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Abstract

The aim of this thesis is to analyze the uplink massive multiple-input multiple-

output with orthogonal frequency-division multiplexing (MIMO-OFDM) com-

munication systems and to design a receiver that has improved performance

with reduced complexity. First, a novel receiver is proposed for coded mas-

sive MIMO-OFDM systems utilizing log-likelihood ratios (LLRs) derived

from complex ratio distributions to model the approximate effective noise

(AEN) probability density function (PDF) at the output of a zero-forcing

equalizer (ZFE). These LLRs are subsequently used to improve the perfor-

mance of the decoding of low-density parity-check (LDPC) codes and turbo

codes. The Neumann large matrix approximation is employed to simplify the

matrix inversion in deriving the PDF.

To verify the PDF of the AEN, Monte-Carlo simulations are used to demon-

strate the close-match fitting between the derived PDF and the experimen-

tally obtained histogram of the noise in addition to the statistical tests and

the independence verification. In addition, complexity analysis of the LLR

obtained using the newly derived noise PDF is considered. The derived LLR

can be time consuming when the number of receive antennas is very large

in massive MIMO-OFDM systems. Thus, a reduced complexity approxima-

tion is introduced to this LLR using Newton’s interpolation with different

orders and the results are compared to exact simulations. Further simulation

results over time-flat frequency selective multipath fading channels demon-

strated improved performance over equivalent systems using the Gaussian

approximation for the PDF of the noise.

By utilizing the PDF of the AEN, the PDF of the signal-to-noise ratio (SNR)

is obtained. Then, the outage probability, the closed-form capacity and three

approximate expressions for the channel capacity are derived based on that

PDF. The system performance is further investigated by exploiting the PDF

of the AEN to derive the bit error rate (BER) for the massive MIMO-OFDM



system with different M-ary modulations. Then, the pairwise error probabil-

ity (PEP) is derived to obtain the upper-bounds for the convolutionally coded

and turbo coded massive MIMO-OFDM systems for different code genera-

tors and receive antennas.

Furthermore, the effect of the fixed point data representation on the perfor-

mance of the massive MIMO-OFDM systems is investigated using reduced

detection implementations for MIMO detectors. The motivation for the fixed

point analysis is the need for a reduced complexity detector to be imple-

mented as an optimum massive MIMO detector with low precision. Dif-

ferent decomposition schemes are used to build the linear detector based on

the IEEE 754 standard in addition to a user-defined precision for selected

detectors. Simulations are used to demonstrate the behaviour of several ma-

trix inversion schemes under reduced bit resolution. The numerical results

demonstrate improved performance when using QR-factorization and pivoted

LDLT decomposition schemes at reduced precision.
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Chapter 1

Introduction

Over the recent decades, the demands for high data throughput and transmission reliabil-

ity are increased rapidly to keep up with the growth in the technology inventions. The

3G, 4G and the later generations of wireless communication systems are examples of the

development in this direction. One of the main challenges for the mobile communication

systems is to provide the required technology that supports multimedia transmission with

high data rate. Multiple-input multiple-output (MIMO) wireless communication technol-

ogy can provide an increase in the data transmission and signal reliability depending on

the mode of transmission and the number of receive and transmit antennas. This tech-

nique has the ability to provide spatial diversity gain, interference reduction, array gain

and multiplexing gain [1].

In addition, orthogonal frequency-division multiplexing (OFDM) is a multi-carrier

technology with immunity to the channel’s frequency selectivity, which can transmit data

over a large number of sub-carriers rather than a single carrier transmission [2, 3]. By

combining these techniques into the MIMO-OFDM system, the resulted system is known

for its improved data throughput and its immunity to the multi-path channel fading. In

this system, a sequence of data blocks is first modulated using OFDM technology, divided

into parallel sub-blocks, transmitted and received via multiple antenna systems [4].

The early generations of mobile systems were able to provide acceptable quality voice

calls in addition to text messaging. While the 3G/4G wireless communication systems of-

fer a wide range of recent applications such as high-quality voice and video calls, surfing

the web, downloading large files at high speed and much more applications. To achieve

the requirements for the latest wireless communication generations, more advanced tech-

nologies are required to support the increase in the speed and the capacity of transmission.
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1.1 Literature Review

Massive MIMO-OFDM systems are known for its improved performance compared to the

conventional MIMO systems. The term massive MIMO-OFDM is used to describe the

high number of transmitting/receiving antennas in order to provide the required transmis-

sion performance. By increasing the number of received/transmitted elements, the stated

gains will be improved significantly as the number of the elements increased.

This implies an additional complexity for the receiver to detect the transmitted sig-

nals. The complexity and the performance of the MIMO detector vary from one detector

to another. The linear detectors such as the zero-forcing equalizer (ZFE) and the min-

imum mean-square error (MMSE) detectors have a reduced complexity detection com-

pared to the non-linear maximum likelihood detector (MLD), which has a complexity

that increases exponentially with the number of transmitters and the modulation index.

However, the performance of the linear detectors are limited and much less than the

non-linear MLDs. Other detection schemes such as successive-interference cancellation

(SIC), sphere decoding (SD) and the likelihood ascent search (LAS) based detectors, are

proposed to achieve better performance detection with reduced complexity [5, 6].

In the next section, a literature review is provided to cover the main challenges and

applications of the massive MIMO-OFDM systems.

Notation Matrices and vectors are denoted by upper-case and lower-case boldface

characters, respectively. The Hermitian transpose of a matrix A and its pseudo-inverse are

denoted by AH and A†, respectively. Γ(a) and Γ(a, b) are the complete and the incomplete

gamma function of the variables a and b. Finally, σ2
w and σ2

H are the noise and the channel

variances, respectively.

1.1 Literature Review

Recently, the limitations in the performance of the traditional communication systems

have encouraged the researchers to go massively in the design of the modern wireless

communication systems. Several challenges have emerged as a result of the size increase

such as the receiver complexity, channel correlation, pilot contamination and hardware

impairments [7]. This section is subdivided to cover some of the challenges in literature

researches.
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1.1 Literature Review

1.1.1 Receiver Design and Performance Evaluation

In [8], two SDs have been proposed to achieve the optimal performance of the MLD

with a reduced complexity design. The accurate selection of the initial sphere radius

has proven to achieve the MLD performance. In addition, the mathematical analysis for

the designed receiver is obtained and compared to Monte-Carlo simulations. A reduced

complexity approach is proposed in [9] that are based on the local search algorithm. This

approach utilized the layered local neighborhood search to design low complexity layered

Tabu search (LTS) MIMO detector. The performance of the proposed system approaches

the MLDs and it is designed to work with the massive MIMO systems. In addition,

the authors have proposed a reduced complexity lower bound on the performance of the

MLDs which tends to be very tight at a moderate to high SNR.

A LAS detector has been proposed in [10] as a low complexity massive MIMO de-

tector by generating multiple solutions to the output and selecting one of them that has

the best performance. The generation of the solutions has two possibilities, either ran-

domly selected to have the lowest local maximum likelihood (LML) point with the lowest

metric, or by using the linear detector to generate the first string of data then generate mul-

tiple solutions using MMSE-LAS algorithm. The simulations suggest that the proposed

detector has better performance compared to the conventional LAS algorithms. A soft

Heuristic detectors are proposed in [11] for large-MIMO detection to obtain the optimal

performance with reduced complexity in three stages. The first stage is to use the ML

decision on specific bits, followed by soft calculations for the rest of the bits and finally,

the soft calculations are used in a heuristic algorithm to detect these bits. Two heuristic

algorithms are introduced in this paper that has different complexity and performance.

Reducing the complexity of detection can also be obtained by utilizing the lattice-

reduction (LR) algorithms in the MIMO detectors for higher quadrature amplitude modu-

lation (QAM) constellations. In [12], an element-based LR (ELR) algorithm is proposed

to enhance the asymptotic performance of the linear detectors which reduces the diagonal

elements of the noise covariance matrix. This sub-optimal detector is claimed to achieve

better performance compared to other reduced complexity approaches while maintaining

lower complexity. The K-Best detector is combined with the ELR in [13] to improve the

BER performance and to reduce the complexity. This algorithm claims to achieve 2 dB

improvement for the massive MIMO system that has an equal dimension of 200 antennas

at BER = 10−5 compared to the Lenstra, Lenstra, and Lovasz (LLL) algorithm. In [14],
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1.1 Literature Review

a transceiver has been designed for the massive MIMO communication systems based on

Krylov sub-space receiver with a linear precoder. The precoder is designed to improve

the performance of the Krylov subspace detector at high SNR. This transceiver has shown

to have better performance compared to other precoded massive MIMO communication

systems.

A reduced complexity detection receiver is proposed in [15] based on Richardson

method to replace the matrix inversion required using MMSE channel equalization. The

new detector claims to reduce the complexity of detection from O(K3) to O(K2), where

K represents the number of users. Two sub-optimal reduced complexity massive MIMO

detectors are proposed in [16] in which, the first detector was based on Markov chain

Monte-Carlo (MCMC) algorithm and the second algorithm was based on random local

neighborhood search. Both detectors are tested on massive MIMO communication sys-

tems with size 16 × 16, 32 × 32, 64 × 64 and 4-QAM scheme. The simulation results

have shown to have improved performance compared to other sub-optimal detectors.

1.1.2 Hardware Implementation and Hardware Impairments

Based on Neumann matrix inversion method, the authors in [17] have proposed sub-

optimal implementation to the matrix inversion that is used to detect the data at the re-

ceiver using Virtex-7 field-programmable gate array (FPGA). These results are further

analyzed in [18] and based on Cholesky decomposition, an exact matrix inversion is pro-

posed and implemented using Virtex-7 FPGA. The performance and complexity of the

selected system are compared to [17] and the results have shown that the proposed im-

plementation have better performance and lower implementation complexity. In [19],

another massive MIMO single-carrier frequency-division multiple access (SC-FDMA) is

proposed based on Neumann matrix inversion. The corresponding very-large-scale inte-

gration (VLSI) is presented using Virtex-7 FPGA that utilizes the exact and the approxi-

mate soft detection with different MIMO sizes.

The impact of the hardware impairments is considered in [20] such that, a multi-user

massive MIMO (MU-MIMO) system is analyzed in simulation and theory. The effect of

the mutual coupling on the power amplifier distortion has been analyzed and simulated.

In addition, a novel dithering method that improves the link quality and reduces the bit

representation per transmitter is proposed utilizing the null-space of the channel in the

massive MIMO systems. On the hardware impairment in full-duplex relaying massive
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1.1 Literature Review

MIMO systems is considered in [21] with a distorted noise model for the transmitter

and the receiver. A reduced complexity transceiver is proposed to avoid the hardware

impairments utilizing the antenna arrays and the channel statistical knowledge to reduce

the noise distortion.

In addition to the performance investigation of the massive MIMO communication

systems, the hardware impairment is also investigated in [22] with relationships that con-

nect the performance to the number of antennas/users, transmit power and the hardware

impairments. The effect of hardware impairment on the distributed massive MIMO cellu-

lar system is investigated in [23] with maximum ratio transmission and downlink mode of

transmission. The authors have discussed the asymptotic behavior of the derived closed-

form expressions for the spectral efficiency with respect to the increase in the number of

antennas.

The effect of imperfect channel information on the performance of the multi-user

massive MIMO systems is considered in [24] with downlink mode. First, the authors have

compared the performance of different precoded systems assuming perfect channel state

information at the transmitter (CSIT) with the performance of imperfect CSIT. Second,

the effect of hardware impairment and the erroneous channel estimation are studied with

different linear precoding techniques. Based on the residual hardware impairment (HWIs)

at the transmitter and the receiver, an HWI aware MMSE precoder is proposed in [25]

for the uplink/downlink single-cell massive MIMO system. In addition, an asymptotic

expression for the power allocation has been derived in the downlink mode that depends

on the CSI only. Simulation results revealed that when the base station (BS) is equipped

with a massive number of antenna elements, the proposed MMSE precoder achieves better

performance than the ZF precoded system.

1.1.3 Pilot Contamination

As being part of the massive MIMO communication system challenges, channel estima-

tion and pilot contamination are considered as a hot topic for the researchers to analyze

and propose solutions for these challenges. An uplink training to downlink pilot contami-

nation eliminating procedure (PCEP) is designed in [26] for the multi-cell massive MIMO

systems. During the training uplink duration, the users that share the same cell use the

same pilots which are orthogonal to other cell users. The downlink channels are estimated

in the BS utilizing the uplink pilots and time-division duplex operation. In addition, the

5



1.2 Contributions

performance of the proposed system is analyzed and tested with a selected BS size.

A location-aided method is proposed in [27] to reduce the impact of pilot contamina-

tion on the performance of the massive MIMO systems in the uplink mode of transmis-

sion. This method achieves good estimation to the channel parameters by utilizing the

location of the BS, the users, and the scatters without the necessity of estimating large

covariance matrices. In [28], an efficient and reduced complexity MMSE algorithm is

proposed to estimate the channel parameters utilizing the correlation between the anten-

nas. Stochastic geometry is used to estimate the pilot contamination and to examine the

impact of the pilot contamination on the channel estimation.

In [29], to reduce the effect of pilot contamination on the signal-to-interference and

noise ratio (SINR) in the multi-cell massive MIMO system, a simple space-time block

code is used with a formulated optimization that maximizes the downlink SINR for the

specified user. Simulation and results have confirmed that the proposed scheme can re-

duce the SINR degradation in the downlink mode. Pilot contamination mitigation tech-

niques are investigated in [30] for multi-user massive MIMO communication systems

with inter-user-interference and non-ideal hardware.

1.2 Contributions

The aim of this thesis is to investigate the performance of the massive MIMO-OFDM sys-

tems and to design a reduced complexity receiver for coded systems. Different detectors

can be used to equalize the received signals of the massive MIMO systems. However, the

complexity and the performance of each detector are unique and varies based on the sys-

tem size and the application required. Both coded and uncoded massive MIMO-OFDM

systems are investigated here and the contributions can be summarized as,

1. The noise PDF for the ZF equalized Massive MIMO-OFDM systems is derived

using Neumann matrix approximation method. The derived PDF is subsequently

utilized in the LLR calculations to improve the performance of different coded sys-

tems such as LDPC coded and turbo coded massive MIMO-OFDM systems. In

addition, Estimating the complexity required for using the LLR equation based on

the approximate effective noise PDF, and a reduced complexity approximation is in-

troduced for this LLR using Newton polynomial interpolation. The performance of

turbo coded and LDPC coded massive MIMO-OFDM systems using the Gaussian
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LLR is compared to the approximate effective noise PDF based LLR, and different

approximations that are obtained based on Newton interpolation method.

2. Obtaining the PDF of the SNR after the ZFE, which is utilized to derive the outage

probability, the average capacity, and three bounds for the capacity at low and high

SNR, respectively. In addition, deriving the BER for the massive MIMO-OFDM

systems with frequency-selective Rayleigh fading channels and ZFE for different

M -ary modulations. The pairwise error probability (PEP) is derived for the mas-

sive MIMO-OFDM systems, which is used to evaluate the upper-bounds of the

convolutionally coded and turbo coded systems.

3. Different decomposition schemes are used in the detection of the massive MIMO-

OFDM systems with fixed-point arithmetic to simulate the hardware implementa-

tion. The standard IEEE 754 double and half precision with word length of 64 and

16 bits are used in the simulations in addition to a user-defined precision of 12 and

10 bits to verify the ability of each detector, and the complexity required by each

detector is estimated and tabulated.

1.3 Publications Arising From This Research

1. Ali J. Al-Askery, Charalampos C. Tsimenidis, Said Boussakta and Jonathon A.

Chambers, “Performance Analysis of Coded Massive MIMO-OFDM Systems Us-

ing Effective Matrix Inversion,” submitted to IEEE Trans. Commun. 2017.

2. Ali J. Al-Askery, Charalampos C. Tsimenidis, Said Boussakta and Jonathon A.

Chambers, “Improved coded massive MIMO OFDM detection using LLRs derived

from complex ratio distributions,” in Proc. IEEE 20th Int. Workshop Comput. -

Aided Modelling. Design of commun. Links Netw. (CAMAD), Guildford, 2015, pp.

64-68.

3. Ali J. Al-Askery, Charalampos C. Tsimenidis and Said Boussakta, “Fixed-point

arithmetic detectors for massive MIMO-OFDM systems,” in Proc. 23rd Europ.

Signal Process. Conf. (EUSIPCO), Nice, 2015, pp. 919-923.

4. Ali J. Al-Askery, Charalampos C. Tsimenidis and Said Boussakta, “Shannon Ca-

pacity and Outage Probability for Massive MIMO-OFDM systems,” submitted to

IEEE Commun. Letters 2017.
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1.4 Thesis Outline

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents general preliminaries including, channel model, OFDM and dif-

ferent MIMO detectors. It also outlines the forward error correcting codes and describes

different types of channel coding techniques such as the convolutional codes, turbo codes

and LDPC codes.

Chapter 3 is the first contribution chapter that includes the derivation of the effective

noise PDF after the ZFE, comparing the performance of different coded systems using the

new LLR and the Gaussian based LLR, estimating the complexity of the new PDF and its

LLR and proposing a reduced complexity formula for this LLR.

Chapter 4 provides analysis to the system performance such that the outage probabil-

ity, the channel capacity and the PDF of the SNR after the ZFE are derived utilizing the

noise PDF presented in Chapter 3. In addition, the theoretical BER for different M -QAM

scheme are derived and compared to the Monte-Carlo simulations for different MIMO

configurations. Furthermore, an upper bound on the performance of the convolutionally

coded and turbo coded massive MIMO-OFDM systems are derived and verified with the

simulations of different code generators and MIMO configurations.

Chapter 5 focuses on the effect of the fixed-point representation on the performance

of different massive MIMO detectors. The performance of iterative ZFE, Gram matrix

based detector utilizing different decomposition techniques and the QR detector with suc-

cessive interference cancellation (QRD-SIC) are investigated at different IEEE 754 fixed

point representations. In addition, Neumann based detectors are investigated under simi-

lar circumstances and the results are presented in comparison to the other detectors.

The conclusions are drawn in Chapter 6 and this thesis ends with a possible line of

future work.
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Chapter 2

Preliminaries: Channel Model,

Orthogonal Frequency-Division

Multiplexing, MIMO Equalization and

Forward Error Correcting Codes

9



2.1 Introduction

2.1 Introduction

The aim of this chapter is to review briefly the main parts of the communication system

that is involved in this work. The frequency-selective Rayleigh fading channel model is

illustrated in Section 2.2. While Section 2.3 describes the multicarrier OFDM technique

that is utilized to eliminate the frequency selectivity of the channel. The focus of Section

2.4 is to demonstrate the linear and nonlinear MIMO equalization techniques that are used

to equalize the channel effect. Finally, the FECCs are described in Section 2.5 for different

coding techniques including the convolutional codes, turbo codes and LDPC codes.

2.2 Channel Model

The channel model of the system under consideration here is assumed to be a time-flat,

uncorrelated, frequency-selective, Rayleigh fading channels. This channel can be de-

scribed using the tapped delay line (TDL) model as shown in Fig. 2.2. The tap weights

cn(t) of the model are complex random variables with Rayleigh distributed magnitudes,

while the tap spacing is normally distributed [31]. The impulse response of this channel

can be written as

c(τ, t) =
∞∑

n=−∞
cn(t)δ(τ − n

W
), (2.1)

and its transfer function can be written as

C(f, t) =
∞∑

n=−∞
cn(t) exp(−j2πfn/W ), (2.2)

where W is the bandwidth of the band-pass signal. Consequently, the signal that is re-

ceived from a frequency-selective channel in the presence of the noise can be written

as

x(t) =

ρ∑

n=0

cn(t)s(t− n

W
) + w(t), (2.3)

where, ρ, s(t) and w(t) are the number of multipath taps of the channel, the low-pass

signal and the additive white Gaussian noise (AWGN), respectively.

During the signal transmission, the channel impulse response remains constant for a

specific time interval that is known as the channel coherence time Tc ∝ 1
fd

, where Tc is

the channel coherence time and fd is Doppler frequency [32]. The channel is considered
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ρ
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W
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1

W

1

W

1

W

Figure 2.1: Tapped delay line channel model [31].

to have slow fading when the channel coherence time Tc is larger than the symbol time

duration Ts, while it is considered to be fast when Tc < Ts.

The channel coherence bandwidth ∆fc is defined as the frequency range that has cor-

related fading process and it is related to the maximum delay spread of the channel such

that

∆fc ∝
1

τmax
, (2.4)

where τmax is the maximum delay spread of the channel. The channel fading is considered

flat fading if the coherence bandwidth is larger than the signal bandwidth that is, ∆fc >>

W as in the case of narrow-band systems. On the other hand, the channel is considered as

a frequency-selective fading when ∆fc << W , which is the case of wide-band systems

[32].

The probability density function (PDF) of Rayleigh fading channels can be written as

p(h) =
h

σ2
h

exp

(−h2
2σ2

h

)
, h > 0, (2.5)

where h is the channel coefficients and σ2
h is the channel variance.

2.3 Orthogonal Frequency-Division Multiplexing (OFDM)

One of the challenges to the single carrier transmission is the inter-symbol interference

(ISI) that induced due to the channel delay spread τmax being larger than the symbol dura-

tion Tmax. The basic idea of the OFDM scheme is to transmit the data over K subcarriers,
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Figure 2.2: The multicarrier concept [33].

each has a bandwidth B/K as shown in Fig. 2.2 b).

