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Abstract  

Gastro-Oesophageal Reflux (GOR) occurs in Cystic Fibrosis and is associated with 

deteriorating lung function. The hypothesis of this project is that the CF gastric and lung 

microbiome are related suggesting potential bidirectional transmission of pathogens through 

swallowing and aspiration of gastric contents. Gastric pepsin and bile might impact upon the 

lung microbiome and potentially exacerbate pulmonary disease. 

Paired gastric and sputum cultures were obtained from 18 adult CF patients receiving 

percutaneous endoscopic gastrostomy (PEG) feeding. Non-CF gastric juice samples were 

obtained from 14 patients without known lung disease through endoscopy.  

Bacterial and fungal isolates were identified by culture and next generation sequencing (NGS) 

of the 16S rRNA gene. The impact of pepsin, pH and bile acids on the growth and behaviour 

of Pseudomonas aeruginosa (PA) were tested.  

Culture-based and molecular-based approach demonstrated that the bacterial species present in 

CF gastric juice were different compared to the control group (non-CF patients). A high rate of 

pathogenic bacteria and organisms such as PA and Non-Tuberculosis Mycobacterium (NTM) 

were isolated from CF gastric juice samples and PEG tubes. Identical strains of PA and NTM 

in sputum and gastric juice from the same patient were isolated. Gastric juice samples and the 

PEG tube of 3 patient were positive for PA or NTM and had no PA or NTM present in the their 

sputum samples. This suggests that PA can survive acid environments in the presence of pepsin 

and bile acids. The hostile gastric environment may have a negative effect upon PA growth and 

induce drug resistant biofilm formation. 

In conclusion, the stomach is a potential microbiological niche where organisms relevant to 

CF pathophysiology can survive particularly for biofilm PA and NTM. This may be 

influenced by CF related gastrointestinal pathophysiology, antibiotic therapy and acid 

suppression. 
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Chapter 1.0 : General introduction 

1.1 Cystic fibrosis  

Cystic fibrosis (CF) is an inherited disease acquired through autosomal recessive inheritance, 

and is seen in the UK in almost 1 live birth for each 2,500 (Collins, 1992). CF impacts upon 

multiple systems of the body, with effects on the liver and pancreas, respiratory and gastro-

intestinal tracts, as well as reproductive and musculoskeletal systems.  

CF develops as a result of a faulty gene causing a thick layer of mucus to form within the 

respiratory passages and the pancreas (Riordan et al., 1989). The gene involved is the CFTR 

gene, encoding Cystic Fibrosis Transmembrane Conductance Regulator (Gregory et al., 1990). 

The genotype of CFTR gene is highly variable with more than 1600 mutations have been 

determined already. Yet elucidating the effect of mutations upon function and their relationship 

to symptom severity is limited to only a few, high-occurrence genotypes (De Boeck et al., 

2014). CFTR mutations can be categorised according to the mutation’s effect on function. There 

are four groups: i) failure to manufacture proteins; ii) inadequate protein processing; iii) faulty 

regulation; iv) protein misfolding due to the imperfect synthesis of phenylalanine at position 

508 (CFTRΔF508 mutation). As a consequence of the latter, the misfolded protein undergoes 

proteosomal degradation and there is an absence of CFTR transporters at the apical surface of 

the membrane (Dequeker et al., 2009; Fanen et al., 2014). The CFTRΔF508 mutation is 

commonly found in at least one copy of CFTR in most patients; symptoms are severest in those 

patients in whom the mutation is present in both copies of the CFTR gene (Alfonso-Sánchez et 

al., 2010). 

 CFTR is a membrane protein and channel within cells of the epithelium, managing bicarbonate 

and chloride ions exchange in cells. Where both genes for CFTR have the mutation (recessive 

mutation), functional CFTR protein will not be produced, leading the individual to develop CF 

(Derichs, 2013). Further, the fault in this gene leads unusually thick mucus to be generated 

within the pancreas, and bile ducts, the lungs and the digestive system. These factors lead to 

clogging of the lumens for the organs involved, which causes the morbidities associated with 

CF. Within the lungs, respiratory system defence is compromised in CF, and long-term 
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infections result, with most CF fatalities being a result of either sepsis following repeated lung 

infection or from respiratory failure (Emerson et al., 2002).  

Prior to the 1970s, the median life expectancy with CF was just 8 years, with many patients 

dying as infants. However, there has been considerable progress in increasing longevity for CF 

patients since that time, and in those born on or after 1990, the current predictions show that  

90% will live to at least 40 years (Reid et al., 2011). A large proportion of this progress has 

been brought about by centralising care from multiple disciplines for patients of all ages, plus 

widespread screening for neonates (Lim et al., 2013), as well as developing strategies for 

managing nutritional status and lung disease.  

1.2 Primary Complications of Cystic Fibrosis  

Numerous complications are caused by CF, with the central impact being seen in the glands of 

the submucosa and the respiratory passages (Gibson et al., 2003). The airway epithelium 

normally expresses CFTR and this assists in regulating the level of chloride present. 

In CF airways, the absence of functional CFTR protein in the apical plasma membrane causes 

epithelial Na⁺ channel (ENaC) hyperactivity, and the resulting excessive Na⁺ absorption 

contributes to airway surface liquid (ASL) dehydration, mucus stasis, and bacterial infections 

(Althaus, 2013). and thus the level of chloride within cells rises, while levels outside the cells 

fall (Lubamba et al., 2012). The result of this difference is that water moves in greater volumes 

into the epithelial cells of the air passages, drying out the mucus, which coats the surfaces of 

these passages. 

This mucus therefore becomes thicker and less easily moved, impairing the flow of air and 

interfering with the capacity for respiration (Boucher, 2004). The thicker mucus layer 

additionally provides suitable conditions for bacteria growth, allowing infection. Because of 

the effects of the altered mucus layer, the reduction in water content on the surfaces of the 

airways is seen as the occurrence which initiates lung disease for CF patients (Reeves et al., 

2012).   

The mucus within normally functioning lungs mainly contains mucins, and these may be from 

cellular secretions or be attached to the cellular membranes. MUC5B and MUC5AC are 

generally the principal mucins and are overproduced in CF lung secretions especially following 

exacerbations (Kirkham et al., 2002; Henke et al., 2007). Further, while the thicker mucus seen 

in CF is primarily attributed to the lowered volumes of water outside cells, another contributing 
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factor appears to be a greater quantity of anionic polyelectrolytes, which is partly made up of 

DNA from bacterial invaders, as well as that from inflammatory cells on lysis and enhanced 

mucosal cell turnover (Tang et al., 2005). The mucus which accumulates in the air passages 

becomes detached from the cilia after some time, meaning that mucociliary transport is 

impeded, and it is this issue which mainly leads to morbidity of the lungs and eventually death 

(Sibley et al., 2008; Reeves et al., 2012).   

As described above, one result of the mucus in the lungs of CF patients being thickened is that 

bacterial infection is promoted (Boucher, 2004). New-borns acquire the first bacterial infections 

within a short time and the poor mucociliary transport in CF in a depleted ASL volume acts 

against the airways being cleared. Further, antimicrobial peptides of the air passages are unable 

to cope with the demands placed on them, and infection becomes established, and primary 

inflammatory response occurs over an extended period, as seen in chronic infections (Puchelle 

et al., 2002). This inflammatory response involves the generation of mediators for inflammation 

where the infection is located, and neutrophils are recruited to destroy the infectious agents 

(Gibson et al., 2003). However, processes of inflammation within the respiratory passages are 

ineffective in removing recurring infection in the CF patient, and inflammatory responses both 

become excessive in comparison to the level of infection, and are ongoing due to the inability 

to eliminate that infection (Chmiel and Davis, 2003b). The result of this ongoing inflammatory 

process is more harm being caused to the respiratory passage, with airway remodelling 

(structural changes that occur in both the large and the small airways) (Hilliard et al., 2007). 

Viruses may also cause harm to the epithelial layer (Banner et al., 2009). A main factor in 

deaths among CF patients is progressive pulmonary disease (Sagel et al., 2007). 

1.3 CF lung microbiome 

Lung failure as a consequence of chronic airway infection is responsible for more than 90% of 

CF’s morbidity and mortality (LiPuma, 2010; Barry et al., 2015). However, as more airway 

infections are successfully treated, more CF patients are living longer but they face 

extrapulmonary challenges (Quon and Aitken, 2012). CF-related diabetes, arthropathy, chronic 

kidney disease, depression and osteoporosis are typical extrapulmonary diseases encountered 

(Quon and Aitken, 2012). In many of these diseases, the human microbiome has been identified 

as having a role (Shanahan, 2013), indicating that the microbiome and environment in CF 

patients is a factor that needs to be understood in greater detail. 
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The upper airways, particularly the oral cavity, are home to endogenous microbiota as well as 

being an important interface location for interacting with the environment (Zaura et al., 2009; 

Dewhirst et al., 2010), making this location the body’s most varied microbiome. In healthy 

individuals, the lower airways are, in effect, sterile as aerosolised microbes transported into the 

lungs encounter the innate immune system, which rapidly and effectively neutralise the threat 

(Cui et al., 2014).  

Investigations into the CF microbiome are increasing. Yet efforts to directly compare 

microbiomes between studies is frustrated by variations in the extraction protocols, 

bioinformatics techniques and sequencing technologies employed in the different studies 

(Willner et al., 2012; Yuan et al., 2012). Furthermore, the DNA recovered for culture-

independent approaches can skew results as the thick mucus in the airway of CF patients can 

accumulate a significant quantity of DNA of dead cells (Filkins and O’Toole, 2015). The 

quantity of Pseudomonas aeruginosa (PA) DNA, for example, does not reliably correspond to 

the quantity of the viable pathogen determined by cell counts (Rogers et al., 2010a). This 

indicates that the existing methodology is limited in its ability to present a current state of the 

CF microbiome. Furthermore, different DNA extraction protocols favour particular microbes, 

with some organisms being underrepresented (Salonen et al., 2010), which may explain the 

discrepancies between studies of the relative quantities of microbes. In spite of methodological 

differences between the various studies, it has been possible to deduce the main microbes of 

the CF microbiome. 

Streptococcus, Prevotella, Veillonella, Rothia, Actinomyces, Granulicatella, Fusobacterium, 

Neisseria and Atopobium are the microbial genera most often found in the CF microbiome 

(Hampton et al., 2014; Mahenthiralingam, 2014; Surette, 2014). Indeed, Finding obligate 

anaerobes (e.g. Prevotella species)  that are ubiquitous in upper airways appear to form major 

components of the lower airway microbiome in CF and other disease states (e.g. chronic 

obstructive pulmonary disease (COPD) (Mahenthiralingam, 2014; Surette, 2014). The evidence 

from some studies is that there is a correlation between CF disease severity and a decline in the 

diversity of the microbiome (Filkins et al., 2012; Zhao et al., 2012). In a small longitudinal 

study comprised of six patients providing sputum samples over an 8-year period that employed 

Shannon diversity to determine microbiome stability, the microbiomes of the three patients who 

suffered from disease progression were less diverse than those microbiomes of patients whose 

disease status was stable (Zhao et al., 2012). 
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Genetic defects, modified genes, nutrition, treatment, environmental exposure, as well as 

primary CF pathogens contribute to CF, making it a heterogeneous disease (Cutting, 2015). The 

microbiomes of each individual are likely to be unique. A positive correlation between PA and 

reduced volume of air on forced expiration for one second (FEV1), serum C-reactive protein 

and neutrophil elastase in sputum was detected in the analysis undertaken by Zemanick et al. 

(2013)that explored the relationship between inflammatory markers and microbiome profiles 

of 21 patients. The researchers findings support the conclusion that PA plays a prime role in the 

morbidity of CF airway disease (Zemanick et al., 2013). 

1.3.1 Role of microbiome in modulating immune response  

The human immune system is sophisticated and discerning, able to discriminate between 

harmful, pathogenic microbes and beneficial commensal species. Investigations into 

gastrointestinal microbiota reveal that there is a positive relationship between reduced microbial 

diversity and chronic inflammatory disease, mirroring the findings observed for CF airway 

disease (Walker et al., 2011; Lynch and Bruce, 2013). The implications of this observation is 

that colonisation resistance, which is the gut’s ability to resist invading pathogenic microbes, 

and immune homeostasis is founded on suitable colonisation of the mucosa. Disruption to the 

microbiota may result in persistent inflammatory responses, especially where there is a loss of 

diversity and an increase in the number of particular immunogenic species (Beck et al., 2012; 

Lynch and Bruce, 2013). 

The integral role of the microbiome to a host’s health means that disruptions to the microbiota 

can affect the host’s health and wellbeing (Cho and Blaser, 2012); the implications of this are 

significant when taking antibiotic therapy as a standard feature of CF management. Paediatric 

studies highlight the sizeable effects of antibiotics on gastrointestinal microbiota (Zemanick et 

al., 2011). From the faecal microbiota of 11 infants obtained throughout their first year of life, 

researchers found the bacterial burden was significantly reduced as a consequence of 

antimicrobial therapy (Palmer et al., 2007). Yet within a few weeks, the microbial community 

was re-established and was comparable to the pre-treatment microbiota. However, as Palmer et 

al. (2007) emphasised, particular species that had been abundant prior to the antimicrobial 

intervention were absent immediately after administering the therapy and remained absent 

throughout the duration of the study, which in some instances was up to one year. 

Similar results were obtained in the decade-long study by Zhao et al. (2012) that analysed 

samples collected from CF patients. The researchers observed re-establishment of the colonies 



6 
 

following significant antimicrobial-instigated disruption (Zhao et al., 2012). These findings are 

also similar to those of Cox et al. (2010), who showed that patients who presented declining 

microbial diversity experienced progressive disease states. On the basis of these observations 

and consistent with other severe inflammatory disease, it is reasonable to speculate that over 

time, the microbial community loses the benefits effects that diversity confers due to repeated 

antimicrobial interventions to manage pulmonary function in CF patients (Cox et al., 2010; 

Zhao et al., 2012).   

1.4 Infections and CF 

The respiratory passages in the CF patient are vulnerable to infection from a broad range of 

agents. While in initial stages, infections often arise from agents including Haemophilus 

influenza (HI) and Staphylococcus aureus (SA), subsequently, bacterial pathogens infecting the 

airways opportunistically may include Burkholderia species (spp), and Pseudomonas 

aeruginosa (PA). There have been numerous research studies to date exploring the changes in 

infectious agents in the respiratory system over time in CF, considering this within the 

individual and on a population scale, and charting new pathogenic agents appearing.  

Before antibiotic drugs were made available to doctors, and at a time when CF patients did not 

survive until adulthood, SA was the most commonly found infectious agent in the CF airway, 

and data from the registry of the USA indicates that it is still the most frequently seen in the 

child and teenage CF populations (Rosenfeld et al., 2001). SA can be found as a commensal on 

relation to the skin and is often identified in samples from healthy individuals’ anterior nares 

(Wertheim et al., 2005). Thus, the organism enjoys a widespread reservoir across the population 

and is well placed to infect an individual with CF. Further, there is research evidence that where 

a CF child is infected with SA, their immediate family have a high likelihood of carrying an 

identical SA strain within the nasal passages, and this gives a shared exposure pathway for 

acquiring the infection (Stone et al., 2009).  

Life prolonging advances in CF management and the development of successful treatment for 

SA through antibiotics means that different agents of infection for the respiratory system have 

appeared. Mearns et al. (1972) studied alterations in the picture of CF respiratory pathway 

microbiology in one clinic in infants under one across a time from 1950 to 1971, and found a 

fall from 86% to 30% in SA infections occurring between the periods 1950-1957 and 1969-

1971.  In general, across the clinic, SA was isolated in 45% of patients in the first period and in 

12% in the second, while PA was seen to rise from 3% of cases to 28%. Further, those with the 
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most serious disease in the lungs were identified as showing the greatest reduction in SA and 

rise in PA. Considering this finding, the authors hypothesised that rather than this change being 

causal; PA could be considered a marker for higher levels of disease.  

 A later study looked at data from 1985 to 2005 for adults attending one facility (Millar et al., 

2009). In this study, PA was the most frequently isolated pathogen in the samples from patients, 

and this occurred in between 77% and 82% consistently within the 20-year span. Further, SA 

was isolated in between 54% and 47%. Meanwhile, a fall was seen over the period in 

Aspergillus, Burkholderia cepacia complex and Haemophilus influenzae, in contrast with rises 

in both Stenotrophomonas maltophilia and methicillin-resistant S. aureus (MRSA), with 

incidence of the latter reaching 4% from just 1% previously.  

 A recent research area related to infections in CF is the examination of the part played by 

anaerobic microbes, which are not subject to routine culturing and therefore had not previously 

been a focus for investigation. It has been found that such bacteria have a major presence in 

sputum taken from CF patients. Worlitzsch et al. (2009) found 35 separate anaerobic species 

and up to four per sputum sample in a study of 114 CF patients. It was further found that 58% 

of these microbes within samples collected during exacerbation displayed in vivo resistance to 

the antibiotic drugs being taken. While it has been suggested that the anaerobic bacteria found 

here were sample contaminants from the mouth and pharynx, the large number of these bacteria 

present in the lavage fluids of the bronchi and alveoli oppose this hypothesis (Tunney et al., 

2008).   

The studies described above relate to individual facilities only, but with the creation of 

databases at country level for CF, it is now possible to consider the agents involved in airway 

infection in CF across greater numbers of patients. PA has been shown to be the most frequent 

pathogenic bacterium in the adult CF population of both the USA and the United Kingdom, In 

the UK data, it was found in 2009 that 67% of 28-31 year-old CF patients carried this infection. 

Similar data is seen for the USA, albeit with far greater incidence of infection with MRSA, at 

23.7% of the total CF population of all ages (Buzzetti et al., 2009; Razvi et al., 2009).  

1.4.1 Pseudomonas aeruginosa (PA) 

P aeruginosa (PA) is a bacterial microbe, which is a common environmental organism, has a 

rod-like form and is gram negative. The species is an opportunistic pathogen, with illness only 

occurring from PA in the airways where the patient has compromised immunity, such as in 
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those where chronic disease of the lungs is already established, e.g. CF, or in cases of 

pneumonia linked to ventilators (Oliver et al., 2000).  

When anti-staphylococcal drugs began to be used, infection rates reduced in paediatric CF 

patients, but PA then became the primary infective agent of the respiratory passages (Gilligan, 

1991), and the pathogen grows to reach its greatest prevalence in CF patients of approximately 

30 years of age.  Identifying the mechanisms through which the defensive systems of the 

epithelial layer of the lung and PA interact represents a significant research focus in CF 

(Hoffman et al., 2005). Further, this infection elicits an especially strong response from the 

immune system, while also being good for resisting those responses (Campodónico et al., 2008) 

P. aeruginosa’s effectiveness as an infective agent seems to be partially because it forms a 

biofilm, which is ‘a structured community of bacterial cells’ which generates self-enclosing 

polymeric matrix and can attach itself to surfaces (Prakash et al., 2003).  Such biofilms were 

first identified in the 1970s, and subsequently, the theory has been put forward biofilm state is 

mechanism for bacteria survival (Watnick and Kolter, 2000).   

For CF patients, the initial isolation of PA is a clinically important event, as the patient’s age 

when it is first seen is predictive for overall life expectancy (Emerson et al., 2002), with timely 

and intensive response with antibiotic drugs to initial cultures of PA also seeming to enhance 

the functioning of the lungs (Emerson et al., 2002).  Extended application of antibiotics to 

eradicate PA has been considered to be effective when viewed through serum PA antibody titres 

as well as sputum or throat-swab sample cultures (Taccetti et al., 2005; Treggiari et al., 2007).  

However, these approaches are not considered sensitive markers for PA detection (Farrell and 

Govan, 2006).  Supporting evidence for the capability to eradicate the bacteria, however is seen 

in strain analysis comparison between initial and subsequent isolations (Munck et al., 2001). In 

one study, the strains seen second were not the same as those isolated initially in 14 patients 

from 19. However, this also suggests that in over one quarter of cases, the organism was likely 

not to have been eradicated.  

Planktonic  and biofilm states display major differences, with growth being slower for bacteria 

in a biofilm and resistance to antibiotic treatment being far stronger in this condition (Hill and 

Larsen, 2005).  In PA biofilm, up-regulation and/or down-regulation of genes expression is over 

6 times greater than the planktonic state, affecting a minimum of eight hundred genes and 

representing more than half of the genome of PA (Sauer et al., 2002).  Singh et al. (2000) made 

the discovery of biofilm of PA in patients with CF, through identifying quorum sensing 

molecules (QS molecules), which allow bacteria to communicate with each other to identify 
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how many others are present in their immediate environment, enabling conversion into biofilm 

mode to occur at the most suitable moment (Kjelleberg and Molin, 2002).  PA is not the only 

species to demonstrate biofilm capability in the respiratory pathways of CF patients, with HI 

(Starner et al., 2006) as well as SA (Leid et al., 2002), in addition to a number of fungal 

organisms being identified (Douglas, 2003; Lynch and Robertson, 2008).  Considering 

development of new therapies to address this, the use of molecular-level blocking agents to 

prevent quorum sensing from occurring effectively may present an alternative to antibiotics 

alone (Wu et al., 2004).  

1.4.1.1 P. aeruginosa biofilm formation 

Certain microbes are capable of gathering with others to create a biofilm, generally encased 

within a matrix made up of EPSs or extracellular polymeric substances. EPSs represent different 

classes of macromolecules such as polysaccharides, proteins, nucleic acids, lipids and other 

polymeric compounds presented in the interior and surroundings  of various microbial 

aggregates (Wingender et al., 2012).  

The point where previously planktonic, single-celled PA transitions phenotypically to form 

biofilm is considered a key transformation point within the progression of lung disease for CF 

patients. While PA infection for such patients is considered to first occur from the environment 

with planktonic forms, after an unspecified period, this community converts to a biofilm 

formation, and once this occurs, it is suggested that PA is more challenging to eliminate and 

may chronically infect the lungs.  

1.4.1.2 PA Biofilm formation through modelling in vitro  

PA biofilm forms in vitro through five identifiable stages (Sauer et al., 2002):  

Stage 0: Planktonic  

The planktonic form is motile and is seen in the wider environment.  

Stage 1: Reversible attachment  

In the reversible attachment phase, PA cells attach to surfaces in a temporary manner. This is 

achieved via the cell-pole, with mediation from the pili and flagella of the bacterium. far less 

attachment levels are seen for those cells with mutations in pili or flagella (Bucior et al., 2012).   

Stage 2: Irreversible attachment  
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Irreversible or permanent attachment of PA to surfaces occurs through re-orientation in order 

to use the longitudinal cell axis, with the cells losing their motility and a clustering process 

beginning, and as observed by Sauer et al., 2002, quorum-systems (QS) were activated at this 

stage.  QS are the mechanism whereby an individual bacterium produces small diffusible 

molecules that can be detected by surrounding organisms. This system is used by PA for cell–

cell communication (Pesci et al., 1997; Waters and Bassler, 2005).  

In the irreversible attachment phase, EPSs begin to form, comprising extracellular DNA, 

proteins and polysaccharides. These form a matrix in which the bacteria are enmeshed, and this 

is one characteristic of biofilm which is seen to both strengthen its structure and render the 

bacteria within it phenotypically more resistant (Sutherland, 2001; Branda et al., 2005) 

Stage 3: First Maturation Stage  

In the initial maturation stage, layering or clustering of cells occurs to a depth of greater than 

10μm, with dramatic upregulation of protein expression. The proteins affected include Arc 

proteins, which are activity-regulated cytoskeleton-associated proteins, and these are 

considered to drive anaerobic activity in the microbes (Verhoogt et al., 1992; Sauer et al., 2002) 

with the implication that when in biofilm formations, bacteria lack sufficient oxygen to carry 

out activities aerobically.  

Stage 4: Second Maturation Stage  

The second maturation stage is when the layer of clustered cells is at its thickest, as much as 

100μm, with cells differing most radically in phenotype from those in their planktonic form: 

over half of identified proteins have altered regulation during this stage (Sauer et al., 2002). 

The expression of proteins here also differs markedly from the previous stage of maturation, 

and this has been suggested to be linked to the large proportion of bacteria within an 

environment in which oxygen is absent or reduced. Additionally, clusters of cells detach 

themselves from the attachment surface at this time (Sauer et al., 2002).  

Stage 5: Dispersion  

The last developmental stage is dispersion, whereupon certain microbes attain motility, 

swimming to exit the clusters as channels and pores open up (Sauer et al., 2002). The 

assumption is that this is in order to access higher nutrient levels available out with clusters. 

During this stage, there is downregulation in certain proteins, with microbes appearing similar 

to the planktonic form in comparison to those from the second maturation phase.  
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1.4.1.3 PA Biofilm in Vivo  

It is interesting to consider whether the 5-stage model developed by Sauer for biofilm 

production translates into the complexity of the conditions within the respiratory passages of 

the CF patient. In studying models of chronic infection, Worlitzsch et al. (2002) put forward 

the idea that biofilms are formed within intraluminal spaces as opposed to on the surface of the 

epithelium. Their work showed, via immune-localisation approaches on explanted lungs, and 

by use of electron microscopy, that PA microbial cells were not attached to epithelial air passage 

cells (Worlitzsch et al., 2002). More than 95 % of the bacteria were found within the lumen of 

the air passage, at a distance of between 5 and 17μm from the surface of the cells, with colonies 

structured spherically, while the remainder were located 2 to 5μm away from the surface of the 

cell. PA microbes also appeared to prefer to bind to mucus as opposed to the epithelial air 

passage cells. Bacterial colonies in spheres within the intra-luminal area were found to be 

lacking in oxygen, as also noted by Sauer in terms of protein upregulation to allow anaerobic 

activity. Further, PA subjected to hypoxia was found to create raised levels of alginate, which 

is a significant constituent of biofilm extrapolysacharide matrix. It was also found that the 

mucus that adhered to the surface of the CF respiratory passage showed a gradient of hypoxia. 

This gradient was suggested to promote alginate generation in PA and biofilm formation 

(Worlitzsch et al., 2002).  

1.5 CF complications of the gastrointestinal system    

CF is most known for its impact on the lungs, in the modern era as disease in this area is 

responsible for a large proportion of the mortality and morbidity of the condition. However, 

there is a rising appreciation of complications of the gastro-intestinal tract on CF morbidity, 

which has arisen in part due to the greater longevity of CF patients in recent years. Certain 

complications of CF also occur in healthy individuals, including constipation and 

gastroesophageal reflux (Meyerholz et al., 2010). However, these occur more frequently in CF 

patients and require particular attention to diagnosing and managing these where the individual 

has CF(Borowitz et al., 2005).  

Another CF complication of the gastrointestinal system is exocrine pancreatic insufficiency. 

CF patents have a high protein concentration in the pancreatic secretions that participate in the 

duct lumina causing pancreatic obstruction and damage (Wilschanski and Novak, 2013). 



12 
 

In this condition, enzymes for digestion are produced in inadequate quantities and this leads to 

difficulty in absorbing nutrients from food. Steatorrhea (fat in stool) and failure to thrive may 

also be seen (Kopelman et al., 1988; Kopelman, 1991; Ramsey et al., 1992; Riordan, 1993). 

Further, obstructive syndromes frequently arise in the intestines, such as meconium ileus in 

new-borns, as well as distal ileal obstruction syndrome in later childhood (Davis, 2006). Gastro-

oesophageal reflux (GOR) is well-established as a challenging complication of CF (Mokhlesi 

et al., 2001).   

As this thesis is intended to study the role of GOR in lung infection in CF, the next section will 

give an introduction of the GOR in CF patients. 

1.6 Gastro Oesophageal Reflux (GOR) 

1.6.1 Introduction  

Gastro-oesophageal reflux, or GOR,  refers to the physiological mechanism in which contents 

from the stomach pass back through the stomach’s entrance and reach the oesophagus (Sifrim 

et al., 2004; Herbella and Patti, 2010). According to Zerbib et al. (2005), examination of the 

oesophagus in 72  healthy adults for 24 hours identified instances of reflux which varied 

between acidic reflux, in which pH was lower than 4, weaker acid reflux with pH of between 4 

and 6, gases and liquid. It is clear from the findings that stomach contents are refluxed 

frequently among those with no identified problems. 

Where reflux reaches proximally to the top of the  oesophagus and past the oesophagus to the 

larynx, pharynx or nose this is known as EOR, or extra-oesophageal reflux (Vakil, 2010). This 

phenomenon has been linked to the occurrence of  various problems of the respiratory system, 

giving symptoms such as post nasal drip, coughing, continual throat-clearing, sore throat, tight 

chest and wheeze (Button et al., 2005). Decayed teeth have been linked with EOR, as has otitis 

media, and refluxate has been found in the respiratory passageways (Barron et al., 2003; 

Blondeau et al., 2008a).  

Reflux becomes pathological in nature where symptoms arise from it, including heartburn and 

harm to the mucosa of the oesophagus. This is then termed as the condition of gastro-

oesophageal reflux disease, or GORD. GORD has been described by the Montreal Consensus 

Group as a disorder seen where gastric contents are refluxed causing complication or symptoms 

which cause disturbance (Vakil et al., 2006). GORD thus encompasses a number of 
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complications which harm the oesophageal tissues to differing extents and in different ways. 

Further, GORD has varying symptoms, often including regurgitation of acid and heartburn 

(Vakil et al., 2006), but also thoracic pain, water brash and dysphagia (Ronkainen et al., 2006).  

From surveys among the population, countries of the West have high rates of symptoms of acid 

reflux, with heartburn prevalent in between 29 and 44 per cent of the population and from 10 

to 20 per cent reporting experiencing heartburn each week (Kennedy and Jones, 2000). This 

estimation is founded on the idea that such symptoms indicate GORD, but using objectively 

assessed indicators of oesophageal damage, such as Barrett’s oesophagus and endoscopic 

oesophagitis, which are objective markers of reflux-induced oesophageal injury, some patients 

do not always have heartburn. When data was systematically reviewed, GORD appeared at 

between 10-20% of the population in the West, while in Asian countries this was just 5% (Dent 

et al., 2005). Further, survey results based on the US population found that from the sample, 6 

per cent stated that they had heartburn over two times each week, while for acid regurgitation 

this was 3 %. (Camilleri et al., 2005). In terms of GORD diagnosis, Vakil et al. (2006) 

concluded that mild symptom display on over two days each week or moderate to severe 

symptoms occurring more frequently than once weekly was a sign of pathologic acid reflux 

which caused problems, while also concluding that the troublesome nature or otherwise of 

symptoms should in the end be decided by the patient. 

GORD can also be associated with asthma and chronic coughing, and also linked to 

complications of the lungs (Farrokhi and Vaezi, 2007). Further possible symptoms are throat 

clearing, being hoarse, postnasal drip, epigastric burn, and nausea (Irwin et al., 1989; Ruigomez 

et al., 2008).  

1.6.2 CF Patients and GOR  

There is evidence that GOR is greater for CF patients than for healthy individuals (Ledson et 

al., 1998a; Button et al., 2005), with GOR which reaches a pathological level estimated at from 

35 to 81% for CF populations (Ledson et al., 1998a; Brodzicki et al., 2002b; Blondeau et al., 

2008a). Further, symptoms of EOR are demonstrated to have affected 94 per cent of those with 

CF (Blondeau et al., 2008a). Refluxate has the potential to restrict lung function in micro-

aspiration as well as spasmodic reflex in the glottis and bronchi (Blondeau et al., 2010). 

There are two theories proposed to account for the symptoms arising from the association 

between GOR and respiratory disease; these are the reflex theory and reflux theory (Figure 1.1) 
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(Praud, 2010). According to the reflex theory, the vagus nerve is stimulated by gastric reflux in 

the oesophagus, leading to bronchospasms (Ates and Vaezi, 2013). On the other hand, the reflux 

theory postulates that gastric refluxate is aspirated, which causes the airways to become 

damaged and inflamed (Bulmer et al., 2010). 

