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Abstract 

The peptidoglycan (PG) layer is responsible for maintaining cell shape and permitting cell 

division in almost all bacteria. Made of glycan chains connected by short peptides, PG forms a 

net-like structure surrounding the cytoplasmic membrane. Membrane-anchored PG synthases, 

called penicillin-binding proteins (PBPs), synthesize PG during cell growth and division by 

utilising the precursor lipid II but the molecular mechanism of these processes in Bacillus 

subtilis are largely unknown. The genetic and phenotypic analysis of B. subtilis has shown that 

PG synthesis and cell division are modulated by components of the central carbon metabolism 

(Weart et al., 2007). In particular, UgtP, which synthesises the glucolipid precursor for the 

lipoteichoic acid, has been suggested to function as a metabolic sensor governing cell size. 

However, the mechanism by which UgtP impacts cell wall synthesis remained unknown. 

Here we have constructed different B. subtilis strains with deletions in cell wall synthesis and/or 

carbon metabolism genes. Cells lacking the LTA precursor glucolipid grew with similar rate as 

wild type cells but were shorter and wider. The overexpression of ugtP caused filamentation, 

supporting the hypothesis that UgtP inhibits FtsZ polymerization (Weart et al., 2007). The ugtP 

mutant had increased level of several PG precursors and mild alterations in PG composition 

suggesting an increased DL-endopeptidase activity. Combining ugtP deletion/depletion with 

deletions with several cell wall genes resulted in morphological effects. The deletion of the 

PBP1 gene and simultaneous depletion of ugtP resulted in thin and bent cells. The double 

deletion of ugtP and lytE, a hydrolase important for cell elongation, produced shorter bent cells 

with severe shape defects. These results suggest that the function of UgtP contributes to 

balanced cell wall synthesis and hydrolysis.  

We also characterised several crucial cell wall enzymes. The depletion of the essential PBP2B 

caused cell division defects followed by lysis. Interestingly, cells expressing a catalytically 

inactive PBP2B were viable, but they required functional PBP3, a homologue of PBP2B that is 

dispensable in wild-type cells. PBP3 showed enhanced septal localisation in a strain with 

inactive PBP2B, but this strain produced aberrant septa. Biochemical assays were used to 

characterize for the first time the activities and interactions of PBP1, PBP2B, and PBP3. Novel 

interactions between these PBPs and with the lytic transglycosylase homologue YrrL were 

detected.  

In summary, this work contributes to our understanding of the PG synthesis during cell division.  
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1.1 Bacillus subtilis growth and morphology 

Hans Christian Gram differentiated bacteria into Gram-positive and Gram-negative species 

using the Gram stain (Gram, 1884). In Gram-negative species, like proteobacteria, the 

cytoplasmic membrane is surrounded by a thin peptidoglycan (PG) of 3 – 6 nm thickness and 

an outer membrane. In Gram-positive species, such as firmicutes, the cell wall consists of a 

thick 10 – 60 nm PG with anionic polymers such as wall teichoic acid (WTA) and lipoteichoic 

acid (LTA) (Section 1.4). During the cell cycle, rod-shaped cells grow and elongate until they 

double in length and then divide forming two identical daughter cells. In parallel, the genomic 

DNA is duplicated and the sister chromosomes are segregated before the cell division 

machinery starts assembling.  

Bacillus subtilis is a rod-shaped Gram-positive bacterium with the ability to form endospores 

allowing the microorganism to tolerate extreme environmental conditions (Errington, 2003).  It 

is a non-pathogenic organism and is widely used as a model to study the growth and 

morphology of Gram-positive bacteria. B. subtilis cells sporulate by dividing asymmetrically, 

near one pole, resulting in a smaller cell called the forespore and a larger mother cell (Higgins 

and Dworkin, 2012). The cell shape of the bacterium is maintained by the cell wall surrounding 

the cytoplasmic membrane and is composed of major and minor components. The major 

components are the PG, the WTA and the LTA. The PG is essential to protect the cell from 

bursting due to the turgor while all three polymers are crucial for cell shape. The minor 

component is the minor teichoic acid and the absence of the latter has no effect on cell 

morphology or growth under laboratory conditions (Estrela et al.,1991). Maintaining structural 

integrity of the PG is crucial for cell survival during growth, thus understanding the process of 

PG synthesis during cell elongation and division is a fundamental but largely unanswered 

question in microbiology. 

The PG in B. subtilis is a three dimensional mesh-like molecule referred to as the sacculus that 

is continuously synthesised, modified and hydrolysed to maintain the integrity of the cell and 

allow growth (Hayhurst et al., 2008). The importance of the PG is exemplified by the variety 

of antibiotics, such as β-lactams and glycopeptides, which target its synthesis to kill the cell. In 

γ-proteobacteria, the PG is mostly single layered hence the tight coordination between the 

synthesis and hydrolysis of the PG. In Gram-positive bacteria the PG is multilayered, the 

mechanisms of PG synthesis is mostly unknown with limited information about the structure 

of the PG or the protein complexes involved in it synthesis.  
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On a different note, recent work in Petra Levin’s lab showed that the size of the cell is 

coordinated by the presence of nutrients in the cytoplasm (Weart et al., 2007). The UDP-

glucose diacylglycerol glucosyltransferase, UgtP, was suggested to be a metabolic sensor that 

controls the timing of cell division by inhibiting Z-ring formation. However, the absence of 

UgtP causes wider cells providing questions whether UgtP has a more direct effect on cell wall 

synthesis.  

 

1.2 Peptidoglycan synthesis 

1.2.1 lipid II synthesis 

PG precursor synthesis starts in the cytoplasm with the synthesis of the nucleotide precursors 

UDP-N-acetylglucosamine (GlcNAc) and UDP-N-acetylmuramic acid (MurNAc) (Figure 1.1). 

Successive addition of L-Ala, D-Glu, diaminopimelic acid (DAP) and the dipeptide D-Ala-D-

Ala to UDP-MurNAc is catalysed by four ligases MurC, MurD MurE and MurF, respectively 

(Barreteau et al., 2008). Afterwards, the MurNAc-pentapeptide is transferred onto the 

membrane bound undecaprenyl phosphate molecule by MraY to form lipid I (Bouhss et al., 

2008).  GlcNAc is added to lipid I by MurG forming lipid II, which is mostly amidated on the 

ɛ-carboxyl group of meso-A2pm, followed by flipping across the cytoplasmic membrane by 

three transmembrane proteins RodA, FtsW and SpoVE (Miyao et al., 1992). RodA is required 

for rod-shape during elongation by transporting cell wall precursors at the side wall, while FtsW 

presumably mediates lipid II flipping at the divisome (Henriques et al.,1998; Mohammadi et 

al., 2011). RodA has been described recently to have a GTase activity (See section 1.3.4) 

(Meeske et al.,2016). SpoVE is 39.8% similar to FtsW, localises at the membrane surface of 

the emerging spore and is required for the synthesis of the spore PG (Ikeda et al., 1989). It was 

recently published that the lipid II flippase in E. coli is MurJ (Ruiz, 2008; Sham et al., 2014). 

A BLASTp-based analysis identified four MurJ homologs in B. subtilis called YtgP, SpoVB, 

YkvU and YabM (Fay and Dworkin, 2009). While MurJ was found to be essential for E. coli 

growth, the absence of the four homologs simultaneously in B. subtilis did not affect either the 

growth or the morphology of cells (Fay and Dworkin, 2009).  
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1.2.2 Growth of the sacculus  

The synthesis of peptidoglycan occurs extracellularly, by polymerizing the flipped lipid II into 

nascent glycan chains by a glycosyltransferase (GTase) reaction performed by monofunctional 

or bifunctional PG synthases (See section 1.3.1) (Barrett et al.,2007; Lovering et al.,2012). 

Recently, Meeske et al., (2016) suggested that RodA from Bacillus subtilis is a PG polymerase 

(Section 1.3.4). The GTase reaction involves the formation of a β-1,4-glycosidic bond resulting 

in the release of the undecaprenyl pyrophosphate moiety (Van Heijenoort, 2001). In B. subtilis, 

as in Gram-negative bacteria, the glycan polymer terminates with a 1,6-anhydroMurNAc 

residue formed by an intramolecular ring from C1 to C6 (Burmant and Park, 1983; Vollmer et 
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Figure 1.1 Peptidoglycan biosynthesis and components of the cell wall 

Products of the mur operon, MraY and MurG catalyse the synthesis of the PG precursor lipid II from 

sugar nucleotide UDP-GlcNAc in the cytoplasm. Lipid II is then flipped across the membrane and 

delivered to penicillin-binding proteins (PBPs). Lipid II is polymerised into glycan chains by GTase 

reaction and peptides are crosslinked by TPase reaction. Hydrolases modify the PG by cleaving various 

types of bonds. WTA is covalently bound to the MurNAc sugar. LTA is bound to the cell membrane via 

a diacylglycerol anchor. Both the WTA and LTA have the same glycerol-phosphate repeating unit. 

CPase, carboxypeptidase; Endo-LT, endo-lytic transglycosylase; EPase, endopeptidase; TPase, 

transpeptidase; GTase, glycosyltransferase.  
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al., 2008). The peptide crosslink is achieved by the formation of an isopeptide bond between 

the fourth amino acid (D-Ala) of one stem with the third (meso-A2pm-NH2) of the other via a 

transpeptidase (TPase) reaction (Popham and Young, 2003). The TPase reaction is carried out 

by bi-functional (class A PBPs) or mono-functional penicillin-binding proteins (class B PBPs) 

to produce the net-like PG structure.  

 

1.2.3 Structure of the sacculus  

Understanding the architecture of the peptidoglycan is important to determine the mechanisms 

underlying sacculus growth during elongation and division. A few proposed models describe 

the possible structure for B. subtilis PG. First, the “scaffold” model in which the glycan strands 

run perpendicularly to the cytoplasmic membrane and the peptide in crosslinks run parallel to 

the cell long axis (Dmitriev et al., 1999, 2005). Second, the “layered” topology where the glycan 

strands and the peptide crosslinks run horizontal to the membrane (Vollmer and Seligman, 

2010). The development of the microscopic techniques in the last decade allowed a better 

visualization of the cell wall which helped in further characterising the architecture of the PG. 

The use of the cryo-transmission electron microscopy showed that the B. subtilis cell wall is 45 

to 55 nm thick with two regions with distinct densities (Matias and Beveridge, 2005). The inner-

wall zone (IWZ) was compared to the periplasmic space in Gram-negative bacteria and 

consisted of a low density zone with 22 nm thickness surrounding the plasma membrane. The 

outer-wall zone (OWZ) was suggested to contain the actual cell wall and had a thickness of up 

to 33 nm. The use of atomic force microscopy (AFM) supported a helical structure model where 

a number of glycan chains are polymerized and cross-linked to form a peptidoglycan “rope” 

(Hayhurst et al., 2008). Subsequently, this rope acquires a helical structure with a 50 nm width, 

which is then crosslinked with two existing ropes and all are roughly oriented perpendicularly 

to the long axis of the cell. However, work done in Jensen’s lab using electron cryotomography 

contradicted the helical model and proposed a uniformly dense cell wall model with a 

circumferentially oriented glycan strands (Beeby et al., 2013). The IWZ observed previously 

was also contradicted by Beeby et al. and was suggested to be an artefact caused by the use of 

cryoprotectants. Beeby and colleagues also showed that the denaturation of PG using urea 

altered the secondary structure of linking peptides resulting in an increase in the length, but not 

the width, of the sacculus. This result is consistent with a circumferential model where the 

glycan strands are oriented perpendicularly to the long axis of the cell (Beeby et al., 2013). 

Thus, despite significant progress made recently with the characterization of PG structure, many 
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components of the cell wall, such as the teichoic acids, haven’t been considered or described in 

these models. 

 

1.2.4 Role of the bacterial cytoskeleton  

B. subtilis has three actin homologues, MreB, Mbl and MreBH, controlling its rod-shape 

(Section 1.3.4) (Jones et al., 2001). The three homologues colocalised in a helical structure 

below the cytoplasmic membrane and along the cell length. MreB had a dynamic structure and 

formed small filamentous patches with a circumferential motion (Dominguez-Escobar et al., 

2011; Garner et al., 2011). The growth and hydrolysis of the PG during cell elongation occurred 

in a helical-like configuration along the actin-like filaments, hence the hypothesis of 

interdependency between peptidoglycan synthesis and the actin homologues´ dynamic motion 

(Carballido-Lopez et al., 2006; Daniel and Errington, 2003). These actin isoforms are engaged 

in different roles in B. subtilis and their absence leads to cell shape defects. Mbl is thought to 

direct the insertion of new PG material at the lateral cell wall (Daniel and Errington, 2003). 

MreBH is thought to control the autolytic activity at the lateral wall as it directed the localisation 

of the cell wall hydrolase LytE (Carballido-Lopez et al., 2006). MreB maintains cell width and 

was also proposed to direct the assembly of the cell wall components (Kawai et al., 2009). 

Recently, Kawai et al., suggested that MreB coordinates not only PG insertion into the cell wall 

by controlling the localisation of PBP1 but also the binding of anionic polymer WTA to PG via 

TagTUV (Daniel and Errington, 2003; Kawai et al., 2009, 2011).  

FtsZ is another cytoskeletal element, required for cell division. It is a tubulin-like protein that 

polymerizes at midcell forming a dynamic ring called the Z ring (Bi and Lutkenhaus, 1991). 

During cell division the Z ring, which is used as a scaffold to recruit essential cell division 

proteins, is stabilized and tethered in the cytoplasmic membrane by EzrA, FtsA and SepF 

(Errington et al.,2003). In liposomes, FtsZ proteins polymerized causing membrane bending 

followed by constricted protrusions, indicating that FtsZ could probably generate force during 

cell division to separate daughter cells (Osawa and Erickson, 2013). Following Z-ring 

formation, PBP2B is the first protein to be recruited to midcell followed by PG synthases and 

hydrolases (Errington et al., 2003; Scheffers et al., 2004; Smith et al., 1996; Daniel et al., 2000). 

This divisome complex enables peptidoglycan synthesis, septum formation and cell separation 

for a complete cell division. Recently, a glucosyltransferase UgtP protein, involved in LTA 

synthesis, was shown to localise at midcell in nutrient-rich medium and to inhibit FtsZ 
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polymerization (Section 1.3.4). This metabolic sensor is suggested to coordinate growth rate 

with cell size (Weart et al., 2007). 

 

1.3 Peptidoglycan synthesis machinery  

1.3.1 Class A and B penicillin-binding protein 

PG is synthesised by high molecular weight (HMW) proteins called PBPs. All PBPs have a 

cytoplasmic region near their N-terminus, a short transmembrane region, and an 

extracytoplasmic part. PBPs are supposed to be involved in cell elongation and/or division due 

to their localisation and enzymatic activities and can be divided into 2 classes, class A bi-

functional proteins and class B mono-functional PBPs (Table 1.1) (Bhavsar and Brown, 2006). 

B. subtilis Class A PBPs include PBP1, PBP2C, PBP4 and PBP2D and are capable of 

performing both GTase and TPase reactions. The absence of PBP2C, PBP4, or PBP2D had no 

effect on growth or cell morphology, whereas cells lacking PBP1 grew slower than wild type 

and they were thinner, bent and chaining (Murray et al., 1998a). PBP1, PBP2C, PBP4 and 

PBP2D are thought to be involved in cell division due to their midcell localisation (Scheffers 

et al., 2004). PBP2C and PBP4 have a role in the spore PG synthesis (Driks and Popham, 2001). 

PBP1 was suggested to have an additional role in cell elongation due to its additional 

localisation at the cell periphery (Pedersen et al., 1999; Scheffers et al., 2004). In vitro, PBP1 

polymerized the cell wall precursor lipid II into glycan chains and crosslinked amidated or non 

amidated peptides (Lebar et al., 2014). Moreover, PBP1 exhibited a carboxypeptidase activity 

by removing the terminal D-Ala residue of the pentapeptide chain (Lebar et al., 2014).  PBP1 

was recruited to the MreB helix at the lateral cell wall but thought to localise at the septum 

during the late stages of cell division (Claessen et al., 2008; Kawai et al., 2009). In addition, 

PBP1 was partially targeted to the division site and this localisation pattern was affected by 

several proteins such as GpsB, DivIB, DivIC and YvcK (Claessen et al., 2008; Foulquier et al., 

2011; Pedersen et al., 1999; Scheffers and Errington, 2004). The shuttling in PBP1 localisation 

between midcell and lateral wall is thought to be controlled by EzrA and GpsB via a direct 

interaction with the cytosolic N-terminus of PBP1 (Claessen et al., 2008; Cleverley et al., 

2016). However, this interaction had no effect on the GTase or TPase activity of PBP1 in vitro 

(Cleverley et al., 2016). McPherson and Popham were able to create a strain with deletions of 

the four Class A HMW PBP genes simultaneously (McPherson and Popham, 2003). 

Theoretically, this strain cannot polymerize new glycan strands due to the lack of GTase 

activity, however, they detected an unknown GTase activity in this quadruple mutant explaining 
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cell survival and growth (McPherson and Popham, 2003). Recently, Meeske et al,. suggested 

that RodA is not a lipid II flippase but has GTase activity and is responsible for PG synthesis 

in the quadruple mutant (Meeske et al., 2016).   

Class B PBPs includes PBP2A, PBP2B, PBP3, PBPH and YrrR, which have a non-catalytic 

domain and a transpeptidase domain (Table 1.1) (Bhavsar and Brown, 2006). The two mono-

functional TPases, PBP2A and PBPH, are essentially redundant for lateral cell wall synthesis 

during cell elongation (Dominguez-Escobar et al., 2011; Murray et al., 1998b; Wei et al., 2003). 

PBP2B is the only essential PBP in B. subtilis and it localised at midcell during exponential 

growth (Daniel et al., 1996; Scheffers et al., 2004). Midcell localisation of PBP2B is dependent 

on FtsZ, DivIB, DivIC and FtsL and it was suggested that PBP2B is required for initiation of 

septal PG synthesis and continued septal ingrowth (Daniel et al., 2000). Little is known about 

the function of PBP3. The deletion of pbpC (PBP3 gene) had no effect on the growth rate, cell 

morphology or sporulation compared to wild type (Murray et al., 1996). In addition, the absence 

of PBP3 in the ponA, pbpD or pbpF single mutants had no additional effect on cell morphology, 

growth or sporulation efficiency (Murray et al., 1996). PBP3 has an enriched localisation at the 

septum but foci distributed along the cell periphery were also identified in vegetative cells 

(Scheffers et al., 2004).  

 

Table 1.1 List of B. subtilis high molecular weight PBPs  

Gene Protein Role / Remarks  

Class A PBPs (Bifunctional GTase/TPase) 

ponA PBP1 Cell division, elongation and sporulation 

pbpF  PBP2C Cell division and later stages of sporulation 

pbpD PBP4 Cell division, elongation and sporulation 

pbpG PBP2D Sporulation 

Class B PBPs (Monofunctional TPase) 

pbpA PBP2A Cell elongation 

pbpB† PBP2B Cell division and sporulation 

pbpC PBP3 Cell division 

spoVD SpoVD Sporulation  

phpH PBPH Cell elongation 

yrrR YrrR Not known 

†, gene essential for cell division 
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1.3.2 Peptidoglycan hydrolases  

Hydrolases are essential for the insertion of new PG material into the sacculus without 

thickening the cell wall. They contribute to PG growth, cell division, and septum cleavage 

allowing the formation of two daughter cells (Blackman et al., 1998). B. subtilis has as many 

as 35 PG hydrolases with redundant functions, which makes it difficult to understand the 

physiological role of each enzyme (Smith et al., 1996, 2000; Vollmer, 2012).  

Amidases hydrolyse the amide bond between the N-acetylmuramoyl residue and the L-Ala 

residue of PG (Hill, 1984). Several amidases such as LytC, CwlC, and CwlD cleave the septum 

during cell division allowing the separation of daughter cells (Blackman et al.,1998; Smith and 

Foster, 1995). LytA, lytB and lytC are all encoded in the same operon and LytA or LytB were 

suggested to be chaperons for LytC but their functions are still unclear (Lazarevic et al., 1992). 

LytC localises at midcell as well as the cell periphery and in its absence a chaining cell 

morphology is exhibited (Margot and Karamata, 1992).   

Endopeptidases cleave within peptides and are divided into 3 types, DD-peptidases, LD-

peptidases and DL-peptidases (Smith et al., 2000). LytF, a DL-endopeptidase, hydrolyses the 

linkage between the D-γ-Glu residue and the meso-diaminopimelic acid (Ohnishi et al., 1999). 

Based on the sequence analysis of the lytF gene, the protein was suggested to have 5 LysM 

domains that are involved in PG binding (Yamamoto et al., 2003). The absence of LytF caused 

cell chaining and localisation studies suggested that LytF has a role in cell separation due to its 

septal localisation (Ohnishi et al., 1999; Yamamoto et al., 2003).  The localisation pattern and 

the expression of LytF was altered in cells lacking the LTA synthase LtaS (Kiriyama et al., 

2014). In the ΔugtP mutant, the expression and the localisation of LytF was similar to wild 

type. However, in cells lacking the enzymes involved in the glucolipid synthesis pathway PgcA 

or GtaB, the expression level of LytF was lower compared to wild type cells for unknown 

reasons (Kiriyama et al., 2014). 