OFDM is a type of multicarrier transmission that involves modulating the data with

an inverse fast Fourier transform (IFFT) at the transmitter and demodulating the received

data with fast Fourier transform (FFT) at the receiver as depicted in Fig. 2.3. First, the

serial to parallel (S/P) block divides the data stream into K parallel symbols, followed by

IFFT or inverse discrete Fourier transform (IDFT) for each symbol such that

sl(t) =
1√
K

K−1∑

k=0

dk,le
j2πkt/K , (2.6)

where sl(t) is the time domain of dk,l at l-th symbol, and l = 1, 2, . . . , L. Subsequently, a
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P/S

S/P
sl(t)dl

s0,l

s1,l

d0,l

d1,l

dK−1,l sK−1,l

IFFT +

CP

Figure 2.3: Block diagram for multicarrier modulation.

cyclic prefix (CP) is appended to the beginning of each block to maintain the cyclic effect

of the FFT and to avoid the inter-block interference (IBI) induced by the multipath fading

channels. The complex baseband samples to be transmitted are given as

sl(t) = [sK−Kcp , . . . , sk−1, s0, . . . , sK−1]
T , (2.7)

where, Kcp is the length of the CP and is typically selected to cover the multipath delay

spread.

To demodulate the received signal, the CP is removed first, followed by FFT or DFT

transform to the received signal such that

dl,k =
1√
K

K−1∑

t=0

sl(t)e
−j2πkt/K . (2.8)

The FFT based OFDM implementation is a computationally efficient algorithm com-

pared to the DFT based implementation, especially for K > 32 points [31]. The ma-

jority of the modern wireless standards such as wireless fidelity (WiFi), long-term evo-

lution, (LTE) and worldwide interoperability for microwave access (WiMAX) employed

the OFDM modulation for its immunity towards the frequency selectivity of the fading

channels [34, 35].

One of the OFDM modulation challenges is the peak-to-average power ratio (PAPR)

of the transmitted time domain signal as a result of the constructive addition of multiple

subchannels with the same phase [31]. Mathematically, the PAPR represents the ratio of

13
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the maximum transmitted power to the average transmitted power such that

PAPR =
Max[sl(t)s

∗
l (t)]

E{sl(t)s∗l (t)}
. (2.9)

The large peaks in the transmitted signal may result in an inter-modulation distortion

(IMD) due to the power amplifier being saturated, or clipping the signal in the digital-to-

analog converter (DAC). Different techniques have been used to eliminate the effect of

the PAPR on the transmitted signal, such as the selective mapping [36], partial transmit

sequence [37], clipping and filtering [38] and many other techniques.

2.4 MIMO Detectors

One of the objectives of this chapter is to describe some of the commonly used MIMO

detectors for the spatially multiplexed MIMO (SM-MIMO) systems in the uplink mode

of transmission. The MIMO system under consideration consists of Nt transmit antennas

and Nr receive antennas such that Nt < Nr. The flat-fading channel matrix has the form,

H ∈ CNr×Nt and the received signal x ∈ CNr×1 can be written as

x = Hs + w, (2.10)

where w ∈ CNr×1 is the AWGN vector, and s ∈ CNt×1 is the transmitted signal.

2.4.1 Maximum Likelihood (ML) Detector

MLDs are the optimum equalizers for the MIMO communication systems. The MLD

minimizes the Euclidean distance of the noise such that [5, 31, 39]

ŝ = argmin
s∈sM
||x−Hs||2, (2.11)

where ŝ is the estimation of the transmitted vector at the receiver and s ∈ sM refers to the

search over the candidate vectors of sM . This search has an extremely high complexity

that varies exponentially with the constellation size M and the number of transmitters Nt

[5, 39]. Similar detectors have been invented that gives the performance of the MLD such

as the sphere decoding but its complexity remains high for large Nt [39].
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2.4.2 Linear Detectors

Linear detectors (LDs) for MIMO systems are considered to equalize the received signals

with a reduced complexity detection. These detectors reverse the channel effect and filter

the received signals to estimate the transmitted signals such that

ŝ = Wx, (2.12)

where W = H−1 is the inverse or pseudo-inverse of the channel matrix. There are mainly

two types of these detectors; the ZF detectors and the MMSE detectors.

2.4.2.1 Zero Forcing (ZF) Detectors

These detectors can be obtained by applying the Moore-Penrose pseudo-inverse on the

channel matrix H for Nr > Nt such that

WZF = (HHH)−1HH . (2.13)

However, when Nt = Nr, the ZF detector is obtained using the standard matrix in-

version methods. The disadvantage of using the ZF detectors is the noise enhancement at

the output of this detector [5, 31, 39, 6]. MMSE detectors are used to reduce this noise

enhancement as will be illustrated in the next section.

2.4.2.2 Minimum Mean-Square Error (MMSE) Detectors

The aim of this detector is to reduce the effect of the noise in the MIMO detectors by

minimizing the mean-square error formula

WMMSE = arg min
W
E[||s−WHx||2]. (2.14)

The optimization solution of this formula requires the statistical information of the

noise σ2 and can be written as [5, 31]

• if Nr ≥ Nt

H−1 = (HHH +
σ2

Es
INt)

−1HH , (2.15)

• if Nr < Nt

H−1 = HH(HHH +
σ2

Es
INr)

−1. (2.16)

15



2.4 MIMO Detectors

The MMSE detectors have improved performance compared to the ZF detectors at

low to moderate SNR values, however, at high SNR, both detectors exhibit similar per-

formance.

2.4.3 Sucessive-Interfernce Cancellation (SIC) Detectors

A trade-off between the optimal performance and the reduced complexity implementation

can be achieved using the SIC MIMO detectors. This detector is implemented for the ZF

and the MMSE detectors based on the QR-factorization. There are different methods to

construct the QR-factorization such as the Gram-Schmidt (GS), modified Gram-Schmidt

(MGS), Householder transformation and many other methods [40]. The QR-factorization

based MGS will be illustrated first followed by the ZF-SIC and the MMSE-SIC detectors.

2.4.3.1 QR-Factorization Based MGS

To illustrate this method, the thin matrix H ∈ CNr×Nt is defined as

H =




h1,1 h1,2 . . . h1,Nt

h2,1 h2,2 . . . h2,Nt
...

... . . . ...

hNr,1 hNr,2 . . . hNr,Nt



. (2.17)

Matrix H can be factorized into H = QR, where Q ∈ CNr×Nt is an orthonormal

matrix and R ∈ CNt×Nt is an upper triangular matrix as shown in Algorithm 1. The

MGS algorithm is a modification to the original GS algorithm that improves the column

orthogonality of Q and makes the procedure more reliable.

Algorithm 1 : MGS[40]
1: procedure H = MGS(QR)
2: [Nr, Nt] = size(H),
3: Q = zeros(Nr, Nt),
4: R = zeros(Nt, Nt),
5: For l = 1 to Nt

6: R(l, l) = ||H(:, l)||,
7: Q(:, l) = H(:, l)/R(l, l),
8: R(l, l + 1 : Nt) = QH(:, l)×H(:, l + 1 : Nt),
9: H(:, l + 1 : n) = H(:, l + 1 : Nt)−Q(:, l)×R(l, l + 1 : Nt),

10: end for
11: Return Q,R.
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2.4.3.2 ZF-SIC

Based on the QR-factorization of the channel matrix H = QR, the received signal of

(2.10) can be written as

x = QRs + w. (2.18)

This detector assumes multiplying (2.18) by QH such that

QHx = QHQRs + QHw,

x̃ = Rs + w̃,



x̃1

x̃2
...

x̃Nr




=




r1,1 r1,2 . . . r1,Nt

0 r2,2 . . . r2,Nt
...

... . . . ...

0 0 . . . r1,Nt







s1

s2
...

sNt




+




w̃1

w̃2

...

w̃Nt



, (2.19)

where x̃ = QHx ∈ CNt×1 and w̃ = QHw ∈ CNt×1. The equalization process starts by

estimating s̃Nt in a back substitution procedure ends at s̃1 such that

s̃Nt =
x̃Nt
r1,Nt

,

s̃Nt−1 =
x̃Nt−1 − rNt−1Nt s̃Nt

rNt−1Nt−1
,

...

s̃1 =
x̃1 − · · · − r1Nt s̃Nt

r11
, (2.20)

where s̃l is the estimation of the l-th symbol and l = 1, 2, . . . , Nt.

2.4.3.3 MMSE-SIC

The MMSE-SIC detectors have improved performance compared to the ZF-SIC detectors

due to the background noise elimination [5]. This detector can be implemented using the

same procedure as the ZF-SIC but with the following modifications,

• The extended channel matrix can be written as Hex =

[
HT
√

N0

Es
INt

]
.

• The received signal are extended with zero padding such that xex =

[
xT0

]T
.

• The extended noise vector can be written as wex =

[
wT −

√
N0

Es
sT
]T

.
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2.5 Forward Error Correcting (FEC) Coding

• The QR-factorization of the extended channel matrix Hex can be written as Hex =

QexRex.

2.5 Forward Error Correcting (FEC) Coding

The early beginnings of the coding and information theory goes back to 1948 when

Claude Shannon defined the channel capacity rate in his published paper [41], which

is a limit for the information flow in any communication system in the presence of noise

[41, 42, 43, 44]. Since then, the attempts have been made to reach that limit using differ-

ent error correcting codes (ECCs), and Fig. 2.4 describes the block diagram of the coded

communication system. The Hamming codes and Golay codes are the first ECCs that are

invented in 1974 [45], which are very basic codes and have limited ability for correction.

More sophisticated codes have been developed over the past few decades to achieve Shan-

non limit and most of these techniques have used iterative decoders such as the parallel

concatenating convolutional codes (PCCCs), which are also known as turbo codes, and

long irregular LDPC codes.

The principle of ECCs can be summarized as follows, a redundant bits or symbols to

be added to the information blocks before the transmission to correct the errors occurred

at the received signals. Some of the codes are systematic, which means that the code word

can be divided into a systematic part which consists of the information, and the redundant

part that is used to correct the erroneous bits or symbols of the information [43, 45]. While

other codes are non-systematic, which means that the information part does not appear in

the code word.

In general, ECCs can be classified based on the way of adding the redundant part into

two groups, block, and convolutional codes. In the block codes, the information is pro-

cessed on block basis which means that each block of information is encoded individually

and it depends on the current state of the information only, and the LDPC codes are an

example of these codes. On the other hand, the information in the convolutional codes are

processed either on a block basis or bit basis and the encoder requires the current and the

previous input and output of the information [45].

The aim of this chapter is to illustrate the principles of the FEC coding and to demon-

strate the encoding and decoding process for some of the well-known codes. First, the

convolutional encoder and decoder are illustrated, then the structure of the turbo codes is

described including the different decoding techniques. Finally, the irregular LDPC codes
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Figure 2.4: Diagram of the coded communication systems [45].

are described including the encoder and the decoder design. The main focus of this chap-

ter is the coding techniques that are related to this work.

2.6 Convolutional Codes

Convolutional codes are one of the first ECCs that are invented by Elias in 1955 [45,

42, 44]. The encoder representation of these codes is a linear finite-state shift register

and the code-words of size n are generated by passing the k size information through

that shift-register with coding rate k/n and using the equivalent function generator [31,

46]. Many decoders have been used with these codes, but the Viterbi decoder that is

invented in 1967 is the most popular algorithm, these codes have been widely adopted in

the communication systems such as, the international mobile telecommunication standard

2000 (IMT-2000), and the global system for mobile (GSM) [45]. On the other hand,

combining these codes in parallel with an interleaver results in a more sophisticated code

with a performance that approaches Shannon limit [31, 47].

2.6.1 Encoder

The general form of the convolutional encoder is demonstrated in Fig. 2.5 [31]. The con-

straint length K of the convolutional code determines the number of stages for the shift

registers and each stage consists of k bits. The input data are shifted through the shift-

registers and the n bits code-word is calculated through an equivalent number of linear al-

gebraic functions called function generators [31]. These function generators are described

in octal forms, such as the (5, 7)8 code which can be written as g1 = [101], g2 = [111].

Convolutional codes can be divided based on their function generators into recursive sys-

tematic codes (RSC) and non-recursive non-systematic codes (NRSC).
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Figure 2.5: Convolutional encoder [31].
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Figure 2.6: Convolutional encoder for (5, 7)8 code [48].

2.6.1.1 Non-recursive Non-systematic Codes (NRNSC)

The structure of this code is illustrated in Fig. 2.6 [48] for the (5, 7)8 code and can be

written asG = [g1g2], it shows that the code word is a function of the present and previous

states of the input. As can be seen, the output code words are c = [c10c
2
0, c

1
1c

2
1, . . . , c

1
mc

2
m]

which are equivalent to the input sequence b = [b0, b1, . . . , bm]. Appendix A includes a

list of the optimum convolutional codes with its constraint length and the free distance for

different coding rates.

2.6.1.2 Recursive Systematic Codes (RSC)

These codes are called systematic because their code words consist of two parts, the

information sequence, and the parity bits. The structure of this code is illustrated in

Fig. 2.7 for the code (1, 7/5)8 and using G′ = [1, g2/g1], which shows that the code word

is a function of the present and previous states of the input and the output.

20



2.6 Convolutional Codes

D
b

c1

c2

c
D

Figure 2.7: Convolutional encoder for (1, 7/5)8 RSC code.

2.6.2 Decoder

There are several procedures to decode the code words of the convolutional codes and

the selection of the decoding methods depend on the constraint length of the code [31].

The optimal decoder can only be used for the low constraint length codes which is the

Viterbi decoder that includes maximum-likelihood decoding. However, for high con-

straint lengths, it is more convenient to use the maximum a posteriori algorithm which

has lower complexity change at high constraint length codes.

2.6.2.1 Maximum-Likelihood Decoder (Viterbi Decoder)

The Viterbi decoder is considered as the optimal decoding method for the convolutional

codes due to the maximum-likelihood search for the most possible sequence in the trellis

[31, 49]. The trellis diagram of the (5, 7)8 code is shown in Fig. 2.8 with four time

instances.

The soft decoding procedure can be summarized for the additive white Gaussian noise

(AWGN) channel as follows [50],

1. The received signal rt = r
(1)
t , r

(2)
t , . . . , r

(n)
t at time t can be written as

r
(i)
t = a

(i)
t + n

(i)
t , (2.21)

where a(i)t and n
(i)
t , are the mapped code word and the AWGN signals at index

i = 1, 2, . . . , n.

2. The AWGN channel parameters are assumed to be independent and identically dis-
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Figure 2.8: Trellis diagram for the (5, 7)8 code [50].

tributed (i.i.d), which means that the likelihood for this channel can be written as,

f(rt|at) =
n∏

i=1

1√
2πσ2

exp[−(r
(i)
t − a(i)t )2

2σ2
]. (2.22)

3. The likelihood function for the entire received sequence can be written as

f(r|a) = f(r0, r1, . . . , rL−1|a0, a1, . . . , aL−1) =
L−1∏

t=0

f(rt|at). (2.23)

The log-likelihood representation for this function can be written as,

loge(f(r|a)) =
L−1∑

t=0

loge(f(rt|at)). (2.24)

4. Lets define the path metric as

Mt(q) = −
t∑

i=0

loge(f(ri|ai)) = Mt−1(p) + µt(rt, â
(p,q)), (2.25)

where p and q are the trellis states at time t and t + 1 respectively, and µt(rt, ât) is

the branch metric from state p to state q that can be written as

µt(rt, ât) = a[− loge(f(rt|â(p,q)))− b], (2.26)

where a and b are arbitrary positive constants.

5. The consecutive procedure continued by selecting the path with smallest path metric

and increment t until the sequence ends.
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2.6.2.2 Maximum A Posteriori (MAP) Decoder (The BCJR Decoder)

The maximum a posteriori (MAP) decoder is also called BCJR decoder after the initial of

its inventors Bahl, Cock, Jelenik, and Raviv. The performance of this decoder is almost

the same as Viterbi decoder but with higher complexity [50]. This decoder is an opti-

mal algorithm that minimizes the probability of a symbol error and its algorithm can be

summarized as follows [45, 51, 52],

1. The decoder inputs are the received signals r and the a priori L-values that are

calculated using,

L(at|r) = loge

(
p(at = −1|r)

p(at = +1|r)

)
. (2.27)

2. The states of the trellis diagram of Fig. 2.8 is defined as St−1 = s′ and St = s, and

using Bayes’ rule, the L-values of (2.27) can be rewritten as,

L(at|r) = loge

(∑
at=+1 p(St−1 = s′, St = s, r)∑
at=−1 p(St−1 = s′, St = s, r)

)
. (2.28)

3. The probability of p(s′, s, r) can further be written as,

p(s′, s, r) = βt+1(s)γt(s
′, s)αt−1(s

′), (2.29)

where βt(s) = p(r>t|s) is the probability that the trellis is in state s at time t,

γt(s
′, s) = p([s, rt]|s′) is the probability of the state transition from s′ to s, and

finally αt−1(s′) = p(s′, r<t) is the probability that the trellis is in state s′ at time t−
1. The terms r>t, rt, r<t, represents the future received sequence, present sequence

and prior to the present sequence of the received code word.

4. The initial value of αt−1(s′) is set to α0(S = 0) = 1 and α0(S = s) = 0 otherwise,

and the forward recursive calculation of αt(s) can be calculated using,

αt(s) =
∑

all s′

γt(s
′, s)αt−1(s

′). (2.30)

5. The final value for βL(s) = 1 is set to βL(s) = 1 for all s, and the backward

recursive calculation of the βt(s) can be calculated using,

βt(s
′) =

∑

all s

βt+1(s)γt(s
′, s). (2.31)
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6. The term γt(s
′, s) can be calculated using,

γt(s
′, s) =

1√
2πσ2

exp

(−|rt −
√
Esa

(s′,s)|2
2σ2

)
, (2.32)

and therefore, equation (2.27) can be rewritten as,

L(at|r) = loge

(∑
(s′,s)∈S+ βt+1(s)γt(s

′, s)αt−1(s′)∑
(s′,s)∈S− βt+1(s)γt(s′, s)αt−1(s′)

)
. (2.33)

7. Finally, the decision vt on the decoded bits can be calculated using,

vt = sign[L(at|r)]. (2.34)

The complexity of the Viterbi decoder and the MAP decoder are extremely high especially

at large constraint length codes due to the extensive search of the maximum likelihood.

These decoders have limited applications to the turbo codes due to the iterative procedure

and therefore, sub-optimal decoders with reduced complexity are to be used instead. The

complexity of the MAP decoder can enormously be reduced using the log MAP algorithm

or the max-log MAP algorithm but on the cost of a slight degradation in the performance,

these algorithms will be highlighted in the next sections.

2.6.2.3 Log MAP Decoder

This algorithm is a sub-optimal decoder to the convolutional codes, its basic approach is

to take the logarithm for the parameters, αt(s′), βt(s) and γt(s′, s). Then, the Jacobian

algorithm [53] can be applied to simplify the calculation of these parameters as [52, 49],

loge(e
x1 + ex2) ≈ max(x1, x2) + fc(|x2 − x1|), (2.35)

where fc(|x2−x1|) is the correction function and their values are listed in a look-up table.

Therefore, equations (2.30),(2.31), and (2.32) can be rewritten as,

αt(s) = loge(
∑

all s′

γt(s
′, s)αt−1(s

′)) ≈ max(γt(s
′, s), αt−1(s

′))−fc(|αt−1(s′)−γt(s′, s)|),

(2.36)

βt(s
′) = loge(

∑

all s

βt+1(s)γt(s
′, s)) ≈ max(γt(s

′, s), βt+1(s))− fc(|βt+1(s)− γt(s′, s)|),

(2.37)
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γt(s
′, s) = loge

(
1√

2πσ2
exp

(−|rt −
√
Esa

(s′,s)|2
2σ2

))
,

= − loge(
√

2πσ2)− (|rt −
√
Esa

(s′,s)|2). (2.38)

Equation (2.33) can be rewritten as,

L(at|r) = loge

(∑
(s′,s)∈S+ e(βt+1(s)+γt(s′,s)+αt−1(s′))

∑
(s′,s)∈S− e

(βt+1(s)+γt(s′,s)+αt−1(s′))

)
. (2.39)

2.6.2.4 Max-Log MAP Decoder

The complexity of the log MAP decoder can further be reduced by neglecting the correc-

tion function part in the calculation of the parameters αt(s′) and βt(s) from (2.36) and

(2.37), respectively. This simplification is called max-log MAP algorithm and it can be

written as,

loge(e
x1 + ex2 + . . .+ exL) ≈ max(x1, x2, . . . , xL). (2.40)

Based on that, the algorithm that is illustrated in Section 2.6.2.3 applies here but with

updating the equations for calculating αt(s′) and βt(s) into,

αt(s) = loge(
∑

all s′

γt(s
′, s)αt−1(s

′)) ≈ max(γt(s
′, s), αt−1(s

′)), (2.41)

βt(s
′) = loge(

∑

all s

βt+1(s)γt(s
′, s)) ≈ max(γt(s

′, s), βt+1(s)), (2.42)

The performance of the convolutional code depends mainly on the constraint length, the

higher the constraint length the better performance and the higher complexity. Alterna-

tively, more sophisticated codes can be employed with reduced complexity to achieve

Shannon limit such as the turbo codes and the LDPC codes.

2.7 Turbo Codes

Forward error correcting codes FEC are widely used in wireless communication sys-

tems to reduce the bit error rate of the received signal during the transmission of the

data through a wireless channel. For example, turbo codes have been used in 3G mo-

bile communication and for deep-space communication as an error correcting codes [52].

