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Abstract

This thesis investigates the benefits and challenges arising from the use

of minimal capacitance in AC to DC converters. The purpose of the

research is to ultimately improve the power density and power factor of

electrical systems connected to the grid. This is carried out in the con-

text of a low cost brushless DC drive system operating from an offline

power supply.

The work begins with a review of existing applications where it is prac-

tical to use a limited amount of DC link capacitance. The vast majority

of these have a load which is insensitive to supply power variations at

twice the line frequency. Low performance motor drives are found to be

the most prevalent, with the inertia of the rotor mitigating the effect of

torque ripple. Further research is carried out on active power factor cor-

rection techniques suitable for this application, leading to the conclusion

that no appropriate systems exist.

A power supply is developed to enable a 24V, 200W brushless motor

drive to operate from the mains. The system runs successfully using

only 1µF of DC link capacitance, which causes the motor supply volt-

age to have 100% ripple. It is noted that whilst this drastically reduces

the low frequency input current harmonics, those occurring at the load

switching frequency are greatly increased.

To combat this, a novel active power factor correction system is proposed

using a notch filter to detect the input current error. The common

problem of voltage feedback ripple is avoided by eliminating the voltage

control loop altogether. The main limitations are identified as a high

sensitivity to load step changes and variations in line frequency. Despite

this, a high power factor is maintained in all operating conditions, as

well as compliance with the relevant harmonic standards.
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Chapter 1

Introduction

1.1 AC to DC Converters

Many electrical systems which are connected to the mains cannot derive their power

directly from an AC source. It is first necessary to convert this to a DC source, most

commonly with a diode bridge rectifier and DC link capacitor as shown in Figure

1.1. These components can be found on the front end of consumer electronic prod-

ucts, Variable Speed Drives (VSDs) and computer power supplies among numerous

other applications. Over time, the constant demand for new technology has vastly

increased the number of these systems connected to the grid.

Figure 1.1: A single-phase AC to DC converter constructed from a diode bridge

rectifier and smoothing capacitor

For a single-phase supply, AC to DC conversion entails the transformation of time-

varying power to constant power. This process inherently requires energy storage

to account for the short term imbalance between the input and output power of

the system. When the magnitude of the AC voltage exceeds the DC voltage, the
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1.1 AC to DC Converters

rectifier diodes are forward biased, allowing charge to flow into the capacitor and

hence energy is stored. When the DC voltage exceeds the AC voltage, the rectifier

diodes are reverse biased and the capacitor discharges, providing the sole source of

energy for the load. This process of charging and discharging causes a ripple in the

DC link voltage which is determined by four factors; the load current Iload, number

of phases Nphase, supply frequency fsupply and DC link capacitance CDC .

Vripple =
Iload

2Nphase.fsupply.CDC

(1.1)

As the number of phases, supply frequency and average load current will be fixed for

a given application, it is therefore necessary to have a large DC link capacitance in

order to achieve a small ripple voltage. Whilst this is beneficial to the performance

of the load, it has a negative impact on the volume and cost of the system. The

intrinsic link between operating frequency and size has lead to DC link capacitance

being the key limiting factor in AC to DC converter power density [1]. DC to DC

converters are far superior in this respect as the operating frequency is chosen as

part of the system design, constrained only by the limits of the components and

control system. For mains connected loads requiring a constant supply voltage, im-

provements in capacitor technology offer the only significant method of reducing the

size and cost of the AC to DC stage.

Electrolytic capacitors are the favoured devices for this purpose as they have a far

greater energy storage density than electrostatic variants [2]. It is for this reason

alone that they remain the popular choice for line frequency filtering applications.

However, in almost every other respect they are inferior, suffering from high Equiv-

alent Series Resistance (ESR) and Equivalent Series Inductance (ESL) coupled with

a poor tolerance to temperature. Additionally, the liquid electrolyte used in their

construction degrades over time, leading to failure rates almost two orders of magni-

tude higher than ‘dry’ capacitor variants [3]. This poses significant issues for power

converters in long-term installations such as solar generators or LED lighting sys-

tems.

The combination of a large capacitor and a bridge rectifier leads to a further prob-

lem in the form of highly distorted input current. Due to the non-linear behaviour

2



1.1 AC to DC Converters

of the diodes, current can only be drawn from the supply when they are forward

biased. As can be seen in Figure 1.2, a small DC link voltage ripple leads to a very

short diode conduction period and subsequently a short spike of input current near

the peak of the mains voltage. The non-sinusoidal current contains harmonics which

do not contribute to the active power flow in the system, leading to a poor power

factor, typically less than 0.7 [4].

Figure 1.2: Input current distortion caused by high DC link capacitance

Poor power factor and high current distortion have a number of side effects detri-

mental to the performance of the power network and the systems connected to it:

1. Voltage distortion resulting from the harmonic currents flowing through the

impedance of the supply system.

2. Higher RMS current for a given real power, requiring over-rating of trans-

formers, switchgear and cables making them larger and more costly; this is

becoming a significant issue as the price of copper rises [5].

3. High frequency current pulses causing additional transformer heating, false

tripping of breakers and skin effect in conductors.

4. Interference with sensitive equipment due to increased di
dt

and therefore greater

conducted/radiated Electro-Magnetic Interference (EMI).

5. Resonance and reactive power injection by harmonic filters [6].

In an effort to control these issues, IEC 1000-3-2, which sets limits on harmonic

current emissions in equipment up to 16A per phase, was adopted as a European

3



1.1 AC to DC Converters

Standard in 2001 (as EN 61000-3-2). This requires virtually all consumer and light

industrial electrical equipment to be designed with consideration for its effect on

supply current distortion [7]. The standard sets limits for individual harmonic mag-

nitudes for the input current to a device, with the requirements varying depending

on its classification.

The most significant of these requirements are the Class A limits as they cover the

widest range of applications. These are shown in Table 1.1 along with the Class

D limits applicable to devices “shown to have a pronounced effect on the public

electricity system”. The key difference between the Class A and Class D limits is

that the former are given in absolute terms, whereas the latter are scaled by the

active load power.

Class A Class D

Harmonic order n Current limit (A) Current limit (mA/W) Max current (A)

3 2.3 3.4 2.3

5 1.14 1.9 1.14

7 0.77 1.0 0.77

9 0.4 0.5 0.4

11 0.33 0.35 0.33

13 0.21 0.30 0.21

15 - 39 odd 0.15 x 15
n

3.85
n

0.15 x 15
n

2 1.08 - -

4 0.43 - -

6 0.3 - -

8 - 40 even 0.23 x 8
n

- -

Table 1.1: BS EN 61000-3-2 harmonic current limits

In order to meet these requirements, the conventional approach is to add a Power

Factor Correction (PFC) circuit, using either passive or active filtering techniques.

This allows for a reduction in input current harmonics whilst maintaining a constant

DC output voltage; the penalty for this is a further increase in size and cost.

4



1.2 Reduced DC Link Capacitance

1.2 Reduced DC Link Capacitance

In response to the problems discussed previously, there has been growing academic

and industrial interest in the design of power converters with reduced DC link ca-

pacitance. For certain applications, an acceptable performance can still be achieved

when the DC link voltage, and subsequently the output power, has a very large rip-

ple at twice the line frequency. This is always the case in single-phase AC systems

such as heaters, incandescent lighting or induction motors, where the load responds

to the average, rather than instantaneous value of the supplied power. For example,

the 100Hz (or 120Hz) variation in input power to a heating element is not seen in its

output as the thermal time constant prevents a significant change in temperature at

this frequency. Similarly, the inertia of a universal or induction motor means that

its speed will be relatively constant over one half-cycle of the mains, despite the

large variation in torque. In these applications there is still energy storage present,

but instead of a dedicated component such as a capacitor, it is the load itself which

provides this function.

As discussed extensively in the next chapter, this same principle can be applied to

DC loads which do not require constant power. By limiting the imbalance between

the input and output power of an AC to DC converter, the energy storage require-

ment is reduced, leading to a potentially more compact and lower cost system. The

increased DC link voltage ripple results in a longer conduction period for the rectifier

diodes and subsequently a smoother input current with less harmonic content.

Whilst this concept and its benefits are clear, the new challenges it creates are not

inconsiderable. By removing the decoupling between the supply and load, the sub-

systems become far more interdependent, with a change in one reflected immediately

in the other. A holistic approach is required for the system design in order for it

to function properly, with a greater consideration for the dynamic behaviour of the

load and varying supply conditions. It is the study of this problem and its potential

solutions which ultimately forms the key focus of this work.

1.3 Thesis Overview

This thesis begins with research into existing applications where the DC link ca-

pacitance is purposefully small. Compared to a conventional design, the DC link

5



1.4 Novel Aspects

capacitance can be reduced by more than 99% in some cases, whereas in others it

may be as little as 30%. However, in each case this is done for the purposes of

improving size, cost, lifetime or harmonic performance. Particular attention is paid

to the detrimental effects this has on load behaviour, along with the techniques used

to mitigate them. A review of power factor correction techniques is included, which

fundamentally concludes that no existing systems are suited for use with reduced

DC link capacitance.

Low performance motor drives are found to be the main application for this con-

cept, with considerable existing work by academics and the industrial sponsor for

this research. A 200W 24V brushless DC motor drive is selected as the test load,

requiring a DC to DC converter to provide the correct supply voltage. This provides

another platform on which to analyse the effects of reduced DC link capacitance,

particularly the loss of efficiency with an increasingly dynamic load.

Load harmonics in the input current are identified as the key challenge of this appli-

cation, leading to the development of a novel control system designed to attenuate

them using the minimum amount of energy storage. Fundamental analysis of har-

monic filtering is followed by the simulation of two different control methods for

a boost converter front-end. The more successful technique based on notch filter-

ing is implemented in hardware, with Chapter 6 covering the design process in detail.

Finally, the system is tested over a range of operating conditions in order to thor-

oughly analyse its behaviour. The main performance limitations are shown to be

an increased sensitivity to rapid load reductions and variations in supply frequency.

Furthermore, an important compromise is noted between the level of harmonic at-

tenuation achieved and the peak DC link voltage. Despite this, the controller is

shown to maintain a power factor exceeding 0.9 even in worst case conditions, as

well as meeting the more challenging scaled EN 61000-3-2 harmonic limits.

1.4 Novel Aspects

All of the research contained within this thesis stems from the idea that in certain

power converter applications, an improvement in size, cost and power factor can be

realised through a reduction in DC link capacitance. The challenge is in solving
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1.4 Novel Aspects

the new problems that occur when there is virtually zero decoupling between the

different subsystems. The most significant contributions to knowledge are:

1. An active power factor correction system which does not require a reference

current or voltage control loop, thus allowing it to work with 100% DC link

voltage ripple. The input current error is extracted by a notch filter tuned to

the supply frequency rather than by the subtraction of an ideal reference. A

patent application covering this concept is currently being compiled by Dyson

Technology Ltd.

2. An active power factor correction system which only attenuates the high fre-

quency harmonic content of the line current, removing the need for a large DC

link capacitor. This works in conjunction with an existing motor drive control

strategy designed to produce minimal low frequency harmonics.

3. New research into the practical limits of minimising energy storage in low cost

power supplies such as those found in domestic appliances or other applications

with reduced performance requirements.

4. A novel current sensing system which provides a measure of the line input

current by multiplying the DC link input current with the polarity of the

input voltage. This provides the essential AC current signal necessary for

extraction of the harmonic content without the additional distortion caused

by the rectification process. By placing the current sensor after the bridge

rectifier, a simple non-isolated shunt arrangement can be used, providing a

very compact, low cost solution which can measure from DC into the MHz

range. A patent application covering this circuit design is currently being

compiled by Dyson Technology Ltd.
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Chapter 2

A Literature Review of Reduced

Capacitance Power Systems

This chapter reviews prior art in two key areas relevant to the work in this thesis.

The first analyses existing power converter applications which make use of reduced

DC link capacitance. This provides valuable insight into the challenges faced when

designing such systems, one of which is load frequency distortion of the supply cur-

rent. Subsequently this leads on to the second research area; power factor correction.

2.1 Existing Applications for Reduced DC Link

Capacitance

2.1.1 Three-Phase Motor Drives

Research in this field has shown that the problems discussed in the previous chapter

can be mitigated somewhat through the use of reduced DC link capacitance. Its

main application is in three-phase converter/inverter drives (see Figure 2.1), where

the problems caused by limited decoupling can be overcome [8–13]. These systems

work on the principle that if the instantaneous input and output currents can be

forced to the same value, no DC link energy storage is required. The dynamics of

the control system determine the extent to which this can be achieved; a fast and

accurate scheme will require minimal capacitance to cater for the imbalance between

input and output currents [10]. It has been proposed by Kim and Sul [11] that the

power device junction capacitance alone could be adequate, allowing one-chip AC-

DC-AC power conversion. However, this is likely to be impractical as a sufficiently

high speed voltage control loop would rapidly modulate the input current ampli-

tude, causing distortion and subsequently a poor power factor. A clear parallel can

8



2.1 Existing Applications for Reduced DC Link Capacitance

be drawn between this system and a matrix converter, and would likely suffer from

many of the same drawbacks.

Figure 2.1: three-phase converter/inverter with minimal DC link capacitance

Due to the nature of three-phase systems, it is possible to obtain an approximately

constant power transfer if the load appears linear, unlike in single-phase systems

where the power is inherently time varying. This is ideal in the case of a motor

drive system where the load typically demands constant power.

A number of different converter control strategies have been developed with the aim

of maintaining a constant DC link voltage whilst keeping the input power factor

high. Kim and Sul [11] use a power estimator technique based on the load and

system losses to predict the active power required from the input. A space-vector

based current controller is used for rapid control of the source and load side currents.

Malesani et al. [10] use actual DC link current measurements to generate a feed-

forward compensation term to speed up the system response. There are however

a number of problems associated with DC link current measurement, most signifi-

cantly the additional stray inductance caused by the sensor itself [9] and the need

for a low pass filter due to the switching noise on the link. A low pass filter will

introduce delay into the system, limiting the speed of the current regulation. Due to

the importance of current control bandwidth, other techniques have been employed

such as deadbeat control [14], direct capacitor current control [8] and feedback lin-

earisation [9].

Whilst exhibiting good performance in terms of both input and output current

quality, such converter/inverter systems suffer from high cost and complexity. An

alternative solution is to use an uncontrolled rectifier for AC/DC conversion, using

9



2.1 Existing Applications for Reduced DC Link Capacitance

diodes rather than active devices such as IGBTs or MOSFETs. Andersen et al. [15]

present a reduced capacitance AC drive intended for HVAC (Heating Ventilation

and Air Conditioning) applications. The application is critical to the feasibility

of the reduced capacitance drive system, as HVAC involves fan-type loads which

can tolerate a certain degree of torque ripple. The performance requirements in

terms of efficiency, acoustic noise and harmonic distortion however are high. For a

full wave rectified three-phase voltage, the maximum theoretical DC link ripple is

1 −
√

3
2
≈ 13%, which will be seen if no DC link capacitance is used. As discussed

previously, there is essentially no voltage hold-up in a reduced capacitance converter

and so the full ripple voltage will be seen by the inverter. The output current will

subsequently contain a 300Hz component (6 times the line frequency) which will

produce a corresponding torque ripple. In the work carried out by Andersen et

al. [15] a 12% torque ripple is seen due to this effect. For a fan load, this is not a

problem unless the 300Hz modulation is audible. If smoother torque is required, the

voltage ripple can be compensated for by modulating the PWM in anti-phase with

the voltage. Upon implementing this technique, a 50% reduction in torque ripple

was seen.

Similar work has been carried out by Kretschmar and Nee [16], but without torque

ripple compensation. The inverter produced an almost pure sinusoidal current wave-

form despite the use of an open loop control system; this is most likely due to the

higher motor frequency and simulated line inductance used during the tests. It is

worth noting that line impedance is an often overlooked factor when considering the

harmonic performance of a device, yet its effects can be significant. A highly in-

ductive supply line is equivalent to adding a dedicated AC choke, and will therefore

attenuate harmonics considerably.

2.1.2 Single-Phase Motor Drives

For single-phase systems the performance limitations resulting from a low capaci-

tance DC link are much more severe, and therefore the intended applications must

be carefully considered. This is due to the 100% ripple voltage observed when there

is no DC link energy storage present. As with three-phase systems, the main appli-

cation is in motor drives, where the inertia of the load mitigates the effect of torque

ripple [17–23].
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As shown in Figure. 2.2, a single-phase linear load will draw power in a time varying

fashion. Assuming the load is linear, the input power varies as a function of sin2,

as shown in Equation. 2.1.

Figure 2.2: Ideal DC link voltage, current and input power waveforms for a single-

phase load

Pinput = V̂ Îsin2(ω(t)) (2.1)

Given that there is no decoupling available, the output power must therefore vary

in the same manner, at the same time. Such oscillations in output power have long

been accepted in domestic appliances through the use of universal motors, which

can be found in products such as drills, vacuum cleaners and food processors. When

combined with new brushless motor technology, this property can be capitalised on

for improvements in power density, harmonics, efficiency and product lifetime.

Whilst it is possible to run a low capacitance drive using basic PWM control, its

performance can be improved through the use of more advanced modulation tech-

niques, as in a conventional drive system. As outlined in [22] and [17] Direct Torque

Control (DTC) can be effective where a heavily fluctuating inverter supply exists.

DTC allows the motor variables of flux and torque to be controlled directly by mak-

ing calculations based on the measured motor voltage and current. The estimated

flux and torque values are compared with a reference, and an error compensation is

made by the inverter if they lie outside a set tolerance band. This works well with
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a fluctuating DC link voltage, as the controller simply increases the power device

conduction times as the voltage drops. For the majority of the mains cycle, full

motor torque can be maintained by compensating for the voltage ripple, resulting in

a trapezoidal torque profile as shown in Figure 2.3. Once the voltage falls below a

certain point, the stator flux linkage cannot be maintained and the torque drops off.

This is not a problem however, as excessive DC link voltage compensation will result

in high distortion of the input current, causing the system to become self-defeating.

Figure 2.3: Trapezoidal torque profile resulting from DC link voltage compensation

DTC is a form of hysteresis control, and subsequently has a variable switching fre-

quency. This complicates harmonic filtering and can induce resonances between the

small DC link capacitor and line inductance. If this poses a particular problem,

fixed-frequency techniques such as Space Vector Modulation (SVM) can be used

instead, with the operating frequency set above the resonance [22]. The rapid in-

tegration and vector multiplication make DTC computationally intense, but given

the speed of modern microcontrollers this is no longer an issue except in extremely

cost sensitive applications.

Haga et al. [17] make use of the dither effect combined with DTC to simultaneously

control the input current waveform and motor torque. Dither is a technique used

to linearise non-linear systems by intentionally adding noise to a signal, in this case

the converter input current. The inverter switching signals have a high frequency

(dither) component superimposed on the motor control signals. The dither compo-

nent is controlled such that it causes a sinusoidal input current to be drawn when

passed through a low pass filter. Due to the frequency of the signal, the presence of
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the small DC link capacitor is sufficient, removing the need for an AC input filter.

The system behaves somewhat like a combined converter/inverter, but achieves in-

put and output current control using a single power stage. Due to its linearisation

properties, the dither effect can be applied to systems with a conventional DC link

as demonstrated by Cacciato et al. [4].

As an alternative to DTC, Lamsahel and Mutschler [23] propose the use of Field

Oriented Control (FOC) in low capacitance drives for domestic appliances. FOC

is simpler to implement and has a fixed switching frequency, allowing the use of

basic microcontrollers which results in lower cost products. A basic FOC system

can successfully control a low capacitance drive, but the resulting motor torque has

a high harmonic content. An improvement is seen when the D and Q axis current

reference values are modulated by the DC link voltage. Although the input current

is significantly more distorted than in [17], full compliance with BS EN 61000-3-2 is

still achieved. This example reiterates the key challenge with reduced capacitance

drive systems, in that torque ripple and input current distortion are in constant

contention; a reduction in one results in an increase in the other.

2.1.3 Battery Charging

Another potential application for low DC link capacitance is battery charging, invit-

ing the possibility of a combined power supply/fast charger sharing the same hard-

ware. The key to making this work is sinusoidal modulation of the load (charging)

power, in much the same way as it is with a motor drive. A similar challenge is pre-

sented, as conventional charging techniques often use a Constant Current Constant

Voltage (CCCV) approach, producing a constant power load [24].

Due to their high energy density, lithium-ion cells form the basis for batteries in a

vast range of products, from electric vehicles to mobile phones. This has naturally

lead to research into understanding and improving the charging process [24–26],

with a particularly relevant conclusion for this application; Sinusoidal Ripple Cur-

rent (SRC) charging above 10Hz does not degrade the performance or lifetime of the

cells. Furthermore, Chen et al. [24] demonstrated that by charging at the minimum

AC impedance frequency, the cell temperature, lifetime and charging efficiency were

notably improved over CCCV methods.
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An important difference between a battery charger and a motor load is that whilst

they can both tolerate large ripple currents, lithium ion cells require a tightly con-

trolled charging voltage. This is a difficult problem to overcome in a system with

minimal DC link capacitance and a high input power factor requirement. The ex-

pected 100% DC link voltage ripple seen in Figure 2.2 would be damaging if it was

passed through to the cells, so a more elaborate power control method is necessary.

Research by Rosekeit and DeDonker [27] and Xue et al. [28] proposes a constant

voltage sinusoidal ripple current charging technique which results in a very high

input power factor from a compact converter design. Low value film capacitors are

used in place of large electrolytics, saving valuable space and increasing the sys-

tem lifetime, particularly important issues in the electric vehicle application. The

chargers use a two stage approach as shown in Figure 2.4, with the full bridge front

end providing power factor correction and DC link voltage regulation, and the Dual

Active Bridge (DAB) providing charging current control.

Figure 2.4: Battery charger with Full Bridge AC/DC stage and Dual Active Bridge

DC/DC stage

Much like the low DC link capacitance motor drives discussed in Section 2.1.2 and

2.1.1, the charger uses the concept of instantaneously balanced input and output

power to minimise the required energy storage. As the system is single-phase, this

means the output power must vary sinusoidally, but without significant modulation

of the charging voltage. The only option therefore is to force the charging current,

Icharge, to have a sinusoidal component in phase with the converter input power as

shown in Figure 2.5. Due to the transformer Icharge is equal to IDC multiplied by

the turns ratio.
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Figure 2.5: Key waveforms of the two stage low DC link capacitance charger

The input and output current control loops have a high bandwidth to ensure a sig-

nificant imbalance does not occur, as this would produce a large fluctuation in the

DC link voltage through the subsequent charging or discharging of the DC link ca-

pacitor. Theoretically, if the control system was fast enough the DC link capacitor

would not be necessary other than to filter the power device switching noise, and

would consequently be extremely small. In a realistic design such as [27] or [28], a

certain amount of DC link voltage ripple will be produced however.

The dual active bridge is combined with Lout to produce current source behaviour,

giving a predictable enough output to allow open loop control if desired. On the

other hand it is noted in [28] that a larger current error is produced, requiring a

larger DC link capacitor to account for the greater power imbalance. The error

stems from the slightly nonlinear relationship between DAB phase shift (i.e. angle

between inverter and rectifier bridge switching waveform) and output current.

A limitation of sinusoidal ripple current charging is that the mean charging power

has to be reduced slightly to prevent over-voltage damage to lithium ion cells. The

varying charge current will produce a corresponding voltage ripple due to the in-

ternal impedance of the cells, and the peak of this voltage cannot be allowed to

go above a maximum value. So rather than charging constantly at the maximum

allowable voltage, a reduced mean value must be used as shown in Figure 2.6.
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Figure 2.6: Reduction in mean charging voltage to prevent cell damage (exaggerated)

Despite the more stringent voltage regulation issue, battery charging lends itself

well to the low DC link capacitance concept for two key reasons. Firstly, it presents

a reasonably linear and constant load such that the converter input power always

has a sink, and therefore does not require storage in reactive components. The

second advantage is that the load time constant of a battery is very long, mean-

ing that the reference value for the current control loop will subsequently change

very slowly, helping to prevent second harmonic distortion of the line input current

through changes in load behaviour [27]. This is the same reason that conventional

Active Power Factor Correction (APFC) systems have a very slow voltage control

loop (<20Hz), a point which is discussed further in section 2.3.2.

2.1.4 LED lighting

The use of LED lighting over conventional incandescent/fluorescent sources is be-

coming more popular as the technology is improved. There are a number of factors

behind this, the most significant being high efficiency and increased lifetime. The

most significant drawback is the low voltage DC operation and thus the need for

a power supply which matches the performance of the LED modules themselves.

Given the lifetime of LEDs is in the order of 50,000 to 100,000 hours this poses

a problem for power supplies using electrolytic capacitors which will typically fail

much sooner than this [29,30]. In response to the problem, research has been carried

out [29–32] into the reduction of DC link capacitance such that longer lifetime ‘dry’

capacitor topologies can be used.

Unlike certain motor drive and battery charging applications, it is not desirable to

have a sin2 fluctuation in power with LED lighting due to the flicker effect this

produces, and subsequently a large net reduction in energy storage is not possible.

Despite the fact that conventional lighting systems produce flicker at twice the line
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frequency (i.e. 100Hz in Europe), the effect is less severe due to the long load time

constant. The brightness of an incandescent bulb does not vary significantly over

one half cycle of the mains, and so the flicker it produces is equally small. This is

analogous to the inertia of a motor preventing 100Hz modulation of its power from

producing a noticeable variation in speed (discussed in section 2.1.2). LEDs on the

other hand have virtually no load time constant and will produce a light output

proportional to the instantaneous driving current, giving them a ‘flicker depth’ of

100% if driven from a sinusoidally varying power supply [33]. This means that over

one half cycle of the mains, LEDs will transition from zero output to full output and

back again. Although it is accepted that humans can only perceive light flicker up to

approximately 70Hz, prolonged exposure to higher invisible frequencies can be detri-

mental to health, causing headaches, migraines and reduced visual performance [33].

