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Abstract

In recent years, there has been enormous interest in utilizing the full-duplex

(FD) technique with multiple-input multiple-output (MIMO) systems to com-

plement the evolution of fifth generation technologies. Transmission and re-

ception using FD-MIMO occur simultaneously over the same frequency band

and multiple antennas are employed in both sides. The motivation for em-

ploying FD-MIMO is the rapidly increasing demand on frequency resources,

and also FD has the ability to improve spectral efficiency and channel capac-

ity by a factor of two compared to the conventional half-duplex technique.

Additionally, MIMO can enhance the diversity gain and enable FD to ac-

quire further degrees of freedom in mitigating the self-interference (SI). The

latter is one of the key challenges degrading the performance of systems op-

erating in FD mode due to local transmission which involves larger power

level than the signals of interest coming from distance sources that are sig-

nificantly more attenuated due to path loss propagation phenomena. Various

approaches can be used for self-interference cancellation (SIC) to tackle SI

by combining passive suppression with the analogue and digital cancellation

techniques. Moreover, active SIC techniques using special domain suppres-

sion based on zero-forcing and null-space projection (NSP) can be exploited

for this purpose too. The main contributions of this thesis can be summarized

as follows. Maximum-ratio combining with NSP are jointly exploited in or-

der to increase the signal-to-noise ratio (SNR) of the desired path and mitigate

the undesired loop path, respectively, for an equalize-and-forward (EF) relay

using FD-MIMO. Additionally, an end-to-end performance analysis of the

proposed system is obtained in the presence of imperfect channel state in-

formation by formulating mathematically the exact closed-form solutions for

the signal-to-interference-plus-noise ratio (SINR) distribution, outage proba-

bility, and average symbol-error rate for uncoded M -ary phase-shift keying

over Rayleigh fading channels and in the presence of additive white Gaus-



sian noise (AWGN). The coefficients of the EF-relay are designed to attain

the minimum mean-square error (MMSE) between the transmission symbols.

Comparison of the results obtained with relevant state-of-the-art techniques

suggests significant improvements in the SINR figures and system capacity.

Furthermore, iterative detection and decoding (IDD) are proposed to mitigate

the residual self-interference (SI) remaining after applying passive suppres-

sion along with two stages of SI cancellation (SIC) filters in the analogue

and digital domains for coded FD bi-directional transceiver based multiple

antennas. IDD comprises an adaptive MMSE filter with log-likelihood ratio

demapping, while the soft-in soft-out decoder utilizes the maximum a poste-

riori (MAP) algorithm. The proposed system’s performance is evaluated in

the presence of AWGN over non-selective (flat) Rayleigh fading single-input

multiple-output (SIMO) and MIMO channels. However, the results of the

analyses can be applied to multi-path channels if orthogonal frequency divi-

sion multiplexing is utilised with a proper length of cyclic prefix in order to

tackle the channels’ frequency-selectivity and delay spread. Simulation re-

sults are presented to demonstrate the bit-error rate (BER) performance as a

function of the SNR, revealing a close match to the SI-free case for the pro-

posed system. Furthermore, the results are validated by deriving a tight upper

bound on the performance of rate-1/2 convolutional codes for FD-SIMO and

FD-MIMO systems for different modulation schemes under the same condi-

tions, which asymptotically exhibits close agreement with the simulated BER

performance.
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1.1 Introduction

1.1 Introduction

Due to the increasing demand on frequency resources for the next generations of wireless

communication, research efforts have recently been initiated by industrial and academic

groups around the world in order to utilize the in-band full-duplex (FD) technology for

further improvements in spectral efficiency [1]. Previous generations of wireless commu-

nication were basically designed to depend on the half-duplex (HD) technique, in which

different time and/or frequency bands are used to separate transmitted and received sig-

nals [2,3]. Fig. 1.1 shows how two nodes communicate with each other by using different

duplex schemes, in which separation in the time domain allows the system to utilize the

same frequency band for transmission, while orthogonal time slots are allocated for trans-

mitted and received signals. This scheme is called the time domain duplex (TDD). In the

frequency domain duplex (FDD), which is sometimes referred to as out-of-band FD, all

the time slots can be used by the transmitter and receiver since transmission occurs in

different frequency bands. The third scenario combines the above two schemes, in which

two frequency bands are assigned for communication and the symbols transmitted in each

node are set in orthogonal time slots. This technique is called HD-FDD. The fourth type

is the subject of interest in this thesis, in which a simultaneous transmission over the

same frequency band is utilised to enhance the spectral efficiency in (bit/second/Hz) by a

factor of two compared to HD-FDD [4]. This is due to the fact that the conventional tech-

niques employed for improvement in spectral efficiency, such as smart antennas, adaptive

modulation and coding are approaching the limits of their potential [5].
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Figure 1.1: Different duplexing schemes
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1.1 Introduction

On the other hand, one of the key challenges in FD wireless communication is the

self-interference (SI), sometimes referred to as loop-interference, which can have an un-

desirable effect on overall system performance. This is principally caused by the signals

transmitted by the FD transceiver which exhibit greater energy than the desired incoming

signals due to path loss propagation phenomena. The large power differential between

the signal of interest, which arrives weakly from a distance source, and the SI signal cre-

ated by the FD transceiver itself poses extreme difficulties for the receiver which needs to

reconstruct and detect the desired signal.

At this point, different state-of-the-art approaches are available regarding the effect

of SI on FD systems. One example of femto-cell FD cellular systems has been consid-

ered, in which the transmitted power from the base-stations and mobile handsets is set

to 21 dBm, with an isolation of 15 dB is assumed between the transmit and receive sig-

nals [4]. For a noise floor at the receiver of −100 dBm, each base-station in this system

has 21− 15− (−100) = 106 dB of SI above the noise floor which needs to be addressed.

In a second example [6], a typical WiFi radio of 80 MHz bandwidth and operating in FD

mode is considered. A transmitted signal of 20 dBm and a noise floor of −90 dBm are

assumed for this system, and thus the SI power above the noise floor can be determined as

20 − (−90) = 110 dB which needs be mitigated. Without loss of generality, differences

in wireless systems in terms of various cell sizes and numbers of antennas might require

higher transmission power yielding stronger power of SI, and thus additional SI suppres-

sion will need consequently to be achieved. Further scenarios for different FD systems,

along with various algorithms utilized to suppress SI, are outlined in Table 1 in [7] for a

recently published review.

Multiple-input multiple-output (MIMO) technology can be employed with FD sys-

tems by sending a stream of data using several antennas over independent channels and

receiving it by using multiple spatial antennas to increase the diversity gain and to obtain

more degrees of freedom (DoF) in tackling SI [8, 9]. This is discussed later on in this

thesis in more detail.

Several methods have been proposed in this field to mitigate SI that can be grouped

in two categories, namely passive and active SI cancellation (SIC). Passive methods rely

on separation between the transmitting and receiving antennas in order to increase the

isolation loss amongst them, and hence reduce the magnitude of local interference. In

contrast, active approaches are implemented either in the analogue domain, which always

occur before the analogue-to-digital converter (ADC), or in the digital domain after the

3



1.2 Background and Literature Review

ADC, in which the SI signal is subtracted from the overall incoming signal in the passband

and/or baseband domains, respectively. This operation requires precise knowledge of the

interfering signal and its channel, and therefore the better estimation of the SI, the more

robust and effective the implementation of SIC. Furthermore, a combination of methods

in different domain can be used to obtain better performance. Further details are discussed

in Chapter 2 in more depth.

1.2 Background and Literature Review

In order to mitigate SI in transceivers operating in FD mode, a crucial key stage is to re-

duce the effects of the transmitted power of an FD transceiver on its receiving input. This

is due to the fact that the arriving SI power is much stronger than the desired incoming

signal, which drowns the latter in loop-interference (LI) [10]. Therefore, any signal pro-

cessing in the analogue or digital domains might be susceptible to fail in recovering the

signal of interest as a result of limited dynamic range and quantization resolution of the

ADC circuitry, which consequently causes saturation in the input of the receiver [9–13].

In order to suppress SI in FD systems, it is first required to reduce the effects of local

power coupling to avoid the drowning of the desired incoming signal in loop-interference

which is significantly stronger, and to mitigate the saturation of the ADC circuitry due to

limited dynamic range and quantization resolution [9–14].

In this stage, passive suppression has been proposed at the receiver front-end by using

natural-isolation techniques via antenna separation to diminish and block the line-of-sight

(LoS) path. This can be achieved by orienting transmit antenna elements in the opposite

direction than those of the receiving antennas, which consequently maximizes LI attenua-

tion by increasing the insertion loss. This can be further increased by utilizing orthogonal

polarization schemes by designing an array of antennas for the transmitters and receivers

of the FD relays in such a way that orthogonal polarization between them is achieved for

this purpose [8, 9, 15–17].

At this stage in FD systems, different mechanisms have been proposed and deployed

in the literature to mitigate SI passively, Table 1.1 presents the most significant proposals

applied to suppress SI to a level that enables the next stages of SIC before and after the

ADC in order to treat the residual SI and detect the desired signal properly.
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1.2 Background and Literature Review

Table 1.1: Major research into the passive suppression of SI

Year Reference Contribution Assumption

2004

Anderson

et al. [18]

Antennas isolation and sep-

aration approaches are pro-

posed in which measurements

and simulations of power delay

profile based on wideband mul-

tipath channels are presented.

An ideal amplifier in each FD

node is assumed for simula-

tion purposes, and the leak-

age channel attenuation of SI is

equal to time-varying antenna

isolation.

2007 Bliss et al.

[19]

An adaptive transmit/receive

antennas array is utilized for

the FD-MIMO based relay, in

which a partitioning technique

is exploited to select some an-

tennas for transmitting and as-

signing others for receiving.

Signal processing mechanisms

is used to enable the trans-

mit/receive antennas array

methods adaptively.

2009 Ju et al.

[20]

FD relays based on time and

antennas sharing proposed for

the passive mitigation of SI.

A precoder and decoder design

for this purpose is required.

SI suppression is implemented

via a precoding algorithm.

2010 Duarte et

al. [17]

Antenna separation techniques

are implemented along with ac-

tive analogue and digital SIC.

For distances of 20 cm and 40

cm between the transmit and

receive antennas, AS achieves

SI reductions of 39 dB and 45

dB, respectively.

2010 Choi et al.

[21]

Destructive interference of SI

is proposed based on antennas

separation by using two anten-

nas for transmitting positioned

at d and d + λ/2 away from a

single receiving antenna.

Ideal positioning of antennas

is required to obtain perfect SI

suppression.

Continued on next page
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1.2 Background and Literature Review

Table 1.1 – Continued from previous page

Year Reference Contribution Assumption

2010 Haneda et

al. [11]

A compact antenna for a re-

lay is proposed for FD commu-

nication and for the measure-

ments of the SI channel. An

isolation of about 48 dB is ob-

tained in the presence of a mul-

tipath SI channel.

The compact size and isolation

obtained might be unsuitable

for other practical applications

operating in FD mode.

2011 Everett et

al. [22]

Directional antennas are uti-

lized to minimize the intersec-

tion of the main lobes of the

transmit and receive antennas,

in order to improve the diver-

sity gain, decrease SI and con-

sequently empower FD opera-

tion for wireless communica-

tion.

Directional antennas are placed

20 cm away from each other,

and 5 dB is used as the trans-

mission power.

2012 Everett

[23]

Polarization decoupling is used

with FD, in which the trans-

mit and receive antennas are

proposed and designed with or-

thogonal polarization in order

to minimize the coupling and

enhance the passive suppres-

sion of SI.

A combination of absorptive

shielding and directional iso-

lation in addition to cross-

polarization are assumed in the

design of this antenna for this

FD system.

Continued on next page
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1.2 Background and Literature Review

Table 1.1 – Continued from previous page

Year Reference Contribution Assumption

2012 Knox [24] Single antenna in FD commu-

nication for transmitting and

receiving are connected via a

circulator, in which up to 45

dB of isolation is obtained be-

tween the two channels for

transmission with an insertion

loss of 0.75 between the two

paths.

A single microstrip antenna is

used with a circulator for FD

transmission in the same fre-

quency band of (902 − 928)

MHZ for FD operation.

2014 Everett et

al. [25]

Passive suppression is in-

vestigated by applying

isolation techniques at the

FD transceiver, such as us-

ing directional antennas,

absorptive shielding and

cross-polarization. The results

reveal that more than 70 dB

of passive suppression of SI

can be achieved in particular

circumstances.

Near-antenna reflection should

be minimized to be applicable

to FD. Moreover, all the sug-

gested techniques are designed

to mitigate the direct path of

SI, while the indirect paths,

that create frequency selective

channels of SI, require active

cancellation methods.

2015 Heino et

al. [26]

Antenna design is presented

with the passive suppression

of SI for FD-MIMO systems,

in which an attenuation of 40

dB is achieved, using a reso-

nant wave-traps mechanism for

a compact device. An addi-

tional 30 dB of radio frequency

(RF) cancellation is achieved.

The proposed system can sup-

press only the linear compo-

nents of SI perfectly, while the

non-linear distortions of SI due

to transmit/receive chains need

more sophisticated algorithms.

Continued on next page
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Table 1.1 – Continued from previous page

Year Reference Contribution Assumption

2015 Laughlin

et al. [27]

Hybrid junctions with electri-

cal balance duplexer have been

exploited to apply significant

isolation between the transmit

and receive terminals. This

technique is proposed for small

size devices and one antenna is

used for transmission.

Dynamic adaptation is re-

quired to tackle the limited

isolation bandwidth resulting

from the impedance varia-

tion in the single antenna in

both time/frequency domains,

which causes sensitive transmit

to receive isolation.

2016 Korpi et

at. [28]

A novel antenna design for in-

band FD relays and for differ-

ent operational conditions. A

high isolation of up to 70 dB

between the transmit and re-

ceive antennas is achieved via

wave-traps techniques for real-

istic multipath channels.

Transmitted power of up to 30

dB is assumed for transmission

by using instantaneous band-

widths of 20 and 80 MHZ.

Matching results are obtained

in both a realistic environment

and an anechoic chamber when

the proposed antennas are ex-

amined.

After reducing the SI to an acceptable level using passive means, the conditions are

suitable now to use the active suppression approaches by exploiting various means of sig-

nal processing for reduction of residual interference. This requires precise knowledge of

the transmitted data along with the loop channel. In fact, perfect knowledge of the trans-

mitted information is available at a transceiver operating in FD mode, but it is necessary to

estimate the accurate SI channels. Thus, less error in SI channel estimation means better

mitigation of SI [9]. One of the conventional methods which has been used in this area

is based on the idea of using the known transmitted data with the estimated loop chan-

nel in order to replicate the interference signal. The latter can then be subtracted from

the overall received signal which consists of the desired and SI signals. This scheme is

called time-domain cancellation (TDC) [8, 9, 29]. In brief, passive SI reduction can be

used in conjunction with active suppression approaches that exploit local knowledge of

the transmitted data and loop channel information, in both analogue and digital domains,

to remove SI. The latter needs to be accurately estimated in order to achieve successful
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1.2 Background and Literature Review

mitigation [9].

Cooperative communication utilizing either amplify-and-forward (AF), decode-and-

forward (DF), equalize-and-forward (EF) or filter-and-forward (FF) relaying has recently

gained increased attention due to its potential to enhance spectral efficiency and chan-

nel capacity, and to extend wireless coverage. The rates achievable under a limited

transmit/receive dynamic range of FD-MIMO using DF relaying [13] and a bidirectional

transceiver [14] have been studied in the presence of channel estimation errors, in which

the maximization of the end-to-end (E2E) lower bound achievable rate based on a trans-

mission scheme is proposed, which requires a non-convex optimization problem to be

solved. The overall capacity of a FD-MIMO system based on AF relaying has been pre-

sented using an optimal transformation matrix that maximizes the mutual information

under average power constraint at the relay output under the assumption of perfect chan-

nel estimation [30]. The latter work extends the results obtained by employing MIMO

system instead of using a single antenna at each transmitter and receiver [3]. An alter-

native HD design has also been presented [31] in which an AF-relaying cooperative lin-

ear transceiver is analysed under perfect source-to-destination channel state information

(CSI) aided by an applied optimization routine to maximize the mutual information in the

transmission system. However, several studies in this area have used different algorithms

to mitigate this problem, such as the design of an adaptive feedback canceller to try to

restore the signal of interest blindly based on spectrum shaping [14] or adaptively direct-

ing the relay receiving array towards the minimum variance distortion-less response [32].

Additionally, an adaptive filter based on least mean-square has been proposed to track

amplitude and phase variations in single channel transmission in order to create signal,

with delay and frequency offset compensation for SI cancellation [33]. This idea might be

upgraded to be suitable for multi-channel communication. Moreover, several space-time

coding (STC) techniques have been proposed to tackle SI and improve the efficiency of

this type of transmission operating in FD mode. One of the recent types of STC which has

been proposed for FD relays is called distributed linear convolutional based STC. This has

two schemes, the first of which scheme is exploited for entire SI cancellation, while the

second is used for partial loop channel reduction where some of the interference signal

might be exploited as self-coding [34]. Furthermore, several publications have studied

and analysed numerically the performance of FD-MIMO relay systems in order to miti-

gate SI using various approaches in the presence and absence of perfect CSI in order to

obtain the optimal signal-to-interference-plus-noise ratio (SINR) with respect to bit error

9
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rate (BER) [13, 35, 36].

Furthermore, in order to make FD nodes more tolerant of channel impairments, FD-

MIMO can be merged with orthogonal frequency division multiplexing (OFDM) in order

to obtain the benefits of both techniques and consequently enhance the overall perfor-

mance. OFDM is exploited in this area as one of the most important modulation and

multiplexing schemes, which is extraordinarily robust against multipath fading. Thus, in-

formation with high data rates over frequency selective fading channels earn the ability to

be transmitted and detected successfully by distributing and carrying the total high sym-

bol rate over individual and orthogonal sub-carriers. Therefore, the signals will be more

robust against channel impairments since this type of multiplexing scheme improves the

data rate and reliability of transmission [10, 37]. At this stage, different approaches and

algorithms have been proposed and implemented in the literature to tackle the SI actively

in the analogue and digital domains. Major recent publications which reflect this interest

are outlined briefly in Table 1.2.

Table 1.2: Major researches of active SIC

Year Reference Contribution Assumption

2009

Riihonen

et al. [38]

Spatial suppression via null-

space projection (NSP) with

minimum mean-square error

(MMSE) filters applied as SIC

for FD-MIMO based relay.

Linear receive and transmit fil-

ters for the estimated chan-

nel of loop-interference are ap-

plied to force the SI to zero at

the FD-MIMO relay.

2010 Duarte et

al. [17]

Experimental results show the

feasibility of FD by applying

an auxiliary RF transmit chain

in which a cancellation signal

is passed through in order to be

subtracted from the overall in-

coming signal.

Bidirectional transceiver with

two nodes is used, each of

which is equipped with two

antennas, one for transmitting

and the other for receiving.

Continued on next page
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Table 1.2 – Continued from previous page

Year Reference Contribution Assumption

2011 Riihonen

et al. [9]

TDC based on the subtraction

of an SI replica from the overall

incoming signal is presented.

Moreover, spatial suppression

is employed for SI mitigation

by utilizing antenna subset se-

lection and NSP.

MMSE filtering is utilized to

maintain the quality of the sig-

nal of interest which may be af-

fected by SIC.

2012 Riihonen

et al. [10]

Analogue and digital filters are

designed for SI suppression be-

fore and after the ADC, respec-

tively. The FD-MIMO-OFDM

transceiver is considered and

its performance is analysed.

Non-ideal ADC with limited

dynamic range is assumed.

OFDM is used to overcome

the frequency selectivity of the

MIMO channel.

2012 Lopez-

Valcarce

et al. [39]

Adaptive algorithm is pro-

posed, implemented and anal-

ysed for blindly restoring the

spectrum shape of the desired

signals.

FD-based AF-relay, and the

carrier frequency used is an

842 MHZ with 8 MHZ OFDM

signal.

2013 Bharadia

et al. [6]

Active SIC is proposed in

the analogue and digital do-

main for an FD single an-

tenna transceiver-based circu-

lator. The cancellation of lin-

ear and non-linear components

of SI is achieved.

The overall cancellation in all

domains can reach up to 110

dB.

Continued on next page
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Table 1.2 – Continued from previous page

Year Reference Contribution Assumption

2014 Korpi et

al. [40]

Distortions occurring due

to the non-linearity of the

transmit/receive components

are considered and analysed.

Active SIC of up to 75 dB is

achieved using RF and digital

cancellation.

The dynamic range require-

ments for the ADC are taken

into account. Transmitted

power of (20-30) dBm is as-

sumed.

2014 Duarte et

al. [41]

Active analogue SIC along

with passive suppression is pre-

sented for a multiple antenna

wideband WiFi system. A par-

allel transmit chain is exploited

to create a replica of the SI sig-

nal containing the non-linear

effects of the transmit compo-

nents.

Two transmitting antennas with

one receiving antenna are uti-

lized in each FD bidirectional

node. Additionally, OFDM is

used to mitigate the frequency

selectivity of the channel.

2014 Bharadia

et al. [42]

Novel designs of analogue and

digital SIC circuits are pro-

posed in order to attenuate

the SI power to the level of

the thermal noise floor of the

receiver. A multi-tape ana-

logue SIC circuit is designed

in which fixed delays and vari-

able attenuators are controlled

adaptively.

Each antenna is connected to a

circulator to ensure simultane-

ous transmit and receive. SIC

achieves a reduction of 110 dB

in SI power at a carrier fre-

quency of 2.45 GHZ and 20

MHZ bandwidth.

Continued on next page
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Table 1.2 – Continued from previous page

Year Reference Contribution Assumption

2014 Li et

al. [43]

Analogue SIC at the RF do-

main is followed by two itera-

tive stages of digital SIC. An-

alytical and simulation results

are demonstrated.

The distortion effects caused

due to the non-ideal character-

istics of the receive chain com-

ponents are considered to be

not a big problem after apply-

ing RF cancellation.

2015 Elsayed

Ahmed el

at. [44]

A novel digital SIC is proposed

by passing the SI signal in the

RF domain through an auxil-

iary receive chain to create an

SI copy in the digital domain,

which is then subtracted from

the overall digital signal com-

ing through the main receive

chain.

The effect of the trans-

mit/receive impairments is

cancelled by using this al-

gorithm, which achieves

mitigation of SI approaching 3

dB above the noise floor of the

receiver.

2015 Chen et al.

[45]

A multi-stage SIC is proposed

for a single antenna FD wire-

less transceiver, in which a

circulator is employed to sep-

arate the transmitted and re-

ceived signals. Two stages of

passive suppression-based ana-

logue SIC are implemented to

remove the strongest paths of

SI caused by antenna reflec-

tions, circulator leakages and

other weaker multi-path reflec-

tions. Digital SIC is applied af-

terwards to mitigate the resid-

ual SI.

The overall SIC achievement

over a bandwidth of 20 MHZ

is 122 dB, in which 72 dB

is obtained from the passive

suppression and analogue SIC,

while 50 dB is acquired from

the digital domain SIC. The lat-

ter is exploited to remove the

residual multi-path SI and the

distorted SI components due

to non-linearity impairments

caused by the transmit/receive

chains.

Continued on next page
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Table 1.2 – Continued from previous page

Year Reference Contribution Assumption

2016 Xiong et

al. [46]

A channel estimation algo-

rithm for FD-MIMO relays

with large scale antenna arrays

is presented in which the de-

sired path and the SI chan-

nels are estimated simultane-

ously. A performance analy-

sis of the proposed estimator

is conducted for validation pur-

poses.

The slowly-varying charac-

teristics of the SI channel

are exploited for estimation

by utilizing the maximum-

likelihood (ML) criteria and

an expectation-maximization

algorithm to minimize com-

plexity.

2016 Antonio el

al. [47]

Adaptive and blind SIC algo-

rithms for DF and FF relay-

based wideband FD-MIMO-

OFDM are developed in which

the spectral properties of the

source signal are exploited to

identify the SI channel.

The proposed algorithms can

provide a level of residual SI

below the noise floor of the FD-

relay by using the samples (in

time) for fewer OFDM sym-

bols.

Furthermore, most of the recent state-of-the-art studies related to wireless FD com-

munication have been reviewed elsewhere [1, 4, 5, 7], highlighting the most promising

techniques for mitigating SI in different domains.

1.3 The Key Contributions of This Thesis

The key contributions of this thesis are to mitigate the residual SI remaining after apply-

ing different passive and active stages of SIC. This is due to the fact that all the techniques

utilised in the literature for this purpose, as discussed earlier in this chapter, cannot thor-

oughly tackle the SI in the real world. Moreover, it is the first time to combine two

techniques as MRC and NSP for the sake of enhancing the overall SINR of the proposed

system. In this thesis, it is the first time to utilize channel coding techniques with IDD

for FD-MIMO, in which the desired signals can be equalized and detected after applying

further reduction of SI by exploiting an iterative approach. Additionally, it is worth men-
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tioning that the techniques utilized in this thesis are in the digital domain, i.e. applied to

the baseband signals, by assuming that the necessary aforementioned SIC approaches in

the literature are employed in the RF and analogue/digital domains. Furthermore, the per-

formance analyses of the proposed systems introduced in this thesis are evaluated in order

to confirm the simulation results, in which the exact and tight upper bound expressions

are obtained on the performance of the uncoded and coded FD systems, respectively.

1.4 Research Contributions and Thesis Organization

The aim of this research is to investigate FD capability in the context of wireless com-

munication systems based on multiple antennas in the presence and absence of channel

coding. Moreover, an extensive survey of past research work in this area is compiled,

and a simulation test bench for numerical analysis and performance evaluation is imple-

mented. Additionally, theoretical analysis and performance evaluation using the closed-

form probability of error, outage probability and capacity solutions are presented. Fur-

thermore, different methods for cancellation and detection are introduced in the presence

of local generated SI.

The organization of this thesis is summarised as follows:

Chapter 2 introduces and explains the employment of the FD mode with multiple

antenna transceivers. Different system models are described briefly, such as spatial mul-

tiplexing, precoding and diversity coding. Additionally, the reconstruction of transmitted

symbols exploiting various equalization and detection methods is considered. Further-

more, SIC approaches are outlined and discussed, in which passive and active methods

in both the analogue and digital domains are utilized to tackle the SI which accompanies

with FD operation.

Chapter 3, discusses the joint utilization of NSP and MRC for an uncoded FD-MIMO

relaying system in order to suppress the SI and to enhance the overall received power of

the desired signal. Moreover, performance analyses of the proposed system are derived for

two hops in the presence of channel estimation errors. In this chapter, the performance

analysis is achieved by obtaining exact formulas for the probability density functions

(PDF)s of the output SINR for each hop, followed by evaluating the outage probabilities,

average-symbol-error rate (ASER) and finally the upper bound capacity of this system.

Chapter 4, gives an overview and discuses the structure of two of the most powerful

linear channel coding schemes, which are the convolutional and turbo codes. Addition-
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ally, the encoding representation and decoding algorithms are described in more detail.

Furthermore, IDD for coded FD-SIMO is proposed and applied in the digital domain to

provide an additional alleviation of the residual SI, which remains after applying different

passive and active SICs. The purpose of using IDD as SIC is to achieve a level of per-

formance that is very close to the SI-free case. Moreover, tight and union upper bounds

of the proposed system are derived for the performance of rate-1/2 convolutional codes

with quadrature phase shift keying (QPSK) modulation scheme in order to validate the

simulation results.

In Chapter 5, IDD is exploited this time in the context of coded FD-MIMO to ap-

ply effective mitigation of the remaining SI in the digital domain. The aim is to achieve

a level of performance very close to that of the SI-free scenario after a particular num-

ber of iterations. The proposed system is validated by deriving a tight upper bound on

the performance of rate-1/2 convolutional codes with M -ary quadrature amplitude mod-

ulation (QAM). Further, an extrinsic information transfer (EXIT) chart is utilized as a

semi-analytic tool to show how the IDD components are converging, when the soft in-

formation is exchanged between them. It also measures approximately the number of

iterations required to satisfy this convergence.

In Chapter 6, the main conclusions of the research and the contributions of this thesis

are presented, and proposed future work related to this field of study are outlined.
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2.1 Introduction

2.1 Introduction

Recently, several research studies have been launched with the aim to mitigate SI in

transceivers employing FD operation to complement the evolution of the next standard

for wireless communications, the fifth generation (5G), and beyond. This is due to the

fact that utilizing FD, where the transmitted and received signals use the same frequency

band simultaneously, with perfect SIC can improve the spectral efficiency and the channel

capacity by a factor of two with respect to systems using the conventional HD operation.

However, implementing perfect SIC is impractical due to the large power differences be-

tween a weak desired signal coming from a distant source and the strong SI caused by the

FD transceiver’s transmitting antennas. This energy difference between the two signals

might exceed tens of decibels (dBs), yielding difficulties in properly detecting the signal

of interest. This is because the SI’s power, which is roughly 100 dB above the noise floor

of the receiver, causes saturation of the FD receivers’ front-end components, such as the

low noise amplifier (LNA), the mixer and ADC. Hence, these hardware components need

to be designed in such a way that they are able to perform precise signal processing over

a huge dynamic range, which consequently leads to an increase in the quantization noise

of the desired signal. The suppression of SI can be implemented using different methods

passively in the propagation domain and/or actively in the analogue and digital domains;

that is, before and after the ADC respectively, as shown in Fig. 2.1. Additionally, utiliz-

ing the MIMO technique by using multiple antennas in both the transmitter and receiver,

with any FD transceiver topologies, such as relay, bidirectional, or base-station, will pro-

vide the systems with an additional DoF in the suppression of SI via the employment of

equalization methods like zero-forcing (ZF), MMSE filtering and NSP. Furthermore, em-

ploying multiple antennas for transmitting and/or receiving plays a vital role in combating

fading without the need to expand the bandwidth of the transmitted signal by achieving

spatial diversity. Moreover, utilizing a spatial multiplexing technique for wireless com-

munications improves the date rate, since multiple uncorrelated spatial channels can be

created to deliver the transmitted signal [48].

