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Cloud computing provides the potential for scalability and adaptability in a cost effec-

tive manner. However, when it comes to achieving scalability for real time applications

response time cannot be high. Many applications require good performance and low

response time, which need to be matched with the dynamic resource allocation. The

real time processing requirements can also be characterized by unpredictable rates

of incoming data streams and dynamic outbursts of data. This raises the issue of

processing the data streams across multiple cloud computing nodes. This research

analyzes possible methodologies to process the real time data in which applications

can be structured as multiple event processing networks and be partitioned over the

set of available cloud nodes. The approach is based on queuing theory principles

to encompass the cloud computing. The transformation of the raw data into useful

outputs occurs in various stages of processing networks which are distributed across

the multiple computing nodes in a cloud. A set of valid options is created to under-

stand the response time requirements for each application. Under a given valid set of

conditions to meet the response time criteria, multiple instances of event processing

networks are distributed in the cloud nodes. A generic methodology to scale-up and

scale-down the event processing networks in accordance to the response time criteria

is defined. The real time applications that support sophisticated decision support

mechanisms need to comply with response time criteria consisting of interdependent

data flow paradigms making it harder to improve the performance. Consideration is

given for ways to reduce the latency,improve response time and throughput of the real

time applications by distributing the event processing networks in multiple computing

nodes.
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Chapter 1

Introduction

Cloud computing attempts to realize the vision of utility computing, through the

provisioning of virtualized hardware, software platforms and software applications as

services over the Internet. It comes with many options such as on-premises private

clouds, off-premises public cloud, hybrid cloud and the mix-and-match approach of

multi-cloud options. The crowding landscape of the cloud computing offerings only

exacerbates the new offerings, which constantly enter the market place. The real time

information management using cloud computing attempts to utilise the cloud and

event processing to process complex real time workloads. In a nutshell, this research

is an extensible framework providing ability to process real time streaming events to

Infrastructure As A Service(IaaS) cloud systems, predict the application performance

based on the arrival rate of streaming events and subsequently perform the analysis

on multiple instances of virtual machines hired from the cloud. To implement the real

time information management in cloud computing, few key challenges in real time

application performance and scalability must be recognised. Listed are the application

performance related challenges thesis focused in this thesis.

1. Prediction of response time requirements for the application.

2. Placement of the applications across multiple instances in the cloud.

3. Splitting of application workload across the instances hired in the cloud.

Event processing is a computing performed on continuous real time streaming events

rather than finite stored data sets. Each event stream has a fixed schema with known

finite set of attributes. The instance of an event stream at any point of time is a
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Chapter 1 Introduction

bag of tuples which may occur in a fixed or varying interleaved sequence generated

by a single or multiple data sources. In the event processing, the incoming stream

or events are not bounded by any particular limits, where the answer to the query

at any point of time is a function of the input event streams received over a period

of time. Continuous queries are used to evaluate the event streams. The query eval-

uation environment has an access for local memory and CPU to process, store and

disseminate the events arriving in to the system. Each query registered within the

system is computed in a bounded memory and CPU defined by the characteristics of

the hardware. The arrival rate of the events and the underlying hardware determines

the response time of the queries. When the arrival rates of the events are higher, in-

sufficient or static hardware allocation leads to a decrease in the response time. In this

research, algorithms are formulated to predict response time for the event processing

under varying arrival rate of events by hiring or releasing virtual machines using cloud

computing. Firstly, algorithms are developed to predict the response time of the real

time, continuous streaming events using queuing theory. Secondly, algorithms are de-

veloped to meet the optimum placement of the applications by addressing additional

memory requirements of real time continuous streaming events through hiring and

releasing optimum number of virtual machines using cloud computing. Thirdly, when

the stated response time cannot be met within a single virtual machine, algorithms

for distributed event processing are developed to split, process and merge the events,

maintaining the correctness of the results. The research executes the development,

implementation and the testing of the algorithms for the response centric scalability

of real time event processing by hiring virtual machines from cloud computing.

Event processing approach is ideally suited in scenarios intended to deliver situa-

tional awareness and responsiveness where high volume of streaming events represent

accumulating, incremental state change. The complexity of the event processing are

measured based on the degree of changes within the event flow, number of event

sources, number of consumers, state and context management. Event volumes and

timeliness are two factors that most typically influence the selection of the event pro-

cessing approach. In this research the event processing is encapsulated within Event

Processing Network (EPN). EPNs are designed as an acyclic graph. The process-

ing elements within the EPN make up the node of the graph. Few examples of the

processing elements are continuous queries, event producers, event consumers, event

processing agents and channels. The EPN abstracts the operations in the events

that include processing, creating, transforming or discarding the events based on the

specification detailed by the application consuming the events. Besides event pro-

cessing, most workflow languages support the processing of event constructs such

2



Chapter 1 Introduction

as sequence, partitioning sliding window, iteration, splits (AND or OR) and joins .

Few continuous data flow models, Floe [Kumbhare et al. (2013)] implements adaptive

resource allocation to effectively use elastic cloud resources to meet varying arrival

rates. Floe implemented pattern matching criteria on iterative constructs such as

for-loops. However, the interpretation and support of pattern matching constructs

on complex real time event processing requirements need further extension on the

workflow languages [Van Der Aalst et al. (2003)]. The workflow architectures must

integrate meta-models such as workflow languages such as BPMN [Zimmermann and

Doehring (2012)] and rule definitions in a minimal-invasive way with little changes to

the original meta-models [Dhring et al. (2010)]. To accomplish pattern recognition on

streaming events, standard rules and protocols for ECA (event, condition and action)

based on continuous queries for real time streaming events need to be implemented.

There is no clear holistic definition for a loosely coupled architecture to achieve the

tasks accomplished by a complex event processing system (CEP) [Luckham (2001)].

For example, workflow management system can be extended step-by-step with rule en-

gine or an exclusive CEP engine can be embedded within the workflow modules. The

advancements in proprietary languages addressing complex event processing (CEP)

and continuous query language are a motivating factor to develop the EPNs using

CEP engines [EsperTech][Microsoft][Oracle].

The responsiveness and the complexity in identifying the patterns in streaming events

are used as main criteria to develop EPNs. EPNs are designed to support low latency

and high throughput thereby improving the responsiveness of the application built

on the continuous streaming events. In this work, complex event processing is used

as an enabling technology where multiple real time stream of events are analysed to

identify patterns (aggregation, correlation or filtering). Real time stream of events are

continuous in nature, possibly very rapid and time varying. Developing event process-

ing component involves many novel and challenging problems, since the queries tend

to be continuous (long-running) rather than one-time. Distribution of event streams

and arrival characteristics may be unpredictable and system conditions (eg.,available

memory,CPU,etc.,) fluctuate over time. When the streaming events are processed

in a specific server or a desktop, the query evaluation environment has access to a

limited or fixed CPU/local memory for storing or processing the events. However, the

memory and CPU used to process of events influence the responsiveness or response

time of the application in terms of latency and throughput. The initial goal is to

characterise the worst-case memory or CPU requirements under fluctuating arrival of

events and add additional memory or processing capabilities through hiring of vir-

tual machines from cloud computing. However the research progressed in developing

3
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generic algorithms to characterise and predict the CPU requirement for the EPNs

through queuing theory. Following assumptions were initially made to progress the

research

1. Queuing delays or the data transfer time between the EPNs are dependent on

the networks or the environment for deployment such as GPU, HPCs, private

cloud, public cloud, etc., To improve the accuracy in the prediction of the EPN

response time, both the queuing delays and the data transfer time between the

EPNs were not considered.

2. A deterministic CPU allocation is considered to model the response time pre-

diction

3. The hiring time of a virtual machine is not considered

4. The cost or economic factors to hire the virtual machines are not considered.

For example reserved instance could be cheaper than on-spot instances. These

factors were not considered in the model.

5. The events received by the EPN from the source are not modified during the

transit.

6. When the single EPN does not meet the target response time (contention be-

tween EPNs), operators are shared between the EPNs based on a split, process

and merge paridgm to maximise resource utilisation.

As an initial step, characterising memory requirements for queries over continuous

streams of relational tuples were developed through a series of examples from a re-

search project called ambient kitchen [Olivier et al. (2009)] in Newcastle University.

The ambient kitchen is a laboratory replication of the real kitchen embedded with

RFID tags, readers, object mounted accelerometers, under-floor pressure sensing us-

ing combination of wired and wireless networks. Range of research activities were

undertaken in the lab to support people with dementia, situated services associated

with food planning, food preparation and cooking. The events emerge from the sensor

infrastructure within the kitchen utensils such as knives, pots, lids, frying pan, spat-

ula, sieve, peeler, ladle, whisk and copping board. Continuous stream of events from

pervasive sensors arriving from ambient kitchen are processed using EPNs deployed

in virtual machines hired using private and public cloud computing services.

Given the nature of the events arriving from the ambient kitchen, the arrival rate of

the events is observed to be arbitrary. The design of the response time prediction

4
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for EPNs are dependent on the events, that cannot be processed immediately, whose

processing or service time of events is interrupted or has to wait in one or more

queues. A scheduling policy is required to control the order in which the waiting

events are selected for service. These are the ’queuing systems’ and their study is

the called ’queuing theorem’. The queuing theorem consists of three parts. The

first part describes the nature of the arrival process, the second part describes the

distribution of the service time and the third describes the number of servers or

virtual machines required to process the events. Letters M, D and G are used as the

abbreviations for ’Memoryless’, ’Deterministic’ or ’General’ respectively. For example,

in a M/D/5 system, the events are memoryless (i.e., poisson), processing time is

deterministic or constant and there are 5 servers or virtual machines involved in

the system to process the events. In M/G/1, the processing or service of events

is memoryless (i.e, exponentially distributed) with generic distribution and a single

server or virtual machine is used to process the events. The models examined and

utilised in this research are M/G/1. For analytical tractability, poisson arrival rate

is used to predict the response time of the EPN. If the arrival rates of events deviate

from the poisson distribution, the results will be of closer-approximation. When there

is a poisson arrival, most of the assumption fit in the M/G/1 queuing theory model

and the accuracy of the response time prediction in EPNs are analysed. Degree of the

approximation will be verified using experiments in chapter .

The parameters which influence the average response time of the EPN of the M/G/1

system are the arrival rate , the average service time, b, and the second order mo-

ment,M2 (or the squared coefficient of variation, c2), of the service time. When the

offered load approaches 1, both the average delays and the queue length grow without

bound. In a heavily loaded virtual machine or server, a small increase in traffic can

have a huge impact in the response time of the EPNs. The shape of the processing

time distribution function affects the performance only through the second moment.

For fixed values of λ and b, the best performance is achieved when c2 = 0, i.e. when

there is no variability in the service or the processing time of the EPNs. All EPNs are

calibrated before deployment and a deterministic service or processing time is known

prior to the placement of EPNs in the virtual machine.

When the virtual machine receiving the M/G/1 event queue goes through alternating

periods of being idle and busy, the load in the servers or virtual machines processing

the EPNs undergo an idle or busy state. An idle period starts with the departure

of events leaving an empty queue and ends with the arrival of a new set of events.

Due to the memoryless property of the exponential distribution, the average length

5
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of an idle period is 1/λ. The busy period in the virtual machine starts with the

arrival of the events, which finds an empty queue and ends with the departure of the

next set events leaving the empty queue. Due to the dynamic nature of the event

arrival, few virtual machines are likely to be underutilised and few tend to be over

utilised. An intelligent placement of EPNs is essential to hire minimum number of

virtual machines. Bin packing algorithms are used to place the EPNs in minimum

number of virtual machines whilst maintaining the optimum response time. Virtual

machines are hired from the cloud computing services based on the event arrival

rate. The scalability of the algorithms is tested using the streaming events arising

from the ambient kitchen. Initially one virtual machine is hired and the EPNs are

deployed within the machine. As the event flow increases, the response time of the

EPNs decreases and hence further count of virtual machines are estimated using the

algorithm in section . Multiple EPNs can be hosted on a single virtual machine.

Based on the arrival rate and the response time of the EPNs, the count of EPNs

hosted on the virtual machine is varied dynamically. Lightly loaded virtual machines

are called acceptors where additional EPNs can be hosted within the VMs without

compromising on the response time. Heavily loaded virtual machines are called donors

where the EPNs need to be moved in to another VM in order to improve the response

time. The list of the acceptors or donors are maintained within the system and fed

to the EPN reconfiguration and the placement algorithms. Frequent EPN movement

between the virtual machines or computing nodes are likely to generate oscillatory

behaviour. The dynamic hiring of new virtual machines from the cloud computing

took an approximate of 1 to 5 minutes from few well known commercial cloud service

providers such as Amazon EC2. Keeping the upper limit of virtual machine hiring

time i.e., five minutes, the movement of EPNs were triggered by the reconfiguration

algorithm. Fault tolerance or check pointing of VMs are reserved for the future work.

The EPNs are tested for scalability and responsiveness. The EPNs are built using

expressive open source event processing language called Esper, which allows continu-

ous queries, aggregation and joins delivering high speed processing and identification

of most meaningful events, analysing the impacts on the application and undertake

subsequent actions in the real time. The events emerging from the application used in

this research, i.e., ambient kitchen are processed by the EPNs regardless of whether

incoming events are real-time or historical in nature. The pre-processed patterns of

various activities such as cutting, chopping, coring, slicing, stirring, etc., in the am-

bient kitchen are stored in the database. The real time activity recognition in the

kitchen is accomplished by correlating the incoming real time events and pre-defined

patterns of activities. Instances of Esper event processing engines are prebuilt and
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stored as reserved instance in the cloud computing. The prebuilt instances of the

virtual machines are scaled in multiple machines based on the arrival rate and the re-

sponse time requirements. Streaming events emerge from sensors embedded in various

utensils, equipments and utilities. The characteristics of each device or event source

are pre-defined using a schema. Event windows are created by the EPNs to manage

the fine-grained rules on event processing. The EPNs have a set of rules on how long

to retain set of relevant events or under what conditions event need to be discarded or

stored in the database. The event windows operate on the level of individual queries

and sub queries as illustrated in section.. The EPNs developed in this research are

focused targeted towards one particular application requirement called activity recog-

nition. Ambient kitchen is a very broad area of research. In this thesis, the focus

is made on building the EPNs based on one application called activity recognition

targeted towards demonstrating the scalability of EPN placement in multiple virtual

machines hired from cloud computing services with an aim to achieve the specific re-

sponsive time. The hiring of virtual machines from cloud computing has various cost

implications based on the policy of hire such as on-demand instances, reserved in-

stance, spot instances etc., The algorithms developed in this research mainly focus on

the responsiveness of EPNs and to identify the appropriate virtual machine to place

the EPNs without compromising the response time. The optimum cost computation

policies to hire the virtual machines are reserved for future work.

To summarize, the characteristics of the streaming event and its processing require-

ments are analysed to address the response time prediction of the event processing

applications. An architecture is developed along with the functional components re-

quired for the event processing to meet the scalability of the system using utility

computing. After a broad literature review to provide a bird’s eye view of the re-

search and development efforts in the areas of event processing, cloud computing and

scalability, this work focuses on the response centric scalability of real time event pro-

cessing systems. Techniques and approaches required for guaranteeing response time

(latency), placement of EPNs, parallelisation of EPNs are presented in detail. This

thesis is structured on the topics of

1. Event processing network design

2. Modeling and prediction of the EPN response time using queuing theory

3. Dynamic reconfiguration and placement of event processing networks using cloud

computing (Public and Private cloud)

4. Parallelization of event processing network using Inter-EPN processing
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The thesis describes the scalable, response centric design and implementation of event

processing systems using exemplars of data emerging from the ambient kitchen. Hard-

ware resource from public and private cloud computing is used to demonstrate the

elastic and scalable architecture for real time event processing.

Journal Publication from this research :

Scalable and Responsive Event Processing in Cloud, Suresh V, Ezhilchelvan P, Watson

P, Philos Trans A Math Phys Eng Science, 2012, December 10, 371(1983):20120095.doi:

10.1098/rsta.2012.0095. Print 2013 Jan 28

8



Chapter 2

Background

Real time applications involve streaming data characterized by high-volume event

streams, which require timely sense and respond infrastructure. Applications such as

web clients, or volatile markets such as finance or betting, have an emerging interest

in continuous monitoring. Commercial social media applications and online gaming

are pioneers in creating analytical services for the real time analysis. Emerging ap-

plications in RFID, pervasive computing and others adopt large scale real time event

tracking and monitoring. The wide deployment of real time monitoring systems in

surveillance, health care, environmental monitoring, instrumented vehicles and others

require filtering, correlation and aggregation to aid decision support systems. The

number of data sources and the rates at which they generate events can vary widely,

driven purely by the external processes. The common patterns and architecture driv-

ing these platforms iterate multiple features based on the arrival of data.

The data emerging from streaming events motivates building processes which respond

to the continually changing inputs.Celerity, connectedness and complexity of interact-

ing event sources result in the increasing use of event-driven applications. The need for

the systems to analyze and react to the continuously varying incoming data streams

leads to the emergence of the event-driven architecture moving away from the tradi-

tional database oriented approach. This chapter starts with a review of the literature

on event processing research, looking in more detail at the continuous queries, distri-

bution and scheduling of complex event processing, along with the scalability aspects

of cloud computing.
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Figure 2.1: Cloud Abstraction Layers

2.1 Cloud Computing Overview

The cloud computing encapsulates several layers of computing provisioning. It in-

cludes the hardware resources located at the data-centres of cloud providers, the op-

erating system software on top of that hardware, and lastly the applications that are

delivered as services over the Internet. Cloud providers purchase hardware in large

quantities, which is significantly more economical [Greenberg et al. (2008)]. They

can then amortize the cost of owning and operating a large capacity infrastructure

by time-multiplexing their resources between many clients [Armbrust et al. (2010)].

Moreover, large scale systems require deep automation, which results in cost reduc-

tions due to need for smaller operational staff. In a well-run enterprise, a typical ratio

of administrators to servers is 1:100, while in a cloud data-center the ratio is at least

1:1000 [Greenberg et al. (2008)]. Operating at this scale allows cloud providers to

offer services to clients with a lower cost than what an in-house computing facility

would achieve.

Clouds provide services at three different levels of abstraction: At the highest abstrac-

tion level, Software as a Service (SaaS) delivers specialized software to the consumers

over the Internet. SaaS typically involves a usage-based pricing scheme, in which the

cost increases in relation to the number of users and the used application features.

Platform as a Service (PaaS) is located at a lower abstraction level. PaaS pertains

to the provisioning of an integrated environment which can be used for the develop-

ment, testing and deployment of applications. The PaaS users are not occupied with

deploying and managing the underlying hardware and software.

At the other end of the abstraction level spectrum is Infrastructure as a Service (IaaS).

IaaS refers to the on-demand provisioning of virtualized resources, i.e., computation,
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storage and networking. Users lease VM instances, which encapsulate a provider-

specified amount of resources (providers typically offer several types of VM instances),

and can run a user-specified operating system enriched with required applications and

libraries. Clients fully configure and control their instances as root via ssh.

Generic guidance from Cloud Service providers is available to select the ideal instance

type, sizing and storage. However, the individual applications need to predict their run

time resource requirements based on the varying incoming workloads. Understanding

the real-time application demand, delivering consistent response time on each of the

hired instance and predicting the response time to provision the resources are few

of the key challenges associated in the real-time information management across the

cloud. Underestimating the application requirements will lead to performance issues

and over-provisioning will lead to the cost related issues. Once the instances are

selected from the Cloud computing providers, performance prediction is required to

ensure the availability of sufficient resources to the applications.

Many cloud computing providers deliver well architected framework ensuring the ex-

pectation on the instance and application performance expectations. Listed below are

few features delivered by commercial off the shelf products in the cloud computing.

Cloud Watch: Monitors the CPU, memory, network, load, storage and related pa-

rameters specific to the hired instances. Periodic Review: Many cloud providers come

with monitoring dashboards on real time application performance and response time.

Alarm-based notifications: Automated alerts from the monitored system metrics when

they are outside the safe bounds.

Trigger-based actions: Alarms cause automated actions to remediate or escalate issues.

Google Cloud Platform, AWS, Microsoft Azure are few of the prominent cloud services

offering the performance best practices in terms of monitoring metrics, setting thresh-

olds and responding to the alerts. Public clouds promise many such performance

related tools however they do not guarantee or predict an application performance

when subjected to the varying workloads from real time streaming events.

In Infrastructure as a Service (IaaS) the virtual machines are classified as reserved or

on-demand instances. For a predictable workload, the reserved instances are appro-

priate. For an unpredictable and varying workload, the on-demand instances having

flexible hourly payments without any long-term commitments are more suitable. In

this work, reserved and on-demand instances are provisioned to meet the varying
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workloads for compute intensive applications to building scalable and effective frame-

work to process the incoming workloads. The figure ?? below represents the overview

of IaaS, PaaS and SaaS

2.2 Event Driven Research

Traditional database management systems (DBMS) generally act as repositories to

store the data. The architecture assumes a pull-based model for the access of infor-

mation and analysis. The data is stored in the system and intelligence is extracted

by submitting the requests or queries. DBMS acts as a passive repository storing

a large collection of data elements and humans initiate queries and transactions on

this repository known as a human-active, DBMS-passive (HADP) model. Monitoring

continuous event streams involves continuous execution of queries rather than human

initiated transaction. This is called a DBMS-active, human-passive (DAHP) model.

The emerging applications with real time event streams require complex informa-

tion processing and performance requirements to model the structural and behavioral

aspects of an application. Consider a situation in a roadside traffic monitoring sys-

tem, which requires identification of the traffic congestion or hotspot occurring in

a particular section of the road network. In some circumstances (e.g. peak hour,

sporting event) the flow of data from sensing devices such as GPS navigation sys-

tems, mobile phones, loop counters, traffic signals and related sources significantly

increases. In a database management system, the monitoring functionality can be

improved only through additional servers and processing capacity. However, the se-

mantics of the processing need to be distributed and replicated across heterogeneous

data sources executed through different application programs. Given the complex

semantics involved in the real time event based applications, the difficulty stems from

ascertaining appropriate polling frequency to access the data from the database. If the

frequency of the polling increases, the maintenance and cost of the DBMS increases.

If the DBMS infrastructure cost is reduced, the response time for the information

processing is compromised. Event based research progressed in the development of

Complex Event Processing (CEP), which allow the easy capture of sequences of events

involving complex ordering relationships. In CEP, the events are processed directly

in-network, as streams flow from source to sinks. Event based systems focus on event

notification, with a special attention to their ordering relationships to capture com-

plex event patterns. Moreover, they target the communication aspects involved in

the event processing, such as ability to adapt to different network topologies as well
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as to various processing devices, together with the ability of processing information

directly in-network.

2.2.1 Principles of Event Processing

The basic building block in the architecture of real time streaming data is events.

Events are described as any action that occurs in a given instance of time or con-

templated as happening in the current time. This could be a landing of an airplane

or state in a finite state machine. The event object represents an activity and each

event records multiple attributes of the activity. In many systems the events are im-

mutable. Creating a new event object rather than altering the events leads to the

transformation of events. Deletion of an event in the architecture would entail the

system making meaningful decisions. The software artifact to process the events is

called Event Processing Agent (EPA) [Etzion and Niblett (2010)]. EPA receives a

single event or stream or collection of events based on the agent type and capabilities.

The agent type would indicate whether the EPA acts as an event source or event sink

or both. Channels are used to connect the event processing agents. A set of event

processing agents and channels form the Event processing Networks (EPN). The EPA

and channels can be dynamic. The dynamic behavior is controlled by the patterns

occurring in EPN. EPN can be designed as an acyclic graph or feedback loops. The

figure illustrates various components in the EPN. The processing elements in the EPN

are event producers, event consumers, agents and channels. The processing elements

make up the node of the graph. The output elements are referred to as edges in the

EPN. The EPN is an abstraction of the operations on events, which includes reading,

creating, transforming or discarding events based on the specification detailed in an

application.

2.2.2 Simple Event Processing

Simple event is defined in the atomic level where processing of the events is based

on the occurrence of a single event[Luckham and Schulte (2008)]. It is viewed as

summarising, representing or denoting a set of other events.Filtering and routing are

the two types of processing undertaken on these events. Filtering decides whether

the event progresses to the next stage within the EPN. In real world scenarios, event

processing is used to detect or report situations that initiate actions automated or

triggered by human interventions. The relationship between events is categorized as
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deterministic or approximate, based on the mapping between a situation in the real

world and its representation in the event processing system.

2.2.3 Complex Event Processing (CEP)

CEP creates actionable, situational knowledge from events arising from distributed

data sources, databases, application in real time or near real time. This extracts

higher-level knowledge from situational information abstracted from processing low-

level event feeds [Etzion and Niblett (2010)]. In order to create a processing en-

vironment, the processing network should be capable of one-to-one, one-to-many,

many-to-one and many-to-many communications.

2.2.4 Intelligent Event Processing (IEP)

The IEP enables complex event processing (CEP) and predictive analysis. Designing

event processing networks for intelligent event processing utilizes data mining and ma-

chine learning techniques for discovering new insights and pattern detection. Common

types of predictive models include decision trees, neural network, regressions, cluster-

ing and association models. In a few instances, an event processing network or event

processing engine invokes predictive models such as a scoring system [Muthusamy

et al. (2010)]. Intelligent event processing is commonly supported through logical

proofs, which helps the transitions of the events.

The three types of event processing discussed in the previous sections lead to the

main goal of timeliness in the deliverables leading to the emphasis on performance.

The characteristics of events such as arrival rates, logical structure, system defined

attributes, application defined attributes vary based on the event source and volume

of events. The design of the event processing systems needs to deal with optimization

and performance metrics relating to the characteristics of the event source and the

incoming arrival rate of the events.

In an event based systems context, content and the inter-relations among events play

a vital role in the optimisation and performance metrics. The interaction between

the event source and sinks, distributed in wide geographic areas adds to the latency

and compromises the responsiveness of the system. Varied number of users such as

high-level applications, end users, mobile applications push the requirements on the

expressiveness, scalability and flexibility of the event processing systems. The general
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model on Data Stream Management Systems popularly known as DSMS [Arasu et al.

(2004)] makes architectural choices with a set of standing queries focusing on the

data flow and data transformations. [Li et al. (2007)] allow the capture of sequences

in events involving complex ordering.

This research considers aspects of the effective event processing including the complex

relationship among the data with a focus on response centric event processing using

resources from cloud computing. To pursue the goal, the quality of service is analyzed

in terms of scalability and responsiveness. Scalability is defined as the ability of the

system to adapt fluctuations in the intensity of use, volume or demand. Several

dimensions of scalability relevant to the event producers, event consumers, contexts,

complexity and environmental conditions are listed below:

2.2.5 Volume of events:

The large volume of events and bursty inputs with temporary overloading are increas-

ingly common in streaming events. Traditional architecture uses exclusive ownership

of hardware or physical resources that enable the optimization of event flow for the

specific hard disk by issuing sequential read and writes. However to enable event

processing, the capital expenditure on procurement of resources limits the capability

to handle the high volume of the events. The advancements in the virtualized envi-

ronments such as cloud computing increase the agility of handling the high volume

streaming data through elastic, on-demand storage and processing capabilities. The

hardware procurement cost for short term use to handle the bursts of event flow is

considerably reduced with the use of cloud computing.

The natural solution to handle the high volume of events is to avoid the overheads

associated with resource contention. During the overload of the events, systems were

designed to shed load in order to maintain low latency results [Tatbul et al. (2003)].

Fraction of the tuples are dropped in a random fashion or based on the importance

of the content. Overloading or increase in volume of the events is unforeseen and

immediate attention is vital such as adapting the system capacity by adding new

computing resources or distributing the computation to multiple nodes [Cherniack

et al. (2003a)]. Application specific quality of service information was used to make

load-shedding decisions. For example, in a banking scenario, one event does not

identify a fraudulent login. A pattern of events over a period of time is important

to detect fraudulent actions. The load-shedding scenario has the risk of deleting

the event history. This research achieves scalability of event processing without load
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shedding under varying incoming arrival rates. Event processing is implemented using

the hiring of cloud computing resources.

2.2.6 Volume of event processing:

Event processing networks use the event-condition-action (ECA) paradigm from the

situational point of view to detect the complex or composite events. This research

analyzes the scalability of event processing through the development of inter-EPN

parallelisation described in Chapter 7 to address the issues listed below:

1. Consistency in the outcome of the processed events while scaling the event pro-

cessing networks.

2. Models to synthesize the aggregation of results from the multiple event process-

ing networks.

3. Scaling of the event processing networks to detect temporal, spatial, correlated

or complex events.

2.2.7 Number of event producers:

The quantity of events from various event sources or producers consistently increases

over time. For example, data emerging from RFID or pervasive sensing exceed several

millions of events per day. Continuous events need to be processed iteratively against

the incoming events to produce continuous results. The event based systems process

the events and produce long running results and may also access stored relations

across the heterogeneous event producers. The event-based systems use continuous

query language (CQL) which consists of relational operators such as select, project,

join and aggregation operators. The operators process the incoming events as they

arrive and cannot assume the events streams to be finite. For an operator or a query to

generate continuous output on the events generated from multiple producers, a notion

called window is commonly used to define a finite portion of the events. The database

management systems use blocking operators where output from one operator is sent

to the next operator. The event based systems use non-blocking operator imposed by

a window. A window can be defined as a snapshot of finite portion of events from a

single event producer or multiple event producers at any instance of time. Window

can be defined as time based (5 minutes or 5 seconds) or tuple based (count of event
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tuples) according to the computation. Windows define the start and end boundaries

to process the events. The advancement of processing from one window to another

window can be defined using overlapping or disjoint boundaries of time or tuple count.