Another DL-endopeptidase, CwlO, localises at the cell periphery and is suggested to have a 

role in cell elongation (Yamamoto et al., 2003). The absence of CwlO caused shorter and wider 

cells than wild type when grown in LB medium (Dominguez-Cuevas et al., 2013). The ATP-

binding cassette (ABC) transporter-like complex, FtsEX, regulates the activity of CwlO in the 

cell. CwlO interacts with FtsX in vivo and the absence of FtsX resulted in the release of CwlO 

in the culture supernatant (Figure 1.2) (Dominguez-Cuevas et al., 2013). However, no 

interaction between the two proteins was detected in vitro (Meisner et al., 2013). 
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Interestingly, the double deletion of two DL-endopeptidases, CwlO and LytE, is lethal in B. 

subtilis (Bisicchia et al., 2007). LytE, like CwlO and LytF, has a DL-endopeptidase activity 

(Yamamoto et al., 2003). LytE localised at midcell and in foci at the cell periphery during 

vegetative growth (Carballido-Lopez et al., 2006; Yamamoto et al., 2003). The absence of LytE 

caused bent cells and mild chaining suggesting a role in both cell division and elongation 

(Ohnishi et al., 1999). In the mreBH-null mutant, the localisation of LytE at the cell periphery 

was diminished (Carballido-Lopez et al., 2006). Additionally, a genomic screen for MreBH 

interaction partners identified LytE, hence the hypothesis of a transient interaction between the 

two proteins that positions LytE at the cell periphery prior to transport to the cell wall 

(Carballido-Lopez et al., 2006).  

The lethality of the lytE cwlO double deletion is caused by the lack of DL-endopeptidase 

activity at the cell periphery (Bisicchia et al., 2007; Hashimoto et al., 2012). This redundant 

essentiality of LytE and CwlO was used to identify regulators for both proteins. The lethality 

of  the mbl lytE double mutant suggested a role for Mbl in controlling the function of CwlO via 

the FtsEX complex (Dominguez-Cuevas et al., 2013). A similar lethality was observed for the 

cwlO mreBH or ftsEX mreBH double mutants hence the potential role of MreBH in the LytE 

system (Figure 1.2) (Dominguez-Cuevas et al., 2013).  

A σI –dependent increase in lytE expression was identified in the ltaS and ugtP mutants 

(Kasahara et al., 2016). Likewise, the σI –dependent transcription of mreBH increased in the 

ltaS mutant cells (Matsuoka et al., 2011a). Interestingly, LytE exhibited a midcell and lateral 

wall localisation in the ltaS mreBH mutant suggesting that the localisation of LytE in the ltaS 

mutant is independent of MreBH. Moreover, a cwlO ltaS mreBH triple mutant is viable and had 

a similar growth to the cwlO ltaS mutant suggesting that LytE is functional for lateral PG 

hydrolysis in the ltaS mutants and dispensable of MreBH (Kasahara et al., 2016).  

Endopeptidases and carboxypeptidases hydrolyse different amide bonds in the PG. 

Carboxypeptidases such as PBP5 and PBP4a remove the terminal D-Ala residue of the 

pentapeptide chain (Buchanan and Ling, 1992; Pedersen et al.,1998). Several hydrolases 

involved in different roles in bacteria like endospore formation and protein secretion were not 

mentioned above due to their irrelevance to this work at the moment (Lee and Huang, 2013).  
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1.3.3 Lytic transglycosylase 

Other hydrolases, such as CwlJ and SleB, are lytic transglycosylases (LT). These enzymes 

cleave the β1,4-glycosidic bond between GlcNAc and MurNAc and catalyse the formation of 

the 1,6-anhydro bond between C1 and C6 of N-acetylmuramic acid (Höltje et al., 1975). Pulse-

chase studies indicated that the formation of the anhydroMurNAc sugar occurs shortly after 

lipid II polymerization (Burman and Park, 1983; Glauner and Höltje, 1990). Recently, a 

synthetic lethal screen in E. coli cells lacking the PG synthase PBP1B identified the LT MltG 

(Yunck et al., 2016). The overexpression of MtlG in the ΔponB mutant lacking PBP1B resulted 

in spherical cells followed by lysis. MltG had sequence similarities in the catalytic cleft with 

SleB, an LT in B. subtilis. MltG exhibited activity against PG causing the release of sugar 

polymers capped by anhydroMurNAc ends. MltG has a single α-helix that spans the cell 

membrane. The ΔmltG mutant had longer glycan strands and a 1.8 fold increase in the relative 

percentage of pentapeptides compared to wild type. Bacterial two-hybrid experiments indicated 

that MltG interacts with PBP1B but not PBP1A. Taken together, these results suggest that MltG 

has a weak endo-LT activity and presumably plays a role as a terminase during PG synthesis 

(Yunck et al., 2016). A homologue for MltG was identified in Streptococcus pneumoniae 

(SpMltG) (47% sequence similarity) (Tsui et al., 2016). The absence of SpMltG caused growth 

MblMreBMreBH
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CwlO

LytEPG
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FtsEX
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CwlO

system
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Figure 1.2 The control of hydrolases during cell elongation 

(A) The actin cytoskeleton isoforms regulate the PG hydrolases CwlO and LytE required for cell 

elongation. MreBH ensures the localisation of LytE to the lateral wall via a transient interaction before 

LytE gets secreted into the extracellular domain. Mbl regulates the activity of CwlO via FtsEX by 

controlling the localisation of these proteins.   

(B) The two proposed distinct pathways for the lateral PG hydrolysis during cell elongation 

(Dominguez-Cuevas et al., 2013).     
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defect and a spherical cell shape, suggesting a defect in peripheral PG synthesis. The growth of 

the mltG mutant was dependent on the increase in the WalRK regulon expression of PG 

hydrolases. Interestingly, the deletion of mltG rescued the lethality caused by the absence of 

essential proteins such as PBP2b, MreCD, RodZ or RodA. Moreover, the localisation pattern 

of SpMltG relative to FtsZ was similar to that of PBP1a, PBP2b and MreC suggesting a role in 

cell elongation (Tsui et al., 2016). B. subtilis has an MltG homologue called YrrL with an 

YceG-like superfamily domain. YrrL shows 32% amino acid sequence identity and 50% 

similarity with E. coli MltG extending over 356 amino acid residues. There is no information 

about the function or activity of YrrL in the published literature. 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.4 Elongasome 

The actin-like MreB, Mbl or MreBH are required for lateral cell wall synthesis during cell 

growth. The synthesis and hydrolysis of the cell wall are presumably controlled by the MreB 

homologues through various protein-protein interactions which form the elongasome. MreB, 

Mbl, MreBH, MreC, MreD, RodZ, RodA, PBP2A, PBPH, PBP1, FtsEX, CwlO, LytE and 

TagGHO are all suggested to have roles in cell elongation (Figure 1.4) (Carballido-López and 

Formstone, 2007). The MreB isoforms, MreB, Mbl and MreBH, are soluble cytoplasmic 

A B

Variable Conserved

Lytic 

transglycosylase

Figure 1.3 Lytic Transglycosylase 

(A) The scheme adapted from Höltje et al. 1975 shows the conversion of the muramic acid moiety upon 

transglycosylase action. 

(B) A space-filling model of the E. coli MltG structure with a highlight of the amino acid conservation. 

The ribbon diagram represents the structural alignment of the catalytic domain of the lytic 

transglycosylase SleB with the proposed catalytic region of MltG. The catalytic glutamate is shown in 

stick form and highlighted with an asterisk (Yunck et al., 2016). 



13 

proteins required for cells to maintain their rod shape (Jones et al., 2001; Varley and Stewart, 

1992). MreB and mbl are essential for cell viability in the absence of magnesium ion 

supplements unlike mreBH which could be deleted resulting in helical shaped cells 

(Abhayawardhane and Stewart, 1995; Formstone and Errington, 2005; Jones et al., 2001; 

Varley and Stewart, 1992). The depletion of MreB caused wider, rod-shaped cells while the 

depletion of Mbl caused the formation of small, bloated cells (Abhayawardhane and Stewart, 

1995; Jones et al., 2001). The differences in cell shape of the mutants suggest different functions 

for the MreB isoforms in the cell. The localisation of MreB, Mlb and MreBH showed extensive 

overlap between the three proteins that moved at similar speed and angle along the cell 

periphery, hence the suggestion that the MreB isoforms coexist in motile patches (Dominguez-

Escobar et al., 2011). A mutation in the MreB ATP binding site resulted in perturbed cell 

morphology but had no effect on the MreB motion, suggesting that the hydrolysis of ATP by 

MreB is essential for cell elongation (Garner et al., 2011).  

MreC and MreD are essential membrane bound proteins that play a role in cell elongation. The 

loss of MreC or MreD resulted in a round cell morphology (Defeu Soufo and Graumann, 2005). 

Fluorescence microscopy with high precision particle tracking showed colocalisation of MreC 

and MreD with the MreB homologues in the cell (Garner et al., 2011). The localisation of MreC 

or MreD depended on the localisation of MreB and Mbl along the lateral wall and vice versa 

(Defeu Soufo and Graumann, 2005; Leaver and Errington, 2005). Thus, this interdependency 

between the MreB homologues, MreC and MreD suggests that these proteins coexist in the 

elongasome complex. Bacterial two-hybrid assays showed interaction between MreC and class 

A or B PBP2A, PBPH and PBP1 that are potentially playing a role in the PG synthesis at the 

lateral cell wall (Ent et al., 2006). Consequently, MreC and MreD seem to link the scaffold 

proteins, the MreB homologues, to cell wall synthesis by interacting with and regulating both 

components during cell elongation.   

RodZ is an essential membrane bound protein localising along the cell periphery in a spiral 

pattern similar to that of MreB (Garner et al., 2011). The depletion of RodZ resulted in shorter 

and rounder cells and mislocalisation of FtsZ resulting in the formation of mini cells (Muchová 

et al., 2013). The stability and localisation of RodZ are dependent on MreB and not Mbl or 

MreBH. RodZ interacted with MreD in bacterial two-hybrid assay and interacted with MreB, 

Mbl and MreBH in pull-down experiments (Muchová et al., 2013). These results suggest that 

RodZ is a key player in PG synthesis during cell elongation, however, the role of RodZ in the 

cell remains unclear.  
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RodA, a member of the SEDS family (shape, elongation, division, spore), is an integral 

membrane protein required for cell elongation in B. subtilis (Henriques et al., 1998). The 

depletion of RodA resulted in the loss of the side wall PG synthesis. Moreover, TEM imaging 

for cells lacking RodA showed a spherical morphology with no or impaired septation 

suggesting a role for RodA in cell division and cell elongation (Henriques et al., 1998). RodA 

is presumably the lipid II flippase of the elongasome, responsible for the delivery of PG 

precursors to the synthases. Recently, RodA was suggested to be the missing 

glycosyltransferase in B. subtilis (Meeske et al., 2016). The morphology and growth of cells 

lacking all class A PBPs (Δ4) were rescued by overexpressing RodA. The overexpression of 

RodA variants W105A or D280A did not rescue the Δ4 strain suggesting either of these amino 

acids to be the GTase active site. Partially purified RodA showed poor PG polymerization 

activity unlike RodA W105A or D280A that showed none. However, the purity of RodA 

purification was low which makes it unclear whether the detected activity is from RodA or a 

contaminant (Meeske et al., 2016).   

The synthesis of PG is performed by class A and B PBPs. PBP2A and PBPH are redundantly 

essential PBPs with TPase activities. The absence of both proteins caused round cell 

morphology (Wei et al., 2003). PBP2A and PBPH colocalise with the elongation machinery 

(MreB, Mbl, MreBH, RodA, MreC and MreD) and their localisation pattern is dependent on 

the availability of the lipid II substrate (Dominguez-Escobar et al., 2011; Garner et al., 2011). 

The recruitment of the class A PBP1 to the elongasome is enabled by the cytosolic protein 

GpsB, which interacts with both PBP1 and MreC (Claessen et al., 2008). Moreover, MreB 

interacts directly or in a complex with several PG synthases including PBP1, PBP2A and PBPH, 

and the bulging in the ΔmreB mutant was associated with the abnormal localisation of PBP1 

(Kawai et al., 2009). These results support the model in which the MreB homologues coordinate 

lateral cell wall synthesis during cell elongation. 

PG hydrolysis is also controlled by cytoskeletal proteins, however there is no proof yet whether 

synthases and hydrolases in B. subtilis coexist in the same elongasome complex. The PG 

hydrolase LytE interacts with MreBH to ensure proper localisation at the lateral cell wall 

(Carballido-Lopez et al., 2006), whereas the localisation and activity of CwlO are regulated by 

Mbl via the ABC-transporter like complex FtsEX (Section 1.3.2) (Dominguez-Cuevas et al., 

2013).  

Interestingly, proteins involved in the WTA synthesis machinery such as TagGHO localised in 

a helical pattern at the lateral cell wall, and interacted with other elongasome proteins, MreC 
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and MreD (Formstone et al., 2008). All these data support the model of a multiprotein complex 

controlling the synthesis of the PG and potentially WTA during cell elongation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.5 The initiation of divisome formation  

Cell division is a dynamic process where several proteins assemble at midcell to synthesise and 

cleave the septal cell wall to produce the new poles of daughter cells. This process requires at 

least 12 proteins whose activities are tightly controlled (Errington et al., 2003). The loss of any 

essential cell division protein causes the absence of septal formation resulting in filamentous 

cells and eventually lysis. The polymerization of a tubulin-like protein FtsZ into the Z-ring 

marks the initiation of cell division (Erickson et al., 1996; Löwe and Amos, 1999; Mukherjee 

and Lutkenhaus, 1994). FtsZ polymerizes into filaments in a head to tail association dependent 

on GTP (Mukherjee and Lutkenhaus, 1998; Oliva et al., 2004). FtsZ is a self-activating GTPase, 

and this activity depends on FtsZ polymerization (de Boer et al., 1992; Mukherjee et al., 1993; 

Figure 1.4 The elongasome 

Schematic representation of proteins involved in PG synthesis, growth or maintenance during cell 

elongation. Proteins are represented with their structural features. The three actin homologues are 

proposed to be the scaffold for the PG synthesis machinery. RodA is presumably the lipid II flippase 

that delivers the PG substrate to the synthases. MreC and MreD are important in coordinating the 

intracellular and extracellular elongation machinery. PBP2A, PBPH and PBP1 represent the synthases 

involved in the PG synthesis during cell elongation. There is no proof for the coexistence of the 

hydrolases LytE and CwlO in the same complex as the PG synthesis machinery, however, at least one 

of these two hydrolases is essential for cell elongation and survival. 
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RayChaudhuri and Park, 1992; Scheffers et al., 2002). The polymerization of FtsZ is highly 

dynamic and takes 8-9 seconds to exchange FtsZ subunits (Stricker et al., 2002). CryoEM 

tomography of C. crescentus FtsZ showed that the Z-ring is arranged in protofilaments rather 

than a continuous ring (Li et al., 2007). The polymerization of FtsZ in liposomes caused convex 

bulging, which is presumably caused by the constrictive force generated by protofilaments (Li 

et al., 2007; Osawa et al., 2013).  

To ensure midcell localisation of the Z-ring, the polymerization of FtsZ is positively and 

negatively regulated by several mechanisms which will be discussed below. The min system, 

which includes MinCDJ and DivIVA, prevents FtsZ assembly near the poles (Figure 1.5) 

(Bramkamp and Van Baarle, 2009). The absence of any component of the min system causes 

misplacement of the division site resulting in anucleated cells called mini cells (Adler et al., 

1967; Bramkamp et al., 2008; Edwards and Errington, 1997; Reeve et al., 1973). MinD is a 

membrane bound ATPase that belongs to the ParA/MinD family of proteins (Cordell and Löwe, 

2001; Szeto et al., 2003).  MinD recruits MinC to the membrane, and the membrane association 

of the MinCD complex is essential for the inhibition of FtsZ polymerization (Gregory et al., 

2008). MinC also antagonizes the scaffolding of FtsZ by inhibiting its lateral interactions 

(Dajkovic et al., 2008; Scheffers, 2008). MinC moves along the cell membrane and is presumed 

to rotate around the division site and accumulate at the cell poles, suggesting that MinCD acts 

at the new cell poles to prevent FtsZ re-polymering into the Z-ring (Gregory et al., 2008). 

DivIVA localises at the assembling divisome and the cell poles, and  is the topological 

determinant of MinCD (Edwards and Errington, 1997; Gamba et al., 2009). DivIVA 

accumulates at negatively curved membranes without being able to impose curvature (Lenarcic 

et al., 2009). MinJ has a transmembrane segment and interacts with MinD and DivIVA 

(Bramkamp et al., 2008). MinJ is suggested to have an adaptor role linking the topology factor 

DivIVA to the inhibitory complex MinCD. MinJ also interacts with FtsL and the PG synthase 

PBP2B and facilitates the localisation of both proteins to midcell. This suggests another role 

for the min system in the regulation of membrane bound divisome components (Bramkamp et 

al., 2008).  

The second regulatory system for FtsZ polymerization is nucleoid occlusion (Figure 1.5). Noc 

prevents the polymerization if FtsZ into protofilaments over the nucleoid (Wu and Errington, 

2004). Noc is a DNA dependent membrane binding protein. It has a highly conserved N-

terminal domain responsible for Noc association to the cell membrane. The simultaneous 

binding of Noc to the DNA and the membrane is essential for nucleoid occlusion. This suggests 

that the mechanism by which Noc acts requires recruitment of DNA to the cell membrane 
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(Adams and Errington, 2009; Wu et al., 2009). The overexpression of Noc blocked cell division 

in wild type cells but not in the minCD mutant (Wu and Errington, 2004). In cells lacking both 

the min and the nucleoid occlusion systems, FtsZ still preferentially polymerized at midcell 

between the nucleoids suggesting the presence of another regulatory factor (Rodrigues and 

Harry, 2012; Wu and Errington, 2004). It was also proposed that the role of both systems is to 

ensure efficient utilization of the division site by positioning the Z-ring at midcell. Such a 

hypothesis suggests the presence of an as yet unknown mechanism by which FtsZ identifies the 

division site (Rodrigues and Harry, 2012).  

A third element that influences FtsZ polymerization at midcell is the glucolipid transferase UgtP 

(Weart et al., 2007). UgtP was described as a metabolic sensor that coordinates cell size with 

cell division. The role of UgtP and the mechanism of such regulation are discussed in section 

1.5.1.   
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Figure 1.5 The selection of the division site 

The polymerization of FtsZ at midcell is regulated by the Min system and the nucleoid occlusion 

system. The Min system including MinCDJ and DivIVA, prevents the polymerization of FtsZ at the 

cell poles. MinC inhibits FtsZ polymerization while MinDJ and DivIVA control the activity and the 

localisation of MinC. The nucleoid system, Noc, prevents Z-ring formation over the nucleoid. The 

binding of Noc to the DNA and to the membrane simultaneously is essential for nucleoid occlusion.  
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1.3.6 The assembly of the divisome  

In E. coli, the divisome assembles in a sequential manner by the hierarchical recruitment of cell 

division proteins to midcell (Goehring et al., 2006). Conversely, B. subtilis appears to have a 

two-step assembly dynamics of the divisome where division proteins are recruited in a 

cooperative rather than a sequential manner (Gamba et al., 2009). In this system, FtsZ, FtsA, 

EzrA and ZapA are recruited to the assembling divisome in the first 25% of the cell cycle 

followed by the recruitment of PBP2B, FtsL, DivIB, DivIVA and FtsW with a delay of at least 

20% of the cell cycle (Figure 1.6) (Gamba et al., 2009). The Z-ring is stabilized at midcell by 

its positive regulators including FtsA, ZapA and SepF. FtsA has an actin-like structure and an 

ATP-binding site, however, the oligomerization of FtsA is ATP independent (van den Ent and 

Löwe, 2000; Feucht et al., 2001; Shiomi and Margolin, 2007; Singh et al., 2013; Yim et al., 

2000). E. coli FtsA interacts with the cell membrane via an amphipathic helix. Also, FtsA 

interacts with FtsZ and enables its anchoring to the cytoplasmic membrane (Wang et al., 1997). 

The ratio of FtsZ to FtsA in the cell is 5 to 1 and as such the balance between the two proteins 

must be maintained for correct cell division (Feucht et al., 2001).  

SepF, like FtsA, interacts directly with FtsZ and promotes Z-ring formation and bundling 

(Duman et al., 2013; Singh et al., 2008). SepF binds to lipid membranes and is proposed to 

function as a cell membrane anchor for the Z-ring (Duman et al., 2013). SepF-null cells, like 

ftsA-null cells, are elongated and have distorted and abnormally thick septa, hence the potential 

role of SepF in modulating septal PG synthesis or constriction (Hamoen et al., 2006). The 

overexpression of SepF complements the ftsA-null phenotype suggesting partial redundancy 

between the two proteins (Ishikawa et al., 2006). 

ZapA, which is recruited at the early stages of cell division, interacts with FtsZ and promotes 

FtsZ polymerization into protofilaments (Gueiros-Filho and Losick, 2002). In addition, ZapA 

inhibits the GTPase activity of FtsZ resulting in increased stability and rigidity of FtsZ 

protofilaments (Gueiros-Filho and Losick, 2002; Low et al., 2004; Small et al., 2007).  

EzrA, a membrane bound protein, negatively regulates Z-ring formation by inhibiting FtsZ 

polymerization (Chung et al., 2007; Cleverley et al., 2014; Haeusser et al., 2004; Land et al., 

2014; Levin et al., 1999; Singh et al., 2007). EzrA localises at midcell and the cell periphery, 

and the ezrA mutant has polar Z-rings in addition to thin cell morphology (Levin et al., 1999). 