The four power supply designs discussed in this section all get round the problem by

using a large filter capacitor on the converter output, where the low voltage enables

the use of long lifetime devices with a relatively high capacity. This removes the sec-

ond harmonic ripple from the output, driving the LEDs with constant current and

thus eliminating flicker. The high voltage DC link is still designed to have a large

(but not 100%) ripple, requiring minimal capacitance which subsequently enables

the use of film [30–32] or ceramic [29] devices instead of electrolytics. An advantage

that LED power supplies have over other reduced capacitance converters is that

their power rating is normally very low, meaning that less capacitance is required

for a given DC link voltage ripple. For example, a 13.5W converter is designed

in [32] with a 3uF DC link capacitance, small enough to allow a film device to be

used. However, when the very low power (and therefore load current) of the system

is considered, it can be seen that in a relative sense this is a significant amount of

energy storage.

Due to the constant power output, all of the designs require an APFC stage to over-

come the severe input current distortion that would otherwise result. The active

shaping of the input current increases the short term imbalance between input and

output power, causing a proportional increase in DC link voltage ripple. As identi-

fied by Gu et al. [30], the operational stability of the system is limited to the point

at which the DC link voltage becomes smaller than the input voltage; an issue with

any boost-derived topology. This is normally an unlikely scenario, as a conventional

DC link design provides sufficient decoupling to safely limit the voltage ripple. In
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this case however, the voltage on the DC link capacitor can change rapidly, poten-

tially pushing the boost converter outside of its operating range, resulting in loss of

input current control.

The reason for this is down to the fact that a boost converter can only provide

uni-directional current control. By referring to Figure 2.7 it can be seen that the

input current can always be increased by closing the switch (Figure 2.7 (a)) but it

cannot necessarily be decreased by opening the switch (Figure 2.7 (b)) due to its

parallel connection with the load. If the output voltage of the converter, VDC , is

less than the input voltage, Vin, then the load will draw current directly from the

input rather than the capacitor. Under this condition the input current will be un-

regulated, resulting in distortion and therefore reduced power factor. If VDC can be

maintained above Vin, opening the boost switch will always cause the input current

to fall, allowing total control of the input current shape. The boundary condition

for stability is shown in Figure 2.8.

Figure 2.7: Uni-directional current control limitation of a boost converter PFC

circuit

Figure 2.8: Stability limit for boost converter operation and DC link capacitor

energy storage cycle
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Three solutions to the boost converter instability issue are proposed. The first is to

increase the mean capacitor voltage, VDC(mean), such that a given ripple magnitude,

VDC(pp), cannot cause an intersection between VDC and Vin. This can be achieved

by increasing the mean duty cycle of the boost converter without altering the shape

of the modulation waveform. The downside of this approach is increased stress on

the components and a potential increase in cost if higher rated devices are necessary.

The second option is to reduce the ripple voltage by limiting the input-output power

imbalance. As can be deduced from Figure 2.8 and 2.7, the integral of Pin − Pout

is equal to the change in DC link capacitor energy ∆Ec (the boost inductor stores

a minimal amount of energy in comparison). The shaded area where Pin > Pout is

equal to the energy stored by the capacitor, and the area where Pin < Pout is equal

to the energy released. If the input power is allowed to move away from the ideal

sin2 shape towards the constant value of the load, ∆Ec will be reduced giving a cor-

responding reduction in the ripple voltage. The obvious downside of this approach

is the input current will no longer be sinusoidal, decreasing the power factor.

Ec =
1

2
CV 2 (2.2)

∆Ec =

∫
Pin − Pout dt (2.3)

The final and most complex option is put forward by Gu et al. [30], and involves in-

jection of a 3rd harmonic component into the input current. Whilst this will clearly

have an impact on power factor, it allows a greater level of voltage ripple before Vin

intersects VDC . By adding a 3rd harmonic signal to the APFC reference current,

the input current and DC link voltage will be modulated in a corresponding fashion

as shown in Figure 2.9.
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Figure 2.9: Modulation of Iin, Pin and VDC with 3rd harmonic injection

Figure 2.10 shows that the 3rd harmonic component does not reduce the magnitude

of the ripple voltage, but instead shifts the VDC minimum point such that an inter-

section with Vin is avoided. The results in [30] show that for a given DC link voltage,

the DC link capacitor can be reduced in size by 34% over a system without 3rd har-

monic injection. This allowed the 60W converter to use a 2µF DC link capacitor

where a 3µF device was previously required. The penalty for this improvement is a

reduction in power factor from 1 to 0.9 due to the 3rd harmonic.

Figure 2.10: VDC comparison showing the increased ripple voltage limit through 3rd

harmonic injection
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2.1.5 Auxiliary Ripple Energy Storage

The final application area for reduced DC link capacitance is in converters with

an Auxiliary Ripple Energy Storage (ARES) system. Unlike the other applications

discussed previously, converters with ARES can have small film based DC link ca-

pacitors without having to compromise on the DC side performance or introduce

distortion to the AC side [3]. The advantage of such a system is best demonstrated

by the poor energy utilisation of a conventional DC link capacitor. As described by

Equation 2.3, the change in capacitor energy, ∆Ec, is equal to the difference between

the input and output energy of the converter (i.e. integral of the power difference

over time). In an ideal case the capacitor would be just big enough to store the peak

input/output energy imbalance such that it is completely charged and discharged

over every half cycle of the mains. This represents the theoretical minimum energy

storage requirement, and thus the minimum capacitor size.

The difficulty with this is that a change in energy implies a change in voltage for a

capacitor (see Equation 2.2), creating DC link voltage ripple which is unsuitable for

many converter loads. If a small DC link voltage ripple is desired, then a small rela-

tive change in energy takes place as energy is proportional to voltage2. For example,

a DC link capacitor with a mean voltage of 400V and a ripple of 10V peak-peak

has a relative energy change of 5% over half a mains cycle, meaning that 95% of

the stored energy is unused. To overcome this issue an ARES converter is proposed

in [3, 34–37] which involves storing the ripple energy in a capacitor which is not

directly connected to the DC link, allowing its voltage to vary without affecting the

DC link voltage. The auxiliary capacitor can therefore be much smaller than the

equivalent conventional DC link capacitor. As shown in Figure 2.11, this system

can be applied in situations where the mains is either the source (e.g. LED ballast)

or the load (photovoltaic generator), and is particularly useful where long converter

lifetimes require the use of film capacitors.

Figure 2.11: Auxiliary Ripple Energy Storage system block diagram
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Paux = PDC − PAC (2.4)

Figure 2.12: Waveforms showing the AC, DC and auxiliary power flow in the three

port converter

The simplest implementation of the ARES converters proposed in [3,34,36,37] is put

forward by Wang et al. [36], and can be seen in Figure 2.13. The auxiliary capacitor

is connected to the DC link via a bidirectional buck/boost converter, allowing it

to store energy when PAC > PDC and release energy when PAC < PDC . Through

appropriate modulation of switches Q5 and Q6, a stable DC link voltage can be

produced from a heavily rippling auxiliary capacitor voltage. The DC link capacitor

CDC is small as it only serves to filter the power electronic switching noise from the

buck/boost converter and provide a buffer for error in the ARES control.

In theory this arrangement allows the absolute minimum capacitor energy/size to be

used as defined by Equation 2.3. For the design in [36] requiring 4% peak-peak rip-

ple, this leads to a capacitor size reduction of 12.5 times over that of a conventional

DC link set-up (1.6mF to 125µF). In practice this cannot quite be achieved due to

limits on the auxiliary capacitor ripple current and the maximum converter duty

cycle. It becomes impossible for the buck/boost converter to maintain a constant

output voltage when the input (auxiliary capacitor) voltage becomes very small due

to the extremely high duty cycle required. 200µF was found to be the practical

minimum to maintain a 4% peak-peak ripple, a reduction of 8 times from the 1.6mF

required with a conventional design. Use of the ARES converter in this case lead
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to an overall power density increase of 100% for the PWM rectifier and enabled the

use of long lifetime film capacitors where electrolytic devices would otherwise have

been necessary.

Figure 2.13: ARES converter topology used in [36] with full bridge APFC front end

2.2 Capacitor Technology

As discussed previously, reducing DC link capacitance can have a number of bene-

fits when film based devices are employed. Recent improvements have made these

capacitors suitable for high voltage, high ripple current applications such as the DC

link of an offline power supply where electrolytic devices have traditionally been

used.

As polypropylene capacitors have no electrolyte they do not suffer from ‘dry-out’

issues, and are also self healing, as faults are removed through vaporisation of the

electrode in the region of the short. This provides a significant advantage for many

power electronic systems as electrolytic capacitors will normally be the first com-

ponents to fail, often in short-circuit which creates a high risk of explosion [19, 38].

It is for these reasons that film based capacitors exhibit failure rates almost two

orders of magnitude lower than electrolyic devices [3]. In the consumer electronics

market however, this feature can be of limited value as product lifetimes are often

less than a few thousand operating hours. As a point of comparison, at 85oC Ep-

cos MKP polypropylene capacitors have an Mean Time Between Failures (MTBF)
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of 200,000 hours, whereas their B43564 electrolytic devices have an MTBF of only

15,000 hours [39]. It should be noted however, that 85oC is typically the maximum

temperature polypropylene devices can handle without de-rating; for every 10oC

above this the life expectancy is approximately halved [40] [41].

Polypropylene devices possess an extremely high dielectric strength, allowing them

to be rated for operation well above 1000V DC and thus removing the need to use

series/parallel connected capacitors across a high voltage bus. This is advantageous

in that capacitor balancing is not required, and a single component can replace a

number of smaller components, potentially reducing manufacturing time and cost.

A further benefit is that of minimal equivalent series resistance, which gives rise to

low power dissipation and therefore high ripple current handling capabilities. For

example, a 2.2µF 450V Epcos MKP polypropylene capacitor has a ripple current

rating of 7.5A [39]. An equivalent Panasonic NHG electrolytic capacitor has a rating

of only 29mA [42]. To put this into perspective, building up a ripple current rat-

ing of 7.5A would require 259 electrolytic capacitors in parallel. This would clearly

be impractical, outweighing the capacitance to volume advantage that electrolytics

have. This represents a common problem when specifying DC link capacitor values,

and is often rectified by over-rating the capacitance in order to achieve an appropri-

ate ripple current rating.

The use of stacked polypropylene film layers give the devices a much reduced equiv-

alent series inductance when compared with spiral-wound electrolytic designs. This

aids in mitigating the DC link voltage spikes induced by power device switching, as

demonstrated in [40] where voltage overshoot was reduced by 58%. This reduction

was significant enough to allow all of the DC link snubber capacitors to be removed.

Polypropylene devices are stable over a wide range of operating conditions; within

the specified operating range, the performance of polypropylene capacitors is not

significantly affected by temperature, humidity or frequency. ESR and capacitance

values are virtually constant under all rated conditions (+/-2%), making them far

easier to specify for a particular application. For electrolytic devices, a 20% change

in capacitance over the rated temperature range is not unreasonable [39].
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Despite the many advantages of film capacitor technology, electrolytic devices re-

main the popular choice for two main reasons; capacitance to volume ratio (factor

of 100x higher) and capacitance to cost ratio (factor of 10x cheaper). Having

said this, the cost can be offset somewhat by the saving in reduced EMI filtering

requirements. In applications such as line frequency filtering, where large amounts

of capacitance are required, electrolytic devices remain the obvious choice [2]. How-

ever for this application, where a very high ripple current to capacitance rating is

required, the advantages of electrolytic devices are negated. Not only this, but their

use is virtually impossible as an excessive capacitance rating is required to achieve

the ripple current handling, defeating the point of a low capacitance DC link system.

2.3 Power Factor Correction

As discussed in the introduction, the ever increasing number of electronic loads on

the mains has made power factor an important issue. With the introduction of

Electro-Magnetic Compatibility (EMC) standards such as EN 61000-3-2 it is a re-

quirement for mains connected loads to have a minimum harmonic performance [7].

Almost any load with an AC/DC conversion stage will require some form of power

factor correction circuitry in order to meet this standard, making it an area of con-

siderable interest for the electronics industry. As always in the consumer market,

the challenge lies in meeting this specification at a minimum cost and generally in

the smallest package possible. At the higher end of the market, further voluntary

standards can be met to provide an additional selling point to the customer. One

such standard is Energy Star, a government-backed initiative which highlights par-

ticularly energy efficient products, and in many cases includes a minimum power

factor rating (e.g. >0.9 at 100% load for a computer power supply) [43]. This

section of the thesis provides an overview of the current techniques available for

meeting these standards, with a particular emphasis placed on low complexity and

cost.

2.3.1 Passive PFC

A simple, reliable and efficient approach to reducing load harmonics from an AC/DC

converter is the addition of a passive filter. In many cases this will simply require

an inductor to be placed between the supply and the bridge rectifier. A further
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benefit of the passive approach is that no additional EMI is created as there is no

high frequency switching involved. The basic nature of this modification allows it to

be retrofitted to existing designs to make them compliant, generally increasing the

power factor from under 0.7 to around 0.9 [4]. However, the level of improvement

seen is greatly affected by variations in load and input voltage, and furthermore

the low cutoff frequency of such a filter makes the input inductor very large. The

fixed component values of a passive PFC approach also mean that it will not work

with universal line voltage (85-250V) which is vitually a given feature of modern

electronic equipment. Resonant LC filters can be used to target specific harmonics

(generally the third, fifth and seventh) and achieve a greater power factor, but the

additional size and cost of the reactive components makes this uneconomical for

many applications. Despite these drawbacks, for very cost sensitive and low per-

formance applications the simplicity of a passive PFC system often makes it the

preferred approach.

2.3.2 Active PFC

Conventional APFC Hardware and Control System

In order to overcome the poor performance, size and adaptability of passive PFC

techniques, a range of active solutions have been created [44]. For low cost single-

phase applications, the most common approach is to place a boost converter after

the diode bridge as shown in Figure 2.14. This arrangement benefits from a low

side/grounded switching device and an input side inductor which allows for Con-

tinuous Conduction Mode (CCM) current, reducing the amount of EMI filtering

required. The addition of this active element allows for precise shaping of the input

current, achieving unity power factor over a wide range of input voltage and load

conditions. Regulation of the DC link voltage also allows the design of the load

or secondary DC/DC stage to be optimised around a specific operating point [45].

The main disadvantage of a boost derived solution is that the output voltage, Vout,

must be greater than the input voltage, Vin, which places additional stresses on the

switching components.
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Figure 2.14: Hardware and control for a conventional boost APFC system

The primary function of the boost PFC system is to shape the input current, Iin,

to be proportional to the input voltage, Vin, thus making the load appear resis-

tive. This is carried out by actively controlling the boost switch such that the input

current tracks a reference, Iref , as closely as possible. To achieve the lowest input

current distortion, CCM control is used whereby the input current does not fall to

zero between switching events (see Figure 2.15). For situations where higher input

current distortion can be tolerated, Discontinuous Conduction Mode (DCM) may

be used with the benefits of reduced swiching frequency and/or inductor size, as

well as reduced control complexity given that the input current is zero at the start

of each switching event (see Figure 2.16).
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Figure 2.15: Boost APFC waveforms showing input current tracking reference in

CCM

Figure 2.16: Boost APFC waveforms showing input current tracking reference in

DCM

The secondary function of the boost PFC system is to regulate the output voltage.

Conventionally this is a stable DC voltage with a small ripple component dependent

on the size of the DC link capacitor. The output voltage is controlled by altering the

mean amplitude of the reference current signal. As can be seen in Figure 2.14 this

signal is generated by multiplying the rectified line voltage, Vin, with the output of

the voltage error amplifier Vea. The current reference therefore has a shape which is

proportional to the input voltage and a mean amplitude dependent on the output

voltage error.

Before the voltage error signal reaches the multiplier, it is first divided by the square

of the mean input voltage (Vff ) in order to keep the gain of the voltage control loop

constant. This is required because the mean input voltage will vary with changes in
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the mains supply voltage, and would otherwise affect the power of the system. For

example, if the mains voltage were to double, Vin would double causing the output

of the multiplier block (Iref ) to double. For a constant power load, if the input

voltage doubles the input current must halve, so clearly the previously described

operation would not be appropriate. However, by dividing the voltage error signal

by the square of the mean input voltage, the current reference will be reduced pro-

portionally, maintaining constant input power [46].

The simultaneous regulation of input current and output voltage with a single switch

poses somewhat of a problem for the control system. By forcing the input current

to be proportional to the input voltage, the input power becomes a sin2 function at

twice the line frequency. This causes the DC link capacitor to be charged/discharged

at the same frequency, creating a ripple voltage which lags 90 degrees behind the

charging current. Eliminating this voltage ripple would require a high bandwidth

voltage control loop to modulate the reference current amplitude, subsequently dis-

torting the input current shape. The contention between the two aspects of the

control system means that the only way to achieve the desired result is to have a

fast current control loop and a slow voltage control loop (typically < 20Hz) which

will not distort the input current shape. A very large DC link capacitor is required

to account for the low bandwidth of the voltage regulation and smooth the second

harmonic power flow.

A further challenge is presented in the form of second harmonic ripple in the Vff and

Vea signals. Despite using a low pass filter to generate these signals from the input

and output voltages, a certain amount of second harmonic will still be present. This

distortion passes through the divider and multiplier, affecting the reference current

and therefore the actual input current. When passed through the diode bridge, the

second harmonic creates both a third harmonic and a fundamental component phase

shifted 90 degrees from the input voltage, increasing the distortion and displacement

of the input current which reduces the power factor.

Ripple in the feedforward voltage signal (Vff ) clearly needs to be low if a high power

factor is to be achieved, implying the need for a lowpass filter with a very low cutoff

frequency. The downside of this is that the system will have a very slow response

to changes in input voltage. Conventionally a compromise is made by using a two

pole filter which will have a faster transient response for a given attenuation, with
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the added benefit of phase shifting the second harmonic by 180 degrees, removing

the phase displacement issue mentioned previously. A similar issue exists with sec-

ond harmonic ripple in the output voltage error signal, requiring the error amplifier

to shift the ripple by 90 degrees to bring it back in phase with the input voltage [46].

Alternative APFC Control Systems

The use of a conventional APFC control system with reduced DC link capacitance

poses a considerable problem. Not only is there little energy storage to buffer the

already low bandwidth voltage regulation, but the very large DC link voltage ripple

requires the input to the voltage error amplifier to be heavily filtered. As discussed

in the previous section, it is necessary to remove the ripple from the DC link voltage

measurement to prevent it from modulating the input current reference. Where a

conventional APFC system will typically have less than 10% DC link voltage ripple,

a reduced capacitance converter has up to 100% ripple. It is therefore necessary

to have ten times the attenuation (-20dB) to produce the same amount of ripple

in the DC link voltage sensor signal. For a first order lowpass filter (-20dB/decade

rolloff) this requires the cutoff frequency to be reduced by a factor of 10, resulting

in a proportional reduction in the control system bandwidth. Subsequently, such a

system would only work if the input voltage and load conditions could be guaran-

teed to change at a very slow rate, greatly limiting the range of possible applications.

A number of options are available which avoid or improve the voltage control band-

width issue by breaking the twice line frequency bandwidth limit [47]. One option is

to place a notch filter between the divider and multiplier blocks to remove the second

harmonic ripple. This allows the voltage control loop bandwidth to be increased,

improving the dynamic response of the system and reducing the DC link voltage

ripple. Research by Williams [48] demonstrated that the addition of a notch filter

with a Q factor of 10 tuned to the second harmonic frequency allowed unity input

power factor to be maintained whilst reducing the the output voltage ripple by 73%.

Two limitations of this approach are noted; very tight component tolerances are re-

quired to obtain the high Q factor and the filter will only work at the precise tuned

frequency, ruling out operation at 50Hz or 60Hz without modification. However,

this research was carried out before the prevalence of low cost microcontrollers, and

as such an adaptive and precise digital filter could potentially alleviate these issues.
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2.3 Power Factor Correction

An alternative approach is not to use a multiplier based controller and instead op-

erate the boost converter in discontinuous conduction mode, allowing the system

to behave as a natural voltage follower [45]. By allowing the input current to fall

to zero after each switching event, it will have a mean value proportional to the

input voltage as can be seen in Figure 2.16. When the boost switch is closed, the

boost inductor is shorted across the mains supply and therefore the input current

ramp rate is dependent solely on the input voltage and not the load. Given a fixed

switching time period, mean current is proportional to
δi

δt
and therefore voltage,

allowing the current control loop and input current sensor to be removed. This

type of control is best suited to applications where higher input current distortion

can be offset against reduced cost, control complexity and boost inductor size [49].

Work by Caruso et al. [50] has shown that the use of this technique can lend itself

well to drives used in domestic appliances as the operating conditions are generally

predictable and known in advance. As DCM operation is necessary for the voltage

follower behaviour to take place, it is common for other hardware topologies such

as flyback, SEPIC or Ćuk to be used which do not require Vout to be higher than

Vin and also provide galvanic isolation.

Rather than removing the current sensor as with the DCM voltage follower tech-

nique, other control system designs have been produced to eliminate input voltage

sensing [51, 52]. Similarly, this approach is most effective where the operating con-

ditions are known in advance, allowing predictive open loop control to compensate

for the lack of feedback. The steady state transfer function of the power converter

and load is used to derive a non-linear PWM sequence which results in a high input

power factor. As input current sensing is still present, CCM operation is possible

which improves the power factor over DCM approaches, with the design in [52] ex-

ceeding the performance of a conventional APFC system with complete voltage and

current feedback information. An alternative design is put forward by Ohnishi and

Hojo [53] which has no input current or DC link voltage sensors, and relies solely on

an input voltage measurement with semi open-loop control. The control system is

simple and low cost, producing a high quality input current waveform, but is depen-

dent on a predictable known load and stable DC link voltage in order to function

properly. Such ‘sensorless’ techniques are therefore challenging to implement with

a reduced DC link capacitance system. The authors suggest it is well suited to an

application such as a lighting dimmer where the load does not vary and the cost

must be minimised.
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2.3 Power Factor Correction

For very cost sensitive applications, there are power factor control schemes which

meet the requirements of EN 61000-3-2 but do not necessarily produce a high power

factor [54–60]. Conventional AC/DC converters with a power rating of between

75W and 600W will normally fall into the Class D category of equipment due to

having an input current waveform shape which falls within the envelope shown in

Figure 2.17 for at least 95% of each half period of the mains.

Figure 2.17: Class D input current envelope for EN 61000-3-2

At low power levels the Class D regulations are much harder to meet than Class A

(see Table 1.1) as the harmonic limits are scaled by the amplitude of the fundamen-

tal. Considerable leeway can be gained by using a simple power converter which

modifies the input current shape sufficiently to allow the device to be reclassified.

One method of doing this is put forward by Rossetto et al. [59] which uses a boost

converter switched at the second harmonic frequency (100Hz) to cause current flow

outside of the Class D envelope. The boost switch turn-on is at a fixed time after

the mains zero crossing, and the turn off time is controlled by the output volt-

age regulator. The benefits of this approach are low control complexity and a low

switching frequency giving rise to minimal losses and EMI filtering requirements.

The change from Class D to Class A allowed the filter inductor to be reduced from

19mH (passive PFC) to 6mH (active PFC) whilst gaining output voltage regulation

a the same time. The EMC reclassification idea is also used by Garćıa et al. [54] but

is implemented using flyback and forward-derived converters to allow power factor

control and an isolated, low voltage output in a single stage [61].

For higher power low cost applications, single stage PFC and DC/DC converters

exist based around the full bridge topology [55–58, 62, 63], combining the functions

of a boost converter and H-bridge with little or no additional power devices. One
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of the simpler implementations by Moschopoulos [57] is shown in Figure 2.18, with

the key feature being the connection of Lboost to the drain of Q2 rather than the

drain of Q1. This simple change allows Q2 to control the input current in much the

same way as with a conventional boost converter, with Q1 or its body diode acting

as the boost diode. The component layout of this approach has an advantage over

the simpler forward-derived converters in that CCM operation can be achieved, in

some cases allowing compliance with the Class D harmonic standards. The single

stage approach still ultimately limits the power factor that can be achieved, in this

case due largely to the fact that the boost and H-bridge functions are interleaved,

meaning that input current control only takes place during the freewheeling phase

of the load cycle [62]. Using the FET body diode to carry a significant proportion of

the boost freewheeling current can also lead to excessive losses, as this component is

typically much slower than the dedicated ultrafast discrete part that would normally

be used.

Figure 2.18: Integrated H bridge and boost converter with no additional power

devices

As mentioned in Section 2.1.2, it is possible to use existing power converter hardware

to improve the input current shape through use of the Dither effect [4]. Dither is of-

ten used to linearise non-linear systems that have a dead-band in their behaviour, in

this case the gaps in input current conduction of a standard AC/DC converter (see

Figure 1.2). A high frequency oscillation is injected into the motor drive inverter

signals (but could equally be applied to a DC/DC converter) which does not create

any net torque but generates short additional time periods where Vin is greater than

VDC , thus allowing input current flow over a larger proportion of the mains cycle and
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subsequently improving power factor. Much like the designs mentioned previously,

this approach meets the European harmonic standards at the minimum possible

cost, passing the regulations whilst still having 45% THD of the input current.

As well as the need to meet low frequency current harmonic (EMC) regulations,

mains connected equipment must also meet high frequency EMI regulations which

poses a challenge when designing a compact power converter. The reduction of low

frequency current harmonics with an APFC system will generally require the use

of a high frequency switching action to control the input current, which itself pro-

duces considerable distortion to the mains voltage. An additional filter is required

to remove this to achieve compliance with all the relevant standards, highlighting

the need for a design compromise to be found. As mentioned previously, the use of

DCM reduces the size of the boost inductor, but the increased switching frequency

noise forces the use of a larger EMI filter, meaning that a net size reduction is not

necessarily produced. The optimum combination of design parameters is therefore

application specific, but the best results are achieved by aiming to meet only the

precise requirements of the standards, much like the Class D to Class A waveform

modification outlined previously. For example, a non-linear relationship exists be-

tween switching frequency and minimum filter size as the EMI regulations only begin

at 150kHz, meaning that frequencies below this are exempt from testing. Increas-

ing the APFC switching frequency from 140kHz to 160khz will in fact increase the

required filter inductor size despite the fact that the harmonic distortion will have

fallen [64, 65]. Careful consideration for these design trade-offs must therefore be

made in order to produce the most compact solution overall.