In this chapter, an overview of MIMO-based transmission is introduced with brief

description and discussion of different systems models, such as spatial multiplexing, pre-

coding and diversity coding. Moreover, various equalization and detection approaches

are presented to recover the transmitted symbols. Furthermore, the background theory of

applying FD mode to wireless communication systems is demonstrated, along with the
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Figure 2.1: SIC stages for FD systems.

approaches exploited to mitigate the SI, which is associated with FD operation.

2.2 Multiple Antennas

The term MIMO is used to describe a communication system, in which the transmitter and

receiver are equipped with Ntx and Nrx antennas, respectively, in order to create spatial

uncorrelated MIMO channels to carry the transmitted information. The special case when

Ntx = Nrx = 1 is called a single-input single-output (SISO) system and the channel

created is called the SISO channel. The second special scenario is called single-input

multiple-output (SIMO) when Ntx = 1 and Nrx > 1, which creates the SIMO channel,

while the topology when Ntx > 1 and Nrx = 1 is called a multiple-input single-output

(MISO), which creates the MISO channel.

For a MIMO system, as shown in Fig. 2.2, the impulse response of the channel be-

tween the mth transmit antenna, where m = 1, 2, ..., Ntx, and the nth receive antenna, in

which n = 1, 2, ..., Nrx, can be denoted as hn,m(τ ; t) where τ and t represent the delay

and time variables, respectively. Therefore, the entire MIMO channel can be denoted as

a matrix of Nrx ×Ntx random time-varying complex elements, i.e. H(τ ; t) ∈ CNrx×Ntx ,

Serial
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serialDetector
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v2
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ŝ1

ŝ2
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Figure 2.2: MIMO communication system with multiple transmit and receive antennas.
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which can be defined as

H(τ ; t) =




h11(τ ; t) h12(τ ; t) ... h1Ntx(τ ; t)

h21(τ ; t) h22(τ ; t) ... h2Ntx(τ ; t)
...

...
...

hNrx1(τ ; t) hNtx2(τ ; t) ... hNrxNtx(τ ; t)



. (2.1)

At a time instant t and for a signal transmitted from the mth antenna, sm(t), and received

by the nth antenna, rn(t) can be expressed as

rn(t) =
Ntx∑

m=1

∫ ∞

−∞
hn,m(τ ; t)sm(t− τ)dτ + v(t),

=
Ntx∑

m=1

hn,m(τ ; t) ∗ sm(τ) + v(t), (2.2)

where the mathematical process in the second equality of (2.2) represents the convolution,

which is denoted by the asterisk symbol, and v(t) is the AWGN with zero mean and

variance σ2
v . We can rewrite (2.2) using the matrix notation as

r(t) = H(τ ; t) ∗ s(τ) + v(t), (2.3)

where r(t) ∈ CNrx×1, while s(t) ∈ CNtx×1 and v(t) ∈ CNrx×1. It is noteworthy that what

has been discussed so far is for the case of a frequency-selective MIMO channel, that is

when the coherent bandwidth of the channel is much smaller than the bandwidth of the

transmitted signal. Thus, for a frequency-nonselective channel, sometimes referred to as

a frequency-flat channel, that is when the coherent bandwidth of the MIMO channel is

much larger than the bandwidth of the transmitted signal, the same equations (2.1)-(2.3)

can be considered after omitting the delay index τ [48], as the signal has arrived at the

receiver via one path only, and other paths are neglected due to the influence of scattering

and attenuation [48, 49].

2.2.1 Maximum Ratio Combining

One of the techniques that can be exploited to satisfy a maximum available diversity

gain is called maximum ratio combining (MRC) [50]. This approach can be applied

to a MIMO system to obtain an optimum combining of the transmitted signals at the

receiver, after passing through a MIMO channel in the presence of independent AWGN
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H

s wrx

v1

vNrx
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and under circumstances of an interference environment. Moreover, perfect knowledge of

the CSI is required to obtain optimum MRC performance. This can be satisfied either by

applying beamforming weight vectors at the transmitter, the receiver, or both. These MRC

weight vectors are chosen in such a way as to provide the reception of signals over the

strongest path of the MIMO channel. In other words, this can be achieved by selecting the

received signals that passed through a path of the eigenvector associated with the largest

eigenvalue, λmax, of the Wishart matrix of a MIMO channel H, i.e. HHH [51, 52]. For

a wireless MIMO-MRC system equipped with Ntx transmit and Nrx receive antennas, as

shown in Fig. 2.3, the received signal at time instant t can be expressed as

r[t] = H[t]wtx[t]s[t] + v[t], (2.4)

where r[t] ∈ CNrx×1 is the received vector, and s[t] represents a complex transmitted

symbol at time instant t which belongs to a single stream of transmitted data that con-

verted to a vector when it passes through the transmit MRC beamforming weight vectors,

wtx[t] = umax[t], in which umax[t] represents the unit norm corresponding to the largest

eigenvalue λmax[t] of the Wishart matrix HH[t]H[t] as mentioned above, and for the unity

Euclidean norm of umax[t], i.e. ‖umax[t]‖2 = 1. Additionally, v[t] ∼ CN(0, σ2
vINrx) is

the complex-valued AWGN. Furthermore, in order to reconstruct the transmitted symbol,

the received MIMO signal, r[t], is to pass through the MRC weight vector at the receiver,

which can be defined as wrx[t] = H[t]umax[t]. Therefore, the detected symbol can be

22



2.2 Multiple Antennas

written as

ŝ[t] = wHrx[t]r[t]. (2.5)

2.2.2 Space-Time Block Codes

Space-time block coding (STBC) is an effective approach that can be employed to achieve

transmit diversity gain, when other diversity means are not available due to various con-

straints such as the size limitation of the receiving device, which makes it difficult to

position multiple receive antennas with sufficient separation in order to receive multiple

replicas of the transmitted signal over different independent channels [49].

One of the schemes that can be utilized to obtain transmit diversity is called Alamouti

STBC scheme. A MISO system of two transmit antennas and one receive antenna is

required in order to implement this approach, in which two transmitted symbols from an

M -ary PSK or QAM signal constellation, s1 and s2, can be transmitted in the first time

instant from the first and second antennas, respectively. Meanwhile, in the second time

slot, −s∗2 is transmitted using the first antenna and s∗1 from the second one, in which the

asterisk denotes here to the complex conjugate of a particular transmitted symbol. The

generator code of Alamouti STBC can be expressed as

GSTBC =


 s1 s2

−s∗2 s∗1


 , (2.6)

which is shown in Fig. 2.4 too. Moreover, the MISO channel for Ntx = 2 and Nrx = 1

can be defined as

H = [h11 h12]. (2.7)

Slot 2

Antenna 1

Slot 1 Antenna 2

Received
Antenna

v1

s1s∗2

s2−s∗1

h11

h12

v2

Figure 2.4: The Alamouti STBC MISO scheme.
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Furthermore, by assuming that, during the two time slots the channel H is invariant,

therefore the received signal in the successive time slots, i.e. r1 and r2, respectively, can

be expressed as

r1 = h11s1 + h12s2 + v1, (2.8a)

r∗2 = −h∗11s2 + h∗12s2 + v∗2, (2.8b)

where v1 and v2 represent an uncorrelated AWGN at the receiving antenna in the first and

second time slots, respectively, with zero-mean and variance equal to σ2
v . By assuming

that the CSI is perfectly known by the receiver, the detected symbols ŝ1 and ŝ2 can be

estimated using the optimum detector in which the probability of error is minimized as

follows

(ŝ1, ŝ2) = arg max
s1,s2

(s1, s2|r,H), (2.9a)

(ŝ1, ŝ2) = arg max
s1,s2

(s1, s2|H̄Hr,H), (2.9b)

where r = [r1 r∗2]T and H̄ is defined as

H̄ =


h11 h12

h∗12 −h∗11


 , (2.10)

in which a one-to-one transformation is performed by multiplying the received symbols

by H̄H in order to equalize the effect of the MISO channel [53].

It is noteworthy that using this mechanism, where two time slots are allocated to

transmit two symbols using two transmit antennas means that the overall transmission

rate of Alamouti STBC scheme is one symbol, or log2(M) bits, per channel use [48, 49].

2.3 Symbols Detection in MIMO Systems

Due to the inter-channel interference (ICI) which accompanies the utilization of spatial

multiplexing for MIMO systems, the transmitted symbols from all antennas for a partic-

ular time instant overlap in time and frequency domains. Hence, in order to recover the

transmitted symbols, various detection approaches can be utilized to produce a compensa-

tion for ICI. In this chapter, four of the most popular detectors are considered for MIMO

systems, which are the ML, MMSE, ZF and detection by using SVD technique.
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2.3.1 ML Detector

ML detection can be implemented by finding the minimum Euclidean distance between

all the possible transmitted symbols over the channel H and the received signal as

ŝML = arg min
s∈S
‖r−Hs‖2 , (2.11)

where S = {α1, α2, ..., αM}, ατ ∈ C1×M represents a set of all possible symbols, s, in

the constellation of size M = 2m, and m is the number of bits in each symbol. In other

words, ML detection chooses the optimum symbol vector ŝML that satisfies a minimum

Euclidean distance metric, µ(s), as

µ(s) =
Nrx∑

i=1

∣∣∣ri −
Ntx∑

j=1

hijsj

∣∣∣
2

. (2.12)

It is noteworthy that the ML detector performs optimum detection as the maximum a

posteriori (MAP) detector when the transmitted symbols are equally likely [49]. On the

other hand, an exponential increase in the complexity of detection occurs for any increase

in the modulation order and/or the number of transmitting antennas [53].

2.3.2 MMSE Detector

The aim of MMSE detection is to minimize linearly the error between the actual transmit-

ted signal and a combination of the received signal. This can be obtained by minimizing

the mean square error (MSE) of the metric J(wMMSE) as

J(wMMSE) = arg min
wMMSE

E{‖s−wHMMSEr‖2}. (2.13)

The well-known optimum Wiener solution to equation (2.13) is given as [48, 49, 53]

wMMSE = [HHH + σ2
vINrx ]

−1HH, (2.14)

where σ2
v is the noise variance as defined earlier in this chapter, and INrx represents the

identity matrix of dimensions Nrx ×Nrx. After evaluating the MMSE weight matrix for

a known or estimated MIMO channel, it can be applied to the received signal in order to
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obtain the estimate of the transmitted symbols as

ŝ = wHMMSEr. (2.15)

2.3.3 ZF Detector

the ZF detector, also called the inverse-channel detector, is applied to satisfy a nullification

of ICI by using one of the following weight matrices

wZF =





H−1 if Ntx = Nrx,

(HHH)−1HH if Ntx < Nrx,

(2.16)

where, in the second case when Ntx < Nrx, the weight matrix is evaluated using the

pseudoinverse of the MIMO channel H. The ZF weight matrix is applied to the received

signal in order to obtain the detected symbols as

ŝ = wZF r. (2.17)

2.3.4 Detection Using SVD Technique

All of the methods of detection discussed earlier depend on having knowledge about the

CSI at the receiver. On the other hand, when the MIMO channel matrix is known to the

transmitter in addition to the receiver, SVD can be utilized as a linear detection method.

The SVD of a MIMO channel matrix H with rank R can be expressed as [48]

H = UΣVH, (2.18)

where U ∈ CNrx×R, and V ∈ CNtx×R are unitary matrices, i.e. UHU = INrx and

VHV = INtx . Moreover, U and V have orthonormal column vectors. Additionally,

ChannelTransmitter Receiver

s̃ rH UHV
s ŝ

n

Figure 2.5: Singular-value decomposition as a linear transformation for signal detection
in a MIMO system when the CSI is known to both transmitter and receiver.
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the diagonal matrix Σ ∈ RR×R
+ contains the eigenvalues of the channel in descending

order. As shown in Fig. 2.5, the linear transformation of the vector s is implemented at

the transmitter as

s̃ = Vs, (2.19)

and the received signal can be expressed as

r = Hs̃ + n = HVs + n, (2.20)

where n here represents the AWGN with zero-mean and variance equal to σ2
n. The re-

ceived signal is processed via passing through linear transformation, UH as

ŝ = UHr = UHHVs + UHn, (2.21a)

= UHUΣVHVs + UHn = Σs + UHn. (2.21b)

It can be noticed that the detected signal, ŝ, needs to be rescaled, as the transmitted signal

appears, in the second equality of (2.21b), multiplied by the channel’s singular values Σ.

Therefore, it can be compensated for by either applying the linear transformations VΣ−1

at the transmitter or Σ−1UH at the receiver. It is worth noting that there are two main

disadvantages associated with using SVD for MIMO detection. Firstly, full knowledge of

CSI is required at the transmitter as well as the receiver, as mentioned earlier. The second

issue is that employing SVD means that the signal diversity over the MIMO channel is

not exploited in symbol detection [48].

2.4 OFDM for Frequency Selective Fading Channel

OFDM is considered to be as one of the best modulation and multiplexing techniques.

It has been proposed and applied successfully to tackle the effects of frequency-selective

fading channels [48]. This is due to the fact that OFDM has the ability to carry high

data rates over orthogonal subcarriers. In other words, OFDM can convert the wideband

signal, whose bandwidth is greater than the coherent bandwidth of the channel, to several

narrowband signals each of which has a smaller bandwidth than the coherent bandwidth of

the channel. This can be implemented by exploiting digital signal processing techniques

such as the inverse fast Fourier transform (IFFT), which is utilized for the purpose of
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Figure 2.6: Block diagram of OFDM transmitter (up) and OFDM receiver (down) utiliz-
ing IFFT/FFT along with adding/removing the CP, respectively.

implementing the evaluation of the inverse discrete Fourier transform (IDFT) efficiently

[53]. OFDM is considered to be one of the most efficient and robust mechanisms utilized

to tackle the effects of the frequency selectivity of channels, significantly improving the

spectrum efficiency and mitigating inter-symbol interference (ISI). This is because by

using OFDM, a high data rate signal can be carried over these overlapping orthogonal

subcarriers with lower data rates. Additionally, OFDM reduces the complexity and cost

of the receiver circuit, as the fast Fourier transform (FFT) with a one-tap equalizer is

adequate to detect a signal passed over a multipath channel. These properties mean that

the OFDM can outperform other modulation techniques such as conventional frequency

division multiplexing (FDM) and single carrier modulation [48]. Additionally, the cyclic

prefix can be added to the OFDM frame to tackle the effect of the delay spread of the

channels. Fig. 2.6 shows a block diagram of the OFDM transmitter and receiver utilizing

IFFT/FFT, along with adding or removing the cyclic prefix, respectively.

On the other hand, there are some disadvantages which reduce the overall performance

of the OFDM, which are outside of the scope of this thesis, such as the sensitivity to

phase noise and symbol timing, or so-called carrier frequency offset. This problem leads

the local oscillators in both the transmitter and receiver to lose synchronization, which

consequently leads to both ISI and ICI being produced due to the corruption impacting the

orthogonality between subcarriers [54]. Furthermore, the problem of the peak-to-average

power ratio (PAPR) can significantly influence the efficiency of the power amplifier in the

RF stage.

The mathematical description of the IFFT can be expressed as [48]

sn =
1

N

N−1∑

k=0

Sk exp(
j2πkn

N
), n = 0, 1, ...N − 1, (2.22)
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where Sk represents the baseband signal which can be modulated by utilizing a mod-

ulation scheme as M -ary QAM, or M -ary phase-shift keying (PSK) scheme, N is the

number of subcarriers for a particular OFDM frame, while n and k represent the discrete

indices for time and frequency, respectively. On the other hand, FFT operation is required

at the receiver in order to demodulate the OFDM signal, and this process can be expressed

as [48]

Sk =
1

N

N−1∑

k=0

sn exp(
−j2πkn

N
), n = 0, 1, ...N − 1. (2.23)

For wideband MIMO channels which suffer from frequency selectivity, OFDM can be

exploited to process each subcarrier separately using MIMO processing algorithms, since

the characteristics of the channel fading for each frequency bin can be considered as a

flat fading or as a narrow-band channel [50]. Furthermore, the SIC approaches applied to

FD-MIMO systems with narrow-band MIMO channels, as discussed later in this chapter

and the following chapters, can be employed efficiently for wideband MIMO channels as

long as OFDM with an appropriate length of cyclic prefix is utilized [9].

2.5 Self-interference Cancellation Approaches

2.5.1 Passive SI Suppression

Passive suppression methods of SI rely on separation between the transmit and receive

antennas in order to increase the isolation loss amongst them electromagnetically in the

propagation domain and hence, reduce the magnitude of the local interference. Differ-

ent approaches have been proposed and implemented for this purpose in this domain to

increase the path loss and diminish and block the LoS path. This is achieved basically

by orienting the transmitting antenna elements to the opposite direction from those of the

receiving antennas, which consequently maximizes the loop-interference attenuation by

increasing the insertion loss. The latter can be further increased by utilizing orthogonal

polarization schemes [8, 9, 15, 16, 55].

Furthermore, passive suppression has been proposed at the receiver front-end by using

different techniques such as natural-isolation via antenna separation and absorptive shield-

ing, cross-polarization, directional isolation, antenna-aid cancellation and RF circulator-

based passive suppression [1,4,7,25]. All of these techniques are implemented primarily
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Figure 2.7: Passive suppression of SI using orthogonal polarization, directional isolation
and absorptive shielding.

to avoid the impractical huge dynamic range required to process the received signals ac-

curately in the front-end of the downstream receiver circuitry.

In practice, natural-isolation via antenna separation can be implemented by increasing

the distance between the antennas of the transmitting and receiving terminals so as to

attenuate the SI signal via increasing the free-space path loss, which can be expressed

as [48]

LP =
( λ

4πd

)2

, (2.24)

where d represents the distance between the transmit and receive antennas, λ is the

wavelength of the transmitted signal which can be calculated as λ = c/f , in which

c = 3×108 (m/s) is the speed of light, and f is the frequency of the transmitted signal. It

can be noticed from (2.24) that d is inversely proportional to the path loss for a particular

frequency. Additionally, natural-isolation can be performed by using absorption shielding

to be placed in order to attenuate the LoS path [25, 55] as shown in Fig. 2.7.

An additional SI suppression can be implemented by utilizing a cross-polarization

technique, sometimes also referred to as orthogonal polarization. This electromagnetic

isolation mechanism can be performed via designing the antennas of the transmit and

receive chains of the FD transceiver with orthogonal polarization so that transmit and re-

ceive using vertical and horizontal polarization, respectively, or vice versa [4, 56]. More-

over, directional isolation techniques can be employed via orienting the two sets of trans-

mit and receive antennas of a FD node to the directions that a null zone can be produced, or

at least a minimal intersection, between the main lobes of the radiation patterns [25, 57],

as shown in Fig. 2.7. Furthermore, passive suppression can be achieved by utilizing

antenna-aid cancellation which can be summarized as employing three antennas, two for
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transmitting and one for receiving, in such a way that the two transmit antennas are po-

sitioned away from the single receive antenna by distances of d and d + nλ/2, where

n is an odd number, in order to satisfy the conditions for destructive interference, as

shown in Fig. 2.8. This is because these distances will result in a phase difference of

π between the two transmitted signals at the received antenna; hence, they cancel each

other out [7, 56]. Similarly, this out-of-phase signal can be created internally in the FD

transceiver and coupled with the SI estimated channel in order to cancel the SI signal in

the analogue domain [55, 56], as discussed later in this chapter. In the propagation do-

main, passive suppression can also be implemented via utilizing a circulator-based tech-

nique. This technique is considered to be one of the best types of passive suppressions of

SI [45], particularly for FD transceivers employing shared antennas for transmitting and

receiving. The circulator is an electromagnetic device which can be exploited in the RF

and microwave bands. This device contains three ports 1 to 3, that allow signals to pass

through successive ports only, providing limited isolation in the other direction as shown

in Fig 2.9. For instance, if the transmit and receive terminals are connected to ports 1 and
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3, respectively, and the antenna is connected to port 2, then the transmitted signals are

passed to the antenna through port 2 without allowing them to pass to port 3, while the

signals received by the antenna are passed from port 2 to port 3 and the path towards port

1 is blocked. However, this device is unable to provide complete separation between the

non-sequential ports, which means that valuable leaks of the transmitted signals might be

passed to the receive circuitry, causing SI.

In fact, all the means of passive suppression discussed above are unable to combat SI

in its entirety; hence, other stages of SIC are required to be performed actively in the ana-

logue and digital domains in order to obtain efficient FD systems with lower complexity,
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minimum BER, and an acceptable throughput which outperforms the conventional HD

technique.

2.5.2 Active SIC

Active SIC is proposed to implement further reductions of SI power in order to be at the

level of noise or below. This is due to the fact that all the methods of passive suppressions

mentioned in Section 2.5.1 are in practice unable to provide a total mitigation of SI in the

real-world. Hence, for the sake of further minimization of SI, other stages of SIC can be

performed either within the RF stage and/or in the baseband stage, i.e. the analogue and

digital domains [7]. Fig. 2.10 shows a FD-MIMO transceiver which can be a relay or

bidirectional transceiver utilizing FD operation and equipped with Ntx and Nrx antennas

in the transmit and receive terminals, respectively. For a continuous time instant t, the

analogue received signal at the received terminal of the FD transceiver can be expressed

as

r[t] = H[t]so[t] + HLI [t]si[t] + v[t], (2.25)

where H[t] ∈ CNrx×Ntx , and HLI [t] ∈ CNrx×Ntx represent the desired and SI channels,

respectively. Moreover, v[t] ∈ CNrx×1 is the AWGN vector at the input of the received

terminal of the FD transceiver, with zero mean and variance equal to σ2
n. The covariance

matrix of the noise is denoted as Rv = E
{
v[t]vH[t]

}
. Additionally, so[t] represents

the desired incoming signal from a distant source, while si[t] is the LI signal causing
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SI. The covariance matrices of the desired and the SI signals can be denoted as Rso =

E
{
so[t]s

H
o [t]
}

and Rsi = E
{
si[t]s

H
i [t]
}

, respectively.

Some information is required to be fully or partially known by the FD transceiver in

order to implement active SIC. For instance, si[t] should be known by the FD transceiver

itself, while H[t] and HLI [t] can be particularly estimated by utilizing one of the tech-

niques proposed for FD transceivers [58, 59]. Furthermore, channel estimation noise

might be produced due to the impractical implementation of perfect channel estimation in

the real-world. Therefore, the estimations of H[t] and HLI [t], which are H̃[t] and H̃LI [t],

respectively, can be expressed as

H̃[t] = H[t]−∆H̃[t], (2.26a)

H̃LI [t] = HLI [t]−∆H̃LI [t], (2.26b)

where ∆H̃[t] ∼ CN(0, σ2
∆HINrx×Ntx) and ∆H̃LI [t] ∼ CN(0, σ2

∆HLI
INrx×Ntx) represent

the estimation errors of H[t] and HLI [t], respectively. Moreover, the variances of these

estimation errors are defined as [9]

σ2
∆H = E

{
|
{

∆H̃[t]
}
i,j
|2
}

= ε∆HE
{
| {∆H[t]}i,j |2

}
∀ i, j, (2.27a)

σ2
∆HLI

= E
{
|
{

∆H̃LI [t]
}
i,j
|2
}

= ε∆HLI
E
{
| {∆HLI [t]}i,j |2

}
∀ i, j, (2.27b)

where ε∆H and ε∆HLI
are the relative estimation errors of H and HLI , respectively.

Despite full knowledge of the digital transmitted signal in the baseband being known

by the FD transceiver, the actual analogue bandpass signal can not be precisely known.

This is due to the effects of different distortions that accompany the conversion of a

digital baseband signal to RF, such as the nonlinearity power amplifier (PA), the in-

phase/quadrature (I/Q) imbalance of the local oscillator (LO), the imperfection of ADC

and digital-to-analogue conversion (DAC), in addition to the phase noise and frequency

offset associated with the carrier oscillator [9]. Therefore, after taking into account all the

above imperfections, the transmitted signal can be expressed as

si = s̃i + ∆s̃i, (2.28)

where ∆s̃i represents the additive transmit distortion noise with zero-mean and variance

equal to the relative distortion εsi . Moreover, the transmit noise covariance matrix can be
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defined as

R∆s̃i = ε2si
tr{Rs̃i}
Ntx

I, (2.29)

where R∆s̃i = E{∆s̃i∆s̃Hi } and Rs̃i = E{s̃is̃Hi } are uncorrelated, which consequently

leads to Rsi = E{sisHi } = Rs̃i + R∆s̃i . It is worth mentioning that the time index t has

been omitted from (2.28) and beyond for the purpose of the clarity of the notation.

The main purpose of applying SIC approaches to FD transceivers is to mitigate the

loop interference in order to minimize the residual SI to a level that can be considered as

additional noise at the input of the FD transceiver [9]. Therefore, (2.25) can be re-written

as

r̂ = Hso + v̂, (2.30)

where r̂ ∈ CNrx×1 and v̂ ∈ CNrx×1 are the vectors of the received signal and the equiv-

alent noise at the input of the FD receiver after applying passive and analogue SIC, as

shown in Fig. 2.10. Furthermore, the MSE matrix can be extracted from (2.25) as

M = E{(Hso + v − r)(Hso + v − r)H}

= E{HLIsis
H
i HHLI} = HLIRsiH

H
LI . (2.31)

Moreover, the power of the SI can be determined from (2.31) by taking the trace of M as

PSI = tr{M} = E{tr{HLIsis
H
i HHLI}}

= E{||HLIsi||22} (2.32)

2.5.2.1 Analogue SIC

The cancellation at this stage is based on TDC as discussed briefly in Chapter 1. It ba-

sically depends on the assumption that the FD transceiver always has exact or approxi-

mate knowledge about its own transmitted signal. Moreover, it is required that the FD

transceiver has the ability to estimate the SI channel in order to create a replica of the SI

signal and then to subtract it from the received signal. The importance of implementing

SIC in the analogue domain is to reduce the dynamic range of the receiving circuity to

a suitable level in order to improve the feasibility of applying SIC in the digital domain.

35



2.5 Self-interference Cancellation Approaches

ADC

Delays Attenuattors
Fixed Varibale 

Received 
Signal

Digital Cancellation

LO

Control Algorithm

Transmitted
Signal

PA

Analogue Cancellation Circuit

Balun

TX Antenna RX Antenna

LNA

DAC

LO

(CA)

d1 a1

dN aN

Figure 2.11: Analogue SIC circuit for FD transceiver with Balun circuit.

However, it is impractical to implement electronically an analogue circuit that can remove

all the SIC components, especially in the case of multipath channels, since this requires

the design of an expensive and complicated circuit to perform this task [9].

Analogue SIC can be implemented simply by passing a small replica of the transmit-

ted signal, either by using an RF power splitter or a balanced/unbalanced (Balun) trans-

former. The latter is a popular RF component that can be utilized to convert forwards and

backwards between the input signal and its inverse at any time instance. Fig. 2.11 shows

the Balun circuit which forwards the original transmitted signal to the TX antenna, while

a negative copy is sent to the analogue SIC circuit in order to reconstruct an inverse copy

of the SI to be added to the entire incoming signal [7,60]. The output of the Balun circuit,

which also includes the noise yielded by the transmitter chain, passes through the ana-

logue cancellation circuit which consists of N parallel branches each of which contains a

particular fixed delays connected serially to a controlled tunable attenuators. A summa-
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tion is then used to merge all the N branches to create a negative copy of the transmitted

signal similar to the one which arrived at the receive terminal after passing through the

real multipath channel causing SI. An addition operation is required at this stage between

the two signals in order to extract the signal of interest, as shown in Fig. 2.11. It is worth

mentioning that the notation CA is used to refer to the analogue SIC circuit illustrated in

this figure and thereafter in this thesis.

The crucial issue in this analogue circuit is to choose precisely and adaptively the nth

fixed delay, dn, in each branch, where 1 ≤ n ≤ N , along with its attenuation value,

an, that minimizes the effect of the SI to an acceptable level [6, 42, 45]. One of the

approach which has been proposed is to position half of the fixed delay lines, i.e. N/2,

with equidistant time intervals, at delays are less than the delay of the SI, d [6]. The same

procedure is used for the second half of these delay lines except that they are placed at

delays greater than d, as shown for example in Fig. 2.12. In practice, the value of d is

not easy to determine precisely, as it is related to the characteristics of each component in

the FD transceiver circuit and how these components are connected together. Therefore,

it is required to estimate the range within which this delay varies, and then to position the

fixed delay lines out of this range in each side, as explained earlier; that is, before and

after this range.

At this point, the weights of the leading and lagging copies of the SI signal must

be determined. This can be implemented by utilizing the sinc interpolation algorithm,

in which, at each sampling time instant, sinc pulses are overlaid in order to evaluate the

weights of the sinc pulses that the SI signal requires in order to be recreated. The obtained

weights, which are associated with each sample of the SI signal, are combined afterwards

by employing linear combination to create a replica of the SI signal.