Windowing based computation through unblocking operators forms the basis for han-

dling and scaling events from multiple event producers. In continuous event process-

ing, the count of event producers cannot be restricted or defined during a system

initiation. Processing of events across continuous events is conceptualized as the data

flow diagram moving way from pipelined or iteration-based pull approaches used in the

database management systems. The abstract semantics that converts event streams

to relation, relation to streams and relations to relations have been defined in lit-

erature [Arasu et al. (2004)]. With the increase in the volume of event producers,

many distributed event processing architectures have emerged, such as placement of

replicated tasks [Lakshmanan et al. (2010)].

2.2.8 Number of event consumers

Event based systems are decoupled in time, space and synchronization to support

scalability [Eugster et al.]. In a general design, systems assume the existence of mutual

agreement between the producers and the consumers of the event semantics, as they

add explicit dependencies between participants. The tightly coupled producers and

consumers need exact matching of subscriptions to address the semantic heterogeneity

in the events. Hasan et al. (2012) proposed an approximate semantic event matching

paradigm focusing on event enrichment. Filtering or matching of events against the

large number of subscriptions and arrival rates requires complex computations. The

event based systems use the unblocking operator approach where event consumers can

subscribe from multiple processed event queues or heterogeneous event producers.

The schematics of the event subscription is conceptualised in data flow diagrams

defined by the high level event driven architecture. The decoupling of the event

subscription provides scalability options for event producers and consumers. In the

spatial decoupling the interacting consumers need not know each other. The event

producers are unware of the count of event consumers or the interaction between the

event consumers. In the time based decoupling, the event consumers need not actively

participate in the same time instance to consume the events. There are instances which

can be defined to notify the consumers of a delay. During synchronisation decoupling,

the event producers and consumers can choose to get asynchronously notified through
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a call back mechanism. Decoupling the event producers and the consumers provides

a huge level of scalability options to the entire architecture.

2.2.9 Context partitioning:

The event based systems support windowing techniques and use sampling or approx-

imation to cope with the increase in event arrival. In a few proposals [Etzion and

Niblett (2010)], distributed architecture is adopted in the event processing with scal-

ability as their main concern. Distributed architecture through partitioning of the

incoming events is viewed as a solution for scalability. This adopts scalability of event

processing networks connected in an overlay with specialized routing and forwarding

functions. Further classification of the partitioning on the events for event processing

are categorized based on the centralized, hierarchical, acyclic and peer-to-peer systems

[Eugster et al. (2003)]. Forwarding schemes adopted by brokers and the techniques

of processing event patterns among the distributed brokers outline the methodologies

involved in the event processing.

Under partitioning of the events, the time taken to process the events is considered

as the total number of steps required to execute all the partitions. Events can be

partitioned or split across multiple EPNs or the copies of same EPN executed in

parallel, where one or more EPNs can be executed in each node. Consider the situated

prompting illustrated in Figure. 3.6, which involve processing of events related to

tasks A,B,C,D,E,F,G,H,I. Events related to each task stream from multiple sensors

processed by EPNs are located in multiple nodes. For example tasks B,C,H and I are

related to the baking dish, movement of ingredients such as sugar, butter and pear.

The events arising from these sources are assigned to the nodes of distributed EPNs

in a particular way, where the system should conclude activity I in Figure 3.6. In

general it is impractical to run the system and count the number of event partitions

or all possible interactions between EPNs to process the events arising from devices

and equipmens in the kitchen. It is important to establish generic properties for event

processing based on the context of the situated prompting. This research discusses an

automated method to split and process the events irrespective of the arrival of events

from multiple data sources.

As a design aspect, the partitioning of the event streams needs to be carefully analyzed

to maintain the consistency of features extracted from the events. The selection and

consumption of events from the various windows of time or context must be optimally

performed to customize output and to increase the efficiency of the system. The size
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of the output can be multiplicative with respect to the input. Expressing negation or

the non-occurrence of the event, such as a dementia patient not answering a phone

within a specified time, can be difficult during the context partitions. Messaging or

publish subscribe systems improve filtering or stateless computing. However, the

event processing systems include processing of both the occurrence and the non-

occurrences of the events with the temporal or spatial constraints. The scalability

in volume of context partitions needs careful design of the performance guarantee

and output consistency. In this research, algorithms have been designed to maintain

the semantic integrity and correctness of the resultant output through the Inter-EPN

parallelisation.

2.2.10 Context state:

The scalability of the event based system associated with a long-running context parti-

tion requires accumulation of a large number of events. For example, a query running

over a 48-hour period would acquire a large quantity of events to retain its internal

state over the period of time. StreamMine [Heinze et al.] architecture describe state

machine based operators to encapsulate reusable complex event processing operators

with a set of transition rules.

1. Remove outdated events from the window

2. Add new event to the aggregation

3. Propagate the new events to the next phase.

All steps are integrated in to the single state machine by encapsulating transition

between corresponding actions from events to trigger the removal of the outdated

event. The parallelization is acheived by instantiating several identical state machines

on different parts of the event streams. StreamMine processes the event stream as

event batches, allowing users to define the size of the batch, trading off throughput

for the latency with a compromise in the performance.

The execution of the distributed EPNs in multiple computing nodes can be modelled

as a state transition system where the states correspond to the combined states of

the EPNs and transitions correspond to the EPNs performing actions in parallel,

where each EPN’s action is defined in the CEP queries representing the context of

the application.

19



Chapter 2 Background

2.3 Bin Packing

In bin packing, a set of items, capacity and a size function is given. The goal is to

identify a feasible assignment minimizing the number of bins utilisation. A feasible

assignment of N items is a partition PPn items, such that each Pk , the sum of sizes

of the items in Pk does not exceed the capacity C. The objective is to decide whether

all items can be packed using atmost N bins. The problem is known to be strongly

NP-hard [Garey and Johnson (1979)]

Bin packing has been proposed as early as four decades ago [Kou and Markowsky

(1977)][Gabay and Zaourar (2013)] and heuristics have been implemented in virtual

machine consolidation. Challenges in resource allocation and memory allocation can

be formulated as packing variable sized items into fixed size containers in order to

minimise the total number of used containers. The bin packing problem is NP hard,

even when restricted to one dimensional case and books such as[?] detail most of the

theory literature on bin packing problems. To generalise, the systems that manage

resources in a shared hosting environment benefit from good heuristics for bin packing.

Focusing on virtual machine placements, several VM [?][Tang et al. (2007)][Lesh and

Mitzenmacher (2006)][Pinheiro et al. (2003)] consolidation heuristics use bin packing

as a base protocol to schedule resources.

Bin packing models are commonly used to address static resource allocation problems

between a set of servers with known capacities and a set of applications or services

with known amount of resources. In this research, EPNs are dynamically deployed

in the virtual machines. The demands of the EPNs and the capacity of the virtual

machines are likely to increase based on the arrival rate of the events. The growing

trend in cloud computing comes with a challenge of utilising the compute power in an

efficient manner. However, the utilisation power of the cloud computing is dependent

on the management layer that schedules/assigns the EPNs in to the virtual machines.

When assigning the EPNs, it is important to ensure that hosts are not overloaded

while minimising the count of hired VMs. When multiple EPNs are placed in the

same host, their load across each host is an additive measure, then the problem of

statically assigning the EPNs to the VMs is a similar to the bin packing.

In this research each application/EPN need to be assigned to virtual machines located

in multiple servers. Each server provides resources such as cpu, ram or disk, in order

to run various application and processes. The optimal assignment of each EPN on

multiple virtual machines is a NP hard challenge. A set of EPN needs to be assigned

or reassigned to a set of virtual machines or servers. For example given n virtual
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machines with a static capacity, feasible assignment of applications or processes need

to be made. Local search based heuristics were one of the successful option[ arts

and lenstra]. Greedy randomised adaptive search procedure(GRASP) was enlarged

by running several local searches through iterative process starting from diversified

initial solution [feo and resende 1989]. When applying GRASP heuristics to ma-

chine assignment problem, bin packing arises as a sub problem for generating initial

solutions.

Given the set of virtual machines with constrained resources and set of EPNs with

dynamically changing arrival rates of events, the algorithm need to identify the count

of virtual machines along with the optimal placement for the EPNs within the hired

virtual machines. This is called as dynamic application placement [9]. The placement

is an NP hard problem. This work will present an online approximation algorithm to

solve this.

2.4 Event Driven Systems

Event driven systems [Luckham (2001)] emerged to process the flow of data, which

are seen as an observable events. In event based applications, the data or events are

pushed into the system that is composed of queries and a response is obtained. The

event based model inverts the traditional data management assuming the users to

be active and the data management system to be passive [Cherniack et al. (2003b)].

Event-driven architecture not only needs the current values of the events, but requires

previous values and patterns from historic time series to trigger alerts in the essential

conditions. Event-driven architecture has the characteristic of unpredictable load,

where policy driven retainment of input data is very critical for operation. Intelligent

resource management and graceful degradation strategy in event-driven architecture

is highly essential when the incoming load is high. Much research such as NiagraCQ

[Chen et al. (2000a)], Aurora [Babcock et al. (2002)], Stream [Arasu et al. (2004)]

and Tribeca [Sullivan and Heybey (1998a)] addresses the development of event-driven

architecture.

2.4.1 Aurora and Borealis

Aurora is an event processing system which implements data flow using a box and

arrow paradigm. The data flow graphs enable a loop-free directed graph of event
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processing operations. The graph is represented as three blocks, namely real time

processing, views and ad hoc query processing represented as three individual layers.

The topmost path represents the continuous query. The continuous query (CQ),

once registered, issues results in response to the incoming data streams. Without an

upstream node, a connection point as shown in Figure 2.4.1 represents unprocessed

data streams stored for specific hours. The connection point records tuples processed

by each stage. Once the inputs data stream has worked its way through all the

reachable points, the data item is drained from the network. Persistence specification

indicates exactly how long the items are kept in the data store.

Aurora uses strategies such as combining boxes, inserting projections and reordering

boxes to optimize the data flow network. The high data rate and amount of compu-

tation time determine the complexity of the optimization. During execution, the run

time statistics are gathered to calculate the average cost of the execution and selec-

tivity for each box. The traditional way of combining all boxes to a massive query

and applying conventional query optimizations is not suitable for continuous event

streams. The Aurora optimizer selects a portion of the network for optimization and

corresponding sub networks are optimized. In order to reduce the overall processing

cost, Aurora optimizations involve the user-supplied query structure. The approaches

invoked are: (i) Allow boxes to queue many tuples without processing, leading to long

tuple trains (2 ) Allow interbox non-linearity by combining boxes in to a bigger box

where possible (3 ) Recording boxes (if commutative) based on the selectivity s, an

input tuple i, generates s × i output tuples. This minimises the I\O operations and

minimises the box calls made per tuple.

Adhoc Query optimizations: An operator sequence is attached to a connection point,

which is a repository of historical information of some redefined durations. History

information is stored in a B-tree form. If the connection point is a filter, when indexed,

lookup is done on a B tree. If the connection is a join, the choice between indexed

look up and merged sort is implemented based on the cheapest join. The optimizer

converts the historic sub network in to an optimized one which is then executed.

When the historic optimization is finished, Aurora switches the implementation to

standard push-based data structures. The runtime architecture of Aurora consists of

storage manager, scheduler, QoS monitor and load shedder. Load shedding [Carney

et al. (2003)] is treated as an optimisation problem. Whenever the load is greater

than system capacity, choices are made to drop the events for maximising the results.

Both random and semantic drops are used for the load shedding.
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Aurora Data Flow Diagram Aurora Architecture

The Aurora storage manager (ASM) manages the tuples flowing in the data process-

ing network in terms of queue management and maintains additional tuple storage

required at connection points. In queue management, the windowed operation re-

quires historic collection of tuples equal to the size of the window. If the network is

saturated, the ASM manager evicts the lowest-priority main memory resident block

known as ’tuple trashing’. Under the conditions of event distribution, this situa-

tion could change and different window sizes would make the catalog based remote

management harder.

Medusa [Balazinska et al. (2004)] is an infrastructure built to support the federation

operation of Aurora. Borealis is designed as a distributed data stream management

system to support the scalablity aspect of Aurora. Each processor maintains its own

persistent storage, load shedder, scheduler and optimiser.

2.4.2 Cayuga

Cayuga [Demers et al. (2007)] is an expressive language focused on the development of

a query processor for streaming events with a specialized garbage collector. The query

language operates based on the query algebra. The Cayuga automaton is implemented

by an event language represented as a non-deterministic finite state automaton (NFA).

The automaton is acyclic where states are assigned to a fixed relational schema as well

as input stream. Three types of edges – namely forward, filter and rebind – are used to
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define the event flow. Forward edges are those whose destination nodes are different

from source nodes. The filter corresponds to the negation operator. Automaton

instances need to store the attributes and values of the events contributing to the state

transition. These attributes and values are called bindings. To avoid the overwriting of

the events on the rebind edge, an attribute rename function is implemented. General

algebraic expressions are handled by feeding the output events from one automaton

in to another, forming a complex event-processing network.

The Cayuga data model allow events with simultaneous arrival time. During an

epoch t, all events with detection time t are processed without instantiating a new

automaton instance during the same epoch. At the end of each epoch, the state’s

pending instance is merged with the state’s surviving instance. This allows recursive

queries to construct an automaton that can loop forever in an epoch, generating

unbounded event processing for events with the same detection time.

The Cayuga architecture comprises of event receivers (ER), priority queue (PQ) and

client notifier threads (CN). The event receiver thread deserializes the incoming events,

assigns temporal signatures and inserts the events in to the priority queue. The

engine dequeues the events in the order of arrival, performing state transitions. For

each automaton instance reaching a final state, an appropriate CN is notified. Client

notification as well as insertion of new events in to the priority queue support recursive

subscription. Cayuga uses the garbage collector (GC) to facilitate high performance

and small memory footprint.

Scalable, stateful publish/subscribe system based on the non-deterministic finite state

(NFA) was developed by Demers et al. (2006) using multiple query optimization tech-

niques. Features are added to a publish subscribe system through query semantics

defined using formal language operators. Evaluation of automaton instances and edge

predicates for each incoming event is achieved using the indexing of the predicates.

The static part of the predicates is handled using the Active Node Index (AN-Index)

where the automaton instances of the static parts of the filter predicates are satisfied.

The dynamic predicates increase with the event arrival and number of automaton

instances and general indexing is not used. The total number of automaton instances

can be very large at a given instance of time; however, the number of instances affected

by the event is significantly lower which is referred to as Active Instance Index (AI-

index). Identification of the instances affected by incoming events is complemented

with the information on the forward and rebind (FR) edges of the traversing instance.

The FR-index evaluates the static part of the FR predicate to make a decision on
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whether to drop or advance the instance. The architecture of the Cayuga index illus-

trates the event stream subscription, notification and indexes. The implementation

of the automata in a distributed setting is not investigated.

2.4.3 Streams

Stream: Stanford data stream management system supports large classes of declara-

tive continuous queries over the streaming data. The prototype targets high perfor-

mance through sharing state and computation across query plans. Query plans are

composed of operators, queues and synopses. Constraints on the streaming data such

as ordering, clustering and referential integrity are used to reduce the resource usage.

Continuous monitoring and the re-optimization subsystem handle the fluctuating in-

coming arrival rates. The semantics of the system is based on two data types called

streams and relations defined using an ordered, discrete time domain called Γ.

1. A stream S is defined as an unbounded bag of events, where s is a tuple and

τ ⊂ Γ represents the timestamp of logical arrival time of tuple s.

2. A relation R is defined as R(τ) an instantaneous relation of the time-varying

bag of tuples.

The abstract semantics uses three operator classes, namely relation-to relation, stream-

to-relation and relation-to-stream. A declarative language, CQL (continuous query

language) instantiates the operators of the abstract semantics. Stream-to-relation

operators utilize the sliding window [2] concept based on tuples, time or partition of

the streams. Relation-to-stream operators are classified as Istream (insert stream),

Rstream (relation stream) and Dstream (delete stream) operators. Istream is applied

to a relation R whenever tuple s is inserted into R(τ)−R(τ − 1) at time τ . Dstream

is applied to a relation R whenever tuple s is deleted from R(τ − 1)− T (τ). Rstream

is applied to a relation R where every current tuple is streamed at the current time

instance. Each operator reads from an input queue (producing plan operator Op)

and writes to an output queue (consuming plan operator Oc. The operators Rstream,

Istream and Dstream form the basis of building the EPNs to window and group the

events for the continuous event processing.

Load shedding for the aggregate non-join queries are used in Babcock et al. (2004),

where load shedding operators are part of the query plan parameterised using the sam-

pling rate. To compensate the lost tuples due to the load shedders, aggregate values

25



Chapter 2 Background

calculated by the system are scaled appropriately to produce unbiased query results.

Issues addressed as part of the project include distributed data streams [Olston et al.

(2003)], adaptive query caching [Babu et al. (2005)] and resource management [Mot-

wani et al. (2003)].

2.4.4 NiagraCQ

NiagraCQ [Chen et al. (2000b)] addresses the scalability of the continuous queries

through grouping of the queries of common computation to reduce the I/O cost. The

memory of the computing node forms the limitation of the grouping. Unneccesary

query invocations are reduced by defining of the selection predicates to avoid large

operations of grouping. Group optimisation approaches use dynamic re-grouping,

query-split scheme, change and timer based queries. The incremental evaluation of

queries uses push and pull based models for detecting heterogeneous data source

changes and memory caching.

2.4.5 TelegraphCQ

TelegraphCQ [Chandrasekaran et al. (2003)] is focused on meeting challenges arising

from high volume, varying event streams based on adaptive relational query pro-

cessing. The Eddy [Avnur and Hellerstein (2000)] and Psoup[Chandrasekaran and

Franklin (2002)] systems were extended to develop TelegraphCQ.

An eddy is a stream execution mechanism which is built on the continuous reordering

of the operators in a query plan. Each input tuple in to the eddy maintains its history

separately from the execution history using the done bitmaps and ready bitmap. An

eddy routes a tuple to the succeeding operators based on the done bitmaps main-

tained in the execution history. Once the tuple satifies the predicates of an operator,

appropriate updates are made on the bitmaps and tuples are returned to the eddy.

Eddy continues iteration until the tuple has visited all operators. Psoup builds adap-

tive query processing techniques by combining ad-hoc, continuous queries by treating

data and queries symmetrically. The new queries are applied to the old data and new

data are applied to the old queries.
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2.4.6 DISPEL

DISPEL [Griffis et al. (2013)] is a scripting language with a parser to generate data

flow graphs in the form of executable workflow built on the OGSADAI [Mukherjee

and Watson] architecture. The language expresses a directed graph where processing

elements represent the computational nodes and the flow of data between processing

elements indicates the connections. In the lower level, DIPSEL handles a registry

validation and workflow optimizations.

The DISPEL registry maintains specifications for each processing element contain-

ing the description of workflow element, description of input/output streams, itera-

tive behavior of the event processing between various stages, propagation rules from

input/output and properties of the enactment engine to optimize workflow execu-

tion. The enactment engine buffers data units flowing through communication objects

within a workflow, responsible for optimizing the mapping of processing elements to

computing resources to minimize communication cost such as serialization, compres-

sion of data for long-haul movement and buffering techniques.

DISPEL uses three type of systems to validate abstraction, compilation and enact-

ment. The language type system statically validates operations during compile time.

The structural type system describes the format and low-level inter-operation values

across processing elements. The domain type system describes application-domain re-

lated interpretation of the data. A streaming execution engine is developed where data

is processed as streams through processing elements which are connected together into

workflows. The workflows are managed by distributed gateways which optimize the

workflow execution according to data locality and availability. The ADMIRE [Tran

et al. (2011)] platform is based on the DISPEL scripting language.

2.4.7 Others

The SASE [Gyllstrom et al. (2007)] language uses both data-flow graphs and a non-

deterministic finite state automation for simple and complex event detection. It re-

ceives sequences of events fed in to the query plan consisting of five operators con-

nected in a pipeline. The negation operator expresses the non-occurrences of the event,

sequence scan operator detects the positive events, selection filters detect sequences

of events on predicates, transformation concatenates all attributes of the events in

the detected sequence. The pipeline concept enables distribution of the processing

stages in to a separate machine due to the stateless nature of the operators except
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for sequence scan. Parallelisation of the sequence scan operator needs to see all the

incoming events and maintain the states across each partition. Moving predicates and

windows in the query plan introduces complexity and makes the computation more

centralised.

Gigascope [Zhu et al. (2002), Cranor et al. (2003)] is a lightweight system specialised

for the network monitoring. The queries submitted in Gigascope are analysed and

optimised using a set of C and C++ language modules, compiled and linked to the

run time system.

OpenCQ [Liu et al. (1999)] is a distributed event-driven query system using incre-

mental materialised views to support continuous query processing.

Tribeca [Sullivan and Heybey (1998b), Sullivan (1996)] is based on a set of stream-

to-stream operators using demultiplexing and multiplexing of the incoming event

streams. The feature in the language to convert the single stream output with no

notion of the relation makes it more expressive.

2.4.8 Summary

To summarise, this section surveys related work on the event driven architecture

and event stream processing, focusing in the language design, scripting and querying

methodologies. Systems such as NiagraCQ, Cayuga, Tribeca, Aurora focus on the

specification of data flow architecture, continuous query operators and language cen-

tric features of the event based systems. In this research, these systems provide the

baseline of the event driven architecture to build the event processing architecture for

the ambient kitchen.

2.5 Parallelisation of Event Processing

Wu et al. (2012) derive the shared state and synchronisation overhead of operators

based on parallelisation. The suitability and the optimal degree of parallelisation are

assessed in terms of the bottleneck operator. An example of a KNN operator, the

most commonly used in intelligent transport related applications, is used to illustrate

the parallelisation. The count of the operators is estimated during the system initial-

isation along with the exclusive and non-exclusive reads or writes to the shared state.

Configuration of the operator is represented in terms of the operator throughput. The
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throughput is defined as 1
T+αrφr+αwφw

. T is the time taken by the non-parallelised

operator to access memory and cost of the memory access is assumed to be negligible.

The αr and αw denote the non-exclusive reads and writes on the shared operator. αw

and αr denote the exclusive reads and writes on the non-shared operator.

The average time C is calculated to process the tuples for a specific application sce-

nario. Wait time w is calculated based on the arrival rate. In order to determine

throughput, an exclusive lock is required for the operator parallelisation. The oper-

ator in the waiting queue beyond a particular time is assumed to acquire lock and

continue to process for a particular time unit ts. Whenever a new lock request arrives

from the incoming events, the operator continues the processing for another C−w+ts

time units. The operator does not accept any new request from an incoming event

source until the lock is released. The framework implementation uses System S and

CAPSULE to determine the count of operators without a shared state. Multithreaded

implementation is used to demonstrate the parallelisation of the shared state.

Access latency between the operators adds to the overall latency of the query. How-

ever, Wu et al. (2012) assumes the access latency between the operators to be an

independent value along with the frequency of operator access. Overall latency pre-

diction becomes challenging in this approach as the latency involved in the locking of

the operators and inter-operator latency are unknown.

Cugola and Margara (2012) use parallel hardware to speed up the complex event

processing. The algorithms to process the rules for parallelisation are built using

operators such as sequences, aggregates, etc. The complex event-processing engine

uses multi-core CPU for the simplest rules and the co-processor of the GPU (Graph-

ics Processing Unit) is allocated exclusively for the implementation of the complex

rules. CUDA, a parallel computing platform and programming model invented by

NVIDIA, is used in this research. CUDA expresses parallelism by feeding hierarchi-

cally organised multithreaded memory blocks. Each memory block is decomposed in

to finer pieces, processed co-operatively in parallel by all the threads within a block.

Each thread has a private local memory for automatic variables and shared memory

visible to all threads in the same block known as global memory. Thread blocks syn-

chronise between each other through barriers. The programming model separates the

device from the CPU in separate memory spaces. The CUDA architecture is built

around multi-threaded Streaming Multiprocessors, where a host CPU invokes a kernel,

the blocks executing the kernel are distributed in streaming multiprocessors. Multiple

blocks may execute concurrently on the same streaming multiprocessor. As the blocks

terminate, a new block is launched on the streaming multiprocessor. The Automata
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based Incremental Processing algorithm is used to implement the complex event pro-

cessing engine. Each sequence of the incoming events is mapped to a state and the

transition between two states is denoted with content and timing constraints. Run

time adaptation of the parallelisation is the key factor to reduce the queuing delay of

the incoming streaming events. The parallelisation algorithms utilise multithreading

and are limited to hardware with high processing specifications.

The dynamic placement query operators in a distributed continuous query system are

addressed in Zhou et al. (2006a). Static placement of the query operators fails to ad-

dress the server load, data arrival rate and communication overhead in a distributed

event processing scenario. This work proposes data stream processing by dynamically

migrating query operators or query fragments from overloaded query operator nodes

to lightly loaded nodes. The work formalizes and analyzes the operator placement

problem in the context of distributed continuous query systems. Multiple continuous

queries executed in distributed nodes without any adaptation to the changes envi-

ronment parameters lead to a suboptimal performance. The Performance Ratio (PR)

metric to measure the relative performance of each query and the full system objective

is defined initially. The heuristics on building a cost model are defined around the

following parameters:

1. Load balancing among all processing nodes

2. Restrict the number of nodes over which the operators are distributed

3. Minimize the communication cost under balanced load and restricted query

operator placement.

The load balancing is implemented using a well known diffusive load balancing scheme

[Osman and Ammar (2002)]. Redistribution of load under operator level is done by

adapting movement of query fragments as the finest migration unit. The communi-

cation cost is kept to a minimum by using a data flow aware load selection strategy.

The research problem is addressed by building a cost model to evaluate the data

flow aware load selection through dynamic movement of query operators. Problem

formulation describes a system consisting of geographically distributed data stream

sources, set of distributed event processing nodes interconnected by a local network.

The data transfer costs from data source to processing node are assumed to be higher

than the data transfer cost between processing nodes, so each stream of data is routed

to multiple processors through a delegation node. Users impose a set of continuous
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queries and set of operators (filters, window joins, etc.) of a single query to be dis-

tributed across multiple processing nodes. There is a large overhead of several epochs

of operator placement leading to rerun the algorithms for good placement of operator

thereby maintaining the communication overhead as small as possible. The system

predicts the likely arrival rates for deciding on the number of computing nodes require-

ment, and this prediction is based on the prevailing rates and their variation trends.

Their algorithm also takes the cost of hiring extra nodes as a parameter which is not

considered in this research.

StreamMapReduce [Brito et al. (2011)] combines event processing and MapReduce to

deliver low-latency capabilities. The parallelization and scalability of MapReduce is a

consequence of the fact that the mappers are stateless and reducers are independent

processes that aggregate the results from mappers. In this work, the two types of re-

ducers (windowed and stateful) are implemented as stateful operators divided based

on the type of the state. Windowed reducers consider a state composed of a win-

dow of events. Stateful reducers consider arbitrary states customizable by the user.

Movements of events in windows reducers are based on redirection of events to the

new node or a complete state transfer. The stateful reducers utilize the parallelism

by exploiting the multiple cores in the computing node using a thread pool. Reducers

use the state to store partial value results. The state recovery is done through a com-

bination of in-memory logging in the upstream node and checkpoints to enable fault

tolerance. The maintenance and propagation of the state in complex event processing

applications are not considered.

StreamCloud [Gulisano et al. (2010)] is implemented as middleware to explore strate-

gies to parallelise data streams, address the bottlenecks and overheads to achieve

scalability. The scalability is provided through intra-operator parallelism where indi-

vidual sub queries are distributed to a large set of shared-nothing nodes. The compiler

transforms the abstract query in to a parallel query that is automatically allocated to

a given cluster of nodes. This uses Borealis, a distributed stream processing system,

to parallelize the queries using regular stream operators. A full query is implemented

in the sub cluster of nodes in which each node processes the fraction of the input. The

load balancer for the stateful queries needs to be enriched with semantic awareness.

System S4 [Neumeyer et al. (2010)] is a distributed, scalable, fault tolerant stream

computing pluggable platform developed for unbounded event streams. The applica-

tion is primarily developed for large-scale data mining executed in large clusters with

commodity hardware. The architecture comprises of symmetric nodes with no cen-

tralized service simplifying the cluster configuration changes. Throughput increases
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linearly as additional nodes are added to the cluster. There is no pre-defined limit

on the number of nodes. The basic building block of the platform is message queues,

processors, serializer and check pointing system in the backend. Cluster management

tasks are leveraged using ZooKeeper [Hunt et al. (2010)] through an efficient coor-

dination service of distributed applications. S4 design comprises of map reduce and

actors models. The core design is built on processing elements (PE) to exchange

events, i.e. messages holding key value pairs. The PE consumes events corresponding

to the value on which it is keyed. New elements are spawned with the occurrence of

every new key. Processing nodes logically host the PE. S4 routes events to processing

nodes based on hash functions of all known keyed attributes in the event. The event

listener in the processing nodes passes the event to the Processing Element Container

(PEC) and invokes the appropriate processing element. The exchange of events is

accomplished through TCP sessions. A task periodically deletes events from within

regular time intervals. Whenever a server fails, the stand-by-server is automatically

activated to take over the tasks with check pointing and recovery to minimize the

state loss. The state of the processes is stored in the local memory. Upon failure,

the state needs to be regenerated using the input streams. Nodes will not be added

or removed in a running cluster. The platform lacks the control of assigning multiple

high computational tasks in to the same machine.

