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Abstract  

Enteropathogenic Escherichia coli (EPEC) virulence depends on a Type-3 Secretion 

System (T3SS) that transfers many ‘effector’ proteins into human gastrointestinal cells. 

The components for the effector-delivery apparatus (T3SS and translocator proteins), 

virulence-critical surface protein (Intimin) and seven effectors (EspG, EspF, Map, 

EspH, EspZ, Tir, EspB; latter also a translocator) are encoded on the Locus of 

Enterocyte Effacement (LEE) pathogenicity island. The EspA translocator protein 

extends the T3SS and is tipped with EspB and EspD which insert into the plasma 

membrane enabling effector delivery into the host cytoplasm. Two LEE effectors, Tir 

and EspZ, have virulence-critical functions with both inserted into the plasma 

membrane and linked, for Tir, as a receptor for EPEC (via Intimin) and, for EspZ, to 

prevent a cytotoxic response. It is controversial how Tir becomes inserted into 

membranes and how EspZ prevent cytotoxicity. Previous work predicted that Tir 

insertion depends on LEE effector activities. Here, we demonstrate LEE sufficiency for 

Tir insertion and rule out roles for Intimin and classical LEE (EspG, Map, EspF, EspH, 

EspZ) effectors. Surprisingly, our data implicated roles for the EspA and EspD 

translocators in stable Tir-intimin interactions and revealed a new EspZ protective 

mechanism i.e. prevention of cytotoxicity triggered as a consequence of Tir-Intimin 

interaction. Furthermore, we provide bioinformatic and experimental support that an 

unusual Edwardsiella tarda LEE-like region encodes a functional effector-delivery 

system. The swapping of protein homologues between E. tarda and EPEC has also 

provided an opportunity to gain insights on the structure/function of ~20 

T3SS/translocon components and virulence-critical Tir, Intimin and EspZ proteins.  
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1.1 Pathogenic Bacteria 

1.1.1 Escherichia coli and enteropathogenic E. coli (EPEC) 

Escherichia coli (E. coli) is an aerobic gram-negative bacterium within the family of 

enterobacteriaceae and the genus Escherichia (Kaper et al., 2004). It is a commensal 

organism of the small intestine of humans and animals (Nicolas-Chanoine et al., 2014) 

with some strains causing diarrhoea in humans, whereas others can spread throughout 

the body where they cause urinary tract infection or meningitis (Weintraub, 2007). 

Diarrhoeagenic E. coli are divided into six main pathotypes: enterotoxigenic E. coli 

(ETEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), diffuse 

adherent E. coli (DAEC), enterohaemorrhagic E. coli (EHEC) and enteropathogenic E. 

coli (EPEC). During infection all pathogenic E. coli strains remain extracellular except 

EIEC, which is an intracellular pathogen that can invade and replicate within epithelial 

cells and macrophages, while other E. coli strains, which might be internalized at low 

levels, cannot replicate intracellularly (Gruenheid & Finlay, 2003). 

EPEC is one of the first E. coli pathotypes recognised to be responsible for millions of 

paediatric diarrhoeal cases each year (Clements et al., 2012, Levine et al., 1978). It 

targets the absorptive epithelia (enterocytes) of the human small intestine where 

alteration leads to severe watery diarrhoea. Although EPEC outbreaks of neonatal 

diarrhoea in developed countries are now rare, it is one of the most important 

pathogens infecting infants and causing nonspecific gastroenteritis in the developing 

world (Dutta et al., 2013, Levine & Edelman, 1984). EPEC with other pathogenic strains 

including enterohaemorrhagic E. coli (EHEC), rabbit specific enteropathogenic E. coli 

(REPEC-1) and the mouse specific Citrobacter rodentium are members of the 

attaching and effacing (A/E) family of pathogens. These members share the ability to 

induce pathophenotypic attaching and effacing (A/E) lesions following adherence to 

the apical surface of the intestinal epithelial layer (Wong et al., 2011). The 

distinguishing features of these lesions are i) localised loss of brush border microvilli, 

ii) intimate bacterial adherence to the enterocyte apical plasma membrane, and iii) 

production of actin-rich pedestal-like structures beneath the adherent bacteria (Figure 

1) (Mundy et al., 2005, Robins-Browne et al., 1994, Nataro & Kaper, 1998). 
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Figure 1: EPEC induced attaching and effacing lesions with actin rich pedestals. A) 

The extensive effacement of microvilli on the apical surface of epithelial cells (Caco-2 cell model) 

infected with wild type EPEC. Taken from (Dean et al., 2006). B) EPEC induces pedestal-like 

structures in HeLa cell model. These pedestal structures protrude from the apical surface, cupping 

individual bacteria. The image was artificially coloured to distinguish bacteria (purple) from HeLa cell 

(brown). Taken from (Rosenshine et al., 1996).  
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1.1.2 Interactions of EPEC with epithelial cells 

Infection with EPEC occurs through ingestion or drinking of contaminated food or 

water. Upon entering the gut, EPEC adhere to epithelial cells via bundle-forming pili 

(BFP) (Giron et al., 1991). The bundle-forming pili (BFP) is encoded by the EPEC 

adherence factor (EAF) plasmid (Jarvis et al., 1995). EPEC BFP is a member of the 

type IV pilus and promotes EPEC aggregation to form microcolonies and bind 

enterocytes in a manner named localised adherence (LA) (Giron et al., 1991). The 

disease process depends on the ability of the EPEC to penetrate the intestinal mucus 

layer, attach to enterocytes and transduce signal cascades that control important 

cellular functions, including actin and cytoskeletal dynamics (Donnenberg & Kaper, 

1992). The gastrointestinal epithelial cells are also covered by a glycocalyx 

(glycoprotein-polysaccharide) layer, which covers the apical surface of mucosal 

epithelial cells (McGuckin et al., 2011).  

 

EPEC subverts different mechanisms to colonise intestinal epithelium and penetrate 

the mucus barrier to access the epithelial surface (Clements et al., 2012). EPEC 

possesses a type II secretion system (T2SS) that secretes a surface-

associated lipoprotein, SslE (Baldi et al., 2012, Valeri et al., 2015). SslE is a mucin-

binding protein involved in the degradation of mucin substrates and facilitates EPEC 

penetration of the mucus layer to access the host cells (Valeri et al., 2015). EPEC also 

secretes a serine protease auto-transporter, EspC, which is secreted by type V 

secretion system (TVSS) to the extracellular milieu, causing epithelial damage (Stein 

et al., 1996, Navarro-Garcia et al., 2004). EPEC then utilizes a type III secretion system 

(T3SS) to translocate proteins into the host cell’s cytoplasm. The T3SS with its 

substrates are encoded on the Locus of Enterocyte Effacement (LEE) pathogenicity 

island, which encodes over 40 gene products (Elliott et al., 1998). 

 

 

1.2  Locus of Enterocyte Effacement (LEE) 

The locus of enterocyte effacement (LEE) is a 35 kb pathogenicity island present in all 

attaching and effacing pathogenic strains (Mundy et al., 2005, Robins-Browne et al., 

1994, Nataro & Kaper, 1998). In EPEC (E2348/69), the LEE region consists of 41 

ORFs organized in seven operons from LEE1 to LEE7 (Figure 2) (Gaytán et al., 2016). 

EPEC LEE expression is regulated by a non-LEE transcriptional regulator (PerC) 

encoded by the perABC operon on the EAF plasmid (Gomez-Duarte & Kaper, 1995). 
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The LEE genes, based on their functionality, are classified into a number of groups, 

including the components of a T3SS apparatus (Sep, for Secretion EPEC protein and 

Esc, for EPEC secretion components), secreted translocators and effector proteins 

(Esp, for EPEC secretion protein), chaperones (Ces), regulatory factors (Ler, GrlA, 

GrlR, and CesL), an adhesin (Eae), Intimin (Lin et al., 2014). The LEE operons (LEE2 

to LEE7) are activated by gene located on the LEE1 operon. This gene encodes the 

master regulator Ler (LEE encoded regulator) (Mellies et al., 1999). In addition to Ler, 

LEE also has genes that encode a negative (GrlR) and a positive (GrlA) regulator of 

the Ler expression (Iyoda et al., 2006). CesL can also modulate LEE expression by 

interacting with Ler (Younis et al., 2010). Once EPEC LEE is activated and proteins 

are expressed, this leads to the production of an effector-delivery apparatus composed 

of a T3SS and translocators.  

 

 

 

1.3 The EPEC type III secretion system (T3SS) 

The T3SS apparatus is a macromolecular complex that spans both bacterial 

membranes with a short needle-like projection to enable direct delivery of ‘effector’ 

proteins across the plasma membrane of host cells (Hueck, 1998, Burkinshaw & 

Strynadka, 2014). The T3SS is composed of ~20 proteins that form a basal body, 

Figure 2: Genetic organisation of EPEC LEE Pathogenicity Island. EPEC LEE 41 genes are 

organised into seven polycistronic operons (LEE1 to LEE7). Taken from  (Gaytán et al., 2016). 
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extracellular appendages (needle, filament and the translocation pore), and 

cytoplasmic components (Figure 3). The basal body of the T3SS system, which spans 

both the inner and outer bacterial membrane, consists of ring structures associated 

with the inner (EscJ, EscD), outer (EscC) bacterial membranes and a periplasmic inner 

rod (EscI) (Figure 3) (Romo-Castillo et al., 2014). EscJ, EscD and EscC proteins are 

critical for T3SS assembly and are required for the secretion of the Esp proteins (Ogino 

et al., 2006). EscI, a rod/needle protein, interacts with the outer membrane secretin 

EscC and it is essential for type III secretion (Sal-Man et al., 2012b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic illustration of the EPEC effector delivery system. The effector delivery 

system is composed of a T3SS and the translocators. T3SS is encoded by genes located on the 

locus for enterocyte effacement (LEE), and composed of ~20 proteins that form the basal body, 

extracellular appendages, and cytoplasmic components. T3SS spans the inner and outer bacterial 

membranes to deliver EPEC effector proteins into the host cells.  The basal body of the TTSS (EscC 

and EscV, and the EscJ) spans the periplasm forming a cylindrical structure. EscF constitutes a 

short needle structure that is extended by a long filament formed by EspA subunits. EspA filament 

to form a hollow tube and at the end of EspA the translocator proteins EspB and EspD are placed 

to form the pore in the host cell plasma membrane. T3SS is energized by the cytoplasmic ATPase 

EscN that provide the energy to the system by hydrolysing ATP into ADP. SepD and SepL regulate 

the secreting of the effector proteins. Adapted from (Soto et al., 2017). 
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The basal structure of the T3SS export apparatus consists of five essential 

transmembrane proteins (EscR, EscS, EscT, EscU, and EscV) (Figure 3). These 

proteins form the integral inner membrane proteins (Gauthier et al., 2003). EscF is a 

needle protein that is required for T3SS secretion and EspA filament assembly (Wilson 

et al., 2001). EspA (Kenny et al., 1996), EspB and EspD (Donnenberg et al., 1993) 

function to form the translocon portions of the T3SS (Figure 3). EspA is a filamentous 

protein that forms a translocation tube linking the EscF needle to the host cell’s 

membrane (Knutton et al., 1998). These structures act as a channel to translocate 

proteins from the bacteria into the host cells. EspB and EspD are located at the end of 

the EspA filament (Figure 3) where they insert and form a pore into the host cell 

membrane (Frankel et al., 1998). In EPEC, EscN is T3SS ATPase, which is essential 

for the functioning of the T3SS translocator and a potential source of energy for T3SS 

proteins secretion (Zarivach et al., 2007). EscN forms a complex with two other 

essential T3SS proteins EscL/Orf5 (putative ATPase-negative regulator) and 

EscQ/SepQ (a predicted component of cytoplasmic C ring) (Biemans-Oldehinkel et al., 

2011). Orf16/EscP, a T3SS-secreted substrate, acts as a molecular measuring device 

that regulates the needle length and the secretion of the inner rod component EscI 

(Monjarás Feria et al., 2012). In addition, the secretion of both translocators and 

effectors are controlled by SepL (gatekeeper). SepL functions, together with SepD, to 

regulate the secretion hierarchy between translocators and effectors (Deng et al., 

2015). The stability and secretion of some LEE encoded T3SS proteins are mediated 

by LEE encoded chaperones. The LEE have genes encoding the translocator 

chaperones CesA, CesD and CesD2 (Creasey et al., 2003b) and the needle protein 

EscF chaperone EscE and EscG (Sal-Man et al., 2013). The T3SS must traverse both 

bacterial membranes and the peptidoglycan layer. This requires a dedicated 

peptidoglycan lytic enzyme, EtgA, to locally degrade peptidoglycan. EtgA also interacts 

with the T3SS inner rod component, EscI, and this interaction enhances PG-lytic 

activity of EtgA (Burkinshaw et al., 2015). 

 

1.4  EPEC LEE and non-LEE effector proteins  

Enteropathogenic Escherichia coli (EPEC) prototypic strain E2348/69 encodes at least 

21 putative effector proteins (Dean & Kenny, 2009, Iguchi et al., 2009). Seven effector 

proteins are LEE encoded (Tir, EspZ, EspF, Map, EspH, EspG, and the EspB 
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translocator protein), with other effector proteins encoded outside the LEE region, in 

prophages located elsewhere on the chromosome, and termed non-LEE encoded 

(Nle) effector proteins (Iguchi et al., 2009). 

1.5 EPEC LEE effector proteins 

1.5.1 Translocated intimin receptor (Tir) 

Tir is the first effector protein translocated into host cells via the T3SS where act as a 

receptor for outer bacterial membrane protein, Intimin (Kenny et al., 1997b, Mills et al., 

2008). Tir, a 550-amino-acid-protein, has a predicted molecular mass of 56.8kD but 

has an SDS/PAGE gel mobility of 78kD (Kenny et al., 1997b). Upon translocation to 

the host cells, Tir adopts a hairpin-loop conformation with two transmembrane domains 

(residues 234–259 and 353–382) (TMDs), resulting in a central extracellular domain 

(residues 260–352) containing the Intimin-binding domain (IBD) that serves as a 

binding site for Intimin with both N- (residues 1–233) and C-terminal (residues 383–

550) domains exposed to the cytoplasm (Figure 4) (Kenny et al., 1997b, de Grado et 

al., 1999, Kenny, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Interactions between the EPEC Intimin and Tir proteins. Intimin is localised in the 

bacterial outer membrane where the C-terminal fragment can bind Tir. Tir is inserted in the host 

plasma membrane with an extracellular intimin binding domain (IBD), that mediate intimin-Tir 

interaction, and the two N- and C-terminal regions are localised in the host cytoplasm. Adapted 

from (Luo et al., 2000). 
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1.5.1.1 Tir features and domains 

Tir facilitates different functions according to its domains. The N-terminal 233 amino 

acid of Tir interacts with numerous host proteins such as α-actinin, talin, and vinculin 

(Freeman et al., 2000). Recruitment of these proteins to the N-terminal of Tir might 

stabilise pedestal formation, influences pedestal length and thus binding of A/E 

pathogens to the host cytoskeleton (Campellone et al., 2006). The N-terminal region 

is also required for efficient delivery, with 26 amino acids containing a T3SS signal 

sequence and the first 100 amino-terminal residues of Tir function as a CesT-binding 

sequence that aids sufficient Tir delivery into the host cells (Crawford & Kaper, 2002). 

In addition, the N-terminal also possesses a polyproline region (PPR) that is essential 

for Tir’s subversive activities - recruits host tyrosine kinases to modify Tir residues and 

pedestal formation (Bommarius et al., 2007). By contrast, the carboxy terminus of Tir 

is targeted by host kinase-mediated phosphorylation events at defined serine and 

tyrosine residues including S434, S463, Y474, Y454, Y511 and Y483 (Figure 5) 

(Phillips et al., 2004); while the extracellular domain interacts with Intimin, which 

mediates intimate bacterial attachment, via binding Tir, to the host cells and production 

of actin-rich pedestals (Kenny, 1999). 

 

 

 

 

 

 

Figure 5: Schematic of EPEC translocated Intimin receptor Tir protein. Tir is 550aa protein with 

three domains. The N-terminal domain (1-233aa) by which Tir bind to the host proteins such as α-

actinin, talin, vinculin and cortactin. The N-terminal also possess a CesT binding sequence and 

Polyproline motif. The C-terminal domains (385-550aa) compromises residues linked to EPEC Tir’s 

subversive activities (S434, S463, Y454, Y474, arginine finger motif (518-521aa) and ITIM like motifs 

(Y483 and Y511), while the area between them (254-363aa) is critical for Tir interaction with intimin. 

Adapted from (Dean & Kenny, 2009).  
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1.5.1.2 Tir phosphorylation and pedestal formation 

Following its delivery into the host cells, Tir acts as a substrate for host kinases, 

including protein kinase A (PKA), which phosphorylate Tir on two serine residues S434 

and S463 (Warawa & Kenny, 2001). This phosphorylation is linked to a conformational 

change in the Tir structure, which may promote insertion of Tir into the host plasma 

membrane, consequently causing an increase in Tir molecular mass by 5kD to the 

partially modified form (T’), which can be detected in the cytoplasm, followed by the 

second modification of a 2kD increase to the fully modified form (T”), which can be 

detected in the membrane on SDS-PA gels (Kenny & Warawa, 2001). Once Tir-serine 

residues (S434 and S463) are phosphorylated, Tir undergoes a tyrosine 

phosphorylation event on tyrosine residues Y474, which, while not correlating with any 

apparent increase in molecular mass, is critical for pedestal formation (Kenny, 1999). 

This phosphorylation is mediated by host tyrosine kinases (Fyn of the Src family 

member and Tec/Abl-family kinases) with sufficient role for Abl-family tyrosine kinases 

Abl1 and Abl2 (Figure 6) (Phillips et al., 2004, Swimm et al., 2004). Tyrosine 

phosphorylation of Tir on Y474 residue is essential for generating a binding site for the 

SH2 domain of the adapter protein Nck and other adapter proteins such as Grb2 and 

CrkII (Lai et al., 2013). This interaction is sufficient to trigger localised actin assembly 

by binding to the proline motifs of N-WASP (Wiskott Aldrich syndrome protein family 

members) and stimulating N-WASP to interact with actin-related protein (Arp2/3) and 

stimulate actin nucleation beneath attached bacteria (Figure 6) (Lai et al., 2013, 

Campellone et al., 2002, Rohatgi et al., 2001, Gruenheid et al., 2001). 

 

However,  in addition to Y474 (Kenny, 1999), Tir is also phosphorylated on residue 

Y454, although at lower efficiency, and induces pedestal formation in a Nck-

independent manner (Frankel & Phillips, 2008). Phosphorylation of Tir on 454 residue 

recruits phosphatidylinositol 3-kinase (PI3K) and prompts the transient accumulation 

of PI(3,4,5)P(3) below adherent EPEC (Sason et al., 2009). Phosphoinositides (PIs) 

are present in the the plasma membrane to modulate the activity of proteins involved 

in EPEC infection. They are required for EPEC adherence to the host cell surface and 

for the construction of the actin pedestal, and may influence host cell death during 

EPEC infection (Sason et al., 2009). Interestingly, during in vitro organ cultures (IVOC) 

EPEC infection, neither EPEC Tir tyrosine phosphorylation nor Tir:Nck signalling 

complexes are necessary for A/E lesion formation and N-WASP recruitment (Schuller 

et al., 2007). 
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Tir also, within its C-terminal, encompasses two other tyrosine residues Y483 and 

Y511, which share sequence similarity with cellular immune-receptor tyrosine-based 

inhibition motifs (ITIM). Tir is phosphorylated within the ITIM motif, and recruits protein 

tyrosine phosphatases (SHPs) and subsequently regulates pedestal formation and 

inhibits immune responses (Yan et al., 2013, Smith et al., 2010). In addition, Tir also 

possesses a polyproline region (PPR) in its N-terminal that interact with SH3 domains 

of the kinases. This interaction is essential for pedestal formation. Phosphorylation of 

Tir on Y474 residue by tyrosine kinases leads to the additional recruitment of kinases 

by both PPR–SH3 and Y474–SH2 interactions; consequently, other Tir will be 

phosphorylated, as well as formation of actin pedestals (Bommarius et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Actin accumulation mechanism in EPEC. In EPEC, actin accumulation and pedestal 

formation can be either Nck dependent (tyrosine phosphorylation of Tir-Y474) or independent 

(tyrosine phosphorylation of Tir-Y454). Tyrosine phosphorylation of Tir (Y474 or Y454) within its C-

terminal by host kinases lead or not to recruit the adaptor protein Nck that activates N-WASP, which 

initiates actin polymerisation mediated by the Arp2/3 complex. Taken from (Campellone et al., 2006). 
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1.5.1.3 Tir–Intimin dependent and independent function  

Initially, Tir was believed to function only in an intimin-dependent manner, acting as a 

receptor for Intimin. Following its delivery into the host plasma membrane (Tir–intimin 

interaction), Tir triggers downstream signalling events leading to the formation of actin-

rich pedestals beneath the adherent bacteria in a Tir tyrosine phosphorylation 

dependent manner (Kenny et al., 1997b). Tir–Intimin interaction also aids bacterial 

sinking into the brush border, causing microvilli effacement and inactivation of sodium 

glucose co-transporter SGLT-1, which leads to the severe watery diarrhoea during 

EPEC infection (Kenny et al., 1997b, Dean et al., 2006). 

 

However, recent studies have illustrated the Tir independent functions of Intimin. Tir 

inhibits nuclear factor kappa B (NF-kB) activation, leading to a decreased expression 

of antimicrobial and inflammatory molecules (Ruchaud-Sparagano et al., 2011). 

Moreover, during EPEC infection, EspG/EspG2 promotes calpain activity whose 

function is to induce host cell detachment and cleavage of the host proteins. This 

function is regulated by Tir (Dean et al., 2010a). While Tir downregulates filopodia 

formation triggered by Mitochondrial associated protein (Map), both effector proteins 

stimulate invasion by synergistic mechanisms (Lai et al., 2013, Jepson et al., 2003). 

Down-regulating filopodia formation requires phosphorylation of a Tir tyrosine (Y474) 

residue and sequestering N-WASP from the Cdc42-GTP pathway by Nck (Tomasevic 

et al., 2007). Simultaneously, Tir also possesses a putative arginine finger motif, found 

in GTPase-activating proteins (GAPs), in its C-terminal domain; disrupting this motif 

impairs the ability of Tir to downregulate filopodia (Kenny et al., 2002b). 

 

 

1.5.2 EspZ  

EPEC secreted/signalling protein Z (EspZ) is a small (9kDa) protein consisting of 98 

amino acids and detected at high levels at an early post-infection time point 

comparable to the transmembrane intimin receptor (Tir) (Mills et al., 2008). EspZ is 

translocated by T3SS and predicted to be integrated in a hairpin-loop topology into the 

host cell plasma membrane (Figure 7) with two transmembrane domains and an 

extracellular loop responsible for EspZ activities (Kanack et al., 2005). EspZ localises 

to the pedestal-like structures induced by EPEC and to the mitochondria (Smith et al., 

2010, Kanack et al., 2005) and functions as a pro-survival effector to prevent rapid 
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death of cells during EPEC infection. The N-terminal consists of a translocation signal 

(20 amino acids) (Kanack et al., 2005), while an extracellular loop 10-amino-acid (from 

65 to 74) is critical for EspZ specific activities (Berger et al., 2012). Comparison of EspZ 

sequences from 12 different A/E pathogen strains revealed that EspZ is a 

hypervariable protein, particularly among the extracellular loop 10-amino-acid (Kanack 

et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.3 EspF  

EPEC secreted/signalling protein F (EspF) is a 206-amino-acid-protein with several 

distinct functional domains (Figure 8) (Zhao et al., 2013). The N-terminal region 

(residues 1 to 20) is sufficient for EspF secretion and translocation into host cells. EspF 

N-terminal also possess a mitochondria targeting sequence (MTS; residues 13 to 17) 

by which EspF targets mitochondria, causing mitochondrial dysfunction and cell death 

(Nagai et al., 2005). In addition, EspF also targets the nucleolus by the nucleolar 

targeting sequence (residues 21 to 74), leading to the disruption of nucleolar factors 

(Dean et al., 2010b). By contrast, the C-terminal region of EspF (residue 74 to 206) 

(Figure 8) comprises the 3 proline-rich repeat (PRR) domains of 47 amino acids (Alto 

et al., 2007) by which EspF interacts with several host proteins including N-WASP and 

Figure 7: The topology of EPEC EspZ. EspZ integrates into the host cells membrane in the hairpin 

like structure with two transmembrane domains. The N and C termini of EspZ face the cytosolic leaflet 

of the plasma membrane and an extracellular domain plays an important role in the EspZ activity. 

Adapted from (Berger et al., 2012). 
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sorting nexin 9 (SNX9) to induce actin polymerization and membrane remodelling in 

the host cells (Alto et al., 2007). EspF plays an important role during EPEC infection, 

with several cellular processes linked to diarrhoea-related symptoms ascribed to the 

EspF. EspF downregulates sodium hydrogen exchanger 3 (NHE) activity, by which it 

contributes to diarrhoea (Hodges et al., 2008). Other cellular processes are also 

attributed to EspF, including prevention of bacterial uptake into macrophages by 

inhibiting PI-3 kinase, disruption of tight junctions (TJ), disruption of water reabsorption, 

microvilli effacement and elongation around the bacteria (Quitard et al., 2006, Elliott et 

al., 2002, Dean et al., 2006). 

 

 

 

1.5.4 Map 

Mitochondrial associated protein (Map) is a 203 amino acid protein with an N-terminal 

(44 residues) that encodes a mitochondrial-targeting sequence (Figure 9) by which 

Map targets a host mitochondria, leading to mitochondrial dysfunction (Kenny & 

Jepson, 2000, Papatheodorou et al., 2006). Map is a guanine nucleotide exchange 

factor (GEF) that possess WxxxE motif (74-78) at its N-terminal. This motif activates 

host Rho GTPase Cdc42 (cell division cycle 42) at the cell membrane, leading to the 

localised formation of filopodia during the early stages of EPEC infection (Wong et al., 

2012a). Filopodia structures are short-lived (retraction is Tir dependent) and have only 

Figure 8: Schematic of EPEC translocated effector protein (EspF). EspF is 206 amino acid 

protein with an N-terminal encodes a mitochondrial-targeting sequence and possess three proline-

rich repeat (PRR) domains of 47 amino acids within its C-terminal, that facilitate EspF interaction 

with several host proteins including N-WASP and sorting nexin 9 (SNX9). Taken from (Dean & 

Kenny, 2009). 
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been identified on cultured human cell lines, thus, the requirement of filopodia 

formation during infection is unknown (Kenny et al., 2002, Berger et al., 2009). In 

contrast, Map, at the carboxy-terminal, has a classical PDZ1-binding motif (TRL) 

(Figure 9) that interacts with ezrin/radixin/moesin (ERM)-binding phosphoprotein 50 

(EBP50), also known as scaffold protein sodium/hydrogen exchanger regulatory 

factor-1 (NHERF1), and this leads to stabilisation of filopodia. Moreover, Map also 

possesses a mitochondrial toxicity region at its C-terminal (residues 101–152) 

(Papatheodorou et al., 2006). Map also contributes to the maintenance of EPEC 

colonisation (Nguyen et al., 2015) and disrupts intestinal tight junctions, leading to the 

onset of diarrhoea (Singh & Aijaz, 2015). 

 

  

1.5.5 EspH 

EPEC secreted/signalling protein H (EspH) is a small protein of 20kDa that is delivered 

by the T3SS to localise at the host cell membrane (Tu et al., 2003). EspH functions as 

a RhoGEF inhibitor by binding to the DH-PH domain in RhoGEFs, leading to 

inactivation of mammalian RhoGEFs, and subsequently inducing changes in cell 

morphology, triggering cell detachment and inducing cytotoxicity (Wong et al., 2012a, 

Dong et al., 2010). However, bacteria replaced a mammalian RhoGEFs with a bacterial 

mimic mammalian RhoGEFs (Map), and translocating bacterial RhoGEFs (Map) to the 

host cells leads to neutralisation of EspH associated phenotypes, which induces cell 

adhesion and survival (Wong et al., 2012a). EspH also plays a critical role in EPEC 

Figure 9: Schematic of mitochondrial associated protein (Map). Map is 203 amino acid protein 

with an N-terminal encodes a mitochondrial-targeting sequence and possess WxxxE motif (74-78) 

that activate host The Rho GTPase Cdc42. While its C-terminal possess has a classical PDZ1-

binding motif to facilitate its interaction with ezrin and a regulatory factor-1 (NHERF1). Taken from 

(Dean & Kenny, 2009). 
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resisting macrophage phagocytosis by its ability to bind and inhibit DH-PH domain-

containing Rho GEFs (Dong et al., 2010). EspH plays a critical role for efficient 

pedestal formation and pedestal elongation. It promotes N-WASP recruitment and 

Arp2/3 to the bacterial attachment site in Tir tyrosine residues Y474 and Y454 

independent manner (Wong et al., 2012a). Whereas deletion of EspH leads to a short 

pedestal and improved filopodia formation, over-expression of EspH leads to pedestal 

elongation (Tu et al., 2003). 

 

1.5.6 EspG 

EPEC secreted/signalling protein G (EspG), previously named rorf2, is a 398-amino-

acid protein that is secreted and translocated via T3SS into the host cells (Elliott et al., 

2001). It is encoded in the LEE region while its homologous Orf3 (EspG2) is encoded 

on the EspC pathogenicity islet. EspG shows 21% identity of amino acids with the 

Shigella flexneri effector VirA, which has been shown to trigger the destabilization of 

host microtubule (Elliott et al., 2001). EspG interacts with tubulins and stimulates 

microtubule destabilization, consequently leading to activation of microtubule-bound 

GEF-H1 (RhoA-specific guanine nucleotide exchange factor), resulting in the formation 

of actin stress fibres (Matsuzawa et al., 2004). Recently, it was reported to act as a 

scaffolding protein and a regulator of GTPase signalling (Selyunin et al., 2011). EspG 

interacts with master regulators of membrane trafficking (ARF and RAB1), leading to 

inactivation of ARF GTPase and disruption of endoplasmic reticulum to Golgi trafficking 

(Selyunin et al., 2014). 

 

 

1.6 Intimin 

An outer bacterial membrane protein, Intimin is expressed on the EPEC cell surface, 

but not delivered by bacterial T3SS, to form a major adhesin of enteropathogenic 

Escherichia coli (EPEC). It is a 94kDa protein (939 amino acids) encoded by the eae 

gene located in the LEE pathogenicity island (Frankel et al., 1998b). Intimin possesses 

two functional regions, with the N-terminal region (residues 1–550) containing a signal 

peptide region that is responsible for its secretion to the bacterial surface and 

mediating its binding to the peptidoglycan (Leo et al., 2015, McWilliams & Torres, 

2014). In contrast, Intimin uses the 280 amino acids of the C-terminal domain (Int280α) 

to mediate an intimate interaction with translocated intimin receptor (Tir) (Figure 10) 
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(Fairman et al., 2012). Int280α comprises four globular domains (D1, D2, D3 and D4) 

extending from the bacterium with two immunoglobulin-like domains and a C-type 

lectin-like domain responsible for cell-surface carbohydrate recognition and Tir-

independent cell binding (Kelly et al., 1999, Hartland et al., 1999). Additionally, Intimin–

Tir interaction is required for intimate interaction to the infected host cells and pedestal 

formation in a Tir tyrosine phosphorylation dependent manner, as well as for triggering 

tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) (Kenny & 

Finlay, 1997). Moreover, Intimin also has additional host cell receptors, including β1 

integrin and nucleolin (Frankel et al., 1996, Sinclair et al., 2006). Interaction of Intimin 

with these receptors (β1 integrin and nucleolin) may help Intimin to control the barrier-

disrupting activities of Map and EspF independently of Tir (Dean & Kenny, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The model of Intimin topology and binding to Tir. The Intimin extracellular carboxy-

terminal domain (Int280α) comprises three immunoglobulin domains (D1, D2 and D3) with a terminal 

C-type lectin cell-binding domain (D4). Intimin binds the extracellular Intimin binding domain of Tir 

(IBA). Taken from (Frankel et al., 2001). 
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1.7 Non-LEE encoded effectors 

Non-LEE effector proteins (NLe) are encoded by genes located outside the LEE 

region, in prophages and integrative elements, and clustered in six pathogenicity 

islands (PP2, PP4, PP6, IE2, IE5 and IE6) (Figure 11) (Creuzburg & Schmidt, 2007). 

In EPEC (strain E2348/69) around 24 non-LEE putative effectors were identified and 

translocated by the LEE encoded T3SS (Dean & Kenny, 2009, Iguchi et al., 2009, 

Deng et al., 2004b). The non-LEE effector proteins function to inhibit phagocytosis and 

activate the innate immune response, and some effectors play a role in colonisation 

and virulence (Wong et al., 2011). During infection, EPEC translocates the non-LEE 

protein, NleB, into the host cells to activate the transcriptional regulator NF-kappaB 

(NF-κB). In contrast, NleC, NleH1/NleH2, NleE and NleA inhibit the activation of NF-

κB (Kim et al., 2007, Yen et al., 2015). While EspJ is reported to inhibit phagocytosis, 

NleB and LifA promote bacterial colonisation of the host cells and NleD promotes 

barrier disruption and loss of barrier function (Pearson et al., 2013, Marches et al., 

2008, Long et al., 2014). Recently, EspL has been proven to inhibit cell death and 

inflammation (Pearson et al., 2017). 
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1.8  EPEC chaperones 

Most T3SS substrates rely on chaperones to aid their stability and/or efficient secretion 

and translocation (Thomas et al., 2005). The type III chaperones are usually small (15-

20kDa), acidic and remain within the bacterial cytoplasm even after trafficking a paired 

protein into an infected host cell (Ramu, 2013). They are grouped into class I (bind 

effectors), class II (bind translocators) or class III (bind needle-forming) proteins. Class 

I is subdivided, on the basis of the number of effectors that the chaperone binds, into 

Figure 11: The EPEC non-LEE effectors encoded in the prophages and integrative elements. 24 

non-LEE predicted effector genes were identified and clustered in six pathogenicity islands (PP2, PP4, 

PP6, IE2, IE5 and IE6). Arrows refer to the genes and strand direction, while different colours refer to  

housekeeping genes (purple), effector genes (blue), virulence genes (green), hypothetical genes 

(orang), prophage-like transposase genes (red) and pseudogenes (gray). Taken from (Dean & Kenny, 

2009) 
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class IA (binds one effector) and class IB (binds multiple effectors). EPEC LEE 

encodes eight different chaperones, CesF, CesL, CesT, CesAB, CesD, CesD2, EscE, 

and EscG/CesA2. EPEC has a class IA (CesF for EspF) and class IB (CesT for >10 

effector proteins) with several class II chaperones (CesB/D and CesAB that both aid 

EspB secretion) and class III chaperones (EscE, and EscG) (Ramu et al., 2013, 

Wainwright & Kaper, 1998, Creasey et al., 2003b, Sal-Man et al., 2013). 

 

CesT, with 156 amino acids, is a multi-cargo class IB chaperone that interacts with 

more than 10 LEE and non-LEE effectors including Tir, Map, EspH, and EspZ (Thomas 

et al., 2005). The N-terminal of CesT is implicated in chaperone dimerization, whereas 

the C-terminal region of CesT is important for CesT dependent effector translocation 

into host cells (Ramu et al., 2013). CesF is a class IA chaperone that interacts with 

EspF to aid EspF stability and translocation into the host cells (Elliott et al., 2002). 

Crucially, CeL, (previously named Orf12/ multiple point controller “Mpc”) a 117-amino-

acid EPEC LEE encoded protein, is classified as a class IA chaperone for an aberrant 

effector SepL (Younis et al., 2010). CesL also interacts with Ler (regulator of LEE gene 

expression), with over-expression of CesL leads to modulation of Ler activation activity 

(Tsai et al., 2006). 

 

EPEC class II chaperones are composed of three chaperones, CesD, CesD2 and 

CesAB. CesD, a 17.5-kDa protein, functions as a chaperone for the EPEC 

translocators, EspD and EspB. CesD interacts with EspD, but not with EspB, and is 

required for sufficient EspD secretion (Wainwright & Kaper, 1998). CesD2 is another 

EspD chaperone that also interacts with EspD and aids its stability and secretion 

(Neves et al., 2003). By contrast, EspA has two chaperones CesAB and CesA2 

(formerly Orf29, renamed EscG in EPEC) that prevent premature oligomerization of 

EspA and assist in its stabilisation in the cytoplasm (Creasey et al., 2003b, Su et al., 

2008). Finally, EscE and EscG/CesA2, an EPEC class III chaperone, function as 

chaperones for the needle protein, EscF. EscE and EscG chaperones interact with 

EscF and prevent premature polymerization of the needle (Sal-Man et al., 2013). 
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1.9  EPEC proteins secretion and regulation 

The EPEC LEE and non-LEE encoded proteins are secreted and translocated into host 

cells, with Tir being the first effector to be translocated, followed by EspZ, NleA, NleH1, 

EspF, EspH, NleH2, EspJ, Map, EspG, NleD, NleF, NleB1, NleE1, NleB2, NleC, NleG, 

NleE2, EspG2, and EspL2 (Mills et al., 2013). The EPEC proteins secretion is induced 

in response to many environmental conditions, with 37 °C an optimal temperature, and 

other factors such as pH, osmolarity, calcium, iron and salt concentrations also critical 

(Kenny et al., 1997a). The EPEC proteins are also hierarchically secreted via different 

mechanisms, which is important for effectors’ function stages (Mills et al., 2013, Deng 

et al., 2017). 

 

1.9.1 Hierarchical control of EPEC proteins secretion 

The hierarchical secretion of EPEC proteins is regulated by two T3SS specificity-

switching mechanisms that are known as molecular switches (Deane et al., 2010). 

Molecular switch one, from the needle to the translocators, starts when the needle 

reaches its proper length, which is regulated by EscP and EscU (Monjaras Feria et al., 

2012). Once the needle has reached the final length, EscP interacts with the C-terminal 

domain of EscU, leading to a conformational change that regulates the switching event 

from needle to the translocators (Monjaras Feria et al., 2012). Recently, EscP has been 

shown to interact with the gatekeeper protein SepL to generate EscP-SepL complex 

(Shaulov et al., 2017). Once bacterial contact with the host cells is made and calcium 

concentration was dropped, EscP-SepL complex is dissociated, triggering the 

secretion of effector proteins (Shaulov et al., 2017). 

 

The second molecular switch from the translocators to the effectors is regulated by a 

family of proteins known as gatekeepers (SepL and SepD), which prevent effector 

secretion before host cell contact. SepL interacts with SepD, and deletion of either 

SepL or SepD results in decreased secretion of the translocators and enhanced 

secretion of effectors (Deng et al., 2015). SepL is thought to interact with EscV, 

resulting in blocking of the access of effectors to the secretion apparatus (Lee et al., 

2014). However, this interaction might be disrupted by low calcium concentration, 

leading to an increase in translocators’ secretion (Lee et al., 2014). In addition, the 

SepL-SepD complex also interacts with a SepL chaperone (CesL) and regulates the 

secretion hierarchy in response to pH changes (Yu et al., 2010). Once pores are 

formed in the host cell membrane, pH is increased and transmitted to the T3SS base, 
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resulting in disrupted SepL/SepD/CesL interaction and consequently allowing 

secretion of effectors (Yu et al., 2010). Furthermore, SepL binds to the effector protein 

Tir and delays its secretion while the translocators are secreted (Wang et al., 2008). 

Recently, SepD and SepL have been shown to regulate secretion hierarchy between 

translocators and effectors by recognising EspB (translocator) export signals (Deng et 

al., 2015). 

 

1.9.2 Substrate–chaperone binding regulates T3SS secretion 

Each effector protein has a chaperone recognition site (50–100 amino acids) and a 

secretion signal sequence located in the N-terminal (first 20 amino acids), and together 

these are necessary and sufficient for targeting effector proteins to the T3SS sorting 

platform and may also contribute to secretion hierarchy (Deng et al., 2015). CesT 

targets effectors to the T3SS by interacting with a component of the T3SS sorting 

platform, ATPase EscN, and is implicated in coordinating hierarchical effector 

secretion (Thomas et al., 2007, Gauthier & Finlay, 2003). CesAB, the EPEC EspA 

chaperone, interacts with the EscN ATPase following CesAB-EspA binding. 

Interestingly, prevention of the interaction between EscN and the CesAB-EspA 

complex resulted in severe secretion (Chen et al., 2013). 

 

  

1.10 Bacterial protein pore-forming and insertion 

Pathogenic bacteria have evolved proteins that can undergo transitions from soluble 

to membrane-inserted forms (Pedelacq et al., 1999). Pore-forming proteins (PFPs) are 

produced in a soluble monomeric form that can assemble into oligomeric complexes 

with the capacity to insert into membranes (Iacovache et al., 2010). The PFT families 

are either multi domain or multi subunit proteins and called AB toxins, where the B 

subunit is responsible for binding to the host cells and forming transmembrane pores 

to translocate the A subunit into the cytoplasm to the target organelle (Reig & van der 

Goot, 2006). PFTs form transmembrane pores via insertion of a generated 

transmembrane β-barrel (β-PFTs) or by inserting a bundle of hydrophobic or 

amphipathic α-helices of PFTs into the membrane (Peraro & van der Goot, 2016, 

Parker & Feil, 2005). PFTs bind to specific receptors (sugars, lipids or proteins) on the 

target cell, leading to an increase in the local concentration and oligomerization of 

PFTs. Thus, exposure of hydrophobic surfaces leads to membrane insertion. In 
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addition, charged bacterial membranes and acidic residues with low pH promote the 

membrane insertion by making some PFTs more hydrophobic, unfolding or inducing a 

conformational change (Peraro & van der Goot, 2016, Parker & Feil, 2005). 

The pore-forming colicins, a class of antibiotics produced by various strains of E. coli 

(Lakey & Slatin, 2001),  consist of a hydrophobic helical hairpin that initiates insertion 

into the lipid bilayer in the colicin umbrella-like model (Figure 12), in which this helical 

hairpin pair leads insertion of the toxin into target membranes followed by spontaneous 

insertion of the entire hairpin (Parker et al.). In contrast, the diphtheria pore-forming 

protein insertion mechanism is dependent on a conformational change triggered by a 

low pH and accompanied by increasing hydrophobicity of the toxin and the ability to 

form ion channels, reviewed in (Peraro & van der Goot, 2016) 

In addition, EPEC translocator protein EspD, Salmonella SipB and IpaB from Shigella 

(Hume et al., 2003, Dasanayake et al., 2011) share approximately the same features 

and insertion mechanism. These proteins contain the amphipathic domains spanning 

residues that are critical for binding to membrane lipid bilayers in pH dependet manner. 

Low pH leads to a conformational change correlated with increasing the α-helix content 

of this protein and promoting insertion into the hydrophobic core of the lipid bilayer. In 

addition, phosphatidylserine is also critical for the incorporation of the E. coli bacterial 

receptor protein Tir (Race et al., 2006) and a Pseudomonas aruginosa, PopD (Faudry 

et al., 2006) into the host cell membrane. However, while SipB, a virulence factor from 

Salmonella, inserts into the membrane and penetrates through the outer leaflet of 

membranes to translocate a 50-residue hydrophilic domain across the bilayer, Tir 

interacts and penetrates through the inner leaflet of the plasma membrane (Race et 

al., 2006). 

 

 

 

 

 

Figure 12: The pore-forming mechanism. (a) The protein form a helical hairpin pair. (b) Followed 

by umbrella conformation with spontaneous insertion. (c) Formation of the channel. Taken from 

(Parker & Feil, 2005). 



Chapter 1 Introduction 

23 
  

1.11 Manipulation of host cell functions by EPEC effector proteins 

1.11.1 EPEC effector proteins induce watery diarrhoea 

EPEC infection is correlated with severe watery diarrhoea, particularly in under-

developed countries (Dutta et al., 2013, Levine & Edelman, 1984). Although the 

mechanism by which EPEC causes watery diarrhoea is unclear, EPEC disrupts 

enterocyte cellular and barrier functions with alteration in ion transport (Figure 13). 

