure.   

There has yet to be a study on the adhesive of E. modestus, hence it is merely 

speculation that the structure occurs in a graded form.  What is known is that when 

grown on low modulus coatings, E. modestus produce a thicker more hydrated adhesive 

than when grown on a coating with a higher modulus (Wiegemann & Watermann 2004).  

The adhesive of E. modestus was, however, less hydrated than that of Balanus spp.  

Also, barnacles grown on low modulus coatings can develop a concave-shaped 

calcareous-basis (Wiegemann & Watermann 2003; Sun et al. 2004; Wendt et al. 2006).  

The thickness of the adhesive across the basal area is not uniform; the adhesive is 

thicker in the centre of the ‘cupped’ basis than at the edges (Berglin & Gatenholm 2003).  

However, the flexibility of the membranous-basis hinders the production of a concave 

shape.  The space between the basis and substratum is diminished and therefore only 

allows for a thinner layer of adhesive than in calcareous-based examples (Wiegemann & 

Watermann 2004).  The less hydrated adhesive and diminished gap (between basis and 

substratum) in E. modestus may be an additional factor explaining why E. modestus 

separation does not display fingering instabilities.   

 

3.5.4.  Complete separation 

Shell damage occurred to a greater degree during detachment of E. modestus 

compared to B. amphitrite, reflecting the weaker shell strength of the former species.  

The shell of B. amphitrite is porous, with longitudinal channels interspersed with septa, 

strengthening the shell; whereas the shell of E. modestus is non-porous, more brittle and 

more liable to fracture (Barnes et al. 1970; Gubbay 1983).  When force was applied to 

the shell of E. modestus, the entire structure seemed to flex and compress during 

detachment from the surface.  This could be a factor of the membranous-basis not 

offering structural support.  There is also a difference in the number of parietal plates, 

which could factor into the strength of the shell; E. modestus has four, whereas B. 

amphitrite has six plates.  The reduction in the number of parietal plates is suggested to 

be an adaptation to prevent predation (Palmer 1982).  The sutures between the shell’s 

parietal plates are the weakest part of the shell and can separate when compressed (from 
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downward pressure on the opercular opening); therefore barnacles with fewer sutures 

are less vulnerable to being crushed (Barnes et al. 1970; Palmer 1982).  However, the 

overall shell strength has been correlated to the strength of the sutures rather than the 

number.  E. modestus have relatively weak butt sutures compared to the stronger mitred 

sutures in B. amphitrite (Barnes et al. 1970) and therefore E. modestus can be more 

prone to damage. 

An additional observation during the detachment of E. modestus was that the 

position barnacle’s body remains fixed in place.  The shell itself was driven forward; the 

basal membrane on the side closest to the probe’s contact point was compressed, 

whereas the membrane on the side furthest away was stretched.  The basal membrane 

was stretched to the point where it failed and tore, often before the barnacles were 

detached.  As soon as the membrane tore the barnacles were rapidly removed.   

When E. modestus and B. amphitrite separated from the silicone coatings, 

remnants of adhesive remained on the surface.  Kavanagh et al. (2005), who observed 

the same for B. eburneus and B. variegatus, suggested that adhesive was left behind due 

to cohesive failure of the adhesive.  Sun et al. (2004) speculated that it was cohesive 

failure between the layers of the multi-layered adhesive in the same two species.  This 

cohesive failure between the layers of the adhesive may be described as delamination, 

which is a mode of failure between layers of composite materials.  As a fracture 

propagates, it progresses within a single plane, between the adhesive and the silicone 

coatings, i.e. interfacial failure.  However, it is hypothesised that separation occurs 

between the adhesive layers and propagates moving from layer to layer following the 

mode of failure that offers the weakest mechanical resistance, as the cohesion between 

the adhesive layers fails, and it delaminates (Figure 3.18).  In polymer science this type 

of delamination is referred to as a multiple-interface delamination (Li et al. 2010). 
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Figure 3.18.  Diagram depicting the hypothesised delamination fracture between a single 

and multi-layered adhesive.  The fracture (red arrow) in a single layered adhesive 

propagates on a single plane, whereas in a multi-layered adhesive the fracture propagates 

from layer to layer, following the path of least resistance.    

 

3.5.5.  The time for initial separation and complete removal 

The time taken for initial separation to begin was less for E. modestus than for B. 

amphitrite and this difference was more prevalent under wetted conditions.  

Considering the flexible basis and the structure of the E. modestus shell, it may be that 

there is greater elastic deformation and less resistance to the application of force and, 

therefore, the initial separation occurs sooner.  However, the time for complete removal 

was longer for E. modestus than B. amphitrite, but this difference was only present for 

Sylgard 184, for both wetted and de-wetted conditions.  It could be that the greater 

degree of elastic deformation in E. modestus slows the propagation of the fracture once 

it has been initiated, whereas once the fracture begins in the more rigid structure of the 

B. amphitrite shell, it is more instantaneous.  It is just speculation that the flexible 

nature of the E. modestus membranous-basis and shell structure contributes to the 

differences in timings.  Factors other than physical differences in the shell’s structure 

could be involved.  For example, there may be differences in the adhesives of the two 

species.  Unfortunately, the adhesive of E. modestus has yet to be investigated. 

The time to initial separation and for complete removal was less for barnacles 

that were wetted as opposed to de-wetted.  This difference was more apparent for E. 
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modestus.  Barnacles create a seal with the coatings around the perimeter of the shell 

(Kavanagh et al. 2005), which prevents the influx of water underneath the basis.  From 

the high-speed videos it is clear that water intrusion underneath the basis only began 

mid-way through the process of separation once the perimeter seal had been 

compromised.  The water which percolates underneath the basis, filling the cavities, 

may have acted as a lubricant reducing the drag of the basis on the surface of the 

silicone coating.  This provides a possible explanation for the reduction in complete 

removal time due to wetness but not necessarily for the reduction in the time to initial 

separation when wetted.  During the time for initial separation to begin, the barnacles 

perimeter seal did not appear compromised; water did not appear to percolate 

underneath the barnacle, however, the moisture surrounding the barnacles still may have 

contributed to a lubricating effect aiding initial separation.  Dehydration of the adhesive 

may also be a potential factor.  Wiegemann & Watermann (2004) noted the CRS of 

calcareous-based barnacles (B. improvisus and B. crenatus) increases with dehydration 

of the adhesive, which consequently may require more time for the separation process to 

commence.  For E. modestus, however, there no was significant increase in the CRS 

with dehydration (Wiegemann & Watermann 2004).  The timings for dehydration that 

Wiegemann & Watermann (2004) investigated were 3 – 4 hours and 24 hours, whereas 

in this study, the barnacles were air dried for 5 minutes after initially removing the 

moisture surrounding the barnacles with laboratory blue roll.  Therefore, it is unlikely 

that dehydration of the adhesive was a significant factor explaining the reduction in the 

initial separation time when wetted.  It is not clear why the initial separation times for 

barnacles removed when wetted were less than barnacles which were de-wetted.  This 

difference warrants further investigation.  

 

3.5.6.  The critical removal stress 

The CRS results in this chapter support those found in Chapter 2, where the CRS 

of E. modestus was less than the CRS of B. amphitrite.  In this chapter, this was the case 

for both silicone coatings, not just Sylgard 184, although this was only the case for 

barnacles that were de-wetted.  Chung & Chaudhury (2005) stated that an object with a 

greater degree of flexibility and deformation requires less stress to be detached from 

elastomeric coatings.  It would seem that the flexible attribute of E. modestus 



 Chapter 3 

108 

 

membranous-basis and shell structure can contribute to a reduced removal force 

compared to a calcareous-based barnacle.   

There was also an interaction of coating and wetness, in which the CRS values 

for E. modestus, while wetted, were greater than those that were de-wetted for Sylgard 

184.  This is in contrast to the work by Wiegemann & Watermann (2004), who 

demonstrated that, the removal stress of E. modestus while in water and after 1 hour of 

desiccation did not differ.  It was surprising that the force to detach E. modestus when 

wetted was greater than de-wetted when the complete removal time for wetted 

individuals was less for de-wetted individuals.  Considering that water percolating 

underneath the basis could potentially act as a lubricant aiding quick removal, it would 

be reasonable to assume that the removal force would be lower for wetted than de-

wetted barnacles, but the opposite was found.  Further investigation is necessary to 

answer this question.  It may be that use of a motorised platform for the force gauge, 

similar to that used by Stein et al. (2003), which would provide a constant speed during 

detachment for each barnacle, would help remove human error in the application of the 

force. Whether (or not) the force gauge slipped for wetted barnacles and caused an 

increase in the detachment force is unknown.  Regardless, a motorised platform may 

better highlight the difference in CRS and timings in regard to the degrees of wetness.   

 The type of coating did influence the removal times and the CRS values in this 

study.  As mentioned in Chapter 2, the two coatings do have minor differences in their 

bulk properties.  The difference in bases and adhesives may be reacting in a different 

manner to the properties of the coatings.  However, only two silicone coatings were 

tested.  Further experiments on a range of coatings with greater variability in surface 

and bulk properties should provide a better insight into the influence of substratum on 

the detachment mechanisms of membranous and calcareous-based barnacles. 

 

3.6. Conclusion 

This was the first study to use high-speed video analysis to examine, in detail, 

the detachment properties of a membranous-based barnacle.  The flexible attributes of 

the membranous-basis of E. modestus appear to have contributed to the differences seen 

in the propagating instabilities and the time for removal when compared to the 

calcareous-based B. amphitrite.  However, differences in the shape and structure of the 
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shell were likely to have made the greater contribution to the dissimilar patterns of 

separation i.e. lift separations in E. modestus and peel separations in B. amphitrite.   

In this study, the influences of wetness and coating type on the removal times 

and the CRS were evident for E. modestus, in most cases, but less so for B. amphitrite.  

This suggests that the detachment processes of E. modestus is more easily influenced by 

variations in environmental stresses such as wetness and substrate type.  

Questions remain regarding the nature of the adhesive of E. modestus and how 

this influences the release of barnacles from silicones.  Kendall’s (1971) fracture model 

for predicting the release of barnacles from elastomeric substrates has been deemed 

unsuitable for calcareous-based barnacles as they have a degree of flexibility greater 

than the rigid stud assumption of the model (Sun et al. 2004; Ramsay et al. 2008).  

Therefore, Kendall’s model is likely even more unsuitable for predicting the release of 

membranous-based barnacles. 
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Chapter 4.   A Comparison of Laboratory-based Assays and 

Field Performance Trials of Coatings: Bridging 

the Gap Between Laboratory and Field. 

 

 

4.1.  Abstract 

Laboratory assays and field immersion trials are two approaches used to 

evaluate the efficacy of antifouling and fouling-release coatings in terms of settlement 

and adhesion of marine fouling.  To determine whether laboratory assays are a good 

predictor of coating performance in the field, a series of eight coatings (five silicone 

and three fluoropolymer coatings) were used to compare the settlement/recruitment and 

critical removal stress (CRS) of the membranous-based barnacle Elminius modestus 

from a laboratory culture and two field populations (Fairlie Quay and Burnham-on-

Crouch) over two years (2010 and 2011).  A second membranous-based barnacle 

Semibalanus balanoides was abundant at the field location Fairlie Quay, thus 

recruitment and CRS was measured and compared to E. modestus.  In addition, the 

influence of a 10-day-old biofilm and the influence of temperature (12 ºC, 15 ºC, 19 ºC 

and 22 ºC) on the CRS of laboratory cultured E. modestus were investigated.  

Laboratory settlement/field recruitment and the CRS of E. modestus from the 

two field populations and the laboratory culture across the eight coatings had 

similarities.  This made it possible to discriminate between the coatings and conclude 

that the silicone performs better than the fluoropolymers, with the silicone coatings 

having lower percentage coverage and lower adhesion measurements.  Although the 

CRS measurements did differ significantly between locations and years, where the 

general pattern from highest to lowest between the locations was Fairlie Quay > 

laboratory > Burnham-on-Crouch.  The presence of a biofilm and different 

temperatures did not influence the adhesion of E. modestus in this study, and thus 

provided no additional clarity as to why there were differences between laboratory and 

field results.  Nevertheless, being able to differentiate between the coatings and 

determine which has the better FR properties is fundamentally the desired outcome for 

these tests.   
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4.2.  Introduction 

 The process of biofouling, in which a submerged surface becomes colonised, is 

complex.  The process is often described as sequential or “successional”, suggesting a 

predictable series of events.  In this model, the initial process, which commences 

seconds after immersion of a surface, is adsorption of a macromolecular conditioning 

film.  Colonisation by bacteria occurs next, followed by attachment of microalgae and 

spores of macroalgae and ultimately the larval stages of invertebrates.  However, the 

successional hypothesis may not be suitable.  There are many conflicting reports on the 

influences of microfouling films or biofilms on the settlement of marine invertebrates 

and more specifically, on the settlement of barnacles (Todd & Keough 1994; Keough & 

Raimondi 1995; Wieczorek & Todd 1998).  Dependent on the composition, density and 

age of the biofilm, it can have a facilitatory influence on cyprid settlement (Maki et al. 

1988; 1990; Wieczorek et al. 1995) or it can have an inhibitory effect (Maki et al. 1988; 

1990; Rittschof & Costlow 1989; Wieczorek et al. 1995; Olivier et al 2000), and 

therefore barnacles do not always require the presence of a biofilm for settlement. 

Colonisation ought to be regarded as a dynamic process (Wahl 1989; Clare et al. 1992), 

reflecting the availability of colonisation stages of fouling organisms and the 

interactions between colonisers and incumbents.  The process of colonisation is heavily 

dictated by multiple physical, chemical and biological processes including light, water 

flow and turbulence, surface texture and colour, surface charge, surface area, 

wettability, biofilm composition, predation and competition (Yule & Walker 1984; 

Wethey 1986; Bourget 1988; Rittschof & Costlow 1989; Wahl 1989; Roberts et al. 

1991; Hills & Thomason 1998; Thomason et al. 1998; Thompson et al. 1998; 

Wieczorek & Todd 1998; Bers & Wahl 2004; Prendergast et al. 2009; Robson et al. 

2009).  Not only does each factor alone exert an influence, interactions between factors 

have been shown to have a combined effect on the settlement and adhesion of 

colonisers such as barnacles (Thomason et al. 2002b; Prendergast et al. 2009; Robson 

et al. 2009).   

 Testing of antifouling and fouling-release (FR) coatings, in terms of laboratory 

settlement and adhesion, and field-testing through immersion trials, allowing for 

natural colonisation, are common practices (Becka & Loeb 1984; Swain et al. 1992; 

2000; 2002; Swain & Schultz 1996; Wood et al. 2000; Wiegermann & Watermann 

2004; Holm et al. 2006; Robson et al. 2009).  Field immersion trials might be assumed 
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to be a better option over laboratory assays as the complex colonisation processes and 

interactions between physical, chemical and biological components are naturally 

occurring.  Field trials, therefore, would best reflect the settlement and adhesion found 

on the ship’s hulls and thus provide a more realistic idea of a coating’s performance.  

However, field trials have been criticised as they require a large volume of coating 

sample and often require several months immersion time to allow the organisms to 

settle and grow to a sufficient size for adhesion testing (Rittschof et al. 2008; Stafslien 

et al. 2012).  In addition, field trials can be restricted by the seasonality of certain 

fouling species and low larval availability resulting in poor settlement, and there may 

also be problems resulting from adverse weather conditions or predation which 

removes a portion of the organisms that had settled (Swain et al. 1998; Rittschof et al. 

2008).    

 Laboratory adhesion assays still require a period of time to grow animals to 

testable size, but a large volume of coating is not required for testing and the assays are 

performed under controlled conditions; therefore these can allow for a systematic study 

of biofouling.  Several studies have compared the settlement of barnacles reared under 

laboratory conditions to settlement in the field on antifouling and FR coatings 

(Rittschof & Costlow 1989; O’Connor & Richardson 1996; Thompson et al. 1998; 

Matsumura et al. 2000; Martinelli et al. 2012).  The critical removal stress (CRS) of re-

attached Balanus amphitrite from laboratory trials has also been compared to the 

removal stress of barnacles (Balanus spp.) from the field (Stafslien et al. 2016), which 

established a high level correlation in the adhesion of the barnacles between the two 

environments.  There has, however, yet to be a study that compares the CRS of adult 

barnacles, including the membranous-based barnacle E. modestus that have been settled 

and grown in the laboratory on test coatings, to those recruited in the field.   

The aim of the work presented in this chapter was to compare the use of 

laboratory assays and field immersion trials for evaluating FR coatings.  The main 

focus was to compare the CRS of E. modestus barnacles reared in the laboratory and 

field environments, as well as comparisons in the laboratory settlement and field 

recruitment.  The hypotheses to be tested are: 1) the settlement observed in laboratory 

assays would correlate well with the recruitment in the field; 2) the CRS measurements 

from laboratory-cultured barnacles would correlate well with those from the field and 

therefore 3) laboratory assays are a good predictor of a coating’s performance in the 
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field.  The influence of biofilm and temperature on the CRS of laboratory-raised E. 

modestus was investigated, in order to provide a possible explanation for any potential 

differences in the CRS of the barnacles between the two environments.  In addition, the 

recruitment and CRS of a second membranous-based species, Semibalanus balanoides 

was compared to that of E. modestus.  Field immersion trials are necessary for the 

settlement and growth of S. balanoides on the test coatings.  This barnacle is an annual 

brooder.  Naupliar release is synchronised with the spring diatom bloom (Barnes 1962) 

and laboratory cultures of this species, by virtue of the relatively slow rate of 

development of the larvae, have so far met with limited success (Kirby 2006).   

 

 

4.3.  Materials and methods 

4.3.1.  Coating selection  

Preliminary trials for field assays were conducted during 2009 using 

Intersleek® 900, Intersleek® 700 and an Intersleek control coating referred to as 

Intersleek Clear, provided by International Paint Ltd, Felling, UK.  All the coatings 

were applied to glass microscope slides (76mm x 26mm x 1mm, Fisherbrand).  The 

coatings selected for field immersion trials and laboratory bioassays during 2010 and 

2011 included: five silicones, four of which were polydimethylsiloxane (PDMS) 

coatings, with different molecular weights and crosslinking densities; one was a 

Polyether-silicone-polymer and three were fluoropolymers of different molecular 

weights and functional groups.  These coatings were provided and prepared at 

International Paint Ltd, Felling, UK.  These silicone and fluoropolymer coatings will be 

discussed in more detail in Chapter 5, and for the current purpose have been labelled 

S1, S2, S3, S4, S5, FP1, FP2 and FP3.  Coatings used to investigate the influence of a 

10-day-old biofilm and temperature on the adhesion strength of adult E. modestus were 

Silastic T-2, Rhodorsil 48V-750 PDMS, and Sylgard 184 (the latter was not used in the 

experiments that studied the influence of temperature).  
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4.3.2.  Laboratory settlement assays 

The coatings were leached for two weeks in a static tank of reverse osmosis 

(RO) water; the water was changed once a week and a carbon filter (Fluval filter) was 

immersed in the tank to absorb leachate.  The coated slides were then immersed for 1 hr 

in artificial seawater (ASW) and left to air-dry.  Once dried, the slides were used 

immediately for settlement assays with E. modestus cyprids.  The method for the 

laboratory culture of E. modestus was discussed in Chapter 2.  Cyprids were used 

immediately upon collection (day zero cyprids) whereby 20 cyprids were pipetted into 

a 2ml droplet of 0.2µm filtered ASW centred on each slide.  The slides were placed in 

quadriPERM® culture vessels with the lids on to reduce evaporation.  After 48 hrs, the 

number of settled cyprids was recorded.  Next, 15ml of Tetraselmis suecica was added 

to the chambers of the culture vessels.  The barnacles were maintained at 22°C on a 

12:12 L:D cycle and fed 15ml of T. suecica at ~3 x 10
5
 cells ml

-1 
three times a week.  

The barnacles were grown for five months and attained an average size of 4.4mm in 

diameter of the basis which was approximately consistent with the growth of the 

barnacles as discussed in Chapter 2.  

 

4.3.3.  Field assays 

Two locations were selected to deploy samples in the field; 1) Burnham-on-

Crouch, Essex (51° 37’ 14” N) and 2) Fairlie Quay, Ayrshire (55° 46’ 58” N) (Figure 

4.1).  Both are secure locations.  Burnham-on-Crouch has a well established population 

of E. modestus (Crisp & Davies 1955; Crisp & Meadows 1962; Robson et al. 2009) and 

is the location of a commercial testing site for marine coatings (International Paint 

Ltd.).  The fouling community at Fairlie Quay is dominated by Semibalanus balanoides 

and E. modestus.   
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Figure 4.1.  Location of test sites for rack immersion. 1) Burnham-on-Crouch; 2) Fairlie 

Quay. * indicates the position of the rack within test site.  Image composited from Google 

Maps website.  

 

4.3.4.  Design of test racks  

The test racks were designed and purpose-built specifically for these field 

immersion experiments, and have subsequently been adopted by Thomason (2014).  

Coatings were applied to microscope slides and the design of the test racks only 

permitted settlement on the coated side of the slides.  The racks were constructed of 

PVC sheeting (1000 x 500 x 4.5mm; RS Components Ltd) cut into strips of 105mm 

with two 20mm strips to hold the slides in place.  Neoprene rubber (3mm thick; RS 

Components Ltd) was used as a cushion between the PVC and microscope slides, 

which helped to hold the slides firmly in place without damaging the glass slides or the 

coating.  Zinc-plated steel roofing bolts (M8 x 30mm thread; RS Components Ltd) 

were spaced out along the racks to hold the three strips of PVC and slides in position 

1 

2 

* 

* 
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(Figure 4.2).  A 50mm diameter hole was drilled at each end of the rack to secure the 

rack with rope to a fixture above the water’s surface.   

 

 

 

 

 

 

Figure 4.2.  Design of the rack (A) and the cross-section (B) of the rack showing slides on 

both sides, immersed during 2009 at Burnham-on-Crouch and Fairlie Quay.  Custom 

designed and purpose-built by R.C.Martin.  

 

At each location the racks were suspended at a depth of 1m from the surface, 

fixed to the side of a raft at Burnham-on-Crouch and a pontoon in Fairlie Quay; this 

was thought to best represent the conditions experienced by a moored vessel.  The 

racks were positioned horizontally so that the slides were maintained at an equal depth.  

A single rack held 56 coated microscope slides (28 microscope slides per side of the 

rack).  Each type of coating was allocated a number and using a random number 

generator (Web references 1) the slides were randomly arranged along the racks with 

approximately an equal number of each coating per side of the rack.  Each coated slide 

was labelled using a tungsten carbide pen (Fisher Scientific) to etch the name of the 

coating into the back of the slide.   

Bolt

Coated glass 

slideNeoprene

PVC

100cm 

10.5cm 

A 

B 
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The coatings deployed in 2009 at Fairlie Quay and Burnham-on-Crouch 

included the three Intersleek-based coatings; Intersleek 900, Intersleek 700 and 

Intersleek Clear.  There was one immersion period in 2009, in which 50 slides per 

coating (150 slides in total) were immersed in March at Fairlie Quay and in April at 

Burnham-on-Crouch.  In 2010 and 2011, eight coatings including five silicone and 

three fluoropolymer coatings (see section 4.3.1) were deployed.  For both 2010 and 

2011, there was one immersion period at Fairlie Quay during March, but two 

immersion periods in Burnham-on-Crouch, one during April and the second during 

June/July (Table 4.1).  The number of slides immersed per coating per immersion 

period, was 16 (128 slides in total) in 2010 and 12 in 2011 (96 slides in total) (Table 

4.2).   

 

Table 4.1.  Dates of rack immersions and collections. 