2.5.1 Summary

The distributed stream processing middleware’s such as Borealis, System S and others

adopt pipelined parallelism, where the run time schedulers determine the placement

of the operator that may have application level bottleneck issues. Scheduling strate-

gies for the continuous queries use load shedding mechanisms, which assume sufficient

resources during the system initialization. The systems face shortage of resources

during the execution of the registered queries. It may not be feasible to satisfy the

QoS requirements of all the registered queries. A natural solution is to discard the

events or tuples with the goal of minimizing errors in terms of load shedding. The

load shedding process triggers few important issues such as where to discard the event

tuples, how many tuples to discard, when to discard and when to stop discarding the

tuples. The run time optimizations can be achieved using this process, however, the

semantic integrity of the processed events along with the quality of processing is com-

promised. This research focuses on limiting the queuing of events through distribution

of incoming events in multiple computing nodes to satisfy the tuple latency and to

obtain the final query results based on the predefined QoS specifications.
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2.6 Scalability in Cloud Computing

Cloud computing offer services such as platform, infrastructure or software abbre-

viated as IaaS, PaaS or SaaS to deliver execution environments such as operating

systems, middleware or application software.

Virtualization in cloud computing is the key enabler to drive the ability of the hard-

ware to scale according to demand. The cost effective on demand approach in the

virtualization helps to reduce the hardware capital expenditure. The ability to scale

the resources based on demand improves the operational efficiency and agility of the

system. Under virtualization, a single piece of hardware is split with the capability of

running multiple independent resources in terms of operating systems with distinct

management capabilities allowing the utilization of the underlying platform resources.

The provisioning of the resources is dynamically configured based on the configured

thresholds by the service providers. Underlying hardware usage and the networking

device state is dependent on the CPU utilization, application state and networking

I/O. The optimization of resources is provisioned or released based on the acceptable

limits of the underlying server. To offer the linear scalability to the applications,

virtualisation provides the following tasks:

1. Resource utilization

2. Scalability

3. High Availability

2.6.1 Resource Utilisation

Under virtualization, the core objective is to provide performance isolation, scheduling

priority, memory demand, network access and disc access for all the concurrently

running resources spawned in a single piece of hardware between multiple tenants.

The application running inside one virtual machine is expected to be independent of

the co-located application running inside another virtual machine.

Commodity virtualization stacks such as Xen or HyperV let the applications run on

the cloud with very little performance guarantee. The provisioning of the resources

for multiple applications and customers leads to possible interference between users

and performance problems. Koziolek (2010) defines the potential problems such as
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cache restriction, load management, admission controls and thread priorities for the

performance isolation. Krebs et al. (2012) introduce four approaches to enforce perfor-

mance isolation focusing on QoS metrics using the admission control and the thread

pool mechanisms. The round robin approach introduces specific queues for the each

tenant. It provides good isolation, however it is not sufficient for overcommitted sys-

tems, as it cannot fully leverage the unused resources from some of the tenants. The

blacklist method triggers a quota checker and monitors the violations in the allo-

cated quota for each tenant. This method provides good isolation for the disruptive

workloads to achieve different QoS for throughput. All the tenants use the unused

resources equally. The separate thread pool method allocates limited size to the pools

to isolate tenants from each other. The metrics are measured by triggering disruptive

workload to various tenants occupying the specific hardware. This method provides

good isolation and QoS differentiation is achievable by using different thread sizes.

When the number of potential threads spanned by the tenants is higher than the

optimal working point, the congestion is observed in the server.

Mei et al. analyzed idle instances management and the performance impact of co-

locating applications in terms of throughput, performance and resource sharing (i.e.

CPU, memory) effectiveness. The impact of running idle instances is studied to pro-

vide useful insights to cloud consumers for managing idle instances more effectively

to scale the applications. This work provides the co-location impact of network cen-

tric I/O applications. A resource usage model is used to explore and quantify the

performance gains and losses relative to the various configurations in the guest do-

mains and applications. Measurement analysis reveals that applications should be

arranged carefully to minimize unexpected performance degradation and maximize

desired performance gains.

Koh et al. (2007) focus on the hidden contention for the physical resources caused by

various virtual machines (VM) hosted on one physical host or a piece of hardware.

Workloads characteristics are used in the mathematical models to predict performance

interference. Clusters of applications are identified to generate metrics for series of

system level workload characteristics such as average CPU utilisation, cache hits and

misses, virtual machine switches, I/O blocks, disk read and disk write. If an appli-

cation runs in a VM by itself it can use techniques to use a deterministic share of

CPU. However, when the hypervisor switches to another VM, the new VM regains

access to the CPU. This process is opaque in the physical representation of hard-

ware, applications and guest OS are not aware of the changes leading to the difficulty

in the optimisation techniques. Based on the performance interference, application
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clustering is done based on the linear regression analysis of performance score predic-

tion. The workload behaviour based on the streaming events leading to network I/O

impacts is not included in the prediction of the resources.

Q-Cloud [Nathuji et al. (2010)] is a QoS aware control framework which tunes re-

source allocations to mitigate performance interference effects. It uses online feedback

to build a multi-input multi-output (MIMO) model to perform closed loop resource

management for specifying multiple level QoS in terms of application level Q-states.

Lowest Q-State is the minimum performance level required by the application but

higher Q-States may be defined by applications willing to pay higher levels of QoS.

The underutilised resources are enabled to elevate QoS levels to improve the system

efficiency and utilisation up to 35% using the Q-states. Static estimation of the re-

source requirements is determined based on profiling the virtual machines on a staging

server. During the placement of virtual machines, the cloud scheduler leaves a pre-

scribed amount of unused resources on each server to utilise in the online control.

The unused capacity is called ’head room’, which is determined based on the typical

excesses used in interference mitigation.

Amazon kinesis, is designed to handle real time streaming events from hundreds of

streaming event producers such as social media feeds, application logs, click streams,

etc. Shard is the base throughput unit of amazon kinesis stream. One shard provides

capacity of 1MBsec data input and 2MB/sec data output. One shard can support

1000 PUT records per second. The count of shards are dynamically added or removed

proportionate to the CPU utilisation. Amazon Kinesis provides prebuilt libraries

to configure the incoming data sources directing it to various applications such as

Storm, Amazon S3, Amazon Dynamo DB, Amazon Glacier and others. It acts as

a managed service to elastically scale the real-time processing of streaming data at

massive scale. The count of shards required for specific application on a stated arrival

rate in unknown to the users. The users need to program the real time scaling of the

shards or estimate on the count of shards. For example, a method call ’SplitShard’

is invoked to split one shard in to two new shards in the stream of events. This

increases the capacity of shards to ingest and transport more events. However, given

the nature of application, predicting the count of shards will be useful to plan the cost

and resources. Splitting of shard requires a logical and analytical framework based on

the application requirements, which is deployed to process the event. To the best of

our knowledge, the amazon kinesis utilise the CPU usage as the main parameter to

scale the shards, however it does not implement the dynamic prediction or estimation

of the CPU requirement based on the incoming arrival rate of events.
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Google big query is a fully managed cloud based interactive query service for massive

datasets. Dremel is the query service that allows SQL-like queries. Big Query provides

REST API available through Dremel targeting the third party developers. Dremel

parallelise each query and run it on tens of thousands of servers simultaneously. Data is

stored in the columnar storage to achieve high compression ratio and scan throughput.

Tree architecture is used for dispatching queries across thousands of machines in few

seconds. The architecture forms a massively parallel-distributed tree for pushing down

a query in to the tree and then aggregating the results from the leaves. By leveraging

this architecture, Google implemented distributed design for Dremel and big query

share the same underlying architecture and performance characteristics. Big query

is designed to handle structured data using SQL. For example a table is defined in

big query with column definition and then import data from a CSV file in to google

cloud storage and then in to the big query. Big query is suitable for OLAP or BI

usage where most queries are simple and done through aggregation and filtering by a

set of columns (dimensions). BigQuery is an externalised version of Dremel with very

similar features to MapReduce and Bigtable. While MapReduce is suitable for long-

running batch processes, BigQuery is preferred for the adhoc OLAPBI queries that

requires very high response time. The cloud-powered parallel query database present

high full-scan query performance and cost effectiveness compared to the traditional

warehouse solutions. The technologies such as BigQuery and MapReduce are more

focused on the long-running batch processes. The real time event based processing

domain is currently dominated by the continuous query language and continuous

event processing(CEP). In this research, the focus is towards using exemplars from

real time streaming events, where the arrival rate of events changes dynamically.

The frameworks such as Tenzing[Tolosana-Calasanz et al. (2012)], Dremel [Google] ,

are mostly used in the batch processing. The work in this research is focused more

towards creating algorithms to estimate, predict and place the EPNs. The EPNs are

the processing units, which are developed using lightweight, java program modules

consisting of continuous event processing system.

Cloud computing infrastructure exhibit performance variability based on the collo-

cated applications, resource sharing policy such as EC2 credit share, etc., over the

period of time. The same virtual machine instance has different resource character-

istics over time due to multi-tenancy and varying workloads in the data centre in

accordance to the placement and diversity of the commodity hardware [Iosup et al.

(2011)]. Scheduling strategies that assume deterministic and homogenous cloud be-

haviour fail to deliver expected QoS to the applications running on clouds. Systems

such as S4, Storm and Spark provide generic auto scaling solutions such as operator
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scaling and data parallel options [Zhou et al. (2006b)]. Several solutions to leverage

cloud elasticity has been proposed [Gulisano et al. (2012)]. However, most of the

systems [Tolosana-Calasanz et al. (2012), Satzger et al. (2011)]] consider variability in

the incoming data and ignore the variability in the underlying cloud infrastructure.

In this research, heuristics are developed to consider the changes in the incoming

event arrival and the underlying infrastructure through hardware metrics monitoring

probes. The count of VMs are estimated dynamically based on various arrival rates

of events. Queuing theory model is used to predict the hiring of virtual machines.

The algorithms developed in this research are used to predict the response time of the

deployed applications to scale the virtual machines hired from the cloud computing,

proportional to the arrival rate of the incoming events. The table 2.1 categorises the

reference publications in to various topics such as response time estimation, dynamic

placement, scalability in cloud and event processing parallelisation. This work uses

the concepts from all these areas to find an appropriate solution.

2.6.2 Summary

The enabling factor for cloud computing is the virtualization techniques provided by

XEN [Barham et al. (2003)], Hyper V [Velte and Velte (2010)] and others, allowing

execution of multiple operating systems and applications to run simultaneously on the

same hardware. The performance isolation [Koh et al. (2007), Nathuji et al. (2010)]

and CPU fair sharing [Kazempour et al. (2010), Liu et al. (2010)] in a virtualized

environment address the resource contention issues associated with the real time data

intensive applications. The assumption of the performance isolation in the virtualiza-

tion environment fails under high I/O requests and heavy CPU intensive jobs. The

combined effect of multiple process intensive jobs running in the same virtual machine

leads to highly fluctuating response time scenarios. To maximize the benefits and the

effectiveness of the virtualized cloud computing environments, deeper understanding

of the key factors related to effective resource sharing needs to be achieved to address

the performance bottlenecks. Based on this background research in the performance

interference aspects, baseline setup criteria such as deterministic CPU allocation for

the VMs, are devised for the cloud computing environment to avoid the performance

inferences from other virtual machines in the hired hardware.

Several solutions to leverage cloud elasticity has been proposed [Gulisano et al. (2012)].

However, most of the systems [Satzger et al. (2011), Tolosana-Calasanz et al. (2012)]

does not consider variability in the incoming data and ignore the variability in the
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Table 2.1: Related Work Classification
Response
Time
Estimation

Dynamic
Placement

Scalability
Cloud
Computing

Event
Processing
Parallelisation

Luckham and Schulte (2008) X
Etzion and Niblett (2010) X
Arasu et al. (2004) X
Muthusamy et al. (2010) X
Li et al. (2007) X
Tatbul et al. (2003) X X
Cherniack et al. (2003a) X X
Iosup et al. (2011) X
Zhou et al. (2006b) X
Gulisano et al. (2012) X X
Tolosana-Calasanz et al. (2012) X X
Satzger et al. (2011) X X
Koh et al. (2007) X
Nathuji et al. (2010) X
Kazempour et al. (2010) X
Liu et al. (2010) X X
Brito et al. (2011) X X
Osman and Ammar (2002) X X
Zhou et al. (2006a) X
Cranor et al. (2003) X X
Griffis et al. (2013) X
Demers et al. (2007) X X
Chen et al. (2000a) X
Babcock et al. (2002) X
Arasu et al. (2004) X
Sullivan and Heybey (1998a) X

underlying cloud infrastructure. In this research, heuristics are developed to consider

the changes in the incoming event arrival and the underlying infrastructure through

hardware metrics monitoring probes. The hiring and releasing of VMs are estimated

dynamically based on various arrival rates of events. Queuing theory model is used

to predict the hiring of virtual machines. The algorithms developed in this research

are used to predict the response time of the deployed applications to scale the virtual

machines hired from the cloud computing, proportional to the arrival rate of the

incoming events.
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Real time streaming application

3.1 Introduction

The modelling and implementation of the event processing is accomplished based

on the real time streaming application called ambient kitchen, which was supported

by the EPSRC funded SiDE (www.side.ac.uk) project. The terminology event used

within this thesis denotes a notable action which could be a transition of an entity or

any external information feeding in to the ambient kitchen. The events can identify or

trigger actions (cutting, chopping, stirring, etc.) or initiate multiple processes (prompt

users, direct assisted actions etc.) registered within the kitchen or to the systems

linked with the ambient kitchen. From an event processing perspective, the ability to

detect and respond to the events are defined as one of the key goals for the definition of

the Event Processing Network (EPN). The conceptual building block for the design of

real time information management within the ambient kitchen are the event processing

networks(EPNs). EPNs provide core functions of event-processing logic connecting

event producers and consumers through events arising from various pervasive sensors

and systems. EPNs describe the event processing system as a collection of interactions

between event producers, processing agents and consumers. EPNs combine analytical

techniques to predict events, mine patterns and embed real-time analytics to trigger

decision support systems. The modelling and implementation of EPNs is supported

by the requirements driven by the real time streaming application from the ambient

kitchen.
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Figure 3.1: Ambient Kitchen Overview

3.2 Ambient Kitchen Overview

Ambient kitchen is a configurable, extensible and portable framework that enables an

experiment set up of smart kitchen to support dementia patients. In this research, the

ambient kitchen is used as a prototype for the generation and submission of complex

real time streaming events workloads in to cloud computing environments. Through

the accumulation of statistical information regarding the incoming arrival rate of

events generated from the ambient kitchen execution, the framework is able to carry

out a response time of the underlying ambient kitchen event processing applications

deployed in cloud as IaaS systems.

Ambient kitchen overview is represented in the above figure 3.2. The event-binding

editor defines the capture and the emission of the events from the kitchen devices

and the system activity. The criteria for capturing events and the data from the

kitchen are known as the capture specifications and are saved in the event bindings.

Each capture specification relates to a particular capture point, for example, the

accelerometers embedded in the knife in kitchen will stream events in terms of X,

Y and Z coordinate movements. The event emission options including the required

format and the destination are also defined in the event bindings.

Ambient kitchen application checks the capture specifications whenever an event cap-

ture point is run. If the capture specifications are active, the devices check the filter

criteria and capture the specified events when the pre-condition is evaluated to true.

Captured events are passed to the event dispatcher for the emission. Event dispatcher

passes each event to the EPN as specified by the event binding. The Event processing

40



Chapter 3 Real time streaming application

network adaptors formats the events and emits to the destination EPN according to

the configuration defined by the event bindings.

3.3 Benchmarking Application

The human activities in the ambient kitchen rely on the statistical analysis of features

extracted from the accelerometer events. For each dataset, a set of 23 statistical

attributes such as mean and moments are calulated. The events are split in to frames

with length of 64 events and 50% overlap of events. An investigation of the food

preparation actions with embedded three axis accelerometers in the kitchen utensils

(such as knifes, spoon etc.) was carried out using volunteers to use the devices in

the kitchen. Analysis of events emerging from these experiments was utilised to

generate streaming events for this research. At the application level, the objective

is to identify the low level food preparation activities from the kitchen utensils which

include identifying activities such as chopping, coring, stirring, slicing, dicing, eating,

peeling, spreading, scooping, scraping and shaving.

Figure illustrating Ambient Kitchen Embedded Sensors

Slice and Dice [Pham and Olivier (2009)] is a first step in the development of a

low level activity recognition framework for food preparation. The framework detects

activities through four steps: Data Fetcher, Data Segmentation, Feature Computation

and Classification.

1. Data Fetcher: The raw data from accelerometer signals are preprocessed using

noise removal and filtering techniques. The sensors are embedded inside the
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kitchen utensils. During cooking activity, events are streamed from the utensils

at a frequency of 1Hz. Events are segmented in to sliding windows for compu-

tation.

2. Feature Computation: 23-feature vectors such as mean, standard deviation,

entropy, energy, and correlation between two axes are computed from a sliding

window.

3. The classification algorithms used in the activity recognition framework are De-

cision Tree C4.5, Bayesian Network and Näıve Bayes. In the experiment with

20 subjects performing mixed salad and sandwich preparation in the Ambient

kitchen, the framework was rigorously evaluated and has shown an overall ac-

curacy of more than 80%.

Figure 3.2 describes the overview of system architecture where the real time stream-

ing events generated from the ambient kitchen are used to detect the presence of the

person, actions and behaviour patterns of the kitchen occupants. One of the chal-

lenges in this environment is the integration of new devices in to the physical kitchen

and standardisation of the widely diverse event processing life cycles. The heteroge-

neous environment triggers a need for an event processing stack with self-managing

properties since solutions depending on the centralised management, configuration

and adaptation exhibit a single point of failure. The research motivation is to provide

event based infrastructure to seamlessly integrate context aware services, independent

of devices and subjects to create a high level situated prompting environment.

3.4 Autonomous Event Processing Network (EPN)

Design

The event processing agents are viewed as a collection of event processing elements,

event producers and event consumers linked by channels for communication. The

EPNs are represented as a graph as shown in Figure 5.1, composed of processing

elements constituting the node of a graph. The nodes have input or output terminals

for the flow of events from one stage to another.
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Figure 3.2: Activity Recognition Architecture

Figure 3.3: Event Processing Network (EPN) overview
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3.4.1 Event Producers

The event producers in activity recognition are from a discrete piece of hardware

to detect the acceleration. In the demonstration prototype, Pham and Olivier (2009)

implemented ambient kitchen using the Nintendo Wi Motes and also developed sensors

to exclusively measure acceleration. ADXL330 accelerometers were used to sense the

acceleration along three axis to measure motion, shock or vibration. The embedded

sensors are set to 40hz providing approximately 40 samples every second.

The acceleration events measure motion of the sensor itself in three different axes

namely X, Y and Z. The event types are defined for acceleration data with semantic

relations between the device, users and the generated features. The payloads for each

event type for the activity recognition experiment are illustrated in Tables 3.1, 3.2

and 3.3. The event producers constitute many sensor devices embedded inside the

knife, spoon, utensils etc. A subset of the events generated from these devices is used

to evaluate the response time.

Table 3.1: Schema for Acceleration Events in activity recognition

Attribute Name Data Type Semantic Role

X Int Common Attribute
Y Int Common Attribute
Z Int Common Attribute

The meta-data for the entire event producers such as devices and subjects of the

ambient kitchen are encoded within the devices.

Table 3.2: Metadata for Acceleration Events in activity recognition

Attribute Name Data Type Semantic Role

Device Id String Reference to Device Entity
Name String Common Attribute

3.4.2 Processing Elements:

Each processing element try to recognise the activities happening within the kitchen

such as cutting, chopping, choring, etc. Various stages on the processing of events is

described in this section.

The PE1 (Processing Element 1) as illustrated in Figure 3.3, acts as a filter in the

EPN and windows the incoming events based on the specified dimension (temporal,
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spatial (according to location of devices) and sequence of arrival). The expression that

filter work is solely based on the value of the attribute called deviceId and will work

as intended against any event type that contains a deviceId attribute. The ordering

of the events is based on the arrival of the event from the message queue.

Each set of incoming events is grouped in to a set of 64 or 32 events called a Window.

Landmark and sliding windows are a few of the windowing schemes commonly used

in event processing. For landmark windows the older end of the events in a window

are fixed and the newer end of the window changes with the arrival of the new tuple.

In sliding windows both ends of the window move in unison with the arrival of the

new tuples. In the activity recognition, a sliding event interval is utilised where each

window has a specific count of overlapping events. The new window is opened with

half of the tuple from the previous window as shown in figure 6.1. Based on the

intensive machine learning experiments in [Pham and Olivier (2009)], the optimum

window size is fixed as 64 for the PE1.

In the activity recognition use case, the window of 64 tuples describing activities is

abstracted as mean, standard deviation, entropy, roll and pitch for that period. The

first 32 tuples of a given window must be the same as the last 32 tuples of the previous

window. Accuracy of detection is sensitive to this degree of overlap. Window size is

determined based on the previous research [Pham and Olivier (2009)].

The processing element 2 (PE2), as illustrated in figure 3.3, acts as a transformation

operator, where the event instance is processed depending on other instances pro-

cessed by the operators. They differ based on the kind of transformation it performs

such as stateless or stateful. It also depends on the single input stream or multi-

ple input stream with functions such as aggregate, sort, resample, map, read, union,

join, update, etc., The functionalities differ according to the event processing engine

providers. For example, mathematical aggregate functions such as mean, standard

deviation, energy and entropy [Pham and Olivier (2009)] are used.

Energy =

n∑
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,
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Standard Deviation =
√
energy(X)−mean(X)2,√

energy(Y )−mean(Y )2,
√
energy(X)−mean(X)2

(3.3)

Entropy =
N∑
i=1

p(xi)log2p(xi),

N∑
i=1

p(yi)log2p(yi),
N∑
i=1

p(zi)log2p(zi)
(3.4)

The processing element PE2 transforms the raw data from the accelerometers in to

’features’. Once the initial computations are completed, the features are used to

map the semantic roles of the data such as cutting, stirring and other activity. The

attributes and the payload of the features are described in the table below.

Table 3.3: Schema for Features in activity recognition

Attribute Name Data Type Semantic Role

Device Id String Reference to device entity
Features String Common Attribute
Activity String Common Attribute
Current Time Timestamp Common Attribute

The Processing Element 3 (PE3) as illustrated in figure 3.3, acts as a pattern detection

operator emitting one or more derived events. This detects an occurrence of the

specified pattern in the incoming stream. An exhaustive machine learned patterns

for the activity recognition experiments run by Pham and Olivier (2009) is used in

this experiment. The patterns are stored based on the optimization requirements as a

trade off between the performance and recoverability. For example when the pattern is

stored in a database the recoverability is higher but may conflict with the performance

goal. The implementation of the state management function has various choices such

as disk based persistence, in-memory database or mixture of the approaches. This

experiment favoured the use of disk based persistence where a compromise is made

on the scalability in the number of context partitions or the quantity of the events

accumulated within the context partition. Nearly 5000 patterns of activities are stored

on disk of the PE3. The output from this stage is an identified activity such as cutting,

chopping, peeling etc. which is sent to subscribers for further situated prompting.

46



Chapter 3 Real time streaming application

3.4.3 Event Consumers

The event consumers in this experiment are java messaging queues which collects

the activity recognised by all the devices and sensor equipment embedded inside the

ambient kitchen. The experiment is moved to the next activity by aggregating the

activities with temporal dimensions to create assistive prompting for the users in the

kitchen who are likely to be dementia patients. The consumers act as input to the

EPN for the situated prompting experiments. To focus on the distribution of the

event processing network (EPN) seamlessly in the cloud, the non-functional aspects

of the experiments are monitored using a dashboard. The real time dashboards were

designed targeting three major objectives as listed below:

• Assess current environment quickly

• Comprehend the severity of the situation

• Respond or react in timely manner

3.4.4 Dashboards

Dashboards in general provide a quick summary of the situation to visualize the most

relevant and important aspects of the EPN performance. The design of the dashboard

enhances the display of the real time events with respect to the projected or historic

information comprehending the deviation in response time. The alerts or the actions

relevant to the specific conditions were designed to appear in the dashboard. The

throughput, latency and arrival rates of the event stream were the key factors displayed

in the dashboard as illustrated in Figure 3.4 .

3.4.5 Activity Recognition Summary:

EPNs process the signals from the sensors and recognise the activities that the source

utensils are engaged in. Note that when activities in the kitchen increase, the incoming

arrival rates of the events increase and vice versa. Activity recognitions from EPNs

are passed to a prompting system which identifies any unduly long pauses in the

activity sequences and instructs the object holders accordingly. The event streams

from the accelerometers and the recognised activities are used as an exemplar data

set to evaluate the response time, reconfiguration and parallelisation of EPNs.
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Figure 3.4: Dashboard to visualise non-functional properties of EPN

Classification of Event Processing:

The complexity of the event processing networks has been classified as simple, complex

or intelligent event processing based on the inter-relationships between the events.

Each of them is defined using the main case study, ambient kitchen.

Simple event processing can be illustrated using events generated from pressure sensors

embedded in the floor. The movement of the individuals within a room is estimated

using the data from pressure sensors. When an individual walks over pressure sensors

in the floor, a signal is generated indicating the occupancy of the floor. Based on the

occupancy of the floor and calibrated thresholds, two different states on the floor can

been determined:

1. Activity

2. No activity

Sensors transmit events to compute the states of occupation in the floor based on

various thresholds. From an event perspective, a simple event processing application

detects the breach in threshold level and issues alerts. This is a deterministic example

where the derived event flows imply a particular state of occupancy of the room.

Events in the event processing world only approximate the real world scenario. The

floor in a building can span across hundreds of square meters covering the building.
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An individual entering one segment of the room should exit from the room at some

point of time. If one segment of the pressure sensor generates events continuously

for a long time, there is a good chance that a fall has occurred. When a pattern of

floor movement threshold is detected in a given instance of time, a notification can be

issued to high level systems on likely accidents. This is an approximate detection of

the real world occurrence where a human agent detects the pattern of user activity.

Although an event processing application detects this pattern and sends notification to

the high level systems, the detection of this pattern is neither necessary nor sufficient

indication that the situation is likely to occur.

In this case of simple event processing, the occurance of the event is an approximation

of the situation as there may be false positives or false negatives.

For example, in the ambient kitchen use case, queuing systems or topic based publish

subscribe architecture are utilized to solve the complexity of the integration with

multiple producers and consumers of event. The illustration in Figure 3.5 uses an

exemplar from the ambient kitchen to demonstrate complex event processing flows

for multichannel sensors and activity monitoring application. In the aggregated flow

of data from sensors, the aggregated levels of computation from the accelrometer based

sensors are fed in to the system. If the detected state of the processed events from

an accelerometer indicate the utilisation of utensils with regards to meal making for

more than a pre-determined time frame, more processing requirement from the EPNs

can be anticipated and propagated towards the system design for resource allocation

to process the activities in the kitchen.

The measurement from accelerometer levels (x, y and z) are sent through the event

channels. When the peak level of activity occurs during lunch time or evening, event

processing requirement increases in the network. The processed events from the sys-

tem are utilized in the subsequent stages via alerts or notifications. The decision

support (e.g. mobile phone app) systems subscribe to these feeds to comply with the

monitoring of the users in the kitchen.

The second and third flows show two variations of accelerometer and pressure sen-

sor. Both flows originate from sensing devices at the bottom left hand corner of the

illustration. Every state in the system generates an event. A local EPN evaluates

the events to aggregate events over the period of time. The outliers of events are

generated based on the deviation of the aggregated events from the normal profile.
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Figure 3.5: Ilustration of complex event processing

In complex event processing, the changes in state are monitored during the occurrence

of events and applications respond in a timely fashion. The complexity of the event

processing application varies based on the following factors:

1. Dynamic variations in the system due to addition of new event sources, new

interactions and response criteria

2. Quantity and complexity of event sources

3. Quantity of subscribers involved in the event consumption

4. State and context management

5. Creation of derived events in the multiple stages of the complex event processing.

For example, introduction of reflection and introspection leads to the creation

of new events in the downstream processing.

The illustrated exemplar from ambient kitchen is an extract from a few low level event

flows leading to the creation of an architecture of complex event processing systems.

The event processing leads to the identification of low level activities based on the

sensor data to monitor the ambient kitchen. The processing of the complex events

entails low response time and timeliness of the outcome. Based on the appropriateness

of the given problem, the best approach requires a response centric event processing

system.
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Figure 3.6: Ilustration of Intelligent Event Processing (IEP)

Intelligent event processing generally utilizes complex rules of inferences and logical

proofs from the events to progress between various stages in the event processing

workflow. A logic proof is represented through arguments derived from an application

related hypothesis (assumptions). An exemplar from situated prompting scenario

of an ambient kitchen in Figure 3.6 illustrates the Intelligent Event Processing as

shown in the activity model described below. The ambient kitchen uses embedded

sensors within the utensils and equipment to provide assisted living in smart homes.

Recipes are used in the kitchen to prompt dementia patients during cooking. Each

prompting activity is broken down in to various stages as described in the pseudo

code for situated prompting. Progression from one stage to the next is triggered

through sensing events from the kitchen. The complexity of the pattern recognition

increases with the number of the sensors, event rate, complexity of the application

and heterogeneous data sources.

The ambient kitchen example relies on complex pattern matching where each stage is

justified by a rule of inference. Most of the rules of inference originate from tautology.

Tautology is used for drawing conclusions derived from the sequence of event occur-

rences. In the stated activity model, it represents a multi step action interacting with

a number of different objects and ordering of events. The event flow is augmented

by the probability of distribution of actions representing the horizontal bar in Figure

3.6 . In the context of the activity model, a balanced data sheet of various events is
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derived through the task-ordering. Using a sample of task-ordering from the activity

model, event flow architecture is represented as listed below:

1. Event flow model for the feeds from multiple sensors

2. Computational process based on the fusion of events to aid multi-modal situated

prompting.