 

 

 

 

 

 

 

 

 

EPEC induced diarrhoea is dependent on the effacement of absorptive microvilli and 

reduction in the absorptive capacity of enterocytes (Hodges & Gill, 2010). This requires 

bacterial adherence to the brush border membrane with cooperative actions of three 

LEE encoded effectors (Map, EspF & Tir) and the outer membrane protein Intimin 

(Dean et al., 2006). EPEC has been shown to rapidly inactivate sodium-D-glucose 

transporter (SGLT-1), which is responsible for fluid uptake from the normal small 

intestine, in a T3SS dependent manner with a critical role for Map, EspF, Tir effectors, 

and Intimin (Figure 13) (Dean et al., 2006, Meinild et al., 1998). Since water moves to 

high salt concentration areas, changes in ion absorption or secretion leads to diarrhoea 

(Hodges & Gill, 2010). EPEC infection alters the activity of intestinal absorption via Na 

Figure 13: EPEC alters ion transport and induce watery diarrhoea. EPEC infection induced 

diarrhoea via different mechanisms and all depend on T3SS effectors. EPEC induce rapid 

Na+/glucose (SGLT1) inactivation in pathway dependent on a loss of microvilli, a process that is 

dependent on Map, EspF, Tir effector proteins and Intimin. EPEC infection also inhibits Na+/H+ 

exchangers (NHEs), a process dependent on EspF effector protein. In addition, EPEC altars the Na+ 

uptake and Cl− secretion by injecting effector proteins EspG and EspG2. These effectors disrupt 

microtubules, preventing protein trafficking, thus reducing DRA expression at the membrane. Taken 

from (Viswanathan et al., 2009). 
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(+)/H (+) exchanger (NHE), resulting in the inhibition of the uptake of sodium ions (Na+) 

from the gut lumen with an alteration in the Cl− secretion (Hodges et al., 2008). 

Crucially, EPEC EspF effector protein is shown to be responsible for induced inhibition 

of NHE activity (Figure 13) (Hodges et al., 2008). Parallel to EPEC mediated inhibition 

of NHE3, EPEC also mediates a decrease in the expression of major apical anion 

exchanger DRA (SLC26A3), resulting in inhibition of the Cl(-)/OH(-) exchange activity 

(Gill et al., 2007). This EPEC effect is attributed to the T3SS dependent effector 

proteins EspG and EspG2 (Figure 13) (Gill et al., 2007). 

Tight junctions are formed between adjacent enterocytes to hinder the movement of 

membrane components (Hartsock & Nelson, 2008). However, disruption of the tight 

junction influences diarrhoea through unregulated movement of ions, fluids and 

antigens between cells (Abreu, 2010). The ability of EPEC to disrupt the tight junction 

barrier is dependent on the T3SS and the translocated effector proteins EspF, Map 

and NleA (Thanabalasuriar et al., 2010, Shifflett et al., 2005). While EspF is responsible 

for redistributing the transmembrane protein, occludin, NleA inhibits the host cell 

protein trafficking (Thanabalasuriar et al., 2010, Shifflett et al., 2005).  

 

1.11.2  EPEC effectors regulate host cell survival 

Programmed cell death occurs either as a normal mechanism to maintain cell 

populations in tissues or as a defence mechanism during infection (Fink & Cookson, 

2005). The programed cell death results from stimulation of specific signalling 

pathways, and can be divided into lytic (necrosis and pyroptosis) and non-

lytic (Apoptosis) cell death (Jorgensen et al., 2017).  

 

The apoptotic, non-lytic cell death, is induced via extrinsic or intrinsic pathways (Rudel 

et al., 2010), and characterised by cell shrinkage, membrane blebbing or nuclear 

condensation (Figure 14) (Lamkanfi & Dixit, 2010). Apoptosis can be balanced by 

effector(s) with anti-apoptotic activity that neutralise the effects of other, pro-apoptotic 

effectors, and promote cell survival, as reviewed in (Santos & Finlay, 2015). Indeed, 

EPEC infection is not correlated with a late apoptotic phenotype, suggesting it has the 

ability to antagonize host apoptosis during infection (Crane et al., 2001). The ability of 

EPEC to interfere with host apoptotic pathways depends on the T3SS apparatus to 

deliver effector proteins into host cells. Some of these effector proteins promote cell 
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death, while others inhibit cell death by suppressing either an extrinsic or an intrinsic 

apoptotic pathway (Rudel et al., 2010). EPEC, within its surface structure’s “bundle-

forming pili”, induces the extrinsic pathway of apoptosis by stimulating the 

transmembrane death receptors such as tumor necrosis factor (TNF), Fas ligand and 

TNF-related apoptosis-inducing ligand (TRAIL) (Abul-Milh et al., 2001, Peter & 

Krammer, 2003, Strasser et al., 2000). However, the non-LEE effector proteins NleD, 

NleB1 and NleB2 suppress extrinsic apoptosis (Baruch et al., 2011, Pearson et al., 

2013).  

 

 

 

 

In contrast, the intrinsic apoptotic pathway is triggered by intracellular stresses, leading 

to the permeabilization of the outer mitochondrial membrane (MOMP). The MOMP, 

which is formed by Bcl-2 family members Bak or Bax, leads to the release  of 

cytochrome c, activation of caspase-9, caspase-3 and subsequently cell death (Rudel 

et al., 2010). EPEC also trigger intrinsic apoptotic pathways via the EspF, Map and Cif 

effector proteins. EspF and Map effector proteins have a mitochondrial-targeting 

sequence through which both target a host mitochondrion and induce mitochondrial 

lysis, leading to cytochrome c release, caspase activation and intrinsic apoptosis 

(Nagai et al., 2005, Kenny & Jepson, 2000). While the cycle inhibitory factor (Cif) does 

not target the mitochondria, it induces cell cycle arrest and subsequently a delayed 

form of apoptosis in infected cells (Samba-Louaka et al., 2009). In addition, intrinsic 

Figure 14: Programmed Cell Death Modes. Programmed cell death can be either apoptosis, 

necrosis or pyroptosis. While apoptosis is characterised by the retention of plasma membrane 

integrity. In contrast, both necrosis and pyroptosis are characterised by the release of cytoplasmic 

content into the extracellular space. Apoptosis and pyroptosis are characteristic by nuclear 

condensation and DNA fragmentation, whereas the nuclei of necrotic cells swell along with other 

organelles. Taken from (Lamkanfi & Dixit, 2010). 
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apoptosis is also induced via a RhoGEF inhibitor, EspH (Wong et al., 2012b). Over-

expression of EspH activates the caspase-3 in the infected epithelial cells, which can 

be inhibited by bacterial RhoGEF mimics EspT and EspM2 (Wong et al., 2012b). 

 

The intrinsic pathway can be prevented via the anti-apoptotic activity of non-LEE 

effector proteins NleH1 and NleH2, which inhibit pro-caspase-3 cleavage at the 

bacterial attachment site (Hemrajani et al., 2010). Comparably, while the non-LEE 

effector protein, NleF, prevents both intrinsic and extrinsic apoptotic pathways by 

inhibiting caspases-4, -8 and -9  (Blasche et al., 2013), EspZ, an EPEC LEE effector 

protein, inhibits intrinsic apoptosis, promotes host survival and prevents rapid death of 

cells during EPEC infection (Shames et al., 2010). 

 

Pyroptosis is a lytic cell death mode that is characterized by cytoplasmic swelling, 

plasma membrane permeabilization and release of the intracellular components into 

the extracellular space (Figure 14) (Fink & Cookson, 2005).  Pyroptosis is initiated by 

caspase 1 or caspase 11, which are activated by inflammasomes (Lamkanfi & Dixit, 

2009, Martinon et al., 2002). The inflammasome consists of cytosolic sensors such as 

the nucleotide-binding oligomerization domain-like receptors, known as NOD-like 

receptors (NLRs), which detect cytosolic contamination by the T3SS needle, bacterial 

flagellin or toxin (Lamkanfi & Dixit, 2009). Once caspase 1 is activated, it cleaves pro-

interleuken-1β and IL-18 into their mature forms (Lamkanfi & Dixit, 2009) and also 

cleaves gasdermin D (Shi et al., 2015), a member of the enigmatic gasdermin protein 

family. The cleavage of gasdermin D releases the N-terminal domain which moves to 

plasma membrane and induces the formation of a membrane pore and pyroptosis (Qiu 

et al., 2017).  

 

Necrosis is another mode of cell death that results in a similar cellular morphology to 

pyropsis (Figure 14), including cell lysis which leads to the loss of intracellular contents 

into the extracellular space (Vanden Berghe et al., 2010). Bacterial infection leads to 

the stimulation of the serine/threonine kinase receptor interacting protein (RIP1 & 

RIP3) activities, which are required for tumor necrosis factor (TNF)-induced 

necroptosis. RIP1 kinase binds to death receptors such as TNF receptor 1 (TNFR1), 

Fas, and tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAILR1) 

(Schutze et al., 2008). It is also recruited to the Fas-associated death domain protein 

(FADD), resulting in the activation of calpain, an increase in reactive oxygen species 
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(ROS) production and lysosomal membrane permeabilization that thus induces 

necrosis(Hitomi et al., 2008, Declercq et al., 2009). 

 

1.11.3  EPEC effectors manipulate inflammatory signalling pathways 

Intestinal epithelial cells possess pattern recognition receptors (PRRs), including  toll-

like receptors (TLRs), that detect of bacterial stimuli on apical and basolateral surfaces 

of epithelial cells (Girardin et al., 2002, Peterson & Artis, 2014). This lead to activate 

inflammatory signalling pathways such as nuclear factor-κB (NF-κB) and mitogen-

activated protein kinase (MAPK) pathways, leading to regulation of the production of 

cytokines such as IL8, tumour necrosis factor-α (TNF-α) and mediation of host defence 

(Figure 15) (Peterson & Artis, 2014, Neurath et al., 1998).  

 

EPEC is able to manipulate host innate immune defences, prior to the disruption of 

barrier function, by the action of several T3SS-dependent secreted effector proteins. 

Tir is the first T3SS dependent effector translocated into host cells during EPEC 

infection and is implicated in the suppression of NF-κB activation (Ruchaud-Sparagano 

et al., 2011, Mills et al., 2008). Tir interacts with TNF receptor-associated factor (TRAF) 

and inhibits NF-κB activation (Ruchaud-Sparagano et al., 2011). Tir possesses ITIMs 

like motifs (Y483 and Y511) at its C-terminal region by which Tir recruits the regulatory 

protein tyrosine phosphatase SHP-2, enhancing their inhibitory associations with 

TRAF6, resulting in suppression of host cytokine production and prevention of 

downstream NF-κB activation (Figure 15) (Yan et al., 2013). In addition, while the non-

LEE effector proteins NleE and NleB prevent activation of IκB  kinase (IKKβ) and 

consequently the degradation of the NF-κB inhibitor, IκB (Nadler et al., 2010), NleH1 

and NleH2 inhibit the nuclear translocation of NF-κB gene transcription via binding to 

ribosomal protein S3 (RPS3) of NF-κB complexes, thus preventing transcription of pro-

inflammatory genes (Figure 15) (Gao et al., 2009). NleC, a zinc metalloprotease, is 

localised to the cytoplasm beneath infecting bacteria and to the nucleus of infected 

cells and possesses zinc metalloprotease activity (Yen et al., 2010). The NleC cleaves 

the p65 subunit (NF-κB heterodimer subunit), resulting in inhibition of translocation of 

NF-κB to the nucleus and disruption to NF-κB signalling (Figure 15) (Yen et al., 

2010). In contrast, NleD, a zinc metalloprotease, cleaves the MAPK signalling pathway 

components, thus preventing activation of the transcriptional activator of pro-

inflammatory cytokine production factor (Baruch et al., 2011). 
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Figure 15: EPEC effectors inhibit NF-κB activation in the intestinal epithelial cells. EPEC 

effector Tir promotes SHP1/2 interaction with TRAF6, resulting in inhibition of NF-κB induced 

inflammation. While NleE methylates TAB2/3, inhibiting TAK1 activation, NleB glycosylates GAPDH, 

preventing its activation of TRAF2. NleH1 binds to ribosomal protein S3 (RPS3), inhibiting the nuclear 

translocation of the NF-κB complex, while NleH2 promotes RPS3 nuclear translocation. NleC inhibits 

the signalling pathways through the cleavage of host proteins p65 subunit of NF-κB. NleC also 

cleaves p300, an acetyltransferase that promotes p65 activity. (EPEC effectors are highlighted in 

red). Taken from (Santos & Finlay, 2015, Cozzone, 2005). 
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1.12 Project aims 

Enteropathogenic E. coli (EPEC) deliver 24 known T3SS dependent effector proteins 

into host cells (Dean & Kenny, 2009, Iguchi et al., 2009, Deng et al., 2004b). Seven of 

them are encoded in the LEE region with one, Tir, acting as a receptor for the 

pathogen, and another, EspZ, functioning as an anti-cytotoxic factor (Kenny et al., 

1997b, Shames et al., 2010). The mechanisms by which Tir is inserted into the host 

cells membrane and EspZ protects against cell death are slowly being unravelled. 

Thus, the project aims are to examine the possible role for LEE encoded factor(s) in 

the modification of Tir to the T” form; its insertion into the membranes of host cells; and 

to investigate the mechanism by which EPEC EspZ protects against EPEC triggered 

cell death. Moreover, this project also will focus on the Edwardsiella tarda (E.tarda) 

type III secretion system as a useful model to investigate the functionality of T3SS 

components. 
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2.1  Cell culture  

2.1.1 Mammalian cell culture  

The human cervical epithelial cancer cell line (HeLa cells; American Type Culture 

Collection ATCC® CCL-2™) was retrieved from liquid nitrogen stocks for growth in 

Dulbecco’s minimal Eagles medium (DMEM, high glucose; Sigma Cat #D5796) 

supplemented with 10% foetal bovine serum (FBS, Lonza Bio Whittaker, Fisher 

Scientific) lacking antimicrobial or antifungal agents. All cell culture processing was 

performed in a Class II laminar flow hood (Bio-Mat 2). Hela cells were routinely 

passaged in 75 cm2 tissue culture flasks (Corning) and incubated (37°C; 5% CO2) to 

~80-90% confluence before passaging (1:6 dilution) into a new flask. Passaging 

involved washing cells twice with sterile phosphate buffered saline (PBS; 137 mM 

sodium chloride [NaCl], 2.7 mM potassium chloride [KCl], 10 mM disodium phosphate 

and 1.8 mM monopotassium phosphate; pH7.4; Sigma Cat #P5368) before adding 

trypsin (1 x Trypsin-EDTA [ethylenediamineacetic acid]; Sigma Cat #T4174) to detach 

cells and resuspending in DMEM/FCS culture media (prewarmed to 370C) and 

transferring a sixth to a fresh flask. Frozen stocks were generated by adding a 

cryoprotectant (DMSO; Sigma Cat #D2650) to a final 10% concentration in a 

DMEM/FCS/cells suspension (~106 cells/ml) with slow freezing in -80°C freezer before 

transferring to liquid nitrogen. A test stock culture was thawed out to confirm viability. 

2.1.2 Bacterial strains and mammalian cells 

Bacterial strains used are listed in the Table1A-D. Bacteria stocks were stored at -80˚C 

(adding 50% glycerol to final 10% to Luria-Bertani (LB) grown cultures) and, when 

appropriate, streaked onto LB agar plates supplemented with appropriate antibiotics. 

Antibiotics used at final concentration of 50, 25, 100, 25, 12 and 25 μg/ml for Nalidixic 

acid (Nal), Kanamycin (Km), Carbenicillin (Cb), Chloramphenicol (Cm), Tetracycline 

(Tet) and Streptomycin (Step) respectively. Single colonies were used to inoculate LB 

broth - supplemented with selective antibiotic(s) when appropriate – for overnight 

incubation (~16h) at 30 or 37°C with (for molecular biology) or without (for infection 

studies) shaking.  
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Table 1A Strains derived from EPEC E2348/69 (Kenny Lab stock)  

 
 Bacterial Strain 

         
                     Description 
 

 
Antibiotic 

 
            Source 

Wild-type (WT) EPEC 
E2348/69 (0127:H6) 

NalR variant of Prototypical EPEC strain E2348/69 NalR  (Levine et al., 1985) 

espZ mutant Lacks the espZ gene. KmR Kenny Lab (S Quitard) 

cfm14    T3SS-deficient; Transposon in escN  KmR (Donnenberg & Kaper, 1991) 

eae Lacks the Intimin gene NalR Kenny Lab (B Kenny) 

espB (UMD864)  Effector-delivery system deficient NalR (Taylor et al., 1998) 

espA (UMD872)  Effector-delivery system deficient NalR/KmR (Kenny et al., 1996b) 

espD (UMD870) Effector-delivery system deficient NalR/KmR  (Lai et al., 1997) 

escD T3SS-deficient NalR This study 

cesTKm  Lacks CesT effector chaperone  NalR/KmR Kenny Lab (B Kenny) 

sepL T3SS-deficient StrepR (Monjaras Feria et al., 2012) 

escK T3SS-deficient StrepR (Soto et al., 2017) 

escL T3SS-deficient StrepR (Soto et al., 2017) 

escP T3SS-deficient StrepR (Monjaras Feria et al., 2012) 

espDB 
 

Lacks EspD and EspB; thus non-functional 
effector-delivery system  

NalR/KmR Kenny Lab (B Kenny) 

espAB Lacks EspA and EspB thus non-functional 
effector-delivery system 

NalR/KmR Kenny Lab (B Kenny) 

mzKm Lacks Map & EspZ  NalR/KmR Kenny Lab (S Quitard) 

fzKm Lacks EspF & EspZ  NalR/KmR Kenny Lab (S Quitard) 

hzKm Lacks EspH & EspZ  NalR/KmR Kenny Lab (S Quitard) 

goz  Lacks EspG, Orf3/EspG2 & EspZ  NalR/KmR Kenny Lab (S Quitard) 

zt(full) Lacks EspZ & Tir (missing residues 1-550) NalR This study 

tb  Lacks Tir & EspB and thus non-functional T3SS NalR This study 

ezKm  Lacks Intimin & EspZ  NalR/KmR Kenny Lab (S Quitard) 

etzKm Lacks Intimin, Tir & EspZ NalR/KmR Kenny Lab (S Quitard) 

mezKm Lacks Map, Intimin & EspZ NalR/KmR Kenny Lab (S Quitard) 

mtzKm Lacks Map, Tir & EspZ  NalR/KmR Kenny Lab (S Quitard) 

mfzKm Lacks Map, EspF & EspZ  NalR/KmR Kenny Lab (S Quitard) 

ftzKm Lacks EspF, Tir & EspZ  NalR/KmR Kenny Lab (S Quitard) 

mfezKm Lacks Map, EspF, EspZ and Intimin NalR/KmR Kenny Lab (S Quitard) 

etmzKm Lacks Intimin, Tir, Map & EspZ  NalR/KmR Kenny Lab (S Quitard) 

etfzKm Lacks Intimin, Tir, EspF & EspZ  NalR/KmR Kenny Lab (S Quitard) 

fzKme Lacks EspF, EspZ and Intimin  NalR/KmR This study 

tmfzKm Lacks Map, EspF, EspZ & Tir  NalR/KmR Kenny Lab (S Quitard) 

mfzKmgo3 Lacks Map, EspF, EspZ EspG & Orf3/EspG2  NalR/KmR Kenny Lab (S Quitard) 

mfz(81)go3 As mfzKmgo3 but EspZKm is swapped with EspZ(81) 
that is missing 81 of 98 residues 

NalR This study 

mfz(81)go3e As mfz(81)go3 but also lacks Intimin (outer 
membrane protein) 

NalR This study 

mfz(81)go3ehKm As mfz(81)go3e but also lacks EspH (marked by 
Km-encoding gene) 

NalR/KmR This study 

mfz(81)go3hKm As mfz(81)go3 but lacks EspH (marked by Km-
encoding gene) 

NalR/KmR This study 

mfz(81)go3ehKmb As mfz(81)go3ehKm but also lacks EspB and thus 
non-functional T3SS  

NalR/KmR This study 

mfz(Km)go3t(full) Lacks Map, EspF, EspZ, EspG, Orf3/EspG2 & Tir NalR This study 

∆go3core Lacks EspG & Orf3/EspG2 & core region NalR Kenny Lab (S Quitard) 
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Table 1B Strains derived from EPEC E2348/69 (Japan & Rosenshine Lab stock) 

 
Bacterial Strain 

 

           
         Description 
 

 
Antibiotic 

 
    Source 

TOEA7 EPEC E2348/69 (NalS) lacks LEE EspG effector &14 Nle   None (Yen et al., 2010) 

TOEA7/pTet As TOEA7 with pTet plasmid TetR This study 

TOEA7-f/pTet As TOEA7/pTet but lacks EspF TetR This study 

TOEA7-fz/pTet As TOEA7/pTet but lacks EspF & EspZ TetR This study 

TOEA7-fzm/pTet As TOEA7/pTet but lacks EspF, EspZ & Map TetR This study 

TOEA7∆fzmhKm/pTet As TOEA7/pTet but lacks EspF, EspZ, Map & EspH TetR/KmR This study 

TOEA7-fzmt(full)/pTet As TOEA7/pTet but lacks EspF, EspZ, Map & Tir TetR This study 

TOEA7-fzme/pTet As TOEA7/pTet but lacks EspF, EspZ, Map & Intimin TetR This study 

TOEA7-fzmehKm /pTet As TOEA7/pTet but lacks EspF, EspZ, Map, Intimin & EspH  TetR/KmR This study 

TOEA7-fzmthKm /pTet As TOEA7/pTet but lacks EspF, EspZ, Map, Tir & EspH TetR/KmR This study 

TOEA7-fzmthKme /pTet As TOEA7/pTet but lacks EspF, EspZ, Map, Tir, EspH & 
Intimin 

TetR/KmR This study 

TOEA7-b/pTet As TOEA7/pTet but lacks EspB, thus non-functional T3SS TetR This study 

TOEA7-fzmehKmb/pTet As TOEA7-fzmehKm/pTet but lacks EspB and thus non-
functional T3SS 

TetR/KmR This study 

TOEA7ΔcoreKm /pTet As TOEA7/pTet but lacks LEE ‘core’ region  TetR/KmR This study 

Ler Lacks EPEC E2348/69 Ler protein (master positive 
regulator of LEE gene expression) 

KmR (Mellies et al., 
2007) 

 

Table 1C: Non-EPEC pathogens  

 
Bacterial Strain 

 

         
                Description 
 

  
Antibiotic 

 
  Source 

Yersinia pseudo-
tuberculosis YIII+ 

Lack genes for most known T3SS Yop effectors  KmR/CmR (Hakansson et al., 1996) 

Yersinia enterocolitica 
MRS40(pIML421) 

Lack genes for most known T3SS Yop effectors  NalR (Cornelis et al., 1986) 

Edwardsiella tarda 
(E.tarda) 

fish pathogen carrying LEE region that is  
homologous to the EPEC LEE region 

None (Nakamura et al., 2013) 

 

Table 1D: Non-pathogenic K12 E.coli with or without EPEC factor 

 

 
Bacterial Strain 

 

         
                            Description 
 

 
Antibiotic 

 
  Source 

DH10B   Non-pathogenic E. coli K12.  None Thermo Fisher 
Scientific 

SM10 λpir  E.coli SM10 (λpir strain) contains the λpir gene allows 
replication of R6K ori-based suicide plasmids. 

KmR (Donnenberg & Kaper, 
1991) 

TOB01  
 

Non-pathogenic E. coli K12 carrying pTOK-01 plasmid 
encoding bfp and perABC operons. Also has pTOK-02 
(no insert).  

KmR/CmR 
 

 (Yen et al., 2010) 
 

TOBO2   
 

As per TOBO1 but LEE (from EPEC B171) region on 
pTOK-02 plasmid.  

KmR/CmR 
 

(Yen et al., 2010) 

SIEC 
 

Pili/Fimbrin adhesin-deficient K12 (non-pathogenic) 
E.coli with EPEC LEE1, LEE2, LEE3 & LEE4 operons 
integrated in chromosome (IPTG inducible)  

None (Ruano-Gallego et al., 
2015) 

SIEC-LEE5 As SIEC but also has LEE5 operon None (Ruano-Gallego et al., 
2015) 

SIEC∆p1-LEE5 As SIEC-LEE5 but  lacks promoter to drive expression of 
T3SS components needed for the effector-delivery 
process 

None (Ruano-Gallego et al., 
2015) 

SIEC-LEE5∆cesTKm As SIEC-LEE5 but lacks a functional CesT gene KmR This study 
 

Table 1A-D: Bacterial strains used in these studies providing a brief description, antibiotic 

selection profile and source. (Km) indicates that associated disrupted gene carries genes 

encoding kanamycin resistance with (full) indicating that the entire gene – ATG to stop codon -has 

been disrupted, while (81) indicates that 81 of 98 EspZ residues are missing. Core refers to that the 

loss of LEE region genes encoding the EspH, CesF, Map, Tir, CesT and Intimin protein. 
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2.2  Molecular biology  

2.2.1 Polymerase chain reaction (PCR) and agarose gel electrophoresis  

Polymerase chain reaction was performed to support strain genotype or amplify genes 

for cloning or DNA sequencing. Oligonucleotide primers (listed in Table 2) were 

designed using Sigma Life Science program (http://www.sigmaaldrich.com/catalog/ 

product/sigma/ oligo?lang=en&region=GB) and obtained from (Sigma-Aldrich-UK). For 

cloning, oligos were designed to amplify genes with extensions to provide restriction 

enzyme site or complemented sequence to the vector region as recommended by 

Gibson assembly protocol (Gibson et al., 2009). Taq DNA polymerase (New England 

Bio-labs: #M0273L) was used for PCR screening programs while Q5 Hot start high-

fidelity DNA polymerase (New England Bio-labs; Cat #M0493S) was used for cloning 

and sequencing. Standard PCR reactions (25 μl) were prepared by mixing the required 

components (New England Bio-labs) listed in Table 3. For DNA amplification a 

Thermo-cycling PCR run under conditions given in Table 4. The PCR products were 

mixed (ratio 1:9) with 10x ficoll gel loading dye (100 mM EDTA, 1.0% SDS, 0.25% 

bromophenol blue, 0.25% xylene cyanol) and analysed, alongside 1 Kb 2 log DNA 

ladder (New England Bio-labs; Cat #N3200S), on 0.7-1% TAE (40 mM Tris-acetate, 1 

mM EDTA) agarose (MELFORD; #MB1200). The fluorescent nucleic acid stain 

GelRedTM (Biotium; used 1:25,000) was added to the agarose with gel electrophoresis 

in TAE buffer at 100 volts with stained DNA visualised via a UV transilluminator (Bio-

Rad).  

 

 

 

 

 

 

 

 

 

 

http://www.sigmaaldrich.com/catalog/
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1 EP-espA FP    GATAACGAGCAGAGGAGTAATAC 

2 EP-espA RP   CAGACCTCACAGACTGGATATCG 

3 EP-espZ FP    GCCTATGGGATAATTTGG 

4 EP-espZ RP   GCATCCATTACCTCTC 

5 EP-eae FP CATTCTAACTCATTGTGGTGG 

6 EP-eae RP CTAGCTAGAGACTTGATTACC 

7 EP-map FP GTGCTGGAGGAAAAGTTCTG 

8 EP-map RP CAGCGCAGTAAGTTTCC 

9 EP-espB FP GATGTCTGATTCTGCGCGAG 

10 EP-espB RP CACTGCCACAAAGAAACTC 

11 EP-espH FP CCCTTTGGCAACCGTAAAGC 

12 EP-espH RP AAATATCGTCCCCAGAACAG 

13 EP-espF FP ATGGAATTAGTAACGCTGCTTCTACAC 

14 EP-espF RP TTGGTTACCCTTTCTTCGATTGCTCATAG 

15 EP-espG FP ACAAAAACTATGGCTGACGCATCAC 

16 EP-espG RP TTCAGCGCATGACATCTCATCCCAG 

17 EP-espG2/orf3 FP TAGGTATAACCCTATGCCTGTGTTC 

18 EP-espG2/orf3 RP AACAAATTCAGGCTGACACAGTACC 

19 EP-escD FP CCATTAGCCATTGGAAACTCACG 

20 EP-escD RP    CGTCGCTAGTATCATTACCC 

21 EP-escP FP    CGAACAAAAGAGAATCTGC 

22 EP-escP RP    GGTTCCGATAACTGGCAAC 

23 EP-sepL FP    GGAAGCTGTTGTACAGTAC 

24 EP-sepL RP GGAGATTGCAATAATATCCG 

25 EP-escK FP GCCAATCAACAATGAATCAACG 

26 EP-escK RP CCTCTGGTATGATATCTTC 

27 EP-escL FP CCTTTATGGACCATAGTC 

28 EP-escL RP    GCCAATGGTCATTAATTGAG 

29 EP-cesT FP GCTCTAGACAACGTTGCAGCATGGGTAA 

30 EP-cesT RP    GCGAATTCTCATGTTTGGGCTCCACCAC 

31 ET-tir FP  CGAGATCTGATCGCGAGGATTATG 

32 ET-tir RP GCTCTAGATACTAAGGTGACGTTAC          

33 ET-escD FR CGGGATCCGGCTGCATTGATTATTGC 

34 ET-escD RP GCGTCGACCCGTTGGTTGTGTCAGG 

35 ET-gto FP CGGATATCGATCGCGAGGATTATG 

36 ET-gto RP    AAGTCGACGTTTGCCCAGCATAAG 

37 ET-espB FP    CGGGATCCGGCAATGATCTGGTTCG 

38 ET-espB RP GCGTCGACCTCATCGCCATCAAGTC 

39 ET-espD-G FP CACACCCGTCCTGTGGCAATACCGAACGATTTC 

40 ET-espD-G RP TCTCAAGGGCATCGGGATACCTGACGCGTTATTC 

41 EP-tir-G FP CACACCCGTCCTGTGGGAACGTGTCAAATTTCTAAATAAAAG 

42 EP-tir-G RP TCTCAAGGGCATCGGAGTTACCCATGCTGCAAC 

43 ET-espA-G FP GCGACCACACCCGTCCTGTGCAGATGTTATAGATAGAGACTCG 

43 ET-espA-G RP   AAGGCTCTCAAGGGCATCGGCCAACGGAGGATATAGTTAAATTAG 

44 ET-espADB FP AAGGCTCTCAAGGGCATCGGCCAACGGAGGATATAGTTAAATTAG 

45 ET-espADB RP TCTCAAGGGCATCGGCATGGCGAAGATGATATCC 

46 ET-eae-G FP GCGACCACACCCGTCCTGTGCTGCGCGTTAGCTACGTG 

47 ET-eae-G RP AAGGCTCTCAAGGGCATCGGGTTACTAACACAAGACAGAATGGC 

48 ET-cesT-G FP GACCACACCCGTCCTGTGCGCCAATTAATATCTCGC 

49 ET-cesT-G RP AAGGCTCTCAAGGGCATCGGGGAATCAGCTTACTATCTTGG 

50 ET-tir-G FP GCGACCACACCCGTCCTGTGCATACTGTATGATCATGGTTG 

51 ET-tir-G RP AAGGCTCTCAAGGGCATCGGGCGAGATATTAATTGGCG 

52 ET-ler-G FP GCGACCACACCCGTCCTGTGCGAGAAGTCCATACATTAG 

53 ET-ler-G RP AAGGCTCTCAAGGGCATCGGGTTCAGATGTCGACTGTTC 

54 EP-espBmid-G FP GCCGGGCCTCTTGCGGGATAATCTAGACGCGCTCTATTGGTACAAC 

55 EP-espBmid-G RP ACGATGCGTCCGGCGTAGAGTTGAGCTCCTTAATACCCGAAAAGTG 

56 ET-escP FP   GCGACCACACCCGTCCTGTGTAACTCACTAACGGAAG 

57 ET-escP RP AAGGCTCTCAAGGGCATCGGCAACCAAATCGATTACAACC 

58 ET-escL FP GCGACCACACCCGTCCTGTGCGTTGCCCAGACTATTTG 

59 ET-escL RP   AAGGCTCTCAAGGGCATCGGGGCTGACTTCCTATAGATATAAG 

60 ET-escK FP GCGACCACACCCGTCCTGTGCATGGTTATCAACATGGAGAG 

61 ET-escK RP   AAGGCTCTCAAGGGCATCGGGATCTCACTGGCGCTTAAG 

62 ET-sepL FR GCGACCACACCCGTCCTGTGCTGAGTGCGCTTGTACAG 

63 ET-sepL RP AAGGCTCTCAAGGGCATCGGCTAGGGTACCGTCTACCTG 

64 ET-eae FP CAACGGTAATGCGTGATGG (Used for sequencing eae gene) 

65 ET-eae RP CGTATAAGAGGCCGTTTGTC (Used for sequencing eae gene) 

66 EP-escD FP GATGAAGAATCCGGGGCTAC (Used for sequencing escD gene) 

67 EP-escD RP    CGTCGCTAGTATCATTACCC (Used for sequencing escD gene) 

     

  

Table 2: List of primers that is used in this study. 
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A)     Component     25µl reaction        Final Concentration 

10X  Taq reaction buffer 1 µl         1x Taq reaction buffer 

10 mM  dNTPs 0.5 µl           200 μM dNTPs 

10 µM forward primer 0.5 µl           0.2 μM 

10 µM reverse primer 0.5 µl           0.2 μM 

Template bacterial DNA    1 µl           variable 

Taq DNA polymerase  0.125 µl           0.625 units 

dH2O     Up to 25 µl   

 

 

 

 

 

                  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

B)      Component    25µl reaction         Final Concentration 

  
Q5 reaction buffer 5 µl          1x reaction buffer 

10 mM  dNTPs 0.5 µl           200 μM dNTPs 

10 µM forward primer 0.5 µl           0.2 μM 

10 µM reverse primer 0.5 µl           0.2 μM 

Template bacterial DNA 1 µl           variable 

Q5 Hot start high-fidelity 

DNA polymerase 

0.25 µl           0.02 units/µl 

dH2O Up to 25 µl   

A)    Step      Cycles Temperature and Time 

           Initial denaturation 1 95
o
C for 30 seconds 

           Denaturation 

           Annealing 

           Extension 

  

  

30 

  

95
o
C for 30 seconds 

                          53-63
o
C for 1 min 

                          68
o
C for 1 min/kb 

Final Extension 1                           68
o
C for 2 min 

B)     Step Cycles        Temperature and Time 

  
Initial denaturation 1                98

o
C for 30 seconds 

Denaturation 

Annealing 

Extension 

  

  

30 

  

               98
o
C for 10 seconds 

               53-68
o
C for 30 seconds 

               72
o
C for 30-60 seconds 

Final Extension 1                72
o
C for 2 min 

Table 3: Standard PCR reaction mixture using   A) Taq DNA polymerase or B) Q5 

Hot start high fidelity DNA polymerase. Note, template bacterial DNA was either 

extracted plasmid or obtained from bacteria by resuspending a bacterial colony in 60μL 

sterile water and incubation at 100°C for 5 min, using 1µl was in PCR reactions. 

 

 

Table 4: Standard PCR reaction condition. A) Taq DNA polymerase and B) Q5 

Hot start high-fidelity DNA polymerase. Annealing temp is predicted by sigma 

software 
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2.2.2 Plasmid extraction  

To isolate DNA plasmid, the appropriate strain was inoculated into 5-10 ml LB broth, 

with appropriate antibiotic(s), for overnight growth at 37°C with shaking (~250 rpm). 

Bacteria were harvested by centrifugation (11752 xg; 3 min; room temperature [RT]) 

and supernatant discarded. Plasmids were extracted using the Mini plasmid 

purification kit (Thermo Scientific; Cat # K0503), following the recommended protocol. 

DNA plasmid concentration was determined (A260 reading) using Nano-Drop 1000 

spectrophotometer (Lab-tech) and were typically 0.1-0.2µg/µl.  

 

2.2.3 DNA sequencing  

To determine the DNA sequence, the target gene was PCR amplified using Q5 Hot 

start high-fidelity DNA polymerase (New England Bio-labs; Cat #M0493S) with an 

appropriate primer (Table 2). PCR products were then cleaned-up using GenElute™ 

PCR Clean-Up Kit (Sigma Cat #NA 1020-1KT) following the recommended protocol. 

DNA concentration was determined (A260 reading) using Nano-Drop 100 

spectrophotometer (Lab-tech) prior to sending along with primers for sequencing 

(Source Bioscience, Cambridge, UK). Comparative analysis of resulting sequences 

with native gene sequence was performed by pairwise alignments programme 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). 

 

2.2.4 Preparation of electrocompetent cells  

Strains were grown in LB, with appropriate antibiotic(s) at 37oC, unless otherwise 

indicated, at 225-250 rpm overnight (~16-18h). Bacterial cultures were diluted 1:100 

into 100 mL fresh LB broth medium, containing selective antibiotic(s) when 

appropriate, for growth (37oC shaking) until reached optical density (OD600) of 0.6-0.7. 

Bacterial cultures were cooled down on ice (gentle shaking) prior to centrifugation 

(12,000 xg for 15 mins at 4oC). The resulting pellet was washed with ice cold sterile 

water (50 mL) and centrifuged under the same conditions prior to an additional repeat 

wash and centrifuge. The resulting bacterial pellet was resuspended in sterile ice-cold 

15% glycerol (25 mL) and centrifuged using the same conditions. Finally, the pellet 

was resuspended in sterile ice-cold 15% glycerol (0.5 mL) and divided into 40 µL 

aliquots for immediate use or snap frozen (liquid nitrogen) for storage at -800C. 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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2.2.5  Electroporation of bacterial cells 

10-100 ng of DNA solution (isolated plasmid or ligation mix-Table 5) was added to a 

freshly made or thawed (on ice) 40 μl aliquots of  electrocompetent bacterial cells for 

5 min prior to transferring to an ice-cold 2 mm-gap electroporation cuvette (Cell 

projects; Cat #EP-102) and electroporating (2KV, 200Ω, 25mF for  4-5µs) using a 

GenePulser II (BioRad). 1ml of pre-warmed (37°C) SOC media (2% tryptone, 0.5% 

yeast extract, 10mM sodium chloride [NaCl], 2.5 mM potassium chloride [KCl], 10 mM 

magnesium chloride [MgCl2] and 10 mM magnesium sulfate [MgSO4] pH=7) was 

gently added immediately with cells incubated for 1h at the appropriate temperature; 

routinely 37oC. 10, 100 and 890 µL of bacterial cell suspension was routinely plated 

onto LB agar plates containing appropriate antibiotic(s) and incubated overnight (16-

20h) at an appropriate temperature. Single colonies were streaked to single colonies 

on fresh selective agar plates and screened for introduction of required gene by 

colony PCR and the verified correct colony was grown overnight in 3 ml LB broth, 

with selective antibiotic(s), for use to prepare frozen glycerol stocks (see Section 

2.2.4). 

 

2.2.6  Transformation of bacteria using heat-shock procedure 

Frozen chemical competent bacteria K12, NEB® Turbo Competent E. coli (High 

Efficiency; New England Bio-labs; Cat #C2984H), were thawed on ice for 10 min prior 

to adding ~5 to 100 ng (2 -5µ l )  of plasmid DNA (Table  5)  to 25 µL aliquots, mixed 

gently, and kept on ice for 30 min. The bacteria were then heat-shocked at 42°C for 

30 seconds followed by immediate incubation on ice for a further 5 min.  Pre-warmed 

37°C of SOC medium (950 µl) was added to the cells, gently mix, and cells were 

incubated at 37°C with 225-250 rpm shaking for 60 min prior to plating 50 and 450 

µL onto LB agar containing the appropriate selective antibiotic(s). The plates then were 

incubated overnight at 37 ºC with single colonies screened for introducing of plasmids 

by PCR. The verified correct colony was grown overnight in 3 ml LB broth, with 

selective antibiotic(s), for use to prepare frozen glycerol stocks (see Section 2.2.4). 
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       Plasmid 

               
                       Description 

 
Antibiotic 

     
         Reference  

pCR-2.1 Cloning vector CbR Invitrogen 

pACYC184 Cloning vector CmR/TetR (Chang & Cohen, 1978) 

pTet pACYC184 with Cm gene inactivated TetR Kenny Lab (B Kenny) 

pAC-LacZ-3’gtoe pACYC184 expressing Tir, CesT and Intimin  TetR Kenny Lab (B Kenny) 

pSK-espH::HA pACYC184 expressing EspH::HA fusion protein  CmR Kenny Lab (B Kenny) 

pSK-espZ::HA pSK expressing EspZ::HA fusion protein  CbR Kenny Lab (S Quitard) 

pSK-map::HA pSK expressing for Map as a Map::HA fusion 
protein 

CbR (Dean et al., 2013) 

pACYC-espB pACYC184 expressing EspB CmR Kenny Lab (S Quitard) 

pBR-espF pBR expressing EspF  CbR (Nagai et al., 2005) 

pACYC-eae pACYC184 expressing Intimin  CmR Kenny Lab (S Quitard) 

pACYC-cesT pACYC184 expressing CesT chaperone CmR Kenny Lab (S Quitard) 

pTrc-escL pTrc expressing EscL CbR (Soto et al., 2017) 

pTrc-escP pTrc expressing EscP CbR (Monjaras Feria et al., 
2012) 

pTrc-sepL pTrc expressing SepL CbR (Monjaras Feria et al., 
2012) 

pET-escK pET expressing EscK CbR (Soto et al., 2017) 

 
pGEM-espBmid 

pGEM vector expressing EspB lacking myosin 
binding area (AA 159 to 218) 

CmR (Iizumi et al., 2007) 

pACYC-espBmid pACYC184 expressing for EspB lacking myosin 
binding area (AA 159 to 218) 

CmR This study 

pSK-3’gtHAo pSK expressing Tir (as a Tir::HA fusion protein) 
and CesT  

CbR Kenny Lab (S Quitard) 

pACYC- espAEt pACYC184 carrying EspA from E.tarda CmR This study 

pACYC- espDEt pACYC184 carrying EspD from E.tarda CmR This study 

pACYC-espBEt pACYC184 carrying EspB from E.tarda  CmR This study 

pACYC- espADBEt pACYC184 carrying EspA, EspB & EspD from 
E.tarda 

CmR This study 

pACYC-escDEt pACYC184 carrying EscD from E.tarda  CmR This study 

pACYC-lerEt pACYC184 carrying Ler from E.tarda  CmR This study 

pACYC-eaeEt pACYC184 carrying Intimin from E.tarda  CmR This study 

pSK-tirEt::HA pSK expressing Tir from E.tarda as a Tir::HA 
fusion 

CbR This study 

pACYC-tirEt::HA pACYC184 carrying Tir from E.tarda as a Tir::HA 
fusion 

CmR This study 

pACYC-gtoEt pACYC184 carrying Tir from E.tarda and its 
chaperone, CesT 

CmR This study 

pACYC-cesTEt pACYC184 carrying CesT from E.tarda  CmR This study 

pACYC-sepLEt pACYC184 carrying SepL from E.tarda  CmR This study 

pACYC-escKEt pACYC184 carrying EscK from E.tarda  CmR This study 

pACYC-escPEt pACYC184 carrying EscP from E.tarda  CmR This study 

pACYC-EscLEt pACYC184 carrying EscL from E.tarda  CmR This study 

pSK-map pSK expressing Map  CbR (Kenny & Jepson, 2000) 

pSK-map(ATG-TAG) E78A pSK expressing Map carrying a E78A substitution  CbR (Dean et al., 2013)  

pSK-map(TAA-TAG) ∆TRL pSK expressing Map lacking final 3 residues, TRL CbR (Dean et al., 2013) 

 
pSK-3'g5't-∆MTS-map 

pSK expressing a Tir::Map fusion protein (Tir 
residues 1-101; Map residue 41-206) Map 
mitochondria targeting sequence (MTS) swapped 
with the N-terminal of Tir 

CbR (Dean et al., 2013) 

pACYC-3’gtHAo pACYC184 expressing Tir (as Tir::HA fusion) and 
CesT 

CmR Kenny Lab (B Kenny) 
unpublished  

pACYC-3’gtHAinto pACYC184 expressing Tir (with HA tag within 
Intimin binding domain) and CesT 

CmR Kenny Lab (B Kenny) 
Unpublished 

pACYC-tirEPEC pACYC184 carrying Tir CmR This study 

 
pACYC-tir-∆SY 

pACYC184 expressing Tir carrying S434A; 
S463A, Y454F; Y474F substitutions  

 
CmR 

  
(Kenny, 1999) 

 

 

Table 5: plasmids used in this study. Given a brief description of the plasmids and/or cloned gene 

product alongside with antibiotic selection and source.  
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2.2.7  Construction of EPEC gene knockout mutants 

Gene knockouts were carried out as previous described (Donnenberg & Kaper, 1991) 

with available suicide vectors (see Table 6). Briefly, provided SM10 λpir (KmR) strains 

carrying the appropriate, usually pCVD422-based (CbR), suicide vector (Table 6) which 

is carrying the disrupted gene, was co-incubated with the recipient EPEC (NalR) strain 

on LB plate overnight at 37oC. This lead to transfer, via conjugation, the suicide vector 

to the recipient EPEC (NalR) strain. Next day, cells within several confluent areas of 

the plate were scrapped off into LB broth contains Nal antibiotic and grown to stationary 

phase before plating onto NalR/CbR plates selected for transconjugants. The specified 

single colony was then inoculate into LB broth with appropriate recipient strain selected 

antibiotic (NalR) and grown to stationary phase before plating on LB containing 5% 

sucrose and Nal antibiotic for 16-20h at 30oC. Growth in the absence of CbR selection 

provided an opportunity for a double cross-over event to remove the gene duplication, 

While plating on Nal plates containing 5% sucrose leads to kill cells carrying the suicide 

vector which carries a sacB gene and select for strains lacking the suicide vector which 

can’t be maintained without λpir functions. Single colonies were picked and screened 

for antibiotic resistance (grow on Nal but not Cb or Km plates). PCR analysis was used 

to determine the presence of intact or disrupted gene.  