Location  Year Date immersed Date Collected 

Fairlie Quay 2010 26
th

 March 17
th

 August 

2011 29
th

 March 21
st
 June 

Burnham-on-Crouch 2009 20
th

 April 7
th

 July 

2010 19
th

 /20
th

 April 22
nd

 June 

22
nd

 June 19
th

 October 

2011 14
th

 April 12
th

 July 

12
th

 July 27
th

 October 

 

Of the Intersleek-coated slides immersed at Burnham-on-Crouch on 20
th

 April 

2009 and collected on 7
th

 July, 66% of the total were lost.   Whereas 20% of the slides 

immersed in Fairlie Quay on 8
th

 April 2009 and collected on 29
th

 September were lost.  

Consequently, the racks were re-designed in-house with an extra strip of PVC to 

prevent loss of slides for the 2010 and 2011 immersion periods (Figure 4.3).   
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Table 4.2.  Total number of slides that were deployed in the field and total number that 

were collected from Fairlie Quay and Burnham-on-Crouch from the years 2009, 2010 and 

2011.  

Location Year Number of slides 

deployed 

Number of slides 

collected 

Fairlie Quay 2009 150 120 

2010 128 123 

2011 96 23 

Burnham-on-

Crouch 

2009 150 51 

2010 -  April 128 125 

-  June/July 128 120 

2011 -  April 96 74 

-  June/July 96 80 

 

 

 

 

 

 

Figure 4.3.  Modified design of the rack (A) and cross-section (B) deployed in 2010 and 

2011 at Burnham-on-Crouch and Fairlie Quay.  Redesigned by R.C.Martin. 
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4.3.5.  Deployment of racks 

The target species at the selected locations were E. modestus at Burnham-on-

Crouch and S. balanoides and E. modestus at Fairlie Quay.  The racks were immersed 

at Fairlie Quay in March/April (refer to Table 4.1 for dates) just prior to the predicted 

settlement season of S. balanoides.  As E. modestus is able to reproduce continuously 

throughout the year with its peak between May and August (Crisp & Davies 1955) 

racks in Burnham-on-Crouch were immersed during April in 2010 and 2011, these 

were then collected in June/July and replaced with a second set of racks, which were 

collected in September/October.   

There was no settlement of S. balanoides or E. modestus on the test coatings at 

Fairlie Quay in 2009, hence additional information regarding Fairlie 2009 will be 

omitted.  The surrounding pier piling and rocky shore area was examined prior to 

deployment of the racks; as there were no newly settled juveniles it appeared that the 

settlement event had not been missed.  When the racks were collected, the surrounding 

pier pilings were examined again and there were newly settled juveniles on the pilings 

but not on the sample microscope slides or on the PVC rack.  Therefore, the chosen 

location i.e. suspension off the pontoon was not suitable.  For 2010 the racks were fixed 

vertically to a pier piling, which was submerged during high tide and exposed during 

low tide.  The design of the racks remained the same as those used at Burnham-on-

Crouch in 2010 except that 70mm long zinc-coated steel roofing bolts (RS Components 

Ltd) were used to hold the PVC strips together.  This was to allow the racks to stand 

approximately 30mm from the pier leg, permitting settlement on the underside of the 

racks.  Settlement of S. balanoides and E. modestus at Fairlie Quay was achieved in 

2010 with the re-designed racks. 

 

4.3.6.  Collection of racks  

 Upon collection, the slides were carefully removed from the racks and placed in 

quadriPERM® culture vessels; these were stacked in a cool box and transported back 

to the laboratory.  Transportation took no more than 6 hours, after which the coated 

slides were placed in slide racks and immersed in holding tanks of artificial seawater 

(ASW).  The slides were sorted into their coating group and digital images 

(photographs and scanned images) were taken to record the total number and 
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percentage cover of barnacles.  The slides were then cleaned and any additional fouling 

that was present on the slides was removed.  Where there was a heavy coverage of 

barnacles on the slides, these were thinned out to reduce overcrowding.  The grouped 

slides were returned to the slide racks in 20L tanks of aerated ASW at 20 ± 2°C and 

maintained for up to five weeks being fed with a 1L mixture of T. suecica and S. 

marinoi three times a week.  The tanks were cleaned and the water was replaced with 

fresh ASW every fortnight until the CRS testing.  The barnacles returning from 

Burnham-on-Crouch in June 2010 (immersed in April 2010), were small with an 

average diameter of 1.8mm.  These were maintained in the tanks for ten weeks to allow 

further growth before testing the CRS.  Subsequent immersion periods in Burnham-on-

Crouch were extended to allow for growth in the field as opposed to culture tanks in the 

laboratory.   

 

4.3.7.  Recruitment on coatings immersed in the field 

Due to the large number of samples and the limited time available at the test 

locations, field recruitment was measured upon returning to the laboratory.  This is not 

a true measure of the recruitment, as inevitably some barnacles were accidentally 

removed from the slides upon extraction from the racks and transportation from the 

field sites.  The upmost care was taken to ensure that this was minimised.  Recruitment 

is considered to be when presence of the individual organisms are observed and 

counted at a certain time (Keough & Downes 1982; Pawlik 1992) and in this study it 

refers to the total number of individuals that remained on the slides when returned to 

the laboratory.  Using ImageJ software (Rasband 1997; Abramoff et al. 2004) on the 

digital images of the slides, the total number and the percentage area of barnacle cover 

per slide was calculated.  The percentage cover of the slides was normalised by the 

total area of the slide that was available for settlement.  However, due to the adverse 

weather conditions during 2011 at Fairlie Quay, a large number of slides were lost (see 

Table 4.3); therefore, a statistical comparison of the percentage coverage between 2010 

and 2011 for the two barnacle species from Fairlie Quay was not possible.  A 

comparison between S. balanoides and E. modestus could, however, be done for the 

2010 data and comparisons of the percentage coverage between the 2010 and 2011 

immersion periods could be done for Burnham-on-Crouch.  The total number of 

barnacles recorded from the field is presented in Appendix 1, Table A1.1. 
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4.3.8.  Critical removal stress  

 The critical removal stress (CRS) of the E. modestus barnacles reared in the 

laboratory and from Burnham-on-Crouch was measured using the automated method as 

described in Chapter 2.  For S. balanoides and E. modestus from Fairlie Quay the hand-

held force gauge (PSM-2K IMADE Co. Ltd) was used to measure the CRS.  The sizes 

of the S. balanoides were on average too large for the automated instrument.  

 

4.3.9.  The influence of biofilm on the critical removal stress of Elminius modestus  

 Silastic T-2, Sylgard 184 and Rhodorsil 48V-750 coated microscope slides were 

used to investigate the influence of a laboratory cultured biofilm on the CRS of adult 

barnacles.  The coated slides were divided into two sets (with an equal number of 

Silastic T-2, Sylgard 184 and Rhodorsil, per set), one set was immersed for ten days 

(Zardus et al. 2008) in a covered tank with a constant flow of unfiltered seawater at the 

Dove Marine Laboratory of Newcastle University, Cullercoats, to develop a natural 

biofilm.  The second set was immersed in a covered tank of RO for 10 days.  Prior to 

seeding with cyprids, the slides with and without a biofilm were air dried for up to 20 

minutes.  This was to allow the biofilm to dry in order to be able to pipette a 2ml 

droplet of 0.2µm filtered ASW in the centre on the slide.  Approximately 20, day zero 

E. modestus cyprids were pipetted into this droplet for each slide.  The slides, 

maintained in quadriPERM® culture vessels, were incubated at 22°C for 48 hrs, after 

which the chambers of the culture vessels were flooded with 15ml of T. suecica.  The 

barnacles were cultured for 20 weeks, after which the CRS was measured by the 

automated method.   

 

4.3.10.  The influence of temperature on the critical removal stress of Elminius 

modestus  

 The influence of temperature on the CRS was investigated.  Following the 

procedures described in Chapter 2 for the culture and settlement of cyprids, E. 

modestus day zero cyprids were settled on Silastic T-2 and Rhodorsil 48V-750 coated 

microscope slides.  The cyprids were seeded to the coated slides and incubated at 22°C 

for 48 hrs, after which the wells of the quadriPERM® culture vessels were flooded 
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with 15ml T. suecica.  The juvenile barnacles were cultured at 22°C in the culture 

vessels for two weeks on a diet of T. suecica, which was added three times per week.  

The water was changed at each feeding.  After the two weeks, the slides were divided 

into four groups, with an equal number of Silastic T-2 and Rhodorsil slides and 

barnacles per group.  The slides were placed in glass slide racks in one of four 1.5L 

containers of ASW and incubated at 22°C, 19°C, 15°C and 12°C.  Each tank was fed 

on a diet of T. suecica, added once a week and the water was changed at each feeding.  

The slides were scanned (HP scanner 5400C) at 1200dpi resolution at two-week 

intervals.  ImageJ software (Rasband 1997; Abramoff et al. 2004) was used to measure 

the basal area (mm
2
) and the growth of the barnacles at the different temperatures over 

a 12-week period.  The removal stress of the 14-week old barnacles was measured by 

the automated method.  

 

4.3.11.  Statistical analysis 

4.3.11.1.  Field recruitment and laboratory settlement 

 The field recruitment data, involving percentage cover of barnacles on the 

coated microscopes slides, were arcsine transformed and tested for normal distribution 

(Kolmogorov-Smirnov test) (Ennos 2012) and homogeneous variance (Levene’s test) 

(Quinn & Keough 2002).  However, the data were not normally distributed and did not 

have homogeneous variance; other transformations (log10 and square root) were tried 

but did not result in a normal distribution.  The percentage coverage of the slides 

immersed in the field, at both Fairlie Quay and Burnham-on-Crouch, over the two years 

(2010 and 2011) was compared using a Kruskal-Wallis non-parametric test on the un-

transformed data, with a 0.05 significance level and with a Mann-Whitney U post-hoc 

analysis test (Ennos 2012; Gao et al. 2016).  For the racks immersed in Fairlie Quay, 

the null hypotheses investigated were: 1) there was no difference in the percentage 

cover between the two barnacle species E. modestus and S. balanoides in 2010, on each 

coating; 2) there was no difference in the percentage cover between the eight coatings 

for E. modestus and S. balanoides; and 3) there was no effect of the percentage 

coverage of E. modestus and S. balanoides due to the side and depth of the racks.  For 

the racks immersed in Burnham-on-Crouch, the null hypotheses tested were: 1) there 

was no difference in the percentage cover of barnacle fouling between the four 
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immersion time points (April 2010, June 2010, April 2011 and July 2011) for a single 

coating and 2) there was no difference in the percentage cover on the eight coatings 

during a single time immersion period.   

Comparisons of the percentage cover of E. modestus between Fairlie 2010 and 

the four immersion periods in Burnham-on-Crouch were carried out.  The null 

hypothesis was that there was no difference in the percentage cover of E. modestus 

between Fairlie Quay in 2010 and Burnham-on-Crouch in April 2010, June/July 2010, 

April 2011 and June/July2011, on each coating.  

The laboratory settlement data were tested for normal distribution 

(Kolmogorov-Smirnov test) (Ennos 2012) and homogeneous variance (Levene’s test) 

(Quinn & Keough 2002).  An ANOVA with 0.05 significance level and a post hoc 

Tukey’s comparison was used to test the null hypothesis that there was no difference in 

the settlement of laboratory-cultured E. modestus cyprids across the eight coatings.  

 

4.3.11.2.  Critical removal stress 

4.3.11.2.1.  2009 Preliminary trials 

 Data sets were transformed using a square root function after an initial 

Kolmogorov-Smirnov (Ennos 2012) and a Levene’s test (Quinn & Keough 2002), 

showed that the distribution and variance were neither normal nor homogeneous.  An 

ANOVA test with a 0.05 significance level was used to investigate the null hypothesis 

that there was no difference in critical removal stress (CRS) of E. modestus grown on 

Intersleek 900, Intersleek 700 and Intersleek Clear reared in the laboratory compared to 

those that grew in the field at Burnham-on-Crouch on the corresponding coatings 

during the 2009 preliminary field trials. 

 

4.3.11.2.2.  Comparison in the critical removal stress between laboratory and 

field cultured Elminius modestus. 

Data sets were tested for normal distribution (Kolmogorov-Smirnov test) 

(Ennos 2012) and homogeneous variance (Levene’s test) (Quinn & Keough 2002).   A 

nested two-factor ANOVA with a 0.05 significance level and a post hoc Tukey’s 
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comparison was used to test the null hypothesis that there was no difference in the CRS 

between E. modestus and S. balanoides barnacles from Fairlie Quay from 2010.  The 

tests included the interaction effect of species x coating.  The ANOVAs were nested to 

examine whether there was an impact of the microscope slides, the sides of the racks or 

the depth of the racks on the CRS of the barnacles.  Comparisons between the years 

2010 and 2011 for barnacles from Fairlie Quay were not possible (see section 4.4.1.1 

for explanation).  Additional ANOVAs with 0.05 significance levels were included to 

examine in more detail the potential differences between the two species for each 

coating separately.   

A nested two-factor ANOVA test with a 0.05 significance level was used to test 

the null hypothesis that there were no differences in the CRS of E. modestus barnacles 

between the time points April 2010, June 2010, April 2011 and July 2011 from 

Burnham-on-Crouch.  The test included the interaction effect of immersion period x 

coating.  The test was nested to determine whether there was an impact of the 

microscope slides and the sides of the racks.  Additional ANOVAs with 0.05 

significance levels were included to examine in more detail the potential differences 

between the four immersion periods for each coating separately. 

Finally, a two-factor nested ANOVA with a 0.05 significance level, including 

the interaction effect of location x coating, was used to test the null hypothesis that 

there was no difference in the CRS of E. modestus barnacles from the three locations: 

Fairlie Quay, Burnham-on-Crouch and the laboratory.  

 

4.3.11.3.  Influence of biofilm on the critical removal stress of Elminius modestus 

 The CRS of E. modestus from three PDMS coatings (Silastic T-2, Sylgard 184 

and Rhodorsil 48V-750) was measured to investigate the influence of biofilm on the 

removal stress.  The data sets were checked for normal distribution and homogeneous 

variance using a Kolmogorov-Smirnov test (Ennos 2012) and Levene’s test (Quinn & 

Keough 2002), respectively.  The data was transformed using log10.  A two-factor 

nested ANOVA with a 0.05 significance level was used to test the null hypothesis that 

there was no difference in the CRS of barnacles removed from the coatings with a 10-

day biofilm to the CRS of barnacles removed from coatings without a biofilm, 

including the interaction effect of biofilm x coating.  
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4.3.11.4.  Influence of temperature on the size and critical removal stress of Elminius 

modestus 

 The data presented normal distribution (Kolmogorov-Smirnov test) (Ennos 

2012) with homogeneous variance (Levene’s test) (Quinn & Keough 2002).  Two, two-

factor nested ANOVAs with 0.05 significance levels and post hoc Tukey’s 

comparisons were used to test the null hypotheses that: 1) there was no difference in the 

size of the barnacles at the end of the growth period, at the four temperatures (12°C, 

15°C, 19°C and 22°C), on the coatings Silastic T-2 and Rhodorsil 48V-750; and 2) 

there was no difference in the CRS of the barnacles grown at the four temperatures 

(12°C, 15°C, 19°C and 22°C) for the two coatings, Silastic T-2 and Rhodorsil 48V-750.  

Both ANOVAs included the interaction effects of temperature x coating. 

 

 

4.4.  Results 

4.4.1.  Field recruitment 

4.4.1.1.  Fairlie Quay, Ayrshire 

The racks immersed in 2010 were in the field for five months.  After this time a 

sufficient number of S. balanoides and E. modestus barnacles had settled on the 

silicone and fluoropolymer coated slides (Figure 4.4).  The racks were immersed in the 

same location in 2011 as in 2010; however, the immersion period had to be reduced 

due to bad weather.  A total of 60% of the slides immersed at Fairlie Quay in 2011 

were lost (Table 4.3).  Those that remained on the outer facing side of the racks did not 

have barnacles on them.  There were, however, signs of barnacle fouling in the form of 

barnacle-sized indentations in the soft silicone coatings and the presence of basal 

membranes remaining on the coatings surface (Figure 4.5).  As a result of the damage 

to the sample a comparison in the percentage coverage for 2011 was not achievable.  

 

 



 Chapter 4 

 

127 
 

 

Figure 4.4.  Photograph of the re-designed racks fouled by Semibalanus balanoides and 

Elminius modestus after five months of immersion.  The racks were attached to a pier 

piling at Fairlie Quay in 2010. 

 

Table 4.3.  The total number of slides that were collected from Fairlie Quay in 2010 and 

2011.  Total number of slides immersed in 2010 per coating was 16; total number 

immersed in 2011 per coating was 12. 

Coating Total number of slides collected 

2010 2011 

S1 16 5 

S2 15 2 

S3 16 2 

S4 15 4 

S5 16 2 

FP1 14 1 

FP2 15 2 

FP3 16 5 
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Figure 4.5.  Examples of the damage to the racks and coated slides caused by extreme 

weather at Fairlie Quay during May 2011:  A) illustrating the damage to the racks and 

loss of slides and B) microscope slides with indentations and membranous-bases 

remaining on the surface after removal of barnacles.   

 

 

The data did not have a normal distribution (df = 246, D = 0.283, P ≤ 0.001) nor 

homogeneous variance (df1 = 7, df2 = 238, F = 12.237, P ≤ 0.001).  The null 

hypothesis that there was no difference in the total percentage cover of S. balanoides 

and E. modestus in 2010 was supported for the coatings S1 (H = 3.778, P = 0.052), S3 

(H = 0.112, P = 0.738) and S4 (H = 0.662, P = 0.414), but not for the coatings S2, S5, 

FP1, FP2 and FP3.  The percentage cover of S. balanoides was significantly higher than 

that for E. modestus for the coatings S2 (H = 4.139, P = 0.042), S5 (H = 16.214, P ≤ 

0.001), FP1 (H = 9.529, P = 0.002), FP2 (H =9.343, P = 0.002) and FP3 (H = 8.192, P 

= 0.004) (see Figure 4.6).   
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There was an effect of depth on the total percentage cover of E. modestus for 

two out of the eight coatings S5 (H = 8.060, P = 0.018) and FP1 (H = 10.088, P = 

0.006) and of S. balanoides for three coatings S1 (H = 10.00, P = 0.007), S2 (H = 

10.159, P = 0.006) and S4 (H = 7.797, P = 0.020), with a greater percentage cover of 

both species on slides which were on the lower section of the racks.  The influence of 

the side of the rack on the percentage cover was only significant for one coating for E. 

modestus (FP1 H = 4.363, P = 0.037) and one coating for S. balanoides (S1 H = 7.333, 

P = 0.007), in which there were a greater number that had settled on the sheltered side 

of the rack, the side against the pier leg.   

 

 

Figure 4.6.  The total percentage cover (± range) of Elminius modestus and Semibalanus 

balanoides on five silicone and three fluoropolymer coatings immersed in Fairlie Quay 

during 2010.   

 

The null hypothesis that there was no difference in the percentage settlement of 

E. modestus and S. balanoides across the eight coatings, was not confirmed.  There 

were significant differences in the overall percentage cover between the coatings for 

both E. modestus (H = 16.095, P = 0.024) and S. balanoides (H = 23.942, P = 0.001).  

For E. modestus there was a greater percentage of barnacles settled on FP1 compared to 
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S2 and S5 (U14, 15 = 48.00, P = 0.01; U14, 15 = 54.00, P = 0.011, respectively) and there 

was a greater percentage on S4 also compared to the S2 and S5 coatings (U15, 16 = 

52.00, P = 0.011; U15, 15 = 55.00, P = 0.008, respectively).  For S. balanoides there was 

a much greater percentage on the three fluoropolymers when compared to the silicones 

S1, S2, S3 and S4 (FP1 vs S2 U14, 15 = 41.00, P = 0.005; FP1 vs S3 U14, 16 = 33.00, P = 

0.001; FP2 vs S1 U14, 16 = 67.50, P = 0.036; FP2 vs S2 U14, 15 = 43.00, P = 0.006; FP2 

vs S3 U14, 16 = 38.00, P = 0.001; FP2 vs S4 U14, 15 = 63.00, P = 0.037; FP3 vs S1 U16, 16 

= 62.00, P = 0.021; FP3 vs S2 U16, 15 = 58.00, P = 0.013; FP3 vs S3 U16, 16 = 50.00, P = 

0.003; FP3 vs S4 U16, 15 = 69.00, P = 0.041).  In addition the silicone coating S5 had a 

greater percentage covering of S. balanoides than the coatings S2 and S3 (U16, 15 = 

50.00, P = 0.005; U16, 15 = 40.00, P = 0.001, respectively). 

 

4.4.1.2.  Burnham-on-Crouch, Essex 

In 2010 and 2011 with the re-designed racks there was minimum loss of, or 

damage to, the slides.  E. modestus was the dominant species present on the microscope 

slides and the PVC racks; however, there was also Balanus crenatus, a calcareous-

based barnacle present in small numbers.  However, as this was not the target species, 

percentage cover and CRS were not recorded for this species.  The barnacles were 

covered by dense mats of Jassa spp. tubes (Figure 4.7).  Jassa spp. is an amphipod that 

builds the tubes from detritus filtered from the water.   
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Figure 4.7.  Racks from Burnham-on-Crouch immersed in April 2010 after three months 

immersion time, fouled with Elminius modestus which were covered by the sediment tubes 

of Jassa spp. (A).  A side view of a silicone coated microscope slide with Elminius modestus 

barnacles covered with a thick layer of Jassa spp. tubes (B).   

 

The data were not normally distributed (df = 862, D = 0.262, P ≤ 0.001) and did 

not have homogeneous variance (df = 31, df2 = 830, F = 39.959, P ≤ 0.001).  The null 

hypothesis that there was no difference in the percentage cover of E. modestus across 

the four immersion time points (April 2010, June 2010, April 2011 and July 2011), for 

each of the eight coatings, was only supported by data for one coating.  Coating S5 had 

consistent coverage at each time point (H = 7.209, P = 0.066), whereas the percentage 

cover for the remaining seven coatings differed across the four immersion periods (S1 

H = 31.019, P < 0.001; S2 H = 27.590, P < 0.001; S3 H = 22.875, P < 0.001, S4 H = 

27.916, P < 0.001; FP1 H = 39.464, P < 0.001; FP2 H = 32.954, P < 0.001; FP3 H = 

32.236, P < 0.001) (Figure 4.8).  The percentage cover in April 2010 was greater than 

the coverage of the three remaining immersion times for seven of the eight coatings 

(U16, 8 ≥ 0.000, P ≤ 0.003).  The percentage coverage during June 2010 was also greater 
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than the coverage for both the 2011 immersion periods for all three of the 

fluoropolymers (U12, 8 ≥ 4.00, P ≤ 0.021).  However, for the coatings S1 and S2 the 

coverage during June 2010 was less than the coverage for the 2011 immersion times 

(U12, 8 ≥ 20.00, P ≤ 0.045).  Comparisons between the two immersion periods in 2011, 

only the coating FP1 showed a difference in percentage coverage, with it being higher 

during the July immersion time than in the April that year (U10, 10 = 7.50, P = 0.004).   

 

Figure 4.8.  The total percentage cover (± range) of Elminius modestus on five silicone and 

three fluoropolymer coatings immersed in Burnham-on-Crouch in April 2010, June 2010, 

April 2011 and July 2011. 