Fig. 2.12 illustrates this algorithm, whereas in order to estimate the SI signal at time

instant d, even fixed delays, {d1, d2, ..., dN}, are required to be used in which {d1, ..., dN/2}
are positioned at delay instants less than d, while the delay lines {dN/2+1, ..., dN} should

be placed at delay instants greater than d. The attenuator value an at a delay line dn can

be determined by choosing the value of the SI sinc pulse, which is centred at the delay

d, at the centre of a delay sinc pulse dn to be the weight an of that fixed line delay. In

the example shown in Fig. 2.12 it is assumed that the number of fixed delay lines is 6.

Ideally, after evaluating and setting all the weights of these delay lines, the SI signal can

be reconstructed perfectly and suppressed at this stage of the FD receiver. However, this

requires a large number of delays to achieve the perfect cancellation of SI, which is im-
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Figure 2.12: Sinc interpolation algorithm to evaluate the weights of the fixed delay lines
of the analogue cancellation of SI in Fig. 2.11.

practical due to the limitations of circuit size, power consumption, complexity and the

time required to retune this circuit for any change in the circumstances. This is because,

during the tuning of this circuit to a particular SI signal, it is not feasible to operate the

radio in the FD mode, and thus it is necessary to minimize the tuning time by minimising

the delay lines to an acceptable number in order to reduce the number of variables which

need to be estimated [6, 42]. This approach can be utilized to apply analogue SIC for a

MIMO system in which, at each transmit chain, part of the transmitted signal is passed

through an analogue SIC circuit, CA ∈ CNtx×Nrx , to create a copy of the SI signal, and

then the output of the analogue SIC circuit is subtracted from the incoming signal at each

receiving chain in the RF domain, as shown in Fig. 2.13. Mathematically, this process in

the analogue domain can be expressed as

r̂[t] = r[t]−CA si[t] (2.33)

where r[t] = H[t]so[t] + HLI [t]si[t] + v[t] represents a combination of the desired signal

so[t] coming from a distant source over a MIMO channel H[t], the SI signal si[t] which

passed through the SI channel HLI [t], in addition to the additive thermal noise v[t]. This

means that by choosing CA = HLI [t], SI can be removed totally if perfect knowledge of

HLI [t] is available. It is worth mentioning that the notations [t] and [n] in Fig. 2.13 are
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used to indicate the analogue and digital versions of the variables, respectively.

Another analogue SIC approach has been proposed [17, 61] which relies on sending

a cancellation signal via an additional transmit link, in which the cancellation signal is

converted to RF and added to the incoming signal, where the desired and the SI signals

are merged. Fig. 2.14 shows this mechanism through the two nodes a and b which com-

municate with each other by using the FD technique. Each node is equipped with two

antennas, one for transmitting and one for receiving, along with two TX radios, each of

which contains basically of PA and LO, one used for transmitting while the second is used

to create a cancellation signal. Additionally, one RX radio is used for receiving and com-

prises of LNA and LO. In the figure, si, zi, and ri, for i ∈ {a, b}, are the transmitted, the

cancellation and the received signals for node i, respectively. The forward channels from

node a to node b and in the opposite direction are denoted as hab and hba, respectively. In

contrast, hii is the SI channel at node i due to the FD operation. Additionally, gi represents

the cancellation channel, i.e. the phase and magnitude applied to the cancellation signal

zi at node i.
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The respective received signals at nodes a and b can be expressed as

ra = hbasb + haasa + gaza + va, (2.34a)

rb = habsa + hbbsb + gbzb + vb, (2.34b)

where, va and vb represent the AWGN at node a and b, respectively.

Thus, in order to cancel the SI at node i, it is necessary to set the cancellation signal

intuitively as

zi = −
(hii
gi

)
si i ∈ {a, b}. (2.35)

However, achieving perfect analogue SIC using this approach is not feasible due to

distortions affecting the process of estimating the channels, such as noise and the non-

linearities of the transmit and receive circuits. Therefore, the instantaneous residual SI

signal remaining after this analogue cancellation can be expressed as (haa − gaĥaa/ĝa)sa
and (hbb−gbĥbb/ĝb)sb at nodes a and b, respectively, where ĝi represents the noisy estimate

of gi. Hence, the residual powers of SI at node a and b can be written respectively as

P a
SI = E{|(haa − gaĥaa/ĝa)sa|2} (2.36a)

P b
SI = E{|(hbb − gbĥbb/ĝb)sb|2}. (2.36b)

This analogue SIC mechanism can be applied to the FD-MIMO-OFDM system [41]

as shown in Fig. 2.15. In this system, two bidirectional MIMO nodes i and j, which

40



2.5 Self-interference Cancellation Approaches

Analogue cancellation chains

&
OFDM

Radio
ADC

Decoder

Demod.Demap.

Encoder
&

OFDM

Mod.
DAC

RadioMapping

Tx
Bits

Rx
Bits

Receive chains

Transmit chains

TX

RX

OFDM

Mod.
DAC

Radio
TX

Nrx

Ntx

Hii

Hij

Hji

Xi,m

Yi,n yi,n

xi,m

Zi,n
zi,n

gi,n

Nrx

Figure 2.15: Analogue cancellation of SI for FD-MIMO-OFDM at node i

comprise Ntx transmit and Nrx receive chains, utilize FD operation with OFDM in their

wireless communication. In the mth transmit chain, where m = 1, 2, ..., Ntx, OFDM

modulation is used via applying IFFT processing along with adding a cyclic prefix to the

encoded and mapped symbols, Xi,m. The OFDM signal is then converted to analogue

by DAC, and passed through TX radio to produce the analogue signal at the mth antenna

of node i, xi,m. The channels Hij ∈ CNrx×Ntx , Hji ∈ CNrx×Ntx and Hii ∈ CNrx×Ntx

represent the outgoing, incoming and the SI channels of node i, respectively. Moreover,

each node contains Nrx chains of an analogue SIC circuit similar to the transmit chain

explained above, except that the symbols in this SIC circuit need to be chosen in such

a way that they lead to the optimum cancellation of SI. The output of the SIC circuit

zi,n, which represents the cancellation signal, is passed through a wire to the RF adder in

the nth received circuit. Additionally, the magnitude and phase affecting the cancellation

signal when it passed through this wire is denoted as gi,n. Hence, the output of the RF

adder at the nth received chain can be expressed as

yi,n = Hjixj,m + Hiixi,m + gi,nzi,n + vi,n, (2.37)

where xj,m is the desired incoming signal from node j to node i over channel Hji, and

the AWGN is denoted as vi,n. It can be seen that, in order to obtain perfect SIC using this
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approach, the cancellation signal should be chosen as

zi,n = −Hii

gi,n
xi,m (2.38)

However, perfect SIC is not feasible in practice due to the same reasons mentioned

previously related to the effect of noise and the non-linearity of the circuit elements em-

ployed in the transmit and receive chains, which consequently lead to imperfect channel

estimations of Hii and gi,n. Therefore, the actual cancellation signal can be rewritten

as ẑi,n = − Ĥii

ĝi,n
xi,m. The latter produces a residual SI power at node i, which can be

expressed as

P i
SI = E{

∣∣(Hii − gi,n
Ĥii

ĝi,n

)
xi,m|2

}
. (2.39)

To this end, the passive and analogue active approaches are not adequate to tackle

the entire amount of SI, and therefore active SIC needs to be implemented in the digital

domain in order to make the utilization of the FD mechanism feasible, as discussed in the

next section.

2.5.2.2 Digital SIC

At this stage, it is assumed that all of the earlier applied SIC approaches, before the ADC,

ensure a minimum required amount of cancellation to avoid ADC saturation. The aid of

active digital cancellation is still required in the digital domain after the ADC as a last line

of defence against SI, in order to perform further reduction of the residual SI remaining

after passive and active analogue cancellation due to FD operation. Hence, advanced

digital signal processing algorithms need to be applied to tackle the SI and cancel both its

linear and non-linear components [62].

Linear digital SIC can be implemented by using the same conventional means utilized

to mitigate normal interference caused by an undesired source. This can be done at the re-

ceiver by decoding the unwanted signal, reconstructing it and finally applying subtraction

from the entire incoming signal to obtain the signal of interest. The same scenario can

be performed to cancel the SI associated with FD operation by using coherent detection

instead of decoding to detect the SI signal, as the FD transceiver has full knowledge about

its transmitted signal, which causes SI at its receive terminal [21]. However, synchronisa-

tion issues such as delay and the phase shift between the two subtracted signals need to be
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estimated precisely, which is considered to be the key challenge in applying this method.

Alternatively, the correlation peak technique can be utilized and applied between the in-

coming signals and the known transmitted one, where the required delay and phase shift

for implementing the subtraction can be obtained when the maximum correlation took

place [21, 62].

Returning to Fig. 2.13, the transmitted signal causing SI is tapped in its discrete ver-

sion si[n] before applying the DAC to the baseband processing unit of the receiver after

passing through a digital filter, CD ∈ CNtx×Nrx , in order to be subtracted from the digital

received signal r̂[n], which contains the signal of interest with the residual SI remaining

after applying analogue SIC [10, 63, 64]. This process can be expressed in the digital

domain as

r̃[n] = r̂[n]−CD si[n], (2.40)

where r̂[n] = H[n]so[n] + HLI [n]si[n] + v[n]. Thus, it can be noticed that SI regen-

eration can be implemented via choosing the digital filter as CD = HLI [n], which can

totally remove the SI if precise knowledge of HLI [n] is available at the receiver. How-

ever, this approach does not take into account the distortions and non-idealities induced

by the transmit and receive chains. This issue can be tackled by using Ntx auxiliary re-

ceive chains, in order to reconstruct the SI signal after passing through components and

processing units identical to those which existed in the ordinary receiving chains [65], as

shown in Fig. 2.16.

In this figure, it is assumed that the received signal at the digital domain, in all the

Nrx chains and for a discrete time index n, i.e. r̂[n], contains a combination of the desired

signal and the residual SI remaining after applying passive and active analogue SICs’,

which can be expressed as

r̂[n] = H[n]so[n] + HLI [n]si[n] + v[n], (2.41)

where so[n] is the discrete version of the desired signal coming through a MIMO channel

H[n], while the residual SI is represented by the term HLI [n]si[n] and v[n] represents the

AWGN. The regeneration of SI can be implemented via utilizing a combination of the LI

channel, HLI [n], with the SI signal, si[n]. The latter is created by passing the analogue

SI signal si[t] through Ntx auxiliary receive chains, in order to take into consideration all
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the possible impairments and non-linearity effects which may induced in the SI signal in

the ordinary receive chains. Finally, to complete this process in the digital domain, the

regenerated SI signal is subtracted from r̂[n] as

r̃[n] = r̂[n]− ĤLI [n]ŝi[n], (2.42)

where the term ĤLI [n]ŝi[n] represents the estimation of the residual SI in the digital do-

main, since obtaining an exact estimate of SI in the real-world is impractical [10].

NSP can be adopted in order to enable the FD operation by deriving the neces-

sary digital spatial filters (DSFs) for each transmitter, denoted as Fp ∈ CNtx×1, and

the receiver, denoted as Gp ∈ C1×Nrx , in the MIMO system, where p ∈ {a,b} is

the port index. Each DSF is directly dependent on the eigenvectors of the SIC chan-

nel; for examples see Hpp ∈ CNtx×Nrx in Fig. 2.17. The construction method pro-

ceeds by factorising the channel to its eigenvalues and eigenvectors by applying SVD,

i.e. Hpp = UppΣaaV
H
pp, where Upp ∈ CNrx×Nrx and Vpp ∈ CNtx×Ntx are orthonormal

matrices ∵ UH
ppUpp = UppU

H
pp = INrx and VH

ppVpp = VppV
H
pp = INtx . Meanwhile

Σpp ∈ R+
Nrx×Ntx is a diagonal matrix which contains the eigenvalues of the channel in

descending order. This technique applies strict constraints to the number of unique data

streams which is bounded by the dimensions of the MIMO system, and the detailed anal-
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ysis is presented elsewhere [9]. The self-coupling interference model can be formulated

as follows:

yaa =

≈0︷ ︸︸ ︷
Ga Haa︸︷︷︸

UaaΣaaVH
aa

Fa xa, (2.43)

and the full system model in the presence of NSP at node a becomes:

ya = Ga

(
UaaΣaaV

H
aaFaxa + HbaFbxb + na

)
, (2.44)

where xa = [x1
a, x

2
a, ...., x

Ntx
a ]T and xb = [x1

b, x
2
b, ...., x

Ntx
b ]T are the complex symbols

transmitted at nodes a and b, respectively. Moreover, na is the AWGN at node a.

The goal in designing these filters is to obtain GpHppFp = 0, for p ∈ {a,b}, which

is referred to as NSP [8]. In designing Fp and Gp, it is necessary to choose these filters

such that they minimize the term min ‖GpHppFp‖2
F , where ‖.‖F is the Frobenius norm.

There are several approaches that can be used for this purpose as in [8, 9, 66, 67].

Here the method proposed by [66] is applied, and in order to apply spatial multiplexing to

obtain orthonormal streams, the filters are constrained such that FH
p Fp = I and GpG

H
p =

I . As in [66], this can be achieved by choosing

Fp = VppSp and Gp = TpU
H
p , (2.45)

where Sp and Tp represent the binary column and row selection matrices, respectively.

The optimum design for these two matrices can be achieved by satisfying the following

conditions: SHp Sp = I , TpT
H
p = I , TpSp = 0, and GpHppFp = TpΣppSp.
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Figure 2.18: Bi-directional full-duplex MIMO transceiver with MMSE filtering.

MMSE filtering can be employed in the digital domain in order to apply further reduc-

tion in SI after applying SIC approaches in the analogue and digital domains, as shown in

Fig. 2.18. The mean-square error (MSE) matrix in the input of the FD-MIMO transceiver

can be defined as

M = E

{[
Hso − ŝo

][
Hso − ŝo

]H
}
, (2.46)

where ŝo = wMMSEr and r = Hso + HLIsi + v. By substituting r in ŝo, the latter can be

rewritten as

ŝo = wMMSE(Hso + HLIsi + v). (2.47)

Now, by substituting (2.47) in (2.46), we can obtain

M = E

{[
Hso −wMMSE(Hso + HLIsi + v)

][
Hso −wMMSE(Hso + HLIsi + v)

]H
}
,

(2.48)

which can be simplified as

M = (INrx −wMMSE)HRsoH
H(I−wMMSE)H + Rv̂, (2.49)

in which Rv̂ = E{v̂v̂H} = wMMSE(HLIRsiH
H
LI + Rv)wHMMSE represents the covari-

ance matrix of the residual SI plus noise after the MMSE filter, while Rso = E{sosHo },
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2.6 Chapter Summary

Rsi = E{sisHi } and Rv = E{vvH} = σ2
vINrx are the covariance matrices of the desired

transmitted signal, the SI and the noise, respectively.

The MMSE receive filter can be obtained from (2.49) by finding a derivative of the

trace of M with respect to wMMSE and equalize the results to zero, i.e. ∂tr{M}
∂wMMSE

= 0,

which yields

wMMSE = HRsoH
H(HRsoH

H + HLIRsiH
H
LI + Rv)−1. (2.50)

After determining the MMSE filter coefficients using (2.50), wMMSE can be applied

to the received signal r in order to obtain an estimate of the signal of interest ŝo after

minimising the effect of SI as

ŝo = wMMSEr. (2.51)

It is noteworthy that the knowledge of the covariance matrices along with the channels

of SI and the desired signal are required to implement this MMSE filter in order to tackle

SI in the digital domain. Moreover, scaling needs to be applied to (2.50) in order to satisfy

‖wMMSE‖2
F = Nrx [9].

2.6 Chapter Summary

In this chapter, the background and theory of multiple antenna transmission for wireless

communication has been investigated and discussed. Different techniques in this area

have been described and analysed such as spatial multiplexing, precoding and diversity

coding. Furthermore, different equalization and detection techniques have been presented

for the sake of recovering the desired signal after passing through MIMO channels. More-

over, the fundamentals and challenges of utilizing in-band FD transmission for wireless

communication have been discussed, in which the most promising techniques exploited

to mitigate the SI associated with FD operation have been outlined and discussed in more

detail and for different stages of signal processing, such as the passive suppression in the

RF domain and active cancellation in the analogue and digital domains, i.e. before and

after the ADC, respectively.
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Chapter 3

Performance Analysis of

FD-MRC-MIMO with SIC Using NSP
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3.1 Introduction

3.1 Introduction

Due to the continually increasing demands on frequency and energy resources, FD has

become an essential necessity and inevitable evolutionary step for the next generation of

wireless communications, the fifth generation (5G). FD transceivers allow transmission

simultaneously over the same frequency bands. This makes the need for applying SIC

methods essential to tackle the SI accompanied with FD operation and obtain the optimum

performance of FD.

This chapter focuses on FD-MIMO based relays, over which the source and destina-

tion nodes are communicating. In general, the relay has the ability to receive data from

the source and deliver it to the destination either by using AF, DF or by EF approaches.

Fig. 3.1 illustrates a FD wireless communication via a relay, in which the source (S)

communicates with the destination (D) by utilizing the relay (R). Moreover, the notations

Hsr, Hrd, and Hsd are to represent the channels of the source to relay, the relay to des-

tination and the source to destination, respectively. While Hrr is the SI channel between

the relay’s output and input.

For these types of relaying, estimation and subtraction operations of SI are required to

maximize the SINR, which increases the capacity, improves the overall spectral efficiency

and enhances the entire performance of these systems utilizing the FD technique.

Spatial suppression schemes for FD-MIMO transceivers, such as ZF and NSP, are

proposed as SIC via exploiting the spatial domain MIMO signal characteristics of the

interfering channels. This can be achieved by designing spatial filters via utilizing matrix

conversion approaches, as SVD of the SI channel required to suppress the SI [8, 9, 20, 29,

R

Hsd

Hrd

Hrr

S D

Hsr

Figure 3.1: Wireless Communication using Relay
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3.1 Introduction

38].

In contrast, in order to increase the signal-to-noise ratio (SNR), spatial diversity can

be exploited for MIMO systems to obtain the full diversity gain available, which can be

achieved by utilizing MRC. This approach has been launched and deployed successfully

for MIMO systems that operate in the presence of AWGN and interference environments.

The MIMO-MRC system may be constructed by introducing transmit and receive beam-

forming weight vectors. The selection of beamforming weight vectors can be optimized

to satisfy transmitting the signal over the strongest path of the channel. This implies

that transmitting the signal along the direction of the eigenvector associated to the largest

eigenvalue of the Wishart matrix of a channel H, i.e. HHH [51, 52]. However, perfect

CSI is required by the transmitter and receiver in order to obtain better performance.

In this chapter, the works in [8, 9, 20, 29, 38] are extended by combining MRC with

NSP for FD-MIMO based relaying in order to maximize the SINR. Additionally, the

performance analysis of the proposed system is derived for different performance metrics

and in the presence of perfect and imperfect channel estimation. Furthermore, the works

in [3, 13, 30, 31] are extended by utilizing EF relaying instead of DF and AF relays, and

the relay transformation coefficients are derived for FD-MRC-MIMO using EF relaying

in order to minimize the mean square error (MSE) between the transmitted and received

symbols. Moreover, the E2E performance is demonstrated using the outage probability,

ASER vs. SINR, and capacity performance metrics.

The key contributions of this chapter can be summarized as follows. Firstly, NSP and

MRC are exploited jointly in order to mitigate the SI of the undesired loop path and to

increase the SNR of the source-to-destination path. The motivation to use MRC-MIMO,

which is selected over Full-MIMO, is due to the SNR advantage inherent in transmit and

receive beamforming to achieve full diversity gain in such an interference limited envi-

ronment. NSP is implemented via utilizing SVD of the CSI of the SI channel. Secondly,

the E2E performance analysis of the modelled system takes into account the impact of

imperfectly estimated CSI for both the desired and interference channels. Finally, the

E2E upper bound mutual information of the proposed FD-MRC-MIMO is derived in the

presence of SI. To the best of our knowledge, these aspects have not been thoroughly in-

vestigated in previously published research papers. The ideas, derivations and numerical

results presented in this chapter are valid for flat fading channels. However, the latter con-

dition can be always satisfied by introducing OFDM to combat ISI. As long as a cyclic

prefix of sufficient length is selected to cover the delay spread of the multipath channel
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3.2 Signal and System Model

the presented results will be valid.

The rest of this chapter is organized as follows. In Section 3.2, the signal and system

models are introduced. In Section 3.3, the E2E performance analysis of the proposed

system is demonstrated by deriving the output SINRs for the first and second hops along

with their corresponding PDF. Furthermore, the outage probabilities and ASER are de-

rived. In Section 3.5, the E2E upper bound capacity of this system is derived. Section

3.6 presents simulation results and discussion, and finally, the chapter’s conclusions are

drawn in Section 3.7.

3.2 Signal and System Model

In this chapter, a wireless communications system is considered in which the source com-

municates with destination via relay as shown in Fig. 3.2, in addition to the description

and definition mentioned in Table 5.1. The EF relay operates as a FD transceiver with

Ntx transmit and Nrx receive antennas. Furthermore, the source has Ns antennas used to

send the signal, while, Nd antennas at the destination are used for receiving. The chan-

nels between the source and the relay, the relay-to-destination, and the relay output to

its input are considered in this chapter as flat Rayleigh fading channels and they are de-

fined as Hsr ∼ CN (0, INs×Nrx), Hrd ∼ CN (0, INtx×Nd), and Hrr ∼ CN (0, INtx×Nrx),

respectively. The assumption that the Hrr links are flat comes from the fact that passive

suppression of SI has been implemented in the analogue domain via antenna separation

and shielding to suppress the LoS path [9]. In addition, AWGN is defined generally as

n ∼ CN (0, σ2
nI). In this chapter, it is assumed that there is no directly available source-

to-destination path, i.e. Hsd = 0, and all E2E communications occurs via the relay.

As highlighted in Section 3.1, the FD-MRC-MIMO system applies transmit and re-

ceive beamforming at the source terminal and relay, respectively. The weight vectors at

both transmitter and receiver are designed to maximize the SNR of the desired path by

exploiting the eigen-transmissions and providing full diversity gain [51, 52]. This con-

sequently leads to improved SINR for fixed SI and noise power levels [68]. This can be

obtained by using wsr
tx = usrmax as MIMO transmit beamforming and wsr

rx = Hsru
sr
max

at the receiver as MRC reception, where usrmax is a unit norm eigenvector corresponding

to the largest eigenvalue λsrmax of the Wishart matrix HH
srHsr, where unit norm implies

that the Euclidean norm of usrmax is unity, i.e. ‖usrmax‖2 = 1. This is due to the fact that

maximizing SNR is subject to determining the squared-spectrum norm of the matrix Hsr,
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3.2 Signal and System Model

Table 3.1: Model parameters.
Notation Description/Definition

Source-Relay Parameters
so Modulated symbol

wsr
tx MRC weighting coefficients for transmitting with respect to Hsr

Hsr source-relay channel coefficients
Ξsr The channel estimation error of Hsr

Relay Parameters
r Sum of the received signal from the source coupled with si over Hrr

Grx Spatial filter determined by the first unitary matrix of SVD(Hrr)
z Output of the filter Grx

(wsr
rx)

H MRC weighting coefficients for detection with respect to Hsr

z̃ Weight received symbol
F MMSE coefficient of the EF-relay
sef Output of F
wrd
tx MRC weighting coefficients for transmitting with respect to Hrd

Gtx Spatial filter determined by the second unitary matrix of SVD(Hrr)
si Transmitted symbols from relay to destination

Hrr Self-interference Channel
Ξrr The channel estimation error of Hrr

Relay-Destination Parameters
yD The Received signal at the destination

(wrd
rx)

H MRC weighting coefficients for detection with respect to Hrd

ŝo The received symbol at the destination after applying MRC to yD
Hrd Relay to destination Channel
Ξrd The channel estimation error of Hrd

which suggests that the signal is transmitted from source-to-relay over the strongest path

of Hsr [51, 52]. The same procedure can be used in the path of relay-to-destination of

Hrd to obtain wrd
tx and wrd

rx.
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3.2 Signal and System Model

This research focuses on FD-MIMO based relay systems, which offer additional de-

grees of freedom in the spatial domain [9]. Spatial suppression schemes have been pro-

posed and applied extensively for this issue. This is achieved by adding a receive filter,

Grx ∈ CNrx×Nrx , at the input of the FD relay, and a transmit filter, Gtx ∈ CNtx×Ntx ,

at the output of relay, as illustrated in Fig. 3.2. Both of these filters are designed based

as eigen-beamformers using the SVD of the SI channel of the relay, Hrr, with Hrr =

UrrΣrrV
H
rr, where Urr ∈ CNrx×Nrx and Vrr ∈ CNtx×Ntx are unitary matrices, i.e.

UrrU
H
rr = UH

rrUrr = I and VrrV
H
rr = VH

rrVrr = I. Here, Urr and Vrr are con-

structed using orthogonal column vectors of Hrr. In addition, Σrr ∈ RNrx×Ntx is a

diagonal matrix containing in descending order the singular values, σrr [i] ≥ 0, for

i = 1, 2, ...,min {Nrx, Ntx} of Hrr [8] [29].

The target in designing the filters from the SVD of the SI channel is to remove loop-

back interference. This can be satisfied as GrxHrrGtx = 0, which is referred to as NSP.

This method can be used when the SI signal is not perfectly known due to linear and non-

linear distortion induced in the transmit/receive chains. However, the channel estimation

error, which will be discussed in more details later in this chapter, will cause residual SI,

which impacts negatively on the the overall performance of the system. In order to design

Grx and Gtx, there are several approaches that can be utilized as in [2,8,9,20,29,69–71].

As the emphasis of this chapter is on the performance analysis of FD-MIMO relays in the

presence of SIC, the approach outlined in [20] and [70] have been employed, which is

suitable for MIMO systems with the same number of transmit and receive antennas, i.e.

Nrx = Ntx. In this method, the two spatial filters are designed by selecting one of the two

options in (3.1) in order to satisfy min ‖GtxHrrGrx‖2
F [9], i.e.

Grx = [u(0)
rr u(0)

rr ]H, if Gtx = [v(1)
rr v(1)

rr ], (3.1a)

Grx = [u(1)
rr u(1)

rr ]H, if Gtx = [v(0)
rr v(0)

rr ], (3.1b)

where u
(0)
rr and v

(0)
rr represent the first half columns of the matrices Urr and Vrr, respec-

tively, while, u
(1)
rr and v

(1)
rr represent the second half columns of matrices Urr and Vrr

respectively. In addition, for non-square matrices and/or for the case of rank deficiency

of Hrr when the channels are not totally independent, (3.2) can be used to design the two
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3.3 E2E Performance Analysis

filters as [69]

Grx = UHrr(:, rank(Hrr) + 1 : Nrx), (3.2a)

Gtx = Vrr(:, rank(Hrr) + 1 : Ntx), (3.2b)

where rank(Hrr) represents the rank of Hrr.

In Fig. 3.2, F represents the MMSE transformation coefficient of the EF-relay, which

is derived in detail in Section 3.4 in order to obtain the optimum solution that minimizes

the errors between the transmitted and the received symbols in the source-to-relay path in

the presence of residual SI, and therefore, enhances the overall performance of the system.

3.3 E2E Performance Analysis

In this section, the E2E performance analysis is derived. The derivation is organized as

follows. The deriving of the SINR, PDF of the output SINR, the outage probability, and

the ASER for the first and second hops are considered in Subsections 3.3.1 and 3.3.2,

respectively. The overall probability of error for the entire system can be obtained as [72]

P {E(γ1, γ2)} = P1 {E(γ1)}+ P2 {E(γ2)} − 2P1 {E(γ1)}P2 {E(γ2)} , (3.3)

where P {E(γ1, γ2)} represents the E2E probability of error averaged over the two inde-

pendent random variables γ1 and γ2, which represent the SINRs of the first and second

hops, respectively, whilst, in general, Pi {E(γi)} , i ∈ {1, 2} represents the average prob-

ability of error over the independent random variable γi.

3.3.1 SINR of The First Hop

The focus of this chapter is on the FD relay that can send and receive data simultaneously,

which in turn causes SI in the receive terminal. Thus, in this section, the SINR is derived

for the first hop of the modelled system. For a given MIMO symbol and at time instant t,

the received signal vector, r[t], at the FD-MRC-MIMO relay input can be written as

r[t] =
√
PsrHsrw

sr
txso[t] +

√
PrrHrrsi (so[t− 1]) + nR[t], (3.4)
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3.3 E2E Performance Analysis

where so[t] ∈ exp(j(2k + 1)π/M),∀k = 0, . . .M − 1 represents the M-PSK symbols

before applying a MIMO transmitter beamforming weight vector of the source to the re-

lay path, wsr
tx. Whilst, si (so[t− 1]) is the relay’s transmitted signal as a function of the

previous transmitted symbol of the source, so[t− 1], i.e. it represents the raw transmitted

symbols at the relay output after applying the EF relaying operation to so[t − 1] . Addi-

tionally, Psr and Prr are the relay’s average transmit powers from the forward path, i.e.

the source-to-relay path, and the backward loop path of the relay causing SI, respectively.

nR[t] represents the AWGN at the input of the relay. Furthermore, in the following steps,

it is assumed that the processing delay in the EF relaying operation can be applied within

a symbol duration.