Turbo codes were invented by Berrou, Glavieux and Thitimajashima in 1993, and it has
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Figure 2.9: Turbo Encoder [47].

shown a great performance for a very long codes with acceptable complexity [52, 48, 50].

The main structure of the turbo encoder may consist of two or more RSC or non re-

cursive systematic code (NRSC) for the convolutional encoders concatenated in parallel

and separated by an interleaver [48]. On the receiving end, a decoder is required to ex-

tract the transmitted message from the received code word in an iterative procedure [54].

The selection of the turbo decoder depends on the system requirements and the decoder

specifications. In general, the BCJR and MAP algorithms are the highest in complex-

ity algorithms which can be reduced into log MAP algorithm with a small degradation

in the system performance. On the other hand, max-log MAP algorithm and soft-output

Viterbi algorithm (SOVA) can be used as turbo decoders with reduced complexity and

performance [52]. The design of the encoder and the decoder of the turbo codes will be

illustrated in the next sections.

2.7.1 Turbo Encoder

The turbo encoder consists of two RSC encoders as shown in Fig. 2.9, both of them are

of rate 1/2 and they are separated by a block interleaver. The overall rate of this encoder

is R = 1/3 which can be calculated using (2.43). However, it can be reduced to 1/2 to

improve the coding rate and increase the transmission efficiency by using the puncture

function as shown in Fig. 2.11.

R =
R1R2

R1 +R2 −R1R2

, (2.43)

where,R1 andR2 are the rates of the first and the second convolutional codes [47, 45, 42].

The aim of the puncturing process is to increase the coding rate by removing some of the

parity bits periodically from the code word of each RSC without affecting the systematic
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Figure 2.10: Rows-columns interleaver [50].

data sequence as shown in Fig. 2.11. In addition, different coding rates can be achieved

with a suitable puncturing process in the encoder. At the decoder, the punctured symbols

have to be replaced by zeros to prevent accumulating their branch metrics [50]. The

interleaver is used here to produce a permuted version of the data before it enters the

second RSC encoder to achieve statistically independent parity bits by each encoder [47,

55]. There are mainly several types of interleavers that can be used, such as the random

interleavers, LTE interleavers and the row-column interleavers. Fig. 2.10 shows a simple

row-column interleaver with 4 × 4 matrix, which shows that the data to be interleaved

have to be written in a row order and the interleaved data are to be read in a column order.

The deinterleaving process is the reciprocal of this procedure as the interleaved data have

to be written in a column order and to be read in a row order.
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2.7.2 Turbo Decoder

The outstanding performance of the turbo codes compared to other known codes as a

result of the iterative decoding procedure between the two parallel concatenated RSC

decoders are the main reason behind this name, which is known to achieve near Shan-

non limit performance [48, 56]. The schematic diagram for the turbo decoder is illus-

trated in Fig. 2.12 and the decoding procedure starts by receiving the code word r =

[r
(0)
1 , r

(1)
1 , r

(2)
1 , · · · , r(0)N , r

(1)
N , r

(2)
N ], which consists of the systematic part r(0)t , the parity of

the first encoder r(1)t , and the parity of the second encoder r(2)t .

The convolutional decoders that are illustrated in Section 2.7.2 can be utilized for the

first and the second decoders of Fig. 2.12. The first decoder receives r(0)t and r
(1)
t , in

addition to an initial a priori information received from the output of the second decoder

after its being deinterleaved, the initial condition for the a priori will be zero at the first

iteration. The log likelihood ratio LLR of the information for the first decoder can be

calculated using,

LLR(r
(0)
t |a(0)t ) = loge

(
P (r

(0)
t |a(0)t = +1)

P (r
(0)
t |a(0)t = −1)

)
. (2.44)

In a special case when the channel is AWGN and the modulation type is 4-QAM, the

LLR can be simplified for the real and imaginary parts as,

LLR0(r
(0)
t |a(0)t ) =

2
√
Es
σ2

Re(r
(0)
t ), (2.45)

LLR1(r
(0)
t |a(0)t ) =

2
√
Es
σ2

Im(r
(0)
t ). (2.46)

Similar calculations for the 16-QAM scheme can be obtained to achieve four levels

of LLR values for each received constellation symbol. These LLR values will be used in

the decoder to calculate the reliability of the first code L(1)
t which then will be subtracted

from the information signal and the a priori of the first decoder to produce the extrinsic

information E(1)
t from the first decoder as,

E
(1)
t = L

(1)
t − r(0)t − Λ

(1)
t , (2.47)

where Λ
(1)
t = Π−1(E(2)

t ) is the a priori information to the first decoder. Similarly,

Λ
(2)
t = Π(E

(1)
t ) is the a priori information to the second decoder, that is produced from

29



2.7 Turbo Codes

Decoder 1

Deinterleaver

Interleaver

Interleaver
Decoder 2

Deinterleaver

Extrinsic Information

Decoded Output

Extrinsic Information

r
(1)
t

∑

∏
−1

∏

∏
∑

∏
−1

A Priori Information

A Priori Information

r
(2)
t

r
(0)
t

Figure 2.12: Schematic diagram of Turbo decoder [52].

interleaving the extrinsic information of the first decoder. In the same procedure, the a

priori information Λ
(2)
t with the interleaved systematic information and the output of the

second encoder r(2)t will produce the reliability of the second decoder L(2)
t . The extrinsic

information for the second decoder can be calculated using,

E
(2)
t = L

(2)
t − Π(r

(0)
t )− Λ

(2)
t . (2.48)

The extrinsic information of the second decoder is deinterleaved and sent back to the

first decoder as a priori information. This algorithm will proceed for several iterations and

the decoded output of the second decoder should be deinterleaved to produce the required

information [52, 47]. Since the turbo codes rely on the iterative procedure between the

two convolutional codes, then the complexity of the decoders have to be as minimum as

possible especially for the large constraint length codes. Therefore, the selection of the

RSC decoder is practically limited to the log MAP, max-log MAP and the SOVA decoders

as illustrated in Section 2.6.2.

30



2.8 Low-Density Parity-Check (LDPC) Codes

2.8 Low-Density Parity-Check (LDPC) Codes

LDPC codes are an iterative decoding error correcting codes which are first invented

by Gallager in 1962 [57] and updated by Tanner in 1981 [58]. Then this code remains

unknown for several years until it rediscovered by Mackay and Neal in 1995 [59]. These

codes are a class of linear block codes and their performance is known to achieve near-

capacity performance [52, 55].

The parity check matrix of the LDPC codes can be represented as a sparse matrix

Hp with a number of ones distributed to its rows and columns that are called weights.

Based on the rows and the columns weight distribution, these codes can be divided into

regular and irregular LDPC codes. In the regular LDPC codes, the number of weights are

constant for all the rows and similarly for all the columns. On the contrary, if the row

weights and the column weights are varied, the code is known as irregular LDPC codes

[48].

2.8.1 LDPC Code Representation

The LDPC code can be represented in two configurations; the parity check matrix and

Tanner graph. In the beginning, there are three parameters to define for the LDPC code

which are, the code word length Nc, the matrix dimension Nr, and the parity bits Np =

Nc−Nr. In addition, the number of 1’s in each row and column are called weights, which

are denoted for the rows as ηr and for the columns as ηc. These parameters are used to

construct the parity matrix and Tanner graph as will be illustrated in the next sections.

2.8.1.1 The Parity Check Matrix

The construction of the LDPC codes is mainly based on the parity check matrix. There-

fore, LDPC codes can be classified into [52, 50],

1. Regular LDPC code, which has fixed row and column weights in the parity check

matrix, has the following parity check matrix

Hp =




1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1



, (2.49)
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Figure 2.13: Tanner graph for the parity check matrix of (2.49).

where the row and the column weights are ηr = 4 and ηc = 2, respectively. The

construction of the parity check matrix can be either randomly created or structured,

where the random method has normally better performance [48].

2. Unlike the regular LDPC code, irregular LDPC code has variable column and row

weights in the parity check matrix. Therefore, the performance of the irregular

LDPC codes is better than the regular LDPC codes and it is more practical than the

regular codes.

2.8.1.2 Tanner Graph

Tanner graph is a technique that is proposed by Michel Tanner in 1981 to construct long

error correcting codes utilizing short error codes [58]. The graph of Fig. 2.8.1.2 consists

of two sets of nodes namely, the bit nodes and the check nodes. The relationship between

the check nodes and the bit nodes can be demonstrated based on the columns of the parity

check matrix of (2.49). To illustrate, the check node c1 is connected to the bit nodes

{z1, z3}, and similarly for the other check nodes. The bit node z1 is connected to the

check nodes {c1, c2, c3, c4}, and similarly for the other bit nodes. The cyclic process of

the Tanner graph can be defined as the path that starts at a coded bit and ends at the same

node which should exceed 4 for better performance. The bipartite diagram of Fig. 2.8.1.2

has more than one cyclic with length ≤ 4 such as, c3 → z1 → c4 → z4 → c3. Therefore,

the parity check matrix of (2.49) has a bad performance and cannot be used in the coding

[52].
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2.8.2 LDPC Encoder

The encoding process for the LDPC codes requires the following steps,

1. Transforming the parity check matrix Hp into a systematic form such that, H̄p =

[INp PT ], using Gauss-Jordan elimination [52, 48], where INr and PT are the iden-

tity matrix with dimensions of Nr and the parity matrix with dimensions Nr ×Np,

respectively.

2. Constructing the generator matrix Gp = [P INp ] which will be used to encode the

information block.

3. The code word wc can be generated now by multiplying the information message

wu and the generator matrix Gp as, wc = wuG
T
p .

2.8.3 LDPC Decoder

The presented algorithm of LDPC decoder in this section is called the iterative belief

propagation (IBP) or sum-product algorithm (SPA) [52, 48, 50, 45]. The probabilities are

propagated through Tanner graph and accumulated to obtain the desired code word with

the minimum probability of error. This algorithm involves calculating qij which is defined

as the probability of the j-th code bit that is related to all the check bits except the i-th

node, i.e. qi,j = p(cj = x|{zi = 0, i′ ∈ Nj/i}), where Nj is the set of all the code bit

nodes. It also involves calculating ri,j which represents the probability of the i-th parity

check that is related to all the possible coded bits, that is ri,j = p(zi = 0|c) [52, 50].

Considering Tanner graph of Fig. 2.8.3, that demonstrates the probability propagation

between the code nodes and the check nodes. The decoding procedure requires initializa-

tion to the qij parameters before calculating the horizontal and vertical steps, which will

be illustrated next.
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2.8.3.1 The Initialization Step

The initialization of the parameters qij is calculated using the channel PDF fxj for the j-th

received symbol that equals x. As an example, the initialization for the AWGN channels

can be written as [52, 50, 48]

f 0
j =

exp(− (rj+1)2

2σ2 )√
2πσ

,

f 1
j =

exp(− (rj−1)2
2σ2 )√

2πσ
, (2.50)

where rj represents the j-th received symbol. These values are used as initials to the qij

parameters and the Q matrix is initiated as

Q =




q1,1 = fλ1 q1,2 = fλ2 . . . q1,j = fλNj

q2,1 = fλ1 q2,2 = fλ2 . . . q2,j = fλNj
...

... . . .
...

qi,1 = fλ1 qi,2 = fλ2 . . . qi,j = fλNj



, (2.51)

where Nj is the number of check nodes in Tanner Graph, and the superscript λ takes the

values {0, 1}.

2.8.3.2 The Horizontal Step

After initializing the qij parameters, the decoding process starts by calculating the rij

parameters utilizing the initial values using [52, 50]

rij =
∑

c:cj=x

p(zi = 0|c)
∏

j′∈Ni/j
qij′ , (2.52)

where p(zi = 0|c) is either 0 or 1. Similarly, the rij can be written in the matrix form as

[52]

R =




r1,1 r1,2 . . . r1,j

r2,1 r2,2 . . . r2,j
...

... . . .
...

ri,1 ri,2 . . . ri,j



. (2.53)
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2.8.3.3 The Vertical Step

On the other hand, the qij probabilities are updated in this step based on Baye’s Rule using

[52, 50]

qij =
p(cj = x)p(zi = 0, j′ ∈ Nj/i|cj = x)

p(zi = 0, j′ ∈ Nj/i)
,

= βijf
x
j

∏

i′∈Nj/i
ri′j, (2.54)

where βij = 1/(
∑

x f
x
j

∏
i′∈Nj/i ri′j) represents a factor that makes

∑
qij = 1.

The updated qij parameters are substituted in Q matrix of (2.51) to replace the ini-

tial values. Another probabilities are calculated in the vertical step which are called the

pseudo posterior probabilities qij . These probabilities are used to calculate an estimate to

the transmitted code word and can be calculated using [52, 50]

qj = βjf
x
j

∏

i∈Nj
rij. (2.55)

These probabilities are calculated for x = 0, 1 and placed in a matrix Q′ to produce an

estimate to the transmitted signal, such that [52]

Q′ =


q

0
1 q02 · · · q0j

q11 q12 · · · q1j


 . (2.56)

After several iterations and based on a specific termination condition, the decoded

code word is calculated using (2.56). However, if it happens that an error exceeds the

code ability, then the termination condition will not satisfied and the decoder will fail to

detect and correct the errors [50].
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2.9 Chapter Summary

This chapter is dedicated to reviewing briefly the main parts of the communication system

that is used in this thesis. In Section 2.2, the frequency-selective Rayleigh fading channel

model is illustrated with a block diagram representation of the tapped delay line model.

An introduction to the OFDM modulation technique is presented in Section 2.3 with a

block diagram representation and some highlights to their applications in eliminating the

frequency selectivity of the channels.

The focus of Section 2.4 is to demonstrate the linear and nonlinear MIMO equalization

techniques that are used to equalize the channel effect. A general introduction to the

coding theory and the FECCs are presented in Section 2.5 with a basic diagram of the

coded system. Following that, the recursive and non-recursive convolutional codes are

illustrated with the structure of their encoders in Section 2.6 and 2.6.1, respectively. In

addition, different decoders for the convolutional codes are described in Section 2.6.2,

which includes the Viterbi decoder, the BCJR decoder, the log-MAP decoder and the

max log-MAP decoder. Convolutional code’s ability is determined by the code constraint

length which will specify the complexity of that code.

On the other hand, iterative codes such as turbo codes and LDPC codes have better per-

formance due to the iterative algorithm of their decoders. In Section 2.7, the encoder and

the decoder of the turbo codes are illustrated with a definition to the interleaver and the

puncture functions. In Section 2.8, a brief introduction to the LDPC codes is introduced,

followed by a representation of the parity check matrix and Tanner graph. The encoding

and the decoding process of the LDPC codes are described in Sections 2.8.2 and 2.8.3,

respectively.
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Chapter 3

Improved Coded Massive MIMO

OFDM Detection using LLRs Derived

from Complex Ratio Distributions
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3.1 Introduction

3.1 Introduction

Massive MIMO-OFDM systems are a key technology to achieve high data rate and to im-

prove link reliability in modern wireless communication systems, especially when com-

bined with powerful error control coding techniques such as LDPC codes and turbo codes.

Hence, in the last few years, it has naturally attracted immense research interest. A

reduced complexity approach has been used with the Gaussian approximation in [60],

where the information of the variable nodes is individually updated in each iteration.

A joint detection and decoding of coded LDPC massive MIMO systems using reduced

complexity linear programming (LP) has been proposed in [61] by making use of the

data and training symbols, the noise subspace and the channel code. This LP receiver

was demonstrated to have better performance compared to the existing receivers with

robust performance when the pilot symbols are sparsely distributed on the sub-carriers.

In [62], a method was proposed that combines irregular LDPC codes with a modulator

and a detector in which the variable nodes and the detector nodes were combined in the

iterative decoding at the receiver.

Another approach utilizing non-binary LDPC codes for massive MIMO system were

used in [63] to achieve the performance of binary LDPC codes with a higher number of

antennas and a linear MMSE detector. In [64], a soft MMSE biased detector that uses the

Jacobi iterative method was proposed to reduce the complexity of large MIMO detection.

This system can provide the post-equalized SINR without iterations and exhibits reduced

complexity when using Gray-mapping. However, all of these publications assume that the

noise characteristics at the output of the linear MIMO detectors are Gaussian distributed.

The contribution of this chapter can be summarized in the following points,

• The noise PDF for the ZF equalized massive MIMO-OFDM system is derived using

Neumann matrix approximation method. The derived PDF is subsequently utilized

in the LLR calculations to improve the performance of different coded systems such

as LDPC coded and turbo coded massive MIMO-OFDM systems.

• Estimating the complexity required in using the LLR equation based on the exact

noise PDF, and a reduced complexity approximation is introduced for this LLR

using Newton polynomial interpolation.

• Comparing the performance of turbo coded and LDPC coded massive MIMO-

OFDM systems using the Gaussian LLR, exact LLR, and different approximations.
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Figure 3.1: Massive MIMO-OFDM system transceiver.

3.2 System Model

An uplink coded massive MIMO-OFDM system is considered here with Nr ×Nt anten-

nas as in Fig. 3.1 with Nr >> Nt. The terms Nt and Nr are used here to denote the

number of transmitting and receiving antennas, respectively. First, the binary data stream,

bi, is generated and channel encoded to produce the codewords, ck, which are randomly

interleaved, cπk = Π(ck) and modulated using an M -ary quadrature amplitude modula-

tion (M-QAM), i.e. dk = C(cπk), Π and C represent respectively the interleaving and

constellation mapping operators.

Following modulation, a S/P converter splits the modulated symbols into Nt parallel

sub-blocks, dl ∈ CK×1, where K is the block length of the IFFT used in the OFDM

modulators and l is the transmit antenna index. Subsequently, the OFDM waveforms for

each transmit antenna are individually constructed, i.e. sl = FHdl, where F ∈ CK×K is

the FFT matrix with fm,n = 1√
K
e−j2π

mn
K for m,n = 1, 2, · · · , K− 1. To avoid multipath-

induced IBI and inter-symbol interference (ISI), a CP is inserted at the start of each block

to cover the excess delay spread of the channel, that is

scpl =
[
sK−Kcp , . . . , sK−1, s0, . . . , sK−1

]T
, (3.1)

where Kcp is the length of the cyclic prefix. The transmitted signals propagate through
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3.3 Channel Model

time-flat, frequency-selective fading channels and are received in the presence of complex

zero-mean AWGN of variance σ2
w. After OFDM demodulation, involving CP removal and

the FFT transform at each of the Nr antennas, the received signal vector, rk ∈ CNr×1, for

the k-th subcarrier can be written as

rk = Hkdk + wk, (3.2)

where dk are the transmitted information symbols for the k-th subcarrier across the trans-

mit antennas, Hk ∈ CNr×Nt is the channel matrix in the frequency domain, and finally,

wk ∈ CNr×1 is the FFT of the time-domain AWGN samples. To detect the transmitted

information symbols, a ZFE can be utilized as follows

ŝk = H†krk = dk + H†kwk, (3.3)

where Hk
† is the ZFE matrix that can be obtained using the pseudo-inverse of Hk defined

as

H†k = G−1k HH
k , (3.4)

and Gk = HH
k Hk is the symmetric Gram matrix of the channel. A closer examination

of the noise term in (3.3) reveals that the ZFE operation affected the distribution of the

noise, and the Gaussian assumption can not be used to describe its properties. Therefore,

in order to achieve optimal performance in detection, a more accurate noise model is

needed.

3.3 Channel Model

In an uplink transmission mode, the transmitter can be considered as the user and the

number of the transmitting elements is limited to Nt = 10 antennas. On the other hand,

the receiver is equipped with hundreds of antennas and represent the base station. This

model assumes slow frequency selective fading channel, where the channel parameters are

constant during the transmission of each block of data. This channel can be represented

as a linear filter with the following impulse response [65, 32]
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3.4 Neumann-Series Approximation

hn,l(t) =
Lr∑

r=1

αr exp(−jθr)δ(t− τ) , (3.5)

where, δ(·) is the Dirac delta function, αr, θr, τ are the channel gain, phase and delay, r

is the channel index, Lr is the number of channel paths. Furthermore, hn,l is the channel

parameters between the l−th transmitter and the n−th receiver. The matrix representation

of (3.5) can be written as

h(t) =




h1,1(t) h1,l(t) . . . h1,Nt(t)

hn,1(t) hn,l(t) . . . hn,Nt(t)
...