 

 
Suicide Plasmid 

                
               Description 

 
Antibiotic  

 
            Source 
 

pCVD442-espZ(81) Carries disrupted espZ gene (lacks 81 of 
98 residues) 

CbR Kenny Lab (S Quitard) 

pCVD442-espHKm Carries disrupted espH gene  CbR/KmR Kenny Lab (S Quitard) 

pCVD442-espF Carries disrupted espF gene CbR (Warawa et al., 1999) 

pCVD442-tirfull Carries disrupted tir gene CbR (Kenny et al., 1997b) 

pCVD442-cesTKm Carries disrupted cesT gene CbR Kenny Lab (S Quitard) 

pCVD442-map Carries disrupted map gene CbR (Kenny & Jepson, 2000) 

pCVD442-espB Carries disrupted espB gene CbR (Foubister et al., 1994) 

pCVD442-eae Carries disrupted eae gene CbR (Donnenberg & Kaper, 1991) 

pCVD442-escD Carries disrupted escD gene CbR (Ogino et al., 2006) 

pKNG101-core For deleting LEE core region   StrepR (Ruchaud-Sparagano et al., 2007) 

pCACTUS-espBmid Delete and swap EspB with EspB-mid CmR (Iizumi et al., 2007) 

 

 

Table 6: Suicide vectors used in studies with a brief description, antibiotic resistance profile 

and source reference. (Km) indicated that associated disrupted gene carries genes encoding 

kanamycin resistance with (full) indicating that the entire gene – ATG to stop codon -has been 

disrupted, while (81) indicated that the 81 of 98 EspZ residues is missing. Core refers to that the 

core region that has genes encoding EspH, CesF, Map, Tir, CesT and Intimin, has been deleted. 

Mid refers to that the plasmid expressing for EspB protein that missing the myosin binding area 

(residues from 159aa to 218aa). 
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2.2.8 Plasmid construction  

2.2.8.1 TA cloning  

The TA cloning kit (Invitrogen; Cat #45-0046) was used to insert PCR products directly 

into the kit provided pCR.2.1 plasmid. However, the PCR product can insert in either 

orientation so the gene was amplified with restriction enzyme cleaving sites introduced 

into the oligonucleotides [introduced via PCR amplification] (Table 2). Once cloned to 

the TA vector (pCR-2.1), gene was digested using flanking unique restriction enzyme 

sites for introduction into the destination expression vector that was digested with the 

appropriate restriction enzymes. For example, Edwardsiella tarda (E. tarda) genes 

were amplified with oligonucleotides (carrying BamHI/SalI or EcoRV/SalI restriction 

sites Table 2) using E. tarda genomic DNA, kindly provided by Dr Yoji Nakamura, as a 

template for Q5 Hot start high-fidelity DNA polymerase (New England Bio-labs; Cat 

#M0493S) and described (Section 2.1) PCR conditions. The reaction was then placed 

on ice and 1 unit of Taq polymerase (New England Bio-labs: #M0273L) was added, 

mixed and incubated at 72°C for 10 minutes to add a single deoxyadenosine (A) to the 

3´ ends. PCR reactions were analysed on agarose gels (usually 1% TAE agarose [see 

section 2.1] to confirm success and estimate DNA concentration. Appropriately 2 µl 

(50 ng; 20 fmoles) of pCR-2.1 vector and 1-2 µl (~57 ng; 60 fmoles) of insert were 

added together for ligation (ratio 1:3) in a total volume 10 µl with 1 µl T4 DNA ligase 

(Invitrogen; Cat # 15224-017), as described by provider, and incubated 16-18 hrs at 

14°C prior to transforming 2-3 µl to NEB® Turbo Competent E. coli (High Efficiency) 

competent cells (New England Bio-labs; Cat #C2984H) as described (see Section 

2.2.6). Bacterial suspension were plated on LB plate containing Carbenicillin (Cb) and 

50 µL of 50 mg/mL X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) 

(Promega; Cat #V3941), and incubated 16-20 h at 37oC. White colonies were PCR 

screened for presence of an appropriated insert.  

 

2.2.8.2 Generation of pACYC-espBET; -escDET and -tir_cesTET vectors 

Cloned inserts were released from the pCR.2.1 recombinant plasmid by digesting with 

appropriate restriction enzymes (see above) for fragment isolation and cloning into 

pACYC184 pre-digested with the same restriction enzymes. Briefly, the plasmids were 

digested with two enzymes (BamHI/SalI or EcoRV/SalI [New England Bio-labs]) and 

vector/insert fragments isolated (gel extraction Kit [Thermo Scientific Cat #K0691]) 

following manufacturer’s instruction for ligation (3:1 insert to vector ratio), following 
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manufacturer’s instruction, in total 20 µl volume adding 0.1unit T4 DNA ligase 

(Invitrogen; Cat # 15224-017) and incubated overnight at room temperature. The 

product then was introduced into Turbo Competent E. coli cells as described above 

(see Section 2.2.6). Bacterial colonies that grew on chloramphenicol agar plates were 

PCR screened to confirm presence of cloned gene.  

 

2.2.8.3 Gibson Assembly Cloning 

Some genes were cloned using the Gibson Assembly Cloning Kit (New England Bio-

labs; Cat #E2621S) which uses recombination to introduce PCR-amplified DNA 

fragments. This process requires the generation of oligos with 20 bp extensions that 

correspond to the vector insertion site (Gibson et al., 2009). Briefly, the recipient vector, 

for example pACYC184, was pre-digested with BamHI and SalI restriction enzymes 

and gel purified (see above) while the insert with PCR amplified (Q5 Hot start high-

fidelity DNA polymerase [New England Bio-labs; Cat #M0493S]), with appropriate 

oligonucleotide primer sets designed using NEBuilder Assembly construction tool 

(http://nebuilder.neb.com/). The concentration of PCR product and isolated vector 

were determined (Nano-Drop 100 spectrophotometer [Lab-tech]), following 

manufacturer’s instruction, for addition to Gibson assembly master mix (New England 

Bio-labs; Cat #E2621S), at a ratio 2:1 [25 ng of vector 2-3 µl + 12 ng of insert 1-2 µl + 

Mix 5 µl and deionized H2O to the 10 µl total volume and incubated 12-16 hr at 50oC]. 

Turbo Competent E. coli cells were transformed with 2-5 µl of the reaction mix and 

processed as described (Section 2.2.6) with PCR screening of colonies for those with 

the cloned insert. 

 

 

 

 

 

 

 

 

http://nebuilder.neb.com/media/manualE5510.pdf
http://nebuilder.neb.com/media/manualE5510.pdf
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2.3  Bacterial infection  

2.3.1  Hela cells infection 

HeLa cells were seeded 48 hours prior to experimentation to obtain 80-90% confluency 

on day of infection. Bacterial cultures (in LB containing, when needed, appropriate 

antibiotics) were grown overnight without shaking at 37ºC or, for Yersinia strains, 28ºC. 

The Optical Density (OD) was measured at 600nm (UV1101- Biotech photometer; a 

value of 1 = 1 x 109 bacteria) with mammalian cells infected at a Multiplicity of Infection 

(MOI) of 40:1 - bacteria to host cells - unless otherwise indicated. Infections usually 

used LB grown bacteria but sometime bacteria were diluted (1/10) into serum free 

DMEM (supplemented, when needed, with antibiotic) for 2-3h, before measuring the 

OD. The infections time is varied (see text and legends), but were undertaken at 37ºC 

in a humidified 5% CO2 atmosphere, unless otherwise indicated. In some experiments, 

infected cells were washed (37ºC PBS) and incubated with DMEM containing 

gentamysin (100μg/ml) for 1h to kill extracellular bacteria prior to PBS washing and 

infecting with a second-wave of bacteria. Following infection cells were placed on ice 

and washed twice with ice cold PBS [0.01M phosphate buffer saline (0.138 M NaCl; 

0.0027 M KCl, pH 7.4 Sigma Cat #P5368)] and processing as given below. 

  

2.3.2 Isolation of cellular protein fractions  

The protocol was similar to that described in previous publications from the Kenny 

laboratory, for example see (Kenny & Warawa, 2001, Kenny & Finlay, 1997). Briefly, 

ice cold Triton lysis buffer (1% v/v Triton X100 in 50mM PBS [pH 7.5] containing 0.4 

mM NaVO4, 1 mM NaF, and 0.1 mM phenylmethylsulfonyl fluoride [PMSF; Sigma 

P7626], and protease cocktail [Sigma Cat #P-8340; 1:100 dilution]) was added prior to 

scraping cells with a rubber policeman (SARSTEDT Cat #83.1830) and transferring to 

1.5 ml tubes for incubation on ice 5min. The samples were then centrifuged (5 min; 

11752×g; 4°C) and the soluble fraction (contains host cytoplasm and membrane 

proteins plus delivered effector proteins) transferred to a fresh ice cold tube prior to 

adding 5X Laemmli sample buffer (60 mM Tris-HCl pH 6.8, 1% w/v SDS, 5% v/v 

glycerol, 5% v/v β-mercaptoethanol & 0.01 % w/v bromophenol blue) to final 1X 

concentration. The remaining insoluble pellet (contains host nuclei and cytoskeleton 

plus adherent bacteria) was washed in ice cold 1x PBS and re-suspending in 1X 
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Laemmli sample buffer (Laemmli, 1970). The soluble and insoluble samples were 

heated (10 min, 100°C), vortexed well and centrifuged (11752×g, 3 min, room 

temperature) prior to use or storage at -20°C.  

 

2.3.3 Western Blot analysis  

Soluble and insoluble fractions derived from ~1x106 infected cells were loaded, 

alongside protein marker (precision plus standards [BIO-RAD Cat #161-0373]) onto 

SDS-PAGE gel (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis) - usually 

10% polyacrylamide resolving gel with 5% stacking gel (Laemmli, 1970). Gels were 

run in SDS-PAGE running buffer (25 mM Tris-HCl, 192 mM glycine and 0.1% w/v 

SDS; pH 8.3) at 200 volts for 1h using a vertical electrophoresis mini-cell system 

(Bio-Rad). The gel was placed onto a polyvinylidene fluoride (PVDF) membrane (GE 

Healthcare Cat #G9949937) for protein transfer using the Mini Trans-Blot cell (Bio-

Rad) at 110 volts for 60min (Kenny & Finlay, 1997). Transfer efficiency/quality was 

evaluated by Ponceau S staining (Sigma Cat #P7170-1L) - reversible by washing with 

1x PBS – and the membrane blocked overnight (4°C) in PBS containing 5% (w/v) 

skimmed milk powder (1% Dried skimmed milk-UK). 

         For detection using alkaline phosphatase-conjugated antibodies. Blocked 

membranes were incubated with appropriate antibodies (Table 7) in PBS for 1h at room 

temperature, washed in PBS (3x 5 min), and then incubated with an appropriate 

secondary antibody (Table 7) in PBS for 1h at room temperature prior to washing twice 

in PBS and then in developing buffer (0.05 M NaCl, 0.001M MgCl2 and 0.02 M Tris 

Base pH 9.5) prior to adding developing agents (NBT [nitro blue tetrazolium; Promega 

Cat #S380S] and BCIP [5-bromo-4-chloro-3-indolyl-phosphate; Promega Cat 

#S381S]) in 10mL alkaline phosphatase buffer according to the manufacturer’s 

instructions.  

        For detection using horseradish peroxidase (HRP)-conjugated antibodies, primary 

antibodies were incubated 1h in Tris Buffer Saline containing Tween (TBST; 150 mM 

NaCl, 10m M Tris-HCl, 0.05% v/v Tween-20 pH 7.5) followed by washing (3x 5 min 

TBST) and incubation with horseradish peroxidase-conjugated HRP secondary 

antibody (anti-Mouse HRP or anti-Rabbit HRP) in TBST for 1h at room temperature. 

The blots were then washed (3x 5 min in TBST) prior to overlaying with luminol reagent 

(1:1 ratio of Luminol Enhancer and Stable peroxide solution; Thermo Scientific, Cat 
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#34080) for 5 min with the luminescent signal captured on X-ray film (GE Healthcare 

Cat #HP35102A). HRP-developed blots were often re-blocked (PBS containing 5% w/v 

skimmed milk powder) overnight (4°C) and then probed with antibody for detection 

using alkaline phosphatase-conjugated antibodies as described above. 

 

 

 
 
   Primary antibody  
 

 
    
      Species  

 
Dilution used in 

 
Source 

IF 
 

WB 

Anti-Tir Rabbit poly Ab   1:2000    1: 5000 Kenny Lab 

Anti-EspF  Rabbit poly Ab    NA    1: 2000 Kenny Lab 

Anti-EspB  Rabbit poly Ab    NA    1: 2000 Kenny Lab 

Anti-EspA Rabbit poly Ab    NA    1: 500 Kenny Lab 

Anti-EspD  Rabbit poly Ab    NA    1: 1000 Kenny Lab 

Anti-β-Actin Mouse Mo Ab    NA    1:10000 Sigma #A2066 

Anti-Tubulin Rabbit Mo Ab    NA    1: 40000 Sigma #T3526 

Anti-HA-Taq Mouse Mo Ab   1:50    1:1000 Sigma 

Anti-phospho-tyrosine clone 4G10 Mouse Mo Ab    NA    1:1000 Millipore #05-321 

 

 
Secondary antibody  

 
Species 

 
Dilution used in 

 

 
                       Source 

IF WB 

Anti-Rabbit IgG-HRP  Goat NA 1: 5000 Jackson Immuno Research; #111-053-003 

Anti-Rabbit IgG-AP  Goat NA 1: 5000 Jackson Immuno Research; #111-053-144 

Anti-Mouse IgG-HRP Goat NA 1: 5000 Jackson Immuno Research; #115-035-003 

Anti-Mouse IgG-AP Goat NA 1: 5000 Jackson Immuno Research; #115-056-068 

(TRITC)-phalloidin NA 1:100 NA Sigma; #P1951-.1MG 

DAPI  NA   1:1000 NA Invitrogen; #D1306  

 

 

2.3.4 Immunofluorescence microscopy  

Hela cells (~1x105) were seeded onto 13mm glass coverslips (VWR Cat #631-1578) 

in 24 well plates 48h prior to infection to reach 80-90% confluency by infection day. 

Post-infection, the cells were washed twice with ice cold PBS and fixed with ice cold 

PBS containing 2.5% paraformaldehyde (Chem Cruz; Cat #sc281692) for 20 min at 

room temperature. Following two PBS washes the cells were treated with PBS 

containing 1% (v/v) Triton X-100 - makes the host membrane permeable – containing 

tetramethyl-rhodamine-isothiocyanate (TRITC)-phalloidin (1µg/ml [1:100; final 

concentration 10 ng]; binds polymerised actin) and 4’6-diamidino-2-phenylinodole 

Table 7: Primary and secondary antibodies with DAPI/TRITIC- Phalloidin stains used in 

this study. Antibodies are used to label and/or detect target protein in western blot or 

immunofluorescence. 
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(DAPI; strains DNA) for 1h. When appropriate, primary antibody(ies) were also present 

and then, post washing, labelled with an appropriate fluorescent-conjugated secondary 

antibody (Table 7). PBS washed coverslips were mounted onto 20 µl FluorSave 

reagent (Millipore Cat #345789-20) prior to examining (Zeiss Axioskop epi-fluorescent 

microscope) and, when appropriate, images captured using a Hamamatsu C4742-95 

charge-coupled device camera and Improvision software. 

 

2.3.5 Lactate dehydrogenase (LDH) cytotoxicity assay  

Release of cytoplasmic lactate dehydrogenase (LDH) protein into the cell culture 

media was detected using the Pierce LDH Cytotoxicity Assay Kit (Thermo Fisher 

scientific Cat #88954) following the manufacturer’s instructions. Briefly, at the indicated 

time following infection of Hela cells (~1x105 per wells of 24 well plate) the extracellular 

medium was taken and centrifuged (11752 xg, 3 min) with 50 μl aliquots transferred to 

a flat bottomed 96 well plate (Corning; Cat #3370) adding 50 μl of kit provided reaction 

mixture for 30 min (in dark at room temperature). The reaction was terminated by 

adding 50 μl stop solution and the absorbance of the reaction product formazan 

measured at 490 nm and 680 nm (FLUOstar opitma microplate reader). The 

percentage cytotoxicity was calculated following subtraction of background level 

release from uninfected cells from that released in treated samples, this then divided 

by the value of maximum LDH activity (that released from uninfected cells following 

addition of kit provided 1x lysis buffer) multiplying by 100.
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Chapter 3:  Interrogating roles for EPEC T3SS secretion 

substrates in Tir modification to T” form and 

membrane insertion processes 
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3.1  Introduction  

Translocated intimin receptor (Tir) is the first example of a bacterial protein delivered 

into the host cells to act as a receptor for a pathogen (Kenny et al., 1997b). Tir is 

delivered by the type three secretion system (T3SS) of not only EPEC but also all A/E 

pathogens where it becomes inserted into the host plasma membrane in a hairpin like 

conformation, via two transmembrane domains (TMDs), resulting in the central 

extracellular (Intimin-binding) domain with both terminal domains exposed to the host 

cytoplasm (Kenny, 1999, de Grado et al., 1999). The insertion mechanism is 

controversial with studies from our group supporting insertion from the host cytoplasm. 

Thus, an initial immunoblot-based study linked Tir insertion to a number of kinase-

modified intermediates with the first, T’ (due to phosphorylation on a serine residue 

leading to a 5kDa increase in apparent molecular mass) followed by further 

modification to the T’’ form (due to phosphorylation on another serine increasing an 

apparent molecular mass by another of an 2kDa) linked to insertion and Intimin binding 

(Kenny, 1999, Warawa & Kenny, 2001). Tir also undergoes host kinase modification 

on tyrosine residues (without altering apparent molecular mass) linked to subversive 

activities inducing Intimin-dependent recruitment of the Arp2/3 actin nucleating 

machinery to generate pedestal-like structures beneath the adherent bacteria (Lai et 

al., 2013, Campellone et al., 2002, Rohatgi et al., 2001, Gruenheid et al., 2001). In 

contrast, Gauthier (2000) argues for insertion into the host cell membrane during the 

translocation process, presumably via an EspB/D pore, with detection of Tir in the host 

cytoplasm suggested to be due to overloading of the translocation system (Gauthier et 

al., 2000). However, time course studies revealed the Tir T’ form in the cytoplasm prior 

to T” in the membrane, arguing for a cytoplasmic intermediate (Kenny, 1999). In 

addition, introducing Tir into host cells by three different EPEC-independent 

mechanisms i.e i) transfection, ii) adding purified Tir to detergent permeabilized host 

cells or iii) delivering Tir  by the T3SS of another pathogen (Yersinia 

pseudotuberculosis), led to an only partially modified Tir form (T’) which was unable to 

interact with Intimin (Kenny & Warawa, 2001). This defect in Tir modification could not 

be restored by co-infection with EPEC missing only one effector, Tir, suggesting that 

other factors had to be co-expressed and/or delivered with Tir to aid T’ to T” 

modification and insertion into the host cells membrane in a conformation that could 

be bound by Intimin (Kenny & Warawa, 2001). In contrast, confocal microscopy 

examination of EPEC infected red blood cells (RBCs) was suggested to support direct 

insertion of Tir into the RBC plasma membrane (Shaw et al., 2002). Surprisingly, Tir 
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has also been reported to be integrated into host cells membrane in a T3SS-

independent manner (Michgehl et al., 2006). Interestingly, this form was detected first 

in the host cytoplasm before the host cell membrane, supporting the cytoplasmic 

insertion hypothesis. Crucially, the indirect insertion of Tir into the host cell’s membrane 

is also supported via a transfection study which demonstrated the ability of Tir to insert 

into the host membrane from the host cytoplasm as Intimin was shown to interact with 

Tir and trigger pedestal formation in a small percentage of cells.  Moreover, targeting 

Tir to the membrane by replacing the N- terminal domain with a type II transmembrane 

protein led to increased levels of Intimin-Tir interaction (Campellone et al., 2004a) and 

presumably Tir insertion, suggesting other factors are needed to aid its insertion.    

  Importantly, the cytoplasmic insertion mechanism was also supported by the confocal 

microscopy studies with cultured enterocytes (mimic of EPEC’s in vivo target), which 

detected a transient pool of Tir within the host cytoplasm prior to sequestration to the 

apical membrane (Ruchaud-Sparagano et al., 2011). This pool was evident for a 

longer time with cells infected with an Intimin-deficient strain, suggesting that Intimin 

interaction with non-Tir independent receptors, including β-integrin and nucleolin 

(Frankel et al., 1996, Sinclair et al., 2006) triggers Tir recruitment from the cytoplasm 

to the host membrane.  

  Finally, in vitro biophysical studies, using a mimic of the human erythrocyte inner 

leaflet revealed that Tir can be inserted into the host membrane in hairpin like structure 

following Tir exposure to the erythrocyte inner leaflet (Race et al., 2006), supporting 

the idea that EPEC Tir is inserted into the membrane from the host cytoplasm. Factors 

needed for Tir insertion into the host plasma membrane appear to be LEE encoded as 

introduction of the EPEC E2348/69 LEE region into non-pathogenic E.coli provides the 

capacity to produce actin-rich pedestals (McDaniel & Kaper, 1997), a process 

dependent on membrane insertion linked to modification of Tir on serine and tyrosine 

residues 

  We hypothesise that the LEE region encodes T3SS-dependent factors that 

need to be co-delivered with Tir to enable the T’ to T’’ modification process leading to 

Tir insertion into the host membrane to provide a receptor for Intimin. 
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3.2  Aim 

The aim of experiments described in this chapter was to investigate roles for known 

LEE-encoded T3SS effectors (Map, EspB, EspF, EspH, EspG, EspZ) and/or 

translocator (EspA, EspD, EspB) proteins in the Tir T’ to T’’ modification/plasma 

membrane insertion processes.  
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3.3  Results 

3.3.1 LEE region sufficiency for Tir functionality  

Firstly, we wanted to confirm (McDaniel & Kaper, 1997) that the LEE region encodes 

all the factors needed to deliver a functional Tir molecule into mammalian cells and to 

interrogate the prediction of Tir modification to T’/T’’ forms. Thus, infection studies were 

undertaken with available non-pathogenic E.coli (K12) strains, TOB01 and TOB02  

(Yen et al., 2010). TOB01 carries a plasmid (pBFP_Per) encoding the BFP pilus 

targeting EPEC to enterocytes (Giron et al., 1991) and Per promotes LEE gene 

expression operons from another EPEC strain B171(Mellies et al., 1999, Mellies et al., 

2007). TOB01 also carries an ‘empty’ (no cloned fragment) plasmid with TOB02 

identical to TOB01 except that the EPEC B171 LEE region is cloned into this second 

plasmid (Yen et al., 2010). Infection studies also included EPEC E2348/69 TOE-A7 

mutant strain that lacks genes for 14 non-LEE-encoded effectors (Yen et al., 2010). 

Therefore, Hela cells were left uninfected or infected with the various strains before 

isolating Triton X-100 soluble (contains host cytoplasm and membrane proteins plus 

delivered effectors) and insoluble (contains host nuclei and cytoskeletal proteins plus 

adherent bacterial proteins) fractions for Western blot analysis as previously described 

(Kenny & Warawa, 2001). 

 

As reported (Kenny, 1999), Tir was delivered by EPEC as evidenced by T’/T” forms in 

the soluble fraction and, due to its interaction with Intimin (Kenny, 1999), the T’’ form 

in the insoluble fraction (Figure 16). Similarly, TOE-A7 delivered Tir into the host cells 

which was modified to a T”-like form and detected in both soluble and, again due its 

interaction with Intimin, insoluble fraction. By contrast, Tir was absent from uninfected 

and TOB01 (LEE-negative)-infected cells (Figure 16). However, TOB02 behaved like 

EPEC (Figure 16) thereby confirming (McDaniel & Kaper, 1997) that the LEE region 

encodes all the information needed for Tir delivery, modification to T’/T” forms and 

insertion into the host cell membrane for Intimin binding.  
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3.3.2 Yersinia enterocolitica-delivered Tir is only partially modified by host kinases 

and does not interact with Intimin  

Having demonstrated LEE sufficiency for Tir delivery, Kinase modification to T’/T” 

forms and Intimin binding, we wished to explore whether the known LEE-encoded 

effectors (EspG, Map, EspF, EspH, EspZ, EspB), individually or collectively, aid the Tir 

modification and/or membrane insertion processes. These studies took advantage of 

the fact that another T3SS-expressing pathogen, Yersinia pseudotuberculosis 

(engineered to lack most Yersinia T3SS effectors), can express and deliver Tir into 

host cells in a manner greatly promoted by co-expressing the Tir chaperone, CesT 

(Kenny & Warawa, 2001). Thus, we wished to introduce additional LEE effector-

encoding plasmids, but this strategy was hindered by the engineering-associated 

introduction of antibiotic resistance genes (Hakansson et al., 1996). Therefore, studies 

interrogated if an available Yersinia enterocolitica strain, also engineered to lack most 

Yersinia T3SS effectors but without introducing antibiotic resistance genes (Cornelis 

et al., 1986), hereafter called Y/ent, could also deliver Tir. Thus, a plasmid encoding 

Tir, CesT and Intimin (p-tir-cesT-Int) was introduced into Y/ent for infection of HeLa 

cells alongside EPEC and Y/ent strains. Western blot analysis of isolated Triton X-100 

soluble and insoluble fractions for Tir revealed that, as reported, EPEC delivered Tir 

Figure 16: The LEE region encodes sufficient information to enable Tir delivery, modification 

and insertion into the host plasma membrane for Intimin binding. HeLa cells were left uninfected 

or infected with indicated strains prior to isolating Triton X-100 soluble (contains host cytoplasm and 

membrane plus delivered effector proteins) and insoluble (contains host nuclei and cytoskeletal 

proteins plus adherent bacterial proteins) fractions for western blot analysis to probe for Tir. The 

position of unmodified (T
o
) and host kinase modified (T’/T”) Tir forms are indicated (arrows). Strains 

used were EPEC, TOE-A7 (lacks 14 Nle effectors) mutant and non-pathogenic E.coli K12 strains 

carrying plasmids encoding EPEC BFP/Per operons (TOB01) or BFP/Per/LEE operons (TOB02) from 

the EPEC strain B171. BFP encodes an adhesin (Bundle Forming Pilus; BFP) while Per provides a 

positive regulator of LEE gene expression. 
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as evidence by T’/T” forms in the soluble fraction with T” form in the insoluble fraction 

(Figure 17). As expected, no Tir-related bands are evident in fractions from the Y/ent-

infected cells (Figure 17) whereas only one Tir modified form (T’) was evident in the 

soluble (not insoluble) fractions of cells infected with the plasmid, p-tir-cesT-Int,  

carrying Y/ent strain (Figure 17). This data demonstrates that Yersinia enterocolitica 

can, like Yersinia pseudotuberculosis (Kenny & Warawa, 2001), deliver Tir into Hela 

cells where it only undergoes partial modification (to T’-like form) and, apparently, is 

not able to interact with Intimin in a manner that leads to its migration into the insoluble 

fraction.  

A possible reason for the Yersinia-delivered Tir T’ form not migrating into the insoluble 

fraction could be a defect in Intimin expression or presentation on the Yersinia surface 

in a conformation that can bind Tir. To examine this possibility, a two-wave infection 

protocol was carried out in which cells were initially infected with the Intimin-deficient 

strain (eae) which delivers Tir (Kenny et al., 1997b), followed by a second-wave 

infection with Y/ent or Y/ent carrying the Intimin-encoding plasmid. As expected, both 

EPEC and the eae mutant delivered Tir which was modified to the T’/T” forms (Figure 

18) with the T’’ form only detected in the insoluble fraction of cells pre-infected with 

EPEC, not the eae mutant (doesn’t express Intimin), strains (Figure 18). Importantly, 

subsequent infection of cells pre-infected with the eae mutant was linked to the T” form 

migrating into the insoluble fraction but only when infecting with the Y/ent strain which 

carried the Intimin-expressed plasmid (Figure 18). This result reveals that Y/ent cannot 

only express Intimin but presents it on the Yersinia surface in a conformation that can 

interact with plasma membrane-inserted Tir. Moreover, the work supports the idea 

(Kenny & Warawa, 2001) that the Yersinia-delivered partially modified (T’) Tir form is 

not inserted in the plasma membrane or is not in a conformation that can stably interact 

with Intimin. 
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Figure 17: Tir is only partially modified following delivery into Hela cells by a Yersinia 

enterocolitica (Y/ent) strain that lacks most Yersinia T3SS effectors. HeLa cell were 

infected with indicated strains prior to isolating Triton X-100 soluble (contains host cytoplasm 

and membrane proteins plus delivered effector proteins) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) fractions for western blot analysis to probe 

for Tir. The positions of unmodified (To) and modified (T’ and T”) Tir forms are indicated (arrows). 

Strains used were EPEC, Yersinia enterocolitica lacking most T3SS effectors (Y/ent) or Y/ent 

carrying a plasmid encodes Tir, the Tir chaperone CesT and Intimin (p-tir-cesT-Int)   

 

 

Figure 18: Yersinia enterocolitica present Intimin on its surface in a conformation that 

can bind fully modified, membrane-inserted, Tir. HeLa cell were infected with EPEC or 

Intimin-deficient (eae) strains for 3hr before gentamycin-killing bacteria and infecting with a 

Yersinia enterocolitica that lacks most Yersinia effectors (Y/ent) or Y/ent carrying the plasmid p-

tir-cesT-Int (encodes Tir, the Tir chaperone CesT and Intimin). Triton X-100 soluble (contains 

host cytoplasm and membrane proteins plus delivered effector proteins) and insoluble (contains 

host nuclei and cytoskeletal proteins plus adherent bacterial proteins) fractions were isolated for 

western blot analysis probing Tir. The positions of unmodified (To) and modified (T’/T”) Tir forms 

are indicated (arrows). 
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3.3.3 Co-expression of LEE effectors with Tir in Yersinia enterocolitica inhibits Tir 

delivery into HeLa cells 

Having developed a model in which Yersinia expresses Intimin on its surface and 

delivers Tir into HeLa cells where it only undergoes partial modification, we wanted to 

co-express LEE effectors - initially individually - to determine whether any would 

promote modification to the T’’ (Intimin-interacting) form. To enable detection, these 

studies would use available plasmids (See Chapter 2; Table 5) encoding effectors with 

C-terminal epitope (HA, HSV or Flag) tags. It is important to note that EspF has a 

dedicated chaperone, CesF (Elliott et al., 2002) – required for efficient Yersinia 

mediated delivery into Hela cells (A. Al-Layla, unpublished)  -  EspB has two (CesAB, 

CesD) chaperones (Wainwright & Kaper, 1998) while Map, EspH and EspZ share the 

Tir chaperone, CesT  (Thomas et al., 2005) with EspG having no known chaperone 

(Thomas et al., 2005). Thus, initial studies focused on the Map, EspH and EspZ 

effectors - as they share the Tir chaperone - leading to the introduction of the 

appropriate plasmids into the Y/ent p-tir-cesT-Int (encode Tir, CesT and Intimin) strain. 

Western blot analysis of the insoluble fraction - containing adherent bacteria - from 

infected Hela cells revealed a strong signal for a HA-related protein of the expected 

molecular mass for Map-HA (Figure 19A) with weak signal for EspH-HA (Figure 19A) 

and EspZ-HA (not shown; not captured on shown gel due to small, ~10kDa, molecular 

mass). However, only one protein (Map-HA) was evident, at very low levels, in the 

soluble fraction (Figure 19A). Probing for Tir, in two independent experiments (Figure 

19A and 19B), was suggestive of reduced Tir expression when the strain carried a 

second plasmid (encoding HA-tagged effector) and failure to deliver Tir into cells 

(absence of T’ form). Given this outcome it was decided to cease with this approach.  
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Figure 19: Co-expressing Tir with other LEE effectors in Yersinia enterocolitica interferes 

with the Tir delivery process. HeLa cell were left uninfected or infected (3h) with indicated strains 

before isolating Triton X-100 soluble (contains host cytoplasm and membrane proteins plus 

delivered effector proteins) and insoluble (contains host nuclei and cytoskeletal proteins plus 

adherent bacterial proteins) fractions for western blot analysis probing for A) HA-tagged and Tir or 

B) Tir protein. The position of unmodified (To) and host kinase modified Tir (T’/T”) forms are 

indicated as are HA-tagged proteins (arrows). Strains used were EPEC, Yersinia enterocolitica 

lacking genes encoding most Yersinia effectors (Y/ent) carrying p-tir-cesT-Int  or, in some cases, 

an additional plasmid (encoding LEE Map [pSK-map-HA], EspH [pSK-espH-HA]or EspZ [pSK-

espZ-HA] effectors as HA fusion proteins). Boxes highlight position of weak HA-related bands. 
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3.3.4  Tir does not require Intimin, Map, EspG, EspH, EspF or EspZ activities for host 

kinase modification to T’’ form. 

As an alternative strategy to interrogate roles for LEE effector activity in the Tir 

modification process, a strain unable to express all known LEE effectors, except EspB 

as it is critical for delivering effector proteins (Kenny et al., 1996, Foubister et al., 1994), 

was generated (See Chapter 2; Table1). The Intimin gene (eae) was also inactivated 

as Intimin can alter cellular processes through binding Tir and host receptors, such as 

nucleolin (Kenny et al., 1997b, Sinclair & O'Brien, 2002). The generation of this multi-

mutant, mfz(81)go3eh::km, was supported by PCR analyses (Figure 20) before using it, 

alongside EPEC, to infect HeLa cells. Western blot analysis of isolated fractions 

revealed both strains capable of Tir delivry as evidenced by T’/T’’ forms in the soluble 

fraction with T” form in the insoluble fraction of cells infected with EPEC but, as 

expected, not the Intimin-deficient mfz(81)go3eh::km strain (Figure 21). Strain genotype 

was further supported by the presence (EPEC) and absence (mfz(81)go3eh::km) of the 

EspF protein (Figure 21). Examining intermediate strains - mfz(km)go3 (generated by 

Sabine Quitard), mfz(81)go3, mfz(81)go3e (See Chapter 2; Table1) - revealed near 

identical results except that the T” form was absent from insoluble fractions of cells 

infected with Intimin-deficient strains and, as before, no strain expressed/delivered 

EspF (data not shown). This work demonstrates that Tir delivery and modification to 

the T’’ form does not require the activity of the Intimin surface protein or five LEE 

effectors (EspG, EspZ, EspH, EspF, Map), implicating a role for i) the remaining known 

effector (EspB), ii) plasma membrane-inserted translocator (EspD , EspB) proteins or 

iii) unknown LEE-encoded effector(s).  
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Figure 20: PCR support of mfz(81)go3eh::km mutant. A) Schematic of EPEC LEE pathogenicity 

islands with inactivated genes circled (red oval). B) PCR reactions were carried out with primers 

sets designed to specifically amplify the tir, map, espF, espZ, espG, eae or espH genes to determine 

presence or absence from strains. PCR reactions included a positive (EPEC) and negative (strain 

known to lack the probed for gene) controls. Mutant strain name written in order genes disrupted 

i.e. m (map), f (espF), z(81) (espZ),  g (espG), o3 (orf3/espG2), e (eae [encodes Intimin]), h::km 

(espH).  ‘z(81)‘ and ‘h::km’ indicate that 81 of 98 EspZ residues are missing with espH gene replaced 

by a kanamycin-encoding gene respectively.  PCR products were run, alongside 2 Log DNA ladder 

marker, on 1% agarose gel containing Gel Red nucleic acid stain. 
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3.3.5 EspB-Myc fusion protein lacking EspB residues 159-218 doesn’t support Tir 

delivery into Hela cells  

The mfz(81)go3eh::km mutant retains one effector, EspB – as it is essential for 

delivering effector proteins (Kenny et al., 1996, Foubister et al., 1994) - but a variant, 

EspB-mid (lacks 60 residues; 159-218), reportedly deliver effectors but can no longer 

efface absorptive microvilli or inhibit phagocytosis (Iizumi et al., 2007). Therefore, we 

decided to interrogate whether replacing EspB with EspB-mid would impact on the Tir 

modification to T’’ process. To exclude possible redundancy with other LEE effectors 

and Intimin activities the espB gene was inactivated - using an available suicide vector 

(Donnenberg & Kaper, 1991) - from mfz(81)go3eh::km generating mfz(81)go3eh::km_b. 

Figure 21: Tir delivered by EPEC lacking Map, EspF, EspZ, EspG, EspG2, EspH effectors 

and Intimin proteins is modified to T’’ form. Hela cells were left uninfected or infected with 

indicated strains (3hr) before isolating Triton X-100 soluble (contains host cytoplasm and 

membrane proteins plus delivered effectors) and insoluble (contains host nuclei and cytoskeletal 

proteins plus adherent bacterial proteins) fractions for western blot analysis probing for Tir, EspB 

or EspF proteins. Strains used were EPEC or the mfz(81)go3eh::km mutant; latter lacks functional 

map (m), espF (f), espZ (z(81)), espG (g), orf3/espG2 (o3), Intimin (e) and espH (h::km) genes. 

Where appropriate, immunoblots were cropped and moved for presentation purposes. The position 

of Tir unmodified (T
o
) and host kinase modified (T’/T”) forms are indicated as well as the positions 

of EspB and EspF proteins. As indicate is the position of molecular weight protein markers. 
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Plasmids encoding EspB or the kindly provided EspB-mid variant (Iizumi et al., 2007) 

were introduced into the mfz(81)go3eh:km_b mutant strain and used to infect HeLa cells 

as before.  

Western blot analysis of samples following a standard 3h infection failed to detect Tir 

in cells infected with the EspB-mid complemented strain - linked to a binding defect - 

leading to extended infection times where a 9h infection was needed to detect Tir 

delivery (not shown). However, 9hr infections resulted in cell detachment/death but 

these phenotypes could be, largely, prevented by replacing the media every 3hr. Thus, 

Hela cells were re-infected with EPEC, cfm or mfz(81)go3eh:km for 6h or with 

mfz(81)go3eh:km_b mutant complemented with EspB (pACYC-espB) or EspB-mid 

(pGEM-espB-mid) for 9h - with 3 hourly media changes -prior to isolating Triton X-100 

soluble and insoluble fractions for Western blot analysis.  

As expected, the T3SS mutant strain expressed Tir with no T’/T’’ kinase-modified forms 

detected in the Triton X-100 soluble or insoluble fractions (Figure 22B). By contrast, 

EPEC infection led to T’/T” forms in the soluble fraction and, due to its interaction with 

Intimin, the T’’ form in the insoluble fraction (Figure 22B). Not surprisingly, a T3SS 

mutant Tir profile was obtained with the espB mutant while introducing a plasmid 

carrying the native espB gene led to an EPEC-like Tir T’/T’’ profile (Figure 22B). 

However, introducing the EspB-mid encoding plasmid resulted in a T3SS mutant like 

Tir profile (Figure 22B). Probing for EspB confirmed its expression by EPEC, but not 

espB mutant, as well as EspB complemented espB mutant strains but, as expected, 

the molecular mass was reduced for EspB-mid variant (Figure 22B). However, the 

reduction in apparent molecular mass was less than expected, as lacks 60 residues 

(~20% of EspB) a protein band with a predicted migration of ~30kDa (versus 37kDa 

for EspB) protein. This difference led to the encoding plasmid being isolated for espB 

gene sequencing which revealed the unexpected presence of a C-terminal myc 

epitope tag revealing that the variant used in co-immunoprecipitation studies (Iizumi et 

al., 2007) was erroneously provided. As it was possible that this epitope tag 

compromises EspB’s translocator functionality, an alternative strategy was undertaken 

to examine the impact of replacing EspB with the EspB-mid variant. Thus, the provided 

suicide vector pCACTUS-∆espB-mid (Iizumi et al., 2007) was used to replace the LEE 

espB gene from EPEC and mfz(81)go3eh::km_b strains. While PCR analysis confirmed 

the presence of espB-mid on the provided vector several attempts to generate the 

required mutant strains were unsuccessful. Thus, we decided to subclone the espB-
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mid gene into a bacterial expression vector for complementation studies with EspB-

deficient strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: The EspB-mid variant does not support Tir delivery into HeLa cells. A) Schematic 

of LEE pathogenicity islands with effector genes, other than tir, and Intimin gene highlighted (red 

ovals). B) Hela cells were infected with indicated strains for 9hr (replacing media every 3 hours 

for EPEC and cfm infected cells) prior to isolating Triton X-100 soluble (contains host cytoplasm 

and membrane proteins plus delivered effectors) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) samples for western blot analysis (10% 

SDS-PA gel) probing for Tir, EspB and EspF. The position of unmodified (T
o
) and host kinase 

modified (T’/T”) forms are indicated as are EspB, EspB-mid, EspF and protein marker bands with 

arrows. Strains used were EPEC, T3SS mutant (cfm), mfz(81)go3eh::km - lacks functional map 

(m), espF (f), espZ (z(81)), espG (g), orf3/espG2 (o3), Intimin (e) and espH (h::km) gene - 

mfz(81)go3eh::km_b as per mfz(81)go3eh::km but also lacks espB gene. Plasmids encoding EspB 

(pACYC-espB) or EspB-mid (pGEM-espB-mid) were introduced into mfz(81)go3eh::km_b mutant. 
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3.3.5.1 Cloning and characterization of the espB-mid gene  

Briefly, the espB-mid gene was amplified from pCACTUS-∆espB-mid for introduction 

into pACYC-184 (pre-digested with restriction enzymes BamHI and SalI) using the 

Gibson Assembly Kit (Figure 23). The resulting recombinant plasmid, pACYC-espB-

mid, was shown to have the correct insert by sequencing which revealed the absence 

of a C-terminal extension and 120bp encoding residues 159 to 218. This plasmid was 

introduced into the mfz(81)go3eh::km_b mutant and used to infect Hela cells.  

As initial investigations failed to identify a binding defect, infections were carried out for 

4h before isolating soluble and insoluble fractions for western blot analysis. Probing for 

EspB supported the expression and delivery of EspB-related proteins by all but not the 

negative control (mfz(81)go3eh::km_b) strain. As expected, the EspB protein in cells 

infected with the EspB-mid complemented strain had a smaller apparent molecular 

mass, consistent with the absence of 60 residues (Figure 24). Crucially, Tir was evident 

in its kinase modified T’ and T’’ forms in the soluble fraction from cells infected with all 

strains except the EspB-negative control (mfz(81)go3eh::km_b) strain (Figure 24). The 

EspB-mid variant may have a reduced capacity to deliver Tir as possibility less T’/T’’ 

forms detected (Figure 24). As expected, the T’’ form was only evident in the insoluble 

fraction of EPEC infected cells (Figure 24) as the EspB-complemented strains do not 

express Intimin. These findings confirm that EspB-mid protein retains its translocation 

activity  with residues 159 to 218 not required for Tir modification to T’’ form. However, 

it remains possible that other EspB regions/motifs are needed for the Tir T’ to T’’ 

modification process. 
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Figure 23: Construction of pACYC-espB-mid. A) The ability of designed oligonucleotides to PCR 

amplify espB (from EPEC as template) and espB-mid gene (from pCACTUS-∆espB-mid) was 

assessed at different annealing temperatures (60, 63, 67Co). B) The expression vector pACYC184 

digested with BamHI and SalI restriction enzymes and run, next to uncut pACYC184, on an agarose 

gel prior to isolating the digested fragment for use with the PCR-generated insert fragment in the 

Gibson Assembly protocol. C) Insertion of PCR fragment into pACYC184 was supported by 

additional bands. D) The ligation product was introduced into NEB chemical competent E.coli and 

colonies PCR-screened, alongside positive (EPEC) and negative (pCACTUS-∆espB-mid) controls, 

for those carrying the insert. E) PCR support for introduction of pACYC-∆espB-mid into 

mfz(81)go3eh::km_b. 
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Figure 24: EspB-mid supports Tir delivery and modification to T” form. HeLa cells were 

infected with indicated strains for 4h before isolating Triton X-100 soluble (contains host cytoplasm 

and membrane proteins plus delivered effectors) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) fractions for western blot analysis probing 

for Tir or EspB proteins. Strains used were EPEC, mfz(81)go3eh:km (doesn’t express 

Map/EspF/EspZ/EspG/EspG2/Intimin/EspH proteins) or mfz(81)go3eh:km_b (as mfz(81)go3eh::km 

but also lacks functional EspB protein) mutants. The latter strain either had no plasmid or carried 

a plasmid encoding EspB (pACYC184-espB) or EspB-mid (pACYC184-espB-mid) proteins. 