The input for the relay EF processing stage, z̃[t], is obtained by substituting si[t] =

Gtxw
rd
txsef [t− 1] in (3.4), where sef represents the equalized complex symbol after pass-

ing through the MMSE transformation filter of the EF-relay, F . Then, by performing SIC

processing of r[t] in the first stage of the EF-relay as z[t] = Grxr[t], and applying the

MRC weight vector at the relay as z̃[t] = (wsr
rx)

Hz[t], which yelids

z̃[t] =
√
Psr(w

sr
rx)

HGrxHsrw
sr
txso[t] +

√
Prr(w

sr
rx)

H GrxHrrGtx︸ ︷︷ ︸
SIC

wrd
txsef [t− 1]

+ (wsr
rx)

HGrxnR[t], (3.5)

where the MRC weighted vectors are defined as wsr
tx = usrmax, wsr

rx = Hsru
sr
max, and

wrd
tx = urdmax for the case of perfect CSI.

It is obvious that SIC is achieved at this stage, however, imperfect channel estimation

of the undesired channel, Hrr, produces residual SI. In addition, the channel estimation

error for the signal of interest, Hsr, will impact the performance of the system. Therefore,

this issue needs to be considered by adding the effect of channel estimation error as [73]

Hsr =
√

1− ε2srĤsr + εsrΞsr, (3.6a)

Hrr =
√

1− ε2rrĤrr + εrrΞrr, (3.6b)

Hrd =
√

1− ε2rdĤrd + εrdΞrd, (3.6c)

where Ĥsr ∼ CN (0, INs×Nrx), Ĥrr ∼ CN (0, INtx×Nrx) and Ĥrd ∼ CN (0, INtx×Nd) rep-

resent channel estimates of Hsr, Hrr and Hrd, respectively. Moreover Ξsr ∼ CN (0, INs×Nrx),

Ξrr ∼ CN (0, INtx×Nrx) and Ξrd ∼ CN (0, INtx×Nd) are the channel estimation errors of
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Hsr, Hrr and Hrd, respectively, modelled as complex zero-mean Gaussian random vari-

ables with identity covariance matrices that are independent of their channels [73]. Fur-

thermore, εsr and εrr are the channel estimation accuracies of Ĥsr and Ĥrr, respectively,

and in general they are defined as ε ∈ [0, 1], which implies that when εsr = εrr = 0,

the channels estimation is perfect. We can use ρsr =
√

1− ε2sr, ρrr =
√

1− ε2rr and

ρrd =
√

1− ε2rd to denote the effect of channel estimation errors in Hsr, Hrr and Hrd,

respectively. By substituting the effect of channel estimation error of (3.6) into (3.5), and

applying the estimated MRC weighted vectors as wsr
tx = ûsrmax, wsr

rx = Ĥsrû
sr
max, and

wrd
tx = ûrdmax, z̃[t] can be re-written as

z̃[t] =
√

1− ε2sr
√
Psr(û

sr
max)HĤH

srĜrxĤsrû
sr
maxso[t]

+ εsr
√
Psr(û

sr
max)HĤH

srĜrxΞsrû
sr
maxso[t]

+
√

1− ε2rr
√
P̃rr(û

sr
max)HĤH

srĜrxĤrrĜtxû
rd
maxsef [t− 1]

+ εrr

√
P̃rr(û

sr
max)HĤH

srĜrxΞrrĜtxû
rd
maxsef [t− 1]

+ (ûsrmax)HĤH
sr ĜrxnR[t], (3.7)

where Ĝrx and Ĝtx represent the MIMO receive and transmit filters, respectively, ob-

tained from the SVD of estimated channel of SI, Ĥrr. It is important to note that P̃rr

represents the residual power of SI after applying spatial cancellation via NSP. It can be

observed that (3.7) contains the combination of the desired signal, noise, in addition to

three terms of interferences, which are due to the SI channel of the FD-relay, and channel

estimation errors of forward and backward loop path. Thus, the SINR of the first hop of

the relay, γ1, can be obtained from (3.7) as

γ1 =
(1− ε2sr)Psr

∥∥∥(ûsrmax)HĤH
srĜrxĤsrû

sr
maxso[t]

∥∥∥
2

C0 + C1 + C2 + C3

,
(3.8)

with

C0 = ε2srPsr

∥∥∥(ûsrmax)HĤH
srĜrx Ξsrû

sr
maxso[t]

∥∥∥
2

, (3.9a)

C1 = (1− ε2rr)P̃rr
∥∥∥(ûsrmax)HĤH

srĜrxĤrrĜtxû
rd
maxsef [t− 1]

∥∥∥
2

, (3.9b)

C2 = ε2rrP̃rr

∥∥∥(ûsrmax)HĤH
srĜrx ΞrrĜtxû

rd
maxsef [t− 1]

∥∥∥
2

, (3.9c)

C3 =
∥∥∥(ûsrmax)HĤH

srĜrx nR[t]
∥∥∥

2

, (3.9d)
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where the term in the numerator of (3.8) represents the power of the desired signal. The

denominator comprises four terms which are given in (3.9). The constant term C0 repre-

sents the interference power due to channel estimation error of Hsr, term C1 represents

the SI power of the channel Hrr, termC2 accounts for the power of interference caused by

imperfect channel estimation of Hrr, and finally, C3 is for the noise power after passing

through the MRC and SIC relay filters.

Equations (3.8) needs to be simplified in order to appreciate the contribution of the in-

dividual terms. To achieve this, firstly, we divide the numerator and denominator by∥∥∥Ĝrx

∥∥∥
2

. Secondly, since ûsrmax is the estimated eigenvector corresponding to the largest

estimated eigenvalue λ̂srmax of the Wishart matrix HH
srHsr, it is constructive to compensate

for (λ̂srmax)2 instead of
∥∥∥(ûsrmax)HĤH

srĤsrû
sr
max

∥∥∥
2

, and for λ̂srmax instead of
∥∥∥(ûsrmax)HĤH

sr

∥∥∥
2

.

Moreover, from the definitions of Ξsr and Ξrr following (3.6), we have E
{
‖Ξsr‖2} =

E
{
‖Ξrr‖2} = 1 due to their unity-covariance [73]. Additionally, ‖ûsrmax‖2 =

∥∥ûrdmax

∥∥2
=

1 as they represent the unit norm eigenvectors corresponding to the largest eigenvalues

λ̂srmax and λ̂rdmax of the estimated channels Ĥsr and Ĥrd, respectively, as defined earlier in

Section 3.2. Moreover, variance of the noise is given as E
{
‖nR‖2} = σ2

nR
. By taking all

these substitutions into account and after some additional straightforward mathematical

manipulations, γ1 can be rewritten as

γ1 =
(1− ε2sr)Ωsrλ

sr
max

(1−ε2rr)Ωrr
λsrmax

∥∥∥(ûsrmax)HĤH
srĤrrĜtxûrdmax

∥∥∥
2

+ ε2srΩsr + ε2rrΩrr + 1
, (3.10a)

=

(1−ε2sr)Ωsrλsrmax

(ε2srΩsr+ε
2
rrΩrr+1)

(1−ε2rr)Ωrr
λsrmax(ε2srΩsr+ε

2
rrΩrr+1)

∥∥∥(ûsrmax)HĤH
srĤrrĜtxûrdmax

∥∥∥
2

+ 1
. (3.10b)

In (3.10), Ωsr = Psr/σ
2
nR

represents the SNR, while Ωrr = P̃rr/σ
2
nR

is the interference-

to-noise ratio (INR) at the input of the MMSE transformation filter of the relay, F , after

passive suppression and NSP cancellation. It can be noticed that (3.10b) represents the

ratio of two independent random variables and can be re-written as

γ1 =
αsrλ̂

sr
max

β
λsrmax

∥∥∥(ûsrmax)HĤH
srĤrrĜtxûrdmax

∥∥∥
2

+ 1
(3.11)

where

αsr =
(1− ε2sr)Ωsr

ε2srΩsr + ε2rrΩrr + 1
, β =

(1− ε2rr)Ωrr

ε2srΩsr + ε2rrΩrr + 1
. (3.12)
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To gain insight on the relationship between SNR and SINR, we can re-write (3.12) as

αsr = (1−ε2sr)
ε2sr+ε

2
rr(Ωrr/Ωsr)+1/Ωsr

and β = (1−ε2rr)
ε2sr(Ωsr/Ωrr)+ε

2
rr+1/Ωrr

. The factor Ωsr/Ωrr = Psr/P̃rr

represents here the signal-to-interference ratio (SIR). Therefore, increasing the signal

power for fixed levels of SI and noise power will cause αsr to increase and β to decrease,

which consequently results in an increase of γ1 in (3.11).

3.3.1.1 PDF of γ1

We return now our attention to (3.11). The SINR is considered as the ratio of two inde-

pendent random variables x and y given by

γ1 =
y

x+ 1
, (3.13a)

x =
β

λ̂srmax

∥∥∥(ûsrmax)HĤH
srĤrrĜtxû

rd
max

∥∥∥
2

, (3.13b)

y = αsrλ̂
sr
max. (3.13c)

Following the definitions in [52] and the derivations in [74], it is worth mentioning that

the term (ûsrmax)HĤH
srĤrrĜtxû

rd
max/λ̂

sr
max in (3.13b) is an independent and identically dis-

tributed (i.i.d.) complex Gaussian random variable, and it is independent of λ̂srmax. This

is due to the earlier assumption in Section 3.3.1, that the estimated SI channel, Ĥrr, ex-

hibits a circularly symmetric Gaussian distribution with zero mean and covariance matrix

INtx×Nrx . The mean of this term conditioned on Ĥsr is derived as

E
{

(ûsrmax)HĤH
srĤrrĜtxû

rd
max | Ĥsr

}
= (ûsrmax)HĤH

sr E
{

Ĥrr

}

︸ ︷︷ ︸
Mean=0

Ĝtxû
rd
max = 0, (3.14)

while its variance conditioned on Ĥsr can be derived as

E
{∥∥∥(ûsrmax)HĤH

srĤrrĜtxû
rd
max

∥∥∥
2

| Ĥsr

}
= (ûsrmax)HĤH

sr E
{

ĤrrĜtxĜ
H
txĤ

H
rr

}

︸ ︷︷ ︸
INtx×Nrx

Ĥsrû
sr
max

= (ûsrmax)HĤH
srĤsrû

sr
max =

∥∥∥(ûsrmax)HĤH
sr

∥∥∥
2

= λ̂srmax. (3.15)

A closer look into (3.15) reveals that its first equality contains two independent random

variables which are ĤrrĜtx and ûrdmax. As defined earlier in Section 5.2, we can substitute

for
∥∥ûrdmax

∥∥2
=
∥∥ûrdmax(ûrdmax)H

∥∥ = 1. Moreover, the expectation for the first random

variable can be substituted by the identity matrix INtx×Nrx , as the SI channel, Ĥrr, is an
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Figure 3.3: The PDF of <
{

(ûsrmax)HĤH
srĤrrĜtxû

rd
max

}
in (a) and (b) , while the PDF of

||(ûsrmax)HĤH
srĤrrĜtxû

rd
max||2 in (c) and (d), for λ̂srmax = 0.7 and 1.9.

i.i.d. Rayleigh distributed random variable containing i.i.d. complex Gaussian vectors

with zero-mean and covariance matrix INtx×Nrx . Additionally, Ĝtx is a matrix such that

E
[
ĤrrĜtxĜ

H
txĤ

H
rr

]
= INtx×Nrx .

In Fig. 3.3(a) and (b), the empirical (histogram) and theoretical distributions of the real

part of (3.13b) are illustrated for Nrx = Ntx = 2, and for two different values of λ̂srmax,

i.e. 0.7 and 1.9, respectively. It is worth noting, that due to symmetry, the distribution of

the imaginary part follows a similar distribution. Since the (ûsrmax)HĤH
srĤrrĜtxû

rd
max is a

complex, zero-mean, Gaussian random variable with variance λ̂srmax, its norm will follow

a Chi-squared distribution with Nrx degree of freedom [48, p. 45].

Fig. 3.3(c) and (d) demonstrate the Chi-squared distribution assumption for the vari-

able ||(ûsrmax)HĤH
srĤrrĜtxû

rd
max||2 for the two values of λ̂srmax = 0.7 and 1.9, respectively.

The relationship of those two variables in (3.13b) and (3.13c) along with their scale

factors in (3.12) follow the Gamma distribution [52]. Therefore, the PDF of x, px(x),

which can be denoted in general as G(x; j; β) = 1
Γ(j)

xj−1β−je−x/β [51, 75], exhibits a
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shape factor (j = 1) due to the fact that only one source of SI is present by assumption

and the scale factor, β, which leads us to

px(x) =
1

β
e
−x
β . (3.16)

In constrast, py(y) can be given as

py(y) =
m∑

k=1

(n+m−2k)k∑

l=n−m
ckl

1

Γ(l + 1)
yl
( k

αsr

)l+1

e−
k
αsr

y. (3.17)

It is noticeable that the PDF of y follows the Gamma distribution as G(y; l + 1;αsr/k) =

1
Γ(l+1)

yl( k
αsr

)l+1e−
k
αsr

y [51, 75], with shape factor (l + 1) and the normalized scale factor

of (αsr/k). In (3.17), m = min {Ns, Nrx} and n = max {Ns, Nrx}. The curve fitting

coefficients, ckl, of the PDF py(y) have been determined and listed in tables for several

combinations of transmit and receive antennas in [76]. Additionally, there exists a numer-

ical method that has been proposed in [51] for the same purpose. Both approaches satisfy
∑m

k=1

∑(n+m−2k)k
l=n−m ckl = 1.

After evaluating px(x) in (3.16) and py(y) in (3.17), the PDF of SINR of the first hop,

pγ1(γ1), can be obtained by using integration as

pγ1(γ1) =

∫ ∞

x=0

(1 + x)py [(1 + x)γ1] px(x)dx. (3.18)

This integration can be solved by exploiting the conversion of the term (x+ a)n to a

finite summation as
∑n

k=0

(
n
k

)
xkan−k [77, Eq. (1.111)]. Subsequently, in order to obtain

the final formula, it is required to compare the resulting equation with
∫∞

0
xν−1e−µx dx =

µ−νΓ(ν) for positive µ > 0 and ν > 0 [77, Eq. (3.351.3)], i.e.

pγ1 (γ1) =
m∑

k=1

(n+m−2k)k∑

l=n−m

l+1∑

r=0

ckl
Γ(r + 1)

Γ1(l + 1)

(
l + 1

r

)(
k

αsr

)l+1
1

β

(
αsrβ

αsr + kβγ1

)r+1

(3.19)

× γl1e−
k
αsr

γ1 .

3.3.1.2 Outage Probability of γ1

To evaluate the outage probability associated with the probability that γ1 is less than the

protection ratio of the threshold SINR [78], we compute Pout(γth) , Pr {γ1 ≤ γth} =
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∫ γth
0

pγ1 (γ1) dγ1, or equivalently

Pout1(γth) =

∫ γth

γ1=0

∫ ∞

x=0

(1 + x) py [(1 + x)γ1] px(x) dx dγ1, (3.20)

where pγ1 (γ1) is determined by (3.18).

The integration in (3.20) might be simplified by exploiting the lower incomplete

Gamma function. This can be achieved by using the formula

γ (n, x) =

∫ x

0

rn−1e−rdr = Γ(n)

(
1− e−x

n−1∑

k=0

(
xk/k!

)
)
, (3.21)

for positive integers n, which is part of (3.20) [77, Eq. (8.3521.1)]. In addition, it is

required to use the binomial term (x+ a)n for a = 1, which has been previously defined

in this section. The outage probability can be then expressed as

Pout1 (γth) =
m∑

k=1

(n+m−2k)k∑

l=n−m
ckl

[
1− e−

kγth
αsr

l∑

r=o

r∑

s=0

Γ (s+ 1)

Γ (r + 1)

(
r

s

)(
1

β

)(
kγth
αsr

)r

×
(

αsrβ

αsr + kβγth

)s+1
]
. (3.22)

3.3.1.3 ASER for M-PSK Modulation Scheme for First Hop

In order to evaluate the exact ASER, P̄e, for any M-PSK modulation scheme, it is con-

structive to define the instantaneous SER Pe (γ) for the scheme under consideration. Sub-

sequently, by taking the expectation of SER over the instantaneous SINR, i.e. the mean

of Pe (γ) we obtain

P̄e(γ1) = E {Pe (γ1)} =

∫ ∞

0

Pe (γ1) pγ1 (γ1) dγ1, (3.23)

where Pe(γ1) can be defined with respect to Q-function as Pe (γ1) = aQ(
√

2gγ1), which

is a general formula valid for several modulation schemes with a and g being modulation

dependent constants. For instance, (a = 1, g = 1) for binary phase shift keying (BPSK),

and (a = 2, g ≈ sin2 (π/M)) as acceptable approximated SER of M-PSK [79].

Now, it can be continued to derive the ASER for several modulation schemes by re-

calling (3.16)-(3.18) along with (3.23) to obtain
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P̄e1 =
m∑

k=1

(n+m−2k)k∑

l=n−m

a ckl
β

∫ ∞

x=0

e
−x
β J

(
2g,

k (1 + x)

αsr
, l + 1

)
dx, (3.24)

where J ( . , . , . ) is defined as

J
(

2g,
k (1 + x)

αsr
, l + 1

)
=

1

Γ(l + 1)

(
k (1 + x)

αsr

)l+1 ∫ ∞

γ=0

Q
(√

2gγ
)

× exp

(−k (1 + x) γ

αsr

)
γl dγ. (3.25)

At this point, in order to complete the required integrations in (3.24) and (3.25), an al-

ternative formulation of the Q-function known as Craig’s expression needs to be utilized,

which is given as, Q
(√

2gγ
)

= 1
π

∫ π/2
0

exp
( −2 g γ

2 sin2 θ

)
dθ [79]. Additionally, by recalling

again
∫∞

0
γν−1e−µγdγ = µ−νΓ(ν) and after straightforward mathematical manipulations,

we can re-write (3.24), as

P̄e1 =
m∑

k=1

(n+m−2k)k∑

l=n−m

a ckl
β

∫ ∞

x=0

e
−x
β I
(
π/2 ,

gαsr
k (x+ 1)

, l + 1

)
dx, (3.26)

where I( . , . , . ) is defined in (3.27) and it has been solved in [80, Section 5.4.4] as

I
(π

2
,

gαsr
k(x+ 1)

, l + 1
)

=
1

π

∫ π/2

0

( sin2 θ

sin2 θ + gαsr
k(x+1)

)l+1

dθ,

=
1

2
−
√
gαsr/k

2

l∑

r=0

r∑

s=0

Urs x
s

(
1

1 + (gαsr/k) + x

)r+ 1
2

,

(3.27)

where Usr =
(

2r
r

)(
r
s

) (
1
4

)r. In order to complete the integration of (3.26), we proceed by

identifying the confluent hypergeometric function of the second kind embedded within

(3.26). This function is defined by [77, Eq. (9.211.4)] as

Ψ (a; b; z) =
1

Γ (a)

∫ ∞

0

e−zx xa−1 (1 + x)b−a−1 dx. (3.28)

The ASER can be then obtained for several modulation schemes by choosing the appro-
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priate digital modulation constants a and g as

P̄e1 =
m∑

k=1

(n+m−2k)k∑

l=n−m

a ckl
2

[
1−

(gαsr
k

) 1
2 1

β

l∑

r=0

r∑

s=0

(
2r

r

)(
r

s

)(
1

4

)r
Γ(s+ 1)

×
(

1 +
gαsr
k

)(s−r+ 1
2

)

Ψ

(
s+ 1; s− r +

3

2
;

1

β

(
1 +

gαsr
k

))]
. (3.29)

The confluent hypergeometric function can be solved using the generalized hypergeomet-

ric function either by (3.30) [77, Eq. (9.210.2)], or (3.31) [81, Eq.(6.6.1)] for positive

values of a and z, i.e.

Ψ (a; b; z) =
π

sin(πb)

[
1F1 (a; b; z)

Γ (a− b+ 1) Γ (b)
− z1−b

1F1 (a− b+ 1; 2− b; z)

Γ (a) Γ (2− b)

]
, (3.30)

Ψ (a; b; z) = z−a 2F0

(
a, 1 + a− b; ;−z−1

)
. (3.31)

3.3.2 SINR of the Second Hop

The second hop of this proposed system is assumed to be a conventional MRC-MIMO

system, where the relay forwards the equalized signal after applying transmit beamform-

ing, wrd
tx = urdmax, and the spatial filter, Gtx. Therefore, the received signal vector at the

destination can be written as

yD[t] =
√
PrdHrdGtxw

rd
txsef [t− 1] + nD[t], (3.32)

where Prd is the relay’s average transmit power to the destination. By applying the MRC

weighting vector, (wrd
rx)

H , to (3.32) we can obtain the (t− 1)th time instant of ŝo as

ŝo[t− 1] =
√
Prd(w

rd
rx)

HHrdGtxw
rd
txsef [t− 1] + (wrd

rx)
HnD[t], (3.33)

where (wrd
rx)

H = (urdmax)HHH
rd for the case of perfect CSI Hrd. By considering the impact

of imperfect CSI estimation of Hrd in (3.6c) and applying the estimated MRC weighted
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vectors as (wrd
rx)

H = (ûrdmax)HĤH
rd and wrd

tx = ûrdmax, we can re-write (3.33) as

ŝo[t− 1] =
√

1− ε2rd
√
Prd (ûrdmax)HĤH

rdĤrdĜtxû
rd
maxsef [t− 1]

+ εrd
√
Prd(û

rd
max)HĤH

rdΞrdĜtxû
rd
maxsef [t− 1]

+ (ûrdmax)HĤH
rd nD[t]. (3.34)

It can be noticed that ŝo[t− 1] in (3.34) contains a combination of three terms, which are

the desired signal, the channel estimation error term, and the noise, respectively. There-

fore, the SINR of this path, γ2, can be extracted for the second hop of the relay as

γ2 =
(1− ε2rd)Prd

∥∥∥(ûrdmax)HĤH
rdĤrdĜtxû

rd
maxsef [t− 1]

∥∥∥
2

C4 + C5

,
(3.35)

where

C4 = ε2rdPrd

∥∥∥(ûrdmax)HĤH
rdΞrdĜtx ûrdmaxsef [t− 1]

∥∥∥
2

, (3.36a)

C5 =
∥∥∥(ûrdmax)HĤH

rdnD[t]
∥∥∥

2

. (3.36b)

It is worth mentioning that C4 represents the interference power due to channel estimation

error of Hrd and C5 is for the noise power after passing through the MRC stage of the

destination node. In order to simplify (3.35), we can apply the similar simplifications and

substitutions applied previously to (3.8) in Subsection 3.3.1 in order to re-write (3.35) as

γ2 = αrdλ
rd
max, (3.37)

where

αrd =
(1− ε2rd)Ωrd

ε2rdΩrd + 1
, (3.38)

where Ωrd = Prd/σ
2
nD

represents the SNR of the second hop.

3.3.2.1 PDF of γ2

Unlike (3.11), the SINR of the second hop in (3.37) depends on one random variable.

Thus, compared to (3.13c), we can employ (3.17) to evaluate the PDF of the output SINR

of the second hop, pγ2(γ2) as
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pγ2(γ2) =
m∑

k=1

(n+m−2k)k∑

l=n−m

cklγ
l
2

Γ(l + 1)

( k

αrd

)l+1

e
− k
αrd

γ2 . (3.39)

3.3.2.2 Outage Probability of γ2

Similar to the derivation of the outage probability for the SINR in Subsubsection 3.3.1.2

for the first hop, we can use the definition Pout(γth) , Pr {γ2 ≤ γth} =
∫ γth

0
pγ2 (γ2) dγ2,

and apply the solution for this integration for positive integers n as

γ (n, x) =

∫ x

0

rn−1e−rdr = Γ(n)

(
1− e−x

n−1∑

k=0

(
xk/k!

)
)

, to obtain the outage prob-

ability as

Pout2 (γth) =
m∑

k=1

(n+m−2k)k∑

l=n−m
ckl

(
k

αrd

)[
1− e−

kγth
αrd ×

l∑

r=o

1

Γ (r + 1)

(
kγth
αrd

)r ]
. (3.40)

3.3.2.3 ASER for M-PSK Modulation Scheme for Second Hop

In order to obtain the ASER of the second hop, we can utilize directly (3.23), for γ2, along

with (3.39), and utilizing the Q-function instead of Pe (γ2), i.e. Pe (γ2) = aQ(
√

2gγ2), as

defined previously in Subsubsection 3.3.1.3, to obtain

P̄e2(γ2) =
m∑

k=1

(n+m−2k)k∑

l=n−m

ckl a

Γ(l + 1)

( k

αrd

)l+1
∫ ∞

γ2=0

γl2e
− k
αrd

γ2 Q
(√

2gγ2

)
dγ2. (3.41)

In order to complete the required integration in (3.41), an alternative formulation of the

Q-function known as Craig’s expression can be utilized, which is defined and solved

by [79, 80] as

Q
(√

2gγ2

)
=

1

π

∫ π/2

0

exp

(−2 g γ2

2 sin2 θ

)
dθ. (3.42)

Additionally, by recalling again
∫∞

0
γν−1e−µγdγ = µ−νΓ(ν), and after straightforward

mathematical simplifications, we can re-write (3.41) as

P̄e2 =
m∑

k=1

(n+m−2k)k∑

l=n−m

ackl
π

∫ π
2

0

(
sin2 θ

sin2 θ +
(
gαrd
k

)
)l+1

dθ, (3.43)
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where the integration in (3.43) can be solved by [80, eq. 5A.21] to obtain the final expres-

sion of P̄e2 as

P̄e2 =
m∑

k=1

(n+m−2k)k∑

l=n−m

ackl
2

[
1−

√
R

1 +R

l∑

r=0

(
2r

r

)
1(

4 + 4R
)r
]
, (3.44)

where R = gαrd/k. Now, after obtaining the outage probabilities and ASER for the first

and second hops, we can evaluate the E2E performance for these two metrics by re-calling

(3.3) which is given by [72] as

Pout (γth) = Pout1 (γth) + Pout2 (γth)− 2Pout1 (γth)Pout2 (γth) (3.45)

P̄e(γ1, γ2) = P̄e1(γ1) + P̄e2(γ2)− 2P̄e1(γ1)P̄e2(γ2) (3.46)

3.4 Linear MMSE equalizer

In this section, we will derive the coefficient F of the proposed EF relay, the results

in MMSE between the transmitted symbols of the source node so[t] and the equalized

symbols in the relay sef [t]. From Fig. 3.2, we can express the symbol at the input of the

equalization stage z̃[t] as

z̃[t] = (wsr
rx)

H Grx

[
Hsrw

sr
txso[t] + Hrrsi[t] + nR[t]

]
, (3.47)

while the tth symbol at the out of the equalization stage sef [t] can be evaluated as sef =

F z̃[t], which can be re-written using (3.47) as

sef [t] = F (wsr
rx)

HGrxHsrw
sr
txso[t] + F (wsr

rx)
H GrxHrrsi[t] + F (wsr

rx)
H GrxnR[t].

(3.48)

Now, we can define MSE, MSE(F ), between the transmitted symbol, so[t], and the

equalized symbol, sef [t] , as

MSE(F ) , E {(so[t]− sef [t])(so[t]− sef [t])∗} . (3.49)

67



3.5 E2E Capacity

From (3.48), and after some manipulation and simplification steps, (3.49) becomes

MSE(F ) = F
[
σ2
sohoh

∗
o + σ2

sef
hIh

∗
I +RnR

]
F ∗ − h∗oF

∗ − h∗IF ∗, (3.50)

with

ho = (wsr
rx)

HGrxHsrw
sr
tx, (3.51a)

hI = (wsr
rx)

HGrxHrrGrx (3.51b)

RnR = (wsr
rx)

H GrxRnRGH
rxw

sr
rx. (3.51c)

Following to the derivations in [82, 83], this MSE function is a convex function of F ∗,

therefore, the optimum value of F , which represents the MMSE between so[t] and sef [t],

can be obtained by applying a differentiation to (3.50) with respect to F ∗ and equating the

result to zero. Thus, the transformation coefficient of the EF-relay, F , can be obtained in

exact form as

F =
[
σ2
sohoh

∗
o + σ2

sef
hIh

∗
I +RnR

]−1

(h∗o + h∗I) (3.52)

3.5 E2E Capacity

In this section, we derive the E2E capacity of the proposed FD-MRC-MIMO based on

EF relaying in the presence of SI. This derivation aims to obtain the upper bound of the

mutual information between the source and the destination by assuming perfect channel

estimation. We assume that the processing delay in the EF relaying operation can be

applied within a symbol duration. i.e. si[t] = GR r[t − 1], where si[t] is the transmitted

signal at the relay output at time instant t and GR = Gtxwrd
txF (wsr

rx)
H Grx represents the

combination of all stages of the EF relaying operation in Fig.3.2. Hence, we can write

si[t] as a function of the received signal at the relay input, r[t − 1], defined in (3.4) to

obtain

si[t] = GR

(
Hsrw

sr
txso[t− 1] + Hrr si(so[t− 2]) + nR[t− 1]

)
. (3.53)

At the destination, the received signal, yD can be written as

yD[t] = Hrd si[t] + nD[t], (3.54)
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where nD[t] represents the AWGN in the input of the destination. Moreover, MRC com-

bining is applied to yD[t] at the destination as ŝo[t− 1] = (wrd
rx)

HyD[t]. Hence, ŝo[t− 1]

can be written as

ŝo[t− 1] = (wrd
rx)

HHrd si[t] + (wrd
rx)

HnD[t]. (3.55)

At the moment, by substituting (3.53 ) in (3.55 ) we can obtain

ŝo[t− 1] =(wrd
rx)

HHrdGR

(
Hsrw

sr
txso[t− 1] + Hrrsi[t− 2] + nR[t− 1]

)
+ (wrd

rx)
HnD[t],

= GDHsrw
sr
txso[t− 1] + GDHrrsi[t− 2] + GDnR[t− 1] + (wrd

rx)
HnD[t],

(3.56)

where GD = (wrd
rx)

HHrdGR was introduced for simplification. From (3.56), we can find

the E2E mutual information of the proposed system, which can be written as

I(so; ŝo) = log2

∣∣I + σ2
soGDHsrw

sr
tx(wsr

tx)HHH
srG

H
DR−1

nn

∣∣ , (3.57)

where σ2
so , E {sos∗o} = Psr

Ns
is the variance of the transmitted signal at source node, and

Rnn represents the overall covariance matrix of SI and the noises in the inputs of the relay

and the destination, and it can be defined as

Rnn = GDHrrRsiH
H
rrG

H
D + GDRnRGH

D + (wrd
rx)

HRnDwrd
rx, (3.58)

where RnR , E
{

nRnHR
}

= σ2
nR

INrx is covariance matrix of the noise at the input

of the relay, while RnD , E
{
nDnHD

}
= σ2

nD
IND is the covariance matrix of noise

at the input of the destination node. Additionally, Rsi , E
{
sisHi

}
= Pi

Ntx
INtx =

σ2
sef

Grxw
rd
tx(wrd

tx)HGH
rx, which represents the covariance matrix of the relay’s transmitted

signal causing SI at its receive input. Finally, σ2
sef

, E
{
sefs

∗
ef

}
is the variance of the

equalized signal at the relay.