... . . . ...

hNr,1(t) hNr,l(t) . . . hNr,Nt(t)



. (3.6)

3.4 Neumann-Series Approximation

One of the key issues in the detection using (3.3) is the complexity involved in the compu-

tation of the pseudo-inverse of Hk required for the uplink transmission in massive MIMO

systems with a high number of receivers. The aim of Neumann approximation is to ob-

tain a matrix decomposition that results in a diagonally dominant Gram matrix given as

[66, 67]

A = D + E, (3.7)

where D is a diagonal matrix composed using the diagonal elements of A. In contrast, E

is composed using the off-diagonal elements of A. The inverse of A can be written in the

form [66]

A−1 =
∞∑

ι=0

(
−D−1E

)ι
D−1 , (3.8)

A−1 = D−1 −
(
D−1E

)
D−1 +

(
D−1E

)2
D−1 . . . . (3.9)

The number of terms selected in (3.9) depends on the value of the index ι, which controls

the complexity of the matrix inversion. As Nr goes to ∞, the index value can be set to

zero without having a noticeable effect on the inverse of that matrix. For Nr >> Nt, the

Gram matrix becomes a diagonal dominant matrix, thus, ι = 0 can be used as long as

Nr > 10Nt is satisfied [66].
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3.5 Approximate Effective Noise PDF

For large matrices, the Gram matrix becomes diagonally dominant [66, 67]. This property

can be exploited to compute the Gram matrix using the Neumann series approximation

method to reduce the complexity in calculating the Moore-Penrose pseudo-inverse. In

(3.4), Gk is involved in calculating the ZFE and can be decomposed into two matrices,

i.e. Gd, which is composed only of diagonal elements, and Ge = Gk −Gd, containing

only the off-diagonal elements of Gk. The Neumann matrix inverse for Gk can be given

as [66]

G−1k =
L∑

ι=0

(
−G−1d Ge

)ι
G−1d . (3.10)

The complexity involved in calculating this inverse will depend on L, which controls

the number of terms in the summation of (3.10). For massive MIMO systems, that is

Nr > 10Nt, an accurate approximation of Gk can be obtained for L = 0, [66]. In this

case, the Gram matrix inverse will be reduced to a diagonal matrix inversion, which will

simplify the procedure required to find the PDF of G−1k . As stated in [68], the Neumann

series approximation can be used to efficiently rewrite the pseudo inverse equation of the

ZFE detector in the following form

H†k = G−1d HH
k . (3.11)

Therefore, the noise term in (3.3) at the output of the ZFE detector becomes

w̃k = G−1d HH
k wk =




∑Nr
n=1H

∗
n,1(k)wn,k∑Nr

n=1|Hn,1(k)|2

∑Nr
n=1H

∗
n,l(k)wn,k∑Nr

n=1|Hn,l(k)|2

∑Nr
n=1H

∗
n,Nt

(k)wn,k∑Nr
n=1|Hn,Nt (k)|2




. (3.12)

3.5.1 The Gram Matrix Distribution

The Gram matrix Gd of the MIMO channel Hk can be written as
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3.5 Approximate Effective Noise PDF

Gd = HH
k Hk ,

=




∑Nr
n=1 |Hn,1(k)|2 0 0

0
∑Nr

n=1 |Hn,l(k)|2 0

0 0
∑Nr

n=1 |Hn,Nt(k)|2


 . (3.13)

Each diagonal element has the following form

ζl,k =
Nr∑

n=1

|Hn,l(k)|2 = ζ1,l(k) + ζ2,l(k) + · · ·+ ζNr,l(k), (3.14)

where the elements ζn,l(k) = (HI
n,l(k))2 + (HQ

n,l(k))2 are real random variables with 2

degrees of freedom. The characteristic function for these random variables can be written

in the form [31]

ψζn,l,k(ω) =
1

1− j2σ2
Hω

. (3.15)

The distribution for the summation in (3.14) can be represented as Nr convolutions of

ζn,l(k), which means Nr multiplications in the frequency domain. According to that, the

characteristic function and the PDF of (3.14) can be written for the l-th transmit element

as [31], [68]

ψζl,k(ω) =

(
1

1− j2σ2
Hω

)Nr
, (3.16)

p(ζl,k) =
|ζl,k|Nr−1

(2σ2
H)NrΓ(Nr)

exp (−|ζl,k|
2σ2

H

), (3.17)

where, ζl,k =
∑Nr

n=1 |Hn,l(k)|2 for l = 1, 2, . . . , Nt and σ2
H is the average variance of

Hn,l(k). It is worth noting that the mean of ζl,k is µζ = 2Nrσ
2
H and the variance is

σ2
ζ = 4Nrσ

4
H for Chi-Square with 2Nr degree of freedom [31]. The mean squared error

(MSE) method which can be calculated as MSE =
∑

k(p(ζl,k)− p̂l,k)2/K, is used here

to calculate the error resulting from the difference between the empirical and theoretical

PDFs. In addition, the Kolmogorov-Smirnov (KS) goodness-of-fit test [69] is applied

at 5% significance level with the null hypothesis that the two vectors exhibit the same

distribution.

Fig. 3.2 a) shows the empirical and theoretical PDFs, i.e. (3.17), for a system with
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Figure 3.2: Histogram plot of the equalized noise versus the derived PDFs. (a) Plot of
(3.17) versus the empirical P (ζl,k). (b) Plot of (3.23) versus the empirical P (λνl,k). (C)
Plot of (3.37) versus the empirical P (ανl,k).

Nt = 10 and Nr = 200 at an SNR of -10 dB demonstrating a very close agreement. In

this case, the computed value of the MSE is 9.9176 × 10−9 and the KS test decision is 0

implying that the null hypothesis can not be rejected.

3.5.2 Distribution of the HHW Elements

The numerator of (3.12), can be written as
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3.5 Approximate Effective Noise PDF

HH
k Wk =




H∗1,1(k) · · · H∗n,1(k) · · · H∗Nr,1(k)
...

...
...

H∗1,l(k) · · · H∗n,l(k) · · · H∗Nr,l(k)
...

...
...

H∗1,Nt(k) · · · H∗n,Nt(k) · · · H∗Nr,Nt(k)







w1,k

...

wn,k
...

wNr,k




=




∑Nr
n=1H

∗
n,1(k)wn,k
...

∑Nr
n=1H

∗
n,l(k)wn,k
...

∑Nr
n=1H

∗
n,Nt

(k)wn,k




=




λ1,k
...

λl,k
...

λNt,k




. (3.18)

Each element, λl,k of the vector λk = HH
k Wk can be given as

λl,k =
Nr∑

n=1

H∗n,l(k)wn,k, (3.19)

therefore, its inphase (I) and quadrature (Q) components exhibit the following forms,

respectively

λIl,k =
Nr∑

n=1

HI
n,l(k)wIn,k +HQ

n,l(k)wQn,k, (3.20)

and

λQl,k =
Nr∑

n=1

HQ
n,l(k)wIn,k −HI

n,l(k)wQn,k. (3.21)

As can be seen, λIl,k, λ
Q
l,k are the result of a sum of products for 2Nr independent Gaussian

variables. It was shown in [70] that their characteristic function and distribution can be

given as

ψλνl,k(ω) =

(
1

1 + σ2
Hσ

2
w ω

2

)Nr
, (3.22)

p(λνl,k) =
exp(

−|λνl,k|
σHσw

)

Γ(Nr) σHσw

Nr∑

n=1

(Nr + n− 2)!

(Nr − n)! 2Nr+n−1 Γ(n)

( ∣∣λνl,k
∣∣

σHσw

)Nr−n

, (3.23)
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where ν = {I, Q}. By taking the statistical expectation of (3.20) and (3.21), it can easily

be shown that the mean value of this PDF is zero, i.e. µλ = 0, and its variance can be

theoretically computed as

σ2
λ =

∫ ∞

−∞
λ2 p(λ)dλ ,

=
Nr∑

n=1

Γ(Nr + n− 1)
∫∞
0
λNr−n+2 exp( −λ

σHσw
)dλ

Γ(Nr)Γ(Nr − n+ 1)Γ(n)2(Nr+n−2) ,

=
Nr∑

n=1

Γ(Nr − n+ 3)Γ(Nr + n− 1)(σH σw)2

Γ(Nr)Γ(Nr − n+ 1)Γ(n)2(Nr+n−2) . (3.24)

The empirical PDF of λνl,k and its theoretical PDF given in (3.23) demonstrate a very close

agreement as shown in Fig. 3.2 b). The computed value of MSE is 8.874× 10−10 and the

KS test decision is 0 implying that the null hypothesis can not be rejected.

3.5.3 Independence Verification

To prove that the two random variables λνl,k and ζl,k are independent, the following points

will be considered. First, based on the central limit theorem (CLT), the i.i.d. random

variables X1, X2, . . . Xn with mean µ and variance σ2 <∞ can be written as

Sn =
1

σ
√
n

n∑

i=1

(Xi − µ) . (3.25)

Based on the CLT and for large n, the distribution of X̄n can approximately be considered

as normal distribution with mean µ and variance σ2

n
[71, 72]. As stated in [73], as long as

the value n > 10, the distribution of Sn approaches the normal distribution.

According to that, and since Nr ≥ 100, the PDF of the real and imaginary parts

of λl,k =
∑Nr

n=1H
∗
n,l(k)wn,k, can be written in the form of a normal distribution with

N(0, σ2
λ) as

p(λνl,k) =
1√

2πσ2
λ

exp(−
λνl,k

2

2σ2
λ

). (3.26)

Similarly, the PDF of ζl,k =
∑Nr

n=1 |Hn,l(k)|2 for large Nr, can be written as N(µζ , σ
2
ζ )

p(ζl,k) =
1√

2πσ2
ζ

exp(−(ζl,k − µζ)2
2σ2

ζ

), (3.27)

where the theoretical values of σ2
λ, µζ , σ

2
ζ are calculated in Sections 3.5.1 and 3.5.2, re-
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Figure 3.3: The PDF of ζl,k and λνl,k for massive MIMO-OFDM systems at Nt = 10 and
Nr = 200.

spectively. Fig. 3.3 shows the histogram plot of ζ and λ compared to its equivalent Gaus-

sian PDF.

Second, based on this large Nr assumption, the two Gaussian random variables will

be independent if their covariance is zero. Thus, the covariance of ζl,k and λνl,k, cζλ will

be calculated to prove they are independent random variables. cζλ is computed as

cζλ = E{(ζl,k − µζ)λl,k} ,

= E{ζl,kλl,k} − µζE{λl,k} . (3.28)

Since E{λl,k} = 0, the covariance of (3.28) can be written as

cζλ = E{ζl,kλl,k} ,

= E

{ Nr∑

n=1

|Hn,l(k)|2
Nr∑

m=1

H∗m,l(k)wm,k

}
. (3.29)

By expanding the inner sum

cζλ = E{
Nr∑

n=1

|Hn,l(k)|2H∗1,l(k)w1,k +
Nr∑

n=1

|Hn,l(k)|2×

H∗2,l(k)w2,k + . . .+
Nr∑

n=1

|Hn,l(k)|2H∗Nr,l(k)wNr,k} , (3.30)
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and expanding the outer sum

cζλ = E{|H1,l(k)|2H∗1,l(k)w1,k + |H1,l(k)|2H∗2,l(k)w2,k

+ . . .+ |H1,l(k)|2H∗Nr,l(k)wNr,k + |H2,l(k)|2×

H∗1,l(k)w1,k + |H2,l(k)|2H∗2,l(k)w2,k + . . .+

|H2,l(k)|2H∗Nr,l(k)wNr,k + . . .+ |HNr,l(k)|2H∗Nr,l(k)wNr,k} . (3.31)

Since the channel parameters and the AWGN are independently distributed, (3.31) can be

written as

cζλ = E{|H1,l(k)|2H∗1,l(k)}E{w1,k}+ E{|H1,l(k)|2H∗2,l(k)}E{w2,k}+ . . .+

E{|H1,l(k)|2H∗Nr,l(k)}E{wNr,k}+ . . .+ E{|HNr,l(k)|2H∗Nr,l(k)}E{wNr,k} .
(3.32)

The AWGN has zero mean which makes the term E{wm,k} = 0, and the covariance

cζλ = 0.

In addition, the following tests have been applied to verify the independent property

of the two random variables λνl,k, ζl,k.

• The histogram plot in Fig. 3.3 shows close match between the empirical and the

theoretical PDFs.

• The Chi-square test of independency [69] is performed based on the

crosstab(x1,x2) function in Matlab. This test shows that the probability of

statistics is 0.2397, which indicates that the null hypothesis that is the two random

variables are independent cannot be rejected.

• The Kolmogorov-Smirnov test [69] is performed based on modifying the

kstest2(x1,x2) function in Matlab to compare the empirical and the theoret-

ical PDFs instead of the random variables. The decision on equality test between

the theoretical and the empirical PDFs was (H=0) which implies that the null hy-

pothesis that is the two random variables exhibit the same PDF cannot be rejected.

3.5.4 Ratio Distribution

The real and imaginary parts of the noise equation (3.12) have similar PDFs, and hence,

a general equation will be derived to represent both parts. First, the noise equation at the
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output of the MIMO detector can be written as




1
ζ1,k

0 0

0 1
ζl,k

0

0 0 1
ζNt,k







λν1,k

λνl,k

λνNt,k


 =




λν1,k
ζ1,k
λνl,k
ζl,k
λνNt,k
ζNt,k


 =




αν1,k

ανl,k

ανNt,k


 . (3.33)

The joint probability for λνl,k and ζl,k can then be written as [68]

p(λνl,k, ζl,k) = p(λνl,k)p(ζl,k) =
|ζl,k|Nr−1 exp (−|ζl,k|

2σ2
H

)

(2σ2
H)NrΓ(Nr)

×

Nr∑

n=1

exp(
−|λνl,k|
σHσw

)Γ(Nr + n− 1)
∣∣λνl,k

∣∣Nr−n

(Nr − n)! 2Nr+n−1Γ(n)σHσwNr−nΓ(Nr)
, (3.34)

and the substitution of λνl,k = ζl,kα
ν
l,k in this equation will result in

p(ανl,kζl,k, ζl,k) =
Nr∑

n=1

An exp (−β |ζl,k|) |ζl,k|2Nr−n−1 , (3.35)

where An and β are equal to

An =

∣∣ανl,k
∣∣Nr−n (Nr + n− 2)!(σHσw)n−Nr−1

Γ2(Nr)(2σ2
H)Nr(Nr − n)! 2Nr+n−1Γ(n)

,

β =
σw + 2σH

∣∣ανl,k
∣∣

2σwσH
.

Now, to find the noise PDF, this equation must be integrated w.r.t ζl,k as [68, 74]

p(ανl,k) =

∫ ∞

−∞
|ζl,k| p(ανl,kζl,k, ζl,k)dζl,k , (3.36)

p(ανl,k) =
Nr∑

n=1

(Nr + n− 2)!(2Nr − n)!( σw
2σH

)Nr
∣∣ανl,k

∣∣Nr−n

2Nr+n−1Γ2(Nr)(Nr − n)!Γ(n)(
∣∣ανl,k

∣∣+ σw
2σH

)2Nr−n+1
. (3.37)

The mean value of this PDF is zero and its variance is given as

σ2
αt =

Nr∑

n=1

Γ(Nr − n+ 3)Γ(Nr + n− 1)Γ(Nr − 2)
(
σw
σH

)2

Γ2(Nr)Γ(Nr − n+ 1)Γ(n)2(Nr+n)
. (3.38)

To verify the accuracy of this PDF, a comparison between the histogram plot of the actual
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Figure 3.4: 16-QAM constellation map.

noise PDF and this equation is given in Fig. 3.2 c). A close inspection of the figure reveals

that the empirical PDF of ανl,k and its theoretical PDF given in (3.37) are closely matched.

The computed MSE is 2.076× 10−5, while the KS test decision is 0 verifying the validity

of the null hypothesis.

Using the PDF in (3.37) describing the noise characteristics after ZFE, the LLRs of

the coded massive MIMO-OFDM systems are obtained and the performance of the LDPC

coded and turbo coded systems is compared to the performance of the systems with Gaus-

sian PDF based LLR.

3.6 LLR Calculation

The output of the ZFE in (3.3) is utilized to calculate the LLR equations required for soft

decoding with 4-QAM scheme, which are given as

L(b0) = loge

(
p(αIl,k|sIl,k = 1)

p(αIl,k|sIl,k = −1)

)
, (3.39)

L(b1) = loge

(
p(αQl,k|sQl,k = 1)

p(αQl,k|sQl,k = −1)

)
. (3.40)
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where the superscripts I and Q denoted the in-phase and quadrature parts of complex-

valued signals, respectively, as in (3.20) and (3.21).

The point representation of the constellation map in Fig. 3.4 can be written as

(b0, b1, b2, b3), where the LLR of the first two bits b0, b1 are functions of the real part of the

equalized received signal while the last two bits b2, b3 are functions of the imaginary part.

The LLR equations for the 16-QAM scheme can be written based on the constellation

map of Fig. 3.4 as

L(b0) = loge

(
p(αIl,k|sIl,k = 1)

p(αIl,k|sIl,k = −1)

)
, (3.41)

L(b1) ≈ min

(
loge

(
p(αIl,k|sIl,k = −1)

p(αIl,k|sIl,k = −3)

)
, loge

(
p(αIl,k|sIl,k = 1)

p(αIl,k|sIl,k = 3)

))
, (3.42)

L(b2) = loge

(
p(αQl,k|sQl,k = 1)

p(αQl,k|sQl,k = −1)

)
, (3.43)

L(b3) ≈ min

(
loge

(
p(αQl,k|sQl,k = −1)

p(αQl,k|sQl,k = −3)

)
, loge

(
p(αQl,k|sQl,k = 1)

p(αQl,k|sQl,k = 3)

))
. (3.44)

3.6.1 LLR Approximation

A reduced complexity approach can be used to simplify the soft bit calculations evaluated

based on this PDF [62] by approximating the LLR values, without affecting the system

performance. The polynomial interpolation is used to approximate the LLR equations by

a low order polynomial [75, 76]. Newton’s polynomial interpolation is an approximation

method that gives good interpretation to the original function using [77, 75, 76]

fn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·

+ an(x− x0)(x− x1)× · · · × (x− xn), (3.45)

where the coefficients, a0 = y(x0), a1 = y(x0, x1), a2 = y(x0, x1, x2), · · · ,
an = y(x0, x1, x2, · · · , xn), can be calculated in a forward procedure using
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y(xi, xj) =
y(xi)− y(xj)

xi − xj
, (3.46)

and the forward interpolation procedure illustrated in Algorithm 2 is used to calculate the

approximated LLR polynomial.

Algorithm 2 : Newton polynomial interpolation [77]
1: procedure C = pinterp(x, y)
2: set n = length(x)
3: set w = Zeros(n, n)
4: set first column w1 = y
5: for j ← 2 to n do
6: for (k ← j to n) do
7: wk,j = (wk,j−1 − wk−1,j−1)/(xk − xk−j+1)

8: end for
9: end for

10: set C = wn,n
11: for k ← (n− 1) to 1 by −1 do
12: C = conv(C, poly(x(k)))
13: m = length(C)
14: Cm = Cm + wk,k

15: end for

For 4-QAM, the real and imaginary parts of the received symbols after ZFE are scaled in

the range -2.5 to 2.5 with 4 points distributed as {−2.5,−1.25, 1.25, 2.5}. Subsequently,

the evaluation procedure starts by calculating the Newton table that will be used to deter-

mine the polynomial coefficients. By applying the regression procedure, the equivalent

LLR equation for the selected example will then be written as

L(x) =
Nx∑

ρ=0

aρx
ρ, (3.47)

where values of aρ parameters are listed in Table 3.1 and Nx is the polynomial order.

Similarly for the 16-QAM scheme, the real and imaginary parts of the received symbols

Table 3.1: aρ parameters for LLR approximation with BPSK/4-QAM scheme.
Nr a0 a1 a2 a3
100 3rd order 0 4.02502 0 −0.1275
100 1st order 0 3.2524 0 0
150 3rd order 0 4.1269 0 −0.1027
150 1st order 0 3.485 0 0
200 3rd order 0 4.27 0 −0.0842
200 1st order 0 3.4441 0 0
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after the ZFE are scaled in the range -7 to 7 with 7 points distributed as

{−7,−4.5,−1.5, 0, 1.5, 4.5, 7}. Based on that, the equivalent aρ parameters for (3.47) are

shown in Table 3.2.

Table 3.2: aρ parameters for LLR approximation with 16-QAM scheme.
Nr bi a0 a1 a2 a3 a4 a5 a6

b0/b2 0 1.7949 0 −0.03 0 2.7× 10−4 0
100 b1/b3 3.329 0 −1.199 0 0.056 0 −7.2× 10−4

b0/b2 0 1.701 0 −0.021 0 1.2× 10−4 0
150 b1/b3 3.219 0 −1.242 0 0.064 0 −8.7× 10−4

b0/b2 0 1.789 0 −0.017 0 1.2× 10−4 0
200 b1/b3 3.428 0 −1.253 0 0.058 0 −7.7× 10−4

This approximation will reduce the complexity of the exact LLR as shown in Ta-

ble 3.3, whereNx is selected to obtain 1st and 3rd order polynomials for the BPSK/4QAM

schemes and 6-th order polynomial for the 16-QAM scheme. The plot of the actual LLR

equation versus (3.47) is demonstrated in Fig. 3.5 for both approximated LLRs.

3.6.2 Complexity Calculation

When the number of receiving antennas is relatively high in massive MIMO systems,

the LLR calculations using the PDF of (3.37) will exhibit higher complexity compared

to other approximated PDF approaches such as the Gaussian distribution. However, the

utilization of the proposed LLRs based on the newly derived PDF results in a significant

performance improvement.

The gaxpy operation approach found in [40] is used here to determine the number of

operations required in calculating (3.37), (3.39), (3.40) and (3.47) as shown in Table 3.3.

The number of operations required to calculate the exact PDF depends mainly on Nr,

whereas using the Gaussian PDF in calculating the LLRs is limited to few multiplications

which is equivalent to the proposed approximation using the Newton interpolation.

Table 3.3: Operations required per symbol.
Equation Division Addition Subtract Multiplication
Eq. (3.37) 2Nr + 2 2Nr 6Nr + 1 8Nr

2 + 3Nr − 2
LLR Neumann 4Nr + 1 4Nr 12Nr 16Nr

2 − 2Nr

LLR Gaussian BPSK/4QAM 2 0 0 2
LLR App. 1st BPSK/4QAM 0 0 0 1
LLR App. 3rd BPSK/4QAM 0 0 1 4
LLR Gaussian 16-QAM 6 2 2 6
LLR App. 16-QAM 0 4 11 42
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Figure 3.5: Plot of exact and approximate LLR for a system with Nt = 10 and different
receive antennas at, (a) BPSK and 4-QAM, (b) 16-QAM scheme.
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Figure 3.6: Number of flops required to calculate the LLR using the exact PDF.