 

Figure 1-1: GOR and pulmonary symptom in CF patients 

1.6.2.1 GOR Mechanisms for CF patients  

The mechanisms governing the link between GORD and CF have presented a challenge to 

researchers: especially as this link does not seem influenced by surroundings, mutation, gender 

or age (Pauwels et al., 2011). It is probable however; those multiple factors are involved in this 

association. 

Increased frequency of transient lower oesophageal sphincter relaxation (TLOSR) seem to have 

significance in linking GORD to CF. In a study which involved 14 juvenile CF patients 

(Cucchiara et al., 1991), CF patients were reported as more likely to have TLOSR as the factor 
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leading to instances of GOR than from elevated intragastric pressure or lowered steady-state 

basal lower oesophageal sphincter (LOS) pressure. 

The reasons for LOS relaxations were hypothesised as coming from stomach or pharynx 

stimulation (Cucchiara et al., 1991). Later studies support the contributory role of TLOSRs 

(Button et al., 2005; Katkin and Schultz, 2010), although reduced basal tone of the LOS, as 

well as higher pressure within the abdomen might also be responsible (Katkin and Schultz, 

2010). Prolonged gastric emptying is reported in 5-17 year-old CF patients, while in case of 

exocrine pancreatic insufficiency, this period is shorter than normal (Cucchiara et al., 1996). 

Primary lung disorders, including poorer pulmonary function caused by accumulated 

intraluminal secretion, as well as bronchiolitis and chronic destruction of the wall of the 

respiratory passage, are reported as also being contributory elements (Blondeau et al., 2010). It 

is also possible that bronchopulmonary dysplasia or infections of the airways such as frequently 

seen in childhood may lead to GORD (Cucchiara et al., 1991). Further, the suggestion has been 

made that GOR itself is a contributory factor to these issues of the lung as a result of the 

oesophagus becoming more acidic, which can lead to a reflexive constriction of the bronchi 

induced by chemoreceptors (Ledson et al., 1998b). Certain drugs, including alpha-adrenergics, 

might also be a factor in developing GORD (Katkin and Schultz, 2010), as well as changes to 

diet, as adopting a diet which is high in fat and protein increase the GOR (Button et al., 2005). 

Sporadic cough and wheeze present as frequent CF symptoms, and each creates greater pressure 

in the abdomen (Cucchiara et al., 1991). Some research reported lower frequency of greater 

intragastric pressure as a causal factor for GOR than for lower LOS pressure (Cucchiara et al., 

1996). Despite this, certain researchers prefer to categorise acid reflux as a primary rather than 

secondary cough-related occurrence (Blondeau et al., 2010). 

A further contributory element in childhood CF GORD is suggested to be postural drainage. 

This procedure involves percussive strikes delivered manually or mechanically  with the aim 

of encouraging thickened mucus to come loose and be expelled (Button et al., 1998), and is a 

highly successful approach to mucus removal with benefits for survival. Notwithstanding this, 

some research has found that this procedure, and in particular where the head is held downward, 

may make reflux worse.  
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1.6.3 Gastric Reflux contents 

The principal elements of threat within the gastric juices include bile salts, pepsin, acid, 

pancreatic proteolytic enzymes and, especially in those individuals taking PPIs, microbial 

pathogens (Pearson and Parikh, 2011a). The stomach converts food ingested into a liquid form 

by use of pepsin, acid and regular, forceful muscular contraction (Marieb and Hoehn, 2007).  

Within the mucosal stomach lining, cells form gastric pits, each constructed from a number of 

glands, and secrete gastric components (Figure 1.2).   

 

Figure 1-2: Structure of the gastric gland. Mucosal epithelium of the fundus and the body of the 

stomach form a deep glandular compartment called the gastric gland that is responsible for 

gastric juice synthesis and secretion, gastric acid secretes from parietal cells in the isthmus, base 

and the neck of the glands, pepsinogen releases from peptic cells that are found in the base of 

gastric glands http://www.histology.leeds.ac.uk/digestive/stomach.php. 

The pH of the stomach is maintained at between 2 and 4 by secretions of hydrochloric acid 

(HCl) from the gastric parietal cells within the glands (see Figure 1.1). This acidic environment 

provides defence against certain pathogenic organisms as well as activating a proteolytic 

enzyme, pepsinogen released from the peptic stomach cells to pepsin (Owen, 1986). 

On the activation of pepsin, it is stable in its molecular structure and can operate in a pH 

environment as high as 6.0. Mucus is the main substance to be secreted by the cells of the 

http://www.histology.leeds.ac.uk/digestive/stomach.php
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epithelium surface, and this accumulates as a 2-part layer of protection for the stomach to 

prevent harm from acid or pepsin (Allen and Flemström, 2005).     

The epithelial surfaces of the larynx and oesophagus are demonstrated to be at little risk of 

damage when pH is 4, but pepsin causes damage to these areas. Thus, where pH is 4 or over, 

only refluxed material containing pepsin would cause harm (Bulmer et al., 2010). At lower pH 

levels, acid does not harm the stomach but damages oesophageal tissues (Dvorak et al., 2007).  

Refluxate containing pancreatic enzymes or alkaline bile (pH=8) from the duodenum is 

produced in duodenogastric reflux, in which relaxation of the pyloric sphincter occurs, allowing 

the stomach to be exposed to duodenal fluid. Bile salts, or BSs, work in the small intestine to 

allow lipids to be digested and absorbed, The high level of cytotoxicity of BSs leads to their 

association with malignant occurrence in the gastrointestinal tract (Baptissart et al., 2013). The 

liver’s hepatocyte cells generate BSs, which are modified steroids and sparingly soluble in 

water. Their synthesis is achieved through cholesterol being catabolised to form 

chenodeoxycholic acid and cholic acid, CDCA and CA respectively, which make up the 

primary bile acids. When these enter the colon, they are deconjugated into free bile acids under 

the action of bacterial enzymes, and these bile acids can then be changed to become secondary 

bile acids, this modification, mainly 7α-dehydroxylation, converting cholic acid to deoxycholic 

acid (DCA) and chenodeoxycholic acid to lithocholic acid. According to (Pearson and Parikh, 

2011b), fasting gastric juice of patients undergoing routine upper GI endoscopy ranged from 

10 to 10 000 mmol ⁄ L. 

There is evidence of damage being caused to the mucosa of the oesophagus by bile acids in 

individuals with Barrett’s oesophagus, owing to the linking of the condition to cyclooxygenase-

2 expression upregulation, as well as functions of cell proliferation. When the oesophageal 

epithelium is exposed to bile acids, DNA has been demonstrated to become damaged (Jolly et 

al., 2004).  

In one cross-sectional study D’Ovidio et al. (2005), bile salts were found in raised concentration 

within bronchoalveolar lavage (BAL) in 120 patients who had recently undergone transplant, 

and they were particularly concentrated in those suffering from early onset bronchiolitis 

obliterans syndrome (BOS). Further, it was reported that bile acids in the bronchoalveloar 

lavage (BAL) were linked to interleukin 8, alveolar neutrophilia and positive bacterial and 

fungal cultures. For those with CF, estimates for aspirated bile have been given as including up 

to 80 per cent of patients (Blondeau et al., 2008a).  



18 
 

Bile acids can arrive in the lungs via aspirated content from the gastro-intestinal area, or may 

be taken directly from the blood. Aspirated bile in pig lungs generated serious chemical 

pneumonitis (Porembka et al., 1993). Further, bile acids injected into the intratracheal area is 

reported in a rabbit model to cause severe pulmonary oedema (Brown, 1967). A study in rabbits, 

where taurocholic acid was introduced intratracheally, reported atelectasis hyaline membrane 

formation and eosinophilic substance accumulation within intra-alveolar areas, as detected with 

microscopy. The study team hypothesised that there may be impairment of the function of 

surfactants due to bile acids (Kaneko et al., 1990). Aspirated bile acid may lead to serious harm 

to the lungs (Zecca et al., 2008).  

1.6.4 GOR and pulmonary disease pathogenesis in CF  

 A number of studies identify a possible association between GOR and exacerbations in lung 

disease as a contributory factor for greater morbidity as well as poorer life quality (Euler et al., 

1979; Berquist et al., 1981). In fact, a variety of pulmonary disorders have been strongly linked 

to GOR, aspiration to the lungs and exacerbated damage to the lungs (Tobin et al., 1998). This 

is true of severe lung damage following transplant (Davis et al., 2003; Hadjiliadis et al., 2003; 

Blondeau et al., 2008b), as well as for ventilator associated pneumonia (Collard et al., 2003). 

CF patients suffering from GOR are reported to have reduced pulmonary function in 

comparison to other CF patients, as assessed through continuing decreased pulmonary function 

as viewed by the FEV₁ (Navarro et al., 2001; Palm et al., 2012).  

A Dutch study conducted longitudinally with CF children showed results to indicate that GOR 

was linked to lowered lung function (van der Doef et al., 2009). There is no clear picture as yet 

of the extent to which aspiration and GOR are harmful, but these results imply a role of refluxed 

material in decreasing pulmonary function as possibly a primary effect through refluxate 

harming epithelial tissues or as a secondary factor in greater exacerbations of lung disease with 

a link to GOR. It is significant to note that GOR has been associated with CF infections and 

decreased pulmonary function (Vos et al., 2008). GOR is also linked in several studies to PA 

and SA infection (van der Doef et al., 2009; Palm et al., 2012), and aspirated bile acid is 

emphasised as a factor in greater risk of PA following lung transplant (Vos et al., 2008) although 

the mechanism for GOR as a causal factor in infections of the lungs is poorly understood. 

Stomach colonisation by pathological bacteria in CF patients is established through research 

(Atherton and White, 1978) and may be a factor in pulmonary infections where pathogen-laden 
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stomach contents are refluxed and aspirated into the lungs. Thus, the stomach has an identified 

function in pathogenesis of the lung through hosting pathogenic bacteria (Atherton and White, 

1978; Bonten et al., 1997). Bacteria from the stomach and airways were found to match, with 

a large proportion of the microbes identified being found in the gastrointestinal tract before 

their identification in the air passages (Round and Mazmanian, 2009; Madan et al., 2012). . 

Individuals with CF are especially vulnerable to potential two-way pathogenic transfer from 

stomach to upper airways and vice versa because of the prevalence of gastric reflux in this 

group (Rogers et al., 2010b). Research conducted in 2006 correlated bacterial colonisation in 

the gastric juices and the oropharynx for patients in old age fed through NGT, with the 

implication being that bacteria were transmitted in two directions (Segal et al., 2006). 

1.6.5 Aspirated Bile and Pulmonary Infection in CF 

Bacteria in CF airways seem to grow very slowly or be in stationary phase, probably due to the 

surrounding conditions of the mucus environment with no or very little oxygen (Worlitzsch et 

al., 2002), possibly forming biofilms (Singh et al., 2000). Such biofilms are not susceptible to 

antibiotic drugs, and cells that are sessile rather than planktonic have greater resistance (Nickel 

et al., 1985; Spoering and Lewis, 2001; Prince, 2002). Therefore, the challenges found in 

resolving chronic PA infection for CF patients might be partially due to the application of 

treatment approaches that are based on poorly matched testing of susceptibility, as the bacterial 

growth within the air passage may be in a different form. In fact, a more suitable predictor for 

sensitivity to antibiotic treatment could be the susceptibility of laboratory-grown biofilm of 

microaerophilic microbes in stationary state. 

Research carried out retrospectively with juvenile CF patients showed an association between 

aspirated bile and PA colonies in the respiratory passage (van der Doef et al., 2009; Palm et al., 

2012), as did  a study related to lung transplantation (Vos et al., 2008). Bile aspirated due to 

GOR is now seen as a major complication of CF, and for respiratory diseases more broadly. 

 

In recent in vitro studies, it has been found that bovine bile at physiological concentration 

(0.03%-0.3%) can lead to PA and a number of pathogenic species to take up biofilm modality 

on a chronic basis (Reen et al., 2012). In addition, there is evidence that the host’s molecular 

targets are modulated by the bile acid to suppress hypoxia-inducible factor-1α (HIF-1α), which 

is the immune and hypoxic responses’ key regulator (Legendre et al., 2014), providing 
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persuasive evidence that the role of bile aspiration to the lung might represent a significant 

determinant in the host in initiating pathogens taking biofilm state. 

Recently, a number of studies have specifically focused on the microbiome specific to CF and 

the differences between this and the microflora in healthy control (Cox et al., 2010; Sibley et 

al., 2011; Sibley and Surette, 2011; Blainey et al., 2012). The variables which influence the 

microbiome in CF are not established, (Reen et al., 2012) but research points to aspiration of  

bile as a possible factor in altering microflora, and in particular regarding certain pathogenic 

species coming to dominate and create chronic infection. 

A further study by the same group (Reen et al., 2014)  looked at bile aspiration and its influence 

on the pulmonary microflora of patients with respiratory disease. Profiling techniques were 

applied to 25 samples of sputum provided by juvenile patients with CF to determine whether 

bile acids were present using high-resolution liquid chromatography-mass spectrometry. Five 

samples were then isolated from patients with bile aspiration and 5 from those without. The 

samples were subjected to pyrosequencing and denaturing gradient gel electrophoresis (DGGE) 

and it was found that sputum from samples with bile aspiration had a comparatively narrow 

range of microflora in comparison to the other samples. Furthermore, in samples without bile 

aspiration, the predominant genera found were those seen in normal lungs, while CF-associated 

types of microbial life principally defined those with bile. 

1.7 Diversity of microbes within the stomach  

Where stomach function is normal, the majority of pathogenic microbes find survival 

impossible in the stomach, dues to the acidity levels of pH less than 2 caused by the 

hydrochloric acid in this environment, and bacteria such as Lactobacillus, Neisseria and 

Streptococcus, come  principally from foodstuffs or transient oral populations (Giannella et al., 

1972). However, where stomach acidity fails to reach a pH of less than 4, survival within the 

gastric organ is possible for a greater diversity of species to proliferate. The pH of the stomach 

may become raised through lowered production of stomach acid, or through externally derived 

acid suppressors or antacid blocking secretions or neutralising acidity, meaning that stomach 

loses a significant defensive strategy to prevent pathogenic microbes from surviving in the 

stomach (Smith, 2003).  

The majority of CF patients suffer from exocrine pancreatic insufficiency and receive 

medication to replace the pancreatic enzymes. Inhibiting gastric acid or GA may form part of 

treatment, using histamine-2 receptor antagonists or proton pump inhibitors, if inadequate 
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levels of fat are absorbed even with correct doses of pancreatic enzyme replacement 

(Walkowiak et al., 2005; Littlewood et al., 2006). Treatments to inhibit gastric acid secretion 

are also used in CF patients with signs of GORD.  PPIs or proton pump inhibitors prevent acid 

from being secreted through blocking H⁺/K⁺ ATPase of the gastric parietal cell, and a 

transporter, which acts as a proton pump, and plays a role in the final step in the cell’s acid 

secreting activity. There are a number of proton pump-inhibiting compound, such as 

Omeprazole, Lansoprazole, Esomeprazole, Dexlansoprazole, Raberprazole and Pantoprazole 

(Orenstein et al., 1999).  

There is a report of microbial flora within the stomach increasing from 0.47×10⁶ under a pH of 

2 to 5.13 ×10⁶ cfu/ml under a pH of 6 on treatment with PPI medication (Goddard and Spiller, 

1996). When compared to healthy individuals, greater quantities of gram negative microbes 

were isolated in the gastric juices of patients in intensive care who were being treated with acid 

suppressors (Du Moulin et al., 1982).  It has been demonstrated that PPI medicines change the 

microflora of the stomach and lead to rises in overgrowth of bacteria: these mainly come from 

the mouth and in reduced acid conditions can live within the stomach (Williams and McColl, 

2006).  

Across a range of non-CF populations, a link has been made to associate gastric acid inhibition 

medications with higher risk of lung infection: for instance, patients in critical care who are 

given histamine-2 antagonists to prevent stress ulcers are at greater risk of developing 

pneumonia (Mallow et al., 2004). Further, children with GORD and adults on gastric acid 

inhibiting medication are both more likely to develop pneumonia in the community (Laheij et 

al., 2004; Canani et al., 2006). 

CF patients being treated with gastric acid inhibitors for GORD or for malabsorption of fats 

were targeted in a longitudinal study with 218 paediatric patients with CF considering microbial 

colonisation and the functioning of the lungs (Forced expiratory volume in 1 second FEV₁, 

Forced vital capacity FVC, Maximum expiratory flow at 50% of the largest FVC (MEF50), 

maximum mean expiratory flow (MMEF25-75)). No effect was reported on lung function or 

bacterial culture for acquiring or colonisation by SA and PA in  patient taken GA inhibition for 

fat malabsorption, with no difference compared to patients with no history of GA inhibition 

(van der Doef et al., 2009). The findings support and expand upon a previous study which found 

no difference in FVC, MEF50 and FEV₁ for 14 CF patients who had taken GA inhibitors for 

12 months to counter malabsorption of fat (Zapletal et al., 1987), and this indicated a potentially 

positive impact on obstruction of the peripheral respiratory passages. Thus, there is no 
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contraindication for CF patients in taking GA inhibiting medications to promote absorption of 

fat, and further, there may be a positive impact for certain areas of decreased lung function (van 

der Doef et al., 2009). 

However, CF individuals taking GA inhibitors to treat GORD showed decreases in lung 

function (van der Doef et al., 2009), as also seen in a previous cohort research project of cross-

sectional design (Stringer et al., 1988). In terms of variation between FVC and FEV₁, for CF 

patients, those diagnosed with GORD initially acquired SA and PA sooner. It is suggested that 

hyperinflation and obstruction to airways more likely stem from GORD rather than the gastric 

acid inhibitors, as the treatment did not impact upon lung function for those taking it for fat 

absorption issues (van der Doef et al., 2009).  

Further, aspirating gastric acid has been demonstrated in mice to support PA in attaching to the 

epithelium of the respiratory passage (Mitsushima et al., 2002). Mitsushima et al. (2002) sought 

to establish whether aspirated acid plays a role in PA’s ability to adhere to surfaces. Microbial 

numbers surviving within the tissues of the lungs were assessed following the introduction of 

HCl alone, PA alone or the two in combination in the intratracheal area. A scanning electron 

microscope was used to assess how far bacteria had attached to the epithelial wall of the trachea 

following aspiration of acid. Introduction of 50 µl 10-1 Molar hydrochloric acid together with 

PA at lower than lethal dose gave a large increase in quantities of PA in the tissues of the lungs, 

lowering survival rates. Further, it was noted that those mice receiving hydrochloric acid 

showed a much higher rate of epithelial adhesion of PA in comparison to saline. The findings 

suggest that damage was inflicted to the epithelium and PA was then able to adhere further to 

it epithelium, causing subjects to develop bacterial pneumonia. Based on this, greater ability 

for bacterial pathogens to adhere to epithelial tissue, which has been damaged by acid, could 

provide a cause for bacterial pneumonia leading to death in humans with aspirated gastric 

juices. 

The bacteria inside the stomach may be transferred to the lungs via GOR and this might underlie 

reports of greater pneumonia prevalence for patients in intensive care who received PPIs (Tryba 

and Cook, 1995; Torres et al., 1996). For those taking PPI, the pH of the stomach contents 

refluxed is higher, with the likelihood of higher bacterial concentration and greater levels of 

endotoxins in comparison to those not on the medication, and this may cause a more pronounced 

inflammatory response where aspiration to the lungs occurs (Pauwels et al., 2013). 
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1.8 Gastrostomy feeding in CF patients 

The energy requirements associated with chronic respiratory infection, anorexia, inadequate 

dietary intake, maldigestion and malabsorption are the main causes that children with CF often 

fail to thrive (Borowitz et al., 2009; Matel and Milla, 2009). Malnutrition remains stubbornly 

common amongst CF patients, in spite of advances in treatment (Matel and Milla, 2009). 

Energy-rich foods and fluids may be prescribed to boost nutrition; other techniques to promote 

nutrition include oral supplements, pancreatic enzyme replacement therapy (PERT) and enteral 

feeding via gastrostomy (Anthony et al., 1999; White et al., 2009) 

In CF, enteral tube feeding through percutaneous gastrostomy tube (PEG) may become 

necessary to ensure adequate nutrition essential for optimal lung function to be attained 

(Borowitz et al., 2005). Although this is a long-standing procedure that has been used for more 

than three decades, there have not been any large-scale clinical trials evaluating the 

effectiveness of the procedure in CF patients. However, evidence of improved pulmonary 

function and weight gain is provided by small, single-centre retrospective studies (Best et al., 

2011; Vandeleur et al., 2013; White et al., 2013; Woestenenk et al., 2013). 

An advantage of PEG is that once inserted it is easy to manage outside of the hospital setting, 

such as at home (Novotny et al., 2009; Wang et al., 2014). It is possible to leave PEG tubes in 

situ for long periods, though in time they do deteriorate or may be accidently removed by the 

patient, so need to be replaced (Wang et al., 2014). 

1.8.1 PEG tube infection 

Using the random amplified polymorphic DNA (RAPD) technique, Dautle et al. (2003) 

analysed PEG tube microbiota. Biofilms that that developed on 18 gastronomy devices were 

collected from CF patients ranging from 6 months to 17 years. The mean time that the PEG 

tubes had been in place was 20 months (range 3–47 months). There were diverse species 

present, including enterococci, staphylococci, E. coli, Lactobacilli, Candida, Pseudomonas and 

Bacilli (Dautle et al., 2003). 

Culturing methods were used to evaluate PEG patients’ gastric and duodenal microbiota as well 

as of their PEG tube surfaces. The prevalence of some types of infection was increased in those 

patients who had antibiotic therapy before the PEG tube was placed; they also had lower 

mortality rates (Nicholson et al., 2000). The predominant species isolated were Candida, 
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Enterobacteria, Lactobacilli, Staphylococci and Streptococci (Graeme et al., 2005a). The 

evidence suggests that the density of the colonies in the stomach and duodena of EN patients 

was not influenced by gastric pH; however, the composition of microbiota was affected. 

Bifidobacterium, Klebsiella and Staphylococcus species were detected but only in aspirate 

where the pH was above 3. Patients, who during a hospital stay had received antibiotic 

treatment, presented Candida, E. coli and Staphylococci in aspirate. 

Smith et al. (2011) characterised the microbial colonies of the gastric mucosa in eight PEG 

patients by using real-time polymerase chain reaction (PCR) and fluorescence in situ 

hybridization (FISH). Compared to controls, the mean levels of Enterobacteria and 

Staphylococci were considerably greater in PEG patients. However, the PEG patients also had 

lower levels of the pro-inflammatory cytokines IL-1α, IL-6 and TNF-α. Microbial biofilms 

containing pathogenic species contaminate PEG tubes, potentially resulting in several 

infections including peristomal infection and presenting the risk of sepsis (Blomberg et al., 

2012). Because antibiotics alone are unable to resolve the pathogens in the biofilm, to cure the 

infection and prevent re-infection, the PEG may need to be removed. 

1.9 Overall aim of the thesis 

In light of the previous discussion, the current research project was created to explore the effect 

of gastroesophageal reflux on the lung microbiome. I suggested here that bacteria in the 

stomachs of those treated with PPIs grow excessively, with an upstream impact upon the 

microbial content in the lungs and oropharynx due to full column reflux. Moreover, this project 

explores the possibility that bile derived from GOR might impact upon the microbial picture 

within the lungs and in this way exacerbate pulmonary disease seen in patient with GOR.  
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Chapter 2.0 : Methods 

2.1 Ethical approval 

Research Approval was obtained from Newcastle and North Tyneside Research Ethics 

Committee (UK) to perform research on samples collected as part of the HPB 

(Hepatopancreatobiliary) groups biobank based in Newcastle University. All study participants 

provided written informed consent prior to initiation of the study. All methods were carried out 

in accordance with relevant guidelines. 

2.2 Recruitment of patients  

The research sample cohort comprised of 18 adults with (mean age 26.7 ±5.7, with unknown 

gender) with CF in a state of clinical stability who had undergone PEG (percutaneous 

endoscopic gastrostomy) feeding and who had a routine outpatient appointment with the Royal 

Victoria Infirmary (RVI) chest clinic. Patients were given information concerning the research 

project and time to read this via nursing staff, and then asked for their consent to participate. 

After agreeing to participate, a nurse read the consent form aloud to patients, ticking off points 

as agreement was given. Following this, patients and nurses signed, printed their names and 

dated the documents. Copies of all consent forms were held by the research centre and each 

participant held a consent form and an information document. Recruitment of patients was done 

according to the inclusion criteria, which meant that participant had to be; an adult (> 18 years 

old), diagnosed with CF, clinically stable, and in attendance at an RVI appointment with PEG 

Tube feeding. Those who had not provided sputum and those less than 18 years old with oral 

feeding were excluded.  

2.3 CF patients included in this study 

There were 270 CF patients attending the regional CF Centre at the time of the study, and among 

these only 18 were adult, stable CF patients receiving PEG tube feeding and were therefore 

included in this study. CF patients receiving PEG feeding represented an important opportunity 

to directly sample gastric juice, with less potential for contamination with oropharyngeal 

commensals. 
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 From the study population of 18 individuals, 5 replaced PEG tubes, 31 samples of gastric juice 

and 31 sputum samples were gathered. In addition, 16 complete Reflux Symptomatic Index 

(RSI) questionnaires were collected (Figure 2.1).  

 

Figure 2-1:  Summary of patient recruitment. 15 patients were included in the first study 

(Chapter 3) and 16 patients were included in the second (Chapter 4) and third studies (Chapter 

5). CF: cystic fibrosis, GJ: gastric juice, PEG: percutaneous gastrostomy tubes.  

2.4 Patient characteristics and clinical details for CF patients 

Suitably qualified personnel took measurements of forced expiratory volume in 1 second 

(FEV₁) during patients’ regular appointments. Mr Alan Anderson, a specialist CF nurse, 

collected and passed on this data to the researcher, as approved by Dr. Stephen Bourke, 

Respiratory Consultant at the RVI. Moreover, Mr Alan Anderson gathered patient age, sex, 

BMI, long-term antibiotic status and CFTR genotypes, as well as whether the patient was on 

acid suppression medication or not from participants’ records. Clinical details of the patients 

are presented in Table 2.1. 
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Table 2.1: Demographic data for CF patients 

Patient 

 

Genetics Age RSI 

score 

PPI 

yes/no 

Gastric 

Juice pH 

FEV1 

(%) 

BMI IV 

 ( days 

/year) 

Long-term 

antibiotic 

CF-1 F508del/F508

del 

26 

 

17 Yes 6 2.0 L 

(52%) 

19.9 22 Azith, Inh Coli 

and Inh Tob 

CF-2 F508del/F508

del 

27 

 

20 Yes 2 1.7 L 

(42%) 

23.2 70 Azith, Fluclox 

and Inh coli 

CF-3 F508del/F508

del 

20 

 

25 Ranitidin 3 0.8 L 

(26%) 

19.5 28 Azith, Fluclox 

and Inh Coli 

CF-4 F508del/F508

del 

24 

 

36 Yes 6 0.76 L 

(28%) 

19 154 Azith and Inh 

Coli 

CF-5 F508del/F508

del 

41 NA 

[died] 

Yes 5.5 0.45 L 

(18%) 

18.2 65 Azith and Inh Tob 

CF-6 F508del/F508

del 

31 

 

16 Yes 6 0.5 L 

(12%) 

19.1 70 Azith and Inh 

Coli 

CF-7 F508del/ 

R117H 

22 

 

16 Yes 3 2.7 L 

(66%) 

16.4 14 Fluclox 

CF-8 I507del/ 

Arg560Lys 

18 

 

13 Yes 2 3.5 L 

(88%) 

19.4 37 Fluclox, Inh Coli 

and Inh Tob 

CF-9 F508del/R117

H 

30 14 Yes 6 1.55 L 

(46%) 

17.8 56 Fluclox and Inh 

Coli 

CF-10 F508del/F508

del 

25 17 Yes 2 1.7 L 

(38%) 

15.9 98 Azith, Fluclox 

and Inh Tob 

CF-11 F508del/G542

X 

32 

 

NA 

[PEG 

removed] 

Yes 2 1.15 L 

(36%) 

19.4 112 Azith and Inh 

Coli 

CF-12 F508del/F508

del 

30 19 Yes 6 1.2 L 

(29%) 

19.8 115 Azith, Fluclox 

and Inh Coli 

CF-13 F508del/G542

X 

24 

 

15 Yes 2 1.65 

(36%) 

15.24 197 Azith, Inh Coli 

and Inh Tob 

CF-14 F508del/ 

Arg851Ter 

23 22 Yes 6 2.3 

(59%) 

20.2 56 Azith 

CF15 G542X/G551

D 

22 

 

NA 

[moved 

country] 

Yes 2 0.85 L 

(28%) 

18 42 Azith and Inh 

Coli 

CF-16 F508del/F508

del 

25 24 Yes 4 0.85 L 

(29%) 

17.3 84 Azith Inh Colistin 

and Fluclox 

CF-17 F508del/Arg8

51Ter 

25 8 Yes 3 2.1 L 

(54%) 

20.1 56 Doxycycline and 

Azith 

CF-18 F508del/Ile50

7del 

36 NA Yes 4 0.72 L 

(17%) 

21.9 112 Inh Colistin 

Azith = oral azithromycin long-term. Fluclox = oral flucloxacillin long-term. Inh Coli = inhaled 

colistin (nebulised or inhaler). Inh Tob = inhaled tobramycin (nebulised or inhaler). RSI score= 

Reflux symptom index score, 12 or less is normal. NA= not available. IV days /year= Number 

of days per year that CF patient treated with intravenous antibiotics. Gender is not known for 

patients. 
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2.5 Non-CF patients included in this study 

Fourteen patients without CF undergoing routine upper gastro-intestinal endoscopy performed 

according to British Society of Gastroenterology guidelines were also included in this study as 

a control group. Gastric juice only was collected from those patients. Sputum was not collected 

from the non-CF patients (Table 2.2). 

Table 2.2: Demographic data for the non-CF patients 

Patient 

No 

Age 

(year) 

Background disease PPI 

yes/no* 

Gastric 

juice pH 

1 75 Oesophagitis yes 2.4 

2 56 Oesophagitis and Pyloroplasty yes 6.6 

3 65 Barrett’s Oesophagus and Hiatus Hernia no 4.8 

4 59 Hiatus Hernia yes 2 

5 45 Oesophagitis and Hiatus Hernia n/a 1.4 

6 42 Gastritis and Hiatus Hernia yes 5.5 

7 58 Oesophagitis and Hiatus Hernia yes 4 

8 80 Not known n/a 4.7 

9 50 Gastric ulcer yes 8.4 

10 78 Gastritis and Hiatus Hernia n/a 1.6 

11 73 Barrett’s Oesophagus   yes 5.1 

12 55 Not known n/a 5.2 

13 68 Duodenal ulcer n/a 6 

14 65 Gastritis n/a 1.7 

All patients were off PPI or any other acid suppression medication 2 weeks before the 

endoscopy procedure (n=14). Gender is not known for patients. 

2.6 Collection of samples 

2.6.1 Collecting gastric juice from CF patients (CFGJ) 

After a fast from the previous night, a total of 31 samples of gastric juice were taken from 18 

individuals through aspiration and collection via the PEG tube, carried out by specialist nursing 

staff in the RVI cystic fibrosis clinic. The procedure for sampling via aspiration was as follows. 

First, the individual is positioned on their side, before injecting between 3 and 5 ml saline to 

the tube via a large volume syringe. The patient is shaken gently between 3 and 5 times, 

aspirating between one and three minutes later. 
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In this way, 31 samples of gastric juice (GJ) were gathered from 18 individuals with CF. For 

13 of the participants (CF1-4 and CF 6-14), aspiration was used to take two samples of GJ with 

a gap of 6-12 months. Meanwhile, for the other 5, only one sample was taken (CF5 and CF15-

18). This was due to participants not attending a second appointment within the time of study 

(CF16-18), moving from the regional clinic (CF15), or dying (CF-5).  