 

 Comparisons between the coatings within a single time period were also 

completed.  The null hypothesis that there was no difference in the percentage cover 

across the eight coatings within a single immersion period, was confirmed for the April 

2011 immersion period (H = 6.240, P = 0.512).  However for the remaining periods 

(April 10, June 2010 and July 2011), the null hypothesis was not supported - there were 

significant differences in percentage cover between the eight coatings (April 10; H = 

91.341, P < 0.001, June 2010; H = 78.063, P < 0.001 and July 2011; H = 12.931, P = 

0.002).  The fluoropolymers (FP1, FP2 and FP3) had higher percentage cover than all 

the silicones during April 2010 and June 2010 (April; U16, 14 ≥ 0.00, P ≤ 0.001, June; 

U12, 11 ≥ 0.00, P < 0.001).  For July 2011, only two of the fluoropolymers (FP1 and 
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FP3) had a higher coverage than three of the silicones (S1, S2 and S3) (U10, 10 ≥ 9.500, 

P ≤ 0.040).  The silicones S1 and S2 presented the lowest percentage cover during 

April 2010, June 2010 and July 2011 (April 2010 U16, 14 ≥ 0.001, P ≤ 0.028; June 2010 

U12, 11 ≥ 0.00, P ≤ 0.033; July 2011 U10, 10 ≥ 9.50, P ≤ 0.041), with the coating S5 

having the actual lowest percentage cover during April 2010 alone (U14, 16 ≥ 0.00, P < 

0.001).   

 

4.4.1.3.  Comparison in the percentage cover between Fairlie Quay and Burnham-on-

Crouch 

 The null hypothesis that there was no difference in the percentage cover of E. 

modestus at Fairlie Quay during 2010 with the percentage cover of barnacles at 

Burnham-on-Crouch was confirmed but only for June 2010 for the coatings S1 (U12, 16 

= 51.00, P = 0.067) and S2 (U12, 15 = 57.00, P = 0.098), and for April 2011 for the 

coatings S4 (U9, 15 = 35.00, P = 0.053), FP1 (U8, 14 = 45.00, P = 0.450) and FP2 (U12, 16 

= 69.00, P = 0.756).  The percentage cover for the remaining coatings and immersion 

periods from Burnham-on-Crouch were distinctly greater than that from Fairlie 2010 

(U16, 16 ≤ 38.00, P ≤ 0.03) (Figure 4.9).  
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Figure 4.9.  The total percentage cover (± range) of Elminius modestus on five silicone and three fluoropolymer coatings immersed in Fairlie Quay 2010 

and Burnham-on-Crouch in April 2010, June 2010, April 2011 and July 2011. 
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4.4.2.  Laboratory settlement 

 The data were normally distributed (df = 64, D = 0.075, P = 0.200) with 

homogeneous variance (df1 = 7, df2 = 56, F = 2.009, P = 0.070).  The null hypothesis 

that there was no difference in the percentage of settled cyprids between the eight 

coatings was not supported.  There was a difference in the percentage settlement of 

laboratory cultured E. modestus between the eight test coatings (df = 7, F = 16.919, P < 

0.001) (Figure 4.10 and Table 4.4), in which the silicone coating S5 had less settlement 

than the other seven coatings (Tukey’s P ≤ 0.04).  In addition, the fluoropolymers FP2 

and FP3 had a greater percentage settlement than all five silicone coatings (Tukey’s P ≤ 

0.008).   

 

Figure 4.10.  The mean percentage settlement (± 1 SE) of laboratory reared Elminius 

modestus on silicone and fluoropolymer coatings.   

 

Table 4.4.  ANOVA table of results for the settlement of Elminius modestus cyprids on the 

eight test coatings assayed under laboratory conditions. 

 Sum of 

Squares 

Mean Square df F-value P-value 

Coating 1.289 0.184 7 16.919 < 0.001 
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4.4.3.  Critical removal stress 

4.4.3.1.  2009 Preliminary field trials 

 The data were normally distributed (df = 338, D = 0.048, P = 0.060) with 

homogeneous variance (df1 = 3, df2 =334, F = 2.463, P = 0.117) after transformation by 

square root.  No comparison between the field and laboratory could be made for the 

coating Intersleek 900, as no barnacles were recruited on the samples immersed in 

Burnham-on-Crouch during the 2009 preliminary trials.  The null hypothesis that there 

were no differences in the CRS of E. modestus settled and grown in the laboratory on 

Intersleek 700 (IS700) and Intersleek Clear (ISCLR) to the CRS of E. modestus that 

grew in the field at Burnham-on-Crouch in 2009 was not confirmed.  The CRS values 

of barnacles reared in the laboratory were significantly higher than the CRS of barnacles 

that grew in the field (df = 1, F = 16.852, P ≤ 0.001) (Figure 4.11 and Table 4.5).  There 

was also a difference in the CRS between the coatings (df = 1, F = 7.911, P = 0.005), 

and an interaction effect of coating x location (df = 1, F = 11.662, P = 0.001).  Hence, 

the CRS value of E. modestus on Intersleek Clear was greater than the CRS of the 

barnacles on Intersleek 700.  This pattern is consistent for both locations, but the CRS 

values of barnacles from the laboratory culture on the Intersleek coatings were higher 

than those for barnacles on the corresponding coatings from Burnham-on-Crouch.  
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Figure 4.11.  The mean critical removal stress (± 95% confidence intervals) of Elminius 

modestus grown on Intersleek 900 (IS900), Intersleek 700 (IS700) and an Intersleek Clear 

(CLR) in the laboratory and in Burnham-on-Crouch in 2009.  The number (n) of 

barnacles tested is presented above the bars * indicates the samples of individuals that are 

below the desirable minimum number of replicates as recommended by Conlan et al. 

(2008) for Balanus amphitrite. 

 

Table 4.5.  ANOVA table of results for the critical removal stress of Elminius modestus 

from Intersleek 700 and Intersleek Clear from a laboratory culture and from the field 

population at Burnham-on-Crouch during 2009.   

 Sum of 

Squares 

Mean Square df F-value P-value 

Location 0.014 0.014 1 16.852 ≤ 0.001 

Coating 0.007 0.007 1 7.911 0.005 

Coating x location 0.010 0.010 1 11.662 0.001 

 

 

4.4.3.2.  Fairlie Quay, Ayrshire 

 The data were normally distributed (df = 156, D = 0.099, P = 0.070) with 

homogeneous variance (df1 = 68, df2 = 87, F = 2.720, P = 0.055).  The null hypothesis 

that there was no difference in the CRS of E. modestus and the CRS of S. balanoides 

was not confirmed (Figure 4.12 and Table 4.6 for the numbers (n)).  The removal stress 
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for E. modestus was greater than that for S. balanoides (df = 1, F = 23.396, P = 0.043) 

(Table 4.7).  However, there was no significant interaction effect of species x coating 

(df = 7, F = 1.333, P = 0.363), which shows that the difference between the two species 

was not present for all the coatings; this difference was only present for the coatings S4, 

FP1, FP2 and FP3 (S4 df = 1, F = 6.692, P = 0.017; FP1 df = 1, F = 11.090, P = 0.007; 

FP2 df = 1, F = 63.697, P < 0.001; FP3 df = 1, F = 46.239, P < 0.001).  

The ANOVA results demonstrated that there were significant differences in 

CRS between the eight coatings (df = 7, F = 33.287, P ≤ 0.001).  The post hoc Tukey’s 

comparisons showed that the CRS of barnacles removed from the fluoropolymers FP1, 

FP2 and FP3 were greater than the CRS of barnacles removed from all five of the 

silicone coatings (Tukey’s P ≤ 0.001).  The CRS of barnacles removed from the coating 

FP1 was also greater than the CRS of barnacles removed from the coating FP2 (Tukey’s 

P = 0.024).  Of the silicone coatings only the CRS of the coatings S3 and S5 differed in 

which S3 was less than that of S5 (Tukey’s P = 0.005).   

 There was a nested effect on the barnacle adhesion due to the slide location on 

the racks.  The slides that were positioned on the sheltered side of the rack, those that 

were closest to the pier leg, had a lower CRS value than slides which were positioned 

on the non-sheltered, exterior, of the rack (df = 1, F = 13.801, P = 0.045).  Although, 

there was no nested effect due to the depth of the slides on the racks (df = 2, F = 1.525, 

P = 0.255) or a nested effect due to the different slides (df = 15, F = 0.123, P = 0.974). 
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Figure 4.12.  The mean critical removal stress (± 95% confidence intervals) of Elminius 

modestus and Semibalanus balanoides from silicone and fluoropolymer coatings immersed 

in Fairlie Quay in 2010.   

 

Table 4.6.  The number (n) of Elminius modestus and Semibalanus balanoides from Fairlie 

Quay in 2010 used to measure the critical removal stress. * indicates the samples of 

barnacles that were below the desirable minimum number of replicates as recommended 

by Conlan et al. (2008) for Balanus amphitrite.   

Coating Number (n) of barnacles  

Elminius 

modestus 

Semibalanus 

balanoides 

S1 8* 8* 

S2 3* 3* 

S3 6* 5* 

S4 6* 6* 

S5 11 11 

FP1 12 12 

FP2 18 18 

FP3 28 28 
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Table 4.7.  ANOVA table of results for the comparison of the critical removal stress of 

Fairlie Quay Elminius modestus and Semibalanus balanoides in 2010 (A) and an ANOVA 

table of results for the comparison of critical removal stress of Elminius modestus and 

Semibalanus balanoides per coating (B). 

A      

 Sum of 

Squares 

Mean Square df F-value P-value 

Species 0.055 0.055 1 23.396 0.043 

Coating 0.406 0.058 7 33.287 ≤ 0.001 

Species x coating 0.037 0.005 7 1.333 0.363 

Side of rack 0.006 0.006 1 3.801 0.045 

Depth  0.005 0.002 2 1.525 0.225 

Slide number 0.001 0.000 15 0.123 0.974 
 

B 
     

Coating Sum of 

Squares 

Mean Square df F-value P-value 

S1 0.002 0.002 1 1.160 0.296 

S2 0.001 0.001 1 2.415 0.181 

S3 0.002 0.002 1 2.919 0.107 

S4 0.005 0.005 1 6.692 0.017 

S5 0.007 0.007 1 3.252 0.080 

FP1 0.039 0.039 1 11.090 0.007 

FP2 0.103 0.103 1 63.697 ≤ 0.001 

FP3 0.138 0.138 1 46.239 ≤ 0.001 

 

 

4.4.3.3.  Burnham-on-Crouch, Essex 

The data were normally distributed (df = 1444, D = 0.056, P = 0.200) with 

homogeneous variance (df1 = 235, df2 = 1208, F = 2.601, P = 0.065).  The null 

hypothesis that there was no difference in the CRS of E. modestus from the immersion 

time periods April 2010, June 2010, April 2011 and July 2011 for each coating, was not 

confirmed (Figure 4.13 and Table 4.8 for the number of barnacles).  There were 

differences in the removal stress of E. modestus across the four immersion periods at 

Burnham-on-Crouch (df = 3, F = 2.838, P = 0.043) (Table 4.9).  This is not a repeated 

measure as different populations of barnacles were measured at each immersion period.  

The differences between immersion periods were only present for five out of the eight 

coatings (S1 df = 3, F = 4.479, P = 0.006; S2 df = 3, F = 3.238, P = 0.034; S5 df = 3, F 

= 35.566, P < 0.001; FP1 df = 3, F = 20.719, P < 0.001; FP3 df = 3, F = 9.617, P < 
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0.001); however, there was no clear pattern that can be correlated to the month or year 

of immersion.  For instance, for the coating S1, the barnacles from April 2011 had a 

higher CRS than June 2010 (Tukey’s P = 0.007).  For S2, the CRS was different 

between April 2010 and June 2010 (Tukey’s P = 0.023), where the former was higher 

than the latter.  For the S5 coating, the CRS of April 2010 and April 2011 was lower 

than the CRS of the barnacles that were settled in the later summer months (June 2010, 

July 2011) (Tukey’s P ≤ 0.007).  For the FP1 coating, the barnacles from June 2010 had 

a higher CRS than the barnacles from July 2011 (Tukey’s P < 0.001).  With FP2 the 

CRS of barnacles from July 2011 was lower than the CRS values from the three 

remaining immersion periods (Tukey’s P ≤ 0.003). 

There were also significant differences in the CRS values between the coatings 

(df = 7, F = 108.063, P ≤ 0.001).  For the coatings FP1 and FP2, the CRS measurements 

were significantly higher than for the remaining six coatings (Tukey’s P ≤ 0.001).  

Barnacles removed from coatings FP3 and S5 had significantly higher CRS values than 

those on the silicone coatings S1, S2, S3 and S4 (Tukey’s P ≤ 0.005).  There was a 

significant interaction effect of immersion period x coating (df = 21, F = 6.027, P ≤ 

0.001), however interpretation of the results is made difficult by the multiple coatings 

and immersion periods, as there does not appear to be a consistent trend across the eight 

coatings and four immersion periods.    

There was no nested impact of the slides used to compile the CRS values (df = 

17, F = 1.030, P = 0.450) or any nested effect due to the side of the racks (df = 1, F = 

1.097, P = 0.529) 
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Figure 4.13.  The mean critical removal stress (± 95% confidence intervals) of Elminius 

modestus from Burnham-on-Crouch from April 2010, June 2010, April 2011 and July 

2011.  The number (n) of barnacles presented in Table 4.8.  

 

Table 4.8.  The number (n) of Elminius modestus used to measure the critical removal 

stress from Burnham-on-Crouch.  * indicates the samples that are below the desirable 

minimum number of replicates as recommended by Conlan et al. (2008) for Balanus 

amphitrite.   

Coating Number (n) of barnacles 

April 2010 June 2010 April 2011 July 2011 

S1 30 35 25 13 

S2 16 33 10* 21 

S3 57 40 25 22 

S4 54 52 36 24 

S5 70 93 40 56 

FP1 85 103 20 71 

FP2 99 117 32 49 

FP3 56 114 47 58 
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Table 4.9.  ANOVA table of results for the comparison of the critical removal stress of 

Elminius modestus from Burnham-on-Crouch for the immersion periods April 2010, June 

2010, April 2011 and July 2011 (A) and an ANOVA table for the comparison of the critical 

removal stress of Elminius modestus for the four immersion periods per coating (B). 

A      

 Sum of 

Squares 

Mean Square df F-value P-value 

Immersion period 0.010 0.003 3 2.838 0.043 

Coating 0.965 0.138 7 108.063 ≤ 0.001 

Immersion period 

x coating 

0.151 0.007 21 6.027 ≤ 0.001 

Slide number 0.018 0.001 14 1.030 0.450 

Side of rack 0.016 0.001 1 1.097 0.529 
 

B 
     

Coating Sum of 

Squares 

Mean Square df F-value P-value 

S1 0.005 0.002 3 4.479 0.006 

S2 0.003 0.001 3 3.238 0.034 

S3 0.002 0.001 3 1.274 0.287 

S4 0.002 0.001 3 1.171 0.287 

S5 0.076 0.025 3 35.566 ≤ 0.001 

FP1 0.111 0.037 3 20.719 ≤ 0.001 

FP2 0.056 0.002 3 9.617 ≤ 0.001 

FP3 0.002 0.001 3 1.248 0.293 

 

 

4.4.3.4.  Comparison in the critical removal stress between laboratory and field 

cultured Elminius modestus  

 Figure 4.14 displays the CRS of E. modestus from Fairlie Quay 2010, Burnham-

on-Crouch (April 2010, June 2010, April 2011 and July 2011) compared to the 

barnacles that were grown in the laboratory from a single culture.  Table 4.10 displays 

the number (n) of E. modestus barnacles used in the laboratory culture, for the numbers 

of barnacles tested from Fairlie Quay and Burnham-on-Crouch see Table 4.6 and 4.8.   

 The data were normally distributed (df = 1933, D = 0.780, P = 0.075) with a 

homogeneous variance (df1 = 23, df2 =1909, F = 2.996, P = 0.100).  The null 

hypothesis that there was no difference in the removal stress of E. modestus from the 

three locations, Fairlie Quay, Burnham-on-Crouch and the laboratory was not 
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supported.  There were significant differences in the adhesion strengths of barnacles 

from the different locations (df = 2, F = 46.076, P ≤ 0.001) (Table 4.11).  The CRS 

values of barnacles from Burnham-on-Crouch were lower than those from Fairlie Quay 

and the laboratory culture (Tukey’s P ≤ 0.001).  There was also a significant difference 

between the coatings (df = 7, F = 192.781, P ≤ 0.001).  The post hoc Tukey’s analysis 

showed that there were three distinct subsets, namely, the fluoropolymers FP1 and FP2 

(Tukey’s P ≤ 0.001), the silicones S1, S2, S3 and S4 (Tukey’s P ≤ 0.001) and the 

coatings FP3 and S5 (Tukey’s P ≤ 0.03).  Within each subset the CRS values of the 

coatings were similar to each other but distinct from the values of the remaining 

coatings.  However, there was a significant interaction effect of location x coating (df = 

14, F = 19.682, P ≤ 0.001).  Interpretation of the results is made difficult by the multiple 

coatings, locations and immersion periods.  Therefore, to better clarify differences 

between locations ANOVAs were performed for each coating, separately.  Seven of the 

eight coatings showed differences in the CRS values of the barnacles from the three 

locations (S1 df = 5, F = 4.198, P = 0.002; S2 df = 5, F = 3.283, P = 0.011; S3 df = 5, F 

= 1.477, P = 0.201; S4 df = 5, F = 2.745, P = 0.021; S5 df = 5, F = 24.180, P < 0.001; 

FP1 df = 5, F = 26.962, P < 0.001; FP2 df = 5, F = 38.540, P < 0.001; FP3; df = 5, F = 

124.016, P < 0.001).  For five out of these seven coatings (S4, S5, FP1, FP2 and FP3) 

the CRS from barnacles grown in Fairlie Quay were higher than the CRS of the 

barnacles from Burnham-on-Crouch across all four of the immersion periods (S4 

Tukey’s P ≤ 0.039; S5 Tukey’s P ≤ 0.046; FP1 Tukey’s P ≤ 0.003; FP2 Tukey’s P < 

0.001; FP3 Tukey’s P < 0.001).  For the coatings S1 and S2, CRS from Fairlie Quay 

was only higher than two (June 2010 and July 2011) and one (June 2010) of the 

immersion periods from Burnham-on-Crouch, respectively (S1 Tukey’s P ≤ 0.046; S2 

Tukey’s P = 0.007).    

 The CRS for barnacles that were grown in the laboratory were on average higher 

than the values for barnacles from Burnham-on-Crouch.  For the three fluoropolymers, 

this difference was present across all four of the immersion periods (FP1 Tukey’s P < 

0.001; FP2 Tukey’s P < 0.001; FP3 Tukey’s P ≤ 0.008).  For S5 this difference was 

between the laboratory and Burnham-on-Crouch’s June 2010 and July 2011 immersion 

times (Tukey’s P ≤ 0.013).   
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Comparing the CRS values between barnacles grown in the laboratory and 

Fairlie Quay barnacles, those from Fairlie Quay had a higher CRS than those settled and 

grown in the laboratory for the coatings S2, FP1 and FP3 (S2 Tukey’s P = 0.028; FP1; 

Tukey’s P < 0.001; FP3 Tukey’s P < 0.001). 

For the laboratory data, there was no nested impact of the slides (df = 10, F = 

1.098, P = 0.333). 

 

 

Table 4.10. The number (n) of Elminius modestus used to measure the critical removal 

stress from barnacles settled and grown in the laboratory.  * indicates the samples that are 

below the desirable minimum number of replicates as recommended by Conlan et al. 

(2008) for Balanus amphitrite. 

Coating Number (n) of  

barnacles 

S1 31  

S2 23  

S3 24  

S4 32  

S5 2*  

FP1 44  

FP2 58  

FP3 56  
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Figure 4.14. The mean critical removal stress (± 95% confidence intervals) of Elminius modestus from Fairlie Quay 2010, Burnham-on-Crouch from 

April 2010, June 2010, April 2011 and July 2011 and barnacles that were cultured in laboratory conditions.  
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Table 4.11.  ANOVA table of results for the comparison of the critical removal stress of 

Elminius modestus from Fairlie Quay (2010), Burnham-on-Crouch (April 2010, June 2010, 

April 2011 and July 2011) and laboratory (A) and an ANOVA table for the comparison of 

the critical removal stress of Elminius modestus from the three locations per coating (B). 

A      

 Sum of 

Squares 

Mean Square df F-value P-value 

Location 0.144 0.072 2 46.076 ≤ 0.001 

Coating 0.114 0.302 7 192.781 ≤ 0.001 

Location x coating 0.432 0.031 14 19.682 ≤ 0.001 

Slide number 

(Laboratory) 

0.065 0.002 10 1.098 0.333 

 

B 
     

Coating Sum of 

Squares 

Mean Square df F-value P-value 

S1 0.009 0.002 5 4.198 0.002 

S2 0.006 0.001 5 3.283 0.011 

S3 0.004 0001 5 1.477 0.201 

S4 0.007 0.001 5 2.745 0.021 

S5 0.106 0.021 5 24.180 ≤ 0.001 

FP1 0.277 0.055 5 26.962 ≤ 0.001 

FP2 0.440 0.008 5 38.540 ≤ 0.001 

FP3 0.476 0.095 5 124.016 ≤ 0.001 

 

 

4.4.4.  Influence of biofilm on the critical removal stress of Elminius modestus 

 The data were normally distributed (df = 80, D = 0.879, P = 0.107) with 

homogeneous variance (df1 = 5, df2 =75, F = 2.762, P = 0.114).  The null hypothesis 

that there would be no difference in the CRS of E. modestus barnacles grown on 

surfaces with a 10-day-old biofilm compared to surfaces without a biofilm was 

supported by the results for all three of the silicone coatings (df = 1, F = 0.083, P = 

0.774) (Figure 4.15 and Table 4.11).  However, there was a difference in the CRS of the 

E. modestus between the coatings (df = 2, F = 32.257, P ≤ 0.001), with barnacles grown 

on Rhodorsil 48V-750 having a significantly lower CRS value than Silastic T-2 and 

Sylgard 184 (Tukey’s, P ≤ 0.001).  There was no significant interaction effect of biofilm 

x coating (df = 1, F = 0.041, P = 0.959).  Finally, there was no nested effect due to the 

different slides used to grow the barnacles to size (df = 22, F = 0.001, P = 0.996). 
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Figure 4.15.  The mean critical removal stress (± 95% confidence interval) of Elminius 

modestus grown on Silastic T-2 (T2), Sylgard 184 (SG) and Rhodorsil 48V-750 (PDMS) 

coatings with and without a 10-day-old laboratory cultured biofilm.  The number (n) of 

barnacles tested is presented above the bars * indicates the samples of individuals that are 

below the desirable minimum number of replicates as recommended by Conlan et al. 

(2008) for Balanus amphitrite. 

 

 

Table 4.12.  ANOVA table of results for the critical removal stress of Elminius modestus 

barnacles removed from Silastic T-2 and Sylgard 184 coatings with a 10-day-old biofilm 

and no-biofilm. 

 Sum of 

Squares 

Mean Square df F-value P-value 

Biofilm 0.000 0.000 1 0.083 0.774 

Coating 0.104 0.052 2 32.257 ≤ 0.001 

Biofilm x coating 0.000 6.673 x 10
-5

 1 0.041 0.959 

Slide number 3.753 x 10
-6

 3.753 x 10
-6

 22 0.001 0.996 

 

 

 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

T2 SG PDMS 

C
ri

ti
ca

l 
re

m
o
v
a
l 

st
re

ss
 (

M
P

a
) 

Coating 

Biofilm 

No biofilm 

13 

14 
19 

19 

7* 

11 



 Chapter 4 

 

149 
 

4.4.5.  The influence of temperature on the size and critical removal stress of 

Elminius modestus  

The size data were normally distributed (df = 83, D = 0.080, P = 0.200) with 

homogeneous variance (df1 = 23, df2 = 59, F = 2.104, P = 0.074).  The null hypothesis 

that there would be no difference in the size of the barnacles at the end of the growth 

period, grown at the four temperatures (22°C, 19°C, 15°C and 12°C), on the coatings 

Silastic T-2 and Rhodorsil 48V-750, was not supported.  There were significant 

differences in the sizes of the E. modestus barnacles grown at the different temperatures 

across the two coatings (df = 3, F = 18.715, P < 0.001) (Figure 4.16 and Table 4.13).  