Indicated by arrows are the positions of EspB, EspB-mid and Tir (unmodified, T
o
 and host kinase 

modified T’/T” forms) as well as the molecular weight marker proteins.  
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3.3.6 Probing role for other EspB features by examining functionally 

interchangeability with E. tarda homologue. 

Recently a fish pathogen, Edwardsiella tarda (E. tarda), was reported to carry a LEE 

region that, theoretically, encodes a T3SS/Esp effector delivery system but lacks 

genes for all EPEC LEE effectors genes except tir (Nakamura et al., 2013).  However, 

this LEE region also encodes the Tir chaperone, CesT, and Intimin protein suggesting 

that Tir is delivered into the plasma membrane of targeted fish cells to act as a receptor 

for Intimin to promote pathogen-host cell interactions. Tir delivery into the host 

cytoplasm by EPEC is proposed to have (Intimin-independent) functions such as 

interacting with host proteins and/or regulate the activity of co-delivered LEE effectors 

(Dean et al., 2010a, Jepson et al., 2003, Patel et al., 2006, Goosney et al., 2001). Thus, 

the absence of Map, EspF-G and EspZ effector-encoding genes on the E. tarda LEE 

region raised the possibility that E. tarda Tir may be directly inserted into the plasma 

membrane and thus lacks a LEE-encoded Tir ‘cytoplasm to membrane’ insertion 

mechanism. To interrogate this possibility, we requested the E. tarda LEE sequence 

to examine whether the EspB-encoding gene was intact and, if so, the level of 

homology with EPEC EspB.  

3.3.6.1 Divergence of EPEC and E. tarda EspB proteins  

Bioinformatics interrogation of the E. tarda LEE region sequence revealed a 340aa 

EspB-like protein which was, thus, slightly larger than EPEC EspB (321AA). Crucially, 

comparison of the protein homologues revealed low levels of identity/similarity (37.8% 

& 55.7% respectively) with regions of the E. tarda EspB protein containing small in-

frame insertion and deletions (Figure 25). Perhaps not surprisingly there was good 

homology (Figure 25) between i) the N-terminal ~38 residue that provide a T3SS signal 

sequence, ii) N-terminal region linked to providing a regulated (SepL/SepD) 

translocation signal iii) the single transmembrane domain and iv) residues implicated 

in EspB-EspD interaction (Luo & Donnenberg, 2011, Deng et al., 2015). However, it 

should be noted that features i-iii) were linked to insertions or deletions which may 

impact/alter their functionality. Interestingly, the coiled-coil feature linked to protein- 

protein interaction and implicated in EspB’s ability to bind myosin protein to inhibit  

phagocytosis and promote microvilli effacement (Iizumi et al., 2007) is associated to 

insertions (within or flanking) questioning whether these subversive activities are 

preserved in the E. tarda homologue. 
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Examining the EspB proteins (TMpred program) supported the predicted presence of 

a single transmembrane region (residues 97 to 120) with differences in the myosin 

binding region (Figure 26). Given these differences studies investigated whether the 

espBEt gene could functionally replace EPEC espB version and, if so, the impact on 

the tir T’ to T” modification process.   

 

 

 

 

 

 

EPEC-EspB         1 -MNTIDNN-NAAIAVNSVLSSTTDSTSSTTTSTSSISSSLLTDGRVDISK     48 

                      :||:|.: |.|..:|||        :|....|...|..|..|.:|::: 

E.tarda-EspB      1 MINTVDGSANNASGINSV---------NTALGVSPTPSETLPAGALDLNE     41 

 

EPEC             49 LLLEVQKLLREMVTTLQDYLQKQLAQSYDIQKAVFESQNKAIDEKKAGAT     98 

                    |||::|.|||:.:..||:|.|:|:.||:.||:|.|.||:|||:|::.||| 

E.tarda          42 LLLQIQVLLRKALRVLQEYQQQQVGQSFKIQEAAFASQDKAIEERRKGAT     91 

 

EPEC             99 AALIGGAISSVLGILGSFAAINSATKGASDVAQQAASTSAKSIGTVSEAS    148 

                     .|||||.|.|.||:|||||.|..|.:... |..||:..|.|.|.|:... 

E.tarda          92 TALIGGIIGSTLGVLGSFAGITQAREAVK--AGSAAAKIADSTGDVTSEL    139 

 

EPEC            149 TKALAKASEGIADAADDAAGAMQQTIATAAKAASRTSGITDDVATSAQ--    196 

                     .|:.|:.|: :||||.|.|.:.||.::..|...||.|.|.||:|.:.|   

E.tarda         140 AKSTAQLSK-VADAAADTAQSTQQALSRTASITSRASDIADDMAQNTQQA    188 

 

EPEC            197 ---------KASQVAEEAADAAQELAQKAG-----------LLSRFTAAA    226 

                             :|:.|||:|..:...:|..|.           |.||....| 

E.tarda         189 VSRAASLTRRAADVAEDAVTSTAPMAAVANDVASATDDVVELSSRLKCMA    238 

 

EPEC            227 -------GRISGSTPFIVVTSLAEGTKTLPTTISESVKSNHDINEQRAKS    269 

                           ..||.:..||....||:|.|.||.|||..:|.::|:...|||: 

E.tarda         239 ESVTNKFDSISQNGAFIAGVHLAQGVKELPGTISAGLKVSNDLAADRAKN    288 

 

EPEC            270 VENLQASNLDTYKQDVRRAQDDISSRLRDMTTTARDLTDLINRMGQAARL    319 

                    :|:.|..:.:.|:|||:.::|::..||.|:|...|::.|::.|.|||.|: 

E.tarda         289 LEDYQQQSRNIYQQDVQGSKDEVRQRLNDITEVTRNINDILTRQGQAVRI    338 

 

EPEC             320 AG    321 

                     || 

E.tarda          339 AG    340 

Figure 25: Comparison of E. tarda and EPEC EspB proteins.The E. tarda and EPEC EspB 

protein sequences were aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Highlighted 

are the predicted: (in blue) region encoding the T3SS secretion signal, (in yellow) the SepD/Sep-

dependent translocation signal region, (in grey) residues linked EspB-EspD interaction, (in black) 

the transmembrane domain and (in red) the coiled coil region linked to protein-protein interaction 

with bold underlined residues highlighting the myosin binding region. 

 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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Output from TMpred 
 
2 possible models considered, only significant 
TM-segments used 
-----> Slightly prefered model: N-terminus outside 
 1- Strong transmembrane helices, total score: 
2069 
   # from   to      length    score           orientation  
       99    117     (19)       2069                o-i 
------> Alternative model  
1- Strong transmembrane helices, total score: 
2021 
 # from    to       length    score          orientation  
       99    119       (21)      2021                i-o 
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Output from Tmpred 
 
2 possible models considered, only significant 
TM-segments used 
-----> STRONGLY prefered model: N-terminus 
outside 
 1 strong transmembrane helices, total score: 
1864 
# from   to    length   score     orientation  
    93    110   (18)      1864          o-i  
------> Alternative model 
 1 strong transmembrane helices, total score: 
1760 
# from   to     length   score    orientation  
    89    110    (22)      1760          i-o  

Figure 26: Interrogating the presence of transmembrane domain in E. tarda and EPEC EspB proteins.  The EPEC and E. tarda EspB proteins 

sequences were interrogated (http://www.ch.embnet.org/software /TMPRED_form.html) leading to the predicted of one transmembrane domain (residues 

97 to 120). The program requires setting of minimal and maximal hydrophobic helix length, in this case it was 17 and 33 respectively. Solid line is the 

prediction for inside to outside TM helix and interrupted line is the prediction for outside to inside TM helix.  

 Also shown are the positions of the predicted myosin binding region (MBR) and EspB-EspD interaction sites (B/D).  

 

 

http://www.ch.embnet.org/software%20/TMPRED_form.html
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3.3.6.2 Cloning E. tarda espB into pACYC-184 

The E. tarda espB gene (espBEt) was PCR amplified (Figure 27A) using, kindly 

provided, E. tarda genomic DNA, and oligonucleotides (See Chapter 2; Table 2) 

designed to introduce flanking restriction enzyme (BamHI/SalI) sites. The PCR product 

produced a single band of expected size (~1kb) which was ligated into the TOPO TA 

cloning vector (pCR2.1) before introducing into K12 E.coli (Figure 27B and 27C). 

BamHI/SalI restriction enzyme digestion of pCR2.1-espBEt and pACYC184 provided 

the insert (espBEt ~1kB) and pACYC184 (~4kB) vector bands that were ligated together 

prior to introducing into K12 E. coli (Figure 27D-E). The plasmid was isolated with 

generation of pACYC-espBEt supported by restriction digestion and PCR analysis 

(Figure 27F-G). 

3.3.6.3 Functional interchangeability of E.tarda EspB  

To assess the translocator activity of the E. tarda EspB protein, HeLa cells were 

infected with EPEC or espB mutant carrying no plasmid or plasmids encoding EPEC 

or E. tarda EspB proteins prior to isolating Triton X-100 soluble and insoluble fractions 

for Western blot analysis. As expected, EPEC, unlike the espB mutant, delivered Tir 

as evidenced by detection of modified T’/T” forms in the soluble and T” form in the   

insoluble fractions (Figure 28). Crucially, the espB mutant defect was rescued by 

introducing plasmids encoding the EPEC or E. tarda EspB proteins; latter supported 

by antibodies raised against EPEC EspB failing to detect the E. tarda variant (Figure 

28). The delayed and reduced level of Tir (unmodified or modified forms) in fractions 

from cells infected with the E. tarda EspB-expressing strain is suggestive of issues in 

E. tarda EspB protein expression, stability or translocator activity. Nevertheless, this 

work reveals the E. tarda espB gene encodes a protein that can functionally replace 

the translocator activity of the EPEC EspB protein to deliver Tir which then undergoes 

host kinase mediated modification to theT” form that can interact with Intimin.   
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Figure 27: Construction of pACYC-espBEt. A) The E. tarda espB (espBEt) gene was PCR 

amplified providing a single band of expected molecular mass (~1kb). B) The PCR product was 

ligated into TOBO TA cloning vector (pCR-2.1) before introducing into K12 E.coli with (C) pCR-

2.1-espBEt plasmid generation supported by restriction digestion analysis, D & E) The pCR2.1-

espBEt and pACYC184 plasmids were digested with BamHI and SalI restriction enzymes prior to 

isolating the espBEt (~1Kb) and pACYC184 (~4kb) vectors bands for ligation, with success indicate 

by additional bands. F) Generation of pACYC-espBEt was supported by restriction digest analysis 

with G) PCR support for the generation of pACYC-espBEt.  
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Figure 28: The E. tarda EspB protein functionally replaces EPEC EspB to deliver Tir into cells 

where modified to the T” form and interacts with Intimin. Hela cells were infected with indicated 

strains for 3 and/or 6h before isolating Triton X-100 soluble (contains host cytoplasm and membrane 

proteins plus delivered effectors) and insoluble (contains host nuclei and cytoskeletal proteins plus 

adherent bacterial proteins) fractions for western blot analysis probing for Tir and EspB. Strain used 

were EPEC, the ΔespB mutant or ΔespB carrying pACYC184-based plasmids encoding the EPEC 

(pACYC-espB) or E. tarda (pACYC-espBEt) EspB proteins. The position of unmodified (T
o
) and host 

kinase modified (T’/T”) forms are indicated alongside the EspB and protein marker proteins.  

. 
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3.3.6.4 Actin nucleating functionality of Tir delivered via the EspBEt protein  

To interrogate if Tir delivered via the E. tarda EspB protein was functional, studies 

examined for Tir-directed actin nucleation as this event depends on Tir being 

phosphorylated on tyrosine residues and binding Intimin (Kenny, 1999, Rosenshine et 

al., 1996). Thus, HeLa cells were seeded on glass coverslips and infected (4h) prior to 

fixing cells and staining for polymerised actin (Phalloidin-TRITC [Red]) and DNA (host 

and bacterial; DAPI [blue]) as described (Dean & Kenny, 2004). 

 Immunofluorescence microscopy evaluation of fluorescent signals revealed 

that, as reported (Rosenshine et al., 1996, Kenny & Finlay, 1997), EPEC but not the 

espB mutant triggered actin polymerization - i.e. pedestal formation - beneath adherent 

bacteria (Figure 29). Crucially, pedestal formation was also detected for cells infected 

with the espB mutant carrying the EspBEt encoding plasmid. However, the number of 

pedestals was significantly lower in cells infected with espB mutant carrying the 

plasmid encoding EspBEt, in contrast to cells infected with EPEC (Figure 29). This data 

provides further support that the EspBEt protein can functionally replace its EPEC 

homologue to not only deliver Tir into host cells for kinase mediated modification and 

insertion into the plasma membrane but places it in a conformation that can be bound 

by Intimin to trigger subversive signalling activites. Thus, the LEE factor implicated in 

the Tir T’ to T” modification process either depends on i) features conserved in the 

EPEC and E. tarda EspB proteins, ii) other translocator (EspD; EspA) proteins or iii) 

other, unknown, LEE encoded effectors.  
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Figure 29: The E. tarda EspB protein functionally replaces EPEC EspB to enable Tir/Intimin-

dependent pedestal formation. Hela cells (on glass coverslips) were infected with indicated strains 

for 4h before fixing cells and staining for polymerized actin (Phallodin-TRITC [Red]) or DNA (bacterial 

and host [DAPI; Blue]) that was visualized by fluorescence microscopy. Strain used were EPEC, the 

espB mutant or espB carrying pACYC184-espBEt (EspBEt). The scale bar represents 10 μm. 
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3.3.7 Examining functionally interchangeability of E. tarda EspD protein 

Studies were also undertaken to examined the possibility that the host membrane-

inserted EspD translocator could aid Tir T’ to T” modification and/or membrane 

insertion processes. To inform of this process, the E. tarda LEE region was examined 

for an espD gene to determine if predicted to produce a full length protein and its 

homology to EPEC EspD. 

3.3.7.1 Comparison of E. tarda and EPEC EspD proteins 

Alignment of the EspD sequences (Figure 30) revealed a slightly larger E. tarda protein 

(385 versus 380 residues) with 50.9% identity (66.9% similarity) to the EPEC 

homologue. Of note was the presence of in-frame insertions and deletions within the 

N-terminal region. EspD is reportedly the major component of a 6-7 subunit 

EspD/EspB complex in the host membrane which provides a pore (2.5-5nm) – linked 

to EspA via EspD (Ide et al., 2001) - through which effectors are delivered into cells. 

The key features linked to EspD functionality are highlighted in Figure 30 and include 

two predicted transmembrane domains – unlike one for EspB – with N-terminal and C-

terminal coil-coiled, as well as amphipathic regions linked with EspD-EspD interactions 

(Dasanayake et al., 2011, Daniell et al., 2001). The final 12 C-terminal amino acid 

residues of EPEC EspD are essential for its secretion (Deng et al., 2015).  

3.3.7.2 Cloning E. tarda espD into pACYC-184 

To interrogate the functional interchangeability of E. tarda EspD and possible role in 

Tir modification and insertion mechanism, espDEt was cloned and used to complement 

the EspD deficient EPEC strain. Briefly, the espDEt gene (~1.3kB) was amplified from 

kindly provided E. tarda genomic DNA and added to isolated pACYC-184 (~4kB) vector 

band, following digestion with BamHI/SalI restriction enzymes, to generate pACYC-

espDEt using the Gibson Assembly kit (see Chapter 2; Section 2.2.8). The presence of 

pACYC-espDEt in EPEC EspD deficient (∆espD) mutant strain was supported by PCR 

analyses (Figure 31D). 
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EPEC-EspD          1 MLNVNNDIQSV-RSGASAATATSGINQSEVTSALDLQLVKSTAP------     43 

                     |::.|..|.|| .|.|..|.|..|       ::|...::..|.|       

E.tarda-EspD       1 MMDTNLTISSVGPSMALDAVAPGG-------NSLKSSVIPLTQPILQPRA     43 

 

EPEC              44 ----SASWTESTALPTPP--AGHSLVTPSAAEDVLSKLFGGISGEVTSRT     87 

                         .:|...|:.||.||  ..|.:||||||||||.||||||||| .|.: 

E.tarda           44 QVDEGSSSFNSSPLPLPPGSVAHRMVTPSAAEDVLDKLFGGISGE-RSGS     92 

 

EPEC              88 EGTEPQRSTQNASSGYPYLSQVNNVDPQAMMMMATLLSLDASAQRVASMK    137 

                     :.|..........:..|.|::::.|||.|||:|.|.||::.|.|::.|:| 

E.tarda           93 DSTGLFADKGEDKTALPILARLSQVDPIAMMLMVTSLSMETSTQKIGSLK    142 

 

EPEC             138 NSNEIYADGQNKALDNKTLEFKKQLEEQQKAEEKAQKSKIVGQVFGWLGV    187 

                     :||.||||||:|||.:|..||||||||||||||||||||::||||||||| 

E.tarda          143 DSNRIYADGQDKALASKLEEFKKQLEEQQKAEEKAQKSKVLGQVFGWLGV    192 

 

EPEC             188 AATAIAAIFNPALWAVVAISATAMALQTAVDVMGDDAPQALKTAAQAFGG    237 

                     .||||||:||||||.|||||||:||||||||||||.||||||:|||.||| 

E.tarda          193 LATAIAALFNPALWVVVAISATSMALQTAVDVMGDKAPQALKSAAQVFGG    242 

 

EPEC             238 LSLAAGILTAGIGGVSSLISKVGDVANKVGSNIVKVVTTLADTFVDNVAS    287 

                     :|:|||:.|||:|.:||::.....||.|:|..:.|||..:.:.||:|.|: 

E.tarda          243 ISMAAGLATAGVGALSSILKSASSVAQKLGETVTKVVAKVTEKFVENTAA    292 

 

EPEC             288 KISAVANGLTTSSRSIGTTVLNNDAAYYNVLSQVSAFAVENLTRQSEYLS    337 

                     |:.|:|.|||.||:||||||||.:::...:.|..:||:|:||......:. 

E.tarda          293 KVGAIATGLTESSKSIGTTVLNKESSDALIDSLAAAFSVKNLDMNYRLMG    342 

 

EPEC             338 QSAKAELEKATLELQNQANYIQSASQLMSDSARVNIRIVSGRV    380 

                     :|..:.|.:|..|..:...::|..|.:|||:||||.||:.|.. 

E.tarda          343 ESTGSMLRRAADEGNDLVRFLQGTSNVMSDTARVNSRIIRGLA    385 

 
Figure 30: Comparison of E. tarda and EPEC-encoded EspD proteins. E. tarda and EPEC EspD 

protein sequences were aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/).  Highlighted (in 

blue) is the T3SS secretion signal region, (in black) two predicted transmembrane domain, (in red) N 

and C-terminal coiled coil regions (associated with protein-protein interactions) and (in green) an 

amphipathic regions. 

Figure 31: Construction of pACYC-espDEt.  A) The E. tarda espD (espDEt) gene was PCR 

amplified, providing a single band of expected molecular mass (~1.3kb). B) pACYC-184 was digested 

with BamHI and SalI restriction enzymes prior to isolating ~4kb vector bands for C) use with espDEt 

(~1.3Kb) fragment in Gibson Assembly protocol to generate pACYC-espDEt with D) introduction of 

pACYC-espDEt into the EPEC ΔespD mutant supported by PCR.  

 

 



Chapter 3 Results I 

76 
  

3.3.7.3 E. tarda EspD weakly rescues the EPEC ΔespD mutant defect leading to low 

level of Tir modification to T’/T’’ form 

To determine whether EspDEt can functinally replace EPEC EspD’s translocator  

functions, studies examined its ability to rescue the Tir delivery defect of the EPEC 

∆espD mutant strain (Lai et al., 1997). As initial studies revealed a binding defect for 

the ∆espD mutant when carrying the EspDEt encoding plasmid, cells were infected for 

up to 9 hr – replacing the media every 3 hrs, as before – prior to isolating Triton X-100 

soluble and insoluble fractions.  

 

Western blot analysis of the samples confirmed (Kresse et al., 1999, Lai et al., 1997) 

that the ∆espD mutant expresses Tir but can not deliver it into host cells. However, 

unexpectedly, a single band linked to T0 was detected in the soluble fraction of cells 

infected with ∆espD mutant (Figure 32). The detection of this band may be related to 

a cross contamination from bacterial lysis or endocytosis of Tir into such membranous 

compartments. Importantly, this band (T0) was not modified to the T’-like form. In 

contrast, introduction of the EPEC EspD encoding plasmid restores Tir deliver 

(evidenced by detecting the T’/T” forms in the soluble fraction and, due to interaction 

with Intimin, the T” form in the insoluble fraction; Figure 32). Interestingly, introducing 

the EspDEt encoding plasmid restored Tir delivery with only very low levels of modified 

Tir (T’’ form) detected in the soluble (none in insoluble) fraction (Figure 32). Probing 

for EspB revealed similar signals in the soluble and insoluble fractions of cells infected 

with the ∆espD mutant (whether carrying EspD-encoding plasmids or not; Figure 32). 

This work suggests that the E. tarda espD gene encodes a protein that can functional 

replace the translocator activity of EPEC EspD but negative impacts on the process 

that modifies Tir to T’/T” forms and Intimin’s ability to stably interact with modified Tir.   
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Figure 32: E. tarda EspD rescues the EPEC espD mutant defect in delivering Tir linked to a 

defect in Tir modification and Intimin interaction with Tir. HeLa cells were infected for 6 or 9hr 

with indicated strains before isolating Triton X-100 soluble (containing host cytoplasm and 

membrane proteins plus delivered effectors) and insoluble (containing host nuclei and cytoskeletal 

proteins plus adherent bacterial proteins) fractions for western blot analysis probing for Tir and 

EspB. The position of unmodified (T
o
) and host kinase modified (T’/T”) forms are indicated (by 

arrows) as are EspB and protein markers. Strains used were the ∆espD mutant that carried no 

plasmid (-) or plasmids carrying the EPEC (espDEPEC) or E. tarda (espDEt) espD genes. 
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3.3.8 Examining if the E. tarda EspA protein can functionally replace EPEC EspA 

As EspD, unlike EspB, interacts with EspA, studies also examined if the E. tarda EspA 

protein would functionally replace the translocon activity of EPEC EspA. Examining the 

E. tarda LEE sequence identified an espA gene encoding a slightly larger (199 versus 

192 residue) protein with 62% identity (74.5% similarity; Figure 33). Key features linked 

to T3SS secretion and protein functionality are highlighted with, of note, most of 

additional residues reflecting an N-terminal extension (Figure 33).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPEC-EspA          1 -------MDTSTTASVASANASTSTSMAYDLGSMSKDDVIDLFNKLGVFQ     43 

                            :|..:..||........| :.|||.||||.||..||.|:|.|| 

E.tarda-EspA       1 MFLIYRRIDDMSDISVGGGFQVDGT-LGYDLSSMSKADVQALFEKVGAFQ     49 

 

EPEC              44 AAILMFAYMYQAQSDLSIAKFADMNEASKESTTAQKMANLVDAKIADVQS     93 

                     |||::|:.||.|||.::...||:||||||.||.||||.|||||||||||| 

E.tarda           50 AAIMLFSSMYSAQSKMTTKVFAEMNEASKASTEAQKMENLVDAKIADVQS     99 

 

EPEC              94 SSDKNAKAQLPDEVISYINDPRNDITISGID-NINAQLGAGDLQTVKAAI    142 

                     |||||.|.:||.|||.|||||.|:|.|||:. .:...:|||||||||||: 

E.tarda          100 SSDKNTKVKLPQEVIDYINDPSNEIKISGLSVGLTEAMGAGDLQTVKAAL    149 

 

EPEC             143 SAKANNLTTTVNNSQLEIQQMSNTLNLLTSARSDMQSLQYRTISGISLGK    192 

                     .|||||||:.||::||:|||:||||||:||.|||:|||||||||||::|| 

E.tarda          150 GAKANNLTSVVNSNQLQIQQLSNTLNLMTSTRSDLQSLQYRTISGITIGK    199 

Figure 33: Comparison of E. tarda and EPEC EspA proteins.The E. tarda and EPEC EspA protein 

sequences were aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/) with key features 

highlight (in blue) the region linked to the T3SS secretion signal, (in black) transmembrane domain, 

(in red) coiled coil region - critical for EspA filament assembly but not effector translocation (Delahay 

et al., 1999) - and (underlined) alpha-helical regions (I and II) linked to CesA chaperone binding (Yip 

et al., 2005). 
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3.3.8.1 Cloning E.tarda espA into pACYC184 

The same strategy, as described for espDEt, was used to clone espAEt into pACYC-

184 (Figure 34), with introduction of pACYC-espAEt into the EPEC ΔespA mutant 

supported by PCR analysis (Figure 34E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.8.2 Similar phenotyope for ΔespA/pACYC-espAEt and ΔespD/pACYC-espDEt 

strains 

Preliminary studies also revealed a binding defect for the ∆espA mutant when carrying 

the EspAEt encoding plasmid, so infections were carried out for up to 9 hr – replacing 

the media every 3 hrs for control strains – prior to isolating Triton X-100 soluble and 

insoluble fractions.  

 

Western blot analysis confirmed (Kenny et al., 1996) Tir expression but not delivery by 

the ∆espA mutant with plasmid re-introducing the EPEC espA gene resulting in an 

EPEC-like phenotype i.e. similar levels of T’/T” forms in the soluble fraction and, due 

to interaction with Intimin, T’’ form in the insoluble fraction (Figure 35). Interestingly, 

while introducing the espAEt gene carrying plasmid also restored Tir delivery – 

Figure 34: Construction of pACYC-espAEt. A) The E.tarda espA gene was PCR amplified 

as a single band of expected molecular size (~0.8kb) over a range of annealing temperatures. 

B) pACYC-184 was digested with BamHI and SalI restriction enzymes prior to isolating ~4kb 

vector bands for C) use with espAEt (~0.8Kb) PCR fragment in Gibson Assembly protocol to 

generate pACYC-espAEt. PCR analysis supports introduction of espAEt carrying plasmid into 

D) non-pathogenic E.coli and E) EPEC ΔespA mutant.  
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evidenced by only low level of T’’-like form was evident in the soluble fraction (Figure 

35), no T’’ form was evident in the insoluble fraction (Figure 35). However, 

unexpectedly, bands linked to T0 and EspB were detected in the soluble fraction of 

cells infected with ∆espA mutant. The detection of these bands may be related to a 

cross contamination from bacterial lysis or endocytosis of Tir and EspB into such 

membranous compartments. Importantly, this band (T0) was not modified to the T’-like 

form. Probing for EspB in both soluble and insoluble fractions failed to define 

differences to explain the different Tir profiles (Figure 35). This work suggests that the 

E. tarda espA gene encodes a protein that can only weakly functional replace the 

translocator activity of the EPEC EspA protein but, like E tarda EspD, negative impacts 

on the Tir To to T’/T’’ modification process and/or Intimin’s ability to stably interact with 

the Tir T’’ form.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: E.tarda EspA rescues the EPEC ΔespA mutant defect in delivering Tir linked to a 

defect in Tir modification and Intimin interaction with Tir. HeLa cells were infected for 6 and/or 

9hr with indicated strains before isolating Triton X-100 soluble (containing host cytoplasm and 

membrane proteins plus delivered effectors) and insoluble (containing host nuclei and cytoskeletal 

proteins plus adherent bacterial proteins) fractions for western blot analysis probing for Tir and EspB. 

The position of unmodified (T
o
) and host kinase modified (T’/T”) forms are indicated (by arrows) as 

are EspB and protein markers. Strains used were EPEC and ∆espA mutant carrying no plasmid (-) 

or a plasmid carrying the EPEC (espAEPEC) or E. tarda (espAEt) espA genes. This study included two 

∆espA/pACYC-espAEt clones. 
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3.3.8.3 The ΔespA/pACYC-espAEt mutant has a functional Intimin surface protein  

The surprising detection of the Tir T” modified form in the soluble but not insoluble 

fraction of cells infected with the ΔespA mutant carrying pACYC-espAEt questioned 

whether the strain had a functional Intimin protein. To address this possibility, the two-

wave infection protocol was undertaken to determining, as before (Chapter 3; Section 

3.3.2), whether Tir T’’ in cells pre-infected with the Intimin (eae) mutant would migrate 

into the insoluble following a second wave infection with the ΔespA complemented 

strains.  

 

 Western blot analysis of isolated soluble fractions revealed Tir T’’ in the soluble, 

with a little in the insoluble, fraction of cells pre-infected with the eae mutant, with 

subsequent infection by the ΔespA complemented (plasmid carrying espAEt or 

espAEPEC genes) strains clearly increasing the level of Tir T’’ in the insoluble fraction 

(Figure 36). This finding illustrates that the ΔespA mutant has a surface Intimin protein 

which can stably interact with the Tir T’’ form. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 36: ∆espA/pACYC-espAEt strain has Intimin on its surface which can stably interact 

with the Tir T’’ modified form. HeLa cells were infected with the Intimin-deficient (eae) mutant for 

3hr before gentamycin-killing extracellular bacteria and leaving one well uninfected or re-infecting 

with the ∆espA mutant carrying either the pACYC-espAEt or pACYC-espAEPEC plasmids. Post-

infection cells were washed before isolating Triton X-100 soluble (contains host cytoplasm and 

membrane proteins plus delivered effector proteins) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) fractions for western blot analysis (10% SDS-

PA gel), probing for Tir or EspB. The positions of unmodified (To) and modified (T”) forms are indicated 

(by arrows) as are EspB and protein markers. 
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3.3.9 Rescuing the T3SS defect of EPEC ΔespA, ΔespD, ΔespAB and ΔespDB 

mutants by introducing E. tarda region encoding EspA, EspB and EspD 

Given that EspA interacts with EspD, but not EspB, while EspD also interacts with 

EspB (Luo & Donnenberg, 2011) studies investigated the possibility that there are 

species specific interactions between E. tarda and EPEC EspA/EspD proteins for 

maximal T3SS functionality. To test this hypothesis the E. tarda translocator gene 

region  (espADBEt) was PCR amplified and cloned into pACYC184 (Figure 37).  

 

 The resulting plasmid was initially introduced into the EPEC ∆espA and ∆espD 

mutants for infection studies prior to isolating Triton X-100 soluble and insoluble 

fractions. Western blot analysis revealed an EPEC like profile for the plasmid 

complemented strains while the single mutants, as expected, failed to deliver Tir 

(Figure 38). It should be noted that there was not only greater levels of the Tir T” form 

in the soluble fraction but also in the insouble fraction indicative of stable Tir-Intimin 

interaction (Figure 38). Indeed, similar results were obtained when the pACYC-

espADBEt plasmid was introduced into the ∆espAespB and ∆espDespB double 

mutants (Figure 39). An ∆espAespD double and ∆espAespDespB triple mutant was 

not available. Introduction of pACYC-espADBEt was further supported by probing for 

EspB as the antibodies (generated to EPEC EspB) don’t recognise the E. tarda variant 

and thus failed to detect an EspB protein despite plasmid introduction rescuing the 

mutant defect. 
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Figure 37: Construction of pACYC-espADBEt. Schematic of pACYC184 plasmid carrying E. tarda 

espADB gene region with (A-D) agarose gel data illustrating steps in generating and confirming 

plasmid construction/introduction into bacteria. A) PCR amplification, over a range of annealing 

temperatures, of single band with expected size for the espADBEt gene region, B) pACYC184 digestion 

with BamHI and SalI restriction enzymes to isolate ~4Kb vector fragment for C) use with PCR fragment 

in the Gibson Assembly protocol to produce pACYC-espADBEt with D) introduction of pACYC-

espADBEt into E.coli supported by PCR analyses using primers specific to espAEt (lanes labeled A), 

espDEt (lanes labeled D), espBEt (lanes labeled B) and the espADBEt region (lanes labeled F). The 

positive (+ve) and negative (-ve) controls were E. tarda genomic DNA and colony that grew in Cm and 

Tet plates (this indictor for Tet gene was not interrupted by inserted gene) respectively. 
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A) 

 

 

 

 

 

 

 

 

 

 

 

B) 

Figure 38: Rescuing the T3SS defect of EPEC ΔespA and ΔespD mutants by plasmid 

introducing pACYC-espADBEt. HeLa cells were infected 6 or/and 9h with indicated strains prior to 

isolating Triton X-100 soluble (containing host cytoplasm and membrane proteins plus delivered 

effector proteins) and insoluble (containing host nuclei and cytoskeletal proteins plus adherent 

bacterial proteins) fractions for western blot analysis (10% SDS-PA gel) probing for Tir or EspB. The 

position of Tir unmodified (T
o
) and host kinase modified (T’/T”) forms, EspB and protein markers are 

indicated. Strains used were EPEC, ∆espA or ∆espD mutant with mutant strain carrying no plasmid 

(-) or plasmid with espAEPEC, espDEPEC or espADBEt genes  
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Figure 39: Rescuing the T3SS defect of EPEC ΔespAespB and ΔespDespB double mutants 

by plasmid introducing pACYC-espADBEt. HeLa cells were infected 6 or/and 9h with indicated 

strains prior to isolating Triton X-100 soluble (containing host cytoplasm and membrane proteins 

plus delivered effector proteins) and insoluble (containing host nuclei and cytoskeletal proteins plus 

adherent bacterial proteins) fractions for western blot analysis (10% SDS-PA gel) probing for Tir or 

EspB. The position of unmodified (T
o
) and host kinase modified Tir (T’/T”) forms are indicated 

alongside the EspB and protein markers bands. Strains used were EPEC, ∆espAespB (∆espAB) 

or ∆espDespB (∆espDB) double mutants, with double mutants carrying no plasmid (-) or a plasmid 

carrying the espADBEt genes.  
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3.4  Discussion  

In this study, we investigated the hypothesis that Tir modification to the T”-like form 

requires the activity of LEE-encoded effector and/or translocator proteins. Firstly, we 

demonstrated that the LEE region encodes sufficient information for Tir T’ to T’’ 

modification and ruled out critical roles for all classical LEE effectors (Map, EspF, 

EspG, EspH, EspZ) and the Intimin protein. However, the work is suggestive of roles 

for several translocator proteins - EspA and EspD (not EspB which has known effector 

activities) - to enable Intimin interaction with Tir (T’’ form). Furthermore, we illustrated 

that Yersinia enterocolitica, like Yersinia pseudotuberculosis, can deliver Tir into host 

cells where it only undergoes partial modification (to T’-like form) but cannot interact 

with Intimin. Finally, we show (for the first time) that Yersinia can present EPEC Intimin 

on its surface in a conformation that allows it to stably bind plasma membrane-inserted 

Tir, but not the Yersinia delivered Tir T’ form. 

Previous studies with non-pathogenic E. coli carrying the LEE region from either EPEC 

E2348/69 or B171 strains (Yen et al., 2010, McDaniel & Kaper, 1997) reported LEE 

sufficiency to trigger actin nucleation beneath the adherent bacteria; a phenotype 

linked to Intimin interaction with Tir (Kenny & Finlay, 1997).  Thus, this finding implies 

that Tir was delivered, modified, phosphorylated on tyrosine 474 and interacts with 

Intimin (Warawa & Kenny, 2001, Kenny, 1999). However, the Tir modification profile 

was not examined in these previous studies (Yen et al., 2010, McDaniel & Kaper, 

1997). Here we show, for the first time, that the LEE region from EPEC B171 is 

sufficient for Tir delivery and host modification to the T” form. It should be noted that 

these strains carried plasmids encoding an adhesin, BFP, (Giron et al., 1991) and a 

positive regulator of LEE gene expression, Per (Mellies et al., 1999, Mellies et al., 

2007) from the corresponding EPEC LEE-providing strains. While it is possible that 

these factors may promote the Tir modification process, a recent study with non-

pathogenic E. coli  carrying a mini-LEE region - but lacking BFP and Per (Ruano-

Gallego et al., 2015) - triggered Tir/Intimin-mediated actin nucleation beneath the 

adherent bacteria. Our studies with this strain confirmed its actin nucleation capacity 

and demonstrated modification of delivered Tir to the T” form (see Chapter 5; Section 

5.3.10). It is likely that LEE from EPEC E2348/69 (0127:H6) also contains all the factors 

required for Tir modification to T” form. The latter is supported by finding that a strain 

(TOE-A7) lacking most proven (14 of 17) non-LEE effectors delivered Tir which was 

modified to the T’’ form and interacted with Intimin.   
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Furthermore, we not only confirmed that Yersinia (which encodes a T3SS) can deliver 

Tir into the host cells - where it is only partially modified and cannot interact with Intimin 

(Kenny & Finlay, 1997, Warawa & Kenny, 2001) - but also show that a Yersinia 

enterocolitica strain can be used instead of Yersinia pseudotuberculosis. It should be 

noted that these strains lack genes encoding the main Yersinia encoded (Yop) 

effectors. We adapted the Yersinia Tir-delivery model by introducing a plasmid that not 

only encodes for Tir and its chaperone CesT but also Intimin in the hope that Intimin 

would be presented on the Yersinia surface in a manner that can bind to membrane-

inserted Tir T’’ form to aid the screening program. As far as we are aware, we have 

shown for the first time that Yersinia can express and transport Intimin to its surface 

where it can interact with the plasma membrane-inserted Tir T’’ protein.  This finding, 

together with the LEE sufficiency data supports the hypothesis that LEE encoded 

factors are required to be expressed and/or delivered with Tir to enable modification 

from T’ to T” form and insertion into the plasma membrane in a conformation that can 

be stably bound by Intimin. 

The initial strategy to screen for LEE effectors aiding Tir modification by introducing 

plasmids encoding single or multiple LEE effectors into the Tir/CesT/Intimin-expressing 

Yersinia was abandoned as the resulting strains expressed, but no longer delivered 

Tir.  These results are consistent with those of another PhD student (A. Al-Layla; 

unpublished) where introducing two different plasmids into Yersinia sometimes 

negated delivery of the EspF effector. We suggest that introduction of different 

combinations of plasmids and/or expressed cloned gene products stress Yersinia 

leading to activation of regulatory circuits that switch-off its T3SS. Further studies are 

needed to examine this possibility. Nevertheless, the work showed that Yersinia 

enterocolitica can, like Yersinia pseudotuberculosis, express Tir and Intimin with the 

former protein delivered into HeLa cells where modified to the T’-like form while Intimin 

is correctly presented on the Yersinia surface where can stably bind the Tir T” form, 

but not the, Yersinia delivered, T’ form. 

An alternative strategy to define LEE factors aiding Tir modification involved using 

strains lacking multiple LEE genes. This illustrated that the bacterial outer membrane, 

Intimin and the LEE encoded classical effector proteins (EspG, Map, EspF, EspH and 

EspZ) play no obvious roles in the Tir expression, delivery, modification to the T” form 

or insertion into the host cells membrane processes. Moreover, this strategy showed 

that the resulting T” form can interact with the Intimin suggesting that Tir is completely 
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functional in the absence of the other, classical, LEE effectors. These results are 

consistent with a recent study with non-pathogenic E. coli carrying a mini-LEE region, 

from EPEC E2348/69 (Ruano-Gallego et al., 2015) that encodes a functional effector-

delivery system plus Tir, CesT and Intimin proteins but lacks genes for the other 

classical effector proteins (EspG, Map, EspF, EspH and EspZ). Our work has 

confirmed that this Mini-LEE strain delivers Tir into HeLa cells and illustrates, for the 

first time, modification to the T” form (see Chapter 5; Section 5.3.10), supporting non-

essential contributions for Intimin and all classical LEE effectors in the Tir T’ to T” 

modification process. Collectively, this finding argues for a possible role for the non-

classical effector protein, EspB (a translocator), other translocators (EspA; EspD) or 

other T3SS substrates encoded on the mini-LEE region. 

Comparison of attaching and effacing pathogen LEE regions has revealed high 

homology between most T3SS components with more variation among proteins that 

interact with host cells i.e. effectors and translocators (Perna et al., 1998). The mini-

LEE region encodes 26 proteins  (Ruano-Gallego et al., 2015) of which all, but not the 

translocators and Tir, are in the highly homologous family of proteins. This suggests 

that the translocators may aid the T’ to T” Tir modification and/or membrane insertion 

processes. However, it is also possible that there are unrecognised Orf (less than 

scanned for 50AA minimum size) encoding T3SS substrates that mediate and/or 

contribute to the Tir modification processes. The later idea is not implausible as the 

LEE encodes small proteins such as EspZ (98AA), the EscF needle protein (73AA) 

and the EscF chaperone, EscE (72 AA). If such a protein exists, it would be predicted 

to be shared with a low percentage of homology by all A/E pathogens. 

The three translocator proteins (EspB, EspD, EspA) are critical for T3SS functionality 

(Taylor et al., 1998, Kenny et al., 1996, O'Connell et al., 2004) with only one, EspB, 

known to possess effector functions (Taylor et al., 1998, Kodama et al., 2002, Iizumi 

et al., 2007). Crucially, evaluation of these proteins for effector functionality is not 

possible using a gene deletion strategy. However, an EspB (EspB-mid) variant lacking 

60 amino acids was examined as it maintains its T3SS functions but no longer binds 

host myosin proteins to inhibit phagocytosis (Iizumi et al., 2007). Initial studies with the 

provided EspB-mid expressing plasmid failed to rescue the espB mutant defect linked 

to the presence of C-terminal myc taq. This myc-tagged EspB variant was used for co-

immunoprecipitation studies (Iizumi et al., 2007) and presumably blocks the EspB 

translocator activity. A key role for the C-terminal domain in the translocation process 
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is consistent with the non-functionality of EspB following introduction of a GSK tag (13-

amino-acid) after residue 186 or 305 of the 320 residues of EspB protein (Luo & 

Donnenberg, 2011). However, once we made an untagged EspB-mid variant, our 

studies confirmed its ability to restored T3SS functionality to an espB mutant, leading 

to Tir delivery and modification to T” form. However, there was a noticeable reduction 

in the level of Tir T’/T” forms suggesting that EspB-mid may be less capable for 

delivering effectors. The latter has implications on the conclusion that EspB plays an 

important, direct, role in anti-phagocytosis and effacement processes (Iizumi et al., 

2007) as perhaps the observed defect relate to delayed or reduced delivery of 

effectors. 

The possible role for EspB in the Tir modification process was further investigated by 

examining the functional interchangeability with a divergent homologue (37.8% 

identity/55.7% similarity) from a fish pathogen, E tarda FCP503. Crucially, this strain 

carries a LEE region encoding transcriptional regulators, Intimin, T3SS proteins, 

chaperones, translocators and Tir, but not other classical LEE effectors (Nakamura et 

al., 2013). It was postulated that this strain, that lacks other LEE effectors, may insert 

Tir directly into the membrane of fish cells and thus does not to need bestow 

translocators or other proteins with functions to aid Tir membrane insertion from the 

host cytoplasm. However, despite the low level of identity, the E. tarda variant (EspBEt) 

completely restored the capacity of the EPEC EspB deficient mutant to translocate Tir 

into HeLa cells where modified to T” form and stably binds Intimin; latter illustrated by 

detecting pedestal formation (Rosenshine et al., 1996, Kenny, 1999). However, the 

complemented strain appeared to be less capable of delivering Tir and/or promoting 

its modification to the T’/T” forms but whether this reflects issues with EspBEt 

expression, translocation - latter perhaps due to different codon usage, instability 

and/or reduced recognition by EPEC T3SS - or effector functionality differences 

remains to be determined. Interestingly, the EspBEt chaperone, CesAB, is only 35% 

identical to its EPEC homologue (see Chapter 4; Table 8). Interestingly, EspBEt shares 

limited sequence similarity between residues found to be critical to EspB-EspD binding 

(Luo & Donnenberg, 2011) raising the possibility of reduced EspBEt-EPEC EspD 

interactions with an impact on effector (Tir and presumably others) translocation levels. 

Collectively, the work ruled out a key role for the myosin binding region (60 residues) 

and features not conserved with EspBEt in aiding Tir modification to the T’’ form. 