These results suggest a role for EzrA not only in cell division but also in cell elongation. 

However, it is still unclear why a negative regulator of FtsZ assembly is recruited at the early 

stages of the cell division. Moreover, EzrA interacts directly with GpsB and coordinates the 
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recruitment of PBP1 to the division site (Claessen et al., 2008; Tavares et al., 2008). The 

absence of both EzrA and GpsB resulted in the delocalisation of the cell wall synthesis 

machinery and impaired septal PG synthesis (Claessen et al., 2008). In addition, cells lacking 

both SepF and EzrA do not recruit the essential PG synthase PBP2B to the divisome leading to 

cell death (Hamoen et al., 2006). These results provide evidence for the importance of these 

proteins not only in regulating FtsZ polymerization but also in recruiting PG synthases during 

cell division.   

The second step in divisome assembly involves the recruitment of several proteins such as FtsL, 

DivIB, DivIC, FtsW, PBP2B, GpsB and PBP1 to midcell (Figure 1.6) (Gamba et al., 2009). 

Each of these proteins has a unique role during cell division that will be discussed below. FtsL 

is essential for cell viability and has a N-terminal cytoplasmic domain, a transmembrane 

segment and a C-terminal extracellular domain (Bramkamp et al., 2006; Daniel et al., 1996, 

1998). The cytosolic region of FtsL is important for the  stability of the protein but is 

dispensable for division (Bramkamp et al., 2006). FtsL formed a trimeric complex with cell 

division proteins DivIB and DivIC in yeast three-hybrid assays (Daniel et al., 2006; Robichon 

et al., 2008). Furthermore, the marked instability of FtsL in the absence of the essential cell 

division proteins DivIB, DivIC and PBP2B presumably made it a key control point in cell 

division (Daniel et al., 2006; Wadenpohl and Bramkamp, 2010).  

DivIC is an essential cell division protein with a similar topology to FtsL (Katis et al., 1997). 

DivIC has dispensable cytoplasmic and transmembrane regions and an essential extracellular 

domain for function and midcell localisation (Katis et al., 1997). The stability and turnover of 

DivIC depends on DivIB in wild-type cells or the ΔftsL mutant (Daniel et al., 1998, 2006). 

DivIB is a membrane bound cell division protein not essential for viability at 30˚C (Beall and 

Lutkenhaus, 1989, 1992; Harry and Wake, 1989). The overexpression of FtsL supresses the 

divIB-null lethality at high temperature suggesting either an overlap in divIB and FtsL functions 

or the division defect in divIB-null resulted from FtsL degradation (Daniel and Errington, 2000). 

Moreover, DivIB is important for the synthesis of the polar septum during sporulation 

suggesting an additional sporulation-specific role (Rowland et al., 1997; Thompson et al., 

2006).  

FtsW is an essential protein that belongs to the SEDS family of proteins (Boyle et al., 1997; 

Ikeda et al., 1989). The deletion of ftsW resulted in long filamentous cells and PBP2B 

mislocalisation suggesting a block in cell division (Boyle et al., 1997; Gamba et al., 2016). The 

FtsW homologue from E. coli has ten transmembrane segments and functions as a lipid II 
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flippase that transfers lipid II from the cytoplasm to the extracellular region where it is delivered 

to PBPs (Höltje, 1998; Mohammadi et al., 2011, 2014).  

PBP2B is the first PBP to be recruited to the assembling divisome and is crucial for septal PG 

synthesis (Daniel et al., 1996). The depletion of FtsL, DivIB, DivIC or FtsW causes 

mislocalisation of PBP2B from midcell, which results in a block in cell division (Daniel et al., 

2000; Gamba et al., 2016). More information about PBP2B can be found in section 1.3.1.  

The localisation of the synthase PBP1 to the lateral cell wall during cell elongation is controlled 

by GpsB (Section 1.3.4). However, PBP1 is also involved in septal PG synthesis and the 

recruitment of the synthase to midcell is coordinated by EzrA (Claessen et al., 2008). Thus, the 

shuttling of PBP1 between midcell and the cell periphery is presumably controlling the cell 

elongation-division cycle. Moreover, GpsB is essential in absence of EzrA suggesting a partial 

redundancy in the control of PBP1 localisation (Tavares et al., 2008).  
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Figure 1.6 The assembly of the divisome  

(A) Schematic representation of proteins involved in cell division (Adams and Errington, 2009). 

Proteins are represented with their structural features. The tubulin-like protein FtsZ works as scaffold 

for the PG synthesis machinery. ZapA and Ezra are positive and negative regulators for FtsZ 

polymerization, respectively. FtsA and SepF stabilize the Z-ring and tether it to the membrane. FtsW is 

presumably the lipid II flippase that delivers the PG substrate to the synthases. DivIB, DivIC and FtsL 

are essential for cell division but their roles are unclear. PBP2B is the first PG synthase recruited to the 

assembling divisome. PBP1 is involved in PG synthesis during cell division and its localisation to the 

septum is regulated by GpsB and EzrA.  

(B) The scheme represents the two-step assembly process of the divisome. During the early step, FtsZ 

polymerize into a ring at midcell. This polymerization is regulated by ZapA, SepF, FtsA and EzrA. The 

late step of the divisome assembly is the step during which DivIB, DivIC, FtsL and FtsW are co-

recruited to the assembling divisome. The absence of any of the later proteins causes a destabilization 

of the divisome. PBP2B is the first synthase recruited to the divisome for septal PG synthesis followed 

by PBP1 and the rest of the unmentioned cell division machinery.  
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1.4 Anionic cell wall polymers  

1.4.1 Wall teichoic acid WTA 

WTA accounts for up to 60% of the mass of the cell wall (Ellwood, 1970). It is an anionic 

polymer composed of a disaccharide linkage unit and a chain of glycerol-phosphate residues 

(Figure 1.7). WTA is covalently linked to PG by a phosphodiester bond to the C6 hydroxyl 

group of the N-acetyl muramic acid sugars (Araki and Ito, 1989; Yokoyama et al.,1986). In B. 

subtilis, WTA is synthesised by tag (teichoic acid glycerol) gene products. The synthesis starts 

at the cytoplasmic face of the cellular membrane on an undecaprenyl-phosphate lipid anchor. 

TagO catalyses the transfer of GlcNAc-1-P from UDP-GlcNAc to undecaprenyl phosphate 

(Soldo et al., 2002), followed by the addition of N-acetylmannosamine (ManNAc) catalysed by 

TagA (Ginsberg et al., 2006). The glycerolphosphotransferase TagB catalyses the addition of 

sn-glycerol-3-phosphate unit to ManNAc (Bhavsar et al., 2005; Ginsberg et al., 2006). These 

three steps are required for the synthesis of the disaccharide linkage unit and they are highly 

conserved among all B. subtilis strains characterized so far. Once the synthesis of the linkage 

unit is complete, TagF catalyses the addition of up to 60 glycerol phosphate Gro-P units to sn-

glycerol-3-phosphate to assemble the polymer (Schertzer and Brown, 2003). The transfer of the 

polymer across the membrane is performed by an ABC-transport system, TagGH (Lazarevic 

and Karamata, 1995). Once at the outer leaflet, the polymer is D-alanylated by the products of 

the dltABCD operon then transferred to the PG where it covalently binds MurNAc (Araki and 

Ito, 1989; Coley et al., 1978; Perego et al., 1995). This transfer from the undecaprenylphosphate 

to the PG is done by 3 redundant enzymes TagT, TagU and TagV (Kawai et al.,2011). 

WTA polymers have numerous roles in cell morphology and growth but the molecular details 

of their function are still not well understood. B. subtilis cells lacking WTA grew slower than 

wild type cells and they had cell wall abnormalities, thick PG layer with an increase in cell size 

and aberrant cell division (Cole et al., 1970; D'Elia et al., 2006). WTA also has a role in 

regulating the activities of autolytic enzymes in the cell wall in addition to an increase in 

antibiotic resistance (Brown et al., 2013). 
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1.4.2 Lipoteichoic acid LTA 

A second anionic polymer in B. subtilis is lipoteichoic acid (LTA). It is composed of a 

membrane anchored glycolipid and glycerol-phosphate repeats (Figure 1.8). The synthesis of 

LTA starts at the cytoplasmic side of the cell membrane where cytidine diphosphate 

diacylglycerol (CDP-DG) is first synthesised from phosphatidic acid PA by a phosphatidate 

cytidylyltransferase CdsA (Figure 1.9) (Gaillard et al., 1983). The 

phosphatidylglycerophosphate synthase PgsA catalyses the synthesis of phosphatidylglycerol 

phosphate (PGP) from CDP-DG (Miyazaki et al., 1985). PGP is then dephosphorylated 

producing phosphatidylglycerol. UDP-glucose diacylglycerol glucosyltransferase UgtP 

transfers two glucose molecules from UDP-glucose to the phosphatidylglycerol anchor which 

is then transported across the membrane by a transmembrane protein LtaA (Grundling and 

Schneewind, 2007). At the extra-cellular membrane the lipoteichoic acid synthases polymerise 

the addition of Gro-P repeats to the glycolipid molecule. B. subtilis has four synthase isoforms 

encoded by ltaS, yfnI, yqgS and yvgJ (Schirner et al., 2009). The LTA is D-alanylated at the 

outer leaflet in the same way as the WTA by the products of the dltABCD operon. The lack of 

the D-alanyl-ester in LTA and WTA has no effect on the cell shape. However, an increase in 

autolysis activity and an increase in susceptibility to antimicrobial peptides has been detected 
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Figure 1.7 Wall teichoic acid biosynthesis 

Products of the tag operon catalyses the synthesis of the WTA from the sugar nucleotide UDP-GlcNAc. 

The lipid anchor undecaprenyl-pyrophosphate is used as a carrier molecule. TagGH are suggested to 

catalyse the transfer of the precursor from the cytoplasm to the extracellular domain. TagTUV suggested 

to be involved in the transfer of the WTA from the undecaprenyl-pyrophosphate to the PG.  
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in such cells (Perego et al., 1995; Wecke et al., 1997; Wecke et al., 1996). CryoEM studies 

indicated a continuous layer of LTA along the membrane (Matias and Beveridge, 2008). Such 

a distribution of LTA suggests a role for this polymer in the overall structural organisation of 

the cell envelope (Matias and Beveridge, 2008). LtaS and its homologue YqgS both localised 

predominantly at midcell in vegetative cells (Schirner et al., 2009). The ΔltaS mutant exhibited 

a reduction in cell diameter, cell bending in addition to cell division defects described by the 

presence of long aseptate regions and aberrant septa (Schirner et al., 2009). The absence of the 

LTA synthase LtaS suppressed the magnesium dependency of the Δmbl and ΔmreB mutants 

(Schirner et al., 2009). The ΔltaS mutant exhibited bigger LTA size suggesting an alteration of 

the LTA structure. Interestingly, the synthase quadruple mutant was viable, but cells grew 

slower than wild-type and with cell division defects (Schirner et al., 2009). No LTA was found 

in this quadruple mutant, meaning the lipoteichoic acid synthases were required for LTA 

synthesis, along with CdsA and PgsA (Wormann et al., 2011). The ΔltaS mutant exhibited an 

increase in total phosphatidic acid and CDP-DG levels in the cell. Cells lacking LtaS also had 

an 8-fold decrease in the diglucosyldiacylglycerol (DGDG) level, which is synthesised by UgtP 

(Section 1.4.3) (Hashimoto et al., 2013). The transcription of sigM increased up to 8-fold in the 

ΔltaS and the ΔugtP mutant, suggesting that the SigM upregulation response in the ΔltaS or the 

ΔugtP mutants could be caused by the low levels or absence of the diacylglucose moiety, 

respectively (Hashimoto et al., 2013; Seki et al., 2015). In Bacillus anthracis, the absence of 

the LTA synthases LtaS1 and LtsS2 exhibited rough cell surfaces compared to wild type cells 

suggesting increased PG hydrolase activity (Garufi et al., 2012).  
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Figure 1.8 LTA biosynthesis  

Schematic representation of LTA synthesis in B. subtilis adopted and modified from (Schneewind and 

Missiakas, 2014). PgcA and GtaB synthesise glucose-1-P and UDP-glucose, respectively. Two glucose 

residues are transferred successively from UDP-glucose to diacylglycerol by UgtP to synthesise 

Glc2DAG. This latter is flipped across the cytoplasmic membrane by LtaA. Subsequently, LtaS 

catalyses the addition of the Gro-P repeats to Glc2DAG to synthesise LTA.   

Figure 1.9 Phospholipids, glycolipids and LTA biosynthesis pathways in B. subtilis 

Thick arrows on the left side of the figure represent the diacylglycerol cycle for lipoteichoic acid 

synthesis (Jerga et al., 2007). The right side of the diagram represents the pathway for glucolipid 

biosynthesis (Yasbin et al., 1976).  
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1.4.3 Glucolipid biosynthesis 

Glucolipids constitute one of the components used for LTA synthesis. Their production start by 

transforming glucose-6 phosphate to α-glucose-1 phosphate by the α-phosphoglucomutase 

PgcA, followed by the synthesis of UDP-glucose by α-glucose-1-phosphate uridylyltransferase 

GtaB (Figure 1.8 and 1.9) (Yasbin et al.,1976). UDP-glucose is used as a precursor for the 

synthesis of three teichoic acids: the minor teichoic acid (GlcGalNAc1-P)n-ManNAc-GlcNAc-

P by two sugar transferases GgaA and GgaB (Freymond et al., 2006), the major teichoic acid 

(Glc-Gro-P)n-ManNAc-GlcNAc-P by the glucosyltransferase TagE (Mauel et al.,1991) and the 

LTA (Figure 1.9). The diacylglycerol glucosyltransferase UgtP catalyses three consecutive 

transfers of glucose residues to a membrane anchored diacylglycerol (Jorasch et al.,1998). B. 

subtilis has monoglucosyldiacylglycerol (MGDG), diglucosyldiacylglycerol (DGDG) and 

triglucosyldiacylglycerol (TGDG), forming 1.2%, 9.8% and 0.3% of the total membrane lipids, 

respectively (Kawai et al.,2006). In S. aureus, MGDG is flipped across the membrane by multi-

transmembrane spanning protein LtaA to be used for LTA synthesis (Grundling and 

Schneewind, 2007). 

 

1.5 UgtP, a metabolic sensor for cell size homeostasis 

1.5.1 Cell growth coordinates cell division  

Bacteria are significantly larger in nutrient rich media than in nutrient poor medium. Therefore, 

the coordination between cell size and growth rate is important for cells to be at the appropriate 

size to face a given environment. It was suggested that the glycolipid pathway functions as a 

metabolic sensor to control cell size in B. subtilis in addition to its role in teichoic acid synthesis 

(Weart et al.,2007). Transposon-based screen searching for FtsZ assembly inhibitors identified 

the α-phosphoglucomutase PgcA (Weart et al., 2007). PgcA, gtaB and ugtP mutants exhibited 

short cell morphologies and were able to suppress the cell division block associated with 

MinCD overexpression. The expression level of FtsZ in the pgcA mutant was similar to wild 

type suggesting that PgcA modulates the assembly dynamics and not the expression level of 

FtsZ (Weart et al.,2007). The absence of PgcA or GtaB did not affect the expression level of 

UgtP in the cell but it interfered with the midcell localisation of UgtP in vegetative cells in 

nutrient rich medium (Nishibori et al., 2005; Weart et al., 2007). For cells grown in minimal 

sorbitol medium, UgtP was randomly distributed in foci and the level of UgtP expression 

decreased 6-fold compared to wild type. These results suggested that PgcA and GtaB modulated 

FtsZ assembly by controlling UDP-glucose availability in nutrient rich conditions. The 
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overexpression of UgtP caused 22% increase in cell length (Weart et al., 2007). In vitro, UgtP 

inhibited FtsZ assembly in a concentration dependent manner and destabilized the lateral 

interactions between FtsZ protofilaments (Chien et al.,2012). In the presence of UDP-glucose, 

UgtP had a higher affinity for FtsZ than for itself (Chien et al., 2012). Thus a shift from the 

UgtP-UgtP complex to the UgtP-FtsZ complex is presumably dependent on the increased levels 

of UDP-glucose, hence the stimulation of the UgtP-mediated inhibition of FtsZ assembly. 

Taken together these results suggests that nutrient availability altered both the expression and 

localisation of UgtP, thus ensuring that the inhibition of Z-ring formation is coupled to growth 

rate (Chien et al., 2012; Weart et al., 2007). 

 

1.5.2 The effect of glycolipids on bacterial actin homologues 

Matsuoka el at., (2011) studied the effect of UgtP on the actin polymers. They tested the actin-

homologs´ expression levels by lacZ transcriptional fusion in B. subtilis ugtP mutant cells. The 

mreB operon has 2 promoters, a Pupstream mreB and a PmreB (Tseng and Shaw, 2008). In ugtP 

mutants, mreB (Pupstream mreB) and mreBH transcription levels were 4.3 and 2.3 times higher than 

wild type, respectively (Matsuoka et al.,2011). However, mbl expression was not affected. 

Strains lacking both MreB and UgtP were viable and cells had an oval shape (Matsuoka et 

al.,2011). The absence of UgtP altered MreB localisation during exponential growth but not 

during stationary phase. The levels of MreB decreased significantly during exponential phase 

in the absence of UgtP, however, the addition of 10 mM MgSO4 supressed the abnormal 

localisation and level of MreB in the ugtP mutant. No interaction has been identified between 

MreB and UgtP by bacterial two-hybrid experiments, suggesting that glycolipids stabilise MreB 

polymerization or protect it from proteolysis (Matsuoka et al., 2011).  

 

1.5.3 The effect of glycolipids on the cell wall  

UgtP catalyses the transfer of glucose residues to a membrane anchored diacylglycerol during 

LTA synthesis. The absence of UgtP caused a significant decrease in the levels of glucolipids 

in the cell membrane (Salzberg and Helmann, 2008). In B. subtilis, ΔugtP, ΔpgcA and ΔgtaB 

mutants had similar LTA content to wild type cells (Matsuoka et al., 2011b). However, in S. 

aureus the ypfP-null (UgtP homologue) and the ltaS-null both exhibited a bigger LTA size 

compared to wild type suggesting an alteration in the LTA structure (Reichmann et al., 2014). 
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In addition, YpfP interacted directly or indirectly with the LTA synthesis machinery LtaA and 

LtaS by bacterial two-hybrid assays (Reichmann et al., 2014).  

Extracytoplasmic function sigma factors were another element studied in the ugtP mutant to 

understand the changes in cell morphology. In the ΔugtP mutant, the promoter activity of σM, 

σV and σX increased 6.9, 3.4, and 1.5 folds, respectively (Hashimoto et al., 2013; Seki et al., 

2015). σM is involved in cell wall synthesis and cell shape maintenance by its regulation of 

several genes such as murBF, ponA and rodA (Cao et al., 2002; Jervis et al., 2007). In the 168 

Marburg strain, cells lacking SigM had wild type shape while cells lacking UgtP were thick, 

filamentous and bent during exponential phase. However, cells lacking both SigM and UgtP 

had an oval shape and lysed (Matsuoka et al., 2011a). In addition, a microarray analysis for the 

PY79ΔugtP mutant showed up to 30% of the genes in the SigM, SigK and SigG regulons had 

increased transcription levels compared to wild type (Salzberg and Helmann, 2008). 

Furthermore, the absence of GtaB or PgcA but not UgtP diminished biofilm formation, 

however, the ΔugtP mutant showed flatter and matte biofilm compared to wild-type cells 

(Lazarevic et al., 2005; Salzberg and Helmann, 2008).  

The effect of UgtP on PG synthesis is still poorly characterized. The treatment of the ΔugtP 

mutant with fluorescently-labelled vancomycin showed a similar staining pattern to wild type 

cells suggesting that PG synthesis and lipid II incorporation were mostly unimpaired (Salzberg 

and Helmann, 2008). Moreover, the S. aureus YpfP interacted directly or indirectly with the 

divisome members DivIB, DivIC, FtsL, FtsW and PBP1 by bacterial two-hybrid experiments 

(Reichmann et al., 2014). These results suggest that UgtP might have an effect not only on FtsZ 

polymerization but also on other cell division proteins. The expression of LytE increased up to 

two fold in cells lacking LtaS, UgtP, PgcA or GtaB compared to wild type, however, the 

localisation of LytE in the latter mutants was unaffected (Kasahara et al., 2016). The reasons 

behind this increase in LytE expression in cells with defective LTA synthesis is not clear.  
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1.6 Aims of the project  

Changes in the concentrations of glucose or magnesium ions in culture media helped several 

mutants to recover from defective aspects of the cell wall (Murray et al., 1998; Formstone and 

Errington, 2005). However, the mechanisms behind such recovery and how the metabolism of 

the cell impacts PG synthesis is unclear. Moreover, the mechanism of peptidoglycan synthesis 

in B. subtilis is mostly uncharacterized. Therefore, the following questions were investigated in 

this work: 

1. How does the absence of glucolipids in the cell impact the cell wall synthesis? 

2. How does PBP3 complement the lack of the TPase activity of PBP2B? What are the 

roles of PBP1, PBP2B and PBP3 in the synthesis of PG during cell division?  