3.6 Simulation Results and Discussion

In this section, the E2E performance of FD-MRC-MIMO based EF relaying system after

applying SIC is considered. Two configurations of the proposed system (Ns, Nrx, Ntx, Nd)

are considered using, i.e. (2,2,2,2) and (4,4,4,4), respectively. The E2E performance is
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Figure 3.4: PDF of the SINR of the first hop for (2, 2, 2, 2) FD-MRC-MIMO after SIC for
Ωsr = 10 dB with perfect and imperfect channel estimation in the presence of residual SI
with Ωrr = 6 and 12 dB.

analyzed and simulated depending on the fact that the impairment of SI impacts on the

FD-relay input only due to FD operation, as assumed in this chapter, and a mitigation us-

ing SIC is applied by taking into account residual SI due to imperfect channel estimation

in both desired and interference channels. In addition, the relay-to-destination path is con-

sidered a regular MIMO link. Moreover, the channels are considered to be independent

flat Rayleigh fading channels. The outage probability of the output SINR, in addition to

the exact ASER have been simulated and the obtained results have been analyzed. Also,

we assumed that the estimation errors for all channels in this chapter are the same, i.e.

ρ = ρsr = ρrr = ρrd.

Figs. 3.4 and 3.5 show respectively the PDFs of the SINR for the first hop, γ1, for

(2, 2, 2, 2) and (4, 4, 4, 4) FD-MRC-MIMO system in the case of perfect channel estima-

tion (ρ = 1) and an imperfect channel estimation (ρ = 0.9) at Ωsr = 10 dB and for two

values of Ωrr, namely 6 and 12 dB. The illustrated PDFs demonstrate that obtaining more

precise CSI via increasing the accuracy of channel estimation, results in increased output

SINR.
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Figure 3.5: PDF of the SINR of the first hop for (4, 4, 4, 4) FD-MRC-MIMO after SIC for
Ωsr = 10 dB with perfect and imperfect channel estimation in the presence of residual SI
with Ωrr = 6 and 12 dB.

Fig. 3.6 depicts the E2E outage probability of (2, 2, 2, 2) and (4, 4, 4, 4) FD-MRC-

MIMO system as a function of the SINR threshold, γth, for perfect and imperfect channel

estimations, i.e. ρ = 1 and ρ = 0.9, respectively, and for two cases of residual SI to noise

ratios, which are Ωrr = 6 and 12 dB, while the SNR was fixed at Ωsr = Ωrd = 10 dB.

On the other hand, Fig. 3.7 shows the relationship between the overall E2E outage

probability and SNR (Ωsr = Ωrd), for the same conditions as outlined in Fig. 3.6, ex-

cept for the SINR threshold that in this case was fixed at 10 dB. It is evident from the

two figures that increasing the number of antennas in FD-MRC-MIMO leads to better

performance and enables the system to tolerate more residual SI caused due to channel

estimation errors.

Fig. 3.8 shows the ASER for the system using QPSK modulation scheme, (M = 4),

for the two channel estimation cases and for the two values of SI mentioned previously

during this section.

Moreover, the analytical results obtained from the derived expression of ASER for

QPSK modulation are compared with results obtained via Monte-Carlo simulations as
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Figure 3.6: E2E outage probability of (2,2,2,2) and (4,4,4,4) FD-MRC-MIMO after SIC
at Ωsr = Ωrd = 10 dB and residual Ωrr = 6 and 12 dB with perfect and imperfect channel
estimation.

shown in Fig. 3.9 for a (2,2,2,2) FD-MRC-MIMO system. In this figure, it is considered

higher Ωrr scenarios ranging between 15 and 30 dB for four cases of channel estimation

errors, i.e. ρ = 0.9, 0.95, 0.99 and 1. The ASER vs. SNR performance results are

obtained by averaging 104 frames containing 2048 bits for each SNR point. A closer

look at the results shows close agreement between simulation and theory. Furthermore,

the impact of imperfect channel estimation under higher Ωrr can be shown in this figure,

where the proposed system demonstrates more tolerant and closer achievement to perfect

channel estimation at 1% error in CSI. Whilst, by increasing the channels estimation error

by 5% and 10%, this causes a deterioration in the performance as expected.

In addition, in Fig. 3.10, the proposed system is compared with another relevant state-

of-the-art NSP technique, that is reported in [38], which utilizes SI suppression using ZF

approach for a FD-MIMO relay and the results obtained in [38] are for the first hop due to

the fact that the first hop is affected by the SI, whilst the second hop represents a regular

MIMO link. Fig. 3.10 demonstrates the BER vs. SNR performance for (Ns, Nrx, Ntx)
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Figure 3.7: E2E Outage probability of (2,2,2,2) and (4,4,4,4) FD-MRC-MIMO after SIC
at γth =10 dB in the presence of residual SI with Ωrr = 6 and 12 dB.

as (2,2,2) and (2,4,2) FD-MRC-MIMO after SIC using QPSK modulation. Two cases

of SIR at the input of FD relay are considered, namely SIR = 10 dB and 20 dB. It can

be observed that the proposed system achieves better performance at low SNR under

the same conditions [38]. This is due to the exploitation the combination of MRC and

SIC for increasing the SNR of the desired signal and also to reduce the INR of the SI

respectively, which leads to an increase in SIR. In addition, any further mitigation of SI

in the analogue domain, which consequently increases the SIR at the input of the relay,

will lead the MRC-SIC system to perform better as shown in the case of SIR = 20 dB.

For these simulations, the average SNR per bit and average INR per bit are defined as

Ωsr/bit = Ωsr/ log2(M), Ωrr/bit = Ωrr/ log2(M), and Ωrd/bit = Ωrd/ log2(M).

Furthermore, in the context of channel capacity, Fig. 3.11 shows the results obtained

from the proposed FD-MRC-MIMO system with (2,2,2,2) as a function of the source-

to-relay signal-to-noise ratio, Ωsr, and for two cases of the relay-to-destination signal-to-

noise ratio, Ωrd, which are Ωrd = 10 and 20 dB, respectively. A closer look at Fig. 3.11

reveals that at Ωsr = 25 dB and Ωrd = 20 dB the proposed system achieved average ca-
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Figure 3.8: E2E exact ASER for (2,2,2,2) and (4,4,4,4) FD-MRC-MIMO after SIC for
QPSK modulation scheme in the presence of residual SI with Ωrr = 6 and 12 dB.

pacity improvements of 9 and 14 bits/s/Hz, respectively, compared to the results obtained

by [30] under the same conditions and for the two scenarios of FD-AF and HD-AF.

Additionally, the capacity performance of the proposed system for Ωrd = 20 dB as

a function of Ωsr is compared with a spatial multiplexing FD full-MIMO system with

(2,2,2,2) employing MMSE equalization in the relay without NSP. The performance for

two scenarios are demonstrated, that of SI-free, and for the case where no SIC is applied.

At an Ωsr = 25 dB, a performance gain of approximately 5 and 18 bits/s/Hz is observed,

respectively, between the proposed FD-MRC-MIMO and the alternative methods.

It is noteworthy that the capacity of the spatial multiplexing FD full-MIMO system

with MMSE equalization outperforms the capacity of FD-AF relay at high SNR, i.e. when

SNR is greater that 10 dB, due to the fact that the amplification caused by the FD-AF

relay will increase the SI signal which consequently reduce overall performance. In other

words, the AF relaying can be preferred on the EF-relaying operating in FD mode for

applications required low SNRs for the same reason mentioned above.

Finally, Fig. 3.12 shows the cumulative distribution function (CDF) of the data rate
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Figure 3.9: E2E analytical and Monte-Carlo results of ASER (QPSK modulation) for
(2,2,2,2) FD-MRC-MIMO after SIC in the presence of residual SI with Ωrr = 15 and 30
dB and imperfect channel estimation errors of ρ = (0.9, 0.95, 0.99, 1).

for (2,2,2,2) FD-MRC-MIMO compared to the results obtained by [30] for FD-AF and

HD-AF when Ωsr = Ωrd = 20 dB, in addition to the two scenarios mentioned previously

for the spatial multiplexing FD-MIMO system which applying MMSE equalization in the

relay and the destination. It worth noting that the CDF was obtained by averaging the

mutual information for multiple E2E transmission frames. Close inspection of the results,

demonstrate that under the same conditions the proposed system outperforms, in terms of

throughput, the approaches mentioned previously.

75



3.7 Chapter Summary

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(Ωsr) dB

B
E

R

 

 

(2,2,2), SIR=10 dB, ZF [38]
(2,2,2), SIR=10 dB, MRC−SIC
(2,2,2), SIR=20 dB, MRC−SIC
(2,4,2), SIR=10 dB, ZF [38]
(2,4,2), SIR=10 dB, MRC−SIC
(2,4,2), SIR=20 dB, MRC−SIC

Figure 3.10: First hop SNR vs. BER performance for (2,2,2) and (2,4,2) FD-MRC-MIMO
after SIC using QPSK modulation for SIR = 10 and 20 dB at the input of FD relay.

3.7 Chapter Summary

In this chapter, performance analysis for the proposed FD-MIMO-MRC relay has been

presented. The proposed relay combines the MRC technique for increasing the SNR for

the desired signal and additionally utilizes SIC to mitigate the SI due to the FD relay oper-

ation. The structure of the designed system was outlined using SVD, which was employed

in order to cancel the SI via the NSP method. Analytical solutions for the SINR distri-

bution and outage probability have been derived and evaluated. Moreover, the ASER for

M-PSK modulation schemes has been derived and computed for QPSK. From the results

presented, it is evident that obtaining precise CSI and increasing the number of antennas

in FD-MIMO-MRC, especially increasing the antennas at the receiving side of the FD-

MIMO relay, leads to better performance and enables the system to tolerate more residual

SI caused due to CSI estimation errors. Moreover, it is obvious that increasing the SIR
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at the input of a FD-MIMO transceiver by applying passive SI mitigation in the analog
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domain leads to a further increase in performance of the proposed MRC-SIC system. Fur-

thermore, the coefficients of the transformation filter of the EF-relay have been derived to

minimize the MSE between the transmitted and the received symbols in the source-relay

path, which consequently enhances the system performance in the ASER-SNR metric. In

addition, we derive the upper bound of the E2E channel capacity of the proposed sys-

tem in the presence of SI. The results showed a significant enhancement of the overall

throughput. Finally, comparison of the the proposed FD-MRC-MIMO approach with an-

other relevant state-of-the-art method was presented demonstrating a considerable perfor-

mance improvement due to the combination of MRC and SIC techniques in the proposed

FD-MRC-MIMO system.
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Chapter 4

Iterative Detection and Decoding for

FD-SIMO Systems
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4.1 Introduction

FD wireless communication using multiple receive antennas has been recently the focus

of intense research effort to improve the spectral efficiency [10]. Thus far, several methods

have been proposed to tackle SI caused due to simultaneously transmitting and receiving

signals using the same frequency band. These methods can be grouped into two broad

categories: passive and active SIC. Passive methods rely on the physical separation of

the transmit and receive antennas in order to increase the isolation loss between them,

and hence reduce the magnitude of local interference. In contrast, active approaches are

implemented either in the analogue domain, which is always operated before the ADC,

or in the digital domain, i.e. after the ADC. Precise knowledge of the interfering signal

and its channel can be utilized to create an SI replica in order to subtract it from the

overall incoming signal. This operation can be implemented either in the passband or

baseband [10, 17]. Moreover, SIC utilizing spatial domain suppression, based on ZF

and NSP can be exploited for this purpose [36, 84]. In this chapter, previous studies

[10,17] which utilize passive and active cancellation without using SI spatial suppression

are extended by employing IDD for the further reduction of SI in the digital domain. SI

spatial suppression is omitted for the purpose of fair comparison.

IDD can be exploited for multiple-antenna transceivers in conjunction with coded

FD to overcome residual SI. This is implemented by using the iterative exchange of soft

information between the detector and the decoder, resulting in high throughput, better

efficiency, and reliable performance in interference-limited environments [85, 86]. The

work in a recent study [86] is extended in this chapter by deriving a tight upper bound

on the performance of the coded FD-SIMO in the presence of residual SI after applying

passive and active SIC.

The key contributions of this chapter can be summarized as follows. The fundamentals

of encoding and decoding using convolutional and turbo codes are first presented. More-

over, a description and explanations of the state table, tree diagram, signal flow graph

and trellis diagram are given. Furthermore, the algorithms for decoding the convolutional

codes are presented, such as the MAP and ML decoding. Additionally, IDD is exploited

in the context of coded FD-SIMO to mitigate more effectively the residual SI remaining

after applying the multiple stages of SIC. After a number of iterations, the performance

achieved is very close to that of the SI-free case. Additionally, in order to validate the

simulation results, a tight upper bound is derived for the proposed FD-SIMO performance
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using rate-1/2 convolutional codes with QPSK, which is asymptotically close to the sim-

ulated performance and can be used for the performance evaluation of such a system

without the need to implement time-consuming simulations.

4.2 Channel Encoding

Since utilizing efficient and reliable data transmission over different types of channels

is now urgent need, powerful channel encoding methods have become essential when

implementing modern and forthcoming generations of communications systems. The

highly reliable transmission of digital data in the presence of induced corruption of noise

is possible as long as the transmission rate is below the channel capacity as mentioned in

Shannon’s law [87]. This can be achieved by encoding the transmitted digital data with

an error correction code, while a decoding mechanism needs to be applied to the received

message so as to recover the original digital information [88].

The characteristics of coding, in terms of detecting and correcting errors, are required

to exhibit significant robustness against the corruption introduced by the transmission

channel. On the other hand, the practical implementation of the designed channel codes

has to be feasible with efficient performance. In this section, brief introductions and ex-

planations of two of the most popular and powerful types of channel codes are presented,

which are the convolutional and turbo codes, as they are mainly exploited in the systems

proposed in this and the following chapters. The structure of this family of channel codes

takes mostly and conveniently the form of trellises and graphs. Furthermore, soft deci-

sion decoding becomes possible with very close performance to channel capacity under

the same conditions [48].

Moreover, low density parity check (LDPC) codes are considered to be another pow-

erful linear error correcting block codes which can be used to achieve the reliable trans-

mission of data that can approach the capacity bounds introduced by Shannon. However,

the performance of this class of code is degraded and the complexity of the decoding al-

gorithms is increased when low code rates of transmission and/or short lengths of frames

are used for transmission [89]. In this thesis, LDPC is not considered due to the assump-

tion that the utilized frame lengths are not too long, and also code rates of half and below

are used.
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4.2.1 Convolutional Codes

In a convolutional encoder, a serial stream of bits with length k passes through a linear

finite-state shift register to obtain the coded bits of length n. The convolutional encoder

comprises K-stage shift registers along with m-modulo-2 adders which represent linear

algebraic function generators. The code rate of the convolutional codes can be expressed

as Rc = k/n, which represents the ratio of the number of bits in the input to the number

of bits at the output of the convolutional encoder. This rate represents also the ratio of

the number of inputs to the number of outputs of the convolutional encoder. It is worth

mentioning that the parameter K is called the constraint length, which represents the

maximum number of bits at the output of the encoder affected by any change in the inputs

bits [90]. Moreover, for every sequence of information of finite length at the input of the

encoder, there is a codeword sequence with a finite length too. The encoding mechanism

can be summarised as shifting the information bits into the shift register memories, which

are in the zero-state at the first instant. During each time step, the stored bits in the mem-

ories are added via modulo-2 operation that depends on whether connections between the

registers and adders are available or not as specified by the generator polynomial (G) of

a particular convolutional encoder. As a result, the generated coded bits can be obtained

at the output of each modulo-2 adder, and are multiplexed to create the transmitted code-

word. Additionally, the stored bits at the registers are shifted to the right, where new bits

are entered to the first register in order to create a new codeword in the following time

step. Moreover, the convolutional codes are classified as systematic or non-systematic,

which are, respectively, based on the presence or absence of the original information bits

within the output coded bits. Additionally, the term recursive is applied to the convo-

lutional encoder when a feedback loop is present from its output to the input; whereas

otherwise it is non-recursive [48, 88, 90]. Fig. 4.1 shows two topologies of the convolu-

tional encoder, which are a non-systematic convolutional encoder (NSC) in Fig. 4.1(a),

and a recursive systematic convolutional encoder (RSC) in Fig. 4.1(b). Both of them have

one input, two outputs, two shift register memories, each of which has D-type flip-flop as

a 1-bit storage element. Moreover, the number of modulo-2 adders utilized to connect the

shift registers are based on G.

In general, the notation NSC(g1,g2) and RSC(1,gF /gR) are used to refer to the two

types of convolutional codes, in which, for instance in Fig. 4.1, g1 = gF = [101]2 =

58, and g2 = gR = [111]2 = 78. Moreover, the ”1” in the RSC’s notation indicates
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D

(b) RSC(a) NSC

DD D

(1, 5/7)8(5, 7)8

Figure 4.1: Rate-1/2 convolutional encoder with constraint length K = 3.

that the convolutional codes are systemic, which means that the input bits are included

in the output codeword without any change. Additionally, the subscripts F and R in

the generator polynomial of RSC respectively describe the feedback and feed-forward

connections to the modulo-2 adders.

Different techniques are used to illustrate the mechanism of generating the codewords

from the input bits of a convolutional encoder, such as state table, state diagram, tree

diagram, signal flow graph and trellis diagram. All these approaches are to show how

the next state and the output codeword of a convolutional encoder are created by the

the input bits, which can be either 0 or 1, and for different current states of the shift

register memories. Tables 4.1 and 4.2 show the state tables for rate-1/2 NSC and RSC

convolutional encoders, respectively, with a constraint length K = 3 as shown previously

in Fig. 4.1.

Table 4.1: State table for the NSC (5, 7)8 shown in Fig. 4.1(a)
Input Current state Next state Output

0 00 00 00
1 00 10 11
0 01 00 11
1 01 10 00
0 10 01 10
1 10 11 01
0 11 01 01
1 11 11 10

In the state diagram, the nodes represent the possible states of the shift register mem-

ories of a convolutional encoder, while the interconnection between any two nodes is

represented by a branch showing the transition between two states in these nodes. Ad-

ditionally, all branches are labelled with the corresponding output codeword obtained

according to a particular input information bit. Fig. 4.2 shows the state diagrams for the
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Table 4.2: State table for the RSC (1, 5/7)8 shown in Fig. 4.1(b)
Input Current state Next state Output

0 00 00 00
1 00 10 11
0 01 00 11
1 01 10 00
0 10 01 01
1 10 11 10
0 11 01 10
1 11 11 01

same rate-1/2 NSC and RSC convolutional encoders with constraint length K = 3 men-

tioned above. For both encoders, there are 4 states for the two shift register memories,

which are s ∈ {(00), (01), (10), (11)}. Moreover, since each encoder has only one bit at

its input at a time, which are either ”0” or ”1”, therefore two branches leave each memory

state to represent each possible transition to another state and the output codeword.

Fig. 4.3 shows the tree diagram for the rate-1/2 convolutional encoders shown in

Fig. 4.1 with constraint length K = 3. In this figure, any branch has upper and lower sub-

branches to show the two output bits for input 0 and 1 respectively. Furthermore, Figs. 4.4

and 4.5 show the trellis diagrams of the NSC and RSC encoders shown in Fig. 4.1, respec-

tively. In those two figures, it is assumed that the trellis starts with a zero state, and the

two bits on each line represent the output of a particular encoder. Moreover, the solid and

dashed lines in the two trellis diagrams denote whether the input bit is 0 or 1, respectively.

It is worth mentioning that the two codes discussed above have very similar state,

tree and trellis diagrams, and also they have the same minimum free distance, which
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Figure 4.2: State diagram for rate-1/2 convolutional encoders shown in Fig. 4.1 with
constraint length K = 3.
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Figure 4.3: Tree diagram for rate-1/2 convolutional encoders shown in Fig. 4.1 with
constraint length K = 3.

is defined as a minimum Hamming distance between two encoded sequences [48] and is

denoted by dfree. In other words, dfree represents a minimum distance metric for the code

diverging from the all-zero path and returning afterwards to this path [90]. Although the

two codes have the same probability of first event error, however, they have different BERs

performance which relies on the corresponding input-output of the encoder. Therefore,

RSC outperforms the corresponding NSC as it has better BER performance at low SNR

[90]. Hence, this thesis emphasises the use of RSC as it exhibits more tolerance of noise

and the interference limited environments inherited in FD systems.

4.2.2 Decoding of Convolutional Codes

The need for error correction has become essential, especially for a communications sys-

tem that has a random process modelled channel. This is due to the fact that these types

of channels are always unable to remap the received symbols exactly to the same given

transmitted symbols [88]. In order to appreciate how the decoding of convolutional codes

takes place, a brief explanation of the communications system and the corresponding ap-

plied probabilistic theorems for decoding is given next.

Following the assumptions and notations given in Fig. 4.6, the input information se-
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Figure 4.4: Trellis diagram for rate-1/2 NSC convolutional encoder with constraint length
K = 3 and G(5, 7)8.
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Figure 4.5: Trellis diagram for rate-1/2 RSC convolutional encoder with constraint length
K = 3 and G(1, 5/7)8.

quence to the convolutional encoder is denoted as u = (u1, u2, ..., ut, ...), and the coded

bits are mapped using BPSK as x = (x1,x2, ...,xt, ...), in which logic zero and logic one

coded bits are mapped to +1 and −1, respectively. By using rate-1/2 convolutional en-

coders, like one of those shown in Fig. 4.1, the symbol xt = (x
(1)
t , x

(2)
t ) ∈ x at time index

t > 0 represents the modulated coded bits generated at the output of the convolutional
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Figure 4.6: Convolutional codes’ encoding and decoding.

encoder and modulator for an input bit ut. The transmitted symbols are assumed to be

passed through an AWGN channel denoted as v ∼ CN(0, σ2
v) and arrive at the receiver as

y = (y1,y2, ...,yt, ...). The latter needs to be decoded properly due to the impairments

caused by this channel in order to obtain an acceptable estimation of the transmitted sym-

bols and bits, which are denoted as x̂ and û, respectively.

In order to decode the received sequence y, it is necessary to determine the condi-

tional probability related to the transmitted symbols x given y is received, which can

be expressed as Pr(x|y). This inverse probability problem can be solved using Bayes’

theorem as follows [88, 90]

Pr(x|y) =
Pr(y|x)Pr(x)

Pr(y)
, (4.1)

where Pr(x|y) represents the a posteriori probability (APP) for x, while Pr(x) is called

the a priori or intrinsic probability. Moreover, the conditional probability Pr(y|x) repre-

sents the likelihood of x and it is subject to the communication channel. The convolutional

decoder aims to find an optimum estimation of the codeword sequences x̂ by maximizing

the APP Pr(x|y), which is referred as MAP decoding and can be obtained from (4.1) af-

ter omitting the normalization factor Pr(y) which is constant, when the optimal decoding

decision is determined as

x̂ = arg max
x

(Pr(x|y)) = arg max
x

(Pr(y|x)Pr(x)). (4.2)

Additionally, when all the transmitted codeword symbols are equally likely, the term

Pr(x) becomes a constant and it can be neglected in (4.2) so as to perform ML decoding

as discussed previously in Chapter 2. The determination of ML according to the above

assumption can be expressed as

x̂ = arg max
x

(Pr(x|y)) = arg max
x

(Pr(y|x))). (4.3)
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The ML decoder is type of error correction that selects the most likely codeword for

which the received symbols are produced. In other words, for a given received sequence

y and transmitted codewords x over an AWGN channel, as shown in Fig. 4.6, the ML

decoder maximizes the probability Pr(y|x) by choosing the decoded codeword x̂ accord-

ing to argument in (4.3), where the probability Pr(y|x) of a memoryless channel can be

defined as

Pr(y|x) =
∏

t

∏

i

Pr
(
y

(i)
t |x(i)

t

)
(4.4)

4.2.3 Log Likelihood Ratios

For several communications systems over different types of channels, the log likelihood

ratio (LLR) can be used as a convenient metric to find a single value to represent a coded

bit [88]. This ratio is utilized to make a decision as to whether a particular coded bit in a

received codeword might be ”1” or ”0” according to the sign and magnitude of the ratio,

that are used to represent the hard decision and the reliability of this decision for this

coded bit. The LLR or the soft value of the coded bit u(i)
t , where i ∈ {1, 2} for a rate-1/2

convolutional encoder, can be defined as

L(u
(i)
t ) = log

(
Pr(u

(i)
t = 1)

Pr(u
(i)
t = 0)

)
. (4.5)

Thus, for a positive sign of L(u
(i)
t ), u(i)

t should be represented as ”1”, otherwise it is ”0”.

Moreover, |L(u
(i)
t )| is the reliability of this decision, which means that the greater the

difference between the two probabilities in this ratio, the more certain that this decision is

reliable. For a binary variable u(i)
t passed through binary systematic channel, Pr(u

(i)
t = 1)

can be determined from Pr(u
(i)
t = 0) [89] as

Pr(u
(i)
t = 1) = 1− Pr(u(i)

t = 0). (4.6)
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Hence, by substituting (4.6) in (4.5), and for a known L(u
(i)
t ), the two probabilities can

be evaluated as

Pr(u
(i)
t = 1) =

exp(L(u
(i)
t ))

1 + exp(L(u
(i)
t ))

, (4.7a)

Pr(u
(i)
t = 0) =

exp(−L(u
(i)
t ))

1 + exp(−L(u
(i)
t ))

. (4.7b)

The main advantage of using logarithmic representation for the likelihood ratio of the

probabilities is to reduce the complexity of the implementation, especially when the mul-

tiplication of probabilities is required where the operation is replaced by adding the LLRs

instead of multiplying the probabilities [88, 90].

The coded bit arriving at the receiver, after passing through an AWGN represented as

v ∼ CN(0, σ2
v), can be expressed as

y
(i)
t =

√
Ecx

(i)
t + vt, (4.8)

where Ec is the average energy of the transmitted coded bit. Furthermore, according to

the LLR definition, the LLR of the received ith coded bit at time index t, y(i)
t , given that

x
(i)
t is transmitted, can be expressed as

L
(
y

(i)
t |x(i)

t

)
= log

(
Pr(y

(i)
t |x(i)

t = +1)

Pr(y
(i)
t |x(i)

t = −1)

)
. (4.9)

The PDFs Pr
(
y

(i)
t |x(i)

t = +1
)

and Pr
(
y

(i)
t |x(i)

t = −1
)

can be statistically expressed at the

output of a discrete memoryless fading channel with AWGN as

Pr
(
y

(i)
t |x(i)

t = +1
)

=
1√

2πσ2
v

exp
(
− 1

2σ2
v

(
y

(i)
t +

√
Ec
)2
)
, (4.10a)

Pr
(
y

(i)
t |x(i)

t = −1
)

=
1√

2πσ2
v

exp
(
− 1

2σ2
v

(
y

(i)
t −

√
Ec
)2
)
. (4.10b)

It should be noted that it is assumed that the conversion of the BPSK to the bipolar form

uses the mapping of {0→ +1} {1→ −1} as shown in Fig.4.7.