Active Power Filters

An Active Power Filter (APF) is an alternative system for controlling harmonic and

reactive power flow on the grid. It is typically used to improve the power factor of a

large system with many connected loads, sensing and cancelling their net harmonic

content and phase displacement [66]. These power converters normally feature four

quadrant operation to allow both sourcing and sinking of reactive power flow, mak-

ing them potentially more complex than an APFC system which typically only have

control over current in one direction (sink). Another key difference is that APFs are

generally connected in a parallel shunt arrangement with the non-linear load, only

processing the reactive portion of the power flow (see Figure 2.19) [67, 68]. This
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increases the efficiency over that of an APFC system which has to process the entire

load power [69].

Figure 2.19: Use of an active power filter for controlling the net reactive power from

a number of systems

Clearly a complex four quadrant converter is not suitable for power factor control in

a low cost appliance, but the basic operating principle can be used in a two quad-

rant APF placed after the rectifier in an AC/DC converter. In terms of hardware,

such a system is in fact very similar to the auxiliary ripple energy storage system

discussed in Section 2.1.5, using a bi-directional buck/boost converter connected in

parallel across the DC link (see Figure 2.20). Current harmonics on the DC link

are sensed, and then an equal and opposite compensation current is injected by the

APF to cancel them out, resulting in a pure sinusoidal input [69]. The compensa-

tion current is calculated by subtracting the non-linear load current from the active

component of the fundamental load current [67]. This approach to power factor

correction lends itself well to a reduced DC link capacitance system where the fun-

damental load current naturally follows the line voltage. The level of energy storage

in Caux only has to be sufficient to supply the lowest frequency harmonic power com-

ponent, which will generally be less than the fundamental. If the load harmonics

are all at a high frequency, the APF energy storage can therefore be made very small.
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Figure 2.20: Two quadrant DC side active power filter

Antiwave APFC Control System

An APFC system of particular relevance to this thesis is the Antiwave control tech-

nique developed by Smith in collaboration with Dyson Technology Ltd [70]. It was

designed to be an extremely low cost active power factor correction system for a

1600W BLDC motor drive which also made use of reduced DC link capacitance.

The motor drive load current naturally follows the DC link voltage giving rise to

the sinusoidal envelope seen in Figure 2.22. Even before power factor correction

takes place, the load current shape resembles that of a discontinuous APFC system

(see Figure 2.16), albeit with lower frequency switching harmonics. The input cur-

rent therefore contains little low frequency distortion, leaving the APFC system to

deal with only the switching frequency component. As discussed in Section 2.3.2

this limits the amount of energy storage required for power factor correction, making

the overall system more compact.

The hardware for the Antiwave APFC and motor drive system can be seen in Figure

2.21. A boost converter has been added between the rectifier and H-bridge of the

standard motor drive with its control coming from the existing microcontroller to

reduce the cost. The most notable feature of this system is the lack of any voltage or

current sensors for control of the boost converter making it completely open loop.

Having accurately characterised the system, a predefined PWM sequence can be

used to drive the boost switch generating a compensation current, Icomp, in anti-

phase with the load harmonics, Iload, which results in a sinusoidal input current Iin

as shown in Figure 2.22. The Antiwave PWM sequence is synchronised to the motor
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drive switching signals, allowing it to operate without any sensors. The control dif-

ficulties arising from DC link voltage ripple and line voltage variation do not occur

in this case as they are not measured. As the motor drive automatically adjusts to

variations in supply voltage there is no need for the APFC system to compensate

for this.

Figure 2.21: Hardware for the Antiwave APFC and motor drive system

Figure 2.22: Antiwave load harmonic compensation producing a sinusoidal input

current

The highly application specific nature of this system is its main drawback, requir-

ing accurate characterisation of the load and limiting its adaptability. A further

challenge in using it in a portable power supply is the need for a data connection

between the load and APFC controller to allow estimation and cancellation of the
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load harmonic current. This adds significant cost and complexity to a system ulti-

mately designed with the opposite intention.

2.4 Conclusion

For loads which can tolerate a large ripple in the supply voltage and/or current,

reducing the DC link capacitance can improve power density, power factor and reli-

ability, as well as reducing cost. Fan based motor loads are particularly well suited

as line frequency torque ripple does not generally affect their performance. The key

to making this work in any system is the balancing of instantaneous input and out-

put power flow, a considerable challenge in single-phase systems where the power

must vary sinusoidally. This highlights a compromise between input and output

power quality, particularly in single stage systems such as low cost motor drives

where smoothing torque ripple will increase input current distortion.

All of the existing single-phase reduced capacitance systems are either too complex,

expensive or under-performing for this application. An absolute minimum of active

components, processing power and filtering is necessary in order to produce a viable

solution. There is a need to exploit the ability of the motor drive to handle sinu-

soidal power flow and therefore reduce the harmonic filtering requirements.

Active power factor correction is necessary for the reduction of input current har-

monics without using large additional filter components. The boost topology will

give the best overall input current quality whilst maintaining a low cost. However,

there are no existing control systems suitable for use with 100% DC link voltage

ripple, highlighting a valuable area of research. The challenge lies in generating a

reference input current signal which is proportional to both the input voltage and

load power. A number of open-loop and waveform modification techniques have

been considered which avoid this issue, but the resulting input current quality is

not sufficiently high for this application, particularly if the power level were to be

scaled up. Where a boost PFC front end is used with a heavily rippling DC link, a

further challenge is presented in maintaining control stability such that the mains

input voltage does not exceed the DC link voltage. At this point, control over the

input current shape is lost.
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DC-side active power filters demonstrate a method of direct harmonic cancellation

which lends itself well to a reduced DC link capacitance system, given the minimum

energy storage requirement is determined by the load harmonic frequency rather

than the line input frequency. Implementation of the APF control approach in a

more cost effective manner holds promise for the power factor correction needs of

this application. The Antiwave APFC technique takes a similar approach of directly

cancelling load harmonics and has been shown to work with limited DC link capac-

itance. Adapting such a scheme to function in a closed loop manner may allow it

to work in a power supply application where load feedforward information is not

practically available.
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Chapter 3

The Reduced DC Link

Capacitance Power Supply and

Motor Drive

Having identified low performance motor drives as an ideal application for reduced

DC link capacitance, this chapter describes the development of a power system suit-

able for building on the work found in the literature review. The starting point

is a high speed BLDC compressor motor designed by the industrial sponsor for its

portable products. This chapter begins by outlining the design and operation of

the standard motor drive, in order to provide a clear understanding of its behaviour

before being modified. The key parameters are used to build a simulation model of

the motor drive, which is then verified against actual hardware measurements.

The first major hurdle to overcome was the fact that the motor drive was designed

to operate from a 24V DC supply. Whilst it would have been simpler to start with

a high voltage system, there were two reasons this motor drive was chosen. Firstly,

the addition of a DC to DC converter provided another platform on which to analyse

the effect of reduced DC link capacitance. No previous research was found relating

to this application and it was therefore seen to have potential for novelty. Secondly,

the industrial sponsor for this work had a significant interest in making further im-

provements to the motor drive system, giving access to a range of resources which

would otherwise be unavailable.

The second half of this chapter includes the research and design of a compact and

low cost power supply based on the reduced DC link capacitance concept. The key

factors affecting the performance, size and cost of the system are discussed, leading

to the development of a second simulation. This works in conjunction with the mo-
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3.1 The 200W 100,000RPM BLDC Motor Drive

tor drive model to produce a complete system simulation which is later validated in

Chapter 4. The final section of this chapter covers the practical implementation of

the power supply, derived directly from the simulation model.

3.1 The 200W 100,000RPM BLDC Motor Drive

This section describes the salient features of the 200W BLDC motor drive used

extensively in this research. It was originally developed by Dyson for its handheld

vacuum cleaners, meaning that the motor had to be very compact, efficient and

lightweight, whilst also being low cost. As can be seen in Figure 3.1, the motor is

a two-pole ‘C’ core design integrated with the drive into a single package. This re-

moves the need for wired connections and allows the power devices to sit within the

high speed airflow from the compressor, cooling them sufficiently without heatsinks.

Figure 3.1: The 200W 100kRPM BLDC motor drive (a) exploded view (b) simplified

circuit diagram
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The power supply for the motor drive is a lithium-ion battery pack with 2000uF of

DC link capacitance to limit the current ripple. A basic 8-bit microcontroller con-

stantly adjusts the motor switching angles based on the supply voltage and RPM,

allowing the drive to produce a continuous 200W output power across the whole

battery voltage range (16.8-24V).

Given that the torque, T , a motor can produce is proportional to its size, Equation

3.1 explains why the motor has to operate at extremely high speed, ω, to produce

the required output power, Poutput, from a small package.

Poutput = Tω (3.1)

As discussed by Leaver et al. [71], above 100,000 RPM bearing loss, iron loss, critical

speeds and manufacturing tolerances become very significant, meaning that further

increases in speed can actually lead to an increase in size and cost.

The motor is controlled using a relatively simple system that avoids the use of pulse

width modulation. The high operating speed, when combined with an appropriate

winding inductance, Back ElectroMotive Force (BEMF) and phase voltage create a

quasi-sinusoidal phase current from a square-wave driving voltage. As the current

waveform does not have to be modulated, the switching frequency is very low, re-

ducing losses and computational demand. The key motor drive waveforms can be

seen in Figure 3.2(a).
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3.1 The 200W 100,000RPM BLDC Motor Drive

Figure 3.2: (a) Key motor waveforms and (b) the relevant H bridge switching states

The phase voltage waveform is generated by an inverter with two main switching

states; conduction (positive/negative) and freewheel. The conduction period begins

with voltage being applied ahead of the BEMF zero crossing point to allow the phase

current to ramp up quickly. This ‘advance’ period is one of the methods used to

control the motor power, and can be explained through use of the basic motor phase

(3.2) and input power (3.3) equations.

Vphase = L
δi

δt
+ E + iR (3.2)

Pinput = Ei cos θ (3.3)
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By rearranging equation 3.2 it can be seen that positive phase voltage, Vphase and

negative BEMF, E, will result in a greater
δi

δt
given a fixed inductance, L, and neg-

ligible iR losses. This initial rapid rise produces a larger RMS phase current, and

therefore a greater input power, Pinput. A compromise exists however, as advance

can also increase the displacement, θ, between the BEMF and phase current which

reduces the net power produced.

During the conduction period the applied phase voltage stays constant but the

BEMF rises, causing
δi

δt
to decrease over time as shown in Figure 3.2(a). After

this, the motor enters the freewheeling period where the the two lowside MOSFETs

conduct (Figure 3.2(b)), causing the phase current to ramp down rapidly. During

this period the inverter input current, Iinverter, remains at zero. By referring back

to Equation 3.2, it can be seen that when Vphase = 0 and the BEMF is positive,
δi

δt
becomes negative. The combination of the conduction and freewheeling states gives

rise to a phase current which is reasonably sinusoidal and in phase with the BEMF,

a critical factor in achieving high power and efficiency.

A complete electrical cycle of the motor consists of the following periods: positive

conduction - freewheel - negative conduction - freewheel. Owing to its two-pole de-

sign, this is also one mechanical cycle, giving the lowest possible electrical frequency

for a given operating speed. The benefit of this is reduced iron loss in the motor and

reduced switching loss in the drive, as well as limiting the computational demand

on the microcontroller.

3.2 200W BLDC Motor Drive Simulation

The first step in developing the system simulation was to design an equivalent-circuit

model of the 200W BLDC motor drive which would later be used as the power sup-

ply load. This was a relatively straightforward process as all the parameters could

be taken from the existing design work for the motor. The top level circuit model

can be seen in Figure 3.3 with the relevant parameters shown in Table 3.1.
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Figure 3.3: Simulation model of the 200W BLDC motor drive

Parameter Value

VDC 23V

Cdrive 2000µF

Lwind 75µH

Rwind 24.6mΩ

Rsrc 40mΩ

Lsrc 1.5µH

BEMF 17.15Vpk−pk

Speed 90,600RPM

Advance 8.6°

Conduction 91°

Freewheel 89°

MOSFETs IRFH7932

Table 3.1: Parameters for the 200W BLDC motor drive model

The SaberRD power electronics simulation package was chosen to carry out all of

the simulation work in this thesis. One of the key reasons behind this choice was the

fact that SaberRD includes powerful control system functions along with detailed

component-level modelling. The combination of these two features gives an advan-

tage over many other SPICE-based circuit simulators which tend to focus solely on

the electrical domain.

45
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The model simulates the motor drive running in a steady state condition with the

supply voltage and motor speed set at the nominal operating point. The advance,

conduction and freewheel angles required to support this operating condition are

derived from real motor measurements. These angles are fed to a logic control block

along with the rotor position, generating the appropriate MOSFET gating signals

at the output. The equivalent-circuit model of the motor was based on the motor

phase voltage equation (see Equation 3.4), allowing the phase current to be deter-

mined from the BEMF, phase voltage, winding resistance and winding inductance.

Vphase = L
δi

δt
+ E + iR (3.4)

The simulation as a whole was designed to be as simple as possible whilst produc-

ing the correct electrical behaviour, most significantly the current draw (Iload) as

this represents the power supply load. By taking a ‘system level’ approach to the

simulation, it was possible to quickly produce accurate first-order behaviour which

matched that of the real motor drive. However, it was necessary to go beyond this

with regards to the inverter MOSFET models, as their non-ideal behaviour had an

impact on the fundamental operation of the motor drive. Shown in Table 3.2 are the

additional parameters used to form the IRFH7932 MOSFET models. Note that the

device performance is based on a gate-source voltage of 4.5V and a gate resistance

of 1.8Ω.

Parameter (MOSFET) Value

RDS(on) 3.3mΩ

Turn-on time 48ns

Turn-off time 20ns

Output capacitance 830pF

Parameter (Body diode) Value

Forward voltage 1V

Reverse recovery time 32ns

Reverse recovery charge 50nC

Table 3.2: Parameters used in the IRFH7932 MOSFET model
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In order to further improve the correlation between the simulated and real behaviour

of the motor drive, it was also necessary to model the power source impedance. As

mentioned previously, the standard motor drive is supplied by a lithium-ion battery

pack. However, in order to provide a consistent, controllable supply with over-

current protection, it was necessary to use a laboratory DC power supply for the

practical motor drive tests. The resistance, Rsrc, and inductance, Lsrc of the power

supply output and associated cabling were therefore included as part of the simula-

tion model.

The key simulated motor drive waveforms are shown in Figure 3.4 along with their

respective hardware measurements for validation. Whilst it is clear that the two

sets of results are closely correlated, there are a few finer observations worthy of dis-

cussion. Firstly, it can be seen in Figure 3.4 (a) that the magnitude of the applied

phase voltage decreases slightly over the conduction period. This happens because

the DC power supply has a non-zero impedance, and therefore does not form a per-

fect voltage source for the inverter. As current is applied to the phase windings,

the DC link capacitor discharges, causing the DC link voltage to fall. During the

freewheeling period, the capacitor continues to recharge until its voltage is equal to

that of the supply.

The second point to note is that a fixed value was used for the simulated phase

inductance, whereas in reality it varies with current and rotor position. Modelling

this effect would require a two-dimensional matrix of values with the position coor-

dinates determined from the BEMF. Due to the complexity of implementing this in

a circuit simulation package, a single mean value was taken from the flux-linkage vs.

current characteristic for the motor. Figure 3.4 (b) shows the simulated peak phase

current to be slightly higher than in reality, suggesting that the average phase induc-

tance value used was too small. However, due to the very close correlation achieved

overall, it was deemed unnecessary to use a more detailed inductance model.

It was not possible to measure the BEMF whilst the motor was operating, as the

application of phase voltage by the inverter prevents it from being externally visi-

ble. The simplest option was to perform a ‘run-down’ test, which involves running

the motor at the nominal speed, switching off the inverter, and then immediately

measuring the BEMF. This means that the waveform in Figure 3.4 (c) had to be

measured separately from the three other waveforms. However, as the measurement
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was made in the first electrical cycle following the inverter shut-down, the change

in frequency and amplitude of the BEMF was negligible.

The final and most important observation to make is the highly dynamic nature of

the load current (Figure 3.4 (d)). Whilst the DC link capacitors provide a certain

amount of decoupling between the power supply and inverter, a very large ripple

current still exists. This waveform is particularly significant, as it defines the load

which is presented to the AC to DC converter, DC to DC converter and APFC

systems discussed over the next four chapters.
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Figure 3.4: Key operating waveforms of the standard 200W BLDC motor (a) phase

voltage (b) phase current (c) back EMF (d) load current
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3.3 Power Converter Design

3.3 Power Converter Design

As outlined in the introduction, the aim of this research is to study the effect of

using minimal DC link capacitance in an offline power system. The 24V BLDC mo-

tor drive characterised in the previous section could clearly not be powered directly

from the mains. It was therefore necessary to research and then develop a power

converter which would allow the low voltage DC system to operate from a 230V

AC supply. This section provides a summary of the key considerations made when

designing this system.

3.3.1 Transformer Isolation

One of the most basic design choices for an offline Switched Mode Power Supply

(SMPS) is whether to use an isolated or non-isolated approach. For voltage step-

down conversion, the most basic solution is to use a line frequency transformer,

rectifier and DC link capacitor. Such a system is reliable, efficient and easy to

design, but is very large and expensive due to the quantities of iron and copper

required to make the transformer. The reason for its size and subsequent cost lies

in the very low frequency at which the transformer operates (50/60Hz). Equation

3.5 [72], derived from Faraday’s law of induction, demonstrates the relationship be-

tween transformer size and operating frequency.

AC =

√
2ERMS

2πNfBsat

1 (3.5)

It can be seen that the cross sectional area of the core, AC , is inversely proportional

to the operating frequency, f , of the transformer. The parameters N (number of

turns) and ERMS (RMS voltage across windings) are largely fixed by the applica-

tion, whilst Bsat (core saturation flux density) is an intrinsic property of the core

material. Even the most advanced electrical steels will begin to saturate around two

Tesla, making core saturation very much a limiting factor. Frequency, therefore, is

the only variable which can be used to widely control the transformer size. It is

for this reason that, since the availability of appropriate switching devices, power

supplies have moved to ever higher operating frequencies to increase power density.

1valid only when E is sinusoidal
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Non-isolated Converters

Given that a line frequency power converter is impractically large and expensive,

the next most basic option is to use a non-isolated buck converter, which has no

transformer at all. It should be noted that in order to do this, the AC supply must

first be rectified as a buck converter is DC to DC only. This is in contrast to a trans-

former, which is AC to AC only, and must therefore be rectified after the voltage

step-down has taken place. The key components of a buck converter are shown in

Figure 3.5.

Figure 3.5: Basic buck converter

Through modulation of the switching device duty ratio, D, the converter’s output

voltage can be regulated such that:

Vout = VinD (3.6)

Equation 3.6 makes it clear that the control system can be very basic, using the

output voltage error to alter D appropriately. Furthermore, the converter hardware

is made up of only four key components and so the system as a whole can be very

simple. In applications such as the conversion of 12V to 5V on a computer mother-

board, a buck converter is ideal; in others it can be completely impractical. A key

limitation is the range of achievable output voltages due to problems encountered

when a very low duty ratio is used. As can be seen from Figure 3.5 the switching

device carries the full load current, which will be many times the average input cur-

rent when a large voltage step-down is required. Furthermore, at low duty ratios the

peak switching device current has to be very large in order to maintain the required

RMS current, as shown in Figure 3.6. The peak to average ratio of any waveform

can be referred to as the ‘crest factor’, and is an important consideration in the

design of power supplies.
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3.3 Power Converter Design

Figure 3.6: Buck converter current waveforms

A high crest factor places a large amount of stress on all the components, not least

the power devices which risk being pushed outside of their Safe Operating Area

(SOA). Given a fixed operating frequency and gate drive performance, the power

device switching losses are mainly determined by the converter input voltage and

output current [73], and so it is clear that large voltage conversion ratios are not

desirable. As the ultimate aim is to produce a highly compact power supply, effi-

ciency is critical as there is little value in producing a low parts-count converter that

requires a very large heatsink. Control problems can also result from using a small

duty ratio, as there is a minimal operating range available. If 10% duty cycle is re-

quired for nominal output at full load, it may not be possible to reduce it far enough

to provide the correct output under light load conditions. Furthermore, short pulses

also mean that measurements made for current regulation may be extremely noisy,

resulting in unstable control of the switching device.

This problem can be largely avoided through the use of cascaded converters, as

discussed in [74] and [75]. The concept is very straightforward; use two converter

stages in series and subsequently the individual voltage conversion requirement is

halved. As demonstrated by Huber and Jovanović [74], this can allow conversion

ratios of 10:1 whilst maintaining high (+90%) efficiency. This is possible as the

voltage across each power device also halved, allowing the use of Schottky diodes

and low RDS(on) MOSFETs. A high overall efficiency can therefore be maintained

even though the energy flowing through the converter is processed twice. The use of

such a technique is particularly attractive as it too avoids the use of a transformer,

helping to keep the size, cost and complexity of the converter down.
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3.3 Power Converter Design

Even through the use of cascaded power stages, there are a number of significant

drawbacks to non-isolated converters. The first stems from the ground connec-

tion shared by the input and output. Where large voltage conversion ratios exist,

an equally large current conversion takes place, meaning that the ground rail sees

a significant change in the current flowing along its length. Due to the non-zero

impedance of the ground rail, a differential voltage will be produced between differ-

ent points of the circuit, subsequently providing different reference voltages for the

various stages of the converter [73]. A very careful Printed Circuit Board (PCB)

layout is required to mitigate this problem.

Due to the position of the switching device in a buck converter, a floating gate

drive circuit is required. Level shifting circuits tend to limit the maximum operat-

ing frequency due to high power dissipation and bootstrap capacitor charging [76],

whereas gate drive transformers limit the duty cycle due to the required core reset

time. Neither of these are ideal, but due to the low nominal duty of the intended ap-

plication, a transformer isolated design is preferable. The switching device location

also causes problems with current measurement, as a sense resistor placed in series

with the power device will have a small differential signal voltage superimposed on

top of a large common mode voltage, requiring the use of a high quality differential

amplifier. The alternative is to use a current sense transformer, but this too suffers

from duty cycle limits and is also costly [73].

A further issue caused by the switching device position is that of discontinuous in-

put current, a problem which is exacerbated by low duty cycle operation. As can

be seen in Figure 3.6, the input current is a sequence of trapezoidal waveforms and

will therefore have a high harmonic content. In most situations this would not be

a problem, but in the case of a mains connected converter a large amount of input

filtering would be required to keep harmonics under control, and as such the design

does not lend itself to applications requiring a high power factor.

The final, and possibly most serious issue is that of safety. If the power devices

fail short circuit, or a control error generates 100% duty cycle, the converter output

will be directly connected to the input. If the output terminal is user-accessible,

such as on a laptop power supply, a serious risk of electric shock exists. Even where

this is not the case, it is likely that there will be serious damage to the connected

product. In a transformer isolated design power device failure will simply result in
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saturation of the transformer, accompanied by a drop in output voltage. In the case

of excessive duty cycle, the maximum output voltage is limited by the transformer

turns ratio, and is unlikely to be dangerous. Finally, by galvanically isolating the

output, a potential earth path is removed, further reducing the risk of shock.

3.3.2 Transformer Design and Topology Selection

Virtually all the shortcomings of non-isolated designs can be overcome through the

use of a transformer, with the notable exception of size. For such a converter to

be viable, every benefit of transformer isolation must be fully utilized, in order that

savings can be made from other areas to offset the size and cost of the additional

component. In a typical offline supply the isolation transformer occupies 25% of the

volume and 30% of the weight, making it the largest individual component in many

cases [77]. Shown in Figure 3.7 is a single switch forward converter, the most basic

isolated variant of a buck converter.

Figure 3.7: Single switch forward converter

Vout =
N2

N1

VinD (3.7)

Control of a forward converter is essentially the same as that of a buck converter,

with the added benefit of a transformer to provide voltage conversion (see Equation

3.7). As the turns ratio can be freely chosen, the power device duty can be opti-

mally selected. A larger duty cycle reduces input capacitor stress and improves the

noise immunity of current/voltage sensing [73]. Furthermore, switching losses can

be made comparatively small as the power device does not have to handle the input
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voltage and output current. Losses in the rectifier are also reduced as the secondary

side voltage is much smaller. This increased efficiency can allow for reduced cooling

requirements and therefore a smaller heatsink. As the switching device is ground

referenced, gate drive and current sensing circuits can also be simplified.

A complication arising from transformer-based designs is the need for control sig-

nals to cross the isolation barrier. For output voltage regulation, secondary side

voltage sensing is required, but this information needs to be fed to the control sys-

tem driving the power device on the primary side. There are two common methods

by which this can be achieved; opto or transformer coupling. Opto-couplers are

typically small, low cost devices but exhibit a non-linear signal transfer ratio with

respect to frequency, temperature and age. Furthermore, they are highly suscepti-

ble to noise and variable manufacturing tolerances [78]. Despite these drawbacks,

in applications with relaxed voltage regulation requirements, the low cost and sim-

plicity of opto-coupling can make it an appropriate choice. As proposed by Balogh

et al. [73], in particularly low performance applications it is possible to approximate

the secondary voltage by sensing the primary voltage via an auxiliary transformer

winding, thus avoiding crossing the isolation barrier altogether.

Core Excitation

Isolation transformers can be split into two categories depending on the method of

core excitation:

� unidirectional - forward and flyback converters

� bidirectional - push-pull, half-bridge and full-bridge converters

As the name suggests, unidirectional excitation involves passing time varying DC

current through the transformer windings, and thus producing only a positive flux

density. This is also referred to as single quadrant operation, which can be seen

in the example transformer B-H loop in Figure 3.8. For bidirectional excitation,

square-wave AC current is fed into the transformer windings, inducing both positive

and negative flux, and is therefore referred to as two quadrant operation.
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Figure 3.8: Hysteresis loop for a generic soft magnetic material

By referring back to Equation 3.5, it can be seen that the transformer core area,

AC , is dependent on the saturation flux density, Bsat. This assumes full sinusoidal

excitation of the core, which is not valid in this case, and so a restatement of the

formula is necessary [79] (see Equation 3.8).