2.6.2 Sputum collection from CF patient (CFS) 

Voluntary expectorated (non-induce) sputum samples were requested from each patient. On 

entering the RVI, nurses gave out a sputum pot and participants were asked to provide a sample 

of sputum via expectoration, with time allowed in a consulting room for this. Normal 

contamination protocols for the clinic were used.  

31 spontaneously expectorated sputum samples from the same 18 CF patients were also 

obtained and collected into sterile cups. 2 sputum samples aspirated from 13 CF patients on 2 

different occasions with 6-12 months in between. Only one sputum sample was aspirated from 

the remaining 5 patients, because either the patient had died (CF-5), moved (CF-15) or not 

attended a second appointment at the time of the study (CF16-18). 

2.6.3 Collection of non-CF gastric juice samples (GJ) 

Collection of gastric juice samples was conducted with fourteen participants who did not have 

CF and were attending the hospital for a clinical endoscopic examination of the upper gastro-

intestinal tract to identify a range of diseases of this area. The procedure was carried out after 

approximately eight hours’ fasting. Suction was applied via the endoscope to collect the fluid. 

As per guidance from the British Society of Gastroenterology. Participants were given either 5 

mg midazolam or xylocaine prior to aspirating gastric juice from the stomach and gathering it 

into a trap (Pennine Healthcare, UK). This group of participants were not asked to provide 

sputum samples. 

2.6.4 Collection of replaced PEG tubes from CF patients 

Five participants with CF who were fed via PEG provided a total of 5 PEG tubes which were 

being replaced, with no need for endoscopy or anaesthetic. Manual traction was gently applied 
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to the portion of the PEG tubing visible externally, and the apparatus was, complete with 

collapsible internal bumper, removed through the PEG hole. Where PEG tubes had a balloon 

retainer, these were completely deflated prior to removing the tube. Removals were undertaken 

by dieticians at the RVI. 

2.7 Transferring samples to the Freeman Hospital 

The general rule as applied to samples of biological origin is that accuracy and reliability are 

best served by processing as soon as possible after collection.  Thus, the Health Protection 

Agency’s Standard Operating Procedures (Advisory Committee on Dangerous Pathogens, 

2005), advises rapid transport and processing, with refrigeration allowable for only between 

two and three hours before significant pathogen content is lost.  Thus, PEG tubes and samples 

of sputum and gastric juice underwent immediate transfer by the researcher to the Freeman 

Hospital’s Department of Microbiology in not more than 3 hours from being provided (SOP 

Index S19, Version 2, Sir William Leech Centre, Freeman Hospital, Newcastle upon Tyne, 

UK). 

2.8 Processing of sputum and gastric juice samples 

As the gastric juice samples arrived, their pH was measured with strip indicators (Scientific 

Laboratories, UK). Samples of sputum were delivered to a category 3 cabinet, where saliva and 

the sputum plug underwent separation before a matching volume of sputasol, containing 

sputolysin (Dithiothreitol (DTT) at a concentration of 0.2% in DH₂O (de-ionised water) was 

mixed with the sputum. This dissolves the mucus by cleavage of disulphide bonds. For this, the 

sample was generally shaken for between one and three minutes at ambient temperature in a 

vortex mixer to homogenise the sample, as checked by eye.  

2.9 Microbial study 

2.9.1 Microbial study of samples of gastric juice and sputum 

Samples of gastric juice from CF and non-CF participants, as well as samples of sputum from 

CF patients, underwent processing and culturing within the Freeman Hospital’s Department of 
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Microbiology, following the hospital’s accredited safety and sterility protocols and the 

guidelines put forward by the Health Protection Agency. This was supervised by Mrs Audrey 

Perry, clinical scientist. 

Separate plating took place for 10 µl undiluted gastric juice and 10 µl homogenised sputum. 

The media used were those routinely employed for anaerobic and aerobic microorganisms as 

well as yeasts.  These media were: Columbia blood agar with 5% supplementation of horse 

blood, Burkholderia selective agar, chocolate agar with supplementation of 70 mg/L 

bactericine, fastidious anaerobic agar (FAA), sabouraud’s agar and cysteine lactose electrolyte 

deficient agar (CLED). For plating of the sputum samples, a category 3 cabinet was used since 

they may contain tubercle bacilli. Incubation of the plates was then done following routine 

protocols. 

Each plate was assessed every 24 hours to check for signs of microbes growing, and separate 

colony varieties were counted. Presumptive isolates which emerged and all different 

morphological forms of these were subject to sub-culturing, done by placing sterile wires on 

colonies before using these to inoculate agar culture plates and incubating for 24 hours at 37°C. 

Microbes were identified using the resultant subcultures, which were immediately stored in 

10% glycerol at -80°C. 

The standard culture plates, specific incubation conditions and intended selected bacteria are 

detailed in Table 2.3  
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Table 2.3: Cystic fibrosis Sputum Samples Culture Protocol, Microbiology Department at the 

Freeman Hospital. 

Standard 

media 

Incubation 

 

Cultures 

read 

Target organisms 

Temp 

(°C ) 

Atmosphere Time 

Columbia 

blood agar 

35-37 5-10% 

CO₂ 

24-48h Daily Streptococcus 

pneumoniae 

Moraxella catarrhalis  

Staphylococcus aureus 

Other organism in pure 

growth 

Chocolate agar 

with Bacitracin 

35-37 5-10% 

CO₂ 

24-48h Daily Haemophilus spp 

Other gram negative 

bacteria 

Cysteine 

Lactose 

Electrolyte 

Deficient 

35-37 Air 24-48h Daily Enterobacteriaceae 

Staphylococcus spp, 

Enterococci spp, 

Pseudomonas spp 

 

Burkholderia 

Cepacia agar 

30 Air 5 days Daily 

10-day 

Terminal 

Read 

Burkholderia cepacia 

Atypical Mycobacteria 

Sabourauds 

agar 

35 Air 24-

48h,up to 

5 days 

Daily Candida spp 

Aspergillus spp 

Other fungi 

Fastidious 

Anaerobic agar 

35-37 anaerobic 5 days 10-day 

Terminal 

Read 

A primary isolation 

medium capable of 

growing most clinically 

significant anaerobes. 

2.9.2 Microbial study of PEG tubes 

On retrieval from a participant, the PEG tube was put quickly into a sterile bag for immediate 

transfer to the Freeman Hospital. 

The inner and outer parts of the PEG tube were divided using an aseptic technique into small 

pieces and vigorously washed with 3ml saline, yielding a PEG conditioned saline (PEG-s). 
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2.10 Organism identification by MALDI-TOF MS 

The Microbiology Department of the Freeman Hospital principally identified bacteria using 

MALDI-TOF: Matrix Assisted Laser Desorption/ Ionization-Time of Flight (Bruker Daltonics, 

UK). Where results were not completely clear, identification also relied on features seen on 

microscopy and on gram-stain and where necessary, appropriate analytical profile index (API) 

kits which is a commercial miniaturized biochemical test panels that cover a significant number 

of clinically important groups of bacteria (bioMérieux, UK) (Blauwendraat et al., 2012).. 

MALDI-TOF MS has come into routine use across a number of laboratories of clinical 

microbiology as a much faster route to identification than previous approaches. Most cultured 

colonies can be accurately and quickly identified via this method (Seng et al., 2013), and 

evaluation of the technique has been undertaken for pathogenic organisms in CF (Desai et al., 

2012). The approach is based on the ability to create a distinct peptidic spectrum based on each 

different isolate, and use of database comparison to identify the microbe. Desai et al. (2012) 

have recently shown that when using a microbial database without supplementing this with 

strains which were specifically related to CF, 92% of microbes isolated in 24 samples from CF 

patients could be identified with 100% agreement at the level of both genus and species, while 

for 98% this was true for genus. Among those microbes which could only be identified at the 

level of genus were Acinetobacter spp, Achromobacter xylosoxidans and Ralstonia pickettii, 

while Burkholderia multivorans is the sole microbe among the B. cepacia complex identifiable 

on a reliable basis through MALDI-TOF MS, making this method unsuitable for identification 

of this group, which, along with such organisms as non-aeruginosa Pseudomonas, frequently 

need to be identified via sequence-based approaches. 

MALDI-TOF MS is also suitable to quickly and accurately identify a range of non-bacterial 

organisms, such as in the case of CF-sample filamentous fungi, as shown by Del Chierico et al. 

(2012). Further, mycobacterial identification via MALDI-TOF MS has been partially 

investigated, with El Khechine et al. (2011) describing a protocol for extracting protein in an 

optimised manner and creating a database for mycobacteria to allow the majority of 

mycobacterial isolates grown in solid media to be identified. While this approach is not 

currently routinely employed, it has the potential to increase speed and accuracy in identifying 

such pathogenic organisms in CF. A further development is that due to the scope for 

comprehensive analysis via MALDI-TOF MS, it may be possible to identify potentially 

emergent or new microbes in CF (Bittar et al., 2010).  
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2.10.1 Mycobacterium and Pseudomonas aeruginosa strain identification 

Mycobacteria was identified by rpoB, sodA and hsp65 gene sequencing and strain typed using 

variable number tandem repeat (VNTR), Colindale, UK (Harris et al., 2012). All isolates of PA 

were typed via VNTR profiling (Turton et al., 2010) 

2.11 DNA extraction 

Microbial genomic deoxyribonucleic acid (gDNA) extraction from sputum and gastric juice 

samples was carried out at Freeman Hospital in a category 3 facility using a MOBIO 

PowerSoil™ DNA Isolation Kit 

(http://www.mobio.com/images/custom/file/protocol/12888.pdf). To the PowerBead Tubes 

provided in the kit, 0.25g of the sample was added before being gently vortexed. The 

PowerBead Tube contains buffers that begin to dissolve bacterial cells and protect nucleic acids 

from degradation. 

Sixty μL of solution C1 which was then pipetted and mixed into the PowerBead tubes by 

inverting it several times. Solution C1 contain Sodium dodecyl sulphate (SDS) which is an 

anionic detergent that breaks down the fatty acid and lipid in the cell membrane. PowerBead 

Tubes were secured horizontally and vortexed at maximum speed for 10 minutes.  Following 

this, the PowerBead tubes were then centrifuged at room temperature for 1 minute at 10,000g 

after which the supernatant was transferred to a clean sterile 2 mL collection tube (provided).  

250 μL of solution C2, which contains reagent to precipitate non-DNA organic and non-organic 

cell material, was then added to the supernatant. This supernatant was then vortexed for 5 

seconds and incubated for 5 minutes at 4°C before being centrifuged at 10,000g at room 

temperature for 1 minute, to form a pellet. 

After that, 600 μL of supernatant was transferred to a sterile 2 mL collection tube containing 

200 μL of solution C3, which is a second reagent to help precipitate any remaining non-DNA 

cellular material, and then vortexed and incubated at 4°C for 5 minutes followed by 

centrifugation at 10,000g at room temperature for 1 minute. Again, transfer of the supernatant 

to a clean 2 mL collection tube was performed before the addition of 1.2 mL of solution C4, 

which is a highly concentrated salt solution to help the binding of DNA to the spin filters. 

http://www.mobio.com/images/custom/file/protocol/12888.pdf


35 
 

Approximately 650 μL was then loaded onto a spin filter and centrifuged at 10,000g for 1 

minute at room temperature after the flow through liquid was discarded. This spin filter process 

was repeated twice more. 500 μL of solution C5, which is an ethanol wash solution used to 

clean the DNA bound to the silica membrane of spin filter, was added before centrifugation at 

10,000g for 1 minute at room temperature, after which the flow through liquid was discarded 

from the 2 mL collection tube. Centrifugation at 10,000g was carried out again for 1 minute at 

room temperature for the effective removal of any residual ethanol wash solution. 

After the removal of solution C5, the spin filter was placed into a clean sterile 2 mL collection 

tube and 100 μL of Solution C6, which is an elution buffer, to help to make sure that the entire 

membrane is wetted, was added to the centre of the filter membrane, releasing the previously 

bound gDNA from the silica spin filter membrane. The final step was to centrifuge the 2 mL 

collection tube at 10,000g for 1 minute at room temperature after which the released gDNA (50 

μL in volume) was collected. The spin filter was discarded and the extracted gDNA was stored 

at -80°C. 

2.12 Identification of extra oesophageal reflux symptoms (EOR)  

The questionnaire instrument used to evaluate symptoms of EOR and GOR symptoms was the 

RSI or Reflux Symptom Index questionnaire (for RSI: see Appendix1). This instrument was 

created originally for the evaluation of laryngopharyngeal reflux (Belafsky et al., 2002); 

however, it later received validation as a means of evaluating EOR, through its use in a number 

of such projects. The survey contains multiple questions concerning EOR signs and symptoms, 

such as throat-clearing, being hoarse, problems with swallowing, cough, postnasal drip, 

symptoms of GOR, Globus and breathing problems. Questions used a 6-point scale with a score 

of 0-5, with 0 meaning that no issue is reported and 5 indicating an issue of the highest severity. 

The values obtained were added together. Symptomatic participants were defined by a score of  

more than 12 as a total, while those below this were counted as not showing EOR symptoms 

(Belafsky et al., 2002).  

The published validation procedure for this questionnaire involved 25 individuals diagnosed 

with laryngopharyngeal reflux, compared to an identical number of healthy participants who 

were matched in terms of sex and age. The RSI scoring was done pre- and post- proton pump 

inhibitor application. Scoring before treatment for the laryngopharyngeal reflux group gave a 

median scoring of 21, while after the proton pump inhibitors, a median of 13 was obtained. For 
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the normal group the value was 13, which led to this being taken as the limit of normal 

symptomatic range. Thus, this questionnaire was considered validated for research into EOR 

and GOR for cohorts undergoing operations to reduce reflux (Robertson et al., 2012).  

2.13 Molecular based studies 

Extracted DNA was sent to Northumbria University, where Dr Chris Stewart and Dr Andrew 

Nelson, post-doctoral fellows, performed the molecular analysis of the extracted DNA. 

Bacterial were profiled using 16S rRNA gene targeting variable region 4 (V4) based on the 

Schloss wet-lab MiSeq SOP (http://www.mothur.org/wiki/MiSeq_SOP). Processing of raw 

fastq data took place via version 1.31.2 of Mothur, in line with guidance given by MiSeq SOP 

(Kozich et al., 2013). Chimeric sequences were detected by Chimera.uchime and removed from 

downstream analysis. Alignment was generated via the Silva database (Schloss et al., 2011). A 

cutoff of 70 (maximum average error allowed) was applied to assign sequences to the trainset_ 

9_032012 resulting in 2,228,291 reads. All sequences were deposited in Metagenomics-Rapid 

Annotation using Subsystem Technology MG-RAST under the accession numbers 4603845.3 

- 4603893.3. The server provides the annotation of sequence fragments, their phylogenetic 

classification, functional classification of samples, and comparison between different 

metagenomes.  

2.14 Statistical analysis 

Analysis of the NGS profiles were performed by Dr Cristopher Stewart and Dr Andrew Nelson 

(Chapter 3 and 4)  and conducted  by multivariate partial least squares discriminant analysis 

(PLS-DA) (SIMCA 13.0 software, Stockholm, Sweden) (Eriksson et al., 2006b). PLS-DA uses 

assigned variables to interrogate data for maximum variance. To check data was adhering to 

multivariate normalities, Hotelling’s T2 tolerance limits were calculated and set at 0.95. 

 Shannon diversity index was also calculated used the following; 

H’ = -Σ (pilog[pi]) 

Individual species’ relative intensity logs (Pi) were multiplied by relative intensities from all 

species across every sample, as (pilog[pi]). Values for individual lanes were added together and 

then multiplied by -1 (-Σ).  

http://www.mothur.org/wiki/MiSeq_SOP
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Chapter 3.0 : Microbiological profiles of sputum and gastric juice aspirates 

in cystic fibrosis patients 

3.1 Introduction 

Among individuals of Caucasian ethnicity, the most frequently occurring condition passed on 

through recessive inheritance is cystic fibrosis (CF) (Gibson et al., 2003). This condition occurs 

as a result of a mutation in the cystic fibrosis transmembrane conductance regulator gene 

(CFTR). CFTR is found on the seventh chromosome, on its long arm (7q31.2), and mutation in 

CFTR causes disturbance to cAMP-regulated chloride channel activity. This leads to negative 

effects across several of the body’s systems, significantly including lowered enzyme production 

in the pancreas, impaired nutrition and growth, and chronic disease in the lungs (Rosenecker, 

2000). 

The majority of early deaths and morbidity linked with CF arise as a result of infection in the 

lungs which leads to inflammatory processes and ultimately chronic disease of the lungs 

(Chmiel and Davis, 2003a; Murray et al., 2007). In terms of bacteria infecting the CF lung, the 

primary phyla involved are Firmicutes (e.g. SA) and Proteobacteria (including Achromobacter 

xylosoxidans, Burkholderia cepacia, HI, PA and Sternotrophomonas maltophilia) (LiPuma, 

2010). Additionally, the development of chronic lung disease in CF is also linked to fungi such 

as moulds and yeasts, as well as non-tuberculosis mycobacteria (e.g. M. abscessus). Current 

work involving molecular approaches to identifying microbes has supplemented the long-

established culturing techniques, enhancing the ability to identify a range of organisms. This 

means that increasing numbers of microbes are being identified as linked to lung disease in CF 

(Rogers et al., 2006; Klepac‐Ceraj et al., 2010b).  

Pseudomonas aeruginosa (PA) can infect lungs recurrently and persistently, and, particularly 

for CF patients in adulthood, this pathogen is a significant source of infections (Govan and 

Deretic, 1996). There is evidence to suggest that 8 in 10 adults and 6 in 10 children with CF 

carry a chronic infection of this pathogen, and thus it constitutes a significant risk to both groups 

(Gilligan and Kiska, 2006). 

There is evidence that patients who are treated at specialist CF facilities show better survival 

rates, and effective care for lung disease is seen as a primary goal in CF. The advantages offered 

by specialist CF facilities however are linked to care given across multiple disciplines, with 

significance also attributed to treatment of gastro-intestinal issues. These issues include gastro-
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oesophageal reflux (GOR), which occurs at a >50% prevalence rate in CF patients (Blondeau 

et al., 2008a). A number of causes for GOR in CF are suggested in the literature. These include 

a greater transient relaxation of the lower oesophageal sphincter (LOS), lower LOS pressure, 

delay in emptying of the stomach and the possibility of physiotherapeutic interventions and 

coughing creating a higher gradient of pressure in the abdomino-thoracic region (Pauwels et 

al., 2011). 

GOR is particularly significant in CF research in terms of the link between material from the 

stomach being aspirated and decreased function in the lungs, as suggested by evidence that 

those CF patients who experience GOR tend to have poorer lung function than those who do 

not (Navarro et al., 2001). Further, treatments to prevent acid reflux are linked to improved 

lung function and reduced symptoms of respiratory ill-health, while surgical intervention to 

reduce acid reflux has been shown to reduce exacerbation of CF significantly and to reduce the 

rate of deterioration in lung function (Sheikh et al., 2013). Conversely, although there is little 

literature in this area, there is some evidence to suggest that taking the proton pump inhibitor 

(PPI) esomeprazole (against a placebo) could be linked with CF exacerbations starting earlier 

and occurring more often (DiMango et al., 2014), suggesting that the acidity is not the only 

aspect of refluxate which has impact on the airways. 

The aero-digestive microbiome in non-CF contexts is already the focus of attention in both 

gastro-intestinal and respiratory medical fields, with a number of researchers identifying the 

stomach’s microbial reservoir as significant in an intensive care context for the acquisition of 

nosocomial pneumonia (Du Moulin et al., 1982).  Research focusing on older individuals 

without CF additionally found a link between those bacteria present in the airways and in the 

gastric area, and report the existence of large numbers of gastric microbes before these appear 

in the airways (Madan et al., 2012). Findings from research also point to an association between 

colonies of bacteria developing in the stomach and lower respiratory tract with individuals in 

intensive care units who receive food through nasogastric tubes (Segal et al., 2006).  

There is yet no comprehensive picture of the microbes present in the gastric juice of CF 

individuals, nor of the possibility of the stomach hosting a reservoir of pathogens identified as 

responsible for colonising the lungs. In light of this, a study was conducted in which I examined 

microbiological features of both the gastric juice and the sputum of CF patients, hypothesising 

that there would be some concordance between microbes found in the two. 
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3.2 Methods 

3.2.1 Samples of sputum and gastric juice from CF patients  

It was possible to take direct samples of gastric juice from PEG-fed CF patients while 

minimising the risk that the samples would be contaminated with commensals from the mouth 

and pharynx as detailed in Chapter 2. In brief, fifteen PEG-fed study participants were recruited 

from those attending the clinic between 22nd May 2013 and 17th April 2014. The participants 

were numbered CF-1 to CF-15, in sequence, and this number comprised 83% of the total 

number of PEG-fed CF individuals living locally. No exclusions or targeted inclusions of 

patients in the relevant population were made. 

To provide a control, samples of gastric juice were collected from fourteen non-CF individuals 

receiving gastro-intestinal endoscopy as a routine intervention. The procedure was carried out 

in line with the guidance given by the British Society of Gastroenterology as described in 

Chapter 2. This control group were not asked to provide sputum samples. 

Microbiological culture of both sputum and gastric juice samples took place in line with 

methodology adopted as standard in UK practice. Each type of sample underwent DNA 

extraction, and the resulting DNA underwent molecular profiling at the University of 

Northumbria. The 16S rRNA gene targeting variable region 4 (V4), in line with the Schloss 

wet-lab MiSeq SOP, was used to profile the bacteria present. CF individuals were given an 

assessment for extra-oesophageal reflux (EOR) symptoms through Reflux Symptoms Index 

(RSI) scoring, with any result of 12 or less categorised as not showing symptoms of EOR. 

Dr Chris Stewart, a postdoctoral fellow of the University of  Northumbria, undertook analysis 

of the NGS profile through  multivariate partial least squares discriminant analysis (PLS-DA) 

(SIMCA 13.0, Stockholm, Sweden) (Eriksson et al., 2006a). This technique examines data 

through set variables for maximum variance. Data was checked to find whether it was in line 

with multivariate norms by calculating Hotelling’s T2 tolerance limits, which were identified 

as 0.95.  
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3.3 Results 

3.3.1 CF Patients 

The study involved fifteen adults with CF, who were invited to take part via routine 

appointments at the chest clinic at the RVI in Newcastle upon Tyne. The ages of the patients 

ranged from 18 to 41, with a median age of 25 (Figure 3.1 A), and BMI ranged between 15 and 

23, with a median of 19.1 (Figure 3.1 B).  The severity level of cystic fibrosis lung disease for 

the group was in line with the population parameters, with a median forced expiratory volume 

in 1 second (FEV₁) of 1.55L (39%), ranging from 0.45 to 3.5L (from 12% to 88%) (Figure 3.1 

C). The patient group therefore included people with moderate to severe airflow obstruction.  

Long-term antibiotic use was recorded at a mean average of 65 days per year, ranging from 14 

to 197 days (Figure 3.1 D). All of the participants took treatment to suppress gastric acid (either 

PPI or H2-antagonist), in line with common clinical practice in CF.   
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Figure 3-1: Demographic characteristic of CF Patients (n=15). A) Age of CF patients (range 

18-41, median 25 years). B) Patient Body Mass Index (kg/m2) (median 19.10, range 15-23). C) 

FEV₁ in CF patients included in this study (median = 1.55L (39%), range 0.45-3.5L (12%-

88%). D) CF patients intravenous (IV) antibiotic status (average number of days in which 

patients receive IV antibiotics per year) (median 65 day/year, range 14-197). The small circles 

represent the outliers.  
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3.3.2 CF group: symptoms of extra-oesophageal reflux 

 EOR symptom assessment and scoring was accessed for 12 out of 15 CF patients, as shown in 

Table 2.1, and with scores of over 12, all 12 individuals were scored as showing symptoms, 

ranging from 13 to 36 with a median score of 17, as shown in Figure 3.2. 

 

Figure 3-2: EOR symptom status as scored using the Reflux Symptom Index (RSI). The highest 

score possible on the scale is 45, with scores of 12 or less considered symptom-free, as shown 

by the line across the chart. Patients were all scored as having EOR symptoms, with scores 

ranging from 13 to 36, and a median score of 17. The small circle represent the outlier.  
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3.3.3 Microbial culture 

When samples were cultured, positive findings resulted for fungi and/or bacterial microbes 

across all of both types of sample (sputum and gastric juice).  Further, while one sample (CF-8 

gastric juice sample) led to isolation of a single species, Candida albicans, each of the 

remaining samples led to isolation of more than a single organism. In 9 out of 14 samples of 

gastric juice from participants without CF, organisms were isolated.  

The microbes most commonly identified in both gastric and sputum CF samples were Candida 

spp, Streptococcus spp, PA and Staphylococcus spp. In the gastric juice samples from 

participants without CF, the most common microbes isolated were Streptococcus spp, found in 

four of the samples, Lactobacillus spp were found, in two of the samples, and Staphylococcus 

spp, in two of the samples (Tables 3.1, 3.2 and 3.3 show the microbial content of CF gastric 

juice samples, CF sputum samples and gastric juice samples from participants without CF).  
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Table 3.1: CF gastric juice culture results  

Gastric juice 1 Candida albicans, Streptococcus mitis, Pseudomonas  aeruginosa  and 

Corynebacterium sp 

Gastric juice 2 Candida kruzei  and Aspergillus fumigatus 

Gastric juice 3 Candida albicans and  Staphylococcus hominis 

Gastric juice 4 Candida sp, Streptococcus mitis, Staphylococcus haemolyticus, 

Neisseria sp, Brevundimonas sp and Delftia acidominus 

Gastric juice 5 Candida albicans, Candida glabrata ,Candida kruzei, Pseudomonas  

aeruginosa , Achromobacter xylosoxidans, Lactobacillus fermentum and 

Alpha haemolytic streptococcus 

Gastric juice 6 Candida albicans, Candida parasilosis, Candida kruzei and 

Streptococcus parasanguinis 

Gastric juice 7 Candida glabrata and  Candida albicans 

Gastric juice 8 Candida albicans 

Gastric juice 9 Candida glabrata, Candida albicans, Candida krusei and Lactobacillus 

sp 

Gastric juice 10 Candida krusei, Acinetobacter sp, Lactobacilli gasseri  and Micrococcus 

luteus 

Gastric juice 11 Candida albicans, Candida parapsilosis , Candida glabrata  and 

Staphylococcus hominis   

Gastric juice 12 Candida  albicans, Candida glabrata, Propionibacterium acnes and 

Pseudomonas  aeruginosa   

Gastric juice 13 Candida glabrata, Candida albicans and Candida krusei 

Gastric juice 14 Candida albicans, Candida glabrata, Enterococcus faecium and 

Klebsiella pneumoniae 

Gastric juice 15 Candida lusitania, Candida parapsilosis,  Pseudomonas  aeruginosa  

and Lactobacillus gasseri 
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Table 3.2: Sputum sample microbiology result 

Sputum 1 Candida albicans , Pseudomonas  aeruginosa  and Streptococcus mitis 

Sputum 2 Streptococcus oralis, Achromobacter sp and Aspergillus fumigatus  

Sputum 3 Rothia mucilaginosa, Streptococcus mitis, Aspergillus fumigatus and Citrobacter 

koseri 

Sputum 4 Candida albicans, Candida spp, Capnocytophaga sputigena, Staphylococcus 

aureus, Streptococcus mitis, Streptococcus parasanguinis, Aspergillus fumigatus, 

and Mycobacterium abscessus subsp. abscessus 

Sputum 5 Candida albicans, Pseudomonas  aeruginosa and Achromobacter xylosoxidans 

Sputum 6 Candida albicans, Achromobacter xylosoxidans and  Pseudomonas  aeruginosa   

Sputum 7 Rothia dentocariosa, Rothia mucilaginosa, Rothia aeria, Haemophilus 

parainfluenzae, Streptococcus mitis, Neisseria mucosa and Mycobacterium 

abscessus subsp. abscessus 

Sputum 8 Neisseria flavescens , Streptococcus salivarius, Actinomyces graevenitzii  

 Pseudomonas  aeruginosa, Rothia mucilaginosa and Stenotrophomonas maltophilia 

Sputum 9 Pseudomonas  aeruginosa  and Aspergillus fumigatus 

Sputum 10 Pseudomonas  aeruginosa, Alpha haemolytic streptococcus and Burkholderia 

multivorans 

Sputum 11 Candida albicans,  Streptococcus mitis, Rothia mucilaginosa, and Pseudomonas  

aeruginosa   

Sputum 12 Candida albicans, Pseudomonas  aeruginosa,  Streptococcus parasanquinis and 

Staphylococcus epidermidis 

Sputum 13 Candida glabrata, Candida albicans, Candida parapsilosis, Pseudomonas  

aeruginosa, Staphylococcus aureus and Enterococcus faecium 

Sputum 14 Candida parapsilosis, Staphylococcus aureus, Streptococcus salivarius, Neisseria 

spp, Streptococcus salivarius,  Actinomyces odontolyticus, Pseudomonas  

aeruginosa, Haemophilus parainfluenzae and Exophiala dermatitidis  

Sputum 15 Candida  dubliniensis, Streptococcus gordonii and Pseudomonas  aeruginosa   
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Table 3.3: Non-CF gastric juice microbiology  results  

Gastric juice 1 No growth 

Gastric juice 2 Streptococcus angionosis, Alpha haemolytic Streptococcus and 

Corynebacterium spp 

Gastric juice 3 Serratia liquefaciens, Rahnella aquatilis and Neisseria sp 

Gastric juice 4 No growth 

Gastric juice 5 No growth 

Gastric juice 6 Candida albicans, Coagulase negative Staphyloccocus and  Acinetobacter 

junni 

Gastric juice 7 No growth 

Gastric juice 8 Candida albicans, Alpha haemolytic streptococcus and Acinetobacter 

lwoffii 

Gastric juice 9 Alpha haemolytic streptococcus 

Gastric juice 10 Candida albicans 

Gastric juice 11 Proteus mirabilus and kelbsella ozaenae 

Gastric juice 12 Corynebacterium spp and Coagulase neqative staphyloccous 

Gastric juice 13 Pseudomonas aeruginosa and Alpha haemolytic streptococcus 

Gastric juice 14 No growth 
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3.3.3.1 Findings from gastric juice sample culture 

Bacteria were identified within eleven out of fifteen samples of  CF gastric juice, with the 

isolation of high numbers denoted by analysis of the number of colony forming units at >10^4 

cfu ml-1 gastric juice. Seven gastric juice samples provided more than a single bacterial species. 

Thus, the mean number of bacterial species was 1.6 per patient. However, if there is 

acknowledgement of both mucoidal and non-mucoidal morphotypes of Pseudomonas, a mean 

of 1.73 species per sample was reached. Streptococcus spp, Lactobacillus and Pseudomonas 

aeruginosa were the most commonly isolated bacterial species, each being found in four of the 

fifteen samples, while Staphylococcus spp was also common, found in three of the fifteen.   

All fifteen of the samples of CF gastric juice samples contained fungi, with all but one 

containing more than a single species: the mean number of fungal species was two. From these, 

the most commonly found were Candida, which were found in all fifteen samples and were 

thus the most frequently found organism overall (see Figure 3.3).  

 
Figure 3-3: Results of gastric juice sample culture for 15 PEG-fed CF patients. The x-axis 

represents the bacterial and fungal species. The y-axis represent number of patients. 
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3.3.3.2 Findings from sputum sample culture 

Fifteen CF sputum samples given by different patients were cultured and in each sample, 

bacteria species were found and isolated in high numbers, at >104 cfu ml-1 sputum. Further, in 

fourteen of the samples, between 2 and 5 taxa of bacteria were found, with the number of species 

per patient reaching a mean of 3.33, or 3.6 if identifying varied pseudomonas morphotypes as 

species. Meanwhile, twelve of the fifteen samples contained fungal species, and two samples 

contained more than a single fungal species. The mean number of fungal species per patient 

was 1.  