For both Silastic T-2 and Rhodorsil 48V-750 coatings, the barnacles grown at 19°C 

were smaller than those grown at the three other temperatures (Tukey’s, P < 0.001).  

The barnacles grown at 22°C were larger than those grown at 12°C and 15 ºC (Tukey’s, 

P = 0.046 and P = 0.001, respectively).  There was no significant difference in the sizes 

of E. modestus barnacles at the terminus of the growth period between the two coatings 

(df = 1, F = 6.664, P = 0.055).  There was also no interaction effect of temperature x 

coating (df = 1, F = 0.380, P = 0.771).  Finally, there was no nested effect due to the 

different microscope slides used to grow the barnacles to size (df = 5, F = 0.355, P = 

0.851). 
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Figure 4.16.  The mean basal area (± 1 SD) of Elminius modestus on Rhodorsil 48V-750 

PDMS (A) and Silastic T-2 (B) grown over a 14 week period at 12°C, 15°C, 19°C and 

22°C.   

 

Table 4.13.  ANOVA table of results for the size of Elminius modestus barnacles grown at 

four different temperatures (12°C, 15°C, 19°C and 22°C) on Rhodorsil 48V-750 PDMS 

and Silastic T-2. 

 Sum of 

Squares 

Mean Square df F-value P-value 

Temperature 386.821 128.940 3 18.715 ≤ 0.001 

Coating 31.250 31.250 1 6.664 0.055 

Temperature x 

coating 

7.251 2.417 3 0.380 0.771 

Slide number 9.526 1.905 5 0.355 0.851 
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The CRS data were normally distributed (df = 83, D = 0.162, P = 0.06) with 

homogeneous variance (df1 = 23, df2 = 59, F = 1.910, P = 0.088).  The null hypothesis 

that there would be no difference in the CRS of E. modestus grown at four temperatures, 

was confirmed.  The temperature did not influence the CRS for barnacles removed from 

the silicone coatings significantly (df = 3, F = 1.927, P = 0.221) (Figure 4.17 and Table 

4.14).  However, there was a signicant difference between the coatings, in that the CRS 

for barnacles removed from Silastic T-2 was greater than those removed from Rhodorsil 

48V-750 (df = 1, F = 102.404, P = 0.007).  The interaction effect of temperature x 

coating showed no significant influence on the CRS of the barnacles (df = 3, F = 5.995, 

P = 0.062).  In addition, there was no nested effect of the different microscope slides 

used to collate the CRS data (df = 5, F = 1.149, P = 0.436).  

 

  

Figure 4.17.  The mean critical removal stress (± 95% confidence intervals) of Elminius 

modestus grown on Silastic T-2 and Rhodorsil 48V-750 PDMS at temperatures 12°C, 

15°C, 19°C and 22°C.  The number (n) of barnacles tested is presented above the bars * 

indicates the samples of individuals that are below the desirable minimum number of 

replicates as recommended by Conlan et al. (2008) for Balanus amphitrite. 
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Table 4.14.  ANOVA table of results for the critical removal stress of Elminius modestus 

barnacles grown at four different temperatures (12°C, 15°C, 19°C and 22°C) on Rhodorsil 

48V-750 PDMS and Silastic T-2. 

 Sum of 

Squares 

Mean Square df F-value P-value 

Temperature 0.008 0.003 3 1.927 0.221 

Coating 0.140 0.140 1 102.404 0.007 

Temperature x 

coating 

0.004 0.001 3 5.995 0.062 

Slide number 0.012 0.002 5 1.149 0.436 

 

 

4.5. Discussion  

The aim of this chapter was to compare the use of laboratory assays and field 

immersion trials for evaluating FR coatings.  The percentage recruitment from the field 

at two locations, the percentage settlement from the laboratory and the CRS from both 

field and laboratory for eight coatings were recorded.  There were similarities in the 

patterns of the field recruitment for each location and immersion period and laboratory 

settlement across the eight coatings.  For example, there were higher percentages on the 

three fluoropolymers than on the five silicones, with the silicone coating S2 having 

some of the lowest level of recruitment and settlement.  A similar trend was noted for 

the CRS values, whereby barnacles from the field sites and from the laboratory culture 

had a greater adhesive strength to the fluoropolymers than the silicones. 

In an effort to explain the potential differences between laboratory assays and 

field immersion trials, the effects of biofilm and temperature on the CRS of laboratory-

raised E. modestus was investigated.  However, in this study the influence of biofilm 

and temperature was un-determined.  

 

4.5.1.  Field recruitment and laboratory settlement 

The conclusion that laboratory settlement assays have the potential to be a good 

representation for field performances could be concluded from the results of the present 

study.  The laboratory cultured cyprids were able to differentiate between the coatings 

in a similar manner as that for the field.  The settlement of E. modestus cultured in the 
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laboratory (Figure 4.10) displayed a trend across the coatings consistent with the 

recruitment in Burnham-on-Crouch (Figure 4.8) specifically in April 2010.  This saw a 

greater population of barnacles on the fluoropolymers than for the silicones and which 

saw the silicone coating S5 having the lowest population of all.  For the samples that 

were immersed in June 2010 in Burnham-on-Crouch, the fluoropolymers again had a 

greater percentage cover than that found on the silicones; S2 had the lowest coverage, 

whereas S5 had the greatest coverage of the five silicones.  It has been demonstrated 

before with Balanus amphitrite (Rittschof & Costlow 1989) and S. balanoides (Crisp & 

Meadows 1962) that results from laboratory trials corresponded well with results from 

the field.  However, when comparing the laboratory settlement in this study to the 2011 

immersion periods in Burnham-on-Crouch and to the recruitment of E. modestus at 

Fairlie Quay, there seems to be fewer similarities to draw on.  This makes the 

interpretation of the results complicated.  Other previous studies with B. amphitrite and 

S. balanoides (Thompson et al. 1998; Matsumura et al. 2000) and B. improvisus 

(O’Connor & Richardson 1996), field recruitment results were found not to be 

consistent with the laboratory results.  

Laboratory assays are often used as a precursor to field immersion trials, in 

order to down-select the number of coatings for immersion in the field (Swain 1997; 

Martinelli et al. 2012).  Yet the validity of laboratory assays had been called into 

question as to whether they are truly a good indication of the results likely to be found 

in the field (Briand 2009).  However, in this study even the results from the field 

differed between locations and over time.  When comparing the recruitment between the 

two field sites (Fairlie Quay and Burnham-on-Crouch) and within an individual field 

site in the two year period, there are clear differences in the percentage cover.  For 

example the coverage at Fairlie Quay, specifically of E. modestus, was substantially less 

than that seen in Burnham-on-Crouch.  In addition, the samples immersed in Burnham-

on-Crouch in April 2010 had increased percentage coverage than the samples at the 

three remaining time periods for this locale. 

Spatial and temporal differences in the settlement and recruitment of marine 

invertebrates in the intertidal zone have been previously documented (Keough 1983; 

Jeffrey & Underwood 2000; Jenkins et al. 2000; Swain et al. 2000; Wood et al. 2000; 

Berntsson & Jonsson 2003; Robson et al. 2009).  Factors which have been reported to 

influence the settlement, which is considered to be the permanent transition of 
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planktonic larvae to the benthic community (Keough & Downes 1982; Pawlik 1992), 

are often related to larval availability and ‘accompanying factors’ (Jeffery & 

Underwood 2000; Jenkins et al. 2000).  These factors can include: the size of the adult 

population affecting the larval abundance (Ramondi 1991); the intensity of the 

phytoplankton bloom and therefore the availability of food for the larvae (Barnes 1962; 

Hawkins & Hartnoll 1982); behavioural interactions with adult conspecifics (Keough 

1983) and space availability for settling larvae (Pineda 1994).  In addition, there are 

physical factors to consider, such as the local hydrodynamics (e.g. flow and turbulence) 

transporting and concentrating larvae to specific areas (Hawkins & Hartnoll 1982; 

Minchinton & Scheibling 1991; Pineda 1994).  However, there are then the factors 

which influence the recruitment of the adult population, the recruitment being defined 

as when the presence of the ‘recruits’ have been observed on the substratum (Keough & 

Downes 1982; Pawlik 1992).  This often relates to the post-settlement mortality and 

therefore the ability of the organisms to survive until observation (Hunt & Scheibling 

1997; Jenkins et al. 2000) and can include biological processes such as competition and 

predation (Paine 1974; Keough & Downs 1982) or physical disturbances such as wave 

exposure, desiccation and extremes in temperature (Dayton 1971; Harms & Anger 

1989).  

In this study, the test racks in Burnham-on-Crouch were hung horizontally and 

were constantly submerged 1m below the level of the water in an estuarine environment 

where E. modestus was the dominant barnacle.  Whereas the racks in Fairlie Quay were 

vertically fixed to a pier piling in the intertidal where S. balanoides were more 

dominant.  However, in this study the influence of the tidal height and presence of the 

pier leg sheltering half the population was discovered to be negligible, only affecting 

three coatings.  The differences in the barnacle community, the level of wave exposure 

and desiccation between the two locations are just a few of the potential factors 

influencing the spatial variation in the percentage recruitment.  As for the temporal 

variation seen in Burnham-on-Crouch, one potential factor causing the reduced 

percentage cover on the samples for the immersion periods in 2011 could be the result 

of the cold winter during 2010, where the average temperature was 5°C below the 

average for the month of December (Web reference 2).  Harms & Anger (1989) 

demonstrated that the settlement activity during the spring/summer was drastically 

reduced following a particularly cold winter as a result of increased adult mortality 

reducing the larval supply.  Supporting this, Gallagher et al. (2015) also attributed the 
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low abundances of E. modestus recorded in 2011 around the coast of the Isle of 

Cumbrae to the cold winter of 2010.   

From Figure 4.6, of the percentage cover of S. balanoides and E. modestus at 

Fairlie Quay 2010, there appears to be an interaction effect of species and coatings, but 

unfortunately due to the nature of the distribution of the data, any interaction effects 

could not be investigated with the Kruskal Wallis statistical test that were performed.  

An example of the potential interaction effect in Figure 4.6 of species and coatings can 

be demonstrated for the coatings S3 and S5, where the percentage cover of S. 

balanoides on S5 was relatively high but the percentage cover of E. modestus on the 

same coating was relatively low.  The opposite was that for coating S3, where the 

percentage cover of E. modestus was relatively high and that for S. balanoides was low.  

The two different barnacle species may have different preferences for potential 

settlement sites with E. modestus preferring S3 (along with the coatings S4, FP1 and 

FP2) and S. balanoides preferring S5 (along with the coatings FP1, FP2 and FP3).  

In this study the laboratory trials did correspond to the results from the field 

from Burnham-on-Crouch in 2010.  However, for a true representation of the 

performance of coatings long scale testing involving two or more locations over two or 

more settlement events and years are necessary as the change in environmental 

conditions and fouling communities between the different sites and in the two years 

contributes to the differences in the coverage (Jenkins et al. 2000; Swain et al. 2000; 

Wood et al. 2000; Robson et al. 2009) and ultimately this can influence the 

interpretation of the coatings performances.    

 

4.5.2.  Critical removal stress 

A comparison in the critical removal stress (CRS) of E. modestus and S. 

balanoides from 2010 showed that the CRS of E. modestus was greater than that of S. 

balanoides for four out of the eight coatings.  This may be a factor of the different sizes 

of the barnacles, with E. modestus being a much smaller barnacle compared to S. 

balanoides.  The average size of the E. modestus (5.32mm in diameter) in this study 

was approximately half the average size of the S. balanoides (10.34mm in diameter).  

Robson et al. (2009) discovered that with E. modestus size was negatively correlated to 

the CRS, in which the larger the barnacle the lower the adhesive strength.  The CRS is 
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the removal force (N) divided by the basal area (mm
2
) of the barnacle.  The actual force 

(N) required to detach S. balanoides was greater than the force required to detach E. 

modestus, but the much larger area of the former produces a lower CRS value than the 

latter.  Thus, the larger the barnacle’s basal area, the lower the CRS values and therefore 

the lower the adhesive strength of that barnacle.  However, in contradiction to Robson 

et al. (2009) and the results of this study, Berglin et al. (2001) demonstrated that 

increasing the basal area of barnacles has produced higher values in the CRS as there is 

a larger area and quantity of adhesive used by the barnacle to maintain contact with the 

substratum.  Additional factors contributing to the differences in the adhesion may be a 

result of the difference in the shape and structure of the barnacles’ shells.  As 

demonstrated in Chapter 3, the shape and structure of the shell can influence the mode 

of detachment and potentially the CRS of the barnacles.  The shell of E. modestus has 

four non-porous parietal plates with weak butt sutures between the plates, by contrast S. 

balanoides has six non-porous parietal plates joined together with stronger mitred 

sutures (Barnes et al. 1970).  The mechanical strength of the shell of S. balanoides is 

greater than that of E. modestus, which Barnes et al. (1970) attributed to it being an 

intertidal species and therefore offering a better resistance to a higher energy 

environment.  However, E. modestus is also present in the intertidal zone, so the 

explanation provided by Barnes et al. (1970) is confusing!  Regardless, the strength and 

size of the shell may offer some explanation as to why there was only a difference 

between the CRS of the two barnacles for four of the eight coatings, with the size 

masking the influence of the shell strength.   

S. balanoides was included in this investigation as it has a membranous-basal 

plate.  The intention was to use S. balanoides as a second example of a membranous-

based barnacle alongside E. modestus to compare with the calcareous-based B. 

amphitrite.  However, as S. balanoides has not been successfully cultured in a 

laboratory (Kirby 2006) settlement on test coatings depended on field immersion trials.  

Further, as a result of the low number (n) of barnacles for the CRS measurements and 

the large error bars, S. balanoides did not appear to be a good example of a test species 

for assessing the performances of fouling-release coatings in this study.  

 For the E. modestus barnacles from Burnham-on-Crouch, the CRS for each 

coating was compared between all four of the immersion periods (April 2010, June, 

2010, April 2011 and July 2011).  This was to determine whether there were differences 
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in the adhesion between the years and seasons.  However, the differences that were 

present in the adhesion between the periods did not follow any distinct pattern that 

could be attributed to the seasons, i.e. there was no clear increase or decrease in the 

CRS of the barnacles immersed in June/July over those from April.  The fact that there 

were no distinct trends was made more difficult by the multiple coatings used, as the 

differences in the CRS between barnacles from the different immersion periods were 

not consistent for each coating.  For example, where there was a difference between 

June 2010 and April 2011 for coating S1, for coating S2 there was a difference between 

April 2010 and June 2010 instead.  In a study by Swain et al. (2000) which investigated 

the biofouling community and barnacle adhesion from a selection of FR coatings at 

multiple field sites, the difference in the removal stress of the barnacles between 

different field sites was attributed to the length of time of immersion.  In this study, the 

racks for April 2010 were immersed for two months, and then spent ten weeks in a tank 

in the laboratory, those for June 2010 were immersed for four months with five weeks 

in a laboratory tank and both April 2011 and July 2011 were out for three months, with 

only four weeks each in a laboratory tank.  The length of time spent in holding tanks in 

the laboratory varied.  The dominant factor for this variation was the minimum size of 

the barnacles, which needed to be greater than 4.1mm in diameter for the barnacles to 

be a suitable size for the adhesion measurements (see Chapter 2).  The barnacles 

returning from the April 2010 immersion period were much too small and were 

therefore held for longer in the laboratory in order to allow for them to grow to this 

minimum size of 4.1mm in diameter.  The subsequent immersion periods in the field 

were extended to allow for this growth to be in the field as opposed to laboratory 

holding tanks.  Nevertheless, the total length of time allowed for the growth in the field 

and in the laboratory holding tanks did differ.  Berglin et al. (2001) found that barnacles 

growing for longer periods of time had higher removal stress values than those of equal 

size which were grown for less time.  The difference in the immersion periods in the 

field and in the laboratory holding tanks is one potential explanation for the difference 

in CRS between the four time points. 

 There were differences when comparing removal stress of E. modestus from the 

two field sites, Burnham-on-Crouch and Fairlie Quay, and the removal stress of E. 

modestus reared in the laboratory.  The CRS of barnacles from Fairlie Quay were higher 

than those from the laboratory, which were in turn higher than those from Burnham-on-

Crouch, hence the general pattern from highest to lowest is Fairlie Quay > laboratory > 
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Burnham-on-Crouch.  These differences may be a result of different lengths of time 

allowed for growth; however, genetic variation could also be a factor.  Differences in 

the adhesive plaque of B. amphitrite barnacles have been attributed to genetic variations 

between maternal families (Holm et al. 2005; 2009).  Fairlie Quay and Burnham-on-

Crouch are two separate populations, of E. modestus in the UK; it could be that the 

differences in CRS in this study, between these two populations is a result of genetic 

variation.   

The difference in the CRS between the two field sites could also be the result of 

the local environmental conditions.  The racks that were immersed in Burnham-on-

Crouch were suspended by ropes horizontally 1m below the surface of the water from 

floating rafts.   The tidal flow of the area was strong (max 1.3 – 2.0 knots, Web 

references 3), but by being suspended and not fixed in place there may be a buffering 

effect reducing the actual flow across the racks.  There is also a population of Jassa 

spp., an amphipod that builds tubes out of sediment.  They created a dense mat covering 

the barnacles, which in turn may have protected the barnacles from any impact and 

turbulence.  The racks in Fairlie Quay were more exposed by being fixed to a pier leg in 

the intertidal and thus were subjected to tides, currents and waves.  It was made clear by 

the damage caused to the test racks in 2011 of the potential force of the water against 

the racks.   

External biotic and physical factors have been shown to influence the physical 

attributes of the barnacles including the strength of adhesion.  Swain et al. (1998) found 

that B. eburneus barnacles unprotected from predation had increased CRS values than 

those which were protected.  It was concluded that unprotected barnacles would develop 

a higher resistance to these biological disturbances.  Indeed the position of the slides on 

the racks for the barnacles in Fairlie Quay did influence the adhesive strength of the 

barnacle; however the barnacles which were positioned on the sheltered side and 

therefore had more protection from predation and the waves had a higher adhesion than 

the barnacles on the un-protected exposed side.  Nevertheless the combined adhesive 

strength of the barnacles from Fairlie Quay, that are from a more exposed, more 

turbulent environment, possess a stronger adhesive in resistance to detachment than the 

barnacles from Burnham-on-Crouch.   

Previous studies have shown positive correlations between the hydrodynamics 

of the environment and the recruitment and growth of barnacles but not necessarily the 
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adhesion of specifically adult barnacles (Judge & Craig 1997; Leonard et al. 1998; 

Jonsson et al. 2004).  Yet, to avoid displacement and removal, adhesion theoretically 

should counterbalance the hydrodynamic force of an environment (Bailly et al. 2009).  

However, considering this, laboratory-reared barnacles that are not subjected to any 

flow should possibly have the lowest CRS, and this is not the case.  This could indicate 

that the turbulence of an environment may not have such a significant influence on the 

adhesion of adult barnacles.  Further studies into the CRS of barnacles grown in the 

laboratory systematically increasing levels of flow or turbulence would help determine 

the extent to which the wave energy of the coastal environment influences the adhesion 

and removal of adult barnacles and other potential biofouling organisms. 

The CRS results of the barnacles from the two sides of the racks from Fairlie 

Quay were combined as the number of total barnacles used to provide these results were 

small.  The number of individuals tested does not correlate to the number that had 

settled.  After returning the coated slides to the laboratory a proportion of barnacles had 

died, but also a larger proportion had to be removed to test the adhesion of a single 

barnacle.  The gregarious nature of barnacles means they settle within close proximity 

to one another and are often touching and overlapping (Clare & Matsumura 2000).  

However, only the adhesion of a solitary individual is tested, and therefore the 

surrounding barnacles need to be removed to isolate just the one individual.  This seems 

to be an inherent problem with field immersion trials as choosing which barnacles to 

remove is unavoidably selective.  This is not often a problem for laboratory cultures as, 

soon after settlement barnacles can be removed before they begin to grow and 

overcrowd one another.  There is a factor of randomness when selecting a barnacle for 

removal, but essentially it depends on the position of the barnacles in relation to others 

on the slide, and specifically, in the case for S. balanoides, it also depends on the 

adhesion the target individual has to the coating as opposed to other barnacles.  In some 

instances, regardless of how careful one was whilst trying to isolate an individual, some 

S. balanoides were better attached to the surrounding barnacles than to the coated slides.  

This contributed to there being a limited number of samples available for testing the 

CRS.   

The aim of laboratory assays and field immersion trials is to differentiate 

between the performances of different coatings and this was one of the reasons for using 

eight coatings.  Despite the differences between the two field sites and between the field 
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and laboratory results it was possible to differentiate between the coatings within a 

single trial.  The fluoropolymers had the higher CRS values than the silicones, with S5 

having the highest CRS values of the silicones and S2 having one the lowest values.  

Therefore it was possible to gauge the performance of the coating under different 

environmental conditions.  

 

4.5.3.  Biofilm 

 The presence of biofilms on surfaces are important in terms of providing 

settlement cues to marine larvae, for example, they can inhibit or facilitate settlement of 

cyprids depending on the age and/or species composition of the film (Maki et al. 1988; 

1990; Neal & Yule 1994b; Keough & Ramondi 1995; Wieczorek et al. 1995).  With B. 

amphitrite and B. perforatus, biofilms have been shown to increase the adhesion of 

cyprids and partially metamorphosed barnacles to glass surfaces (Neal & Yule 1994a; 

Zardus et al. 2008).  However, E. modestus cyprids have been shown to adhere equally 

to biofilmed and un-biofilmed surfaces (Neal & Yule 1994a).  Nevertheless, it was 

reasonable to question whether the presence of biofilm on the surface of the coatings 

could influence the adhesion of adult barnacles grown in the field.  The racks that were 

immersed in the field would instantly be covered in a complex film consisting of 

macromolecules, bacteria and unicellular eukaryotes.  Yet, in the laboratory the coatings 

are typically leached for two weeks in RO water, however, in this experimental section 

the slides were leached for ten days in RO, after which they were immersed for an hour 

in ASW prior to settling cyprids.  This is not sterile, and a bacterial film could develop, 

although not to the extent or diversity of the films that would be seen in the field.  The 

control ‘un-biofilmed’ slides were leached in RO for ten days, because once immersed 

in water the surface properties of silicone elastomers can change, either through 

absorbing water or molecular rearrangement of the siloxane chains (Estarlich et al. 

2000).  This can change the surface energy of the coating and therefore influence 

adhesion of fouling organisms.  Hence it was important to immerse the two groups of 

slides for an equal amount of time in their respective environments.   