AC =
VDC

4N1fsw(∆B̂)max

1 (3.8)

In this case the converter DC input voltage, VDC , is exerted on the primary winding,

N1, and the saturation flux density component has been substituted with the peak

flux density variation term, (∆B̂)max.

For unidirectional excitation:

(∆B̂)max ≤ 0.5(Bsat −Br) (3.9)

For bidirectional excitation:

(∆B̂)max ≤ Bsat (3.10)

It is clear from Equations 3.9 and 3.10 that bidirectional excitation allows for a

significantly reduced core size, and so effectively makes more efficient use of the

1valid for square-wave VDC
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available core material. This is one of the key advantages of a bidirectional con-

verter topology in terms of increasing power density, but the increased component

count and control complexity must be accounted for. A further consideration is

that when operating in excess of 100kHz, (∆B̂)max is normally reduced below Bsat

to prevent excessive core loss [79].

In single quadrant operation, some means of resetting the transformer core must be

present, providing a freewheeling path for the magnetisation current. This is the

purpose of the tertiary winding shown on the forward converter in Figure 3.7, which

allows the current to flow into the input capacitor, thus recovering the energy. The

tertiary winding is usually wound 1:1 with the primary, often in a bifilar fashion

to provide good coupling (i.e. minimal leakage) [80]. In this case the duty cycle is

limited to 50% to allow for complete resetting of the core.

The flyback transformer is a special case as it is in fact a coupled inductor, which

differs from a transformer in that it intentionally stores energy. A significant air-

gap is introduced into the core to allow for energy storage, with the added benefits

of forcing the residual flux density, Br, virtually to zero and linearising the B-H

characteristic. To a much smaller extent this is also done with forward converter

transformers to improve (∆B̂)max (see Equation 3.9). Power only flows from the

primary to the secondary of the flyback transformer at the point of transition, i.e.

when the power device turns off and current stops flowing in the primary winding.

The inductively stored energy causes current to flow in the secondary, demagnetising

the core in the process, thus removing the need for a reset winding (see Figure 3.10).

Figure 3.9: Basic flyback converter
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Figure 3.10: Basic flyback converter waveforms

As a core reset mechanism is not required in two quadrant operation, it is possible

for the effective duty cycle to reach almost 100%, making the secondary voltage

almost constant DC. As proposed by Balough et al. [73], this can allow the output

filter to be minimised or even omitted in some cases, giving considerable size and

cost savings. Furthermore, the very high duty cycle can allow the switching devices

to operate in a quasi-resonant fashion through the use of parasitic components, sub-

sequently reducing turn-on losses significantly.

Geometries

Transformer cores are available in a wide range of configurations to suit different

applications. In the case of high power density converters, the three most significant

designs will be briefly discussed here. The most commonly used core is known as

an EE core as a consequence of its construction from two back-to-back ‘E’ shaped

sections. The core shape allows the windings to be formed around a bobbin which

makes manufacturing simpler, and also allows the winding ends to enter/leave the

core easily due to the open sides. This is beneficial where multiple output voltages
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are desired, but also increases EMI due to the limited shielding. An air gap can be

accommodated by shortening the centre leg without incurring significant fringing

effects.

Toroidal cores benefit from a high power density (in terms of both size and weight)

and minimal EMI. The toroid shape constrains the flux to the core material very

effectively, virtually eliminating stray fields. As is the case with all winding designs,

if the cross section of the core is round rather than square, the windings will be 11%

shorter for the same given core area, reducing the resistance and therefore losses.

As toroidal cores must be wound directly, rather than using a bobbin, they tend

to be more expensive to manufacture due to the slower and more complex winding

machinery required [72]. The entire surface area of a toroidal transformer can be

open to the air, making cooling more efficient than other approaches which are at

least partly enclosed.

The third and potentially most interesting design is the planar transformer. The

core is made from two thin pieces of soft magnetic material which sit either side

of PCB containing tracks which act as windings. The minimum PCB track width

limits the number of turns, making planar transformers suitable for modest turns

ratios only (up to approximately 10:1). The large exposed surface area of the core

provides excellent thermal characteristics [81]. The result is a very low profile, high

power density, low cost transformer which is ideally suited to mass manufacture.

For lower volume production the devices can be bought as individual components

in a wide range of power ratings.

3.4 Power Supply Simulation

The second step in the simulation design was to develop a power supply model

suitable for running the 200W BLDC motor from a mains source. The design was

focused around the reduced DC link capacitance concept, thus requiring the motor

drive to operate from a supply with 100% DC link voltage ripple. This meant that

the power supply needed only to reduce the rectified mains voltage to a level com-

patible with the existing 24VDC design. The target output voltage was therefore a

rectified sine wave with a mean value of 24V in order to maintain the same load

power. This can be seen in Figure 3.11.
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Figure 3.11: Target output voltage of the reduced DC link capacitance power supply

The simplest way to generate such a voltage would be through the use of a line fre-

quency transformer and diode bridge. Whilst also being efficient and reliable, this

approach would be impractical due to the very large and expensive transformer,

negating any power density gains made through a reduction in DC link capacitance.

Instead, a switch-mode based converter was required which could produce the same

output from a much smaller package, at a much lower cost.

In terms of power supply design, an isolated approach was needed on the grounds of

safety, control flexibility and input current quality. In order to minimise the trans-

former size, two quadrant excitation was needed, ruling out the use of topologies

such as flyback or forward. A half bridge arrangement could have been used, but

the increased DC link capacitance requirement coupled with greater switching de-

vice currents meant that a full bridge was more suitable. The higher power handling

of a full bridge converter made it more robust for development purposes and easily

scalable for larger loads. In terms of transformer topology, a planar design was ideal

due to its high power density, low profile and low losses. A circuit diagram for the

top level model is shown in Figure 3.12.

Figure 3.12: Simulation model of the reduced DC link capacitance power supply
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Given that the output voltage could contain 100% ripple, tight regulation was un-

necessary and so the power supply was designed to operate in an open loop manner.

The only constraints were to limit the peak secondary voltage to 35V to prevent

damage to the motor drive, and to keep the mean voltage between 16.8V and 24V.

As discussed in Section 3.1 the motor drive control system has the ability to produce

constant output power across this supply range. The benefit of such an approach is

a reduction in components and control complexity, helping to reduce the size and

cost of the converter.

From the outset, the simulation model was developed using the parameters of real

components chosen to provide good performance whilst remaining low cost. This

approach was taken throughout the project, as the use of specialist or exotic parts

would not be suitable for mass manufacture of a consumer electronic product. Fur-

thermore, it was critical for the simulation to account for parasitic effects such as

transformer leakage inductance or diode reverse recovery, so the use of idealised

component models would not have been suitable. Due to the very high frequencies

involved, such effects have a significant impact on the power supply operation, par-

ticularly in a reduced capacitance system where there is minimal decoupling between

components.

Shown in Table 3.3 are the key parameters for the power supply simulation model.

The source impedance components (Rsrc, Lsrc and Csrc) serve to model the output

stage of the linear AC source used whilst testing the power supply hardware. Again,

due to the reduced capacitance nature of the power supply, the source impedance

has a considerable effect on the system performance, most significantly the input

current harmonics. It was therefore necessary for the simulation to account for this

in order to produce results consistent with hardware measurements.
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Parameter Value

VAC 230VRMS

CDC 1µF

Transformer SX55 planar

Turns ratio 12:1:1

Cout 5µF

Lout 30nH

Lleak 180nH

Rsrc 400mΩ

Lsrc 5µH

Csrc 100nF

fswitch 500kHz

Duty cycle 75%

MOSFETs IPP65R420

Schottkys STPS20L60

Table 3.3: Parameters for the power supply model

As with the motor drive model discussed in Section 3.2, it was necessary to model

the non-ideal behaviour of the inverter MOSFETs in order to produce accurate sim-

ulation results, in particular the system efficiency. The Schottky rectifier diodes also

had a significant impact on this, however their lack of reverse recovery meant it was

only necessary to account for the 0.56V forward voltage in the model. Shown in

Table 3.4 are the additional parameters used in the IPP65R420 inverter MOSFET

models. Note that the device performance is based on a gate-source voltage of 13V

and a gate resistance of 3.4Ω.

Parameter (MOSFET) Value

RDS(on) 42mΩ

Turn-on time 7ns

Turn-off time 8ns

Output capacitance 45pF

Parameter (Body diode) Value

Forward voltage 0.9V

Reverse recovery time 90ns

Reverse recovery charge 300nC

Table 3.4: Parameters used in the IPP65R420 MOSFET model
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The transformer model is based on a Standex SX55 planar design rated for 350W at

500kHz when bipolar excitation is used. Both the primary and secondary leakage in-

ductances are modelled, with the secondary forming part of the output filter to save

on an additional component. The 5µF output capacitor is modelled as a low ESR

polypropylene film device capable of handling the high ripple current resulting from

such a small filter inductance. Together the two components form a 411kHz low pass

filter suitable for smoothing the rectified 1MHz output voltage/current ripple. The

1µF DC link capacitor is similarly a low ESR polypropylene film device as it also has

to handle a high ripple current across a range of frequencies (100Hz recitifed mains,

3.3kHz motor load frequency and 50-200kHz APFC). A further benefit of using a

film capacitor is the high dielectric strength, allowing for a higher voltage rating

than a typical electrolytic device. In this case a 630V part was used, which along

with the 650V rated MOSFETs gave the potential for high DC link voltages without

damage. If electrolytics were used it would be necessary to have two balanced series

connected devices to produce a sufficient voltage rating, increasing the number of

power supply components.

Schottky devices were chosen for the secondary rectifier as these would give the low-

est possible loss from an uncontrolled device. The small forward voltage and zero

reverse recovery make them suitable for high current, high frequency applications

such as this. An efficiency improvement could have been made through use of a syn-

chronous rectifier, but the additional control complexity would make it prohibitively

expensive. Self-driven synchronous rectifiers are often used to mitigate this problem,

using the transformer secondary voltage to directly drive a pair of FETs. However,

it has been noted by Cobos et al. [82] that this arrangement suffers from a high

sensitivity to input voltage variation as this directly impacts on the MOSFET gate

signals. Use of such an arrangement would therefore be almost impossible in a re-

duced capacitance system.

The full bridge converter is driven in a push-pull fashion as shown in Figure 3.13, the

standard method of control for a hard-switched system. Phase shift control could

also have been used, but offers no advantage without the addition of resonant compo-

nents. The use of a soft switching design was considered in order to reduce losses, but

was ruled out for a number of reasons. Firstly, modern low cost power devices now

have switching times in the order of nanoseconds, allowing hard-switched operation

up to approximately 500kHz with reasonable efficiency [79]. Secondly, successfully
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implementing a soft switching design is much more difficult in a reduced capacitance

system. As noted by Xue et al. [28], the very large DC link voltage ripple means

that the system cannot always be kept within the necessary operating range for zero

voltage or zero current switching. As this is only possible for a portion of the mains

cycle, the efficiency gains from soft switching are less significant. Finally there was

a practical consideration given the limited time available for the project and the

fact that its main focus was on the APFC system, not the DC/DC converter design.

It was therefore decided that this would form part of the future work for the project.

Figure 3.13: Push-pull control waveforms for the full bridge converter

It was deemed unnecessary to develop a full simulation model for the gate driver

circuit as its effect on the MOSFET switching performance could be accounted for

directly. This was done by combining the relevant parameters from the power device

and gate driver IC datasheets, such that transition times, RDS(on), parasitic capaci-

tance and body diode reverse recovery could all be accounted for. For the hardware

implementation a high speed, high current gate driver IC was used for each leg of

the converter, using a bootstrap supply to produce the necessary gate-source voltage

for the high side MOSFET. Due to the high frequencies involved, particular care

was taken during the PCB layout of the gate driver circuits in order to minimise

stray inductance and maximise switching performance.

3.5 Prototype Hardware

In order to validate the simulation results a hardware implementation of the reduced

capacitance power supply was required. This section builds on the basic schematic

and component selection outlined in Section 3.4 and explains the salient features of

the prototype power supply.
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Shown in Figure 3.14 is the PCB based on the simulation schematic in Figure 3.12,

with the key components highlighted for clarity. The first point to note is the pres-

ence of a boost converter front end. This was added for use in the APFC stage of the

project and will be covered in detail in Chapters 5, 6 and 7. All of the results in this

chapter were measured with the boost converter components removed. The DC link

and output capacitors, MOSFETs, gate drives, Schottky rectifier and transformer

are all as described in Section 3.4.

Figure 3.14: Prototype power supply with key subsystems labelled

A dsPIC 33F series microcontroller was used for control of the power supply as well

as other diagnostics and protection features. Whilst this was not in keeping with

the low cost nature of the design, simple control system changes in software saved a

considerable amount of development time. It was always the intention that the final

control system developed would be capable of implementation in a low cost manner,
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using either an analogue design or a very low cost microcontroller. As the PCB was

designed at an early stage in the project, it was necessary to keep the hardware as

flexible and robust as possible for development purposes. This is also the reason a

number of empty component spaces can be seen; some of the parts were found to

be unnecessary at the practical stage.

In order to keep as many control options open as possible, a range of sensors pro-

vided feedback to the microcontroller. Shunt based sensors were used to detect

the DC-side input current (IDC) and inverter current (Iinv), giving wide bandwidth

feedback from a compact and low cost circuit design. These sensors were also used

as part of the hardware and software overcurrent protection systems which disabled

the power device switching on detection of a fault. DC link (VDC) and output volt-

age (Vout) measurements were made using a potential divider to drop the voltage to

a level compatible with the microcontroller Analogue to Digital Converter (ADC).

The output voltage feedback signal was isolated through the use of an optocoupler.

This component was included at the early design stage to make the system as flex-

ible as possible, but owing to the open-loop control system it was never actually

used. The DC link voltage sensor signal was also fed into the hardware protection

system to prevent damage through over voltage. Schottky diode clamps were fitted

in case any sensor signal went outside the ADC input range.

A serial communication interface was added to allow real time data logging for de-

bugging and diagnostics purposes. This was particularly useful for monitoring ADC

data before and after processing, making it easier to fine tune the software param-

eters. The low voltage DC supplies for the control hardware and gate drive circuits

were provided by isolated TRACO units for simplicity. Ultimately these would also

be replaced with low cost on-board supplies, but this was seen as unnecessary for

the purposes of this project.

A final point to note is that due to the boost converter not being used at this

stage, the power supply output voltage is lower than the required 24Vmean. The

transformer turns ratio was chosen based on a peak DC link voltage of between

400-450V, and so the rectified mains voltage (330Vpeak) results in a lower output

voltage. As can be seen in the next chapter, this subsequently causes the motor

drive load to operate at a reduced power.
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Chapter 4

Test Results and Validation of the

Power System Simulation

This chapter contains the results from simulation and practical testing of the re-

duced DC link capacitance power supply described previously. The behaviour of

the system is analysed using three different loads, in order to demonstrate how

its performance is affected under different operating conditions. Particularly close

attention is paid to the impact the power supply load has on the input current

harmonics and power supply efficiency. For the majority of the tests carried out,

practical and simulation results are shown together with a close agreement between

the two. Where this is not possible, simulation results are provided alone to give an

indication of the expected system behaviour.

4.1 Power Supply Testing with a Resistive-Inductive

Load

The initial testing phase of the power supply simulation and hardware used an RL

load to check the basic functionality of the system. A 1.6W wire-wound power re-

sistor was used which had a significant inductance of 10µH due to its construction

method. The power supply setup remains unchanged for all the tests carried out in

this chapter, using the parameters found in Table 3.3.
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Figure 4.1: Simulation and hardware test setup for the reduced capacitance power

supply with an RL load

By observing Figure 4.2, 4.3 and 4.4 it is immediately clear that the very small DC

link capacitance causes the power supply output and DC link voltages to follow the

rectified mains input. The linear RL load subsequently causes the output and input

current to have the same shape, producing a high power factor as seen in Figure 4.5.

The power supply does still present a slightly capacitive load to the mains giving

rise to the 4% leading phase displacement. This is of little significance however as

a power factor of 0.998 is still achieved.

Figure 4.2: Power supply output (a) voltage and (b) current for an RL load
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Figure 4.3: Power supply DC link voltage for an RL load

Figure 4.4: Power supply input (a) current and (b) voltage for an RL load

Further results can be seen in Table 4.1 along with the relative error between sim-

ulation and hardware measurements. A very close correlation is achieved between

all of the waveforms, with a maximum error of 3.5% in the output voltage.
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Parameter Hardware Simulation Error

IAC 0.890ARMS 0.880ARMS 1.1%

VAC 229VRMS 233VRMS 1.7%

VDC 204.1Vmean 210.2Vmean 2.9%

Vout 15.85Vmean 15.30Vmean 3.5%

Iout 9.27Amean 9.40Amean 1.4%

Pin 204W 205W 0.5%

Pout 183W 187W 2.1%

Efficiency 89.7% 91.2% 1.6%

Table 4.1: Key measurements for the power supply hardware and simulation with

an RL load

Figure 4.5: Oscilloscope screenshot showing power supply input voltage and current

for an RL load

Shown in Figure 4.6 is the transformer primary voltage Vpri and current Ipri. Due

to the construction of the planar transformer it was not possible to directly measure

the primary current. As marked on Figure 4.6 (b), the current was instead measured

at the source pin of Q4 using a Rogowski coil, meaning that only positive current

could be detected.

The most significant observation is the discrepancy between the two primary voltage

waveforms during the freewheeling period. During this time the hardware waveform

does not match the idealised waveform shown in Figure 3.13. The reason for this is

that during the freewheeling period all of the MOSFETs are off, which causes the

transformer primary voltage to become undefined once the primary current stops

flowing. This could be overcome by forcing zero volts across the primary during the
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freewheeling period, but there is no particular advantage to doing this. Rather than

switching all the power devices off during the freewheeling period, either the high

side (Q1/Q3) or low side (Q2/Q4) MOSFETs would be kept on. The simulation

results do not show this issue as the MOSFET models all have identical parameters.

The devices therefore switch off in exactly the same amount of time and have the

same impedance, creating a net voltage of zero across the transformer primary.

Figure 4.6: Power supply transformer primary (a) voltage and (b) current for an RL

load

4.2 Power Supply Testing with a BLDC Motor

Drive

The second round of tests on the power supply were carried out using the 200W

BLDC motor described in Section 3.1. A diagram of the hardware and simula-

tion setup for this test is shown in Figure 4.7, with the motor drive parameters as

per Table 4.2. As previously, the power supply parameters can be found in Table 3.3.
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4.2 Power Supply Testing with a BLDC Motor Drive

Figure 4.7: Simulation and hardware test setup for the reduced capacitance power

supply and 200W BLDC motor drive load

Parameter Value

Vout 18Vmean

Cdrive 2000µF

Lwind 75µH

Rwind 24.6mΩ

BEMF 17.15Vpk−pk

Speed 94,500RPM

Advance 8.6°

Conduction 53°

Freewheel 127°

MOSFETs IRFH7932

Table 4.2: Parameters for the 200W BLDC motor drive when running from the

reduced capacitance power supply

As the motor drive was designed to operate from a stable 24VDC supply two small

modifications were required for it to run successfully from the reduced capacitance

power supply. Firstly it was necessary to provide a constant 5V supply rail for the

control electronics. This was achieved by adding a blocking diode and a capacitor

before the existing 5V regulator to smooth the voltage ripple as shown in Figure 4.8.

The second modification was a minor change to the drive software which involved
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4.2 Power Supply Testing with a BLDC Motor Drive

the removal of the under-voltage lockout. This prevented the drive from shutting

down when the power supply output voltage fell below 16.8V; an event which would

otherwise occur every 10ms.

Figure 4.8: Additional smoothing capacitor and diode added to stabilise 5V rail on

the motor drive PCB

Figure 4.9: Power supply output (a) voltage and (b) current for a 200W BLDC

motor load

It is clear from Figure 4.9 that the power supply output voltage does not directly

resemble the rectified mains. This is due to the 2000µF capacitance in the motor

drive (Cdrive) acting as part of the output filter and providing a certain amount of
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4.2 Power Supply Testing with a BLDC Motor Drive

voltage holdup. For a considerable amount of time the power supply output voltage

is larger than the available supply voltage, causing the output current to drop to

zero during this period. Due to the minimal (high voltage) DC link capacitance,

this non-sinusoidal load current shape is directly reflected in the input current shape

as shown in Figure 4.11 (b).

Figure 4.10: Power supply DC link voltage for a 200W BLDC motor load

The slight discrepancy between the two DC link voltage waveforms (Figure 4.10) is

due to a limitation in the modelling of switching loss in the full system simulation.

When the output current falls to zero (see Figure 4.9 (b)) there is no longer any load

on the power supply. If the power supply was 100% efficient the DC link voltage

would be constant during this period as there would be nothing to discharge it.

However, as the DC link capacitance is so small the inverter losses still present a

significant enough load to discharge it rapidly. When the DC link voltage becomes

very small, the simulated inverter loss is negligible leading to the reduced discharge

rate of the DC link capacitor. During this period the real (hardware) inverter loss

is still significant, causing the DC link capacitor to discharge to virtually zero. This

discrepancy can also be seen in the hardware input current (Figure 4.11) where a

small current draw still exists near the mains zero crossing. As there is no load

on the power supply this current draw is solely to supply the inverter losses. The

simulation results show no current draw during this period as the DC link voltage

is still higher than the mains voltage.

This relatively long period of time when the power supply is unloaded is the reason

for the notable drop in efficiency (Table 4.3) compared to the RL load results (Table

4.1). This issue is analysed in more detail in Section 4.5.
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Figure 4.11: Power supply input(a) voltage and (b) current for a 200W BLDC motor

load

Figure 4.12: Oscilloscope screenshot showing power supply input voltage and current

for a 200W BLDC motor load
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Parameter Hardware Simulation Error

IAC 0.91ARMS 0.85ARMS 6.6%

VAC 230VRMS 230VRMS 0%

VDC 202Vmean 218Vmean 7.4%

Vout 18Vmean 18.7Vmean 3.7%

Iout 6.88Amean 6.53Amean 5.1%

Pin 160W 157W 1.9%

Pout 133W 130W 2.3%

Efficiency 83.1% 82.8% 0.4%

Table 4.3: Key measurements for the power supply hardware and simulation with a

200W BLDC motor load

Measurement Setup for Fourier Analysis

The simulation and hardware results in this thesis include a considerable amount of

Fourier analysis in order to clearly demonstrate the harmonic performance of each

test setup. An overview of the Fast Fourier Transform (FFT) acquisition method is

given below and is consistent throughout the thesis.

Parameter Hardware Simulation

Window function Rectangular Rectangular

Sample time 40ms 40ms

Sampling frequency 1MHz 1MHz

Frequency span 500kHz 500kHz

Frequency resolution 50Hz 50Hz

Processor Tektronix DPO7104 oscilloscope SaberRD waveform calculator

Table 4.4: Fast Fourier Transform acquisition settings used for all tests

It should be noted that when testing a product for compliance with BS EN 61000-3-

2 regulations, it is necessary to use a longer 1.5 second capture window followed by

an arithmetic average of each harmonic amplitude. This is to ensure that variations

in the cycle-by-cycle harmonic spectrum of the product are accounted for. There

are two reasons this exact procedure was not adhered to during the results analysis

in this thesis. Firstly, it was not practical to generate 1.5 seconds of simulation data

due to the 10ns time step required to properly capture the power device switching
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events. As well as taking many hours to complete, the simulation PC did not have

enough memory to store the vast amount of data which would have been produced.

Secondly, due to the idealised nature of the simulation, it produced completely con-

sistent results from one mains cycle to the next, therefore making a long capture

window redundant. Whilst neither of these issues applied to the hardware tests, it

was deemed sensible to use the same test method for consistency.

Fourier analysis of the input current (Figure 4.13 and 4.14) shows the presence of

significant low order harmonics as well as the motor drive switching frequency. Fig-

ure 4.14 includes the BS EN 61000-3-2 Class A harmonic limits which have been

scaled down based on the active input power to the system. If the absolute harmonic

limits were used (Table 1.1) there would be no risk of exceeding them in this case

due to the relatively low power of the system. Therefore, in order to demonstrate

the scalability of the approach used in this thesis, all harmonic analysis is carried out

with respect to the relative, rather than absolute harmonic limits. This is identical

to the approach taken for Class D devices (Table 1.1), whereby the limits are given

as mA per Watt of active input power.

Figure 4.13: Power supply input current harmonics with a 200W BLDC motor load
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4.3 Power Supply Testing with a Zero Capacitance BLDC Motor Drive

Figure 4.14: Input current harmonics with a 200W BLDC motor load shown against

scaled BS EN 61000-3-2 Class A limits

It can be seen that a high load capacitance causes distortion to the input current

shape in exactly the same manner as a large DC link capacitance would. By dividing

the capacitance on the secondary side of the transformer by the square of the turns

ratio, the equivalent primary side capacitance can be deduced. Given the turns ratio

is 12 in this case, the equivalent DC link capacitance is 13.9µF. In order to improve

the harmonic performance of the complete system it is therefore necessary to also

minimise the load capacitance as demonstrated in Section 4.3.

4.3 Power Supply Testing with a Zero Capaci-

tance BLDC Motor Drive

For the following tests the two parallel 1000µF motor drive capacitors were removed

to assess the conclusions reached in the previous section. As discussed in Section

3.1, the motor drive was originally designed to operate from a lithium-ion battery

pack. To prevent the cells from overheating, the capacitors were fitted in parallel

to reduce the amplitude of the ripple current drawn from the battery pack. When

operating from the reduced capacitance power supply, these components were not

strictly necessary for the motor drive to run, and hence they were removed. A dia-
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gram of the hardware and simulation setup for these tests is shown in Figure 4.15,

with the motor drive parameters as per Table 4.5. As previously, the power supply

parameters can be found in Table 3.3.