Each step of the hypothesis follows laws of logic supported through the occurrence of

the event. The time taken by each observable event in Figure 3.6 (A,B,C,D,E,G,H,I)

and the time elapsed between two subsequent events are two important attributes

contributing to the temporal signature of the activity. The time taken to mix the

ingredients (event F) will be less than the preheating oven (event A). The activity

model is defined as the finite sequence of events over a finite period of time where

each event in the activity is the occurrence of the event.

The sequence of events offer scope to define declarative representation of small, incre-

mental, independent logical units of event processing. During the sequential occurence

of events, the correctness, termination and the response time present challenges as

listed below:

1. Considering the sequence of rules encapsulated in multiple EPNs, the system

needs to produce an accurate summary of the incoming and outgoing events

from all EPNs.

2. The erratic flow of the incoming and outgoing events might result in the ter-

mination of multiple EPNs without producing any output. Careful design of

the EPNs in terms of acyclic graphs of event flow is important to attain the

successful termination of the system.

3. Predicting the response time in terms of the overall computation would help in

designing the count of new strands of parallel computation.

Verifying properties such as correctness, termination and response time require sep-

aration of the application logic (such as ambient kitchen) from the execution engine

(CEP engine such as ESPER, streambase, etc.) eases implementation of the event

flow architecture. However, the research challenge lies in encoding the temporal and

structural information gathered in the events, to predict the response time and model

the scalability of EPNs in multiple computing nodes.
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Table 3.4: Illustration for scalability in context state
EPN Identifier Function Outcome
EPN1 Process signals from oven A
EPN2 Process signals from baking dish B
EPN3 Process signals from flour
EPN4 Process signals from sugar
EPN5 Process signals from pear C
EPN6 Process signals from baking dish
EPN7 Process signals from vanilla pods D
EPN8 Process signals from peeler
EPN9 Process signals from four E
EPN10 Process signals from almond
EPN10 Process signals from sugar
EPN11 Process signals from mixer F
EPN12 Process signals from mixer G
EPN13 Process signals from baking dish H
EPN14 Process signals from oven I

For example, let us consider the system of two computing nodes implementing the

EPNs defining the activity recognition. The output from the activity recognition is fed

in to the system of EPNs illustrated in Table 3.4 as defined in the situated prompting

in Figure 3.6.

The goal is to derive the outcome I. The system architecture needs to feed states

derived from multiple EPNs in a feed forward loop, where the state from EPN1 is fed

to trigger prompts and initiates EPN2, EPN3 and EPN4. The computing requires

copies of EPNs and nine steps to derive the final goal.

Variations of the outcomes and processing of events are designed as an acyclic graph

where the EPNs are the leaves and the goal is the root of the tree. This research

intends to vary the number of EPNs and the distribution of the EPN between multiple

computing nodes. For example, a larger system can be generated with 25 EPN where

EPN1 to EPN10 could be replicated in two computing nodes to cater for the needs

of increased arrival of events. The goal to produce the outcome F is based on the

output from the two stages, irrespective of the count of the EPNs. This example has

been chosen to demonstrate the scenario for a typical class of challenges associated

with distributed EPN placement. In situations of sharing the state between multiple

EPNs algorithms have been designed to illustrate the EPN parallelisation and the

computation of output.
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3.5 Contributions

In this research, an application scenario from the ambient kitchen is decomposed in

terms of analytic queries, encapsulated in multiple event processing networks. EPNs

are designed to execute goal specific tasks and exchange information throughout the

architecture in a tightly or loosely coupled manner. The workload in the event pro-

cessing networks is listed below:

1. EPNs are designed to uniquely maintain their own reference data, input at-

tributes and state. The streaming events entering the system are determined

based on the count of event producers and event consumers. In the design pre-

sented here, few EPNs are designed as event producers, consumers or both. The

scalability challenges of event consumers and producers addressed in §2.2.8,§2.2.7

are viewed generically in terms of the event arrival rate described in Chapter 6

. Few event consumers and producers are modeled to demonstrate the response

centric scalability.

2. The responsiveness of the event processing, such as the count of operations and

the frequency of execution, varies with the volume and the event processing.

The queries are defined in the EPNs for subscription propagation, event filtering

and routing. The complexity in operations as stated in §2.2.6 is defined using

responsiveness and optimal placement of EPNs as outlined in Chapters 6 and 7.

3. The incoming events and outgoing events (actions) are sequentially fed or broad-

cast to the other event processing units during the data flow. The volume of

events, correlation of intermediate results, raw events and the processed events

are handled to meet the performance criteria. The challenges addressed in

§2.2.9,§2.2.10 are addressed using splitting, processing and merging the results

from multiple EPNs as described in Chapter 8.

Time critical processing of these event based applications requires detailed analysis

in the performance metrics and forms the thrust of this research. The parameters

define ’how well’ the system performs and address the various optimization techniques

related to the non-functional aspects of the system. Non-functional requirements

are not related to the nature of the EPNs such as simple, complex or intelligent

processing. Rather the system needs to measure ’how well’ the EPNs perform to

deliver the overall system related performance targets irrespective of the nature of the

event processing. Performance for an event processing architecture relates to an entire
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event flow through multiple EPNs or just through a particular part of the EPN. Even

though the level of the complexity between the EPNs varies from simple, complex or

intelligent event processing, the key factors reliant on the performance of the EPNs

can be summarized thus:

1. Response Time: Response time measures the timeliness or latency of the EPNs.

The response time can be expressed in terms of determining an upper bound

to process the events or an average desirable time for the EPNs to process the

incoming events.

2. Predictability: Predictability and consistency is an important aspect of the

EPN performance measurement. The performance of the EPN is measured in

terms of the response time and the throughput. To maintain the consistency,

the average response time or throughput needs to be consistently maintained.

The predictability of the EPN response time plays a major role in maintaining

consistent performance.

3. Placement of EPNs: The placement of EPNs on suitable computing nodes with

sufficient hardware resources is critical for the delivery of desired performance.

At run time, the efficient placement of the EPN needs estimation and predic-

tion of the response time. The allocation priority for an EPN in a particular

hardware needs to be determined based on the incoming arrival rate. The sys-

tem may need to prioritize multiple or single EPNs based on the response time

and throughput to ensure overall performance. Due to the practical constraints

based on the dynamic arrival rate and the varying event processing require-

ments, few customised placements of the EPNs need to be undertaken based on

the available hardware. The most beneficial and customized analysis linked to

a specific EPN and arrival rate needs to be executed at frequent intervals.

4. Parallelisation: Along with the optimal placement of EPN, an architecture for

parallelisation of EPN according to the logical and sequential flow is vital for

response centric placements. Performance can be improved by careful placement

of EPNs using vertical or horizontal parallelism. Horizontal parallelism can be

implemented using execution of simultaneous multiple instances of EPNs. Ver-

tical parallelism can be achieved by pipelining different stages of a sequence

of the EPNs. A response centric architecture to implement the dynamic re-

configuration of the EPNs illustrating the vertical parallelism and inter-EPN

parallelisation utilising the horizontal parallelisation is vital.

55



Chapter 3 Real time streaming application

5. Scalability and Elasticity: Scalability is defined as the system’s ability to grace-

fully provision resources and processing capability to adopt the processing re-

quirements of the incoming event streams. Elasticity is the ability of the system

to scale up or shrink the resources without modifying the system architecture.

The ability of the system to handle the increase in the arrival rate of incoming

events requires scalability and elasticity in both the hardware and the process-

ing units. With the recent progress in cloud computing, an elastic and scalable

computing infrastructure is available in a cost effective manner. In this research,

the EPNs are defined as the generic processing template to receive, execute, pro-

cess, forward or disseminate response centric results using scalable and elastic

resources from cloud computing.
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4.1 Introduction

Real time event processing is characterised by incoming events with varying incoming

arrival rates. This needs formulation of long running queries (unlike ad-hoc queries)

and needs repeated evaluation of the incoming events until the query is terminated.

Along with the processing of incoming events, detection of events or conditions to fire a

rule/action/trigger in a timely manner is essential to deliver functionalities dictated by

the event processing. Many functionalities requires specific quality of service (QoS)

requirements, which include response time, accuracy and throughput. These QoS

requirements are highly dependent on each other (e.g. increase in latency decreases

the throughput); choosing one can affect others dramatically. With the increase in the

arrival rate of the incoming events, trade-offs in the QoS metrics need to be balanced

by adding scalability aspects to the real time event processing. To achieve scalability

matching the response time requirements for an event processing system, a judicious

use of the available resources (e.g. CPU cycles, memory) to maximise the impact of

the QoS metrics is critical. This research focuses on the key challenges in the response

time centric scalability of the real time event processing to maintain low latency and

to address the fluctuating arrival rate of the streaming events.

To achieve scalability and responsiveness in real time event processing applications,

computation power forms the foundation. The ability to distribute the computations

and the incoming events among multiple computing nodes to realize a cohesive output

is critical to the system. To analyze and act on the varying incoming event arrival re-

quires distribution of events in terms of parallelisation in multiple computing nodes for
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achieving the unattainable performance and responsiveness using a single computing

node.

The challenges encountered in distribution and processing of events in parallel are

twofold, as listed below:

1. Focusing on improving the timeliness and accuracy of the results.

2. The timeliness of the results needs to be improved by latency and throughput

triggered event distribution across various computing nodes.

The accuracy can be improved by careful splitting and processing of the events across

multiple computing nodes. Unless the data integrity of the incoming events is carefully

analyzed, the distribution of event streams will lead to an erroneous outcome or loss

in accuracy.

The event distribution issues need to be approached in a use case centric approach

where splitting of the event stream is undertaken as an operation without involving

evaluation of complex predicates from multiple attributes in an event tuple. Exam-

ination of a few commonly encountered schemes for event distribution in terms of

attributes can be used to fix loss of accuracy in the final outcome. The goal of this

work is to address the non-functional aspects of real time event processing such as

scalability and performance. The non-functional aspects are assessed on dimensions

relevant to volume of events with varying numbers of input agents, producers, con-

sumers, contexts, complexity of the computation and processing environment. While

finding an optimal solution to the performance optimisation is NP-hard, the research

approach taken here will be to analyze the possibility of parallelisation for the scalable

and responsive real time event processing through hiring nodes from cloud computing.

4.2 Architecture

The architecture as illustrated in figure 4.1 harnesses a methodology to predict the

response time of event processing and scale the resources hired from cloud computing

through dynamic placement algorithms. The real time streaming events flow in to the

system from various heterogeneous event sources. Low latency, throughput and the

response time are key factors to process the streaming events. The design is based

integrating independent event processing components and enabling the deployment of

the event processing components in a rapidly scalable cloud computing infrastructure.

58



Chapter 4 Architecture

Figure 4.1: Architecture

Event processing components are built using complex event processing engines (CEP).

Event processing networks named as EPNs were created using event processing engine

called ESPER and utilised to capture, process and disseminate streaming events.

Esper filters and analyses the incoming real time events using the Event Processing

Language (EPL). It can be run in a single machine or VM containers, without any

dependencies on external services. It does not require any particular threading model

or external database. It works based on the event capture time and watermark-based

time management.The EPNs process multiple sources of streaming events to identify

meaningful real time decisions and alerts. Patterns are discovered from low-level

through aggregation and merging of the event streams. The huge amount of initial

stream of events is processed and reduced to meaningful events in several stages of

event processing. EPNs are created to understand the event streams, relevant to

the event processing and multiple stages of event transformation. EPNs model the

relationship between events and derive knowledge from the events. The following

tasks are accomplished by the EPNs

1. Define event sources and patterns based on the event sources, context and mul-

tiple stages of event processing.

2. Define high-level plan for the reactions and activities related to the events.

3. Monitor or follow up the entire cycle of events.
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As a first step, semantics were defined to integrate the event sources and consumers.

As a next step, the algorithms for the prediction of the EPN response time were un-

dertaken. The response time prediction algorithms enable the creation of dynamic

processes to adapt the EPNs based on the varying incoming arrival rate of the events.

For this purpose, the virtual machines were dynamically hired from the cloud com-

puting to deploy the EPNs. The placement algorithms define the deployment of the

EPNs on the multiple virtual machines.

To provide the required level of abstraction on the deployment of EPNs in the cloud

computing resources and the underlying technologies, a configuration scheduler is

implemented to access the EPNs in a unified manner. The configuration scheduler as

illustrated in Figure x provide the necessary event based communication with access

to the event sources and virtual machines.

Figure 4.1 illustrate the system consisting of four major components namely event

sources, messaging middleware, configuration scheduler and cloud computing hard-

ware infrastructure. The events streams originating from the heterogeneous sources

need to be gathered and streamed to various virtual machines registered in the sys-

tem. Optimum amount of resources need to be estimated and hired to perform the

extended analysis and processing of incoming events. The system is intended to

provide a generic infrastructure to deliver responsive and scalable real time event pro-

cessing. The architecture is designed to integrate the components within the system

in a loosely coupled fashion.

To provide the infrastructure for processing massive amounts of real time streaming

events, a staged approach is suited. The first processing stage involves gathering

and pre-screening of raw events and directing the events to multiple EPNs possibly

distributed in multiple virtual machines. The second processing stage is located in

the EPNs deployed in virtual machines hired from cloud computing. The third stage

involves the dissemination of the intelligence extracted from the raw events to multiple

event consumers. Such a dynamic staged infrastructure reflects the principles of cloud

computing. In this research, the first stage of streaming event emerged from the

EPSRC funded, pervasive sensing test bed called ambient kitchen. The second stage

was located in the cloud computing infrastructure, involving the continuous queries

that were embedded within the EPNs to analyse the streaming events and to create

situated prompting. The third stage involved dissemination of the intelligence to the

systems embedded within the ambient kitchen. Due to the dynamic nature of the

real time streaming events, the event processing must dynamically adapt to place the

relevant EPNs in a specific virtual machine or should hire a new virtual machine to
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satisfy the response time. The event processing infrastructure is intended to allow

the addition or removal of virtual machines by distributing the EPNs. New virtual

machines are hired in the system during the increase of arrival rate in incoming events

and existing virtual machines are removed from the systems, when the arrival rate

of the incoming events is reduced. In addition, monitors were deployed within the

configuration to observe the response time of EPNs, arrival rate of the incoming

events and processing capacity of the virtual machines. The algorithms to predict the

response time and to place the EPNs are situated within the configuration scheduler.

Based on the intelligence derived from the algorithms, virtual machines registered

within the system are re-configured according to the incoming arrival rate of the

streaming events and redirects the incoming events in accordance to the response

time prediction.

The event processing system as a whole is distributed as units of EPNs across multiple

virtual machines in the cloud. Each virtual machine can host one or more EPNs. The

algorithms determine the count of EPNs on each virtual machine based on the response

time prediction and incoming arrival rate of events.

Abstracting the knowledge gained through the development and deployment of the

EPNs, this research focuses in the development of a generic real time event process-

ing architecture to deploy the EPNs through dynamic resource provisioning, place-

ment and response time prediction. The elastic manager, performance monitor and

resource configurator are placed inside the configuration scheduler as illustrated in

figure x. The algorithms to predict response time and reconfiguration of EPNs are

hosted inside the performance monitor and elastic manager respectively. Through-

out the processing stages, the performance monitor probes the metrics (CPU usage

in virtual machines and arrival rate of incoming sources) of each virtual machine in

an interface independent manner. The performance monitor maintains the interfaces

that are designed to probe the event sources and virtual machines, specific to the

hardware requirements. The resource configurator maintains the adapters to hire

and release the virtual machines. Using the reconfiguration algorithms, the elastic

manager, sends instructions to hire and release the virtual machines. Overall, the

configuration scheduler deploys multiple instances of EPNs across multiple virtual

machines to accomplish the scalable and responsive event processing. The scheduler

associates the event sources to their respective EPNs through the messaging middle-

ware. The asynchronous middleware forwards the events from multiple event sources

to the EPNs. The event sources demonstrate dynamically changing arrival rate of

61



Chapter 4 Architecture

events from heterogeneous event sources. In this research, evaluation was done us-

ing an open source middleware called Apache active MQ. The messaging middleware

forwards the events to EPNs and updates EPNs that are fed with results from the

pre-processing of raw events or processed events from multiple EPNs. The middle-

ware is designed to be accessible for all the event sources, event consumers, EPNs and

configuration scheduler. This provides access to the processed events that are needed

by multiple components within the architecture. Thus, mechanisms to distribute the

EPNs to the desired parts of the event processing are specified and integrated within

the architecture.

The EPNs are created as an independent task, which are focused towards the require-

ments of any application scenario. In this research, streaming events from ambient

kitchen are used to define the functionalities of the EPNs, which are illustrated in

chapter §3. The figure 4.2, illustrates sequence diagram which highlights the deploy-

ment of the EPNs in a generic manner with an objective to achieve scalability and

responsiveness. Three major components such as event sources, VMs hired from cloud

computing and configuration scheduler are involved in delivering the key tasks such

as initial set up of virtual machines, hiring of the virtual machines and releasing of the

virtual machines. During the initial setup, one instance of virtual machine is hired

and EPNs are configured and deployed within the virtual machine by the resource

scheduler. This minimum set up is maintained throughout the entire lifecycle of the

system operation. The three major phases in the architecture are listed below:

1. During the initial setup phase, resource scheduler injects predefined scripts spec-

ified by the performance monitor in to each virtual machine. The monitoring

scripts send updated metrics from each VM to the performance monitor.

2. In second phase, the events start arriving from the event sources. The resource

scheduler redirects the events to an EPN. The performance monitor collects the

metrics and predicts the response time for each EPN. The performance monitor

passes the response time prediction, arrival rate and the virtual machine details

to the elastic manager. The reconfiguration algorithm within the elastic manager

provides the optimum placement plan for each EPN. When new event sources

join the system or the arrival rate of the existing event source increases, the

response time has an impact. The performance monitor predicts new response

time and the elastic manager provides a plan to hire a new virtual machine

and one more EPN is deployed in the existing virtual machine. This process

continues until the optimum response time is achieved for all the EPNs deployed

within the system.
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Figure 4.2: Sequence diagram illustrating the data flow in the system
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3. In the third phase, when the event arrival rate decreases or few event sources

stops sending events, few virtual machines are underutilised within the system.

In this phase, the elastic manager predicts the new placement plan for the EPNs

and releases few virtual machines.

4.3 System Description

The system processes several event streams, each emanating from a distinct source.

These streams are denoted as s1, s2, s3, . . . , sσ and complete event streams in the sys-

tem are defined as Σ = s1, s2, . . . , sσ. The system evaluates q queries, Q1, Q2, . . . , Qq.

The state machine that implements the directed acyclic graph, DAG for Qi is called

the event processing network, EPNi. Evaluating Qi involves processing one or more

event streams and the set of all streams input to EPNi is denoted as Si. Note that

there is no implication that two EPNs have distinct S, e.g., Si and Sj may overlap.

Also, an input stream to EPNi can be an output stream from another EPNj; if so,

Si /∈ Σ. If all inputs to EPNi are output streams from other EPNs, then Si ∩ Σ = {}.
An EPN is also associated with a performance target T . It is said to be distinct if

any one of its three attributes is unique: DAG, S or T . All EPNs are considered to

be distinct.

The system itself is made up of n virtual machines, denoted here generically as nodes,

drawn from a cloud computing platform. The number of nodes used, n, is increased

(or decreased) when the load increases (or decreases) to an extent that the current

configuration over these n nodes is deemed inadequate (or more than strictly necessary,

respectively) to meet the performance targets.

A configuration is a mapping from the set of EPNs onto the set of hosts. Figure 4.3

shows a configuration where, EPN1, EPN2 and EPN3 are mapped to (e.g. hosted

by) node 1, and the rest of the EPNs are mapped to a distinct node. The system has a

configuration scheduler, CS for short, which decides the configuration appropriate to

the load conditions and performance targets associated with the EPNs. For brevity,

we assume that CS is centralized, hosted on a single node.
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4.4 Problem Specification

Event processing is characterized by the continuous processing of streamed data tu-

ples or events in order to evaluate the queries deployed by decision support systems

in a timely manner. Event sources can, for example, be pervasive sensors; while the

number of sources is normally fixed in an application, the rates at which they gen-

erate events can vary widely and often unpredictably, driven purely by the external

processes they monitor. Similarly, the number of queries that need to be evaluated

over the streams can also vary over time.A fixed number of event sources is registered

in the system to validate the accuracy of the response time estimation. Thus, an

event processing system with real-time performance requirements must meet targeted

response times despite being subjected to these two types of varying loads.

A query evaluation can be modeled as a directed acyclic graph wherein nodes are

operators and the links are event streams that are either raw or partially processed by

the preceding operators. Early commercial systems analysed in §2.2 used single server

solutions and proposed a variety of techniques, such as multi-query optimization, for

response-time optimization. Later, distributed solutions §2.5 handled the optimization

problem as a load-balancing issue over a fixed set of nodes: moving query operators

to nodes where their resource requirements are best met and thereby achieving the

best overall response time. Such solutions however have two drawbacks: they require

the placement of low-level probes to measure operator execution rates, queue lengths,

etc., making their implementation hard and possibly not portable across heteroge-

neous machines; at times, the load has to be shed to meet response time targets. In

this research, a novel approach is presented and investigated to responsive and scal-

able event-processing which avoids both these drawbacks; it leverages the advantages

offered by, and is best suited for implementation in, cloud computing platforms.

As a part of the approach, a model for the event processing activity is created from a

performance analysis perspective. The rationale behind the model can be succinctly

explained as below. Incoming tuples in an event processing engine go through a

sequence of operators before triggering an output event. The output latency or the

response time therefore consists of three major components:

1. The wait time before encountering the first operator in the sequence,

2. The wait time between operators, and

3. The sum of operator execution times.
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When the arrival rate of tuples increases, wait time (1) is seriously affected. When

more engines are hosted by a single computing node, inter-operator delay (2) and

operator execution times (3) are impacted due to competition for CPU usage. Based

on these observations, an event processing engine was modeled as a single queue server

system wherein the server is the composite operator consisting of all operators within

that engine. The waiting time in the queue models (1) and the processing time by the

server models the sum of (2) and (3). Queuing theory is used to predict queuing time

(1). Off-line calibration is used to establish inter-operator delay (2) and (3) as the

server processing time. Note that (2) and (3) are less affected by variation in arrival

rates.

4.5 Event Processing Architecture

The front end of the system has a scheduler as illustrated in Figure 4.3, to which all the

event sources are directed to a specific computing node in the cloud according to the

policy in the configuration scheduler. The event sources might be included into the

system through MOM (message oriented middleware) or asynchronously connected

through a socket service. When a scheduler announces the EPN-host mapping, each

node subscribes to relevant input streams and transmits its relevant output streams,

if any, to nodes of EPN which use them as inputs. In Figure 4.3, nodes 4 and 5 supply

their relevant outputs to node 2. All other output streams are archived.

Central to the architecture is the configuration scheduler CS. In a nutshell, each EPN

takes macro-level measurements of its own performance and reports periodically to

CS which constructs a global view and attempts to re-map EPN to host nodes, if

response times of some EPN are either above or far below their target levels; in the

latter, new nodes may have to be brought in and in the former case some of the existing

nodes may be released. Note that re-mapping EPN requires support mechanisms and

extracts a cost, both of which are considered for future work.

4.5.1 Configuration Scheduler

Each node monitors every EPNi deployed within it. The response time RTi and the

arrival rates of each input stream; the maximum RTi and the sum (ARi) of the average

arrival rates of all its input streams observed over the reporting interval are sent to

66



Chapter 4 Architecture

Figure 4.3: The Event Processing Architecture

the CS. For example, node 1 in Figure 4.3 that hosts EPN1, EPN2 and EPN3, will

report to CS {RT1, AR1}, {RT2, AR2} and {RT3, AR3}.

Let Ti denote the average response-time target for EPNi. It is defined as

δi =
RTi − Ti

Ti
(4.1)

where δi is the measurable relative deviation of RTi

The lower and upper bounds is defined as δmi : low water-mark, denoted as LW . If

LW ≤ δmi , then EPNi is deemed to meet its performance target less than the scope

of chosen LW .

If all q EPNs in the system are deemed to meet their respective targets, then the cur-

rent configuration is considered to be working well and CS does nothing; otherwise, CS

decides on a new configuration by dividing q EPNs into ζ disjoint sets, Z1, Z2, . . . , Zζ ,
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and by ensuring that the following two constraints are met when all EPNs of every

given Zx, 1 ≤ x ≤ ζ, are hosted within a unique node:

1. ζ is the smallest possible, i.e., the number of nodes used in the new configuration

is minimum when all EPNs in a given Zx, are hosted within a distinct node, and

2. For every EPN in Zx

(a) Each EPN in Zx meets its target response time, and

(b) The total load exerted by all EPNs in Zx does not exceed the node’s ca-

pacity.

Total load is calculated using the queuing theory. During the calibration of the EPNs

various arrival rates are fed into the EPNs and the load exerted by each computing

node is measured.These two constraints make the new configuration decided by the

CS an optimal one. Meeting the first constraint becomes one of optimal assignment

problem, provided that 2a and 2b can be analytically evaluated (as either true or false)

for any given Zx. Note that the optimal assignment problem is not NP-complete for

two reasons: ζ is not fixed and q is finite. It is solved here using a bin-packing

algorithm which packs the EPNs into the smallest number of nodes (bins), subject to

conditions 2a and 2b.

The analytical evaluation of 2a and 2b requires deriving formulae for analytically

estimating EPN response times, which in turn makes a simplifying assumption that

a node can host any EPN on its own and satisfy both 2a and 2b.

4.5.2 Inter-EPN Parallelism

It is possible that for a situation EPNi does not meet its target Ti as stated in 2a

even though its host node hosts no other EPN. It can occur, for example, if ARi is

very large. On these occasions, Inter-EPN parallelism as depicted in Figure 4.4 EPNi

is hosted on multiple nodes (two nodes in Figure 4.4) and each input stream in Si

is temporally split and distinct (and temporally disjoint) splits are input to distinct

hosts. For example, an input stream si can be split as: (t to t+100) tuples as s1
i ,

(t+101 to t+200) tuples as s2
i , (t+201 to t+300) tuples as s3

i , and so on. The splits

s1
i , s

3
i , s

5
i are sent to EPN1

i (in that order) and the rest to EPN2
i , halving the arrival

at each destination. The results from EPN1
i and EPN2

i are to be reduced to the final

version.
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Figure 4.4: Inter-EPN parallelism

The approach of Inter-EPN parallelism corresponds to the well-known MapReduce

paradigm. In the context of parallelism, a wide range of intra-operator (or parti-

tioned) parallelism is implemented as described in §2.5. The existing solutions for

intra-operator parallelism use multi-query optimization by scheduling the incoming

workload in a fixed number of nodes. Operators are shared by several queries based on

a dynamic data scheme to maximize resource utilization. Maximum predicted arrival

rate influences and determines the count of EPNs to make the inter-EPN parallelism.

4.6 Evaluation

In this work an exemplar from the SiDE [SiDE] project is the focus to evaluate the re-

sponse time estimation and inter-EPN parallelisation. Exemplars from the connected

community theme are used to evaluate the problem and to test the solutions.

The ambient kitchen is created with a vision of ubiquitous computing where sensors

are woven in to the kitchen surroundings. The kitchen utilises RFID readers and

tags on all movable non-metallic objects, IP cameras, wireless accelerometers, pres-

sure sensitive floors, projectors and speakers to prompt the users. Ambient kitchen

is constructed in the university research laboratory to emulate a pervasive computing

prototyping environment which is used to carry out research in machine learning, ac-

tivity recognition, distributed event processing etc., to aid research in social inclusion.

The technical basis of the infrastructure is to support people with cognitive impair-

ments. An investigation of food preparation actions was carried using embedded

three axis accelerometers in the kitchen utensils used by volunteers. The analysis of

low level food preparation activity using continuous streaming data from the kitchen
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utensils included identifying activities such as cutting, chopping, coring, stirring, slic-

ing, dicing, eating, peeling, spreading, scooping, scraping and shaving [Thomaz et al.

(2011)].

Slice and Dice [Pham and Olivier (2009)] is a first step in the development of a low

level activity recognition framework for food preparation. The human volunteers were

asked to perform tasks such as salad preparation and sandwich preparation with the

tagged ingredients. Their actions were recorded by video cameras and annotated

manually in a temporal window. Based on the actions in the ambient kitchen, the

activities were classified using algorithms.

Streaming events generated from the ambient kitchen are used to detect the presence

of the person, actions and behaviour pattern of the kitchen occupants. One of the chal-

lenges in this environment is the integration of new devices in to the physical kitchen

and standardisation of the widely diverse event processing life cycles. The heteroge-

neous environment triggers a need for the event processing stack with self-managing

properties since solutions depending on the centralised management, configuration

and adaptation exhibit a single point of failure. Varying periods of activity and in-

activity prevail in the kitchen leading to fluctuating event generation. The research

motivation is to provide response centric and scalable event based infrastructure to

seamlessly integrate context aware services, independent of devices and subjects to

create a high level situated prompting environment.
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Algorithms for Responsiveness

5.1 Introduction

The aim of this chapter is to develop generic algorithms that allow event processing

networks to scale across multiple computing nodes. Given a range of computing re-

sources available through utility computing, the response time prediction is critical for

the deployment of the event processing networks in a stated hardware. The deploy-

ment of the EPNs needs accurate and efficient evaluation of the computing resources

and performance to provide scalable and adaptive solutions. This chapter will evaluate

the optimal algorithms to place the event processing networks in multiple computing

nodes by maintaining an ideal response time. Generic algorithms for the estimation

of the response time, optimal configuration selection, chaining and parallelisation of

the EPNs are presented.