Now, by substituting (4.10) in (4.9), the former can be rewritten and further simplified
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Figure 4.7: Convolutional codes decoding

as

L
(
y

(i)
t |x(i)

t

)
= log

( 1√
2πσ2

v

exp
(
− 1

2σ2
v

(
y

(i)
t +

√
Ec
)2
)

1√
2πσ2

v

exp
(
− 1

2σ2
v

(
y

(i)
t −

√
Ec
)2
)
)
,

= log exp
(
− 1

2σ2
v

(
y

(i)
t +

√
Ec
)2

+
1

2σ2
v

(
y

(i)
t −

√
Ec
)2
)
,

=
1

2σ2
v

(
− 4
√
Ecy

(i)
t

)
=
−2
√
Ec

σ2
v

y
(i)
t , (4.11)

where the term
2
√
Ec
σ2
v

is called the channel reliability or the soft decision of the uncoded

bit ut. Additionally, the sign in the final equality of (4.11) refers to the hard decision.

4.2.4 Turbo Codes

Turbo codes were first introduced by Berrou, Glavieux and Thitimajshima in 1993. This

new class of convolutional codes has been deployed as a powerful channel coding method

for the achievement of reliable communication, as it exhibits BER and channel capacity

performances close to the theoretical limit according to Shannon’s theorem [90, 91]. A

turbo encoder is constructed by exploiting two RSC convolutional codes concatenated

in parallel, in which an interleaver denoted as Π is used to separate them as in the block

diagram shown in Fig. 4.8. Moreover, Fig. 4.9 shows the systematic diagram of a rate-1/3

turbo encoder that consists of two rate-1/2 RSC convolutional encoders each of which has

the generator polynomial G(1, 5/7)8. Hence the generator polynomial of this turbo code

can be denoted as G(1, 5/7, 5/7)8.

Information bits of length L, i.e. u = [u1 u2 ... uL], are passed through the first RSC

encoder to create the first parity check sequence p(1) = [p
(1)
1 p

(1)
2 ... p

(1)
L ] along with the

original uncoded bits u. The latter is also interleaved and supplied to the second RSC

encoder in order to obtain the second parity check sequence p(2) = [p
(2)
1 p

(2)
2 ... p

(2)
L ].
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Π

u

p(2)

p(1)
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Figure 4.8: Block diagram of turbo encoder consisting of two RSC convolutional encoders
separated by an interleaver

Hence the coded bits of at the output of this turbo encoder can be expressed as

c =
[
u1 p

(1)
1 p

(2)
1 u2 p

(1)
2 p

(2)
2 ... uL p

(1)
L p

(2)
L

]
. (4.12)

Furthermore, the rate-1/3 of this turbo code can be increased to half rate by utilizing a

D

D

D

D
u

u

p(1)

p(2)

Π

Figure 4.9: Systematic diagram of rate-1/3 turbo encoder that consists of two rate-1/2
RSC convolutional encoders each of which has the generator polynomial G(1, 5/7)8.
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puncturing technique, in which half of the bits in p(1) and p(2) are punctured, i.e. deleted,

while the original information bits u should remain without any change [48]. Addition-

ally, the coded bits in (4.12) are then mapped to create the codeword, which are denoted

as x(u), x(1) and x(2), which correspond to the coded bits u, p(1) and p(2), respectively.

4.2.5 Decoding of Turbo Codes

For a given transmitted codeword created by a turbo encoder and passed through an

AWGN channel, the received sequence can be divided, after perfect synchronization, into

three inputs to the turbo decoder, which are denoted as y(u), y(1) and y(2) correspond-

ing to the corrupted received codeword of x(u), x(1) and x(2), respectively, as shown in

Fig. 4.10. The symbols Π and Π−1 are used to denote the operations of interleaving and

deinterleaving, respectively.

In this figure, two soft-input soft-output (SiSo) decoder components are used to im-

plement the decoding process, each of which uses the MAP algorithm to determine the

a posteriori probabilities of the information bits. Moreover, an iterative exchange of the

soft information is utilized between the two SiSo decoders to improve the system’s per-

formance. The three inputs, in the form of LLR’s, provide the SiSo decoders with the

required soft information, where y(u) and y(1) are fed to the first SiSo decoder, while y(2)

along with the interleaved version of y(u), i.e. Π(y(u)), is supplied to the second SiSo de-

SiSo 1

SiSo 2

û

Π−1

Π
yu

y(1)
L(1)

L(2)

E(1)

A(1)

y(2)

Π

A(2)

E(2)

Π−1

Figure 4.10: Iterative SiSo decoding for turbo codes.
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coder. Additionally, each SiSo decoder shares its determined extrinsic information about

the systematic and parity check bits with the other SiSo decoder. This extrinsic soft LLR

information, which is also referred to as feedback information, of SiSo i is applied as an

additional a priori input to SiSo j, where i, j ∈ {1, 2} and i 6= j, in order to be used in

the next iteration as shown in Fig. 4.10.

At each iteration, the first SiSo decoder evaluates the a posteriori information L(1).

The latter is used to create the extrinsic information E(1) as

E(1) = L(1) − y(u) −A(1), (4.13)

where y(u)and A(1) represent, respectively, the information about the message bits and the

a priori information delivered by the second component decoder, which are both known

from the previous iteration, i.e. before the decoding of SiSo 1 [88]. It is noteworthy that

y(u)and A(1) are subtracted from L(1) in order to create a soft a priori observation that is

entirely independent of all the soft observations exploited by the SiSo 2 in the previous

iteration [92]. At this stage, E(1) is interleaved in order to create the a priori informa-

tion A(2), which is an additional input to the second decoder along with the interleaved

sequence of the received systematic bits Π(y(u)) and the second received parity check

y(2). The same procedures are implemented in the second SiSo decoder to evaluate the a

posteriori information L(2), which is used to create the extrinsic information E(2) as

E(2) = L(2) − Π(y(u))−A(2), (4.14)

where the term Π(y(u)) + A(2) is removed from L(2) for the same reasons mentioned

above. The extrinsic information E(2) is then deinterleaved to produce the a priori infor-

mation A(1) for the first component decoder. It is worth mentioning that the deinterleaver

and interleaver prior to A(1) and A(2) keep the a priori information in the same order

of the systematic bits at the input of SiSo 1 and SiSo 2, respectively. After a particular

number of iterations, L(2) is deinterleaved and passed to a hard decision process to obtain

an estimation of the original transmitted information bits.
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4.3 Iterative Detection and Decoding

Iterative detection and decoding (IDD), which is sometimes referred to as a turbo-like

receiver or turbo-BLAST (Bell Labs layered space time), is employed at the receiver

via several iterative exchanges of soft information between the detector and the decoder,

as shown in Fig. 4.11. In this figure, the upper side shows the bit interleaved coded

modulation (BICM) at the transmitter terminal, in which the information bits u are passed

through a convolutional encoder with a code rate ofRc. The coded bits are then scrambled

by an interleaver in order to tackle any probable successive bursts of errors at the input

of the channel decoder. The interleaved coded bit is mapped to create the transmitted

symbols. In this section, it is assumed that the BPSK is used to modulate the interleaved

and coded bits in the same way as illustrated in Fig. 4.7. The symbols Π and Π−1 are

used to denote the operations of interleaving at the transmitter and deinterleaving at the

receiver, respectively.

The IDD is implemented at the receiver by utilizing an iterative exchange of the soft

information between the detector and decoder, which are separated by the deinterleaver

and interleaver as shown in the lower side of Fig. 4.11. The notation Λk(xi), λk(xi) and

λk(xn) denotes the a posteriori, extrinsic and a priori LLR soft information, respectively,

where each is represented in an LLR form. Additionally, the subscript k ∈ {1, 2} indicates

Encoder

Decoder
SiSo

Mod.

Detector

Interleaver

SiSo

Deinterleaver

Interleaver

BICM Transmitter

Π−1

Λ2(xn)λ2(xn)λ2(xi)

λ1(xn)

v

u

Λ1(xi)

y

Π x

û

λ1(xi)

Π

Figure 4.11: BICM transmitter (top) and turbo-BLAST (IDD) receiver (bottom).
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the direction of flow of the soft information, in which 1 is used for the forward direction

from the detector to decoder, while 2 refers to the backward direction from decoder to

detector [85, 93, 94]. Moreover, the indices i and n show that the LLR for a particular

bit has different positions in a received frame due to the operations of interleaving and

deinterleaving between the SiSo detector and decoder. The SiSo detector passes the a

posteriori LLR, Λk(xi), for every transmitted BICM symbol, that is either +1 or −1, to

the SiSo decoder, where Λk(xi) is defined as

Λ1(xi) , log

(
Pr(xi = +1|y)

Pr(xi = −1|y)

)
. (4.15)

By using Bayes’ rule, (4.15) can be rewritten as

Λ1(xi) = log

(
Pr(y|xi = +1)

Pr(y|xi = −1)

)
+ log

(
Pr(xi = +1)

Pr(xi = −1)

)
,

= λ1(xi) + λ2(xi), (4.16)

where λ2(xi) represents the a priori LLR of the BICM bit xi that is determined by the

SiSo decoder in the previous iteration, then interleaved and delivered to the SiSo detector.

Additionally, the term λ1(xi) represents the extrinsic information obtained after removing

the effect of the a priori LLR, λ2(xi), from the a posteriori LLR, Λ1(xi). Moreover, the

extrinsic information, λ1(xi), is deinterleaved to restore each bit to its original position

before the interleaver at the BICM transmitter, as λ1(xn). The latter is then passed to the

SiSo decoder in order to be employed in the next iteration as a priori information.

On the other side, the SiSo channel decoder determines the a posteriori LLR of each

coded bit, Λ2(xn), according to the prior information λ1(xn) and the channel code’s con-

straints, such as the trellis structure [94], where Λ1(xn) is expressed as

Λ2(xn) = log

(
Pr(xi = +1|λ1(xn); decoding)

Pr(xi = −1|λ1(xn); decoding)

)
,

= λ1(xn) + λ2(xn). (4.17)

From the second equality of (4.17), it can be noticed that the SiSo decoder’s output is

constructed from the sum of the prior information λ1(xn) and the extrinsic information

λ2(xn). Moreover, Λ2(xn) is used in the last iteration to make a decision on the coded

bits. The extrinsic information λ2(xn) is interleaved again to create the prior informa-
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tion of the coded bits, λ2(xi), which is fed to the SiSo detector to be utilized in the next

iteration. It is worth mentioning that the extrinsic information terms λ1(xi) and λ2(xi)

are independent and uncorrelated at the first iteration; however, their correlation increases

afterwards, through the iterations, as they are indirectly created from the same informa-

tion, but this improvement reaches a saturation point and becomes insignificant after a

particular number of iterations [94].

4.4 IDD for Coded FD-SIMO Bidirectional Transceiver

4.4.1 Signal and System Model

In this chapter, a wireless scenario is considered in which two bi-directional nodes a and

b are communicating using FD-SIMO transceivers, each being equipped with a single

transmitting antenna and Nrx receive antennas as shown in Fig. 4.12. A SIMO scenario is

considered, as this is the most common case encountered in uplink cellular communica-

tion between a device with a single antenna and a base-station with multiple antennas [95].

The work can be extended to multiple transmit antennas; however, there is limited scope

for this as the diversity gain is expected to be restricted due to antenna spacing limitations

on the terminal. Furthermore, if the number of the utilized receive antennas is of an order

similar to that of the transmit antennas, a further increase in interference is expected [48],

which consequently will cause performance degradation for a system exploiting the FD

technique. Furthermore, the modelling of the forward channels between the two nodes

are denoted as Hab and Hba, while Haa and Hbb denote the SI channels. Additionally, all

SIMO channels in this chapter are considered to be Rayleigh fading channels with zero

mean and unit variance. Since reception at node b is considered in this chapter, hi(ζ)

may denote the magnitude of the Rayleigh fading process for the channel from node a

to the ζth receiving antenna at node b, in the ith signalling interval, which is i.i.d. with

E {hi(ζ)2} = 1 and its PDF is defined as [48]

ph (hi(ζ)) =
1

(Nrx − 1)!
hi(ζ)(Nrx−1) exp (−hi(ζ)) ,∀hi(ζ) > 0. (4.18)

Moreover, the AWGN at the receive port of any node is defined as v ∼ CN (0, σ2
vI).
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Figure 4.12: FD-SIMO transceiver architecture at node b.

4.4.2 Transmitter Structure

Without loss of generalization, this chapter focuses not only on the link from node a to

node b, but also on mitigating the SI caused by the transmitter of node b to its receive port.

At the transmitter, as shown in Fig. 4.12, the sequence of information bits at node b, abq,

of total length Q is passed through an RSC encoder, and is then interleaved to create the

encoded and interleaved bit sequence, cbp, of total length P . The same process is applied at

node a. The coded bits in each node are mapped to QPSK symbols, where the transmitted

symbols from nodes a and b are defined as sa, sb ∈ S = {exp[j(2k + 1)π/4] : k =

0, 1, 2, 3}.
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4.4.3 Receiver Structure

For a given SIMO symbol interval, the received signal vector, rb = [r1
b , r

2
b , ...., r

Nrx
b ]T , at

node b can be written as

rb =
√
paHabsa +

√
p̃bHbbsb + vb, (4.19)

where pa is the average received power from node a, while p̃b represents the power from

node b’s transmit port to its receive port after implementing passive suppression of SI

via antenna separation to diminish and block the LoS path [10, 17]. In this chapter, it is

assumed that the CSI and the noise variance are perfectly known to the receiver. SIC can

be implemented at the receiver in the analogue and digital domains by applying analogue

and digital cancellation filters, i.e. CA ∈ CNrx×1 and CD ∈ CNrx×1, respectively. The

known transmitted signals are filtered by CA and CD to generate replicas of SI to be

subtracted from the received signals in both domains. Possible implementations of the

two filters are CA = −Hbb and CD = −A(Hbb + CA), where A represents a real

diagonal matrix resulting from the ADC process. However, it is not possible in practice

to achieve perfect cancellation [10, 40]. It is also worth mentioning that since the raw

information bits of the local transmitter are directly available to the local receiver, there

is no obvious additional benefit in jointly decoding the information streams.

4.4.4 SI Mitigation via IDD

This stage of SIC is required to remove the residual SI remaining after applying the pre-

vious stages of SIC. Fig. 4.12 shows the block diagram of IDD for node b. It is worth

noting that an identical type of receiver is used at node a. The detector comprises adap-

tive MMSE filter with LLR demapper. A SiSo decoder performs soft channel decoding of

the extrinsic information from the LLR demapper. During the first iteration the detector

and decoder need to be initialized since the a priori and a posteriori information has not

been obtained yet. For these reasons, the MMSE filter cannot achieve interference cancel-

lation during the first iteration; therefore, it performs classical MMSE filtering and passes

its outputs, yb, to the LLR demapper. The latter first transforms the filtered symbols to

LLR symbols then performs a soft demapping of these symbols to bit-wise LLRs. This
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operation can be expressed mathematically as

L1[cap] = log
Pr
{
cap = 1 | r̃b,wb

}

Pr
{
cap = 0 | r̃b,wb

} , (4.20)

which represents the LLR of each coded bit with respect to the MMSE filter output,

yb = wHb r̃b, with r̃b and wb being its input and filter weights, respectively. The LLRs (or

soft bits) are deinterleaved and processed by the SiSo decoder. This a priori information

provided to the decoder is processed by exploiting the linear to logarithmic approximation

of the maximum a posteriori algorithm (linear-log-MAP), as utilized in this chapter. This

operation can be written in mathematical form as

L2[cap] = log
Pr
{
cap = 1 | L1[cap]

}

Pr
{
cap = 0 | L1[cap]

} . (4.21)

At this stage, a soft estimation for all symbols from the decoder output, which is defined

as

ŝa , E{sa} =
∑

αt∈S.
αtPr {sa = αt} , (4.22)

which can be obtained as [86]

ŝa =
1√
2

[
tanh

(L′2[cap,1]

2

)
+ j tanh

(L′2[cap,2]

2

)]
, (4.23)

where L′2 represents the LLR symbols after re-interleaving, i.e. L′2[.] = Π
(
L2[.]

)
. Addi-

tionally, cap,1 and cap,2 denote the successive odd and even coded bits at node a, respectively.

At the end of the first iteration, and for the iterations beyond, the information required is

provided to the adaptive MMSE filter in order to perform further cancellation of the resid-

ual SI. This filter is designed to achieve a minimization of the mean-square Error (MSE)

between its output and the lth symbol transmitted by node a, sa(l). The resulting coef-

ficients are obtained by minimizing the mean square error of the metric J(wb(l)) [86]

as

J(wb(l)) = arg min
wb(l)

∥∥wb(l)
H r̃b(l)− sa(l)

∥∥2
(4.24)

The solution of this problem was given in [10], [85] and [86] for different types of
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interference. Similarly, in our case of SI, the solution can be given as

wb(l) =
[
Λs(l)Hab(l)

HHab(l) + Λi(l)Hbb(l)
HHbb(l) + σ2

vb
INrx

]−1

Hab(l)
H, (4.25)

where Λs(l) = E[ŝaŝ
∗
a] represents the variance of ŝa, while Λi(l) = E[sbs

∗
b ] denotes the

variance of the symbols sb causing SI at node b. Once the computation of the adaptive

MMSE filter coefficients, wb(l), is complete, they are used along with the IDD input,

r̃b(l), to obtain the input of the LLR demapper as yb(l) = wb(l)
Hr̃b(l). All of these

signal processing steps discussed so far for the first iteration are repeated for a predefined

number of iterations so that the system converges to an acceptable BER with respect to

the average SINR. After the last iteration is completed, a hard decision is applied to the

SiSo decoder output in order to obtain node a transmitted bits as

âaq = sign
(
L2

[
aaq
])
, (4.26)

where

L2[aaq ] = log
Pr
{
aaq = 1 | L1[cap]

}

Pr
{
aaq = 0 | L1[cap]

} . (4.27)

4.5 Upper Bound for QPSK over SIMO Rayleigh Fading

Channels

The conventional performance upper bound (union bound) has been derived in [96] and

[97] from the transfer function of the convolutional code for infinitely-long input se-

quences. Additionally, it doesn’t take into account the impact of termination1, therefore,

this approach is not efficient for short information sequences with terminated trellises. A

more accurate and tighter upper bound has been suggested in [98] and improved by [99]

via defining a new generalized weight enumerator (GWE) of the terminated convolu-

tional code by modifying the trellis diagram for a finite-length information sequence.

This method has been derived for single-input single-output communication systems. In

this section, we derive a tight upper bound for a rate-1/2 convolutional code with QPSK

modulation scheme over the SIMO Rayleigh fading channel.

1Termination means that the convolutional trellis returns to zero-state by adding some padding bits to
the original message [88].
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4.5.1 Union Upper Bounds

In general, the union bound for the BER, P̄b, for rate-1/n is given by [48, 99] as

P̄b ≤
∑

d=dfree

BdPd (s,y) , (4.28)

where Pd denoted for the pairwise error probability (PEP) between the transmitted and

estimated sequences s = {s1, s1, ...., sNtx} and y = {y1, y1, ...., yNtx}, respectively, when

the Hamming distance between them is equal to d, Bd are the coefficients obtained by

applying the derivation to the transfer function of the code, T (B,D), as

∂T (B,D)

∂B

∣∣∣∣
B=1

=
∞∑

d=dfree

BdD
d, (4.29)

whereD andB represent the Hamming distance of the coded and input sequences, respec-

tively. Additionally, dfree in (4.28) represents is the free distance, which can be computed

for a convolutional code of rate-1/n and a constraint length K as

dfree ≤ min
l>1

⌊
2l−1

2l − 1
(K + l − 1)n

⌋
, (4.30)

in which the operation bxc is to choose the largest integer within x [48].

4.5.2 A Tight Upper Bound

In order to obtain a tight upper bound for a rate-1/2 convolutional code with constraint

length K using L terminating information bits for QPSK, the technique used in [98, 99]

is followed to derive the weight enumerator. In addition, it is required to derive the PEP

of the coded QPSK system over the SIMO Rayleigh fading channel in order to obtain a

closed-form expression for a tight upper bound on the BER.

4.5.2.1 Generalized Weight Enumerator

Since reception at node b is considered here, the transmitted symbol from node a, sa, will

be denoted by the simpler notation s, and the equalized symbol at node b, yb, will be de-

noted simply by y. In order to evaluate the weight enumerator of rate-1/2 convolutionally

coded QPSK, we assume that a message of all zeros is transmitted as s = 1√
2

+ j 1√
2
,

depending on the QPSK signal constellation defined earlier in Subsection 4.4.2 as shown
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Figure 4.13: QPSK signal constellation.

(a)

00
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01

00/0
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01/1
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1100

01

00/1 01/0

10/111/1

1

(b)

D1

BD1

D2
2

BD2
2 BD1

B D1

Figure 4.14: (a) State diagram for code C1 (b) Corresponding branch labels

in Fig. 4.13.

Let the received signal, y, differ from the transmitted signal, s, by exactly d symbols,

which are distributed as d1 symbols of S1 = ± 1√
2
∓j 1√

2
with distanceD1, and d2 symbols

of S2 = − 1√
2
− j 1√

2
with Euclidean distance D2. For instance, Fig. (4.14) (a) and (b)

show, receptively, the state diagram and its corresponding branch labels for the code C1

of constraint length K = 3 and generator polynomial G = (1, 5/7)8.

Each branch in Fig. 4.14 (a) has a representation (output/input), where output ∈
{00, 01, 10, 11} and input ∈ {0, 1}. The corresponding branch labels in Fig. 4.14 (b) are

obtained from the state diagram of C1 discussed earlier, in which the inputs 0 and 1 are

labelled as 1 and B, respectively. Moreover, the outputs 00, 01, 10 and 11 are labelled as

1, D1, D1 and D2
2, respectively.

According to the above definitions and assumptions, the GWE of QPSK is given as
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[99]

W (B,D1, D2) =
∑

η

∑

d1

∑

d2

cη,d1,d2B
ηDd1

1 D
2d2
2 , (4.31)

where cη,d1,d2 represents the number of error events comprising d1 symbols of D1 Eu-

clidean distance and d2 symbols of D2 Euclidean distance when the input Hamming dis-

tance is η.

The weight enumerator for terminated convolutional codes is obtained in [98, 99] for

BPSK and QPSK, receptively, by modifying the conventional trellis diagram for the con-

volutional codes in order to obtain tighter upper bounds. In the modernized trellis dia-

gram, any branch merges into zero state at any trellis depth is redirected to a new state

denoted as 2K−1. This makes the weight enumerator more tolerant and resilient against

multiple error events. Fig. 4.15 shows the new trellis diagram of code C1 with QPSK and

for a particular information length, L = 5, in which the labels of the branches between a

trellis depth t− 1 and t are drawn according to the branch metric shown in Fig. 4.14 (b).

In order to find the weight enumerator for the code C1 with QPSK, it is required to

define a set of states, St = (0, . . . , 2K−1−1), at depth t as illustrated in Fig. 4.15. More-

over, the labels of the branched between the successive states, i.e. the state St−1 of depth

t − 1 and the state St of depth t, can be denoted as GSt−1,St
(B,D1, D2). Additionally,

we can denote by FSt
(B,D1, D2) to the temporary polynomial to store the coefficient of

state St of depth t. At the beginning, it is required to initialize FS0
(B,D1, D2) as

FS0
(B,D1, D2) =





1 if S0 = 0

0 otherwise,
(4.32)

while for the next trellis depth from t = 1 to t = L+K − 1, FSt
(B,D1, D2) is evaluated

as

FSt
(B,D1, D2) =

∑

St−1=ΛSt

FSt−1
(B,D1, D2)×GSt−1,St

(B,D1, D2), (4.33)

where ΛSt
represents the set of all previous states that have branches merging to St, i.e. the

states at trellis depth t−1 lead to St. Furthermore, the desired weight enumerator at trellis

depth t = L + K − 1 is represented by the polynomial FSt=2K−1(B,D1, D2) [100]. For

instance, we can obtain the weight enumerator for the code C1 according to the procedure
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Figure 4.15: Modified Trellis Diagram

explained above and for an information length L = 5 as

W (B,D1, D2) = 5BD1D
4
2 + 7B2D2

1D
4
2 + 8B3D3

1D
4
2 + 5B4D4

1D
4
2 +B5D5

1D
4
2.

(4.34)

Moreover, Table 4.3 illustrates the weight enumerators for different information lengths,

L, of rate-half convolutional encoders of constrained length, K = 3 to K = 9, and for

various generator polynomials, G. This table is obtained by following the procedures

in [98, 99].

4.5.2.2 Pairwise Error Probability

Following the derivations in [99, 101], the conditional PEP, P2

(
s, y|{hi(ζ)}

)
, of coded

QPSK using rate-1/2 convolutional codes over the SIMO Rayleigh fading channel and

under the impact of SI can be expressed as

P2(s, y|{hi(ζ)}) =Q

{(
γ

2

[ d1∑

i=1

Nrx−1∑

ζ=0

|hi(ζ)|2|yi − si|2

+

d2∑

i=1

Nrx−1∑

ζ=0

|hi(ζ)|2|yi − si|2
])1/2}

, (4.35)

where yi denotes the ith element in the vector y, and si denotes the ith element in the

vector s. Also, γ represents the average SINR, which can be expressed as, γ = γs
γI+1

,

104



4.5 Upper Bound for QPSK over SIMO Rayleigh Fading Channels

Table 4.3: Weight Enumerators for QPSK
K G L Weight Enumerator
3 (1, 5/7)8 ≥ 12 LBD1D

2
2 + (2L− 3)B2D2

1D
2
2 + (4L− 12)B3D3

1D
2
2+

(8L− 36)B4D4
1D

2
2 + 2(16L− 96)B5D5

1D
2
2+

(32L− 240)B6D6
1D

2
2 + (64L− 576)B7D7

1D
2
2 + ...

4 (1, 15/17)8 ≥ 9 (L− 1)B2D2
1D

2
2 + LBD1D

3
2 + (2L− 5)B3D3

1D
2
2+

(L− 2)B2D2
1D

3
2 + (4L− 17)B4D4

1D
2
2+

(3L− 12)B3D3
1D32 + (8L− 48)B5D5

1D
4
2+

(L− 3)B2D2
1D

4
2 + (8L− 44)B4D4

1D
3
2+

(16L− 124)B6D6
1D

2
2 + ...

5 (1, 23/35)8 ≥ 10 LBD3
1D

2
2 + (L− 3)B3D3

1D
2
2 + (L− 4)B2D2

1D
3
2+

(L− 7)B6D4
1D

2
2 + (L− 2)B3D3

1D
3
2 + (L− 5)B5D3

1D
3
2+

(L− 5)B5D5
1D

2
2 + (L− 8)B7D5

1D
2
2 + (L− 2)B2D4

1D
3
2+

(3L− 13)B4D4
1D

3
2 + (2L− 14)B6D4

1D
3
2 + (2L− 7)B2D6

1D
2
2+

(4L− 26)B4D6
1D

2
2 + (3L− 25)B6D6

1D
2
2 + (L− 9)B8D6

1D
2
2 + ...

6 (1, 53/75)8 ≥ 9 (L− 2)B2D4
1D

2
2 + LBD3

1D
3
2 + (L− 2)B3D3

1D
3
2+

(L− 6)B5D3
1D

3
2 + (L− 4)B3D5

1D
2
2 + (2L− 13)B5D5

1D
2
2+

(2L− 16)B7D5
1D

2
2 + (L− 4)B4D2

1D
4
2 + (L− 1)B2D4

1D
3
2+

(3L− 14)B4D4
1D

3
2 + (L− 7)B6D4

1D
3
2 + (L− 8)B8D6

1D
2
2 + ...

7 (1, 133/171)8 ≥ 11 LBD2
1D

4
2 + (2L− 4)B2D4

1D
3
2 + (2L− 8)B3D4

1D
3
2+

(2L− 5)B3D6
1D

2
2 + (2L− 12)B4D6

1D
2
2 + (L− 6)B5D6

1D
2
2+

(L− 9)B6D6
1D

2
2 + (L− 2)B2D4

1D
4
2 + (L− 5)B3D4

1D
4
2+

(2L− 14)B4D4
1D

4
2 + ...

8 (1, 247/371)8 ≥ 12 (L− 1)B2D4
1D

3
2 + (L− 3)B3D3

1D
4
2 + LBD5

1D
3
2+

(L− 4)B3D5
1D

3
2 + (L− 3)B3D7

1D
2
2 + (L− 8)B5D7

1D
2
2+

(L− 7)B7D7
1D

2
2 + (L− 2)B2D4

1D
4
2 + (3L− 14)B4D6

1D
3
2+

(L− 11)B6D6
1D

3
2 + (2L− 12)B4D8

1D
2
2 + ...

9 (1, 561/753)8 ≥ 12 LBD4
1D

4
2 + (L− 4)B3D4

1D
4
2 + (2L− 3)B2D6

1D
3
2+

(L− 2)B3D6
1D

3
2 + (L− 4)B4D6

1D
3
2 + 7(L− 7)B5D6

1D
3
2+

(3L− 12)B3D8
1D

2
2 + (L− 5)B4D8

1D
2
2 + (3L− 22)B4D6

1D
4
2+

(3L− 20)B5D6
1D

4
2 + (2L− 16)B6D6

1D
4
2 + ...

where γs = pa/σ
2
v and γI = p̃b/σ

2
v denote the SNR and INR on node a, respectively.