3. What is the role of YrrL, a lytic transglycosylase homologue, in B. subtilis?  
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2.1 Strains and plasmids 

 

Table 2.1 List of B. subtilis strains used in this study 

Strain Genotype Reference/Source 

168CA trpC2 Laboratory collection 

2083 trpC2 ponA::(Pxyl gfp-ponA cat) (Claessen et al., 2008) 

3105 trpC2 pbpC::pSG5045 (cat Pxyl gfp-pbpC) Laboratory collection 

4001 trpC2 pbpB(S309A) Laboratory collection 

4015 trpC2 pbpC::cat Laboratory collection 

BGSC1 yrrL::erm BGSC 

BGSC2 yocA::erm BGSC 

BGSC3 sigM::erm BGSC 

KS53 trpC2 amyE::(spc Pspac pbpC(S410A)) Laboratory collection 

PG237 trpC2 ugtP::neo Laboratory collection 

PDC463 trpC2 cwlO::spc (Dominguez-Cuevas et 

al., 2013) 

PDC464 trpC2 lytE::cat (Dominguez-Cuevas et 

al., 2013) 

PS2062 trpC2 ponA::spc (Popham and Setlow, 

1995) 

SSB122 trpC2 pgcA::tet (Weart et al., 2007) 

JS07 trpC2 gtaB::erm This work 

JS45 trpC2 yrrL::erm 168CA transformed with 

BGSC1 DNA 

JS46 trpC2 yocA::erm 168CA transformed with 

BGSC2 DNA 

JS48 trpC2 sigM::erm 168CA transformed with 

BGSC3 DNA 

JS55 trpC2 ugtP::neo ponA::cat PG237 transformed with 

JS06 DNA 
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JS60 trpC2 ΔyrrL This work 

JS62 trpC2 ΔyrrL yocA::erm JS60 transformed with 

JS46 DNA 

KS10 lytABC::neo Kenneth Seistrup, 

unpublished 

KS07 lytF::spc Kenneth Seistrup, 

unpublished 

BSB1 Autotroph Nicolas et al., 2012 

JS03 BSB1 ugtP::neo BSB1 transformed with 

PG237 DNA 

JS04 BSB1 pgcA::tet BSB1 transformed with 

SSB122 DNA 

JS05 BSB1 ugtP::neo amyE::(spc Pspank ugtP) JS03 transformed with 

pJS01 

JS06 BSB1 ponA::cat This work 

JS07 BSB1 pgcA::tet aprE::(spc Pspac pgcA) JS04 transformed with 

pJS02 

JS09 BSB1 gtaB::erm This work 

JS12 BSB1 gtaB::erm aprE::(spc Pspac gtaB) JS09 transformed with 

pJS03 

JS13 BSB1 ugtP::neo cwlo::spc JS03 transformed with 

PDC463 DNA 

JS14 BSB1 ugtP::neo lytE::cat amyE::(Pspank ugtP 

spc) 

JS05 transformed with 

PDC464 DNA 

JS15 BSB1 ugtP::neo ponA::cat amyE::(spc Pspank 

ugtP) 

JS05 transformed with 

JS06 DNA 

JS17 BSB1 gtaB::erm lytABC::neo JS09 transformed with 

KS10 DNA 

JS19 BSB1 pgcA::tet lytF::spc JS04 transformed with 

KS07 DNA 

JS20 BSB1 lytABC::neo BSB1 transformed with 

KS10 DNA 

JS21 BSB1 lytF::spc BSB1 transformed with 

KS07 DNA 
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JS23 BSB1 lytF::spc ugtP::neo JS03 transformed with 

KS07 DNA 

JS32 BSB1 S827::erm This work 

JS36 BSB1 gtaB::erm ponA::cat aprE::(spc Pspac gtaB) JS12 transformed with 

JS06 DNA 

JS38 BSB1 pgcA::tet ponA::(Pxyl gfp-ponA cat) JS04 transformed with 

2083 DNA 

JS39 BSB1 ugtP::neo ponA::(Pxyl gfp-ponA cat) JS03 transformed with 

2083 DNA 

JS40 BSB1  ponA::(Pxyl gfp-ponA cat) BSB1 transformed with 

2083 DNA 

JS41 BSB1 ugtP::neo amyE::(spc Pspank ugtP-S827) JS03 transformed with 

pJS04  

JS42 BSB1 cwlO::spc BSB1 transformed with 

PDC463 DNA 

JS43 BSB1 lytE::cat BSB1 transformed with 

PDC464 DNA 

JS44 BSB1 ugtP::neo lytE::cat JS03 transformed with 

PDC464 DNA 

JS49 BSB1 ugtP::neo lytE::cat sigM::erm JS44 transformed with 

BGSC3 DNA 

JS52 BSB1 ugtP::neo lytE::cat ponA::spc JS44 transformed with 

JS06 DNA 

JS54 BSB1 lytE::cat ugtP::neo amyE::(spc Pspank 

ugtP) 

JS05 transformed with 

JS43 DNA 

JS56 BSB1 ugtP::neo ponA::Cm amyE::(spc Pspank 

ugtP-S827) 

JS41 transformed with 

JS06 DNA 

DH5α E. coli F– φ80lacZΔM15, Δ(lacZYArgF)U196, 

recA1, endA1, hsdR17, (rk- , mk+), phoA, supE44, 

λ-, thi-1, gyrA96, relA1 

Invitrogen  

BL21(DE3) E. coli B F– ompT gal dcm lon hsdSB(rB
–mB

–) 

λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) 

[malB+]K-12(λ
S) 
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Table 2.2 List of plasmids used in this study 

Plasmid Characteristics Reference/Source 

pAPNC213 bla aprE’ spc lacI  Pspac’ aprE Morimoto et al., 2002 

pDR111 bla amyE’ spc lacI  Pspank’ amyE David Rudner, Harvard 

University 

PcotC-GFP bla cat PcotC cotC-gfp Veening et al., 2006 

pET-28a(+) kan PT7 lacI This work 

pET28-

28a(+)::ponA 

kan PT7 ponA lacI Cleverley et al., 2016; 

Rismondo et al., 2016 

pMUTIN erm Pspac lacZ lacI Vagner et al., 1998 

pJS01 bla amyE’ spc lacI  Pspank  ugtP’ amyE This work 

pJS02 bla aprE’ spc lacI  Pspac pgcA’ aprE This work 

pJS03 bla aprE’ spc lacI  Pspac gtaB’ aprE This work 

pJS04 bla amyE’ spc lacI  Pspank  ugtP-S827’ amyE This work 

pJS05 kan PT7 pbpC lacI This work 

pJS06 kan PT7 pbpC(17-668) lacI This work 

pJS07 kan PT7 pbpB lacI This work 

pJS08 kan PT7 pbpB(24-716) lacI This work 

pJS09 kan PT7 pbpB(S309A)lacI This work 

pJS10 kan PT7 pbpC(S410A) lacI This work 

pJS11 kan PT7 yrrL lacI This work 
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2.2 Growth and Media 

2.2.1 Media supplements and antibiotics  

Table 2.3 List of media supplements 

 Supplements  
Final 

concentration 

Chloramphenicol (dissolved in 100% ethanol) 5 µg/ml 

Erythromycin (dissolved in 50% ethanol) 1 µg/ml 

Ampicillin  5 µg/ml 

Kanamycin for B. subtilis 2-5 µg/ml 

Kanamycin for E. coli 25 µg/ml 

Tetracycline 10 µg/ml 

Xylose 0.5% 

IPTG 0.1-1 mM 

MgCl2 20 mM 

 

 

2.2.3 Bacterial growth and storage 

B. subtilis or E. coli cells were cultivated in Luria Britani (LB), Difco antibiotic medium no. 3 

(PAB), competence medium or M9 medium (Kleijn et al., 2010) depending on the experiments’ 

requirements. Fresh cultures were inoculated with overnight culture and grown at 30 or 37˚C 

with continuous shaking. For growth curves the OD600 was recorded every 15 min when cells 

were grown in nutrient rich medium and every 30 min when grown in minimal medium. For 

solid media, 1% agar (Bacteriological agar no. 1, Oxoid) was added in addition to the 

appropriate amount of supplements (Table 2.3). For short term growth and selection, nutrient 

agar (Oxoid) plates were used. For long term storage, liquid cultures (in LB) were grown to OD 

0.4 to 0.6 and mixed with sterile glycerol to a final concentration of 20% glycerol, frozen in 

liquid nitrogen and stored at -80˚C.   
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2.3 DNA methods 

2.3.1 Polymerase chain reaction (PCR)  

Q5 High-Fidelity DNA Polymerase (NEB, UK) was used for gene amplification during cloning 

and a Gotaq Flexi DNA Polymerase (Promega, USA) was used for confirming DNA 

modifications and/or gene deletions. Reactions (20 to 100 µl) were prepared as per the 

manufacturer’s instruction including 0.3 µM forward and reverse primers, 0.2 mM dNTPs, 

reaction buffer, DNA template and polymerase. The PCR amplification steps consisted of an 

initial denaturation (98°C, 2 min), 30 amplification cycles and a final oligonucleotides 

extension step (72°C for 4 min). Each amplification cycle consisted of denaturation (98°C, 10 

s), annealing (2°C lower than the oligonucleotides melting temperatures, 30 s) and 

oligonucleotide extension (72°C, 30 s/kb). 

 

2.3.2 Isolation of plasmid DNA 

E. coli DH5α cells carrying the plasmid were grown overnight in 5 ml LB with appropriate 

antibiotics at 37°C. Cells were pelleted by centrifugation (3893 g/ 5 min) and plasmids were 

purified by using a QIAprep Spin Miniprep Kit (Qiagen) as per the manufacturer’s instructions. 

 

2.3.3 Purification of DNA products 

PCR amplified DNA or plasmid DNA digested with restriction endonucleases were purified 

using QIAquick PCR Purification Kit (Qiagen, Germany) as per the manufacturer’s 

instructions.  

 

2.3.4 Agarose gel electrophoresis of DNA fragments 

DNA loading dye (phenol red) was mixed with DNA fragments at a 1:3 ratio and loaded to a 

1% agarose gel made with TAE buffer (2 M Tris/HCl pH 8.3, 5.7% acetate, 50 mM sodium 

acetate). A constant voltage (100 V) was applied for 1 h followed by the immersion of the gel 

in a TAE buffer with 0.75 µg/ml ethidium bromide for 15 min. Bands were visualised with a 

UV transilluminator and pictures were taken using a lumenera USB 2.0 camera. 
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2.3.5 Restriction endonuclease (RE) digestion 

Restriction enzymes were obtained from Roche, New England, Biolabs or Promega and they 

were used as per the manufacturer’s instructions. Samples contained DNA, the manufacturer’s 

recommended buffer and enzymes and were incubated for 3 h at 37˚C. Enzymes were 

deactivated by incubation at 65˚C or 80˚C for 20 min. alternatively, with heat stable enzymes, 

a PCR cleanup kit was used to stop the reaction.  

 

2.3.6 DNA dephosphorylation reaction  

Restriction digested plasmids were dephosphorylated using shrimp alkaline phosphatase (SAP, 

Usb). The reaction was performed directly in the restriction endonuclease buffer with the 

addition of phosphatase (1 µl) and incubating at 37˚C for 1h.  

    

2.3.7 Ligation of DNA 

DNA fragments with compatible ends were ligated using a T4 DNA ligase (Roche, Switzerland) 

as per the manufacturer’s instructions. The reaction consisted of DNA fragments, a provided 

ligation buffer and 1 unit of T4 ligase. Samples were incubated overnight at 4˚C then heated at 

80˚C for 15 min followed by a transformation into E. coli or B. subtilis cells. 

 

2.4 Bacillus subtilis methods  

2.4.1 Bacillus subtilis transformation 

The method was performed as published (Anagnostopoulos and Spizizen, 1961) with 

modifications (Hamoen et al.,2002). Competence medium (5 ml) (Table 2.5) was inoculated 

with B. subtilis strains and incubated overnight at 30°C with agitation. Fresh competence 

medium (5 ml) was inoculated with 500 µl of the overnight culture and incubated for 3 h at 

37°C with shaking. Pre-warmed starvation medium (5 ml) (Table 2.6) was added to the previous 

culture and cells were incubated at 37°C for another 2 h with shacking (cells are competent). 

DNA (1-3 ng/ml) was added to competent cells (900 µl) and incubated at 37°C for 1 h. Cells 

were plated on nutrient agar plates with appropriate antibiotics and incubated overnight at 37°C.  
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Table 2.4 SMM medium composition 

SMM medium concentration 

Ammonium sulphate 0.2% 

Dipotassium phosphate 1.4% 

Potassium dihydrogen phosphate 0.6% 

Sodium citrate dihydrate 0.1% 

Magnesium sulphate 0.02% 

The pH was adjusted to 7.5 

  

 

Table 2.5 Competence medium composition 

 

 

 

 

 

 

Table 2.6 Starvation medium composition 

 

 

 

 

 

 

 

 

 

Competence medium Volume 

SMM medium 10 ml 

Glucose (40%) 125 µl 

Tryptophan solution 2 mg/ml 100  µl 

1 M MgSO4 60 µl 

Casamino acid (20%) 10 µl 

Fe-NH4-citrate (0.22%) 5 µl 

Starvation medium Volume 

SMM medium 10 ml 

Glucose (40%) 125 µl 

1 M MgSO4 60 µl 
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2.4.2 Purification of chromosomal DNA  

Luria Broth (LB) medium (5 ml) was inoculated with cells from an overnight culture and 

incubated for 5 h at 37˚C. Cells were pelleted (3893 g/ 5 min) and resuspended with 100 µl 

EDTA (50 mM). Lysozyme [3 µl of a 10 mg/ml stock prepared in TES buffer (0.2 M Tris/HCl, 

5 mM EDTA, 100 mM NaCl, pH 7.5)] and RNase (3 µl of a 10 mg/ml stock in TES buffer) 

were added to the suspension and samples were incubated for 1 h at 37˚C. Nuclei lysis solution 

(Promega) (500 µl) was added and cells were incubated for 5 min at 80°C then cooled down to 

room temperature (25°C). Protein precipitation solution (200 µl) was added and the mixture 

and vortexed for 20 s at high speed. Cells were incubated afterwards on ice for 10 min then 

centrifuged for 10 min at 13000 g. The supernatant was transferred to a clean microfuge tube 

containing 600 µl of isopropanol (Sigma, Germany), mixed gently then centrifuged (13000 g/10 

min/ 4°C). The supernatant was discarded and 600 µl of 70% ethanol was added to the pellet. 

Samples were centrifuged as before, the supernatant was discarded carefully and the tubes were 

left to dry. DNA was resuspended in distilled water (100 µl) and incubated at 65°C for 15 min.  

 

2.5 Escherichia coli methods  

2.5.1 Generation of competent cells  

DH5α or BL21(DE3) cells were grown in 10 ml LB for overnight at 37˚C. LB medium (50 ml) 

was inoculated with 500 µl of the overnight culture and cells were grown at 37°C to OD600 0.5. 

Cells were pelleted by centrifugation (3893 g/ 10 min/ 4˚C) and resuspended in cold TFB1 

solution (100 mM RbCl, 50 mM MnCl2, 30 mM potassium acetate, 10 mM CaCl2, 15% 

glycerol, pH 5.8). The suspension was incubated on ice for 90 min then pelleted again as before 

in 2 ml cold TFB2 solution (10 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 15% glycerol, pH 

6.8). Aliquots of 100 µl of the previous suspension were transferred into sterile tubes then stored 

immediately at -80°C.  

 

2.5.2 Transformation of competent cells 

 Cells were thawed on ice for 10 min and the DNA (600 ng/ml) was added and incubated on 

ice for 15 min. Cells were heat-shocked for 60 s at 42°C in a water bath, then transferred back 

on ice for 5 min. Cells were plated on nutrient agar plates with appropriate antibiotics and 

incubated overnight at 37°C.  
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2.6 Cloning  

2.6.1 Ligase free cloning  

This experiment was adopted from (Richardson et al., 2016) and requires two sets of primers, 

the first and second sets were used to amplify the plasmid and the insert, respectively (Figure 

2.1). The 5’ end of the insert primers should include one homologue and one complementary 

sequence to the plasmid primers. The plasmid and the insert were amplified using standard 

conditions (Section 2.3.1). PCR products were analysed using agarose gels. Products were then 

mixed at a 1:1 ratio (30 µl total volume) and heated to 98°C for 2 minutes in a heat block.  The 

mixed products were then incubated at RT for 2 minutes. This heating/cooling step was repeated 

twice. On the last cooling step the mixture was left in the heat block to cool down slowly to a 

temperature of 45°C. Restriction enzyme buffer was added to the mix in addition to the 

restriction endonuclease DpnI (1 µl) and incubated for 3 h at 37˚C, followed by transformation 

into E. coli DH5α (Section 2.5.2) 

 

2.6.2 Construction of plasmids   

Two methods were used for the insertion of DNA fragments into plasmids. All constructed 

plasmids were transformed into E. coli DH5α cells.  

The first was the ligase free method which required 4 sets of primers and 2 DNA templates, 

plasmid DNA and genomic DNA (section 2.6.1). pET-28a(+) plasmid was amplified using 

JS98-JS99 primers, and pbpC*, pbpB*, and yrrL were amplified using the oligonucleotides 

JS130-JS131, JS132-JS133 and JS134-JS135, respectively (Table S1).  
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Figure 2.1 Ligase free cloning diagram  

Diagram showing the steps of the ligase free cloning experiment. DNA amplification for the 

plasmid and gene of interest using PCR. DNA products were mixed at a 1 to 1 ratio and heated 

up to 98˚C for 2 min. Afterwards, Samples were cooled down for 2 min. the heating/ cooling 

step was repeated 3 times followed by the addition of the RE DpnI to digest the DNA 

templates. Three hours later, E. coli competent cells were transformed with the whole mix. 

Microfuge tube image was adopted from StarLab webpage. The heat-block picture adopted 

from Benchmark Scientific webpage. The bacteria clipart was adapted from pinterest.co.uk 

Plasmid

PCR PCR

1:1 mix of PCR 

products

Heat up to 98˚C 

then cool down 

DpnI RE digest for    

3 h at 37˚C

DpnI

Transform into 

E. coli cells

Gene of 

interest
5’ 

oligonucleotide

3’ 

oligonucleotide
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For the second method, plasmid DNA and PCR fragments were digested with the same RE 

enzymes and ligated as previously described (Section 2.3.5 and 2.3.7). The plasmid pDR111 

was used for the construction of strains JS01 and JS04. The plasmid pAPNC213 was used for 

the construction of strains JS02 and JS03. The oligonucleotides used to amplify the DNA 

fragments mentioned above can be found in Table S1. 

 

Table 2.7 Oligonucleotides and restriction enzymes used for the construction of plasmids 

 

 

 

 

 

 

 

 

 

 

 

2.6.3 Construction of strains 

Gene knockouts were achieved by replacing the gene coding sequence with an antibiotic 

resistance cassette (Fabret et al., 2002). The sequence upstream and downstream (2 kb) of the 

gene of interest were amplified by PCR. Restriction sites were introduced in the 3’ end of the 

upstream amplicon and the 5’ end of the downstream amplicon. A resistance cassette was 

amplified with the same restriction sites aforementioned. The products were digested and 

ligated with equimolar concentrations (1.5 µg of each) then transformed into B. subtilis 

competent cells. Successful transformants grew on plates with antibiotics and a further PCR 

check was performed for the confirmation of mutants in addition to sequencing if necessary. 

BSB1 or 168CA genomic DNA were used for the amplification of B. subtilis coding sequences. 

Plasmids 
Restriction 

enzymes 
oligonucleotides Description/comments 

pJS01  
SalI JS05  5’ ugtP 

SphI JS06 3’ ugtP 

pJS02  
BamHI JS07  5’ pgcA 

SacI JS08 3’  pgcA 

pJS03  
SalI JS09  5’ gtaB 

EcoRI JS10 3’  gtaB 

pJS04 
SalI JS05 5’ ugtP 

SphI JS104 3’ ugtP S827 

pJS05 
NdeI JS59  5’ pbpC 

BamHI JS60 3’  pbpC 

pJS06 
NdeI JS63  5’  pbpC 

BamHI JS60 3’  pbpC 

pJS07 
NheI JS84  5’  pbpB 

BamHI JS85 3’  pbpB 

pJS08 
NheI JS94  5’  pbpB 

BamHI JS85 3’  pbpB 
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The plasmids pMUTIN4 and pCotC-GFP were used for the amplification of erythromycin and 

chloramphenicol cassettes, respectively.   

JS03 was transformed with pJS01 creating the strain JS05. JS04 was transformed with pJS02 

creating the strain JS07. JS09 was transformed with pJS03 creating the strain JS12. To confirm 

double cross-over insertion, cells were grown on nutrient agar plates with starch and exposed 

to iodine. Cells with a double crossover cannot digest starch due to AmyE inactivation and 

failed to produce a halo around the colonies when exposed for 2 min to iodine vapour. 