Figure 4.15: Simulation and hardware test setup for the reduced capacitance power

supply and zero capacitance 200W BLDC motor drive load

Parameter Value

Vout 16.5Vmean

Cdrive Removed

Lwind 75µH

Rwind 24.6mΩ

BEMF 17.15Vpk−pk

Speed 90,000RPM

Advance 10°

Conduction 91°

Freewheel 89°

MOSFETs IRFH7932

Table 4.5: Parameters for the zero capacitance 200W BLDC motor drive when

running from the reduced capacitance power supply

As seen in Figure 4.16 (a) and 4.18, the removal of the motor drive capacitance

caused the output and DC link voltage waveforms to resemble a rectified sinusoid,
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much like those seen in the earlier resistive load tests. On the other hand, it is

clear from Figure 4.16 (b) that the power supply output current envelope does not

match that of the output voltage, indicating a non-resistive load behaviour. Due to

the minimal decoupling available, this directly affects the input current shape and

therefore power factor. The non-linear load current draw occurs as the standard

motor drive control system is designed to produce a constant output power over a

range of supply voltages (as outlined in Section 3.1). This means that as the power

supply output voltage falls, the control system attempts to increase the current to

compensate. Under these conditions the motor drive therefore exhibits a negative

impedance characteristic which is not conducive to producing a high input power

factor.

Figure 4.16: Power supply output voltage (a) and current (b) for a zero capacitance

200W BLDC motor load
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4.3 Power Supply Testing with a Zero Capacitance BLDC Motor Drive

Figure 4.17: Zoomed view of output current measurement in Figure 4.16

Figure 4.18: Power supply DC link voltage for a zero capacitance 200W BLDC

motor load

As with the resistive-inductive and standard motor drive loads tested, the power

supply input current profile (Figure 4.19) matches that of the output current (Fig-

ure 4.16) due to the minimal decoupling. An even greater drop in efficiency (Table

4.6) is seen with the zero capacitance motor load because the power supply spends

more time in an unloaded state. Given that the motor drive has a fixed conduc-

tion angle of 91° out of every 180° half-cycle, it only presents a load to the power

supply for approximately 51% of the time. By contrast the 2000µF capacitance of

the standard motor drive causes it to present a load 65% of the time as can be seen

in Figure 4.9, and hence the efficiency is greater. It can also be seen that with the

standard motor drive the power supply is only unloaded when the DC link voltage

is small, making the loss less severe. For the tests using a power resistor there is a

constant load on the power supply, resulting in the highest overall efficiency. This

issue is discussed in more detail in Section 4.5.
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Figure 4.19: Power supply input (a) voltage and (b) current for a zero capacitance

200W BLDC motor load

Parameter Hardware Simulation Error

IAC 0.92ARMS 0.97ARMS 5.2%

VAC 230VRMS 230VRMS 0%

VDC 205Vmean 206Vmean 0.5%

Vout 16.5Vmean 16.3Vmean 1.2%

Iout 7.93Amean 7.86Amean 0.9%

Pin 156W 159W 1.9%

Pout 120W 123W 2.4%

Efficiency 76.9% 77.4% 0.6%

Table 4.6: Key measurements for the power supply hardware and simulation with a

zero capacitance 200W BLDC motor load

As with the standard motor drive load, the input current draw caused by the no-

load losses can be seen in the oscilloscope screenshot in Figure 4.20. In between the

pulses caused by the motor drive conduction it can be seen that the input current
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does not fall to zero, instead oscillating at a frequency of 1MHz due to the power

supply switching (2x 500kHz PWM frequency). As there is no power supply output

current during these periods, the input current supplies only the inverter switching

losses. As the bridge rectifier and DC link capacitor ESR losses were under 0.5W

each they were relatively insignificant. Additionally, the gate drivers and control

electronics were powered from external sources so they did not contribute to the

input current draw at all.

Figure 4.20: Oscilloscope screenshot showing power supply input voltage and current

for a zero capacitance 200W BLDC motor load

Shown in Figure 4.21 and 4.22 are the FFT results for the power supply input cur-

rent whilst running the zero capacitance motor drive. Compared with the standard

motor drive results (Figure 4.14), a significant reduction in low order harmonics can

be seen. However, It is clear that further work is still required for the system to

meet the scaled EN61000-3-2 harmonic limits. It is also evident that by removing

the large capacitors from the motor drive, the 3kHz load frequency harmonics have

become far more prominent. Despite almost meeting the harmonic limits, the net

result is a power factor of only 0.712. This would prevent the system from meeting

the requirements of other desirable standards such as Energy Star.
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Figure 4.21: Input current harmonics for a reduced capacitance power supply and

motor drive

Figure 4.22: Input current harmonics for a reduced capacitance power supply and

motor drive shown against scaled BS EN 61000-3-2 Class A limits
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4.3.1 Motor Drive Conduction Angle Modulation

To reduce the magnitude of the low order (0-2kHz) input current harmonics, it was

necessary to alter the motor drive control system so that the inverter current de-

mand was always proportional to the supply voltage. This would then make the

load appear linear and reduce the level of harmonics in the input current. As a

result of this change, the low order harmonics (particularly the 3rd, 5th and 7th) can

be eliminated at their source rather than through passive or active filtering, helping

to reduce the size and cost of the overall system. This technique does not affect the

size of the motor drive switching harmonic (3.1kHz), but due to its higher frequency

it can be suitably attenuated using a relatively small filter.

Existing Implementation

This same issue was faced by the industrial sponsor during the development of

a single-phase, mains-powered, 1600W BLDC motor drive system for high power

compressor applications. The motor drive also used a reduced capacitance approach

with 100% DC link voltage ripple, in an effort to improve the net power density and

power factor of the system. This similarly suffered from a non-linear load behaviour,

whereby the current drawn by the motor drive was not proportional to the DC link

voltage. The remainder of this section describes the technique used to solve this

problem, which was subsequently adapted and simulated for the 200W motor drive

used in this research.

Shown in Figure 4.23 is the simplified circuit for the 1600W BLDC motor drive

system, along with the DC link voltage and speed over one mains cycle. Given that

there is 100% ripple in the DC link voltage, it is not possible to maintain constant

power over a complete mains cycle. For the purposes of improving input current

harmonics, it is of course desirable to make the motor power vary sinusoidally, such

that it looks like a linear load and achieves a high power factor. This sinusoidal

variation in power subsequently causes the speed to vary at the same frequency, but

due to the inertia of the system it is not significant enough to be noticed by the user,

nor does it cause any significant issues with the performance of the compressor. It

should be noted that the optimisation of the motor drive for harmonic performance

does have a negative impact on power density, requiring a slightly larger motor for a

given power output. However, extensive research has shown this to be a worthwhile
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compromise; a point made particularly clear through the decision to implement it

in a mass-manufactured product.

Figure 4.23: Schematic and supply voltage waveforms for the 1600W motor drive

To further improve the input current quality, the drive control system modulates

the size of the conduction angle in a predefined pattern synchronised to the line

voltage. As was shown in Figure 3.2 the conduction angle is the portion of the

motor electrical half-cycle during which the DC link voltage is applied across the

motor winding terminals. For a single-phase motor this can be up to 180 degrees

(as there is a positive and negative half-cycle), and is the period where the motor

receives power from the drive.

To ensure the modulation sequence remains synchronised with the mains, the system

includes a zero crossing detector. This provides a digital signal to the microcontroller

which changes state each time the mains voltage crosses zero. When this occurs,

a ‘change notification’ interrupt is triggered which resets the lookup table pointer

to the beginning of the conduction angle map. To ensure that supply voltage noise

does not cause false triggering of the zero crossing detector, an RC lowpass filter is

used with the cutoff frequency chosen to provide maximum noise rejection without

introducing significant phase shift.

86



4.3 Power Supply Testing with a Zero Capacitance BLDC Motor Drive

Figure 4.24: (a) Mains-synchronised conduction angle modulation sequence and (b)

resulting inverter current

The modulation pattern (Figure 4.24(a)) causes the envelope of the inverter current

draw (Figure 4.24(b)) to follow the shape of the DC link voltage. The 2.5mH filter

inductor and 4.4µF DC link capacitor form a 1.5kHz low pass filter, resulting in a

25dB reduction in the inverter switching frequency component, and subsequently

an input current as shown in Figure 4.25. If this control modification had not been

implemented, the motor drive would have produced more low-frequency current

harmonics; ultimately requiring a lower frequency, and therefore larger input filter.

This being said, even with the conduction angle modulation system, the necessary

LC filter makes up a significant proportion of the overall motor drive volume and

cost.
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Figure 4.25: Line current of the 1600W BLDC motor

Adaptation for the 200W BLDC Motor Drive

A look up table was produced relating the supply voltage to the motor conduction

angle, which then allowed control of the phase current. As the shape of the supply

voltage was known in advance (a rectified sinusoid), it was simpler to modulate the

conduction angle based on time rather than voltage. By synchronising the look up

table to the zero crossing of the mains supply, a pre-programmed sequence could be

used without continuous monitoring of the DC link voltage. The contents of this

lookup table are shown graphically in Figure 4.26.

Figure 4.26: Conduction angle modulation map to improve motor drive low order

harmonic performance

Due to the time constraints on the project, the conduction angle modulation con-

troller could only be tested in simulation. A hardware implementation would have
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required the addition of a mains zero crossing detector along with considerable

changes to the drive control software. However, the simulated input current wave-

form (Figure 4.27) and its respective FFTs (Figure 4.28 and 4.29) show a marked

reduction in low order harmonics due to this change, particularly below 500Hz. On

the other hand, the system is much less effective above 1kHz, with a number of

harmonic components hitting the scaled limits.

Figure 4.27: Input current comparison with and without conduction angle modula-

tion

Figure 4.28: Input current harmonics with and without conduction angle modulation
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Figure 4.29: Input current harmonics shown against scaled BS EN 61000-3-2 Class

A limits

A downside of improving the low order harmonic performance of the system is an

increased motor torque ripple at 100Hz, which produces a corresponding ripple in

the motor speed. This is seen in the performance of the 1600W BLDC motor, but

is not significant enough to be noticed by the user, and therefore not considered a

major problem. The net positive impact of this modification means that a practical

implementation would be a desirable future extension to this work.

4.4 Power Supply Simulation with a Conventional

Smooth DC Link Voltage

To provide a point of comparison, the simulation model was altered to have a con-

ventional smooth DC link voltage, keeping the zero capacitance BLDC motor drive

as the load. A diagram of the simulation setup for these tests is shown in Figure

4.30, with the relevant motor drive parameters in Table 4.7. As previously, the

power supply parameters are unchanged and can be found in Table 3.3. Unfortu-

nately, it was not practical to add a large electrolytic capacitor to the power supply

PCB, so no hardware results could be obtained for the tests in this section.
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Figure 4.30: Simulation and hardware test setup for the high capacitance power

supply and zero capacitance 200W BLDC motor drive load

Parameter Value

Vout 25.7Vmean

Cdrive Removed

Lwind 75µH

Rwind 24.6mΩ

BEMF 17.15Vpk−pk

Speed 90,600RPM

Advance 10°

Conduction 79°

Freewheel 101°

MOSFETs IRFH7932

Table 4.7: Parameters for the zero capacitance 200W BLDC motor drive when

running from a high capacitance power supply

By replacing the 1µF film DC link capacitor model with a 470µF electrolytic device,

a ripple voltage of 20Vpk-pk was achieved as shown in Figure 4.31. Consequently

there was only a very short period where the supply voltage exceeded the DC link

voltage, restricting the input current flow to short pulses (see Figure 4.32). As a

result of this the input current has a very rich harmonic spectrum, leading to a high

RMS input current and subsequently a very poor power factor of 0.45.
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Figure 4.31: Simulated DC link voltage and rectified mains voltage with a 470µF

DC link capacitor

Figure 4.32: Simulated input current and voltage with a 470µF DC link capacitor

As can be seen in Figure 4.34 the scaled BS EN 61000-3-2 Class A limits are greatly

exceeded when using a conventional DC link design, and would require heavy fil-

tering or APFC to bring the harmonics under control. The higher frequency motor

drive harmonics are however completely eliminated by the DC link capacitor.
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Figure 4.33: Input current harmonics for a conventional smooth DC link

Figure 4.34: Input current harmonics for a conventional smooth DC link shown

against scaled BS EN 61000-3-2 Class A limits

An advantage of this approach is that the motor drive can produce a higher power

from the same peak DC link voltage, reducing the stress on components and/or

allowing lower rated parts to be used. It is also easier to keep the motor at its ideal
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operating point as the supply voltage is not constantly changing. The results in this

section further demonstrate the necessary trade-off between input and output power

quality in a single-phase AC to DC converter. A large amount of energy storage

produces a high quality DC output but a poor AC input power factor. Conversely,

the earlier results in this chapter show that using a small amount of energy storage

produces a higher input power quality but a poorly regulated DC supply.

Figure 4.35: Simulated output current and voltage with a 470µF DC link capacitor

Figure 4.36: Zoomed view of Figure 4.35

The use of a large DC link capacitor alone does not improve the efficiency of the

power supply. As it is positioned before the inverter it provides no smoothing of the

load current pulsations and therefore the power supply still spends a large propor-

tion of the time unloaded. This can be seen in the zoomed output current waveform

in Figure 4.36. As explained in Section 4.5, the inverter switching loss is increased
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as the average DC link voltage is higher than that of the reduced capacitance design.

In order to improve the efficiency of the basic hard switched converter, a large out-

put filter capacitor would also be required to ensure a constant load on the inverter.

Parameter Simulation

IAC 2.34ARMS

VAC 230VRMS

VDC 321Vmean

Vout 25.7Vmean

Iout 7.50Amean

Pin 245W

Pout 182W

Efficiency 74.3%

Power factor 0.45

Table 4.8: Key measurements for the 470µF DC link capacitor simulation

The two capacitors shown in Figure 4.37 are the 1µF film device used in the re-

duced capacitance power supply and a 470µF electrolytic part for comparison. The

electrolytic capacitor is over 13 times the volume and 5 times the cost of the film

capacitor, highlighting the benefit of a reduced capacitance design. A further point

to note is that electrolytic capacitors are generally limited to 450V to prevent break-

down of the dielectric (the pictured device is rated to 400V). In situations where

a boost converter front end is used this may not be high enough, requiring series

connected devices and balancing resistors. As the net capacitance is halved in a

series connection it is necessary to use four capacitors to achieve the same effect,

increasing the volume, cost and manufacturing time without making any gains in

performance. The required series/parallel arrangement required is shown in Figure

4.38.
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Figure 4.37: Photo showing the size difference between a 1µF 630V film capacitor

and a 470µF 400V electrolytic capacitor

Figure 4.38: The necessary series/parallel arrangement needed to build up a high

voltage rating when using electrolytic capacitors

Another important extension to this work would be an investigation into the effect

that reduced DC link capacitance has on the motor design. To fully evaluate the

benefits of this concept it is necessary to offset the gains in converter power density

and power factor against the potentially increased size and/or losses in the motor. A

thorough investigation of this issue would however involve significant further work,

and is beyond the scope of this research.
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4.5 Power Supply Switching Loss Analysis

The preceding hardware and simulation results have consistently highlighted a link

between the efficiency of the power supply and the type of load connected. The re-

sults suggest that the inverter losses are higher when the power supply is unloaded

(zero output current) than when it is loaded (positive output current). To gain a

better understanding of the circuit operation, a more detailed analysis of the para-

sitic effects is necessary. As shown in Figure 4.39 there are three capacitances which

affect the switching performance of a MOSFET - the gate-source CGS, gate-drain

CGD and drain-source CDS capacitances. The input capacitance CISS is made up of

CGS and CGD, with the output capacitance COSS made up of CDS and CGD. For the

power devices used, CISS = 890pF and COSS = 36pF.

Figure 4.39: The key parasitic capacitances which affect MOSFET switching per-

formance

The parasitic winding capacitance of the transformer is also critical in determin-

ing the power supply switching losses. The construction of the planar transformer

causes it to have a higher than normal parasitic capacitance as the flat interleaved

windings act as parallel plates which subsequently store charge. This is an accepted

compromise in order to achieve a high power density and very low leakage induc-

tance. For the planar device used, the parasitic capacitance seen from the primary

winding (Cpri) is 200pF.
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Figure 4.40: Simplified inverter model showing relevant parasitic capacitances

Shown in Figure 4.40 is a model of the inverter including the parasitic capacitances,

with the relevant waveforms shown in Figure 4.41. When the inverter is loaded,

the waveforms appear as expected with the primary voltage Vpri directly following

the gate drive inputs. During the dead time period Vpri falls to zero as both legs

of the inverter apply
1

2
VDC to the transformer terminals. The primary winding ca-

pacitance Cpri is completely discharged at this point and the four MOSFET output

capacitances COSS are charged to
1

2
VDC.

Considering the unloaded primary voltage waveform, Vpri does not fall to zero dur-

ing the dead time period unlike the loaded case. The unloaded primary winding

appears as an open circuit and all four MOSFETs are off, meaning that there is no

path through which to discharge the parasitic capacitances. The primary winding

and MOSFET drain-source voltages are therefore static at VDC until the next pair

of MOSFETs are turned on (VQ1 is shown as an example in Figure 4.41). This was

confirmed by the hardware measurement shown in Figure 4.42, with the Q1 drain-

source voltage remaining at zero after the gate-source charge has been removed. It

is not until Q2 is turned on that the Q1 parasitic capacitance has a current path to

charge through, allowing its voltage to rise to VDC. The assertion of negative output

voltage across the load causes Cpri to discharge from VDC to -VDC.
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4.5 Power Supply Switching Loss Analysis

Figure 4.41: Power supply switching waveforms in the loaded and unloaded state

Figure 4.42: Q1 gate-source and gate-drain voltage with no load on the power supply

The key point to note from the previous observation is that at the switching tran-

sition points, the parasitic capacitances are charged to twice the voltage in the

unloaded case. When a MOSFET is turned on, its output capacitance is shorted,

dissipating the stored energy within the device junction. Similarly, the primary

winding capacitance is discharged through a pair of MOSFETs, also dissipating its

stored energy in the devices. It is clear that higher parasitic capacitor voltages will

therefore cause greater loss in the switches.
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4.5 Power Supply Switching Loss Analysis

The standard formula for estimating MOSFET switching loss [83] is given as:

Psw(total) = Psw + PCOSS (4.1)

Where:

Psw =
1

2
IDS.VDS.(ton + toff ).f (4.2)

PCOSS =
1

2
COSS.V

2
DS.f (4.3)

VDS and IDS are the MOSFET drain-source voltage and current, f is the switching

frequency and ton and toff are the turn on and turn off switching times. The first

term of the equation, 4.2, accounts for the loss due to the simultaneous non-zero

current and voltage during the device switching transition. The duration of this

period can be approximately determined by the gate drive current (0.75A) and gate

charge (31.5nC), giving a transition time of 42ns. The second term, 4.3, accounts

for the dissipation of the energy in the parasitic output capacitance.

In order to obtain the full switching loss in this case, the effect of discharging the

primary winding capacitance Cpri must also be accounted for:

PCPRI =
1

4
Cpri.V

2
pri.f (4.4)

The reason for the
1

4
term in Equation 4.3 is that the energy stored in Cpri is dis-

charged in both conducting switches, with half of the loss occurring in each device.

Another loss mechanism which needs to be accounted for is the conduction loss, de-

termined simply by the average drain current IDS and device channel on-resistance

RDS(on):

Pcond = I2
DS.RDS(on) (4.5)
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The final factor to be accounted for is the body diode reverse recovery loss PRR. Due

to the difficulty of calculating this in isolation, the loss figures were taken directly

from the full system simulation which included a fully parameterised body diode

model for each of the inverter MOSFETs. At the mean DC link voltage the loss was

found to be 0.25W when loaded and 0.31W when unloaded. The total MOSFET

loss per device is therefore:

Ploss = Psw + PCOSS + PCPRI + Pcond + PRR (4.6)

Using the previous equations the loss breakdown was determined as shown in Table

4.9. The calculations are based on the inverter operation with the zero capacitance

motor drive load as in Section 4.3. In each case the average DC link voltage was

230V, switching frequency 500kHz and the average primary winding current was

1.11A when loaded.

Psw (W) PCOSS (W) PCPRI (W) Pcond (W) PRR (W) Total (W)

Loaded 1.37 0.12 1.32 0.52 0.25 3.58

Unloaded 0 0.48 5.29 0 0.31 6.08

Table 4.9: Loss breakdown for individual inverter MOSFETs in the loaded and

unloaded states

As discussed previously the zero capacitance motor drive presents a load to the

inverter 51% of the time, leaving it unloaded for the remaining 49%. This is the

case as the drive is in the conduction phase for 91 degrees and the freewheeling

phase for 89 degrees of each motor half-cycle. The average power device switching

loss is therefore 4.78W, making the total inverter loss 19.14W for all four devices.

This is a fairly close match to the 20.7W figure obtained from the system simulation.

It is clear that hard switched operation at 500kHz is not ideal for this converter

design when a highly transient load is connected. The data in Table 4.9 shows that

the inverter losses are 69.8% higher when no load is present, due mainly to PCPRI
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being four times higher in this situation. The 89.7% efficiency achieved with an

RL load shows that in a more conventional scenario the power supply design would

provide good performance. However, for this application it is clear that further

work is required to achieve an acceptable performance in power factor and efficiency

simultaneously. A number of options are available to improve the efficiency of the

system, but they all have drawbacks associated with them. Reducing the power loss

will of course reduce the cooling requirements, meaning that smaller heatsinks can

be used. This must be factored in when deciding on the best overall approach.

1. Reduce the switching frequency of the inverter - transformer and filter com-

ponent size will increase along with cost

2. Use a transformer with lower winding capacitance - may require the use of a

larger/heavier/lower frequency design

3. Use power devices with improved switching performance such as Gallium Ni-

tride based FETs - higher cost and more complex gate drive requirements

4. Use a zero voltage switching topology - challenging to implement with a highly

dynamic load and DC link voltage

5. Implement a no-load detection system to shut down or reduce the frequency

of the inverter when there is zero output current demand - increased control

system complexity.

6. Add a large output filter inductor and capacitor to remove the load frequency

harmonic - as well as increasing the system size and cost this will introduce

low order harmonics to the input current in the same manner as a large DC

link capacitor

4.6 Conclusion

Following on from the literature review research, this chapter has practically evalu-

ated the concept of reduced DC link capacitance. It is clear that for low cost motor

drive applications, improvements can be seen in both power factor and power density

when minimal energy is stored in the DC link. By allowing the use of film capacitor

technology there is also potential for greatly increasing the product lifetime. A tech-

nique has been presented for reducing low order harmonics within the motor drive
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4.6 Conclusion

itself, although as mentioned previously this was adapted from an existing system

and is not entirely original research. It has been demonstrated that by limiting the

capacitance in the power supply and the load, any transient in one is immediately

reflected in the other. The decoupling in the system is sufficient only to remove

the power supply switching frequency, having virtually no effect on the load or line

frequency components. On the one hand this is desirable, as preserving the line

frequency power flow throughout the system is key to producing a high power factor

without requiring large reactive components. On the other hand, the load harmonics

are present at the mains input, and despite not falling foul of the harmonic stan-

dards, they still lead to a significant reduction in power factor. Solving this issue in

a low cost and compact manner forms the basis of the next two chapters of this thesis.
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Chapter 5

APFC Control System Design

As highlighted in Chapter 4, a problem with the reduced capacitance design was

that the load frequency harmonics formed a significant component of the input cur-

rent, subsequently reducing the power factor. As the issue of low frequency (0-2kHz)

harmonics had already been dealt with, it was therefore necessary to find an appro-

priate method of attenuating the motor switching frequency component. Clearly a

solution had to be found which worked with minimal DC link capacitance, otherwise

it would undermine the fundamental concept behind the design.

5.1 Filter Energy Storage

A basic but critical observation was made in that to remove a harmonic, it must be

possible to store the peak oscillating energy carried by that frequency component.

By constantly storing and releasing the oscillating energy, a filter can eliminate the

reactive power flow at the target frequency as shown in Figure 5.1.

Figure 5.1: Reactive power flow in a filter for complete harmonic cancellation
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5.1 Filter Energy Storage

Having made this observation, the theoretical minimum energy storage capacity of

a filter can be deduced. As energy is the integral of power with respect to time, the

peak energy storage requirement is equal to the area under Pharmonic over half the

time period T :

Efilter =

T
2∫

0

Pharmonic dt (5.1)

Where:

Pharmonic = Asin(ωt) (5.2)

Therefore:

Efilter =

T
2∫

0

Asin(ωt) dt =
A.T

π
=

A

πf
(5.3)

Equation 5.3 demonstrates the minimum energy storage capacity required to com-

pletely eliminate a harmonic of frequency f and amplitude A. The inverse en-

ergy/frequency relationship highlights the advantage of a reduced capacitance con-

verter, which has the input current harmonics concentrated at a higher frequency

than a conventional AC/DC converter. This relationship is shown graphically in

Figure 5.2, which assumes a harmonic power amplitude A = 1.

Figure 5.2: Relative filter energy storage requirement vs. harmonic frequency
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5.1 Filter Energy Storage

In order to calculate the value of Efilter, the peak power of each load frequency com-

ponent must be known. As the DC link capacitor is the energy storing component

in this case, the load power is that drawn by the DC/DC converter as indicated in

Figure 5.3.

Figure 5.3: Load power measurement point used for the calculation of the minimum

filter energy storage

The load power waveform was obtained from the zero capacitance motor drive sim-

ulation used in section 4.3. A Fourier Transform was then carried out to reveal the

load power frequency spectrum as can be seen in Figure 5.4. As expected, the ma-

jority of the load power flow is at the fundamental motor drive switching frequency

(3kHz) and harmonics thereof.

Figure 5.4: Load power spectrum for the reduced capacitance power supply and

motor drive system

To evaluate the minimum energy storage requirement for each frequency component,

Equation 5.3 was solved for each data point in Figure 5.4, substituting A and f for

the power and frequency values respectively. The resulting filter energy spectrum is
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5.1 Filter Energy Storage

shown in Figure 5.5. It can be seen that due to the inverse energy/frequency rela-

tionship, the higher frequency components which form a significant portion of the

load power do not require a significant amount of filter energy storage. Conversely,

for frequency components approaching zero (DC), the energy storage requirement

tends to infinity.

Figure 5.5: Filter energy storage requirement for each component of the load power

spectrum in Figure 5.4

The motor conduction angle modulation system (see Section 4.3.1) has been shown

to sufficiently reduce the low frequency (0-2kHz) components of the load power, such

that they do not require further attenuation. It was therefore not necessary to ac-

count for these components when calculating the total energy storage requirement.