5.2 Analytical Estimation of EPN Response Times

and CPU Usage

Analytical estimations make a simplifying assumption that a node can host any sin-

gle EPN on its own and satisfy both 2a and 2b. If this assumption does not hold,

then inter-EPN parallelism, similar to intra-operator parallelism used in Gulisano

et al. (2010), would be necessary. This is an online model where few of the parame-

ters(arrival rates) are dependent on dynamic real time values from the system. More

detailed remarks are presented at the end of this section.
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Figure 5.1: (a) Internals of an EPN. (b) 1-server, 1-queue model of the EPN

Consider a node hosting the EPNs of some Zx = {EPN1, EPN2, . . . , EPNk}. Esti-

mations for this scenario are done in two parts as listed below:

1. Modelling a single EPNi ∈ Zx as a single-queue, 1-server system.

2. Modelling all EPNs of Zx as a M/G/1 multi-class queuing system.

5.2.1 Modelling and Calibrating a Single EPN

Figure 5.1(a) presents the DAG (directed acyclic graph) structure of a simple EPN

chosen as an example. There are two input streams with arrival rates AR1 and AR2.

After they are acted on by distinct operators (Op1 and Op2), they are joined at Op3

which produces an output stream O1 to the environment and an input stream to Op4

which then generates O2. Note that each Op would have its own buffer to store the

incoming events which are not shown in Fig 5.1(a).

Irrespective of its DAG structure, the EPN of Fig 5.1(a) is modeled as a single server

system that receives a single input stream with arrival rate AR = AR1 ∪ AR2, and

generates a single output stream O = O1 ∪O2; the incoming event tuples are queued

and the tuple at the head of the queue is processed by a super operator OP composed

of Op1, Op2, Op3, Op4 (see Fig 5.1(b)). The tuples that get past the head of the

queue, in the model, are processed by OP as per the logic of the EPN of Fig 5.1(a)

and generate O = O1 ∪O2.

The above modelling approach is applied to estimate the average response time of,

and the CPU load exerted by, any single EPN. First, a few metrics are defined or

recalled, some of which are measured dynamically and the rest established through

off-line calibration. Let EPNi be any EPN in the system.
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Event Arrivals denote the arrivals of events of streams in Si and are taken to be

Poisson at the rate of ARi that is supplied to CS at the end of each reporting interval.

Processing Time denotes the total processing time a tuple or a window of tuples needs

to undergo to produce an output Oj ∈ O after a tuple in the window has just gone

past the head of the queue as in Figure 5.1(b). Note that it does not include the time

that a tuple spends between its arrival and reaching the head of the queue viz. the

queuing delays. Moreover, the processing time depends on the nature of DAGi that

EPNi implements and also on the particular path that a tuple takes within DAGi

for it to be processed and an appropriate output to be generated.

Given the non-deterministic nature of tuple-flows, the processing time is modeled

as a random variable of some unknown distribution. When EPNi generates several

outputs, the one that takes the maximum processing time will be of interest. For this

output, bi is defined as the average processing time and M2,i as the second moment of

the processing times.

The Processing Load imposed by EPNi on the host node is ρi. Specifically, ρi is the

fraction of time EPNi uses the node’s CPU. Thus, ρi = ARi × bi and this relation is

used to establish M2,i and bi through calibration as described below.

EPNi is hosted on its own on a node and subject to small arrival rates ARi (to

eliminate or at least minimize queuing delays); the CPU usage for each rate is observed

and the resulting processing times are also computed from the observations. From

these times, the most processing intensive output is identified, and M2,i and bi are

established. EPNs typically process input events in groups or windows of, say, w

tuples; if so, the arrival rate during calibration should not exceed w events per second.

5.2.2 Modelling Multiple EPNs in a Single Host

Recall that a single node hosts k EPNs of Zx. The collection of EPNs is abstracted

in the same way as the collection of operators of a single EPN; more precisely, the k

EPNs of Zx are replaced by a composite EPN and the input events of various EPNs

are placed in a single FIFO queue; when an event or a window of appropriate events

gets past the head of the queue, the (virtual) processor of the node processes it by

executing the appropriate EPNi. The model thus becomes a M/G/1 multiple class

queuing system [Gelenbe and Mitrani (2010)].
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Using the well-known M/G/1 results, the expressions are derived for metrics of in-

terest, when a node hosts k EPNs of Zx = {EPN1, EPN2, . . . , EPNk}. Note that

the total arrival rate (AR) at the node is the sum of the arrival rates of the k hosted

EPNs (
∑k

i=1 ARi); similarly, the total load (ρ) on the node is the sum of the load

exerted by every EPNi ∈ Zx. Thus,

AR =
k∑
i=1

ARi, ρ =
k∑
i=1

ρi =
k∑
i=1

ARi × bi (5.1)

The average response time estimated for any EPNi ∈ Zx as Wi:

Wi =
(AR×M2)

2(1− ρ)
+ bi, (5.2)

where M2 = 1
AR

∑k
i=1 M2,i × ARi. Similar to δmi defined by expression 7.1. The δei

denote the relative deviation of Wi, with e indicating that δei is based on estimation.

δei =
Wi − Ti
Ti

(5.3)

If Wi estimates RTi reasonably accurately, δei ≈ δmi , and 2(a) and 2(b) of §5.2 can

be evaluated; more precisely, given that the EPNs are divided into ζ disjoint sets,

Z1, Z2, . . . , Zζ , using a unique node to host each Zx, 1 ≤ x ≤ ζ, leads to a viable

configuration, if

∀Zx, 1 ≤ x ≤ ζ : ∀EPNi ∈ Zx : LW ≤ δei , and (5.4)

∀Zx, 1 ≤ x ≤ ζ : ρ ≤ ρth (5.5)

Remarks. Condition 5.4 states that every EPN in every Zx must have its esti-

mated deviation within the water marks and Condition 5.5 requires that the total

load imposed on every Zx must not exceed ρth. They verify 2(a) and 2(b) of Section

4 respectively, provided that each node being used for hosting a set of EPNs is (i) a

single CPU or a single core machine, and has a CPU that is as powerful as the CPU

of the one used for the calibration of EPNs.
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If the CPUs of the host nodes are more powerful, the actual response times would be

smaller than the estimates and hence the evaluation of Conditions 5.4 and 5.5 would

be pessimistic and would result in more nodes being used than strictly necessary.

On the other hand, if the calibration has been done using nodes with more powerful

CPUs, response-time targets may be missed frequently.

In inter-EPN parallelism, a given EPNi is hosted on multiple nodes and each input

stream in Si is temporally split and each split is input to one of the hosting nodes.

For example, let EPNi be hosted by two nodes as EPN1
i and EPN2

i ; an input stream

si ∈ Si can be split as: first 100 tuples (1 to 100) as s1
i , the next 100 tuples (101 to

200) as s2
i , (201 to 300) as s3

i , and so on. Odd splits, (s1
i , s

3
i , . . ., s

2n−1
i , . . .), are sent

to EPN1
i (in order) and even splits to EPN2

i , thus halving the arrival at each node.

The results from EPN1
i and EPN2

i would have to be ’reduced’ for the final result.

5.3 Optimal Configuration Selection

Recall that each EPNi in the system §5.2, is represented within CS by five parameters:

the observed response time RTi (as periodically reported to CS), the target response

time Ti (given), the observed total arrival rate ARi (reported to CS), the processing

time bi (calibrated) and an estimated response time Wi. When CS observes that one or

more EPNs have their (RTi−Ti)
Ti

falling below the low water mark, it seeks a different,

optimal configuration. This selection process itself does not require halting of any

EPNs and can proceed in parallel; however, once a different optimal configuration is

found, implementing the latter requires moving some EPNs to different nodes and

re-directing event streams to appropriate nodes; the latter may involve duplicating

a stream in the extreme. What follows describes an algorithm for determining an

optimal configuration and ignores the cost of implementing this configuration which

would be a topic of our future research. A higher level decision system may find the

reconfiguration cost excessive in relation to the performance benefits and decide to

stick with the current configuration for a few more reporting intervals. The assumption

is made that infinite number of commuting nodes are available to hire.

The reconfiguration algorithm associates each working node Zx with a list Ei of all

EPNs hosted in Ni. An EPN with (RT−T )
T

exceeding the low water mark is marked

as donor and the node is entered in the donor list. EPNs with (RT−T )
T

falling below

the low water mark is marked as an acceptor and the node is added to the acceptor

list. If the node consists of one or more donor EPN, it is entered in the donor list.
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The nodes consisting of acceptor EPNs are entered into the acceptor list. In the new

configuration, an acceptor may take in more processing load and a donor must rid

itself of some or all of the under-performing EPNs which it is currently hosting. (An

EPN under-performs when its (RT−T )
T

exceeds the high water mark and is the most

under-performing one if its (RT−T )
T

is the largest among the EPNs co-hosted with it.)

The algorithm has two phases.

The purpose of the first phase is to empty the donor list and is skipped if the list is

empty to start with. The donor list is always kept arranged in the non-increasing order

of the total CPU load (ρ) that the EPNs impose on the donor nodes. The acceptor

list, on the other hand, is always kept arranged in the non-decreasing order of the

node’s total CPU load. Further, the list E of EPNs for each donor is kept arranged

in the non-increasing order of their (RT−T )
T

. Thus, the first node in the donor list, say

node D, is always the most heavily loaded, the first node in the acceptor list is always

the least loaded, and the first EPN in D’s E list, ED, is the most under-performing

EPN in node D. This EPN ought to be moved out of D and is denoted as EPND.

Starting with the first node in the acceptor list, each acceptor node A is tried by

checking if EA ∪ EPND satisfies the constraints 2(a) and 2(b) by using (5) and (6).

The first acceptor found to meet these constraints becomes the new host for EPND.

If no node in the acceptor list is found to satisfy these constraints, a new node is hired

from the cloud to host EPND.

Let the chosen host for EPND be denoted as the candidate node NC . In the new

configuration, ED is set to ED − EPND and EC to EC ∪ EPND. (Note that if NC is

to be hired fresh, its EC should be initialized to {}). NC is entered into the acceptor

list, if it is to be a newly hired node. Using (5) and (6), the donor status of node D

is reassessed and D is either retained in the donor list or moved to the acceptor list

accordingly. Note that a node in the acceptor list cannot leave the list during the first

phase.

Nodes D and NC giving up and gaining EPND respectively call for re-arranging the

lists and identifying new D and EPND. This process of finding a new host for EPND

is repeated so long as an EPND exists, i.e., until the donor list becomes empty.

The purpose of the second phase is to attempt to reduce the number of acceptor

nodes, when the latter is more than one. In this phase, a list is created as a copy

of the original without the first node (i.e. the least loaded one). The first node is

treated as a donor node D whose EPNs are all considered as under-performing ones.

The algorithm of the first phase is repeated to move the EPND of the D node to one of
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the acceptor nodes in the list. However, if EPND cannot be moved to any of the nodes

in the list, then a new node is not hired but the attempt is considered to have failed.

On the other hand, if all EPNs of D can be moved using only the nodes in the list,

then the latter becomes the new acceptor list . The process is repeated until a failure

is encountered or the list is empty. The acceptor list and the E lists of the nodes in

it provide the new optimal configuration. Implementing the new configuration would

involve hiring new nodes (if at all), moving some EPNs and redirecting input streams.

This algorithm’s rules are presented in the pseudocode shown in Algorithm 1.

The EPNs require sophisticated handling of processing state. No faults are being

considered in the underlying infrastructure.Tracking of the states across the nodes re-

quires aggregates to be maintained for an unbounded time window. This is challenging

due to the ever-growing state to be stored. Performance of computation on this state

is likely to degrade overtime. Real-time event processing requires global aggregation

over all nodes, which limits the options to distribute processing. The configuration se-

lection algorithm assumes a stateless condition. During the inter-EPN parallelisation,

the states are discussed in detail using algorithms specifically designed to handle the

states between the nodes. Chapter 8 describes the algorithms. When the load exceeds

a pre-determined threshold, the node is declared as the donor node. The threshold is

calculated in the calibration process.

5.4 InterEPN Parallelism

In diverse application contexts, to improve the scalability of the event processing

networks, distributed processing of incoming event streams in multiple computing

nodes is used. The approach will be to place the continuous queries for processing

of the named events and aggregate relevant response from multiple event processing

networks. The mechanism for the distributed processing of events in multiple nodes

involves forwarding the partial results through the network in a directed manner. The

intermediate nodes handling the real time events partially process the events and once

the query is fully resolved, a completed response is sent back to the querying node.

We propose algorithms to process the real time events by preserving the syntax and

semantics of the distributed outcome of the query. The challenges in the solution

to obtain higher scalability would result in output that does not match with the

centralized output. Consider the example where chopping, pouring, switching on

the cooker and stirring of food item arising from multiple sensors, processing under

77



Chapter 5 Algorithms for Responsiveness

Algorithm 1 Configuration Selection algorithm main()

Require: EPNi ← List of EPNs in the system
Require: RTi ← Observed Response Time
Require: Ti ← Target Response Time
Require: ARi ← Arrival Rate
Require: Wi ← Estimated Response Time
Require: bi ← Calibrated Processing Time
Require: EC = Zx EPN list in a node
Require: ED Donor EPN list to be marked with host node to move
Require: EPND Donor EPN to move
Require: NC Candidate node to move
Require: E donor list
Require: A acceptor list
Require: Dps pseudo-donor list to store underperforming EPN, subset of highly

loaded EPN in Acceptor list
Require: Ada deutero-acceptor list i.e., least loaded node

1: repeat
2: if Node contains EPNi ← with low water-mark ≥ (RTi−Ti)

Ti
then

3: Mark a EPN in EPND

4: add node to D (donor list)
5: sort D in descending order of total cpu load (ρ)
6: end if
7: if Node contains EPNi ← with low water-mark ≤ (RTi−Ti)

Ti
then

8: Mark a EPN in EPNA

9: add node to A (Acceptor list)
10: sort A in ascending order of total cpu load (ρ)
11: end if
12: repeat
13: virtually place first EPN from EPND in first node of A
14: find the total cpu load (ρ) after the virtual placement of EPND

15: if totalload ≤ 0.8 then
16: mark new host for EPND as the candidate node Nc

17: ED = ED − EPND

18: EC ∪ EPND

19: end if
20: if NC is hired as new node from cloud then
21: set EC ={}
22: NC ∪ A
23: end if
24: until donor list D is empty
25: until low water-mark ≥ (RTi−Ti)

Ti
≤ low water-mark
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10 different computing nodes should send a prompt called ’switch off cooker’ after

20 minutes. In a centralized processing scenario, each state of the system is stored

and ordered temporally, characterizing the progression of the state from one level to

the next level resulting in a final prompt. To aggregate the same query processed

in multiple instances require a parallelization strategy and the granulation of the

parallelization of the data and the aggregation of the data should be defined.

The logic behind the parallelization of the continuous query involves broadcasting the

data to some significant part of the network. Mechanisms are devised to split the data

into multiple physical data streams provisioned and transferred in to the network to

finally reach the target node to get the final results. A query is a directed acyclic

graph where the node is an operator and the edges pave the way to the data flow.

In Chapter 8 various algorithms on parallelizing and chaining of EPNs will be analyzed

along with the overhead associated with each of the processing scenarios.
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Chapter 6

Evaluation 1: Response Time

Estimation

6.1 Introduction

To address the responsiveness, a generic approach is pursued where processing of the

event streams is undertaken by an event processing network without involving eval-

uation of complex predicates from multiple attributes in an event tuple. Uniform,

increasing and bursty event workloads are feasible options in information manage-

ment for the real time event processing scenarios. In uniform workload, a steady

stream of events arrives with an average system load. In an increasing workload the

intensity increases, however during every level of intensity shift, the average event ar-

rival increases proportionately. In a bursty workload, spikes of intense activity appear

in an unpredictable fashion leading to system instability. The only way to handle

bursty workload is to allocate excess resources to manage the spikes of workload. In-

tentionally, the spiky event workload is not considered in this research. The uniform

and increasing workload uses a poisson arrival distribution with a predictable average

system load. Based on these factors, poisson arrival rate is assumed to predict the re-

sponse time. Few schemes for event distribution are examined to ’fix’ loss of accuracy

in final outcome, scalability and performance in terms of response time optimisation.

The responsiveness of the application or the event processing networks are assessed

based on dimensions relevant to the volume of events with varying number of event

producers, consumers, complexity of the computation and processing environment.
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6.1.1 Response Time Measurement

Analytical estimations make an assumption that each node can host any single EPN

on its own and satisfy the response time requirements. Let us consider a scenario

where the node hosts EPNs of some Zx = {EPN1, EPN2,...,EPNk}. Estimations for

this scenario are done in two parts:

1. Modelling a single EPNiεZx as a single server queue

2. Modelling all EPNs of Zx as a M/G/1 multi-class queuing system

An event processing network (EPN) is composed of multiple event processing ele-

ments (PE) or agents, specific to the activity recognition as illustrated in Figure 3.3.

This EPN acts as the fundamental processing agent to evaluate response time. The

individual event processing elements are composed of queries encapsulating statistical

functions such as 3.4, 3.3, 3.2, 3.1 implemented in a modular approach tied together

to identify the activities.

The range of scenarios is very broad in the ambient kitchen and presents varying

operational criteria in terms of event types. The three different event processing

elements involved in the activity recognition – namely windowing, feature extraction

and pattern matching – are labelled as distinct measurement points. The ’arrival rate’

is measured as the quantity of input events received from heterogeneous sensors placed

in the ambient kitchen within a given time period. This experiment measures arrival

rate as the quantity of events generated by the event producers every second. The

throughput is measured as the quantity of computed/derived events (i.e. activities

recognised in the ambient kitchen). The throughput measurements in this experiment

are performed every second.

The following micro-benchmarks are used in the performance evaluation targeted

towards response time estimation for the events generated from the ambient kitchen.

• Identify the deviation between arrival rate and throughput of the activities

recognised from the event processing infrastructure.

• Identify and measure the throughput for variable event arrival rate.

• Identify and measure the latency for variable event arrival rate.
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• Identify the percentage of deviation in measured throughput and predicted

throughput due to the increase in arrival rate of the events.

• Identify the non-functional requirements on the system performance based on

the optimisation.

• Identify the scalability criteria to add additional computing node or processing

power to satisfy the response time due to the increase in arrival rate.

• Identify a threshold in a temporal window based on the scalability criteria to

deploy new processing or computing nodes.

The events from various sensors in the ambient kitchen experiments were used to

generate event streams and fed in to the processing engine in Figure 3.3 . The rate of

events fed in to the machine was varied to understand the criteria listed in the above

micro-benchmark. More event sources were added to increase the rate of events.

The number of activities generated every second from the system is measured as

throughput.

Multiple utility classes were designed to represent each device such as tablespoon,

teaspoon, fork, knife for eating, knife for chopping, floor boards, cupboard doors and

so on. Accelerometers were embedded within the devices as shown in Figure 3.3.

Each device is programmed as a utility class in the system. There can be several

objects of a given utility class. Thus, each of the input streams, s1, s2, s3, .., sσ (refer

to Section 4.3), emanates from a distinct object in the ambient kitchen and σ can

be around 600. In this research, the response time estimation is evaluated using

the streaming events from the ambient kitchen. The count of event producers was

bounded to an approximate count of 600.

Each event producer was designed to generate the streams of events denoting event

arrival. The streaming events were classified in to windows. The experiment used a

predetermined window of computation based on the order of arrival of the incoming

event streams. As an experiment objective, the machine learning algorithms for ac-

tivity recognition dictates retaining the recently arrived 64 events of an event stream

in one computational window. The window size of 64 is determined as the optimal

value to identify the activity (cutting, chopping, etc.) undertaken by the object. The

system enters all the arriving events based on the sequence of arrival into a window.

When the window is full, the oldest 32 events are pushed out of the window. The
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Figure 6.1: Event Processing Using Sliding Window

system keeps a record of all incoming and outgoing events from the window based on

the temporal ordering. The processing of the event stream is illustrated in Figure 6.1.

The events e1 to e32 are collected in the window W1 according to their arrival order.

It passes to the aggregation phase where computation for features is made after the

collection of 64 events.

for i ≥ 1, wi = ei + ei+31

On arrival of the next consecutive events, e33 to e64 next window w2 is formed. When

the two consecutive windows have accumulated 64 events, Wi reaches the aggregation

phase, it combines with previous window Wi−1 to compute the features.

for i ≥ 1,Wi = wi + wi−1 , for example during the first window W1 is formed as an

aggregation of events from {w1, w0}.
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Computations are made to derive features from the events. According to the sequence

of arrival, the most recent window is retained, and the older window is removed from

the computation. Thus a sliding window is created with a window length of 64 events.

The window comprises of the most recent 32 events and new 32 events according to

the sequence of arrival as illustrated in Figure 6.1 .

The latency is computed according to the arrival of the events during each stage of

computation. Processing Element 1 windows the events based on the sliding window

technique and pushes the data to Processing Element 2 (PE2). PE2 performs the

computation in the data to derive features and in turn passes events to Processing

Element 3 for pattern matching. The complete process is represented as a data flow

graph by pushing the processed data to the next node and subsequently joining the

static data store for pattern matching. The pattern matched data progress to the

activity recognition phase. To measure the latency in each stage of the event pro-

cessing, each window Wi of events is taken in to consideration. This latency is called

L1
i , measured in ms or seconds based on the event arrival. The subscript ’i’ in the

latency measurement L1
i denote the windows, whereas the superscript in the latency

measurement L1
i denote the stages such as processing elements (PE1, PE2 and PE3)

within the EPN.

The time taken for the windowing operation in Processing Element 1 (PE1) is com-

puted as the difference between the event with the lowest timestamp and the event

with the highest timestamp. For example, for window W1, which is formed as an

aggregation of events from w1, w0. The event e1 in w0 will have the lowest timestamp

and the event e64 in w1 will have the highest timestamp. So the timestamp for the

window in the stage PE1 is represented as WT 0
i and computed based on the lowest

timestamp of the window w0. When events leave PE1, the outcome gets time stamped

WT 1
i as illustrated in figure 6.2.

WTi represents the waiting time between the processing elements. The WTi influences

the delay int he processing. To measure the latency, the waiting time between the

processing elements need to be recorded accurately. These delays are based on the

processing power of the computing node. To maintain the accuracy of the response

time estimation, these delays are subtracted from the latency calculation. Latency is

calculated as

L1
i = WT 1

i −WT 0
i

When events leave PE2, the outcome gets time stamped WT 2
i
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Figure 6.2: Latency computation in various stages of event processing

L2
i = WT 2

i −WT 1
i

When events leave PE3, the outcome gets time stamped WT 3
i

L3
i = WT 3

i −WT 2
i

L1
i is the latency measurement in the first operator of the data flow graph, i.e. PE1

in this example. Once the windowing is completed, the computation of the feature is

carried out. At the end of the feature extraction in Processing Element 2 (PE2), the

latency L2
i is computed. The pattern matching time at the end of PE3 is denoted by

L3
i . The latency Li is measured using

Li = L1
i + L2

i + L3
i + ...Lni

L =
Σn

1L
n
i

n

The graphs show the variation of latency in a few milliseconds. Under low arrival

rate, the system consistently reports back the same latency over the period of time.

Lots of variation in the latency (jitter), is an indication of system instability. The

latency is measured with queuing delays and without queuing delays as illustrated in

figures 6.1 and 6.2. The performance of the system is predictable when the queuing

delays are removed from the calculation.

The average latency without the queuing delay was approximately 9ms. The variations

in the latency occur with the increase in the arrival rate leading to regular jitter of

around 4ms. The variation increased to 50ms in the higher arrival rates.
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Table 6.1: Latency under low arrival rates

Observing the performance under various arrival rates, when the variation increased

by 20%, the system response time started fluctuating. To measure the latency, the

events were sent under different arrival rates starting from 100 events to 3000 events

per second. Constant response time can be viewed in the graphs with arrival rates of

125, 250, 333 and 500 events per second. Under low arrival rate with λ < 500 events,

the latency is stable without much jitter. Under higher event rate, for example, when

the arrival rate is 2000 events per second, the variation in latency is extremely high

leading to an unstable response time. In this condition, the events are designed to be

redirected to multiple computing nodes. The range of variation in the latency forms

an important criterion for the reconfiguration of the EPNs across various computing

nodes as described in Chapter 7.
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Table 6.2: Latency under high arrival rates

6.1.2 Calibration and prediction of EPN Response Time

The above modelling approach, illustrated in §5.2.1and§5.2.2 is applied to estimate

the average response time and the CPU load exerted by any single EPN. First, a few

metrics are defined or recalled, some of which are measured dynamically and the rest

established through off-line calibration.

Event Arrivals denote the arrivals of events of streams in Si and are taken to be

Poisson at the rate of ARi that is supplied to CS at the end of each reporting interval.

Processing Time denotes the total processing time a tuple or a window of tuples needs

to undergo to produce an output Oj ∈ O after a tuple in the window has just gone

past the head of the queue as in Figure 5.1(b). Note that it does not include the time

that a tuple spends between its arrival and reaching the head of the queue viz. the

queuing delays. Moreover, the processing time depends on the nature of DAGi that
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Figure 6.3: Steps Involved In Calibration of the response time.

EPNi implements and also on the particular path that a tuple takes within DAGi

for it to be processed and an appropriate output to be generated.

Given the non-deterministic nature of event arrival, the processing time is modeled

as a random variable of some unknown distribution. When EPNi generates several

outputs, the one that takes the maximum processing time will be of interest. For this

output, bi is defined as the average processing time and M2,i as the second moment of

the processing times.

The Processing Load imposed by EPNi on the host node is ρi. Specifically, ρi is the

fraction of the time EPNi used the node’s CPU. Thus, ρi = ARi × bi and this relation

is used to establish M2,i and bi through calibration as described below.

EPNi is hosted on its own on a node and subject to small arrival rates ARi (to

eliminate or at least minimize queuing delays); the CPU usage for each rate is observed

and the resulting processing times are also computed from the observations. From

these times, the most processing intensive output is identified, and M2,i and bi are

established. EPNs typically process input events in groups or windows of, say, w

tuples; if so, the arrival rate during calibration should not exceed w events per second.

In the design as illustrated in Figure 5.1, the arrival rates from the input streams

differ from each other due to distinct characteristics of the multiple sources of data.

Each stream of data is directed to the Event Processing Network (EPN), which has

operators specific to processing the schema of the events. The input tuples are pro-

cessed by the operators within the EPN and generate the output. The modelling

approach is to estimate the response time of each event processing network under a

given condition of arrival rate and the specification of DAG.To estimate the response

time for the EPN, identification of the inputs and the desirable output for model acts

as an important aspect to begin the calibration process. The four stages involved in

the process of the calibration are illustrated in figure 6.3 and the steps below:
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1. Estimation of the model parameters: Identification of the inputs and how the

inputs are related to the given problem acts as a first step in the model cal-

ibration. In this system the main input parameter identified during the start

of the experiment is the event arrival rates. The event arrival rate needs to

be mapped to the data source and in turn will be mapped to the schema of

the event processing(for example, ambient kitchen use case) . A fixed number

of predetermined event sources and event processing networks related to the

activity recognition application were used to initiate this process.

2. Model Execution: To run the model the target need to be identified to calibrate

the model. In this research, response time is identified as the desirable target.

Model was run using various arrival rates and the response time (latency) was

measured at every stage. The aim of the calibration process was to predict the

response time under varying arrival rates. Figure ??, ?? illustrates the impact

on the metrics (such as network read, network write, disk read, disk write,

average load, memory consumption) of the hired computing nodes for a high

and low arrival rates. The average load and the network read were identifies

as the parameters which could impact the response time. The model design

was focused to incorporate the attributes such as arrival rate and the CPU

utilisation.

3. Assessment of the results: The goodness of fit in terms of the predicted response

time and the measured response time acts as a factor to decide the suitability

of the calibration. Figure 6.4, illustrate the minimum deviation between the

prediction and measurement of the response time.

4. Adjustment of Inputs: The accuracy of the prediction can be improved through

regular interventions based on any changes to the event processing or the changes

to the data schema. One of the main factor identified in the process is the

CPU utilization and the average service time bi . The table 6.3 summarises the

latency prediction. The CPU load exerted by each EPN is noted and the metrics

to predict the response time were event arrivals, processing time and processing

CPU utilisation. For each arrival rate, the CPU utilisation ρi is observed. Based

on this value, the tuples in the system ( ρ
1−ρ) and the average service times bi

( ρ
ArrivalRate

) are calibrated. The ρ is converted to address the seconds using ρ
100

.

This process was repeated for many arrival rates using single EPN and multiple

EPNs deployment to derive the average service time, which in turn was used to

estimate the CPU and response time for any incoming events. The latency is

calculated using (tuplespersecond+1)×(averageservicetime)×64tuples×1000
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Table 6.3: Latency Calibration

ArrivalRate CPU (per-
centage
utilisation)

Tuples
in
sec-
onds

ServiceTime
in seconds

Latency in
millisec-
onds

40 1.88 0.0191 0.00047 30.65
50 1.74 0.0177 0.00034 22.66
100 4.42 0.0462 0.00044 29.59
125 5.08 0.0535 0.00041 27.40
250 6.3 0.0672 0.000252 17.21
500 11.9 0.1350 0.000238 17.28
1000 34 0.5151 0.00034 32.96

6.2 Experiment Setup

The experiments were set up using a KVM (kernel based virtual machine) cloud, an

open source cloud implementation utilizing the operating system’s kernel. KVM pri-

vate cloud allows greater performance than other cloud computing solutions, which

rely on user-space drivers. The core objective of this research is performance centric

scalability of applications. The performance requirements for the response time pre-

dictions require the virtual machines to be constructed with managed CPU, network

routers and switches. During the infrastructure administration phase, a network with

virtual machines and the pool of IP addresses were allocated during the initial set up.