 

Table 2.8 Oligonucleotides and restriction enzymes used for the construction of strains 

 

 

 

 

Strains 
Restriction 

enzymes 
Oligonucleotides Description/comments 

168CA 

gtaB::erm 

- JS43 5’ gtaB upstream 

XbaI JS69 3’ gtaB  upstream 

XbaI JS67 5’ Erm 

EcoRI JS68 3’ Erm 

EcoRI JS70 5’ gtaB downstream 

- JS046 3’ gtaB  downstream 

BSB1 

S827::erm 

- JS101 5’ S827  upstream 

XbaI JS102 3’ S827  upstream 

XbaI JS67 5’ Erm F 

EcoRI JS100 3’ Erm R 

EcoRI JS103 5’ S827  downstream 

- JS93 3’ S827  downstream 

BSB1 

ponA::cat 

- JS35 5’ ponA  upstream 

XbaI JS57 3’ ponA  upstream 

XbaI JS51 5’ Cm F 

EcoRI JS53 3’ Cm R 

EcoRI JS56 5’ ponA  downstream 

- JS36 3’ ponA  downstream 
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2.7 Microscopy 

2.7.1 Microscopic imaging  

Microscopic images were taken using inverted Nikon eclipse Ti microscope coupled to a Sony 

Cool-Snap HQ2 CCD camera (Roper scientific) operated by Metamorph 6 imaging software 

(Universal imaging). Cell were grown in LB media and images were taken during exponential 

phase (OD600 0.5) unless otherwise mentioned. Samples (0.5 µl) were mounted on 1% agarose 

and imaging was performed with brightfield illumination with 300 ms exposure time. For 

membrane or nucleoid staining, cells were mounted on agarose with Nile red dye (1 µg/ml, 

Molecular Probes) or DAPI (1 µg/ml, Sigma), respectively (Figure 2.2). All images were 

analysed with ImageJ (Schneider et al., 2012). 

 

 

 

 

 

 

2.7.2 Immunofluorescence  

Microscopic images were taken using a spinning disk microscope coupled to a Sony Cool-Snap 

HQ2 CCD camera operated by Metamorph 6 imaging software (Universal imaging). Cells were 

grown to OD600 0.5 followed by the addition of an equal volume of fix buffer (5% 

paraformaldehyde in PBS). The mixture was cooled down on ice for at least 30 min. Cells were 

washed 3 × in PBS and resuspended in GTE buffer (50 mM glucose, 25 mM Tris/HCl, 10 mM 

EDTA, pH 8.0). Cells were spotted on a dry multiwell slide and allowed to stand for up to 5 

min. The solution was aspirated off and the slide left to dry. Polylysine (0.01%) was spotted 

onto the cells for 2 min, aspirated off and cells were allowed to dry. Cell spots were treated with 

lysozyme (10 mg/ml), washed with PBS, and allowed to dry. Cells were rehydrated with PBS 

for 2 min then blocked with PBS buffer with 2% BSA for 15 min. The primary antibody was 

added to the cells and left for overnight at 4°C. Cell spots were washed 10 × with PBS. The 

secondary antibody was added and the slide was incubated at room temperature in the dark for 

1.5 h. Cells washed 10 × with PBS, DAPI (0.2 µg/ml in antifade) was added, and slides were 

Figure 2.2 Nile red membrane dye for BSB1 cell.  

Fluorescent microscope for BSB1 cells with membrane dye during exponential phase.  Bar = 4 µm. 



45 

ready for imaging. All images were analysed with Metamorph 6 imaging software. 

Fluorescence data were sorted using Python7 and Heat maps were created using ImageJ.  

 

 2.7.3 Transmission electron microscopy  

A Philips CM 100 Compustage (FEI) Transmission Electron Microscope coupled to an AMT 

CCD camera (Deben) was used to collect images for several mutant cells. The growth and 

fixation of cells and the imaging were done by myself, whereas the dehydration and the 

processing of the samples were done by Kathryn White at the electron microscopy unit at 

Newcastle University. Cells were grown in LB media to OD600 0.5 at 37˚C, mixed in a 1:1 ratio 

with fix buffer I (2% glutaraldehyde, 0.1 M sodium cacodylate) and incubated at 4˚C for 

overnight. Cells were pelleted then washed with 0.1 M sodium cacodylate buffer followed by 

a secondary fixation step with 1% osmium tetroxide in water for 1 h. Cells were dehydrated 

using graded acetone (25%, 50%, 75% and 100%). Subsequently, cells were impregnated 

sequentially in 25%, 50%, 75% and 100% resin (in methanol). A final embed was performed 

in 100% resin at 60˚C for 24 to 36 h. to check if cells were not present, sections of 0.5 µm 

thickness were cut and stained with 1% toluidine blue in 1% borax. Ultrathin sections of 70 nm 

were then cut with a diamond knife using a Leica EM UC7 ultramicrotome. Sections were 

stretched with chloroform to eliminate compression, transferred to a Pioloform-filmed copper 

grids and stained on a Leica EM AC20 automatic staining machine with 2% aqueous uranyl 

acetate 3% lead citrate. 

 

2.8 Protein Methods 

2.8.1 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used to estimate the molecular weight of the proteins and their purity. It was 

used in protein purifications, western blots, and bocillin assays. BIO-RAD equipment was used 

with 12% acrylamide gels submerged in Tris buffer (20 mM Tris/HCl, 192 mM glycine, 0.1% 

SDS, pH 8.3). Protein samples (20 μl) were mixed with 10 μl of the loading buffer, boiled for 

10 min at 100˚C and centrifuged for 30 s at 18000 g. The supernatant (20 μl) was loaded to the 

gel wells and the gel was run at 100 V to completion. Gels were stained with Coomassie brilliant 

blue for 8 min on a shaker, then destained with (30% ethanol, 60% H2O, 10% acetic acid) for 

8 min. Sufficiently destained gels were scanned using an EPSON perfection V350 scanner and 

the accompanying software.  
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2.8.2 Western Blot 

A BIO-RAD wet-blot system was used for this experiment. Proteins were separated by SDS-

PAGE and transferred to a nitrocellulose membrane. The transfer was done in buffer I (20 mM 

Tris/HCl, 192 mM glycine, 0.1% SDS, 10% methanol, pH 8.3) with a current of 0.35 A for 1 

h. The membrane was submerged in Tris-buffered saline (TBS, 10 mM Tris/HCl, 0.09% NaCl, 

pH 7.4) supplemented with 0.5% casein (blocking buffer) overnight and stored at 4˚C. The 

buffer was discarded and the membrane was submerged in 10 ml TBS with a protein specific 

antibody and incubated at room temperature for 90 min. The membrane was washed with 3 × 

10 ml TBST buffer (10 mM Tris/HCl, 0.09% NaCl, 0.08% Tween, pH 7.4) for 10 min. TBS 

buffer (10 ml) containing a secondary antibody was added to the membrane followed by 

incubation for 90 min at RT. Another membrane wash using 3 × 10 ml TBST buffer was 

performed for 10 min/wash and an enhanced chemiluminescence ECL Prime kit (GE 

Healthcare) was used for antibody labelling as per the manufacturer’s instruction. Blots were 

visualized using ImageQuant LAS4000mini biomolecular imager (GE Healthcare) with 

accompanying software. 

 

2.8.3 Determination of protein concentration in solution 

The concentration of proteins in buffers containing Triton X-100 were measured using a BCA 

protein assay kit (Thermo scientific) as per the manufacturer’s instruction. Concentrations of 

soluble proteins were measured using a Nano-drop spectrophotometer with ND1000 V3.7.1 

software.  

 

2.9 Protein purification methods 

2.9.1 Purification of PBP1  

The PBP1 purification protocol was adopted from (Rismondo et al., 2016) and modified. 

BL21(DE3) pET28a (+)::ponA cells were grown in 2 × 50 ml LB for 4 h at 37˚C. LB medium 

(5 × 1 l) with 50 μg/ml kanamycin and 20 ml/l auto-induction medium (250 mg/l glycerol, 100 

g/L α-lactose and 25 g/L glucose) was inoculated with 50 ml of the previous culture and cells 

were grown at 30˚C for 18 h. Cells were harvested then resuspended in 130 mL lysis buffer (50 

mM Hepes/NaOH, 500 mM NaCl, 3 mM MgCl2, 0.3 mM DTT, pH 7.5) and supplemented with 

1/1000 protease inhibitor cocktail (PIC), phenylmethylsulfonylfluoride (PMSF, 100 mM stock) 
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and desiccated DNase (≈ 1 mg). Cells were sonicated for 3 × 20 seconds at 5, 16, 22, 33, 44 

and 60 W. Cell membranes were pelleted by ultracentrifuge at 133907 g for 1 h at 4˚C. 

Membrane pellets were resuspended in 120 ml resuspension buffer (50 mM Hepes/NaOH, 500 

mM NaCl, 3 mM MgCl2, 2% Triton X-100, 15% glycerol, 10 mM β-mercaptoethanol, pH 7.5) 

supplemented with PIC and PMSF as before and stirred for 3 h at 4˚C. Membrane extracts were 

ultracentrifuged at 100000 g for 1 h at 4°C and the supernatant was supplied with 20 mM 

imidazole.  The first purification step was done with a 5 ml HisTrap HP column by using an 

ÄKTAprime plus FPLC. The column was equilibrated with 50 ml running buffer (50 mM 

Hepes/NaOH, 500 mM NaCl, 3 mM MgCl2, 0.2% reduced Triton X-100, 15% glycerol, 20 mM 

imidazole, pH 7.5). The protein mixture was loaded to the column via a 50 ml superloop at a 

flow rate of 1 ml/min, followed by column washing with the same running buffer. Proteins were 

eluted at a flow rate of 1 ml/min with elution buffer (same as running buffer with 250 mM 

imidazole). Protein samples were mixed with restriction grade thrombin and dialysed overnight 

at 4˚C against 3 × 1 l dialysis buffer (25 mM Hepes/NaOH, 300 mM NaCl, 10% glycerol, 0.2% 

Triton X-100, pH 8.5). Afterwards, an ion exchange chromatography was performed using Äkta 

Prime FPLC with a HiTrap SP HP column. The column was washed with 50 ml distilled water 

followed by 50 ml of dialysis buffer supplemented with 0.2% Triton X-100 (buffer I). The 

dialysed protein samples were injected into the column at a 1 ml/min flow rate. The column 

was washed with 30 ml buffer I and proteins were eluted in a 200 ml gradient with buffer II (10 

mM Hepes/NaOH, 1 M NaCl, 3 mM MgCl2, 0.2% Triton X-100, 12% glycerol, pH 7.5). The 

third purification step consisted of a size exclusion chromatography using a Superdex 75 

HR16/60 ml column that was washed with water and then equilibrated with SEC buffer (10 

mM Hepes/NaOH, 300 mM NaCl, 3 mM MgCl2, 0.2% Triton X-100, 12% glycerol, pH 7.5). 

Protein samples were injected into the column at 0.5 ml/min flow rate and 4 ml fractions were 

collected. Collected samples were analysed by SDS-PAGE.  

 

2.9.2 Purification of PBP2B  

BL21(DE3) pET28a (+)::pbpB cells were grown in 2 × 50 ml LB overnight at 30˚C. Fresh LB 

medium (3 × 1 l) with 50 μg/ml kanamycin was inoculated with 30 ml of the overnight culture 

and cells were grown at 37˚C to an OD578 of 0.5. The expression of PBP2B was induced with 

1 mM IPTG for 3 h at 30˚C. Cells were pelleted by centrifugation (6371 g / 4˚C/ 15 min) and 

resuspended in 40 ml buffer I (25 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, pH 7.5). 1/1000 

PIC and PMSF were added and desiccated DNase (≈ 1 mg). Cells were sonicated for 3 × 20 s 

at 5, 16, 22, 33, 44 and 60 W. Membrane proteins were pelleted by ultracentrifuge (133907 g / 
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4˚C/1 h) and the soluble fraction was discarded. The pellet was resuspended in 50 ml running 

buffer (25 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, 20 mM imidazol, 10% glycerol, 2% Triton 

X-100, pH 7.5). Nickel beads were washed with 30 ml distilled water and 30 ml running buffer. 

Solubilised proteins were added to the equilibrated beads and mixed gently for 24 hr at 4˚C. 

The mixture was applied to a gravity column where unbound protein flowed through the filter. 

The beads were washed with 40 ml running buffer. Bound proteins were eluted using elution 

buffer (25 mM Tris/HCl, 10 mM MgCl2, 400 mM imidazole, 1 M NaCl, 0.2% Triton X-100, 

pH 7.5) and 3 ml fractions were collected. Restriction grade thrombin (1 µl per 1 ml protein) 

was added to the appropriate elution fractions that were dialysed against 2 × 2 L of dialysis 

buffer I (25 mM Tris/HCl, 500 mM NaCl, pH 6.0) and 2 × 2 l of dialysis buffer II (25 mM 

Tris/HCl, 100 mM NaCl,  pH 6) overnight at 4˚C. Ion exchange chromatography was performed 

using an Äkta Prime FPLC with a HiTrap SP HP column, which was washed with 50 ml 

distilled water followed by 50 ml of buffer I (25 mM Tris/HCl, 100 mM NaCl, 0.2% Triton X-

100, pH 6). The dialysed proteins were injected into the column and bound proteins were eluted 

in a gradient buffer II (25 mM Tris/HCl, 1 M NaCl, 0.2% Triton X-100, pH 7.5). Collected 

samples were analysed for purity by SDS-PAGE. 

  

 

2.9.3 Purification PBP2B(S309A)  

BL21(DE3) pET28a (+)::pbpB(S309A) cells were grown in 2 × 50 ml LB for overnight at 30˚C. 

LB medium (5 × 1 l) with 50 μg/ml kanamycin was inoculated with 30 ml of the overnight 

culture and cells were grown at 37˚C to OD578 of 0.5. The expression of pbpB(S309A) (pbpB*)  

was induced with 1 mM IPTG for 3.5 h at 30˚C. Cells were pelleted by centrifugation (6371 g 

/ 4˚C/ 15 min), and resuspended in 80 ml buffer I (25 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, 

pH 7.5). 1/1000 PIC and PMSF were added and desiccated DNase (≈ 1 mg). Cells were 

sonicated for 3 × 20 s at 5, 16, 22, 33, 44 and 60 W. Membrane proteins were pelleted by 

ultracentrifuge (133907 g / 4˚C/1 h) and the soluble fraction was discarded. The pellet was 

resuspended in 100 ml running buffer (25 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, 20 mM 

imidazole, 10% glycerol, 2% Triton X-100, pH 7.5). The subsequent steps consisted of affinity 

chromatography using nickel beads (1.5 ml) and ion exchange chromatography using a HiTrap 

SP HP column. The two chromatography experiments were performed as described in section 

2.9.2.  
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2.9.4 Purification of PBP3  

BL21(DE3) pET28a (+)::pbpC cells were grown in 50 ml LB for overnight at 30˚C. LB medium 

(3×1 l) with 50 μg/ml kanamycin was inoculated with 30 ml of the overnight culture and cells 

were grown at 37˚C to an OD578 of 0.5. The expression of pbpC was induced with 1 mM IPTG 

for 3 h at 30˚C. Cells were pelleted by centrifugation (6371 g / 4˚C/ 15 min), and resuspended 

in 40 ml buffer I (25 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, pH 7.5). 1/1000 PIC and PMSF 

were added and desiccated DNase (≈ 1 mg). Cells were sonicated for 3 × 20 s at 5, 16, 22, 33, 

44 and 60 W. Membrane proteins were pelleted by ultracentrifuge (133907 g / 4˚C/1 h) and the 

soluble fraction was discarded. The pellet was resuspended in the appropriate amount of 

running buffer (25 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, 20 mM imidazol, 10% glycerol, 

2% Triton X-100, pH 7.5). Nickel beads (3 ml) were washed with 30 ml distilled water and 30 

ml running buffer. Solubilised proteins were added to the equilibrated beads and mixed gently 

for 24 h at 4˚C. The mixture was applied to a gravity column where unbound protein flowed 

through the filter. The beads were washed with 40 ml running buffer. Bound proteins were 

eluted using elution buffer (25 mM Tris/HCl, 10 mM MgCl2, 400 mM imidazole, 1 M NaCl, 

0.2% Triton X-100, pH 7.5) and 3 ml fractions were collected. Restriction grade thrombin was 

added to the appropriate elution fractions that were dialysed against 2 × 2 l of dialysis buffer I 

(25 mM Tris/HCl, 500 mM NaCl, pH 8.3) and 2 × 2 l of dialysis buffer II (25 mM Tris/HCl, 

100 mM NaCl, pH 8.3) overnight at 4˚C. Ion exchange chromatography was then performed 

using an Äkta Prime FPLC with a HiTrap monoQ column, which was washed with 50 ml 

distilled water followed by 50 ml of buffer I (25 mM Tris/HCl, 100 mM NaCl, 0.2% Triton X-

100, pH 6). Dialysed protein was injected into the column and bound proteins were eluted in a 

200 ml gradient buffer II (25 mM Tris/HCl, 1 M NaCl, 0.2% Triton X-100, pH 6). Collected 

samples were analysed by SDS-PAGE.  

 

2.9.5 Purification of PBP3(17-668)  

BL21(DE3) pET28(a)+ pbpCΔ1-51 cells were grown in 20 ml LB for overnight at 30˚C. LB 

medium (3×1 l) with 50 μg/ml kanamycin was inoculated with 30 ml of the overnight culture 

and cells were grown at 37˚C to an OD578 of 0.5. Plasmid expression was induced with 1 mM 

IPTG for 3 h at 30˚C. Cells were harvested by centrifugation (6371 g/ 15 min/ 4˚C) and 

resuspended in 40 ml of buffer I (25 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, pH 7.5). 1/1000 

PIC and PMSF were added and desiccated DNase (≈ 1 mg). Cells were sonicated for 3 × 20 s 

at 5, 16, 22, 33, 44 and 60 W. Cell membranes were pelleted by ultracentrifuge (133907 g/ 1 h/ 

4˚C). Nickel beads were washed with 30 ml distilled water and 30 ml running buffer (25 mM 
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Tris/HCl, 20 mM imidazole, 10 mM MgCl2, 1 M NaCl, pH 7.5). The soluble fraction of the 

pelleted cell membrane was mixed with the equilibrated beads. Imidazole was added to the mix 

to a final concentration of 20 mM and the mixture was gently mixed for 24 h at 4˚C. The mixture 

was applied to a gravity column where unbound protein flowed through the filter. The beads 

were washed with 40 ml running buffer. Bound proteins were eluted using elution buffer (25 

mM Tris/HCl, 400 mM imidazole, 10 mM MgCl2, 1 M NaCl, pH 7.5) and 3 ml fractions were 

collected. Restriction grade thrombin was added to the appropriate elution fractions that were 

dialysed against 2 × 2 l of dialysis buffer (25 mM Tris/HCl, 100 mM NaCl, pH 8.3) overnight 

at 4˚C. Ion exchange chromatography was then performed using an Äkta Prime FPLC with a 

HiTrap monoQ column, which was washed with 50 ml distilled water followed by 50 ml of 

buffer I (25 mM Tris/HCl, pH 8.3, 100 mM NaCl). The dialysed protein sample was injected 

into the column. The protein didn’t bind to the column and was collected in the flow through. 

The column was washed with Buffer II (25 mM Tris/HCl, pH 7.5, 1 M NaCl). PBP3 containing 

samples were concentrated to a volume < 5 ml by centrifugation (3893 g/ 4˚C / 15 min). The 

third purification step consisted of a size exclusion chromatography using a superdex 75 16/60 

ml column that was washed with water and then equilibrated with SEC buffer (25 mM Tris/HCl, 

500 mM NaCl, pH 7.5). Protein samples were injected into the column and 4 ml fractions were 

collected. Collected samples were analysed for purity by SDS-PAGE.  

 

2.9.6 Purification of PBP3(S410A)  

PBP3(S410A) (PBP3*) was purified according to the PBP3 purification protocol using 

BL21(DE3) pET28a+::pbpC* cells. The difference was that PBP3* was dialysed to pH 8.5 

instead 8.3, allowing the binding of the protein to the HiTrap monoQ column followed by the 

elution of PBP3* using a gradient of buffer II (25 mM Tris/HCl, 1 M NaCl, 0.2% Triton X-

100, pH 7.5). 

 

2.9.7 Purification of YrrL  

YrrL was purified following the same protocol for the purification of PBP2B. 
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2.9.8 Purification of PBP3 antibody 

Affinity chromatography was performed for the purification of antibodies from serum with 

immobilised antigen. The purification consisted of 2 steps: 

Step 1.  

CNBr-activated sepharose beads (desiccated) (0.8 g) were placed into a gravity column and 

washed with 200 ml of 1 mM HCl for 15 min. PBP3 protein, diluted to 0.5 mg/ml using coupling 

buffer (100 mM NaHCO3, 10 mM MgCl2, 500 mM NaCl, 0.1% Triton X-100, pH 8.3), was 

applied to the sepharose beads and incubated overnight at 4˚C with mixing. The beads were 

washed with 25 ml coupling buffer. The remaining active groups of the beads were blocked 

with 10 ml blocking buffer (200 mM Tris/HCl, 500 mM NaCl, 10 mM MgCl2, 0.1% Triton X-

100, pH 8.0). The mix was incubated overnight at 4˚C with mixing. The gravity column was 

washed 3 × 20 ml with acetate buffer (100 mM sodium acetate, 500 mM NaCl, 10 mM MgCl2, 

0.1% Triton X-100, pH 4.8) and blocking buffer. The beads were washed with 5 ml binding 

buffer (10 mM Tris/HCl, 10 mM MgCl2, 50 mM NaCl, 0.1% Triton X-100, pH 6.8) and stored 

in 5 ml binding buffer ready for use.  

 

Step 2.  