The age and method for film development followed the technique used by 

Zardus et al. (2008) for investigating the adhesion of cyprids and newly metamorphosed 

B. amphitrite barnacles to biofilms.  In this study the presence of a 10-day-old biofilm 



 Chapter 4 

 

161 
 

did not increase the CRS of adult E. modestus when compared to those grown on 

coatings immersed for 10 days in RO.  This may be a factor of the size of the organism; 

larger organisms have a greater surface area of adhesive relative to the thickness of a 

10-day-old biofilm.  There could also be a factor regarding the change in cement from a 

cyprid’s permanent adhesive to the adult’s cement.  However, there may be species-

specific considerations.  In the first instance, E. modestus has a preference for settling 

on un-biofilmed surfaces rather than surfaces with a biofilm (Keough and Ramondi 

1995).  In addition, Neal & Yule (1994a) found that the adhesion of E. modestus cyprids 

was equal between surfaces with a two-month growth of biofilm and to a clean un-

biofilmed surface, whereas B. perforatus cyprids adhered much better to the biofilmed 

surface.  Therefore, the presence of a biofilm would seem to have no influence on the 

CRS of adult barnacles, and does not contribute to the difference seen in the adhesion of 

field- and laboratory-reared adult barnacles.  However, further studies would be 

beneficial to confirm this, including the use of a more complex series of biofilm cultures 

(see Keough and Ramondi 1995).  

 

4.5.4.  Temperature  

Johnston (2010) demonstrated that temperature can influence the CRS of B. 

amphitrite.  This was in relation to the rate of growth; individuals that were grown at a 

colder temperature grew at a slower rate and had a higher adhesion strength than those 

grown faster at warmer temperatures.  That was not the case in this study, the barnacles 

that were grown at the lowest temperatures did not grow at the slowest rate.  The 

barnacles which grew at the slowest rate were grown at 19°C, yet these barnacles also 

had the lowest CRS.  However, for the barnacles maintained at 19°C and growing at the 

slowest rate this was believed to be an anomalous result.  There was a higher rate of 

mortality of these barnacles than witnessed with the remaining temperatures.  This was 

thought to be a due to the position of the container within the incubator and that it was 

not receiving a sufficient amount of light due to a fault with the lighting system, which 

affected the quality and endurance of the algae that was added as feed.  When the algae 

was added to the containers after one week those at 12, 15 and 22°C, were clear, 

presumably all of the algae being eaten.  However in the container at 19°C, the medium 

left within that container was more yellow in colour, suggesting that not all the algae 

had been consumed, and that the algae which remained were deteriorating.  Positioning 
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the container closer to the light source would have prevented such deterioration of the 

algae and therefore the higher mortality and reduced growth rate of the barnacles at this 

temperature. 

Discounting the growth rate and CRS of barnacles from 19°C, the next slowest 

growing barnacles and lowest CRS was for barnacles grown at 15°C, whereas the 

barnacles that had grown at the highest and lowest temperatures had an equal growth 

rate and CRS.  It could be that the range in temperature used in this study was not 

significant enough to witness an effect in regards to growth as E. modestus can tolerate 

a large range in the temperature, from approximately 6 - 22°C and even higher (Crisp & 

Davies 1955).  Additional studies with a range in temperatures that exceed the range of 

6 - 22°C would better examine the influence of temperatures on the correlation between 

growth and CRS.  

The temperature range for the surface waters for Fairlie Quay and Burnham-on-

Crouch were not recorded.  The water temperature of the Irish Sea at Port Erin which is 

the closest record station to Fairlie Quay and at Littlebrook in the Thames, the closest 

station to Burnham-on-Crouch was accessed via the CEFAS website (Website reference 

4: see Appendix 2).  At Port Erin during the 2010 immersion period the surface water 

temperature ranged from 7.3 to 14.9°C and from 8.0 to 12.3°C in 2011.  At Littlebrook, 

this ranged from 10.7 to 20.5°C in 2010 and from 12.3 to 17.7°C in 2011.  The 

temperature during the immersion period in Fairlie Quay was cooler than the water 

temperature in Burnham-on-Crouch.  If E. modestus was to behave in the same manner 

as Johnston (2010) reported for B. amphitrite, this could be an additional factor to 

explain why the CRS is so much greater for barnacles from Fairlie Quay than those 

from Burnham-on-Crouch.  The barnacles grown in the laboratory were grown at a 

constant temperature of 22 ± 1°C which is higher than in the two field sites; this would 

perhaps suggest that they would have a faster growth rate than in the field.  However, 

the growth rate of barnacles grown in the laboratory is slower than those grown in the 

field (Costlow & Bookhout 1953).  For example, Wiegermann & Watermann (2004) 

immersed racks coated with Intersleek and Sigma Glide in marinas near Meldorf (along 

the North Frisian coast) and on the island of Norderney (East Frisian Island), 

respectively; these are both located in the North Sea along the north coast of Germany.  

The samples were immersed in these locations both for six weeks from July to August 

and which had E. modestus barnacles 4.5 ± 1.5mm in diameter, which was a much 
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faster rate of growth than what was shown in Chapter 2.  In this study, the E. modestus 

from Burnham-on-Crouch immersed in July 2011 for 13 weeks grew to 6 ± 2mm in 

diameter.  Whereas those immersed in Fairlie Quay in March 2010 were 5 ± 1.5mm in 

diameter after an immersion period of 17 weeks.  The rate of growth of barnacles in 

both Burnham-on-Crouch and Fairlie Quay was much faster than the growth rate of 

laboratory cultured barnacles as demonstrated in Chapter 2.  If barnacles with a faster 

growth rate have a CRS that is lower than slower growing barnacles this could explain 

why barnacles from Burnham-on-Crouch have a lower CRS than the slower growing 

laboratory barnacles.  However, this does not explain why the slower growing 

laboratory barnacles have a lower CRS than the faster growing barnacles from Fairlie 

Quay.   

One of the criticisms of field immersion trials is that they are supposed to 

require several months immersion time (Rittschof et al. 2008; Stafslien et al. 2012) and 

therefore take longer than supposedly rapid laboratory assays.  However, this may not 

necessarily be the case, as laboratory cultured barnacles have a slower growth rate than 

barnacles from the field.  Further investigations regarding the method for growing 

barnacles in the laboratory would be beneficial to improve the growth rate of barnacles.  

This could look at the factors such as water currents and flow rates (Crisp 1960; Sanford 

et al. 1994), dietary regimes of Artemia sp. and microalgae e.g. T. suecica and lighting 

treatments (Barnes 1953).  

 

 

4.6.  Conclusion 

 The aim of this chapter was to compare the use of laboratory assays and field 

immersion trials for evaluating FR coatings by examining the similarities and 

differences in the percentage settlement (laboratory) and recruitment (field) and the 

critical removal stress (CRS) of barnacles from eight coatings.  With the addition of 

investigating the influence of biofilm and temperature on the removal stress of adult 

barnacles as factors explaining potential differences between the laboratory and field 

results.  From the results of the laboratory assay it was possible to discriminate between 

the coatings in terms of percentage settlement and CRS, and conclude that the silicone 

elastomers performed better than the fluoropolymers with S2 having the lowest values 

for both measurements.  Although it must be mentioned that conclusions drawn here are 
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from one laboratory culture and there is, therefore, a need for caution when interpreting 

these results.  Nevertheless, there were similarities in the pattern of the settlement and 

CRS of barnacles from the laboratory compared to the recruitment and CRS results 

from both Fairlie Quay and Burnham-on-Crouch, namely that the silicones performed 

better than the fluoropolymers with S2 performing the best.  S2 had the lowest 

percentage coverage and the lowest adhesion measurements, and was, therefore, able to 

resist colonisation by the barnacles better than the fluoropolymers and with those that 

had settled being removed much more easily.  Being able to differentiate between the 

coatings and decipher which coating has the better FR properties is fundamentally the 

desired outcome for these tests.  However, the actual measurements, specifically of 

CRS, did differ significantly between the three locations (Fairlie Quay, Burnham-on-

Crouch and the laboratory) and over the two years at Burnham-on-Crouch.  The general 

pattern of the CRS between the locations was Fairlie Quay > laboratory > Burnham-on-

Crouch.   

The influence of a 10-day-biofilm on the adhesion of E. modestus and the effect 

of different temperatures on the growth and adhesion were incorporated in this study in 

an attempt to explain the differences between laboratory and field environments.  

However, temperature and the presence of a biofilm did not significantly affect the CRS 

of adult barnacles and, therefore, are unlikely to have contributed to the differences 

noted between the adhesion of laboratory-reared and field-grown adult barnacles.   

Laboratory assays have their benefits over field trials (Table 4.15).  This 

includes a better control over the population and therefore prevention of overcrowding, 

and no environmental stresses reducing the level of recruitment for example the adverse 

weather in Fairlie during 2011 damaging the racks and removing settled barnacles or the 

cold winter in 2010 which potentially reduced the larval availability and recruitment in 

Burnham-on-Crouch in 2011.  However there can be problems with laboratory assays, 

for example that seen for the barnacles grown at 19ºC, due to a fault in the equipment 

limiting the light source, there was deterioration in the algae used as food, which caused 

the barnacles growth rate to be slow and the CRS value to be low.  In addition, one of 

the specific criticisms of field trials is that they often require several months immersion 

time for the barnacles to settle and grow to a sufficient size for adhesion testing 

(Rittschof et al. 2008; Stafslien et al. 2012).  However, the barnacles actually grew at a 

faster rate in the field than under the laboratory conditions in this study.  
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Table 4.15.  Advantages and disadvantages of field immersion trials and laboratory assays for the evaluation of antifouling and fouling-release coatings. 

Field Tests Laboratory Tests 

Advantages Disadvantages Advantages Disadvantages 

 Broad spectrum performance 

of a coating against a wide 

range of fouling organisms 

(Stasflien et al. 2012). 

 Long term durability in a 

natural environment (Stasflien 

et al. 2012).  

 Quicker growth rates 

(Costlow &Bookhout 1953; 

Chapter 2 and 4). 

 Restricted by seasons for 

certain species for example 

Semibalanus balanoides 

(Barnes et al. 1970; Rittschof 

et al. 2008; Stasflien et al. 

2012). 

 Can be effected by adverse 

weather  

o Low larval availability 

(Harms & Anger 1989). 

o Damage to the samples 

(Chapter 4). 

 Large volume of samples 

required (Stasflien et al. 2012). 

 Restricted on testing capacity 

(Stasflien et al. 2012). 

 Post recruitment mortality for 

example through predation 

(Swain et al. 1998). 

 Rapid assessment especially in 

settlement and toxicity assays 

(Rittschof et al. 1992). 

 Smaller volume of samples 

(Rittschof et al. 2008; Evariste 

et al. 2012). 

 Lower cost in terms of 

facilities and resources 

(Evariste et al. 2012). 

 Controlled conditions 

providing reproducible data 

(Evariste et al. 2012). 

 Slower growth rates (Costlow 

& Bookhout 1953; Chapter 2 

and 4).   

 Difficult to mimic the complex 

interactions in the natural 

environment (Briand 2009).  
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The complexity of the colonisation process and the interactions between 

physical, chemical and biological components has yet to be fully replicated under 

laboratory conditions.  Briand (2009) may be correct when stating that “no laboratory 

bioassay could hope to replicate such a complex process”.  Field immersion trials, using 

multiple locations over several years and settlement events, provide a more accurate 

measure of a coatings performance.  However Evariste et al. (2012) stated that 

laboratory studies “are not intended to reflect the complexities of the ‘real world’ ”.  As 

previously established, laboratory assays are a useful ‘tool’ to provide an indication of 

the performance of a coating and can be used to down-select coatings from a larger 

number to a more manageable collection of coatings as a precursor to field trials 

(Rittschof et al. 2008; Evariste et al. 2012).   
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Chapter 5: The Influence of Elastic Modulus of Fouling-

Release Coatings on the Adhesion of Elminius 

modestus in Comparison to Balanus amphitrite. 

 

 

5.1.  Abstract 

The elastic modulus of a coating is an important factor for the detachment of a 

fouling organism from the coating’s surface.  In which less force is required to remove 

fouling from low modulus coatings, in contrast, more force is required to remove 

fouling from high modulus coatings.  This study was to investigate the degree in which 

the elastic modulus of the coating can influence the critical removal stress (CRS) of the 

membranous-based Elminius modestus, compared to the calcareous-based Balanus 

amphitrite.  The CRS of E. modestus and B. amphitrite, to eight coatings (five 

polysiloxanes and three fluoropolymers) were measured.  The bulk properties of the 

polysiloxanes and fluoropolymers were modified by changing the polymer chain length 

and cross-linker density, which provided coatings with a modulus ranging from 0.31 to 

19.73 MPa, as determined by a dynamic mechanical analyser (DMA).  Regression 

analysis confirms that increasing the modulus increases the CRS for E. modestus and B. 

amphitrite, however the model did not show a strong linear association for either 

species (R
2
 = 0.091 for E. modestus and R

2
 = 0.089 for B. amphitrite).  Instead 

exponential (R
2
 = 0.106 for the silicone coatings) and power (R

2
 = 0.649 for the 

silicone and fluoropolymer coatings combined) regression models provided better 

explanations for the variance in the CRS than a simple linear model for E. modestus 

only.  Comparing the CRS of the two barnacle species, there was a significant 

difference for three out of six the coatings.  However, with B. amphitrite on the two 

fluoropolymer coatings with the highest modulus, shell failure occurred before 

adhesive failure.  From this study, it was concluded that E. modestus was a suitable test 

species for future fouling-release research and was able to provide a valuable 

comparative for studies in adult adhesion.  
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5.2.  Introduction 

Fouling-release (FR) coatings function by reducing the adhesion of fouling 

organisms to the coating so much so that fouling can be removed by its own weight or 

by the hydrodynamic force of water moving across the surface of the coating (Schultz 

et al. 1999; Berglin et al. 2003).  Silicone polymers (polysiloxanes) and fluoropolymers 

have been identified as the two groups of material with some of the best FR properties 

(Brady 2000; Yebra et al. 2004; Finnie & Williams 2010).  Of the properties, there are 

three that have been the main focus of research and these include the surface energy (γ), 

the elastic modulus (E) and the coating’s thickness (Brady & Singer 2000; Singer et al. 

2000; Anderson et al. 2003; Berglin et al. 2003; Sun et al. 2004; Yebra et al. 2004; 

Chaudhury et al. 2005; Wendt et al. 2006).  The surface energy is particularly important 

with regard to the adhesion strength of fouling to the coating; desirably a coating 

should have a low surface energy value between 20 – 30mJm
-2

.  Whereas the thickness 

and the elastic modulus are more important with regard to the detachment mechanisms, 

a thicker coating with a lower modulus improves the release characteristics of the FR 

coating as demonstrated by Kendall’s model (Kendall 1971).   

The elastic modulus or Young’s modulus refers to the ability of the coating to 

deform elastically when subjected to an external pressure.  The greater the deformation, 

the lower the modulus.  By contrast, when the deformation is reduced and the coating is 

less flexible, it has a higher modulus.  The modulus of a coating can be altered by 

changing the chain length (molecular weight) of the polymer and the type and quantity 

of cross-linking agent (cross-linker), without changing the coating’s surface energy 

(Chaudhury et al. 2005).  Altering the chain length of a polymer and the cross-linker 

influences the incidence of cross-linking during the curing process.  Polymers with a 

longer chain length and higher molecular weight have an increased number of 

monomer units available; this increases the potential of cross-linking that may occur 

during the curing process.  The greater the proportion of cross-linking that occurs, 

results in a coating that is less flexible and thus has a higher modulus.  By contrast, 

polymers with smaller chain lengths and lower molecular weight may reduce the 

incidence of cross-linking and result in a coating that is more flexible with a lower 

modulus (Mark et al. 2005).   

When an external force is applied to a fouling organism on a low modulus 

coating, its adhesive slips on the surface; this slip during the detachment reduces the 
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energy needed to complete the fracture and to remove the organism from the coating 

(Brady 1999).  As the modulus of the coating increases so too does the removal stress, 

this reduces the FR ability of the coating.  This phenomenon is well documented with 

pseudobarnacles, barnacles such as B. eburneus and B. amphitrite as well as fouling 

algae such as Ulva spp. (Brady & Singer 2000; Wynne et al. 2000; Berglin et al. 2003; 

Stein et al. 2003; Chaudhury et al. 2005; Kim et al. 2007; 2008).  

There was evidence, discussed in Chapter 2 and 3 of this study, that suggests 

the flexible attributes of the membranous-basal plate of E. modestus influences its 

removal from silicone coatings compared to the calcareous-based barnacle B. 

amphitrite.  This was with regards to the critical removal stress (CRS) and the time for 

initial separation and complete removal, which all differed between the two species.  

The aim of this chapter was to investigate the degree in which the elastic modulus of 

the coating can influence the removal stress of the membranous-based E. modestus, 

compared to the calcareous-based B. amphitrite.  The hypotheses to be tested are: 1) 

that the removal stress of E. modestus would increase with increasing modulus, and 2) 

that the removal stress of E. modestus would be lower than that of B. amphitrite.  In 

addition, the relationship of elastic modulus (E) and surface energy (γ) using the 

function (Eγ)½ was investigated (Brady & Singer 2000), to examine how these two 

coating properties in combination influence the removal stress.  The hypothesis to be 

tested is that the removal stress of E. modestus and B. amphitrite would increase with 

increasing the (Eγ)
½
 value.  Finally, to conclude whether E. modestus as a test species 

was capable of discerning between coatings for FR evaluations and whether it was a 

suitable test species for future FR research. 

 

 

5.3.  Materials and methods 

5.3.1.  Coating preparation 

All coatings in the series were provided and prepared at International Paint Ltd, 

Felling, UK.  The test coatings were coated on to glass microscope slides (76mm x 

26mm x 1mm, Fisherbrand).  The microscope slides were fixed in rows to adhesive 

vinyl sheets, which in turn were backed on to plywood boards (750mm x 350mm x 
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10mm).  Prior to being coated the microscope slides were cleaned using Xylene solvent 

applied with laboratory roll.  A tie coat of an acrylic polymer (Valkyrie, International 

Paint Ltd) (10:1 Polymer:Xylene Solvent) was thinly applied to the slides using an 

extra smooth gloss paint roller and cured in an environmental cabinet at 23°C and 50% 

relative humidity for 4 hrs.  Once cured, the test coatings were applied to the tie coat 

using an extra smooth gloss paint roller.  These were left to cure at room temperature 

(RT) for 48 hrs.  

 

5.3.2.  Coating formulation   

The initial objective was to produce a series of coatings which had: 

1) a range of elastic modulus but with a constant surface energy, and  

2) coatings with a range of surface energies with a constant modulus.   

The silicone and fluoropolymers used to prepare the coatings were provided by 

International Paint Ltd, UK.  

 

5.3.2.1.  Silicones 

In the first instance of coating manufacturing the focus was on developing 

coatings with different modulus and a constant surface energy.  Two silicone (PDMS) 

polymers with different chain lengths (molecular weights) were used, these included:  

o Rhodorsil 48V-2000 (High molecular weight) 

o Rhodorsil 48V-750 (Low molecular weight) 

To alter the modulus of these samples, the percentage of the cross-linking agent 

Tetraethyl Orthosilicate (TEOS) was changed.  The percentages 25%, 50%, 75% and 

100% of TEOS were used, and a second cross-linker Methyltrimethoxysilane was 

included to make up to 100% volume when necessary.  The coatings were coded Low 

25, Low 50, Low 75, Low 100, High 25, High 50, High 75 and High 100 (Table 5.1).  

The ‘low’ and ‘high’ refers to the molecular weight of the polymer and the numbers 

indicate the percentage of the cross-linker TEOS.   
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Table 5.1.  Preliminary silicone coating formulations. 

Coating codes  Functions Components Weights 

Low 25 Polymer Rhodorsil 48V-750 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 1.02% 

  Methyltrimethoxysilane 3.08% 

 Solvent Xylene 3.99% 

Low 50 Polymer Rhodorsil 48V-750 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 2.05% 

  Methyltrimethoxysilane 2.05% 

 Solvent Xylene 3.99% 

Low 75 Polymer Rhodorsil 48V-750 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 3.08% 

  Methyltrimethoxysilane 1.02% 

 Solvent Xylene 3.99% 

Low 100 Polymer Rhodorsil 48V-750 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 4.11% 

 Solvent Xylene 3.99% 

High 25 Polymer Rhodorsil 48V-2000 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 1.02% 

  Methyltrimethoxysilane 3.08% 

 Solvent Xylene 3.99% 

High 50 Polymer Rhodorsil 48V-2000 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 2.05% 

  Methyltrimethoxysilane 2.05% 

 Solvent Xylene 3.99% 

High 75 Polymer Rhodorsil 48V-2000 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 3.08% 

  Methyltrimethoxysilane 1.02% 

 Solvent Xylene 3.99% 

High 100 Polymer Rhodorsil 48V-2000 91.45% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 4.11% 

 Solvent Xylene 3.99% 

 

The modulus of the preliminary silicone samples (Table 5.2) were measured 

using a dynamic mechanical analyser (Perkins Elmer PYRIS Diamond DMA) 

measuring the tensile strength, in which the modulus was calculated by Stress over 

Strain.   
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Table 5.2.  Young’s modulus results of the preliminary silicone test coatings.  Modulus 

was measured using the DMA, testing tensile strength of the silicones. 

Coatings Modulus (MPa) 

Low 25 0.329 

Low 50 0.274 

Low 75 0.210 

Low 100 0.186 

High 25 0.162 

High 50 0.200 

High 75 0.132 

High 100 0.144 

 

From the initial eight formulations three were selected to produce a coating 

series with different modulus.  Low 25, Low 100 and High 75 were chosen as these 

mixtures resulted in coatings with relatively high, medium and low modulus values and 

were coded HMod, MMod and LMod, respectively (H refers to high, M for medium 

and L for low, the Mod refers to the modulus, i.e. HMod is the high modulus coating).  

Two additional coatings were prepared to provide coatings with a high and low surface 

energy whilst having equal modulus and were coded HSE and LSE (see Table 5.5 for 

the modulus).  HSE consisted of a polyether-silicone co-polymer whereas LSE 

consisted of a PDMS polymer (Dow Corning 3-0213) (formulations of the coatings 

coded HSE and LSE were provided by International Paint Ltd. per.comms) (H refers to 

high, L for low, SE refers to the surface energy, i.e. HSE is the coating with the high 

surface energy) (Table 5.3). 
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Table 5.3.  Final coating formulations.  

Coating codes  Functions Components Weights 

HMod Polymer Rhodorsil 48V-750 91.43% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 1.02% 

  Methyltrimethoxysilane 3.08% 

 Solvent Xylene 3.99% 

MMod Polymer Rhodorsil 48V-750 91.43% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 4.11% 

 Solvent Xylene 3.99% 

LMod Polymer Rhodorsil 48V-2000 91.43% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 3.08% 

  Methyltrimethoxysilane 1.02% 

 Solvent Xylene 3.99% 

HSE Polymer XX/00843 76.6% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.65% 

 Moisture Scavenger Triethylorthoformate 4.96% 

 Solvent 1-Methyl-2-propyl acetate 17.78% 

LSE Polymer Dow Corning 3-0213 91.43% 

 Catalyst Bis (2-Ethylhexyl) Hydrogen Phosphate 0.45% 

 Crosslinker Tetraethyl Orthosilicate (TEOS) 4.11% 

 Solvent Xylene 3.99% 

XX/00843 = Polyethyl-silicone co-polymer. 

 

5.3.2.2.  Fluoropolymers 

The fluoropolymers which were prepared and provided by International Paint 

Ltd included three modified Perfluoropolyether (PFPE) based moisture cross-linked 

polymers with different molecular weights and functional groups (Table 5.4).  The 

industry names for these coatings are E10H, D10H and D10, as they were modified by 

International Paint Ltd, the coatings were prefixed with an ‘m’ and hence are coded 

mE10H, mD10H and mD10.  

 

Table 5.4.  Fluoropolymer coating molecular weight and functional group.  