Identification of the bacteria isolated revealed 17 genera. The most commonly isolated bacteria 

were as follows: eleven out of fifteen samples contained Streptococcus spp, eleven contained 

Pseudomonas aeruginosa, four contained Staphylococcus spp, four contained Achrombacter 

spp, and four contained Rothia spp (Figure 3.4). 

The most commonly identified species was P. aeruginosa, and furthermore, six out of eleven 

of the samples testing positively for P. aeruginosa contained both non-mucoidal and mucoidal 

samples, with the remaining five containing a single phenotype of this bacteria. 

Fungi present in sputum samples were also identified using microbial cultures, with eleven of 

fifteen samples containing fungi. Of these, nine contained Candida spp (of which seven 

contained C. albicans) and four contained Aspergillus fumigatus. 
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Figure 3-4: Results of sputum samples culture for 15 PEG-fed CF patients. The x-axis 

represents the bacterial and fungal species. The y-axis represent number of patients. 

  



50 
 

3.3.3.3 Culture findings for non-CF samples of gastric juice 

Bacteria were identified in eight non-CF samples of gastric juice out of fourteen. Seven samples 

contained more than a single bacterial species which could be isolated, with a mean number of 

2.2 per patient. Four contained Streptococcus spp, two contained Lactobacillus spp and two 

Staphylococcus spp, with these being the species which were isolated most often. One out of 

fifteen samples led to an isolate of PA, and this subject had neither CF nor any lung disease. 

Candida spp isolates were identified in just three out of fourteen of the non-CF samples of 

gastric juice (Figure 3.5). Comparing the microbial profile of CFGJ (n=15) and non-CFGJ 

(n=14) is represented in figure 3.6.  

 
Figure 3-5: Results of non-CF gastric juice samples culture. The x-axis represents the bacterial 

and fungal species. The y-axis represent number of patients. 
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Figure 3-6: Comparing the microbial profile of CFGJ (n=15) and non-CFGJ (n=14).The most 

commonly identified bacterial species in CF gastric juice were found to be PA (4/15), 

Lactobacillus spp (4/15) and Streptococcus (4/15). In non-CF gastric juice, the most commonly 

identified species were Streptococcus spp (4/14), Lactobacillus spp (2/14) and Staphylococcus 

spp (2/14). Candida spp were isolated from all CFGJ samples and 3 out of 14 of non-CF GJ 

samples. 
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3.3.4 CF gastric juice vs sputum samples culture results 

Comparison of the profiles of the microflora in each gastric and sputum CF sample revealed 

that in nine individuals in the CF group, one or a number of bacterial or fungal pathogens were 

found in both gastric juice and sputum. Five demonstrated one or more taxa of bacteria across 

the two types of sample and four displayed one or a number of fungal pathogens in common. 

Bacteria which were identified in both sample types from a single patient comprised: PA, in 

four cases; Streptococcus spp in two cases; and Achromobacter spp, in two cases. Meanwhile, 

for the remaining six in the group, while isolates of microbial pathogens were found in both 

sample types, there were no species found across both samples for the same patient (Figure 

3.7). 

For each of the 15 CF participants, fungal pathogens could be isolated for one of their samples, 

and for eight patients, Candida spp. was common between the gastric juice and sputum samples. 

A single participant was found to have Aspergillus spp. in both samples. Figure 3.8 illustrates 

microorganisms found in sputum as compared to those in gastric juice samples. 

 
Figure 3-7: Microbial species isolated from each CF gastric juice and sputum sample. The x-

axis represents the sample. The y-axis represents number of bacteria and/or fungal species 

isolated from a particular sample. 
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Figure 3-8: Microorganisms found in sputum as compared to those in gastric juice samples for 

all samples (n=15). 
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3.3.5 Pseudomonas aeruginosa  

Identification of PA was made for eleven sputum samples out of fifteen: 73% of the samples 

(CF-1, CF-5, CF-6 and CF8-15). The pathogen was also found in four samples of CF gastric 

juice (26%) (CF-1, CF-5, CF-12 and CF-15). Both CF-1 and CF-12 contained non-mucoidal 

and mucoidal types of PA across each type of sample. Meanwhile, CF-5 sputum contained both 

PA forms, while the gastric sample had just mucoidal PA. CF- 15 contained the mucoidal type 

of PA only but across both sputa and gastric juice.  

Patients with PA had a median age of 28.5, ranging from 18 to 41, while those without had a 

median age of 22, ranging from 16 to 27. In terms of FEV₁, those with PA showed a median 

score of 1.25L, ranging from 0.45 to 3.5L), those without PA also had a median of 1.25L, but 

ranged from 0.76 to 2.7L.  

3.3.5.1 Molecular characterisation of matching PA in sputum and gastric juice of CF 

patients 

VNTR (variable number tandem repeat) analysis applied to PA revealed identical strains 

between sputa and gastric juice for three out of four of the CF individuals in which PA was 

found across both sample types. For the fourth individual in this group (CF-1), while matching 

strains were identified, there were also additional and different PA strains in the sputum sample 

only.  

3.3.6 Next Generation Sequencing 

Next generation sequencing analysis was applied to 14 samples of non-CF gastric juice using 

16S rRNA gene targeting variable region 4 (V4)  (GJ 1-14), 13 samples of CF gastric juice (CF-

GJ 1, 2, 4-12, 14, 15) and to 12 samples of CF sputum (CFS 4-15) to investigate the microbiome. 

 Greater diversity was found in non-CF against CF gastric juice samples and against CF samples 

of sputum (see Figure 3.9A). There was an abundance of proteobacteria for sputum and gastric 

juice samples in the CF group, with 74% and 72% relative abundance, while there was greater 

abundance (48%) for Firmicutes in gastric juice from non-CF patients. 
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Non-CF samples of gastric juice displayed considerably greater average Shannon diversity 

indices (H') as opposed to CF gastric samples (P = 0.002) or CF sputum samples (P = <0.001). 

Both sputum and gastric juice CF samples had an H' of P = 0.93, as seen in Figure 3.9B. 

 

Figure 3-9: (A) Bar plot comparing abundance between different operational taxonomic units 

(OTUs) in non-CF gastric juice (GJ) (n=14), CF gastric juice (CFGJ) (n=13), and sputum 

samples (CFS) (n=12). (B) Shannon Diversity Index for CF samples (CFGJ and CFS) as well 

as non-CF GJ. 

Using PLS-DA across each sample, it is seen that in CF patients, sputum and gastric juice 

samples were comparable, and this differed from samples of gastric juice from non-CF patients, 

as shown in Figure 3.10. Further, samples from CF patients were relatively lower in terms of 

average Shannon diversity and this clustered close to the PLS-DA plot origin, in contrast with 

the highly diverse gastric juice samples from non-CF patients. 
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Figure 3-10: Partial least square decrement analysis (PLS-DA) score scatter plot for each of the 

samples. GJ=non-CF gastric juice; CFGJ=CF gastric juice; CFS=sputum sample. Percentages 

of variance are given by the axes. Correlation is seen between CF sputum and gastric juice 

samples, while gastric juice from the controls show greater variance and are markedly different 

from CF sample clusters. 

Analysing matched samples of sputum and gastric juice from a single CF patient revealed a 

tendency for these to group together, as shown in Figure 3.11.  
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Figure 3-11 Partial least square decrement analysis (PLS-DA) score scatter plot. Coloured 

circles represent individual samples, and coloured groupings represent individual patients with 

CF. In samples of gastric juice and sputum from a single patient with CF, there is generally 

clustering of the solid ellipse indicate Hotelling’s (T) range (confidence of 95%).  
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3.4 Discussion 

This research project is, to the best of my knowledge, the first to make direct comparisons 

between the microflora of the air passages and those of gastric juice for the same CF individual 

using PEG feeding. Both the gastric and respiratory passages were found to be colonised with 

microbes significant to lung disease in CF patients and in some cases these microbes were 

identical. The fact that both systems sometimes contained PA of the type which can constitute 

a biofilm suggests that a reservoir of this bacterium may be present in the stomach, and that this 

may have a role in cystic fibrosis pathophysiology (Dickson et al., 2014). 

The study’s findings revealed marked differences between gastric juices taken from adults with 

CF and those who did not have the condition. Molecular profiling of gastric juice samples 

through next generation sequencing revealed that bacteria were significantly less abundant in 

the CF samples. These samples typically contained Faecalibacterium, Bacteroides and levels 

of Pseudomonas which were greater than that found in the control samples (Cho and Blaser, 

2012). Meanwhile, the samples from individuals without CF were found to be in line with 

established data on the microbiome of the stomach in healthy individuals (Bik et al., 2006).  

For each CF case in which PA was identified in both sputum and gastric juice samples, VNTR 

analysis showed that the microbes were identical in genetic terms: a result which would be 

extremely unusual if these colonisations had occurred from different or random sources. The 

genetic make-up of PA is highly diverse across CF patients who have recently been chronically 

infected with or are occasionally infected with the pathogen (Jelsbak et al., 2007). This implies 

that strains of PA are acquired by CF individuals from varied sources in their surroundings 

(Burns et al., 2001). In those with intermittent infection, it is possible for the lungs to be 

recolonised after the previous infection has been eliminated through inhalation of antibiotics, 

and in most cases the genotype of the two infections differs, which is indicative of different 

sources for the infection. However, in around one quarter of individuals with a recurring PA  

infection, the genotype was identified as identical to the previous infection, and this points to 

two possibilities: the PA has survived but could not be detected; or there has been reinfection 

from the same, unidentified  source in the patient’s surroundings (Jelsbak et al., 2007). Findings 

from methodical longitudinal studies of eradication of CF lung infections reveal that subjects 

can experience recolonization by an identical strain of PA even where a number of years have 

passed without PA being detected in the sputum (Johansson et al., 2014). The current study’s 

findings may provide support for the proposal that the stomach can host a continuing population 
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of bacteria not eradicated by the inhalation of antibiotics as conducted in current protocols for 

best practice infection interventions (Mogayzel Jr et al., 2014). 

Taking a sample of gastric juice via the PEG tube meant that it could not be contaminated by 

microbes from the air passages and the upper part of the gastro-intestinal tract, as may be a 

concern when using alternative methods, including endoscopy. The data obtained from PEG 

tube sampling provides clear evidence that bacterial organisms are capable of existing within 

the stomach and may form a reservoir which harbours pathogenic microbes of types which are 

significant in CF lung disease.  There is a broad body of evidence indicating aspiration and 

reflux occurring  in individuals with CF (Brodzicki et al., 2002a). The CF group in the current 

study were EOR symptomatic in excess of normal symptoms. Thus, the findings support the 

potential for aspiration of microbes significant in the development of CF lung disease.  

The data also suggest the possibility of PA found in the gastric juices deriving from sputum 

coughed up from the lungs which then enters the stomach through swallowing. In one sample 

from the study, there was PA of the same strain in both gastric juice and sputum samples, but 

also a different strain of PA in the sputum. Further, in one participant in the non-CF group, who 

was not suffering from lung disease, PA was isolated from the gastric juice. The findings 

suggest that while it is possible for PA in the stomach to have been swallowed on the clearing 

of mucus from the airways in lung disease, the microbe may come from a range of sources and 

pathways, in which micro-aspiration in PA of the lung is one potential route.  

Microbiological continuity across the aerodigestive passages of  healthy individuals has been 

reported through methodologies other than culture, which may support the notion of frequent 

microaspiration even among the healthy population (Bassis et al., 2015). Migration between 

respiratory and gastric areas is further supported by evidence linking PA infection of the lower 

airways and GOR in paediatric CF patients (Palm et al., 2012). A recent study conducted with 

paediatric patients suffering from chronic cough and where gastrointestinal endoscopy and 

bronchoscopy were undertaken revealed that from microbes most numerous in gastric fluid 

samples, eight were also found in large numbers within the lung.  This was presented as 

supportive of the transfer of microbes between the gastrointestinal compartment and lungs 

which was not dependent on the microflora of the oropharyngeal tract (Rosen et al., 2015). 

Further, research in lung transplant patients with CF in terms of molecular epidemiology found 

that the transplanted tissue became colonised with identical PA to that isolated from the lungs 

prior to transplant (Walter et al., 1997), and this is attributed to reinfection from sinus and upper 

respiratory airways (Nunley et al., 1998). Additionally however, risk of recolonization may also 
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be present from PA aspirated from the gastrointestinal tract after the transplant (Krishnan et al., 

2013). Further, this migration of pathogens may occur in both directions from oropharynx to 

stomach and vice versa (Segal et al., 2006). In the case of lung transplants, there is also support 

for the notion that GOR can play a causal role in cases of Bronchiolitis Obliterans Syndrome 

(BOS) (Kinnier et al., 2016). Surgical intervention with anti-reflux fundoplication has been 

linked with enhanced function of the allograft in lung transplantation (Cantu Iii et al., 2004; 

Griffin et al., 2013).  

Using molecular techniques, it has been shown that there is a highly diverse microbiome in the 

normal stomach, with features closely related to those of the typical lower gastrointestinal 

microbiome (Bik et al., 2006; Andersson et al., 2008). Meanwhile, in the respiratory passages 

of CF patients, lowered diversity has been found in the microbiome (Zhao et al., 2012). It is 

possible that this is in line with the findings of my research, which found a less diverse gastric 

microbiome in the CF group in comparison to controls when assessed using molecular 

techniques. Both the gastric and sputum samples in the CF group were less diverse in 

comparison with the gastric juice from patients without CF. Multivariate discriminant analysis 

and molecular identification demonstrated clustering for CF samples of gastric juice, in which 

they could be distinguished from samples from the controls. In addition, the profiles of sputum 

and gastric juice samples from the same CF individual were comparable. Considering these 

findings, the possibility emerges that there is an association between the particular microflora 

of the gastric juices and sputum for some individuals with CF. This makes the case for 

additional research in this area, to assess whether the profile correlation within gastric juice and 

sputum samples observed in this study could stem from a shared source for colonisation e.g. in 

the oro-pharynx and/or sinuses. 

This study is novel but has a limitation related to the design adopted and the context of the 

project. CF gastric juice samples were collected only from those fed by a PEG tube, and 

although more than 80% of accessible individuals meeting these criteria participated, this meant 

that the findings were from a particular and small cohort. Patients were not excluded on the 

basis of either antibiotic use level or disease stage. It should also be noted that in previous work, 

our group has achieved isolation of PA for the gastric juice samples of CF individuals who did 

not undergo PEG feeding, and for whom samples were obtained with an endoscope (Krishnan 

et al., 2013). This earlier research identified molecularly identical Pa in samples of broncho-

alveolar lavage (BAL), as well as sputum samples and gastric juice obtained through 

endoscopy. This provides support for the notion that it is not only in PEG-fed CF patients such 
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as those in the current study that bacteria significant in the pathophysiological processes of CF 

may exist in a gastric reservoir (Krishnan et al., 2013). 

 Further, we note that the use of antibiotics on a long term basis, as well as Proton Pump 

Inhibitor treatment in the group studied, may significantly influence the microflora identified 

in the CF gastric juice samples obtained. There is growing recognition of an association 

between PPI use and a changed microbiome of the stomach, lungs and oro-pharynx (Rosen et 

al., 2015). At present, the significance of this is being widely discussed, and this study hopefully 

contributes to this discussion (Jones et al., 2016).  

The use of histamine-2 receptor antagonists or proton pump inhibitors is common to reduce 

gastric acid for CF individuals suffering from a continuing inadequate ability to absorb fats 

even where pancreatic enzyme replacement is being given at sufficient levels (Littlewood et 

al., 2006), Further, CF patients are also given such medications where they are diagnosed with 

gastroesophageal reflux disease. In fact, most individuals with CF in North America take drugs 

to suppress gastric acid (Com et al., 2014), and in the current study, every one of the CF subjects 

took acid suppressive medication, in line with practice at the clinic where the research took 

place. Standard treatment for CF patients at the present time also includes antibiotics as a 

principle intervention. In light of this, it is suggested that a significant aspect for future research 

is the need to study the impact of both acid suppressive and antibiotic drugs for the CF aero-

digestive microbiome, despite the research challenges presents. It is hoped that the findings of 

the research project presented here can contribute to these efforts. 

To summarise, the study reveals new evidence linking the microflora of gastric juices and 

sputum samples for individuals with CF. The findings point to a potentially significant source 

of lung infection in CF patients, and a possible PA reservoir. Thus, the microbiome of the 

stomach may be partly made up of microbes transferred from the lungs through the patient 

coughing or expectorating and then swallowing. In addition to this, it has been shown that 

potentially it may also be possible in CF sufferers with reflux for microbes from the stomach 

to be aspirated and transferred into the lungs. In conclusion, an ‘aerodigestive microbiome’ is 

suggested as a possible factor in the pathophysiological processes of cystic fibrosis, and in light 

of this, as currently, treatment to eliminate infection with PA takes no account of the gastric 

population, this factor may be significant to consider for the future development of CF 

interventions. 
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Chapter 4.0 : Study 2 gastric juice, sputum, and PEG tube microbiology in 

CF patients 

4.1 Introduction 

Pauwels et al. (2012) and Wu (2008) both found that a higher prevalence of respiratory disease, 

which contributes to higher morbidity and lower quality of life, could be linked to acid- and 

non-acid reflux. Navarro et al. (2001) found a strong relationship between gastro-oesophageal 

reflux (GOR), pulmonary aspiration, and increased lung damage for a variety of lung 

conditions, ranging from advanced lung damage after lung transplantation (Vos et al., 2008) to 

ventilator-induced pneumonia (Wu et al., 2009). Most importantly, Palm et al. (2012) found a 

connection between gastroesophageal reflux (GOR), infection and reduced lung function in CF 

patients. 

In the Caucasian population, CF is the most common inherited life-threatening disease and 

according to Murray et al. (2007), the primary cause of death in CF patients is chronic 

respiratory infection. With over half of CF patients experiencing GOR, this appears to be a 

common problem faced in CF (Blondeau et al., 2008b). GOR typically presents when the 

stomach's contents leak into the oesophageal tract leading to heartburn, and other symptoms. 

A study by van der Doef et al. (2009) found a link between reduced lung function and earlier 

acquisition of PA and Staphylococcus aureus (SA), two key contributing pathogens to CF lung 

disease. A retrospective study by Palm and colleagues identified a higher prevalence of PA in 

the lungs of children experiencing acid and non-acid reflux (measured by oesophageal 

impedance tracings) in comparison to children who did not have reflux (Palm et al., 2012). 

Rosen et al. (2011) used standard culture techniques to further demonstrate how lung disease 

can be caused by full column, non-acid reflux, suggesting that non-acidic, bacterial-laden 

gastric contents could be refluxed and aspirated into the lung. 

The possible ways in which GOR causes respiratory symptoms, infections, or lower lung 

function in CF are not clearly known. Intermittent aspiration of acidic stomach contents  as a 

result of reflux into the proximal oesophagus, especially while the patient is in the supine 

position, may produce a vicious circle of inflammation, infection and lung disease progression 

in CF (Robinson and DiMango, 2014). It is further suggested by Carpagnano et al. (2006) that, 

when exposed to gastric acid, afferent receptors in the oesophageal mucosa trigger reactions 

that travel through motor neurons to the respiratory muscles and tracheobronchial tree, thus 
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causing coughing, bronchospasms, and perhaps even a neurogenic increase in inflammation of 

the neutrophilic airway. Hamamoto et al. (1997) showed in animal tests that acute oesophageal 

acid instillation occurring in under 1 minute is enough to cause airway inflammation in a 

neurogenic tachykinin-mediated pathway. Pulmonary function may therefore be damaged by 

refluxed gastric contents through microaspiration, reflex bronchospasm, or increased 

inflammation of the airway. 

Stomach colonisation by pathological bacteria in CF patients has been established through 

previous research (Atherton and White, 1978). Such colonization could contribute to lung 

infections, because the pathogen-rich stomach contents could be refluxed and inhaled into the 

lungs. As the stomach hosts pathogenic bacteria, it therefore has an established potential in the 

pathogenesis of lung diseases (Atherton and White, 1978; Bonten et al., 1997). Identical 

matching microorganisms were found in both the stomach and the airway in studies by Madan 

et al. (2012)  and Round and Mazmanian (2009) and recently by our studies (Al-Momani et al., 

2016) presented in Chapter 3.  

Rogers et al. (2010b) point out that the presence of gastric reflux in CF patients, makes them 

particularly susceptible to the transfer of pathogens from stomach to upper airways and vice 

versa. A 2006 study by Segal et al. (2006), found a relationship between bacterial growth in the 

gastric juices and the airways of elderly non-CF patients fed via nasogastric tube (NGT), which 

suggested that microorganisms were transmitted in two directions.  

The possibility that an aerodigestive microbiome exists in CF is presented in Chapter 3. This 

may be significant because my results outlined how identical matching microorganisms 

(including biofilm forming strains of PA) which were notorious contributors to CF pulmonary 

disease were present in both the digestive tract and the airways (Al-Momani et al., 2016). 

I used culture and molecular testing methods, which both identified similarities between 

bacteria present in sputum and gastric juice specimens taken from the same CF patients, thus 

highlighting the necessity for more research into the role of the ' aerodigestive microbiome’ in 

CF disease and its possible role in the pathophysiology of CF (Segal et al., 2006; Al-Momani 

et al., 2016). Culture isolation techniques have also been used before by Bassis et al. (2015) to 

examine microorganisms in the aerodigestive tract, which indicated that many healthy 

individuals may also experience microaspiration.  
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This chapter is a continuation of my investigation into the association between gastric 

colonisation and potential pathogen transmission to the air passages or lungs via aspirated 

refluxed stomach contents for patients with CF. It extends the work in the previous chapter by 

looking at repeated samples taken over time in a cohort of CF patients. This work is therefore 

able for the first time to my knowledge to evaluate the variability of the newly described 

aerodigestive microbiome. 
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4.2 Methods (CF gastric juice and sputum samples included in this study) 

In this study, samples were collected six months after the first study (Chapter 3). All available 

patients fed via PEG were included, which meant that repeated sample data were collected in 

some patients. 

In the prior study (Chapter 3), a total of 18 PEG-fed CF patients were available (CF-1 to CF-

18), and only 15 of the available patients were included (CF-1 to CF-15). At the start of this 

study, however, only 16 patients (CF 1-4, CF 6-14 and CF 16-18) were available because one 

patient had emigrated (CF-15) and one had passed away (CF-5). 

Thirteen patients (CF1-4 and CF6-14) were therefore common to both studies (Chapter 3 and 

Chapter 4), generating repeated samples. Three new patients were also involved in the study 

(CF16-18). Along with gastric juice and sputum samples from the 16 CF individuals, replaced 

PEG tubes were also taken from five patients (CF4, CF 6-7 and CF 16-17). I obtained a Reflux 

Symptoms Index (RSI) score for fourteen CF patients (CF1-4, CF 6-10, CF12-14 and CF16-

17). The same non-CF patients used in Chapter 3 represented a control group of non-CF gastric 

juice. 

The methods outlined in Chapter 2 were used to analyse gastric juice and sputum specimens 

with DNA isolated from gastric juice and sputum. Subsequent molecular analysis of the 

microbial profile was conducted by Dr Andy Nelson at Northumbria University using the 16S 

RNA pyrosequencing technique. This was the same methodology used to generate the 

aerodigestive microbiome data in Chapter 3. Bland-Altman plots were used to test the 

repeatability of the diversity across the repeated sample (gastric juice and sputum samples) 

(Bland and Altman, 1986).  
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4.3 Results 

4.3.1 CF Patients characteristics 

The patients in this investigation, with a median age of 25 (range 18-36 year) (Figure 4.1A) 

demonstrated moderate to severe CF lung disease, which is common amongst the PEG-fed CF 

population (median FEV₁, 1.6L (37% predicted) range 0.5-3.5L (12%-88%) (Figure 4.1B). 

They also showed low BMI (median 19.2, range 15.2-23.2) (Figure 4.1C) and were long-term 

users of antibiotics (using them on average 70 days/year, range 14-197) (Figure 4.1D) and acid 

suppressants.  

 

Figure 4-1: Demographic characteristic of CF Patients included in this study (n=16). A) Patients 

age (years) (range 18-36, median 25). B) FEV₁) median FEV₁, 1.6L (37% predicted) range 0.5-

3.5L (12%-88%). C) BMI (median 19.2, range (15.2-23.2). D) The average days per year of IV 

antibiotic usage for CF patients (median 70, range 14-197). 
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4.3.2 Symptoms of extraoesophageal reflux in CF patients 

I obtained extraoesophageal reflux symptom scores for fourteen of the sixteen CF patients. 

Thirteen patients showed symptoms of EOR, obtaining an RSI score of more than twelve 

(median RSI score 17 (range 13-36)). One patient, who scored eight, was shown to be EOR 

non-symptomatic (Figure 4.2).  

 
 

 

Figure 4-2: RSI score for CF patients (n=14, median 17, range 8-36). Normal score of 12 or 

less represented by black line. The small circle represents an outlier. 
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4.3.3 Microbial analysis 

Similar to the previous chapter, All CF gastric juice and sputum specimens tested positive for 

bacteria and/or fungi in routine microbial analysis. The most commonly identified bacteria in 

both sputum and gastric juice samples were again Streptococcus spp, Non-Tb mycobacterium 

(NTM) and PA. Tables 4.1and 4.2 show the culture findings for CF gastric juice and sputum. 

Figures 4.3 and 4.4 show the number of bacterial species isolated from gastric juice and sputum 

samples.  

Table 4.1: CF gastric juice culture results  

Gastric juice 1 Candida glabrata,  Enterococcus faecium, Lactobacillus paracasi, 

Saccharomyces cerevisiae and Mycobacterium abscessus subsp massiliense 

Gastric juice 2 Candida lustania and  Candida krusei 

Gastric juice 3 Candida albicans and  Mycobacterium abscessus subsp massiliense 

Gastric juice 4 Candida albicans, Candida krusie and  Lactobacillius fermentum. 

Gastric juice 6 Streptococcus mitis, Lactobacillus rhamnosus, Saccharomyces cerevisiae, 

Achromobacter xylosoxidans and  Pseudomonas  aeruginosa 

Gastric juice 7 Candida albicans, Candida glabrata and  Lactobacillius plantarum 

Gastric juice 8 Candida albicans and  Lactobacillus gasseri 

Gastric juice 9 Candida krusei, Candida glabrata and Pseudomonas  aeruginosa 

Gastric juice 10 Candida albicans, Candida dubliniensis and Lactobacillius gasseri 

Gastric juice 11 Candida glabrata and Staphylococcus hominis 

Gastric juice 12 Candida albicans, Candida parapsilosis, Hafnia alvei, Enterococcus 

faecalis, Serratia fonticola and Raoultella sp 

Gastric juice 13 Candida albicans, Candida glabrata and  Candida krusei 

Gastric juice 14 Candida albicans, Candida glabrata and  Mycobacterium abscessus subsp 

massiliense 

Gastric juice 16 Candida albicans Streptococcus salivarius , Streptococcus mitis, Rothia 

mucilaginosa, Achromobacter xylosoxidans, Pseudomonas  aeruginosa and  

Neisseria sp 

Gastric juice 17 Candida glabrata and  Exophiala dermatitidis 

Gastric juice 18 Candida albicans, Escherichia coli and Pseudomonas  aeruginosa 
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Table 4.2: Sputum sample microbiology results 

Sputum 1 Candida albicans, Streptococcus anginosus, Streptococcus mitis and Rothia 

dentocariosa 

Sputum 2 Aspergillus fumigatus, Streptococcus mitis, Streptococcus parasanguinis, 

Streptococcus salivarius, Rothia mucilaginosa and  Achromobacter 

xylosoxidans 

Sputum 3 Streptococcus oralis, Rothia mucilaginosa Pseudomonas  aeruginosa and 

Mycobacterium abscessus subsp massiliense  

Sputum 4 Candida albicans,  Aspergillus fumigatus, Rothia mucilaginosa, Rothia 

dentocariosa, Streptococcus mitis, Streptococcus sanguinis, Streptococcus 

oralis and Mycobacterium abscessus subsp. abscessus  

Sputum 6 Candida albicans, Rothia mucilaginosa, Rothia dentocariosa, Streptococcus 

mitis and Streptococcus oralis  

Sputum 7 Candida albicans, Streptococcus mitis, Rothia mucilaginosa, Neisseria 

meningitidis and Haemophilus influenzae 

Sputum 8 Streptococcus mitis and Rothia mucilaginosa 

Sputum 9 Streptococcus oralis, Rothia, Haemophilus parainfluenzae and Pseudomonas  

aeruginosa 

Sputum 10 Rothia mucilaginosa, Streptococcus sanguinis, Streptococcus mitis, 

Pseudomonas  aeruginosa, Burkholderia multivorans, Actinomyces oris, 

Penicillium and Mycobacterium abscessus subsp massiliense  

Sputum 11 Candida albicans, Streptococcus mitis and Rothia mucilaginosa 

Sputum 12 Pseudomonas  aeruginosa 

Sputum 13 Candida albicans, Achromobacter xyosoxidans and Pseudomonas  aeruginosa  

Sputum 14 Streptococcus mitis, Stenotrophomonas maltophilia, Staphylococcus  aureus, 

Cardiobacterium hominis, maltophilia, Veillonella parvula and Mycobacterium 

abscessus subsp massiliense 

Sputum 16 Streptococcus oralis, Streptococcus mitis, Streptococcus sanguinis, Rothia 

dentocariosa, Rothia aeria, Klebsiell oxytoca, Neisseria flavescens, 

Achromobacter xyxlosoxidans and Pseudomonas  aeruginosa 

Sputum 17 Staphylococcus warneri, Neisseria sp, Streptococcus parasanguinis, 

Stenotrophomonas maltophilia and  Exophiala dermatitidis 

Sputum 18 Aspergillus fumigatus, Escherichia coli and  Pseudomonas  aeruginosa  
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Figure 4-3: Gastric juice sample cultivation results for 16 CF patients with PEG feeding tubes. 

Streptococcus spp (3/16), Lactobacillus (6/16), PA (4/16) and NTM (3/16) were the most 

commonly identified bacteria in the gastric juices. The most frequently identified fungal 

microorganism in gastric juice specimens was the Candida species (15/16 samples). 
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Figure 4-4: Sputum sample cultivation results in 16 CF patients with PEG feeding tubes. 

Streptococcus spp being present in 13/16 samples, Rothia spp in 11/16 samples, PA in 7/16 

samples, NTM in 4/15 samples, and Achromobacter spp in 3/16 samples. The most frequently 

identified fungal microorganism was the Candida species (4/16 samples). 
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4.3.4 Comparing the microbial profile of CF gastric juice (CFGJ) CF sputum samples, (CFS) 

and non-CF gastric juice sample (non-CFGJ) 

A difference in the bacterial profile of the CF samples (gastric juice and sputum) and non CF 

gastric juices was evident when comparing the samples. There was a similarity in the microbial 

profile between CF gastric juice and sputum in the level of prevalence of PA and NTM (Figure 

4.5). Figure 4.6 show the microbial profile of the samples taken from CF patients. Similar to 

the previous finding in Chapter 3, there was a common bacterial species isolated in both the 

gastric juice and sputum sample from the same patient. Three CF patient (CF-9, CF-16 and CF-

18) had identical PA strains in both sputum and gastric juice samples, which was established 

using VNTR. Interestingly, one patient's sample (CF-6), contained PA in the gastric juice but 

not in their sputum.  A clear difference was found in microbial profiles between CF gastric juice 

and non-CF gastric juice (Figure 4.7) 

 
 

Figure 4-5: Bacterial species isolated from CF gastric juice samples (CFGJ) (n=16), CF sputum 

samples (CFS) (n=16) and non-CF gastric juice samples (Non-CFGJ) (n=14). The x-axis 

represents the type of samples. The y–axis represents the number of patients with a particular 

bacterial species. 
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Figure 4-6: Microbial profile for CFGJ and CFS; each bar represent one sample. The bacterial 

strains common to both sputum and gastric juice included PA (3/11 patients), Streptococcus 

spp (2/11 patients) and NTM (2/11 patients). 
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Figure 4-7: Microbial profile of CFGJ (n=16) and non-CFGJ (n=14). The most commonly 

identified bacterial species in CF gastric juice were found to be PA (4/16), Lactobacillus spp 

(6/16) and NTM (3/16). In non-CF gastric juice, the most commonly identified species were 

Streptococcus spp (4/14), Lactobacillus spp (2/14) and Staphylococcus spp (2/14). Candida spp 

were isolated from 15 out of 16 and 3 out of 14 of CFGJ and non-CF GJ, respectively. 
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4.3.5 Molecular based microbial analysis  

NGS sequencing analysis performed by Dr Andrew Nelson (Northumbria University) show that 

there were marked differences between the amount and types of microorganisms present in CF 

samples and non-CF samples, according to both Alpha diversity and Shannon diversity index 

analysis. There were no major differences found amongst CF samples (Figure 4.8). This data 

was in broad agreement with that in Chapter 3. 