However, it remains possible that EPEC and E tarda EspB proteins share features that 



Chapter 3 Results I 

90 
  

aid the Tir modification process but further studies are needed to investigate this. 

Alternatively, perhaps the Tir modification process is aided by the activity of other 

translocators or undefined T3SS substrates. 

The possible contribution of other translocators (EspD and EspA) in the Tir modification 

process was investigated by examining the functional interchangeability with the E. 

tarda homologues - EspDEt (50.9% identity) and EspAEt (62.0% identity). Interestingly, 

complementing the appropriate EPEC single mutant resulted in very small amount of 

a modified (T”-like) form. However, this Tir species did not appear to interact with 

Intimin questioned whether it is indeed the T” form. While this defect might be due to 

poor expression or stability of EspDEt and/or EspAEt, which does not appear to be the 

case as introducing the EspADBEt operon into the single (or available double; noting 

triple espABD mutant not available) mutants restored Tir delivery with greater level of 

the T” form. This work demonstrated that the EspAEt/EspDEt homologues can 

functionally substitute for their homologues but only when co-expressed. The latter 

finding probably reflects co-divergence of E. tarda EspD and EspA proteins, which are 

known to interact (Luo & Donnenberg, 2011), reducing their ability to work with the 

EPEC homologues. Strain specific differences are supported by the finding that the 

PopB/PopD translocators of P. aeruginosa are inefficient substitutes for Yersinia 

YopB/YopD translocators unless co-expressed with the hydrophilic translocator PcrV 

protein (Frithz-Lindsten et al., 1998). While our data has not found a critical role for 

EspA or EspD proteins in the process that modifies Tir to the T” form, it is suggestive 

of an unexpected role in the Tir-Intimin interaction. Further studies are needed to 

confirm this hypothesis and, if appropriate, shed insight on the mechanism. 
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Chapter 4:  Interrogating the functionality of Edwardsiella 

tarda (E.tarda) type III secretion system  
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4.1  Introduction 

The prototypic EPEC strain E2348/69 modulates cell traits through a syringe-like 

apparatus composed of a type III secretion system (T3SS; Esc and Sep proteins) that 

spans the bacterial envelope with an extension (needle and translocator proteins). The 

Esc/Sep/translocator proteins are encoded on a 35 Kb-pathogenicity island called the 

Locus of Enterocyte Effacement (LEE) alongside genes for transcriptional regulators, 

T3SS substrates (translocator and effector proteins), chaperones (aid T3S substrate 

secretion) and the virulence-critical Intimin outer membrane protein (McDaniel et al., 

1995, Gaytan et al., 2016). LEE encoded regulators include Ler which functions as a 

master positive regulator while, GrlR acts as a negative regulator of LEE gene 

expression and GrlA as a positive regulator (Iyoda et al., 2006). The syringe-like 

apparatus is used to translocate ‘effector’ proteins into mammalian cells of which the 

LEE encodes seven:  EPEC secreted/signalling protein F (EspF), EspG, EspH, EspZ, 

EspB, Translocated intimin receptor (Tir) and Mitochondrial-associated protein (Map) 

(Hueck, 1998, Burkinshaw & Strynadka, 2014). The T3SS/translocator system is 

composed of ~20 proteins that form a basal body, export apparatus (needle, filament 

and translocator pore) with roles for cytoplasm-located components (See Figure 40).  

4.1.1 Type III secretion system components 

4.1.1.1 Export Apparatus   

The export apparatus consists of EscR, EscS, EscT, EscU, and EscV proteins (Figure 

40) predicted to be expressed immediately after T3SS induction with each being 

essential for T3SS functionality (Yerushalmi et al., 2014). EscU has two major domains 

with the N-terminal domain containing four predicted transmembrane regions while the 

cytoplasmic C-terminal domain undergoes auto-cleavage at a conserved amino acid 

sequence (Thomassin et al., 2011). This self-cleavage event is required for efficient 

effector delivery into infected cells (Thomassin et al., 2011). EscU also interacts with 

two components of the basal body (see below) -  EscP ‘ruler’ protein that measures 

the length of the EscF needle and EscI which link inner membrane and outer 

membrane complexes –  with this interaction involved in the switching event from early 

needle (EscI/EscF) to the intermediate translocators (Monjaras Feria et al., 2012). 

EscV, like EscU, has two distinct domains with the N-terminal region possessing eight 

transmembrane helices and a C-terminal cytoplasmic domain that is much larger than 

EscU’s (Gaytan et al., 2016).  
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4.1.1.2 Basal Body 

The basal body is comprised of four main proteins - EscD and EscJ form the inner 

membrane ring (IM) with EscC protein the outer membrane ring (OM) while EscI 

provides a periplasmic inner rod that connects the rings (Figure 40). EscD has a 

putative transmembrane domain at its N terminus (residues 120 to 141) that may 

associate with the inner membrane, while a segment of EscD is located in the 

periplasm interacts with EscC (Ogino et al., 2006). By contrast, EscJ has a sec-

dependent signal sequence and interacts with the needle protein, EscF (Crepin et al., 

2005, Ogino et al., 2006). EscC has two distinct domains with the N-terminal and C-

terminal regions in the periplasm and outer membrane respectively (Figure 40) 

(Gauthier et al., 2003). In addition, EscC has been shown to interact with both the EscF 

Figure 40: Schematic of EPEC injectisome. The basal body of the T3SS is composed of the inner 

(EscD and EscJ) and outer (EscC) ring proteins, the export apparatus (EscRSTUV) which connects 

the inner and outer membrane ring structures, the cytoplasmic components (EscN, EscL & EscO) and 

C-ring plate sorting platform (EscQ, EscK & EscL). EscF forms the needle which is extended by 

polymerisation of the EspA translocation protein and tipped by two other translocator (EspB and EspD) 

protein that can insert in the host cell plasma membrane to form a pore and complete the effector-

delivery conduit. ATPase EscN provides the energy to the system, while SepD and SepL act as a 

molecular switch. Adapted from (Romo-Castillo et al., 2014) 
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needle protein and EscD and with one of the ATPase complex components, EscO 

(Creasey et al., 2003a, Ogino et al., 2006, Sal-Man et al., 2012a). EscC, EscD, and 

EscJ are required for the secretion of effector proteins (Ogino et al., 2006). 

 

4.1.1.3 Cytoplasmic Components 

There are five essential cytosolic proteins of which three (EscN, EscL, EscO) form an 

ATPase complex (Figure 40) critical for T3SS functionality (Romo-Castillo et al., 2014). 

EscN is an ATPase, and potential source of energy, localized to the inner leaflet of the 

bacterial cytoplasmic membrane where it energizes the release of chaperones from 

effectors for subsequent secretion (Gauthier & Finlay, 2003). EscN interacts with a 

negative regulator, EscL (previously Orf5) (Figure 40), which can inhibit ATPase 

activity. The formation of an EscN/EscL/EscO complex promotes a conformational 

change that allows EscO to promote EscN oligomerization and stimulates EscN 

ATPase activity (Romo-Castillo et al., 2014). EscO (previously Orf15 or EscA) is 

localized in the periplasm and associated with the inner membrane to interact with the 

outer membrane OM ring membrane protein EscC (Sal-Man et al., 2012a) and also 

interacts with the chaperones CesA2 (EscG) and CesL (Mpc) (Lin et al., 2014). The 

ATPase complex components EscN, EscL and EscO interact with EscQ (previously 

SepQ) – a cytoplasmic protein that interacts with EscL and EscK (formerly Orf4) to 

form a sorting platform. The latter platform acts with chaperones and molecular switch 

(SepL and SepD) proteins to control the correct hierarchy of substrate (early 

[EscI/EscF], intermediate [translocators] and late [effectors]) secretion (Lara-Tejero et 

al., 2011, Soto et al., 2017). 

 

4.1.1.4 Extracellular Appendage 

The extracellular appendage structure is comprised of the needle protein (EscF), an 

extension filament (EspA) and pore-forming proteins (EspD and EspB) that connects 

the bacterial cytoplasm to host cytoplasm (Figure 40) to enable the direct delivery of 

effector. In EPEC, the EscF needle length is regulated by the EscP ‘ruler’ protein which 

interacts directly with EscF and measures needle length during the assembly process 

(Journet et al., 2003). The needle extension is an unusual feature of EPEC, and related 

pathogens, through the polymerization of EspA subunits with EspB/EspD proteins at 

the end for insertion to the host plasma membrane to complete the conduit from 

bacterial to host cytoplasm (Figure 40) (Knutton et al., 1998). Each translocator protein 
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is critical for delivery, not extracellular secretion, of effector proteins (Lai et al., 1997, 

Foubister et al., 1994, Kenny et al., 1996).  

 

The hydrophobic translocators, EspB and EspD, interact with both each other and with 

hydrophilic EspA (Luo & Donnenberg, 2011). Upon contact with the epithelial cell, 

EspD is inserted into the plasma membrane of the target cell to form a pore with two 

predicted transmembrane domains (Wachter et al., 1999). EspD has two coiled coil 

motifs in its N-terminal to mediate EspD oligomerization, and can interact with itself 

through a C-terminal coiled- coil domain which is necessary to form a pore (Daniell et 

al., 2001, Wachter et al., 1999). By contrast EspB is predicted to have one 

transmembrane domain with an extracellular location of the EspB N-terminal domain 

and the C-terminal domain exposed to the host cytoplasm to interact with cellular 

signaling pathways that are important in EPEC-induced cytoskeletal reorganization 

(Luo & Donnenberg, 2011, Taylor et al., 1998, Kenny & Finlay, 1995). Indeed, while 

the N-terminal of EspB interacts with the actin-binding protein α-catenin (Kodama et 

al., 2002), the C-terminal has been found to bind host myosin proteins linked to 

subverting host cellular processes, leading to microvilli effacement and EPEC 

phagocytosis inhibition (Iizumi et al., 2007). The pores formed by EspB and EspD are 

composed of six to eight subunits with a minimal pore size of 3–5 nm (Ide et al., 2001). 

However, EspD-EspD interaction forming a pore with an inner diameter of 2.5 nm 

which consist of six to seven subunits (Chatterjee et al., 2015). By contrast, EspB 

seems to play a secondary role in pore formation since espB mutant caused only a 

slight reduction in haemolysis (Shaw et al., 2001) suggesting a critical role for EspD in 

pore formation. The T3SS must traverse both bacterial membranes and the 

peptidoglycan layer. This requires a dedicated peptidoglycan lytic enzyme, EtgA, to 

locally degrade peptidoglycan (Koraimann, 2003). However, the EtgA PG-lytic activity 

is enhanced by interacting with the T3SS inner rod component, EscI, (Burkinshaw et 

al., 2015). 
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4.1.2 Edwardsiella tarda (E.tarda) LEE region 

Recently, a fish pathogen Edwardsiella tarda (E. tarda) was reported to possess a 

LEE-like region (Nakamura et al., 2013). E. tarda, an  enterobacteriaceae family 

member, is a Gram-negative intracellular pathogen of fish and mammals (Mohanty & 

Sahoo, 2007) which can also causes haemorrhagic septicaemia and gastro-intestinal 

infections in humans (John et al., 2012). The ~30kDa LEE pathogenicity island 

apparently encodes 29 proteins (of greater than 50AA) and has homologues in the 

EPEC region (which encodes 41 proteins). The E. tarda genes also fall into five 

operons but the order is different (Figure 41). Interestingly, the ‘missing’ genes encode 

all the EPEC effectors, except Tir and EspB, two chaperones (CesF [substrate EspF] 

and one of two EscF chaperones; EscE]), 2 transcriptional regulators (GrlA; GrlR) and 

a protein of unknown function (rORf1). Thus, the region has genes for Intimin, CesT 

(Tir chaperone), type three secretion system (T3SS), translocators (EspA, EspB and 

EspD), other chaperones (CesA, CesD, and CesD2), master transcriptional regulator 

(Ler) and transglycosylase (EtgA). Indeed, adjacent to the LEE region is a sequence 

encoding another effector and chaperone similar to those encoded by other enteric 

pathogens (Nakamura et al., 2013). Thus, the E. tarda LEE region may encode an 

injectisome that delivers Tir, and other effectors, into host cells with Tir serving as a 

receptor for the Intimin surface protein to promote pathogen-host cell interaction.   

 

 

 

Figure 41: Pathogenicity islands of E. tarda genes were compared with the corresponding 

genes in Escherichia coli O127. Taken from (Nakamura et al., 2013). 
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4.2  Aim 

The aim of work presented in this chapter was to use bioinformatics approaches to 

interrogate the degree of homology and likely functionality of E. tarda LEE genes as a 

possible model for understanding T3SS/translocator functionality in transferring 

effectors into target cells and mechanism of Tir insertion into the plasma membrane. 
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4.3  Results  

4.3.1 Bioinformatics  

4.3.2 E. tarda LEE region has an espZ gene  

The E. tarda LEE DNA sequence was kindly provided by Dr Yoji Nakamura enabling 

bioinformatics to define open reading frames of >50 AA 

(http://nc2.neb.com/NEBcutter2/index.php) for translation to protein sequences and 

comparison to database proteins (https://blast.ncbi.nlm.nih.gov/Blast.cgi). These 

analyses confirmed the absence of genes for homologues of the EPEC LEE EspG, 

EspH, EspF, Map, CesF, GrlA, GrlR and rOrf1 proteins (Table 8) but, surprisingly, 

revealed an EspZ-encoding gene. Interestingly the predicted E. tarda EspZ protein was 

larger (129 versus 98 residues) due, mainly, to N and C-terminal extensions. 

Interestingly, the greatest degree of homology was between the predicted 

transmembrane domains with least homology in the extracellular domain (Figure 42).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Alignment of E. tarda and EPEC EspZ proteins. The E. tarda and EPEC EspZ proteins 

sequences were aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Highlighted in black is the 

extracellular domain with predicted transmembrane domains in yellow.  

 

 

 

EPEC-EspZ          1 ----------------MEAANLS--PSGAVLPLAA--TINGNNPVDEKTG     30 

                                     |....:.  ||.| ||:..  |....|.|    | 

E.tarda-EspZ       1 MLILAALIYDLLEYSAMTTGTIGTLPSNA-LPMRPINTHESTNAV----G     45 

 

EPEC              31 VMQSEG--GTSRSVRILGGVLIGAG---VLAAIGTGIAAMCV---DDPSQ     72 

                     |:.||.  .|||:::|   |.:.:.   ||.||||||||...   .|... 

E.tarda           46 VLNSESSTNTSRTIKI---VTLASSLTLVLGAIGTGIAAKVTGDNGDADS     92 

 

EPEC              73 RLGLGIAAGVLGGVTTVAGGLAMKYA-----------     98 

                     .:.||::|||||.|...||.|....|            

E.tarda           93 SMALGVSAGVLGFVGLGAGVLGSIVAKKLDNNSSNNS    129 

http://nc2.neb.com/NEBcutter2/index.php
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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 Protein EPEC E. tarda Identity    similarity Protein function Reported 

1 rOrf1  Missing   Unknown function  

2 EspG 398aa Missing   Effector  

3 Ler 129aa 129aa 38.6% 54.5% LEE encoded the master regulator   

4 EscE /Orf2 72aa 76aa 35.1% 51.9% Class II chaperone for EscF   

5 CesAB 107aa 104aa 35.3% 54.6% Class II chaperone for EspA & EspB   

6 EscK /Orf4 199aa 121aa 12.6% 21.4% A sorting platform protein   

7 EscL /Orf5 231aa 215aa 27.3% 53.7% A negative regulator that inhibits 
EscN ATPase activity 

  

8 EscR 217aa 218aa 73.4% 88.5% T3SS core proteins (T3SS export 
apparatus) contribute to the 
recruitment and regulation of initial 
insertion of substrates into the 
injectisome. 

  

9 EscS 89aa 89aa 63.0% 82.6%   

10 EscT 258aa 259aa 56.1% 75.6%   

11 EscU 345aa 345aa 58.0% 78.8%   

12 EtgA 152aa 158aa 43.2% 62.3% A peptidoglycan lytic enzyme   

13 grlR  Missing   A negative regulator of LEE gene 
expression 

 

14 grlA  Missing   A  positive regulator of the ler 
expression 

 

15 CesD 151aa 153aa 64.3% 79.9% Class II chaperone for EspD &EspB   

16 EscC 512aa 503aa 64.6% 80.3% T3SS outer membrane ring (IM)    

17 SepD 151aa 143aa 39.6% 63.6% Molecular Switch from 
translocators to effectors 

  

18 EscJ 190aa 179aa 53.1% 72.9% T3SS inner membrane ring (IM)    

19 EscI /Orf8 142aa 130aa 46.9% 
63.3% 

The T3SS inner rod that connect  
OM and IM rings 

  

20 EspZ /SepZ 98aa 129aa 29.9% 38.0% Effector  

21 CesL/Mpc 117aa 107aa 30.1% 42.3% A class I chaperone for SepL   

22 EscV 675aa 674aa 66.3% 79.9% T3SS export apparatus   

23 EscN 466aa 458aa 62.1% 76.4% ATPase complex  T3SS component   

24 EscA/EscO/ 
Orf15 

125aa 122aa 25% 54% AATPase complex component that 
stimulates EscN ATPase activity 

  

25 EscP/Orf16 138aa 103aa 21% 39% Regulate EscI secretion/ Molecular 
ruler/ Molecular Switch (by 
interacting with EscU) 

  

26 SepQ/EscQ 305aa 297aa 21% 44.1% C-ring of T3SS that act as sorting 
platform 

  

27 EspH 168aa Missing   Effector  

28 CesF 120aa Missing   Class IA chaperone that binds EspF  

29 Map 203aa Missing   Effector  

30 Tir 550aa 529aa 24% 36.3% Translocate intimin receptor   

31 CesT 156aa 156aa 60.3% 80.1% Class IB chaperone for Tir effector 
and many LEE/non-LEE effectors  

  

32 Intimin/eae 939aa 1117aa 39.6% 51.6% Extracellular bacterial protein   

33 EscD* 406aa 416aa 43.7% 61.0% The  T3SS inner membrane ring (IM)    

34 SepL* 351aa 343aa 49.3% 74.4% Molecular Switch (gatekeeper)   

35 EspA 192aa 199aa 62.0% 74.5%  
Translocators 

  

36 EspD 380aa 385aa 50.9% 66.9%   

37 EspB 321aa 340aa 37.8% 55.7%   

38 CesD2 135aa 136aa 53.7% 66.9 % Class II chaperone for EspD   

39 EscF 73aa 74aa 67.6% 87.8% T3SS component ( needle protein)   

40 EscG/Orf29/
CesA2 

92aa 89aa 36.8% 56.8% Class III chaperone of the needle 
protein EscF and the filament 
protein EspA 

  

41 EspF 206aa Missing   Effector  

Table 8: Comparison of reported virulence proteins encoded among E. tarda and EPEC LEE 

region. E. tarda and EPEC protein sequences were aligned using the EMBOSS Needle Program 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Rows highlighted in green correspond to the 

missing effectors. While the blue color corresponds to the reported missing protein, red color refers to 

unreported effectors. EscD* is truncated into two proteins EscD1 (157aa) and EscD2 (259aa). SepL* 

is truncated into two proteins SepL1 (125aa) and SepL2 (218aa) where the latter beings with the rare 

codon ATT instead of ATG. 
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4.3.3 Proteins encoded over two adjacent open reading frames  

Comparing the size of predicted E. tarda LEE proteins to their EPEC homologues 

found most to share a similar number of residues with a few notable exceptions (Table 

8) i.e. EscL (146 versus 231 residues), EscD (259 versus 406 residues) and SepL (218 

versus 351 residues). Further interrogation of the escD gene region revealed an escD-

like sequence (escD2) on an adjacent open reading frame, Orf, which if placed in frame 

with the first Orf (escD1) would produce a 416 residue protein sharing good homology, 

over the entire length, with the EPEC homologue, except for a short N-terminal 

extension (Figure 43). Indeed, the ‘fused’ EscD protein shares a similar output with its 

EPEC homologue when probing for transmembrane domains (Figure 44). 

As it is was possible that the two Orfs relate to sequencing errors, oligonucleotides 

were designed to PCR amplify the out-of-frame region which, surprisingly, failed to 

define sequencing errors (Figure 45). This finding suggests that EscD is either non-

functional or, as reported for some T3SS components (Penno et al., 2006), expressed 

from two adjacent open reading frames. The latter is associated with regulating protein 

expression or function with a single polypetide generated by ribosome slippage or 

jumping (Atkins et al., 2016, Penno et al., 2006). However, it is also possible that EscD 

is expressed as two separate polypeptides that can function together and/or 

individually. 

 



Chapter 4 Results II 

101 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: Alignment of E. tarda and EPEC EscD proteins. The E. tarda and EPEC EscD 

proteins were aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). The combined E. tarda 

EscD1 (1 -259AA) and EscD2 (260-449AA) sequence were combined into a single protein.  

 

 

E. tarda-EscD      1 MLTVLSSYFICLLAAIINMRSCDYKIRFLTWPCLSGRELIVPICESFSIG     50 

                                       |.| .|||:.|. ..:..|||.:|: .:.::| 

EPEC-EscD          1 ------------------MLS-SYKIKLLN-GAMRNRELQLPM-GNLTLG     29 

 

E. tarda          51 KNDDSLITYQLENPCLQNFTLSTNDCDGVWLNTPTTCFWINGIQTSNCAD    100 

                     ..|:.::.:.||.. |..|.|...: :||:|.:|.. |||:|..|...|| 

EPEC              30 TEDNDIVYFPLEQG-LNQFLLDIRE-EGVFLLSPVE-FWIDGQPTPYEAD     76 

 

E. tarda         101 SILLPLNQPIDIAGCGFICLLSADQETSLCVSLPKRKKNACHIDKKNIVV    150 

                     . .||:.:.||||||   |.:..|.:.||.:|....:.:|.:..||.::: 

EPEC              77 K-PLPVGKIIDIAGC---CFIIGDIDHSLPLSDVPERFSAKNQRKKRLIL    122 

 

E. tarda         151 ICASLLFLTLSLS-IFAFFIMIS-----CLISREDVYQSCLKKEKLFAIV    194 

                       ||::..|.:|| ....::::|     ...:|.||||. ||:.||.||. 

EPEC             123 --ASVIGATFALSGAIGSYVLLSPKAEPPTFTRADVYQQ-LKENKLHAIT    169 

 

E. tarda         195 CPVWHGSSIALCYGRCEQSSQLQTFFNFLYKNCNIRYINNIICCNDQIIS    244 

                     . ||||.:||| |||||.::.|..|||:| |..||.|.|.|| ||:|||| 

EPEC             170 L-VWHGKNIAL-YGRCESTTDLTPFFNYL-KEKNIFYYNKII-CNNQIIS    215 

 

E. tarda         245 GINDCVLVQYGYDNICDVSYGGSPGFFILSGYIQSPCLQWKKVEGQLCLT    294 

                     .||| ||.:|||.:|. ::.|..||||:||||| .|..:|.:|| .|.|. 

EPEC             216 AIND-VLTEYGYKDII-ITKGNKPGFFLLSGYI-PPSPKWSEVE-NLLLN    261 

 

E. tarda         295 MPGVRGWQCVRNKADAIINCSLVDELSKNKLINKLSIHKRCDKAIIIDGL    344 

                     .|||.||: :.|.::..|| .|..|..||||||.::|.|:.| .||:.|. 

EPEC             262 TPGVAGWE-IHNNSNNKIN-ELASEFKKNKLINYVNIFKKND-VIIVAGE    308 

 

E. tarda         345 VCSAVEEQKIINCIIDRLNNN---KICIFQNIPPYIPKNLFSGKIIRCVS    391 

                     | |...|.||: .||:.:|.|   || :||||.|||..::|.|||:| :| 

EPEC             309 V-SQQNESKIL-AIINAMNKNSNVKI-LFQNIQPYISADIFPGKILR-IS    354 

 

E. tarda         392 GTKNAPMICTLDNGSTLTVCGSALNNGYIICNEISLENGISISRENELIH    441 

                     ||...|.| .||||::|.: ||.|..||:| :.|..::||:|||.:|.|| 

EPEC             355 GTMKNPTI-ALDNGTSLGI-GSILKGGYVI-DAIDPKDGINISRPDEYIH    401 

 

E. tarda         442 ICPISYDK    449 

                     | |:||   

EPEC             402 I-PLSY--    406 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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Output from TMpred 
 
2 possible models considered, only 
significant TM-segments used 
 
-----> STRONGLY prefered model: N 
terminus inside 
 2 strong transmembrane helices, total 
score: 2798 
 # from    to    length   score    orientation 
 1- 120   142   (23)      2220        i-o 
 2- 360   382   (23)      578          o-i 
 
------> Alternative model 
 1 strong transmembrane helices, total 
score: 1975 
 # from    to   length    score    orientation 
 1- 120   141 (22)       1975        o-i  
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Output from TMpred 
 

2 possible models considered, only significant TM-
segments used 
 
 
-----> STRONGLY prefered model: N-terminus 
outside 
 6 strong transmembrane helices, total score: 
7404 
 #   from    to     length     score      orientation 
 1-       1     19     (19)       1873           o-i 
 2-    105   124    (20)       563             i-o 
 3-    148   171    (24)       2623           o-i 
 4-    190   208    (19)       932             i-o  
 5-    262   279    (18)       897             o-i 
 6-    395   422    (28)       516             i-o 
 
------> Alternative model 
 5 strong transmembrane helices, total score: 
6871 
 #    from    to    length    score      orientation 
 1-     1      17     (17)       1903           i-o 
 2-   148   171    (24)       2623           o-i 
 3-   190   208    (19)       932             i-o 
 4-   262   279    (18)       897             o-i 
 5-   395   422    (28)       516             i-o 

Figure 44: The E. tarda and EPEC EscD proteins are predicted to possess one, similarly-located, transmembrane domain.The EPEC EscD and 

E. tarda combined EscD1 (AA 1-259)/EscD2 (AA 260-449) sequence were used to predict transmembrane domains 

(http://www.ch.embnet.org/software/TMPRED_form.html) revealing one in each protein (residues ~120 to 141 in EPEC EscD; ~140 to 160 in combined 

E. tarda EscD protein). The program requires setting of minimal and maximal hydrophobic helix length, in this case it was 17 and 33 respectively. Solid 

line is the prediction for inside to outside TM helix and interrupted line is the prediction for outside to inside TM helix.  

http://www.ch.embnet.org/software/TMPRED_form.html
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Closer examination of the sepL gene region revealed a premature stop codon with 

insertion of a single nucleotide restoring a single Orf for a protein similar in size and 

sequence over its complete length to its EPEC homologue (Figure 46). Indeed, a 

similar finding was evident for escL i.e. addition of extra base restored a single Orf 

encoding a protein of similar size to the EPEC counterpart with good homology over 

the whole protein (Figure 47). 

Figure 45: The E. tarda EscD protein is encoded on two adjacent open reading frames. The E. 

tarda escD gene region sequence is given with start (ATG) and stop (TAA) codons indicated by red 

underlined text. escD1 spans from the first ATG to TAA codon with escD2 from second ATG to TAA 

with intervening 14 bases highlighted by blue lettering. Sequencing data from a PCR-amplified 

fragment confirmed the presence of stop, intervening and start codons between escD1 and escD2.  

 

 

ATGCTAACCGTACTATCAAGCTACTTTATACTATTAGCAGCAATCATCAACATGCGATCTGATTATAAAATAAGATTTCT

GACTTGGCCACTGAGTGGTAGAGAGTTGATTGTACCTATAGAGTCATTTTCTATTGGTAAAAACGATGATAGTCTCATCA

CATACCAACTTGAAAATCCATTGCAAAATTTCACTCTTAGCACTAATGATGATGGTGTTTGGCTAAATACCCCCACTACA

TTTTGGATTAATGGTATTCAGACGTCTAACGCTGATTCAATTTTGCTTCCACTCAATCAACCAATTGATATTGCCGGCTG

CGGATTTATTCTACTTAGCGCAGATCAAGAAACGTCGCTAGTATCATTACCCAAACGAAAAAAAAACGCACATATAGATA

AGAAAAACATTGTAGTAATCGCATCATTGCTATTTTTAACACTTTCTTTATCGATTTTTGCTTTTTTTATATAAAAAAAC

AAGATTCTATGATTAGTCTCATCAGCAGAGAAGACGTTTATCAATCACTAAAAAAAGAAAAGCTTTTTGCTATTGTACCC

GTCTGGCATGGGAGTAGCATTGCTTTATACGGTCGATGCGAGCAATCATCTCAATTGCAGACTTTCTTTAATTTTCTTTA

TAAAAATAACATAAGATATATAAATAATATTATTTGTAATGACCAAATAATCAGTGGAATTAATGATGTTTTAGTTCAGT

ATGGCTATGACAATATAGATGTATCTTATGGTGGTAGCCCCGGATTCTTCATCCTATCGGGTTACATTCAGTCACCGCTA

CAGTGGAAAAAAGTAGAAGGCCAGCTCTTAACTATGCCAGGCGTCAGAGGATGGCAAGTACGAAACAAAGCCGACGCCAT

CATCAATTCATTAGTTGATGAACTATCGAAAAACAAATTAATCAACAAGTTAAGCATTCATAAGCGTGATAAAGCAATAA

TCATTGACGGCTTAGTTTCAGCAGTAGAAGAGCAAAAAATAATAAATATTATCGACAGGCTAAATAACAATAAAATAATT

TTTCAAAATATACCACCCTATATTCCCAAAAACCTATTTTCAGGAAAGATCATCAGAGTGAGTGGAACAAAAAATGCGCC

AATGATTACATTAGATAATGGGAGCACTCTCACTGTCGGCAGCGCCCTAAACAATGGCTACATAATCAACGAAATCAGCC

TAGAAAATGGTATTAGTATCTCGAGGGAAAATGAATTAATCCATATCCCAATCTCTTATGATAAGTAA  

E.tarda-escD   GCATCATTGCTATTTTTAACACTTTCTTTATCGATTTTTGCTTTTTTTATATAAAAAAAC 

Sequencing     GCATCATTGCTATTTTTAACACTTTCTTTATCGATTTTTGCTTTTTTTATATAAAAAAAC 

               ************************************************************ 

 

E.tarda-escD   AAGATTCTATGATTAGTCTCATCAGCAGAGAAGACGTTTATCAATCACTAAAAAAAGAAA 

Sequencing     AAGATTCTATGATTAGTCTCATCAGCAGAGAAGACGTTTATCAATCACTAAAAAAAGAAA 

               ************************************************************ 
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E.tarda-SepL       1 MASGIDFNVSVIPVFNDIN-DFSNK-----QNNNLSLNTPLANMQNELAI     44 

                     ||:||:||.:...|||..: ||..:     |.|:.:.::||.|:|||||: 

EPEC-SepL          1 MANGIEFNQNPASVFNSNSLDFELESQQLTQKNSSNTSSPLINLQNELAM     50 

 

E.tarda           45 INAASMAETAEGISLGFRRPTGRRVEEDGGNDNIINKMQDIINLAGEDAL     94 

                     |.::|::||.||:|||:|:.:.|:.||....:.::|:||:::.|...|.: 

EPEC              51 ITSSSLSETIEGLSLGYRKGSARKEEEGTTIEKLLNEMQELLTLTDSDKI    100 

 

E.tarda           95 QDIALHTAIQLDQHDPQLAMFGAMPKGEIIAINIVPTAFEYDYLSAKKKY    144 

                     ::::|..:..|:||||.|||||.||||||:|:.......::..:..|||| 

EPEC             101 KELSLKNSGLLEQHDPTLAMFGNMPKGEIVALISSLLQSKFVKIELKKKY    150 

 

E.tarda          145 AKLLLELLGEEEWELALLAWLGVGGITHEKLKKIKNLYQKAKDQEDYEGS    194 

                     |||||:||||::||||||:|||||.:..|.::|||.||:||||::...|: 

EPEC             151 AKLLLDLLGEDDWELALLSWLGVGELNQEGIQKIKKLYEKAKDEDSENGA    200 

 

E.tarda          195 TLLTWFLEIKDLPDRDNYLKVIIRALSFELSYLPQVEDRERTSSVITDLY    244 

                     :||.||:||||||:|:.:||||||||||:|||:...||:.||||:|:||. 

EPEC             201 SLLDWFMEIKDLPEREKHLKVIIRALSFDLSYMSSFEDKVRTSSIISDLC    250 

 

E.tarda          245 RIIVFLSLNNYSEIVSLSLKKDADIILSELISTLEQTWLTEEWFAGSPSR    294 

                     |||:|||||||::|:::|:|||.|:||:|::|.:|..||||:|...|||| 

EPEC             251 RIIIFLSLNNYTDIIAISIKKDKDVILNEMLSIIEHVWLTEDWLLESPSR    300 

 

E.tarda          295 VGVIDGQKLYYYHLIKDFYQTLPHSCFMTEEQRESIINGISDVIDRDSE-    343 

                     |.:::.:.:||:||:|:|:.:||.:||:..|||.:.:..|..|||...:  

EPEC             301 VSIVEDKHVYYFHLLKEFFASLPDACFIDNEQRSNTLLMIGKVIDYKEDV    350 

 

E.tarda          344 -    343 

                       

EPEC             351 M    351 

 

 

 

 

 

Figure 46: The E. tarda SepL protein is interrupted by a stop codon. The E. tarda sepL gene 

region sequence is given with start (ATG and, rare, ATT) and stop (TAA) codons indicated by red 

underlined text. A rare start codon (ATT) is part of the premature TAA stop (T in red; AA in black). 

The two SepL-related open reading frames were spliced together for alignment 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/) against the EPEC homologue.  

 

 

ATGGCTTCTGGTATTGATTTTAATGTATCTGTAATTCCAGTGTTTAACGATATAAATGATTTTTCGAATAAACAAAATAA

TAATTTATCGTTAAATACACCATTAGCTAATATGCAAAATGAGTTAGCAATAATCAATGCAGCCTCTATGGCTGAAACGG

CTGAGGGGATCAGCTTAGGGTTCCGTCGACCTACGGGACGTAGGGTGGAGGAAGATGGGGGTAATGATAATATAATCAAT

AAAATGCAAGATATCATTAACTTAGCTGGTGAGGATGCGTTGCAGGATATTGCGTTGCACACCGCTATTCAGCTGGATCA

GCATGACCCCCAGTTGGCGATGTTTGGCGCAATGCCGAAAGGCGAGATTATTGCCATTAATATCGTCCCTACTGCATTTG

AATACGATTACCTTAGCGCAAAAAAAAAGTACGCCAAATTGCTCTTGGAACTACTCGGTGAAGAGGAATGGGAGCTGGCT

TTGCTGGCCTGGTTGGGGGTCGGTGGGATAACGCATGAAAAACTAAAGAAAATAAAAAACCTCTATCAGAAGGCAAAAGA

TCAGGAGGATTATGAAGGAAGTACACTGCTTACATGGTTCTTAGAGATAAAGGATTTGCCTGATAGAGATAACTACCTTA

AAGTAATAATTCGTGCATTGTCATTTGAGCTATCTTATTTACCACAGGTCGAGGATAGAGAAAGAACGTCATCTGTCATT

ACTGATCTGTATAGAATTATAGTTTTTTTATCATTAAATAATTATAGCGAAATAGTTTCTTTATCCTTAAAAAAGGATGC

TGATATTATTCTTAGTGAGCTGATTAGCACGTTGGAACAAACTTGGTTGACCGAAGAGTGGTTTGCGGGGAGTCCAAGCC

GGGTTGGTGTTATTGATGGACAGAAACTATATTATTATCATTTAATAAAAGATTTTTATCAAACGTTGCCCCACTCTTGT

TTTATGACTGAAGAACAGCGAGAAAGTATTATTAATGGTATTTCAGATGTTATAGATAGAGACTCGGAGTAA 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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EPEC EscL          1 MIYFLTDLIKFYCLMKLYEFKNIEIDLVLTEDIIPEDKLQEIIQSDDIIK     50 

                                   ||...::.|::.....:..:...::..:...::.|| 

E.tarda EscL       1 --------------MKTTRYRKIKLSNFNEKKHLSASEISILNIENNNIK     36 

 

EPEC              51 LARKKTYEHLLRARRKSKELKIESRKKIARKMIAMRERIRKNNKIKLDKE    100 

                     .:|:.....||.||:|..::|...|:::|.::...|..|..:.:::.::: 

E.tarda           37 ESRETACNILLSARKKKHQIKANIRRRLAIRLWRYRNNINTHYQMRFNEK     86 

 

EPEC             101 VNQSIKWVKDIQAIELVLMQDIMNKVHLSLTNALHSLDTSSRINWDDLLN    150 

                     :||||:.:.|.|..|..|....:.:..|||:.||..| .:.||:|..:|: 

E.tarda           87 INQSIQLLLDTQNAERYLFLKAIEQAQLSLSRALPEL-LAKRIDWPQILS    135 

 

EPEC             151 EVVRETLSNNNIVGAIKITKNPDIKLDPGEANNIQLINDANTPHNKIIIE    200 

                     |::.:.:..|.:.|.|:||||.::.::. ::.|..:.||:|...:.|::| 

E.tarda          136 EIISDKIKKNKLNGDIEITKNENLIINT-DSINATITNDSNMDIDTIVME    184 

 

EPEC             201 NEYIRITLDPLEQISILLNSFKDNYLSIIQE    231 

                     |:||||||.|.:||...|.:||..|.:::.| 

E.tarda          185 NQYIRITLSPKKQIENALANFKLKYNTLLDE    215 

ATGAAAACAACACGCTACAGAAAAATAAAATTGAGTAATTTTAATGAAAAAAAACACTTAAGCGCCAGTGAGATCAGT

ATATTAAATATTGAAAATAACAACATTAAAGAATCTAGAGAAACAGCATGCAATATATTATTATCAGCAAGAAAAAAG

AAACATCAGATAAAAGCAAACATTCGCAGAAGACTCGCAATTAGACTATGGAGATATCGTAACAATATTAACACGCAT

TATCAAATGAGATTTAATGAAAAAATAAACCAATCCATTCAACTACTACTCGATACTCAGAATGCTGAGCGTTATCTT

TTTCTAAAAGCCATAGAGCAGGCGCAGTTATCATTGAGCCGCGCACTCCCTGAACTTTTGGCTAAACGCATCGACTGG

CCACAAATTCTATCAGAAATAATTAGTGACAAAATTAAAAAAAaCAAGTTAAATGGAGATATAGAAATAACAAAGAAC

GAAAATCTCATAATTAATACAGATAGTATTAATGCAACGATTACTAATGATAGCAACATGGACATCGATACCATAGTA

ATGGAAAATCAATATATAAGAATAACACTATCGCCCAAAAAACAAATAGAAAACGCGTTAGCAAACTTCAAACTAAAA

TATAACACTTTATTAGACGAATAA 

Figure 47: The E. tarda EscL protein is interrupted by a stop codon. The E. tarda escL gene 

region sequence is given highlighting start (ATG) and stop (TAA) codons with red underlined text. 

Indicated is position of added base (underlined) upstream of the premature TAA stop to restore an 

Orf for a full length EscL protein. The protein sequence of the full length EscL and EPEC 

homologues were aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). 

 

 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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4.3.4 The E. tarda escD gene can functionally substitute for EPEC escD 

EscD is required for T3SS apparatus functionality and substrate secretion (Ogino et 

al., 2006). To investigate whether the escDEt region encodes a functional protein 

studies interrogated its ability to functionally replace the EPEC escD gene. Thus, the 

escDEt gene region was PCR amplified, from provided E. tarda genome DNA (kindly 

by Dr Yoji Nakamura), and ligated into the AT cloning vector generating pCR-2.1- 

escDEt. The cloned fragment was excised, by digesting BamHI and SalI restriction 

enzymes (cut at oligonucleotide-introduced restriction enzyme recognition sites 

flanking escD), and ligated in pACYC184 (digested with same restriction enzymes) to 

generate pACYC-escDEt (Figure 48), The presence of the escDEt insert was supported 

by restriction enzyme and PCR analyses (Figure 48). An EPEC escD mutant was 

generated, using kindly provided suicide vector (see Chapter 2; Table 6) before 

introducing, via electroporation, the pACYC-escDEt plasmid (Figure 48).  

To examine if escDEt could functionally replace EPEC escD, HeLa cells were infected 

for 3 and 6h with the escD mutant or two clones of the escD mutant complemented 

with pACYC-escDEt plasmid. Following the infection period, the Triton X-100 soluble 

(containing host cytoplasm and membrane proteins plus delivered effectors) and 

insoluble (containing host nuclei and cytoskeletal proteins plus adherent bacterial 

proteins) fractions were isolated for Western blot analysis. 

Interestingly, the ΔescD complemented strain, unlike the EscD deficient mutant 

(supporting strain genotype), delivered Tir as evidenced by shifts in apparent molecular 

mass (Figure 49); latter due to host kinase modification. This work suggests that the 

E. tarda escD region encodes a functional EscD protein. Importantly, using unique 

restriction sites in the E. tarda DNA to delete most of the escD1 sequence produced a 

plasmid that failed to rescue the EPEC ΔescD mutant defect (not shown). 

A similar approach was undertaken, under my supervision, by undergraduate students 

(Joe Frost and Shaz Malook), to generate pACYC-sepLEt and pACYC-escLEt plasmids 

which both failed to complement the T3SS defect of provided ∆sepL (Monjaras Feria 

et al., 2012) and ∆escL mutants (Soto et al., 2017), respectively, unlike plasmids 

carrying EPEC sepL and escL genes (not shown).  
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Figure 48: Cloning E. tarda escD region into pACYC184 and generating EPEC escD mutant. 

Schematic of pACYC184 plasmid carrying E. tarda escD gene region with (A-G) agarose gel data 

illustrating steps in generating and confirming of pACYC-escDEt  and EPEC escD mutant. A) PCR 

amplification of a single band of expected size for escD1/escD2 gene, B) ligation of PCR fragment into 

AT vector (pCR-2.1), C) PCR support for generating pCR2.1-escDEt, D) restriction enzyme release of 

escDEt  fragment, E)  restriction enzyme digestion support for escDEt  gene insertion into pACYC184, 

F) PCR screening supports generation of EPEC escD mutant [clones 1, 2, 4, 5, 7, 9-11] and G) PCR 

support for introduction of pACYC-escDEt  into EPEC escD mutant.  
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Figure 49: Rescuing the EPEC escD mutant T3SS defect by introducing pACYC-escDEt. HeLa 

cells were left uninfected or infected 3 and/or 6h with indicated strains before isolating Triton X-100 

soluble (containing host cytoplasm and membrane proteins plus delivered effectors) and insoluble 

fractions (containing host nuclei and cytoskeletal proteins plus adherent bacterial proteins) fractions 

for western blot analysis (10% SDS-PAGE) probing for Tir. The position of Tir unmodified (T
o
) and 

host kinase fully modified (T”) forms, as well as protein markers, are indicated. Strains used were 

EscD deficient EPEC (∆escD) or ∆escD complemented with pACYC-escDEt (two clones). 
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4.3.5 The E. tarda eae gene encodes for a larger Intimin protein 

While bioinformatics revealed the E.tarda Intimin-encoding gene (eaeEt) to encode a 

protein with a similar number of residues to the EPEC variant (929 versus 937), blast 

searches revealed an Intimin-like C-terminal domain on an adjacent Orf (not shown). 

To examine the possibility of a frame-shifting sequencing error, the region of interest 

was PCR amplified with the sequencing data revealing an additional base (G; Figure 

50). Adding this base to the E. tarda LEE eae sequence restored a single Orf of 1117 

residues sharing 39.6% identity (51.6% similarity) to the EPEC homologue (Figure 51). 

While the EPEC and EHEC homologues are similar sized and highly homology, the E. 

tarda variant has additional sequences throughout its C-terminal domain helping to 

explain why it shares less homology to the EPEC/EHEC homologues. The cell and Tir 

binding activity of Intimin maps to the C-terminal 280 amino acids (Frankel et al., 1994) 

with E. tarda Intimin sharing 35.7% identity (51.2% similarity) in this region. Four C-

terminal residues (S890, T909, N916 and N927) play critical roles for Intimin binding 

of Tir (Yi et al., 2010) with Cys937 critical for cell binding (Adu-Bobie et al., 1998). 

Interestingly, these residues are relatively well conserved between the homologues 

(Figure 51), suggesting that E. tarda Intimin may be able to bind EPEC Tir.  