The floating point operation (FLOP) counts of the gaxpy approach weights higher the

most nested operations rather than the exact complexity [40]. Based on that, Fig. 3.6

shows the effect of increasing Nr on the total complexity, assuming that the number of

flops required to calculate (3.37) is O(8N2
r ), and for the exact LLR is O(16N2

r ).

3.7 Simulation and Results

In this section, improving the performance of the coded massive MIMO-OFDM systems

using LLRs equations based on the newly derived PDF will be considered and compared

to the performance of the commonly used Gaussian assumption [60, 61, 62]. The scenario

of this chapter has the following specifications, the number of transmit antennas is in the

range Nt = 4, 10 and the number of receive antennas’ range is Nr = 100, 150, 200 as

shown in Figs. 3.7 and 3.9 for the LDPC coded systems and Figs. 3.8 and 3.10 for the

turbo coded systems. The length of FFT block utilized is 1024 symbols, the block length

of the 1/2 rate Extended Irregular Repeat-Accumulate (eIRA) LDPC code is 64800 bits

that are randomly interleaved after encoding. The LLR equations are calculated for the

55



3.7 Simulation and Results

real and the imaginary parts of the recovered Nt signals by substituting (3.37) in (3.39)

and (3.40) for the real and imaginary parts of the 4-QAM and in (3.41)-(3.44) for the

16-QAM, respectively.

The transmitted signals propagate through time-flat, frequency-selective Rayleigh fad-

ing channels with 6 multipath arrivals and a delay spread of maximum 85 samples and

are received in the presence of complex zero-mean AWGN of variance σ2
w.

The behavior of LLR equations can be illustrated based on Fig. 3.5 and the constel-

lation map of Fig. 3.4. It is observed that the LLR for b0 and b2 are increasing for the

positive and negative values of x because the transition in the constellation map of Fig.

3.4 is from 0 to 1. However, in the case of b1 and b3, the transition from 0 to 1 was in

the negative interval of x only, while the transition has inverted in the positive region to

become from 1 to 0 which result in a reduction in the LLR calculation for b1 and b3.

A closer look at Figs. 3.7a) and 3.7b) at BER = 10−4 reveals that the performance

of the LDPC coded systems with the proposed LLRs has improved by 2 dB compared to

the Gaussian based LLRs for the BPSK/4-QAM schemes. While the improvement for the

16-QAM coded system was 1 dB as shown in Figs 3.9a) and 3.9b).

Furthermore, using the LLR equations based on the newly derived PDF has improved

the BER performance of the turbo coded massive MIMO-OFDM system with BPSK/4-

QAM scheme by 0.8∼1 dB at 10−4 BER as illustrated in Figs. 3.8a) and 3.8b). While this

improvement has reduced to 0.6 dB for the 16-QAM turbo coded as shown in Figs 3.10a)

and 3.10b), respectively.

The number of operations required in calculating the LLRs for the coded system using

the newly derived PDF is compared to the Gaussian based LLR and the result is shown

in Table 3.3. It can be observed that calculating the LLR with the exact PDF will exhibit

higher operations than the Gaussian PDF. To reduce the cost of using this LLR, Newton’s

interpolation method have been used to rewrite this equation as a linear polynomial of

different orders. According to the results shown in Figs. 3.8a) and 3.8b), the first order

approximation has successfully matched the BER performance of the turbo coded system

with BPSK/4-QAM scheme for the derived LLR and reduced the complexity to one mul-

tiplication as shown in Table 3.3, while the approximation for the LLRs of the 16-QAM

scheme required 5-th and 6-th order polynomials to match the exact performance. On the

other hand, Figs. 3.7a) and 3.7b) show that the third order approximation can successfully

match the performance of the LDPC coded systems with BPSK/4-QAM scheme, while

the first order approximation reduces the performance by 0.3 dB. The approximation of
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Figure 3.7: Simulation of the LDPC coded massive MIMO-OFDM system rate 1/2 with
BPSK/4-QAM and Nr = 100; 150; 200 for, (a) Nt = 4 (b) Nt = 10.
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Figure 3.8: Simulation of the turbo coded massive MIMO-OFDM system rate 1/3 with
(561; 753)8 polynomial generator, BPSK/4-QAM, and Nr = 100; 150; 200 for, (a) Nt =
4 (b) Nt = 10.
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Figure 3.9: Simulation of the LDPC coded massive MIMO-OFDM system rate 1/2 with
16-QAM and Nr = 100; 150; 200 for, (a) Nt = 4 (b) Nt = 10.
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Figure 3.10: Simulation of the turbo coded massive MIMO-OFDM system rate 1/3 with
(561; 753)8 polynomial generator, 16-QAM, and Nr = 100; 150; 200 for, (a) Nt = 4 (b)
Nt = 10.
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the LLRs for the 16-QAM scheme required 5-th and 6-th order polynomials to match the

performance as shown in Figs. 3.9a) and 3.9b), respectively.

In addition, Fig. 3.11 demonstrates the reduction in the number of required receive

antennas when using the exact LLRs compared to LLRs derived based on the Gaussian

assumption as a function of the SNR. Closer inspection of the figure shows that to obtain

a BER performance of 10−5 at SNR = -16.3 dB, the required number of receive antennas

was Nr = 500 for the exact LLR computations, while the Gaussian based LLRs require

Nr = 575 antennas to achieve the same performance at Nt = 10 transmit antennas and

4-QAM scheme. Thus, using error correction with exact LLR computations, a reduction

of 75 antenna elements and their corresponding RF chains can be achieved. Furthermore,

increasing the number of transmit antennas from 5 to 10 to 20 results in a reduction of 2.4

and 3.5 dB for the exact PDF approach respectively. In contrast, for the Gaussian based

PDF, the degradation was in both cases 3 dB.

In Fig. 3.12a), the performance of the turbo coded massive MIMO-OFDM system at

Nt = 10, Nr = 100 is obtained for different OFDM block length to address their effect

on the BER performance of the coded systems. It is observed that at Nfft > 512, the

coded system exhibit similar performance, while at Nfft = 256 the performance has

reduced by 0.5 dB compared to the original performance. Further reduction in the OFDM

block length to 128 has reduced the BER performance by more than 2 dB. In Fig. 3.12b),

the performance of the turbo coded massive MIMO-OFDM system at Nt = 10, Nr =

100 is obtained for different interleaver block length to examine their effect on the BER

performance of the coded system. It is observed that when the interleaver length Nπ

has dropped from 4096 to 512 it results in a reduction of 0.6 dB to the BER performance,

while the complexity and the run time is highly increased. In Fig. 3.13, the performance of

the coded and uncoded massive MIMO-OFDM system atNt = 10, Nr = 100 is examined

for different CP lengths to discuss their effect on the BER performance. It is observed

from Fig. 3.13a) that, as the CP length decreased from 128 to 32, the performance has

degraded by almost 8 dB at BER = 10−5. However, reducing the CP length for the coded

system of Fig. 3.13b) has a small effect on the performance that is less than 0.5 dB.
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Figure 3.11: Comparing the number of required receive antennas in Gaussian PDF based
LLR and the exact LLR at different transmit and receive antennas for, (a) Turbo coded
system. (b) LDPC coded system.

62



3.7 Simulation and Results

−9.5 −9 −8.5 −8
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E
R

 

 

Nfft = 128
Nfft = 256
Nfft = 512
Nfft = 1024
Nfft = 4096
Nfft = 8192

(a) Turbo coded system with different OFDM block lengths.

−9.4 −9.2 −9 −8.8 −8.6 −8.4 −8.2 −8 −7.8 −7.6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E
R

 

 

Interleaver k=512
Interleaver k=1024
Interleaver k=4096

(b) Turbo coded system with different interleaver block lengths.

Figure 3.12: Comparing the effect of different OFDM and interleaver block lengths on the
performance of the turbo coded massive MIMO-OFDM systems withNt = 10, Nr = 100.
(a) Turbo coded system with different OFDM block lengths. (b) Turbo coded system with
different interleaver block lengths.

63



3.7 Simulation and Results

−10 −5 0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E
R

 

 

CP 128

CP 64

CP 32

CP 16

(a) Uncoded system.

−9.5 −9 −8.5 −8
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E
R

 

 

CP=128

CP=64

CP=32

CP=16

(b) Turbo coded system.

Figure 3.13: Comparing the effect of CP on the performance of the coded/uncoded mas-
sive MIMO-OFDM systems with Nt = 10, Nr = 100. (a) Uncoded massive MIMO-
OFDM system. (b) Turbo coded massive MIMO-OFDM system.

64



3.8 Chapter Summary

3.8 Chapter Summary

In this chapter, the LLRs for the coded massive MIMO-OFDM systems has been derived

based on the complex ratio distribution for the ZFE by means of Neumann approximation.

The experimentally obtained histogram plots from Monte-Carlo simulations were shown

to be optimally modelled by the theoretically derived PDF which was subsequently used

to calculate the LLRs for the LDPC and turbo decoders. This has improved the BER

performance of the simulation by 2 dB at 10−4 for the LDPC coded system, and 1 dB for

the turbo coded system, compared to Gaussian distribution using the ZFE and with the

4-QAM scheme. However, the improvement in the BER performance for the 16-QAM

modulated systems was 1 dB for the LDPC coded systems and 0.6 dB for the turbo coded

systems, respectively.

Furthermore, calculating the LLRs using the PDF of (3.37) have improved the per-

formance compared to the Gaussian assumption resulting in a reduction in the required

number of receive antennas by 75 at an SNR of -16.3 dB. However, this new PDF in-

creased the computational complexity of LLR calculations, thus, increasing the overall

receiver complexity. To reduce this complexity and to maintain good performance, an

equivalent LLR equation has been suggested with a low complexity design using Newton

polynomial interpolation. The performance of this approximated LLR equation showed a

close match to the exact LLR with negligible complexity.

The effect of changing the OFDM block length, the interleaver length and the CP

length on the performance of the coded massive MIMO-OFDM systems have been ad-

dressed in this chapter as part of selecting the most convenient test bed. It is observed that

reducing the block length of the OFDM, the interleaver or the CP will result in a degra-

dation to the BER performance of the coded system, however, increasing the interleaver

length can increase the complexity and improve the performance.
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Chapter 4

Performance Evaluation for the Massive

MIMO-OFDM systems
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4.1 Introduction

Massive MIMO systems have recently attracted immense interest in the field of wireless

communications due to their ability to increase data throughput and improve link qual-

ity [78, 67, 79, 80]. Meanwhile, OFDM is a multi-carrier technique with immunity to

the channel’s frequency selectivity, which can transmit data over large numbers of sub-

carriers rather than a single carrier transmission [2, 81]. The combination of these two

techniques in the form of a massive MIMO-OFDM system is a key technology for the next

generation wireless communication systems due to its improved performance compared

to conventional MIMO systems [78, 82].

Calculating the channel capacity and the outage probability for the massive MIMO-

OFDM systems are of interest due to their impact on the system design. The channel

capacity and the outage probability of the massive MIMO systems have been studied in

the literature [83, 84, 85, 86] for the uplink and downlink transmission with different

channels. The channel capacity of the massive MIMO systems over Nakagami-m fad-

ing channels has been investigated in [83] for two MIMO models with linear detectors.

In [84], an upper bound has been derived for the channel capacity of the spatial non-

stationary massive MIMO systems in the uplink mode of transmission. In addition, the

outage probability has been analyzed in [85] for the multi-user massive MIMO systems

with Rayleigh fading channels and an approximate expression is introduced to bound the

outage probability. Furthermore, based on the outage probability requirements, a novel

approach has been introduced in [86] to minimize the required number of antennas for the

massive MIMO systems.

In addition, employing forward error correction (FEC) coding can further improve the

performance of massive MIMO-OFDM systems due to the resulting frequency diversity

and increased the reliability of the transmitted data signals over K subcarriers and Nt

transmitters [87]. Improvement in the BER performance can reduce the number of re-

ceiving antennas required to design coded massive MIMO-OFDM systems compared to

uncoded systems [88, 89, 90, 91, 92, 93, 94].

To evaluate the performance of coded massive MIMO-OFDM systems time consum-

ing simulations are required. Thus, upper-bounds are of immense interest due to their

ability to predict the performance of such a system. In [70, 95, 96, 97, 98], the upper-

bounds of convolutional codes have been studied for the AWGN and for fading channels

including different approximations. The performance of convolutionally coded MIMO
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systems with MMSE detector has been derived in [99] using the moment generating

function (MGF). In[100], a tight bound on a bit-interleaved space-time coded modulation

(BI-STCM) scheme has been developed for MIMO systems with rate (1/2) convolutional

code. Furthermore, link-level capacity (LLC) and a tight bound have been derived in

[101] for a MIMO-BICM system with a ZFE and a fast fading channel.

In [102, 103] the upper-bound of parallel concatenated codes assuming a uniform

interleaver has been determined for turbo coded systems. The authors derived the upper-

bound for both block and convolutional concatenated codes for an AWGN channel. In

[104], an average bound has been proposed for the performance of turbo coded systems

with correlated and uncorrelated Rayleigh fading channels. In [89, 105], the authors have

proposed an upper-bound to the turbo coded MIMO system with correlated and uncorre-

lated Rayleigh slow fading channels, and the proposed bound approached the simulation

results within (0.2-0.5) dB at a BER of 10−5.

However, no significant results have been presented for the upper-bound performance

of coded massive MIMO-OFDM systems. The contribution of this chapter can be sum-

marized as follows:

• Deriving the BER for the massive MIMO-OFDM system with frequency selective

Rayleigh fading channels and ZFE for different M -ary modulations.

• Obtaining the PDF of the SNR after the ZFE to be used in deriving the outage

probability, the average capacity, and three bounds to the capacity at low and high

SNR, respectively.

• Deriving the PEP for the massive MIMO-OFDM system to be used in the perfor-

mance evaluation of the coded system.

• This PEP is subsequently used to evaluate the upper-bounds of the convolutionally

coded and turbo coded systems.

This analysis are based on using the Neumann matrix approximation to simplify the ma-

trix inversion of the ZFE when deriving the noise PDF.
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4.2 Uncoded Massive MIMO-OFDM Systems

4.2.1 Bit Error Rate (BER)

This section starts by deriving the BER for the binary phase shift-keying (BPSK) and 4-

QAM modulations and then extend the derivations to include higher QAM constellations.

4.2.1.1 BPSK and 4-QAM

Deriving the BER for the BPSK modulation requires computing the following integration

[31]

PBPSK
e =

∫ ∞

0

p(ανl,k + 1) dανl,k. (4.1)

The BER is obtained by substituting (3.35) and (3.36) in (4.1) and integrating (4.2) in two

steps with respect to ανl,k and ζl,k following the procedure presented in [106]

PBPSK
e ≈

∫ ∞

0

∫ ∞

0

Nr∑

n=1

(Nr + n− 2)! |ζl,k|2Nr−n exp (−|ζl,k|
2σ2
H

)

(2σ2
H)Nr(σHσw)Nr−n+1(Nr − n)! 2Nr+n−1 Γ(n)Γ2(Nr)

×

exp(
−
∣∣(ανl,k + 1)ζl,k

∣∣
σHσw

)(
∣∣ανl,k + 1

∣∣)Nr−ndανl,kdζl,k. (4.2)

First, integrating with respect to ανl,k to obtain I1, i.e.

I1 =

∫ ∞

0

(
∣∣ανl,k + 1

∣∣)Nr−n exp

(
−
∣∣(ανl,k + 1)ζl,k

∣∣
σw σH

)
dανl,k. (4.3)

The solution for (4.3) is obtained using [107, Eq. (3.351.2)],

I1 =
(Nr − n)! exp(− |ζl,k|

σwσH
)

(
|ζl,k|
σwσH

)Nr−n+1

Nr−n∑

m=0

(
|ζl,k|
σwσH

)m

m!
. (4.4)

Similarly, integrating with respect to ζl,k results in

I2 =

∫ ∞

0

|ζl,k|Nr+m−1 exp (− |ζl,k| η)dζl,k, (4.5)

where η = (σw+2σH
2σ2
Hσw

). Solving (4.5) using [107, Eq. (3.351.3)], will obtain I2 as

I2 =
Γ(Nr +m)

ηNr+m
. (4.6)
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Figure 4.1: Noise distribution in 4-PAM modulated massive MIMO-OFDM withNt = 10
and Nr = 100.

Substituting I1 and I2 in (4.2), results in

PBPSK
e =

1

(2σ2
H)NrΓ2(Nr)

Nr∑

n=1

(Nr + n− 2)!I1I2
(σHσw)Nr−n+1(Nr − n)! 2Nr+n−1 Γ(n)

. (4.7)

After straightforward mathematical manipulations, the BER for massive MIMO-OFDM

systems with BPSK and 4-QAM modulation can be written as

PBPSK
e =

( σw
2σH

)Nr

2Nr−1Γ2(Nr)

Nr∑

n=1

Nr−n∑

m=0

2−n(Nr + n− 2)!Γ(Nr +m)

m! Γ(n)(1 + σw
2σH

)Nr+m
. (4.8)

4.2.1.2 4-Pulse Amplitude Modulation (4-PAM) and 16-QAM Modulation

The BER for higher QAM constellations can be determined using the relationship be-

tween the PAM and QAM schemes [31]

PM−QAM
s = 1− (1− P

√
M−PAM

s )2, (4.9)

PM−QAM
e =

PM−QAM
s

log2M
, (4.10)
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where PM−QAM
s and P

√
M−PAM

s denote the symbol error rate (SER) for the QAM, PAM

modulations, respectively, and PM−QAM
e is the BER for M-QAM. The SER for the 4-

PAM can be derived by exploiting the noise distribution in Fig. 4.1. For practical SNR

ranges, only 6 error events need to be considered that are distributed within 4 equiprobable

noise PDFs. Due to symmetry, the SER can be obtained by considering only one event.

The error probability generated by the noise PDF p(|ανl,k + 3|) can be calculated as

Ps1 =

∫ ∞

−2
p(
∣∣ανl,k + 3

∣∣)dαl,k. (4.11)

The result of this integration is similar to (4.1), hence, the SER for the 4-PAM modulation

can be written as

P 4−PAM
s =

6

4
Ps1 =

3( σw
2σH

)Nr

2NrΓ2(Nr)

Nr∑

n=1

Nr−n∑

m=0

2−n(Nr + n− 2)! Γ(Nr +m)

m! Γ(n) (1 + σw
2σH

)Nr+m
. (4.12)

Subsequently, the SER and the BER for 16-QAM can be determined by substituting (4.12)

into (4.9) and the outcome in (4.10). In general, the SER for the
√
M -PAM for

√
M ≥ 4

can be written as

P
√
M−PAM

s =
2(
√
M − 1)√
M

Ps1. (4.13)

The BER performance of the massive MIMO-OFDM systems are demonstrated in Fig 4.3

for a different number of receive and transmitted antennas at BPSK and 16-QAM schemes.

4.2.2 Signal to Noise Ratio (SNR)

Different approaches have been used to calculate the PDF of the SNR at the receiver. In

this section, the PDF of the SNR can be written based on the more accurate noise PDF

derived (3.37) [68]. The instantaneous SNR at the output of the ZFE can be written as,

γl,k =
Eb

2 (ανl,k)
2
. (4.14)

where, Eb is the bit energy. To derive the PDF for the SNR utilizing the noise PDF in

(3.37), the following expressions are used [74],
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• for y = ax2

py(y) =
1

2a
√
y/a

[
px

(√
y

a

)
+ px

(
−
√
y

a

)]
y > 0, (4.15)

• for y = 1
x

py(y) =
1

y2
px

(
1

y

)
. (4.16)

According to that, and by substituting (4.15) and (4.16) based on (4.14), the PDF of

the SNR can be written as

p(γl,k) =

√
Eb

(2 γl,k)3/2
p

(
ανl,k =

√
Eb

2 γl,k

)
,

=
Nr∑

n=1

(Nr + n− 2)!(2Nr − n)!( σw
2σH

)Nr

2Nr+n−1Γ2(Nr)(Nr − n)!Γ(n)

(
√
Eb)

Nr−n+1(
√

2 |γl,k|)n−3−Nr(√
Eb

2 |γl,k| + σw
2σH

)2Nr−n+1
.

(4.17)

Fig. 4.2 shows the PDF of the SNR at Nt = 10 transmit antennas and Nr = 160, 180, 200

receive antennas.

4.2.3 Outage Probability

In communication systems, the probability of not satisfying the required BER at a specific

SNR value (γth), is known as the outage probability [108].

In this section, the outage probability for the massive MIMO-OFDM systems after the

ZFE is derived using, Pout =
∫ γth
0

p(γl,k)dγl,k. However, the direct substitution of (4.17)

into this integral results in a very complicated integration that can not be solved. There-

fore, the equations (3.35) and (3.36) are substituted into (4.14) to perform the integration

of the outage probability as

Pout =

∫ ∞

0

∫ γth

0

Nr∑

n=1

√
Eb(Nr + n− 2)!