 

Figure 4-8: Alpha diversity (left) and Shannon diversity index (right) for cystic fibrosis gastric 

juice samples (CFG), CF sputum samples (CFS) and non-CF gastric juice samples (GJ). There 

was a significant difference between CF samples (CFG and CFS) and non-CF gastric juice 

sample in both alpha and Shannon diversity index. No significant difference was detected 

between CF samples (CFG and CFS) in both indices. 

The major difference amongst CF samples was the prevalence of PA. There was a higher 

prevalence of Bacteroides and Faecalibacterium in the gastric juice samples of the non-CF 

control group (Figure 4.9).  
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Figure 4-9: The difference between cystic fibrosis gastric juice (CFG), sputum (CFS) and non-

CF gastric juice (GJ) in term of the most abundant bacteria genera. The x-axis represents the 

most abundant genera in both CF samples and non-CF samples. The y-axis represents the 

relative abundance of each OUT. ** P value <.05. *** P value <0.001. 
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4.3.6 Comparing repeated gastric juice and sputum samples.  

13 patients were sampled on two separate occasions (T1 and T2) six months apart  (CF1-4, 

CF6-13 and CF-16), bacterial species were isolated from 9 gastric juice samples in T1 and from 

12 gastric juice samples on T2, the most frequent bacterial species isolated from gastric juice  

were  Streptococcus spp (6/13) and PA (3/13) at T1 and Lactobacillus spp (5/13), Streptococcus 

spp (2/13) and PA  (2/13) at T2.  

Fungal sp were isolated from all gastric juice samples at both time points (T1 and T2) and the 

most frequent fungal species were Candida spp (isolated from nearly all samples). 

 

In CF sputum samples, bacterial species were isolated from all sputum samples at the 2 time 

points (T1 and T2). The most frequent bacterial species isolated were Streptococcus sp (11/13) 

and PA (11/13) at T1 and Streptococcus spp (12/13) and Rothia spp (11/13) and PA (6/13) at 

T2. 

Comparing the sputum sample microbial profile between T1 and T2 showed that Streptococcus 

spp were common in 10 sputum sample at T1 and T2, followed by PA which was common in 

5 sputum samples.  

4.3.7 Comparing repeated gastric juice and sputum samples using a molecular based 

approach 

Using Alpha diversity and the Shannon diversity index, I observed biological variability 

between the two patient sampling time points but with no statistically significant difference 

found between the samples taken at different times. The CF sputum tended to have higher 

diversity in the second testing, but gastric juice stayed almost the same. There seems therefore 

to be a relatively stable profile of microbes in gastric juice compared to the increasing variation 

present in the sputum samples (Figure 4.10). Bland and Altman plots showed that the repeated 

gastric juice and sputum samples were not significantly different at the two time points (Figures 

4.11 and 4.12). However, greater fluctuations in the Shannon diversity index were detected in 

sputum sample compared to gastric juice samples. 
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Figure 4-10: Alpha diversity (left) and Shannon diversity index (right) of repeated CF gastric 

juice and CF sputum samples at the two time points (T1 and T2). 
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Figure 4-11: Bland Altman plot of the Shannon diversity index of gastric juice samples (n= 6) 

from CF patients at 2 time points, T1 and T2. The mean of the Shannon diversity of each subject 

(x-axis) is plotted against the differences between T1 and T2 (y-axis). Mean difference between 

T1 and T2 = 0.14 (range -1.15-1.78). 
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Figure 4-12: Bland Altman plot of the Shannon diversity index sputum samples (n=10) from 

CF patient at 2 time points T1 and T2. The mean of the Shannon diversity of each subject (x-

axis) is plotted against the differences between T1 and T2 (y-axis). Mean difference between 

T1 and T2 = 0.72 (range -1.93-3.36). 
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4.3.8 PEG tube microbiology study 

PEG tubes from five patients were obtained (CF4, 6, 7, 16, 17), and subsequently bacterial 

species were found on all collected PEG tubes, with the most common strains being NTM (2) 

PA (2) Lactobacillus  spp (2) and Enterococcus spp (2). Four PEG tubes contained Candida 

fungal species (Figure 4.13) 

Two of the collected PEG tubes contained PA (CF-6 and CF-7). The PEG tube of patient 

number 6 (CF-6) contained an identical strain of PA to that found previously in their gastric 

juice and sputum specimens. In contrast, the tube of patient number 7 (CF-7), which was 

positive for PA, had no PA present in the earlier samples (Table 4.3). NTM was a common and 

important finding in the microbial profile isolated from PEG tubes, and this will be explored in 

more detail in Chapter 5. 

 
Figure 4-13: PEG tube microbiology results (n=5). 
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Table 4.3: PEG-fed tube culture results 

PEG 4 Candida albicans, Candida krusie, Candida glabrata Candida parapsilosis 

Lactobacillius fermentum, Enterococcus faecium and Mycobacterium 

abscessus sub sp abscessus 

 PEG 6 Candida albicans, Candida parapsilosis, Saccharomyces cerevisiae, 

Staphylococcus epidermidis and Pseudomonas aeruginosa  

PEG 7 Enterobacter cloacae, Stenotrophomonas maltophilia and Pseudomonas  

aeruginosa  

PEG 16 Candida albicans, Streptococcus oralis, Mycobacterium abscessus sub sp 

abscessus, Mycobacterium bolletii and Aspergillus fumigatus 

PEG 17 Candida glabrata, Candida parapsilosis, Staphylococcus epidermidis and 

Lactobacillus paracasei 
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4.4 Discussion 

Chronic suppurative lung disease is the most common cause of death in CF patients. The 

connection between the airways and the stomach has been proposed to be a source for CF lung 

infection (Rogers et al., 2006; Al-Momani et al., 2016), highlighting the need for further 

research. 

The microbes colonizing the sputum and gastric juices of PEG-fed CF patients were compared 

in this investigation using repeated samples from the same patients described in Chapter 3. I 

identified microbial species in the sputum and gastric juice samples of CF patients, in addition 

to gastric juice samples from non-CF patients, by using a combination of conventional culture-

based and culture independent methods. I was also able to collect some patients' replaced PEG 

tubes. 

Similar to the finding of the previous chapter, this study, which includes some repeated samples, 

demonstrated using culture-based and molecular-based approached that the bacterial species 

present in CF gastric juice were different compared to the control group (non-CF patients). A 

high rate of bacterial species such as PA and NTM that can potentially cause lung infection 

were isolated from CF gastric juice samples and the collected PEG tubes. Thus, these finding 

highlight the possibility that the stomach compartment may store CF-related pathogens. These 

pathogens could subsequently be aspirated during reflux. 

In the previous chapter, 4 identical strains of PA in sputum and gastric juice from the same 

patient were isolated. In this study, different patients (n=3) had identical strains of PA common 

in their sputum and gastric juice. Moreover, two patients had identical strain of M. massiliense 

in their sputum and gastric juice and this will be explored in more detail in chapter 5. On the 

whole, this points towards a possible link between microbes found in the sputum and gastric 

juice in some CF patients. Rosen et al. (2015), Palm et al. (2012) and Rosen et al. (2011) 

highlighted the microflora exchange between the stomach and the lungs and the connection 

between reflux and an increased chance of positive bronchioaleveolar lavage and PA cultures 

in cystic fibrosis patients. 

CF patients included in this study rely on PEG to maintain nutrition. A number of natural 

defence mechanisms are compromised in PEG tube-fed patients. Graeme et al. (2005b) explains 

that a lack of sensory stimuli associated with eating reduces saliva production and peristalsis, 

while decreased swallowing causes an increase in gastric pH. The overall result is a higher 
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predisposition to microbial colonization in the stomach. PEG tubes have been proved to be 

contaminated with Candida spp, and this fungal microorganism could also cause the tube to  

deteriorate, according to Gottlieb et al. (1994). Similar to my findings, Dautle et al. (2002) 

isolated Enterococci spp, Staphylococci spp, Lactobacilli spp, Candida spp and PA on the PEG 

tube of non-CF child patients, while Rolston et al. (2011) discovered that on the tubes of PEG 

-fed cancer patients, PA bacteria were amongst the most frequently identified organisms. 

Microbiology of the non-CF gastric juice  samples (control group) also suggested that PA can 

be found in the gastric juices of non-CF patients when endoscopically tested (Al-Momani et al., 

2016). Likewise, PA was found in samples of patients with gastritis in a study by Monstein et 

al. (2000), thus suggesting that our findings are not exclusive to PEG fed CF patients and can 

be generalised to other non-CF patients with PEG tube feeding. 

There was agreements in the repeatability of the gastric juice and sputum samples at the 2 time 

points, with a degree of expected variability inherent to biological samples taken at different 

time points and there was no significant difference in Shannon diversity index using Bland 

Altman plots. It was of interest, however that more diversity was noticed in sputum samples at 

T2 compared to T1, although it is statistically insignificant.  

This is the first study which has assessed the repeatability of estimating the Shannon diversity 

index in the sputum samples and gastric juice samples of CF patients. Loss of diversity is often 

cited as a key finding in the CF lung microbiome and increase in diversity has been noted with 

disease-modifying therapy in CF (Zeybel et al., 2016). The present description of variability in 

diversity that can occur inherently due to repeated biological sampling therefore provides novel 

and useful data, e.g. for sample size estimation for studies aiming to modulate the microbiome. 

The findings presented in this chapter support the findings of the previous chapter that the 

stomach of CF patients hosts pathogenic bacteria which could be refluxed up to the 

extraoesophageal compartment and aspirated. This hypothesis was strengthened by the finding 

that  a gastric juice sample (CF-6) and the PEG tube of patient number 7 (CF-7) were positive 

for PA and had no PA present in the earlier sputum samples suggesting that bacteria species 

survive in the gastric compartments independent from respiratory sources. 
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Chapter 5.0 : Nontuberculous mycobacteria in percutaneous endoscopic 

gastrostomy fed cystic fibrosis patients 

5.1 Introduction 

Along with the increasing survival rates amongst CF patients over the last two decades, a 

number of new pathogens are also emerging which tend not to be seen in younger CF patients 

and which have not been previously seen in CF (Leung and Olivier, 2013). One of these 

microbes is non-tuberculous mycobacteria (NTM), of which 140 species are believed to 

currently described according to Gillespie (2006). There has been a dramatic increase in the 

number of NTM species identified in recent years, and not all are believed to be pathological 

in humans. Nonetheless, Gillespie (2006) and Jordan et al. (2007) point out that classification 

of NTM strains has improved, along with the ability to separate closely related strains (e.g. 

Mycobacteria chelonae and Mycobacteria abscessus) due to advancements in microbiological 

sequencing methods which have evolved. 

NTM are aerobic, stationary organisms that can be seen by using acid-fast alcohol stains 

(Murray et al., 2015). Their cell wall, which is hydrophobic and rich in lipids, is significantly 

thicker than the cell walls of most other bacteria, according to Murray et al, (2015). NTM 

species are resistant to heavy metals, disinfectants, and antibiotics due to the thickness and 

properties of their cell wall (Gillespie, 2006; Murray et al., 2015). 

NTM are environmental microbes that are present all over the world, especially in soil and 

water (including domestic water supplies). Although the highest concentrations of NTM are 

found in soil and water sources, the mycobacteria are actually present in all environments. They 

are thought to be able to form biofilms (Schulze-Röbbecke et al., 1992), and Falkinham Iii 

(2007) described how such formation contributes to disinfectant and antibiotic resistance. 

Furthermore, many such organisms are acid resistant (pH<3) (Bodmer et al., 2000). 

In light of these typical NTM characteristics, it follows that drinking water, household 

plumbing, marshes and peat rich soils act as NTM reservoir (Falkinham, 2013). Phillips and 

Von Reyn (2001) pointed out that water systems in hospitals, haemodialysis centres, and dental 

practices contain particularly high levels of NTM colonization. Falkinham Iii (2011) suggested 

that, given the organisms’ tendency for biofilm formation, it is important to include biofilms in 

samples being tested for NTM colonization  
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5.1.1 Epidemiology of non-tuberculous mycobacteria in cystic fibrosis patients 

In both Europe and North America, NTM are being discovered more and more frequently in 

the sputum of CF patients adults and children (Floto et al., 2016), The prevalence of NTM in 

CF patients has been measured over the years, and has ranged from 1.3% in the first recorded 

study by Smith et al. (1984) to 32.7% in a 2005 study of CF patients over 40 years old by 

(Rodman et al., 2005). The two biggest documented investigations were conducted by Esther 

et al. (2010), who studied 1216 CF patients, and Roux et al. (2009) who studied 1582 CF 

patients. These studies found a 13.7% and 6.6% rate of NTM-positive specimens respectively. 

Salsgiver et al. (2016) points out that recent examination of registry data from the US Cystic 

Fibrosis Foundation (CFF) has discovered a 12% prevalence rate for NTM-positive specimens. 

5.1.2 Important NTM species in CF 

The most frequently identified species of NTM in CF patients are the slow- growing 

Mycobacterium avium complex (MAC) (including M. avium, M. intracellulare and 

M.chimaera). According to Olivier et al. (2003), these strains are found in as many as 72% of 

NTM-positive sputum samples. The second most frequent species in CF patients are the fast- 

growing M. abscessus complex (MABSC) (including the subspecies M. abscessus subsp 

abscessus (M. a. abscessus), M. a. bolletii and M. a. massiliense) (Adékambi et al., 2004; 

Adékambi et al., 2006). M. simiae, M. kansasii and M. fortuitum have been identified by Floto 

et al. (2016) as being less prevalent species of NTM. The prevalence of different strains differs 

not only between, but also within, countries, suggesting geographical influences on the 

prevalence of NTM.  

5.1.3 Risk factors for NTM infection 

CF patients with positive NTM sputum samples were found, in a large multicentre prevalence 

study in North America, to be older people with higher FEV₁ and lower incidence of PA 

pulmonary infection than patients with negative NTM sputum samples, according to Olivier et 

al. (2003).  

However, it has also been found that NTM is associated with  lower FEV₁, haemoptysis and 

higher prevalence of PA  (Levy et al., 2008). The strain of mycobacterial species involved here 
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may explain this discrepancy. Although MAC is the most common mycobacterial pathogen 

found throughout America, Israel and Europe, MABSC is more prevalent. Renna et al. (2011) 

point out that in a large UK study of CF patients, elevated rates of NTM infection were found 

to be influenced by continuous use of azithromycin medication. 

The two final factors that have been found to influence NTM infection in CF patients are the 

increased use of steroids and allergic bronchopulmonary aspergillosis (ABPA) (Mussaffi et al., 

2005). In ABPA, altered immune response, in particular the T-helper 2 mediated up-regulation 

of interleukin-4 (IL-4) and down-regulation of interferon-γ (IFN-γ), is likely to provide an ideal 

environment for mycobacteria to thrive (Hernandez et al., 2005). 

5.1.4 Mode of transmission 

The mode of transmission of NTM to humans has not been defined. Person-to-person 

transmission has not been convincingly demonstrated. Further, although animals may serve as 

a reservoir, animal to human transmission is not thought to occur (Biet et al., 2005).  

On the other hand, it is possible that the infection can be transferred by sharing drinking water 

systems with animals (Kankya et al., 2011). The repeated use of surgical equipment on patients 

is thought to be responsible for NTM infections. Although the exact source of infection often 

remains unidentified, the instruments generally become infected through poor cleaning 

standards, or from the water used in the disinfection process (Olivier et al., 1996; Quittell, 

2004). Although the exact cause of NTM infection is unknown, it is probable, based on the 

environmental source of NTM, that the bacteria is contracted via ingestion, inhalation, or 

implantation (Wolinsky, 1995). 

Pulmonary NTM disease is thought to be the result of aerosolization of tiny droplets entering 

the alveoli.  Bathroom showers have been identified as fundamental breeding grounds for 

aerosolized NTM (Falkinham, 2003; Falkinham et al., 2008). Furthermore, a cohort case study 

conducted by Dirac et al. (2012) explored the use of aerosols in the home and discovered that 

using a spray bottle for watering plants was the only aerosol activity  found to increase the 

chances of NTM-related lung disease. 

An elevated concentration of NTM  can be found in potting soils, and especially peat-rich soils, 

and it is possible that soil-generated dust produces particles small enough to get into the alveoli 

(De Groote et al., 2006). NTM colonization and nosocomial outbreaks of disease have been 
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caused by contamination of hospital water supplies, medical equipment (such as bronchoscopes 

and endoscopes) and contaminated dialysis solutions. Skin abscesses, pulmonary alveoli, 

meningitis rashes, and surgical sites are all described as areas affected by NTM infection 

(Phillips and Von Reyn, 2001). 

In CF patients, in spite of thorough isolation, a high potential NTM transmission rate amongst 

CF patients was identified in a recent study, specifically with regard to the M. abscessus strain. 

(Bryant et al., 2013) speculated that the disease could be contracted indirectly, via fomite 

contamination or aerosols used during physiotherapy and spirometry testing. The investigation 

also showed that the disease could be passed on by patients who tested negatively for culture 

positive sputa, meaning that an extremely low level of inoculum might be enough to cause 

infection.  This evidence is important for ongoing debates that promote the need for rigorous 

preventative measures (Bryant et al., 2013). 

5.1.5 NTM pulmonary infection: implications for treatment and lung transplantation 

The treatment of NTM lung infections is clinically problematic. The range of potential side 

effects of anti-NTM drugs must be taken into account, along with any interaction that such 

drugs may have with the patient’s CF medication. Wallace Jr et al. (2012) suggest that these 

issues are of particular importance to CF patient’s with liver disease. The often lengthy 

treatment process and the patients other existing conditions must therefore be taken into account 

when deciding the length and toxicity of anti-mycobacterial treatment. An overview of a 

patient’s current treatment course is often conducted before starting treatment for NTM. 

(Johnson and Odell, 2014) assert that the prognosis of untreated NTM infection is difficult to 

establish, due to a lack of relevant data regarding untreated NTM infections. 

NTM infection is present in a large amount of CF patients being considered for a lung 

transplant. Approximately twenty percent of CF patients showed NTM infection before 

transplantation and around 14% tested positive for NTM pulmonary infection after 

transplantation (Brown, 2010). The patients' own remaining lungs (above the area of the 

anastomosis) were considered to be the source for post-transplantation NTM. 

Although NTM disease after lung transplantation can be treated, life threatening disseminated 

infection can be caused by the MABSC strain (Gilljam et al., 2010); thus, many transplant 
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centres regard active MABSC pulmonary disease to be serious enough to warrant deferral of  

an impending transplant. 

5.1.6 Gastroesophageal reflux, acid suppression and NTM pulmonary disease  

There has not been an in-depth study investigating the connection between GORD and NTM 

lung diseases. Nevertheless, a connection has been discovered between NTM lung disease and 

gastroesophageal disorders in previous research (Varghese et al., 1988; Griffith et al., 1993; 

Hadjiliadls et al., 1999). 

Hadjiliadls et al. (1999) conducted a MEDLINE search of English language publications from 

1966 to 1997 to assess the relationship between NTM lung infection and oesophageal disorders, 

and revealed that twenty cases of NTM lung disease in patients with oesophageal disorders. 

Griffith et al (1993) reported that six percent (10 of 154) of patients with NTM lung disease 

caused by quick-growing strains such as M. abscessus or M. fortuitum had a gastroesophageal 

disorder causing chronic vomiting. 

Fifty-eight patients with M. avium complex (MAC) lung disease were investigated by Thomson 

et al. (2007), who found that GORD was more frequently diagnosed among patients with MAC 

lung disease than among age-matched controls (44% compared to 28%; p=0.019). Thomson et 

al. (2007) suggested that, as patients with MAC were more frequently prescribed acid 

suppressive therapy, acid suppression may heighten the risk of contracting NTM lung disease 

because gastric fluid promotes the growth and survival of NTM. 

In a 24 hours pH observation study on fifty eight patients with 2 types of NTM lung disease 

(MAC and M. abscessus), Koh et al. (2007) found that 26% tested positive for GORD. The 

airways disease on tomography scan was more widespread in those with GORD, and they were 

more likely to demonstrate acid-fast bacilli on sputum smear (80% versus 44%; p= 0.033).  

It is therefore uncertain whether GORD symptoms are just more common among coughing 

patients, whether GORD only plays a part in causing airways disease, which then makes the 

patient susceptible to NTM disease, or whether reflux alone heightens the risk of contracting 

NTM lung disease, perhaps by supplying NTM to the airways. De Groote and Huitt (2006) and 

Field and Cowie (2006) have explained how these reports have led to many authorities declaring 

GORD as a key factor in predisposing patients to NTM lung disease and subsequently advising 
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careful questioning of patients with pulmonary disease caused by rapid-growing NTM bacterial 

strains regarding any symptoms that indicate recurrent GOR and aspiration.  

Although some research has indicated a prevalence of GORD in patients with NTM lung 

disease, the nature of this relationship is unclear. It is possible that GORD could be responsible 

for the exposure of the pulmonary parenchyma to refluxed gastric acid, which could cause the 

development or progression of NTM lung disease. On the other hand, GORD could be a 

secondary phenomenon. Changes in lung function may make NTM lung disease patients more 

susceptible to irregular reflux, along with frequent coughing which exerts increased pressure 

on the diaphragm. The increased intake of acid suppressants could cause weakly acidic or non-

acidic reflux into the oesophagus, which may actually create an environment conducive to 

growing NTM bacteria.  

I have previously outlined results that demonstrate a relationship between the bacteria in gastric 

juices and CF lung pathophysiology in patients who are fed by percutaneous endoscopic 

gastrostomy (PEG) tubes. I consequently investigated whether gastric juice and PEG tubes from 

people with CF may act as an under-estimated reservoir of NTM colonization (Al-Momani et 

al., 2016).  

The investigation aim in this chapter was to provide new insights into the mycobacterial profiles 

of sputum, gastric juice and PEG tubes taken from the same CF patients. 
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5.2 Materials and methods 

This investigation used samples of gastric juice and sputum from 16 PEG-fed CF patients (CF1-

4, CF6-14 and CF16-18) as used in Chapter 4. PEG tubes were taken from 5 patients either 

after these were routinely renewed or when they were removed (CF-4, CF 6-7 and CF 16-17).  

pH strips were used to test the acidity of gastric juices. Dithiothreitol was used to homogenize 

sputum samples. A PEG-conditioned saline mixture (PEG-s) was created when the internal and 

external parts of the PEG tubes were separated into small sections and thoroughly washed with 

3ml of saline mixture. Microbiological analysis of gastric juice, sputum samples and PEG-s 

was conducted using nationally recognized techniques, as presented in Chapter 2.  

Matrix assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry 

(Bruker Daltonics, UK) and in some cases suitable Analytical Profile Index (API) kits 

(BioMérieux UK) were used to identify microorganisms (Blauwendraat et al., 2012). RpoB, 

sodA and hsp65 gene sequencing techniques were used to determine mycobacterium species, 

and the strain of the bacteria was subsequently established using variable number tandem repeat 

(VNTR), Colindale, UK (Harris et al., 2012). 

The Reflux Symptoms Index (RSI) score was used to identify symptoms of extraoesophageal 

reflux (EOR) and if the score was 12 or less, the reflux was considered to be not EOR 

symptomatic (Belafsky et al., 2002).The reflux symptom index relies on patients reporting their 

symptoms and is used to assess laryngeal symptoms secondary to reflux, including coughing. 

Differences in demographic and clinical variables in CF patients with and without NTM 

infection were compared using univariate analysis. Comparisons were performed using a two-

tailed unpaired T-test. All data were evaluated using SPSS for Windows, version 22; 

statistically significant results were considered if p-values equal to or less than 0.05. 
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5.3 Results 

5.3.1 CF Patients characteristic 

The CF patients included in this studied display moderate to severe pulmonary disease, which 

is consistent with PEG feeding. The median FEV₁ was 1.6L (37%) range 0.5-2.7L (17%-88%), 

and participants were being treated with long-term use of antibiotics and acid suppression 

medicine. Symptom scores for extraoesophageal reflux were obtained for fourteen out of 

sixteen CF patients, thirteen of whom were clearly shown to be EOR symptomatic with an RSI 

score >12; median RSI score 17 (range 13-36), even though they had been using PPI or 

Ranitidine. One patient did not display symptoms of EOR, resulting in an RSI score of 8.  

5.3.2 Microbiological results 

One of the most frequent bacteria detected in both sputum and gastric juice were Non-Tb 

mycobacterium (NTM), as shown in Figure 5.1.   The most commonly identified NTM strains 

were M. massiliense and M. abscessus sub sp abscessus 

The samples from seven of the sixteen (43%) CF individuals contained NTM. Among those 7 

patients, five patients’ sputum tested positive for NTM, three contained the strain M. 

massiliense (CF-3, CF-10, CF-14) and two the M. abscessus sub sp abscessus strain (CF-4 and 

CF-7). Two of the five NTM positive sputum specimens contained an identical strain of NTM 

established by VNTR in their gastric juice, and one contained a strain identical to that found on 

their removed PEG tube (which was the M. abscessus sub sp abscessus (CF-4). 

Two patients who were sputum sample negative for NTM (CF-1 and CF-16)  were found to 

have either M. massiliense in their gastric juice (CF-1) or M. abscessus sub sp abscessus and 

M. bolletii in their PEG tube (CF-16). NTM were isolated for the first time from CF-1 and CF 

-16 from a non-lung, gastric site (Table 5.1).  
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Figure 5-1: Culture results of gastric juice samples (n=16), sputum samples (n=16) and PEG-s 

(n=5). 
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Table 5.1: Patient details related to chronic colonisation of NTM 

 Gastric juice Sputum PEG NTM status 

CF-1 M. massiliense No NTM isolated No PEG No previous NTM 

CF-3 M. massiliense M. massiliense No PEG +ve for M. 

massiliense since 6-

12-2006 

CF-4 No NTM 

isolated 

M. abscessus sub 

sp abscessus 

M. abscessus sub sp 

abscessus 

+ve for M. 

abscessus 10-7-

2008 

CF-7 No NTM 

isolated 

M. abscessus sub 

sp abscessus 

No NTM isolated +ve for M. 

abscessus 9-1-2009 

CF-10 No NTM 

isolated 

M. massiliense No PEG No previous NTM 

CF-14 M. massiliense M. massiliense No PEG Grew M. chelonae 

once only 

CF-16 No NTM 

isolated 

No NTM isolated M. abscessus sub sp 

abscessus 

M.  bolletii 

No previous NTM 
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Patients who tested positive for NTM were younger (median 24, range 20-26) than those who 

tested negative (median 30, range 18-32) with almost similar FEV₁ measures (Figure 5.2 A and 

5.2 B), and had a lower BMI (mean 18.3 (SD 1.75) vs 19.1(SD 2.4) (Figure 5.2 C). The average 

annual IV antibiotics intake for NTM positive patients was lower (median 56, range 14-154) 

than that of NTM negative patients (median 70, range 37-160) (Figure 5.2 D). None of these 

differences between NTM positive and negative patients was statistically significant. 

 

Figure 5-2:  Difference between NTM positive (n=7) versus negative (n=9) patients according 

to: The age (A), FEV₁ (B), BMI (C) and The average IV antibiotics (number of days per year) 

use (D). The small circles are outliers. 
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NTM-positive patients had  higher scores on the RSI (median 22, range 16-36) in comparison 

to NTM-negative patients (median 15, range 8-20) but this was not statistically significant 

(p=0.224). The RSI questionnaire demonstrated a range of scores from 2-5 for the coughing 

domain score (5 was the highest possible score) (Figure 5.3).  

 
Figure 5-3: The RSI scores of NTM positive (n=7) and NTM negative patients (n=9). The small 

circle is outlier 
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5.4 Discussion 

This investigation is the first of its kind to demonstrate that NTM, including M. abscessus, as 

well as being found in sputum, is also present in the gastric juice and PEG tubes of CF patients. 

Patients with NTM- negative sputa showed NTM in their PEG and gastric juice. This was the 

first time that NTM had been identified in those patients despite frequent sputum sample 

analysis during follow up of those patients in our CF centre.  

NTM has reportedly had outbreaks in individuals without CF, which Wallace Jr et al. (1998) 

report have been due to situations where soft tissue and bone has become infected after 

contaminated equipment has been used during operations. Griffith et al. (2007) explain that, 

although the use of disinfected operating equipment is thought to cause NTM outbreaks, 

presumably because of insufficient cleaning or from the water used in the disinfection process, 

the precise source of the outbreaks remains unknown. 

A popular technique used to enhance feeding in CF patients is the use of a gastrostomy tube, 

which can be inserted either endoscopically, surgically, or fluoroscopically. Transmission of 

NTM infections via foreign bodies has been reported  (Trupiano et al., 2001). It is believed that 

the existence of a foreign body enables colonisation by making host barrier defence 

mechanisms weaker (Linmans et al., 2008). According to Chiu et al. (2010), there has been a 

reported instance of M. abscessus-caused perigastrostomy infection in an immunocompetent 

patient. 

Gastrostomy tube feeding has previously been considered a risk factor for developing 

tuberculosis (Snider, 1985). I am not aware of any available information concerning whether a 

gastrostomy is a reserve for NTM in CF patients. The previous chapters  demonstrated that 

gastric juice is an under-acknowledged source of CF-related microorganisms including PA and 

NTM (Al-Momani et al., 2016). In this part of the study, I therefore examined the sputum, 

gastric juice and PEG tubes from the same CF patients for the existence of NTM. The combined 

samples from our PEG fed study demonstrated a 43% prevalence of NTM, this is a high rate in 

comparison to the 15.7% prevalence found in the latest study of CF patients in a regional 

institution which used exactly the same culture methodology (Preece et al., 2016) and the 12% 

found in another recent study (Adjemian et al., 2014). These results may simply demonstrate 

that our patients have more severe CF, but the possibility that a PEG feed tube may increase 

the chances of CF patients developing NTM infection must also be considered. 



98 
 

NTM are environmental pathogens found across the world, with soil and water, including home 

water supplies, being the main breeding grounds for such bacteria.  As far as I am aware, there 

is no evidence suggesting that animal-to-human or human-to-human transmission can pass on 

this infection. Nevertheless, it is thought to be possible that cross-infection can occur between 

CF patients, which has been supported by indirect studies combining whole genome sequencing 

and in-depth epidemiology (Bryant et al., 2013). Ricketts et al. (2014) have recently 

investigated a case of suspected human-human transmission of M. kansasii between a married 

couple living in East London, where genetically identical bacteria were found in both partners.  

The data in this chapter showed that NTM was present in the gastric compartment and was 

grown both from gastric juice and also PEG tubes. The removal of the PEG tubes was conducted 

as part of the patients' care routine and not because they were thought to be infected. The present 

findings support the idea that NTM organisms are resistant to atypical environments including 

high temperature and low pH (Bodmer et al., 2000). This indicates an under acknowledged and 

new possibility that the stomach acts as a potential reserve of active NTM in PEG-fed 

individuals with CF. It could be hypothesised that this is part of the reason why treatment is 

unable to eradicate NTM in some patients.  