Eight virtual machines were created. With the KVM hypervisor, migrations of the

EPN were performed between virtual machines. KVM architecture hosts the virtual

machine images as regular Linux processes, so all the standard Linux security mea-

sures to isolate the images were utilized to build this private cloud. The architecture

supported the memory management features of Linux. The private cloud used the

operating systems image and pool of IP addresses to deploy the KVM instances in to

a virtual data center.

The performance of the KVM cloud can be improved by pinning the processors,

configuring huge pages, setting the cache modes and tuning the memory settings.

Workloads that run the guest operating systems can benefit from processor pinning.

Processor pinning enables guest operating systems to pin the virtual processors with

one or more physical processors. Through this processor, deterministic processing

power is allocated for each virtual machine. A few categories of storage intensive

streaming events were configured to use raw disk volumes avoiding the page cache in
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the host machine. Memory tuning of the KVM is achieved by disabling zone reclaim

and through setting the swap value to zero.

In the evaluation set up for this research, the cloud utilized the guest operating system

of KVM. The operating system was configured with eight virtual processors on the

system and eight physical processors. The initial test iteration was performed without

virtual processor pinning. Another test iteration was conducted using each virtual

processor pinned to a single physical processor.

Response time predictions were run in various stages to fulfil the following objectives:

• Monitoring of various hardware aspects (CPU, RAM, memory swap, load aver-

age) with respect to varying arrival rates.

• Response time calibration of EPNs under various arrival rates.

• Prediction of the EPN response time under varying arrival rates.

• Validation of calibrated and predicted response time of the given EPN.

The experiments were conducted using single core single EPN, single core multiple

EPN, multi core multiple EPN and multicore single EPN deployments. To understand

the trade-offs involved in identifying the performance of the EPN, the experiments

relied on the datasets collected from the ambient kitchen. The data collected from the

ambient kitchen in a 10 day trial from eight devices. Each device is set to send 100

events per second. Ten selected participants were requested to use the ambient kitchen

to generate the data set. The complete data collection was recorded on video to verify

the generated actions using the devices. The videos were used to generate annotation

for manual verification of the recognised activities. The information associated with

the users, such as pictures, location, description, etc. amounts to approximately a

few terabytes of data.

In order to generate the response time predictions, the trade-offs involved in using

specifications of the computing node were identified. The focus was primarily in

understanding the load of the system including read and write operations. In the

next stage impact on memory, storage and network bandwidth was measured. In the

third stage, the amount of CPU utilization was recorded. All the possible parameters

required for the performance measurements were logged and analysed for varying

event arrival rates. During each experiment, the number of metrics measured was
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increased and a collective set of metrics (memory, CPU, network i/o, etc.) related to

performance were automatically recorded during the event processing experiments.

At a given instance, the results were correlated between the variation in latency and

the load. This observation on average load was the key finding to reduce the number

of hardware probes in the experiments. During the reconfiguration of EPNs among

multiple computing nodes, the average load (CPU utilization) was taken in to consid-

eration to predict the response time of an EPN in a given computing node.

EPNs were created using the developers editions of open-source event processing en-

gine called Esper, CEP engine. A standalone JVM of the ESPER is mounted in

various computing nodes. Multiple combinations of configuration parameters (mem-

ory and CPU) were used to tune each engine to achieve its maximum performance.

Figure 1 shows the components involved in the response time estimation. The sensors

from the application communicate with an intermediary process called Adapter via

plain socket or messaging bus (apache MQ server). The Adapter then converts these

messages into the native format of CEP engines and transmits them using their respec-

tive application programming interfaces (API). The input streams were generated and

submitted using the ambient kitchen framework in chapter 3, a set of logging methods

were have developed measure the latency of the event processing networks. Initially

during the start of the calibration process, input event generation components and

the event processing networks under test ran in a single machine to understand the

network latencies and jitter. CPUs affinity was set to minimize interferences between

the sensors from ambient kitchen, adapters and CEP engines. In the next stage of

the response time measurement, CEP engines ran in a single dedicated CPU, while

the application specific sensors and adapter ran in the remaining virtual machines.

Tests consisted in hosting a single EPN at the CEP engine. They began with an initial

one-minute warm-up phase, during which the event arrival rate increased linearly from

100 events per second to a pre-determined maximum throughput. After warm-up,

the tests proceeded for at least 10 minutes in steady state with the event arrival and

injection rate fixed to understand the maximum throughput. Tests requiring more

time to achieve steady state (e.g. using long time-based windows) had a greater

duration. All the measures reported represent averages of at least two performance

runs after the system reaches a steady state. The maximum arrival rate of 2000

events per second was sent by running successive tests with observations on increasing

latency and decreased throughputs until CPU utilization was maximized or some other

bottleneck was reached.
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Figure 6.4: Comparison of Predicted and Monitored Response Time

The table 6.3 describe CPU is measure as a percentage utilization. The tuples pro-

cessing time is estimated using the queuing theory based on the arrival rate. The

third column in the table illustrates the estimated processing time of tuple for various

incoming arrival rate. The fourth column illustrates the total service time for the

complete end-to-end application output (for example, activity recognition in ambient

kitchen).

6.2.1 Validation of Response Time Prediction by Measure-

ment

To start with, a single EPN was hosted on a single node to estimate the processing

time of the EPN. The calibration process was started using a low event arrival rate

below 40 events per second; the average processing time of the EPN was established as

b (§6.1.1). The accuracy of the calibrated processing time b was assessed by running

the experiments as described below. The response time RT was measured by varying

the arrival rate AR over a larger range (up to 2000 events per second). For each AR,

the response time was analytically estimated using equations (5.1) - (5.2) that are

modified for the case wherein a node hosts only one EPN – the calibrated one. The

modification simplifies (4) to: W = b [ ρ/(1− ρ ) + 1]. (Note: this simplification

does not hold when several EPNs are hosted on a single node.) Figure 6.4 plots the

measured and estimated response time for various arrival rates.
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The latency achieved in this experiments increased with the increase in incoming

arrival rate. The estimated latency for each arrival rate were calculated and compared

with the actual latency measured in the experiments. The deviation between the

estimated and the actual latency started increasing with the increase in the arrival

rate. In both cases, computing nodes were not fully utilizing the available resources

(utilization of its CPU was between 50 and 90 percentage) when its client API adapter

became the bottle-neck. Dedicating more CPU-cores to the adapter (up to 7) did not

solve this issue. So the EPNs had to be hosted on the multiple machines to maintain

the stable or desired response time under varying arrival rate.

6.3 Conclusion

The design, deployment and testing of the EPN reponse time prediction is acheived

based on the queuing theory principles. The models examined in this chapter are

of type M/G/1. In some computing nodes, there can be more than one poisson

process of event arrival from various devices. EPNs have varying arrival rates. The

performance measures of interest are arrival rate (λ), load of the computing node (ρ)

and the calibrated processing time of the EPN (b). When the load of the computing

node approaches 1, both the average delays and the average queue size grow without

bound. In a heavily loaded system, even a small increase in traffic can have an extreme

effect on performance. The shape of the processing time distribution function affects

performance only through the second moment. Even a lightly loaded M/G/1 queue

can perform poorly when the variability of the demand is high. For fixed values of

λ and b, the best performance is achieved when the second order moment b2 = 0

i.e. minimum variability in the processing time, all EPNs require the same predicted

amount of computing resources (CPU).
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Evaluation 2: Reconfiguration

7.1 Introduction

Managing and monitoring the computing nodes becomes critical in plenty of event

based architectures such as the ambient kitchen. For example the concept behind

the ambient kitchen is to create an intelligent assistive living using low level perva-

sive sensing probes, activity formulation or relating context to deliver the situated

prompting either as dissemination or user intervention. To maintain a comprehensive

catalogue of activity interventions, a service will require parallelisation techniques

to aggregate and curate events emerging from multiple event sources embedded as

pervasive sensors.

The reconfiguration of the EPNs are designed to reduce and optimally utilize the

available computing resources. To optimize the operational cost of the event pro-

cessing hardware resources in a platform such as the ambient kitchen, the clusters of

computational resource need to be hired and fired based on the demand from users.

In an ideal world of ambient kitchen deployment, the dynamic properties about event

sources (sensor location, time of sensing, frequency of sensor event transmission, em-

bedded objects, provenance of sensing events, etc.) need to be sorted, updated and

added to cope up with the real time streaming requirements. Planning the service

or computing resource capacity ahead of time becomes harder in such applications.

On-demand computational power is available to address an upsurge in events during

the evening hours or far fewer in the rest of the day is essential to deliver the service.

This example serves as one of the practical use case, dependent on the estimation of

the service and acquisition of computing resources.
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This chapter focuses in the estimation of the computational resources for each EPN

and identifies the EPN placement with dynamic movement across multiple computing

nodes matching the response time criteria. The key criteria for the online deployment

is to provide a high degree of flexibility and low number of hardware probes to maintain

the simplicity of the system. The estimation of the resources to process the streaming

events from the various event sources should not cause any additional overhead to

the hardware or compromise the response time. The requirement for the real time

systems is scalability in terms of adding more computing resources to increase the

throughput of the event processing networks without compromising the response time

of the EPNs. This chapter analyzes the core algorithm design, implementation and

testing for the hiring and firing the computing nodes to process the streaming events in

multiple computing nodes. The experiments and evaluation facilitate the algorithms

to demonstrate the reconfiguration of EPNs based on the response time prediction.

7.2 Design of Configuration Scheduler

The placement of event processing networks requires dynamic movement to improve

the response time across continuous iterations. The event streams involve execution

of long running calculations on the performance of the event processing networks.

Many applications exhibit significant run time variations that require incremental or

decremented processing requirements.

The reconfiguration algorithm determines the count of computing nodes required to

process the EPNs and the order in which the EPNs are reconfigured within the avail-

able computing nodes. The algorithm focuses on the EPNs whose performance is

affected. When a single node hosts multiple EPNs, the configuration scheduler places

the EPN in an appropriate computing node to meet the response time target. The re-

configuration algorithm maintains the optimum resources by scaling up, scaling down

or optimal movement of EPN. The configuration scheduler delivers the target response

time T of the applications by hiring the minimum number of cloud computing nodes.

The high level architecture of the configuration scheduler as illustrated in Figure 4.3

follows the three main aspects listed below to meet the target response time even

when a single node hosts multiple EPNs.

1. Shifting some EPNs among existing hired nodes

2. Hiring more nodes when necessary
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3. Releasing nodes when arrival rates decrease

The design goals for the reconfiguration of the EPNs focus on minimizing the latency

of the event processing. The configuration of data sources and the computing nodes

are achieved using a decentralised and asynchronous architecture. All computing

nodes share the same functionality and responsibilities. There is no central computing

node with specialised responsibilities. The reconfiguration of the EPNs are based on

five parameters: the measured response time RTi (as periodically reported to CS),

the target response time Ti, total arrival rate ARi, the processing time bi and an

estimated response time Wi. The main functions of the configuration scheduler are

summarised below:

7.2.1 Grouping of EPN:

The configuration scheduler finds the optimum set of EPNs to host in a single com-

puting node. Each computing node hosts multiple EPNs. For example, consider a

scenario where Nodei hosts EPN1, EPN2 to process events from data source A1, A2,

Nodej hosts EPN3 to process events from data source B1 and so forth. Due to the

fluctuating arrival rate, load sharing needs to be performed frequently to maintain

a stable response time target (T). Grouping of the EPNs across two nodes can be

accomplished to utilise the minimum number of nodes. Grouping of the EPNs is

dependent on the individual response time. The grouping of the EPNs should be

determined using the relative deviation δmi of the measured response time (RTi) and

the average target response-time (Ti) for each EPNi.

7.2.2 Optimum response time:

The average performance of the computing node is influenced by the arrival rate

(ARi) and complexity of the EPN. The complexity of the EPN is identified using

the average service time, b and the second order moment, M2,i simplified to be the

squared coefficient of the service time variance b2
i . The service time for each EPN is

obtained through the calibration process described in § 6.1.1. When the arrival rate

increases, both the queuing delay and processing delay increase leading to a heavily

loaded system. For fixed arrival rate of events ARi and b, the best performance is

achieved when b2
i = 0. The reconfiguration of EPNs across multiple computing nodes

should provide a stable service time to satisfy the response time target.
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7.2.3 Balanced resource utilization and response time:

Basic performance measurement of any EPN is dependent on the steady-state utiliza-

tion of the hardware resource in the computing node. In a single node, multiple EPNs

with varying complexities are likely to compete for resources. Consider the arrival of

events in n EPNs . The total load utilization of the computing nodes is

U = Σn
i=1ρi

Regardless of the complexity of processing, all EPNs should maintain the target re-

sponse time. The reconfiguration algorithms should maintain the stable response time

under varying event arrival.

7.2.4 Optimum resource utilization:

In continuous event processing, the arrival of events is estimated based on a single

data source or by merging events from large number of independent sources. Events

are assumed to arrive according to a poisson process with arrival rate λ. Events wait

in an unbounded M/G/1 queue. The computing nodes undergo an alternating periods

of being idle and busy. An idle period starts with the departure of the event leaving

an empty queue and ends with the arrival of the next event.

A busy period in the computing nodes start with the arrival of events until an empty

queue is achieved. A busy period in the server of any order should not affect the re-

sponse time and optimum number of the computing nodes should be hired to maintain

the response time of EPNs.

7.3 Implementation of Configuration Scheduler

Each node monitors for every EPNi the response times and the sum of arrival rates of

incoming event streams fed to that EPNi; the average response time and the largest

total arrival rate observed for EPNi over the reporting interval are recorded as RTi

and ARi respectively, and are reported to CS at the end of each interval. For example,

Node1 in Figure 4.3, which hosts EPN1, EPN2 and EPN3, will report to CS {RT1,

AR1}, {RT2, AR2} and {RT3, AR3}.

Let Ti denote the average response-time target specified for any given EPNi. We

define:
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δmi =
RTi − Ti

Ti
(7.1)

where δmi is the relative deviation of RTi and m indicates that δmi is measurable.

We define lower and upper bounds for δmi : low water mark is denoted as LW . If

LW ≤ δmi , then EPNi is deemed to meet its performance target within the scope of

chosen LW and HW .

If all q EPNs in the system are deemed to meet their respective targets, then the cur-

rent configuration is considered to be working well and CS does nothing; otherwise, CS

decides on a new configuration by dividing q EPNs into ζ disjoint sets, Z1, Z2, . . . , Zζ ,

and by ensuring that the following two constraints are met when all EPNs of every

given Zx, 1 ≤ x ≤ ζ, are hosted within a unique node:

1. ζ is the smallest possible, and

2. (a) LW ≤ δm holds for each EPN in the system, and

(b) The total load exerted by the EPNs of every Zx does not exceed a load

threshold, ρth ≤ 1.

These two constraints make the new configuration decided by the CS an optimal

one. Meeting the first constraint becomes a problem of optimal assignment, provided

that 2a and 2b can be analytically evaluated. To evaluate 2a and 2b for a given

configuration choice, formulae are derived to estimate the average response times and

the CPU load. If estimations are accurate, then the evaluations of 2a and 2b will be

accurate.

The optimal assignment problem can be NP-complete; hence, it is solved using the

well-known heuristic algorithm known as the bin-packing algorithm. The algorithm

packs the EPNs into the smallest number of nodes (bins), subject to conditions 2a

and 2b. This heuristic algorithm is presented in this section.

When CS observes that one or more EPNs have their δm exceeding HW or falling

below LW, it seeks a new appropriate configuration. This selection process itself does

not require halting of any EPNs and can proceed in parallel; however, if it is decided

that the new configuration be implemented, then some EPNs will inevitably have to

be moved to different nodes; also, some event streams will have to be re-directed and

some others may have to be duplicated and streamed to multiple nodes
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The elements of the configuration scheduler consist of four major components, as

illustrated in Figure 7.1. The components residing inside the configuration scheduler

have the five main goals listed below:

1. Run EPN efficiently with a guaranteed response time even if they share multiple

EPNs within the same computing node.

2. The EPN should meet response time targets performance reliability with event

rate fluctuation.

3. When multiple EPNs are placed on the same processing node, the individual

EPNs should be executed or re-configured without starving of resources. As a

generic rule of thumb, relative deviation from the target response time is used

move the EPNs.

4. The reconfiguration algorithm should be utilizing the minimum number of com-

puting nodes satisfying target response time.

5. Support the reconfiguration in runtime with a minimum delay and without

requiring a restart of services.

The configuration scheduler is executed as an independent process that acts as the

response centric placement agent for the EPNs in an appropriate computing node. In

a constant interval defined by the user, the configuration scheduler handles the critical

sections of EPN placement through shrinking and scaling of the computing nodes. The

compelling attribute of streaming events is the fluctuating event arrival rate. In some

cases, a desirable response time can be achieved when multiple EPNs are placed in a

computing node. In a few cases, due to the increasing arrival rate, the placement of

the multiple EPNs does not provide the desired response time. Based on the incoming

arrival rate, the EPNs need to be placed in multiple computing nodes. Feasibility of

this approach is more affordable due to the availability of low cost and affordable

infrastructure through cloud computing. Each EPN can be placed exclusively in

one computing node or multiple EPNs can be placed in multiple computing nodes.

To achieve the optimum parallelization of EPNs in multiple computing nodes, an

architecture is designed as illustrated in Figure 7.1, with the major components listed

below:
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Figure 7.1: Element of configuration scheduler

7.3.1 Resource Scheduler:

The resource scheduler is a computing module residing inside the configuration sched-

uler. The resource scheduler assigns the incoming new event sources to EPNs residing

in computing nodes. Each computing node is configured with a number of mapped

communication interfaces (such as communication sockets) based on the capacity of

hardware resources. Each EPN placed in the computing nodes listens to a particular

TCP/IP socket or a messaging queue. The resource scheduler maintains the metadata

of the computing nodes, list of communication interfaces of the EPNs residing on the

computing nodes and the list of event sources. The details of the computing nodes

are propagated to the event sources through the host allocation messages from the

elastic manager and act as a bridging module to connect event sources and computing

nodes.

The heterogeneous event sources connect to this module and receive the details of

the computing nodes and the EPNs to stream the events. In order to map the event
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sources with the appropriate EPNs, the resource scheduler maintains the list of meta-

data about the EPNs such as input attributes and identification of EPNs. Whenever

a new event source sends a connection request, the EPN identifiers and the input at-

tributes are sent to the elastic manager to initiate the communication. Based on the

instruction from the elastic manager, the event sources are mounted in a computing

node.

Resource schedulers are set up with an automatic subscription from the elastic man-

ager about new placement of the EPNs or movement of the EPNs. At any instance of

time, the resource scheduler maintains the updated list of the EPNs available in the

system including the details of the host computing node, such as IP address and web

sockets configured for EPN.

7.3.2 EPN Tracker:

A single configuration scheduler is used. The EPN tracker is a monitoring module

placed inside each configuration scheduler. This module collects information about

each EPN (arrival rate, total load of the computing node, response time of each EPN)

from all the computing nodes registered in the system in regular intervals. EPN

tracker calculates the total load imposed by individual EPNs placed in their node and

the relative deviation from the target response time. EPN tracker maintains the four

state variables namely acceptor, donor, pseudo-donor and deutero-acceptor. Each

EPN is categorized under one of the states. The role of the EPN tracker is to assign

EPN to the computing nodes whose response time prediction (W) matches with the

average target response time (T).During the execution of the system, the EPN tracker

provides the updates of the EPNs to the elastic manager.

7.3.3 Host configurator:

The host configurator maintains the registry of the computing nodes hired or fired

by the system. Each computing node is configured using virtual machines from cloud

computing, with a specified amount of hardware, storage, memory, CPU and related

resources. The host configurator needs to register the details of the hiring or release of

the computing nodes such as credentials, keys, ids, usernames, certificates, passwords,

codes to access and control virtual machine features, functionality and cloud comput-

ing account. During the system initialisation virtual machines are registered as the

computing nodes. The hiring and firing of the computing nodes are abstracted to all
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other modules in the configuration scheduler and only the list of the hired nodes with

the details of the IP address and communication ports are visible to other modules.

Each computing node has an independent operating system to execute the EPNs de-

ployed in its node. The host configurator is a module residing inside the configuration

scheduler to manage the hired computing nodes. The resource allocator module redi-

rects the EPNs during the runtime, whereas the host configurator makes the initial

acquisition and release of the computing nodes through interaction with the various

cloud service providers. The host configurator determines the definition of environ-

ment including the selection of IP address, routing configuration and port forwarding

rules during the initialization of the system. The main tasks performed during the

configuration of the host computing nodes are listed below:

7.3.3.1 Hiring and registration of computing nodes:

A virtual machine hired through the cloud service provider, contains a few parame-

ters such as network I/O, CPU, etc., which are inter-dependent on the other virtual

machines running in a host server. For example, the CPU availability is dependent

on the utilization and sharing of the other VMs within the cloud. The set up of the

environment should contain static CPU allocation, which will not limit the ability of

the computing node (virtual machine) to deliver the optimum response time. Static

resources are specified in terms of CPU, memory and specification of the computing

node. This is defined based on the nature of the application. In this research, ambient

kitchen requirements are used to specify the resources.

7.3.3.2 EPN instances:

The host configurator maintains the snapshots of the computing node or the virtual

machine containing the EPN to provide easy and efficient access to the EPNs. The

instance of the EPNs is made available during the system initialization.

7.3.3.3 Local autonomy:

Each computing node is hired with specific preallocated resources. This includes the

memory to run the EPN, network I/O, communication socket end points, hard disk

and related parameters.
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Figure 7.2: KVM set up of the cloud

7.3.3.4 Parameters for the computing node:

The host node allocator maintains the parameters to set up the computing node. To

test the reconfiguration of the EPNs, the hypervisor should not force the machines

hired through the cloud service provider with a limited or varying CPU or memory

resources. Given a global and varying provisioning of resources, the EPN might

deliver exceptionally poor response time in one instance and a better response time

during another instance. A deterministic solution cannot be achieved when there is

interference from the hypervisor in terms of the resource allocation. Computing nodes

are hired with the deterministic CPU allocation.

7.3.4 Elastic Management (Shrink/Scale):

Elastic Management (EM) computes the optimal placement of the EPN, thereby

shrinking and scaling the computing nodes. This module computes the reconfiguration

algorithm and sends the notifications to the EPN tracker. Suppose the system contains

q EPNs, each EPN is divided between ζ disjoint sets placed in independent computing

nodes. The movement of the EPN in to a new node or in an existing node is sent to

the resource scheduler.

The figure 7.2, illustrate the KVM-based set up of the scalability of EPNs.
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7.4 Evaluation of Configuration Scheduler and Re-

configuration Algorithm

The configuration scheduler is designed to enable performance centric placement and

processing of events over a set of computing nodes. The system processes event

streams arising from multiple event sources at the same instance of time. This pro-

vides the opportunity to optimally map events to computing nodes and maximize

the utilization of the computing resources. The scheduler use the reconfiguration al-

gorithm 5.3 to optimize the placement of EPNs with the specific schema. This is

independent of the complexity of the jobs and supports different types of data schema

proving greater control on the performance constraints (response time). This frame-

work allows optimal use of the computing resources over a varied set of workloads

(small jobs to large jobs and everything in between). The core functionality of the

reconfiguration is to support the optimal placement of EPNs. Each computing node

is assessed based on the load and the predicted response time. The algorithm used

for determining the next, appropriate configuration to place the EPN is a heuristic

one and works in three parts. To demonstrate the algorithm and the evaluation of the

configuration scheduler, three varying levels of event arrival rates of the EPNs were

simulated. The varying arrival rates were used to test the algorithm and evaluate the

scaling or shrinking of the computing resources. In each case, the target response time

and relative deviation from the response time was monitored. The experiments were

designed in three parts, executed over a period of hours and the following concepts

were examined.

1. Placement of EPN within the existing computing nodes

2. Hiring new computing nodes to meet the incoming load

3. Firing computing nodes and moving existing EPNs to under utilized nodes

In part1 i.e.. placement of EPNs, during system execution, the EPN tracker builds

three types of ordered lists that provide a structured global view on the performance

status of EPNs along with the total load on each host node. The EPN tracker scans

every node Nj, and builds the EPN list ELj, which contains the details of all EPNs

hosted by Nj. In addition to this, based on the relative deviation from the performance

metrics, a donorlist DL consisting of computing nodes is created to give up some of

the existing EPNs. The acceptorlist AL indicates the list of computing nodes that
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Figure 7.3: Fluctuating Arrival Rate in EPNs

can possibly host additional EPNs. The metrics defining the hardware resources

(CPU, load (ρ)) are subscribed by the EPN tracker to create the acceptorlist AL

and the donorlist DL. To demonstrate the functionality of the algorithm in detail, an

experiment is set up with five EPNs subscribed to events from multiple event sources.

The arrival rate of events keeps fluctuating over the period of time considered and

there are moments when there are no events arriving for a particular EPN. In 7.3,

during the first hour, only one EPN receives events and only one node is hired by the

system. The arrival rate is steadily increased during the next three hours for all five

EPNs.

As a continuous monitoring task, relative deviation for every node Nj, δ
m
i is computed

by the EPN tracker. The elastic manager subscribes to the EPN tracker to receive

the information on AL and DL. For each EPNi hosted by Nj, the EPN list ELj is

ordered in the decreasing order of relative deviation, (δmi - HW). For example, if node

Nj is hosting no EPNi with δmi −HW > 0, it is marked as an acceptor node and is

entered in the acceptor list. Otherwise, it is marked as a donor node and is entered

in the donor list. The donor list is ordered in the decreasing order of the total load

(ρ) imposed on the nodes, while AL is ordered in other way round; in the increasing

order of the total load on the nodes.

Discussions : The elastic manager initiates the reconfiguration process at pre-determined

intervals. At the end of part1, DL will be empty if an execution of the algorithm has

started because some EPN had δm < LW ; similarly AL will be empty if each node

had some EPN with δm > LW when the algorithm starts. Both DL and AL cannot,

however be empty when EPN placement completes.
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Figure 7.4: Reconfiguration of EPN in fluctuating load

The incoming events go through an alternating period of the event bursts. Let us con-

sider the case of average length of time period as stated in Figure 7.3. The placement

of EPN is completely dependent on the sequence of arrival rate for each EPN. At ev-

ery arrival instant, the δmi deviates by an amount equal to the processing requirement

of the incoming events. The donor list DL is initially empty until time t = 2. The

arrival rate to the EPNs in Figure 7.4 is varied under time t=3. The AL is empty in

this instance. The deviation, δmi computed with the predicted load, is greater than

the HW. A new node is hired at instance of time, t=3.

The objective of part2 is to make the non-empty donor list empty. Let D and A

denote the first node in DL and AL, respectively. D is the most heavily loaded donor

node, hosting at least one EPN whose δm > HW . A is the most lightly loaded acceptor

and hence it becomes the first candidate to be tried for the possibility of hosting an

under-performing EPN in D. This forms the basis of part2 which is skipped if the

donor list is empty to start with. In Figure 7.4 at time t=5, nodes 1 and 2 are

identified as donors, with node 3 as the acceptor. However, based on the estimated

deviation Step 2.4 is executed, by hiring the new node to place the EPNs.

Step 2.1: The elastic manager first checks the EPND, i.e., the EPN with the largest

deviation (δm - HW) in donor list, ELD. The EPND is virtually placed in the first

node in the acceptor list, ELA = ELA ∪ {EPND}. Computation is made on the load

exerted by all EPNs already exisiting in the acceptor node as stated by

ZA = {EPNi : EPNi ∈ ELA}

The outcome is checked to establish whether the relative deviation is bounded between

the high and low water marks. The total load exerted by the EPNs should not deviate
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from the load threshold. If they hold, then execute Step 2.2. If they do not, reset

ELA = ELA − EPND; if there is a node that is ordered immediately after A in AL,

then set A to be that node and execute Step 2.3; otherwise, execute Step 2.4.

Step 2.2: In this step the EPN from the donor list satifies the movement in to the

computing node in the acceptor list. Given the new placement of the EPN, the donor

list is updated by setting

ELD = ELD − EPND

This indicates that EPND is to be moved from computing node in the donor list to the

computing node in the acceptor list in the new configuration. Note that the contents

of ELD and ELA are changed and therefore δm computed (in Step 1.1) for the EPNs

in these two lists are no longer valid. So, a sub-step is re-computed(δ) for nodes D

and A. The donor status of node D is re-assessed, if the status of D is changed, DL

and AL are updated. The nodes of AL is ordered. If DL is not empty, nodes of DL

are ordered. The D and A are set as the first node in DL and AL respectively. The

Step 2.1 is executed. If DL is empty, part3 is executed, where the shrinking of the

existing computing nodes in the acceptor list needs to be planned.

Sub-step re-compute(δ): If ELj of node Nj does not reflect the EPNs that Nj is

hosting in the current configuration, then Zx = {EPNi : EPNi ∈ ELj} is set. For

every EPNi ∈ Zx, δ
e
i is computed using the expression Wi−Ti

Ti
and δmi = δei . The

entries of ELj are ordered in the non-increasing order of (δmi −HW ) and returns to

the calling step.

Step 2.3: With the new A, Step 2.1 is executed.

Step 2.4: A new node is hired using host configurator and added to the acceptor list

A. ELA is initialised to {}. A is entered as the first node in AL. Step 2.1 is executed.

Discussions. Step 2.1 attempts to replace the mapping of EPND to D by trying to

map EPND to A. If re-mapping is feasible, Step 2.2 maps EPND to A; otherwise the

next node in AL is tried in Step 2.3. If AL has no suitable A at all for re-mapping

EPND, Step 2.4 hires a new A. These steps are repeated until an EPND exists, i.e.,

until DL is not empty.