The beads were first washed with 1 × 5 ml elution buffer I (100 mM glycine/HCl, 0.1% Triton 

X-100, pH 2.0).  then washed with 30 ml buffer I (10 mM Tris/HCl, 10 mM MgCl2, 1 M NaCl, 

0.1% Triton X-100, pH 7.2). The serum (10 ml) was diluted with 35 ml diluent (10 mM 

Tris/HCl, 0.1% Triton X-100, pH 7.4) and centrifuged (4500 rpm / 4˚C / 10 min). The 

supernatant was then incubated with the PBP3-sepharose material for 20 hours at 4°C with 

gentle mixing. The mixture was transferred back to the gravity column, the solution flowed 

through, and the bead material was collected. Beads were washed with 20 ml buffer I followed 

by 20 ml buffer II (10 mM Tris/HCl, 10 mM MgCl2, 150 mM NaCl, 0.1% Triton X-100, pH 

7.2). Bound antibodies were eluted with 10 × 1 ml of elution buffer I (100 mM glycine/HCl, 

0.1% Triton X-100, pH 2.0) into tubes containing 200 μl of elution buffer II (2 M Tris/HCl, pH 

8.0). Glycerol (300 μl) was added to each 1.2 ml sample, which was analysed by SDS-PAGE 

and stored at -80˚C. 
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2.10 Other protein methods  

2.10.1 In vitro cross-linking pulldown assay 

This method was adapted from (Egan et al., 2015). Proteins (1 µM) were mixed in 200 μl 

binding buffer (10 mM Hepes/NaOH, 10 mM MgCl2, 150 mM NaCl, 0.05% Triton X-100, pH 

7.5). Samples were incubated for 10 min at room temperature followed by the addition of 0.2% 

w/v formaldehyde (Sigma, USA) and further incubation at 37˚C for 10 min. Blocking buffer 

(100 mM Tris/HCl, pH 7.5) was added to block the excess cross-linker and samples were 

incubated for 10 min at room temperature.  Samples were applied to 100 µl of washed and 

equilibrated Ni-NTA superflow beads (Qiagen, The Netherlands) and incubated overnight at 

4˚C with gentle mixing. In the absence of cross-linker, proteins were mixed straight away with 

the Ni-NTA beads. The beads were then washed with 8 × 1 ml wash buffer (10 mM 

Hepes/NaOH, 10 mM MgCl2, 500 mM NaCl, 50 mM imidazole, 0.05% Triton X-100, pH 7.5) 

and boiled in SDS–PAGE loading buffer. Beads were then pelleted by centrifugation and 

samples analysed by SDS–PAGE. Gels were stained with Coomassie brilliant blue (Roth, 

Germany). 

 

2.10.2 Surface Plasmon Resonance (SPR) assay 

Immobilization of PBPs to ampicillin-coated sensor chips.  

This method was adapted from (Vollmer et al., 1999). A ProteOn XPR36 system and associated 

software (BioRad) were used for this experiment. Ampicillin has a free amino group in the side 

chain that was immobilised to a GLC sensor chip via amino coupling following the standard N-

ethyl-N9-(3-dimethylaminopropyl)-carbodimide hydrochloride/N-hydroxysuccinimide 

procedure recommended by BioRad. The chip temperature was set to 35˚C then initialised with 

air or glycerol. Buffer lines were put in immobilization buffer (10 mM Tris/maleate, 150 mM 

NaCl, 0.05% Triton X-100, pH 7.5) and the chip was preconditioned by injecting 0.5% SDS, 

50 mM NaOH then 100 mM HCl. The chip was activated by injecting 70 µl of a 1:1 mixture of 

400 mM N-ethyl-N9-(3-dimethylaminopropyl)-carbodimide hydrochloride and 100 mM N-

hydroxysuccinimide. Ampicillin solution (10 mg/ml in 100 mM sodium acetate buffer, pH 4.6) 

was applied for 5 min and immobilized to the chip surface giving a response of approximately 

80 to 120 RU. Ethanolamine (1 M) was used to block the free remaining activated functional 

groups on the chip surface. PBPs were injected at optimum μg/ml concentration to the 

ampicillin matrix (optimal response signal is 1000 to 2000 RUs) at a rate of 30 μl/min for 5 

min. As a control, immobilisation buffer with no protein was injected onto the ampicillin 
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surface. The surface was then rinsed with regeneration buffer (10 mM Tris/maleate, 1 M NaCl, 

2% Triton X-100, pH 6.8). β-lactamase solution (0.1 unit/µl, Merck) was injected at to digest 

the remaining free ampicillin.  

 

Protein-protein interaction studies 

Binding assays were performed at 25˚C in running buffer (10 mM Tris/Maleate, 250 mM NaCl, 

0.05% Triton X-100, pH 7.5). Proteins to be injected (analyte) were dialysed into 2 × 1 l of 

dialysis buffer (10 mM Tris/Maleate, 250 mM NaCl, pH 7.5) then centrifuged using a Beckman 

TLA120.2 rotor (90000 rpm, 30 min, 4˚C) to remove aggregates. The concentration of the 

protein was measured again and the analytes were diluted in running buffer to 6 concentration 

ranges from 0 to 2 μM. It was important to make sure the Triton X-100 level in the analyte was 

as close to the running buffer as possible. Immobilized protein surfaces were regenerated with 

regeneration buffer (10 mM Tris/maleate, 1 M NaCl, 2% Triton X-100 and pH 7.5) injected for 

3 min at 100 μl/min.   

 

Estimation of kinetic parameters 

SigmaPlot software (windows version 13.0) was used for kinetic calculations. Several repeats 

(at least 3) were required across a range of analyte concentrations. The KD (nM) of ligand 

binding was based on the assumption of a one site saturation with the use of the equation y =

Bmax × x

(Kd+x)
  where y is the response (RU) for an analyte concentration in (nM), and Bmax is the 

maximum response recorded (RU).  

 

2.10.3 In vitro glycosyltransferase activity assay 

This method was performed as published with modifications (Banzhaf et al., 2012; Offant et 

al., 2010; Schwartz et al., 2002) (Figure 2.3). The experiment was performed in a FLUOstar 

OPTIMA microplate reader (BMG Labtech, Offenburg, Germany) using a medium-binding 

black 96-well microplate (Greiner Bio-One ref. 655076, Freickenhausen, Germany). Samples 

(60 µl each) consisted of 0.5 µM of each protein and lysine-dansylated lipid II (10 µM) in 50 

mM Hepes/NaOH, 10 mM CaCl2, 20 mM NaCl, 0.5 µg/µl cellosyl, 0.02% Triton X-100 pH 

7.5. Samples were prepared without the addition of lipid II, transferred to the microplate and 

incubated at 30˚C for 3 min. Reactions were initiated by adding lipid II (dissolved in H2O) to 
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samples and the GTase activity was measured over the time course of 20 min at 30˚C. The 

fluorophore was excited with 340 nm wavelength and the emission was recorded at a 

wavelength of 520 nm. The experiment consisted of 60 cycles of 20 s with orbital shaking. The 

data shown represent the mean florescence presented as a percentage of initial fluorescence at 

a given time-point.  The gradient of the curve at its steepest point correspond to the rate of 

reaction. 

 

 

 

 

 

 

 

 

2.10.4 In vitro peptidoglycan synthesis assay 

This method was adapted from (Bertsche et al., 2005) (Figure 2.4). The reaction was performed 

in standard buffer condition (10 mM Hepes/NaOH, 10 mM CaCl2, 20 mM NaCl, 0.02% Triton 

X-100, pH 7.5). Appropriate amount of [14C]-GlcNAc labelled mDap Lipid II was used to 

obtain a final concentration of 15 µM in 100 µl. A volume of Lipid II was first dried then 

resuspended in 5 μl on 0.1% Triton X-100. Protein solution (95 μl total volume) was prepared 

in a standard buffer condition and left on ice for 10 min. Lipid II was then added to the protein 

mix which was briefly vortexed and incubated at 37˚C with shaking (850 rpm) in a thermomixer 

for 1 h. Samples were heated for 4 min at 100˚C to stop the reaction before digestion with 

muramidase to produce muropeptides for HPLC analysis (Section 2.11.3).  
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Figure 2.3 In vitro glycosyltransferase assay 

Fluorescently labelled lipid II is used to monitor the GTase activity of PBPs in vitro. In the presence of 

GTase activity lipid II is polymerised into glycan chains, which are digested by muramidases into 

muropeptides. Labelled muropeptides has lower level of fluorescence than labelled lipid II. Such 

decrease in the levels of fluorescence is monitored over time and the data is presented as a percentage 

of the initial fluorescence.  
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2.10.5 Bocillin binding assay  

This assay was used to test the binding of β-lactams to the TPase domain of PBPs. The method 

was adopted from a published protocol (Zhao et al., 1999) with minor modification. PBPs (10 

µg) were mixed with 1 ng/µl of the fluorescently labelled β-lactam bocillin (Molecular Probes, 

Life Technologies, UK) and incubated for 10 min at 37˚C. As a control, the same amount of 

PBPs were mixed with 1 ng/µl penicillin G and incubated at 37˚C for 10 min prior to the 

addition of bocillin. Samples were analysed by SDS-PAGE and the final gel was scanned with 

a Typhoon scanner using a blue FAM channel at 488 nm. 

 

2.11 Cell wall analysis methods 

2.11.1 Cell wall purification  

This method was adopted from (Atrih et al., 1999) and modified as per (Bisicchia et al., 2011). 

Culture (1 l) of B. subtilis cells was grown to OD600 0.5 then cooled down in an ice bath to 

4˚C. Cells were pelleted (10,000 g/ 4˚C/ 15 min) then resuspended in 30 ml ice-cold 50 mM 

Figure 2.4 In vitro peptidoglycan synthesis assays  

Radio labelled lipid II is used to test the GTase and TPase activities of PBPs in vitro. Lipid II is 

polymerised into glycan chains by GTase activity and peptides are crosslinked by TPase activity. After 

1 hour, the reaction is stopped by boiling followed by digestion of the PG with muramidase generating 

muropeptides that are subsequently reduced and analysed by HPLC.  
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Tris/HCl, pH 7. Cell suspension was dropped into 120 ml of slightly boiling 5% SDS, left to 

boil for an additional 15 min, and then the lysate was cooled down at room temperature 

overnight. Lysates were transferred to PPCO Nalgene 50 ml round bottom tubes and centrifuged 

(12000 g/ 30 min/ room temperature). The supernatant was discarded, and the pellet was 

resuspended in 20 ml of 1 M NaCl. The lysate was centrifuged again as above with 1 M NaCl 

and then with H2OMilliQ until the suspension was free of SDS (6 to 8 times). The pellet was 

resuspended in H2OMilliQ (6 ml) and transferred to 2 ml screw cap tubes filled to 1/3 with glass 

beads. Cells were broken down using a bead beater (Thermo FastPrep FP120) with 12 cycles 

of 3 × 6.5 pulse speed for 20 s. After each cycle the tubes were cooled on ice for a few minutes 

before the subsequent cycle starts. The broken cells were filtered through a glass frit to remove 

the glass beads, which were washed with 10 ml H2OMilliQ. The filtrate was then transferred to a 

50 ml Falcon tube and centrifuged (2000 g/ 5 min/ room temperature). The supernatant was 

transferred to a PPCO Nalgene tube while the pellet was resuspended in 25 ml H2OMilliQ, 

centrifuged as before and the supernatant was added to the PPCO Nalgene tube, which was 

centrifuged for 30 min at 25000 g. The pellet was resuspended in 10 ml Tris buffer (100 mM 

Tris/HCl, 20 mM MgSO4, pH 7.5) to which DNase I (10 μg/ml [Sigma]) and RNase (50 μg/ml 

[Sigma]) were added. The sample was stirred at 37˚C for 2 h followed by the addition of CaCl2 

(10 mM) and trypsin (Novagen/Merck), porcine pancreas (100 μg/ml) and stirred for another 

18h at 37˚C. 20 ml of 1% SDS was added and the tube was incubated for 15 min at 80˚C in a 

water bath. The mix was then centrifuged (25000 g/ 30 min/ room temperature) and the pellet 

was resuspended in 10 ml LiCl (8 M). The sample was incubated for 15 min at 37˚C then 

Centrifuged as above. The pellet was resuspended in 10 ml EDTA (100 mM and pH 7.0), 

incubated for 15 min at 37˚C then centrifuged as above. The pellet was washed, resuspended 

and centrifuged twice with 30 ml H2O MilliQ, then centrifuged and resuspended in 3 ml H2O 

MilliQ. The suspension was transferred to a glass container and frozen at -80˚C for at least 1 h 

then lyophilized for 2 days using an Alpha 1-2 freeze dryer (Biopharma).  

 

2.11.2 Isolation of peptidoglycan from cell wall 

Cell wall (5 mg) was transferred to a polyallomer tube for the 100.3 rotor (desktop-UZ) and 

dissolved in 3 ml hydrofluoric acid at 4˚C for 48 h with stirring. Next, the tube was centrifuged 

in a precooled TL 100 rotor (90000 rpm, 4˚C, and 30 min). The supernatant was discarded and 

the pellet was washed, resuspended and centrifuged twice with 3 ml with ice-cold H2O MilliQ, 

once with 3 ml with ice-cold 100 mM Tris/HCl pH 7.0 and twice with 3 ml with ice-cold 

H2OMilliQ, respectively. After washing, the murein was resuspended in 500 μl of ice-cold 
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H2OMilliQ and transferred to a 2 ml screw-cap tube. Sodium azide (0.05%) was added and 

samples were kept at 4˚C. 

 

2.11.3 Muropeptide preparation and analysis  

Muropeptides were generated from the digestion of peptidoglycan with cellosyl (Hoechst, 

Germany) following an established protocol (Glauner et al., 1988). Peptidoglycan was either 

isolated from cells (Section 2.11.1) or produced in the in vitro peptidoglycan synthesis assay 

(Section 2.10.4). Cellosyl buffer (80 mM NaH2PO4, pH 4.8) was added to samples for a final 

concentration of 20 mM NaH2PO4 with 8 μg of cellosyl. Samples were incubated for 2 h at 

37°C with shaking (850 rpm) for in vitro synthesised PG, or overnight for isolated sacculi.  

Samples were incubated at 100°C for 7 min and centrifuged at 14,000 rpm for 10 min. An equal 

volume of sodium borate (0.5 M, pH 9.0) was added to samples in addition to a full small 

spatula of solid sodium borohydride and centrifuged at 4000 rpm for 30 min. The pH was 

adjusted between 3 and 4 with 20% phosphoric acid and the sample was transferred to HPLC 

tubes ready for analysis. 

The HPLC analysis was performed using Agilent Technologies Series 1200 HPLC system with 

a reverse phase column (Prontosil 120-3-C18-AQ 3 µM, Bischoff). For PG isolated from B. 

subtilis cells a linear gradient was used from 100% solvent A (40 mM sodium phosphate pH 

4.5 + 0.0003% NaN3) to 100% solvent B (40 mM sodium phosphate, 20% methanol, pH 4.0) 

at 55˚C, for 5 h. For PG isolated from the in vitro peptidoglycan synthesis assay a linear gradient 

was used from 100% solvent A (50 mM sodium phosphate pH 4.31 + 0.0002% NaN3) to 100% 

solvent B (75 mM sodium phosphate, 15% methanol, pH 4.75) at 55˚C, for 90 min.  

Muropeptides were detected by a UV detector at 205 nm and [14C]-labelled muropeptides were 

detected by an online scintillation counter (Agilent Technologies). Laura software v4.1.7.70 

(LabLogic Systems Ltd) was used for the data analysis. The detected muropeptides are shown 

in figure S2. The levels of peptides in crosslink (x) was calculated using the formula x = 100 - 

(%TetraTetra + %TetraPenta). 
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Figure 2.5 Chemical structure of muropeptides detected by HPLC 

The chemical structures of muropeptides from in vitro PG synthesis assays. 1, Penta-P, the product of 

glycan chain ends and/or unreacted substrate. 2, Penta-P-P, produced after boiling lipid II for a 

prolonged time. 3, Tetra-peptide, the product of both GTase and the CPase activities. 4, Penta-peptide, 

the product of GTase alone. 5, TetraTetra-, the product of GTase, TPase and CPase activities. 6, 

TetraPenta-, product of GTase and TPase activities.  
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3 The impact of carbon metabolism on the synthesis of PG 

3.1 Effects of glucolipid absence on cell growth and morphology  

3.1.1 Introduction  

Changes in the glucose and magnesium ion concentrations of the culture medium ameliorated 

the growth of several mutants with cell wall defects probably by changing their metabolic status 

(Formstone and Errington, 2005; Murray et al., 1998a). The focus of this part of the work was 

to study the effect of carbon metabolism on cell wall synthesis in B. subtilis. It was suggested 

that proteins involved in the synthesis of the LTA glucolipid anchor, such as UgtP, PgcA and 

GtaB, link nutrient availability to cell division, however, the impact of these proteins on the cell 

wall is still unclear (Weart et al., 2007). In this work, we studied the effect of the absence of 

UgtP, PgcA or GtaB on cell growth and morphology. We also studied the effect of glucolipid 

absence on PG synthesis. As part of the AMBER-ITN consortium, we used the BSB1 strain as 

the wild type for these experiments (Nicolas et al., 2012).  

 

3.1.2 Strains with single deletions in ugtP, gtaB and pgcA do no exhibit growth defects  

To study the effect of the absence of UgtP, GtaB or PgcA on cell growth and morphology, we 

replaced the coding sequence of these genes with neomycin, tetracycline and erythromycin 

resistance cassettes, respectively. Copies of the deleted genes were introduced in the amyE or 

aprE loci to create complementation strains (Section 2.6.3). For ΔugtP complementation, a 

copy of the ugtP gene was introduced in the amyE locus under the control of a hyper-spank 

IPTG inducible promoter. For ΔpgcA or ΔgtaB complementation, a copy of the gene was 

introduced in the aprE locus under a Pspac IPTG inducible promoter. The growth and 

morphology of strains with single deletions in ugtP, gtaB and pgcA were studied and compared 

to wild type. Complementation strains were characterised in presence or absence of inducer. 

The ugtP, gtaB and pgcA mutants in addition to the complementation strains showed similar 

growth curves to wild-type cell (Figure 3.1). 
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3.1.3 The absence of UgtP, GtaB or PgcA causes short cells  

The morphology of cells lacking UgtP, GtaB or PgcA during exponential phase was studied 

using fluorescence microscopy and Nile red membrane dye was used to visualise possible cell 

membrane defects (section 2.7.1). The white spots that were observed at the cell periphery (in 

<1% of the cells) are artefacts of the dye. The cell widths and cell lengths for all mutants were 

quantified using ImageJ. The absence of UgtP caused shorter and wider cells than wild type 

(Figure 3.2). The ugtP complementation strain showed longer cells than the ugtP mutant in the 

absence of inducer which was probably due to the leaky expression of the ectopic ugtP. The 

presence of 0.1 mM IPTG was sufficient to cause longer and thinner cells than wild type, in 

addition to a chaining morphology (Figure 3.2 and 3.5). Septum mislocalisation was also 

observed occasionally (≈ 5% of cells had septal mislocalisation), and the frequency of such 

mislocalisation increased in presence of 1 mM IPTG (≈ 20%). This morphology was probably 

caused by the inhibition of FtsZ polymerization by UgtP (Weart et al., 2007).  
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Figure 3.1 Growth curves for the ugtP, gtaB, pgcA mutants and complementation strains 

The growth curves for mutants and corresponding complemented strains in LB media at 37˚C. UgtP, 

gtaB or pgcA complementation strains were grown in the presence or absence of IPTG. All mutants 

had similar growth curves to BSB1.   
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Figure 3.2 Morphology and complementation of cells lacking UgtP 

Phase contrast and cell membrane stained images of BSB1, BSB1ΔugtP, and BSB1ΔugtP Pspank ugtP 

mutants. The ugtP complementation mutant was grown in the presence or absence of IPTG. Cell 

dimensions represent the mean cell length ± standard deviation of 100 cells. The lack of UgtP caused 

short and wide cells. The overexpression of ugtP resulted in long and chained cells. NA, not assigned 

due to the high variations in cell length caused by septum mislocalisation. Scale bars: 4 µm. 
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The absence of GtaB caused similar cell morphology to the absence of UgtP. Microscopic 

analysis of the gtaB mutant showed shorter and slightly wider cells during exponential phase 

when grown in nutrient rich medium (Figure 3.3 and 3.5). The complementation of gtaB 

restored the cell length and decreased the cell width almost back to wild type values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Morphology and complementation of cells lacking GtaB 

Phase contrast and cell membrane stained images of BSB1, BSB1ΔgtaB, and BSB1ΔgtaB Pspac gtaB 

cells. The gtaB complementation mutant was grown in the presence or absence of IPTG. Cell 

dimensions represent the mean cell length or width ± standard deviation of 100 cells. The lack of GtaB 

caused short cells. The complementation of GtaB increased the cell length and decreased the cell width. 

Scale bars: 4 µm. 
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The replacement of the pgcA gene with a tetracycline resistance cassette resulted in short and 

chained cell morphology during exponential phase in nutrient rich medium (Figure 3.4 and 3.5). 