A connection between NTM colonization in the gastric juice and sputum of some CF patients 

was established in this investigation. NTM was found in the gastric juice and sputum specimens 

of two patients, and furthermore, molecular methods identified genetically identically strains 

of NTM present in CF patients' gastric juice and sputum. 

These results might therefore demonstrate that bacteria such as NTM could be passed from the 

lungs to the stomach via coughing and swallowing. Furthermore, NTM was also found in the 

PEGs and gastric juice of patients who tested negative for NTM in their sputa, and this study 

was the first of its kind to isolate NTM in gastric samples of two patients. These findings 

highlight the possible risk of transferring the infection to the lung from the stomach via 

consistent reflux and aspiration. This should be taken into account and further examined in CF. 

There are prior studies that point to a relationship between NTM lung disease (including 

diseases caused by M. abscessus)  and gastroesophageal disorders, such as that of Koh et al. 

(2007). Reflux and aspiration problems are known to be particularly prevalent in CF, according 

to Brodzicki et al. (2002c).  

The fact that there is higher reported prevalence of GORD in non-CF patients with pulmonary 

Mycobacterium avium complex (MAC) than in the general population may thus be significant 



99 
 

(Koh et al., 2007; Thomson et al., 2007). Additionally, a connection between the regular use of 

acid-suppressive drugs and an increased chance of developing MAC pulmonary disease has 

been discovered. This is significant for CF patients, who commonly use such drugs, A recent 

suggestion put forward by Floto et al. (2016) for treating NTM emphasised the potential risk of 

using  PPI. Thus, I believe that these findings demonstrate a requirement for further research 

into the possible role that GOR and acid suppression medication play in the development of 

NTM in CF patients. 

A series of nine questions make up the validated RSI questionnaire instrument used in this 

study, which is designed to assess extra oesophageal reflux and coughing. All of the patients in 

our group who had gastric NTM also gained a high RSI domain score for cough.  

Fennelly et al. (2012) explained how one cough can produce a large amount of bioaerosols, 

which may contribute to the contraction of infections.  Once breathed in,  bioaerosols with a 

critical size range of 1–5 µm have a greater chance of reaching the alveoli than those of more 

than 5 µm (Wurie et al., 2016). The Mycobacterium bacillus is 0.2–0.5 µm wide and 2–4 µm 

long, and thus it is possible that bioaerosols measuring 1–5 µm may carry this pathogen, 

allowing this infection to enter the alveolar macrophages in distal portions of the lungs, 

according to Wurie et al. (2016). Halstrom et al. (2015) point out that the inhalation of aerosols 

from environmental sources such as jacuzzi and showers is known to be a major method of 

contracting NTM, thus causing lung disease. Since mycobacteria have very hydrophobic cell 

walls, it is possible that they aerosolise more easily than other bacteria (Halstrom et al., 2015). 

It is crucial to be able to identify NTM, especially in CF patients, since NTM are resistant to 

traditional antibiotics and anti-tuberculosis medication. If identified early, susceptibility testing 

can be conducted promptly and suitable treatment for PEG management can be established. As 

far as I am aware, this investigation is the first of its kind to demonstrate how gastric juice and 

PEG-tube insertion are possible reservoir for NTM infection in CF patients, thus this is a 

strength of this study. A weakness, however, is that the size of the study group was modest in 

comparison to those used in prior influential investigations on NTM in CF patients.  The 

placement of the PEG allowed the collection of gastric juice without needing commensal 

sampling from the upper airways; however, this limits the results to PEG fed CF patients only. 

Thus, I believe that this study should lead to further investigation using a wider range of patients 

in multi-centre approaches. In conclusion, I emphasise the need for such further research, due 

to rising clinical concerns about the growing prevalence of NTM infection in CF patients. 



100 
 

Chapter 6.0 : Pseudomonas aeruginosa survival in acidic environment 

6.1 Introduction 

While the stomach was historically considered to be a hostile  environment, which did not  allow 

microbial pathogens to survive, it is increasingly recognised that in fact, certain microbes have 

developed the ability to withstand extreme conditions, surviving in the face of strong detergent, 

high pH levels, digestive enzymes, and host immune reactions (Sachs et al., 2000). Further, the 

presence of certain environmental factors in the stomach can trigger upregulation, 

downregulation or activation of genes which allow the organism to adapt to conditions in their 

specific location within a host organism (Tamplin, 2005). Over the past twenty years, it has 

been established that certain microorganism use differential genes expression to allow them to 

adapt to moderately acid environments (Booth et al., 2002; Cotter and Hill, 2003). 

According to the findings presented in Chapters 3 and 4, I isolated microbial organisms in 

gastric juice samples taken from both non-CF (aspirated through upper GI endoscopy) and CF 

subjects (through aspiration via PEG tubes), identifying the presence of PA, among other 

genera. These findings indicated the significance of the stomach in providing a potential 

reservoir for viable pathogenic organisms, and particularly PA as the principle pathogenic 

species in CF lung disease (Al-Momani et al., 2016). PA is the major pathogen in the cystic 

fibrosis (CF) lung. The pathogen is highly prevalent and initial acquisition in most cases leads 

on to infection on a chronic basis. In light of this, this chapter seeks to determine how far PA is 

capable of subsisting within the stomach, through experimental work to understand what impact 

the pepsin in gastric juice and its pH level has on the ability of PA to grow.  

6.1.1 Gastric juice 

The main components of gastric juice are water, hydrochloric acid, electrolytes, enzymes, 

intrinsic factor and mucus (Hall, 2015). The parietal cells secrete hydrochloric acid, which 

creates an acidity of pH 2 for gastric juice (Hall, 2015). Meanwhile, peptic cells secrete 

pepsinogen, which turns to pepsin under the action of the hydrochloric acid. Pepsin works to 

break down both secondary and tertiary protein structures, in preparation for further enzymatic 

digestion when food reaches the small intestine (Hall, 2015). The peptic cells also secrete 

gastric lipase, and this acts by breaking down medium- and short-chain triglycerides (Hall, 

2015). 
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Gastric juice also contains amylase, which enters the stomach in saliva mixed with the incoming 

food. While this enzyme acts on carbohydrate, once it reaches the stomach it is only active for 

a short time before it stops working in the acid conditions (Hall, 2015). The parietal cells secrete 

intrinsic factor, which is required for vitamin B12 absorption: a substance which is vital to both 

the proper functioning of the nervous system and to produce blood cells. Neck cells and surface 

mucosal cells in the stomach secrete mucus, which provides a protection to the lining of the 

stomach from the low pH and acts as a diffusion barrier to pepsin (Hall, 2015). 

6.1.2 Gastric juice as a bactericide 

It is considered that the stomach acts as a barrier for bacteria due to a bactericidal action from 

pepsin and HCl, with little assistance from the remaining gastric juice components (Wilder-

Smith and Merki, 1992). Further, the action of the two relevant components in this regard is not 

easily divisible, given that the action of the enzyme is reliant on the acid conditions provided 

by the HC1. Moreover, gastric acid is found across mammalian, reptilian, amphibian and 

piscine (related to fish) species, suggesting that this characteristic has been favoured in natural 

selection (Koelz, 1992). The roles identified for gastric acid are: denaturing protein and 

activation of pepsinogen; enhancing the ability to absorb iron and calcium from food; and 

preventing microbial pathogens from entering the intestines (Chu and Schubert, 2013). 

The parietal cells secrete hydrochloric acid into the compartment of the stomach. Acid is 

produced by the proton pump, or H+,K+-ATPase, through the replacement of luminal K+ with 

cytoplasmic H+ (Driel and Callaghan, 1995; Chu and Schubert, 2013). Histamine is the primary 

stimulus for gastric acid to be secreted, and this histamine is secreted by enterochromaffin-like 

cells reacting to gastrin as a stimulus (Lindström et al., 2001). 

Gastric acid is held to be the principal component in gastric juice with a bactericidal function, 

with little contribution being observed from the remaining components which make up this 

liquid (Wilder-Smith and Merki, 1992). Further, a large body of research points to the failure 

to secrete gastric acid effectively as creating conditions which allow various infections to occur 

(Martinsen et al., 2005). On the other hand, there is also research evidence indicating that pH 

conditions of less than 2 are needed in order to kill bacterial microbes, and this condition is 

seldom reached for a sustained duration in the stomach. This is particularly so when eating, and 

this is the time when the stomach receives the largest numbers of bacterial organisms (Dressman 

et al., 1990). When investigating pH fluctuations in individuals consuming the diet, pHs of 5.5 
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have been recorded while eating, only decreasing to 1.5 between three and four hours post-

meal, assuming that average time for the stomach to empty (3 hours) is taken (Coldewey et al., 

2007). These fluctuations in pH may allow pathogenic bacteria the chance to breach the 

protective barrier of the stomach. 

There appears to be a key role for gastric acid in action to prevent bacteria from overgrowing 

both in the stomach and the upper section of the small intestines (Stockbruegger, 1985; Howden 

and Hunt, 1987), and this is supported by studies finding a  high bacteria count in the intragastric 

area for patients who had been treated with proton pump inhibiting drugs or  histamine-2 

receptor antagonists (Williams and McColl, 2006; Herzig et al., 2009) .  

Qualitatively altered microflora in the stomach for those who experience hypochlorhydria  (low 

level of gastric acid) appear reliant on how longstanding and how severe the condition is 

(Williams, 2001; Martinsen et al., 2005). Older research into stomach contents in chronically 

ahydrochloric individuals revealed a high frequency of coliforms, while more recent studies 

with individuals being treated with acid inhibitors and who had experienced hypo- or a-

hydrochloria for comparatively less time, found principally gram-positive microbial 

overgrowth, such as might be seen in the oropharyngeal and mouth areas (Dellipiani and 

Girdwood, 1964; Williams, 2001).  

Pepsin is considered the most significant enzymatic secretion in the stomach. This proteolytic 

enzyme is generated firstly as pepsinogen which the peptic cells secrete, before hydrochloric 

acid converts it to pepsin (Hall, 2015). Generally, the gastric juices contain from 0.5 to 1 mg/ml-

1 of pepsin (Balan et al., 1996). Research investigating how pepsin was impacted by acidity 

levels found that it was active up to 70% of maximum levels in pH 4.5 conditions (Johnston et 

al., 2007). Meanwhile, for pepsin to stop being active altogether as a result of non-reversible 

protein denaturation, a  pH of 5.5 or more is required (Pearson and Parikh, 2011a).  
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6.2 Methods 

6.2.1 Materials  

All chemicals and reagents were obtained from Sigma-Aldrich, Poole, Dorset, UK, unless 

otherwise specified. To reach pH targets ranging from 2.5 to 7.4, 1 Molar HC1 was added to 

PBS, and this then received porcine pepsin to create a concentration of between 0.5 and 1.5 mg 

ml-1.  

6.2.2 Strains of bacteria and cultures used. 

Clinical scientist Mrs Audrey Perry of the Freeman Hospital, Newcastle upon Tyne NHS Trust 

and University of Northumbria supplied four separate PA strains. The strains were S27, S33, 

S34 and PA14. S33 and S34 were isolated from 2 gastric juice samples in our patient cohorts. 

These are not referenced in any paper but were chosen as they were known biofilm producers 

from a previous study (Chapter 4).  Isolate reference PA14 and S27 are from the International 

PA panel (De Soyza et al., 2013). Columbia blood agar was then used for subculturing the 

strains, and the subcultures were incubated at 37°C in the presence of oxygen until the next day. 

6.2.3 Establishing effects from pepsin, human gastric juices and acidity level.  

Following incubation, the PA cultures were used to produce standardised suspensions of the 

microbes. They were suspended in 2ml PBS, and a densitometer was used to reach 0.5 

McFarland standard comparable density (1.5 *10⁸ cfu/ml). 

Inoculum 10ul was pre-incubated with 1 ml solution containing the test substances, with 20 µl 

being taken at durations of 0 minutes, 5, 30, 60 and 120 minutes. These underwent dilution in 

1.98ml PBS with a 7.4. pH. 50 µl of the neutralised suspension of bacteria was taken for plating 

in blood agar, and this was done in triplicate, to give about 50-60 PA colonies. Viable counts 

were determined after culturing at 37°C for 24 h under aerobic conditions.  
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6.2.4 Statistical analysis. 

Data were statistically analysed via analysis of variance (ANOVA), values of P equal or less 

than 0.05 were regarded as having statistical significance. 
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6.3 Result 

6.3.1 Acid-tolerance experiments 

Experimental work investigating tolerance of acidity for PA in PBS used pH conditions of 7.4 

as a control with which to compare the results. When pH levels were 2.5, none of the strains of 

PA tested in the PBS survived incubation after the 15-minute point, while when pH was 

increased to 3, up to three-quarters of bacteria were no longer viable by the same point, and 

none survived to 30 minutes. When tested at a pH of 3.5, approximately 55% of PA samples 

had died by the 30-minute point, rising to 80% at 1 hour and between 90 and 95% at 2 hours. 

Once pH had been raised to 4 however, just 13% of the bacteria had died at the 2-hour point, 

and at the higher pH levels of 5 and 6, any difference with the numbers in the control sample 

was found to be statistically insignificant (see Figure 6.1). 
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Figure 6-1: Effect of different pH level (2.5-7.4) on subsequent growth of PA. Compared to the 

PA survival at pH 7.4 (control), there was a statistical significant drop in the number of PA 

colonies at pH 2.5-4, while there was no significant difference in the number of colonies at pH 

>4. At 15 minutes, there was a significant decrease in the number of colonies at pH 2.5 and pH 

3 compared to the control (pH 7.4) (T-value = 37.60, P-Value = 0.000, DF = 4) and pH 3.5 (T-

value = 20.79, P-value = 0.000, DF = 5). At 30 minutes, there were statistically significant 

decreases in the number of colonies compared to the control (pH 7.4) at pH 3 and 3.5 (T-value 

= 103.00, P-value = 0.000, DF = 5). At 60 minutes, there were statistically significant decreases 

in the number of colonies at pH 3 and pH 3.5 (T-value = 41.96, P-palue = 0.000, DF = 4). At 

120 minutes, there were statistically significant decreases in the number of colonies compared 

to the control (pH 7.4) at pH 3.5 (T-value = 64.81 P-value = 0.000 DF = 5) and pH 4 (T-value 

= 13.17, P-value = 0.000, DF = 5). 
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6.3.2 Effects of pepsin 

Incubating PA in PBS containing porcine pepsin at various levels (0.5, 1 and 1.5 mg ml-1) and 

a range of pH levels demonstrated that all 4 PA strains were sensitive to proteolysis. At a pH 

level of 3, the samples displayed a large decrease in viable microbes (number of colonies), and 

the majority had died by 15 minutes incubation, as shown in Figure 6.2. There was also large 

loss of bacteria where pH was 3.5, and at 1 and 1.5 mg of porcine pepsin, all had been killed by 

60 minutes incubation, whereas for 0.5 mg, this had been achieved by 120 minutes, as shown 

in Figure 6.3.  

For the samples incubated at a pH of 4, porcine pepsin had a demonstrable impact on PA strains 

by the 15-minute incubation point. Approximately 15% had died at 15 minutes where pepsin 

was present, and 30% at the 120-minute point, while in the non-pepsin sample, just 12% had 

died at this point, as shown in Figure 6.4. There was a small but insignificant effect of pepsin 

with pH 5-7.4 (Figure 6.5).  
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Figure 6-2: Effect of pH and pepsin (0.5-1.5 mg/ml) on PA viability as indicated by colony 

counts. There was a significant drop in the number of colonies when pepsin (at concentrations 

of 0.5-1.5mg ml-1) added to PBS with pH 3 (T-value = 27.71, P-value = 0.000, DF = 6). 
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Figure 6-3: Effect of pH 3.5 and pepsin (0.5-1.5 mg/ml) on PA viability as indicated by colony 

counts. There was a statistically significant drop in the number of colonies when pepsin was 

added to the PBS at all pepsin concentrations used (except at 120 minutes at 0.5 mg/ml). At 15 

minutes, there was a statistically significant drop in the number of colonies at all pepsin 

concentrations compared to the samples without pepsin (0.5 mg: T-value = 11.55, P-value = 

0.007, DF = 2), 1mg: T-value = 21.89, P-value = 0.002, DF = 2) and 1.5mg: T-value = 31.88, 

P-value = 0.001, DF = 2). At 30 minutes, there were statistically significant drops in colony 

counts at all pepsin concentrations compared to the number of colonies without pepsin (0.5mg: 

T-value = 13.01, P-value = 0.006, DF = 2). 1 mg: T-value = 43.96, P-value = 0.000, DF = 3) 

and1.5 mg: T-value = 28.70, P-value = 0.001, DF = 2). At 60 minutes, there was statistically 

significant decrease in the number of colonies at pepsin concentration 0.5 mg (T-value = 41.05, 

P-value = 0.001, DF = 2). There was no statistically significant difference in colony counts with 

0.5mg/ml pepsin compared to the number of colonies without pepsin at 120 minutes. 
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Figure 6-4: Effect of pH 4 and pepsin (0.5-1.5 mg/ml) on PA viability, as indicated by colony 

counts. There was a statistically significant drop in the  number of colonies when pepsin was 

added to the PBS at all concentrations and at all time points. At 15 minutes, there was a 

significant decrease in the number of colonies when was pepsin added at all concentrations 

compared to incubating the PA without pepsin (0.5mg/ml: T-value = 10.28, P-value = 0.009, 

DF = 2). 1mg: T-value = 14.01, P-value = 0.005, DF = 2, at 1.5mg: T-value = 18.43 P-value = 

0.003, DF = 2). At 30 minutes (0.5mg: T-value = 25.09, P-value = 0.002 , DF = 2, at 1mg/ml 

:T-value = 58.18,  P-value = 0.000,  DF = 4, at 1.5mg: T-value = 34.74  P-value = 0.001,  DF = 

2). At 60 minutes (0.5mg: T-value = 13.93, P-value = 0.005, DF = 2). 1mg/ml: T-value = 16.09, 

P-value = 0.004, DF = 2, at 1.5 mg/ml (T-value = 19.41, P-value = 0.003, DF = 2). At 120 

minutes (0.5mg/ml: T-value = 27.33, P-value = 0.000, DF = 3), at 1mg/ml: T-value = 33.27, P-

Value = 0.000, DF = 3). At 1.5 mg/ml: T-value = 40.85, P-value = 0.001, DF = 2). 
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Figure 6-5: Effect of pH 5 and pepsin (0.5-1.5 mg/ml) on PA viability as indicated by colony 

counts. There was no statistically significant drop in colony counts when pepsin was added to 

the PBS at any concentration used. 
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6.4 Discussion 

The work described here demonstrates a significant bactericidal impact for PA in acidic 

conditions at or lower than pH 3, while between pH 3.5 and 4, this impact was less, and at 

higher pH levels, the impact was small. It is also shown that where pepsin exists alongside acid 

conditions, PA are more effectively destroyed. Within this, it is interesting to note that pepsin’s 

effect on PA had an association with acidity levels, as the action of pepsin was seen between 

pH 3 and pH 4, but was far less in evidence at higher pH levels, as proteolysis was reduced.  

While research into acidity levels and their impact on bacterial organisms is limited, previous 

work demonstrates an association between pH survival in Serratia marcescens, in which 90% 

attrition was achieved before 30 minutes’ exposure in conditions of pH 2, but required a 

minimum of 1 hour at pH 3, while colonies were unaffected by acidity of pH 4-7 (Borriello et 

al., 1985; Waterman and Small, 1998). This is similar to the results of this experiment, which 

finds that survival within the stomach is possible for PA at a pH level of >3.5, and further, that 

with the action of pepsin, approximately 2 hours were required for PA to be destroyed at acidity 

levels of pH 3.5.  

Thus, the effectiveness of the stomach’s bacterial barrier function relies upon pH remaining low 

for a minimum of between 15 and 30 minutes. At the same time, food entering the stomach, 

and bringing bacteria with it, lowers the acidity of gastric contents considerably, bringing pH 

to between 3 and 4.5. Further, pathogens which are bound to components of the food in the 

stomach find some protection from acidity in this way (Rosina, 1982), Pepsin concentration is 

a second essential element in bactericidal activity in the stomach, with effectiveness much more 

notable at levels >1.0 mg ml-1 compared with 0.5 mg ml-1 in my data. Further, within a live 

host, the number of minutes taken to destroy PA is a significant consideration, and it has been 

demonstrated here that pepsin may require 120 minutes to achieve this in conditions of pH 3.5 

and at a concentration of 0.5 mg ml-1. By contrast, at the same acidity but with a pepsin 

concentration of 1.0 mg ml-1, just 60 minutes is required.  

 Gram-positive bacterial organisms possess acid resistance through a range of strategies. 

Frequently, such solutions involve forming biofilms and altering density, as seen in 

Streptococcus mutans (Cotter and Hill, 2003). Listeria monocytogenes also becomes more acid 

resistant at a different density, and in biofilms on stainless steel has been seen to be less affected 

by acetic acid (Oh and Marshall, 1996). In light of this, a biofilm formation of PA might have 

greater resistance to low pH levels than seen in the experiment described in this chapter. In 
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previous chapters, isolation of biofilm-forming PA was achieved in samples of gastric juice at 

a pH of 3.  

While this experiment is unique to my knowledge in investigating the impact of acidity levels 

on PA, earlier work concerning E. coli O157: H7 demonstrated that it can tolerate acidity of pH 

3-3.5 during its exponential growth phase (Arnold and Kaspar, 1995).  It was further shown 

that stationary-phase or biofilm phase gram-negative microbes showed greater tolerance to 

acidity (Arnold and Kaspar, 1995). Bacteria undergo physical adaptation on entering the 

stationary stage to allow them to resist stressors during this comparatively inactive time 

(Angelichio et al., 2004). 

As already discussed, the majority of individuals with CF are treated by gastric acid 

suppression, frequently in response to symptoms of GOR, which has a high prevalence in this 

patient group. Moreover, CF patients experiencing malnutrition often take acid inhibition 

medication such as proton pump inhibitors, based on the logic that this might enhance 

pancreatic enzyme replacement therapy, which has been the mainstay of the modern CF patient 

care that has led to better life expectancy in those with CF (Proesmans and De Boeck, 2003; 

Littlewood et al., 2006). According to the CF Foundation Patient Registry Report (CFFPR) 

2011, from CF patients in the USA, 70.1% were being treated with medication to block gastric 

acid, while Com et al. (2014) report up to 100% of patients being treated for certain treatment 

centres. Based on the findings of the current experiment, the survival of PA is possible within 

the gastric juices of CF individuals being treated with acid suppressants.  

The pH levels I have found in CF gastric juice (Chapters 3 and 4) are consistent with the 

stomach providing an environmental niche that could allow PA to survive. The pH range in the 

CF patients was between 2 and 6, with 50% having gastric juice with pH equal to or more than 

4. Further, a number of other variables can act to promote hypochlorhydric conditions, where 

pH is between 4 and 7, and achlorohydric conditions, at a pH of 7. Among these factors are 

malnutrition and atrophic gastritis (Tennant et al., 2008; Agréus et al., 2012). The results 

reported here therefore do not exclusively apply to patients being treated to inhibit gastric acid. 

To conclude, this experimental chapter demonstrates the inability of PA to remain viable at pH 

levels of 3 or below, and shows that where pepsin is present, PA is destroyed more quickly as 

long as pH is between 3 and 4. Pepsin’s effect on PA is affected by its concentration and also 

by acidity, although where conditions are only moderately acidic, survival is possible for PA. 

Raising pH within the gastric lumen has the effect of removing the stomach’s bactericidal 



114 
 

barrier and therefore, protection from PA colonisation. Proton pump inhibitors could change 

the gastric microflora and promote overgrowth of microbial organisms, chiefly meaning that 

bacteria found in the mouth can then persist within the stomach, instead of being destroyed by 

gastric acid (Williams and McColl, 2006). 
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Chapter 7.0 : Effect of bile acids on P. aeruginosa growth and 

behaviour 

7.1 Introduction 

Individuals with cystic fibrosis produce thickened mucus in the lungs as a result of impaired 

epithelial ion transport, and this greatly increases vulnerability to lung infection by pathogenic 

microbes and  leads to impaired lung function (Jayaraman et al., 2001). The principle 

pathogenic agent linked to CF is PA, and chronic infections have proven ineradicable once 

established in this group of patients, despite advances in treatments to combat microbial 

infection (Goss and Burns, 2007). The reason for this appears to be mainly that such microbes 

are capable of behavioural alterations during chronic colonisation, becoming more antibiotic 

resistant, producing lower toxin levels and moving to a biofilm phase (Moreau-Marquis et al., 

2008). In this situation, the chronically PA infected CF lung leads to progressive and fatal loss 

of lung  function (Moreau-Marquis et al., 2008). These alterations seen in chronic infections of 

PA are different to mechanisms that occur during acute colonisation, in which PA may lead to 

pneumonia, overcoming the protective mechanisms of the lung and spreading through the 

blood.  

The leaking of the gastric contents into the oesophageal tract leads to GOR. Refluxed gastric 

content frequently contains bile, which includes bile salts, conjugated bile acids and bile acids, 

which has previously entered the stomach via the pylorus in a further reflux process from the 

duodenum to the stomach (duodeno-gastric reflux). It is a physiological phenomenon, and can 

occur both on an empty stomach and in subjects who have eaten (Pearson and Parikh, 2011b). 

In samples from participants receiving routine endoscopy of the upper GI, gastric juices were 

found to contain between 0.01 and 10  mmol ⁄ l (median = 0.055 mmol/l), measured through an 

enzymatic approach utilising 3α-hydroxydehydrogenase (Pearson and Parikh, 2011b; Ali et al., 

2013).  

Bile refluxing into  the oesophagus in CF patients, as found in as many as 4 in 5 patients, occurs 

mainly due to delay in emptying of the stomach, damage to the lower oesophagus sphincter, 

and on occasion due to physiotherapeutic treatment of the chest (Blondeau et al., 2010). In fact, 

it is possible that aspirated bile reflux is even more prevalent than this, as where this occurs 

without symptoms; it will remain unidentified by clinicians. Thus, bile acids (BAs) transferred 

through GOR have been observed within both sputum and bronchoalveolar lavage (BAL), with 
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concentration levels measured at between 0.4 μM (Pauwels et al., 2012) and 32 μM (D’Ovidio 

et al., 2005). 

A study by D’Ovidio et al. (2005) reported an association between higher concentrations of 

BAL bile acids and interleukin 8, alveolar neutrophilia and the presence of fungi and bacterial 

organisms. Further, evidence linking aspirated bile with the presence of PA in the airways has 

been observed in lung transplant recipients (Vos et al., 2008), as well as in research conducted 

retrospectively with juvenile CF patients (Palm et al., 2012). There is therefore a possibility 

presented that bile aspirated through GOR might have an impact on the microbiome of the 

lungs, and be a factor in the association between GOR and worsened lung disease. 

Recently, a number of researchers have presented evidence of a microbiome which is distinctive 

to CF patients, differing from those without CF (Sibley and Surette, 2011; Blainey et al., 2012). 

Although it is not yet clear what leads this differentiation in microbiome to exist, research 

proposes a possible role for aspiration of bile in this: especially with regard to microbial 

diversity  and chronic infection (Reen et al., 2012).  

I have previously isolated PA from gastric juice and sputum from CF patients and these were 

sometimes identical strains at the molecular level. The presence of PA in the stomach or in the 

airway may be influenced by bile acids, whether highly concentrated within the gastric lumen 

or more diffusely within the respiratory passages. The objective of the current experimental 

work is to evaluate the potential influence of bile acid presence within the two locations on PA, 

as the main infective agent which increases mortality and morbidity for patients with CF.  
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7.2 Methods 

7.2.1 Materials  

All chemicals and reagents were obtained from Sigma-Aldrich, Poole, Dorset, UK unless 

otherwise specified. Four bile acids present in humans, namely; lithocholic acid (LCA), cholic 

acid (CA), doxycholic acid (DCA) and chenodeoxycholic acid (CDCA) were used. The 

addition of bile salts to Tryptone Soy Broth (TSB) was made at two concentration scales: from 

0.3 mmol/l - 20 mmol/l, in line with gastric concentrations, and from 9.4 µmol /l  - 150 µmol/l, 

as typical of BAL in CF patients.  

7.2.3 PA strains and culture conditions  

Similar to previous chapter (Chapter 6), four PA strains were used in this experiment. The 

strains were S27, S33, S34 and PA14. S33 and S34 were isolated from 2 gastric juice samples 

in our patient cohorts. These are not referenced in any paper but were chosen as they were 

known biofilm producers from a previous study (Chapter 4).  Isolate reference PA14 and S27 

are from the International PA panel (De Soyza et al., 2013). Subculturing of the PA was 

conducted on Columbia blood agar, and cultures underwent aerobic incubation at 37°C for 24 

hours. 

7.2.4 Biofilm assay: microtiter-plate test 

For the biofilm assay (Figure 7.1), cultures of the four PA strains were used to produce 

standardised suspensions. This was done using Tryptone Soy Broth (TSB), using 250µl aliquots 

for each suspension, to which was added 20 µl aliqouts of the bacteria in suspension with TSB 

and bile acids, leaving 270µl in each well in the microtiter well. Each test was performed in 

triplicate. In addition, positive and negative control wells were used, with positives containing 

PA and TSB with the omission of bile salts, and negatives containing TSB only. 

This preparation was followed by aerobic incubation at 37°C for 24 hours, before aspirating the 

wells and washing each in sterile physiological saline (250µl) 3 times. Vigorous shaking of the 

plates was carried out for the purpose of removing any bacteria which had not adhered. Those 

microbes which were left underwent fixing using 99% methanol, at 200 µl for each of the wells. 
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The plates were left for 15 minutes, before emptying them and letting them dry. Five minutes’ 

staining was then carried out for each plate, using 2% Hucker crystal violet, suitable for Gram-

stain use, at 2 ml for each of the wells. Excess staining material was removed through rinsing 

plates with flowing water from the tap. The plates were then allowed to dry once more, and 

resolubilisation of the cell-bound dye was done using 33% (v/v) glacial acetic acid, at 160 µl 

for each of the wells. 

Optical density (OD) measurement was carried out for all the wells via an automated reader, 

the ICN Flow Titertek Multiscan Plus. Readings were taken at three stages: firstly, prior to 

incubating the samples (OD 600nm); secondly, post-incubation for growth assessment (OD 600 

nm); and finally, once the biofilm assay had been completed (OD 570nm). The ratio selected 

was 570/600, for normalisation of the measure of biofilm formed against growth of bacteria.  

 

Figure 7-1: Biofilm microtiter-plate test assay. 
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7.2.5 Statistical analysis. 

ANOVA was used to examine statistical variations across the microtiter-plate test data for 

samples containing bile salts and those which did not. The Tukey test was employed for 

comparison of OD measurements from microtiter-plate testing for samples containing bile and 

those which did not. Statistical significance was assumed for all findings with a p value equal 

to or smaller than 0.05. 
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7.3 Results 

7.3.1 Impact of bile acids on PA growth at concentrations from 0.3mmol/l - 20mmol/l 

Incubation of PA in the presence of four different bile acids in concentrations from 0.3 to 20 

mmol/l had a negative impact on PA growth. Lithocholic acid reduced growth strongly in two 

of the strains of PA (S33 and S34) with a 1.25 mmol/l concentration or above, while the 

remaining two strains were impacted when the concentration reached 5 or above (see Figure 

7.1).  Incubation with DCA reduced growth significantly for two of the strains (S33 and S34), 

at the lowest concentration of 0.3 mmol/l, while for the remaining two strains, growth was 

reduced significantly when DCA concentrations were over 1.25 mmol/l (see Figure 7.2). Both 

CDCA (see Figure 7.3) and CA (see Figure 7.4) concentrations of over 2.5mmol/l and 5 mmol/l 

reduced significantly the growth of PA, respectively. There was variability among different 

strains in term of  bile tolerance.  
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Figure 7-2: Impact of lithocholic acid on PA growth. Lithocholic acid concentration is shown 

on the x-axis, and OD measurement at 600nm is given on the y-axis. P-values indicate 

concentrations at which the growth of PA was significantly reduced (see Appendix 2A). 