Given that the full spectrum of load frequency components can exist simultaneously,

the filter must be capable of storing their net energy. In the range of 2kHz to 20kHz

this gives a total energy storage requirement of 65.9mJ (the sum of the y-axis values

in Figure 5.5).

As discussed in Section 2.1.5, the energy utilisation of a passive filter is inversely

proportional to its attenuation. A standard DC link capacitor is an excellent ex-

ample of this; in order to produce a smooth DC link voltage, the ripple on the DC

link capacitor must be very small. A small change in the capacitor’s voltage subse-

quently means a small change in its stored energy and therefore poor utilisation:

∆Ec =
1

2
C(V 2

2 − V 2
1 ) (5.4)
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For example, the simulation model in Section 4.4 using a 470uF DC link capacitor

resulted in a mean DC link voltage of 321V with 20V of ripple. This meant that

only 12.5% of the energy storage capacity was used in filtering the 100Hz ripple from

the mains. It is clear that passive harmonic filtering is not suitable for a reduced

capacitance converter. In order to achieve high attenuation with minimal energy

storage an active control system is required.

5.2 Active Filter Hardware Design

Having concluded that an active filtering approach was necessary, the next step

was to research the hardware and control options. As discussed in Section 2.3.2,

a boost converter front end is well suited to an application such as this due to its

grounded/low side switch, input side inductor, simple control and low cost. Further-

more, the provision for continuous conduction mode operation reduces input current

distortion and EMI. Assuming the DC link voltage is greater than the input voltage

at all times, complete control over the input current shape can be maintained by

modulating a single active switch.

Figure 5.6: Boost converter front-end for the reduced capacitance power supply

Due to the reduced capacitance design it was necessary to adapt the standard rules

and formulae to calculate the component specifications. In this case the DC link

capacitor size can be calculated based on the harmonic energy storage requirement

in Section 5.1. The theoretical minimum energy storage that could be used for har-

monic cancellation is 65.9mJ. As a capacitor is used as the storage medium, this

means the voltage ripple will be 100%, causing the boost converter to lose control of
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5.2 Active Filter Hardware Design

the input current when Vin exceeds VDC. In practical terms, the minimum energy

storage is reached when:

VDC = Vin +
Vripple

2
(5.5)

Figure 5.7: Maximum DC link voltage ripple allowing full control over the input

current shape

The peak DC link voltage for the power supply was set at 500V to limit the stress on

the components and to provide the correct output voltage without requiring a high

transformer turns ratio (this is impractical with a planar design). Based on a peak

input voltage of 325V (230
√

2) the maximum DC link ripple was therefore 175V. By

rearranging Equation 5.4 the minimum capacitor size can be deduced, with ∆Ec =

65.9mJ, V2 = 500V and V1 = 325V:

C =
2∆Ec

V 2
2 − V 2

1

= 913nF (5.6)

Based on this calculation, a 1µF DC link capacitor was chosen as the closest avail-

able size. Equation 5.6 reiterates the fact that a large ripple voltage is necessary to

make the best use of a given capacitor size.

At the initial design stage, the switching frequency was chosen to be 200kHz to

give a reasonable balance between boost inductor size and efficiency. This gave a

starting point for the selection of the remaining components, but was intended to
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5.3 Active Filter Control System Design

be flexible depending on the control system design. Similarly, the choice of input

current ripple remained open, initially set to the common value of 20% of the peak

line current [46]. Based on the results in Table 4.6, when the power supply is op-

erating at full output power (200W), the input power will be 260W assuming the

same efficiency of 76.9%. At 230VRMS this gives a peak input current of 1.53A at

unity power factor, and therefore a ripple current of 300mA.

Equation 5.7 [46] gives the required inductance based on a peak input voltage of

325V, DC link voltage of 413V, duty cycle D of 27%, switching frequency of 200kHz

and ripple current of 300mA:

Lboost =
V̂in.D

f.Iripple
= 1.46mH (5.7)

Where

D =
VDC − Vin
VDC

= 27% (5.8)

Having calculated the key parameters it was necessary to select an appropriate boost

diode and MOSFET. Given the switching frequency and current requirements a

600V/5A ultrafast diode (BYV25F-600) was chosen which had a short reverse re-

covery time (17.5ns) to maintain a high efficiency. As the boost MOSFET would be

subjected to very similar operating conditions as the inverter switches, an identical

part (IPP65R420) was selected.

5.3 Active Filter Control System Design

As identified in Section 2.3.2, conventional multiplier-based APFC control is not

suitable for a reduced capacitance converter. The conventional approach aims to

balance the input and output power flow by keeping the DC link voltage constant.

The voltage control loop has to be very slow to avoid asynchronous modulation of

the input current shape and hence distortion. To compensate for this slow response,

a large DC link capacitor is required to stabilise the DC link voltage.

By referring to Figure 5.7, it can be seen that for a reduced capacitance converter,

extracting a DC link voltage error signal is virtually impossible given the large ripple
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at both 100Hz and 3kHz. It would be necessary to use a 10Hz low pass filter to

bring the ripple under 5%, making the control response time much slower than the

maximum rate of change of the DC link voltage. The possibility of using a dynamic

reference voltage was considered, making the target a rectified sinusoid of fixed am-

plitude. In this case it would only be necessary to remove the 3.1kHz ripple, but

the problem still exists in that the DC link voltage can change much faster than the

controller can react. If the DC link voltage were to drop below the input voltage

there would be a long delay before this was detected, causing loss of input current

control.

A range of open-loop and waveform modification techniques were presented in Sec-

tion 2.3.2 which avoid the issue of DC link voltage ripple, but none were found to

satisfy the requirements of low capacitance, low cost and low current distortion.

However, a particularly important observation was the way in which the Antiwave

approach [70] directly targeted the load frequency harmonics and allowed the load

itself to regulate the power flow. Due to this it was only necessary to keep the DC

link voltage within a fixed range rather than having constant regulation. Further-

more, as the motor drive produced minimal low frequency distortion of the input

current, this frequency range could be ignored by the APFC control system. These

two observations formed the starting point for an APFC control system suitable for

a reduced capacitance converter, but which also worked without the load feedback

of the Antiwave controller.

5.3.1 Fixed Reference APFC

In a conventional APFC control system (Figure 5.8), the DC link voltage error sig-

nal Vea is used to control the amplitude of the reference current and therefore input

power. However, for the power system used in this research, the load power is fixed

and self regulating, making it possible to operate without voltage error feedback.

Instead of deriving the reference current shape directly from the input voltage, a

fixed lookup table can be used which prevents the input power from being affected

by changes in the RMS input voltage, and hence the feedforward Vff signal is also

unnecessary. The use of a lookup table does however require the use of a zero cross-

ing detector to synchronise the reference current to the mains voltage.
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Figure 5.8: Hardware and control for a conventional boost APFC system

A model of the fixed reference APFC control system and the boost converter hard-

ware was added in to the full system simulation as shown in Figure 5.9. For simplic-

ity, the current error amplifier was set up as a hysteresis controller with a 300mA

band as per the inductor ripple current calculation. This meant that Q5 was on

when Iref exceeded IDC + 150mA and off when IDC exceeded Iref + 150mA. The

reference current lookup table was set as a half sinusoid with a peak value of 1.53A

as determined previously. For simulation purposes it was not necessary to model

the mains zero crossing detector as the lookup table could be synchronised with the

input voltage directly.
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Figure 5.9: Full simulation model of the reduced capacitance power supply and fixed

reference APFC system
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Zero Capacitance Motor Drive Load

When compared with the unfiltered input current waveform in Figure 4.19 (b), a

marked improvement can be seen in input current quality. Figure 5.10 and its re-

spective Fourier transform (Figure 5.12) show a significant drop in the load harmonic

amplitude leading to a power factor of 0.966 compared to 0.712 without APFC. De-

spite this, further improvements are required as load frequency harmonics are still

clearly visible in the input current.

Figure 5.10: (a) AC input voltage and current (b) DC input voltage and DC link

voltage for the fixed reference APFC system
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Figure 5.11: Boost inductor current and reference current (a) and zoomed view (b)

for the fixed reference APFC system

As discussed previously, the boost converter can only retain control over the input

current when VDC is greater than Vin. By comparing Figure 5.10 (a) and (b) it can

be seen that the input current deviates from the ideal sinusoidal shape when this

condition is broken. The hysteresis controller forces the input current to track the

reference current as shown in Figure 5.11. The variable frequency nature of this con-

trol approach is clear, with di
dt

dependent on the load and input voltage conditions.

The wide switching frequency range of 0 - 320kHz complicates the EMI filter design

and falls within the scope of the conducted EMI emissions standards discussed in

Section 2.3.2. An average current mode control system [46] would reduce this prob-

lem, particularly if the switching frequency was kept below 150kHz. However, for

the purposes of this project hysteresis control is used throughout due to its simpler

implementation.
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Figure 5.12: Input current harmonics for the fixed reference APFC system

Although a high power factor is achieved, the low frequency harmonic content of the

input current still exceeds the scaled Class A limits as shown in Figure 5.13. Clearly

the solution to this issue lies in keeping VDC above Vin, but the DC link voltage

limit of 500V means that increasing the boost duty is not an option. As shown in

Figure 5.10 (b), the problem is restricted to the areas where the DC link voltage

is relatively low, but the ripple is relatively high due to the load current demand.

As discussed in Section 4.3, the constant power nature of the motor drive control

system means that the load current demand is not proportional to the supply volt-

age, causing excessive ripple when the DC link voltage is low. The solution to this

is to use the motor conduction angle modulation system discussed in Section 4.3.1

to linearise the load. The improvements resulting from this implementation can be

seen in the next section (Figures 5.14 to 5.19).
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Figure 5.13: Input current harmonics shown with the scaled BS EN 61000-3-2 Class

A limits

Parameter Simulation

IAC 1.17ARMS

VAC 230VRMS

VDC 272Vmean

Vout 24.8Vmean

Iout 7.98Amean

Pin 260W

Pout 195W

Switching frequency 151kHz (mean)

Efficiency 75.0%

Power factor 0.966

IAC THD 25%

Table 5.1: Key measurements for the reduced capacitance power supply and fixed

reference APFC simulation

Zero Capacitance Motor Drive Load with Conduction Angle Modulation

Figure 5.14 shows a notable reduction in the harmonic content of the input cur-

rent, as Vin only exceeds VDC for very brief periods. The improvement is significant

enough to pass the scaled harmonic limits (Figure 5.19) and produce an extremely
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high power factor of 0.991. However, further improvements could still be made by

refining the shape of the conduction angle modulation waveform. Figure 5.14 (b)

shows a clear phase shift between the DC link voltage ripple pattern and the input

voltage, causing intersections on the rising edge. If a corresponding phase shift was

introduced to the conduction angle waveform this would likely eliminate the problem.

Figure 5.14: (a) AC input voltage and current and (b) DC input voltage and DC

link voltage for the fixed reference APFC system with conduction angle modulation

By comparing Figure 5.14 and 5.15 the intended behaviour of the APFC system

can be clearly seen. Without APFC (Figure 5.15) the input current contains very

significant load-frequency harmonics, whereas the DC link voltage has virtually no

load-frequency ripple at all. When APFC is used (Figure 5.14) the opposite is seen;

virtually zero load-frequency input current harmonics and a very large DC link volt-

age ripple. Through active control, the DC link capacitor is forced to absorb the

difference between the input and output power of the system, making far greater

use of the energy storage available.
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Figure 5.15: (a) AC input current and (b) DC link voltage for the reduced capaci-

tance power system without APFC

Figure 5.16 (a) further demonstrates the improvement made through linearisation

of the load, increasing the system’s ability to maintain control of the input current.

Having said this, a moment of instability can be seen in Figure 5.16 (b) where the

input current temporarily exceeds the upper hysteresis band. At this point the load

is drawing current directly from the input rather than the DC link capacitor, and

hence control is temporarily lost.
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Figure 5.16: Boost inductor current and reference current (a) and zoomed view (b)

for the fixed reference APFC system with conduction angle modulation

Figure 5.18 demonstrates the very high input current quality achievable when the

fixed-reference APFC system is combined with conduction angle modulation. The

same results are shown as in Figure 5.17, except that the fundamental 50Hz com-

ponent has been included to demonstrate the relative size of the harmonics.
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Figure 5.17: Input current harmonics for the fixed reference APFC system with

conduction angle modulation

Figure 5.18: Repeated results from Figure 5.17 with the fundamental component

included
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Figure 5.19: Input current harmonics shown with the scaled BS EN 61000-3-2 Class

A limits

A downside of the conduction angle modulation system is that the power supply

spends a larger proportion of the time unloaded, causing a small reduction in effi-

ciency (75% to 73.3%). This happens because the average conduction angle is lower

than for the standard motor drive, which means it draws current in shorter bursts

and therefore presents a load to the power supply for less of the time. Furthermore,

despite not affecting the peak DC link voltage, the mean is increased by 10%, lead-

ing to greater energy storage in the inverter/transformer parasitic capacitances. As

discussed in detail in Section 4.5, these two factors lead to higher inverter switching

losses.
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Parameter Simulation

IAC 1.15ARMS

VAC 230VRMS

VDC 298Vmean

Vout 24.3Vmean

Iout 7.49Amean

Pin 262W

Pout 192W

Switching frequency 132kHz (mean)

Efficiency 73.3%

Power factor 0.991

IAC THD 7.2%

Table 5.2: Key measurements for reduced capacitance power supply and fixed ref-

erence APFC simulation with conduction angle modulation

A simple alternative to conduction angle modulation would be to increase the DC

link capacitance. This would proportionally reduce the load frequency ripple volt-

age, and therefore the possibility of Vin exceeding VDC. In comparison this is an

undesirable option as it increases the size of the power supply, whereas conduction

angle modulation only requires a control system change.

The input current and DC link voltage waveforms in Figure 5.20 demonstrate the

key limitation of the fixed reference APFC system. After the 50% to 100% load step

takes place, harmonics appear in the input current as the reference is too small. The

open loop nature of the power control means that load changes such as this cannot

be accommodated.
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Figure 5.20: (a) Input current and (b) DC link voltage during a load step change

from 50% to 100% - fixed reference APFC with conduction angle modulation

Conclusions from the Fixed Reference APFC Simulation

The results in this section have demonstrated that a very simple control system can

be used to lower the input current harmonics of a reduced capacitance converter.

This led to a significant improvement in power factor, increasing from 0.712 to 0.966

without conduction angle modulation. There are, however, a number of drawbacks

which limit the use of this APFC system, many of which stem from having a fixed

input current reference.

The first problem is that although the motor drive system is capable of regulating

its power, there are situations where this is not possible. Given that the motor drive

is intended for a compressor application, the air inlet can be blocked, creating a par-

tial vacuum which reduces the load on the impeller/motor. Furthermore, when the

system is started up the motor accelerates, during which time the load is constantly

changing. If the reference current amplitude is not changed to reflect the new load

power, the DC link voltage will very quickly become too large or too small. Where
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the load is under-estimated, the current flow out of the DC link capacitor will exceed

that of the input, causing it to discharge and the DC link voltage to drop below the

input voltage. At this point the load frequency harmonics will begin to appear in

the input current. Where the load is over-estimated, the input current will exceed

the current flow out of the DC link capacitor causing it to (theoretically) charge to

an infinite voltage. In reality this process will stop when the components become

damaged due to over-voltage. For a known load change such as the user selectable

power mode function it would be possible to compensate for this by adjusting the

reference current amplitude.

The lack of feedback in the control system means that the load has to be accurately

characterised in advance, making it more costly to implement in new/different ap-

plications. In some situations component and manufacturing tolerances could be

enough to upset the control system unless each product is tuned individually. When

generating the correct input current reference it is also necessary to know the system

losses as well as the actual load power, as these contribute to the total power draw

seen by the APFC system.

A further disadvantage of the fixed reference APFC approach is that it requires

the use of a microcontroller, as the reference current is derived from a lookup ta-

ble. Whilst this process is not complex, a reasonably high processor bandwidth is

required to allow operation up to 350kHz, and such a part may be prohibitively

expensive for this application. Due to the variable nature of the mains frequency it

would also be necessary to adjust the frequency of the lookup table so that distor-

tion does not occur. However, given that a relatively powerful processor is already

required, compensating for this does not pose a particular problem.

The limitations of this approach make it unappealing for use in a practical applica-

tion, and a more robust system is required which allows for variations in load power.

The design of such a system forms the remainder of this chapter.
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5.3.2 Filter-Based APFC

The work in this chapter has revealed that the main challenge is determining the

correct scaling factor for the input current reference, and therefore input power to

the boost converter. Regardless of whether the reference is derived from the input

voltage or a lookup table, its amplitude must be correct to prevent over or under-

charging of the DC link capacitor. As a result of this, it was concluded that control

of the reference current amplitude was not reasonably possible without DC link

voltage error detection. As discussed previously, this is also not a viable option due

to the 100% DC link voltage ripple.

In light of this, an alternative approach was taken to removing the harmonics from

the input current. It was observed that instead of subtracting a line frequency ref-

erence from the input current (Figure 5.21 (a)), a line frequency notch filter could

be used to remove the fundamental component of the input current leaving behind

only the harmonics (Figure 5.21 (b)). By using the latter, a reference current is not

required yet the same error signal is produced. In this case the control system only

sees the non-fundamental component, the target for which is always zero and there-

fore does not need to be scaled with load power. Having generated the current error

signal the remainder of the control system can be the same, using either hysteresis

or average current mode regulation.

A system operating in this manner offers no control over the fundamental amplitude

of the input current, but nor does it need to. The motor drive load itself regulates

the current draw to compensate for changes in DC link voltage, keeping the normal

operating power constant. However, unlike the fixed reference current approach,

deviations from the standard power draw can also be accommodated. In a similar

vein, the filter based control system has no control over the phase between the input

current and voltage, but again the load takes care of this issue. The voltage fol-

lower nature of the motor drive means that the load current inherently tracks the DC

link voltage (and therefore the input voltage), ensuring minimal phase displacement.
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Figure 5.21: Generation of an input current error signal via (a) subtraction of a

reference and (b) notch filtering

In order to extract the true harmonic spectrum it is necessary to measure the AC

input current on the supply side of the bridge rectifier as shown in Figure 5.22. This

is because the process of rectification introduces artificial harmonics to a DC-side

measurement which are not actually present in the input current (see Figure 5.23).

If the APFC system attempted to correct these artificial harmonics, it would instead

generate new harmonics in the input current, which is clearly counter-productive.

Figure 5.22: AC-side and DC-side current sensors with their respective waveforms
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Figure 5.23: Fourier transforms of a 50Hz sine wave and a rectified 50Hz sine wave

both of amplitude 1 unit

A minor complication arising from the use of an AC-side current sensor is that the

error signal is inverted over each half cycle of the mains. As shown in Figure 5.24,

when the input current is negative the hysteresis bands must be inverted to prevent

positive feedback occurring. This requires the control system to know the phase

of the input current, which can be achieved using a very simple comparator based

circuit as explained in Section 6.3.1.

Figure 5.24: Hysteresis band inversion to prevent positive feedback

The control system model for the filter based APFC simulation is shown in Figure

5.25, with the power supply and motor drive models unchanged (Figure 5.9). The

hysteresis controller has the same 300mA band as before, with the output inverted

when the input current is in the negative phase.
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Figure 5.25: Control system model for the filter-based APFC simulation

The notch filter attenuation is important as it controls the level of harmonic rejection

in a similar manner to the amplitude of the reference current in the multiplier based

APFC approach. A low level of attenuation means that the filter output (Ierror) will

still have a significant 50Hz component, reducing the amplitude of the harmonics

seen by the hysteresis controller. This effect is shown in Figure 5.26, with (a) show-

ing low attenuation and (b) showing high attenuation. When the attenuation is low

the harmonics barely exceed the lower hysteresis band, causing minimal correction

to be applied by the boost converter, thus allowing some of the harmonic content to

remain. When the attenuation is high, a larger error is seen resulting in a greater

corrective action and therefore less input current harmonics. The notch filter atten-

uation can therefore be treated similarly to a proportional error feedback coefficient.
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Figure 5.26: Effect of notch filter attenuation on error current waveform seen by

hysteresis controller (a) low attenuation (b) high attenuation

A secondary effect of the filter attenuation level is its control over the DC link volt-

age. As previously explained, high attenuation means greater harmonic cancellation,

which requires increased boosting of the DC link voltage. With a high DC link volt-

age, a large ripple can occur before the boost converter reaches its stability limit of

Vin = VDC . The ability of the system to remain stable with a large DC link ripple

voltage subsequently means that large changes in capacitor energy can be permit-

ted. If a large amount of energy can be absorbed by the capacitor, large harmonics

can be removed from the input current. It can therefore be seen that obtaining

the minimum input current distortion requires the DC link voltage to be as high

as possible. For any practical power system, a finite DC link voltage limit will ex-

ist, determined by the component ratings, layout as well as any safety considerations.

Before generating a full set of simulation results, it was first necessary to determine

the optimum notch filter attenuation setting. Figure 5.27 shows the relationship

between filter attenuation, peak DC link voltage and input current distortion as de-

termined by the power system system simulation (conduction angle modulation was

not used in this case). As the reduced capacitance power supply was designed with

a DC link voltage limit of 500V, the optimum notch filter attenuation was therefore

18dB, leading to a projected input current THD of 23%.
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Figure 5.27: Simulation results showing the relationship between notch filter atten-

uation, peak DC link voltage and input current distortion

A notable observation from Figure 5.27 is that the peak DC link voltage is consid-

erably higher than the peak supply voltage of 325V, even with the filter bypassed

altogether (0dB attenuation). The reason for this is despite the boost converter be-

ing inactive, the boost inductor is still present in the circuit and thus combines with

the DC link capacitor to form a passive lowpass filter. The impedance of the boost

inductor limits the rate at which the DC link capacitor can be charged, subsequently

causing a ripple in its voltage. The presence of this passive lowpass filter, however,

does little to attenuate the 3kHz motor frequency harmonics as its cutoff frequency

is 4165Hz. A second observation is the exponential relationship between notch filter

attenuation and DC link voltage. The reason for this is simple; the apparently linear

x-axis in Figure 5.27 is in fact logarithmic due to the use of decibels as the measure

of attenuation.

A Bode plot of the optimum notch filter response (-18dB) is shown in Figure 5.28.

This was used for all of the simulation results in the next section of this chapter.
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Figure 5.28: Bode plot for the -18dB 50Hz notch filter

Simulation Results

Having changed the boost converter control system as per Figure 5.25, the full sys-

tem model was simulated to analyse the performance of the filter-based APFC. As

can be seen in Figures 5.29 to 5.36 and Table 5.3, the results are virtually identical

to those of the fixed reference approach.
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Figure 5.29: AC input voltage and current for the reduced capacitance power supply

and motor drive simulation with filter-based APFC

Figure 5.30: AC input voltage and current for the reduced capacitance power supply

and motor drive simulation with filter-based APFC and conduction angle modula-

tion

One notable difference is that a phase displacement can be seen between the input

current and voltage in Figure 5.29/5.30. As discussed previously, the filter-based

APFC system only removes harmonics from the input current and leaves control of

the phase displacement to the load. In this case the current leads the voltage by 6

degrees, giving rise to a leading displacement power factor (PFD) of 0.991. As the

effect is so small it does not pose a particular problem, but if necessary the phase

displacement could be reduced through refinement of the motor conduction angle

modulation. This issue highlights a minor disadvantage compared to the multiplier-

based approach, where the the phase of the input current is locked to the input

voltage.
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Figure 5.31: DC input voltage and DC link voltage for the reduced capacitance

power supply and motor drive simulation with filter-based APFC

Figure 5.32: DC input voltage and DC link voltage for the reduced capacitance

power supply and motor drive simulation with filter-based APFC and conduction

angle modulation

The Fourier transforms in Figure 5.33 to 5.36 demonstrate the very low THD achiev-

able by the filter-based APFC system; 24% without conduction angle modulation

and 5.8% if this is included. These results are closely comparable to those of the

fixed-reference APFC system, which achieved 25% THD without conduction angle

modulation and 7.2% with conduction angle modulation. In both cases the scaled

EN61000-3-2 limits are met when conduction angle modulation is used.
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Figure 5.33: Input current harmonics for the reduced capacitance power supply and

motor drive simulation with filter-based APFC

As with the Fourier transforms in the previous section, it is necessary to consider the

relative amplitude of the harmonic components. For the results in Figure 5.34, all

the harmonics have an amplitude less than 2% of the fundamental, demonstrating

the high performance of the APFC control system.

Figure 5.34: Input current harmonics for the reduced capacitance power supply and

motor drive simulation with filter-based APFC and conduction angle modulation
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Figure 5.35: Input current harmonics for the reduced capacitance power supply

and motor drive simulation with filter-based APFC - shown against scaled BS EN

61000-3-2 Class A limits

Figure 5.36: Input current harmonics for the reduced capacitance power supply and

motor drive simulation with filter-based APFC and conduction angle modulation -

shown against scaled BS EN 61000-3-2 Class A limits
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Shown in Table 5.3 are further results demonstrating the similar performance be-

tween the fixed reference and filter-based APFC control systems. Despite the small

reduction in harmonic content (see THD figures), the overall power factor is still

slightly lower for the filter-based approach due to the phase displacement between

the input current and voltage.

Parameter No conduction modulation With conduction modulation

IAC 1.17ARMS 1.12ARMS

VAC 230VRMS 230VRMS

VDC 269Vmean 288Vmean

Vout 23.0Vmean 23.3Vmean

Iout 8.41Amean 7.42Amean

Pin 258W 255W

Pout 193W 182W

Switching frequency 108kHz (mean) 126kHz (mean)

Efficiency 74.8% 71.4%

Power factor 0.959 0.989

IAC THD 24.2% 5.8%

Table 5.3: Key measurements for the reduced capacitance power supply and motor

drive simulation with filter-based APFC

Shown in Figure 5.37 is the system response to a load step change from 50% to 100%.