Part3 Implements the optimal shrinking of the resources using alternative placements

for the EPNs from an under utilized computing node. The elastic manager uses the

algorithm to reduce the size of AL, when the size is more than one. Recall that the

first node in the ordered AL is the least-loaded and hence it is the first candidate to
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be tried for the possibility of being freed from use. It is called the pseudo-donor node

and denoted as D in part3. A new acceptor list called deutero acceptor list, DAL for

short, is created as a copy of AL but without the first node in AL.

Let D and A be the first node in AL and DAL respectively. (Note: D is not in DAL.)

EPNs of D are tried, one by one, to be moved to some node in DAL. If all EPNs of

D cannot be moved out, part3 stops after restoring ELs of nodes in AL; otherwise,

the new AL becomes DAL and the new DAL is the new AL without the first node.

If the new DAL is not empty, part3 is repeated; else, the algorithm stops.

Step 3.0: Discard earlier checkpoint, if any; Checkpoint ELj of every Nj ∈ AL;

Step 3.1: Let EPND be the EPN with the largest (δm − HW ) in ELD. ELA =

ELA ∪ {EPND}. ZA = {EPNi : EPNi ∈ ELA} is computed and conditions 5.4 and

5.5 is checked for ZA. If they hold, then Step 3.2 is executed. If they do not hold and

if A is the last node in AL, ELj is restored from each Nj ∈ AL and the algorithm

is terminated. If Conditions 5.4 and 5.5 do not hold for ZA and if A is not the last

node in AL, ELA = ELA − EPND is reset. New A is set to be the node next to the

current A in DAL and Step 3.1 is re-executed.

Step 3.2: ELD = ELD − EPND is set. Sub-step re-compute(δ) is executed for A.

The nodes of DAL is ordered. If ELD is not empty, then A is set as the first node in

DAL and Step 3.1 is executed. If ELD is empty, then AL = DAL and new DAL is

set. If DAL is not empty, new A and new D is set and step 3.0 is executed. If DAL

is empty, the algorithm is terminated.

At the end of the algorithm execution, elastic manager provides the reconfiguration

plan to the resource scheduler. The EPN tracker updates the AL and DL based on

the reconfiguration. If new nodes need to be hired or released during this process,

host configurator is invoked.

7.5 Validation of Multiple EPN Reconfiguration

CS (configuration scheduler) was programmed to produce a new schedule only when

triggers were applied; i.e., CS would not act whenever it observed δm for some EPN

not satisfying LW ≤ δm ≤ HW . The objective is to study the EPN performance

when configuration is changed only in response to changes in AR; if that is sufficient,

then proactive reporting would not be necessary and the reporting overhead can be

reduced.
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Table 7.1: Configurations in Response to Triggers
Hour (H) Trigger Nature Node 1 Node 2 Node 3 Node 4 Node 5
1 AR1 @ EPN1 = 500 EPN1

2* 2 AR2 @ EPN2 = 500 EPN1

EPN2

3 AR1 @ EPN1 = 1000 EPN1 EPN3

AR2 @ EPN2= 1000 EPN2 EPN4

AR3 @ EPN3 =1000
AR4 @ EPN4 = 500

4 AR4 @ EPN4 = 1000 EPN1 EPN3 EPN5

AR5 @ EPN5 = 1000 EPN2 EPN4

5 AR2 @ EPN2 = 2000 EPN1 EPN3 EPN5 EPN2 EPN4

6 AR5 @ EPN5 = 0 EPN1 EPN3

AR4 @ EPN4= 500 EPN2 EPN4

AR2 @ EPN2 = 1000
7 AR1 @ EPN1 = 500 EPN1 EPN3

AR2 @ EPN2 = 500 EPN2 EPN4

AR3 @ EPN3 = 500
8 AR1 @ EPN2 = 0 EPN1

AR4 @ EPN4 = 0
AR3 @ EPN3 = 0

Figure 7.5: Deviation Measurement in Algorithm Results

Before the first hour, H = 1, AR of all 5 EPNs is zero, i.e., the system of EPNs was

idle; AR1 was set to 500 (events per second) at the start of the first hour, i.e., at

H = 1.

The first two columns of Table 7.1 present the triggers applied at various H values.

Column 2 indicates the changes applied over what existed earlier; this means that
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when a trigger, say, at H = 4 does not involve EPN1, AR1 was not changed at H = 4

and hence AR1 retains the value it had just before H = 4 which is 1000.

It can be seen from Table 7.1 that more nodes are hired as AR increases for all EPNs,

and when 5 ≤ H < 6 each EPN is by itself on a single node. Starting from H = 6,

triggers reduce the AR at some EPNs; consequently, nodes are gradually released

except at H = 7 when the rate reductions administered are not sufficient to release

any node.

Figure 7.5 plots, for each node, the maximum of δm of the EPNs hosted locally at

H = 1, 2, . . . , 8, 9. (At H = 9, AR1 was set to 0, bringing the system to an idle state.)

HW (set to 20%) was exceeded during 4.3 ≤ H ≤ 6, the period when EPNs were

receiving events at peak rates.

7.6 Conclusion

The resource sharing between the EPNs placed in a computing node involves sharing of

the physical resources. Although the resource sharing improves the overall utilization

of the computing node, the contention of the resources often leads to performance

degradation. The reconfiguration algorithms are designed to mitigate the effects of

performance degradation during the multiple EPN placements on a computing node.

Placement of the EPNs has been used to resolve the response time degradation and

to maximize the utilization of the available computing nodes. EPN placement is

triggered by monitoring the usage of the resources in the computing node using the

reconfiguration algorithm

The research leads to two inferences: the role of the configuration scheduler is illus-

trated to ensure that measured response time targets (RT ) meet the pre-determined

target (T ) during the fluctuating incoming arriving rates faced by the EPNs; secondly,

nodes must report both RT and AR to CS in a proactive manner as proposed in Sec-

tion 7.1, not just in response to significant changes they observe in AR. The latter

arises due to the fact that W tends to under-estimate RT at large values of RT and

hence adjustments to existing configuration are necessary even if a large AR remains

constant
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Chapter 8

Evaluation 3: Inter-EPN

Parallelization

8.1 Introduction

Challenges arise when EPN hosted by itself on a single host is unable to meet response

time (RT) targets. To improve the response time of a single EPN, it is proposed

that the event streams are distributed across multiple instances of the same EPN,

with each instance hosted by itself on a distinct machine. This chapter presents a

framework for parallelizing the incoming events using the same copy of the EPN in

multiple computing nodes using a split, process and merge technique. In cases where

the processing of event streams is stateless, an obvious parallelization solution can be

easily adopted, i.e. deploy multiple copies of the EPN over different computing nodes,

split the incoming streams and merge the results at constant intervals. However,

when the processing of events is stateful, which is rapidly becoming a common case in

complex event processing scenarios, enabling parallelization to avoid the bottleneck

in performance is difficult. Computing aggregates such as maximum or minimum

does not create challenges to parallelization. When complex predicates and longer

windows of events are required to compute results, careful design of distribution and

aggregation of the events is vital. The parallelization requirement for a single EPN

can be measured in various dimensions as listed below:

1. Handling maximum number of events.

2. Memory requirements.
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3. Extent of complexity in pattern matching.

The volume of streaming events and the complexity of the underlying rules involved in

event processing leads to replication of EPN in multiple computing nodes. A handful

of processing requirements such as sum, average or aggregate functions can be paral-

lelized and aggregated using arithmetic functions. Enabling parallelization to process

stateful events or computational interdepencies requires state sharing and careful de-

sign of the splitting and merging of events. The need to have a shared computational

state in loosely coupled nodes makes it difficult to implement distributed event pro-

cessing across the EPNs. The EPNs will incur additional overhead in synchronization

and access to the shared states between multiple instances of the same EPN. The

complex event processing and enabling mechanism coupled with additional overheads

incurred in the EPNs make it challenging to determine the suitability of the paral-

lelization and the optimal level of the parallelization. The research challenge is to

build a parallel, distributed EPN where the incoming events are partitioned across

multiple nodes satisfying the following conditions:

1. Replicate instances of EPN in multiple nodes in order to meet response time

targets.

2. The system always delivers the same result of an ideal centralized execution of

the EPN.

The core of the problem is to distribute the incoming events and aggregate the re-

sults. The design of inter-EPN parallelization should define the forwarding rules to

distribute the partial results throughout the network of EPNs in a directed manner.

The intermediate EPN instances handling the events forward the response to the

aggregating node once the processing is completed.

Algorithms are proposed to process the streaming events across EPNs (inter-EPN)

by preserving the syntax and semantics of the distributed outcome of the query. In

a centralized single EPN scenario, each state of the system is stored and ordered

in the temporal sequence characterizing the progression of the state from one level

to the next resulting in the final outcome. To process events in multiple instances

requires appropriate parallelization and aggregation strategies of the output. The

parallelization strategy and aggregation is defined with the help of use cases. A use

case centric approach is pursued where splitting of the event stream is undertaken

as an operation without involving evaluation of complex predicates from multiple
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attributes in an event tuple. A few schemes are examined for event distribution in

terms of distribution operators that can be used to ‘fix’ loss of accuracy in the final

outcome and address non-functional aspects such as scalability and performance of

event based systems. The latter is assessed on dimensions relevant to our given use

case such as volume of events with varying input agents, event producers, complexity

of computation and processing environment.

The design behind the Inter-EPN parallelization involves broadcasting of the incom-

ing events to some significant part of the network. Mechanisms are devised to split

the events in to multiple physical event streams redirected to the network of EPNs.

The target node or processing node obtains the final results. Analysis illustrates the

impressive speedup in the response time by introducing inter-EPN processing in spite

of the complex rules. The chapter is organised in three sections. The first section de-

scribes the concepts behind parallelization with example queries that pose difficulties

and the ones that does not cause problems to parallelize. Section 2 explains the use

cases to highlight different challenges in each case and discuss the algorithm sequences

to achieve parallelism. Section 3 evaluates the results and limitations.

8.2 Parallelization of EPN

Parallelism involves partitioning, distributing and processing the incoming events in

multiple computing nodes. Partitioning has its origin in centralized systems where a

single file or tablespace were too large to handle within a single piece of hardware.

Distributed databases used data partitioning by placing relational segments in multi-

ple sites exploiting factors such as spreading the I/O bandwidth through reading and

writing in parallel.

The most common strategy is to distribute tuples through round-robin, range or hash

partitioning. Round robin partitioning is a technique where tuples are split sequen-

tially in multiple computing nodes. Range partitioning is a technique where subse-

quent events are transferred to one computing node, move forward to the next node

and returns to the first node. Range partitioning uses associative scans to distribute

the tuples based on a particular range of the attribute value. Hash partitioning is a

technique where tuples are distributed by applying a hashing function to an attribute

value.

Both hash and range partitioning specify the distribution of the tuple on a few com-

puting nodes or a disk, avoiding the overhead of complete search in all the computing
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SELECT person_name , avg(accel -x) /* the output attribute(s) */

FROM accelerometer_logs /* the input relation */

WHERE person_id =’201’; /* the predicate */

Figure 8.1: Example of the scan of acceleration logs to compute average

nodes registered by the system. The range partitioning clusters the tuples with sim-

ilar attributes in the same partition; however, the hashing tends to randomize the

incoming data rather than clustering it. The problem with the range partitioning is

in data skew, where all the data is placed in one partition or the computing node and

the execution skew in which all the execution occurs in one partition. Hashing and

round robin partitioning are less susceptible to the issues surrounding skew. Some

partitioning techniques use frequency of event or tuple access as one of the factors to

partition and spread the data access to the partitions rather than the actual number

of tuples or the attribute.

For example the system receives an event stream from accelerometers tied to the

individuals residing in a care home. One of the basic arithmetic functions such as

average could be used on the events as illustrated in Figure 8.1. In Figure 8.2, the

events are re-directed between three nodes. The label within each node represents

the identification of the computing node. The three partitioning techniques stated

above are demonstrated as illustrated in Figure 8.2 to narrate the simple use case

of computing average. The events are split in three different ways and the results

are obtained through aggregation in the final node. Each node performs the sum

of the events in x axis, called accel-x, and maintains the count of the events. The

overall output is computed using the aggregate node, through the average operation

as described below:

Average =
Σ3

i=0accel−x
Σ3

i=0eventcounti

The position of the events in the multidimensional space is determined by the list of

attribute values defined by the multi-dimensional partitioning schemes. The partition

dimension or the attribute can be decided based on the performance requirements

such as throughput or response time. The number of nodes can be increased based

on the events arrival. Grouping computing nodes by adjacent occurrences of event

types through hashing techniques or clustering events through range partitioning or

sequential event distribution in round robin partitioning might improve the perfor-

mance specific to a few use cases. This example of computing an average through par-

titioning of events is a simple one, where computational dependency between events

is very minimal. Whether partitioning distributes events to few nodes or all nodes is
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Figure 8.2: Illustration on types of stream partitioning process

an orthogonal issue. Each sophisticated partitioning improves the response time and

is reserved for future work.

The main objective behind parallelization of the EPN is to distribute the incoming

events to the multiple EPNs residing in multiple computing nodes with automated

redirection of the events. Each EPN deployed in a computing node performs identical

tasks on the arriving events. Each attribute of the event can be viewed as a co-

ordinate along the (attribute) dimension. Each event tuple consists of a list of co-

ordinate values and is viewed as a data point in the multidimensional space. Given

the nature of the use cases, a range partitioning is used as the default strategy to test

the Inter-EPN parallelization. The semantic integrity of the results is one of the main

areas of this qualitative research on Inter-EPN parallelization. The results emerging

out of the Inter-EPN parallelization should be equivalent to the results obtained by

processing the events in a single computing node. From the performance point of

view, one seeks to balance the incoming events to each computing node registered in

the system.
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In order to implement the Inter-EPN parallelization, application independent algo-

rithms were implemented in Java to direct the input event streams and to manage

the output event aggregation. The event processing engine (ESPER) maintain local

memory holding the previously computed disjoint intervals of the arriving events to a

certain point in past. In this research, it is assumed that incoming events arrive in an

orderly manner. EPNs use continuous queries to filter the event streams and/or push

the results further down to other event streams. The EPNs make use of the views

which are similar to the SQL tables to hold multiple events for the pattern recognition.

This research use sequence-based views with expiry policies (pre-determined count of

incoming events) through sliding windows. The features from the event processing

engine is used to create the sequence based views of the incoming events. Complex

processing such as aggregation and grouping are performed on the range of the events

in a particular sequence of events.Based on these reasons range partitioning is use

exclusively in this research mainly focusing on the ambient kitchen use case. Other

types of partitioning can be utilised to improve efficiency. However, this is beyond

the scope of this research.

8.3 Implementation of Inter-EPN Parallelization

The complex computational dependency between the events poses challenges during

the inter-EPN parallelization. Two approaches for parallelization of EPNs are ana-

lyzed: the first one uses a decentralised or asynchronous notification mechanism (a

message passing system), where the event aggregator is dynamically assigned to one

of the computing nodes complying to the rules defined in the algorithm. The sec-

ond option is to express the computation as centralised or map reduce functions. In

the map reduce based parallelization, the master node acts as the centralised compu-

tation and aggregation point where periodic checkpoints of the incoming events are

directed to the map and the reduce operators. Following the constraints specific to

both paradigms, the communication, correlation and aggregation mechanisms can be

mixed. In this section, we explain the implementation of inter-EPN parallelization

with the help of a simple use case. Each approach optimizes the processing between

the EPNs by selecting the group of EPNs and optimally allocates the computing

resources.

Within the asynchronous or decentralised notification mechanism, a search for a pat-

tern or an event can be initiated by any computing node in a cluster, which will declare

itself as an aggregator. For example, let us consider the computation of average as
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Figure 8.3: Decentralised algorithm for inter-EPN parallelization

illustrated by use case 8.1, in a decentralised manner. Any arbitrary node receiving

the event first declares itself as aggregator and tries to collate the sum and the count

of events from the rest of the nodes. Once the node declares itself as an aggregator,

all other computing nodes in the cluster subscribe to notification from the aggregator.

When the computation is accomplished based on the n depth traversal of the directed

acyclic graph representing the process flow in the EPN, the aggregator node resets its

state and will be ready to accept instructions from a new aggregator in the network

of computing nodes, as illustrated in Figure 8.3.

Some of the key challenges to implementing decentralised event processing are listed

below:

• During the process execution, a dynamic decision should be made to pick one

of the computing nodes as an aggregator.

• During complex inter-dependency between events, the aggregation of the events

could be undertaken in multiple nodes based on the pattern in the incoming

events.When one or more computing nodes try to declare itself as an aggregator,

a race condition occur. In order to prevent race conditions, one of the node is

fixed as an aggregator arbitrarily.

• During a few instances of complex use cases, aggregator could be arbitrarily

fixed to maintain the stability of the system.
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The overall outline of the decentralised event processing to acheive inter-EPN paral-

lelization is listed in the steps below:

Step1 The copy of the EPN is instantiated in idle computing nodes. The count

of computing nodes required to hire in the system is identified through the

reconfiguration algorithm described in chapter 6.

Step1.1 The decentralised parallelization algorithm initiates the search. Let us

consider the use case which computes average. Any arbitrary node receiving the

event checks for the availability of the aggregator. If an aggregator is found, the

node computes the sum and the count of the events. In the circumstance of no

aggregator, the node declares itself as an aggregator and notifies all other nodes

registered in the system.

Step1.2 The Node1 in Figure 8.3 , passes the notification to process the incoming

events. The rest of the nodes in the system will act as the processing node. The

results are forwarded to the aggregator nodes (Node1).

Step2 Once the results are computed by the aggregator, the algorithm resets it as

one of the processing nodes. Based on the arrival of the events, any node in the

network would declare itself as an aggregator.

As an alternative approach, centralised or map reduce paradigm uses the customized

event processing routine (EPN) for the given use case called ‘’Map’ by receiving the

input events along with key/value pairs and generates intermediate events. The map

reduce library groups the set of intermediate events and passes them to the reduce

function. The reduce function, which is also a customized event processing routine

(EPN), groups the events based on the intermediate key and merges the events to

a smaller set of values. Typically zero or one output value is produced per Reduce

invocation. Splitting the events in to several groups (Map) provides the opportunity

for distributing the EPN on several machines: within the same group, where a few

of the EPNs are executed on virtual machines on the same server or in a different

location.

Figure 8.4 shows the overall outline of the map reduce operation for the inter-EPN

parallelization. The map reduce engine or appropriate API, is integrated in to the

user defined program called mappers and reducers. The master receives the incoming

events, communicates with the mapper, reducer and the algorithm containing the

instances of the EPN. The simple case such as finding the average can be easily
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Figure 8.4: consecuetive events split using map reduce

accomplished through the master node. The master splits the events based on a

user defined criteria. Each mapper processes the event and sends the sum and count

of events. The reducer sorts, merges and forwards the results to the master. The

sequence of actions is illustrated in the figure corresponding to the listed numbers.

Step1 The master splits the input events in to M pieces based on size or count of

events as defined by the parameters defined by the user.

Step1.1 The master picks the idle nodes and assigns a few nodes as map and re-

duce task. The count of idle nodes can be picked based on the reconfiguration

algorithm defined in chapter 7. The master starts multiple copies of the EPNs

in the mappers.

Step1.2 A mapper is assigned a task to process the contents of the incoming events.

It uses the query information from the master to process the events. The inter-

mediate events are passed to the reducer as illustrated in Step1.3.

Step1.3 Periodically, the buffered events from each mapper are passed to the reducer.

The reduce worker reads the intermediate events, sorts and groups the results. If

the amount of intermediate events is too large to fit in the memory, additional

computing nodes can be used. The master defines the architecture for the

reducers during the system initialisation.
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SELECT person_name , avg(accel -x) /* the output attribute(s) */

FROM merged_accelerometer_logs.win:length (64) /* the input relation */

group by person_id output every 32 events; /* the predicate */

Figure 8.5: Example of the scan of acceleration logs to compute rolling average

Step1.4 The reduce worker iterates intermediate results and generates the final

output.

Step2 : When all the map tasks and reduce tasks are accomplished, the master sends

the final aggregated results to the algorithm.

MapReduce framework are used to maintain the pool of EPN jobs and the count

of EPNs subject to the change in the workload. The incoming data is split in to

Map tasks. Map and Reduce task are implemented as a separate Java Virtual Ma-

chine (JVM) residing within each virtual machine. Multiple map tasks connect with

multiple reduce task as specified in the Inter-EPN parallelization algorithms. The

streaming data is directed to each EPN hosted in the virtual machines. Total number

of Map tasks are proportionate to the number of EPNs hosted by the virtual machines.

Each Map task performs a user-defined Map-functions and generates the intermediate

key-value pair data. The intermediate events are organized on the cache within the

virtual machines. Each of the virtual machine consist of key-value data pairs, whose

keys are classified in to one group. The hash function is used to aggregate the events

belonging to the same group across all the virtual machines and merged together.

Many implementations of the EPN parallelization are possible. The correct choice

depends on the complexity and the computational dependency of the events. For

example, in the ambient kitchen activity recognition, a rolling average is computed.

Average is computed in windows of arriving events. The 32 events from the current

window event stream are merged with 32 events in the previous window of events.

Instead of one final result (average), the system needs to deliver continuous results

(average) to derive the pattern for the activity recognition. The query is illustrated in

8.5. During the parallelization of the rolling average, each computing node should pass

the last 64 events to the new computing node registering in the system to parallelise

the event processing.

The complexity of the use case in each event processing scenario determines the cri-

teria for parallelization. The next section describes algorithms using a decentralised

(asynchronous) notification mechanism or centralised (map reduce) approach using

range partitioning to improve the EPN performance. The algorithm design is defined

for a few complex use cases to demonstrate the inter-EPN parallelization.
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Figure 8.6: consequetive events split between two windows

8.4 Use case analysis

8.4.1 Consecutive Events:

Consecutive events are one of the common scenarios to identify periodic event oc-

currences in the incoming event streams. For example the case in the introduction,

§3.6, depends on the occurrence of series of events over a period of time to deliver

the prompting in the ambient kitchen. The system relies on the single or multiple

occurrences of the particular event, in a particular sequence from the incoming stream

of events. In this section, we define the algorithms to identify consecutive event oc-

currences as defined by the rule below:

Raise an alert whenever at least s, s >1, events of a specific type, say A, occur con-

secutively in the incoming stream.

Typically, whenever a type-A event is observed, next (s-1) events are type-checked

to see if an alert is necessary. If window W has s type-A events, an alert is raised,

the observation pointer moves the search of next s consecutive type-A events, and the

processing continues. In the case illustrated in Figure 8.6, a search criteria for s=5 is

used to generate an alert. A subset of s=5 events from window (W) is queried on the

stream in search for type-A events.

Splitting a stream into multiple windows and letting multiple hosts process the lat-

ter in parallel is a technique that will be the focus here. So, assume that stream

S is simply split into windows of fixed number, say W windows containing a pre-

determined number of tuples in each window. Let the windows be numbered as

W0,W1, ...,Wα,Wα+1, ... Assume also that there are n parallel processing nodes, N0,

N1, .., Nn−1, and that window Wα is sent to node Ni where i = α mod n.

When stream splitting is opaque to tuple attributes, there is always a possibility that

consecutive tuples of type-A are split across distinct windows situated in the same

computing node, as shown in Figure 8.6 . All five consecutive type-A events are
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Figure 8.7: Exactly s, events split between two windows

placed in two adjacent windows in the computing node. Processing all the windows

(W) in a single computing node resembles the raising of an alert using a centralised

system for the entire event processing within one single node. Consider a scenario

where windows Wα and Wα+1 in Figure 8.7 are processed by distinct nodes, say N1

and N2. If all windows containing the consecutive events have been sent to the same

node, then an alert would be raised. These considerations do not arise when a single

node is involved in processing the two windows due to the following reasons:

1. Windowing of incoming tuples is basically for convenient tuple processing

2. Successive windows are always sent to the same host

To achieve the same effect in Inter-EPN parallelization, simply replicating the event

processing networks (EPNs) on n distinct hosts is not enough for complex queries

such as the one being dealt with here. If a generic aggregation of events is regarded

to be enough, an alert will be raised by neither of the computing nodes whenever the

appropriate tuple sequences are split and sent to different computing nodes.

An estimation for a simple case below shows the occurrences of the consecutive tuple

in the head or the tail of two distinct computing nodes as shown in Figure 8.8. A

tuple has equal probability of taking any position within a window as stream splitting

is random. So, the probability of an alert being raised given that s tuples occur

consecutively in the stream S is the same as the likelihood of all these s tuples being

accommodated within a given window during the random stream splitting process.

Assuming s=5, consider s consecutive tuples, for example in Figure 8.8, four tuples
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Figure 8.8: (s-1) events split between two windows

are placed in Wα and one tuple is placed in Wα+1. If s is a modest five and a window is

packed with 100 tuples, then the probability of failure due to the above distribution of

events in this setup is 4% for every occurrence of s consecutive tuples. That is, the first

of these tuples should be within 1 .. (W-(s-1)) of a given window, so the remaining

(s-1) tuples are placed in another node. So, the probability of an alarm being raised

is: (W−(s−1))
W

. The probability of failure for any given s consecutive occurrence is:
(s−1)
W

.

The three possible occurrences of the consecutive events are summarised below:

Case1 : Exactly s tuples consequetively occur in the head or tail of the window as

shown in Figure 8.8. One event is placed in the tail of the window and the other

events are placed in the head of the next window.

Case2 : More than s, i.e. s+k, tuples consequetively occur in the head or tail of

the window, where k < s. Two choices for raising the alert in this situation are

124



Chapter 8 Evaluation 3: Inter-EPN Parallelization

illustrated in Figure 8.9. Under the first choice, the first of s tuples falls in the

head of the window. This will ensure s tuples appearing consecutively in this

window and the alert is raised. Under the second choice, the first of k tuples

falls in the tail of the window and the remaining tuples fall in the head of the

next window. This will lead to s tuples appearing consecutively in the next

window. If (s+k) or more tuples occur consecutively, then

Probability of failure is (s−1)
W

- k
W

, 0 ≤ k ≤ s-1

If the query is for s consecutive tuples and if 2s-1 or more tuples occur consec-

utively, then an alert will be raised at least once in spite of inter-EPN paral-

lelization. Note that the failure probability decreases if more than s+1 or more

tuples occur consecutively and becomes zero only if (2s-1) or more tuples occur

consecutively.

Case3 : Say, s is set to 50 and window size (W) of 100 tuples is used; the failure

probability raises to 49%. This shows that the choice of W for a given failure

probability is influenced by s which is a query parameter specified by the end

user. The occurrence of 2s̄ or more is represented as a proxy query for s̄, which

is determined using the following steps:

2s̄ - 1 ≤ 50

2s̄ ≤ 51

s̄ ≤ 25.5

s̄ = 25

For example, the occurrence of s or more events is illustrated in Figure 8.9. There are

two possible ways to split the events, where s events occur in the tail of the window

and remaining s+2 events occur in the head of the next window. Alternatively, the

s+2 events occur in the tail of the window and the remaining s events appear in the

head of the next window. Whenever s events occur in the head or tail of the window

(W), a search for the remaining events needs to be triggered to find the computing

node which is either successor or predecessor of the processing node. If the consecutive

s or more events occur in the middle of the window, the alert would be raised in the

same window and there is no need to trigger a search.

The algorithm used to determine the s consecutive events is split in to two parts.

Part1 determines the starting point to trigger the search of the consecutive events.
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Figure 8.9: (s+k) events split between two windows

Part2 involves the aggregation of the events from the windows in multiple nodes

shortlisted through the search operation. Let us consider C as the count for the

number of consecutive occurrences of event type A. Both the parts are illustrated

through the following steps as listed in the algorithm.

if Count(C) ≥ s then

raise an alert

end if

if (Count(C) < s) and tuples occur either at head or tail of the window then

if Count(C) > (s̄ = s
2
) then

Raise a potential alert ((H/T),C)

else

Raise a supportive alert ((H/T),C)

end if

end if

Part2 is the aggregation process, executed on receiving the alert

if Potential alert (H,C1) is received then
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Check for the supportive alert (T,C2) from predeccessor node

if C1 + C2 ≥ s then

raise alert

end if

end if

if Potential alert (T,C1) is received then

Check for the supportive alert (H,C2) from succeeding node

if C1 + C2 ≥ s then

raise alert

end if

end if

8.4.2 Time Limited Search

Raise an alert whenever an event say type A is followed by at least s, s≥1, non-

consecutive events of specific type B, within δ time of event A.

Every occurrence of type A should trigger search for s occurrences of type B within

δ time. Figure 8.10 illustrates the query for a pattern where s=2 type B events are

of interest. Whenever two consecutive type B events occur within the δ time of event

A, then an alert should be raised. No alerts are raised if occurrences of type B does

not occur within δ time. Two occurrences of event B are searched for after the first

occurrence of type A . Type A followed by two non-consecutive type B is the main

event of interest. Any type B occurrence which is beyond the δ time is of no interest

and alerts are not raised. If event type A with timestamp ti occurs, a search for event

type B should be initiated by a broadcast notification with a label {A, ti}.

In the figure 8.11, the event type A would trigger a search for the occurrence of

succeeding type B with a label {A, ti}. In this case, the windows Wα and Wα+1

are split in two different computing nodes. Both type A and type B occurs in two

windows. Under the parallelization, the two windows are placed in two nodes and the

occurrences of the event are unknown to each other. The occurrence of the first two

type B events (BI and B2) needs to be correlated with the type A event ordered by

the timestamp.