Overall, a statistically significant decrease in growth emerged across the four strains at 10 

mmol/l and above. 
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Figure 7-3: Impact of DCA on PA growth. DCA concentration is shown on the x-axis, and OD 

measurement at 600nm is given on the y-axis. P-values indicate concentrations at which the 

growth of PA was significantly reduced (see Appendix 2B). Overall, statistically significant 

decrease in growth emerged across the four strains at 1.25 mmol/l and above. 
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Figure 7-4: Impact of CDCA on PA growth. CDCA concentration is shown on the x-axis, and 

OD measurement at 600nm is given on the y-axis. P-values indicate concentrations at which 

the growth of PA was significantly reduced (see Appendix 2C). Overall, statistically significant 

growth decreases emerged across the four strains at 2.5 mmol/l and above. 
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Figure 7-5: Impact of CA on PA growth. CA concentration is shown on the x-axis, and OD 

measurement at 600nm is given on the y-axis. P-values indicate concentrations at which the 

growth of PA was significantly reduced (see Appendix 2D). For all strains, statistically 

significant growth decreases emerged across the four strains at 5 mmol/l and above. 
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7.3.2 Impact of bile acids on PA biofilm formation at concentrations from 0.3 mmol/l – 20 

mmol/l 

Increased formation of biofilm was shown for each strain on incubation at varying bile acids 

concentrations. Further, statistically significant increases in biofilm formation were observed 

at 20 mmol/l for all bile acids (Figure 7.5 -7.8).  

 
Figure 7-6: Impact of lithocholic acid on PA biofilm formation for concentrations of 0-

20mmol/l. Lithocholic acid concentration is shown on the x-axis, and OD measurement at 

570/600nm is given on the y-axis. P-values indicate concentrations at which the rise in biofilm 

formation becomes significant in statistical terms (see Appendix 2E). For PA S34 strain, there 

was statistically significant increase in biofilm formation at 5 mmol/L of Lithicholic acid 

concentration. A statistically significant increase in biofilm formation emerged at 20 mmol/l 

for PA S33 and PA14 strains. There was no significant increase in biofilm formation at any 

concentrations for the S27 strain. 
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Figure 7-7: Impact of CDCA on PA biofilm formation for concentrations of 0-20mmol/l. CDCA 

concentration is shown on the x-axis, and OD measurement at 570/600nm is given on the y-

axis. P-values indicate concentrations at which the rise in biofilm formation becomes significant 

in statistical terms (see Appendix 2F). For all strains, a statistically significant increase in 

biofilm formation emerged at 20 mmol/l. 
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Figure 7-8: Impact of CA on PA biofilm formation for concentrations of 0-20mmol/l. CA 

concentration is shown on the x-axis, and OD measurement at 570/600nm is given on the y-

axis. P-values indicate concentrations at which the rise in biofilm formation becomes significant 

in statistical terms (see Appendix 2G). Statistically significant growth in biofilm formation 

emerged at 20 mmol/l for all strains. 
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Figure 7-9: Impact of DCA on PA biofilm formation for concentrations of 0-20mmol/l. DCA 

concentration is shown on the x-axis, and OD measurement at 570/600nm is given on the y-

axis. P-values indicate concentrations at which the rise in biofilm formation becomes significant 

in statistical terms (see Appendix 2H). Overall, statistically significant growth in biofilm 

formation emerged at 20 mmol/l for all strains. 
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7.3.3 Impact of bile acids concentrations from 9.4 µmol/l to 150 µmol/l on PA growth and 

biofilm formation 

When PA was incubated alongside bile acids at similar concentrations to those observed in 

refluxed material (9.4 µmol/l to 150 µmol/l). PA growth was not altered in a significant way 

(Figure 7.9-7.12). On the other hand, there was significant increase in biofilm formation after 

incubating PA with different concentration of bile acids (Figure 7.13-7.16). There was 

variability in the strain response to bile acids in terms of biofilm formation. 

 

Figure 7-10: Impact of lithocholic acid on PA growth for concentrations of 0-150 µmol/l. 

Lithocholic acid concentration is shown on the x-axis, and OD measurement at 600nm is given 

on the y-axis. None of the four strains of PA showed statistically significantly reduced growth 

in comparison with the control (without lithocholic acid). 
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Figure 7-11: Impact of CDCA on PA growth for concentrations of 0-150 µmol/l. CDCA 

concentration is shown on the x-axis, and OD measurement at 600nm is given on the y-axis. 

None of the four strains of PA showed statistically significantly reduced growth in comparison 

with the control (without CDCA). 
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Figure 7-12: Impact of DCA on PA growth for concentrations of 0-150 µmol/l. DCA 

concentration is shown on the x-axis, and OD measurement at 600nm is given on the y-axis. 

None of the four strains of PA showed statistically significantly reduced growth in comparison 

with the control (without DCA). 
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Figure 7-13: Impact of CA on PA growth for concentrations of 0-150 µmol/l. CA concentration 

is shown on the x-axis, and OD measurement at 600nm is given on the y-axis. None of the four 

strains of PA showed statistically significantly reduced growth in comparison with the control 

(without CA). 
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Figure 7-14: Impact of lithocholic acid on PA biofilm formation for concentrations of 0-150 

µmol/l. Lithocholic acid concentration is shown on the x-axis, and OD measurement at 

570/600nm is given on the y-axis. P-values indicate concentrations at which the rise in biofilm 

formation becomes significant in statistical terms (see Appendix 3A). For all strains, 

statistically significant growth in biofilm formation emerged at 75 µmol/l. 
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Figure 7-15: Impact of CDCA on PA biofilm formation for concentrations of 0-150 µmol/l. 

CDCA concentration is shown on the x-axis, and OD measurement at 570/600nm is given on 

the y-axis. P-values indicate concentrations at which the rise in biofilm formation becomes 

significant in statistical terms (see Appendix 3B). Statistically significant growth in biofilm 

formation emerged at 9.4 µmol/l among 3 PA strains and in the other one at 37.5 µmol/l. 
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Figure 7-16: Impact of CA on PA biofilm formation for concentrations of 0-150 µmol/l. CA 

concentration is shown on the x-axis, and OD measurement at 570/600nm is given on the y-

axis. P-values indicate concentrations at which the rise in biofilm formation becomes significant 

in statistical terms (see Appendix 3C). Statistically significant growth in biofilm formation 

emerged at 9.4 µmol/l for all strains. 
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Figure 7-17: Impact of DCA on PA biofilm formation for concentrations of 0-150 µmol/l. DCA 

concentration is shown on the x-axis, and OD measurement at 570/600nm is given on the y-

axis. P-values indicate concentrations at which the rise in biofilm formation becomes significant 

in statistical terms (see Appendix 3D). Statistically significant growth in biofilm formation 

emerged at 37.5 µmol/l for 3 strains, while for the other strain this occurred at 75 µmol/l. 
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7.4 Discussion 

The findings from this experiment demonstrate a potential negative impact from bile on PA 

growth when at concentrations similar to those in the stomach. At the same time, bile acids 

induced alteration in the behaviour of PA, with a tendency emerging to form a biofilm and with  

variability between strains in response to different bile acids at different concentrations. 

Meanwhile, at a concentration analogous to that contained in material refluxed from the 

stomach into the oesophagus and aspirated into the lungs, PA growth was unchanged, but a rise 

in biofilm formation was observed. The findings give weight to the proposal that the presence 

of bile acids within the lungs is a significant  environmental contributory factor in heightened 

morbidity and gradual decrease in lung function for those suffering from CF respiratory disease 

(Reen et al., 2012; Reen et al., 2016). The results support the findings of previous research in 

suggesting that interventions to stop bile acid transfer to the lung might be useful in reducing 

the likelihood of inflammatory processes and chronic infections, with obvious advantages for 

the life quality and health status of patients (Reen et al., 2016).  

Previous work reports that a bovine bile concentration of 0.1-1 mmol ml-1 causes certain 

pathogenic microbes, including PA, to move into a chronic infective mode (Reen et al., 2012). 

My previous work achieved isolation of PA as well as other bacterial species from samples of 

gastric juice taken from individuals with cystic fibrosis, and the findings from this experiment 

showed that bile acids exposure such as occurs within the stomach pushed bacteria to adopt a 

biofilm form, in which they have more antibiotic resistance (Stewart and Costerton, 2001). This 

finding may be particularly important if such bacteria may enter the lungs following GOR-

related reflux and aspiration. 

This research found an increase in the formation of PA biofilm with bile acids, and this is in 

line with previous research reporting that PA were less motile, lost their flagella and produced 

pseudomonas quinolone signal (PQS) in the presence of bovine bile salts (Reen et al., 2012). 

The creation of PQS is demonstrated in previous work to be involved in the formation of biofilm 

by PA (Yang et al., 2009). Further, (Reen et al., 2012) report that a reduction in the formation 

of biofilm by S. maltophilia and S. aureus after exposure to bile acids could have importance, 

as lung microflora in CF progresses from S. aureus as the primary pathogen to the 

predominance of PA in the CF population aged more than 3 years old (Goss and Burns, 2007). 
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The results may have importance considering the prevalent nature of aspirated bile due to GOR 

in the CF population, as these findings contribute to evidence to associate GOR with the 

presence of PA in the airways. It is proposed in this study, as in others, that higher rates of PA 

lung infections in those CF individuals diagnosed with GOR might be as a result of these 

bacteria being aspirated into the lungs (Palm et al., 2012). The evidence from this research 

points to the possibility that the bile acts to direct these microbes towards a biofilm mode of 

life. Based on this, there is potentially a link between the bile action on bacterial behaviour and 

the fact that PA, and potentially other infective agents, are more prevalent in individuals 

diagnosed with GOR. Under these circumstances, PA and other pathogenic bacteria would 

benefit from the protective effects of forming biofilms, allowing them to persist in the lungs 

and form a chronic type of infection. 

In summary, bile acids at concentrations similar to the concentration present in gastric juice 

affect the growth of PA, while the concentration of bile in BAL enhances the formation of 

biofilm in PA. This finding may have important implications clinically, because once chronic 

PA infection arises, it becomes difficult to eliminate the infection, and the focus of care shifts 

instead to quality of life and managing lung function decline. It is considered that PA in the 

stomach, which is converted to biofilm by the effect of high bile acid levels in the stomach, is 

refluxed into the airways, where bile acid concentrations fall to a low level but still maintain 

PA in their biofilm behaviour. Also, PA entering the lung from sources other than the stomach 

may be converted to biofilm by the effect of the low level of bile acid presented in BAL. 

Knowledge of the mechanism through which bile aspiration leads to chronic inflammatory 

states and infections could present a strong channel for developing new therapeutic 

interventions to treat chronic disease of the respiratory system. The gold standard intervention 

for reflux leading to aspiration is the surgical procedure known as the laparoscopic Nissen 

fundoplication (Sheikh et al., 2013). This intervention carries significant risk, and for this 

reason, different approaches are needed which can focus on removal of the trigger of aspirated 

bile for the introduction of chronic-type infections. Some of these for example focus on the 

origin of the aspirations, seeking to prevent material being aspirated through GORD: pro-

kinetic macrolides are one example of this, minimising episodes of aspiration, as well as also 

targeting pathogenic microbes in the respiratory passages (Bradley, 2001). Another possibility 

is treatment with bile acid sequestrants to remove the impact of bile aspiration on the host and 

on pathogens. This might be inhaled and thus cause titration of bile acids present in the lungs. 

The third possibility that emerges is greater understanding of the way in which bile acids 
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interact with host and pathogen at a molecular level, leading to focused, individualised 

treatments. To pursue this avenue, large-scale studies of patients and systems would be needed 

to create a comprehensive picture of the impact of bile on the pathophysiological processes of 

respiratory diseases.  
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Chapter 8.0 : General discussion 

Gastro-oesophageal reflux (GOR) is highly prevalent in CF patients (Chen et al., 2010; 

Armstrong, 2005). GOR diminishes the quality of life (Ronkainen et al., 2013; Holt et al., 2013) 

and is associated with reduced lung function and increased lung infections in CF patients (Vos 

et al., 2008).  Indeed, investigations have established links between GOR and PA and SA 

infection in CF patients (van der Doef et al., 2009; Palm et al., 2012). 

For CF patients, PA is a particularly persistent pathogen, able to elude immune responses, 

making it all but impossible to eliminate once an infection becomes chronic (Goss and Burns, 

2007). There is a behavioural trend of drug-resistant PA, where PA forms impenetrable biofilms 

that persist, albeit with a reduction in toxin production (Moreau-Marquis et al., 2008). This 

persistence behaviour of PA in a chronic infection differs appreciably to that of the same 

pathogen in an acute infection. In that instance, PA can trigger pneumonia, overcome lung 

defence mechanisms and circulate in the blood. The risks associated with aspirating bile acid 

raising the potential of PA lung infection following lung transplant have been stressed by Vos 

et al. (2008). Studies by Reen et al. (2012) revealed that bovine bile influenced biofilm 

formation of respiratory pathogens, including PA, enabling them to persist in a chronic 

infection. Our group has shown that bile acids are detectable in the lower airway in advanced 

CF lung disease and persist after lung transplantation (Aseeri et al., 2012; Brodlie et al., 2015) 

A similar association has been proposed between gastroesophageal disorders and non-

tuberculosis mycobacteria (NTM) (Varghese et al., 1988; Griffith et al., 1993; Hadjiliadls et 

al., 1999). NTM have emerged recently but a progressive trend suggests that they are 

increasingly important (Leung and Olivier, 2013). M. abscessus complex (MABSC), of which 

there are three subspecies (subsp) (M. abscessus subsp abscessus, M. abscessus subsp 

massiliense, and M. abscessus subsp bolletii) is the prime NTM species present in CF patients 

(Adékambi and Drancourt, 2004; Gillespie, 2006).  

It is not yet clear how GOR can result in lung infection; however, there is evidence that in 

intensive care settings, a gastric reservoir may be associated with increased risk of nosocomial 

pneumonia (Du Moulin et al., 1982). Furthermore, studies of infant, non-CF patients indicate 

that the incidence of bacteria is initially greater in the gut but then become present in the 

respiratory tract (Madan et al., 2012). This finding is in agreement with other study results for 

ICU patients fed using nasogastric tubes, which show a relationship between gastric bacteria 

and those colonising the lower respiratory tract (Segal et al., 2006). 
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This research project aims to investigate the effect of GOR on the lung microbiome. 

Furthermore, it explores the relationship between the gastric and lung microbes in individual 

CF patients. I propose that stomach bacteria grow excessively and exert an effect upon the 

microbial content of the lungs and oropharynx through full column reflux. The possibility is 

also considered that pulmonary disease may be exacerbated by bile present in the stomach or 

GOR through duodenal reflux, influencing the behaviour of stomach and lung microbes. Bile 

acids were shown to drive PA into a biofilm phylotype according to Reen et al. (2012) 

The microorganisms from the airways and gastric secretions of the same PEG-fed patients were 

collected and then compared using molecular and conventional approaches. As Chapters 3 and 

4 describe, populations of bacteria known to be relevant to CF lung disease, including biofilm-

forming strains of PA and NTM, were recovered from the airways and digestive tract. This 

finding strengthens the hypothesis that the stomach is a bacterial reservoir that contributes to 

the pathophysiology of CF (Dickson et al., 2014). 

A striking finding was that in routine cultures, PA and NTM formed the majority constituent 

pathogens in CF gastric secretion. It was of particular interest that genetic analysis revealed that 

where PA and NTM were consistent in CF sputum and gastric secretion, the strains were 

identical. This finding suggests that in some CF patients there may be a link between the 

microbes that colonise sputum and those that inhabit the gut. 

Whilst the stomach is frequently credited with being an effective antimicrobial barrier, it is 

apparent that it is not as robust a mechanism as originally presumed. In this study, 100% of the 

gastric fluid samples (n = 31) collected from CF patients via the PEG tube contained bacterial 

and or fungal species. At 65%, (n = 9) the incidence in non-CF was still appreciable. It is well 

recognised that some pathogens have evolved mechanisms that enable the organism to survive 

extreme environmental conditions, such as digestive enzymes, extreme temperatures, 

fluctuating pH, harsh detergents and microbial competition as well as the host immune response 

(Sachs et al., 2000). Not only can pathogens survive these environmental states, but their gene 

expression behaviour can change in response to them, up- or down-regulating specific genes to 

promote their adaptation to the particular microenvironment (Tamplin, 2005). 

This study verifies that PA is capable of surviving acid environments. At pH 3.5, it took about 

120 minutes for PA to be killed in the presence of pepsin. A previous study has shown that 

E.coli in stationary phase are more  acid tolerant compared to the growth phase (Arnold and 

Kaspar, 1995). Zhu et al. (2006) found that gram-negative bacteria were more resistant in their 
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stationary phase or growing in a biofilm than in other phases. When in the presence of an 

environmental stressor, bacteria reaching a stationary phase activate several stress response 

systems, which protect the bacteria (Angelichio et al., 2004). Consequently, PA biofilm in 

swallowed sputum may persist in the stomach for a long time and present a long-standing 

endogenous source of infection to the patients in this study. My data also indicates that bile 

acids in gastric juice might also drive the formation of new biofilm forms of PA. In addition, 

the presence of the PEG tube may promote attachment and survival of the PA biofilm in the 

stomach. A common treatment practise for CF patients in North America is to administer gastric 

acid suppressants (Culhane et al., 2013). The CF patients in this study were also given acid 

suppressing therapy, raising the gastric pH, which may have enhanced the PA’s ability to 

survive in the stomach (Yang et al., 2013).  

The effect of bile salts on PA in the stomach and airways was also explored. The results indicate 

that bile salt concentrations comparable to the concentration that may be found in the stomach 

have a negative effect upon PA growth. On the other hand, this exposure to bile salts at 

concentrations comparable to ones detected in GOR induced changes that promoted the 

formation of drug resistant-biofilm formation. This finding strongly supports the supposition 

that bile acids in the lungs play a significant role in the morbidity of those suffering from 

respiratory diseases (Mertens et al., 2011). In light of this evidence, it is appropriate to re-

evaluate clinical practises that have the potential to transfer bile acids to the lungs in an effort 

to improve patient health. 

 NTM was a common and important finding in the microbial profile isolated from gastric juice 

samples and PEG tubes themselves. This study has shown for the first time to my knowledge 

that NTM, including M. abscessus, can be isolated from the gastric juice and PEG tubes of 

patients with CF in addition to sputum (Al-Momani et al., 2017). NTM were isolated from the 

PEG and gastric juice of patients with NTM negative sputa. NTM were therefore identified for 

the first time from a gastric sample in these patients, despite rigorous previous sputum based 

surveillance in a tertiary laboratory, with a specialised interest in NTM culture methodology 

(Preece et al., 2016).  

Reports of NTM outbreaks in non-CF patients have been attributed to contaminated surgical 

equipment (Wallace Jr et al., 1998). In patients with CF, gastrostomy tubes are frequently used 

to support feeding; placement of the tube can be achieved surgically, endoscopically or 

fluoroscopically guided through the skin into the stomach. NTM infections arising from foreign 

bodies, such as indwelling medical devices, have received increased interest (Trupiano et al., 
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2001); they are thought to weaken the host’s barrier defence mechanisms, enabling microbial 

colonisation (Linmans et al., 2008). In a rare incident, M. abscessus was identified as causing 

perigastrostomy infection in an immunocompromised patient (Chiu et al., 2010). The role of 

PEG in NTM warrants further investigation. 

Coughing and swallowing sputum is a potential mechanism for transferring pathogenic 

organisms, including PA and NTM, from the lung to the gut. Although the results presented in 

this thesis do not reject this hypothesis, here, NTM was recovered from the PEG and gastric 

secretions of patients whose sputa were NTM-negative. A gastric sample represented the first 

time that NTM was collected from two patients. Also in this study, PA was obtained for the 

first time from the PEG tube of a CF patient who did not exhibit PA in the sputum. These results 

indicate the possibility of pathogen transfer from the stomach to the lung through recurrent 

reflux and aspiration; this warrants further investigation. 

Data collected through an RSI questionnaire showed that CF patients enrolled in this study 

experienced many symptoms associated with reflux leaving the oesophagus, including 

coughing. Coughing is an effective form of transmission for infectious diseases, as a single 

cough produces significant quantities of bioaerosols (Fennelly et al., 2012). Pulmonary disease 

can arise from NTM being transmitted through environmental sources of infected aerosols, such 

as showers and hot tubs (Halstrom et al., 2015). Thus, gastric refluxate coughed into the 

environment presents a source of NTM that can be passed between patients.  

Despite rigorous separation between CF patients, the potential rate of NTM transmission, 

particularly M. abscessus, between CF patients is high (Floto et al., 2016). A case suspected 

human-to-human transmission of M. kansasii is described by Ricketts et al. (2014); genetically 

identical organisms were collected from a husband and wife. Transmission of NTM was 

proposed to occur through indirect means, such as fomites or aerosol spread caused during 

spirometry testing and physiotherapy (Bryant et al., 2013). Bryant et al. (2013) further proposes 

that infection may be transmitted by low quantities of microorganism, stressing the importance 

of adopting and adhering to protocols that prevent transmission. 

I found that microbiome of the  gastric and sputum samples in the CF group were less diverse 

in comparison with the gastric juice from patients without CF. Similar to this finding, a number 

of studies have associated a loss of bacterial diversity with CF disease (Ott et al., 2004; 

Fujimura et al., 2010). Further evidence is provided by Erb-Downward et al. (2011), who 

examined the lung microbiomes of healthy smokers (those with no signs of disease or reduced 
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lung function) and patients with COPD. The researchers found that there was a correlation 

between reduced lung function and reduced diversity of the pulmonary microbiome; indeed the 

predominant species was PA. Comparable results have been collected in studies exploring the 

differences in bacterial communities in CF patients in different age groups (Cox et al., 2010; 

Klepac‐Ceraj et al., 2010a). Adult patients exhibited less bacterial diversity than what was 

detected in their younger counterparts (Cox et al., 2010).  

Innate and adaptive immune responses are stimulated and shaped by the microbiota; therefore, 

allergic responses may be influenced by microbiota and may be implicated in other respiratory 

conditions such as allergic asthma and COPD (Starkey et al., 2013; Starkey et al., 2014). A 

number of studies have determined that the risk of early-onset childhood asthma is enhanced 

by childhood antibiotic therapy disturbing the normal microbiome (Ong et al., 2014). The 

variety of species contributing to the microbiome appears to be more influential than the extent 

of the microbial load. 

Research shows that there are distinct temporal and biogeographical differences in the diversity 

of microbes and their relative abundance in patients with COPD (Sze et al., 2012; Millares et 

al., 2014). 

The greater emphysema and immune cell infiltration found in COPD patients are attributed, in 

part, to the loss of diversity of the respiratory microbiome (Sze et al., 2012). 

Looking at exacerbated COPD, Wang et al. (2016) identified different phenotypic patterns (e.g. 

bacterial or eosinophilic) that corresponded with particular microbiome profiles; these profiles 

were consistent at genus and phylum levels. The Proteobacteria phyla (chiefly Haemophilus 

spp.) were most evident in bacterial exacerbation; on the other hand, in eosinophilic 

exacerbations, Firmicutes predominated. The conclusion from this is that in some individuals, 

there may be an association between the composition of lung microbiota and acute 

exacerbations, which may determine the inflammatory responses of the host (particularly IL-

8). 

There is evidence that healthy immune responses are enhanced by particular microbes, and that 

chronic inflammatory lung diseases such as asthma, CF and COPD are compounded by 

microbial dysbiosis (Cho and Blaser, 2012). Although the concept needs fuller exploration, it 

is thought that the communication between different mucosal barriers, such as the gut and the 

lungs, is facilitated by patrolling immune cells and resident microbes (Shukla et al., 2017). At 

present, major non-communicable lung disease-treatments aim only to alleviate symptoms and 
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are limited in capability in terms of completely preventing or treating the disease. Armed with 

a deeper understanding of the role of the microbiome in terms of pathophysiology and 

inflammation, together with greater insight into its relationship and genetic-risk factors, it may 

be possible to devise superior treatments for chronic lung conditions (Shukla et al., 2017). 

This knowledge may also lead to the development of novel therapeutic interventions. Currently, 

the effects of existing therapies on the overall microbiome and implications to disease severity 

and progression are not well characterised. There is potential to modify the microbiome through 

diet, probiotics, transfer of selected bacteria or faeces may support the existing therapies or be 

effective treatments on their own. However, on every level, more research is required to 

determine role and effectiveness of individual and combined treatments on the microbiome.  
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8.1 Conclusion and future directions 

This thesis shows that the stomach is a potential microbiological niche where organisms 

relevant to CF pathophysiology can survive. In particular, the stomach is a potential reservoir 

for biofilm PA and NTM, which appear to enhance by acid suppression therapy. This under-

recognised phenomenon is of particular significance to CF patients who are vulnerable to reflux 

and aspiration. PA is a resilient pathogen which has demonstrated its ability to persist in acidic 

environments. It is affected by bile salts in the stomach and in reflux, causing the pathogen to 

adopt biofilm-forming behaviours, which enable it to persist. This study also revealed an 

association between the microbiome of sputum and gastric juice in CF patients. PA eliminating 

therapies presently do not incorporate the pathogen’s gastric niche, yet the ‘aerodigestive 

microbiome’ may be of particular importance for CF pathophysiology and have therapeutic 

implications. It has been demonstrated that CF patients may become infected with NTM from 

gastric secretions or PEG-tubes. This is particularly concerning as NTM are resistant to anti-

tuberculosis drugs and standard antibiotics and presents a mortal risk to CF patients in 

particular. Early identification may facilitate prompt susceptibility testing, suitable therapy and 

PEG management. 

One drawback of this study was the small sample size. Although PEG enables access to gastric 

secretions without potential contamination from sampling the upper airways, the number of CF 

patients fed by PEG, were limited. Future research could be to expand the sample size by 

extending the study to several CF centres. Further investigation into the effect on different 

microbes by various components of gastric reflux is also warranted, as this study was restricted 

to evaluating bile on PA. As the drug resistance and prevalence of NTM of PA increase, the 

need for more data as it relates to CF becomes more urgent. 

According to this thesis, Bile salts contribute to PA biofilms forming, which emphasises the 

need to devise new antimicrobial molecules or therapeutic interventions that are effective 

against biofilm PA (Chatterjee et al., 2016). Potential treatments that is worthy of further 

investigation are bacteriophage-based therapies, as several bacteriophages have been identified 

that are effective against PA (Fu et al., 2010; Hraiech et al., 2015). Several of these 

bacteriophages have demonstrated their efficiency in destroying PA strains collected from CF 

patients (Alemayehu et al., 2012). 

The advantage that phage therapy offers over conventional antibiotic therapy is that the 

bacteriophages are able to penetrate the surface of the biofilm where they replicate, resulting in 
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an increased concentration of phage close to the infection location (Wright et al., 2009). Growth 

of the biofilm bacteria is inhibited by the alginase synthesised by the bacteriophages that 

depolymerise PA’s alginic acid capsule, disrupting the growth of the bacteria in the biofilm 

(Harper et al., 2014). 

A significant benefit of using phages for therapeutic purposes is that they can be genetically 

modified to minimise the host’s inflammatory system responses (Soothill, 2013). This is 

important because the destruction of bacteria brought about by lytic phages and numerous 

antibiotics, results in the release of endotoxins and other cell wall constituents into the blood 

stream, initiating systemic immune responses similar to septicaemia. This is known as the 

Jarisch-Herxheimer reaction (Guerrier and D’Ortenzio, 2013). 

Whilst evidence of the effectiveness of using phages to treat PA has been demonstrated in 

several in vitro and pre-clinical studies, thus far, research supported by human clinical trials is 

limited. 

In this thesis, 16S rRNA gene targeting variable region 4 (V4) was used to profile bacteria. 

This method is limited by the annotation being based on the presumed association of the 16S 

rRNA gene with taxa, which is defined as an operational taxonomic unit (OTU) (Langille et al., 

2013). Typically, OTUs are imprecise at the species level, but are able to analyse at phyla or 

genera levels (Ranjan et al., 2016). Furthermore, OTUs are used to predict specific gene 

sequences, which are rarely sequenced directly. Yet, because bacteria transfer genes 

horizontally between species, of which there can be numerous strains in the environment, a 

comprehensive understanding of the microbiome is limited without directly identifying the 

genes (Poretsky et al., 2014) (Konstantinidis and Stackebrandt, 2013).  

Whole genome sequencing (WGS) presents an alternative to 16S rRNA amplicon sequencing; 

WGS uses random primers to sequences overlapping sections of a genome (Ranjan et al., 2016). 

This technique enables the accurate definition of taxa at the species level, which is a 

considerable advantage. It is worth noting that the databases used by the 16S and WGS methods 

to classify taxa are different. Drawbacks of WGS are that it demands greater in-depth analysis 

of the data and it is more expensive than the 16S method (Kuczynski et al., 2012; Luo et al., 

2014). Moreover, fully characterising the genes in a bacterial taxon may require sequencing a 

high-coverage genome (Sims et al., 2014). 
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10. Appendix 

10.1 Appendix 1: The reflux symptom index (RSI) questionnaire  

Within the last month, how did the following problems affect you? 