 

 

 

 

 

 

 

 

 

E.tarda           83 TGTGACTACGGAGGCTGATGGTACCGCCCGGGTCATTCTGACCAGCGTGA    132 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

Sequenced         59 TGTGACTACGGAGGCTGATGGTACCGCCCGGGTCATTCTGACCAGCGTGA    108 

 

E.tarda          133 CTGCAGGTCAGGCGACCGTGTCCGCCACTACGGC-GGGGGGACGCCAGCG    181 

                     |||||||||||||||||||||||||||||||||| ||||||||||||||| 

Sequenced        109 CTGCAGGTCAGGCGACCGTGTCCGCCACTACGGCGGGGGGGACGCCAGCG    158 

 

E.tarda          182 ACGAAGACGGTGACATTTAACGCGGTTCTGGAGATCACCGGCGTATTGAT    231 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

Sequenced        159 ACGAAGACGGTGACATTTAACGCGGTTCTGGAGATCACCGGCGTATTGAT    208 

 

Figure 50: Sequence error in E. tarda LEE eae gene. The nucleotide sequence of the PCR 

amplified fragment aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/) to the corresponding 

region of the provided E. tarda eae gene sequence revealed a guanine (G) base is missing in the 

provided DNA sequence.  

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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E.tarda      MSEYSFMSGGVLKSKIKNILFFIFI----LLSFVCVAYAGQTNYYTLYQDSKLIPNSNIN 56 

EHEC         MITHGCYTRTRHKHKLKKTLIMLSAGLGLFFYVNQNSFANGENYFKLGSDSKLLTHDS-- 58 

EPEC         MITHGFYARTRHKHKLKKTFIMLSAGLGLFFYVNQNSFANGENYFKLGSDSKLLTHNS-- 58 

             *  :.  :    * *:*: ::::      :: .   ::*   **:.* .****: ...   

 

E.tarda      SGNIIYYTLKKGENAAYIAKKNGISIDAIWSINKSYYSSRQSMLSAGSGDILRLPLKSLG 116 

EHEC         YQNRLFYTLKTGETVADLSKSQDINLSTIWSLNKHLYSSESEMMKAAPGQQIILPLKKLP 118 

EPEC         YQNRLFYTLKTGETVADLSKSQDINLSTIWSLNKHLYSSESEMMKAAPGQQIILPLKKLP 118 

               * ::****.**..* ::*.: *.:.:***:**  ***...*:.*. *: : ****.*  

 

E.tarda      A-LDGLPALGSIEMTDNFQTVRQGMPGERSVL--WQPSEVGSTVSADRLYG-------GR 166 

EHEC         FEYSALPLLGSAPLVAA-----GGVAGHTNKLTKMSPDVTKSNMTDDKALNYAAQQAASL 173 

EPEC         FEYSALPLLGSAPLVAA-----GGVAGHTNKLTKMSPDVTKSNMTDDKALNYAAQQAASL 173 

                ..** ***  :.        *: *. . *   .*. . *.:: *:          .  

 

E.tarda      AQPTSAQTLNGQQTGSMALAMASGQASGALQAWMSQFGTAEVNLQAGNGWDGSSLDWLLP 226 

EHEC         GSQLQSRSLNGDYAKDTALGIAGNQASSQLQAWLQHYGTAEVNLQSGNNFDGSSLDFLLP 233 

EPEC         GSQLQSRSLNGDYAKDTALGIAGNQASSQLQAWLQHYGTAEVNLQSGNNFDGSSLDFLLP 233 

             ..  .:::***: : . **.:*. ***. ****:.::********:** :******:*** 

 

E.tarda      FYDTPAMLAFSQVGARYINSRFTANVGGGQRFFFDHGMVGYNTFIDQDISGNNSRLGVGI 286 

EHEC         FYDSEKMLAFGQVGARYIDSRFTANLGAGQRFFLPANMLGYNVFIDQDFSGDNTRLGIGG 293 

EPEC         FYDSEKMLAFGQVGARYIDSRFTANLGAGQRFFLPENMLGYNVFIDQDFSGDNTRLGIGG 293 

             ***:  ****.*******:******:*.*****:   *:***.*****:**:*:***:*  

E.tarda      EYWRDYLKTSLNTYFRLSGWHQSYDQSDYYERPANGFDLRVNAYLPSYPALGTKLIFEQY 346 

EHEC         EYWRDYFKSSVNGYFRMSGWHESYNKKDYDERPANGFDIRFNGYLPSYPALGAKLIYEQY 353 

EPEC         EYWRDYFKSSVNGYFRMSGWHESYNKKDYDERPANGFDIRFNGYLPSYPALGAKLMYEQY 353 

             ******:*:*:* ***:****:**::.** ********:*.*.*********:**::*** 

 

E.tarda      YGNNVALFDRDSKQSNPSAFTMGVNYTPIPLVTFGADYRLGAGGRNDTLYSLQFNYRFGD 406 

EHEC         YGDNVALFNSDKLQSNPGAATVGVNYTPIPLVTMGIDYRHGTGNENDLLYSMQFRYQFDK 413 

EPEC         YGDNVALFNSDKLQSNPGAATVGVNYTPIPLVTMGIDYRHGTGNENDLLYSMQFRYQFDK 413 

             **:*****: *. ****.* *:***********:* *** *:* .** ***:**.*:* . 

 

E.tarda      SWQQQISPQNVANLRSLQGSRYDLVQRNNNIVLDYKKQDVISLTIPDGMSGLEGTVRSIT 466 

EHEC         SWSQQIEPQYVNELRTLSGSRYDLVQRNNNIILEYKKQDILSLNIPHDINGTEHSTQKIQ 473 

EPEC         PWSQQIEPQYVNELRTLSGSRYDLVQRNNNIILEYKKQDILSLNIPHDINGTERSTQKIQ 473 

              *.***.** * :**:*.*************:*:*****::**.**. :.* * :.:.*  

 

E.TARDA      YSVKSKHAVSRIDWHDVELVRYGGKINKVG----EGYQLEFPKYIKNGNNTYQVNARAID 522 

EHEC         LIVKSKYGLDRIVWDDSALRSQGGQIQHSGSQSAQDYQAILPAYVQGGSNIYKVTARAYD 533 

EPEC         LIVKSKYGLDRIVWDDSALRSQGGQIQHSGSQSAQDYQAILPAYVQGGSNVYKVTARAYD 533 

               ****:.:.** *.*  *   **:*:: *    : **  :* *:: *.* *:*.*** * 

 

E.tarda      SQGNISNVAVLLVTVLSDSGSG-GTIVDTLTANKISAIADGTDEITYTALVQSGGKPQAN 581 

EHEC         RNGNSSNNVQLTITVLSNGQVVDQVGVTDFTADKTSAKADNADTITYTATVKKNGVAQAN 593 

EPEC         RNGNSSNNVLLTITVLSNGQVVDQVGVTDFTADKTSAKADGTEAITYTATVKKNGVAQAN 593 

              :** ** . * :****:.     . *  :**:* ** ** :: ***** *:. *  *** 

 

E.tarda      VDVDFSIQRGVGTLSTVQAKSDAQGRAMVRLTATEVGEVVVAAKTADMSAPLAAAPVNFI 641 

EHEC         VPVSFNIVSGTATLGANSAKTDANGKATVTLKSSTPGQVVVSAKTAEMTSALNASAVIFF 653 

EPEC         VPVSFNIVSGTAVLSANSANTNGSGKATVTLKSDKPGQVVVSAKTAEMTSALNANAVIFV 653 

             * *.*.*  *...*.: .*:::..*:* * *.:   *:***:****:*:: * *  * *. 

 

E.tarda      AGGAIVVHEITADKSTALANGTDAISYTIRVSKNGVSQANTDVDVTTTAGSLSSPRVTTG 701 

EHEC         DQTKASITEIKADKTTAVANGKDAIKYTVKVMKNGQPVNNQSVTFSTNFGMFNGKSQT-- 711 

EPEC         DQTKASITEIKADKTTAVANGQDAITYTVKVMKGDKPVSNQEVTFTTTLGKLSNSTEK-- 711 

                   : **.***:**:*** ***.**::* *      * .* .:*. * :.    .   

 

E.tarda      ADGVATVKLTSNAVANNVIVSAKTAEMTTALDASPVNFVNVEPTVVSSITADKTQALADG 761 

EHEC         ------------------------------------------------------------ 711 

EPEC         ------------------------------------------------------------ 711                                                                 

 

E.tarda      AKTAEMTTALDASPVNFSNNPSVATLTADNEFAVANGTSGVTFTATVMRDGAPAAGIPVT 881 

EHEC         ATVSDG-AEVKATEVT--------------------------FFDE-------------- 755 

EPEC         ARVSDVAVDVKAPEVE--------------------------FFTT-------------- 753 

             * .::  . :.*  *                           *                  

 

E.tarda      FATSGGTLSATDVTTEADGTARVILTSVTAGQATVSATTAGGTPATKTVTFNAVLEITGV 941 

EHEC         ---------------------------LK--------------------IDN-KVDIIG- 766 

EPEC         ---------------------------LT--------------------IDDGNIEIVG- 765 

                                        :.                      :  ::* *  

 

E.tarda      LIPGSGGTSVPSVWLEGGQIQLVVRGGGAGLQYASSAASAT--VNDSGLITLDSAGDATI 999 

EHEC         ---NNVRGELPNIWLQYGQFKLKASGGDGTYSWYSENTSIATVDA-SGKVTLNGKGSVVI 822 

EPEC         ---TGVKGKLPTVWLQYGQVNLKASGGNGKYTWRSANPAIASVDASSGQVTLKEKGTTTI 822 

                     .:*.:**: **.:* . ** .   : *   : :     ** :**.  * ..* 

 

E.tarda      QVTSPEDGQTASYTLNTPAVFVRPEFATQRNYSAARTYCIAQGGALAADQSVLQNVRMLW 1059 

EHEC         KATS-GDKQTVSYTIKAPSYMIK--VDKQAYYADAMSICKNL---LPSTQTVLSDIYDSW     876 

EPEC         SVIS-SDNQTATYTIATPNSLIVPNMSKRVTYNDAVNTCKNFGGKLPSSQNELENVFKAW     881   

             .. *  * **.:**: :*  ::   . .:  *  * . *      * : *. *.::   * 

 

E.tarda      GDANRYPAYAGLVARQAWVEQTPTDIAGGVGKTYDLIRGNPQSNVNVSTANVYAVCIH 1117  

EHEC         GAANKYSHYSSMNSITAWIKQTSSEQRSGVSSTYNLITQNPLPGVNVNTPNVYAVCVE 934 

EPEC         GAANKYEYYKSSQTIISWVQQTAQDAKSGVASTYDLVKQNPLNNIKASESNAYATCVK 939 

             * **:*  * .  :  :*::**  :  .**..**:*:  **   ::..  *.**.*:. 

 

 

 

 

 

Figure 51: E. tarda Intimin shares residues critical for EPEC/EHEC Intimin binding to Tir. E. 

tarda, EPEC (E2348/69) and EHEC (O157:H7) Intimin sequences were aligned 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/) revealing high levels of overall size, 

identity/similarity between EPEC/EHEC homologues with the E.tarda variant having additional 

sequences in the C-terminal region. The N-terminal half shows highest homology to EPEC/EHEC 

homologues. Red boxes highlight important residues in Intimin binding to Tir and host receptors. 

 

 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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4.3.5.1 E. tarda Intimin can bind EPEC Tir triggering its actin nucleation activity  

To interrogate functional interchangeability, the eaeEt gene was PCR amplified, using 

E. tarda genomic DNA as a template, and ligated into pACYC184 (pre-digested with 

BamHI/SalI restriction enzymes) using the Gibson Assembly protocol (see Chapter 2; 

section 2.2.8) generating pACYC-eaeEt (Figure 52). PCR analysis was used to support 

pACYC-eaeEt construction and introduction in the Intimin-deficient (Δeae) mutant 

(Figure 52).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: Cloning E. tarda eae gene into pACYC184 and introduction into EPEC eae mutant. 

Agarose gel data illustrating steps in generating and/or confirming presence of pACYC-eaeEt plasmid 

A) PCR amplification of a single band of expected size of eae gene, B) Digestion of pACYC184 to 

obtained vector fragment for C) use with PCR eae gene fragment in Gibson Assembly protocol to 

generate pACYC-eaeEt, D) supported by PCR detecting the eae fragment in examined clones (#1, 

#3) with E) providing PCR support for a disrupted eae gene in the EPEC eae mutant (4 colonies 

examined) and pACYC-eaeEt introduction into EPEC eae mutant (3, of 4, examined colonies). 
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HeLa cells were then infected to confirm Tir delivery - linked with kinase modification 

to T’’ form - and determine if there was an Intimin-dependent migration of the T’’ form 

into the insoluble fraction. As expected, EPEC and eae mutant delivered Tir which was 

modified to T’’ form and detected in the soluble fraction but only the insoluble fraction 

of cells infected with EPEC, not the eae mutant (Figure 53). However, introducing a 

plasmid carrying the EPEC or E. tarda eae genes rescued this defect (Figure 53). 

Importantly, probing insoluble fractions (contains proteins from adherent bacteria) with 

antibodies raised against EPEC Intimin detected Intimin in samples from cells infected 

with EPEC or eae mutant carrying the plasmid encoding the EPEC, but not E. tarda, 

eae gene (Figure 53). These findings show that the E. tarda eae gene encode a 

functional Intimin protein that can bind the membrane-inserted EPEC Tir effector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53: Rescuing the EPEC eae mutant defect in binding membrane-inserted Tir by 

introducing E. tarda eae gene.  HeLa cells were left uninfected or infected 3 and/or 6h with indicated 

strains before isolating Triton X-100 soluble (containing host cytoplasm and membrane proteins plus 

delivered effectors) and insoluble fractions (containing host nuclei and cytoskeletal proteins plus 

adherent bacterial proteins) fractions for western blot analysis (10% SDS-PA gels) probing for EspB, 

EspF, Tir and/or Intimin. The position of Tir unmodified (T
o
) and host kinase fully modified (T’/T”) 

forms are indicated as well as, Intimin, EspF, EspB and protein markers. Strains used were EPEC, 

Intimin deficient EPEC mutant (eae) or eae mutant complemented with plasmid carrying EPEC 

(eaeEPEC) or E. tarda (eaeEt) eae genes.  
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4.3.6 E. tarda LEE proteins of highest, medium and lowest homology to EPEC 

counterparts 

Interrogating the ‘identify/similarity’ data (Table 8) revealed great variability between 

homologues with 9 proteins (27%) sharing the highest level (60-73% identity); 15 (45%) 

the lowest level (~12-39% identity) with the remaining 8 (24%) intermediate levels 

(~40-59% identity) compared to their corresponding EPEC homologue. 

 Members of the ‘highest level’ homology (60-73% identity) group are four core 

T3SS components (EscR, EscS, EscC, EscV), the needle protein (EscF), ATPase 

(EscN), a chaperone of middle (CesD) and late (CesT) substrates and the translocator 

(EspA) which failed (Chapter 3; section 3.3.8) to functionally replace its EPEC 

homologue, unless co-expressed with E.tarda EspD and EspB (Chapter 3; section 

3.3.9).   

The ‘intermediate level’ homology (40-59% identity) group members are five 

core T3SS components (EscT, EscU, EscJ, EscI, EscD), the peptidoglycan lytic 

enzyme (EtgA), molecular switch protein (SepL), a translocator (EspD) and chaperone 

for a middle (CesD2) substrate. Interestingly, the previous functional interchangeability 

studies included two of these proteins with one (EscD unlike SepL) functionally 

interchangeable for its EPEC homologue.  

The final group (lowest level homology[(12-39% identity)]) contains the master 

regulator (Ler), sorting platform/molecular switch proteins (EscK, EscL, SepD, EscQ), 

chaperones for early (EscG, CesL, EscE) and middle (CesAB, EscA) substrates, ruler 

protein (EscP), a translocator (EspB), two effectors (Tir, EspZ) plus Intimin. Two 

members of this group (EspB and Intimin) have already been shown to functionally 

interchangeable in contrast to the third examined protein, EscL 

 

  

 

 

 

 

 



Chapter 4 Results II 

115 
  

4.3.7 E. tarda Ler protein replaces EPEC Ler regulatory activity  

As it was not feasible to examine the functional interchangeability of all E. tarda LEE 

proteins, studies focused on those proteins in the lowest homology group focusing on 

proteins linked to delivering effectors i.e. Ler, EscK, EscP and Tir.  

The E. tarda ler gene (lerEt) was PCR amplified, using E.tarda genomic DNA as a 

template, and inserted into pACYC184 (pre-digested with BamHI/SalI) using the 

Gibson Assembly protocol (Figure 54). Construction of pACYC-lerEt, and its 

introduction into the provided Ler deficient EPEC, ∆ler (Mellies et al., 2007) was 

supported by PCR analysis (Figure 54) before HeLa cell infection. Western blot 

analysis on isolated Triton X-100 soluble and insoluble fractions confirmed that the ler 

mutant does not express Tir, EspB or EspF proteins (Figure 55) (Yerushalmi et al., 

2008). Crucially, introducing pACYC-lerEt led to Tir, EspB and EspF expression and 

delivery as evidenced by host kinase modification of Tir to T’/T” forms (Figure 55). 

Thus, the E. tarda ler gene encodes a protein which can functionally replace the EPEC 

Ler protein to induce EPEC LEE protein expression and produce a functional effector 

delivery system. 

 

 

 

 

 

Figure 54: Cloning E. tarda ler gene into pACYC184 and introduction into EPEC ler mutant. 

Agarose gel data illustrating steps in generating and/or confirming presence of pACYC-lerEt plasmid A) 

PCR amplification of a single band of expected size of lerEt gene, B) Digestion of pACYC184 to obtained 

vector fragment for C) use with PCR eae gene fragment in Gibson Assembly protocol to generate 

pACYC-lerEt, D) supported by PCR detecting the ler fragment in all examined clones with E) providing 

PCR support for pACYC-lerEt introduction into EPEC ler mutant. 
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Figure 55: The E. tarda ler genes restores the ability of the EPEC ler mutant to express and 

deliver LEE effector proteins. HeLa cells were infected 3 and/or 6h with indicated strains prior to 

isolating Triton X-100 soluble (containing host cytoplasm and membrane proteins plus delivered 

effectors) and insoluble (containing host nuclei and cytoskeletal proteins plus adherent bacterial 

proteins) fractions for western blot analysis (10% SDS-PA gels) probing for Tir, EspB and EspF. The 

position of Tir unmodified (T
o
) and host kinase fully modified (T”) forms and indicated as are the 

EspB, EspF and protein markers. Strains used were EPEC ∆ler mutant and ler mutant carrying the 

pACYC-lerEt plasmid (carries E. tarda ler gene) 
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4.3.8 E.tarda Tir protein lacks key EPEC Tir-related subversive features can be 

delivered by EPEC in a CesT/T3SS-dependent manner without evidence of 

modification to T’’ form. 

While the predicted E. tarda Tir protein is similar in size to EPEC Tir, aligning the 

sequences revealed many unexpected differences (Figure 56) that helps explain the 

low homology (24% identity; 36% similarity [Table 8]). Thus, the N-terminus (19.7% 

identity/34.6% similarity) contains some small deletions and several large insertions in 

contrast to high similarity (66.7%) between the transmembrane domains and Intimin 

binding region (Figure 56). The shared presence of residues K289, G305 and N306 

(Figure 56) required for EPEC Tir-Intimin binding (Ross & Miller, 2007) suggests that 

the E. tarda Tir variant may interact with EPEC Intimin. As expected, examining E. 

tarda Tir for transmembrane spanning regions found ones flanking the Intimin binding 

region (Figure 57) supporting that, like EPEC Tir (Kenny, 1999, Kenny et al., 1997b), 

it is inserted into the host plasma membrane in a hairpin-like conformation. A 

polyproline rich region is one of the few N-terminal features with a defined role in EPEC 

Tir’s subversive activities - recruits host tyrosine kinases to modify Tir residues 

(Bommarius et al., 2007) - with this feature highly degraded in E. tarda Tir (Figure 56). 

Surprisingly, the C-terminal domain (10% identity; 17% similarity) which contains most 

features linked to EPEC Tir’s subversive activities (Kenny, 1999, Kenny & Warawa, 

2001, Allen-Vercoe et al., 2006, Yan et al., 2013) is truncated in E tarda Tir and thus 

lacks all these important EPEC Tir features (Figure 56). 

The absence of residues that are substrates for host kinase phosphorylation predicted 

that E. tarda Tir, if delivered, may not undergo shifts in apparently molecular mass and, 

if inserted into the plasma membrane, would interact with EPEC Intimin without 

triggering actin nucleation (depends on kinase modification of Tir tyrosine residues).  
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Figure 56: Comparison of E. tarda and EPEC Tir proteins. E. tarda and EPEC Tir sequences were 

aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Key features linked to EPEC Tir 

functionality are highlighted: polyproline rich motif (Red), Intimin binding area (Green), residues 

important for Intimin binding (Blue), kinase modified residues (single residues; dark green) and 

arginine finger motif (Yellow). 

 

E.tarda Tir   1 MKLESAAN----SPLINPYAPSESGTQNTA---------NLGRLGDRAI-     36 

                |.:.:..|    :.||.|..|..|.|...|         :.|.||.|::  

EPEC Tir      1 MPIGNLGNNVNGNHLIPPAPPLPSQTDGAARGGTGHLISSTGALGSRSLF     50 

 

E.tarda      37 --AVNADSSARDGGQLPGLPSSPVALQPSRGSDPVYRHTNVYTAQDSFEA     84 

                  ..|:.:.:.|...:||||::|..|..:         |:.......||. 

EPEC         51 SPLRNSMADSVDSRDIPGLPTNPSRLAAA---------TSETCLLGGFEV     91 

 

E.tarda      85 I--KGMSLNMLFERVGNATFSRRTTPEGNVEAVSTRGQHEMAVLLPQDEQ    132 

                :  || .|::|..::|.:.|......:|...|:..:...|::|.|...|. 

EPEC         92 LHDKG-PLDILNTQIGPSAFRVEVQADGTHAAIGEKNGLEVSVTLSPQEW    140 

 

E.tarda     133 YALNSLSPDPEANFVFIG--GSRSHPLVSLAGESSEV-ISVRQTLERGQG    179 

                .:|.|:..:.:..|||.|  |...||:|::|.:.:|. ..:...|:     

EPEC        141 SSLQSIDTEGKNRFVFTGGRGGSGHPMVTVASDIAEARTKILAKLD----    186 

 

E.tarda     180 LSDRPGGVSPLDSSLFRGQLEHSLGNRTGVDREMTGGTGFLHSSHSELGA    229 

                .|..||..|.|                 ||....|               

EPEC        187 -PDNHGGRQPKD-----------------VDTRSVG--------------    204 

 

E.tarda     230 TGQTDMRGSATTQALAGQADTINQGPQIDGGERLRELTHPQLVEINNYIA    279 

                               .|.|..|:.|                :|...:... 

EPEC        205 ---------------VGSASGIDDG----------------VVSETHTST    223 

 

E.tarda     280 VNPPAMSRSHLYVALGTAAAVGLTAL-ATGLSQAFAITPAPDDALVVDPN    328 

                .|....|....:|::| |.|.||..| |||::||.|:||.|||....||: 

EPEC        224 TNSSVRSDPKFWVSVG-AIAAGLAGLAATGIAQALALTPEPDDPTTTDPD    272 

 

E.tarda     329 QAQQDAVTNTRNELTSEALKDPANQKVEVDEMGNQRPTGILLDNVAAEIE    378 

                ||...|.:.|:::||.||.|:|.||||.:|..||..|:|.|.|::..:|. 

EPEC        273 QAANAAESATKDQLTQEAFKNPENQKVNIDANGNAIPSGELKDDIVEQIA    322 

 

E.tarda     379 VKAQEAGEAAKQQAITDNAVAQERHDTQQEKRDKELAISGGAGYG-AAAL    427 

                .:|:||||.|:|||:..||.||:|::.|..:|.:||.:|.|.||| ::|| 

EPEC        323 QQAKEAGEVARQQAVESNAQAQQRYEDQHARRQEELQLSSGIGYGLSSAL    372 

 

E.tarda     428 IGAGGFTAAGV---LYRRNKETHEEAMELHRALPQAEPPVGNRTETG---    471 

                |.|||. .|||   |:|||:...:........:.|.:.. ||....|    

EPEC        373 IVAGGI-GAGVTTALHRRNQPAEQTTTTTTHTVVQQQTG-GNTPAQGGTD    420 

 

E.tarda     472 -TRSERFTFPRAVVLDQPPREPGAVGGIYQGLQRGEWSAASSTW-DSASQ    519 

                ||:|..:..|                     :..:.|.||:.| ||:|: 

EPEC        421 ATRAEDASLNR---------------------RDSQGSVASTHWSDSSSE    449 

 

E.tarda     520 TSLAGNVTLV----------------------------------------    529 

                        :|                                         

EPEC        450 --------VVNPYAEVGGARNSLSAHQPEEHIYDEVAADPGYSVIQNFSG    491 

 

E.tarda     530 --------------------------------------------------    529 

                                                                        

EPEC        492 SGPVTGRLIGTPGQGIQSTYALLANSGGLRLGMGGLTSGGESAVSSVNAA    541 

 

E.tarda     530 ---------    529 

                               

EPEC        542 PTPGPVRFV    550 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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Output from TMpred 

2 possible models considered, only significant 

TM-segments used 

-----> STRONGLY prefered model: N-terminus 

inside 

 2 strong transmembrane helices, total score: 

3875 

 #     from    to      length     score       orientation 

1-  234    253     (20)         1981            i-o 

2-  364    386     (23)         1894            o-i 

------> Alternative model 

 2 strong transmembrane helices, total score: 

3779 

 #     from    to     length   score     orientation 

1- 234     253    (20)       2104        o-i 

2- 363     382    (20)       1675        i-o 
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Output from TMpred 

2 possible models considered, only significant TM-

segments used 

-----> STRONGLY prefered model: N-terminus inside 

 2 strong transmembrane helices, total score: 

3678 

 #    from      to    length   score    orientation 

1-    290     309     (20)    1722          i-o 

2-    418     440    (23)    1956           o-i 

 ------> Alternative model 

 2 strong transmembrane helices, total score: 

3304 

 #    from     to    length     score     orientation 

1-  290   309   (20)       1659          o-i 

2-  421   440   (20)       1645          i-o 

Figure 57: The E. tarda and EPEC Tir proteins have two putative transmembrane domains.  The E. tarda and EPEC Tir protein sequences were 

examined for the presence of transmembrane domains (http://www.ch.embnet.org/software/TMPRED_form.html)  and found to possess two in similar 

locations (234-253 & 363-382 EPEC Tir; 290-309 & 421-440 E. tarda Tir) flanking the Intimin binding region. The program requires setting of minimal and 

maximal hydrophobic helix length, in this case it was 17 and 33 respectively. Solid line is the prediction for inside to outside TM helix and interrupted line 

is the prediction for outside to inside TM helix. 

http://www.ch.embnet.org/software/TMPRED_form.html
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4.3.8.1 Generating an E. tarda Tir-HA fusion protein  

Given the low degree of Tir homology, it was not surprising that plasmids carrying the 

E. tarda gene failed to produce a protein that could be detected with antibodies raised 

against EPEC Tir. Adding epitope tags, including HA, to the C-terminus of EPEC Tir 

does not interfere with its known subversive functions (Kenny et al., 1997b). Thus, a 

plasmid encoding an E. tarda Tir-HA fusion protein (TirHAEt) was generated (see 

Chapter 2; Section 2.2.8). Briefly, tirEt was amplified with flanking unique restriction 

enzyme sites and inserted into the TA cloning vector (pCR-2.1) prior to subcloning into 

a pSK-based plasmid (carrying EPEC tirHA and cesT genes) replacing the EPEC tir 

fragment (Figure 58). PCR analysis supported the generation of pSK-tirHAEt cesTEPEC 

(Figure 58). 

To assess TirHAEt fusion protein expression and delivery, Hela cells were infected with 

EPEC or the tir mutant carrying no plasmid or a plasmid encoding EPEC or E. tarda 

TirHA fusion proteins prior to isolating Triton X-100 soluble and insoluble fractions for 

Western blot probing for HA tagged proteins. This analysis confirmed expression and 

delivery of EPEC TirHA into host cells (kinase modified T’’ form in soluble and insoluble 

fractions; not shown) but only a very weak band of the expected molecular mass for 

the E. tarda TirHA protein was evident in the insoluble, but not soluble, fraction (data 

not shown).  
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Figure 58: Construction of pSK-tirHAEt cesTEPEC.  Agarose gel data illustrating steps in generating 

and/or confirming presence of pSK-tirHAEt cesTEPEC A) PCR amplification of a single band of expected 

size of tirEt gene and support for introduction into pCR-2.1 plasmid (B&C) Restriction digestion release 

of tirEt from pCR-2.1 tirHAEt and tirEPEC from pSKtirHA cesT to isolated fragments for D) ligation to 

generate pSK-tirHAEt cesTEPEC E) supported by PCR detecting tirEt in two of 4 screened clones (#3, 

#4) 
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4.3.8.2 Generating pACYC-tirHAEt  

It was possible that this expression problem may relate to cloning the E. tarda gene 

into a high copy number plasmid and/or co-expression with CesTEPEC, so it was 

decided to subclone E. tarda tirHA gene to pACYC184 as used in previous 

complementation studies (and medium copy number).  

Briefly, pSK-tirHAEt cesTEPEC was digested Xbal/BglII - releases E.tarda tirHA fragment 

and 5’ end of EPEC cesT gene - and ligated into Xbal/BamHI sites of pACYC184. 

Generation of pACYC-tirHAEt and its introduction into the EPEC ∆tir mutant strain was 

supported by PCR analyses (Figure 59). Studies also examined whether CesTEPEC is 

needed for E. tarda Tir stability and/or T3SS-dependent delivery into cells by 

introducing the plasmid into the CesT/Tir-negative ∆go3core mutant and EspB/Tir-

negative ∆tir_espB mutant (see Chapter 2; Table 1). 

Western blot analysis of Triton X-100 insoluble fractions from infected HeLa cells 

revealed TirHAEt to be expressed by all the Tir negative (∆tir, ∆tir_espB and ∆go3core) 

strains with reduced levels in the CesT-deficient (∆go3core) mutant indicative of 

CesTEPEC-dependent stability (Figure 60). Probing for EspB confirmed its expected 

absence from the ∆tir_espB mutant. Crucially, probing soluble fractions for HA proteins 

failed to detect a HA protein in ∆tir_espB mutant infected cells in contrast to low and 

high levels of a band of TirET expected molecular mass in ∆go3core and ∆tir mutant-

infected cells, respectively (Figure 60). This data is consistent with EspB/T3SS-

dependent delivery of E. tarda Tir by EPEC with efficient transfer requiring CesTEPEC 

expression. Crucially, detecting only a single band suggests that, as predicted, E. tarda 

Tir does not undergo host kinase modifications that trigger shifts in apparent molecular 

mass.  
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Figure 59: Schematic of pACYC-tirHAET and PCR support for introduction into EPEC strains. 

Plasmid map of pACYC-tirHAET with PCR data A) supporting E.tarda tir gene in pACYC184 and B) 

introduction into EPEC ∆tir (lacks functional Tir protein); EPEC∆tir_espB (lacks functional Tir and 

EspB [translocator/effector] proteins) and ∆go3core (missing genes for 5 effectors [LEE EspG, Tir, 

Map, EspH, Orf3/EspG2], Intimin and 2 chaperones CesT/CesF) mutants. 
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Figure 60: EPEC T3SS-dependent delivery of E. tarda Tir into HeLa cells promoted by EPEC 

CesT. HeLa cells were infected for 3, 6 and/or 9h with indicated strains before isolating Triton X-

100 soluble (containing host cytoplasm and membrane proteins plus delivered effector proteins) 

and insoluble (containing host nuclei and cytoskeletal proteins plus adherent bacterial proteins) 

fractions for western blot analysis (10% SDS-PA gel) probing for EspB or HA proteins. The positions 

of Tir-HA, EspB and protein markers are indicated. Strains used lacked Tir (∆tir), Tir and EspB 

(∆tir_espB) or the CesT/CesF chaperones, Intimin, EspG, EspG2, EspH, Map, Tir (∆go3core). 
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4.3.9 The E. tarda cesT gene produced a protein that weakly substitutes for 

CesTEPEC in promoting TirEPEC delivery into HeLa cells  

CesTEPEC promoting E. tarda TirHA stability in EPEC and efficient delivery into HeLa 

cells made it likely that the E. tarda CesT homologue (~60% identity; ~80% similarity) 

would be functionally interchangeable. To interrogate this prediction cesTEt  was cloned 

into pACYC184 (see Chapter 2; Section 2.2.8). Briefly, cesTEt was amplified, using 

E.tarda genomic DNA as a template, and ligated into pACYC184 (predigested 

BamHI/SalI) using the Gibson Assembly protocol (Figure 61). Generation of pACYC-

cesTEt was supported by PCR analyses (Figure 61). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Probing western blots of fractions isolated from HeLa-infected cells revealed the 

expected ∆cesT mutant phenotype – i.e. little Tir expression/no detectable delivery - 

with introduction of cesTEPEC rescuing the defect as evidenced by detecting kinase 

modified T’’ from in soluble and insoluble fractions (Figure 62). Interestingly, 

introducing the cesTET plasmid also rescued the ΔcesT mutant defect but to a much 

less extent, especially in the soluble fractions. Thus, the Tir level in the insoluble 

fraction was reduced - relative to samples from cells infected with the cesTEPEC 

Figure 61: Construction of pACYC-cesTEt. Agarose gel data illustrating steps in generating and/or 

confirming presence in strains A) The E.tarda cesT gene was amplified as a single band at most 

assessed temperatures for use with B) pACYC184 digested with BamHI and SalI restriction enzymes. 

C) for linking together using the Gibson Assembly protocol with introduction of the generated pACYC-

cesTET D) confirmed in all 3 examined clones. 
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complemented strain - at 3, not 6, hour post-infection time point in contrast to both time 

points for the soluble fraction samples  (Figure 62). The presented data implies that E. 

tarda CesT is less capable than EPEC CesT at chaperoning EPEC Tir to the EPEC 

T3SS for transfer into host cells. It was also noted that plasmid expressing E. tarda 

CesT was associated with higher EspB protein levels in the insoluble fractions (Figure 

62).  

Examining the CesT alignment data (Figure 63) revealed differences in features linked 

to EPEC CesT chaperone activity. The N-terminal region (65% identity) of EPEC CesT 

is linked to chaperone dimerization (Delahay et al., 2002) while the C-terminal domain 

(51% identity) has an amphipathic α-helical regions; linked to EPEC CesT substrate 

binding (Delahay et al., 2002). Residues E142, V116, V126, H128, N129 and S147, 

along with the final 11 amino acids, are important for EPEC CesT functionality in 

secreting NleA and Tir (Ramu, 2013). Interestingly, there are residues differences in 

the amphipathic α-helical with the E. tarda variant lacking E142 and S147 and 4 of the 

last 11 residues are different to the EPEC homologue. 
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Figure 62: The E. tarda CesT protein is less effective than EPEC CesT in promoting EPEC Tir 

stability and delivery into host cells. HeLa cells were infected for 3 and/or 6 h with indicated 

strains before isolating Triton X-100 and soluble (containing host cytoplasm and membrane proteins 

plus delivered effectors) and insoluble (containing host nuclei and cytoskeletal proteins plus 

adherent bacterial proteins) fractions for western blot analysis (10% SDS-PA gel) probing for Tir, 

EspB and EspF. The position of Tir unmodified (T
o
) and host kinase modified forms (T’/T”), EspB, 

EspF and protein markers are indicated. Strains used were the ∆cesT mutant carrying no (-) 

plasmids or plasmids carrying the EPEC or E. tarda cesT (pCesTEPEC and pCesTEt respectively) 

genes. 

 

 

 

 

EPEC-CesT          1 MSSRSELLLDRFAEKIGVGSISFNENRLCSFAIDEIYYISLSDANDEYMM     50 

                     ||||:::||:..::::|:..:.|||.:||||.||::|.:|||||:||:|| 

E.tarda-CesT       1 MSSRAQVLLESLSKRVGIDGLCFNEYKLCSFFIDDLYCVSLSDASDEHMM     50 

 

EPEC              51 IYGVCGKFPTDNPNFALEILNANLWFAENGGPYLCYESGAQSLLLALRFP    100 

                     |||||||||.:...||||||||||||||:|||:||||||::|||||||.. 

E.tarda           51 IYGVCGKFPINEQGFALEILNANLWFAESGGPHLCYESGSESLLLALRVN    100 

 

EPEC             101 LDDATPEKLENEIEVVVKSMENLYLVLHNQGITLENEHMKIEEISSSDNK    150 

                     ||..|.:|||||||.||.:|||||||.|||||.|:|:.:.:......:.| 

E.tarda          101 LDHCTTDKLENEIEHVVNAMENLYLVFHNQGIELKNDLLNVSPFEKMEIK    150 

 

EPEC             151 HYYAGR    156 

                     :|::.| 

E.tarda          151 NYFSAR    156 

Figure 63: Comparison of E. tarda and EPEC CesT proteins. E. tarda and EPEC CesT 

sequences were aligned (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Highlighted are 

features linked to EPEC CesT functionality: amphipathic -helical region associated with substrate 

binding (Yellow) plus individual (Red) and run of residues (Green) linked to efficient effector 

secretion. 
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4.4  Discussion  

Type III secretion systems (T3SS) play a critical role in the pathogenesis of many 

bacterial pathogens that infect humans, animals and plants (Galán et al., 2014, Buttner 

& He, 2009). Thus, it is important to understand the functionality of the ~20 proteins that 

make up T3SSs which serves to deliver effector proteins into infected host cells (Buttner, 

2012, Cornelis, 2006, Cardenal-Munoz et al., 2014). The T3SS components of A/E 

pathogens, including EPEC, EHEC, Citrobacter rodentium, are highly homologous with 

many displaying much more diversity to corresponding proteins from other pathogens 

such as Yersinia, Salmonella and Shigella species (Diepold & Wagner, 2014). Recently, 

a fish pathogen, Edwardsiella tarda (E. tarda), was reported to carry a LEE region 

(Nakamura et al., 2013) – key virulence determinant of A/E pathogens – encoding 

proteins for a T3SS, transcriptional regulator, Intimin surface protein and one effector, 

Tir. Here, we report on our bioinformatics analysis of the E. tarda LEE region and ability 

of E. tarda proteins to functionally replace their EPEC homologues. The work reveals 

issues with the original bioinformatics analysis and argues that E. tarda encodes a 

functional T3SS to deliver, under specific conditions, two LEE (Tir, EspZ) and, probably, 

non-LEE-encoded effectors into fish cells. Importantly, finding little or no functional 

interchangeability between some components provides an opportunity to gain insights 

on the structure and/or function of T3SS proteins from A/E, and possibly other, 

pathogens. 

 

Although E. tarda was reported to share 29 out of 42 EPEC LEE open reading frames, 

Orfs (Nakamura et al., 2013), EPEC only has 41 recognised Orfs (Elliott et al., 1998, 

Deng et al., 2004) with the additional one - between ler and espG genes – not considered 

to produce a functional protein. Interestingly, the E. tarda LEE region appears to have 

37 Orfs and thus 8 proteins with no EPEC homologous. However, six of these new Orfs 

are in regions where E. tarda LEE genes (escD, sepL, escL) are significantly smaller 

than their EPEC homologues or replacing the escE, escA and escS genes while the final 

two are in a region where the ‘missing’ EPEC effector genes would be expected to be 

located. However, most of these new genes appear to encode very small proteins with 

our analysis revealing the E. tarda escE, escA and escS genes in the same area as that 

they might be there with another three likely not to be expressed as our bioinformatics 

analyses revealed ‘missing’ portions of the escD, sepL and escL genes on open reading 

frames in the regions that encode these non-EPEC LEE proteins. 
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Sequencing the ‘out of frame’ region for three genes (escD, sepL, escL) revealed the 

two escD Orfs to be separated by a 14bp gap while the SepL and EscL Orfs are distinct 

due to the apparent absence of a single base. While such finding are suggestive of these 

T3SS critical proteins no longer being functional, this was not supported, at least for 

EscD, by finding that the effector delivery defect of an EPEC escD mutant (Ogino et al., 

2006) could be rescued by introducing both, not one, E. tarda escD Orfs. The two EscD 

Orfs produce a protein of similar size to EPEC EscD, 10 residues larger, but with many 

differences (~44% identity/61% similarity). This finding suggests that E tarda EscD is 

expressed either as i) two independent polypeptides or ii) as one Orf - via, for example, 

ribosome hopping; a process linked to expressing T3SS proteins, from two Orfs, in other 

pathogens in relation to specific environmental signals such as stress (Penno et al., 

2006, Atkins et al., 2016, Namy et al., 2004). The latter mechanism is supported by the 

presence of a hungry Ile (AUA) codon (Gallant & Lindsley, 1998) – linked to ribosome 

stalling (Keiler, 2015) and hopping (Lovett & Rogers, 1996) - prior to the stop codon of 

the first escDEt orf. EscDEt functionally interchangeable, but only when both Orfs were 

introduced, supports a critical role for each domain in accordance to the finding that 

T3SS functionality depends on the N-terminal domain interacting with EscJ while the C-

terminal domain interacts with EscC and EscF proteins (Ogino et al., 2006). Crucially, 

EscD functional interchangeability supports the idea that the E. tarda LEE region might 

produce a functional effector delivery system. Further studies will be needed to elucidate 

the exact mechanism that underpins the functional interchangeability of E tarda EscD 

encoded over two adjacent, but non-overlapping Orfs. 

 

By contrast, similar complementation studies with the E. tarda SepL and EscL proteins 

failed to rescue the effector delivery defect of EPEC espL and escL mutants, 

respectively, though the E. tarda SepL protein appeared to partially rescue T3SS 

functionality (data not shown). It is predicted that these T3SS critical proteins, like EscD, 

are under some form of regulatory control at the protein translation level (i.e. ribosome 

frame-shifting to generate a single Orf) with the failure to functionally replace the EPEC 

homologue likely to reflect differences in protein sequences (~49% identity/~74% 

similarity between SepL proteins and ~27% identity/~54% similarity between EscL 

proteins). SepL and EscL are components of a sorting platform with SepD, EscP, EscK, 

EscA and EscN. It is possible that co-expressing these proteins with each other or other 

sorting platform proteins could restore functionality in line with our findings with 

translocator proteins i.e E. tarda EspA and EspD proteins had little functional 
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interchangeability until co-expressed. Moreover, complementation studies with two other 

platform proteins, EscK (~13% identity/~21% similarity) and EscP (~21% identity/~39% 

similarity), found that only the latter could substitute for its EPEC homologue. Further 

studies should examine the functional interchangeability of other platform proteins: SepD 

(~40% identity/~64% similarity), EscA (~25% identity/~54% similarity) and EscN (~62% 

identity/~76% similarity) with the definition of features/residues differences that hinder 

complementation, perhaps, providing important new insights on how these proteins 

contribute to T3SS functionality.  

 

It is worth pointing out that T3SS components from different A/E pathogens are usually 

highly homologous while proteins exposed to the host immune system (i.e. translocators, 

effectors and Intimin proteins) are generally more divergent - due to selective pressure 

to avoid immune recognition (Perna et al., 1998). However, T3SS components of 

different pathogens can either have low or high levels of conservation (Diepold & 

Wagner, 2014) with the former presumably reflecting species specific alterations that 

promote the pathogen’s lifecycle. Indeed, the E. tarda T3SS proteins, in general, have a 

low degree of conservation to homologues of other A/E pathogens suggesting that E. 

tarda has been undergoing a distinct evolutionary pathway that presumably reflects its 

role in aiding the lifecycle of this invasive fish pathogen. 

 

Crucially, while our data supports (Nakamura et al., 2013) E. tarda LEE lacking genes 

for multiple effectors (Map, EspF, EspG, EspH), a chaperone (CesF; needed for efficient 

EspF delivery) (Elliott et al., 2002) and two transcriptional regulators (GrlA, GrlR), it 

uncovered genes for proteins critical for i) T3SS functionality (i.e. EscA [ATPase complex 

component], EscS [T3SS core protein] plus, as mentioned, EscE [EscF chaperone]) and 

ii) A/E pathogen virulence i.e. the EspZ effector (Deng et al., 2004, Shames et al., 2010). 