The lack of PgcA also caused slightly wider cells than wild type, a similar morphology to the 

gtaB mutant. The complementation of pgcA increased the length and decreased the width of the 

cells almost back to wild type values. The chaining effect was not seen in either ugtP or gtaB 

mutant cells suggesting that PgcA may have an additional unknown function in BSB1.  
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Figure 3.4 Morphology and complementation of cells lacking PgcA 

Phase contrast and cell membrane stained images of BSB1, BSB1ΔpgcA, and BSB1ΔpgcA Pspac pgcA 

cells. The pgcA complementation mutant was grown in the presence or absence of 1 mM IPTG. Cell 

dimensions represent the mean cell length and width ± standard deviation of 100 cells. The lack of 

PgcA caused shorter and wider cells than BSB1. The complementation of PgcA increased cell length 

and decreased cell width. Scale bars: 4 µm. 
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Figure 3.5 Summary of cell dimensions for wild type and mutant cells 

The diagrams represent the cell length (A) or cell width (B) of wild-type and mutant cells. The 

dimensions for the ugtP, gtaB or pgcA complementation strains were quantified when cells were grown 

with or without IPTG. Each column represents the mean cell length or width ± standard deviation of 

100 cell. All values significantly differed to that of BSB1 with P<0.01. 
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3.1.4 The absence of the PG synthase PBP1 in ugtP mutant causes thin and chained cells  

Morphological studies of cells lacking UgtP, GtaB or PgcA showed changes in cell dimensions 

compared to wild type. To investigate the effects of these deletions on cell wall synthesis, the 

levels of cell wall precursors were quantified by Joana Sousa at the University of Greifswald 

using LC-MS. In ΔugtP, ΔgtaB or ΔpgcA cells, the levels of LTA or WTA precursors such as 

UDP-glucose, glycerol-phosphate or CDP-glycerol were similar to wild type. Interestingly, the 

levels of several cytosolic PG precursors were higher in ΔugtP, ΔgtaB and ΔpgcA mutants 

compared to wild type (Figure 3.6). The level of precursors increased up to 3-fold for these 

mutant cells compared to BSB1; the highest precursor level was present in cells lacking UgtP, 

suggesting an upregulation of PG synthesis. To further investigate this hypothesis, PG synthesis 

in ΔugtP, ΔgtaB or ΔpgcA cells was disrupted and the growth and morphology of these strains 

were characterized. Bacillus subtilis has 4 bi-functional PBPs, PBP1, PBP2C, PBP4 and 

PBP2D (Bhavsar and Brown, 2006). PBP1, encoded by ponA, is the highest expressed PBP and 

plays an important role in PG synthesis during cell division (Pedersen et al., 1999). Cells 

lacking PBP1 were thinner and grew more slowly than BSB1 in nutrient rich medium (Popham 

and Setlow, 1995). The deletion of PBP1 in the BSB1ΔugtP mutant was lethal, however, it was 

possible to delete ponA in the ugtP complementation strain (BSB1ΔugtP Pspank ugtP). All 

mutants grew on NA plates with or without IPTG at 37˚C, however, the ΔponA mutant and the 

ΔponA ΔugtP Pspank ugtP mutant did not grow on PAB plates in the absence of IPTG at 37˚C 

(Figure 3.7). Interestingly, the ΔponA mutant recovered the growth defect on PAB plates when 

incubated at 45˚C but the ΔponA ΔugtP Pspank ugtP mutant did not when grown in the absence 

of IPTG. The reasons behind these different phenotypes are unclear due to the unknown effects 

of high temperature on cell wall synthesis. Nevertheless, these results show that the partial 

complementation of ugtP was sufficient to rescue cell growth. 
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Figure 3.6 Quantification of peptidoglycan precursors  

Relative quantification of cell wall precursors using LC-MS. The bars represent the mean ± standard 

deviation of three independent experiments. ΔugtP, ΔgtaB or ΔpgcA mutants showed higher levels of 

peptidoglycan precursors compared to wild type cells. *, values significantly differed to that of BSB1 

with P<0.01 
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The ΔponA ΔugtP Pspank ugtP mutant grown without IPTG exhibited cell chains that were 

thinner than the ponA mutant and longer than the ugtP mutant (Figure 3.8 and 3.9). The addition 

of 0.1 mM IPTG had no significant effect on the cell shape. The increase in IPTG concentration 

did not increase the width of the cells (Figure 3.9) and caused the formation of spots along the 

cell periphery (data not shown). These results suggest that the complementation is partial upon 

ugtP induction.   
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Pspank ugtP

- IPTGΔponABSB1
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Figure 3.7 Growth of several mutants lacking the PG synthase PBP1 on PAB plates 

PAB plates showing the growth of several mutants at 37 or 45˚C. The ΔponA mutant and the ΔponA 

ΔugtP Pspank ugtP mutant showed grow at 37˚C on PAB plates in the absence of IPTG. At 45˚C, the 

ΔponA mutant grew sufficiently on PAB plates whereas the ΔponA ΔugtP Pspank ugtP mutant was not 

able to grow in the absence of inducer.  
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Figure 3.8 Morphology of BSB1ΔugtP cells lacking the PG synthase PBP1 

Phase contrast and cell membrane stained images for vegetative cells grown in LB media. BSB1ΔponA 

and BSB1ΔugtP ΔponA Pspank ugtP mutants had thin cell morphology in the absence of IPTG. The 

addition of IPTG had no effect on the cell shape. Scale bars: 4 µm. 
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3.1.5 The effect of the S827 RNA on the cell width 

Based on the microarray data published by (Nicolas et al., 2012), the Subtiwiki web server 

(http://subtiwiki.uni-goettingen.de) suggested the presence of an anti-sense transcript called 

S827 that overlaps with the ugtP locus (Figure 3.10). In the BSB1ΔugtP mutant as well as in 

all published ugtP mutants the S827 transcript was disrupted (Matsuoka et al., 2011a; Salzberg 

and Helmann, 2008; Weart et al., 2007). In order to investigate if the S827 RNA is a reason for 

the partial complementation of ugtP, the S827 RNA was included in the ectopic expression of 

ugtP. Hence, ugtP was inserted into the amyE locus under the expression of an IPTG inducible 

promoter and the 3’ end of ugtP was extended to include the S827 RNA and its putative 

promoter. The complementation of S827 in BSB1ΔugtP ΔponA Pspank ugtP did not support cell 

growth on PAB plates at 37˚C or 45˚C (Figure 3.11 A), but it resulted in wider cells in the 

presence or absence of the inducer (Figure 3.9 and 3.11 B). These results suggest that the 

complementation of S827 did not rescue the growth of the BSB1ΔugtP ΔponA Pspank ugtP 

Figure 3.9 Cell width of mutant cells  

The diagram represents the mean cell width of several mutants. The ΔugtP ΔponA Pspank ugtP mutant 

was shorter than both BSB1 and the ΔponA mutant. The complementation of UgtP did not recover the 

cell width. Complementation of the S827 antisense RNA caused wider cells than ΔugtP ΔponA Pspank 

ugtP mutants. The ectopic expression of GtaB in ΔponA ΔgtaB Pspac gtaB mutant resulted in wider 

cells but not as wide as the ΔponA mutant. The complementation of PgcA in ΔponA ΔpgcA Pspac pgcA 

mutant had no effect on the cell width. Each column represents the mean cell width ± standard deviation 

of 100 cells. All values significantly differed to that of BSB1 with P<0.01. 
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mutant at high temperature but the RNA is probably partially responsible for the thin cell 

morphology of the latter mutant. The promoter sequence of the RNA was replaced with an 

erythromycin cassette to investigate the effect of S827 on cell growth and morphology. 

However, cells lacking S827 had similar growth and morphology to BSB1 indicating that the 

RNA dispensable for growth and morphology in wild-type cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Transcriptome data for ugtP and S827 

(A) The diagram represent microarray results adopted from (Nicolas et al., 2012). The diagram shows 

the double stranded DNA for the operon that ugtP is part of.  

(B) Gene mapping for ugtP and S827 RNA complementation construct. 

The coding genes and the RNA genes are represented as white or grey arrows, respectively. The 

direction of the arrows indicates the direction of the transcription. The small arrow bars in black 

represent the promoters.  

A

B

3’ 5’

S825 metA S826 ugtP

S827

5’ 3’

3’ 5’

lacIugtP

S827

5’ 3’

amyE amyEspc



73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Complementation of the S827 RNA in the ΔugtP ΔponA Pspank ugtP mutant  

Phase contrast and cell membrane stained images for vegetative cells grown in LB media. The 

BSB1ΔS827 mutant exhibited similar cell morphology to wild type cells. Cells with complemented 

ugtP and S827 had similar growth (A) and cell morphology (B) to the ΔugtP ΔponA Pspank ugtP mutant. 

Scale bar: 4 µm. 
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3.1.6 The absence of PBP1 in gtaB mutant causes thin and chained cells    

GtaB produces UDP-glucose which is a constituent of the LTA and WTA in the cell. UgtP 

catalyses the transfer of UDP-glucose to diacylglycerol. Thus the absence of GtaB should 

presumably have the same effect on the LTA structure/composition as the absence of UgtP. 

Furthermore, the absence of GtaB altered the localisation of UgtP from midcell during 

exponential phase (Weart et al., 2007). Thus GtaB is assumed to regulate cell growth and 

division by controlling substrate availability for UgtP (Weart et al., 2007). The double deletion 

of gtaB and ponA (PBP1 gene) was lethal, suggesting that the LTA glucolipid precursor is 

crucial for cells lacking PBP1. The deletion of ponA in the gtaB complementation mutant was 

viable and cells grew sufficiently in the presence or absence of IPTG. This mutant allowed us 

to further investigate whether the S827 RNA has a role in the partial complementation of the 

cell width in the BSB1ΔponA ΔugtP Pspank ugtP mutant since the BSB1ΔponA ΔgtaB Pspac gtaB 

mutant contains UgtP and S827 but lacks the LTA glucolipids and PBP1. Interestingly, the 

BSB1ΔponA ΔgtaB Pspac gtaB mutant was able to grow on PAB plates at 37˚C or 45˚C in the 

presence or absence of inducer (Figure 3.12 A). The ΔponA ΔgtaB Pspac gtaB mutant was 

thinner than the BSB1ΔponA ΔugtP Pspank ugtP mutant in the absence of inducer and the 

complementation of GtaB increased the cell width by 7% (Figure 3.9 and 3.12 B). The cell 

width measurements were also obtained for the BSB1ΔponA ΔpgcA Pspac pgcA mutant grown 

in LB with or without IPTG (Figure 3.9). These measurements showed that BSB1ΔponA ΔpgcA 

Pspac pgcA cells were wider than BSB1ΔponA ΔugtP Pspank ugtP cells and almost as wide as 

BSB1ΔponA. These results suggested that the S827 RNA has a role in controlling the cell width, 

but the mechanism of this regulation is unclear. Next, we studied the localisation of PBP1 in 

cells lacking UgtP or PgcA.  
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Figure 3.12 Growth and Morphology of BSB1ΔgtaB cells lacking the PG synthase PBP1 

(A) The BSB1ΔponA ΔgtaB Pspac gtaB mutant grown on PAB plates in the presence or absence of IPTG 

at 37 or 45˚C. The growth of the latter mutant was independent of the temperature or the inducer. 

(B) Phase contrast and cell membrane stained images for BSB1 and the ΔponA ΔgtaB Pspac gtaB mutant 

grown in LB with or without IPTG. The latter mutant exhibited thin and chained cell morphology 

independent of the presence of IPTG. Scale bar: 4 µm. 
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3.1.7 The localisation PBP1 in the ugtP mutant is similar to wild-type 

The localisation of PBP1 was studied in BSB1, ΔugtP and ΔpgcA mutants. A gfp gene under 

the control of a xylose inducible promotor was introduced at the 5’ end of the native ponA locus 

in BSB1, ΔugtP and ΔpgcA mutants. Cells were grown in LB with 0.5% xylose and the 

localisation of PBP1 was studied using fluorescence microscopy. The localisation pattern in 

both mutants was similar to wild type cells where PBP1 seemed to be localised at the septum 

during vegetative growth and occasionally at the cell periphery (Figure 3.13). These results 

suggests that the absence of LTA glucolipids has no effect on the localisation of Gfp-PBP1 in 

the cell.  
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Figure 3.13 Localisation of PBP1 in ugtP or pgcA mutant cells 

BSB1 ponA::(Pxyl gfp-ponA), BSB1ΔpgcA ponA::(Pxyl gfp-ponA) and BSB1ΔugtP ponA::(Pxyl gfp-

ponA) mutants were grown in LB media in the presence of 0.5% xylose. Phase contrast and GFP 

fluorescence images showed similar localisation pattern for PBP1 in BSB1, ΔugtP and ΔpgcA mutants. 

Scale bars: 4 µm.   
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3.1.8 TEM images indicated altered cell wall structure for the ugtP mutant 

Cells lacking LTA glucolipids exhibit higher sensitivity to lysozyme and salt compared to wild 

type cells (Fedtke et al., 2007; Matsuoka et al., 2011a). Fluorescence microscopy allowed us to 

study the morphology of the strains, but high resolution images were required to better 

characterize the cell wall. Therefore, ΔponA, ΔugtP and ΔugtP ΔponA Pspank ugtP mutants were 

analyzed by transmission electron microscopy (TEM), at the electron microscopy facility, 

Newcastle University. The effect of ponA deletion on the cell morphology was previously 

described as thin cells with membrane invaginations and occasional aberrant septa (Pedersen et 

al.,1999). However, TEM analysis for the BSB1ΔponA mutant indicated thin cells with normal 

septa (Figure 3.14). Interestingly, BSB1ΔponA cells had thinner cell walls (CW) than BSB1 

cells (≈ 15% thinner). The absence of UgtP caused rough cell surfaces compared to wild type 

cells but had no effect on the thickness of the CW. The BSB1ΔugtP ΔponA Pspank ugtP mutant 

had thinner cell walls compared to both the parent BSB1 and the ΔponA mutant (≈ 30% thinner 

than wild type) in addition to a similar rough cell wall structure to the ugtP mutant. 

Consequently, the altered cell wall structure might be a reason behind the higher susceptibility 

of the ugtP-null mutant to lysozyme.  
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Figure 3.14 TEM analysis for several mutants 

TEM images for BSB1, ΔponA, ΔugtP and ΔugtP ΔponA Pspank ugtP mutants during exponential phase 

using three different magnifications. The ugtP mutant had altered cell wall structure. The ΔponA and 

ΔponA ΔugtP Pspank ugtP mutants had thinner cell wall than BSB1 cells. Scale bars: (A) 500 nm, (B) 

100 nm and (C) 30 nm 
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3.2 The role of the PG hydrolases in ugtP, gtaB or pgcA mutants 

3.2.1 Introduction 

Cells lacking UgtP had LTA with longer glycerol-phosphate chains (Aurelie Guyet, 

unpublished data). Changes in the LTA structure were implicated with higher susceptibility to 

antimicrobial peptides and an increase in the autolysis activity in the cells (Perego et al., 1995; 

Wecke et al., 1997; Wecke et al., 1996). TEM images for cells lacking UgtP showed rough cell 

wall structure suggesting higher or uncontrolled PG hydrolase activity. To investigate this 

phenomenon, we quantified muropeptides from BSB1, ΔugtP and ΔpgcA cells. Subsequently, 

we constructed mutants lacking UgtP, GtaB or PgcA and cell wall hydrolases and the 

morphology of these mutants was analysed by fluorescence microscopy.  

 

3.2.2 Quantification of muropeptides from ugtP or pgcA mutants 

To test if the absence of UgtP or PgcA had any effect on peptidoglycan structure or composition, 

we analysed the muropeptide profiles for the ΔugtP and ΔpgcA single mutants. First, the PG of 

these strains was purified (Section 2.11.2), digested with cellosyl to muropeptides and analysed 

by HPLC using a reversed phase column (Section 2.11.3). The HPLC chromatograms for the 

ΔugtP and ΔpgcA mutants were comparable to that of BSB1 (Figure 3.15). However, looking 

at more subtle differences, it was evident that both ΔpgcA and ΔugtP mutants had increased 

levels of “Di” (peak 5) and “Tri-Ala-mDap (NH2)2” (peak 8) (Table 3.1). Such an increase in 

these two muropeptides was reported previously in strains where higher autolytic enzymes 

activity was present, specifically  CwlO or LytE activities (Bisicchia et al., 2007). The 

percentages of Di or Tri-Ala-mDap(NH2)2 were 30% or 37% higher in the ΔugtP mutant 

compared to BSB1, respectively (Table 3.1) (Figure 3.16). The ΔpgcA mutant had an increase 

of 43% and 51% in the Di or Tri-Ala-mDap(NH2)2 MP compared to BSB1, respectively. The 

percentage of the other muropeptides did not change with the loss of UgtP or PgcA compared 

to BSB1. Thus there is a strong suggestion that CwlO or LytE are either upregulated or have 

higher activity in cells lacking UgtP or PgcA.  
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Figure 3.15 RP-HPLC analysis of muropeptides from BSB1, ΔugtP and ΔpgcA mutants 

The peaks 1-38 have been assigned according to Bisicchia et al.,2011. BSB1, ΔugtP or ΔpgcA mutants 

showed comparable muropeptide profiles except that the peaks number 5 and 8 (red arrows) 

corresponding to the levels of the muropeptides Di- and Tri-Ala-mDap(NH2)2, respectively, were bigger 

in the ΔugtP and ΔpgcA mutants compared to BSB1.  
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Table 3.1 Muropeptide identities and quantification for BSB1, ΔugtP and ΔpgcA mutants 

BSB1, ΔugtP and ΔpgcA mutants had similar muropeptide levels except that the muropeptides Di and 

Tri-Ala-mDap (NH2)2 from pgcA or ugtP mutants were higher compared to BSB1, respectively. The 

chemical structure for the identified muropeptides are presented in Figure 3.16. Values represent the 

mean ± standard deviation from two independent PG preparations.          
1 Nomenclature of muropeptides according to Glauner et al., (1988)                                         
2 calculated according to Glauner et al., (1988)             
3 calculated as 100% - % monomers. 

Peak area  (%)

Muropeptides 1 Peak no BSB1 pgcA ugtP

Tri 1 2.2  0.2 1.9  0.0 1.8  0.1

Tri (NH2) (PO4) 2 1.0  0.3 0.7  0.2 1.0  0.3

Tri (NH2) 3 14.2  1.4 11.8  0.5 12.1  0.9

Tri (NH2) (deAc) 4 0.0  0.0 0.1  0.1 0.1  0.0

Di 5 2.3  0.3 4.0  0.2 3.2  0.2

Tri-Ala-mDap (NH2) 6 1.4  0.4 1.5  0.2 1.2  0.2

tetra (NH2) 7 0.5  0.2 0.3  0.0 0.2  0.0

Tri-Ala-mDap (NH2)2 8 1.4  0.2 2.9  0.2 2.2  0.3

penta (Gly5) (NH2) 9 0.3  0.0 0.3  0.0 0.2  0.0

TriTetra (-GM) (NH2)2 10 0.6  0.1 0.6  0.1 0.7  0.3

penta (NH2) 11 0.4  0.0 0.6  0.1 0.6  0.2

TriTetra (-G) 12 0.7  0.2 0.4  0.1 0.4  0.1

TriTetra (NH2) (PO4) 13 0.8  0.4 1.5  0.6 1.6  0.7

TetraTetra (-GM) (NH2)2 14 1.4  0.4 0.6  0.1 0.7  0.0

TriTetra (NH2) 15 13.5  1.9 10.9  3.0 11.3  3.0

TriTetra (NH2) (deAc) 18 2.1  0.6 1.1  0.2 1.1  0.5

TriTetra (NH2) (deAc) 19 1.7  0.5 0.8  0.2 0.9  0.4

TriTetra (NH2) 20 3.0  0.5 2.8  0.0 2.7  0.1

TriTetra (NH2)2 21 26.0  0.1 28.3  0.9 29.2  2.2

TriTetra (NH2)2 (deAc) 22 0.2  0.2 0.1  0.1 0.1  0.1

TriTetra (NH2)2 (deAc) 23 0.4  0.0 0.3  0.1 0.2  0.0

Penta (Gly5) Tetra 24 0.3  0.1 0.6  0.0 0.5  0.1

Penta (Gly5) Tetra (NH2)2 25 0.7  0.3 0.7  0.0 0.6  0.0

TetraTetra (NH2)2 26 0.6  0.2 1.4  0.0 1.3  0.2

PentaTetra (NH2)2 27 0.6  0.1 0.5  0.2 0.4  0.1

TriTetraTetra (NH2)2 28 0.4  0.1 0.4  0.1 0.3  0.1

TriTetraTetra (-G) 29 1.1  0.1 1.0  0.2 1.0  0.3

TriTetraTetra (NH2)2 30 0.5  0.1 0.7  0.0 0.7  0.1

TriTetraTetra (NH2)3 31 2.6  0.4 2.5  0.6 2.3  0.6

TriTetraTetra (NH2)3 (deAc) 32 2.5  0.1 3.3  0.2 3.3  0.4

TriTetraTetra (NH2)3 (deAc) 33 0.6  0.0 0.6  0.2 0.6  0.1

Penta(Gly5)TetraTetra (NH2)2-3 34 0.3  0.0 0.3  0.1 0.3  0.0

TriTetraTetraTetra (NH2)2-3 35 0.3  0.1 0.4  0.1 0.3  0.0

TriTetra(Anh) (NH2)2 36 0.7  0.1 0.8  0.3 0.7  0.3

TriTetraTetraTetra (NH2)4 37 0.9  0.0 1.4  0.0 1.5  0.2

TriTetraTetra(Anh) (NH2)2 38 0.0  0.0 0.0  0.0 0.0  0.0

Sum monomers 25.9  0.3 24.8  0.8 23.9  0.3

Sum dimers 61.8  0.4 59.6  1.1 61.4  0.8

Sum trimers 9.3  0.1 10.2  0.2 9.9  0.2

Sum tetramers 1.4  0.0 2.1  0.0 2.1  0.3

Sum dipeptides 2.6  0.2 4.7  0.4 3.8  0.3

Sum tripeptides 56.0  0.4 53.9  0.4 54.4  0.5

Sum tetrapeptides 39.2  0.3 38.8  0.5 39.7  0.1

Sum pentapeptides 1.9  0.3 2.3  0.4 1.9  0.3

Degree of Crosslinkage 2 38.1  0.3 38.1  0.6 38.9  0.3

% Peptides in Crosslinkage 3 74.1  0.3 75.2  0.8 76.1  0.3
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Figure 3.16 Chemical structure of identified muropeptides 

Proposed basic structure for muropeptides from B. subtilis according to (Atrih et al., 1999). Numbers 

refer to peaks in table 3.1.   
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3.2.3 The deletion of lytE in cells lacking UgtP causes sever growth and shape defects 

The analysis of muropeptides form ΔugtP or ΔpgcA mutants suggested that the levels or 

activities of CwlO or LytE might be affected. Furthermore, ugtP, pgcA and ltaS mutants have 

higher levels of LytE and not CwlO (Kasahara et al., 2016). LytE and CwlO both have DL-

endopeptidase activity. LytE is suggested to be involved in cell elongation and division due to 

its localisation at the septum and the lateral cell wall (Kasahara et al.,2016; Yamamoto et al., 

2003), whereas, CwlO is suggested to be more involved in cell elongation based on its lateral 

cell wall localisation (Hashimoto et al., 2012). To better understand the roles of these DL-

endopeptidases in the absence of LTA glucolipids, BSB1ΔugtP ΔlytE and BSB1ΔugtP ΔcwlO 

mutants were constructed and characterised. Since the absence of CwlO or LytE has not been 

described before in the BSB1 background, these strains were also constructed as controls.   