(√
Eb
2γl,k

ζl,k

)Nr−n

Γ2(Nr)(
√

2γl,k)3(2σ2
H)Nr

×

ζNrl,k exp (− ζl,k
2σ2
H

) exp(−
√

Eb
2γl,k

ζl,k
σHσw

)

(Nr − n)! 2Nr+n−1Γ(n)(σwσH)Nr−n−1
dγl,kdζl,k . (4.18)
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Figure 4.2: PDF of the SNR at the output of the ZFE with Nt = 10.

The first part of this integration has the form [107, Eq. (3.351.3)]

I1 =

∫ γth

0

exp(− ζl,k
√
Eb

σHσw
√

2γl,k
)

(
√

2γl,k)Nr−n+3
dγl,k

= exp(
−ζl,k

√
Eb

σwσH
√

2γth
)
Nr−n∑

m=0

(Nr − n)!(σwσH)Nr−n−m+1

m!(
√

2γth)m(
√
Ebζl,k)Nr−n−m+1

. (4.19)

Similarly, the second part of (4.18) can be solve as

I2 =

∫ ∞

0

ζNr+m−1l,k exp(−σw
√

2γth + 2σH
√
Eb

2σ2
Hσw
√

2γth
ζl,k)dζl,k

=
(Nr +m− 1)!(σHσw

√
2γth)

Nr+m

( σw
2σH

√
2γth +

√
Eb)Nr+m

. (4.20)

Hence, the outage probability can be written as

Pout =
Nr∑

n=0

Nr−n∑

m=0

(Nr + n− 2)!(Nr +m− 1)!( σw
2σH

)Nr(
√

2γth)
Nr(
√
Eb)

m

Γ2(Nr)Γ(n)m!2Nr+n−2(
√
Eb +

√
2γth

σw
2σH

)Nr+m
. (4.21)

The outage probability of massive MIMO-OFDM systems is demonstrated in Figs. 4.4

and 4.5 at Nt = 4, 10 and Nr = 100, 200 for BPSK and 16-QAM schemes, respectively.
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4.2.4 Channel Capacity

The channel capacity using ZFE and the effective noise PDF for the investigated massive

MIMO-OFDM system can be derived using [109]

C =

∫ ∞

0

log2(1 + γl,k)p(γl,k)dγl,k. (4.22)

An explicit solution to this integration using the available integration methods is not feasi-

ble. Alternatively, an exact solution that is numerically evaluated based on the trapezoidal

numerical integration method is applied to determine the solution of this integral. To

obtain a closed-form solution, three approximations are introduced to bound the exact

capacity at low and at high SNR, respectively.

4.2.4.1 At Low SNR (LB1)

At low SNR, the term log2(1 + γl,k) can be approximated to (
√
γl,k), and the capacity is

calculated using

C =

∫ ∞

0

√
γl,k p(γl,k)dγl,k . (4.23)

The solution for this integration involves the following step [107, Eq. (3.351.3)]

I3 =

∫ ∞

0

xN exp(−ηx)dx =
N !

ηN+1
. (4.24)

Thus, the lower bound on the capacity can be written as

C =
Nr−1∑

n=1

√
Eb(Nr + n− 2)!(Nr − n− 1)!(Nr)!

Γ(Nr)Γ(n)(Nr − n)!2Nr+n−0.5(σHσw)
. (4.25)

4.2.4.2 At Low SNR (LB2)

Another approximation at low SNR can be made when the term log2(1 + γl,k) is approxi-

mated to 1
loge(2)

(γl,k − (γl,k)
2

2
), and the capacity can be calculated as

C =
1

loge(2)

∫ ∞

0

(γl,k p(γl,k)−
(γl,k)

2

2
p(γl,k))dγl,k . (4.26)
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For simplicity, I4 and I5 are defined as

I4 =
1

loge(2)

∫ ∞

0

γl,k p(γl,k)dγl,k ,

I5 =
1

loge(2)

∫ ∞

0

(γl,k)
2

2
p(γl,k)dγl,k , (4.27)

which represent the decomposition of (4.26). This integration can be solved using (4.24)

and the result has the form

I4 =
Nr−2∑

n=1

√
Eb(Nr + n− 2)!(Nr − n− 2)!(Nr + 1)!(2σH

σw
)2

Γ2(Nr)Γ(n)(Nr − n)!2Nr+n loge(2)
, (4.28)

and

I5 =
Nr−4∑

n=1

√
Eb(Nr + n− 2)!(Nr − n− 4)!(Nr + 3)!(2σH

σw
)4

Γ2(Nr)Γ(n)(Nr − n)!2Nr+n+2 loge(2)
. (4.29)

Thus, the capacity bound at low SNR can be calculated using C = I4 − I5.

4.2.4.3 At High SNR (UB)

At high SNR, the term log2(1 + γl,k) can be approximated to log2(γl,k). Thus, the inte-

gration in (4.22) can be written as

C ≈
∫ ∞

0

log2(γl,k)p(γl,k)dγl,k . (4.30)

This integration can be solved in two steps, each of which requires the following integra-

tion [107, Eq. (4.352.1)]

I6 =

∫ ∞

0

loge(x)xN−1 exp(−ηx)dx ,

=
Γ(N)

ηN
[ψ(N)− loge(η)] , (4.31)

where ψ(N) = d
dN

loge(Γ(N)) [107, Eq. (8.360)]. Hence, the upper bound of the channel

capacity (4.30) can be written as
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C =
Nr∑

n=1

(Nr + n− 2)!

loge(2)Γ(Nr)Γ(n)2Nr+n−1
(2ψ(Nr)− 2ψ(Nr − n+ 1)+

2 loge(
σH
σw

) + loge(Eb)) . (4.32)

In the next section, the PEP and the upper bound for the convolutionally coded and turbo

coded massive MIMO-OFDM systems will be calculated.

4.3 Bounds for Coded Massive MIMO-OFDM Systems

In this section, the PEP between any two different code words will be derived based

on the noise distribution after the ZFE shown in (3.37). Then, an upper-bound for the

convolutionally coded massive MIMO-OFDM systems is obtained by combining this PEP

with the error weights listed in [96, 97]. In addition, an average-bound for turbo coded

massive MIMO-OFDM systems is derived using the method introduced in [102].

4.3.1 Pairwise Error Probability

The probability of incorrectly decoding the code word s2 instead of the code word s1 is

known as the PEP. Based on (3.3) and the noise distribution of (3.37), the PEP can be

written as

Ps1→s2 = p(||ŝ− s2||2 ≤ ||ŝ− s1||2) ,

= p(||s1 + n̂− s2||2 ≤ ||s1 + n̂− s1||2) ,

= p(n̂ ≤ ||s2 − s1||
2

) , (4.33)

where Ps1→s2 is the PEP. Next, by substituting ||s2 − s1|| = 2
√
Ecd, where, d is the

hamming distance for the code words, and Ec is the coded bit energy. Thus, the PEP can

be written as

Ps1→s2 =

∫ ∞
√
Ecd

p(ανl,k)dα
ν
l,k . (4.34)
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The result of this integration can be written in the form

Ps1→s2 =
( σw
2σH

)Nr

2Nr−1Γ2(Nr)

Nr∑

n=1

Nr−n∑

m=0

2−n(Nr + n− 2)!Γ(Nr +m)

m! Γ(n)(1 + σw
2σH
√
Ecd

)Nr+m(Ecd)
Nr
2

. (4.35)

4.3.2 Upper-Bounds for Convolutionally Coded Massive MIMO-OFDM

Systems

According to [96, 97], the upper- bound for the convolutionally coded systems has been

shown to have the form

Pb <

∞∑

d=dfree

cdPs1→s2(d), (4.36)

where cd is the sum of error events for each d. In this work, the PEP for the massive

MIMO-OFDM systems can be described using (4.35). Thus, the upper-bound equation

for the coded massive MIMO-OFDM systems can be written as

Pb <
∞∑

d=dfree

cd(
σw
2σH

)Nr

2Nr−1Γ2(Nr)

Nr∑

n=1

Nr−n∑

m=0

2−n(Nr + n− 2)!Γ(Nr +m)

m! Γ(n)(1 + σw
2σH
√
d
)Nr+md

Nr
2

. (4.37)

In Appendix A, the number of error events cd are listed in a tables for different code

generators and for code rates 1/2, 1/3 and 1/4, respectively [96, 97].

4.3.3 Asymptotic Upper-Bounds for the Turbo Coded Massive MIMO-

OFDM Systems

The excellent performance of turbo codes in wireless communication systems has at-

tracted much attention. However, deriving the bounds for these codes is more complicated

than for convolutional codes as they consist typically of two PCCCs separated by an inter-

leaver. Serial concatenation is common too. An average-bound has been derived in [102]

using the input-redundancy weight enumerating function (IRWEF) for the combination of

two convolutional codes involved in the construction of the turbo code. First, the condi-

tional weight enumerating function (CWEF) is derived from the transfer function of each

code, then an average CWEF (ACpιj,δ%(ω, Z)) is calculated using

A
Cp
ιj,δ%(ω, Z) =

AC1
ιδ (ω, Z) · AC2

j% (ω, Z)(
Nι
ω

) , (4.38)
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where AC1
ιδ (ω, Z) and AC2

j% (ω, Z) are the CWEFs of the first and the second convolutional

codes, denoted C1 and C2, respectively; ω is the Hamming weight of the input infor-

mation, Nι is the interleaver length, and finally,
(
Nι
ω

)
is the binomial distribution of the

parameters Nι and ω. Hence, the IRWEF can be obtained using the average CWEF as

follows,

AC(W,Z) =
∑

ιj,δ%

W ιj,δ% ACpιj,δ%(ω, Z). (4.39)

The average bound of the turbo coded system has the form

Pb ≈
∑

d

DdPs1→s2(d), (4.40)

where Dd factors are listed in Table 4.3 for different interleaver lengths [102] and can be

calculated using

Dd =
∑

f+ω=d

ω

d
Aω,f , (4.41)

where f is the Hamming weight of the parity bits.

4.4 Simulation and Results

The simulations obtained in this section are discussed here to verify the accuracy of the

derived equations. The system under consideration is massive MIMO-OFDM systems

with Nr >> Nt, and uncorrelated frequency-selective Rayleigh fading channels. For the

simulation purposes, the number of receive antennas were selected as Nr = 100, 200, 500

and the transmit antennas were Nt = 4, 10. In Section 4.2.1, the PDF of the effec-

tive noise that is presented in (3.37) is used to derive the BER equation for the uncoded

massive MIMO-OFDM systems with different modulation types. The theoretical BER

performance of the BPSK/4-QAM and the 16-QAM schemes are derived in Section 4.2.1

and the results are presented in (4.8), (4.9), (4.10), and (4.12). These BER equations

are further compared to the Monte-Carlo simulations with different receive and transmit

antennas to verify their accuracy and the results are presented in Figs. 4.3a) and 4.3b). In-

specting these results at Nt = 4, 10 and Nr = 100, 200 reveal the accuracy of the derived

equations compared to the Monte-Carlo simulations, which shows close match between

the empirical and the theoretical plots especially at high SNR for the 16-QAM scheme.

In Section 4.2.2, the PDF of the SNR after the MIMO detector at the receiver side

is derived based on the effective noise PDF that is derived in the previous chapter. Then
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(a) Nt = 4, 10 and Nr = 100, 200 for BPSK/4-QAM.
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(b) Nt = 4, 10 and Nr = 100, 200 for 16-QAM.

Figure 4.3: BER performance for massive MIMO-OFDM system with Nt = 4, 10 and
Nr = 100, 200, and for (a) BPSK/4-QAM and, (b) 16-QAM. The dotted red lines indicate
the target BER that is equivalent to γth.
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the SNR PDF of (4.17) is further used to derive the outage probability for the massive

MMO-OFDM system as shown in (4.21). In addition, the BER simulations of Fig. 4.3

is used to obtain the target SNR (γth) that is equivalent to the target error performance.

The simulation of the outage probability derived in (4.21) is depicted in Figs. 4.4 and

4.5 at BER = 10−2 and 10−4 for BPSK modulation and 16-QAM scheme, respec-

tively. The equivalent target SNR for these modulations and for the selected Nt, Nr

combinations of these figures can be listed for the BPSK modulated system as γth =

−5,−9.5,−8.25,−12.5 for Nt = 4 and γth = −1,−5.5,−4.25,−8.5 for Nt = 10.

While for the 16-QAM scheme, the equivalent target SNRs are γth = −1,−6,−4.5,−9

for Nt = 4 and γth = 3,−1.5,−0.5,−4.5 for Nt = 10, respectively.

To illustrate, the target SNR for the BPSK modulated system of Nt = 10 and Nr =

100 at BER=10−2 is γth = −5.5 dB, and at BER = 10−4 the target SNR is γth = −1.

Similarly, based on the selected target BER, the target SNR can be achieved at any Nt, Nr

antenna configuration for the desired massive MIMO-OFDM systems. Inspecting the

results at SNR = −10 dB show that the outage probability Pout = 0.28 for the case of

Nt = 10, Nr = 100 at BER=10−2, while Pout = 0.06 when the BER=10−4 as shown in

Fig. 4.4 b).

In addition, the simulation of the outage probability for 16-QAM scheme is depicted

in Fig. 4.5 at BER = 10−2 and 10−4, respectively. The equivalent target SNR for this

modulation and for the selected Nt, Nr combination of this figure can be listed as γth =

−1,−4.5,−6,−9 for Nt = 4 and γth = 3,−0.5,−1.5,−4.5 for Nt = 10, respectively.

The results of Fig. 4.5 are obtained by substituting these γth values in (4.21) for 16-QAM

scheme. Similarly, the case ofNt = 10 andNr = 100 is depicted in Fig. 4.5 b) atBER =

10−2 with γth = −1.5 dB, and at BER = 10−4 with γth = 3. Inspecting these results at

SNR = −5 dB show that the outage probability Pout = 0.2 when the BER=10−2, while

Pout = 0.04 when the BER=10−4. The result of Figs. 4.4 and 4.5 is summarized in

Table 4.1 for the selected γ parameters at BER = 10−2 and 10−4, respectively.

The simulation of the exact capacity and its upper and lower bounds derived in Sec-

tion 4.2.4 are presented in Figs 4.6 and 4.7 for BPSK modulation, and in Figs 4.8 and 4.9

for 16-QAM scheme. The number of receive and transmit antennas for the test bed was

Nr = 100, 200 and Nt = 4, 10, respectively. These figures demonstrate the increase in

the data throughput when the number of transmit and receive antennas are increased and

for different modulation types.

In Figs. 4.6 and 4.7, it is observed that the capacity bounds approach the exact closed-
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(a) Nt = 4 and Nr = 100, 200 at γth = −5,−9.5,−8.25,−12.5 dB.
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(b) Nt = 10 and Nr = 100, 200 at γth = −1,−5.5,−4.25,−8.5 dB.

Figure 4.4: The outage probability for massive MIMO-OFDM systems at Nr = 100, 200
and (a) Nt = 4 (b) Nt = 10, at BPSK modulation.
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(b) Nt = 10 and Nr = 100, 200 at γth = 3,−1.5,−0.5,−4.5 dB.

Figure 4.5: The outage probability for massive MIMO-OFDM systems at Nr = 100, 200
and (a) Nt = 4 (b) Nt = 10, at 16-QAM scheme.
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Table 4.1: The outage probability of the selected system of Figs. 4.4 and 4.5 for BPSK
and 16-QAM schemes, respectively.

Nt Nr
BER=10−2 BER=10−4

γth Pout γth Pout

BPSK

4 100 -5 0.25 -9.5 0.05
4 200 -8.25 0.017 -12.5 10−4

10 100 -1 0.25 -5.5 0.06
10 200 -4.25 0.22 -8.5 2.5× 10−4

16-QAM

4 100 -1 0.3 -6 0.07
4 200 -4.5 0.03 -9 5.5× 10−3

10 100 3 0.2 -1.5 0.04
10 200 -0.5 0.009 -4.5 6× 10−5

form capacity for the selected SNR range. First, at SNR values higher than -10 dB for

Nt = 4, Nr = 100, the upper bound of (4.32) become almost identical with the exact

capacity, while the lower bounds of (4.25) and (4.29) are approaching the exact closed-

form capacity for SNR values less than -27 and -18 dB, respectively.

Similarly, the exact closed-form capacity and its bounds for the 16-QAM scheme are

presented in Figs. 4.8 and 4.9. The upper bound of (4.32) approaches the exact capacity

for Nt = 4, Nr = 100 and SNR > 0, while the lower bounds of (4.25) and (4.29)

are approaching the exact closed-form capacity for SNR values less than -15 and -8 dB,

respectively.

The range of SNR values that result in convergence to the capacity bounds for the

selected system of Figs. 4.6 to 4.9 are presented in Table 4.2. Furthermore, it is observed

that the derived capacity bounds have better convergence at lower modulations, such as

BPSK and 4-QAM.

Table 4.2: Capacity bounds convergence.
Nt Nr Upper Bound Lower Bound 1 Lower Bound 2

BPSK

4 100 SNR > −10 dB SNR < −10 dB SNR < −20 dB
4 200 SNR > −15 dB SNR < −15 dB SNR < −25 dB

10 100 SNR > −8 dB SNR < −7 dB SNR < −16 dB
10 200 SNR > −10 dB SNR < −12 dB SNR < −22 dB

16-QAM

4 100 SNR > −4 dB SNR < −9 dB SNR < −15 dB
4 200 SNR > −5 dB SNR < −11 dB SNR < −22 dB

10 100 SNR > 0 dB SNR < −6 dB SNR < −12 dB
10 200 SNR > −4 dB SNR < −10 dB SNR < −16 dB

In Section 4.3.1, the PEP for the coded massive MIMO-OFDM systems is derived

based on the noise PDF after the ZFE to be used in the performance estimation of the

coded systems. In Section 4.3.2, an upper-bound to the convolutionally coded massive
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Figure 4.6: The Ergodic Capacity for massive MIMO-OFDM systems with BPSK modu-
lation at Nt = 4, 10 and Nr = 100.
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Figure 4.7: The Ergodic Capacity for massive MIMO-OFDM systems with BPSK modu-
lation at Nt = 4, 10 and Nr = 200.
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Figure 4.8: The Ergodic Capacity for massive MIMO-OFDM systems with 16-QAM
scheme at Nt = 4, 10 and Nr = 100.
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Figure 4.9: The Ergodic Capacity for massive MIMO-OFDM systems with 16-QAM
scheme at Nt = 4, 10 and Nr = 200.
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4.4 Simulation and Results

MIMO-OFDM systems has been derived by adopting this PEP to the error weights derived

from the transfer function of the desired convolutional code [96, 97]. It is observed that

the upper-bounds in Figs. 4.10 and 4.11 are controlled by the index of cd in Table A.1 as

will be explained next.

First, the performance of Fig. 4.10 is for the convolutional coded massive MIMO-

OFDM system with Nr = 200 and Nt = 4 and 10, respectively. The simulation of this

figure shows that when the index of cd is higher than 10 a divergence in upper-bound

performance is occurred that tends to be a straight line to bound the simulation. However,

reducing this index will result in a tighter bound that depends on the constraint length of

the desired convolutional code. For instance, the (23, 35)8 code has an index of 4, while

the (247, 371)8 code has an index of 6.

Second, the performance of Fig. 4.11 is performed to observe the effect of changing

the number of receive antennas on the accuracy of the upper bound. In this part, the

number of receive antennas is selected as Nr = 500 with Nt = 4, 10. As a result, the

impact of increasing Nr on the upper-bound can be observed in Fig. 4.11b) as a small

increase in the index from 6 to 7. However, there is no major change in the performance

for the other plots.

In Section 4.3.3, an asymptotic upper-bound to the performance of the turbo coded

massive MIMO-OFDM systems is estimated based on the CWEF method described in

[103, 102]. The earlier derived PEP is used along with the Dm factors that are derived

using the IRWEF and listed in Table 4.3 for the (5, 7)8 PCCC and for different inter-

leaver lengths. The results shown in Figs. 4.12 and 4.13 demonstrate the bound for the

turbo coded systems with Nr = 200, 500 and Nt = 4, 10, respectively. The upper-bound

in these figures shows a close match to the highest iteration of the turbo coded massive

MIMO-OFDM system with less than 0.15 dB difference in BER performance. It is ob-

served that when the number of transmitting and receiving antennas has been changed,

there is no major effect on the performance of the upper-bound. It is also observed that

the highest iteration approaches the upper-bound near the 10−3 region and stay within that

bound, while the other iterations are approaching that limit at different BER.
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Figure 4.10: Upper-bound for convolutionally coded massive MIMO-OFDM system with
Nt = 4, 10, Nr = 200 for (a) (23, 35)8 (b) (247, 371)8.
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Figure 4.11: Upper-bound for convolutionally coded massive MIMO-OFDM system with
Nt = 4, 10, Nr = 500 for (a) (23, 35)8 (b) (247, 371)8.
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Table 4.3: Dm coefficients for the BER evaluation of the PCCC [102].
Hamming Nπ

distance 100 1000 10000
8 3.8900 E-02 3.9881 E-03 3.9988 E-04
9 7.6590 E-02 7.9605 E-03 7.9960 E-04

10 0.1136 1.1918 E-02 1.1991 E-03
11 0.1508 1.5861 E-02 1.5985 E-03
12 0.1986 1.9887 E-02 1.9987 E-03
13 0.2756 2.4188 E-02 2.4017 E-03
14 0.4079 2.9048 E-02 2.8102 E-03
15 0.6292 3.4846 E-02 3.2281 E-03
16 1.197 6.5768 E-02 6.0575 E-03
17 2.359 0.1457 1.3697 E-02
18 4.383 0.2984 2.8543 E-02
19 7.599 0.5472 5.2989 E-02
20 12.58 0.9171 8.9441 E-02
21 20.46 1.437 0.1403
22 33.31 2.144 0.2082
23 54.65 3.090 0.2957
24 91.23 4.465 0.4177
25 154.9 6.716 0.6133
26 265.5 10.67 0.9577
27 455.6 17.65 1.574
28 779 29.61 2.646
29 1327 49.31 4.430
30 2257 80.57 7.267
31 3842 128.6 11.60
32 6556 201.3 18.04
33 11221 311.5 27.57
34 19261 481.2 41.88
35 33143 748.8 63.94

4.5 Chapter Summary

In this chapter, the BER for massive MIMO-OFDM systems is derived by using the effec-

tive noise PDF after the ZFE in (3.37) for different modulation types. This BER is verified

using the Monte-Carlo simulations of different transmit and receive antenna combinations

and the results have shown a close match between the empirical and theoretical plots.