Coating code Molecular weight Functional Groups 

mD10 500 CH2OH 

mD10H 700 CH2OH 

mE10H 750 CH2(OCH2CH2)nOH 
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5.3.3.  Coating Characterisation 

A goniometer (Ramé-hart 250.00 standard goniometer) was used to measure the 

static contact angles of distilled water and diiodomethane which were then used to 

measure the surface energy.  The contact angle of three droplets per slide for five 

sample slides for each liquid and coating were measured, the average of these was 

taken and used to determine the surface energy using the Owens, Wendt, Rabel and 

Kaelble equation (Eq. 8).  This equation calculates the interfacial surface tension (γsl) 

or the surface free energy of the polymer by using the surface tensions of the liquid (σl) 

and solid (σs) phases, reduced by the geometric mean of the polar (σP) and dispersive 

(σD) parts and their interactions between the phases (Owens & Wendt 1969; Kaelble 

1970). 

                   
        

               (8) 

A dynamic mechanical analyser (The Perkins Elmer Pyris Diamond DMA) 

measured the elastic modulus of the coatings.  Sinusoidal oscillations were applied to a 

strip of elastomer of a known thickness (measured with a digital calliper).  The sample 

was heated from -140 to 70°C with a heating rate at 4°C /minute, and the strain was 

measured every 3 seconds (see Appendix 3 for elastic modulus measurements).  This 

measures the glass transition temperature and the modulus reading.  The modulus at 

22°C for two polymer strips per coating were averaged and provided the modulus 

presented in this chapter. 

Digital callipers were used to measure the thickness of the coatings on the glass 

slides.  The thickness was measured at six points across the slides (Conlan et al. 2008) 

with ten slides per coating and the average recorded.   

 

5.3.4.  Settlement 

All eight coatings were used for laboratory settlement.  The coatings were 

leached for two weeks in a static tank of reverse osmosis (RO) water; the water was 

changed once a week and a carbon filter (Fluval filter) was immersed in the tank to 

absorb leachate.  The coated slides were then immersed for one hour in artificial 

seawater (ASW) and left to air dry.  Once dried they were used immediately for the 
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settlement of E. modestus and B. amphitrite cyprids.  The method for the laboratory 

culture of E. modestus and B. amphitrite was discussed in Chapter 2.  Day zero E. 

modestus cyprids and day three B. amphitrite cyprids were used for the settlement, in 

which 20 cyprids were pipetted into a 2ml droplet of 0.2µm filtered ASW centred in 

each slide.  The slides were placed in quadriPERM® culture vessels.  After 48 hrs for 

settlement, 15ml of T. suecica was added to the wells of the culture vessels.  E. 

modestus were maintained at 22°C and B. amphitrite at 28°C, both on a 12:12 L:D 

cycle and fed 15ml of T. suecica at ~3 x 10
5
 cells ml

-1 
three times a week.  The 

barnacles were grown for a period of five months in which the average size was 4.4mm 

(± 0.029 SE) and 4.5mm (± 0.051 SE) in diameter for E. modestus and B. amphitrite, 

respectively.   

 

5.3.5. Critical removal stress 

 The critical removal stress (CRS) was measured using the automated instrument 

as described in Chapter 2.  The CRS values for E. modestus barnacles that were smaller 

than 4.1mm in diameter and for B. amphitrite smaller than 3.6mm in diameter (Conlan 

et al. 2008) were discarded.  After removal from the coatings, the basal membrane of 

ten randomly selected E. modestus barnacles, per coating, were inspected using a 

dissection microscope for any tears that may have occurred in the membrane.  

 

5.3.6. Statistical analysis 

 The data was checked for normality and an equal variance using a Kolmogorov-

Smirnov test (Ennos 2012) and Levene’s test (Quinn & Keough 2002), respectively.  A 

linear regression analysis was used to determine how the modulus influences CRS for 

E. modestus and B. amphitrite for the silicones, testing the null hypothesis that the 

slope of the regression was zero and that there was no linear relationship between 

modulus and CRS for both species.  Exponential, power and logarithmic regressions 

were investigated to determine whether these alternative regressions provided a better 

fit and higher R
2
 values than a linear regression.   

The combined data of silicone and fluoropolymers for E. modestus was 

transformed using a square root function.  After which a linear regression analysis was 
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performed to test the null hypothesis that the slope of the regression would equal zero 

and that there was no linear relationship between modulus and CRS when 

fluoropolymers are included.  Exponential, power, and logarithmic regressions were 

investigated to determine if these regressions would provide a better fit and higher R
2
 

values than a linear relationship.   It was not possible to perform a regression analysis 

for B. amphitrite for the silicone and fluoropolymers combined, as 100% of the 

barnacles removed from the fluoropolymers (mD10 and mD10H) had basal failure.   

 A regression analysis of the CRS against the square root of the surface energy 

(γ) and the elastic modulus (E) for both species was performed.  This was to determine 

how the surface energy and modulus, when combined, influences the CRS, and how 

this compared to the elastic modulus alone.  The null hypothesis being that the slope of 

the regression would equal zero and that there is no linear relationship between (Eγ)
1/2

 

and CRS.  Exponential, power, and logarithmic regressions were included to 

investigate to if a better fit and a higher R
2
 value than the linear relationship could be 

attained.    

 An ANOVA with 0.05 significance level was used to compare the CRS between 

the barnacle species for each coating testing the null hypothesis that there would be no 

difference in the CRS between E. modestus and B. amphitrite barnacles.  

 

 

5.4.  Results 

The objective was to produce coatings which had: 1) a range of elastic modulus 

but with a constant surface energy, and 2) a range of surface energies with a constant 

modulus.  The results of the elastic modulus and coating thickness are presented in 

Table 5.5 and the surface energy results are presented in Table 5.6.  The silicone 

coatings HMod, MMod, LMod and LSE, provide a range in modulus with minor 

deviations in the surface energy.  The fluoropolymers mD10 and mD10H extended the 

modulus range up to 19 MPa, and had surface energies with minor deviations from the 

four silicones (HMod, MMod, LMod and LSE).  Unfortunately, the second objective to 

have coatings with a range of surface energies and a constant modulus was 

unsuccessful.  The coatings HSE and LSE which had different surface energies also 

had different modulus.  The surface energy of mE10H was also higher than the other 
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fluoropolymers mD10 and mD10H.  As the surface energy of HSE and mE10H are 

higher than the remaining silicone and fluoropolymer coatings, initial analysis will 

exclude the HSE and mE10H coatings.  However they will be present on the graphs 

represented by a different colour.  

 

Table 5.5.  Young’s modulus results and thickness of the silicone and fluoropolymer 

coatings (* highlight the coatings which are fluoropolymers).   

Coating code Young’s Modulus (MPa) Thickness (µm ± 1 SD) 

HMod 0.66 38.8 ± 14.7 

MMod 0.59 46.7 ± 15.0 

LMod 0.31 41.6 ± 11.6 

HSE 0.96 38.3 ± 14.7 

LSE 0.33 33.3 ± 10.3 

mE10H* 1.88 33.3 ± 13.6 

mD10H* 7.71 45.0 ± 10.4 

mD10* 19.73 35.0 ± 10.4 

 

Table 5.6.  Mean water and diiodomethane contact angle measurements of the silicone 

and fluoropolymers along with calculated surface energies and the polar and dispersive 

contents (* highlight the coatings which are fluoropolymers). 

Coating Water 

contact angle 

Diiodomethane 

contact angle 

Polar Dispersive Total Surface 

energy 

HMod 97.64 ± 0.25 63.40 ± 0.14 1.09 ± 0.05 26.62 ± 0.08 27.71 ± 0.08 

MMod 100.04 ± 0.16 68.02 ± 0.16 1.01 ± 0.03 21.00 ± 0.16 25.00 ± 0.08 

LMod 98.23 ± 0.34 66.80 ± 0.09 1.25 ± 0.07 24.68 ± 0.05 25.93 ± 0.08 

HSE 76.21 ± 0.21 54.89 ± 0.10 6.98 ± 0.10 31.51 ± 0.06 38.49 ± 0.10 

LSE 99.31 ± 0.14 65.23 ± 0.12 0.93 ± 0.03 25.57 ± 0.07 26.51 ± 0.07 

mE10H* 61.06 ± 0.37 69.51 ± 0.09 19.52 ± 0.26 23.15 ± 0.05 42.67 ± 0.26 

mD10H* 99.01  ± 0.15 75.60 ± 0.29 1.93 ± 0.05 19.80 ± 0.15 21.73 ± 0.13 

mD10* 94.70 ± 0.24 67.63 ± 0.26 2.14 ± 0.07 24.21 ± 0.15 26.35 ± 0.14 
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5.4.1.  Silicones 

 The data for the silicones were normally distributed (df = 110, D = 0.070, P = 

0.200) with equal variance (df1 = 3, df2 = 106, F = 0.450, P = 0.718).  Figure 5.1 

shows a positive relationship between the CRS and modulus of E. modestus and B. 

amphitrite barnacles for the silicone coatings, where the CRS increases with an 

increase in the elastic modulus of the coating.  The t, F and P-values from the 

regression analysis (Table 5.7) suggests that the modulus does influence the removal 

stress for both barnacle species by rejecting the null hypothesis that the slope equals 

zero and that there is no linear relationship.  However the R
2
 values for E. modestus 

(0.091) and B. amphitrite (0.089) are very low, indicating that the regression equation 

is not a good linear model for the data and that only 9.1% and 8.9% (E. modestus and 

B. amphitrite, respectively) of the variance in the CRS can be explained by the 

modulus.  The exponential (P = 0.001, R
2
 = 0.106) and power (P = 0.001, R

2
 = 0.104) 

regressions for E. modestus on the silicones had significant P-values and much higher 

R
2
 values than the linear regression, with the exponential regression (Table 5.8) having 

the highest R
2
 value and seemingly the best-fit regression relationship (see Appendix 4 

for tables of the power and logarithmic regression results).  However, for B. amphitrite, 

the exponential, power and logarithmic regressions did not produce a higher R
2 

value 

than the linear regression analysis (see Appendix 4 for exponential, power and 

logarithmic regression results).  Therefore, the CRS values can be predicted from the 

modulus of the coating for E. modestus by the exponential regression formula CRS = 

0.021 x (1.445)
χ
, and for B. amphitrite by the linear formula CRS = 0.024 + (0.064 χ), 

where χ is the modulus.   
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Figure 5.1.  The mean critical removal stress (± 95% confidence intervals) of Elminius 

modestus (A) with an exponential regression trend-line and Balanus amphitrite (B) with 

and linear regression trend-line, which were settled and reared in a laboratory from 

silicone coatings with a range of modulus.  The point with a modulus of 0.96 MPa has a 

higher surface energy to the remaining four.   Number (n) of barnacles = A) 37, 26, 26, 34, 

2 and B) 34, 28, 24, 49, 55, respectively.   

 

The E. modestus settled and grown on HSE (0.96 MPa) suffered an increased 

mortality rate and there was a considerable decline in the population compared to the 

remaining silicones.  The number of individuals used to calculate the mean CRS of E. 

modestus on this coating was 2, this CRS value was much lower than what was 

expected.  This mortality and population decline was not seen for B. amphitrite.  The 

mean CRS of B. amphitrite removed from the coating HSE, did increase from the other 
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four silicone coatings, supporting the hypothesis that the CRS increases with increasing 

coating modulus (Figure 5.1B).  However, the CRS value of the HSE coating is higher 

than that which would be predicted by projecting the linear trend-line to 0.96 MPa.  

The surface energy of HSE is also higher than the remaining four silicone coatings.  

Considering the combination of a higher surface energy and a higher modulus, the CRS 

measurement of HSE would be expected to be much higher than linear trend-line would 

predict.  

 

Table 5.7.  Linear regression results of the critical removal stress of Elminius modestus 

(A) and Balanus amphitrite (B) against the elastic modulus of silicone coatings (modulus 

range 0.31 to 0.66 MPa). 

A Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.027 

0.047 

0.007 

0.014 

0 

0.301 

3.663 

3.285 

< 0.001 

0.001 

Correlation 

coefficient 

(r) = 0.301 (r
2
) = 0.091 

Source df MS F  P 

Regression 1 0.006 10.794  0.001 

Residual 108 0.001    
 

B Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.024 

0.062 

0.010 

0.019 

0 

0.299 

2.534 

3.315 

0.013 

0.001 

Correlation 

coefficient 

(r) = 0.299 (r
2
) = 0.089 

Source df MS F  P 

Regression 1 0.012 10.991  0.001 

Residual 112 0.001    
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Table 5.8.  Exponential regression results of the critical removal stress of Elminius 

modestus against the elastic modulus of silicone coatings (modulus range 0.31 to 0.66 

MPa). 

 Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.021 

1.445 

0.004 

0.403 

0 

0.326 

4.941 

3.587 

≤ 0.001 

0.001 

Correlation 

coefficient 

(r) = 0.326 (r
2
) = 0.106 

Source df MS F  P 

Regression 1 5.718 12.869  0.001 

Residual 108 0.444    

 

 

5.4.2.  Fluoropolymers 

 The combined data for silicone and fluoropolymers was transformed using 

square root function after which the data were normally distributed (df = 267, D = 

0.168, P = 0.065) with equal variance (df1 = 6, df2 = 260, F = 2.675, P = 0.090).  

Figure 5.2 shows a positive relationship between the CRS and modulus of E. modestus 

and B. amphitrite barnacles for the silicone and fluoropolymers coatings.  In Figure 

5.2B the data points for the coatings mD10H (modulus 7.71 MPa) and mD10 (modulus 

19.73 MPa) are not present, this was due to failure in the shell upon removal.  For 

100% of the B. amphitrite tested (number (n) of barnacles = 28 and 34 for mD10H and 

mD10, respectively) the shell failed and greater than ~20% of the basal plate remained 

on the surface of the coatings, thus the removal stress values were void.  

The t, F and P-values from the linear regression analysis when combining the 

silicone and fluoropolymers (Table 5.9) suggests that the modulus does influence the 

removal stress for E. modestus and that the null hypothesis that the slope equals zero 

and that there is no linear relationship, can be rejected.  However, the R
2
 value for E. 

modestus (0.456) is again low.  This R
2
 value is higher than that from the linear 

regression analysis of silicones alone, yet the regression is still not a good linear model 

for the data and suggests that only 45.6% of the variance in the CRS can be explained 

by the modulus.  The logarithmic (P ≤ 0.001, R
2
 = 0.645) and power (P ≤ 0.001, R

2
 = 

0.649) regression analyses provide significant P-values with higher R
2
 values than the 

linear regression, with the power regression having the highest R
2
 value (Table 5.10) 
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(see Appendix 4 for logarithmic and exponential regression results). With the power 

regression, 64.9% of the variance in the removal stress can be explained by the 

modulus of the coating.  Therefore the CRS value for E. modestus on the silicone and 

fluoropolymer coatings can be predicted from the modulus of the coating by the power 

formula CRS = 0.060 x (χ 
0.460

). 

 

 

Figure 5.2.  The mean critical removal stress (± 95% confidence intervals) of Elminius 

modestus (A) with a power regression trend-line and Balanus amphitrite (B) with a linear 

regression trend-line, reared under laboratory conditions from silicone and 

fluoropolymer coatings with a range of modulus.  The points within the red square are the 

silicone coatings from Figure 5.1.  The points with a modulus 0.96 and 1.88 MPa have a 

higher surface energy.   Number (n) of barnacles = A) 37, 26, 26, 34, 2, 44, 58, 56 and B) 

34, 28, 24, 49, 55 and 28 respectively. 
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Table 5.9.  Linear regression results of the critical removal stress of Elminius modestus 

against the modulus of the silicone and fluoropolymers coatings (modulus range 0.31 to 

19.73 MPa). 

 Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.070 

0.008 

0.001 

0.005 

0 

0.675 

14.916 

14.896 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.338 (r
2
) = 0.114 

Source df MS F  P 

Regression 1 0.795 221.887  < 0.001 

Residual 265 0.004    
 

 

Table 5.10.  Power regression results of the critical removal stress of Elminius modestus 

against the modulus of the silicone and fluoropolymers coatings (modulus range 0.31 to 

19.73 MPa). 

 Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.060 

0.460 

0.002 

0.021 

0 

0.806 

29.117 

22.128 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.806 (r
2
) = 0.649 

Source df MS F  P 

Regression 1 124.327 489.629  < 0.001 

Residual 265 0.254    

 

 

5.4.3.  Influence of surface energy and elastic modulus  

 The CRS was plotted against the square root of the surface energy (γ) and 

elastic modulus (E) for all coatings ((Eγ)
1/2

) (Figure 5.3).  This shows a positive 

relationship between the CRS of the barnacles E. modestus and B. amphitrite and the 

(Eγ)
1/2

 of the coatings.  The t, F and P-values from the linear regression analysis of 

(Eγ)
1/2

 (Table 5.11) shows that the surface energy and elastic modulus together have an 

impact on the CRS
 
of both E. modestus and B. amphitrite and that the null hypothesis 

can be rejected.  The R
2
 value for E. modestus (0.570) and B. amphitrite (0.375) was 

much greater than the R
2
 values from linear regressions of silicones, and silicones and 

fluoropolymers (see Table 5.7 and 5.9), suggesting an improved linear model for the 
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data.  Where a percentage of 57% and 37.5% (E. modestus and B. amphitrite, 

respectively) can explain the variance in the CRS due to the (Eγ)
1/2

.  The logarithmic 

(E. modestus P ≤ 0.001, R
2
 = 0.643; B. amphitrite P ≤ 0.001, R

2
 = 0.419) and power (E. 

modestus P ≤ 0.001, R
2
 = 0.609; B. amphitrite P ≤ 0.001 , R

2
 = 0.389) regressions 

improve the model and provides higher R
2
 values with significant P-values, with the 

logarithmic regression providing the best fit model for both barnacle species.  Using the 

logarithmic model, 64.3% and 41.9% (E. modestus and B. amphitrite, respectively) of 

the variance in the CRS can be explained by (Eγ)
1/2

.  The CRS value can be predicted 

from (Eγ)
1/2

 of the coatings by the logarithmic formula CRS = 0.180 + (0.013)lnχ for E. 

modestus and CRS = 0.122 + (0.034)lnχ for B. amphitrite, where χ equal (Eγ)
1/2

 and ln 

means natural log. 

 

 

Figure 5.3.  The mean critical removal stress (± 95% confidence interval) of Elminius 

modestus and Balanus amphitrite against the square root of the surface energy and elastic 

modulus ((Eγ)
1/2

) of the silicones and fluoropolymers, with logarithmic regression trend-

lines.  
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Table 5.11.  Linear regression results of the critical removal stress of Elminius modestus 

(A) and Balanus amphitrite (B) against the square root of the surface energy and elastic 

modulus ((Eγ)
1/2

) of the silicones and fluoropolymers.  

A Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.184 

0.013 

0.008 

0.001 

0 

0.755 

21.873 

18.821 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.755  (r
2
) = 0.570 

Source df MS F  P 

Regression 1 2.175 354.213  < 0.001 

Residual 267 0.006    
 

B Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.122 

0.034 

0.018 

0.003 

0 

0.6112 

6.682 

10.839 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.612  (r
2
) = 0.375 

Source df MS F  P 

Regression 1 1.271 117.483  < 0.001 

Residual 196 0.011    

 

 

Table 5.12.  Logarithmic regression results of the critical removal stress of Elminius 

modestus (A) and Balanus amphitrite (B) against the square root of the surface energy and 

elastic modulus ((Eγ)
1/2

) of the silicones and fluoropolymers.  

A Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.047 

0.131 

0.013 

0.006 

0 

0.802 

3.682 

21.935 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.803  (r
2
) = 0.645 

Source df MS F  P 

Regression 1 2.453 481.125  < 0.001 

Residual 267 0.005    
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B Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

-0.004 

0.193 

0.027 

0.016 

0 

0.647 

-0.137 

11.883 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.612  (r
2
) = 0.375 

Source df MS F  P 

Regression 1 1.420 141.196  < 0.001 

Residual 196 0.010    

 

 

5.4.4.  A comparison of the critical removal stress between Elminius modestus and 

Balanus amphitrite 

 The CRS of E. modestus and B. amphitrite were different significantly for three 

of the six coatings compared, these were LSE (df = 1, F = 5.001, P = 0.030), HSE (df = 

1, F = 7.417, P = 0.009) and mE10H (df = 1, F = 112.800, P < 0.001).  The CRS of B. 

amphitrite for these three coatings was higher than that for E. modestus.  For the 

remaining three coatings LMod (df = 1, F = 0.715, P = 0.401), MMod (df = 1, F = 

0.374, P = 0.545) and HMod (df = 1, F = 0.792, P = 0.777), there was no difference in 

the CRS between the two barnacle species.  No comparisons were possible for mD10 

and mD10H as the basal plates of the B. amphitrite tested remained attached to the 

coatings.  For B. amphitrite removed from mE10H, 25% of individuals had basal plates 

remaining on the surface.  With the silicone coatings 100% of B. amphitrite were 

cleanly removed with no basal plates remaining on the surface, this was the same for E. 

modestus from all the coatings.  With regard to the tearing of the membranous-basal 

plate, for the silicone there was ≤10% incidence of this occurring, for the 

fluoropolymers there was 20% incidence of the membrane tearing.   

 

 

5.5.  Discussion  

The aim of this chapter was to examine the critical removal stress of E. 

modestus from silicone and fluoropolymer coatings with different bulk properties.  This 

was to measure how the coating’s properties influenced the adhesion of this 

membranous-based barnacle compared to the calcareous-based B. amphitrite.  The 
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hypothesis of the study was that increasing the elastic modulus of the coatings 

(silicones and fluoropolymers) increased the critical removal stress of E. modestus, 

which was established.  However, the regression models of the CRS against the 

modulus of the silicone coatings and of the silicone and fluoropolymer coatings did not 

show good linear relationships.  Instead an exponential model (silicone coatings) and a 

power model (silicone and fluoropolymer coatings) provided better explanations for the 

variance in the CRS than the simple linear models for E. modestus.   

When the surface energy of the coatings were included in the analyses using the 

square root of the surface energy and modulus ((Eγ)
1/2

) against the CRS of E. modestus 

and B. amphitrite there was a much stronger linear relationship.  Although, logarithmic 

regression analyses for both barnacle species, provided models with higher R
2
 values 

than the linear models.   

Comparing the removal stress of E. modestus to B. amphitrite was only possible 

for six out of the eight coatings.  For the two coatings with the highest modulus 

(mD10H and mD10), there was basal failure for the B. amphitrite removed from this 

coating and it was thus unable to provide a measure of CRS.  For three of the six 

coatings compared, the CRS of E. modestus was significantly less than that of B. 

amphitrite.   

 

5.5.1.  Influence of modulus on the critical removal stress of Elminius modestus 

The elastic modulus is an important factor influencing the force required for the 

detachment of fouling organisms such as barnacles from FR coatings (Berglin et al. 

2003; Sun et al. 2004; Kim et al. 2007).  E. modestus and B. amphitrite barnacles 

removed from coatings with a higher modulus were shown to have a greater CRS than 

coatings with a lower modulus.  However, the low R
2
 value from the regression 

analysis indicates that this was not a strong linear association for either species.  An 

exponential model was able to improve the relationship between modulus and CRS for 

E. modestus and provide a higher R
2
 value, but it was still a low value of 0.106.  None 

of the alternative regression analyses tested improved on the model for B. amphitrite.  

The modulus range of the four silicones with equal surface energy (LMod, MMod, 

HMod and LSE) was from 0.31 to 0.66 MPa.  Compared to Chaudhury et al. (2005) 

who used a modulus range from 0.2 to 9.2 MPa and to Kim et al. (2007; 2008) that 
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used a range from 0.08 to 1.3 MPa, by comparison the modulus range of the silicones 

used in this study was small.   

The fluoropolymers mD10 and mD10H had a similar surface energy to the four 

silicones, and increased the modulus range of the available test coatings to 19 MPa.  