It can be seen that initially the larger harmonics appear in the input current, but

as the system reacts to cancel them out the DC link voltage is increased, restoring

stability (i.e. VDC > Vin). The reaction time is determined primarily by the notch

filter response, a more detailed analysis of which can be found later on in Section

7.5. When compared with the results in Figure 5.20, the load response benefit of

the filter-based approach is clear. Furthermore, an instantaneous load step such as

this is much more severe than any which could be encountered in practice, meaning

that less harmonics would be seen after the power increase. For the real motor

drive, acceleration is the worst case scenario where the same load change would take

approximately 100ms. It was not feasible to model the full dynamic behaviour of

the motor drive, so unfortunately this could not be simulated. However, the hard-

ware test results in Chapter 7 include input current and DC link voltage waveforms

during acceleration.
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Figure 5.37: (a) Input current and (b) DC link voltage during a load step change

from 50% to 100% - filter based APFC with conduction angle modulation

5.4 Conclusion

This chapter began by presenting a critical analysis of filter energy storage require-

ments, noting that the minimum energy storage capacity is inversely proportional

to the target harmonic frequency. Through the use of reduced DC link capacitance

and a load optimised for harmonic performance, the lowest frequency component

requiring attenuation is the load switching frequency. A method of calculating the

total energy storage requirement was proposed based on the sum of load harmonic

energies.

In line with findings from the literature review, conventional multiplier-based APFC

was deemed unsuitable due to its very low voltage control loop bandwidth. When

combined with reduced DC link capacitance, the problem is exacerbated as the DC

link voltage can change more quickly. A simple fixed-reference current controller was

shown to greatly reduce the input current harmonics, but this is only viable where

the load power and input voltage are also fixed. As there are very few scenarios
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where these conditions can be relied upon, such a system is not particularly useful.

As an alternative to using voltage error feedback, the reference current could in-

stead be modulated based on estimated load power. However, this requires accurate

characterisation of the load and more feedback, leading to reduced flexibility and

increased complexity. Furthermore, due to the look up table this approach cannot

be implemented using analogue hardware. For these reasons it was necessary to

carry out further research into improved control system approaches.

It was recognised that the key challenge lay in controlling the reference current am-

plitude to maintain balanced input and output power. This required knowledge of

the DC link voltage error, a very challenging prospect due to the ripple on the DC

link voltage. A novel solution to this was proposed using a notch filter to extract

the harmonic components of the input current signal (i.e. the error current). The

use of this technique allowed a constant relative level of harmonic attenuation with

varying load power, whilst removing the need for DC link voltage error feedback.

To simplify the filter design, an AC input current sensor was used instead of the

conventional DC current sensor. This removed the additional harmonics produced

by the rectification process, allowing the use of a single notch filter to remove the

fundamental component from the current sensor signal.

The simulation results demonstrated that the notch filter based APFC control sys-

tem could also produce a low input current distortion. Furthermore, this was coupled

with the ability to compensate for varying load power as well as removing the need

for a microcontroller. Based on the promising simulation results, the decision was

made to design a simple and low cost hardware implementation of the filter-based

control system; this forms the basis of the following chapter.
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Chapter 6

APFC Hardware Design

6.1 Current Sensor Design

The first stage of the APFC hardware implementation was to develop an appropri-

ate current sensor. From the simulation work in Section 5.3 it can be seen that a

bandwidth of 0 - 350kHz is required with a current rating of at least 3A. In keeping

with the fundamental principles of this work, minimal size and cost are also neces-

sary for a viable design.

The fact that the current sensor needed to be on the AC side of the diode bridge

meant that the output signal had to be isolated before being fed to the controller.

The normal solution to this issue would be to use an isolated measurement system

such as a current transformer or hall effect sensor. However, without using large

and expensive laboratory grade instrumentation neither approach has the necessary

bandwidth, with the former only sensing AC signals and the latter only working

up to approximately 200kHz. Both approaches also suffer from relatively high cost.

A shunt based sensor would have the necessary bandwidth, but is not isolated and

therefore would not work without a costly additional power supply and signal iso-

lation system.

A novel solution to this problem was developed as shown in Figure 6.1. A shunt

based sensor is placed on the DC side of the diode bridge, allowing it to measure

the rectified input current as with a multiplier based APFC system. A very low cost

and wide bandwidth differential amplifier can be used which is also referenced to

the DC side 0V rail, thus allowing it to be connected directly to the control system

without any isolation issues. The output of the sensor is then modulated by the

polarity of the input current, multiplying the signal by 1 when the input current
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is positive and -1 when the input current is negative. This effectively reverses the

rectification process, generating an output identical to that of an AC side sensor.

As a polarity detector is already required for control of the hysteresis converter (see

Section 5.3.2), very few additional parts are required for the current sensor system.

Figure 6.1: Reverse rectification DC to AC current sensing system

6.2 Analogue vs. Digital Implementation

For the remainder of the filter based control system, both analogue and digital

methods were considered to perform the current sensor inversion, notch filtering

and hysteresis functions shown in Figure 6.2. As the prototype hardware already

included a dsPIC microcontroller (see Section 3.5) a digital implementation was

considered first. The advantage of this was that all three functions could be carried

out entirely in software, removing the need for further ICs and discrete components.

Figure 6.2: Control functions for the filter-based APFC system
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For the first step the DC current signal (Iin) is sampled by an analogue to digital

converter, with the sample values inverted when the mains is in the negative half-

cycle. This process effectively generates a digital representation of the AC input

current, which can then be digitally notch filtered to remove the line frequency com-

ponent. By detecting when the resulting digital values fall outside predefined limits,

a hysteresis effect is produced which can be used as the input to the boost MOSFET

gate drive.

The key advantage to using a digital notch filter is that it is possible to make on-the-

fly adjustments to the filter operation. This is particularly useful in the proposed

application as the notch frequency can be adjusted to match the precise mains fre-

quency. This allows optimal control to be maintained if the frequency drifts or if

the system is used in a country with a 60Hz line frequency. The line frequency can

be easily inferred from the time between changes in the phase input signal.

The drawback of this approach is the level of processing power required due to

the bandwidth of the current sensor signal. It is necessary for the high frequency

switching components (up to 350kHz) to pass through the filter without excessive

distortion of their phase or amplitude, otherwise control of the input current will

be lost. Upon designing the digital filter software it quickly became clear that the

minimum sampling frequency of 700kHz would require a much larger number of

filter taps than the dsPIC could handle. The problem stems from the fact that

the target filter frequency is four orders of magnitude smaller than the minimum

sampling frequency, requiring a very large number of delay steps. The dedicated

digital signal processing hardware necessary to perform this function would be far

too costly for this application, and it was therefore decided to use an analogue-based

control system as discussed in Section 6.3.

6.3 Analogue Control System Design

6.3.1 Mains Polarity Detector

This subsystem was required to produce a digital output corresponding to the po-

larity of the mains voltage; 1 when positive and 0 when negative. As shown in

Figure 6.3, this was achieved by firstly scaling down the live and neutral voltages

to a level which could be handled by the control electronics (the 1MΩ and 10kΩ
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resistors form a potential divider which reduce the voltage by 100x). After this a

4.8kHz lowpass filter (1kΩ resistor and 33nF capacitor) removes any high frequency

noise which could cause false triggering of the comparator. The cutoff frequency had

to be kept reasonably high to prevent any significant phase displacement at 50Hz

(0.6 degrees in this case), as otherwise the comparator output would be shifted with

respect to the mains voltage. The Schottky diodes clamp the scaled live and neutral

voltages to prevent them from going below -0.3V and subsequently damaging the

comparator. The final stage is a low cost TLC372 comparator which produces a 5V

output when the live voltage exceeds the neutral voltage and 0V when the neutral

voltage exceeds the live voltage. The 3.9kΩ pull-up resistor is in place due to the

open-drain output of the comparator.

Figure 6.3: Hardware for the mains voltage polarity detector

Shown in Figure 6.4 is an artificial low voltage mains input signal and the corre-

sponding output from the polarity detector. Due to the 100:1 potential divider at

the input, the 20V signal amplitude becomes 200mV at the comparator inputs. As

the TLC372 can require up to 5mV between the inputs to saturate the output, there

is a small phase lag in the detection of the mains zero crossings. However, this lag

becomes insignificant when the full mains voltage is applied to the inputs, with the

worst case condition coming in at 0.609 degrees including the effect of the low pass

filter.
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Figure 6.4: Oscilloscope screenshot showing detection of the input voltage polarity

using a 20V peak signal from a waveform generator

6.3.2 DC to AC Current Sense Modulator

As explained in Section 6.1 it was necessary to modulate the DC input current sensor

signal to generate an AC equivalent suitable for notch filtering. A simple method of

achieving this is shown in Figure 6.5, using a DG9415 analogue multiplexer to re-

verse the shunt resistor connections by driving the output select pin with the mains

polarity signal. In doing this, the voltage seen across the shunt is inverted when

the mains voltage is negative, producing the necessary AC output. Due to the very

high input impedance of the differential amplifier, the 14Ω RDS(on) of the internal

multiplexer FETs did not cause any attenuation of the shunt voltage.

Figure 6.5: Hardware for the DC to AC current sense modulator
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In order to test the remaining subsystems of the control hardware it was necessary

to generate an artificial shunt voltage waveform which replicated the amplitude and

shape of the power supply load current. A waveform generator was used to produce

the shunt voltage shown in Figure 6.6, made up of a 3.1kHz sine wave representing

the load harmonic which was then amplitude modulated by a rectified 50Hz sine

wave. Along with the artificial mains voltage input this allowed the correct opera-

tion of the control hardware to be confirmed before it was connected to the boost

converter, minimising the risk of damage during development.

Shown in Figure 6.6 are the input and output voltage waveforms from the analogue

multiplexer. The output is the AC modulated version of the input signal, demon-

strating the correct operation of the circuit. A DC offset of 20mV can be seen in

the input signal which is caused by the oscilloscope probe and not the circuit itself.

The absolute error is actually very small, but as the measured signal is only 100mV

peak the relative error appears to be quite large.

Figure 6.6: Oscilloscope screenshot showing the modulation of the DC current sensor

signal producing an AC output

6.3.3 Shunt Differential Amplifier

Having generated the equivalent AC current sensor signal, the next step was to am-

plify it to a level more suitable for the notch filter and hysteresis controller. This

stage could have been left out, but the system would have been much more prone to

errors caused by a poor signal to noise ratio. This issue can be particularly severe

in a system with very high frequency power switching such as this. A secondary

function of the differential amplifier was to level shift the AC current sensor signal

to 2.5V, allowing the system to operate from a single 5V supply rail. This was
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achieved by connecting the non-inverting input of the ISL28191 op-amp to a 2.5V

precision reference source, but to reduce costs a potential divider with 1% tolerance

resistors could also have been used.

Figure 6.7: Current shunt differential amplifier with level shifting for operation from

a single supply

A low inductance 50mΩ shunt resistor was chosen to give a balance between differ-

ential voltage and power loss. The current sensor system was designed to measure

up to 3A peak to ensure sufficient headroom (See input current measurements in

Section 4), leading to a maximum 150mV differential voltage and 450mW power

dissipation. It was necessary to use a low inductance sense resistor to minimise any

ringing of the shunt voltage which would not correspond to the real input current.

A gain of 6.7 was selected for the amplifier giving an effective output of 335mV/A,

limiting the output to +/-1V under normal operating conditions. Due to the 2.5V

level shifted operation, the peak output range was +/-2.5V before amplifier satu-

ration, allowing abnormal current conditions to be detected. This was necessary

as the differential amplifier also provided an input to a hardware overcurrent pro-

tection system which was used to limit damage during development. As mentioned

previously, the minimum current sensor bandwidth was 350kHz requiring an op-amp

with a Gain-Bandwidth Product (GBP) of at least 2.3MHz.
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Figure 6.8: Oscilloscope screenshot showing the input and output voltages of the

differential amplifier with an artificial shunt sensor signal

Shown in Figure 6.8 are the input and output voltages of the differential amplifier,

demonstrating the correct gain of 6.7. The 2.5V level shift is not visible as the os-

cilloscope probe was given an offset of 2.5V to allow the output signal to be viewed

clearly.

6.3.4 Notch Filter

The notch filter stage was required to extract the harmonics from the input cur-

rent signal as explained in Section 5.3.2. The simulation work indicated that an

attenuation of 18dB at 50Hz was required to give the maximum harmonic reduction

without exceeding 500V on the DC link. However, during practical testing 500V

was found to produce a peak output voltage capable of damaging the motor drive

load. To prevent this, the APFC notch filter was re-tuned to 14.6dB, which sub-

sequently produced a peak DC link voltage of 470V. The necessary filter response

plot is shown in Figure 6.10.

Figure 6.9 shows the single op-amp notch filter that was employed for this purpose,

with the notch frequency set as per Equation 6.1. As with the differential amplifier,

a 2.5V reference was fed to the non-inverting input of the op-amp to allow level-

shifted operation. Unity gain was set by having R2 equal to R1.

fnotch =
1

2πRC
= 50Hz (6.1)
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Where:

R = R3 = R4 = 68kΩ (6.2)

C = C1 = C2 = 47nF (6.3)

Conventionally this filter circuit would require precise component tolerances to

achieve the maximum Q factor and therefore maximum attenuation at the notch

frequency. However, in this case a relatively low attenuation of 14.6dB was required,

and by replacing R3 and R4 with potentiometers the circuit could be de-tuned to

give the appropriate response. The values for R3 and R4 were determined through

simulation as 80kΩ and 56kΩ respectively, producing the filter Bode plot shown in

Figure 6.10.

Figure 6.9: Single op-amp notch filter circuit with variable Q factor and level shifting

for single supply operation
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Figure 6.10: Bode plot for the 50Hz notch filter

The oscilloscope screenshot in Figure 6.11 shows the filter input and output voltages,

demonstrating the attenuation of the 50Hz component whilst leaving the 3.1kHz har-

monic unaffected in terms of amplitude and phase; the intended behaviour of the

circuit.

Figure 6.11: Oscilloscope screenshot showing the input and output voltages of the

notch filter demonstrating the 50Hz attenuation
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6.3.5 Hysteresis Controller

The notch filter output signal in Figure 6.12 is essentially a measure of the input

current error. As the fundamental component has been attenuated, everything that

remains is unwanted distortion and therefore needs to be removed. From the point

of view of the hysteresis controller, the target current is always zero as it can only

see the error and not the desired fundamental current. As discussed previously, it

is precisely this which allows the filter-based APFC system to function without a

voltage control loop. There is no need to scale the target input current relative to

the load power, as clearly scaling zero by any factor will always result in zero output.

Figure 6.12: Hysteresis controller input waveform shown with the +-150mA bands

The simulation and design calculations in Section 5.3.2 indicated that a 300mA

hysteresis band would give a good compromise between boost converter switching

frequency and input current ripple. The hysteresis bands were therefore set to +-

150mA via the ratio between R2 and R1 in Figure 6.13. As the error current signal

is actually a voltage, the bands were set to +-50mV due to the current sensor output

of 335mV/A as calculated in Section 6.3.3. A potentiometer was used for R2 to al-

low the bands to be adjusted during testing. As with the mains polarity detector, a

pullup resistor was required on the output (R3) due to the open-drain configuration

of the TLC372 comparator.
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Figure 6.13: Hysteresis controller hardware with XNOR logic to decode output

Figure 6.14 demonstrates the action of the hysteresis controller, with the output

going high when the non-fundamental input current (the sum of all harmonics and

sub-harmonics) falls below -150mA and stays high until it exceeds +150mA. The

effective hysteresis bands have been superimposed on the shunt voltage to show the

effect of the notch filter. This demonstrates the equivalence between the subtrac-

tion of a reference from the input current and directly filtering the input current as

shown in Figure 5.21.

Figure 6.14: Hysteresis controller output shown with the shunt voltage and effective

hysteresis bands

Before sending the hysteresis controller output to the boost MOSFET gate drive it

was necessary to decode it based on the polarity of the mains. As the hysteresis

bands were fixed, the output from the comparator needed to be inverted when the

mains voltage was negative. Without this final step positive feedback would occur,

turning the boost MOSFET on when the upper hysteresis band was exceeded, thus
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making the problem worse. A very simple solution to this was to use an XNOR gate,

with one input coming from the polarity detector and the other from the comparator.

By observing the truth table in Table 6.1, it can be seen that the comparator signal

is inverted when the input voltage is negative (polarity = 0) and left unchanged

when it is positive (polarity = 1).

Polarity Comparator Output

0 0 1

0 1 0

1 0 0

1 1 1

Table 6.1: XNOR truth table demonstrating the polarity input enabling/disabling

the inversion of the comparator input

Rather than implementing this function with a discrete logic gate it was decided to

send the polarity and comparator signals to the microcontroller and carry out the

logic in software. This was done for two reasons, firstly because the connections

were already present on the PCB between the microcontroller and boost MOSFET

gate drive, and secondly it allowed additional error checking systems to be put in

place. A timeout function was added to the software which prevented the boost

MOSFET from remaining in the on-state for over 100µs. This helped to prevent

excessive input current in the event of an error or poor control system calibration.

A software over-current trip was also added as a backup for the existing hardware

over-current system.

The advantages of using software-based logic are largely restricted to the develop-

ment stage, and so a dedicated XNOR gate would ultimately be used to reduce cost,

size and propagation delay. In doing this, the need for a microcontroller would be

removed altogether and the control system would use only low performance discrete

parts. If such a system were incorporated into an integrated circuit, the cost saving

over a digital system would be considerable.
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Chapter 7

APFC Hardware Test Results

This chapter contains test results and discussion of the APFC control system hard-

ware outlined in the previous chapter. The simulation developed in Section 5.3.2 is

validated wherever possible, giving greater confidence in the tests which could not

be corroborated with hardware results.

7.1 Control System Bandwidth

The control system model in Section 5.3.2 used an ideal current sensor, notch filter

and hysteresis controller which effectively had an infinite bandwidth. This allowed a

constant 300mA input current ripple to be maintained at all times (see Figure 5.29)

as there was no delay in the response. However, for the practical control system

there was a significant lag in the system response, causing overshoot of the hystere-

sis bands and therefore a greater input current ripple than intended. By analysing

the delay caused by each stage of the control system, the simulation model could be

modified to account for this, giving a response matching that of the hardware.

The worst case scenario for overshoot is at the peak of the mains when the input

current will change rapidly. By referring to Figure 7.1 it can be seen that when

the boost FET is conducting, the boost inductor is shorted across the mains supply

allowing the rate of change of input current to be easily deduced:

δi

δt
=

VAC

Lboost

(7.1)
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7.1 Control System Bandwidth

Equation 7.1 is only valid if there is no voltage drop across the rectifier diodes or

boost FET. Whilst this would not be the case in reality, the total voltage drop

would only be around 4V; less than 2% of the peak supply voltage and therefore a

reasonable approximation.

Figure 7.1: Boost converter equivalent circuit when the boost FET (Q5) is conduct-

ing

For a peak mains voltage of 325V and a boost inductance of 1.46mH this gives a

peak
δi

δt
of 0.223A/µs. Having determined this the delay of each stage can be cal-

culated:

1. DC to AC current sense modulator - the analogue multiplexer introduced

negligible lag as the output selection FETs were simply held in a conducting

state to allow the input signal to pass through to the output.

2. Shunt differential amplifier - this was based on an ISL28291 operational

amplifier with a minimum slew rate of 12V/µs. At a gain of 0.335V/A (see

Section 6.3.3) the required slew rate was only 0.075V/µs, meaning that the

lag due to this stage was also negligible.

3. Notch filter - this also used the ISL28291 operational amplifier at unity gain

giving the same slew rate requirement. The phase shift of the notch filter was

zero degrees above 10kHz, and therefore this also had minimal impact on the

system response.

4. Hysteresis controller - the TLC372 comparator used for this was the most

significant delay-introducing component, with an output change taking 650ns

for a 100mV input step (the effective width of a 300mA current step).
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7.1 Control System Bandwidth

5. XNOR logic - the delay of the software-based logic stage was determined by

measuring the response time to an input change. The 450ns processing delay

can be seen in Figure 7.2.

6. Boost FET gate drive - the final stage of the control system was the TC4420

gate driver which has a maximum delay time of 75ns.

Figure 7.2: Oscilloscope screenshot demonstrating the 450ns processing delay of the

microcontroller XNOR logic

The result of this is a total delay of 1207ns between one of the hysteresis bands being

exceeded and the appropriate change to the state of the boost FET. The amount

of overshoot this causes is dependent on the input current ramp rate, which at the

peak of the mains is 0.223A/µs, leading to an overshoot of 267mA. As the mains

voltage directly controls the input current
δi

δt
, it also controls the overshoot, causing

the input current ripple to vary over each mains half-cycle as can be seen in Figure

7.4. By adding the hardware delay times into the control system simulation, a close

agreement was achieved with the hardware results, as demonstrated in Section 7.2

and 7.3.
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7.2 Low Attenuation APFC Results

Figure 7.3: Control system bandwidth limitation causing overshoot of the hysteresis

bands and increased input current ripple

In the original simulation, the peak switching frequency was 320kHz with a 300mA

hysteresis band. With the hardware delay times added in the peak switching fre-

quency was reduced to 110kHz with an effective band of 834mA. A vast improvement

on this could be made simply by replacing the hysteresis comparator with a more

sensitive and faster device. Comparators with a response time of under 100ns are

available very cheaply (under 10 cents), and substituting this part alone would halve

the overall delay time. The other major contributor is the software processing delay

which could be eliminated by implementing the XNOR logic in hardware. Similarly,

low cost discrete logic gates are available with sub-100ns response times.

7.2 Low Attenuation APFC Results

From the simulation (Section 5.3.2) and initial practical tests, the ideal filter atten-

uation was determined as 14.6dB. This gave the maximum harmonic cancellation

without the DC link voltage exceeding 470V, and was subsequently chosen as the

initial setting for the APFC hardware tests.

The oscilloscope screenshot in Figure 7.4 clearly demonstrates the ability of the

APFC control system in removing the load frequency harmonics. Before the control

system is enabled the motor load harmonics pass straight through the power supply

and into the mains, leading to very high levels of distortion. At the indicated point

a switch was pressed which enabled the microcontroller output to the boost FET
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7.2 Low Attenuation APFC Results

gate driver, thereby allowing control over the input current. From this point on the

load harmonics are attenuated significantly, leading to a relatively sinusoidal input

current which is in phase with the supply voltage (see Figure 7.5).

Figure 7.4: Hardware input current and DC link voltage before and after the APFC

system is engaged at 14.6dB attenuation

As a consequence of the boost converter operation, the DC link voltage is increased

slightly once the APFC system is active. With a low filter attenuation setting, as

in this case, the peak voltage is increased from 425V to 465V.

Figure 7.5: Hardware input current and input voltage with the APFC system set to

14.6dB attenuation

Shown in Figure 7.6 is a comparison of the mains input current and DC link voltage

for the APFC simulation and hardware. A very close agreement between the results
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7.2 Low Attenuation APFC Results

can be seen, demonstrating the accuracy of the simulation model. The minor dis-

crepancies between the two sets of results are quantified in Table 7.1.

Figure 7.6 shows the downside of having the notch filter set to a low attenuation;

intersections between the input and DC link voltages leading to input current dis-

tortion around the mains zero crossings. The motor conduction angle modulation

system proposed in Section 4.3 is an ideal solution to this problem as it only requires

control system changes. Alternatively, the DC link capacitance could be increased,

reducing the ripple voltage but of course this requires a larger and more expensive

component to be used.

Figure 7.6: Hardware and simulation results for (a) input current and (b) DC link

voltage at 14.6dB attenuation

The input current harmonics derived from Figure 7.6 (a) are shown in Figure 7.7.

The 3.1kHz load frequency component can be seen along with its second and third

harmonics. Due to the actual motor drive operating at a slightly higher speed than

in the simulation, a slight offset exists between the results at these frequencies.
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7.2 Low Attenuation APFC Results

There was no direct method by which to control the motor speed, as it is constantly

altered by the drive in order to maintain a fixed output power.

Figure 7.7: Input current harmonic spectrum for the simulation and hardware with

the APFC system set to 14.6dB attenuation

Figure 7.8 shows the input current harmonics against the scaled EMC limits. The

distortion of the input current around the mains zero crossings means that some of

the higher order harmonics still exceed the scaled limits.
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7.2 Low Attenuation APFC Results

Figure 7.8: Input current harmonic spectrum for the simulation and hardware with

the APFC system set to 14.6dB attenuation. Scaled EMC limits are shown for

comparison

Shown in Table 7.1 is a summary of the key results from the APFC hardware and

simulation tests. A very close correlation is seen between all of the measurements

except for the total harmonic distortion based on a 0-10kHz range. As discussed

previously, this discrepancy stems from the higher relative error in the FFT mea-

surements.

Parameter Hardware Simulation Error

IAC 1.07ARMS 1.04ARMS 2.8%

VAC 230VRMS 230VRMS 0%

VDC 251Vmean 246Vmean 2%

VDC 455Vpeak 451Vpeak 1.1%

THD (0-2kHz) 16.4% 16.1% 1.8%

THD (0-10kHz) 27.5% 29.6% 7.1%

Power Factor 0.940 0.942 0.2%

Table 7.1: Key measurements for the APFC tests at 14.6dB attenuation
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7.3 High Attenuation APFC Results

To further demonstrate the effect of the notch filter attenuation on input current

harmonics, the filter was re-tuned to give a response of -30.5dB at 50Hz. As can be

seen in Figure 7.9 and 7.10, this results in almost complete cancellation of the input

current harmonics. However, the penalty for this is a very significant increase in the

DC link voltage due to the high duty cycle of the boost converter. To prevent the

DC link voltage from exceeding 470V with the APFC system active, it was necessary

to reduce the AC supply voltage to 130VRMS. Clearly this is not a realistic operating

point for a nominal 230VRMS system, but it serves to demonstrate the capability of

the control system in attenuating input current harmonics.