In parallelization of event processing, independent occurrences of type A or B need

to be carefully aggregated. Suppose the event {A1, ti} is generated from Node Ni and
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Figure 8.10: Search for the pattern ABB within δ time

Figure 8.11: Search for the pattern ABB within δ time
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Figure 8.12: Illustration of communication delay for the pattern ABB within δ
time

there is a worst case communication delay for the search broadcast notification to

reach Node Nj. The worst case communication delay is defined as d for all messages,

as illustrated in Figure 8.12. When a type A event occurs in node Ni, it needs to

send a broadcast notification to all other nodes registered in the system and receive a

response from other nodes registered in the system. Under a worst case communication

delay, d in the network communication between the nodes, it will take an additional

maximum of 2d time to send the notification and to receive the broadcast message. If

s consecutive events occur in the system within the δ time, then the total time taken

is {2d+ δ}.

The algorithm used for the time limited search of the non-consecutive events works in

three concurrently executed parts. During the system initiation, every node Ni builds

the following three parameters:

1. Search list, SL is maintained by the node and an entry is made whenever a node

intitiates or receives a search.

2. Buffer b, is maintained locally in each node to store all type B events.

3. A response list, RL is maintained for each type B event stored in the buffer.

Part1 is executed whenever a node Ni encounters a type A, type B or a search request

for type B.

Step1.1 Whenever type A is observed with ti

Step1.1.1 Enter {{Ai, ti}, Ni} in to the SL

Step1.1.2 Broadcast {{Ai, ti}, Ni} to all other nodes registered in the system.
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Step1.2 Whenever type A is received from other nodes, the search {{Ai, ti}, Nj} is

entered in the SL where (j 6= i)

Step1.3 Whenever type B is observed with tj, enter {B, tj} in the buffer.

Part2 is executed on the buffer of every node Ni

For every {B, tj} in buffer

if there is a {{A, ti}, Nk} in the SL and ti < tj ≤ ti + δ then

if {A, ti} is in RL for the {B, tj} then

do nothing

else

Inform search initiator of {{A, ti}, Nk}.
For {B, tj} enter the corresponding {A, ti} in the RL

end if

end if

EndFor

Part3, is executed on the SL of every node Ni

For every {{A, ti}, Nk} in the search list SL

if Nk = Ni then

if s responses is received for {{A, ti}, Nk} then

Alert is raised and delete the search {{A, ti}, Nk} from SL

else if (2d+δ) time is elapsed after the entry was made into SL then

Delete entry from SL

end if

else

Remove {A, ti} after (d+δ) time following its entry in to the SL

end if

EndFor

Part4, is executed on the buffer of every node Ni

For every entry in buffer d, check

if {B,tj} > d then

Delete the entry from buffer and RL

end if

EndFor
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8.5 Evaluation

Splitting an event stream and letting multiple hosts process portions of the stream

in parallel is often seen as an effective way of improving timeliness in large-scale dis-

tributed event based systems. The Inter-EPN parallelism described in §8.2 argues

that, unless some underlying integrity and semantic issues are paid attention, the

approach has potential for loss of accuracy while processing even simple, not so un-

common, classes of query operators. This evaluation section examines event schemes

that can be used for fixing such a loss of accuracy. The algorithm as described in §8.4
is used to evaluate the timeliness and efficiency of the distributed event processing.

For brevity, assume that a single stream of events or tuples is continually arriving to

be processed and, for simplicity, in the temporal order of event generation times.

8.5.1 Inter-EPN Parallelization of Consecutive Events:

The first use case evaluation is based on the consecutive events as in §8.4.1, the events

emerging from the accelerometers carried by individuals are examined for identifica-

tion of activities over a period of time. Events are distributed to multiple computing

nodes. The single stream of events or tuples continually arriving to be processed, for

simplicity, is ordered in the temporal sequence based on the arrival time. To introduce

inter-EPN parallelization, an example is given which monitors the acceleration with

respect to X, Y and Z co-ordinates through a sensor. The sensors are embedded in-

side the utensils in the kitchen and the events are streamed. The sensors periodically

notify the measurements and a few rules are listed to highlight the problem in the

inter-EPN parallelization. Consider the following definitions:

1. Three event types X, Y and Z are generated from the accelerometer.

2. Each event type is streamed at a frequency of 100 events per second. A rolling

window of 64 events needs to be created. At the occurrence of every 32 event,

the preceding 32 events need to be grouped.

3. Events need to be temporally ordered.

The rule for the use case illustrated in Figure 8.13 is defined as :

Compute statistics on every s consecutive events of type X, Y and Z, where s=64. On

the occurrence of every s=32 event, preceding consecutive events are grouped.
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Figure 8.13: Illustration of event distribution

For example, the system starts with event arrival from one person and scaled to 100

persons sending 100 events per second approximately. This leads to the replication of

the EPNs, distribution of the incoming events every few seconds or based on the par-

ticular tuple counts and aggregation of the outcome. The methodology of partitioning

the incoming events is described during the use case evaluation, in Figure 8.2. The

aggregation of events for the stated use case can be performed using pre-determined

aggregation functions. This is an example of a complex query where the distribution

of the events and aggregation of results involve transfer or the maintenance of the

events/state among the EPNs.

In this application, the events are timestamped (within the event processing engine)

and ordered in the EPN according to the timestamps. Processing events from the

source creates the derived events in the subsequent stages. The new derived events are

defined by (i) the attributes and type (ii) specific sequence of events whose occurrence

has lead to the complex event, and (iii) defining the new value for the event. The

event processing rule for the use case in Figure 8.13 is defined as :

Compute activity recognition on the events emerging from the accelerometer grouped

by a device and the source of origin.

The steps utilised to evaluate the use case are listed below:

1. Detect 32 consecutive events from three different data sources X, Y and Z . The

occurrence of the thirty two consecutive events in a stated sequence is used to

generate a window.
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2. When 32 type X events are detected in any of the computing nodes, it broadcasts

a message to all other computing nodes to search for the preceeding 32 events

satisfying the temporal order. Implement the algorithm illustrated in §8.4.1).

In this case, the parameter s is defined to be 32. There might be few cases

where part of 32 events fall in the head or tail of the partition. The algorithm

in §8.4.1) states the appropriate rules to address it.

3. Once a pattern seek is initiated, EPNs distributed in multiple computing nodes

respond when the match is found. The waiting time to seek a match can be

decided based on the probability for the event to happen at nth attempt.

4. The pattern matching occurs whenever 32 consecutive events of type X, Y and

Z are detected, which may occur in any of the EPNs placed in the distributed

computing node.

Incoming data can be split from one computing node succeeding to another computing

node as illustrated in Figure 8.2. For example consider a cluster of four nodes where

the row keys are numbers in the range of 0 and 100. Each node is responsible for

processing the events under the wrapping range. This restricts only a subset of the

computing nodes to search for the occurrence of the consecutive events. All the

events are restricted to check the nodes bound to a subset of the range. The number

of initiated search conditions is likely to reduce under efficient partitioning.

In this use case, features in the activity recognition are computed based on the event

streams using the continuous queries as illustrated in 8.14. Each continuous query

embedded inside the EPN processes the events emerging from the accelerometers,

placed throughout the ambient kitchen. The simplest method of evaluation is based

on the event occurrence in the time domain measures. Events at any point in time or

intervals between successive normal-to-normal intervals (NN) are used for the compu-

tation of statistics. Inferences on statistical variation from the precomputed pattern

of activity recognition are used on a series of computed events, particularly events

measured over a bound count of event window or longer bounds based on the oc-

currence of the primitive events (acceleration X, Y and Z in this example), which

determines the activity recognition. Event selection in a stated rule is grouped based

on individuals or device identifier, which bind the value of instantaneous events or

complex statistical time domain computation.
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select avg(x) as meanX , avg(y) as meanY , avg(z) as meanZ ,

avg(Math.atan2(y,Math.sqrt(x*x+z*z))) as MeanPitch ,

avg(Math.atan2(x,Math.sqrt(y*y+z*z))) as MeanRoll ,

stddev(x) as stdDevX , stddev(y) as stdDevY ,

stddev(z) as stdDevZ ,

stddev(Math.atan2(y,Math.sqrt(x*x+z*z))) as StddevPitch ,

stddev(Math.atan2(x,Math.sqrt(y*y+z*z))) as StddevRoll ,

avg(x*x) as EnergyX , avg(y*y) as EnergyY ,

avg(z*z) as EnergyZ ,

avg(Math.atan2(y,Math.sqrt(x*x+z*z)) * Math.atan2(y,Math.sqrt(x*x+z*z)))

as EnergyPitch ,

avg(Math.atan2(x,Math.sqrt(y*y+z*z)) * Math.atan2(x,Math.sqrt(y*y+z*z)))

as EnergyRoll ,

min(curt) as l1_min , max(curt) as l1_max

from MergedStream.win:length (64)

group by deviceid output every 32 events

select (count (*)* sum(x*y)-sum(x)* sum(y))/

((Math.sqrt(count (*)* sum(x*x)-sum(x)* sum(x)))

* (Math.sqrt(count (*)* sum(y*y)-sum(y)* sum(y)))) as corX ,

(count (*)* sum(y*z)-sum(z)* sum(y))/

((Math.sqrt(count (*)* sum(z*z)-sum(z)* sum(z))) *

(Math.sqrt(count (*)* sum(y*y)-sum(y)* sum(y)))) as corY

(count (*)* sum(x*z)-sum(z)* sum(x))/

((Math.sqrt(count (*)* sum(z*z)-sum(z)* sum(z)))

* (Math.sqrt(count (*)* sum(x*x)-sum(x)* sum(x))))

from MergedStream.win:length (64)

group by deviceid output every 32 events

select ((( count (*)/64) * Math.log(count (*)/64)) * count (*))

as EntropyPitch

from MergedStream.win:length (64) group by pitch , deviceid

output every 32 events

select ((( count (*)/64) * Math.log(count (*)/64)) * count (*))

as EntropyRoll ,

deviceid from MergedStream.win:length (64)

group by roll ,deviceid output every 32 events

select ((( count (*)/64) * Math.log(count (*)/64)) * count (*))

as EntropyX

from MergedStream.win:length (64)

group by x,deviceid output every 32 events

select ((( count (*)/64) * Math.log(count (*)/64)) * count (*))

as EntropyY

from MergedStream.win:length (64)

group by y,deviceid output every 32 events

select ((( count (*)/64) * Math.log(count (*)/64)) * count (*))

as EntropyZ from MergedStream.win:length (64)

group by z,deviceid output every 32 events

Figure 8.14: Compute 21 features from acceleration logs
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8.5.2 Inter-EPN Parallelization of Time Limited Search

The second use case evaluation §8.4.2 is based on the computed events (activities)

emerging from the accelerometers. The computed low-level activities (cutting, chop-

ping, stirring, etc.,) from the accelerometer events are used for situated prompting as

described in §3.6. The situated prompting varies based on the activities performed

or the context of the events emerging from the accelerometers embedded inside the

device. The methodology to evaluate the situated prompting is summarised in Table

3.4. On the arrival of new event, the system checks the succeeding event occurrence

within the specified time limit is searched. Alerts are raised based on a successful

search. During every event arrival, succeeding windows are checked for event occur-

rence starting from the current time of computation. When the window size is long,

it will be hard to replicate the events in the same computing node. The events of each

window will need a partition. The computation of events with reference to the cur-

rent instance of time plays a significant role in situated prompting. The computation

of the alerts to trigger the decision support system will require events from multi-

ple windows, back referenced to minutes or hours of events starting with the current

time. In data intensive applications, time limited search requires an extensive state

sharing mechanism to distribute the events among multiple computing nodes. During

parallelization, the events from a single EPN are distributed in multiple computing

nodes, with a possibility of the distribution of events belonging to a single window in

multiple machines.

It is clear that the performance of the EPNs is limited by the hardware capabilities.

In a system with a single EPN, a user sends a query to implement the application

logic and the events are mapped against the queries to send the appropriate prompt.

The use case has few defining characteristics:

1. The EPN continuously emits events maintaining the rules stated in the use case.

2. The EPN by definition operates on the incoming data and stores only a minimal

amount of event in the memory.

3. The EPN responds to produce alerts stated in the rules every millisecond, sec-

onds or hours as dictated by the application logic.

Raise an alert whenever a specific type B occurs within 5 min from the occurrence

of event A Raise an alert whenever a specific type C occurs within 5 min from the
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occurrence of event B Raise an alert whenever a specific type D occurs within 5 min

from the occurrence of event C

Consider event type A occurs at time δ, event type B occurs within time δ+t1, event

type C occurs within time δ+t1+t2. There is a sequence of event occurrence where

each stage is progressed through alerts raised by the successful condition. Success-

ful occurrence of an event prompts an audio signal with instructions in the kitchen

prompting the user to progress with the next action. The table to prepare a dish has

an approximate 10 stages. The number of stages can be increased as per the appli-

cation requirement. However, the core algorithm or analysis of the event resembles

§8.4.2. The whole promiting scenario can be built based on n number of time limited

search. If a certain attribute is found to be erroneous, temporal retrofitting needs

to be done based on the merged data from the succeeding time stamps. The recent

history and forthcoming events are all necessary to compute this.

Consider the event type B at time t occurs after the event type A. There are number

of occurrences when both events needs to be correlated for a period of time. This

leads to the correlation of events in terms of the time and identity. The data model

is assumed to compute the prompting and is stored as a template available to all

computing nodes. Under a parallelization, the algorithms to compute the time limited

search are listed below:

1. Each EPN is provided with the search function with the list of event sequences.

2. Tx is the timestamp of the observed event at a given instance of time.

3. Occurrence of the event initiates the search for the next event type. The algo-

rithm in §8.4.2 is used for the search

4. The first computing node which observes the event acts as the querying node

and broadcasts the message about its status to all other nodes in the system.

5. Other nodes in the system start recording the events specific to the search. On

successful event occurrence, the querying node computes the aggregation.

Efficient processing of the occurrence of events in relation to the time is the key

issue. Granularity is an important aspect of the analysis to enable the exploration,

understanding and subsequent raising of the alerts after the occurrence of the event.

To analyse the events, length of window of a given dataset is considered to be finite.

When a given event does not match, that event will eventually leave the window
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for that particular partition (attribute id, in this example) and be deleted from the

memory. When a match occurs, the partition and remaining active matches for the

same partition are removed.

8.5.3 Inter-EPN Parallelization Experiments Outcome

Both the use case 1 and 2 were designed as EPNs and instantiated in multiple comput-

ing nodes. The outcomes were propagated to the final stage. Under stateful operation

as illustrated in rule (3.3), every EPN requires the events for ‘n’ number of windows so

that the earlier events affect the processing of events in the later stages. The stateless

operations depend on the current occurrence and the events can be moved to disk or

back up systems after the completion of processing. Parallelization of the stateless

EPNs can be achieved using distribution and aggregation of events in any number

of computing nodes. However, to achieve the inter-EPN parallelization in stateful

operations, distribution and aggregation is pursued using the algorithms described in

8.4. The semantic integrity of the results related to EPNs executed on one computing

node and multiple computing nodes were checked and evaluated carefully.

The EPN prototype is implemented using java SE SDK 1.6 and experiments were

conducted using the OpenJDK run time environment. The prototype for the pattern

matching in the EPN is executed using an open source event processing engine called

ESPER. The prototype consists of the pattern matching to identify the unique occu-

rance of the event along with the statistical computations written in CQL (continuous

query language). In order to replicate the real world setting, the experiments were

conducted in six computing nodes. Three nodes were deployed with the EPNs and the

other three were used as event producers. The implementation uses Java NIO sockets

for communication between the event producers and the EPNs. The broadcasting of

the messages across the EPNs was done using the message queues.

The distributed event processing results are illustrated in Figure 8.15. The first set of

experiments was started using two computing nodes. After the semantic verification

of the results, the experiments were conducted in the machines with three computing

nodes. In both experiments, the distributed event processing shows a decreased pro-

cessing time compared to the centralised event processing. The results of the single

node event processing were verified with multiple node results and found to be same.

The arrival rate of events was increased from 1000 to 6000 events per second, from

multiple data sources.
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Figure 8.15: DEP performance results (three nodes)

A few main observations from the experiment results as illustrated in figure 8.15 are

listed below:

1. Under high incoming arrival rate, the time taken by a single node is approxi-

mately five times higher than the three nodes as illustrated in 8.15.

2. Under lower arrival rate, the processing times are very similar. So maintain-

ing the minimum number of computing nodes will be ideal for the inter-EPN

parallelization.

3. Using the stated algorithms implemented in the inter-EPN parallelization, the

semantic verification of the results were tested in terms of the alerts issued from

the system. The experiments demonstrated a similar query result. For exam-

ple, the processing of three non-consecutive events delivered the same situated

prompt when executed in the single computing node or multiple computing

nodes.

4. In the instances of multiple EPN receiving 2000 events and the single EPN

receiving 2000 events, the response time variation is observed. Even though

the event arrival is similar for both cases, the response time difference varies

due to the queuing of events. The single EPN has a much higher events queue

compared to the multiple EPNs.
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8.5.4 Observations

During the Inter-EPN parallelization, the utilization of more hardware or computing

nodes sounds attractive in terms of response time or costs of deployment. However,

there is a hidden serialisation cost. Sometimes an alert cannot be raised until two

consecutive windows are processed at distinct hosts. With the overhead of stream

splitting, conjugating, and communication delays, this synchronisation can add delays

for a few alerts. One should at least be aware that there are other QoS metrics

that need to be looked at closely if a value based judgement is to be made. These

observations are valid even for deterministic queries in the conventional sense of its

use. The commodity servers or virtual machines in the cloud decrease the capital costs

(CAPEX) for any application. However, the overheads involved in such deployment

should be analyzed in greater detail.

1. Read operations: The Inter-EPN parallelization, the utilization of more hard-

ware or computing nodes sounds attractive in terms of response time or costs

of deployment. One should at least be aware that it involves partitioning and

replicating the streaming data. For instance, N is the read operation and S the

number of computing nodes spread across the cloud to process the events, the

load due to read operations are N/S. Each server needs to process fractions of

read operations. If 1000 events are sent every second in 32 servers, each server

processes 31.25 events/second instead of processing 1000 events/second in one

computing node.

2. Write Operations: Each server in the Inter-EPN parallelization needs to deal

with the writes of both the streaming data and their replicates. The writes are

not homogeneously distributed; each computing node needs to be provisioned

for increased number of writes mediated by the algorithms, which are designed

specific to the use case. However, in most of the event distribution scenarios

the read operations are more frequently compared to the write leading to the

reduced traffic by reads. The replication of the data needs to be designed in a

manner to reduce the excessive write operation during event distribution.

3. Memory: Memory requirements are the most limiting factor in the centralized

or single computing node based event processing system. In order to achieve

improved response time, it is common to minimize disk I/O in favor of memory

I/O. Solutions such as memcache, denormalisation and SQL caching are a few

options designed to address the memory issues and reserved for future work.
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4. Network Traffic: The bandwidth requirements for the replication of the data

during Inter-EPN parallelization would require careful design to replicate EPNs

on many computing nodes compared to one server in centralized event process-

ing.

5. Load Balance: Although different EPNs will require varying amounts of process-

ing time, idle EPN can be assigned to the next batch of the incoming stream

and all EPNs need to be given optimum work load based on the response time.

The optimum load for the EPN can be predicted using the response time opti-

misation and reconfiguration algorithm discussed in Chapters 7 and 6.

8.6 Conclusion

To conclude this chapter, Inter-EPN parallelization can lead to performance improve-

ments only when it is carefully engineered by taking into account several factors such

as tuple arrival rates and the parameters specified in the queries. In event processing,

the logical sequence of the events involves customizable selection policies, parame-

ters and aggregates appearing over a long period of time. If attention is not paid

to underlying issues, its relative advantages (over centralised processing) may not be

significant in addition to potential for loss of accuracy. Algorithms were designed for

the few complex event processing scenarios and the parallelization of the EPNs was

evaluated to demonstrate the semantic integrity of the event processing.
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Chapter 9

Challenges and Future Work

9.1 Introduction

Virtualization in cloud computing is the key enabler to drive the ability of hardware

to scale according to the arrival of events. The cost effective, on demand approach

in the virtualization helps to reduce the capital expenditure. The ability to scale

the resources based on demand improves the operational efficiency and agility of the

system. Under virtualization, a single piece of hardware will have the capability of

running multiple independent resources in terms of operating systems with distinct

management capabilities allowing the utilization of the underlying platform resources.

The provisioning of the VMware resources is dynamically configured based on the

thresholds configured by the service providers. Underlying hardware usage and the

networking device state is dependent on the CPU utilization, application state and

networking I/O. The optimization of the resources to be provisioned or released is de-

signed based on the acceptable limits of the underlying server. This chapter discusses

the opportunities of extending the work on the response time prediction, reconfig-

uration and inter-EPN parellelization in challenging real time and batch processing

applications using cloud computing.

9.2 Virtualisation

The core objective in virtualisation is to provide performance isolation, scheduling

priority, memory demand, network access and disk access for all the concurrently

running resources spawned in a single piece of hardware. The enabling factor for
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cloud computing is the virtualization techniques provided by hypervisors such as XEN

[Barham et al.], VM Ware ESXI, Hyper-V and KVM. The hypervisors allow multiple

operating systems and applications to run simultaneously on the hardware. To offer

linear scalability to the applications, VMware provides the following tasks:

• Resource utilization

• Scalability

• High availability

9.2.1 Scalability

Technologies to manage scalability in cloud computing as a part of a software defined

environment (SDE) is an emerging area of research. Resource-aware and workload

management solutions enable dynamic allocation of virtual machine infrastructure

in accordance to the incoming event streams or proportionately adapt to the arrival

rate of the streams. Design of automated resource management can be built on the

reconfiguration algorithms in section §7.2 focusing on major issues such as

• Cost of the cloud computing utilization

• Policy driven resource scheduling

9.2.1.1 Cost of cloud computing utilization

Spot instances are one of the emerging popular services in cloud computing. Spot

instances are the excess computing nodes or instances of the elastic compute cloud

facility, which are available in real time through bidding. Innovative applications can

be built based on the reconfiguration algorithms. At regular intervals, an application

should register internal demand for computing resources and search for the cheap-

est available compute resource in real time. Increasing the percentage of application

execution in the cheapest available computing node would drastically reduce the ex-

pense of the event processing. Quantitative research projects that require hundreds

of terabytes of data need many hours of compute power. Highly prevalent options are

to use on-demand instances in cloud computing. However, to utilize spot instances,

custom-built algorithms to optimally bid and consume cost-effective resources are es-

sential. The extension of cost centric reconfiguration algorithms can be utilized in
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the batch processing scenarios as well to map multi-hour jobs in to smaller sub-jobs,

queue them based on the memory and I/O requirements, monitor the spot price of the

compute resource and run the outstanding jobs in the most cost effective way using

cloud computing. Cloud computing has enabled shrinking of the multiple years’ work

to a few hours, however, the automated hire of the spot instances could drastically

reduce the cost of the resource utilization.

9.2.1.2 Policy driven scheduling

Automated resource management should choose the appropriate servers on which to

place the event processing networks based on the policies designed by the applica-

tion. For example, in an indoor localization of the elderly people inside a care home,

the personal data about the individual sensors used by the elderly people reside in

a private server. The encrypted private information on the health conditions or the

identity is abstracted within the private access residing in a private cloud. The move-

ment or history of the activity logs of elderly residents is a stream of events from

multiple sensors, which can be processed in a public cloud. The criteria on the uti-

lization frequency for each virtual machine in terms of the context of events, privacy

requirements, cost, security criteria and the data management policy could act as a

decision-making criteria for the management of the resources in the automated man-

ner. For example, the computing nodes can be made available to hire as determined

by the algorithm’s security and privacy policy. The configuration scheduler in Section

§7.2 can be extended by incorporating additional features related to the security and

privacy of the underlying applications.

In an automated scenario, the deployments may require more than one environment

such as private cloud, public cloud or both. The configuration scheduler can be defined

with a directory of event processing channels where multiple networks can be inter-

connected. A network interface can be provided to connect with individual computing

nodes in the system. In example 9.1, machine A and B can communicate with each

other, machines C and D can communicate with each other but machine A cannot

communicate with machines C or D unless it goes through B which has an interface in

both networks. The Network X.X.X.0 could be a private network operating internally

within an enterprise and the Network Y.Y.Y could be a group of computing nodes

operating in the public cloud. The configuration scheduler in this case maintains

the directory of available computing nodes in both the private and the public cloud.

During the scaling up of the network, the highest preference can be given to the

computing nodes available in the same network and security policy. This can help
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Figure 9.1: Event Processing Channels of communication

the system to utilize the computing nodes optimally within the internal environment

and once sufficient resources are unavailable, external hiring could be done based on

a pay-as-you-go basis. As part of creating the network of computing nodes, multiple

virtual networks can be created based on the requirements. All subsequent networks

can be set up dynamically based on the incoming event stream traffic. As a part

of automation, live migration of the virtual machines or images of EPNs hosted in

the virtual machines can be ported as in Clark et al. (2005). Live migration with

the automated reconfiguration could reduce the service time and improve the overall

system performance.

9.3 Resource Utilisation

The applications running inside one virtual machine are expected to be independent of

the co-located applications running inside another virtual machine. The performance

isolation [Koh et al. (2007), Nathuji et al. (2010)] and CPU fair sharing [Kazempour

et al. (2010), Liu et al. (2010)] in a virtualized environment address the resource

contention issues. However, the real time streaming events complexities in terms of

performance isolation and resource contention in terms of dynamism exhibited by the

system in terms of event producers, event consumers, state management and context.

The assumption of the performance isolation in the virtualization fails under high

I/O requests and heavy CPU intensive jobs. The resource utilisation policies can

be extended targeting specifically towards each hypervisor and constraints associated
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with it. This will lead to some generic policy formulation to handle the resource

utilisation.

9.4 High Availability

The configuration scheduler in this research is built on a single server, which is meant

to be prone to crashes and intrusions. An approach specified in FORTRESS [Clarke

and Ezhilchelvan (2010)] for adding resilience capability along with the primary back

up system could act as an extension to this research.

9.5 Oscillatory behaviour of EPN

Oscillatory behaviour of the EPN can be caused by many factors such as bursty

workload, instable resource allocation for the computing nodes, the workload in the

shared hardware, network, input or output fluctuations in the host environment and

many other reasons. This work is carried out based on the assumptions that stable

CPU and memory allocation is provided to reconfigure the EPNs across multiple

nodes. There is plenty of scope to improve the oscillatory behaviour of the EPN

movement.

9.6 Conclusion

Engineering aspects of event processing are commonly focused around timeliness and

scalability. This research focuses on the response centric scalability along with the

parallelization of the event processing networks. This research could provide a solid

foundation to understand the challenges and basics behind scalable and responsive

event processing. A few areas of future work were discussed in this chapter such as

scalability, availability and resource utilisation. However, given the era of Big Data,

progression can be made in terms of extending this research in to a big data platform

for event processing.

The novel approach described here deploys a collection of EPNs on cloud platforms

in such a manner that the response times can be ensured to meet specified targets

even when event arrival rates fluctuate over time. The novelty of the approach lies in
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predicting response times based only on prior calibration and periodic measurements

of event arrival rates and end-to-end latencies of EPNs; there is no need for intrusive,

low-level measurements at operator-level within EPNs.

Experiments confirm that prediction is reasonably accurate and the heuristic for se-

lecting appropriate configurations is effective. Periodic reporting of arrival rates and

response times by EPNs is the only overhead imposed. This small but inevitable run-

ning overhead and the overhead of executing a heuristic selection algorithm make the

approach a highly scalable one in managing a large number of EPNs with response

time constraints on a cloud platform.

Centralized event processing systems have a single node bottleneck for maintaining

key performance indicators. To decrease the per-node tuple processing time and to

increase the overall throughput, each node of a distributed event processing system

requires a scalable, responsive monitoring and redeployment framework. Any system

with a static number of computing nodes might experience under provisioning (i.e.

the overall computing power does not handle the performance requirements) or over

provisioning (i.e. the number of allocated nodes operating below their full capacity

meeting the target performance metrics). The event based system was designed and

built to address the under provisioning or over provisioning of computing resources

using cloud computing. Event processing networks were designed as directed acyclic

graphs. The challenge is to build a response centric EPN placement, across multiple

computing nodes. The following objectives were addressed:

1. The response time of each event processing network under varying event flows

was theoretically modeled and predicted using M/G/1 queuing theory.

2. Generic reconfiguration algorithms were designed and tested to place the EPN

in a particular computing node. The predicted response time of each event-

processing network was used to reconfigure the EPN across multiple computing

nodes in the cloud.

3. The EPNs were dynamically increased, decreased or moved across multiple com-

puting nodes using the predicted response time.

4. In certain cases, where the data is distributed across multiple EPNs, the result-

ing tuples require aggregation. This was studied using inter-EPN parallelization.

The results from the inter-EPN parallelization were tested for the equivalent

outcome from the centralized execution. The inter-EPN parallelization was an-

alyzed using a wide variety of streaming data.
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5. The response time of the inter-EPN parallelization was evaluated between the

centralized and distributed placement maintaining the semantic integrity of the

results.

In this research a novel response time prediction for the event processing networks

is designed, implemented and evaluated. The inter-EPN parallelization strategy im-

plemented through split and process principles, maintains the semantic integrity and

avoids computing bottlenecks.
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Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stone-

braker. Load shedding in a data stream manager. In Proceedings of the 29th

International Conference on Very Large Data Bases - Volume 29, VLDB ’03, pages

309–320. VLDB Endowment, 2003. ISBN 0-12-722442-4.
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