In addition, the PDF of the SNR after the ZFE is obtained using the noise PDF derived

in (3.37). Then this PDF is used to derive the outage probability and the channel capacity

for the massive MIMO-OFDM systems. In addition, an upper and two lower bounds were

derived for the channel capacity based on different assumptions and their performance

were compared to the exact capacity. The simulation results verified the accuracy of the

derived equations, and the upper bounds have successfully approached the exact capacity
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Figure 4.12: Asymptotic Upper-Bound turbo coded massive MIMO-OFDM system with
(5, 7)8 generator and Nr = 200 for (a) Nt = 4 (b) Nt = 10.
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(a) Nt = 4, Nr = 500
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Figure 4.13: Asymptotic Upper-Bound turbo coded massive MIMO-OFDM system with
(5, 7)8 generator and Nr = 500 for (a) Nt = 4 (b) Nt = 10.
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within the selected range.

The PEP is derived for the coded system and used to obtain an upper-bound for con-

volutionally encoded massive MIMO-OFDM systems. The results have bounded the per-

formance for different error weight values and indices, and the upper-bound performance

became very tight for the two selected codes. In addition, the turbo coded system is

bounded within 0.15 dB of the Monte-Carlo simulations by using the derived PEP and the

Dm terms given for the (5, 7)8 PCCC using BPSK/4-QAM modulation.
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Chapter 5

Fixed-Point Arithmetic Detectors for

Massive MIMO-OFDM Systems
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5.1 Introduction

5.1 Introduction

Massive MIMO systems have become a key technology for future generations of wireless

communications. Research in such systems is fuelled by the increased data rate require-

ments of modern multimedia applications. One of the major challenges in massive MIMO

transmission is the increase in the computational complexity at the receiver due to the high

number of receiving antennas, especially when using sophisticated non-linear demodula-

tion schemes such as successive interference cancellation and sphere detectors. On the

other hand, linear detectors require fewer operations without significantly compromising

performance. Past researches [110, 111] have been conducted to show the behaviour of

the MIMO system with few antennas at both sides (4x4) using MMSE utilizing a QR

decomposition (QRD) detector in a coded system with a hardware implementation. On

the other hand, a QRD based Vertical-Bell Laboratories Layered Space-Time (V-BLAST)

detector has been implemented in [112], which takes the fixed point very large scale inte-

gration (VLSI) implementation into consideration with 4 antennas at both the transmitter

and receiver. In other papers, [113] implemented the SD without using any decomposi-

tion scheme, while [114, 115] used fixed point arithmetic with QRD and Cholesky de-

composition. Furthermore, in [116, 117], different techniques have been used with fixed

point arithmetic to implement the MIMO system as FPGA system or as VLSI. Finally, a

large scale implementation for the massive MIMO receiver with fixed point representa-

tion [67] has used on FPGA system with reduced complexity Neumann series expansion

to reduce the implementation complexity. The MIMO detector for the coded massive

MIMO-OFDM system in Chapters 3 and 4 of this thesis was ZFE with soft modulation

that is derived based on Neumann matrix inversion method.

The contribution of this chapter can be summarized in the following points,

• Different decomposition schemes are used for detection in a massive MIMO-OFDM

system with fixed point arithmetic to simulate the hardware implementation.

• The standard IEEE 754 double and half precision with a word length of 64 and 16

bits are used in the simulations in addition to a user-defined precision of 12 and 10

bits to verify the ability of each detector. In addition, the complexity required by

each detector are estimated and tabulated.
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Figure 5.1: Massive MIMO-OFDM Transceiver.

5.2 System Model

In this chapter, the uplink Nr × Nt MIMO-OFDM system depicted in Fig. 5.1 is con-

sidered, where Nt and Nr represent the number of transmitting and receiving antennas,

respectively, with Nr >> Nt. After OFDM demodulation, i.e. removing the CP and

performing the FFT operation, the received signal can be given as

xk = Hksk + Wk, (5.1)

where xk ∈ CNr×1 are the received signal samples in frequency domain, sk ∈ CNt×1 are

the transmitted information symbols that are modulated using M-QAM scheme, Hk ∈
CNr×Nt is the channel matrix in frequency domain for the k-th FFT sub-carrier, where

k = 1, 2, · · · , K, and finally, Wk ∈ CNr×1 is the FFT of the additive white Gaussian

noise (AWGN) samples in time domain. The detected information symbols are obtained

using

ŝk = H†kxk, (5.2)

where H† denotes the pseudoinverse of H if Nr 6= Nt and H† = H−1 if Nr = Nt. It

is worth noting that the index k will be removed from the subsequent equations to main-

tain simplicity. It is assumed that signals propagate through frequency selective fading

channels that are not time selective over the OFDM symbol duration.

5.3 MIMO Detectors

The aim of the MIMO detector is to recover the transmitted symbols, ŝ, with the lowest

probability of error by utilizing the lowest level of precision in the receiver using different

decomposition schemes. This has been motivated by the need to reduce the number of bit

representations required in the detection of the massive MIMO system in order to reduce
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the hardware implementation and power consumption requirements. The number of op-

erations required by these detectors can be very large and their computational complexity

cost will be very high if implemented with double or single precision representation.

5.3.1 ZFE Detector

The matrix inversion method used here is the iterative Moore-Penrose pseudo inverse

method [118] that has the advantage of reduced complexity detection compared to other

types of MIMO detectors. This procedure is illustrated in Algorithm 3 and depends on

successive steps to calculate the inverse of rank N − 1 to the matrix of rank N . This, in

turn, reduces the complexity of calculations as described later in this chapter. The general

ZFE equation can be written as

H−1ZFE = (HHH)
−1

HH , (5.3)

where the term (HHH) represents the Gram matrix, which is a symmetrical positive

definite square matrix. Accordingly, Cholesky, LU and LDLT factorization can be used

to implement the inverse of these matrices in addition to a Neumann approximation.

Algorithm 3 : Iterative ZFE Detector
1: procedure Ainv = pinv(A)
2: set k = 1
3: Ak = ak
4: A†k = (AHk Ak)

−1AHk
5: for k ← 2 to N do
6: ck = (I −Ak−1A†k−1)ak
7: γk = aHk (A

H
k−1)

†A†k−1ak

8: bk =

{
c†k, if ck 6= 0,

(1 + γ)−1aHk (A
H
k−1)

†A†k−1, if x = 0.

9: A†k =
[
A†k−1 −A

†
k−1akbk

bk

]

10: end for
11: Ainv ← A†k

The implementation of the ZFE and MMSE detectors can be achieved based on dif-

ferent decomposition techniques utilizing Gram matrix, that is

A =





(HHH) for ZFE,

(HHH + σ2IN) for MMSE.
(5.4)

According to that, Cholesky, LU and LDLT factorization can be applied to implement the
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inverse for these matrices as will be illustrated next.

5.3.2 Cholesky Factorization Based Detector

Each positive definite symmetric matrix has a special factorization that exploits its definite

and symmetry which called Cholesky factorization [40, 119]. This factorization can be

applied to A matrix to get

A = LLH , (5.5)

where L is a lower triangular matrix. The inverse of this decomposition can be calculated

using

A−1 = (LH)−1L−1 = (L−1)HL−1, (5.6)

which will require calculating the inverse of a lower triangular matrix L once. The ef-

ficient way to implement the inverse of this matrix is to use the block matrix inversion

method shown below

L−1 =


L11 0

L21 L22



−1

=


 L−111 0

−L−111 L21L
−1
22 L−122


 . (5.7)

According to this, only two matrix inversions with sizeN/2 are required to find the inverse

of the lower triangle matrix. This inversion technique is applied here to the relevant

decomposition schemes such as the LU and the pivoted LDLT factorization to reduced

the complexity of inversion. Algorithm 4 demonstrates the procedure of calculating the

lower and upper triangular matrix inversion.

Algorithm 4 Triangular matrix inverse
procedure Finv = Tri inv(F, ′option′)

if (Lower ← option) then

F =

[
F11 0
F21 F22

]
,

Finv =

[
F11

−1 0
−F11

−1F21F22−1 F22−1

]
.

else if (Upper ← option) then

F =

[
F11 F12

0 F22

]
,

Finv =

[
F11

−1 −F22
−1F12F11

−1

0 F22
−1

]
.

end if
Return Finv
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5.3.3 LU Factorization Based Detector

Linear system solutions can be made easier if it involves triangular matrix in its design.

LU factorization is a method that can be used to rewrite the matrix Ai in a (Lower-Upper)

triangular matrix form. This decomposition method is limited to the square matrices and

it is applied here to the Gram matrix shown in (5.4) such that

A = LU , (5.8)

where L and U are the lower and upper matrices of LU decomposition. Block matrix

inversion method is used here to find the upper and the lower triangular matrix inverse.

The inverse of the lower matrix L can be obtained using (5.7) while the upper triangular

matrix U can be calculated using

U−1 =


U11 U12

0 U22


 =


U−111 −U−122 U12U

−1
11

0 U−122


 , (5.9)

and the matrix inversion using LU factorization for Gram matrix can be calculated using

Ai
−1 = Ui

−1Li
−1 . (5.10)

5.3.4 LDLT Factorization with Symmetric Pivoting Based Detector

This factorization consists of a lower triangular matrix L and a diagonal D matrix with

matrix pivoting P to ensure the symmetric positive definite condition of Gram matrix A

as [40, 120]

A = PLDLHPH , (5.11)

where, P,L and D are the permutation orthonormal matrix, the lower triangular matrix

and the diagonal matrix of LDLT decomposition of A. Calculating the matrix inversion

based on this factorization has the form

A−1 = PH(L−1)HD−1L−1P . (5.12)

The lower matrix inversion can be calculated once again using (5.7) and the rest of the

operations are only a sparse matrix multiplication. The main purpose of using the or-

thonormal permutation matrices in this equation is to maintain the matrix symmetry and
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positively defined.

5.3.5 Gram Matrix Based Detector

In this MIMO detector, the LU, Cholesky, and LDLT factorization techniques are used to

calculate the Gram matrix inverse. This detector will be used to investigate the effect of

these decomposition schemes on the performance of the fixed point MIMO detector. Al-

gorithm 5 was used in the simulation with fixed point design to compare the performance

of these detectors. Since all of these detectors involve a triangular matrix inverse, a block

matrix inverse procedure (Tri inv) was used to reduce the complexity of inversion to the

one-half of the full matrix inversion complexity as shown in Algorithm 4.

Algorithm 5 : Gram matrix inverse
procedure Ainv = Gram inv(A, ′option′)

if (LU ← option) then
A = LU ,
Linv = Tri inv(L, ′Lower′) ,
Uinv = Tri inv(U, ′Upper′) ,
Ainv = UinvLinv ,

else if (Cholesky ← option) then
A = LLH ,
Linv = Tri inv(L, ′Lower′) ,
Ainv = (Linv)

HLinv ,
else if (LDLT ← option) then

A = PLDLHPH ,
Linv = Tri inv(L, ′Lower′) ,
Dinv = diag(1./diag(D)) ,
Ainv = PHLH

invDinvLinvP ,

end if
Return Ainv

5.3.6 Neumann-Series Approximation

This method has been demonstrated previously in Section 3.4. The results obtained here

are based on previous studies [5, 67, 121], that used n limit as n = 1, 2, and 3 with large

matrix size. The increase in the receiver diversity in the aforementioned system improves

the system performance at low values of n. The procedure that is used to simulate this

detector is illustrated in Algorithm 6 for the channel matrix H and for n limit. Based on

Neumann approximation method, the number of columns and rows have to be Nr ≥ Nt.

However, if this condition has not satisfied, then step 6 will solve this issue by calculating
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Gram matrix for the transpose of H. This algorithm depends mainly on the diagonal

dependent property of the Gram matrix when the number of columns is higher than the

number of rows.

Algorithm 6 : Neumann Approximation
1: procedure Hinv = Neu inv(H, n)
2: [Nr, Nt] = size(H)
3: if Nr ≥ Nt then
4: B = HHH,
5: else if Nr < Nt then
6: C = HT , B = CHC,

7: end if
8: D = diag(B),
9: E = B−D,

10: Dinv = 1/D,
11: Initialization:
12: Sum = Dinv, Mul = −Dinv ·E,
13: For k = 1 to n
14: Sum = Sum+Mul ·Dinv,
15: Mul = (−Dinv ·E) ·Mul,
16: end for
17: if Nr ≥ Nt then
18: Hinv = Sum ·HH ,
19: else if Nr < Nt then
20: Cinv = Sum ·CH ,
21: Hinv = CT

inv

22: end if
23: Return Hinv.

5.3.7 QR Factorization Based Detector (QRD)

The QRD is used here as a SIC with the MGS procedure as demonstrated in Section

2.4.3.1, in which matrix Q ∈ CNr×Nt and the upper triangular matrix R ∈ CNt×Nt[122]

are the QR-factorization of H. The transmitted signal here can be recovered by using

Algorithm 7 which will first multiply the received signal by the Hermitian of the or-

thonormal matrix Q. Then, the back substitution procedure reconstructs the transmitted

streams completely in Nt steps.

5.4 Fixed Point Representation

The aim of this chapter is to show the performance of different decomposition schemes

used in MIMO detectors to equalize the channel effects. The fixed point calculations are

applied to the output of the FFT of the channel matrix and the received signal in addition
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5.4 Fixed Point Representation

Algorithm 7 : QRD-SIC
1: procedure s̃ = SIC(H,x)
2: QR← H
3: y = QHx = Rs+QHn

4:




y1
y2
...
yNt



∼=




r11 r12 · · · r1Nt
0 r22 · · · r2Nt
...

...
. . .

0 0 · · · rNtNt







s1
s2
...
sNt


 ,

5: s̃Nt =
yNt
rNtNt

,

6: s̃Nt−1 =
yNt−1 − rNt−1Nt s̃Nt

rNt−1Nt−1
,

7:
...

8: s̃1 =
y1 − · · · − r1Nt s̃Nt

r11
.

9: Return s̃.

Sign

s Exponent (e) Fraction ( f )

Word Length, w

Figure 5.2: Numbers representation with fixed point arithmetic.

to the decomposition schemes above to simulate the behavior of the implemented MIMO

detector.

The standard IEEE 754 precision can be divided according to Fig. 5.2 into half, single,

double and quadruple precision [123]. The first three of the latter are the most popular

types and can be represented using

X = (−1)s(1 +

f∑

i=1

bf−i2
−i)2e−z , (5.13)

where s is the sign, and e, f and z are the exponent, fraction length and the zero-offset

for that number, respectively. The zero-offset equals to z = 2e−1 − 1, which is 1023 and

15 for double and half precision, respectively. The user-defined precision enables the use

of different levels of accuracy depending on the required word length to be used. A word

length of 12 bits and 10 bits were used to verify the performance of each detector at a

reduced precision detection.

The effect of reducing the precision on the mathematical calculations can be illustrated
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5.5 Complexity Analysis

using matrix A with 4× 2 dimensions such that

A =




0.5377 0.3188

1.8339 −1.3077

−2.2588 −0.4336

0.8622 0.3426



.

Calculating the pseudo-inverse of this matrix with double precision format results in

B =


0.0751 0.1374 −0.2705 0.1120

0.1843 −0.5559 −0.3265 0.2122


 ,

while at half precision, the pseudo-inverse can be written as

B̃ =


0.0752 0.1377 −0.2715 0.1123

0.1846 −0.5557 −0.3262 0.2119


 .

To observe the effect of precision reduction on these calculations, the element-wise abso-

lute error can be calculated using |B− B̃|, such that

E =


0.1117 0.3314 0.9400 0.2599

0.2385 0.2624 0.2886 0.3075


 ∗ 10−3.

The impact of precision reduction on the performance of the massive MIMO-OFDM

systems using several detectors and with different precision formats are further studied in

this chapter and the results are discussed in Section 5.6.

5.5 Complexity Analysis

An approximate calculation that depends on gaxpy algorithm [40] is introduced here to

calculate the complexity required by each MIMO detector. According to this algorithm,

the number of operations is a general expression used to identify any mathematical oper-

ation.

Referring back to the methods of MIMO detection illustrated in Section 5.3, the imple-

mentation of the ZFE detector used in this work has a complexity ofO(9Nr+2NrNt(Nt−
4)) operations, which is a reduced complexity approach to find the Moore-Penrose matrix

inversion compared to the traditional ZFE implementation. The MIMO detector based on
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Figure 5.3: Complexity calculations required by each method.

the Gram matrix inverse were implemented using three different decomposition schemes

to compare their individual performance.

Method Nr = 20 Nr = 50 Nr = 100

Iterative ZFE 2580 6450 12900
Cholesky 6200 12500 23000
LDLT 7410 13710 24210
LU 6867 13167 23667
QRD-SIC 4300 10600 21100
Neumann, n = 2 5630 11930 22430
Neumann, n = 4 11050 17350 27850

Table 5.1: Table of operations required by each method at Nt = 10 transmitters and
Nr = 20, 50 and 100 receivers.

Firstly, the Cholesky implementation requires in total O(2N2
t Nr + 2N3

t +NtNr) op-

erations to implement the MIMO detector including calculations of the triangular matrix

inverse. The second is the LDLT-based MIMO detector requiring O(N2
t (2Nr + 2) +
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5.5 Complexity Analysis

Nt(Nr + 1) + 3N3
t ) operations to be implemented as it requires a diagonal matrix in-

verse in addition to the lower triangular inverse. The third Gram matrix-based MIMO

detector is LU-factorization, which requires calculating the triangular inverse twice and

takes O(N2
t (2Nr + 16Nt/6) + NtNr) operations. The QRD has been used as a suc-

cessive interference cancellation procedure with backward substitution, and this requires

O(N2
t (2Nr + 1) + NtNr) operations. Finally, matrix inversion with the Neumann series

expansion needsO(Nt(3+Nr)+2N2
t (2+Nr)+N3

t ) operations, when n = 2 and requires

O(5N + 8N2 + 6N3 + 2N2Nr +NNr) operations for n = 4. The numbers of operations

required in the simulations are presented in Table. 5.1 and Fig. 5.3 with different receive

antennas and at Nt = 10 transmitters.
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5.6 Simulation and Results

The performance of the MIMO detectors will be affected by the level of error resulting

from calculating the matrix inversion in the methods above with reduced precision. This

will result in degradation in the BER with respect to the SNR as the precision decreases. It

is worth noting that Neumann detector used in the simulation of this chapter refers to the

detector used in [67] which is different than the ZFE detector used in the coded massive

MIMO system of the previous chapters.

The simulations here assume Nt = 4, 10 transmitting and Nr = 100, 200 receiving

antennas as shown in Figs. 5.4, 5.5, 5.6 and 5.7 for 4-QAM modulated system and in

Figs. 5.8, 5.9, 5.10 and 5.11 for 16-QAM scheme to simulate the massive MIMO sce-

narios. Comparing the performance of these detectors at double and single precision will

give similar performance since the error resulting from the calculations remains small. As

the precision of the calculations decreases to half precision, the performance of the Neu-

mann approximation will start to diverge and can not be considered in the detection at half

precision. The performance of the LU detector will degrade enormously due to the large

number of operations required by this detector. In comparison, the other detectors have no

major effect on the performance at half precision detection, as illustrated in part (a) of the

Figs. 5.8, 5.9, 5.10 and 5.11. Group-A detectors represent, Neumann (n=4,2)(64,11,52),

Cholesky (64,11,52), Cholesky (16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), ZFE

(64,11,52), LDLT (64,11,52), LDLT (16,5,10) and LU (64,11,52), and they are exhibit

similar performance.

To fulfill the requirements of hardware implementation, the calculations of each de-

tector are made at below the standard IEEE 754 representation in order to minimize the

required bit representation. In part (b) of Figs. 5.4 - 5.11 for both modulation types, the

performance of the best detectors is presented utilizing user-defined representations with

word length w = 12 and w = 10. Reducing the word length to w = 12 has negligible

effect on the performance of the QRD-SIC and LDLT detectors, while it degraded the

performance of the ZFE and the Cholesky detectors. Further reduction in the word length

to w = 10 has resulted in a degradation to the performance of these two detectors.

According to this simulation, the QRD-SIC detectors exhibit the best performance

compared to the other detectors, followed by the LDLT detector. By comparing part (b)

of the Figs. 5.4 - 5.11, it is observed that the increase in the number of transmitting and

receiving elements have negative effect on the performance of the best two detectors. In
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5.6 Simulation and Results

Fig. 5.9, the effect of reducing the word length from w = 12 to w = 10 is trivial and can

be ignored. However, as shown in Fig. 5.11a), the degradation was 2 dB for the QRD-SIC

detectors and it was 3.5 dB for the LDLT detectors.