The regression with the extended range in modulus when the fluoropolymers were 

included had a much stronger linear association between the modulus and the removal 

stress than that with the silicones alone.  A power regression considerably improved the 

R
2
 value, from 0.114 for the linear model to 0.649 for the power model.  However, 

fluoropolymers are a different class of polymer to silicones, their different chemical 

structures results in them achieving effective fouling-release through different 

mechanisms (Brady 1999; 2001).  The differences discussed most often relates to the 

difference in the surface energy and modulus between the two polymers.  

Fluoropolymers are said to limit the bonding of adhesives to them by their arrangement 

of the functional groups, which are closely packed and cross-linked together along the 

surface.  As a result this minimises re-arrangement within the polymer and reduces 

infiltration of marine adhesives.  Therefore, only a weak interface with an adhesive 

forms, resulting in the coating having a low surface energy, lower than that found for 

silicones (Brady 2001; Yebra et al. 2006).  However, because of the presence of the 

fluorine atom in fluoropolymers, there is limited rotation of the C – C backbone of the 

polymer when compared to the rotation of the Si – O backbone of silicones.  This 

means the fluoropolymers have limited flexibility and a much higher elastic modulus 

than silicones (Brady 2001; Yebra et al. 2006).  In summary, the difference is that 

fluoropolymers generally have a lower surface energy and prevent settlement and 

adhesion, whereas silicones have a lower modulus and an improved release of 

adhesives.  Although in this study the fluoropolymers mD10 and mD10H had a similar 

surface energy to that of the silicones (HMod, MMod, LMod and LSE) such that the 

difference may have only been the modulus.  However, additional properties such as 

the glass transition and molecular porosity of fluoropolymers differ from silicones.  

What these factors contribute to the removal of adhesive in this instance is unknown.  

Therefore caution must be taken when interpreting the results presented, these 

additional properties may have added to the increased removal stress of the barnacles 

from the fluoropolymers other than modulus.   
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The surface and bulk properties of FR coatings when considered independently 

influences the adhesion and removal stress of fouling organisms.  However when each 

physical property is considered in combination with the others there can be a 

synergistic effect on the removal stress (Brady & Singer 2000; Chaudhury et al. 2005; 

Kim et al 2007).  For example the removal stress correlates better to the product of 

surface energy and elastic modulus ((Eγ)
1/2

) than to either the surface energy (γ) or 

modulus (E) alone (Brady 2000; Brady & Singer 2000; Anderson et al. 2003).  The 

relationship between the CRS and (Eγ)
1/2

 in this study shows a much stronger linear 

association than that between CRS and modulus for both E. modestus and B. 

amphitrite.  However, the linear relationship for E. modestus was stronger than that for 

B. amphitrite.  The use of an alternative regression model again improves on the R
2
 

values for both species, this time a logarithmic regression model provided the best fit.  

The R
2
 value for E. modestus (0.643) again was higher than the R

2
 value for B. 

amphitrite (0.419) in the logarithmic model.  In addition, the angle of the regression 

line for B. amphitrite is steeper and quite different than the regression line for E. 

modestus.  As the value of (Eγ)
1/2

 increases the difference between the slopes and 

therefore the CRS between the two species increases.   

  

5.5.2.  A comparison of the critical removal stress of Elminius modestus and 

Balanus amphitrite 

 The CRS for the membranous-based E. modestus was lower than that of B. 

amphitrite for three of the six comparisons.  The coatings where the CRS was similar 

between the species, included the coatings where Rhodorsil was the base polymer.  The 

polydimethylsiloxane (PDMS) coating LSE, the Polyethyl-silicone co-polymer coating 

HSE, and the fluoropolymer mE10H were the coatings that presented a difference 

between species.  For the coating HSE which showed a lower CRS for E. modestus, 

this difference should be viewed with caution as the sample size of E. modestus was 

two.  This sample size is much lower than recommended for being able to discern a 

difference in CRS (Swain et al. 2000; Conlan et al. 2008).  The reason there was a 

small sample size was that there were only two remaining barnacles larger than 4.1mm 

in diameter on the coating after the growth period.  There was an increase in mortality 

of E. modestus on this coating compared to the remaining coatings.  Although this was 

not the case for B. amphitrite.  The HSE coating consists of polyethyl-silicone co-
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polymer and included a moisture scavenger (to eliminate water) and a solvent that was 

different from the solvent used for the remaining silicones.  It could be that one of the 

components of this coating was toxic.  E. modestus may have been more susceptible to 

this potentially toxic element because its membranous basal plate did not offer the 

barrier a calcified basal plate would have, thus allowing the toxic element to pass 

through the membrane into the body of the barnacle.  As for the remaining seven 

coatings, the level of mortality did not reduce the population of barnacles on the slides 

excessively; there were still enough barnacles for the adhesion tests after the growth 

period.  Any toxicity in these remaining coatings was negligible.  The coating HSE, 

was used as described in Chapter 4 for the field immersion trials with no apparently 

toxic influences.  The volume and flow of water around the coatings in the field may 

have reduced and/or removed the toxic element of this coating.  Increasing the time the 

coatings were leached for in the laboratory prior to settlement and growing the 

barnacles in an aerated volume of water could potentially reduce the influence of the 

toxicity of this coating to the laboratory culture of E. modestus in future studies.  

 The CRS value for the fluoropolymer mE10H of B. amphitrite was over twice 

the value for E. modestus.  It was not possible to compare the removal stress of the 

fluoropolymers mD10 and mD10H between species because 100% of the B. amphitrite 

removed suffered shell failure.  These fluoropolymers had the highest modulus values.  

The adhesion of B. amphitrite to these coatings was stronger than the integrity of the 

shell, hence the shell broke and left the calcified basal plate attached to the surface of 

the coatings before the adhesive failed.  During the removal of E. modestus from the 

fluoropolymers and even the silicones, there were no instances of the shell breaking or 

the basal membrane remaining attached to the surface.  The deformation of the shell 

offered E. modestus by the flexibility of it basal membrane better aids removal from 

coatings with a higher modulus than B. amphitrite.  Although, as noted in Chapter 3, 

the membranous-basal plate tore during detachment from the silicone, the incidence of 

this occurring during the removals in this chapter was less than that which was 

previously noted, although not every barnacle was inspected.  This could be a result of 

the difference in automated and manual equipment used.  With the automated method 

the speed and angle of applied force is constant, with the manual method there are often 

difficulties controlling this (Kavanagh et al. 2005; Conlan et al. 2008) and this may 

have resulted in the increased occurrence of basal tearing noted in Chapter 3.   
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5.6.  Conclusion  

 The aim of this chapter was to determine how the critical removal stress of E. 

modestus was influenced by the bulk properties of silicone and fluoropolymer coatings 

in order to conclude whether E. modestus was capable of discerning between coatings 

for FR evaluations.  This study demonstrated that increasing the elastic modulus of a 

coating increased the removal stress of the membranous-based barnacle E. modestus.  

The extent of this increase is consistent with that of B. amphitrite for the silicone 

coatings.  Therefore, for the silicones E. modestus was capable of discriminating 

between the silicone test coatings to a similar degree as the model species B. 

amphitrite.  However for the fluoropolymers which had the highest values of modulus, 

it was not possible to compare the influence of the modulus on CRS.  This was due to 

B. amphitrite barnacles being so firmly attached to the fluoropolymers with the highest 

modulus, that the shells failed and the basal plates remained fixed to the surface.  To 

evaluate coatings FR performances the removal stress is a necessary measurement.  

Although when the basal plate fails and remains on the surface it does provide an 

insight into the FR properties of that coating, however comparisons between coatings 

cannot be made.  As E. modestus was removed from the harder coatings and provided 

CRS values, a comparison between every coating was possible.  Therefore E. modestus 

may be better suited for evaluating FR coatings with a higher range in modulus.  E. 

modestus are a suitable test species for future FR research especially if they were used 

in parallel with B. amphitrite, and therefore would provide a more robust evaluation of 

the coatings FR performance.   
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Chapter 6:  Discussion and Conclusions 

 

 

6.1.  Aims and objectives of the thesis 

The main aim of this thesis was to investigate the potential use of the barnacle 

Elminius modestus for evaluating the performance of fouling-release (FR) coatings.  A 

secondary aim was to determine how the membranous-basis of this species affects its 

fracture mechanics and release from FR coatings, in comparison to barnacles with a 

calcareous-basis.   

The first objective was to ascertain whether E. modestus was suitable as a 

laboratory test species focusing on their settlement, growth and adhesion to two PDMS 

coatings.  For a test species to be suitable essentially it should be an important fouling 

organism and have a wide geographic distribution.  E. modestus is an invasive species 

that has become well established on British and north-west European shorelines (Crisp 

1958, Barnes & Barnes 1963).  The arrival of E. modestus in Britain in the 1940s was 

attributed to remote dispersal via fouling on the hulls of ships (Bishop 1947) and its 

distribution along the British and European coasts continues to spread through marginal 

dispersal (Crisp 1958).  Where E. modestus is present, it is often the dominant species, 

especially on new surfaces, created through disturbance and removal of previously 

settled organisms (Gallagher et al. 2015; 2016) or on artificial structures (Bracewell et 

al. 2012; 2013).  There are, however, increasing concerns that the continuing northerly 

dispersal is being promoted due to climate change and rising sea temperatures (Witte et 

al. 2010).  As the invasion of Europe has been so successful, the future of other 

coastlines including Japan (Otani et al. 2007) and the Atlantic coast of North America 

(Carlton et al. 2011) are considered to be at risk.  Therefore E. modestus is an important 

fouling species (Moyse 1960; Buckeridge 1982; Southward 2008) with an expanding 

distribution.  

For a test species to be suitable for laboratory trials and to evaluate FR 

coatings, additional criteria that would be ideal, include: 

1) having a short larval development period (Rittschof et al. 1992);  
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2) being able to provide synchronous mass releases (which would be dependent 

on the number of adults) to provide adequate numbers of cyprids for multiple 

samples (Rittschof et al. 1992); 

3) being iteroparous and capable of reproducing multiple broods, continuously 

throughout the year under controlled laboratory conditions (Moyse 1960; 

Kirby 2006); 

4) having larvae capable of settling in static laboratory conditions (Branscomb 

& Rittschof 1984; Rittschof et al. 1992);  

5) providing reproducible data, i.e. reproducible settlement on standard surfaces, 

such as glass and polystyrene, and reproducible measures of removal stress 

on standard coatings, such as Silastic T-2 (Evariste et al. 2012); 

6) and having a relatively rapid growth rate to reach a size suitable for critical 

removal stress (CRS) tests (Conlan et al. 2008). 

 

E. modestus has previously been shown to have a short larval development time 

of 7 days from nauplius stage I to the cyprid stage (Kirby 2006).  In addition, E. 

modestus is capable of reproducing throughout the year, synchronously releasing mass 

numbers of nauplii (Moyse 1960; Tighe-Ford et al. 1970; Billinghurst et al. 2001; 

Kirby 2006).  Within this study the adult brood stock, maintained across two aquarium 

tanks each containing three polypropylene pipes (3 x 300mm long, 3 x 350mm long, all 

40mm in diameter) completely covered in E. modestus, was capable of producing 

approximately an average of 15,000 to 20,000 nauplii every two weeks.  Using the 

method adapted by Kirby (2006) it was possible to produce multiple cultures of viable 

cyprids which were competent to settle on a standard surface widely used in antifouling 

studies – polystyrene (Iwaki 24-well plates).  There was inter-batch variation in the 

settlement of E. modestus and B. amphitrite cyprids, with culture 3 in the comparison 

between FSW and ASW (section 2.4.1) and culture 1 comparing the two barnacle 

species (section 2.4.2) presenting very low settlement with less than 20% settled after 

48 hours.  Omitting these two cultures, the remaining settlement after 48 hours ranged 

from 25% to 60%.  This does appear to be relatively low; however this level of 

settlement is consistent with the control settlement in previous studies (Branscomb & 

Rittschof 1984; Clare et al. 1990; Rittschof et al. 1992; Billinghurst et al. 1998; 2001). 
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B. amphitrite is a species that is used more than any other for evaluating FR 

coatings in the laboratory.  In this study it was used as a standard to directly compare 

and gauge the performance of E. modestus.  The percentage settlement of E. modestus 

on the silicone coatings performed to an equal standard as that of B. amphitrite, 

however the percentage settlement on polystyrene surfaces did not, with E. modestus 

having fewer settled cyprids for some of the repeat cultures.  This indicates that E. 

modestus does have potential as a test species in settlement assays especially with 

regard to silicone coating evaluations.   

The growth rate of E. modestus on the polydimethylsiloxane (PDMS) test 

coatings, Silastic T-2 and Sylgard 184, when fed a diet of Tetraselmis suecica, was 

faster than the growth rate of B. amphitrite when fed the same diet.  Although, this is a 

slower rate of growth than published accounts for B. amphitrite in the laboratory 

(Wendt et al. 2006; Conlan et al. 2008).  When fed on a diet of Artemia sp. (brine 

shrimp), B. amphitrite can reach a size of 5mm in diameter in 12 weeks in the 

laboratory.  When E. modestus were fed Artemia sp. in this study there was high 

mortality.  However, this might be resolved by maintaining the cultures of E. modestus 

in an increased volume of aerated water or in flowing water.  Further studies to 

investigate growth using these methods would be beneficial to determine whether the 

growth rate could be improved.  Nevertheless, it was possible to grow E. modestus to 

an average of 4.1mm in diameter of the basis, the minimum size recommended for CRS 

measurements, in approximately ten weeks.  B. amphitrite attained an average size of 

3.6mm in diameter, the minimum recommended size for this species, in a similar time-

frame (Conlan et al. 2008).  In Chapter 2 it was concluded that E. modestus could be a 

model test species and be used in laboratory trials to evaluate FR coatings.  

There were differences in the CRS between the two species when removed from 

the PDMS coatings as described in Chapter 2.  The second objective of this thesis was 

to determine to what extent the difference in CRS could be accounted for by 

differences in the structure of the basis – calcareous for B. amphitrite and membranous 

for E. modestus (Chapter 3).  The flexibility of the basis was predicted to be important 

with regard to the fracture mechanics of the release of a barnacle from an elastomeric 

coating, as a more flexible basis would require less energy for removal (Chung & 

Chaudhury 2005).  With the use of a high-speed camera, positioned underneath the 

barnacle, it was possible to view the separation process of the two species from the 
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PDMS coatings.  The membranous-basis of E. modestus was important in the 

mechanism of release as it hindered the appearance of fingering instabilities as they 

propagated across the basis.  However, the differences in the patterns of separation, 

particularly the location of the initial fracture in relation to the direction of force, may 

have more to do with the differences in the shape and the structure of the shell than the 

type of basis.  Nevertheless, the influences of wetness and coating type on the removal 

times and the CRS was evident for E. modestus, in most cases, but less so for B. 

amphitrite.  Suggesting that E. modestus is potentially more sensitive to variations in 

environmental variations such as wetness and substrate type.  

Chapter 4 compared the CRS of E. modestus grown in the laboratory to those 

grown at static immersion sites in the field.  This was to validate whether laboratory 

assays are capable of discriminating between coatings in terms of settlement and 

adhesion, and provide results equivalent to results from the field environment.  The 

present study found differences in the CRS values between laboratory-reared barnacles 

and those grown in the field across eight test coatings.  However, there were also 

differences in the CRS between barnacles from the two field sites and from the 

different immersion periods.  Nevertheless the rankings of the eight test coatings for E. 

modestus in the laboratory, for example the fluoropolymers having the highest 

percentage settlement and CRS and the silicone coating S2 having the lowest 

settlement and CRS, were comparable to the rankings of the coatings obtained in field 

tests.   

The influences of biofilm and temperature on the CRS of E. modestus were 

examined (Chapter 4) to provide a possible explanation for the differences between the 

field and laboratory results.  Biofilms have previously been shown to increase the 

adhesion of cyprids (Neal & Yule 1994a; Zardus et al. 2008).  However, the presence 

of a 10-day-old biofilm did not influence the CRS of adult barnacles in this study.  

Temperature has also been shown to influence the rate of growth of B. amphitrite and 

this is inversely correlated to the CRS (Johnston 2010).  However, no such relationship 

was established in this study.   

Finally, in Chapter 5, the effect of increasing the elastic modulus of silicone and 

fluoropolymer coatings on the CRS of E. modestus was investigated and compared to 

the CRS of B. amphitrite.  Although the range of moduli investigated for silicone 
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coatings was narrow, there was a positive relationship between the CRS of both species 

and the modulus; the CRS increased as the modulus increased.   However the 

regression model of the CRS against the modulus of the silicone coatings and of the 

silicone and fluoropolymer coatings did not show a good linear relationship.  Instead an 

exponential model (silicone coatings) and a power model (silicone and fluoropolymer 

coatings) provided a better explanation of the variance in the CRS than the simple 

linear models for E. modestus.  Although, when the surface energy of the coatings were 

included in the analyses using the square root of the surface energy and modulus 

((Eγ)
1/2

) against the CRS of E. modestus and B. amphitrite there was a much stronger 

linear relationship.  However, logarithmic regression analyses for both barnacle species 

provided models with higher R
2
 values than the linear models for (Eγ)

1/2
 against the 

CRS.   

In the comparison of CRS between the two species, there was only a difference 

in the removal stress for two out of the five silicone coatings.  However, there were 

differences between the CRS of the two species when removed from the fluoropolymer 

coatings.  All B. amphitrite removed from the two fluoropolymers with the highest 

modulus values (mD10 and mD10H) exhibited failure of the calcareous-basis; where a 

portion of the basis (greater than 20%) was left on the surface of the coatings.  In 

contrast, when E. modestus were removed from the same coatings there was no 

remnant of the basis on the coatings.  Failure of the basis in B. amphitrite suggests poor 

FR performance of the coatings and makes it difficult to compare the coatings.  This 

was the advantage of using E. modestus over B. amphitrite as performance of every 

coating could be compared against each other.  Using E. modestus in addition to B. 

amphitrite in future studies would provide more detailed information regarding the 

overall performance of a coating.  

  

6.2.  Limitations of the study 

 E. modestus was used in this study as it was assumed that the fracture 

mechanics and release properties of this species would be characteristic of all 

membranous-based species.  However, results presented in Chapter 3 suggested that the 

shape and structure of the shell are important to the aforementioned properties.  It was 

the intention to use Semibalanus balanoides as a second example of a barnacle with a 
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membranous-basis, although the objective was to examine how this species responded 

to the bulk properties of the silicone and fluoropolymer coatings, not examining the 

detachment process of this species.  Nevertheless due to poor post-recruitment survival 

contributing to a low number of replicates, it was not possible to examine the bulk 

properties of the coatings with this species nor were there sufficient numbers on the 

coatings to be used to examine the detachment process.  S. balanoides is a barnacle 

with six parietal plates joined together with mitred sutures; the same number and suture 

type as B. amphitrite.  However the shell of S. balanoides is non-porous and its basis is 

membranous, like the shell and basis of E. modestus.  Capturing the detachment 

process of S. balanoides using the high-speed video would have provided additional 

information on how the structure of the shell and basis influences the fracture process.  

Using an increased number of coated microscope slides, and therefore an increased 

surface area for colonisation of barnacles within the field test sites could have provided 

a greater number of S. balanoides and may have prevented the issue of having a small 

sample size.  However, there was a limited amount of space at the immersion sites and 

therefore only a limited number of panels and slides could be immersed at one time.   

The number of coatings used for the field immersion and laboratory trials 

(Chapter 4) was sufficient to examine the differences between the two environments.  

However, the research in Chapters 3 and 5 may have been improved by including extra 

coatings.  Two coatings, Silastic T-2 and Sylgard 184 were selected to examine the 

fracture processes of E. modestus and B. amphitrite during detachment (Chapter 3).  

These PDMS coatings are frequently used as a standard to assess the CRS of barnacles 

(Sun et al. 2004; Kavanagh et al. 2005; Wendt et al. 2006; Ramsay et al. 2008; Larsson 

et al. 2010).  However, the type of coating did not appear to influence the propagation 

of the fracture or the time for removal, and there was no difference in the CRS of the 

barnacles between the two coatings.  Selecting coatings that are more dissimilar in their 

bulk and surface properties and result in a difference in the CRS, for example mE10H 

and LSE (Chapter 5) would provide a more thorough illustration of the fracture 

processes and the relationship to the type of coating.   

The range of moduli of the coatings described in Chapter 5, especially the 

silicone coatings, was relatively narrow when compared to published works 

(Chaudhury et al. 2005; Kim et al. 2007; 2008).  This limitation may explain the poor 

linear regression model between modulus and CRS for both E. modestus and B. 
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amphitrite.  It was unfortunate that the fifth silicone coating (HSE), which improved 

the modulus range could not be included in the regression analysis as it had a different 

surface energy. 

The influence of surface energy was not thoroughly investigated in this study.  

It would have been instructive to have a series of coatings which had a constant 

modulus and a range in different surface energies.  This was attempted but was not 

achieved, as the variation in the modulus of this second coating series was too large and 

they were not incorporated into this study.  When the initial eight coatings described in 

Chapters 4 and 5 were made, time was a limiting factor.  All eight coatings were 

prepared at the same time.  A large number of slides were needed for each coating to 

provide sufficient numbers for the two field sites, over the two years including the two 

seasons at Burnham-on-Crouch and laboratory assays of E. modestus and B. amphitrite.   

 

6.3.  Future avenues of research 

Nothing is known about the nature of the adhesive of E. modestus, how it 

compares to that of B. amphitrite, and if there are differences, and whether these 

differences are important to the release process (Chapter 3).  The research into barnacle 

adhesive has mostly been investigated using calcareous-based barnacles such as B. 

amphitrite and Megabalanus rosa.  Calcareous-based barnacle adhesive has been 

shown to be composed of at least ten different cement proteins (CP), six have been 

characterised, five of which are unique to barnacles in respect of their primary structure 

(Kamino 2008; 2013).  These six cement proteins have been categorised into four 

groups 1) six amino-acid biased proteins (CP-68K and CP-19K), 2) a charged amino 

acid rich protein (CP-20K), 3) a hydrophobic protein (CP-100K and CP-52K) and 4) an 

enzyme (CP-16K) (Kamino 2008; 2013).  However, a recent study did investigate the 

adhesive of another membranous-based barnacle Tetraclia japonica formosana (Lin et 

al. 2014), in which, T.j. formosana was discovered to be lacking the charged amino 

acid cement protein, CP-20K.  An investigation to determine whether this cement 

protein is present or absent in E. modestus would be beneficial and may help to better 

understand the differences in the adhesion between E. modestus and B. amphitrite 

noted in this study.   
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When barnacles with a calcareous-basis are grown on low modulus, low surface 

energy coatings in response they produce a thick rubbery or ‘gummy’ multilayered 

adhesive as well as a concave basis (Berglin & Gatenholm 2003; Sun et al. 2004; 

Ramsay et al. 2008).  This rubbery multilayered adhesive has different mechanical 

properties and chemical content to the adhesive produced by barnacles grown on 

coatings with a higher modulus (Berglin & Gatenholm 2003).  Wiegemann & 

Watermann (2004) commented that E. modestus, when grown on PDMS, produces 

adhesive that is less thick and hydrated than that produced by Balanus spp. on the same 

coatings.  However, as stated above there have been no further studies on the adhesive 

of E. modestus or other membranous-based barnacles when grown on FR coatings.  