According to the QPSK mapping defined earlier, |yi − si|2 = 2 for d1 symbols of S1 in

the first term of (4.35), while it is equal to 4 for d2 symbols of S2 in the second term. After

substituting these values in (4.35) and using Craig’s expression of the Q-function [102],

which is given by

Q (x) =
1

π

∫ π/2

0

exp

( −x2

2 sin2 θ

)
dθ, (4.36)
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we can rewrite (4.35) as

P2(s, y|{hi(ζ)}) =
1

π

∫ π/2

0

Ehi(ζ)

{
exp

(
γ
∑d1

i=1

∑Nrx−1
ζ=0 |hi(ζ)|2

−2 sin2 θ

)

× exp

(
γ
∑d2

i=1

∑Nrx−1
ζ=0 |hi(ζ)|2
− sin2 θ

)}
dθ. (4.37)

In order to evaluate the unconditional PEP, we begin by noting that the random variables

Hi =
∑Nrx−1

ζ=0 |hi(ζ)|2 for i = 1, 2, . . . , d1 +d2 are independent and chi-square distributed

with 2Nrx degrees of freedom and they follow the PDF of the SIMO Rayleigh fading

channel defined earlier in (4.18). Therefore, the expectation can be evaluated separately

to obtain the final expression for P2(s,y) as

P2(s, y) =
1

π

∫ π/2

0

2∏

i=1

(
sin2 θ

sin2 θ + γi

)mi
dθ, (4.38)

where γ1 = γ/2, γ2 = γ, m1 = d1(Nrx − 1), and m2 = d2(Nrx − 1). The exact solution

of (4.38) is computed in [102, eq. (5A.59)] as

P2(s, y) =
(γ1
γ2

)m2−1

2(1− γ1
γ2

)m1+m2+1

[
m2−1∑

k=0

(
γ2

γ1

− 1)kBkIk(γ2)− γ1

γ2

m1−1∑

k=0

(1− γ1

γ2

)kCkIk(γ1)

]
,

Bk =
Ak(

m1+m2−1
k

) , Ck =

m2−1∑

n=0

(
k
n

)
(
m1+m2−1

n

)An,

Ak = (−1)m2−1+k

(
m2−1
k

)

(m2 − 1)!

m2∏

n=1,n6=k+1

(m1 +m2 − n),

Ik(γ) = −1

√
γ

1 + γ

[
1 +

k∑

n=1

(2n− 1)!!

n!2n(1 + γ)n

]
,

(2n− 1)!! = 1× 3× ...× (2n− 1),

(
k

n

)
= 0 ∀ n > k. (4.39)

After obtaining the exact P2(s, y), a tight upper bound can be evaluated as

Pb =
1

L

∑

d2

∑

d1

∑

η

η cη,d1,d2 P2 (s, y) . (4.40)

Alternatively, (4.35) can be solved by exploiting the Q-function inequality, Q(x) ≤
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1
2

exp(−x2/2), to yield

P̃2

(
s, y|{hi(ζ)}

)
≤ 1

2
E

{
exp

(
−γ/2

d1∑

i=1

Nrx−1∑

ζ=0

|hi(ζ)|2
)

exp

(
−γ

d2∑

i=1

Nrx−1∑

ζ=0

|hi(ζ)|2
)}

.

(4.41)

Furthermore, as we have two chi-squared distributed random variables in (4.41), which

can be expressed in general form as

Ψdl =

dl∑

q=1

Nrx−1∑

p=0

|hq(p)|2, ∀l ∈ {1, 2}, (4.42)

the expectation of conditional expression in (4.41) can be solved easily using the formula

[97]

E {exp(ξΨdl)} =
1

(1− ξ)dl(Nrx−1)
. (4.43)

Therefore, the unconditional PEP, P̃2(s, y), which is expressed as

P̃2(s, y) = Eh
{
P̃2

(
s, y|{hi(ζ)}

)}
, (4.44)

can be solved approximately as

P̃2(s, y) ≤ 1

2

2∏

i=1

(
1

1 + γi

)di(Nrx−1)

. (4.45)

It is worth mentioning that P̃2 in (4.45) can be used instead of P̄b in (4.28) to obtain

the union bound.

4.6 Simulation Results and Discussion

In this section, the performance of a coded FD-SIMO based bi-directional transceiver is

investigated in the presence of SI. It is assumed that 45 dB of passive suppression of SI

by antenna separation followed by two stages of analogue and digital filtering achieving

35 dB of additional SI attenuation [17]. An RSC convolutional encoder is used with code

rate Rc = Q/P = 1/2, constraint length K = 5 and generator polynomials (1, 23/35)8.

Encoding is followed by interleaving and QPSK modulation. The overall system perfor-

mance is evaluated using flat Rayleigh fading channels in the presence of AWGN.
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Figure 4.16: BER vs. SNR performance of iterative coded FD-SIMO in the presence of
10 dB residual INR.

Fig. 4.16 shows the system’s BER-SNR performance for the 2nd and 5th iterations

and for different scenarios of SIMO system, i.e. Nrx, as Nrx = 2, 3, and 4. Moreover,

a comparison is presented between the system performance under a residual INR of 10

dB against the interference-free case. From this figure, it is clear that the performance

under SI after five iterations is very close to the SI free performance, which demonstrates

that the proposed SIC has a near-optimal performance, especially with higher number

of antennas at the receiving port, N b
rx. It is worth noting that in the three investigated

scenarios the performance improves whenever the number of iterations is increased.

Fig. 4.17 demonstrates a comparison between the union and the tight upper bounds on

the performance of the proposed system derived in this chapter, along with the simulation

of the BER-SNR performance under the same conditions mentioned above.

Fig. 4.18 shows the system’s performance in BER vs. Eb/N0 (in dB) metric for the

2nd and 5th iterations and for different receive antenna configurations, i.e. Nrx = 2, 3,

and 4, in which Eb and N0 represent the the energy per bit and the variance of the noise,

respectively. Moreover, two SI scenarios are considered, i.e. residual INR of 10 dB and
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Figure 4.17: Union and tight upper bounds on the performance of coded FD-SIMO along
with simulations in the presence of 10 dB residual INR.

the SI-free case. From this figure, it is clear that the performance under SI after five it-

erations is very close to the SI free performance, which demonstrates that the proposed

SIC has a near-optimal performance, especially with higher number of receiving anten-

nas. For Nrx = 2, the uncoded performance for the two SI scenarios is also included

for reference. A closer look at the results reveals that, at a BER of 10−4, the proposed

coded FD-SIMO-IDD system with residual INR of 10 dB can achieve about 16 dB and

8 dB improvement comparing to the uncoded FD-SIMO in the presence and absence

of SI, respectively. Furthermore, it is demonstrated in this figure the derived tight up-

per bound on the performance under the same conditions described above. It is worth

mentioning that the weight enumerator terms d1, d2, cη,d1,d2 , and η, which are used to

evaluate the tight upper bound on the performance of the considered convolutional codes,

are illustrated in Table.4.3 for different constraint lengths, K, and generator polynomi-

als, G. For instance, an RSC convolutional encoder of code rate Rc = Q/P = 1/2,

constraint length K = 5, generator polynomials (1, 23/35)8, and a length of informa-

tion of L = 15, the weight enumerator terms are obtained from Table 4.3 as d1 =
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Figure 4.18: BER vs. Eb/N0 performance of iterative coded FD-SIMO in the presence of
10 dB residual INR.

[3, 3, 2, 4, 3, 3, 5, 5, 6, 6, 6, 6, 6, 6, 6], d2 = [2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2], cη,d1,d2 =

[15, 12, 11, 8, 13, 10, 10, 7, 13, 32, 16, 23, 34, 30, 6] and η = [1, 3, 2, 6, 3, 5, 5, 7, 2, 4, 6, 2, 4,

6, 8] . These terms are substituted in (4.39) and (4.40) in order to obtain the tight upper

bound on the performance of the proposed coded FD-SIMO. The results reveal that the

tight upper bound performances match closely at high SNR the results obtained from sim-

ulations of the proposed system after the 2nd iteration. Therefore, the derived tight upper

bounds can be utilized by modem designers to accurately describe the performance of

coded FD-SIMO systems without the need to run time-consuming simulations.

Fig. 4.19 illustrates the BER performance as a function of SNR for three cases of

FD-SIMO, i.e. (1, 2, 1), (1, 3, 1), and (1, 4, 1), after replacing the convolutional codes

with turbo codes. In all simulation results presented in this chapter, the number of local

(intra-turbo) iterations of the turbo decoder and global (inter-turbo) iterations of the IDD

were set to 10 and 5, respectively. A closer look at the figure reveals that the system with

turbo codes achieves as expected better performance comparing to convolutional codes

under the same power of interference, i.e. INR= 10 dB, which implies increased robust

against SI. Moreover, it can be noticed that by increasing the receive antenna elements of
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Figure 4.19: BER vs. SNR performance of iterative turbo codes FD-SIMO in the presence
of 10 dB residual INR, in which the number of local and global iterations were set to 5
and 10, receptively.

the FD-SIMO transceiver, i.e. Nrx, additional gain can be obtained. A closer look at the

figure Fig. 4.19 reveals that at a BER level of 10−4 the proposed system achieves a gain

in SNR of 2.2 and 1.5 dB, when the receive antennas are increased from 2 to 3 then from

3 to 4, respectively.

4.7 Chapter Summary

In this chapter, an IDD receiver for a bi-directional coded FD-SIMO system has been

proposed to overcome the residual SI that remains after passive, analogue and digital

SIC processing. The performance of the proposed technique has been evaluated using

simulations, in addition to the derivation of a tight upper bound under the same conditions

to confirm our results. IDD has been implemented by exchanging the soft information of

the desired signal and the SI between the equalizer and the SiSo decoder. The equalizer
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4.7 Chapter Summary

performs MMSE filtering to remove residual SI, LLR demapping and MAP SiSo channel

decoding. Simulations results were presented for different number of receiving antennas

in the presence of AWGN and for independent SIMO flat Rayleigh fading channels. The

simulation results show that increasing the number of iterations and/or the number of

receive antennas improves resilience against residual SI by reconstructing more precisely

the desired signal and interference.
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Chapter 5

IDD for Coded FD-MIMO in the

Presence of Residual SI
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5.1 Introduction

5.1 Introduction

Iterative soft parallel interference cancellation (soft-PIC) using soft-in soft-out (SiSo)

along with IDD technique can be exploited with the coded FD-MIMO transceiver for

SIC purpose1 . This approach can be implemented by employing channel encoding us-

ing convolutional or turbo codes followed by an interleaver to combat burst errors. The

BICM process is achieved by mapping the coded and interleaved bits into symbols ac-

cording to the modulation scheme utilized [104]. Additionally, OFDM can be employed

in conjunction with MIMO-BICM to enhance spectral efficiency and combat the effect of

frequency-selective fading channels [105–108]. Although OFDM is out of the research

scope of this chapter due to the flat Rayleigh fading channel assumption, the results pre-

sented here are valid for OFDM as long as the cyclic prefix used has sufficient length to

cover the delay spread of the multipath channel.

Iterative detection and decoding (IDD) techniques, which are commonly referred to as

turbo-like receivers or turbo-BLAST (BLAST stands for Bell Labs layered space time),

are implemented in the MIMO receiver using several iterative exchanges of soft informa-

tion between the detector and the decoder [85, 93, 103, 109]. IDD offers high throughput,

efficiency, and reliable performance in the case of noise and interference impaired en-

vironments in wireless communications [103, 104, 110, 111]. Soft information may take

the forms of MAP, ML, or an LLR [103, 106]. However, the algorithms used to evaluate

this soft information require highly complex computations, which increase exponentially

with the size of the constellation mapping and/or the number of antennas in MIMO sys-

tems [103, 105, 108]. Therefore, it is preferable to utilize methods that have the ability to

reduce this complexity and maintain performance at an acceptable near-capacity thresh-

old [106, 110, 111]. Such systems have been proposed and successfully employed for

the mitigation of various types of wireless interference, such as ISI, co-channel interfer-

ence (CCI), co-antenna interference (CAI), multiple-access (multi-antenna) interference

(MAI), and multi-user interference (MUI) [85], [112–114]. In [109], a tight upper bound

on the performance of the coded FD-SIMO was derived by assuming the presence of

residual SI after applying passive and active SIC.

Theoretical and experimental studies of the exploitation of BLAST using the turbo

principles for MIMO in [85] has shown that this combination gives higher data rates,

better performance and more efficient computation compared to conventional BLAST

1Part of this Chapter is published in [103]
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schemes with an ML detector under the same conditions and in Rayleigh-fading scenarios

[93].

An improved IDD architecture with anti-gray mapping has been proposed to over-

come the slow convergence rate when employing gray mapping with the traditional turbo-

BLAST in a MIMO wireless communication system [110]. This improved scheme was

achieved by applying the posteriori LLR information from the outer SiSo decoder to

the detector, rather than the extrinsic information, which is always used in conventional

IDD, in order to produce faster convergence. A similar idea has been used with OFDM

in [107] for a comparison between the linear and non-linear MMSE detectors. The first

detector produces a priori LLR information as a result of processing and equalizing the

received symbols and the extrinsic soft information as the traditional turbo-BLAST, while

the non-linear MMSE detector replaces the extrinsic information with posteriori LLR in-

formation, which is fed directly back from the SiSo decoder.

In another study [111], the authors dealt with the reduction of the high computational

complexity of IDD based on soft interference cancellation (soft-IC) by simplifying the in-

stantaneous matrix inversions at the cost of a slight reduction in performance. A modified

turbo-BLAST with OFDM has been considered in [105] based on soft-PIC and MMSE

filtering for the MIMO frequency selective fading channel and in the presence of imper-

fect channel estimation. The researchers then proposed hard-decision based equalization

using bit-level interference cancellation as a form of low complexity IDD at the cost of a

slight degradation in the overall system performance [106].

The systems presented in [113], [114] exploited IDD using soft-IC that can be achieved

by firstly creating a soft copy of interfering symbols using the LLR information supplied

by the outer SiSo decoder to the soft-IC/MMSE detector. These estimated symbols can

then be combined with the interfering channel, which may be known or need to be esti-

mated. Finally, a subtraction from the received signal is implemented in order to obtain

the desired signal, however, a linear adaptive filter is required to cancel the residual inter-

ference.

The key contributions of this chapter is to extend the works in [103, 109] by exploit-

ing IDD, in the context of coded FD-MIMO, to mitigate more effectively the residual SI

remaining after applying multiple stages of SIC. After a number of iterations, the perfor-

mance achieved is shown to be very close to the SI-free case. Additionally, in order to

validate the simulation results, a tight upper bound on the performance of the proposed

FD-MIMO for rate-1/2 convolutional codes with M -QAM is derived, which is asymp-
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totically close to the simulated performance and can be used for performance evaluation

of such a system without the need to implement time-consuming simulations. Moreover,

EXIT chart analysis is employed as a semi-analytic method to visualize the convergence

behavior between the proposed detector and decoder, and to evaluate the number of iter-

ations required for this convergence.

The rest of the chapter is organized as follows. In Section 5.2, the signal and system

models are introduced. Firstly, a description of the overall coded FD-MIMO bi-directional

transceiver is presented by defining the channel and noise characteristics. Moreover, the

equations for the transmitted and received signals are given. Section 5.3 presents different

stages of SIC in the passive and active domains in addition to our proposed IDD system

to combat the residual SI by utilizing iterative soft-PIC with adaptive MMSE filtering for

coded FD-MIMO. In Section 5.5, a tight upper bound on the performance of the proposed

IDD system in the presence of residual SI is derived. Moreover, in Section 5.7, EXIT

chart analysis [115] is employed as a semi-analytic technique to analyse and visualize

the convergence behavior of the proposed iterative system. Section 5.8 presents simula-

tion results and discussion, and finally, the chapter’s conclusions are drawn in Section 5.9.

5.2 Signal and System Model

In this chapter, a wireless scenario is considered in which two bi-directional point-to-

point nodes a and b are communicating using FD-MIMO transceivers [14, 103, 109]. It

is assumed that each node is equipped with Ntx transmit antennas and Nrx receive an-

tennas, where Ntx ≤ Nrx as shown in Fig. 5.1. The four wireless links illustrated in this

figure are denoted as Hab and Hba indicating the forward channels, while Haa and Hbb

denote the self interference channels. All channels in this chapter are considered to be

frequency non-selective Rayleigh fading channels, i.e. flat fading channels, which can

be defined generally as H ∼ CN (0, INtxNrx). Moreover, the AWGN samples at the re-

ceive port of any node are i.i.d. with zero mean and variance σ2
vi

, and can be defined as

vi ∼ CN (0, σ2
vi

INrx), and σ2
vi

= E{vivHi }, where i ∈ {a, b}.
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Figure 5.1: Bi-directional FD-MIMO Transceiver

5.2.1 Transmitter Structure

Without loss of generalization, this chapter focuses not only on the link from node a to

node b, but also on mitigating SI caused by node b’s transmitter to its receive port. At the

transmitter of node b, as shown in Fig. 5.2, the qth bit, abq, in a sequence of information

bits with total length of Q, is passed through a recursive systematic convolutional (RSC),

then interleaved to create the encoded and interleaved bit sequence, cbp, of total length P .

The code rate is defined as Rc ∈ [0, 1] = Q/P .

Subsequently, the coded bits are interleaved using a random interleaver, Π( .) and the

interleaved bits are divided using a serial-to-parallel multiplexer into Ntx sub-streams. In

each branch, the conversion of bits to symbols, i.e. mapping, is achieved according to the

modulation scheme used. Each vector in the nth antenna, cn , [cn,1, ..., cn,m] ∈ {0, 1}m,

where n = 1, 2, ..., Ntx, and m represents the number of bits per each symbol, is mapped

according to the function

ψ(cn) : {0, 1}m → S,

sn = ψ(cn) ∈ S,
(5.1)

where S = {α1, α2, ..., αM}, ατ represents a set of all possible complex symbols, s, in the

constellation vector of size M = 2m. In this chapter, the modulation scheme employed

is Gray-labelled M -ary QAM for the transmitted symbols from the nodes a and b. These

complex symbols of a particular transmitter node are defined as sκ = [s1
κ, s

2
κ, ...., s

Ntx
κ ]T ∈
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ŝ1

rNrx

y1

Hbb

sb

rb

r̃Nrx
yNtx

r̂Nrx r̂1

Hba

Hab

ab

CdCa

L̃′′
Π

L′′

cb

Figure 5.2: Bi-directional FD-MIMO Transceiver at node b

CNtx×1, where κ ∈ {a, b}, in which E{|sκ|2} = Es/Ntx and E{sκsHκ } = Es/NtxINtx ,

where Es represents the energy of the transmitted symbol. It is worth mentioning that all

processing steps applied to the information bits thus far are referred to as BICM .

5.2.2 Receiver Structure

At the receiver front end of node b, before the ADC in each receive antenna branch, the

received signal vector, rb = [r1
b , r

2
b , ...., r

Nrx
b ]T ∈ CNrx×1, can be given as

rb =
√
ρaHabsa +

√
ρ̃bHbbsb + vb, (5.2)

where ρa is the average received power from node a, while ρ̃b represents the power
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Figure 5.3: Spectrum of desired signal and SI with respect to thermal noise before and
after applying SIC

from node b’s transmitter port to its receiver port after implementing the passive suppres-

sion of SI as will be discussed later on in Subsection 5.3.1. In this chapter, it is assumed

that the variances of the noise and the CSI are perfectly known to the receiver.

5.3 Self-interference Cancellation Stages

As mentioned briefly in Section 5.1, SI can be combated by utilizing different stages of

passive and/or active SIC. This is because SI power may reach or exceed by 100 dB the

power of the desired received signal [40, 116]. Thus, our aim is to attenuate the power of

SI to be approximately at the level of noise floor, which is approximately −90 dBm [117]

as shown in Fig. 5.3.

To the best of our knowledge, SI attenuations of about 80 to 120 dB have been reported

in the literature [17,40,42,116] using different stages of SIC. However, in practice, resid-

ual SI may still be significant after SIC due to oversimplified assumptions made in FD

systems. Therefore, IDD is proposed in this chapter to further reduce the residual SI that

remains after applying passive and active SIC approaches.

5.3.1 Passive suppression via Antenna separation

In order to suppress SI in FD systems, it is initially required to reduce the effects of local

power coupling to avoid drowning of the desired incoming signal in loop-interference,

which is significantly stronger. Additionally, it is required to mitigate saturation of ADC

circuitry due to its limited dynamic range and quantization resolution [9,13,14,35]. Thus,

passive suppression, as discussed earlier in this thesis, has been proposed at the receiver

front-end by using natural-isolation techniques, via antenna separation to diminish and
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block the LoS path. This is achieved by orienting transmit antenna elements to an oppo-

site direction than those of the receiving antennas, which consequently maximizes loop-

interference attenuation by increasing the insertion loss that can be further increased by

utilizing orthogonal polarization schemes [9, 17, 35].

5.3.2 Analogue Domain Cancellation

In this stage, it is required to design the analogue cancellation filter, CA ∈ CNtx×Nrx ,

and combine it with the analogue transmitted signal which is undoubtedly known to the

transceiver. This is in order to create an analogue replica of SI and apply a subtraction

before ADC. In theory, SI can be entirely removed by choosing CA = −Hbb. However,

it is not possible in practice to achieve perfect cancellation [10], [17]. In other words, a

precise implementation of this filter is not easily within reach in the analogue domain, as

it is required to be abruptly adaptive to any change in the wireless channels. Moreover,

the practical design may require no more than a matrix with dimensions (Ntx, Nrx) for

implementing amplifiers and phase shifters for compensation [10], which is not adequate

to cancel SI totally in our case in this chapter for MIMO system. This stage is still

significant as it produces, along with AS, an SI mitigation which is required firstly to avoid

the saturation at the received port front end and secondly to overcome the quantization

noise in the ADC caused by large magnitude of SI compared to the signal of interest [17].

5.3.3 Digital Domain Cancellation

Digital cancellation is utilized to suppress the residual SI passed through ADC to the

digital domain. The digital filter, CD ∈ CNtx×Nrx , is designed to perform this task by

taking into account the interfering channel, the analogue filter, and the ADC processing.

This filter can implemented to remove the residual SI as CD = −A(Hbb + CA), where

A represents a real diagonal matrix resulting from the ADC process [10]. However,

this stage of SI cancellation does not have the ability to remove all parts of residual SI

coming from the analogue domain, in addition to the clipping-plus-quantization noise

terms caused by ADC proceeding. Therefore, an additional signal processing stage is

required to reduce the effect of residual SI. In this chapter, IDD is suggested for coded

FD-MIMO for this purpose as will be discussed in the next subsection.
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5.3.4 Iterative Detection and Decoding

Fig. 5.2 shows the block diagram of IDD with soft-PIC for node b. It is worth noting that

an identical type of receiver is used at node a. The detector comprises an adaptive MMSE

filter, which is discussed later in this subsection, and an LLR demapper. A SiSo decoder

performs soft channel decoding for the extrinsic information from the LLR demapper.

During the first iteration the detector and decoder need to be initialized since the a priori

and a posteriori information has not been obtained yet. Therefore, at that instant, the

soft estimations of the residual SI symbols are not available, and thus, they cannot be

subtracted from the received signal [103]. This means that the received MIMO signal,

rb, for this iteration, could be considered as the input for the MMSE filter, rather than

the reduced interference signal, r̃b, obtained in the next iterations. For the same reasons

mentioned above and due to the lack of the required parameters, the MMSE filter is not

ready to achieve interference cancellation during the first iteration; therefore, it performs

classical MMSE filtering and passes its outputs, y, to the LLR demapper [103]. The latter

first transforms the filtered symbols to LLR symbols and performs a soft demapping of

these symbols to bit-wise LLRs. This operation can be expressed mathematically as

L′[cn] = ln
Pr {cn = 1 | yb}
Pr {cn = 0 | yb}

, (5.3a)

= ln
Pr {cn = 1 | r̃b,wb}
Pr {cn = 0 | r̃b,wb}

, (5.3b)

where (5.3b) represents the LLR of each coded bit with respect to the MMSE filter output

yb = wHb r̃b, with r̃b and wb being its input and filter weights, respectively. The soft LLR

bits with a size of (Ntx ×mNsymbol), where Nsymbol denotes the number of symbols per

frame, are converted from a parallel to a serial stream, deinterleaved and processed by the

SiSo decoder. This a priori information provided to the decoder is processed by exploiting

the linear to logarithmic approximation of the maximum a posteriori algorithm (linear-

log-MAP), as utilized in this chapter. This operation can be written in mathematical form

as

L′′[cn] = ln
Pr {cn = 1 | L′[cn]}
Pr {cn = 0 | L′[cn]} . (5.4)
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At this stage, a soft estimation for all the desired symbols from the decoder output can be

obtained as [109]

ŝa , E(sa) =
∑

αt∈S
αtPr {sa = αt} , (5.5)

in which for M = 4, i.e. 4-QAM, the soft remapping of the symbols can be expressed as

ŝa =
1√
2

[
tanh

(L̃′′[cn,1]

2

)
+ j tanh

(L̃′′[cn,2]

2

)]
, (5.6)

where L̃′′ represents the LLR symbols after re-interleaving, i.e. L̃′′[.] = Π
(
L′′[.]

)
. Ad-

ditionally, cn,1 and cn,2 denote the successive odd and even re-interleaved coded bits,

respectively.

On the other hand, the soft remapping of 16-QAM can be expressed as [118, 119]

ŝa =
1√
2.5

[(
1− 2Pr{cn,1 = 0}

)(
1 + 2Pr{cn,1 = 0}

)

+ j
(
1− 2Pr{cn,3 = 0}

)(
1 + 2Pr{cn,4 = 0}

)]
, (5.7)

where Pr{cn,m = 0} is the probability of the mth coded bit belonging to a 16-QAM

symbol of the nth antenna. Moreover, Pr{cn,m = 0} can be determined as [118]

Pr{cn,m = 0} =
1

2

(
1 +

1

2
tanh

(
L̃′′[cn,m]

))
. (5.8)

The estimated symbols, ŝa,n, are used along with CSI to create a soft replica of the

received signal along with its interference. It is assumed that perfect CSI is available,

since channel estimation is beyond the scope of this chapter. The estimated symbols

are then reshaped into a parallel vector in order to make each symbol correspond to its

original antenna element, and subsequently the estimated symbols associated with the

transmitted nth antenna element are forced to zero, as this is required to cancel its induced

interference [103], i.e.

ŝa,n , {ŝa,1, ..., ŝa,n−1, 0, ŝa,n+1, ..., ŝa,Ntx} . (5.9)

In other words, ŝa,n represents a vector of the soft estimated symbols of the transmitted

antennas after nullifying the symbol of the nth antenna, which is the subject of interest
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and it is at this instant subject to the soft-PIC processing [103]. The soft symbols in

(5.9) are used to create an estimate of the transmitted signal with the interference after

combining them with the channel, i.e. r̂b = Habŝa,n. Subsequently, soft-PIC is performed

by subtracting r̂b from the received signal as

r̃b = rb − r̂b = Habsa,n + Hbbsb,n + vb −Habŝa,n (5.10a)

= Habs̃a,n + Hbbsb,n + vb. (5.10b)

where s̃a,n is defined as

s̃a,n , {ẽa,1, ..., ẽa,n−1, sa,n, ẽa,n+1, ..., ẽa,Ntx} , (5.11)

and ẽa,n = sa,n− ŝa,n represents the error which arises due to the imperfect cancellation of

interference on node b. This error might theoretically approach to zero when the number

of iterations approaches infinity.

At the end of the first iteration, and for the iterations beyond, the information required

is provided to the adaptive MMSE filter in order to perform further cancellation of the

residual SI. This filter is designed to achieve a minimization of the mean squared error

(MSE) between its output, san,l, with respect to the lth symbol of the nth transmitted an-

tenna of node a, i.e.

Jn,l = E
∥∥wHn,lr̃bn,l − san,l

∥∥2
. (5.12)

The coefficient w that minimizes Jn,l can be obtained by solving ∂Jn,l
∂wb

n,l
= 0, and was

derived in [94] and also given in [103], [85] and [113] for different types of interference.

Following the derivation in [94], the solution in the case of SI can be given as

wb
n,l = [Λs(l)Hab(l)

HHab(l) + Λi(l)Hbb(l)
HHbb(l) + σ2

vb
INrx]

−1hab(n, l)
T , (5.13)

where hab(n, l) represents the nth column of Hab(l). Furthermore, Λi(l) denotes the

covariance matrix of the SI symbols, sb,n, which can be expressed as Λi(l) = E{sb,nsHb,n},
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while Λs(l) = E{s̃a,ns̃Ha,n} represents the covariance matrix of s̃a,n defined as

Λs(l) , diag
[
E{|ẽa,1|2}, ...,E{|ẽa,n−1|2}, σ2

sa ,E{|ẽa,n+1|2}, ...,E{|ẽa,Ntx |2}
]
. (5.14)

Using the orthogonality principle, i.e. E{(wHn,lr̃bn,l − san,l)(r̃
b
n,l)
H} = 0, between the input

of the MMSE filter, r̃bn,l and the MSE, it can be shown that the MMSE, Jmin
n,l , achieved by

using the coefficients in (4.25) can be simplified as

Jmin
n,l = E{

∥∥wHn,l r̃bn,l − san,l
∥∥2},

= E{(wHn,l r̃bn,l − san,l)(w
H
n,l r̃bn,l − san,l)

H},

= E{(wHn,l r̃bn,l − san,l)(s
a
n,l)
H}, (5.15)

to obtain the final expression of Jmin
n,l as

Jmin
n,l = Λs(l)−RrsR

−1
r Rsr, (5.16)

where Rrs = E{r̃bn,l(san,l)H}, Rr = E{r̃bn,l(r̃bn,l)H}, and Rsr = E{san,l(r̃bn,l)H}.
Since the MAP-SiSo decoder is used in this chapter, E{|ẽa,n|2} can be computed as

E{|ẽa,n|2} =
∑

αt∈S

∣∣sa,n − ŝa,n
∣∣2 Pr {sa,n = αt} , (5.17)

where σ2
sa = E{|sa,n|2} = 1 represents the variance of the symbols sa,n as defined earlier

in Subsection 5.2.1.