The ZFE detector exhibits good performance at half precision detection with reduced

complexity. Employing this detector with the soft demodulation of the coded system as

presented in Chapters 3 and 4 will result in a reduced complexity detection with improved

performance.

Based on the results shown in Figs 5.4 - 5.11, the degradation in the BER perfor-

mance for the different MIMO detectors at different modulation index and precision have

suggested that the increase in the number of mathematical operations required by each

detector can affect the accuracy of the calculations at reduced precision, which results in

an accumulated errors that reduce the detection ability of that detector. As an example,

the performance of the LU factorization based detector have enormously degraded at half

precision detection as a result of the operations required by the LU factorization and the

matrix inversion. It is worth noting that in the legend, the triplet (w, e, f) indicates the

word length, exponent, and fraction, respectively.
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Figure 5.4: Performance of massive MIMO-OFDM systems with Nr = 100, Nt = 10
and 4-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-A refers
to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52), Cholesky
(16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52), LDLT
(64,11,52), LDLT (16,5,10) and LU (64,11,52).
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(b) At selected precision

Figure 5.5: Performance of massive MIMO-OFDM systems with Nr = 100, Nt = 4 and
4-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-A refers
to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52), Cholesky
(16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52), LDLT
(64,11,52), LDLT (16,5,10) and LU (64,11,52).
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Figure 5.6: Performance of massive MIMO-OFDM systems with Nr = 200, Nt = 4 and
4-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-A refers
to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52), Cholesky
(16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52), LDLT
(64,11,52), LDLT (16,5,10) and LU (64,11,52).
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Figure 5.7: Performance of massive MIMO-OFDM systems with Nr = 200, Nt = 10
and 4-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-A refers
to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52), Cholesky
(16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52), LDLT
(64,11,52), LDLT (16,5,10) and LU (64,11,52).
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Figure 5.8: Performance of massive MIMO-OFDM systems with Nr = 100, Nt = 10
and 16-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-
A refers to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52),
Cholesky (16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52),
LDLT (64,11,52), LDLT (16,5,10) and LU (64,11,52).
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Figure 5.9: Performance of massive MIMO-OFDM systems with Nr = 100, Nt = 4
and 16-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-
A refers to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52),
Cholesky (16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52),
LDLT (64,11,52), LDLT (16,5,10) and LU (64,11,52).
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Figure 5.10: Performance of massive MIMO-OFDM systems with Nr = 200, Nt =
4 and 16-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-
A refers to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52),
Cholesky (16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52),
LDLT (64,11,52), LDLT (16,5,10) and LU (64,11,52).
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Figure 5.11: Performance of massive MIMO-OFDM systems with Nr = 200, Nt =
10 and 16-QAM scheme at (a) Full and half precision. (b) Selected precision. Group-
A refers to the following detectors, Neumann (n=4,2)(64,11,52), Cholesky (64,11,52),
Cholesky (16,5,10), QRD-SIC (64,11,52), QRD-SIC (16,5,10), Iterative ZFE (64,11,52),
LDLT (64,11,52), LDLT (16,5,10) and LU (64,11,52).

116



5.7 Chapter Summary

5.7 Chapter Summary

This chapter presented a comparison between different linear massive MIMO detectors

implemented using matrix decomposition schemes. The simulation results have suggested

that the performance of the ZFE, Cholesky, LDLT and QRD-SIC detectors have shown to

have good performance at half precision detection compared to the other MIMO detectors.

However, at reduced precision with word length less than 12 bits, the performance of QRD

and LDLT detectors outperform that of the other schemes. In addition, the increase in the

number of receive and transmitted antennas have negatively affected the performance of

the detectors and cause a degradation to the BER performance of the QRD-SIC and the

LDLT detectors. By comparing the complexity of implementation, it is observed that

the ZFE detectors has the lowest complexity of implementation compared to the other

detectors followed by the QRD-SIC, Numann, Cholesky, LU and LDLT detectors.
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Chapter 6

Conclusion and Future Work

Massive MIMO communication systems are the key technology for the next generation

wireless communication systems. The main features of these systems are the high data

throughput and the improved transmission reliability compared to the conventional com-

munication systems. However, several challenges have emerged as a result of the high

number of antennas at the base station such as the receiver complexity, channel estima-

tion, pilot contamination, hardware impairment, and many other challenges.

The motivation behind this research was to investigate the performance of the spatially

multiplexed massive MIMO-OFDM systems in the uplink mode of transmission and to

design a reduced complexity detector for the coded system with improved performance.

The contribution of this thesis can be divided into three parts; (a) deriving the noise dis-

tribution after the ZFE and designing the receiver for the massive MIM-OFDM systems

based on that PDF, (b) analyzing the performance for the coded and the uncoded massive

MIMO-OFDM systems, (c) comparing the performance of various massive MIMO detec-

tors based on the fixed point arithmetic to examine their effectiveness for the hardware

implementation below the standard IEEE 754 half precision representation.

As the literature review suggested, the search for a reduced complexity receiver for the

massive MIMO systems is essential especially when the number of receive antennas at the

BS is very high. Accordingly, the PDF for the random variable of the noise after the ZFE

has been derived based on the ratio distribution utilizing Neumann matrix inversion. This

PDF is subsequently used to calculate the LLRs of the received signals to be used in the

decoding of the LDPC and turbo decoders. To verify the accuracy of the newly derived

PDF, the experimentally obtained histogram plots from Monte-Carlo simulations have

shown a close match to the theoretically derived PDF. In addition, different statistical
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tests, such as the KS test of independence and Chi-square test, have been applied on

the derived PDF to verify the accuracy of this assumption. The BER performance of

the simulation for the LDPC and turbo coded massive MIMO-OFDM systems has been

investigated for the derived LLRs and compared to the Gaussian based LLRs. As a result,

the BER performance in the simulations has improved by 2 dB at 10−4 for the LDPC

coded system, and 0.8 dB for the turbo coded system, compared to Gaussian distribution

using the ZFE. Consequently, the required number of receive antennas has reduced by 75

elements at an SNR of -16.3 dB for the system having Nr = 500 and Nt = 4, which

implies that a reduction in the required physical space and to the cost of the hardware

equipment required for the implementation.

Further analysis revealed that this new PDF has increased the computational com-

plexity of LLR calculations, thus, increasing the overall receiver complexity. To reduce

this complexity and to maintain good performance, an equivalent LLR equation has been

suggested with a low complexity design using Newton polynomial interpolation. The

performance of this approximated LLR equation demonstrated a close match to the ex-

act LLR with negligible complexity. However, the approximated LLRs for the LDPC

coded system required 3rd order polynomial to perform close to the exact BER simula-

tions, while the LLRs for the turbo coded systems required 1st order polynomial for the

BPSK/4-QAM modulated systems.

The selection of the system parameters is affected by different factors such as the

OFDM block length, the interleaver block length, and the CP length. These parameters

have been addressed as shown in Figs. 3.12 and 3.13, and based on that, the lengths of

the OFDM and the interleaver were selected as 1024 to achieve good performance with

reduced complexity. The complexity and the performance of the coded system can be

greatly affected by the length of the interlever. In practice, the higher the interleaver

length is the higher the required complexity for better performance and vise-versa. The

effect of CP length on the performance of the coded and uncoded system has also been

investigated as shown in Fig. 3.13 and hence, the CP was selected as 128 to completely

remove the effect of the ISI and IBI.

The second part of the contribution of this thesis was to analyze the performance of

the coded and the uncoded massive MIMO-OFDM systems. The BER performance for

massive MIMO-OFDM systems was derived using the approximate effective noise PDF

after the ZFE. The derived BER has been verified using the Monte-Carlo simulations of

different transmit and receive antenna combinations and the results have shown a close
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match between the theoretical and empirical plots.

In addition, the effective noise PDF after the ZFE has been utilized to derive the

PDF of the SNR. Then this PDF is used to derive the outage probability and the channel

capacity for the investigated massive MIMO-OFDM system. In addition, an upper and

two lower bounds were derived for the channel capacity based on different assumptions

and their performance was compared to the exact capacity. The simulation results verified

the accuracy of the derived equations, and the bounds have successfully approached the

exact capacity within the selected range.

The derived PEP in Section 4.3.1 was used to obtain an upper-bound for convolution-

ally encoded massive MIMO-OFDM systems. The results have bounded the performance

for different error weight values and indices, and the upper-bound performance became

very tight for the two selected codes. In addition, the turbo coded system was bounded

within 0.15 dB of the Monte-Carlo simulations by using the derived PEP and the Dm

terms given for the (5, 7)8 PCCC using BPSK/4-QAM modulation.

The third part of the contribution of this thesis was to investigate the hardware im-

plications of the massive MIMO receivers, which can be regarded as one of the massive

MIMO system challenges as been suggested by the literature. A comparison of different

linear massive MIMO detectors was implemented using matrix decomposition schemes.

The simulation results have suggested that at the reduced precision with word length less

than 12 bits, the performance of QRD and LDLT decomposition outperform those of other

schemes such as Cholesky, LU, and ZFE techniques. Finally, matrix inversion using the

Neumann expansion has a limited application in fixed point expression since it shows

reduced performance at IEEE 754 half precision and below.

Future Work

The main focus of this thesis was on the single user, point-to-point uplink transmission

of massive MIMO-OFDM communication systems. However, different massive MIMO

system configurations can be considered in the future work, some of these suggested

topics include,

• One of the main challenges to the massive MIMO-OFDM communication systems

is the interference between the pilots of different receivers or cells that affect the

channel estimation which is known as pilot contamination. Different techniques
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have been used to eliminate this issue, however, this direction requires more anal-

ysis to completely remove the effect of the pilots interference especially when the

number of antennas is in thousands.

• Most of the researches on the massive MIMO systems assume uncorrelated Rayleigh

fading channels as a propagation medium. However, this assumption can be mis-

leading in practical systems especially for very large number of antennas. The

correlation can significantly affect the performance of the massive MIMO commu-

nication systems and contribute to the degradation of the BER. Therefore, for more

accurate analysis and design, it is recommended to take the effect of the correlation

between the fading channels into consideration rather than the i.i.d assumption.

• Precoding techniques and the transceiver design can be considered to reduce the

complexity of the detection at the receiver and to improve the system performance.

Several precoding techniques have been used with the massive MIMO systems,

which utilize the channel information, while other precoders have been optimized

based on the SINR or the signal to leakage noise ratio (SLNR).

• Hardware implementation is a very important topic towards the adoption of the

massive MIMO communication systems. This issue has been addressed in several

publications but mostly in the view of the signal processing with limited actual

implementation due to the high cost. Therefore, further analysis is desired to tackle

the challenges of hardware implementation in reality.

• Millimeter waves (MMW) is a 5G technology that improves the spectral efficiency

and the capacity. This technology utilizes the unoccupied frequency bands above

30 GHz. The adaptation of the MMW technology to the massive MIMO systems

can improve the performance of both systems and results in a reduction in the size

of the antenna array and subsequently, the cost of implementation.

• One of the trends to reduce the complexity of the receiver and to reduce the power

consumption for the massive MIMO systems is to select a subset of the receive

antennas instead of using the whole set in the detection. The selection of the op-

timal subset requires solving an optimization problem that depends on the specific

selection criteria.
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Appendix A

Tables of weight spectra and minimum

asymptotic rate of growth.
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Table A.1: Weight spectra and minimum asymptotic rate of growth of the weights in the incorrect subset for the best rate (1/2) convolutional codes up to
constraint length 14 [96].

m generators
df

(adf+l), l = 0, 1, . . . 17
d0(octal) [cdf+l], l = 0, 1, . . . 17

2 (5, 7)8 5 (1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072 ) 1/2[1,4,12,32,80,192,448,1024,2304,5120,11264,24576,53248,114688,245760,524288,1114112,2359296]

3 (15, 17)8 6 (1,3,5,11,25,55,121,267,589,1299,2865,6319,13937,30739,67797,149531,329801,727399) 1/2[2,7,18,49,130,333,836,2069,5060,12255,29444,70267,166726,393635,925334,2166925,5057286,11767305]

4 (23, 35)8 7 (2,3,4,16,37,68,176,432,925,2156,5153, 11696,26868,62885, 145085,334024,774966,1793363) 4/11[4,12,20,72,225,500,1324,3680,8967,22270,57403,142234,348830,887106,2134239,5205290,12724352,31022962]

5 (53, 75)8 8 (1, 8,7,12,48,95,281,605,1272,3334,7615,18131,43197,99210,237248,559238,1312675,3108350) 8/23[2,36,32,62,332,701,2342,5503,12506,36234,88576,225685,574994,1400192,3554210, 8845154,21841106,54350946]

6 (133, 171)8 10 (11,0,38,0,193.0,1331,0,7275,0,40406,0,234969,0,1337714,0,7594819,0) 4/18[36,0,211,0,1404,0,11633,0,77433,0,502690,0,3322763,0,21292910,0,134365911,0]

7 (247, 371)8 10 (1,6,12,26,52,132,317,730,1823,4446,10739,25358,60773,146396,350399,842174,2021290,4853474) 5/16[2,22,60,148,340,1008,2642,6748,18312,48478, 126364,320062,821350, 2102864,5335734,13549068,34254388,86441848]

8 (561, 753)8 12 (11,0,50,0,286,0,1630, 0,9639,0,55152,0,320782,0,1859184,0,10777264 ,0) 8/27[33,0,281,0,2179,0,15035,0,105166,0,692330,0,4580007,0,29692894,0,190453145,0]

9 (1167, 1545)8 12 (2,8,15,35,68,170,458,1084,2574,6177,14939,36200,86856,208847,504561,1217706,2933502,7066863) 1/4[14,26,74,257,496,1378,4122,10832,27988,72209,186920,483102,1234736,3149395,8033048,20419644,51688436,130527021]

10 (2335, 3661)8 14 (21,0,74,0,454,0,2687,0,15629,0,90518,0,526556,0,3067758,0,17845415,0) 2/15[94,0,463,0,3783,0,26711,0,181571,0, 1207474,0,7919894,0,51390913,0,329342619,0]

11 (4335, 5723)8 15 (16,31,44,129,309,697,1713,4175,10158,24508,58600,141960,343347,826478,1996843,4820534,11619637, 28039590) 14/53[76,180,374,1142,2783,6836,18709,49242,128178,329408,836478,2151230,5497355,13931276,35357451,89485786,225656685,568414202]

12 (10533, 17661)8 16 (33,0,111,0,779,0,4128,0,24173,0,142500,0,828402,0,4829478,0,28122349,0) 8/33[152,0,971,0,6933,0,45436,0,303435,0,2036131,0,13256560,0,85514159,0,546034284,0]

13 (21675, 27123)8 16 (4,17,35,76,193,454, 1047,2624,6138,14944,36179,86640, 210568,508233, 1225765, 2960696,7146740, 17245991) 27/103[22,99,218,608,1724,4404,11108,30438,75942,196714,507232,1289364,3311290,8425785,21377872,54168142, 136847122,344912207]
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Table A.2: Weight spectra and minimum asymptotic rate of growth of the weights in the incorrect subset for the best rate (1/3) convolutional codes up to
constraint length 14 [96].

m generators
df

(adf+l), l = 0, 1, . . . 17
d0(octal) [cdf+l], l = 0, 1, . . . 17

2 (5, 7, 7)8 8 (2,0,5,0,13,0,34,0,69,0,233,0,610,0,1597,0,4181,0 ) 2/3[3,0,15,0,58,0,201,0,655,0,2052,0,6255,0,18687,0,54974,0]

3 (13, 15, 17)8 10 (3,0,2,0,15,0,24,0,87,0,188,0,557,0,1354,0,3713,0) 4/5[6,0,6,0,58,0,118,0,507,0,1284,0,4323,0,11846,0,36009,0]

4 (25, 33, 37)8 12 (5,0,3,0,13,0,62,0,108,0,328,0,1051,0,2544,0,7197,0) 2/3[12,0,12,0,56,0,320,0,693,0,2324,0,8380,0,23009,0,71016,0]

5 (47, 53, 75)8 13 (1,3,6,4,5,12,14,33,66,106,179,317,513,766,1297,2251,3964,6721) 8/13[1,8,26,20,19,62,86,204,420,710,1345,2606,4343,6790,12305,22356,41090,72820]

6 (133, 145, 175)8 15 (3,5,5,6,11,15,25,54,92,164,274,450,758,1290,2142,3567,6089,10403) 2/3[11,16,19,28,55,96,169,338,636,1276,2172,3628,6580,12048,20820,36358,65009,115368]

7 (225, 331, 367)8 16 (1,0,8,0,24,0,51,0,133,0,405,0,1129,0,3532,0,9754,0) 24/37[1,0,24,0,113,0,287,0,898,0,3020,0,9436,0,32644,0,98472,0]

8 (557, 663, 711)8 18 (5,0,7,0,36,0,85,0,204,0,636,0,1927,0,5416,0,15769,0) 10/17[11,0,32,0,195,0,564,0,1473,0,5129,0,17434,0,54092,0,171117,0]

9 (1117, 1365, 1633)8 20 (8,0,18,0,41,0,132,0,395,0,981,0,2991,0,8843,0,25590,0) 5/9[29,0,91,0,246,0,954,0,3138,0,8775,0,29185,0,94164,0,295578,0]

10 (2353, 2671, 3175)8 22 (14,0,18,0,59,0,160,0,463,0,1458,0,3971,0,11578,0,34023,0) 14/29[53,0,92,0,347,0,1104,0,3644,0,12692,0,38407,0,122297,0,389889,0]

11 (4767, 5723, 6265)8 24 (21,0,9,0,103,0,202,0,615,0,1811,0,5234,0,15358,0,43782,0) 22/39[80,0,58,0,607,0,1563,0,5008,16474,0,52106,0,166791,0,515426,0]

12 (10533, 10675, 17661)8 24 (10,0,14,0,46,0,121,0,372,0,1055,0,6129,0,8848,0,26336,0) 20/37[27,0,74,0,228,0,794,0,2757,0,8531,0,28250,0,88579,0,286193,0]

13 (21645, 35661, 37133)8 26 (12,0,32,0,54,0,167,0,506,0,1552,0,4404,0,12456,0,36522,0) 4/7[41,0,165,0,319,0,1156,0,3937,0,13208,0,42284,0,129918,0,413986,0]
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Table A.3: Weight spectra and minimum asymptotic rate of growth of the weights in the incorrect subset for the best rate (1/4) convolutional codes up to
constraint length 14 [96].

m generators
df

(adf+l), l = 0, 1, . . . 17
d0(octal) [cdf+l], l = 0, 1, . . . 17

2 (5, 7, 7, 7)8 10 (1,1,1,3,2,5,7,8,16,19,30,46,61,98,137,201,303,429 ) 2/3[2,1,4,9,8,25,32,52,100,131,240,366,554,930,1368,2187,3398,5141]

3 (13, 15, 15, 17)8 13 (2,1,0,3,1,4,8,4,15,16,18,45,40,73,119,122,244,313) 1[4,2,0,10,3,16,34,18,77,84,106,280,256,514,865,934,1988,2620]

4 (25, 27, 33, 37)8 16 (4,0,2,0,4,0,15,0,30,0,54,0,115,0,252,0,511,0) 6/5[8,0,7,0,17,0,60,0,140,0,301,0,707,0,1675,0,3739,0]

5 (53, 67, 71, 75)8 18 (3,0,5,0,6,0,12,0,23,0,67,0,157,0,283,0,610,0) 10/9[6,0,17,0,24,0,60,0,118,0,367,0,991,0,1980,0,4716,0]

6 (135, 135, 147, 163)8 20 (10,0,0,0,19,0,0,0,117,0,0,0,711,0,0,0,3084,0) 4/5[37,0,0,0,94,0,0,0,768,0,0,0,5558,0,0,0,28349,0]

7 (235, 275, 313, 357)8 22 (1,4,3,2,3,3,11,14,13,24,39,60,72,100,168,254,414,535) 1[2,10,10,8,10,11,54,64,68,140,218,382,478,660,1174,1846,3100,4139]

8 (363, 535, 733, 745)8 24 (2,0,6,0,10,0,18,0,37,0,95,0,179,0,358,0,810,0) 16/17[4,0,22,0,38,0,103,0,237,0,587,0,1251,0,2765,0,6666,0]

9 (1117, 1365, 1633, 1653)8 27 (4,4,4,8,5,14,22,17,33,46,75,112,168,248,317,501,703,1022) 1[12,12,18,44,31,72,120,108,221,320,545,786,1284,2054,2587,4272,6407,9376]

10 (2327, 2353, 2671, 3175)8 29 (5,6,4,6,7,7,10,22,33,46,85,118,162,243,341,487,690,1053) 49/51[13,24,18,22,35,34,56,108,187,292,531,784,1158,1828,2631,3896,5792,9048]

11 (4767, 5723, 6265, 7455)8 32 (14,0,10,0,14,0,47,0,105,0,180,0,452,0,973,0,1988,0) 26/27[49,0,40,0,82,0,267,0,640,0,1247,0,3362,0,8000,0,17453,0]

12 (11145, 12477, 15573, 16727)8 33 (5,5,3,9,7,8,22,23,28,53,79,116,165,224,346,537,809,1112) 6/7[19,16,15,46,29,48,124,140,174,336,555,830,1219,1764,2826,4626,7123,10022]

13 (21113, 23175, 35527, 35537)8 36 (19,0,16,0,30,0,83,0,153,0,333,0,736,0,1614,0,3298,0) 22/25[74,0,80,0,177,0,493,0,1098,0,2519,0,5872,0,13878,0,30678,0]
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