Examples of some of the techniques employed to analyse the structure and 

components of the cement of B. amphitrite when grown on FR coatings include atomic 

force microscopy (AFM) and scanning electron microscopy (SEM) to image the 

structure of the adhesive, and X-ray diffraction (XRD) and Fourier transform infrared 

(FTIR) spectroscopy to understand the composition of the adhesive (Wiegemann & 

Watermann 2004; Dickinson et al. 2009; Sullan et al. 2009; Barlow et al. 2010).  Some 

of these analytical techniques would need to be modified before they could be applied 

to the study of the adhesive of E. modestus.  For example, images of the adhesive using 

AFM have been taken directly from the calcareous-basis of living barnacles detached 

from coatings (Dickinson et al. 2009; Barlow et al. 2010).  This was attempted on the 

membranous-basis of live E. modestus (Appendix 5) but was unsuccessful as the 

vibrations caused by the tapping of the cantilever were sufficient to vibrate the basal 

membrane and prevent an image of the basis being recorded.  It is plausible to image 

the adhesive remaining on the surface of a coating or a glass cover slip, as was used by 

Sullan et al. (2009), although this was not attempted at this time.  No viable images of 

the adhesive were obtained during this preliminary trial, which is why it was not 

included in the study, however, further development of the method is warranted.  

Investigations on the structure and mechanical properties of the adhesive of E. 

modestus would be beneficial to elucidate the mechanisms of the adhesion of this 

species in comparison to B. amphitrite.  Furthermore, the nature of the adhesive has a 

pivotal role in crack propagation during removal of the barnacle from FR coatings.   

Examining the adhesive of E. modestus would clarify whether there are species-specific 

differences in the adhesives which influence the detachment processes.  
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 This study focussed on the adhesion of adult E. modestus for their potential to 

evaluate FR coatings.  However, E. modestus cyprids could also be used for coating 

evaluations.  Through measuring percentage settlement, cyprids of B. amphitrite have 

been and will continue to be used to assess the performances of many antifouling 

technologies for example microtopographies (Schumacher et al. 2007; Aldred et al. 

2010), enzymes (Pettitt et al. 2004; Tasso et al. 2012), natural products (Hellio et al 

2004; 2005) and amphiphilic and fluorinated-siloxane technologies (Marabotti et al 

2009; Wang et al. 2011; Martinelli et al. 2012).  In addition to settlement assays, 

measurements of cyprid adhesion, and even juvenile barnacle adhesion, through tensile 

and hydrodynamic testing would provide rapid assessment of the antifouling and FR 

properties of coatings by reducing the time required to develop the barnacles to a 

testable size (Berglin et al. 2001; Aldred et al. 2010; Larsson et al. 2010).   The 

adhesion of E. modestus cyprids has previously been investigated with regard to their 

tenacity to bacterial biofilms (Neal & Yule 1994a), however this concept has not been 

applied to FR testing and should be a topic for future studies.  

 A relatively new method developed for rapid evaluation of FR coatings involves 

the use of reattached barnacles (Rittschof et al. 2008: Stafslien et al. 2012; 2016).  

Barnacles that have been grown on PDMS, such as Silastic T-2, from a laboratory 

culture are carefully removed and reattached to a new test coating.  For reattachment, 

the barnacles are positioned on the new surface and after 3 hrs are submerged in 

seawater to be cultured for up to 4 weeks before measuring the CRS following the 

ASTM D-5618 (1994) method (Rittschof et al. 2008).  An improvement to this method 

used a nylon mesh immobilisation template to hold the barnacles in place to aid 

reattachment (Stafslien et al. 2012).  The reattachment method has been shown to be an 

effective tool for evaluating FR coatings and has benefits over field immersion trials as 

it dramatically reduces the time to screen coatings, which is a consideration for 

industry.  Currently only B. amphitrite has been used for reattachment.  Whether this 

could be used for the membranous-based E. modestus would need investigating.  

However, there is the issue of the fragile basis of E. modestus tearing during 

detachment, which could suggest it may not be suitable for this method.   

Currently the number of organisms used for evaluating antifouling and FR 

surfaces is limited.  The barnacle B. amphitrite is one of the most universally used 

species for these types of evaluations (Aldred & Clare 2008) and the results from this 
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study suggest that the barnacle E. modestus has potential for coating evaluations.  

However, are these species representative of other barnacle species?  From the present 

study the subtle differences in the shape and structure of the shells of the two barnacles 

were enough to cause a difference in the release properties.  Therefore B. amphitrite or 

E. modestus may not be representative of a barnacle with a considerably different shape 

and structure, for example Verruca stroemia.  V. stroemia is a barnacle from the 

suborder Verrucimorpha, it has a membranous-basis like E. modestus and S. balanoides 

but its four interlocking parietal plates make up an asymmetrical box-like shell 

(Southward 2008) which has a much weaker structure than the shells of B. amphitrite, 

E. modestus and S. balanoides (Gubbay 1980).  There is also the size of the barnacle to 

consider; the size of the barnacle being important with regard to the adhesion strength 

(Berglin et al. 2001; Robson et al. 2009) and could influence the release process.  The 

size of the laboratory grown B. amphitrite and E. modestus used in this study were 

similar.  Yet the size of the S. balanoides (~10mm in diameter) from the field were 

twice the diameter of the E. modestus (~5mm in diameter) from the field at Fairlie 

Quay and larger specimens of S. balanoides with 25mm diameter have been reported 

(Southward 2008).  The largest barnacles, in terms of the size of the barnacle, belong to 

the genus Megabalanus where individual’s up to 75mm in diameter are average 

(Southward 2008).   

Barnacles are one of the more dominant species in the fouling community on 

the hulls of ships (Christie & Dalley 1987; Aldred & Clare 2008; Briand 2009).  

However, this community is diverse and contains within it many more groups of 

organisms for example; ascidians, anemones, bryozoans, hydroids, mussels, and 

tubeworms in addition to the micro-community of bacteria, protozoan and microalgae 

and also macroalgae assemblages (Callow & Callow 2002; Anderson et al. 2003).  

Therefore, there is a great diversity of mechanisms for adhesion other than the form 

utilised by barnacles.  A barnacle, once its cyprid form has settled and metamorphosed 

into a juvenile, is permanently attached directly to the substratum using a complex 

adhesive that is released from a system of ducts around the edge of the basis forming 

concentric rings of adhesive (Yule & Walker 1987; Wiegemann 2005).  As mentioned 

above, ten proteins make up the barnacles complex adhesive, six of these have been 

identified and categorised into four groups: six amino-acid-based proteins, a charged 

amino acid-rich protein, hydrophobic proteins and an enzyme (Kamino 2006; 2008; 

2013).  By contrast mussels use byssal threads consisting of a collagenous inner core 
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surrounded by cured polyphenolic proteins to attach to the substratum (Silverman & 

Roberto 2007).  The byssus are used to attach the post-larva to a substratum while they 

undergo metamorphosis to the adult form; however, some species such as Mytilus spp. 

and Dreissena spp. retain the byssus for attachment throughout the organisms’ life 

(Crisp et al. 1985; Wiegemann 2005; Silverman & Roberto 2007).  Mussels are capable 

of changing the location of their attachment, by breaking the byssal threads using their 

foot and producing new byssus for attachment elsewhere, although the mussels’ ability 

to do this does decline as the animal ages as the number of threads that are produced 

increases (Wiegemann 2005).  The byssus structure consists of the stem anchored to the 

root within the muscular tissue of the foot, the proximal thread, the distal thread and the 

adhesive plaque (Crisp et al. 1985; Wiegemann 2005; Silverman & Roberto 2007).  

The adhesive, which is produced from the foot of the organism, and is released via the 

byssal groove down to the adhesive plaque, contains nine unique proteins with high 

volumes of the modified amino acid 3,4-dihydroxy phenylalanine (DOPA) 

(Wiegemann 2005; Silverman & Roberto 2007; Kamino 2008; 2013).   

The methods of adhesion of barnacles and mussels are distinctly different from 

one another.  To be able to gauge the performance of antifouling and FR coatings and 

to improve the understanding of the fracture and detachment processes of fouling 

organisms, investigations into the adhesion and release mechanisms of a greater 

number of different fouling groups with a more diverse collection of body forms is 

needed (Kavanagh et al 2001; Holm et al. 2006).  However, not all species are suitable 

for evaluating coatings, S. balanoides for example (Chapter 4) and developing standard 

protocols testing each fouling species would be costly in terms of time and resources.  

There needs to be a few select species which are representative of other phyla (Callow 

& Callow 2002) for assessing antifouling and FR coatings.  

 

6.4.  Concluding remarks 

Any structure immersed in marine and even fresh water environments, be this 

commercial ships or personal pleasure yachts, oil platforms or marine renewable 

energy technologies (e.g. wind and wave turbines or tidal barrages), or aquaculture 

systems, will be colonised by biofouling.  The colonisation by a biofouling community 

has detrimental impacts on the structures, reducing the performance and increasing the 
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cost of maintenance and repair.  Research will continue to strive toward improvements 

in antifouling and fouling-release technologies, along with methods for evaluating 

them.  These improved evaluation methods should include increasing the number of 

marine organisms with different adhesive strategies and body morphologies that are 

used to gauge the antifouling and FR properties of a coating or new technology.   

This study has shown that Elminius modestus, as a membranous-based barnacle, 

is suitable as a model laboratory test species and can be used for evaluating new 

coating formulations.  E. modestus was found to be more sensitive to the coating type 

in terms of growth (Chapter 2), removal times (Chapter 3) and CRS (Chapter 2 and 3) 

than B. amphitrite, and therefore E. modestus is possibly superior to B. amphitrite as a 

test species for discriminating between the performance of coatings.  The different 

basis, shape and structure of the shell of E. modestus influences the release mechanics 

of the barnacle when compared to B. amphitrite.  Although the laboratory assay could 

never replicate the complexity of the colonisation process in the natural environment, 

settlement and CRS measurements of laboratory-cultured barnacles correlated well 

with the recruitment and CRS of field-grown barnacles, such that laboratory assays 

were able predict the FR performance of a coating in the field.  Laboratory assays 

indeed have their benefits over field trials.  Which includes a better control over the 

population and prevention of overcrowding, and no environmental stresses for example 

cold and adverse weather reducing the level of larval availability and recruitment, and 

damaging the samples.   

Laboratory assays are a valuable tool in FR coating research.  E. modestus is a 

good candidate for a laboratory test species, when used in conjunction with B. 

amphitrite, could provide a more robust and thorough assessment of the performance of 

FR coatings. 
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Appendix 1:  The Total Number of Barnacles Recruited in 

the Field on Silicone and Fluoropolymer 

Coatings. 

 

Table A1.1.  Total number of barnacles and number of adult barnacles recorded from the 

field in Burnham-on Crouch from four immersion periods, and in Fairlie Quay from 2010 

on five silicone and three fluoropolymer coatings.  Adult barnacles refer to barnacles over 

3mm in diameter (Crisp & Davies 1955).  No data available from Burnham-on-Crouch 

April 2010, images were taken from above, viewing the barnacles from the top, and 

therefore individual barnacles were not discernible. 

Coating 

 

 

Total 

Number 

 

Number of 

Adults 

Burnham-on-Crouch Fairlie Quay 

April 

2010 

June 

2010 

April 

2011 

July 

2011 

Elminius 

modestus 

Semibalanus 

balanoides 

S1 Total - 93 793 171 104 69 

Adults - 67 207 144 79 69 

S2 Total - 78 568 215 41 34 

Adults - 53 159 186 32 34 

S3 Total - 220 786 441 84 23 

Adults - 189 282 371 71 23 

S4 Total - 415 732 361 119 48 

Adults - 342 278 284 92 48 

S5 Total - 332 452 214 38 164 

Adults - 274 307 188 29 164 

FP1 Total - 571 212 444 103 153 

Adults - 475 135 273 84 153 

FP2 Total - 393 479 250 82 136 

Adults - 256 293 185 58 136 

FP3 Total - 690 619 488 77 182 

Adults - 441 315 412 57 182 
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Appendix 2:  The Monthly Surface Water Temperatures for 

the Irish Sea and the Thames. 

 

 The mean monthly temperature of the surface waters of two recording stations 

were accessed from CEFAS website (http://www.cefas.defra.gov.uk/our-

science/observing-and-modelling/monitoring-programmes/sea-temperature-and-

salinity-trends/presentation-of-results.aspx).  The recording station Port Erin on the Isle 

of Man and Littlebrook in Kent were selected as these stations were the closest to the 

two field sites, Fairlie Quay and Burnham-on-Crouch, respectively, and had a complete 

record of the monthly temperature from 2009 to 2011.    

 

 

Figure A2.1.  Location of the recording stations Port Erin, Isle of Man and Littlebrook, 

Kent, in relation to the two field sites 1) Fairlie Quay, Ayrshire and 2) Burnham-on-

Crouch, Essex. 

http://www.cefas.defra.gov.uk/our-science/observing-and-modelling/monitoring-programmes/sea-temperature-and-salinity-trends/presentation-of-results.aspx
http://www.cefas.defra.gov.uk/our-science/observing-and-modelling/monitoring-programmes/sea-temperature-and-salinity-trends/presentation-of-results.aspx
http://www.cefas.defra.gov.uk/our-science/observing-and-modelling/monitoring-programmes/sea-temperature-and-salinity-trends/presentation-of-results.aspx
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Figure A2.2.  Mean monthly surface water temperatures from 2009 to 2011 for Port Erin, Isle of Man and Littlebrook, Kent.  Source: CEFAS, Web 

reference 4. 
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Appendix 3.  The Dynamic Mechanical Analysis of Silicone 

and Fluoropolymer Coatings. 

 

 A dynamic mechanical analyser (The Perkins Elmer Pyris Diamond DMA) was 

used to measure the modulus of the silicone and fluoropolymer coatings in Chapter 5.  

Sinusoidal oscillations were applied to a strip of the polymer which was heated from -

140 to 70°C with a heating rate of 4°C/minute.  The modulus at 22°C for two polymers 

strips per coating were averaged and provided the modulus presented in Chapter 5.  

 

 

 

Figure A3.1.  The elastic modulus of two mD10 polymer strips heated from -140 to 70°C 

with a heating rate of 4°C/minute measure using a dynamic mechanical analyser.  
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Figure A3.2.  The elastic modulus of two mD10H polymer strips heated from -140 to 70°C 

with a heating rate of 4°C/minute measure using a dynamic mechanical analyser.  

 

 

 

Figure A3.3.  The elastic modulus of two mE10H polymer strips heated from -140 to 70°C 

with a heating rate of 4°C/minute measure using a dynamic mechanical analyser.  
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Figure A3.4.  The elastic modulus of two HMod (HMO) polymer strips heated from -140 

to 70°C with a heating rate of 4°C/minute measure using a dynamic mechanical analyser.  

 

 

Figure A3.5.  The elastic modulus of two MMod (MMO) polymer strips heated from -140 

to 70°C with a heating rate of 4°C/minute measure using a dynamic mechanical analyser.  

 

0.1 

1 

10 

100 

1000 

10000 

-1
3

7
 

-1
3

3
 

-1
3

0
 

-1
2

4
 

-1
1

8
 

-1
1

1
 

-1
0

4
 

-9
7
 

-9
0
 

-8
2
 

-7
5
 

-6
8
 

-6
1
 

-5
4
 

-4
5
 

-3
5
 

-2
6
 

-1
9
 

-1
3
 

-5
 

3
 

1
1
 

1
9
 

2
6
 

3
2
 

3
9
 

4
7
 

5
4
 

6
1
 

6
8
 

7
5
 

M
o
d

u
lu

s 
(M

P
a
) 

Temperature (°C) 

HMO 1 

HMO 2 

0.1 

1 

10 

100 

1000 

10000 

-1
3
8
 

-1
3
6
 

-1
3
2
 

-1
2
6
 

-1
2
0
 

-1
1
3
 

-1
0
6
 

-9
9
 

-9
1
 

-8
4
 

-7
6
 

-6
9
 

-6
4
 

-5
6
 

-4
8
 

-3
8
 

-2
8
 

-2
1
 

-1
4
 

-7
 

1
 

1
0
 

1
8
 

2
5
 

3
2
 

3
9
 

4
6
 

5
3
 

M
o
d

u
lu

s 
(M

P
a
) 

Temperature (°C) 

MMO 1 

MMO 2 



 Appendices 

 

237 

 

 

Figure A3.6.  The elastic modulus of two LMod (LMO) polymer strips heated from -140 to 

70°C with a heating rate of 4°C/minute measure using a dynamic mechanical analyser.  

 

 

 

Figure A3.7.  The elastic modulus of two LSE polymer strips heated from -140 to 70°Cwith 

a heating rate of 4°C/minute measure using a dynamic mechanical analyser. 
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Figure A3.8.  The elastic modulus of two HSE polymer strips heated from -140 to 70°C 

with a heating rate of 4°C/minute measure using a dynamic mechanical analyser.  
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Appendix 4.  Exponential, Power, and Logarithmic 

Regression Results of the Critical Removal Stress 

Against the Elastic Modulus and (Eγ)
½
 of the 

Coatings from Chapter 5. 

 

Table A4.1.  Exponential regression results of the critical removal stress of Balanus 

amphitrite against the elastic modulus of silicone coatings (modulus range 0.31 to 0.66 

MPa). 

 Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.024 

1.198 

0.005 

0.441 

0 

0.248 

4.473 

2.714 

0.008 

< 0.001 

Correlation 

coefficient 

(r) = 0.248 (r
2
) = 0.062 

Source df MS F  P 

Regression 1 4.299 7.364  0.008 

Residual 112 0.584    

 

Table A4.2.  Power regression results of the critical removal stress of Elminius modestus 

(A) and Balanus amphitrite (B) against the elastic modulus of silicone coatings (modulus 

range 0.31 to 0.66 MPa). 

A Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.069 

0.657 

0.011 

0.185 

0 

0.323 

6.213 

3.548 

< 0.001 

0.001 

Correlation 

coefficient 

(r) = 0.323 (r
2
) = 0.104 

Source df MS F  P 

Regression 1 5.605 12.585  0.001 

Residual 108 0.445    
 

B Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.066 

0.549 

0.012 

0.205 

0 

0.246 

5.628 

2.681 

0.008 

< 0.001 

Correlation 

coefficient 

(r) = 0.246 (r
2
) = 0.060 

Source df MS F  P 

Regression 1 0.012 10.991  0.001 

Residual 112 0.001    
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Table A4.3.  Logarithmic regression results of the critical removal stress of Elminius 

modestus (A) and Balanus amphitrite (B) against the elastic modulus of silicone coatings 

(modulus range 0.31 to 0.66 MPa). 

A Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.066 

0.021 

0.006 

0.007 

0 

0.297 

11.497 

3.235 

< 0.001 

0.002 

Correlation 

coefficient 

(r) = 0.297 (r
2
) = 0.088 

Source df MS F  P 

Regression 1 0.006 10.463  0.002 

Residual 108 0.001    
 

B Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.077 

0.028 

0.008 

0.009 

0 

0.295 

10.125 

3.265 

<0.001 

0.001 

Correlation 

coefficient 

(r) = 0.295 (r
2
) = 0.087 

Source df MS F  P 

Regression 1 0.012 10.991  0.001 

Residual 112 0.001    

  

 

Table A4.4.  Exponential regression results of the critical removal stress of Elminius 

modestus against the elastic modulus of silicone and fluoropolymer coatings (modulus 

range 0.31 to 19.73 MPa). 

 Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.055 

0.080 

0.003 

0.006 

0 

0.643 

19.629 

13.656 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.643 (r
2
) = 0.413 

Source df MS F  P 

Regression 1 79.150 186.497  < 0.001 

Residual 265 0.424    
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Table A4.5.  Logarithmic regression results of the critical removal stress of Elminius 

modestus against the elastic modulus of silicone and fluoropolymer coatings (modulus 

range 0.31 to 19.73 MPa). 

 Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.081 

0.044 

0.003 

0.002 

0 

0.803 

24.706 

21.943 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.803 (r
2
) = 0.645 

Source df MS F  P 

Regression 1 1.125 481.488  < 0.001 

Residual 265 0.002    
 

 

 

Table A4.6.  Exponential regression results of the critical removal stress of Elminius 

modestus (A) and Balanus amphitrite (B) against the square root of the surface energy and 

elastic modulus ((Eγ)
1/2

) of the silicones and fluoropolymers.  

A Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.186 

0.045 

0.006 

0.003 

0 

0.718 

31.289 

16.864 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.718  (r
2
) = 0.516 

Source df MS F  P 

Regression 1 25.293 284.407  < 0.001 

Residual 267 0.089    
 

B Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.144 

0.119 

0.010 

0.012 

0 

0.591 

14.648 

10254 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.591  (r
2
) = 0.349 

Source df MS F  P 

Regression 1 15.983 105.147  < 0.001 

Residual 196 0.152    
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Table A4.7.  Power regression results of the critical removal stress of Elminius modestus 

(A) and Balanus amphitrite (B) against the square root of the surface energy and elastic 

modulus ((Eγ)
1/2

) of the silicones and fluoropolymers.  

A Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.114 

0.458 

0.006 

0.022 

0 

0.780 

20.661 

20.384 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.780  (r
2
) = 0.609 

Source df MS F  P 

Regression 1 29.854 415.507  < 0.001 

Residual 267 0.072    
 

B Coefficient Standard 

Error 

Standardized 

coefficient 

t P 

Intercept 

Slope 

0.092 

0.684 

0.009 

0.061 

0 

0.624 

9.943 

11.173 

< 0.001 

< 0.001 

Correlation 

coefficient 

(r) = 0.624  (r
2
) = 0.389 

Source df MS F  P 

Regression 1 17.811 124.825  < 0.001 

Residual 196 0.143    
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Appendix 5. Atomic Force Microscopy of the Basal 

Membrane of Elminius modestus. 

 

Atomic force microscopy (AFM) (Department of Material Science and 

Metallurgy, University of Cambridge) in tapping mode was used to image the adhesive 

morphology of Elminius modestus.  The barnacles were grown on Rhodorsil 48V-750 

silicone elastomers.  The silicone coated microscope slides were immersed in Fairlie, 

Ayrshire, in 2010 for 5 months.  After this time they were transferred to the laboratory 

and maintained in 20L of aerated ASW fed Tetraselmis sp. 3 times a week for 6 weeks.  

Live and freeze dried specimens were tested.  Freeze dried specimens were removed 

from the silicone coatings, only barnacles which had intact basal plates were used, these 

were rinsed in Milli-Q ultra pure water, and then frozen at -80 ºC and dried for 24hrs in 

a freeze dryer.  Live specimens were removed and were rinsed in Milli-Q water 

immediately prior to AFM imaging. 

Imaging the live barnacles proved unsuccessful, the movement of the barnacle 

inside the shell moved the basal membrane too much for a clear image to be recorded.  

Dissecting the body of the barnacle from the shell leaving the basis intact was also 

unsuccessful and did not produce a clear image.  The tapping of the cantilever was 

sufficient to vibrate the basis and prevent an image being recorded.  Other attempts 

included dissecting the membrane from the shell immediately prior to test run, however 

this desiccated at a very rapid pace.  Immersing the samples in water would avoid 

desiccation, however, this was not attempted at this juncture.  

Freeze dried samples did successfully produce images.  However, due to the 

freeze drying the state of the basis and adhesive would have been altered and may not 

provide a true image of the basis.  Nevertheless the following are examples of the 

images from the AFM of the freeze dried adhesive from two E. modestus barnacles.  

Although no further analysis was completed due to limited time and resources.  
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Figure A5.1.  AFM images of the adhesive of a freeze dried Elminius modestus at 10µm
2
.  

A) topographic image, B) amplitude image and C) phase image. 
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Figure A5.2.  AFM images of the adhesive of a freeze dried Elminius modestus 2µm
2
, A) 

topographic image, B) 3d topographic image C) amplitude and D) phase image. 

   

Figure A5.3.  AFM images of the adhesive of a freeze dried Elminius modestus at 10µm
2
.  

A) topographic image, and B) amplitude image. 
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