(0-5 rating scale with 0 = No problem and 5 = Severe) 

1.  Hoarseness or a problem with your voice  0    1    2    3    4    5 

2.  Clearing your throat 0    1    2    3    4    5 

3.  Excess throat mucous or postnasal drip 0    1    2    3    4    5  

4.  Difficulty swallowing food, liquids or pills 0    1    2    3    4    5 

5.  Coughing after you ate or after lying down 0    1    2    3    4    5 

6.  Breathing difficulties or choking episodes 0    1    2    3    4    5 

7.  Troublesome or annoying cough 0    1    2    3    4    5 

8.  Sensations or something sticking in your throat 0    1    2    3    4    5 

9.  Heart burn, chest pain, indigestion, or  acid coming up 
0    1    2    3    4    5 
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10.2 Appendix 2: The ANOVA test result for the effect of different concentration of bile acids 

on growth and biofilm formation among 4 different strains of PA. C1 represent the control with 

PA strains incubated without adding bile acids.C2-C8 represent different concentration ofbile 

acids added to the TSB (C2=0.3 mmol/L,C3=0.6 mmol/L, C4=1.25 mmol/L, C5=2.5 mmol/L, 

C6=5 mmol/L mmol/L, C7=10 mmol/L and C8 =20mmol/L) 

Appendix 2A: Effect of lithocholic acid on PA strains growth 

Impact of lithocholic acid on PA strain S33 growth  
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0557      0.0577  (-0.2245,  0.1131)    -0.96     0.870 

C3 - C1        -0.0877      0.0577  (-0.2565,  0.0811)    -1.52     0.518 

C4 - C1        -0.1727      0.0577  (-0.3415, -0.0039)    -2.99     0.044 

C5 - C1        -0.3073      0.0577  (-0.4761, -0.1385)    -5.32     0.000 

C6 - C1        -0.5183      0.0577  (-0.6871, -0.3495)    -8.98     0.000 

C7 - C1        -0.6530      0.0577  (-0.8218, -0.4842)   -11.31     0.000 

C8 - C1        -1.0787      0.0577  (-1.2475, -0.9099)   -18.68     0.000 

 

Impact of lithocholic acid on PA strain S43 growth 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0877      0.0424  (-0.2116,  0.0362)    -2.07     0.234 

C3 - C1        -0.1110      0.0424  (-0.2349,  0.0129)    -2.62     0.089 

C4 - C1        -0.1717      0.0424  (-0.2956, -0.0478)    -4.05     0.005 

C5 - C1        -0.2417      0.0424  (-0.3656, -0.1178)    -5.70     0.000 

C6 - C1        -0.2947      0.0424  (-0.4186, -0.1708)    -6.95     0.000 

C7 - C1        -0.4050      0.0424  (-0.5289, -0.2811)    -9.56     0.000 

C8 - C1        -0.6457      0.0424  (-0.7696, -0.5218)   -15.24     0.000 

 

Impact of lithocholic acid on PA strain PA14 growth.   
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0167      0.0488  (-0.1593,  0.1259)    -0.34     0.999 

C3 - C1        -0.0370      0.0488  (-0.1796,  0.1056)    -0.76     0.953 

C4 - C1        -0.0653      0.0488  (-0.2079,  0.0773)    -1.34     0.637 

C5 - C1        -0.1570      0.0488  (-0.2996, -0.0144)    -3.22     0.028 

C6 - C1        -0.2733      0.0488  (-0.4159, -0.1307)    -5.60     0.000 

C7 - C1        -0.5433      0.0488  (-0.6859, -0.4007)   -11.14     0.000 

C8 - C1        -1.1603      0.0488  (-1.3029, -1.0177)   -23.79     0.000 

 
 

Impact of lithocholic acid on PA strain S27 growth. 
Difference  Difference       SE of                             Adjusted 

of Levels     of Means  Difference       95% CI       T-Value   P-Value 

C2 - C1         -0.031       0.126  (-0.399,  0.337)    -0.25     1.000 

C3 - C1         -0.060       0.126  (-0.428,  0.308)    -0.47     0.996 

C4 - C1         -0.130       0.126  (-0.498,  0.238)    -1.03     0.835 

C5 - C1         -0.189       0.126  (-0.557,  0.199)    -1.70     0.049 

C6 - C1         -0.343       0.126  (-0.711,  0.045)    -2.93     0.033 

C7 - C1         -0.566       0.126  (-0.934, -0.198)    -4.50     0.002 
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Appendix 2B: Effect of DCA on PA strains growth 

Effect of DCA on PA S33 growth 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.4640      0.0461  (-0.5987, -0.3293)   -10.07     0.000 

C3 - C1        -0.7307      0.0461  (-0.8653, -0.5960)   -15.86     0.000 

C4 - C1        -1.1647      0.0461  (-1.2993, -1.0300)   -25.29     0.000 

C5 - C1        -1.3217      0.0461  (-1.4563, -1.1870)   -28.69     0.000 

C6 - C1        -1.3770      0.0461  (-1.5117, -1.2423)   -29.90     0.000 

C7 - C1        -1.4057      0.0461  (-1.5403, -1.2710)   -30.52     0.000 

C8 - C1        -1.4573      0.0461  (-1.5920, -1.3227)   -31.64     0.000 

 

Effect of DCA on PA S34 growth.  
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.3433      0.0462  (-0.4784, -0.2083)    -7.43     0.000 

C3 - C1        -0.5030      0.0462  (-0.6380, -0.3680)   -10.89     0.000 

C4 - C1        -0.6953      0.0462  (-0.8304, -0.5603)   -15.06     0.000 

C5 - C1        -0.7293      0.0462  (-0.8644, -0.5943)   -15.79     0.000 

C6 - C1        -0.7697      0.0462  (-0.9047, -0.6346)   -16.67     0.000 

C7 - C1        -0.7883      0.0462  (-0.9234, -0.6533)   -17.07     0.000 

C8 - C1        -0.8037      0.0462  (-0.9387, -0.6686)   -17.40     0.000 

 

Effect of DCA on PA S14 growth 
Difference  Difference       SE of                             Adjusted 

of Levels     of Means  Difference       95% CI       T-Value   P-Value 

C2 - C1         -0.061       0.118  (-0.405,  0.283)    -0.52     0.993 

C3 - C1         -0.142       0.118  (-0.486,  0.202)    -1.21     0.725 

C4 - C1         -0.536       0.118  (-0.880, -0.192)    -4.56     0.002 

C5 - C1         -1.060       0.118  (-1.404, -0.716)    -9.01     0.000 

C6 - C1         -1.360       0.118  (-1.704, -1.016)   -11.56     0.000 

C7 - C1         -1.407       0.118  (-1.751, -1.063)   -11.96     0.000 

C8 - C1         -1.480       0.118  (-1.824, -1.136)   -12.58     0.000 

 

Effect of DCA on PA S27 growth.  
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0837      0.0812  (-0.3211,  0.1538)    -1.03     0.835 

C3 - C1        -0.1097      0.0812  (-0.3471,  0.1278)    -1.35     0.629 

C4 - C1        -0.6147      0.0812  (-0.8521, -0.3772)    -7.57     0.000 

C5 - C1        -0.7277      0.0812  (-0.9651, -0.4902)    -8.96     0.000 

C6 - C1        -1.2617      0.0812  (-1.4991, -1.0242)   -15.53     0.000 

C7 - C1        -1.3277      0.0812  (-1.5651, -1.0902)   -16.35     0.000 

C8 - C1        -1.3930      0.0812  (-1.6305, -1.1555)   -17.15     0.000 
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Appendix 2C: Effect of CDCA on PA strains growth 

Effect of CDCA on PA S33 growth. 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0380      0.0274  (-0.1180,  0.0420)    -1.39     0.603 

C3 - C1        -0.0620      0.0274  (-0.1420,  0.0180)    -2.27     0.168 

C4 - C1        -0.1040      0.0274  (-0.1840, -0.0240)    -3.80     0.009 

C5 - C1        -0.1383      0.0274  (-0.2183, -0.0583)    -5.06     0.001 

C6 - C1        -0.1663      0.0274  (-0.2463, -0.0863)    -6.08     0.000 

C7 - C1        -0.2060      0.0274  (-0.2860, -0.1260)    -7.53     0.000 

C8 - C1        -0.3957      0.0274  (-0.4757, -0.3157)   -14.46     0.000 

 

 

Effect of CDCA on PA S34 growth. 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.1570      0.0408  (-0.2764, -0.0376)    -3.85     0.008 

C3 - C1        -0.2397      0.0408  (-0.3590, -0.1203)    -5.87     0.000 

C4 - C1        -0.3080      0.0408  (-0.4274, -0.1886)    -7.54     0.000 

C5 - C1        -0.3320      0.0408  (-0.4514, -0.2126)    -8.13     0.000 

C6 - C1        -0.3773      0.0408  (-0.4967, -0.2580)    -9.24     0.000 

C7 - C1        -0.4550      0.0408  (-0.5744, -0.3356)   -11.14     0.000 

C8 - C1        -0.9380      0.0408  (-1.0574, -0.8186)   -22.97     0.000 

 
 

Effect of CDCA on PA S14 growth. 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0223      0.0885  (-0.2810,  0.2363)    -0.25     1.000 

C3 - C1        -0.1500      0.0885  (-0.4086,  0.1086)    -1.70     0.410 

C4 - C1        -0.2613      0.0885  (-0.5200, -0.0027)    -2.95     0.047 

C5 - C1        -0.4083      0.0885  (-0.6670, -0.1497)    -4.62     0.002 

C6 - C1        -0.5403      0.0885  (-0.7990, -0.2817)    -6.11     0.000 

C7 - C1        -0.6693      0.0885  (-0.9280, -0.4107)    -7.57     0.000 

C8 - C1        -1.2110      0.0885  (-1.4696, -0.9524)   -13.69     0.000 

 

 

Effect of CDCA on PA S27 growth. 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0787      0.0769  (-0.3035,  0.1462)    -1.02     0.839 

C3 - C1        -0.0970      0.0769  (-0.3219,  0.1279)    -1.26     0.690 

C4 - C1        -0.1643      0.0769  (-0.3892,  0.0605)    -2.14     0.209 

C5 - C1        -0.4630      0.0769  (-0.6879, -0.2381)    -6.02     0.000 

C6 - C1        -0.7483      0.0769  (-0.9732, -0.5235)    -9.73     0.000 

C7 - C1        -0.9087      0.0769  (-1.1335, -0.6838)   -11.81     0.000 

C8 - C1        -1.4083      0.0769  (-1.6332, -1.1835)   -18.31     0.000 
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Appendix 2D: Effect of CA on PA strains growth 

 Effect of CA on PA S33 growth. 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0950      0.0433  (-0.2216,  0.0316)    -2.19     0.190 

C3 - C1        -0.1070      0.0433  (-0.2336,  0.0196)    -2.47     0.117 

C4 - C1        -0.1500      0.0433  (-0.2766, -0.0234)    -3.46     0.017 

C5 - C1        -0.1897      0.0433  (-0.3163, -0.0631)    -4.38     0.003 

C6 - C1        -0.2680      0.0433  (-0.3946, -0.1414)    -6.19     0.000 

C7 - C1        -0.3260      0.0433  (-0.4526, -0.1994)    -7.53     0.000 

C8 - C1        -0.5613      0.0433  (-0.6879, -0.4347)   -12.97     0.000 

 

Effect of CA on PA S34 growth. 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.3180      0.0658  (-0.5104, -0.1256)    -4.83     0.001 

C3 - C1        -0.4940      0.0658  (-0.6864, -0.3016)    -7.51     0.000 

C4 - C1        -0.5130      0.0658  (-0.7054, -0.3206)    -7.80     0.000 

C5 - C1        -0.7040      0.0658  (-0.8964, -0.5116)   -10.70     0.000 

C6 - C1        -1.0710      0.0658  (-1.2634, -0.8786)   -16.28     0.000 

C7 - C1        -1.2993      0.0658  (-1.4917, -1.1070)   -19.75     0.000 

C8 - C1        -1.4077      0.0658  (-1.6000, -1.2153)   -21.40     0.000 

 

 

Effect of CA on PA S14 growth. 
Difference  Difference       SE of                             Adjusted 

of Levels     of Means  Difference       95% CI       T-Value   P-Value 

C2 - C1         -0.015       0.147  (-0.444,  0.414)    -0.10     1.000 

C3 - C1         -0.068       0.147  (-0.497,  0.361)    -0.47     0.996 

C4 - C1         -0.139       0.147  (-0.568,  0.290)    -0.94     0.880 

C5 - C1         -0.261       0.147  (-0.690,  0.168)    -1.78     0.366 

C6 - C1         -0.738       0.147  (-1.167, -0.309)    -5.03     0.001 

C7 - C1         -1.155       0.147  (-1.584, -0.726)    -7.87     0.000 

C8 - C1         -1.811       0.147  (-2.240, -1.382)   -12.34     0.000 

 

 

 

Effect of CA on PA S27 growth. 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        -0.0543      0.0790  (-0.2855,  0.1768)    -0.69     0.970 

C3 - C1        -0.0987      0.0790  (-0.3298,  0.1325)    -1.25     0.698 

C4 - C1        -0.3187      0.0790  (-0.5498, -0.0875)    -4.03     0.005 

C5 - C1        -0.5450      0.0790  (-0.7761, -0.3139)    -6.89     0.000 

C6 - C1        -0.9783      0.0790  (-1.2095, -0.7472)   -12.38     0.000 

C7 - C1        -1.1313      0.0790  (-1.3625, -0.9002)   -14.31     0.000 

C8 - C1        -1.7427      0.0790  (-1.9738, -1.5115)   -22.05     0.000 
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Appendix 2E: Effect of lithocholic acid on PA strains biofilm formation 

Impact of lithocholic acid on PA S33 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.0183      0.0427  (-0.1065, 0.1431)     0.43     0.998 

C3 - C1         0.0001      0.0427  (-0.1247, 0.1249)     0.00     1.000 

C4 - C1        -0.0207      0.0427  (-0.1455, 0.1041)    -0.49     0.995 

C5 - C1         0.0149      0.0427  (-0.1099, 0.1397)     0.35     0.999 

C6 - C1         0.0505      0.0427  (-0.0743, 0.1753)     1.18     0.742 

C7 - C1         0.0873      0.0427  (-0.0375, 0.2121)     2.05     0.242 

C8 - C1         0.2248      0.0427  ( 0.1000, 0.3496)     5.27     0.000 

 

 

Impact of lithocholic acid on PA S34 biofilm formation 
Difference  Difference       SE of                             Adjusted 

of Levels     of Means  Difference       95% CI       T-Value   P-Value 

C2 - C1         -0.121       0.187  (-0.620,  0.379)    -0.64     0.982 

C3 - C1         -0.192       0.187  (-0.692,  0.308)    -1.02     0.843 

C4 - C1         -0.280       0.187  (-0.780,  0.220)    -1.49     0.514 

C5 - C1         -0.425       0.187  (-0.924,  0.075)    -2.27     0.128 

C6 - C1         -0.764       0.187  (-1.263, -0.264)    -4.08     0.001 

C7 - C1         -0.978       0.187  (-1.478, -0.478)    -5.22     0.000 

C8 - C1         -1.381       0.187  (-1.880, -0.881)    -7.37     0.000 

 

Impact of lithocholic acid on PA S14 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.040       0.314  (-0.842, 0.923)     0.13     1.000 

C3 - C1          0.081       0.314  (-0.801, 0.964)     0.26     1.000 

C4 - C1          0.027       0.314  (-0.855, 0.910)     0.09     1.000 

C5 - C1          0.003       0.314  (-0.879, 0.886)     0.01     1.000 

C6 - C1          0.131       0.314  (-0.752, 1.013)     0.42     0.998 

C7 - C1          0.102       0.314  (-0.781, 0.984)     0.32     1.000 

C8 - C1          1.374       0.314  ( 0.491, 2.257)     4.38     0.001 

 

 

Impact of lithocholic acid on PA S27 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1         -0.084       0.181  (-0.595, 0.426)    -0.47     0.997 

C3 - C1         -0.096       0.181  (-0.606, 0.415)    -0.53     0.993 

C4 - C1         -0.110       0.181  (-0.620, 0.401)    -0.61     0.986 

C5 - C1         -0.091       0.181  (-0.601, 0.420)    -0.50     0.995 

C6 - C1         -0.021       0.181  (-0.531, 0.490)    -0.11     1.000 

C7 - C1         -0.023       0.181  (-0.534, 0.488)    -0.13     1.000 

C8 - C1          0.356       0.181  (-0.155, 0.866)     1.96     0.263 
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Appendix 2F: Effect of CDCA on PA strains biofilm formation 

Impact of CDCA on PA S33 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.089       0.606  (-1.617, 1.795)     0.15     1.000 

C3 - C1          0.311       0.606  (-1.395, 2.017)     0.51     0.994 

C4 - C1          0.819       0.606  (-0.887, 2.525)     1.35     0.625 

C5 - C1          0.471       0.606  (-1.235, 2.177)     0.78     0.949 

C6 - C1          0.329       0.606  (-1.377, 2.035)     0.54     0.992 

C7 - C1          0.364       0.606  (-1.342, 2.070)     0.60     0.986 

C8 - C1          1.683       0.606  (-0.023, 3.389)     2.78     0.049 

 

Impact of CDCA on PA S34 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1         -0.018       0.208  (-0.603, 0.567)    -0.09     1.000 

C3 - C1          0.022       0.208  (-0.563, 0.607)     0.11     1.000 

C4 - C1          0.780       0.208  ( 0.195, 1.365)     1.04     0.833 

C5 - C1          0.292       0.208  (-0.293, 0.878)     1.41     0.586 

C6 - C1          0.143       0.208  (-0.443, 0.728)     0.69     0.972 

C7 - C1          0.182       0.208  (-0.403, 0.768)     0.88     0.913 

C8 - C1          0.216       0.208  (-0.370, 1.801)     3.75     0.004 

 

Impact of CDCA on PA S14 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.000       0.130  (-0.367, 0.367)     0.00     1.000 

C3 - C1          0.057       0.130  (-0.309, 0.424)     0.44     0.998 

C4 - C1          0.264       0.130  (-0.102, 0.631)     2.03     0.234 

C5 - C1          0.354       0.130  (-0.013, 0.721)     2.72     0.062 

C6 - C1          0.244       0.130  (-0.122, 0.611)     1.88     0.302 

C7 - C1          0.233       0.130  (-0.134, 0.599)     1.79     0.348 

C8 - C1          0.560       0.130  ( 0.193, 0.927)     4.30     0.002 

 

Impact of lithocholic acid on PA S27 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.0199      0.0936  (-0.2436, 0.2834)     0.21     1.000 

C3 - C1         0.1360      0.0936  (-0.1275, 0.3995)     1.45     0.554 

C4 - C1         0.3231      0.0936  ( 0.0596, 0.5866)     3.45     0.012 

C5 - C1         0.1623      0.0936  (-0.1012, 0.4257)     1.73     0.377 

C6 - C1         0.1766      0.0936  (-0.0868, 0.4401)     1.89     0.296 

C7 - C1         0.2657      0.0936  ( 0.0023, 0.4992)     2.54     0.092 

C8 - C1         0.2362      0.0936  (-0.0272, 0.5297)     2.82     0.047 
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Appendix 2G: Effect of CA on PA strains biofilm formation 

Impact of CA on PA S33 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.042       0.199  (-0.518, 0.601)     0.21     1.000 

C3 - C1          0.046       0.199  (-0.513, 0.606)     0.23     1.000 

C4 - C1          0.288       0.199  (-0.271, 0.848)     1.45     0.556 

C5 - C1          0.183       0.199  (-0.376, 0.743)     0.92     0.893 

C6 - C1          0.308       0.199  (-0.252, 0.867)     1.55     0.491 

C7 - C1          0.296       0.199  (-0.263, 0.856)     1.49     0.529 

C8 - C1          0.997       0.199  ( 0.437, 1.556)     5.01     0.000 

 

Impact of CA on PA S34 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1        -0.0008      0.0422  (-0.1195, 0.1179)    -0.02     1.000 

C3 - C1        -0.0174      0.0422  (-0.1361, 0.1014)    -0.41     0.998 

C4 - C1        -0.0002      0.0422  (-0.1189, 0.1185)    -0.00     1.000 

C5 - C1         0.0235      0.0422  (-0.0952, 0.1422)     0.56     0.991 

C6 - C1         0.0258      0.0422  (-0.0929, 0.1445)     0.61     0.985 

C7 - C1         0.0332      0.0422  (-0.0855, 0.1519)     0.79     0.946 

C8 - C1         0.1580      0.0422  ( 0.0393, 0.2767)     3.75     0.006 

 

Impact of CA on PA PA14 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.012       0.101  (-0.258, 0.281)     0.11     1.000 

C3 - C1          0.001       0.101  (-0.269, 0.270)     0.01     1.000 

C4 - C1          0.116       0.101  (-0.154, 0.385)     1.14     0.767 

C5 - C1          0.150       0.101  (-0.119, 0.419)     1.48     0.521 

C6 - C1          0.281       0.101  ( 0.012, 0.551)     2.78     0.057 

C7 - C1          0.155       0.101  (-0.114, 0.425)     1.53     0.485 

C8 - C1          0.591       0.101  ( 0.322, 0.861)     5.84     0.000 

 

Impact of CA on PA S27 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.026       0.218  (-0.588, 0.640)     0.12     1.000 

C3 - C1         -0.042       0.218  (-0.656, 0.573)    -0.19     1.000 

C4 - C1          0.021       0.218  (-0.593, 0.635)     0.10     1.000 

C5 - C1          0.165       0.218  (-0.449, 0.779)     0.76     0.955 

C6 - C1          0.213       0.218  (-0.401, 0.828)     0.98     0.866 

C7 - C1          0.035       0.218  (-0.579, 0.650)     0.16     1.000 

C8 - C1          0.595       0.218  (-0.020, 1.209)     2.72     0.061 
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Appendix 2H: Effect of DCA on PA strains biofilm formation 

Impact of CA on PA S33 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.011       0.115  (-0.313, 0.335)     0.09     1.000 

C3 - C1          0.042       0.115  (-0.282, 0.366)     0.36     0.999 

C4 - C1         -0.000       0.115  (-0.324, 0.324)    -0.00     1.000 

C5 - C1          0.131       0.115  (-0.193, 0.455)     1.14     0.771 

C6 - C1          0.508       0.115  ( 0.184, 0.833)     1.41     0.651 

C7 - C1          0.123       0.115  (-0.201, 0.447)     1.07     0.812 

C8 - C1          0.360       0.115  (-0.036, 0.684)     4.13     0.025 

 

 

Impact of CA on PA S34 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1        -0.0073      0.0318  (-0.0969, 0.0822)    -0.23     1.000 

C3 - C1         0.0055      0.0318  (-0.0840, 0.0951)     0.17     1.000 

C4 - C1         0.0010      0.0318  (-0.0886, 0.0905)     0.03     1.000 

C5 - C1        -0.0199      0.0318  (-0.1094, 0.0697)    -0.62     0.983 

C6 - C1         0.0275      0.0318  (-0.0621, 0.1170)     0.86     0.919 

C7 - C1         0.0302      0.0318  (-0.0594, 0.1197)     0.95     0.880 

C8 - C1         0.2111      0.0318  ( 0.1215, 0.3006)     6.63     0.000 

 

 

Impact of CA on PA S14 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.005       0.609  (-1.709, 1.719)     0.01     1.000 

C3 - C1          0.018       0.609  (-1.696, 1.732)     0.03     1.000 

C4 - C1          0.169       0.609  (-1.545, 1.883)     0.28     1.000 

C5 - C1          0.492       0.609  (-1.222, 2.206)     0.81     0.939 

C6 - C1          2.007       0.609  ( 0.293, 3.721)     1.30     0.588 

C7 - C1          1.325       0.609  (-0.389, 3.039)     2.18     0.180 

C8 - C1          0.855       0.609  (-0.859, 4.569)     3.40     0.017 

 

 

Impact of CA on PA S27 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.005       0.609  (-1.709, 1.719)     0.01     1.000 

C3 - C1          0.018       0.609  (-1.696, 1.732)     0.03     1.000 

C4 - C1          0.169       0.609  (-1.545, 1.883)     0.28     1.000 

C5 - C1          0.492       0.609  (-1.222, 2.206)     0.81     0.939 

C6 - C1          1.507       0.609  ( 0.293, 3.321)     2.90     0.087 

C7 - C1          1.325       0.609  (-0.389, 3.039)     2.18     0.180 

C8 - C1          0.855       0.609  (-0.859, 2.569)     1.40     0.588 
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Appendix 3: The ANOVA test result for the effect of different concentration of bile acids 

on biofilm formation among 4 different strains of PA. C1 represent the control with PA 

strains incubated without adding bile acids.C2-C6 represent different concentration of 

bile acids added to the TSB (C2=9.4 µmol/L,C3=18.8 µmol/L, C4=37.5 µmol/L, C5=75 

µmol/L and C6=150 µmol/L) 

Appendix 3A: Effect of lithocholic acid on PA strains biofilm formation 

Impact of lithocholic acid on PA S33 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.0410      0.0198  (-0.0254, 0.1075)     2.07     0.360 

C3 - C1         0.0644      0.0198  (-0.0020, 0.1309)     3.26     0.059 

C4 - C1         0.0805      0.0198  ( 0.0140, 0.1469)     4.07     0.015 

C5 - C1         0.0831      0.0198  ( 0.0167, 0.1496)     4.20     0.012 

C6 - C1         0.0831      0.0198  ( 0.0167, 0.1496)     4.20     0.012 

  

Impact of lithocholic acid on PA S34 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.0252      0.0357  (-0.0948, 0.1451)     0.70     0.97830 

C3 - C1         0.1536      0.0357  ( 0.0336, 0.2736)     4.30     0.010 

C4 - C1         0.1637      0.0357  ( 0.0437, 0.2837)     4.58     0.006 

C5 - C1         0.1657      0.0357  ( 0.0457, 0.2857)     4.64     0.006 

C6 - C1         0.1657      0.0357  ( 0.0457, 0.2857)     4.64     0.006 

 

Impact of lithocholic acid on PA S14 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.0612      0.0264  (-0.0276, 0.1499)     2.31     0.260 

C3 - C1         0.0837      0.0264  (-0.0051, 0.1724)     3.17     0.069 

C4 - C1         0.0876      0.0264  (-0.0011, 0.1764)     3.32     0.054 

C5 - C1         0.0910      0.0264  ( 0.0023, 0.1797)     3.44     0.043 

C6 - C1         0.1555      0.0264  ( 0.0667, 0.2442)     5.88     0.001 

 

Impact of lithocholic acid on PA S27 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.1455      0.0432  ( 0.0004, 0.2906)     3.37     0.049 

C3 - C1         0.1690      0.0432  ( 0.0239, 0.3141)     3.91     0.020 

C4 - C1         0.1699      0.0432  ( 0.0248, 0.3150)     3.93     0.019 

C5 - C1         0.1990      0.0432  ( 0.0539, 0.3441)     4.61     0.006 

C6 - C1         0.1883      0.0432  ( 0.0432, 0.3334)     4.36     0.009 
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Appendix 3B: Effect of CDCA on PA strains biofilm formation 

Impact of CDCA on PA S33 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.1520      0.0658  ( 0.0087, 0.2953)     2.31     0.039 

C3 - C1         0.2130      0.0658  ( 0.0697, 0.3563)     3.24     0.007 

C4 - C1         0.3490      0.0658  ( 0.2057, 0.4923)     5.31     0.000 

C5 - C1         0.4363      0.0658  ( 0.2931, 0.5796)     6.64     0.000 

C6 - C1         0.4970      0.0658  ( 0.3537, 0.6403)     7.56     0.000 

 
 

Impact of CDCA on PA S34 biofilm formation 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1         0.2630      0.0312  ( 0.1950,  0.3310)     8.42     0.000 

C3 - C1         0.5783      0.0312  ( 0.5103,  0.6464)    18.52     0.000 

C4 - C1         0.6420      0.0312  ( 0.5740,  0.7100)    20.56     0.000 

C5 - C1         0.6270      0.0312  ( 0.5590,  0.6950)    20.08     0.000 

C6 - C1         0.5730      0.0312  ( 0.5050,  0.6410)    18.35     0.000 

 
 

Impact of CDCA on PA PA14 biofilm formation 
Difference  Difference       SE of                            Adjusted 

of Levels     of Means  Difference       95% CI      T-Value   P-Value 

C2 - C1          0.262       0.199  (-0.317, 0.840)     1.31     0.574 

C3 - C1          0.328       0.199  (-0.250, 0.906)     1.65     0.379 

C4 - C1          0.581       0.199  ( 0.002, 1.159)     2.91     0.049 

C5 - C1          0.624       0.199  ( 0.045, 1.202)     3.13     0.044 

C6 - C1          0.566       0.199  (-0.012, 1.144)     2.84     0.040 

 
 

Impact of CDCA on PA S27 biofilm formation 
Difference  Difference       SE of                             Adjusted 

of Levels     of Means  Difference       95% CI       T-Value   P-Value 

C2 - C1         0.2863      0.0310  (0.1963, 0.3763)     9.23     0.000 

C3 - C1         0.2953      0.0310  (0.2053, 0.3853)     9.52     0.000 

C4 - C1         0.5583      0.0310  (0.4683, 0.6483)    18.00     0.000 

C5 - C1         0.5893      0.0310  (0.4993, 0.6793)    19.00     0.000 

C6 - C1         0.6013      0.0310  (0.5113, 0.6913)    19.39     0.000 
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Appendix 3C: Effect of CDCA on PA strains biofilm formation 

Impact of CA on PA S33 biofilm formation 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        0.02967     0.00206  (0.02368, 0.03566)    14.37     0.000 

C3 - C1        0.03617     0.00206  (0.03018, 0.04216)    17.52     0.000 

C4 - C1        0.04970     0.00206  (0.04371, 0.05569)    24.07     0.000 

C5 - C1        0.05507     0.00206  (0.04908, 0.06106)    26.67     0.000 

C6 - C1        0.08440     0.00206  (0.07841, 0.09039)    40.88     0.000 

 

 

Impact of CA on PA S34 biofilm formation 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        0.08003     0.00454  (0.06687, 0.09320)    17.64     0.000 

C3 - C1        0.14640     0.00454  (0.13324, 0.15956)    32.26     0.000 

C4 - C1        0.17183     0.00454  (0.15867, 0.18500)    37.87     0.000 

C5 - C1        0.17483     0.00454  (0.16167, 0.18800)    38.53     0.000 

C6 - C1        0.21817     0.00454  (0.20500, 0.23133)    48.08     0.000 

 

 

Impact of CA on PA S14 biofilm formation 
Difference  Difference       SE of                               Adjusted 

of Levels     of Means  Difference        95% CI        T-Value   P-Value 

C2 - C1        0.02217     0.00352  (0.01197, 0.03237)     6.31     0.000 

C3 - C1        0.11883     0.00352  (0.10863, 0.12903)    33.80     0.000 

C4 - C1        0.12680     0.00352  (0.11660, 0.13700)    36.07     0.000 

C5 - C1        0.22210     0.00352  (0.21190, 0.23230)    63.17     0.000 

C6 - C1        0.22483     0.00352  (0.21463, 0.23503)    63.95     0.000 

 

 

Impact of CA on PA S27 biofilm formation 
difference  Difference       SE of                             Adjusted 

of Levels     of Means  Difference       95% CI       T-Value   P-Value 

C2 - C1         0.0579      0.0158  (0.0142, 0.1015)     3.66     0.008 

C3 - C1         0.1646      0.0158  (0.1210, 0.2083)    10.42     0.000 

C4 - C1         0.1828      0.0158  (0.1392, 0.2264)    11.57     0.000 

C5 - C1         0.2140      0.0158  (0.1704, 0.2577)    13.55     0.000 

C6 - C1         0.2252      0.0158  (0.1816, 0.2688)    14.25     0.000 
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Appendix 3D: Effect of CDCA on PA strains biofilm formation 

Impact of CA on PA S33 biofilm formation 
Difference  Difference       SE of                                Adjusted 

of Levels     of Means  Difference         95% CI        T-Value   P-Value 

C2 - C1        0.00820     0.00569  (-0.00832, 0.02472)     1.44     0.494 

C3 - C1        0.01000     0.00569  (-0.00652, 0.02652)     1.76     0.324 

C4 - C1        0.02333     0.00569  ( 0.00682, 0.03985)     4.10     0.006 

C5 - C1        0.04567     0.00569  ( 0.02915, 0.06218)     8.02     0.000 

C6 - C1        0.05338     0.00569  ( 0.03687, 0.06990)     9.38     0.000 

 

Impact of CA on PA S34 biofilm formation 
Difference  Difference       SE of                                Adjusted 

of Levels     of Means  Difference         95% CI        T-Value   P-Value 

C2 - C1        0.00867     0.00924  (-0.01815, 0.03549)     0.94     0.812 

C3 - C1        0.02100     0.00924  (-0.00582, 0.04782)     2.27     0.146 

C4 - C1        0.03567     0.00924  ( 0.00885, 0.06249)     3.86     0.009 

C5 - C1        0.04400     0.00924  ( 0.01718, 0.07082)     4.76     0.002 

C6 - C1        0.04867     0.00924  ( 0.02185, 0.07549)     5.26     0.001 

 

Impact of CA on PA PA14 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.0230      0.0102  (-0.0065, 0.0525)     2.26     0.149 

C3 - C1         0.0207      0.0102  (-0.0089, 0.0502)     2.03     0.215 

C4 - C1         0.0190      0.0102  (-0.0105, 0.0485)     1.87     0.276 

C5 - C1         0.0431      0.0102  ( 0.0136, 0.0726)     4.24     0.005 

C6 - C1         0.0448      0.0102  ( 0.0152, 0.0743)     4.40     0.004 

 

Impact of CA on PA S27 biofilm formation 
Difference  Difference       SE of                              Adjusted 

of Levels     of Means  Difference        95% CI       T-Value   P-Value 

C2 - C1         0.0093      0.0236  (-0.0420, 0.0607)     0.40     0.699 

C3 - C1         0.0287      0.0236  (-0.0226, 0.0801)     1.22     0.246 

C4 - C1         0.0801      0.0236  ( 0.0287, 0.1314)     3.40     0.005 

C5 - C1         0.0901      0.0236  ( 0.0387, 0.1414)     3.82     0.002 

C6 - C1         0.0884      0.0236  ( 0.0370, 0.1398)     3.75     0.003 

 

 