It is not obvious why these small proteins (122, 89, 78,129AA for EscA EscS, EscE and 

EspZ respectively) were missed and why the authors did not comment on the 

implications of this (as well as truncated EscD, SepL, EscL proteins) on T3SS 

functionality. By contrast, our findings provide further support for the E. tarda LEE region 

encoding a functional T3SS that serves to deliver EspZ and Tir into host cells to promote 

cell survival (EspZ) and provide a receptor (Tir) for the Intimin surface protein to promote 

pathogen-fish cell interaction. Interestingly, our analysis revealed a region flanking LEE 

to carry genes for an effector - 25.7% identical (39.4% similar) to the Yersinia tyrosine 

phosphatase YopH (Guan & Dixon, 1990, Rosqvist et al., 1988) – and a chaperone, 
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SycH ~30% identical (~54% similar) (Woestyn et al., 1996). This finding raises the 

possibility that the LEE T3SS may also deliver other, non-LEE-encoded, effectors into 

fish cells. However, it must be noted that this LEE carrying E. tarda strain (FPC503) is 

an atypical family member, as carries an additional T3SS and two T6SS (Nakamura et 

al., 2013). Further studies are needed to determine which system transfers which, if any, 

identified effectors into host cells. By contrast, the absence of GrlR and GrlA regulators 

should have no impact on T3SS functionality as they are linked to regulating the activity 

of the LEE encoded master regulator, Ler, to environmental cues (Barba et al., 2005, 

Jimenez et al., 2010) while a recently published non-pathogenic E.coli strain (SIEC), 

lacking grlR and grlA genes, produced a functional T3SS when transcriptional activation 

was no longer under their control (Ruano-Gallego et al., 2015). Interestingly, while the 

Ler proteins are only ~39% identical (~59% similar) the E. tarda variant could functionally 

replace the EPEC homologue to induce T3SS expression and effector delivery. Thus, 

the E. tarda LEE region is undoubtedly under transcriptional control of the Ler protein 

which is presumably controlled through the activity of non-LEE encoded proteins, 

equivalent to the plasmid-encoded regulator (Per) in EPEC, to induce T3SS production 

under a specific set of environmental conditions (Gomez-Duarte & Kaper, 1995).   

 

Interestingly, while the initial analysis suggested that the E. tarda Intimin protein is larger 

than the EPEC homologue our analysis uncovered a slightly smaller protein (929 versus 

939 residues) with an Intimin-like sequence on an overlapping reading frame. Moreover, 

DNA sequencing revealing an error which, when corrected, provides a gene encoding 

an 1117 residue protein that is quite dissimilar to its EPEC homologue (~40% identity; 

52% similarity). Importantly, the E. tarda protein could functionally substitute for EPEC 

Intimin, at least in binding the EPEC delivered Tir protein and triggering Tir’s actin 

nucleating activity. The latter result was, perhaps, not too unexpected as E. tarda Intimin 

has residues reported to be critical for binding Tir (Yi et al., 2010). 

 

Perhaps not too surprisingly, the E. tarda LEE Tir and EspZ effectors shared low 

homology with their EPEC counterparts (~24-30% identity/~36-38% similarity) though 

this is greater than some E. tarda T3SS components such as EscK (~13% identity/~21% 

similarity). Tir from another A/E pathogen, enterohemorrhagic E.coli O157:H7 (EDL993 

strain), shares one of the lowest level of identity (66%) with its EPEC homologue linked 

to divergent evolution and EHEC Tir nucleating actin by a different, Intimin-dependent, 

mechanism (Perna et al., 1998, Diepold & Wagner, 2014, DeVinney et al., 1999, 
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Campellone et al., 2004b). The corresponding EPEC/EHEC EspZ proteins share 70% 

identity (Perna et al., 1998) and thus E. tarda provides the best example of a LEE 

carrying pathogen with strain-specific divergence in effector (and other T3SS-related 

proteins). Interestingly, much of the EspZ variance relates to N- and C-terminal 

extensions with highest homology between two predicted transmembrane domains and 

the small, possibly extended (10-14 residue) extracellular domain. It would be interesting 

to examine the functional interchangeability of E. tarda EspZ protein for the EPEC 

homologue both in vitro and in vivo models. By contrast, Tir divergence was linked to a 

smaller E. tarda protein (529 versus 550 residues) with absence of features linked to 

EPEC Tir’s known subversive activities (through residues differences, insertions and 

deletions; latter includes loss of most of C-terminal domain) with, as per EspZ, the most 

homology related to the two predicted transmembrane regions and extracellular (Intimin 

binding) domain. Indeed, these differences are presumably responsible for the failure of 

the anti-EPEC Tir polyclonal antibodies from recognising E. tarda Tir - a finding in line 

with the failure of anti-EPEC EspB polyclonal antibodies detecting E. tarda EspB – 

prompting studies with a HA tagged Tir variant. Interestingly, this variant was expressed 

by EPEC and, apparently, delivered into HeLa cells (expression/delivery were reduced 

when the EPEC Tir chaperone, CesT, was absent) but there was no evidence for host 

kinase modification-induced shifts in molecular mass. However, the latter was not 

surprising given that E. tarda Tir lacks serine and tyrosine-related motifs linked to host 

kinase modification-induced shifts in molecular mass and, following Intimin binding, actin 

nucleation respectively. The latter findings, makes it very difficult to assess whether E. 

tarda Tir is truly delivered into cells and/or becomes inserted into the plasma membrane 

and, if the latter occurs, whether during the transfer process or via a cytoplasmic 

intermediate. Future studies are needed to address these questions. By contrast, 

preliminary studies to determine whether E. tarda can deliver EPEC Tir (as a TirHA 

fusion protein) into cells for host kinase modification, insertion into the plasma membrane 

and Intimin binding are suggestive of low level delivery and kinase modification (but 

apparently not Intimin binding). However, the transfer process may relate to the second 

T3, or either T6 secretion systems. The low deliver levels may relate to issues including 

failure to define conditions that maximally induce E. tarda LEE T3SS expression and/or 

functionality and the finding that the E. tarda CesT protein could only weakly substitute 

for the EPEC homologue (despite being ~60% identical/~80% similarity). Interestingly, 

the E. tarda CesT variant did not appear to have a defect in promoting Tir stability within 

EPEC but was associated with reduced delivery levels suggesting that differences 
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between these variants either i) impact on CesT docking with the T3SS, ii) Tir release 

from CesT and/or iii) Tir transfer through the T3SS/translocon systems. Interestingly, 

there are differences in residues linked to transfer efficiency so, undoubtedly, domains 

swaps and residue substitutions experiments would identify the responsible 

residues/features and promote studies to define how they impact on Tir deliver levels. 

 

It should be noted that we only tested the functional interchangeability of 12 (~36%) of 

E. tarda LEE proteins with six (EscD; Ler; Intimin; EspA; EspD and EspB) appeared to 

fully substitute for their homologues (though two [EspA and EspD need to be co-

expressed]) while 3 displayed low levels of functional interchangeability (SepL; CesT 

and EscP) with the remaining three (EscL; EscK and Tir) not able to replace their EPEC 

homologues. It is possible that the complementation defects related to issues in the 

expression (i.e codon usage), stability (i.e defects in binding chaperones) or sequence 

divergence of E. tarda proteins, with the latter group the most important for future studies 

to provide insights on their roles in T3SS functionality and/or pathogen virulence. 

Undoubtedly, the remaining 21 E. tarda LEE proteins should also be examined for 

functional interchangeability, and the E. tarda LEE region cloned into non-pathogenic E. 

coli to define conditions to induce expression and test its ability to deliver EPEC, E. tarda 

and/or hybrid Tir proteins into host cells to investigate the direct or indirect membrane 

insertion mechanisms.
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Chapter 5: The enteropathogenic E. coli (EPEC) delivered EspZ 

effector prevents host cells cytotoxicity in response  

to the Tir-Intimin interaction 
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5.1  Introduction  

The virulence of enteropathogenic Escherichia coli (EPEC) depends on a functional 

T3SS, Tir, Intimin and EspZ proteins (Wilbur et al., 2015, Marchès et al., 2000, Coburn 

et al., 2007). While Tir and Intimin’s virulence critical role is linked to their interacting 

together to mediate intimate host-pathogen interaction (Kenny et al., 1997b, Kenny, 

1999) that of EspZ is associated with preventing infected cells from undergoing a 

cytotoxic response (Shames et al., 2011, Berger et al., 2012, Roxas et al., 2012). EspZ, 

is a small (9kDa) effector predicted to be integrated, like Tir, in the host cell plasma 

membrane in a hairpin-loop topology, via two transmembrane domains, with a small 

(10AA) extracellular loop (Kanack et al., 2005). EspZ is reported to be, after Tir, the 

next most-abundantly delivered effector with some localising to mitochondria (Shames 

et al., 2011, Mills et al., 2008). 

The ability of EspZ to stop cells cytotoxicity was initially linked to its interacting with a 

transmembrane glycoprotein, CD98 (Shames et al., 2010) triggering increased focal 

adhesion kinase (FAK) activity to enhance pro-survival signalling (Shames et al., 

2010). However, this hypothesis was questioned by deletion of CD98 not promoting 

cell cytotoxicity (Roxas et al., 2012). A second hypothesis stemmed from finding EspZ 

interacts with translocase of inner mitochondrial membrane 17b (TIM17b) promoting 

maintenance of mitochondrial membrane potential and thus protecting against cell 

death during EPEC infection (Shames et al., 2011). However, depletion of TIM17b also 

decreased survival of uninfected cells (Garabedian et al., 2011, Sinha et al., 2014). As 

two EPEC effectors (Map and EspF) target the mitochondria, via mitochondrial 

targeting sequences [MTS], linked to loss of mitochondrial membrane potential (Nagai 

et al., 2005, Kenny & Jepson, 2000, Papatheodorou et al., 2006), it has been 

suggested that EspZ may protect against cell death by inhibiting the deleterious impact 

of these effectors on mitochondrial function (Shames et al., 2011, Roxas et al., 2012). 

A third possibility relates to finding that EspZ also interacts with a translocator protein, 

EspD (Creasey et al., 2003a), suggesting that the EspZ might regulate translocation of 

EPEC effectors into the host cells (Berger et al., 2012). Thus, it is proposed that when 

EspZ is absence there is continuous translocation of subversive effectors which 

overloads the cells, leading to permeabilization of plasma membrane and, thus, 

cytotoxicity (Berger et al., 2012). It is also worth mentioning that EspZ is also reported 

to interfere with apoptosis – programmed cell death (not cytotoxic) - by inhibiting the 

intrinsic apoptotic pathway as espZ mutant infected cells had higher levels of cytosolic 
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cytochrome c and increased activation of caspases 9, 7, and 3 (Roxas et al., 2012). 

Interestingly, EPEC infection of epithelial cells activates the epidermal growth factor 

receptor; EGFR, which induces cell survival signalling (Roxas et al., 2007) with EspZ 

found to regulate EGFR stability by protecting against EspF-dependent cleavage 

thereby promoting host cell survival (Roxas et al., 2014). 

 

Our previous work (Chapter 3) revealed that a mfz(81)go3 mutant (lacks LEE Map, 

EspF, EspZ & EspG effectors plus the non-LEE-encoded Orf3/EspG2 effector) could 

deliver Tir into HeLa cells where it was modified to the T’’ form and could be bound by 

Intimin. However, extending the infection time (from 3 to 6hr) revealed a number of 

phenotypes: loss of i) Tir T” form, ii) host and Tir tyrosine phosphorylated proteins and 

iii) host cytoplasmic tubulin and actin proteins (not shown but see below). These 

phenotypes were, presumably, due to cell cytotoxicity as the strain does not express 

the pro-survival EspZ effector. Surprisingly, these phenotypes were not observed 

following infection with a similar multi-mutant, mfz(81)go3e, which differs only by the 

additional absence of the Intimin encoding gene, eae. This observation questioned the 

idea about EspZ’s anti-cytotoxicty activity relates to it limiting the level of effector 

delivery, counteracting Map/EspF’s deleterious impact on mitochondrial function or 

preventing EspF cleavage of EGFR unless these are Intimin-dependent events. 

 

5.2 Aim  

The aim of this chapter was to investigate the hypothesis that EspZ protects infected 

cells from Intimin-dependent cytotoxicity and, if true, to provide insight on the process.  
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5.3 Results  

5.3.1 mfz(81)go3 mutant phenotypes linked to absence of EspZ delivery  

To investigate whether loss of i) T” form, ii) tyrosine dephosphorylated Tir and host 

proteins and iii) cytoplasmic tubulin and actin proteins were due to EPEC failing to 

deliver EspZ, HeLa cells were infected over a 9h period with EPEC, espZ and T3SS 

mutant strains before Triton X-100 soluble (contains host cytoplasm and membrane 

proteins plus delivered effectors) and insoluble (contains host nuclei and cytoskeletal 

proteins plus adherent bacterial proteins) fractions were isolated for Western blot 

analyses. 

The T3SS mutant strain expressed Tir (Figure 64A, insoluble fraction) but did not, as 

expected, deliver it (or EspB or EspF) into host cells (Figure 64A, soluble fraction). 

Similar gel loadings and absence of cytotoxicity over the first 7 hours of infection was 

supported by probing for tubulin (mostly in soluble fraction) and actin (~70% in soluble 

fraction) with the 9h infection period linked to tubulin/actin signal loss (Figure 64A). 

Probing for tyrosine phosphorylated proteins revealed a single prominent band in the 

insoluble fraction linked to the EPEC protein Ep85 (also known as Etk) (Rosenshine et 

al., 1992, Kenny & Finlay, 1997, Ilan et al., 1999) with infection linked to 

dephosphorylation of host tyrosine phosphorylated proteins in the soluble fraction by 

7h post-infection. The latter findings reveals a T3SS-independent mechanism that 

induces dephosphorylation of HeLa cytoplasmic/membrane proteins and precedes a 

cell cytotoxicity response. These changes were linked to bacterial overgrowth - 

associated media acidification - which could be avoided by changing the media every 

3hrs or decreasing the infection time (to 6hr; not shown but see below).  

By contrast, EPEC and espZ(81) strains delivered Tir, as evidenced by detecting T’’ 

form in the soluble fractions (Figure 64C), but whereas the T’’ form was evident in the 

soluble fractions of EPEC infected cells at all, but not the 9hr time, point, it was absent 

from most of the corresponding samples from espZ(81)-infected cells linked to 

increasing T’ and/or unmodified Tir forms (Figure 64C). This change in Tir signal was 

associated with tubulin/actin signal loss linking it to cell cytotoxicity (Figure 64C); latter 

supported by absence of most cells (~70%) at final (9h) infection time point. 

Interestingly, no corresponding loss of EspB and EspF signals was evident from the 

soluble fractions suggesting that they are mainly membrane inserted/associated and/or  
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A) 

Figure 64: T3SS-independent and -dependent loss of Tir T’’, phosphotyrosine proteins and 

tubulin/actin signals in espZ(81)-infected cells. HeLa cells were left uninfected or infected with 

indicated strains, for indicated times, prior to isolating Triton X-100 soluble (contains host cytoplasm 

and membrane proteins plus delivered effector proteins) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) fractions for Western blot analysis probing 

for phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and actin. The position of unmodified 

(To) and host kinase modified Tir (T” and PY [TY]) forms are indicated as are Ep85 (EPEC tyrosine-

phosphorylated cytoplasmic protein), EspF, EspB, tubulin, actin and protein markers bands. Strains 

used were EPEC, T3SS-deficient (T3SS/cfm-14) and EspZ-deficient (espZ(81)). Note, data is 

representative of that from two or more independent experiments. 
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within organelles, for example, EspF accumulates within mitochondria (Nagai et al., 

2005). As expected, the phosphotyrosine antibodies detected Tir and host proteins in 

the soluble fractions from espZ and EPEC-infected cells but with a rapid dramatic loss 

in these signals, over time, from espZ(81)-infected cells (Figure 64C). Interestingly, 

while the Tir T’’ modified form migrated (due to binding Intimin) into the insoluble 

fraction of EPEC-infected cells at each time point, there was little evidence of this for 

espZ-infected cells suggesting that Tir is no longer available to, or cannot stably, 

interact with Intimin (Figure 64B). It should be noted that strain binding levels are 

reflected by Ep85, EspB, EspF and unmodified Tir (within bacteria) signals in insoluble 

fractions, with Ep85 in samples from EPEC-infected cells obscured by strong 

phosphotyrosine Tir band (Figure 64B). This work links the T3SS-dependent loss of i) 

T” form, ii) tyrosine dephosphorylated Tir and host proteins and iii) cytoplasmic 

tubulin/actin proteins to the failure of EPEC to deliver EspZ in cells leading to a 

cytotoxic response. 
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5.3.2 Critical role for Intimin, Map and EspF proteins in the espZ(81)-associated 

phenotypes  

As our previous work suggested that the, above described, espZ(81)-associated 

phenotypes could be prevented by inactivating the Intimin gene, with most Intimin 

subversive activities relating to it binding Tir (Kenny & Finlay, 1997, Kenny et al., 

1997b, Kenny et al., 2002b, Rosenshine et al., 1996), studies examined the impact on 

infecting cells with EspZ-deficient strains unable to express other effectors and/or 

Intimin. These studies were restricted to a 6 h period; which is sufficient to reveal the 

T3SS-dependent cytotoxicity-associated phenotypes linked to espZ(81) infection 

(Figure 64). The screened strains and resulting western blot data (representative blots 

shown in Figure 65A-D) are summarised in Table 9. HeLa cells were infected with 

control strains, EPEC and Intimin-deficient (eae) mutant, for only 3 and/or 6 hr with 3, 

4, 5 and 6hr infections for strains lacking EspZ alone (espZ(81)) or with other effectors 

(Tir, Map, EspH, EspF, EspG/Orf3) and/or Intimin proteins.  

 

 

Strain Figure # 3h 4h 5h 6h Notes 

EPEC 64, 65A/C/D E E E E  T” is stable, No pTyr nor tub/actin loss 

espZ
(81)

 64, 65A/C E ∆*●○ ∆*●○ ∆*●○  

fz:km   65A E Z Z Z Slower T’’ and tub/actin loss 

mz:km   65A E Z Z Z Faster pTyr proteins loss; slower tub/actin loss 

go3z:km    65A E Z Z Z Faster pTyr proteins and tub/actin loss 

hz:km   65A E Z Z Z Faster pTyr proteins and tub/actin loss 

ez:km 65B E E E E Loss  pTyr proteins at 5/6h 

mfz:km    65B E E Z Z Loss pTyr proteins & Tir T’’ at 5/6h & tub/act 6h  

mfz:kmgo3 65C E E Z Z Loss tub/actin 5/6h and pTyr proteins 5/6h 

mez:km 65D E E E E Loss of  pTyr proteins & some Tir T’’ at 6h 

fz:kme  69 E E E E Loss of  pTyr proteins at 6h 

mfez:km 65B/D E E E E  

mfz:kmgo3e 65C E E E E  

Table 9: Summary of differences between cells infected with EspZ-deficient and EPEC strains. 

Summary of western blot data from HeLa cells infected with indicated strains after 3, 4, 5 and 6h. 

Strains used were EPEC or those unable to express EspZ alone (espZ(81)) or EspZ plus one or more 

of indicated effectors – EspF (f), Map (m), EspH (h), EspG/EspG2 (go3) – and/or Intimin (e) proteins. 

E indicates normal T3SS dependent changes at indicated time point, while Z indicates data similar to 

that obtained with the espZ(81)-infected samples at that time point with, when present, some 

differences in probed signals (∆ reveals dephosphorylation of Tir and host tyrosine phosphoproteins; 

* loss to Tir T’’ band, ● loss of tubulin (tub) signal, and ○ loss of actin signal). Orange highlights espZ 

multi-mutants associated with minor phenotypic changes at later time points. Yellow highlights espZ 

multi-mutants that behave like EPEC. The espZ gene was inactivated by deleting 81 (of 98) residues 

or introducing kanamycin-encoding gene indicated by (81) and :km respectively.  
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Interestingly, most espZ multiple mutants behaved like the espZ(81) single mutant 

(Table 9; Figure 65) but there were some notable, subtle and dramatic differences. The 

former include an apparent delay in Tir T’’ and tubulin/actin signal loss by the fz and, 

to a lesser extent, hz mutants suggestive of EspF and EspH roles in promoting these 

changes. By contrast, the mz and go3z mutants were linked to a more rapid loss of the 

Tir T’’ form and slower tubulin/actin loss suggestive of roles for Map and the EspG 

homologues in hindering and promoting these events respectively (Table 9; Figure 

65A). A more dramatic difference was evident with the remaining strains (ez, mfz, mez, 

fze mfez, mfzgo3 and mfzgo3e multi-mutants) which behaved like EPEC though three 

(ez, fze and mez) were associated with one or more minor phenotypes at later time 

points (Table 9; Figure 65B-D). The EPEC-like profile for the ez double mutant is 

suggestive of a central role for Intimin functionality in all the phenotype, except tyrosine 

protein dephosphorylation where it appears to play a suppressive role. The latter is 

presumably mediated by Map and EspF activities as no tyrosine protein 

dephosphorylation is apparent with the mfez mutant in contrast to some for triple 

mutant-infected cells mez and fze (Table 9; Figure 65BD and 69). Interestingly, the 

mfz triple mutant is only associated with little loss of the Tir T’’ form linked to some loss 

in tyrosine phosphorylated protein and tubulin/actin signals (5/6h time point). The latter 

suggests that Map and EspF promote loss of the Tir T’’ form with roles for other 

effectors, presumably the EspG homologues as the mfzgo3 mutant does not induce 

Tir T’’ loss (Table 9; Figure 65C). Crucially, two EspZ-deficient strains (mfez and 

mfzgo3e) failed to display any espZ mutant-associated phenotypes revealing key 

cooperative roles for Intimin, Map and EspF activities.  
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Figure 65: Assessment of espZ multi-mutants. HeLa cells were left uninfected or infected with 

indicated strains, for indicated times, prior to isolating Triton X-100 soluble (contains host cytoplasm 

and membrane proteins plus delivered effector proteins) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) fractions for Western blot analysis probing for 

phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and actin. The position of unmodified (To) and 

host kinase modified Tir (T” and PY [TY]) forms are indicated as are Ep85 (EPEC tyrosine-

phosphorylated cytoplasmic protein), EspF, EspB, tubulin, actin and protein markers. Strains used 

were EPEC strains lacking EspZ (espZ(81) or z) alone and one or more of the indicated proteins: Map 

(m); EspF (f), Tir (t), EspH (h), EspG/EspG2 (go3) or Intimin (e). Below the strain name (note indicates 

order genes were inactivated) is the identity of proteins of interest (Tir, Map [M], EspH, EspZ, EspF 

[F], EspG/EspG2 [G], EspB [B] effector and/or Intimin [Int] proteins) expressed by the strain. The espZ 

gene was inactivated by deleting 81 (of 98) residues or introducing kanamycin-encoding gene 

indicated by (81) and :km respectively. Note, data is representative of that from two or more 

independent experiments. 

NOTE in some write Tr instead of Tir and don’t see fze mutant data 

D) 
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5.3.3 Restoring espZ associated-phenotypes of mfez:km mutant by complementing 

with Map, EspF or Intimin-expressing plasmids 

The previous work suggested possible roles for EspF, Map and/or Intimin proteins in 

the espZ(81)-associated phenotypes. To support this premise, plasmids carrying genes 

for Map, EspF or Intimin were, individually, introduced into the mfez:km (lacks Map, 

EspF, Intimin and EspZ proteins) mutant (see Chapter 2; Section 2.2.2 & Table 5) to 

determine if ‘rescued’ the defect to a level found for the respective triple mutants (Table 

9). PCR analyses supported mfez:km mutant genotype and plasmid introduction of the 

appropriate gene (Figure 66).  

 

 

 

 

 

 

 

 

Western blot analysis of Triton X-100 soluble and insoluble fractions from HeLa cells 

infected with the Intimin complemented strain (mfez/p-eae) confirmed an EPEC-like 

phenotype for the mfez:km mutant (though some loss of host/Tir phosphotyrosine 

protein signal was evident at 6hr time point in this experiment) with plasmid expression 

of Intimin - supported by Western blot analysis – linked to a much more prominent 

impact on the T” form, host/Tir phosphotyrosine protein and tubulin/actin profiles (4-

6hr; Figure 67). Tir (T’’ or T’’pY forms) were not evident, due to the absence of Intimin, 

in the insoluble fractions (Figure 67). This data supports a key role for Intimin in the 

espZ(81)-associated phenotypes. 

 

 

 

 

Figure 66: Absence of eae, espF and map genes 

from the mfez:km mutant and plasmid 

reintroduction of individual genes. Primers specific 

for the eae, map and espF genes were used to 

amplify DNA from the indicated strains or, as a 

control, purified plasmids (used to transforming 

strains) encoding Intimin (pCVD-eae), Map (pACYC-

map) or EspF (pBR-espF). Strains examined were 

EPEC, the mfez:km mutant (missing map, espF, eae 

and espZ genes; Km indicated antibiotic cassette 

within espZ gene). PCR products were run on 1% Gel 

with molecular weight makers (2 log DNA ladder) 

visualized using Red Nucleic Acid Stain.   
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Figure 67: Critical role for Intimin to trigger Tir T” to T’ shift and Tir tyrosine 

dephosphorylation by EspZ-deficient strains. HeLa cells were left uninfected or infected with 

indicated strains (for indicated times) prior to isolating Triton X-100 soluble (contains host cytoplasm 

and membrane proteins plus delivered effector proteins) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) fractions. The samples were processed for 

Western blot analysis (10% SDS-PA gels) and probed for phosphotyrosine proteins (PY), Intimin, Tir, 

EspB, EspF, tubulin and actin. The position of unmodified (To) and host kinase modified (T” and T’’pY 

[TY]) Tir forms are indicated as are the positions of Ep85 (EPEC tyrosine-phosphorylated protein), 

Intimin, EspB, EspF, tubulin, actin and protein markers. Strains used were EPEC, espZ(81) and strains 

lacking 3 or 4 of the genes encoding Map (m), EspF (f), EspZ (z) and Intimin (e) with, when 

appropriate, strains carrying an Intimin-expressing plasmid (pCVD-eae). Note tyrosine 

dephosphorylation with mfez:km mutant at 6hr is unusual (see Figure 68 and 69).  
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Studies with the EspF complemented strains confirmed an EPEC-like phenotype for 

the mfez:km mutant with the mfez/p-F equivalent triple mutant (mez:km) linked to loss 

of host and Tir phosphotyrosine protein signals at 6h time point (Figure 68). 

Importantly, the complemented (mfez/pF) strain mimicked, as predicted, the mez:km 

mutant supporting a role for EspF in promoting host and Tir phosphoprotein signal loss. 

Strain genotype was supported by EspF absence in samples from only the mfez:km 

infected cells (Figure 68). It should be noted that the timing and, perhaps, level of EspB 

and (when expressed) EspF signals was different between mfez:km (evident by 3hr in 

soluble fraction), mez:km (evident by 4hr) and mfez/pF (evident by 5hr; Figure 68).  

 

EspF and Map proteins target the mitochondria, via mitochondrial targeting 

sequences [MTS], leading to loss of mitochondrial dysfunction hence host cell death 

(Nagai et al., 2005, Kenny & Jepson, 2000, Papatheodorou et al., 2006) and EspZ is 

proposed to inhibit the impact of these effectors on mitochondrial function (Shames 

et al., 2011, Roxas et al., 2012). In an attempted to examine whether EspF and Map 

associated phenotypes (in the absence of EspZ) are linked to their import to the 

mitochondria, the mfez:km mutant was complemented with plasmids encoding EspF 

variants unable to target mitochondria, due a single substitution; L16E (Nagai et al., 

2005) or replacing the N-terminal 101 residues  - contains mitochondrial targeting 

sequence – with N-terminal 101 Tir residues (Quitard et al., 2006). However, no 

defects were evident (data not shown) implicating dependence on other features.   

 

Consistent with our previous findings, introducing the Map-encoding plasmid into the 

mfez:km mutant, generating an equivalent triple mutant (fz:kme), was linked to loss of 

host and Tir phosphotyrosine proteins at later (4-6hr) time points (Figure 69). Strain 

genotype was supported by absence of EspF and Intimin protein signals (antibodies 

against EPEC Map were not available). Interestingly, the EspB levels in samples from 

cells infected with the complemented strain were greater than that from control 

mfez:km-infected cells (Figure 69), but similar to that in the fz:kme infected cells. 

Complementation studies were also undertaken with Map variants known to have 

subversive defects i.e. don’t target mitochondria as N-terminal 41 residues - contains 

mitochondrial targeting sequence - replaced by N-terminal 101 Tir residues 

(mapΔMTS), can’t activate Cdc42 (mapE78A) and can’t sustain Map-triggered Cdc42 

activity (mapΔTLR or mapHA); latter also enables antibody detection of Map (Kenny & 
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Jepson, 2000, Papatheodorou et al., 2006, Wong et al., 2012a, Dean et al., 2013). 

These studies revealed a significant defect for one variant, mapΔMTS, implicating a 

key role for Map targeting mitochondria or another N-terminal feature, though it is 

possible that the Tir domain prevents the responsible Map activity (Figure 70). 

Interestingly, expressing the other variants were linked to a faster and greater level of 

phosphotyrosine protein loss than the native, plasmid encoded, Map (Figure 70) 

suggesting that these features may hinder Map activity that promotes loss of 

phosphotyrosine protein signal.  Probing for HA and Tir epitopes supported expression 

and delivery of MapHA and Tir_ΔMTSMap proteins, respectively (Figure 71). 

 

Collectively, these data support a major role for Intimin in the cytotoxicity-associated 

phenotypes of EspZ-deficient strains with Map and EspF proteins promoting 

dephosphorylation of host/Tir phosphotyrosine proteins dependent on the N-terminal, 

MTS containing, domain of Map but not EspF effector protein. 
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Figure 68: Minor role for EspF in the dephosphorylation of host and Tir tyrosine 

phosphorylated proteins following infection by EspZ-deficient strains. HeLa cells were left 

uninfected or infected with indicated strains (for indicated times) prior to isolating Triton X-100 

soluble (contains host cytoplasm and membrane proteins plus delivered effector proteins) and 

insoluble (contains host nuclei and cytoskeletal proteins plus adherent bacterial proteins) 

fractions. The samples were processed for Western blot analysis (10% SDS-PA gels) and probed 

for phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and actin. The position of unmodified 

(To) and host kinase modified (T” and T’’pY [TY]) Tir forms are indicated as are the positions of 

Ep85 (EPEC tyrosine-phosphorylated protein), EspB, EspF, tubulin, actin and protein markers. 

Strains used were EPEC and strains lacking 3 or 4 of the genes encoding Map (m), EspF (f), 

EspZ (z and Intimin (e) with, when appropriate, strains carrying a plasmid encoding for EspF 

(pBR-espF).  



Chapter 5 Results III 

151 
  

 

 

 

 

 

 

 

 

 

  

Figure 69: Prominent role for Map in triggering tyrosine dephosphorylation of host 

proteins of EspZ/Intimin-deficient strains. HeLa cells were left uninfected or infected with 

indicated strains (for indicated times) prior to isolating Triton X-100 soluble (contains host 

cytoplasm and membrane proteins plus delivered effector proteins) and insoluble (contains host 

nuclei and cytoskeletal proteins plus adherent bacterial proteins) fractions. The samples were 

processed for Western blot analysis (10% SDS-PA gels) and probed for phosphotyrosine 

proteins (PY), Intimin, Tir, EspB, EspF, tubulin and actin. The position of unmodified (To) and 

host kinase modified (T” and T’’pY [TY]) Tir forms are indicated as are the positions of Ep85 

(EPEC tyrosine-phosphorylated protein), Intimin, EspB, EspF, tubulin, actin and protein markers. 

Strains used were EPEC, espZ(81) mutant and strains lacking 3 or 4 of the genes encoding Map 

(m), EspF (f), EspZ (z) and Intimin (e) with, when appropriate, strains carrying a plasmid 

encoding for Map (pACYC-map)  
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Figure 70: Map triggered espZ associated Tir/host protein tyrosine dephosphorylation 

phenotypes is N-terminal dependent. HeLa cells were infected with indicated strains (for indicated 

times) prior to isolating Triton X-100 soluble (contains host cytoplasm and membrane proteins plus 

delivered effector proteins) and insoluble (contains host nuclei and cytoskeletal proteins plus adherent 

bacterial proteins) fractions. The samples were processed for Western blot analysis (10% SDS-PA 

gels) and probed for phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and actin. The position 

of unmodified (To) and host kinase modified (T” and T’’pY [TY]) Tir forms are indicated as are the 

positions of Ep85 (EPEC tyrosine-phosphorylated protein), EspB, EspF, tubulin, actin and protein 

markers. Strains used were espZ quadruple (mfez) mutant (lacking genes encoding Map (m), EspF 

(f), EspZ (z) and Intimin (e) carrying a plasmid encoding for Map (pSK-map, pSK-map-HA) or Map 

variant that is missing mitochondrial targeting sequence (mapΔMTS), as N-terminal 41 residues - 

contains mitochondrial targeting sequence - replaced by N-terminal 101 Tir residues, (mapΔE78A) 

can’t activate Cdc42  and (mapΔTLR) can’t sustain Map-triggered Cdc42 activity. The immunoblots 

(where appropriate) cropped and moved for presentation purposes. Note, data is representative of 

that from two or more independent experiments. 
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Figure 71: Expression and delivery of MapHA and Tir-∆MTS-Map fusion proteins. Sample from 

previous experiment were processed for Western blot analysis (10% SDS-PA gels) and probed for A) 

HA-tagged or B) Tir protein. The position of Tir, HA-tag or Tir_ΔMTSMap (Map-MTS is swapped with 

N-terminal domain of Tir effector protein) are indicated as are the position of the protein markers. 

Strains used were as described in Figure 69. 
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5.3.4 Critical role for Tir in triggering espZ(81) associated phenotypes  

Intimin subverts host cellular process through binding mammalian receptors, such as 

beta Integrin and nucleolin, or Tir (Frankel et al., 1996, Sinclair et al., 2006, Kenny & 

Finlay, 1997, Kenny et al., 1997b). Thus, we decided to examine whether Tir has a 

possible role in triggering or suppressing espZ(81) phenotypes. Therefore, a z(81)t 

double mutant strain was generated (see Chapter 2; Section 2.2.7), PCR confirmed 

(data not shown) and HeLa cells were then infected with espZ(81) and z(81)t mutant 

strains for indicated time course with Triton X-100 soluble and insoluble fractions 

isolated for analyses. It should be noted that, since all espZ(81) phenotypes have been 

detected between 3 and 6hrs post infection with no real differences observed between 

4 and 5hr, thus, this strain was examined at only 3, 4.5 and 6hrs post-infection time 

points. 

Western blot analysis showed, as expected, no evidence for Tir expression nor delivery 

for cells infected with the z(81)t mutant strain (Figure 72), supporting strain genotype.  

Interestingly, probing with anti-tubulin and actin showed no change in the amount of 

proteins in cells infected with z(81)t mutant at all-time points. Similarly, probing with anti-

phosphotyrosine revealed no tyrosine dephosphorylation event (noting Tir is missing 

in this strain) was evident in z(81)t mutant infected cells (3hr) with >3hr, a slight host 

proteins dephosphorylated was observed, confirming a possible role for other effector 

proteins, Map and/or EspF, to induce this phenotype (Figure 72). 

Collectively, these data suggested that Tir seems to have an important role in triggering 

espZ(81) phenotypes, via/or with not Intimin, with cooperative roles for other EPEC 

effector proteins (presumably Map and EspF).   
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Figure 72: Tir is critical for espZ(81) associated phenotypes. HeLa cells were left uninfected or 

infected with indicated strains, for indicated times, prior to isolating Triton X-100 soluble (contains 

host cytoplasm and membrane proteins plus delivered effector proteins) and insoluble (contains 

host nuclei and cytoskeletal proteins plus adherent bacterial proteins) fractions for Western blot 

analysis probing for phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and actin. The position 

of unmodified (To) and host kinase modified Tir (T” and PY [TY]) forms are indicated as are Ep85 

(EPEC tyrosine-phosphorylated protein), EspF, EspB, tubulin, actin and protein markers bands. 

Strains used were EspZ-deficient (espZ(81)) mutants and Tir/EspZ-deficient strain (z(81)t). The espZ 

gene was inactivated by deleting 81 (of 98) residues and indicated by (81), while tir was inactivated 

by deleting the whole gene. Note, data is representative of that from two or more independent 

experiments. 
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5.3.5 Supporting roles for Map and EspF in z(81)t mutant associated phenotypes  

To test the hypothesis that dephosphorylation events detected at latest time point 

infection with the z(81)t mutant (Figure 72) are linked to other EPEC effectors, 

presumably Map and/or EspF, we examined z(81)t multiple mutant strains missing one 

or more EPEC LEE effector proteins. The screened strains and resulting western blot 

data (representative blots shown in Figure 72&73) are summarised in Table 10.  

 

As expected, Western blot analysis showed no evidence for Tir expression in the 

soluble/insoluble fractions of all infected strains, as these strains are missing Tir 

(Figure 73). Interestingly, while no evidence for tubulin and actin proteins loss in the 

soluble/insoluble fractions of all infected strains, >4h infection with mtz:km led to some 

tubulin loss (Figure 73AB).  Probing with anti-phosphotyrosine revealed that infection 

for >4hr with etz:km, emtz:km or mtz:km mutant strains (lacking Tir and EspZ with Map 

or Intimin or both) led to host proteins being dephosphorylated at later time points 

(Figure 73A). Interestingly, deleting EspF from tz mutant (tfz:km, etfz:km and tmfz:km) 

showed little if any host proteins dephosphorylation (Figure 73B). The latter suggest 

that EspF promote loss of the host protein phosphorylation with possible role for other 

effectors, presumably the EspG homologues, as the mfz(81)go3t mutant does not 

induce this phenotype (Table 10; Figure 74). While a similar EspB profile was observed 

Strain Figure # 3h 4h 5h 6h Notes 

EPEC 64, 65A/C/D E E E E     T” is stable, No pTyr nor tub/actin loss 

espZ
(81)

 72 E ∆*●○   ∆*●○ ∆*●○    

z81)t 72 tE tE tE Z       Slower pTyr proteins loss at 5/6h 

etz:km    73B tE tE tE Z         Slower pTyr loss at 5/6h 

mtz:km 73A tE tE tE Z       Slower pTyr  and tub loss at 5/6h 

emtz:km 73A tE tE tE Z Slower pTyr  loss at 5/6h  

etfz:km 73A tE tE tE    Z Slower pTyr  loss at 6h 

tfz:km 73A tE tE tE    tE  

tmfz:km   73B tE tE tE tE        

mfz
(81)

go3t 74 tE tE tE tE  

Table 10: Summary of differences between cells infected with EspZ-deficient and Tir/EspZ 

negative mutants strains. Summary of western blot data from HeLa cells infected with indicated 

strains after 3, 4, 5 and 6h. Strains used were espZ(81) mutant or those unable to express EspZ alone 

(espZ(81) mutant) or EspZ plus Tir with one or more of indicated effectors – EspF (f), Map (m), 

EspG/EspG2 (go3) – and/or Intimin (e) proteins. E indicates normal T3SS dependent changes at 

indicated time point. While tE indicates normal T3SS dependent changes, except Tir data, as these 

mutants lack Tir, Z indicates data similar to that obtained with the espZ(81)-infected samples at that 

time point with, when present, some differences in probed signals (∆ reveals dephosphorylation of 

Tir and host tyrosine phosphoproteins; * loss to Tir T’’ band, ● loss of tubulin (tub) signal, and ○ loss 

of actin signal). Orange highlights espZ multi-mutants associated with minor phenotypic changes at 

later time points. Yellow highlights espZ multi-mutants that behave like EPEC. The espZ gene was 

inactivated by deleting 81 (of 98) residues or introducing kanamycin-encoding gene indicated by (81) 

and :km respectively.  

tE and Z revealing data similar to corresponding EPEC and espZ(81) mutant-infected samples, 

respectively with, when present, some differences in probed signals (∆ reveals dephosphorylation of 

Tir and host tyrosine phosphoproteins; * loss to Tir T’’ band, ● loss of tubulin (tub) signal, and ○ loss 

of actin signal). Orange highlighting indicate Tir/EspZ-deficient-mutants that associated with minor 

phenotypes at later time points. Yellow highlighting indicate Tir-EspZ-deficient-mutants that behave 

like EPEC (note, no data linked to Tir protein as these strains are missing Tir). The espZ gene was 

inactivated by deleting 81 (of 98) residues or introducing kanamycin-encoding gene indicated by (81) 

and :km respectively.  
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in all soluble and insoluble fractions, EspF was only detected in cells infected with EspF 

positive strains (Figure 73AB).  

Collectively, these data (with our previous work findings) support a critical role for Tir 

and/or Intimin (via or not Tir-Intimin interactions) in triggering espZ(81) phenotypes and 

suggested a cooperative role for EspF and Map in the absence of Intimin and/or Tir, to 

induce espZ(81) associated dephosphorylation event. 
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Figure 73: Assessment of Tir/EspZ-deficient mutant strains. HeLa cells were infected with 

indicated strains (for indicated times) prior to isolating Triton X-100 soluble (contains host cytoplasm 

and membrane proteins plus delivered effector proteins) and insoluble (contains host nuclei and 

cytoskeletal proteins plus adherent bacterial proteins) fractions. The samples were processed for 

Western blot analysis (10% SDS-PA gels) and probed for phosphotyrosine proteins (PY), Tir, EspB, 

EspF, tubulin and actin. The position of Ep85 (EPEC tyrosine-phosphorylated protein), EspB, EspF, 

tubulin, actin and protein markers are indicated. Strains used were EPEC strains lacking EspZ 

(espZ(81) or z) and Tir with one or more of the indicated proteins: Map (m); EspF (f) or Intimin (e). 

Below the strain is the identity of proteins of interest (Map [M], EspH, EspF [F], EspG/EspG2 [G], 

EspB [B] effector and/or Intimin [Int] proteins) expressed by the strain. The espZ gene was 

inactivated by introducing kanamycin-encoding gene indicated by :km. 
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5.3.6 espZ(81) cytotoxicity-associated phenotypes depend on Tir with critical role for 

kinase modified residues 

To examine the role of Tir features in the espZ(81) associated phenotypes, 

complementation studies were undertaken with the mfz(81)go3t mutant which showed 

no espZ(81) associated phenotypes, in contrast to the mfz(81)go3 mutant (doesn’t 

express EspZ, Map, EspF, EspG or EspG2 effectors) (Table 9; Figure 65).  

Western blot analysis showed that mfz(81)go3 mutant infection was linked to loss of 

tubulin (didn’t assess actin) and phosphotyrosine protein signals (at late time points; 

Figure 74) In contrast, the Tir-deficient variant (mfz(81)go3t) appeared not to induce 

these alterations indicating a critical role for Tir for these events. Strain genotype was 

supported by absence of Tir bands in samples from mfz(81)go3t, unlike mfz(81)go3, 

mutant-infected cells (Figure 74). To gain insight on how Tir may be contributing to this 

process, complementation studies were undertaken with variants that were i) unable 

to interact with Intimin (TirHAinto; p3gtHAinto) as HA epitope tag within Intimin binding 

domain, ii) carrying a HA tag C-terminus with no known impact on Tir functionality or 

iii) kinase substrate residues serine (434 and 463) and tyrosine (454 and 474) 

substituted to alanine/phenylalanine (TirΔSY; p3gtΔSY). Interestingly, only the TirHA 

variant rescued the mfz(81)go3t mutant defect with complementation supported by 

Western detecting Tir  (increased molecular mass when HA epitope tagged) and failure 

to detect TirΔSY variant with anti-phosphotyrosine antibodies (Figure 74). This data is 

suggestive of a key role for Tir-Intimin interaction and one or more of the examined Tir 

kinase phosphorylation substrates in the ability of EspZ-deficient strains to induce 

tubulin (and presumably actin) loss i.e. cytotoxicity and loss of tyrosine phosphorylated 

proteins.  
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Figure 74: Intimin induced espZ(81) phenotypes is Tir dependent with critical role for serine 

and/or tyrosine residues. HeLa cells were infected with indicated strains (for indicated times) prior 

to isolating Triton X-100 soluble (contains host cytoplasm and membrane proteins plus delivered 

effector proteins) and insoluble (contains host nuclei and cytoskeletal proteins plus adherent 

bacterial proteins) fractions. The samples were processed for Western blot analysis (10% SDS-PA 

gels) and probed for phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and actin. The position 

of unmodified (To) and host kinase modified (T” and T’’pY [TY]) Tir forms are indicated as are the 

positions of Ep85 (EPEC tyrosine-phosphorylated protein), EspB, EspF, tubulin and protein markers. 