Once the computation of the adaptive MMSE filter coefficients, wb
n,l, is complete, they

are used along with output of the soft-PIC, r̃bn,l, to obtain the input of the LLR demapper

as

ybn,l = (wb
n,l)
H r̃bn,l (5.18a)

= βn,l san,l + ζn,l, (5.18b)

where βn,l = (wb
n,l)
Hhab(n, l), while ζn,l represents the interference-plus-noise term,

which is defined as ζn,l = (wb
n,l)
Hhbb(n, l) sbn,l + (wb

n,l)
Hvb, and it exhibits a Gaussian

distribution with zero-mean and variance σ2
ζn,l

= (βn,l − β2
n,l) [94]. At the output of the
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5.4 Moment Generating Function of SINR

MMSE filter, the SINR for the lth spatial symbol can be calculated as

γl =
βl

(1− βl)
, (5.19)

where the distribution of γl is derived in Section 5.4 by employing the moment generation

function (MGF).

All of these signal processing steps discussed so far for the first iteration are repeated

for a predefined number of iterations so that the system converges to an acceptable BER

with respect to average SINR [103]. After the last iteration is completed, a hard decision

is applied to the SiSo decoder output in order to obtain the transmitted bits as

âaq = sign
(
L′′
[
aaq
])
, (5.20)

where

L′′[aaq ] = ln
Pr
{
aaq = 1 | L′[cap]

}

Pr
{
aaq = 0 | L′[cap]

} . (5.21)

5.4 Moment Generating Function of SINR

In this section, in order to evaluate the moment generation function (MGF), it is required

to start finding an expression for the CDF of SINR, γl, in (5.19), which is defined in

[48, 120] as

F (γl) = 1− e−ψγl
Nrx∑

n=1

An(γl)

Γ(n)
(ψγl)

n−1, (5.22)

where ψ = 1/σ2
vb

for node b, Γ(n) = (n − 1)! represents the Gamma function, while

An(γl) represents an auxiliary function which is defined as

An(γl) =





1, for n ≤ Ndiv,

1
(γl+1)Ntx−1

Nrx−n∑

i=0

Ciγ
i, for n > Ndiv,

(5.23)

where Ndiv = (Nrx − Ntx + 1) represents the diversity order of the MIMO system, and

Ci represents the coefficients of xi in the term (1 + x)Ntx−1 for i ≥ 0. For instance, if
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5.5 Tight Upper Bound Performance Analysis

Ntx = 2 this term will appear as (1 + x), which means that C0 = 1 and C1 = 1. The

MGF of γl as a function of the receive and transmit antennas, Nrx and Ntx, respectively,

can be defined as

MNtx,Nrx(t) ,
∫ ∞

0

e−tγldF (γl) = t

∫ ∞

0

e−tγlF (γl)dγl, (5.24)

which can be solved using the techniques presented in [121, 122] resulting in

MNtx,Nrx(t) =
[ ψ

ψ + t

]Ndiv − te(t+ψ)

Nrx∑

n=Ndiv+1

Nrx−n∑

i=1

n+i−1∑

k=0

ψn−1CiDk

Γ(n)
ENtx−k−1(ψ + t),

(5.25)

where Dk represents the coefficients of xk in the term (x − 1)n+i−1, which can be com-

puted asDk = (−1)k
(
n
k

)
, for k = 0, 1, 2, ..., n. Additionally,En(α) ,

∫∞
1

e−αt
tn
dt,∀α > 0

is the generalized exponential integral function.

5.5 Tight Upper Bound Performance Analysis

In this section, a tight upper bound on the performance of the proposed coded FD-MIMO

system is derived in the presence of residual SI that remains after applying the passive and

active SIC methods mentioned previously in this chapter. In general, the BICM bound of

the BER, P̄b, for a rate-1/n convolutional code is given by [48, p. 515] and [123] as

P̄b ≤
∑

d=dfree

BdPd (s,y) , (5.26)

where Pd (s,y) represents the PEP between the transmitted and estimated sequences

s = {s1, s2, ...., sNtx} and y = {y1, y2, ...., yNtx}, respectively, when the Hamming dis-

tance between them is equal to d. Additionally, dfree is the convolutional code’s free dis-

tance, Bd represents the total input weight of error events at Hamming distance d. These

coefficients, which are presented in [123] for different Rc in tables, can be obtained by

applying the derivation to the transfer function of the code, T (B,D), as

∂T (B,D)

∂B

∣∣∣∣
B=1

=
∞∑

d=dfree

BdD
d, (5.27)
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5.5 Tight Upper Bound Performance Analysis

where D and B represent the Hamming distances of the coded and input sequences, re-

spectively.

According to (5.18b), (5.3) can be rewritten for the ith (i ∈ {1, 2, ..., log2M}) coded

bit, in the lth symbol belonging to the nth transmit antenna element of san,l with respect to

yan,l as

L′(n, l, i) = ln

∑

s̃∈S1n,l,i

Pr(ybn,l|s̃, βn,l, ζn,l)

∑

s̃∈S0n,l,i

Pr(ybn,l|s̃, βn,l, ζn,l)
,

= ln




∑

s̃∈S1n,l,i

exp

(
−
|βn,l(san,l − s̃) + ζn,l|2

σ2
ζn,l

)

∑

s̃∈S0n,l,i

exp

(
−
|βn,l(san,l − s̃) + ζn,l|2

σ2
ζn,l

)



,

= ln(Ξn,l), (5.28)

where S1
n,l,i and S0

n,l,i represent the signal subsets in the constellation when the ith bit in

the lth symbol and for the nth transmit antenna is equal to 1 and 0, respectively. It is

assumed that a message of all zeros is transmitted, then the PEP is expressed as

Pd (s,y) = Pr
( d∑

k=1

L′k
)
, (5.29)

where L′k is the input to the SiSo decoder after applying parallel-to-serial conversion and

deinterleaving to L′(n, l, i). Since it is not straightforward to evaluate the distribution of

L′k in an exact expression, the MGF approach, denoted asM, can be exploited to evaluate

the probability in (5.29) as [48]

Pd (s,y) =

∫ δ+j∞

δ−j∞
M∑d

1 L′k
(t)
dt

t
(5.30a)

=

∫ δ+j∞

δ−j∞
[ML′(t)]

d dt

t
, (5.30b)

where (5.30b) is obtained from the assumption of random interleaving. Moreover, the

subscript k is omitted on L′ in (5.30b) since the statistics of LLR are calculated at a single

instant in time. Additionally, δ is a constant that can be obtained by minimizing the value

ofML′(t). The procedure to obtain the optimum value of δ is described later on in this
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5.5 Tight Upper Bound Performance Analysis

chapter. Furthermore,ML′(t) can be evaluated similar to [121] and [122] as

ML′(t) = Esan,l,βn,l,ζn,l
{

exp(tL′)
}

=
1

M m

m∑

t=1

∑

san,l∈S
Jsan,l(t), (5.31)

where m = log2(M) and S represents a set of all possible complex symbols of the M -

QAM constellation. Additionally, Jsan,l(t) is expressed as

Jsan,l(t) = Eβn,l,ζn,l
{

exp
(
t ln(Ξn,l)

)}
, (5.32)

which can be simplified as

Jsan,l(t) = Eβn,l,ζn,l
{

(Ξn,l)
t
}
. (5.33)

A closer look to the ratio in (5.33) reveals that it is dominated by a single term representing

the minimum distance in the numerator and denominator, conditioned to high SINR [121].

According to the assumption of transmitting an all-zero message and by utilizing the

theorem of dominated convergence [124], (5.33) can be approximated as

Jsan,l(t) ' Eβn,l,ζn,l

{
exp

(
t|ζn,l|2 − t|βn,l(san,l − s̃) + ζn,l|2

σ2
ζn,l

)}
, (5.34)

where s̃ ∈ S1
n,l,i represents the closest symbol to san,l in the M -QAM constellation.

At this stage, the derivation is resumed by simplifying (5.34) and evaluate its average

over ζn,l to obtain

Jsan,l(t) ' Eβn,l

{
exp

(
− t(1− t)Ntx

Es
γl
∣∣san,l − s̃

∣∣2
)}

'MNrx,Ntx

{
exp

(
t(1− t)Ntx

Es

∣∣san,l − s̃
∣∣2
)}

, (5.35)

where MNrx,Ntx represents the MGF of the SINR, γl, which is derived in Section 5.4.

Now, by substituting (5.35) in (5.31) and using the simplifications described in [121],

(5.31) can be rewritten as

ML′(t) =
∑

k

∆M,kMNtx,Nrx

(t(1− t)Ntx

Es
ΥM,k

)
, (5.36)
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where ΥM,k and ∆M,k are the squared Euclidean distances and the frequency of the oc-

currence for each distance presented in Table 5.1 [121], respectively.

Table 5.1: Rate-1/2 RSC channel encoders parameters used in (5.36)
∆M,k ΥM,k

4-QAM {1} {2.0}
16-QAM {3/4, 1/4} {0.4,1.6}

Now, (5.36) can be substituted in (5.30b) and apply the Gauss-Chebyshev quadrature

(GCQ) rule in order to obtain the PEP of the proposed system as

Pd (s,y) = Eϕ +
1

ϕ

ϕ/2∑

k=1

(
<
[
ML′(ε)

d
]

+ τk=
[
ML′(ε)

d
])
, (5.37)

where ε = δ + jδτk, τk = tan
(

(2k−1)π
2ϕ

)
, ϕ represents the number of nodes utilized in

applying the GCQ to (5.36), and Eϕ is an integration constant approaching zero when ϕ

approaches infinity.

As previously mentioned, δ is a constant chosen to minimize the value of ML′(t).

Thus, from (5.35) and the definition of MGF in (5.24) in Section 5.4, and by setting the

result of the derivative with respect to the variable −t(1 − t) to zero, i.e. d[−t(1−t)]
dt

= 0,

it can be shown that the minimum value ofML′(t) is obtained at t = 0.5. Additionally,

since MNtx,Nrx is a monotonic increasing function, ML′(t) exhibits a minimum value

at t = 0.5. It is noteworthy that ML′(δ + jδτk) is real-valued when <[ε] = δ = 0.5.

Therefore, the approximate formula of the PEP in (5.37) can be written as

Pd (s,y) ' 1

ϕ

ϕ/2∑

k=1

[∑

i

∆M,iMNtx,Nrx

((1 + τ 2
k )Ntx

4Es
ΥM,i

)]d
. (5.38)

5.6 The Complexity of The Proposed FD-MIMO-IDD

The complexity computation of the proposed FD-MIMO-IDD depends on the utilized

equalizer and the decoding algorithm. Different approaches can be used to measure the

complexity. This thesis deals with interference-limited environments, i.e. the SI accompa-

nied to FD operation, therefore, the required real and complex operations to evaluate the

filter coefficients are used to calculate the system complexity. The basic operations that

used for this purposes are the addition (ADD), subtraction (SUB), multiplication (MUL),

division (DIV), the square operation (SQRT), finding the maximum value (MAX) and
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look-up-table operation (LUT). A comparison between the complexity of MAP and Log-

MAP algorithms is illustrated in Table 5.2. It is shown that using log-MAP algorithm

reduced the complexity significantly. This is due to the fact the logarithmic operation

covert each multiplication to an addition which is considered less complexity [125].

Table 5.2: MAP and Log-MAP complexity

Operation MAP Log-MAP

MAX 2N̄s − 1 4N̄s − 4

ADD/SUB 4N̄s 14N̄s − 4

MUL 10N̄s 0

LUT 0 4N̄s − 2

where N̄s = 2K is the total number of states, and K is the number of shift registers,

i.e. memories, used in a particular encoder. Moreover, the complexity of the MMSE

equalization per iteration can be found from (5.13), in which the calculation of the filter

coefficients, wb
n,l, has three matrix multiplication, three matrix addition and one matrix

inversion, which can be expressed as O(N3 + N2), where N here is for the number of

symbols received at the input of the MMSE filter [126].

5.7 EXIT Chart Analysis

EXIT chart is a semi-analytical technique that can be exploited to visualize the conver-

gence behavior of IDD systems. It was proposed in [115] as a powerful tool to analyze

and characterize the flow of the mutual information (MI), which is exchanged between

the constituent detector and decoder in an iterative system. In this section, the MI terms

at the input and output of the SiSo decoder are denoted as I iD and IoD, respectively, while

I iE and IoE represent the MI terms at the input and output of the equalizer, respectively.

These MI terms are evaluated as [127]

ID =
1

2

∑

c∈{∓1}

∫ ∞

−∞
pD(ξ|c) log2

2pD(ξ|c)
pD(ξ|+ 1) + pD(ξ| − 1)

dξ, (5.39)
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and

IE =
1

2

∑

c∈{∓1}

∫ ∞

−∞
pE(ξ|c) log2

2pE(ξ|c)
pE(ξ|+ 1) + pE(ξ| − 1)

dξ, (5.40)

where pD(ξ|c) and pE(ξ|c) are the conditional PDFs of the SiSo decoder and equalizer,

respectively, associated with their a priori LLR and the information bits c.

Similar to [115] and [128], it can be modelled the a priori LLR’s of the SiSo decoder,

D, and the equalizer, E as independent Gaussian random variables, nD and nE with zero

mean and variance σ2
D and σ2

E , respectively. Thus, their a priori LLRs can be expressed

after joining the information bits, c, as LD = µD c + nD and LE = µE c + nE , where

µD = σ2
D/2 and µE = σ2

E/2. By assuming a sufficiently long interleaver, the general

expression for these conditioned PDFs can be given as

pD(ξ|c) =
1√

2πσD
exp

(
−

(
ξ − σ2

D

2
c
)2

2σ2
D

)
, (5.41)

pE(ξ|c) =
1√

2πσE
exp

(
−

(
ξ − σ2

E

2
c
)2

2σ2
E

)
. (5.42)

It is worth mentioning that the information bits are assumed to be equiprobable, i.e.

Pr{c = +1} = Pr{c = −1} = 0.5.

Now, by substituting (5.41) in (5.39) and (5.42) in (5.40), ID and IE can be re-written

as

ID(σD) =1− 1√
2πσD

∫ ∞

∞
e
−

(
ξ−σ

2
D
2

)2

2σ2
D log2

(
1 + e−ξ

)
dξ, (5.43)

and

IE(σE) =1− 1√
2πσE

∫ ∞

∞
e
−

(
ξ−σ

2
E
2

)2

2σ2
E log2

(
1 + e−ξ

)
dξ. (5.44)
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Alternatively, ID and IE can be evaluated by averaging the LLRs as [48, p. 555]

ID = 1− Ec=+1

[
log2(1 + e−LD)

]
,

' 1− 1

N

N∑

n=1

log2(1 + e−LD), (5.45)

IE = 1− Ec=+1

[
log2(1 + e−LE)

]
,

' 1− 1

N

N∑

n=1

log2(1 + e−LE), (5.46)

where N here represents the total number of LLRs.

5.8 Simulation Results and Discussion

In this section, the performance of an FD-MIMO based bi-directional transceiver of a

two-node system, a and b, is considered. Performance is impaired by SI and mitigated

using IDD, which firstly performs soft-PIC to mitigate the SI and then adaptive MMSE

filtering to remove the residual interference. Moreover, in all the presented simulations,

BICM is utilized with 1/2-rate convolutional codes with different constraint lengths and

the overall system performance is evaluated in the presence of AWGN over frequency

non-selective Rayleigh fading channels. Furthermore, the modulation scheme used in the

simulations is 4-QAM and 16-QAM in conjunction with spatial multiplexing MIMO. We

assume 40 dB of passive suppression by antenna separation followed by two stages of

analogue and digital filtering achieving 70 dB of additional SI attenuation [42].

Fig. 5.4 reveals a close agreement of the simulated BER performance as a function

of SNR for the 2nd iteration with the tight upper bounds performance for the three cases

of 1/2-rate RSC channel encoders, whose parameters are illustrated in Table 5.3, and for

the case of Na
tx = 2, N b

rx = 4, N b
tx = 2 in the presence of a residual INR of 10 dB. The

modulation scheme used in this figure is 4-QAM. Additionally, it is worth mentioning

that in order to achieve an acceptable precision, the number of nodes, ϕ, chosen for the

GCQ rule in (5.38) is 25.
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Table 5.3: Rate-1/2 RSC channel encoders parameters

K G df {Bd(dfree), Bd(dfree + 1), ..., Bd(dfree + 20)}
3 (1, 5/7)8 5 {1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264,

14576, 53248, 114688, 245760, 524288, 1114112,

2359296, 4980736, 10485760}
5 (1, 23/35)8 7 {4, 12, 20, 72, 255, 500, 1324, 3680, 8967, 22270,

57403, 142234, 348830, 867106, 2134239, 5205290,

12724352, 31022962, 75250693, 182320864}
7 (1, 133/171)8 10 {36, 0, 211, 0, 1404, 0, 11633, 0, 77433, 0, 502690, 0,

3322763, 0, 21292910, 0, 134365911, 0, 84342587,

0}

Fig. 5.5 and 5.6 show the performance of the proposed system by utilizing two dif-

ferent M -QAM modulation schemes which are 4-QAM and 16-QAM, respectively. The

Monte-Carlo simulations using the BER vs. SNR performance metric are considered for

the 2nd and 5th iterations in the case of convolutional BICM utilizing the RSC chan-

nel encoder with constraint length K = 5. The SiSo decoder employed in this chap-

ter, as mentioned previously, is a MAP decoder. In addition, different combinations of
(
Na
tx, N

b
rx, N

b
tx

)
are used, i.e. (2, 4, 2), (2, 6, 2), and (2, 8, 2), where

(
Na
tx, N

b
rx

)
denotes the

number of antennas being used between the transmitting port of node a and the receiving

port of node b, respectively. This represents the path of the desired signal. Furthermore,

N b
tx denotes the number of antennas at the transmitting port of node b causing SI due

the FD operation. Moreover, a comparison is presented between the system performance

under a residual INR of 10 dB against the interference-free case.

From these figures, it is clear that the performance under this INR after five iterations

is very close to the SI free performance, which demonstrates that the proposed SIC has

a near-optimal achievement, especially with higher number of antennas at the receiving

port, N b
rx, and for a fixed number of transmitting antennas, Na

tx. It is worth noting that

in the three investigated scenarios the performance improves as the number of iterations

is increased. Furthermore, these two figures demonstrate the derived tight upper bound

on the performance of the proposed system under the same conditions described above,

which reveals that at high SNR the tight upper bound performances match closely the

results obtained from simulations of the proposed system after the 2nd iteration.
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Figure 5.4: BER vs. SNR performance after the 2nd iteration along with the tight up-
per bounds for different 1/2-rate convolutional codes of (2,4,2)-FD-MIMO-BICM-IDD
utilizing 4-QAM in the presence of 10 dB residual INR.

Fig. 5.7 shows the PDF distributions of the LLRs related to the coded bits, which rep-

resent the output of the SiSo decoder, for the 1st to 5th iterations of the (2, 4, 2)-MIMO

system for the RSC convolutional code with K = 5 under residual INR=5 dB and at

an SNR=5 dB. The PDF distribution of the LLRs during the first iteration is completely

different from the expected bi-modal Gaussian PDF. As explained previously in Section

5.3.4, this iteration performs the initialization of the IDD in order to start the second iter-

ation with the required soft information. Note that as the number of iterations increases,

the PDF converges to a bi-modal Gaussian PDF representing the logic (0, 1) bits.

Fig. 5.8 illustrates the BER performance as a function of SNR for three cases of FD-

SIMO, i.e. (2, 4, 2), (2, 5, 2), and (2, 6, 2), after replacing the convolutional codes with

turbo codes. In all simulation results presented in this chapter, the number of inner and

outer iterations was set to 10 and 5 respectively. A closer look at the figure reveals that

the system with turbo codes achieves as expected better performance comparing to con-
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Figure 5.5: BER vs. SNR performance of FD-MIMO-BICM-IDD utilizing 4-QAM with
1/2-rate (1, 23/35)8 RSC convolutional codes for the 2nd and 5th iterations for different
combinations of

(
Na
tx, N

b
rx, N

b
tx

)
and residual INR=10 dB compared to their correspond-

ing SI-free cases.

volutional codes in the presence of residual INR of 10 dB, which implies increased robust

against SI. Moreover, it can be noticed that by increasing the receive antenna elements

of the FD-MIMO transceiver, i.e. Nrx, additional gain can be obtained. A closer look at

Fig. 5.8 reveals that at a BER level of 10−4 the proposed system achieves a gain in SNR

of 1.3 and 1 dB, when the receive antennas are increased from 4 to 5 then from 5 to 6,

respectively.

Fig. 5.9 shows the EXIT chart for the proposed IDD system of (2, Nrx, 2)-FD-MIMO

for different Nrx, i.e. Nrx = 2, 4, 6, at SNR=−5 dB and residual INR=10 dB. Since the

MI at the output of the equalizer IoE becomes the MI to the input of the decoder I iD and

the MI at output of the decoder, IoD becomes the MI to the input of the equalizer I iE ,

therefore, the EXIT chart is drawn with two axes, which are (IoE = I iD, I
i
E = IoD). A

closer look to Fig. 5.9 reveals that higher number of receiving antennas, Nrx, leads to

faster convergence between the SiSo decoder and the proposed equalizer and additionally
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)
and residual INR=10 dB compared to their

corresponding SI-free cases.

reduces the number of iterations required to obtain this convergence. In this figure, the

trajectory shows that the number of iterations required for the proposed system for Nrx =

2 is 4, while, two iterations are adequate when Nrx = 6. This demonstrates that the

number of the received antennas is inversely proportional to the number of iterations

required to achieve converge.
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5.9 Chapter Summary

In this chapter, an active SIC for a bi-directional coded FD-MIMO transceiver has been

proposed and its performance has been evaluated. The proposed receiver utilizes IDD,

which comprises soft-PIC and adaptive MMSE filtering. This SIC approach has been

implemented by exchanging the soft information of the signal of interest and the SI sig-

nal between the equalizer and the SiSo decoder. The equalizer performs both adaptive

MMSE filtering to remove residual interference and LLR demapping. Furthermore, the

SiSo channel decoding of the BICM has been used by employing a MAP decoder. The

system performance was evaluated using numerical simulations obtained for several com-

binations of transmitting and receiving MIMO antennas in the presence of AWGN and

over independent MIMO flat fading channels. Additionally, a tight upper bound on the

performance of the proposed receiver is derived under the same conditions to validate
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the simulation results. The modulation scheme used in this chapter was M -QAM. The

obtained results demonstrate that with increasing number of iterations the FD-MIMO re-

ceiver can reconstruct the desired signal and the interference more precisely. Furthermore,

for a given number of SI antennas, increasing the number of receive antennas enhances

the tolerance to residual interference. The proposed coded FD-MIMO transceiver with

IDD offers increased resilience to interference power, which in turn enhances the overall

system performance. Furthermore, the EXIT chart based results demonstrating the con-

vergence of the proposed iterative system reveal that the number of iterations required for

the SiSo decoder and the equalizer to converge is inversely proportional to the number of

the received antennas.
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6.1 Conclusions

Conventional wireless communication exploits HD or out-of-band FD transmissions, in

which TDD or FDD mechanisms are employed to share the spectrum assigned between

the transmitted and received signals in such a way that provides reliable transmission

with the minimum amount of interference. However, the increased demand on frequency

resources and the need to reinforce spectral efficiency have led to more concentration

on utilising the in-band FD technique. The key challenge which significantly affects the

performance of FD transceivers is the inherent SI due to simultaneous transmitting and re-

ceiving using the same frequency band. Hence, different approaches have been proposed

and applied to tackle SI and recover the desired signal in different stages of signal pro-

cessing at the receiver. Passive suppression in the RF domain is considered to be the key

stage and the first defensive line against SI, since it is required to attenuate the arriving

SI power to a level that makes the signal processing in the following stages feasible. This

can be achieved using different means of natural isolation such as antenna separation, ab-

sorptive shielding, cross-polarization, directional isolation, antenna-aid cancellation and

an RF circulator. A vital role can be played by designing the transmit and receive antennas

to have orthogonal polarization or orthogonal beamforming or both. Nevertheless, further

mitigation of SI is required in the analogue and digital domains, i.e. before and after the

ADC, to suppress the SI power to the level of thermal noise. In the analogue domain, it is

necessary to obtain a precise estimation for the loop-back interference channel, in which

the latter is utilized with the known signal transmitted from the transceiver itself, i.e. the

SI signal, in order to create a replica of the SI, that represents a cancellation signal. The

latter is subtracted from the overall incoming signal for the sake of obtaining the desired

signal. Additionally, an auxiliary transmit chain, identical to the main transmit chain, can

be used to create an identical copy of the SI that carries all the impairments and non-linear

distortions caused by the transmitter components, in order to be subtracted from the in-

coming signal. In the digital domain, the same procedure can be utilized by passing the

SI signal in the RF domain through an auxiliary receive chain which is identical to the

main receive chain, and then to subtract it from the arriving signal in the baseband in or-

der to remove the residual SI along with all the distortions induced by the transmitter and

receiver components. Moreover, NSP can be employed for an FD-MIMO transceiver by

designing digital spatial filters at the transmitter and receiver using the SVD of the loop-

back SI channel. These filters have the ability to nullify the SI signal if precise knowledge
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of the SI channel is available at the transmit and receive terminals of the FD transceiver.

It is noteworthy that utilizing MIMO techniques can enhance the performance of systems

employing FD operation, as further diversity gain is obtained and an additional DoF is

acquired for SI mitigation in the spatial domain.

The main contributions of this thesis, which have fulfilled the aims of the research

mentioned in Chapter 1, are summarised as follows:

• NSP and MRC have been jointly employed for an uncoded FD-MIMO based EF

relaying system to suppress the SI and to enhance the overall received power of the

desired signal, respectively. Moreover, the performance analyses of the proposed

system have been conducted for two hops in the presence of channel estimation er-

rors. Furthermore, MMSE filtering has been proposed and applied in the EF relay

to achieve an optimum recovery of the desired signals. Additionally, a performance

analysis has been achieved by obtaining for each hop the exact formulas for the PDF

of the output SINR, followed by an evaluation of the outage probabilities, ASER

and finally the upper bound capacity of the proposed system. The system perfor-

mance results in terms of SINR figures and system capacity demonstrate significant

improvements compared to the results obtained with relevant state-of-the-art tech-

niques.

• IDD for coded FD-SIMO has been proposed and applied in the digital domain to

provide an additional alleviation of the residual SI which remains after applying

different passive and active SICs. Moreover, tight and union upper bounds of the

proposed system have been derived on the performance of rate-1/2 convolutional

codes with a QPSK modulation scheme, over the non-selective Rayleigh fading

channel and in the presence of AWGN, in order to validate the simulation results.

The results in terms of the SNR-BER metric have showed performance very close

to those of the SI-free scenario after a particular number of iterations. Furthermore,

the derived bounds have exhibited close match with the simulated results obtained

under the same conditions.

• IDD in the context of coded FD-MIMO has been exploited and applied effectively

to mitigate the remaining SI in the digital domain. Moreover, the proposed sys-

tem has been validated by deriving the tight upper bound performance of rate-1/2

convolutional codes with M -QAM modulation schemes, over the non-selective
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Rayleigh fading channel and in the presence of AWGN. Furthermore, the EXIT

chart has been employed as a semi-analytic tool to observe the convergence be-

haviour between the iterative MMSE detector and the MAP decoder. The required

target was to achieve performance very close to the SI-free scenario after a particu-

lar number of iterations, which has been achieved successfully.

6.2 Future work

The promising results obtained from this research project raise the possibility of replac-

ing the conventional HD and out-of-the-band FD with the proposed in-band FD for the

next generations of wireless communication, in order to improve spectral efficiency and

reduce the bandwidth consumption. However, some aspects and challenges have not been

thoroughly investigated and addressed. Therefore, some of the main points are outlined

below with proposals for appropriate further research.

• An implementation of a practical hardware design for the proposed systems and a

comparison of the results obtained with the simulation and the performance analy-

sis.

• Taking into account in the simulations and performance analyses the effect of non-

linearities in the hardware components in the transmit and receive chains which add

further SI distortion and need to be further investigated to provide mitigation.

• Applying all of the techniques investigated in this thesis related to FD operation to

other wireless communication topologies, such as cellular network, cognitive radio

networks, muti-user systems and massive MIMO applications.

• To evaluate the tight bounds on the performance of FD-MIMO-IDD for different

code rates of convolutional and turbo codes.

• Use of LDPC for high code rates and long frame lengths and find the bounds on the

performance with FD-MIMO.

• Hybrid FD/HD mechanisms can be considered in more depth by designing a transceiver

that has the ability to change the mode of transmission depending on the energy lev-

els of the desired signal and interference, i.e. the SINR level.
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• EXIT chart can be considered in more depth to evaluate the convergence of different

IDD scenarios. Moreover, it can be utilized to find the performance of the iterative

coded system in the BER-SNR metric.
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