Figure 7.9: Hardware input current and DC link voltage before and after the APFC

system is engaged at -30.5dB attenuation

A clear observation can be made from Figure 7.9 in that the amplitude of the fun-

damental input current increases and then settles at a steady state after the APFC

system has been enabled. This happens because initially the supply voltage has

been artificially reduced, leading to a lower DC link voltage. As the power supply

is unregulated this causes the output voltage to be reduced by the same factor,

resulting in a reduced load power (below 16.2V the motor drive cannot sustain full

power). When the APFC system begins to boost the DC link voltage, the power

supply output increases towards its nominal voltage, allowing the motor to acceler-

ate to full speed. In the 80ms period after the APFC system is engaged, the motor

accelerates from approximately 60,000 RPM to 80,000 RPM. This demonstrates the

control system’s ability to cope with changing load power and load frequency.
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7.3 High Attenuation APFC Results

Figure 7.10: Hardware input current and input voltage with the APFC system set

to 30.5dB attenuation

The oscilloscope screenshot in Figure 7.10 shows the full performance potential of

the filter based APFC system. When a high attenuation setting is used the input

current shape is tightly controlled, resulting in minimal low order distortion and a

phase shift of almost zero. As mentioned previously, this is made possible by the

very high boost factor
VDC

Vin
which virtually eliminates intersections between the in-

put and DC link voltages, allowing control over the input current at all times. At

the peak of the mains where the load harmonics are largest, the boost factor reaches

96% as can be seen in Figure 7.11 (b). If the same high attenuation setting were

to be used with a 230VRMS input, the peak DC link voltage would reach 717V. For

any practical design it would therefore be necessary to accept a higher input current

distortion to allow a reduction in DC link voltage.

One minor discrepancy can be observed between the simulation and hardware results

in this case. Near the mains zero crossings the simulation shows a small amount of

load-frequency distortion appearing in the input current which is not apparent in

the hardware measurement. By looking closely at the simulation result in Figure

7.11 (b), a greater DC link voltage ripple can be observed around the mains zero

crossing, leading to intersections with the input voltage and temporary loss of input

current control.
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Figure 7.11: Hardware and simulation results for (a) input current and (b) DC link

voltage at 30.5dB attenuation

The harmonic spectrum of the input current in Figure 7.11 (a) is shown in Figure

7.12. As with the low attenuation FFT, a precise correlation between the results is

not achieved because the relative amplitude of the harmonics to the fundamental

is so small. In this case the largest harmonic is less than 2% of the fundamental,

making the measurements highly susceptible to error. Despite this, a small but clear

peak can be seen at the load frequency, resulting from the harmonics present near

the mains zero crossings.
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7.3 High Attenuation APFC Results

Figure 7.12: Input current harmonic spectrum for the simulation and hardware with

the APFC system set to 30.5dB attenuation

The difference in FFT results can also be seen clearly in Figure 7.13. Whilst the

individual harmonic amplitudes vary considerably, the general trend of the results

are in agreement and ultimately suggest that an EMC test would be passed using

the scaled limits. The error between the results is reflected in the THD calculations

shown in Table 7.2. This is made particularly clear in the 0-2kHz calculation where

the absolute error is very small but the relative error is large.
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Figure 7.13: Input current harmonic spectrum for the simulation and hardware

with the APFC system set to 30.5dB attenuation. Scaled EMC limits are shown for

comparison.

Parameter Hardware Simulation Error

IAC 1.60ARMS 1.63ARMS 1.8%

VAC 130VRMS 130VRMS 0%

VDC 258Vmean 253Vmean 1.9%

VDC 455Vpeak 451Vpeak 0.9%

THD (0-2kHz) 4.20% 5.33% 21.2%

THD (0-10kHz) 10.3% 11.5% 10.4%

Power Factor 0.991 0.983 0.8%

Table 7.2: Key measurements for the APFC tests at 30.5dB attenuation

7.4 Line Frequency Variation

The results in this section demonstrate the effect of line frequency variation on the

APFC performance. It is necessary to consider this as the mains supply can deviate

slightly from the nominal 50Hz value, and so any connected system must remain

stable under worst case conditions. This is covered by European Standard EN50160

governing voltage characteristics for public electricity networks, which states that
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7.4 Line Frequency Variation

the supply frequency must be 50Hz +/- 1% for 99.5% of a year and 50Hz +4% /

-6% at all times [84]. The greatest possible deviation is therefore 50Hz -6% which

equates to 47Hz.

As a variable frequency source was not available it was only possible to test the sys-

tem response in simulation. However, given the consistency between the simulation

and hardware results throughout this work, it is reasonable to assume this provides

a good representation of the hardware behaviour. Shown in Figure 7.14 (a) is the

mains voltage and input current when the supply frequency is set to 47Hz. The

high filter attenuation setup was used as per Section 7.3 which required the supply

voltage to be reduced to 130VRMS. This operating point was chosen as it provides

the clearest demonstration of the effect of line frequency variation.

Figure 7.14: Simulated line voltage at 47Hz to show effect of worst case frequency

variation. (a) Input current and input voltage (b) DC link voltage and DC input

voltage. Supply voltage set to 130Vrms to allow comparison with high attenuation

tests.
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Figure 7.14 highlights the limitation of having a fixed notch filter frequency; the

control system attempts to produce a 50Hz sinusoidal input current regardless of

the supply frequency. This is possible up to the point where the effective 50Hz zero

crossing occurs as shown in Figure 7.14 (a). Beyond this point the current would

have to go negative to maintain a sinusoidal shape, but this is not possible for two

reasons. Firstly, the presence of the front-end bridge rectifier forces the input voltage

and current to have the same polarity at all times. Secondly, the boost converter

only has unidirectional control over the input current and subsequently cannot pro-

duce a negative current flow. In a condition where the input current is higher than

the required value, the hysteresis controller output simply remains low keeping the

boost FET switched off.

The resulting input current harmonics with a 47Hz line frequency are shown in Fig-

ure 7.15. This can be directly compared with Figure 7.12 to show the effect of a 6%

line frequency variation, as this was the only parameter which was changed between

the two tests. Despite the increased harmonic content (particularly at the motor

drive switching frequency) the resulting THD was only 21.3% with a power factor

of 0.907. Given that this represents the absolute worst case scenario, the system

performance under variable line frequency conditions can be deemed satisfactory if

not ideal.

Figure 7.15: Input current harmonic spectrum derived from 7.14 (a)
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To show this effect more clearly the same simulation was run but with the line

frequency reduced to 25Hz (this is not an operating condition which would ever

actually occur). As before, Figure 7.16 demonstrates the control system attempting

to produce a 50Hz input current as far as is possible. After 10ms the 50Hz zero

crossing point occurs and the hysteresis controller sees a constant negative error,

causing the boost FET to remain off until the next mains cycle. Whilst the boost

converter is not operating the load harmonics are passed through to the supply

causing significant distortion. A key point to note is that whilst the performance

reduces with line frequency drift, the response remains stable.

Figure 7.16: Input voltage and input current when the mains frequency is reduced

to 25Hz

As discussed in Section 6.2, a digital implementation of the APFC control system

would allow the notch filter to be tuned on-the-fly to match the exact supply fre-

quency, maintaining full harmonic cancellation at all times. A further advantage

of digital control is the ability to adjust the Q-factor of the filter and thus the

attenuation at the notch frequency. As has been shown previously, the filter attenu-

ation controls the level of harmonic rejection and subsequently the DC link voltage.

Through control of the Q-factor it would therefore be possible to regulate the peak

DC link voltage and maximise the system performance for all supply conditions. For

the current analogue implementation it would be necessary for the hardware to be

pre-set for a particular market, e.g. 230V/50Hz for Europe or 120V/60Hz for the

USA. This does not necessarily pose a problem as many products are currently de-

signed on a per-market basis, but clearly a universal system could be advantageous

to both the manufacturer and consumer.
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7.5 Load Shutdown

The final test of the APFC system performance was to measure the response to an

instantaneous load shutdown. Results for a step load increase (Figure 5.37) and

motor acceleration (Figure 7.9) have already been shown previously. For both the

simulation and hardware tests in this section, the low notch filter attenuation setup

was used (-14.6dB) with a standard 230V/50Hz supply.

Figure 7.17 initially shows the simulated input current and DC link voltage during

steady state operation with the APFC system active. At the indicated point the

motor drive was switched off, removing the load from the power supply. As a result

of this the DC link voltage greatly increases due to the boost converter forcing more

charge into the DC link capacitor than is removed by the load. The reason that it

does not increase indefinitely is because despite the motor load being removed, the

DC/DC converter MOSFETs are still switching. As discussed extensively in Sec-

tion 4.5, the chosen power supply design has a very high power consumption when

unloaded, and so the switching loss alone presents a considerable load to the boost

converter. As the APFC system has no knowledge of the DC link voltage, the boost

switch is simply modulated in order to perpetuate a 50Hz input current regardless

of the power supply/load behaviour. In this case, the DC link voltage stabilises at

the point where the power supply switching losses become so large that they equal

the power consumption by the system before the load was switched off. This is

the reason that the input current amplitude is the same before and after the load

shutdown event. In a separate simulation where the power supply was switched off

instead of the motor drive, the DC link voltage rapidly increased towards infinity as

there was nowhere for the input current to flow other than into the DC link capacitor.

169



7.5 Load Shutdown

Figure 7.17: Simulated (a) input current and (b) DC link voltage for an instanta-

neous load shutdown with the APFC system set to 14.6dB attenuation

The simulated load shutdown results are clearly theoretical, as in practice the com-

ponents would simply be destroyed once the voltage and/or losses reached a certain

threshold. However, this situation is easily avoided with over-voltage protection

which can be found on almost all power electronic systems, including the low capac-

itance power supply used for this work. In this case, a comparator monitors the DC

link voltage and disables all the power electronic devices when the safety threshold

is exceeded. The reaction time for the over-voltage protection hardware is under

1us which is fast enough to prevent any damage. This system can be seen working

in Figure 7.18. There appears to be less input current ripple in the hardware results

(Figure 7.18) than the simulation (Figure 7.17) because the oscilloscope was set up

for a long capture window and therefore the sampling rate had to be reduced.
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Figure 7.18: Oscilloscope screenshot showing the hardware input current and DC

link voltage for an instantaneous load shutdown

Having minimal DC link capacitance clearly diminishes the system’s ability to cope

with rapid supply or load changes. The less energy it can store, the less time it takes

for the DC link voltage to change and subsequently exceed the normal operating

limits. This issue would still be faced by conventional APFC controllers which in-

clude a voltage control loop, as the slow response necessary to maintain a sinusoidal

input current would mean that the DC link voltage could change much faster than

the system could react. As discussed in Section 2.3.2, the voltage control loop of

a conventional APFC system has a bandwidth of approximately 20Hz and would

clearly not have the microsecond-level reaction time required to prevent excessive

DC link voltage in a reduced capacitance converter.

To further understand the system behaviour, the notch filter step response was anal-

ysed in isolation. Shown in Figure 7.19 is the filter response to a 50Hz 1V step input

at the low and high attenuation settings. The 1V input signal lasts for 50ms and

then returns to zero. The key observation to be made is the settling time; in both

cases the output signal reaches a steady state value after 20ms. It is this which

determines the system’s response time to load changes, and can be seen by referring

back to Figure 5.37 (a) where the APFC system restores complete harmonic can-

cellation 20ms after the load step. Initially the increased load causes the small DC

link capacitor to rapidly discharge below the input voltage, resulting in harmonic

currents being drawn directly from the supply. Although the current control loop

has a high bandwidth (>100kHz), the harmonics are not immediately attenuated as

the filter output does not immediately generate an error signal.
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Figure 7.19: Simulated notch filter response to a 50Hz step input applied for 50ms.

Outputs shown with filter tuned for high and low attenuation

The fundamental behaviour of the notch filter can be seen as one of the key limit-

ing factors in the performance of this control system. However, as has been noted

previously, there is little gain to be made in speeding up the system response any

further, as rapid modulation of the input current inherently generates harmonics.

This would clearly be an undesirable effect in a system designed with the opposite

purpose. Furthermore, in the intended application a step load increase is not an

operating condition which would realistically be encountered. A motor acceleration

event represents the fastest non-fault load increase the APFC system would have to

handle, during which the load is increased over a longer period of time (�20ms),

and thus allows input current control to be maintained (see Figure 7.9). If a fault

condition does occur (e.g. jammed rotor or instant load shutdown) it is no longer

necessary for the APFC system to provide harmonic attenuation. The most appro-

priate action at this point is to shut down the entire system as shown in Figure 7.18.

It is worth noting that for compliance with the BS EN 61000-3-2 harmonic stan-

dards it is not necessary to meet the limits until 10 seconds after the system has

been powered up. Therefore it is not strictly necessary for harmonic attenuation to

take place whilst the system is settling into steady state operation, a factor which

could be of assistance in certain applications. In this case, the 10 second delay

would give ample time to eliminate the motor acceleration phase from the harmonic

measurement.
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If used with a different load capable of more rapid changes, the suitability of this

approach would be in question. Whilst the APFC system maximises the use of

the available DC link capacitance, once it is discharged below the input voltage or

charged above the safe limit, harmonic compensation can no longer be provided.

Similarly, for loads which inherently generate low frequency harmonics, a larger

amount of energy storage must be present to maintain an equivalent input current

quality.
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Chapter 8

Conclusions

The primary aim of this thesis has been to research the effects of reduced DC link

capacitance in a single-phase offline power system. This was undertaken because

conventional AC to DC converters have considerable drawbacks due to this com-

ponent, suffering from poor power factor, poor power density, high cost and poor

reliability. It is identified that whilst many DC loads require a constant supply of

power, there are some which can tolerate the large variation which results from hav-

ing minimal energy storage. Previous work has shown that low performance motor

drives are particularly suited to this; due to the inertia of the rotor, rapid variations

in torque do not translate to rapid variations in speed. Having recognised the prior

research in this field, the work in this thesis sought to identify the challenges in

applying it to a power system with three distinct parts: AC to DC converter, DC

to DC converter and BLDC motor load. The most valuable contribution came in

the form of a simple and low cost APFC system designed specifically for use with

100% DC link voltage ripple.

A review of literature has shown that the most common application for reduced

DC link capacitance is in three-phase motor drive systems. This stems from the

fact that, when balanced, three-phase power is constant rather than time varying

as with a single-phase system. This fundamental difference means that the use of

reduced DC link capacitance is less challenging and subsequently more prevalent in

this application. Where a three-phase active rectifier is used, it is possible to simul-

taneously achieve a high input power factor and a low output torque ripple without

the need for significant decoupling. Due to the 30 degree intersections between con-

ducting phases, the maximum DC link voltage ripple is limited to 15% even with an

uncontrolled bridge rectifier. The drop in load performance is therefore much less

severe than in a single-phase system where the voltage ripple can reach 100%.
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In single-phase motor control applications, any system seeking to reduce motor

torque ripple will inherently increase input current distortion when there is mini-

mal energy storage present. These two factors are always in contention and so a

compromise must be accepted between the two. The work in this thesis has sought

to maximise the use of the available capacitance and thus arrive at the best overall

design. As well as motor drives, previous work has demonstrated this same principle

being applied to a battery charger, whereby the charging power is forced to follow

a sin2 profile matching the instantaneous input power. Through modulation of the

conduction angle, such behaviour is enabled in the motor drive used for this research.

It is noted that film capacitors have a number of favourable qualities over electrolytic

variants, the most significant of which is increased lifetime. This is a desirable at-

tribute in long-term installations, leading to the use of film capacitors for LED

lighting, photovoltaic arrays and electric vehicle chargers. In these applications,

power density and or component costs are not necessarily primary concerns, and

as such the level of capacitance will be reduced just enough to make film devices

viable. This stands in contrast to the domestic/consumer market where cost is the

number one consideration and product lifetimes tend to be short.

The active ripple energy storage systems discussed in Chapter 2 highlight the ineffi-

ciency of conventional capacitor-based DC link energy storage. As the desired level

of voltage ripple reduces, the ratio of stored energy to processed energy increases.

By isolating the energy storage capacitor from the DC link, its voltage can vary

over a much greater range without affecting the performance of the load. Arguably

this represents the ultimate application of reduced DC link capacitance, simultane-

ously enabling high quality input and output power in a single-phase system. It is

unfortunately the cost and complexity of the additional hardware required which

prevents this approach from being more widely used.

Research into existing active power factor correction systems revealed none which

could produce a low current distortion and work with minimal DC link capacitance.

For a conventional system, the problem stems from the need for a voltage error sig-

nal which is not distorted by the DC link ripple. Any harmonics contained within

this signal will modulate the input current reference and subsequently distort the

actual input current. Where a large DC link capacitance is used, this does not

pose a particular problem as the voltage feedback signal can be passed through a

filter with a cutoff of around 20Hz. Whilst this makes the bandwidth of the voltage
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control loop very slow, the large DC link capacitor provides a sufficient buffer to

prevent any problems. If a conventional APFC controller is used with minimal DC

link capacitance, two significant problems appear. Firstly, the filter cutoff frequency

has to be much lower to maintain the same level of distortion in the voltage feed-

back signal. Secondly, there is no longer any bulk energy storage on the DC link to

absorb an imbalance between input and output power. A slower dynamic response

will exist where a faster one is required, resulting in poor performance.

Irrespective of the application, conventional APFC controllers are relatively expen-

sive to implement due to the necessary multiplier, divider and squaring functions.

Other approaches were analysed including voltage follower and waveform modifi-

cation techniques, both of which have simpler control methods and less additional

hardware. Such systems lend themselves to low power applications, as they can

meet the Class A harmonic regulations with a high relative but low absolute level of

input current harmonics. Whilst one of these approaches would have been sufficient

for the 200W power system used in this thesis, a more universal solution was deemed

to have greater value. In part, this provided inspiration for the development of a

new APFC control system suitable for use at any power level and with any amount

of DC link voltage ripple.

8.1 New Knowledge

The practical and simulation work in this thesis has provided further understanding

of the challenges posed by reduced DC link capacitance. In some areas, existing

knowledge has been reinforced, whereas in others it is entirely new. The former is

best demonstrated by the power supply simulation using a conventional AC to DC

converter. Producing a relatively smooth DC link voltage (6% ripple) in an other-

wise identical setup required 470µF of capacitance. Despite the use of an electrolytic

device, the volume and cost were increased by 1300% and 500% respectively, mak-

ing the design unfeasible for a compact or low cost application. Furthermore, these

figures do not account for the additional filtering that would be required to pass the

EN61000-3-2 harmonic limits. The benefit of this approach is of course the constant

supply of power available to the motor, allowing it to achieve the same performance

from a smaller peak voltage and current.

The early power supply test results showed that with minimal DC link capacitance,

the shape of the output current waveform is directly reflected in the input current
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waveform. This is clearly demonstrated by all three of the test loads used: resistive-

inductive, high capacitance motor drive and zero capacitance motor drive. It is

therefore essential that the load is as linear as possible, in order to minimise the

harmonic content and subsequently the amount of filtering required. These tests

also demonstrated that regardless of location, energy storage in the system will al-

ways influence the power flow. When the standard 200W motor drive load was

used, its 2000µF of decoupling capacitance was connected in parallel across the out-

put terminals of the power supply. This smoothed the supply voltage to the motor

and consequently distorted the input current in the same manner as a large DC link

capacitor.

In relation to the previous point, it was also noted that the nature of the load cur-

rent had a pronounced effect on the efficiency of the DC to DC converter. The zero

capacitance motor drive load was the most dynamic, with the demand changing

frequently between zero and 25A. The high peak currents and high inverter losses

at light load caused the power supply efficiency to be poor in this case. Where the

standard motor drive was used, the 2000µF of decoupling capacitance reduced the

severity of the load transients and thus the efficiency improved. It is clear that the

DC to DC converter stage is not the primary focus of this work, serving largely as a

development platform for the APFC system, rather than directly providing a source

of novel research. For further investigation it would be beneficial to design a system

which is efficient over a very wide supply and load range.

It has been shown that the minimum energy storage requirement for sinusoidal in-

put current is defined by the load behaviour rather than the supply frequency. The

power supply tests with a resistive-inductive load demonstrated that when reduced

DC link capacitance is used, a linear load will result in harmonic-free input current.

Where the load is non-linear, it is therefore only necessary to attenuate the harmon-

ics produced by the load and not by the charging of the DC link capacitor. A higher

load frequency will subsequently require less energy storage, helping to improve the

system power density. The very high operating speed of the 200W BLDC motor

drive causes the fundamental load frequency to be high, making it suitable for a

reduced DC link capacitance application. However, this could be improved by re-

designing the motor with a higher pole number, more phases or increased operating

speed. All of these changes will require faster commutation, leading to an increased

load frequency.
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Maintaining input current control with a boost converter APFC system requires the

DC link voltage to exceed the input (supply) voltage at all times. This ultimately

places a limit on the maximum DC link ripple, and therefore minimum DC link

capacitance which can be used. As the capacitor size was based purely on the mo-

tor drive switching frequency, the APFC system fails to attenuate any lower order

harmonics in the load current. Without use of the conduction angle modulation

system, distortion occurs around the mains zero crossings as can be seen in the

fixed reference and filter-based APFC results. Whilst the stability condition of VDC

> Vin is also true for a conventional APFC system, it poses far less of a problem

as the significant energy storage prevents large variations in DC link voltage from

occurring.

Another conclusion to be made is the existence of a trade-off between harmonic

attenuation and peak DC link voltage. For the filter-based APFC system, setting

the notch filter to a high attenuation is similar to using an error feedback amplifier.

A larger harmonic amplitude is seen by the hysteresis controller and therefore a

greater compensation current is applied. This means that the boost converter oper-

ates at a higher mean duty cycle, which in turn increases the DC link voltage. An

advantage of this is that the DC link voltage is much greater than the input volt-

age, allowing a larger ripple before the two intersect and input current control is lost.

The use of a notch filter to generate the input current error signal results in a har-

monic reduction which is proportional rather than absolute. This is the case as the

line frequency component of the input current is removed by filtering, meaning that

the output signal is always a fixed proportion of the input. For example, an atten-

uation of 20dB will result in an output voltage which is 10% of the input. Due to

this the input current harmonics will always be reduced by a constant factor, remov-

ing the need for the power control input conventionally achieved with voltage error

feedback. Using standard multiplier-based APFC, the line frequency component of

the input current is instead removed by subtraction of a sinusoidal reference. In

order to keep the response proportional, the subtrahend must be constantly scaled

by the load power (voltage error) feedback signal. The use of attenuation instead of

subtraction is what fundamentally distinguishes this work from prior art and forms

the most important contribution to knowledge.
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8.2 Further Work

A number of useful extensions to this research have been identified, some improving

on the existing work and others in related areas. The first of these is to consider the

use of a three-phase motor drive load with reduced DC link capacitance (maintain-

ing a single-phase supply). The advantage this offers is that in theory, a three-phase

inverter can draw constant current from its supply when powering a balanced load.

In practise there will be limitations to this, but at the very least the load will appear

less dynamic, reducing the current commutation pulses which generate the major-

ity of the harmonics with a single-phase load. A further advantage is that for an

equivalent motor speed, the fundamental load frequency will be three times higher,

allowing a further reduction in energy storage.

There are clearly gains to be made in using a motor drive system specifically designed

to work with 100% DC link voltage ripple. In particular, a practical implementation

of the conduction angle modulation scheme should demonstrate further improve-

ments in power factor. A detailed analysis of the motor performance is required to

see the overall volume and cost benefits of using reduced DC link capacitance. As

this research focused more specifically on power factor correction, the penalties in

terms of motor design have been inferred based on similar work by the industrial

sponsor, and must therefore be treated with a degree of caution.

If reduced DC link capacitance is to be used in a power supply application, further

work is required on the design of the DC to DC converter. Whilst functional and

uncomplicated, the design used in this thesis was under performing in comparison

with the APFC system and motor drive. Furthermore, in most applications the DC

to DC converter would not be necessary, as a motor designed to work at line voltage

would be used instead. The APFC system developed through this work could be

used with no modification at all, as the combination of a low voltage motor and DC

to DC converter presents exactly the same load as an equivalent high voltage motor.

The topic of EMI filtering was only discussed briefly in this thesis, without any for-

mal measurement or design work taking place. For a complete power system design

it will be necessary to consider the conducted and radiated emissions caused by the

power device switching. As with the EN61000-3-2 harmonic standards, there are

also EMI limits which must be met for compliance with EU law, the most relevant

of which is EN55014-1. As mentioned in the literature review, the design and control

of the boost APFC stage has a significant effect on the EMI filtering requirements.
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Subsequently, determining the total size and cost of the power converter requires

these two subsystems to be considered together.

The final and most direct extension of this work would be to further improve the

filter-based APFC control system. It has been demonstrated that some of the no-

table performance limitations stem from the implementation rather than the concept

itself. Whilst maintaining a low cost, the purely analogue design prevented the sys-

tem response from being tuned during operation. As highlighted in the previous

chapter, the fixed frequency and attenuation of the notch filter reduced the system

performance when the operating conditions deviated from the nominal point. As in

many applications, a move to digital control offers a number of advantages, in this

case the ability to synchronise the filter and supply frequency, along with DC link

voltage regulation through control of the filter attenuation. The key challenge of

a digital implementation is achieving sufficient bandwidth to prevent aliasing and

distortion of the current sensor signal. Given that one of the aims of this research

was to reduce power converter cost, it was not viable to use a high performance

digital signal processor. However, as these devices become less expensive over time,

the feasibility of this approach will increase.

8.3 Closing Remarks

This work was inspired by the considerable drawbacks arising from the use of a

large capacitor in AC to DC converters. It was noted that for certain loads this

was not strictly required, offering a fundamentally simple solution; use a small ca-

pacitor instead. Having established this at the outset, the essence of the work lay

in identifying and solving the new challenges which arose in a system with mini-

mal decoupling. The most significant of these was the presence of load-frequency

harmonics which would conventionally have been suppressed by the DC link capac-

itor. Through critically analysing the operation of harmonic filters, the poor energy

utilisation of passive approaches were acknowledged. Subsequently, active control

systems were researched to allow complete harmonic attenuation using the smallest

possible amount of energy storage. A novel control system was developed to allow

the attenuation of input current harmonics without relying on the DC link voltage

feedback required by conventional APFC systems. The notch filter based APFC

controller was successfully implemented using basic analogue components, helping

to maintain a low cost in keeping with the rest of the power system.

180



8.3 Closing Remarks

An indication of the value of this research can be taken from the sponsor’s decision

to compile two patent applications; one for the notch filter based APFC controller

and another for the current sensor design. Considering the demand for new technol-

ogy combined with ever-stricter legislation, the need for electrical devices to have a

high power density and high power factor is likely to increase. It is therefore hoped

by the author that in future, the concepts proposed in this thesis may find their way

into systems outside of a laboratory.
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