Strains used were mfz(81)go3 lacking EspZ (espZ(81) or z) with other indicated proteins: Map (m); 

EspF (f) and EspG/EspG2 (go3), mfz(81)go3t as mfz(81)go3 but lacks Tir, and  mfz(81)go3t 

complemented with pACYC- tir (expressing Tir), pACYC-3gtHAinto, (expressing Tir with HA-taq 

inserted in the Intimin binding area (IBA) to prevent Tir-Intimin interaction), pACYC-3gtHAo 

(expressing Tir with HA-taq inserted in the C-terminal of Tir), or tir∆SY (kinase phosphorylated serine 

(434 and 463) and tyrosine (454 and 474) residues substituted to alanine/phenylalanine). Note, data 

is representative of that from two or more independent experiments. 
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5.3.7 Additional complexity in the espZ(81) mutant phenotypes 

Although our study with the mfz(81)go3e and mfz(81)go3t mutant strains (Figure 65 & 74) 

implicated a key role for Tir via Intimin in triggering espZ(81)  associated phenotypes 

with contribution from EspF, Map and EspG, additional complexity was evident by an 

earlier observation that the espZ multiple mutant; mfz(81)go3eh:km (As mfz(81)go3e but 

lacks EspH [h]) behaved like the espZ(81) (Figure 75).  

While Western blot analysis showed no evidence of the espZ(81) associated 

phenotypes was observed in cells infected with either EPEC or mfz(81)go3e mutant 

(Figure 75), the mfz(81)go3eh:km infection linked to a slower loss of Tir T’’ form and 

tubulin/actin were detected at latter time point of infection (Figure 75). Furthermore, 

while EspB was detected in all loaded samples (Figure 75), EspF was absent from 

soluble and insoluble fractions of cells infected with either mfz(81)go3eh:km or 

mfz(81)go3e mutant, contrasting to an EPEC strain, which support strains’ genotype 

(Figure 75).  

This data suggestive of a possible suppressive role for EspH against other EPEC 

protein(s), presumably Tir or a non-LEE effector protein(s). 
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Figure 75: Multiple mutant strain mfz(81)go3eh:km, unlike mfz(81)go3e,  triggers espZ(81) 

phenotypes. HeLa cells were infected with indicated strains (for indicated times) prior to isolating 

Triton X-100 soluble (contains host cytoplasm and membrane proteins plus delivered effector 

proteins) and insoluble (contains host nuclei and cytoskeletal proteins plus adherent bacterial 

proteins) fractions. The samples were processed for Western blot analysis (10% SDS-PA gels) and 

probed for phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and actin. The position of 

unmodified (To) and host kinase modified (T” and T’’pY [TY]) Tir forms are indicated as are the 

positions of Ep85 (EPEC tyrosine-phosphorylated protein), EspB, EspF, tubulin, actin and protein 

markers. Strains used were EPEC, mfz(81)go3e (lacking EspZ (espZ(81) or z) with other indicated 

proteins: Map (m); EspF (f), EspG/EspG2 (go3) and Intimin (e), mfz(81)go3eh:km as mfz(81)go3e but 

also lacks EspH (h). The espZ gene was inactivated by deleting 81 (of 98) residues while espH was 

inactivated by introducing kanamycin-encoding gene indicated by (81) and :Km respectively. The 

immunoblots (where appropriate) cropped and moved for presentation purposes. Note, data is 

representative of that from two or more independent experiments. 
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5.3.8 LDH release depends on espZ mutants expressing Tir or Intimin 

Our previous results (Figure 65 & 72) revealed Intimin and Tir proteins are essential 

for triggering the espZ(81) associated phenotypes. To support this proposition, we 

quantified cellular cytotoxicity mediated by different espZ(81)  strains (express or not Tir 

and/or Intimin proteins) using the Lactate dehydrogenase (LDH) assay. Thus, HeLa 

cells were infected with EPEC, T3SS mutant (cfm-14), espZ single or multiple mutants 

(lacking Tir and/or Intimin with or without other EPEC LEE effector proteins) before cell 

culture supernatants were isolated to quantify the level of released LDH. The finding 

are summarised in Table 11 and Figure 76.  

As reported (Shames et al., 2010), the T3SS mutant strain induced minimal host cell 

cytotoxicity, with ~10% of LDH enzyme released into the cell culture media by 6hr post 

infection (Figure 76). In contrast, cells infected with the EPEC strain was linked to more 

LDH release with ~18% of LDH enzyme released by 6hr post-infection (Table 11; 

Figure 76). In contrast, espZ(81) infection led to the greatest release of LDH enzyme 

with 20, 65 and ~90% of LDH enzyme being released after 3, 4.5 and 6hr infection 

periods, respectively (Table 11; Figure 76). Similar results were obtained with only one 

strain, mfz(81)go3 mutant (lacks four EPEC LEE effector proteins and EspG2, but has 

both Tir and Intimin) (Table 11; Figure 76). Interestingly, deleting either Tir or Intimin 

from all examined EspZ deficient, including mfz(81)go3 led to an EPEC-like profile 

(Table 11; Figure 76). This finding illustrates a critical role for Tir and Intimin proteins 

to induce espZ(81)  associated cytotoxicity. 
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Strain Figure # 3h 4h 5h 6h Notes   Mean value of 
%LDH released (6h) 

EPEC 64&65 E E E E     17.9 

cfm (T3SS) 64 E E E E  10 

espZ
(81)

 64&65A/C E ∆*●○   ∆*●○ ∆*●○    88.8 

ez:km 65B E E E  E  Loss  pTyr proteins at 5/6h 20.2 

z(81)t 72 tE tE tE Z      Slower pTyr proteins loss at 6h 19.2 

etz:km 73B tE tE tE Z     Loss pTyr loss at 5/6h 13.3 

mfz:kmgo3 65C E E Z Z Loss Tub/actin 6h and pTyr 
proteins 5/6h 

76.5 

etfz:km    73A tE tE tE Z           Slower pTyr proteins loss at 6h  16.9 

mfez:km 65B/D E E E E  17.5 

mfz
(81)

go3t 74 tE tE tE tE  14.5 

mfz:kmgo3e 65C E E E E  15.3 

mfz(81)go3eh 75 E E Z Z Loss pTyr proteins/Tir T’’ at 
4.5/6h & tub/act 6h 

22.8 

Table 11: Summary of differences between cells infected with EspZ-deficient and EPEC 

strains. Summary of western blot and LDH data (6h only) from HeLa cells infected with indicated 

strains after 3, 4, 5 and 6h. Strains used were EPEC, cfm (T3SS mutant) or those unable to express 

EspZ alone (espZ(81) mutant) or EspZ plus one or more of indicated effectors – Tir (t) EspF (f), Map 

(m), EspH (h), EspG/EspG2 (go3) – and/or Intimin (e) proteins. E indicates normal T3SS dependent 

changes at indicated time point. While tE indicates normal T3SS dependent changes, except Tir data, 

as these mutants lack Tir, Z indicates data similar to that obtained with the espZ(81)-infected samples 

at that time point with, when present, some differences in probed signals (∆ reveals dephosphorylation 

of Tir and host tyrosine phosphoproteins; * loss to Tir T’’ band, ● loss of tubulin (tub) signal, and ○ 

loss of actin signal). Yellow highlighting indicate espZ multi-mutants that release the higher 

percentage of LDH enzyme. The espZ gene was inactivated by deleting 81 (of 98) residues or 

introducing kanamycin-encoding gene indicated by (81) and :km respectively.  

 

 

Figure 76: LDH release depends on espZ mutant expressing Tir or Intimin proteins. HeLa cells 

were infected with indicated strains (for indicated times) prior to processing extracellular media for 

LDH release as a measure for cell cytotoxicity. Strains used were EPEC, cfm-14 (T3SS mutant) or 

espZ single or multiple mutants (lacking Tir (t) and/or Intimin (e) with or without one or more of 

indicated LEE effectors – EspF (f), Map (m), EspG/EspG2 (go3) and EspH (h). LDH releases was 

measured and data expressed as means ±S.D. from four independent experiments with asterisk 

indicating when only involved three independent experiments. 
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5.3.9 Ruling out any possible role for non-LEE effector proteins in espZ(81) 

phenotypes    

Finding that, deleting the espH gene from mfz(81)go3e mutant revealed its ability to 

trigger espZ(81)  associated phenotypes (Figure 75; mfz(81)go3eh:km), implicated 

additional complexity in which EspH may suppress cytotoxicity inducing activity of, 

presumably, non-LEE encoded effector protein(s). In EPEC (strain E2348/69), 24 non-

LEE putative effectors have been identified (Dean & Kenny, 2009, Iguchi et al., 2009, 

Deng et al., 2004b). Thus, we decided to examine the putative role for these effector 

proteins in the espZ(81)  phenotypes by generating a strain lacking the espZ gene and 

as many LEE and non-LEE-encoded effectors as possible with the prediction that it 

would have little if any espZ(81) phenotypes. Thus, I took an advantage of an available 

mutant TOE-A7 (Yen et al., 2010) that lacks 14 non-LEE effectors and EspG, from 

which espZ, espF, map espH, eae, tir and/or espB genes were deleted using available 

suicide vectors and developed strategies (see Chapter 2; Section 2.2.7). This led to 

the generation of ten strains (Table 12) with PCR analysis confirming disruption of 

espZ, espF, map, espH, eae, tir and/or espB genes (data not shown). The screened 

strains and resulting Western blot data (shown in Figure 77A-D) are summarised in 

Table 12.  

Western blot analysis of isolated fractions revealed that TOE-A7, as expected, 

behaved like EPEC with no evidence for any espZ(81) associated phenotypes (Table 

12; Figure 77A). In contrast, TOE-A7 mutants, ∆fz, ∆fzm and ∆fzmh (lacking EspZ with 

one or more of the LEE effectors EspF, Map and EspH) behaved like espZ(81) (Table 

12; Figure 77AB). Interestingly, while ∆fzmth (lacks all classical LEE effectors [but not 

EspB] and the 14 non-LEE effectors) was associated with one or more minor 

phenotypes at later time points (Table 12; Figure 77D), ∆fzmthe (as ∆fzmth but lacks 

Intimin) was linked to a more rapid loss of the proteins tyrosine phosphorylation and 

tubulin/actin proteins, with, of course, no information about Tir modification as strains 

are tir-negative strains (Table 12; Figure 77C). Similarity, TOE-A7∆core (lacks the 14 

non-LEE effectors and loss of LEE region genes encoding the EspH, CesF, Map, Tir, 

CesT and Intimin) also behaved like espZ(81), suggestive of a role for Tir and Intimin in 

promoting and a suppressing these events, respectively (Table 12; Figure 77D). 

Noticeably, the cytoplasmic tubulin protein, was detected in the insoluble fractions of 

most EspZ deficient TOE-A7 mutants, suggesting a putative role for EspZ with other 

14 non-LEE effectors to protect against that. In addition, EspB was detected in all 
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infected cells (soluble and insoluble fractions) with a gradual increase in HeLa cells 

infected over 3hr with espZ(81) deficient strains, suggested that  EspB might be 

regulated by EspZ or other missing effectors. In contrast, EspF was only detected in 

EspF positive strain (EPEC, TOE-A7 and espZ(81)) which is a further support for strains 

genotype.  

These findings suggested that Tir, but not Intimin, is responsible for triggering the 

espZ(81)  associated phenotypes in the TOE-A7 genetic background. 

 

 

 

Strain Figure  3h 4h 5h 6h Notes Mean value of 

%LDH released (6h) 

EPEC 64/77 E E E E T” is stable, No pTyr nor 

tub/actin loss 

17.9 

espZ
(81)

 77A/B E ∆*●○ ∆*●○ ∆*●○ Slower tub/actin 6h 88.8 

TOE-A7 77A/C E E E E As EPEC 12.5 

TOE-A7b N/A _ _ _ _  11.1 

TOE-A7∆fz 77A E Z Z Z As  espZ
(81)

 28.2 

TOE-A7∆fzm 77B E Z Z Z As  espZ
(81)

 36.0 

TOE-A7∆fzmh 77B E Z Z Z As  espZ
(81)

 38.6 

TOE-A7∆fzme N/A _ _ _ _  29.2 

TOE-A7∆fzmeh 77C E Z  (4.5h) Z Slower T’’ and pTyr loss; Faster 

tub/actin 4h 

37.4 

TOE-A7∆fzmt N/A _ _ _  9.7 

TOE-A7∆fzmth 77C tE tE  (4.5h) Z Slower loss pTyr proteins at 6h 

& tub/act 6h 

11.4  

TOE-A7∆fzmthe 77C tE Z  (4.5h) Z Faster pTyr and tub/actin loss 

4.5h 

9.8 

TOE-A7∆core 77C tE tE  (4.5h) Z Slower loss pTyr proteins at 6h 

& tub 6h 

16.3 

TOE-A7∆fzmehb N/A _ _ _  6.0 

Table 12: Summary of differences between cells infected with EspZ-deficient TOE-A7 strains. 

Summary of western blot and LDH (only 6hr) data from HeLa cells infected with indicated strains and 

time. Strains used were TOE-A7 (lacks 14 non-LEE effectors and one LEE effector, EspG) or those 

(TOE-A7 mutants) unable to express EspZ plus one or more of indicated LEE effectors – EspF (f), 

Map (m), EspH (h), Tir (t) – and/or Intimin (e) proteins and core region (loss of LEE region genes 

encoding the EspH, CesF, Map, Tir, CesT and Intimin). E indicates normal T3SS dependent changes 

at indicated time point. While tE indicates normal T3SS dependent changes, except Tir data, as these 

mutants lack Tir, Z indicates data similar to that obtained with the espZ(81)-infected samples at that 

time point with, when present, some differences in probed signals (∆ reveals dephosphorylation of Tir 

and host tyrosine phosphoproteins; * loss to Tir T’’ band, ● loss of tubulin (tub) signal, and ○ loss of 

actin signal). N/A indicate that this strain was not assisted. Yellow highlighting indicates espZ multi-

mutants that release the higher percentage of LDH enzyme.  
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Figure 77: Assessment of EspZ deficient TOE-A7 multi-mutants. HeLa cells were left uninfected 

or infected with indicated strains, for indicated times, prior to isolating Triton X-100 soluble (contains 

host cytoplasm and membrane proteins plus delivered effector proteins) and insoluble (contains 

host nuclei and cytoskeletal proteins plus adherent bacterial proteins) for Western blot analysis 

probing for phosphotyrosine proteins (PY), Intimin, Tir, EspB, EspF, tubulin and actin. The position 

of unmodified (To) and host kinase modified Tir (T” and PY [TY]) forms are indicated as are Ep85 

(EPEC tyrosine-phosphorylated protein), Intimin, EspF, EspB, tubulin, actin and protein markers. 

Strains used were EPEC, TOE-A7 strains lacking EspZ (espZ(81) or z) with one or more of the 

indicated proteins: Map (m); EspF (f), Tir (t), EspH (h) or Intimin (e), or  core region (loss of LEE 

region genes encoding the EspH, CesF, Map, Tir, CesT, EspG and Intimin protein). Below the strain 

name (note indicates order genes were inactivated) is the identity of proteins of interest (Tir, Map 

[M], EspH, EspZ, EspF [F], EspB [B] effector and/or Intimin [Int] proteins) expressed by the strain. 

The espZ gene was inactivated by deleting 81 (of 98) residues while espH by introducing 

kanamycin-encoding gene indicated by (81) and :km respectively. The immunoblots (where 

appropriate) cropped and moved for presentation purposes. Note, data is representative of that from 

two or more independent experiments. 

 

 

NOTE in some write Tr instead of Tir and don’t see fze mutant data 
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The cellular cytotoxicity mediated by EspZ deficient TOE-A7 mutants (express or not 

Tir and/or Intimin proteins) was also quantified using the Lactate dehydrogenase (LDH) 

assay and data are summarised in Table 12. As before, the espZ(81) infection lead to 

the greatest release of LDH enzyme with 20, 65 and ~90% of LDH enzyme being 

released after 3, 4.5 and 6hr infection periods, respectively (Figure 78). In contrast, 

cells infected with the TOE-A7 strain was linked to ~18% LDH released by 6hr post-

infection with less in cells infected with T3SS mutant strain (TOE-A7∆espB; ~11%) 

(Figure 78). Interestingly, TOE-A7 mutants, ∆fz, ∆fzm and ∆fzmh (lacking EspZ with 

one or more LEE effectors EspF, Map and EspH) were linked to more LDH enzyme 

released ~30% compared to TOE-A7 (Figure 78). Importantly, deleting Tir, but not 

Intimin, (∆fzmt and ∆fzmth) linked to a great reduction in the amount of LDH enzyme 

release (~10%) (Figure 78).  

Collectively, these data suggested that the LDH release, in the TOE-A7 genetic 

background, is Tir but not Intimin dependent. 

 

 

  

Figure 78: LDH release depends on EspZ deficient TOE-A7 mutants expressing Tir but not 

Intimin. HeLa cells were infected with indicated strains (for indicated times) prior to processing 

extracellular media for LDH release as a measure for cell cytotoxicity Strains used were the espZ(81), 

TOE-A7, TOE-A7∆b (T3SS mutant), EspZ deficient TOE-A7 multiple-mutant strains (lacking EspZ 

plus one or more of indicated effectors EspF (f), Map (m), EspH (h) and/or –Tir (t) /Intimin (e) proteins) 

or lacking the core region (loss of LEE region genes encoding the EspH, CesF, Map, Tir, CesT and 

Intimin), LDH releases was measured and data expressed as means ±S.D. from four independent 

experiments with asterisk indicating when only involved three independent experiments. 

. 
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5.3.10 K12 ‘mini-LEE’ strain behaves like espZ(81) mutant 

In an effort to avoid the above-mentioned complexities, studies explore the possibility 

that a recently published non-pathogenic E.coli strain (SIEC-eLEE5; genes introduced 

to express EPEC’s effector delivery system, Intimin and only one classical LEE 

effector, Tir) would be cytotoxic to HeLa cells as lacks the espZ gene product. The 

EPEC T3SS-associated genes in are under the control of an IPTG-inducible promoter 

(Ruano-Gallego et al., 2015). Initial HeLa cell infection studies revealed that, as 

expected, SIEC-eLEE5 could deliver Tir into cells where modified to the T” form and 

interacts with Intimin (Figure 79); latter evidenced by presence in insoluble fraction. By 

contrast, no Tir or EspB bands were evident in cells infected with the negative control 

strain SIEC∆p1-eLEE5 which cannot express a T3SS as lacks promoter to drive 

expression of T3SS components (Ruano-Gallego et al., 2015). It should be noted that 

there appears to be ‘leaky’ expression of EspB and Tir, but not the T3SS delivery 

system, as Tir is not modified to T’’ form (Figure 79) with no evidence of cell cytotoxicity. 

Thus, the infection time was extended and carried out at two MOI’s. 

 

 

 

 

 

 

 

 

 

 

Figure 79: SIEC-eLEE5 delivers Tir where modified to T”-like form and interacts with Intimin. 

HeLa cells were left uninfected or infected with indicated strains for 3hr, prior to isolating Triton X-

100 soluble (contains host cytoplasm and membrane proteins plus delivered effector proteins) and 

insoluble (contains host nuclei and cytoskeletal proteins plus adherent bacterial proteins) for 

Western blot analysis probing for Tir, EspB and EspF. The position of unmodified (To) and host 

kinase modified Tir (T”) forms are indicated as are EspF and EspB. Strains used were EPEC, SIEC-

eLEE5 (expresses T3SS/Esp translocons, effector delivery system, Intimin, Tir and its chaperone 

CesT) or SIEC∆p1-eLEE5 (same as SIEC-eLEE5 but lacks promoter to drive expression of T3SS 

components needed for the effector-delivery process). 
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Interestingly, the Western blot profile obtained with the SIEC-eLEE5 strain, at both 

MOI’s (Figure 80), was similar to that with extended espZ(81) mutant infections (Chapter 

5; Figure 64) i.e. loss of Tir T’’ form over the extended infection period linked to 

decreasing levels of host and Tir phosphotyrosine proteins as well as tubulin and actin  

proteins. Crucially, these phenotypes were not evident with the negative control, 

SIEC∆p1-eLEE5, strain linked to very poor expression of effectors (Tir and EspB) with 

absence of functional T3SS as no Tir modification (Figure 80). It should be noted that 

probing for tyrosine phosphorylated proteins did not reveal Ep85 (insoluble fraction) as 

this protein is not expressed by K12 E. coli (Ilan et al., 1999).  

Collectively, this work illustrated that SIEC-eLEE5 strain behaves like the espZ(81) 

despite lacking all known EPEC effectors except Tir and EspB providing a simple 

model to examining the hypothesis that EspZ protects infected cells from a cytotoxic 

outcome in response to Tir-Intimin interactions.  

5.3.11 The SIEC-eLEE5 associated phenotypes are CesT dependent  

To examine the predicted key roles for Tir and Intimin in the cytotoxic-associated 

phenotype of the SIEC-eLEE5 strain, we wanted to inactivate the Tir and Intimin genes. 

However, this was not possible with available suicide vectors due to how the tir, cesT 

eae (encodes Intimin) operon was inserted into the K12 genome as this provided little 

homology (<200bp) for crossover events. Indeed, numerous attempts to disrupt the 

genes, via, the small degree of homology, were unsuccessful. Therefore, it was 

decided to disrupt the gene encoding the Tir chaperone, CesT, as it is critical for Tir 

delivery (Thomas et al., 2005) using an available suicide vector and developed 

strategies (see Chapter 2; Section 2.2.7). PCR analysis confirmed disruption of the 

cesT gene (Figure 81A) as evidenced by a larger fragment reflecting insertion of 

Kanamycin resistance encoding gene in the 5’ end of cesT.  

Next, HeLa cells were infected with the new strain to determine its ability to induce 

cytotoxicity-associated alterations after an extended (9h) infection period. However, 

data interpretation was hindered by apparent inability of the SIEC-eLEE5∆cesT mutant 

to bind to the infected cells suggested by absence of EspB-related bands detected in 

the soluble or insoluble fractions in contrast to cells infected with the SIEC-eLEE5 or 

SIEC∆p1-eLEE5 strains (Figure 81B).  
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Figure 80: Cell cytotoxic responses following infection with SIEC-eLEE5.  HeLa cells were left 

uninfected or infected with indicated strains, for indicated times and MOI, prior to isolating Triton X-

100 soluble (contains host cytoplasm and membrane proteins plus delivered effector proteins) and 

insoluble (contains host nuclei and cytoskeletal proteins plus adherent bacterial proteins) fractions 

for Western blot analysis probing for phosphotyrosine proteins (PY), Tir, EspB, EspF, tubulin and 

actin. The position of unmodified (To) and host kinase modified Tir (T” and PY [TY]) forms are indicated 

as are EspF, EspB, tubulin, actin and protein markers. Strains used were EPEC, SIEC-eLEE5 

(expresses T3SS/Esp translocons, effector delivery system, Intimin, Tir and its chaperone CesT) or 

SIEC∆p1-eLEE5 (same as SIEC-eLEE5 but lacks promoter to drive expression of T3SS components 

needed for the effector-delivery process).  
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Figure 81: The SIEC-eLEE5∆cesT strain does not deliver EspB. A) Confirmation of the disruption 

of the cesT gene in the SIEC-eLEE5 strain. Primers designed to amplify cesT gene was used to 

interrogate the absence or presence of cesT gene in the SIEC-eLEE5∆cesT with EPEC, SIEC-eLEE5 

were used as a positive control. PCR products and 2 Log DNA ladder marker (100ng-BioLabs) were 

run on a 1% agarose gel containing Gel Red Nucleic Acid Stain. B) HeLa cells were left uninfected or 

infected with indicated strains, for indicated times, prior to isolating Triton X-100 soluble (contains host 

cytoplasm and membrane proteins plus delivered effector proteins) and insoluble (contains host nuclei 

and cytoskeletal proteins plus adherent bacterial proteins) fractions for Western blot analysis probing 

for, Tir and EspB. The position of unmodified (To) and host kinase modified Tir (T”) forms are indicated 

as are EspB and protein markers. Strains used were SIEC (expresses T3SS/Esp translocons, effector 

delivery system but not Intimin, Tir or CesT), SIEC-eLEE5 (as SIEC but also expresses Intimin, Tir 

and CesT) and SIEC-eLEE5∆cesT (as SIEC-eLEE5 but lacks functional cesT gene) 

 

 

A) B) 
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Therefore, we attempted to promote strain binding by introducing a plasmid, pIL14, 

which encoding an afimbrial adhesin (Labigne-Roussel et al., 1984) in each of the 

SIEC-related strains. Indeed, a similar (9h) infection with the three strains resulted in 

similar levels of EspB proteins in the Triton X-100 soluble and insoluble fractions 

(Figure 82) support the idea that disruption of CesT hinders SIEC-eLEE5 interaction 

with HeLa cells. As expected, only the SIEC-eLEE5 strain delivered Tir into cells as 

evidenced by T’’ form in both fractions (Figure 82).  

 

 

 

 

 

 

 

 

 

Crucially, a time course infection with these afimbrial adhesin-expressing strains 

revealed that only the SIEC-eLEE5 strain induced espZ mutant-associated phenotypes 

despite all three strains displaying similar EspB signals in the soluble and insoluble 

fractions (Figure 83). This finding demonstrates a critical role for CesT, again 

presumably via Tir, in driving cytotoxicity-associated events that are normally 

prevented by the T3SS-dependent delivery of EspZ.  

 

Figure 82: EspB delivery defect of the CesT-deficient SIEC-eLEE5 strain is rescued by plasmid 

expressing an afimbrial adhesin. HeLa cells were left uninfected (0) or infected for 9 h with indicated 

strains prior to isolating Triton X-100 soluble (contains host cytoplasm and membrane proteins plus 

delivered effector proteins) and insoluble (contains host nuclei and cytoskeletal proteins plus adherent 

bacterial proteins) fractions for Western blot analysis probing for Tir and EspB. The position of 

unmodified (To) and host kinase modified Tir (T”) forms are indicated as are EspB and protein 

markers. Strains used were SIEC (expresses T3SS/Esp translocons, effector delivery system but not 

Intimin, Tir or CesT), SIEC-eLEE5 (as SIEC but also expresses Intimin, Tir and CesT) and SIEC-

eLEE5∆cesT (as SIEC-eLEE5 but lacks functional cesT gene). Each strain either carried no additional 

plasmid (-) or the pIL14 plasmid (+) that encodes an afimbrial adhesin. 
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Figure 83: CesT activity is critical for SIEC-eLEE5 to induce espZ mutant-associated 

phenotypes. HeLa cells were left uninfected (0) or infected for 6 or 9 h with indicated strains 

prior to isolating Triton X-100 soluble (contains host cytoplasm and membrane proteins plus 

delivered effector proteins) and insoluble (contains host nuclei and cytoskeletal proteins plus 

adherent bacterial proteins) fractions for Western blot analysis probing for phosphotyrosine 

proteins (PY), Intimin, Tir, EspB, EspF, tubulin and actin. The position of unmodified (To) and 

host kinase modified Tir (T” and PY [TY]) forms are indicated as are Intimin, EspB, tubulin, actin 

and protein markers. Strains used were SIEC (expresses T3SS/Esp translocons, effector 

delivery system but not Intimin, Tir or CesT), SIEC-eLEE5 (as SIEC but also expresses Intimin, 

Tir and CesT) and SIEC-eLEE5∆cesT (as SIEC-eLEE5 but lacks functional cesT gene). Each 

strain carried the pIL14 plasmid which encodes an afimbrial adhesin. It should be noted that 

phosphotyrosine protein signal is unusually weak (eg compare to Figure 80) in the soluble 

fraction of uninfected cells. 
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5.4  Discussion 

The aim of the described work was to explore the idea, based on data from Chapter 3, 

that the delivered EspZ effector protects cells from Intimin-dependent activities that 

trigger a cytotoxicity response. Indeed, studies with available and newly generated 

EspZ multi-mutants supported a key role not only for Intimin but also its receptor Tir 

with contributory, minor, roles for other examined effectors. However, additional 

complexity was evidenced by unexpected results with some multi-mutants but crucially 

a simple model supports the idea of a new protective mechanism, whereby EspZ 

prevents cells undergoing a cytotoxic response initiated as a consequence of Tir-

Intimin interaction.   

 

Studies on the role of LEE effectors in the Tir modification and insertion process led to 

data questioning EspZ’s proposed role in protecting cells from cytotoxicity by different 

mechanisms (Shames et al., 2011, Berger et al., 2012, Roxas et al., 2012). However, 

our data argues that EspZ protects against the cell cytotoxicity response stemming 

from Tir-Intimin interaction, to perhaps explaining why EspZ, Tir and intimin, unlike 

other classical effectors, are critical for the virulence of EPEC (Wilbur et al., 2015, 

Marchès et al., 2000). The key roles for Tir and Intimin were suggested by a dramatic 

reduction in espZ(81) associated phenotypes when either tir or eae gene was inactivated 

(z(81)t or ez:km. respectively). However, there are residential minor phenotypes at later 

time points which can be prevented through the deletion of other effectors (Map, espF 

and EspG), suggesting a cooperative role for these effectors in triggering the espZ(81) 

associated phenotypes. Unexpectedly, multiple mutant strain revealed an additional 

complexity. For example, inactivation of the esph gene from the mfz(81)go3e mutant 

(which behaves like EPEC) led to the generation of a  mfz(81)go3eh:km mutant and the 

restoration of espZ(81) activities. This implies a possible suppressive role for EspH 

against, (presumably) Tir or other non-LEE effectors. In addition, inactivation of the 

eae gene from a TOE-A7Δfzmh mutant (lacking 14 non-LEE effectors and LEE Map, 

EspF, EspZ, EspH &EspG2/Orf3) did not prevent the appearance of espZ(81) 

associated phenotypes, suggests that these phenotypes are intimin independent in the 

TOE-A7 genetic background. However, the ability of TOE-A7Δfzmhe (lacking 14 non-

LEE effectors and LEE Map, EspF, EspZ, EspH, EspG2/Orf3 and Intimin) mutant to 

trigger these phenotypes might be attributed to the remaining protein(s), particularly 

Tir or other non-LEE effectors, EspC, LifA and EspJ (Deng et al., 2012, Vidal & 

Navarro-Garcia, 2008). The EspJ is localized to mitochondria (Kurushima et al., 2010) 
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and may cause mitochondrial dysfunction in the absence of the EspZ. The EspC, 

however, regulates the secretion levels of EspD and EspA with an espC mutant 

showing increased levels of cell-associated EspA and EspD, as well as increased pore 

formation activity associated with cytotoxicity (Guignot et al., 2015). 

 

Thus, to avoid the previous complexity and to support the key role for Tir and/or Intimin 

in triggering the espZ(81) associated phenotypes, we have used a simple model, E. coli 

K-12 (SIEC-eLEE5) strain (Ruano-Gallego et al., 2015). This strain encodes Intimin 

and the effector delivery system, but lacks all EPEC LEE effectors, except Tir and 

EspB (Ruano-Gallego et al., 2015). Conclusively, the ability of SIEC-eLEE5 strain to 

behave like espZ(81) discounted any possible role for all LEE and non-LEE effectors 

and implicated a crucial role for Tir, its chaperone CesT, and/or Intimin, in triggering 

the espZ(81) phenotypes, though it is possible that these phenotypes may be linked to 

the translocators (EspA/D/B). However, the inability of SIEC (which encodes a 

functional T3SS) and eLEE5∆cesT/pIL14 (as SIEC-eLEE5 but lacks CesT, Tir 

chaperone) to trigger the espZ(81) phenotypes discounted a possible role for the 

translocator proteins and implicated a key role for the CesT dependent effector, Tir, 

with or without Intimin interaction. It is possible that CesT has an unknown function that 

helps to bring about these phenotypes, but that is unlikely as we have implicated a key 

role for Tir in triggering these phenotypes, and CesT is required for Tir delivery 

(Thomas et al., 2005). Taken together, these findings provide further arguments 

against the balancing hypothesis, in which EspZ is thought to regulate the translocation 

of EPEC effectors into host cells (Berger et al., 2012) and instead support a key role 

for Tir/Intimin in triggering the espZ(81) associated phenotypes. Further work is required 

to inactivate tir and/or the eae gene from SIEC to further confirm these results. 

 

Intimin interacts with Tir to i) mediate an intimate attachment to the host cells, ii) 

promote pedestal formation, iii) stimulate host phospholipase C-γ1 phosphorylation 

and iv) trigger actin rearrangements (Kenny & Finlay, 1997, Kenny et al., 1997b, Kenny 

et al., 2002b, Rosenshine et al., 1996). Thus, the inability of the ez:km or z(81)t mutant 

to trigger the espZ(81) phenotypes might be due to a weaker interaction between the 

mutant strain bacteria and host cells. However, the binding capacity of ez:km and z(81)t 

mutants are reflected by Ep85, EspB or unmodified Tir (within bacteria) signals in 

insoluble fractions which argues against any binding issue. Thus, it is more likely that 

Intimin interacts with Tir or other receptors such as β integrin and nucleolin (Strong et 
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al., 2011), and subverts a signal leading to the espZ(81) phenotypes, while EspZ 

protects against that. It was reported that Td92, a surface protein of the periodontal 

pathogen Treponema denticola, interacts with the cell membrane integrin α5β1 and 

activates NOD-leucine-rich repeat protein (NLRP3) mediated cytokine and caspase-1 

processing, leading to cell death (Jun et al., 2012, Eldridge & Shenoy, 2015), and so 

Tir/Intimin might function via a similar pathway while EspZ protect against that. 

 

Interestingly, the key role filled by Tir and Intimin was further supported by re-

introducing a gene encoding Intimin or Tir in the espZ multiple mutant (mfez:km or 

mfz(81)go3t respectively) which restored their capacity to trigger the espZ(81) 

phenotypes. Importantly, preventing the Tir-Intimin interaction led to a dramatic 

reduction in the ability of complemented strain (p3gtHAinto-mfz(81)go3t) to trigger these 

phenotypes, in contrast to (ptir-mfz(81)go3t), suggesting that the Tir-Intimin interaction 

is critical in triggering these events. Tir serine (S363/S343) and tyrosine (Y454/Y474) 

residues are linked to EPEC Tir’s subversive activities (Kenny, 1999, Kenny & Warawa, 

2001, Allen-Vercoe et al., 2006, Yan et al., 2013). Crucially, the inability of TirΔSY 

(Y45/Y474 and S363/S343 residues were substituted to alanine/phenylalanine, 

respectively), to complement mfz(81)go3t and restore the espZ(81) phenotypes, 

supported a key role for these residues in triggering the espZ(81) phenotype. Further 

studies are needed to investigate which residue is necessary for triggering the espZ(81) 

phenotype and how these residues contribute to the espZ(81) phenotype.  

 

Although many studies reported the cytotoxicity of the espZ mutant (Shames et al., 

2011, Berger et al., 2012, Roxas et al., 2012), here we have demonstrated other espZ 

mutant associated phenotypes: the modification of  Tir T” to the T’ and To-like forms, 

Tir/host protein tyrosine dephosphorylation, and tubulin/actin loss. Perhaps it is not 

surprising  that the cytoplasmic host proteins tubulin/actin were lost, as espZ(81) 

infection led to rapid membrane permeabilization (Berger et al., 2012). This was not 

evident for Tir (To), EspF or EspB, as they are membrane proteins or within organelles 

and thus were not lost following the plasma membrane permeabilization event. 

Noticeably, the distinguishable level of EspB, which is linked to the espZ(81)  infection, 

but not the EPEC infected cells, could implicate a possible role for EspZ in the 

regulation of EspB and pore formation. Crucially, the espZ(81) phenotypes are promoted 

or suppressed by one or more EPEC proteins. While modification of Tir T” to the T’ and 

To-like form is an Intimin dependent event and Tir/host protein tyrosine 
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dephosphorylation appears to be attributed to the Map and EspF effectors, the 

tubulin/actin loss is a Tir/Intimin dependent event. It should be noted that, the 

tubulin/actin loss is unlikely to be linked to cytotoxicity as the TOE-A7Δfzmthe and 

TOE-A7Δcore mutants showed approximately the same levels of released LDH as 

TOE-A7, though these strains were correlated with tubulin/actin loss. 

 

The contribution role of Map, at least in the mfez:km background, can be attributed to 

its import into the mitochondria, as a map-ΔMTS complemented strain was not able to 

trigger espZ(81) phenotypes compared to Map or other Map variants. This is consistent 

with the idea that Map and EspF target mitochondria and induce cytotoxic signals 

suppressed by EspZ (Nagai et al., 2005, Papatheodorou et al., 2006, Shames et al., 

2011). However, in our model, EspF’s contribution role could not be prevented by 

blocking targeting to mitochondria (L16E-EspF and ΔMTS-EspF; latter equivalent to 

ΔMTS-Map as MTS region was swapped for the 1st 101 AA of Tir). Indeed, the Map’s 

role is to remain unaltered when known subversive activities were abolished 

(mapE78A can’t activate Cdc42 and mapΔTLR can’t sustain Map-triggered Cdc42 

activity), implied there is no role for these motifs in triggering the espZ(81) associated 

phenotypes. However, it should be noted that the high degree of Tir/host protein 

dephosphorylation observed with the map-complemented strain is likely to be 

attributed to the overexpression of Map by the map-complemented strain. This allows 

large amounts of Map to translocate to the mitochondria, resulting in mitochondrial 

dysfunction, release of cytochrome c and hence host cell death. 

 

In summary, while EPEC showed a key role for Tir via Intimin, TOE-A7 revealed these 

phenotypes are Tir, but not Intimin dependent, suggesting a complexity behind 

different effectors activities and espZ(81) phenotypes that can be triggered by different 

pathways. However, this study provided a simple model, the SIEC strain, to investigate 

EspZ associated cytotoxicity and our results confirmed, using SIEC strain, a key role 

for Tir/Intimin in triggering the espZ(81) phenotypes. Importantly, this work argued 

against the suggested alternate mechanisms by which EspZ protects against cell death 

and discounted any putative role for all known LEE/non-LEE effectors and the 

translocators. Crucially, this data also confirmed that the Tir-Intimin interaction is 

critical in triggering the espZ(81) phenotypes. Thus, we speculated that Intimin interacts 

with a functional Tir and EspZ to trigger a signal leading to the espZ(81) associated 

phenotypes, while EspZ protects against this process. Therefore, immunoprecipitation 
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experiments are required to examine whether Intimin-Tir-EspZ interact with each other 

and further studies are needed to investigate how the Tir-Intimin interaction can lead 

to cell cytotoxicity while EspZ provides a protection against it.
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Final Discussion 

The pathogenesis of enteropathogenic Escherichia coli (EPEC) depends on a 

functional T3SS to deliver two virulence proteins Tir and EspZ into the host cells 

(Wilbur et al., 2015, Marchès et al., 2000, Coburn et al., 2007). Upon delivery into the 

host cytosol, Tir acts as a substrate for the host kinase that phosphorylate Tir at two 

different serine residues, leading to an increased apparent Tir molecular mass by a 

total of 7kD (to T”-like form). The T”-like form Tir then inserts into the host cell’s 

membrane and binds Intimin. Although the LEE region was shown to be sufficient to 

aid Tir modification to T” form, this study discounted a role for the classical LEE 

encoded protein effectors (EspG, Map, EspF, EspH and EspZ) and Intimin protein in 

the modification of Tir to the T” form and instead implicated roles for other T3SS-

dependent substrates - i.e translocators or a non- delivered effector, SepL. The N-

terminus of SepL carries the secretion signal and binds to the CesL chaperone, while 

the carboxy terminus binds to the Tir effector (Wang et al., 2008, Younis et al., 2010).  

Evaluation of translocators (EspA, EspD and EspB) and SepL protein in effector 

functionality is not possible using a gene deletion strategy, as these proteins are 

essential for the functionality of T3SS. However, an EspB variant (EspB-mid) lacks 60 

residues (residues 159-218) and cannot bind host myosin proteins to inhibit 

phagocytosis (Iizumi et al., 2007), and E. tarda EspB (37.8%; identity to EPEC one) 

restored the functionality of T3SS and revealed no role for missing and homologous 

motifs, respectively, in the Tir modification and insertion mechanisms. However, the 

possible role for other, non-homologous EspB motifs cannot be discounted. It is well 

recognised how toxins and translocators are inserted directly into the host cell’s 

membrane (Dal Peraro & van der Goot, 2016), but conceptually, it is still very difficult 

to understand how proteins like Tir and EspZ are delivered with two transmembrane 

domains and inserted in the hairpin like structure into the host cells membrane.  

Importantly, the E. tarda LEE-like region is missing all known EPEC LEE effector 

homologues, except Tir and   EspZ (Nakamura et al., 2013), and E. tarda Tir lacks all 

EPEC Tir residues that are linked to EPEC Tir’s subversive activities (Kenny, 1999, 

Kenny & Warawa, 2001, Allen-Vercoe et al., 2006, Yan et al., 2013). Thus, we 

speculated that E. tarda Tir is no longer required to manipulate any effector function 

and would be inserted directly into the host cells membrane to act as a receptor for E. 

tarda Intimin (Tir-Intimin interaction) (Kenny et al., 1997b). Further studies are needed 

to investigate the direct or indirect insertion mechanism of Tir.  This can be investigated 
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via making an MTS-Tir fusion protein where Tir can only be imported to the 

mitochondria if it is present in the host cytoplasm. In addition, expressing CesT (Tir 

chaperone) or EspB (cytoplasmic and membrane forms that are potential candidates 

factor aiding Tir insertion) within the host cells to see if they can interact and inhibit the 

Tir insertion into host cells membrane thus accumulation in the host cells cytoplasm. 

These strategies will support a cytoplasmic intermediate form of Tir. 

Interestingly, our work revealed an unexpected role for EspA and EspD, not in aiding 

Tir modification to T” form, but actually in facilitating the Tir T”-Intimin interaction. This 

suggested that these translocators (EspA/D) might interact with Intimin in order to 

stabilise its interaction with the Tir T” form. Further work needs to be done to i) examine 

whether these proteins interact with each other (immunoprecipitation) and ii) examine 

whether the detected T”-like form is inserted in the host cells membrane (looking the 

topology of Tir by detecting the inserted tag in the cytoplasmic or extracellular domain). 

In addition, by swapping either the N- or C- terminal domains, or individual amino acids, 

of the EPEC and E. tarda strains, acritical features linked to the Tir-Intimin interaction 

and insertion into the host cells membrane might be revealed. A previous study (Luo 

& Donnenberg, 2011) suggested that EspA interacts with EspD while EspD interacts 

with EspB. Our study confirmed that E. tarda EspA and EspD proteins are only 

functional interchangeable when co-expressed, suggesting species-specific protein-

protein interactions. This observation also provides a possible explanation for the lack 

of interchangeability of some E. tarda proteins (SepL, EscL and EscK; components of 

a sorting platform) as these proteins might be expressed and functional but lack the 

specific motif(s) required to mediate interact with their partner homologue. Thus, the 

expression of these non-interchangeable E. tarda proteins needs to be examined by, 

for example, generating a tagged fusion protein to enable their detection. These 

proteins (for example components of a sorting platform), if expressed, should be co-

expressed to interrogate their functionality. Indeed, this work provides a good model, 

E. tarda T3SS, for investigating different T3SS components as these components are 

highly different to the EPEC one. Thus, further work needs to be done to investigate 

different T3SS components motifs that might be responsible for interaction and 

functionality of these proteins.  

Interestingly, the detection of Intimin, Tir and EspZ, but not other LEE classical 

proteins, in the LEE like region of a fish infecting bacteria strain (E. tarda), supports 

the idea of a key role for these proteins in the virulence of pathogenic strain. EspZ is 
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anti-toxic protein that is protecting against cell death by different suggested 

mechanisms (Shames et al., 2011, Berger et al., 2012, Roxas et al., 2012). However, 

our study argued against all the suggested mechanisms (Shames et al., 2011, Berger 

et al., 2012, Roxas et al., 2012) and clearly illustrated that EspZ protects against the 

Tir-Intimin interaction that leads to cell death. Tir interacts with Intimin to form a pore 

in the host cell’s membrane (unpublished data). Thus, we speculate that EspZ is likely 

to interact with a translocator, in this case Tir and/or Intimin. This interaction aids EspZ 

in blocking these pores, which could be examined via immunoprecipitating these 

proteins. Crucially, the key Intimin-Tir role can also be linked to the hypothesis that this 

interaction might lead to unauthorized actin polymerization and activation of 

inflammasome-mediated cell death (MacPherson et al., 2017) which might be 

prevented by EspZ . This process is further supported by the initial data (data not 

shown) revealed that the Cytochalasin D (Cyto D), an actin polymerization inhibitor, 

prevented espZ(81) associated phenotypes. Further work will need to be done to 

examine EspZ, Tir and intimin interactions by pulling down all these proteins together 

with a translocator, presumably EspB or EspD, in order to fully investigate this 

hypothesis.
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