The loss of LytE in BSB1 cells did not have an effect on cell growth on PAB plates at 37˚C or 

45˚C. However, ΔugtP cells lacking LytE showed smaller colonies than BSB1 on both PAB 

and NA plates at 37˚C suggesting slower growth. No growth was observed for the ΔugtP ΔlytE 

double mutant on PAB plates at 45˚C suggesting lethality at permissive temperature (Figure 

3.17 A). The morphology of the mutants was studied using fluorescence microscopy. BSB1 

cells lacking LytE were bent slightly when grown in LB media (Figure 3.17 B). The ΔugtP 

ΔlytE mutant cells had severe shape defects featuring short bent cells with a high number of 

mini cells. These results suggest that LytE may have an important role in maintaining the rod 

shape in cells lacking UgtP.  

The lytE gene was also deleted in the ugtP complementation mutant, subsequently the growth 

and morphology of the constructed mutant were characterized in the presence or absence of 

inducer. ΔugtP ΔlytE Pspank ugtP cells grew on PAB at 45˚C with or without IPTG, suggesting 

that the leaky expression of the ectopic ugtP was sufficient to support growth (Figure 3.17 A). 

ΔugtP ΔlytE Pspank ugtP colonies were smaller when grown on PAB without IPTG. However, 

in the presence of IPTG, the latter mutant had similar growth to BSB1. In the absence of IPTG, 

the mutant partially recovered the rod morphology and fewer mini cells were observed (Figure 

3.17 B). However, the cells were shorter than wild type and bent. In the presence of IPTG, the 

cells completely recovered their rod shape and no bending was observed. However, mini cells 

and mislocalisation of the septum were still present (Figure 3.17 B). 
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Figure 3.17 Growth and morphology of BSB1ΔugtP cells lacking the DL-endopeptidase LytE  

(A) Growth of BSB1, ΔlytE, ΔugtP ΔlytE and ΔugtP ΔlytE Pspank ugtP cells on PAB plates with or 

without IPTG at 45˚C. 

(B) Phase contrast or membrane stained images for ΔlytE, ΔugtP ΔlytE or ΔugtP ΔlytE Pspank ugtP 

mutants. The ΔugtP ΔlytE mutant had severe shape defects compared to the ΔlytE mutant. The 

complementation of ugtP partially rescued the ΔugtP ΔlytE morphological defect. Scale bars: 4 µm.  
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3.2.4 The deletion of cwlO in cells lacking UgtP causes short and wide cells 

The absence of LytE in the ΔugtP mutant caused a severe shape defect. CwlO and LytE have 

the same enzymatic activity and they both play a role in cell elongation (Bisicchia et al., 2007; 

Hashimoto et al., 2012). The absence of CwlO in BSB1 or ΔugtP mutants had no effect on cell 

growth. Fluorescence microscopy analysis for BSB1ΔcwlO showed shorter and wider cells than 

BSB1 (Figure 3.18). Interestingly, the ΔugtP ΔcwlO mutant was wider than cwlO or ugtP single 

mutants and had a similar short cell morphology to ΔugtP cells. These results show that the 

ΔugtP ΔcwlO mutant had worse morphological defect compared to the ΔugtP mutant, however, 

LytE seems to have a greater contribution in maintaining proper cell morphology than CwlO in 

cells lacking UgtP. 
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3.2.5 The deletion of lytF in cells lacking UgtP causes chaining and shorter cells 

Cells lacking LytE but not CwlO showed severe growth and shape defects. Unlike CwlO that 

is involved in cell elongation only, LytE is assumed to play a role in both cell elongation and 

division. LytF, a DL-endopeptidase, has a role in PG hydrolysis during cell division (Yamamoto 

et al., 2003). BSB1ΔugtP ΔlytF was constructed and characterised to test if this DL-

endopeptidase is as important as LytE in the absence of UgtP. BSB1ΔlytF was also constructed 

and studied as a control. BSB1ΔlytF and BSB1ΔugtP ΔlytF had similar growth as BSB1 on 

NA plates (data not shown). Fluorescence microscopy analysis for the ΔlytF mutant cells 

showed chain formation that is probably caused by delay in cell separation (Figure 3.19). Cells 

lacking both UgtP and LytF were shorter than wild-type cells and formed chains. This 

morphology is a combination of those of the single mutants, suggesting that LytE has a bigger 

role in maintaining rod shape than LytF in the ugtP mutant.  

Figure 3.18 Morphology of BSB1ΔugtP strains lacking the DL-endopeptidase CwlO 

Phase contrast or cell membrane stained images for BSB1, ΔcwlO or ΔugtP ΔcwlO mutants grown in 

LB media at 37˚C.  ΔcwlO mutant had shorter and wider cells than BSB1. ΔugtP ΔcwlO mutant had 

shorter and wider cells than both BSB1 and the ΔcwlO mutant. Scale bars: 4 µm.  
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3.2.6 The deletion of lytABC in cells lacking GtaB causes chaining and short cells 

We initially considered to construct a strain lacking the LTA glucolipid precursor and the 

amidase LytC using the available strains. LytC is involved in cell separation by hydrolysing the 

bond between the N-acetylmuramic acid and the L-Ala of PG (Rogers et al., 1984). lytC is 

encoded in the lytABC operon where LytA and LytB are suggested to be chaperons for LytC 

(Lazarevic et al.,1992), hence the use of the lytABC mutant. Both the lytABC and ugtP mutants 

available have neomycin cassettes, thus the strategy was changed to construct a strain lacking 

lytC and gtaB. The double deletion of gtaB and lytABC had no effect on growth. The 

morphology of ΔlytABC and ΔgtaB ΔlytABC mutants was studied using fluorescence 

microscopy. The ΔLytABC mutant cells formed chains suggesting a delay in cell separation 

whereas the ΔgtaB ΔlytABC mutant cells were short and chaining (Figure 3.20). The latter 

morphology is a combination of those of the single mutants. These results suggest that LytE 

contributes more to the cell morphology than LytABC in cells lacking LTA glucolipids. Thus, 

LytE seems to have an unknown important role in cells lacking UgtP. Subsequently, TEM 

Figure 3.19 Morphology of the ugtP mutant lacking the DL-endopeptidase LytF 

Phase contrast and cell membrane stained images for BSB1, ΔlytF and ΔugtP ΔlytF mutants grown in 

LB at 37˚C. The deletion of lytF in BSB1 or the ΔugtP mutant caused similar chaining morphology. 

Scale bars: 4 µm. 
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analysis was performed for several mutant to acquire high resolution images in order to better 

understand the effects of these mutations on the cell wall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.7 TEM imaging for the ugtP lytE and ugtP cwlO mutants  

The absence of UgtP caused rough cell surface (Figure 3.14). The absence of LytE or CwlO in 

the ugtP mutant worsen the morphology of the cells. Using fluorescence microscopy with or 

without membrane dye was insufficient to observe changes in cell wall morphology, therefore, 

mutants were analysed by TEM to obtain high resolution images. The deletion of both cwlO 

and ugtP caused wider cells, as seen by fluorescence microscopy (Figure 3.18), and a rougher 

cell surface than the ΔugtP mutant (Figure 3.21). The BSB1ΔLytE mutant had similar cell wall 

morphology to wild type cells while the ΔlytE ΔugtP mutant had severe shape defect with the 

loss of rod shape, formation of bulges and loss of cell wall integrity (Figure 3.17 and 3.21). The 

cell wall morphology of the ΔugtP ΔlytE mutant adds evidence to demonstrate the importance 

Figure 3.20 Morphology of ΔgtaB mutants lacking the lytABC operon 

Phase contrast and cell membrane stained images for BSB1, ΔlytABC and ΔgtaB ΔlytABC mutants 

grown in LB media. The absence of LytABC resulted in chained cells whereas the absence of both 

LytABC and GtaB resulted in short and chained cells. Scale bars: 4 µm. 
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of LytE in maintaining shape in the absence of UgtP. This suggests that the DL-endopeptidase 

LytE contributes to CW hydrolysis in the ΔugtP mutant and such activity is required for cells 

to maintain the rod shape.  
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Figure 3.21 TEM images for ΔcwlO, ΔugtP ΔcwlO, ΔlytE and ΔugtP ΔlytF mutants 

The ΔcwlO ΔugtP mutant had wide cells and rough cell wall structure compared to both BSB1 and 

ΔcwlO cells. The ΔlytE ΔugtP mutant had a severe shape defect with loss of cell wall integrity. Scale 

bars: (A) 500 nm, (B) 100 nm. 
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3.2.8 Growth and morphology of the ugtP lytE ponA and ugtP lytE sigM mutants 

The ΔugtP mutant exhibited an altered cell wall structure probably caused by high PG hydrolase 

activity in addition to increased levels of cell wall precursors suggesting an upregulation of PG 

synthesis. Thus, the deletion of ponA or σM genes could rescue the ΔugtP ΔlytE phenotype by 

balancing the PG synthesis and hydrolysis. σM is an ECF sigma factor involved in cell wall 

synthesis and cell shape maintenance through upregulation of genes involved in cell wall 

synthesis (Cao et al., 2002; Jervis et al., 2007).  

The deletion of ponA in the ugtP mutant was lethal (Section 3.1.4), however, the deletion of 

ponA in the ΔugtP ΔlytE double mutant was viable. The triple mutant grew at 37˚C on NA or 

PAB plates but it was not able to grow at 45˚C on PAB plates (Figure 3.22 A). Fluorescence 

microscopy analysis showed that the ΔugtP ΔlytE ΔponA mutant had a comparable morphology 

to the ΔponA mutant (Figure 3.8), in addition to the formation of chained cells (Figure 3.22 B).  

The deletion of sigM in the ΔugtP ΔlytE mutants did not rescue the lethal phenotype of cell 

growth on PAB at 45˚C (Figure 3.22 A). However, the deletion of sigM partially rescued the 

shape defect caused by the deletion of ugtP and lytE (Figure 3.22 B). The triple mutant cells 

were shorter and wider than wild type cells, formed chains, and had occasional (≈ 5%) 

mislocalisation of the septum. These results show that deleting ponA or sigM, rescues the 

morphological defect of the ugtP lytE double knockout.  
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Figure 3.22 Growth and morphology of BSB1ΔugtP ΔlytE strains lacking SigM or PBP1  

(A) BSB1ΔugtP ΔlytE ΔponA or BSB1ΔugtP ΔlytE ΔsigM mutant cells did not grow on PAB plates at 

45˚C. 

(B) Phase contrast and cell membrane stained images for BSB1, ΔponA, ΔugtP ΔlytE ΔponA and ΔugtP 

ΔlytE ΔsigM mutants grown in LB at 37˚C.  BSB1ΔugtP ΔlytE ΔponA cells had thin and chained cell 

morphology.  The ΔugtP ΔlytE ΔsigM mutant had wide, short and chained cell morphology in addition 

to occasional mislocalisation of the septum. Scale bar: 4 µm. 
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3.3 Conclusions and discussion 

The BSB1ΔugtP, ΔgtaB or ΔpgcA mutants grew similarly to wild-type cells but exhibited a 

short and wide cell morphology. UgtP coordinates cell size to growth rate in a nutrient rich 

environment by regulating the polymerization of FtsZ (Chien et al., 2012b; Weart et al., 2007). 

Thus, the overexpression of ugtP in the BSB1ΔugtP Pspank ugtP strain resulted in increased cell 

length and occasional septal mislocalisation (≈20%) which correlates with the function of UgtP 

as an inhibitor of FtsZ polymerization (Weart et al., 2007).  

Microarray experiments for the ugtP mutant indicated an increase in the transcription levels of 

several genes with unknown functions (Salzberg and Helmann, 2008). However, microarray 

studies only reveal the relative amounts of mRNAs in the cell, which might not correlate with 

the expression levels of the gene, or with the activity of the corresponding proteins. Thus, 

metabolomics analysis for the ugtP mutant performed by our collaborators determined the 

levels of several PG precursors were increased up to three fold suggesting upregulation of PG 

synthesis. The double deletion of ugtP, gtaB or pgcA and ponA, encoding the class A PG 

synthase PBP1, was lethal. However, the deletion of ponA in the complementation strain was 

viable even in absence of inducer suggesting that a minimal amount of UDP-glucose is 

sufficient for cell survival in the absence of the PBP1. 

Both ΔponA and ΔponA ΔugtP Pspank ugtP mutants grew poorly at 37˚C on PAB plates without 

magnesium ion supplements. Interestingly, the growth of the ΔponA but not the ΔponA ΔugtP 

Pspank ugtP mutant was improved when cells were grown at 45˚C. The sigma factor SigI, 

required for cell growth at high temperature, responds to heat stress by upregulating the 

expression of lytE, mreBH, bcrC and rsgI (Schirner and Errington, 2009; Tseng and Shaw, 

2008; Tseng et al., 2011). BcrC is an undecaprenyl phosphate phosphatase that produces the 

carrier lipid for cell wall synthesis. Thus, the increase in the expression of bcrC at high 

temperature might be responsible for the alleviated growth of the ponA mutant by increasing 

the availability of lipid II. However, the inability for the cells lacking UgtP and PBP1 to grow 

at 45˚C suggest that the upregulation of the SigI controlled genes are insufficient to support the 

ΔponA mutant growth in the absence of LTA glucolipids.   

The absence of the PG synthase PBP1 caused thin cell morphology. MreB is an actin homolog 

and a shape-determining factor in rod-shaped bacteria (Daniel and Errington, 2003). Previously 

published data proposed that MreB provides a scaffold that organizes the peptidoglycan 

synthesis machinery during cell elongation and thereby directing the lateral cell wall growth 

(Dominguez-Escobar et al., 2011; Garner et al., 2011).  E. coli cells expressing MreB with a 
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substitution in the ATP binding domain (MreBD165A/E) exhibited thin cell morphology 

similar to the ponA mutant (Kruse et al., 2003). Moreover, cells with different MreB alleles 

exhibited variations in cell width dimensions which correlated with the MreB helical pitch angle 

and the MreB polymer length (Ouzounov et al., 2016). These results suggests that MreB is a 

key determinant of cell diameter. Therefore, since PBP1 is part of the elongation machinery, 

the absence of the synthase might alter the dynamics of the elongasome complex leading to a 

change in the MreB helical conformation and resulting in thin cell morphology. Additionally, 

the deletion of ugtP resulted in increased expression of MreB and MreBH (Matsuoka et al., 

2011). Therefore, cells lacking both UgtP-S827 and PBP1 might be subject to additional stress 

caused by increased MreB expression and altered cytoskeleton dynamics resulting in thinner 

cell width than the ΔponA mutant.  

Defects in UgtP reduced the size of the cell by 20% during growth in a nutrient rich medium, 

however, the absence of UgtP had no effect on growth when cells were grown in minimal 

medium (Weart et al., 2007). Since cells lacking UgtP had similar growth and viability to wild-

type cells, the defects resulting from the absence of UgtP are probably due to abnormal cell size 

homeostasis (Weart et al., 2007). B. subtilis coordinates cell size with nutrient availability but 

why they do so is unclear. It was suggested that UgtP inhibits FtsZ polymerization when cells 

are grown in nutrient-rich medium resulting in an increase in the cell size which permits the 

accommodation of the extra DNA generated by multifork replication (Chien et al., 2012a). The 

absence of both UgtP and PBP1 caused thin cells but had no significant effect on the cell length 

(Section 3.1.4). These results suggests that the role of UgtP is dispensable in the absence of 

PBP1 even when cells are grown in nutrient rich medium. Thus, we propose that the decrease 

in the dimensions of cells lacking UgtP and PBP1 resulted in a smaller cytoplasm, in which 

case the min and the nucleoid occlusion systems are sufficient to regulate Z–ring 

polymerization thereby cell size (Section 1.3.4).  

Alteration in the LTA structure or composition causes cell shape defects in addition to increased 

autolysis activity and susceptibility to antimicrobial peptides (Matias and Beveridge, 2008; 

Perego et al., 1995; Schirner et al., 2009; Wecke et al., 1996, 1997). UgtP synthesises the LTA 

glucolipid precursor, and the absence of UgtP or the LTA synthase LtaS in S. aureus cells 

resulted in longer LTA strands (Reichmann et al., 2014). TEM analysis for cells lacking UgtP 

showed an altered cell surface suggesting high or uncontrolled hydrolase activity. This 

observation is consistent with previously published data showing increased levels of the 

endopeptidase LytE in cells grown at high temperature or in the absence of UgtP (Kasahara et 

al., 2016). Moreover, the absence of the LtaS2 in B. anthracis resulted in a similar rough cell 
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surface to the B. subtilis ugtP mutant suggesting that the altered LTA structure is responsible 

for the increased autolytic activity in the cells (Garufi et al., 2012). These modifications in cell 

wall structure or composition might be one of the reasons for the increased susceptibility to 

lysozymes and antimicrobials and for the induction of the stress response sigma factors sigM, 

sigV and sigX (Hashimoto et al., 2013; Matsuoka et al., 2011; Salzberg and Helmann, 2008). 

The TEM analysis also showed a decrease in cell wall thickness for cells lacking PBP1 and a 

further decrease in thickness for cells lacking both PBP1 and UgtP in addition to a rough cell 

surface. Therefore, the thin cell wall structure and the increased hydrolase activity might be 

creating weak points in the cell wall structure leading to cell lysis which might explain the 

lethality of the ponA ugtP double deletions.  

PG analysis for the ugtP and pgcA mutants showed increased levels of Di- and Tri-Ala-

mDap(NH2)2 muropeptides suggesting an increased DL-endopeptidase activity. B. subtilis has 

two redundantly essential lateral cell wall endopeptidases LytE and CwlO, important for cell 

elongation (Bisicchia et al., 2007; Hashimoto et al., 2012). The absence of both UgtP and LytE 

resulted in severe growth and shape defects whereby cells were short and twisted with a high 

number of mini-cells. The ugtP cwlO mutant showed shorter and wider cells than the cwlO 

single mutant suggesting that the loss of UgtP aggravates the shape defect caused by the absence 

of CwlO due to the increased cell requirement for DL-endopeptidase activity at the lateral wall 

(Hashimoto et al., 2012). The depletion of CwlO in the lytE mutant resulted in similar twisted 

cell morphology to the ugtP lytE double mutant. In addition, the labelling of cells lacking both 

CwlO and LytE with fluorescent vancomycin showed no fluorescence along the cell periphery 

suggesting a halt in lateral wall PG synthesis (Bisicchia et al., 2007). Therefore, we 

hypothesised that either CwlO is only partially active in cells lacking the LTA glucolipids 

making LytE essential for cell survival or that LytE has a crucial unknown role in cells lacking 

UgtP.  

The expression of lytE, which is controlled by SigI, significantly increased in cells either 

lacking UgtP or grown at high temperatures (Kasahara et al., 2016; Zuber et al., 2001). 

Moreover, the overexpression of lytE in the absence of sigI rescued cell growth at high 

temperature (Tseng et al., 2011). However, cells lacking both UgtP and LytE were viable at 

37˚C but were not able to grow at 45˚C probably due to the lack of LytE activity.  

The absence of ugtP resulted in increased autolysin activity and an upregulation of PG 

synthesis. The combined deletion of ugtP with lytE or ponA caused severe shape defects or 

lethality, respectively. Interestingly, cells with triple deletions in ugtP, lytE and ponA exhibited 

normal rod shape cells with a moderate chaining morphology. Moreover, the absence of SigM, 
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which responds to cell wall defects by upregulating genes involved in cell wall synthesis, in the 

ugtP lytE sigM triple mutant recovered the rod morphology but cells were short, wide and 

chaining (Cao et al., 2002; Jervis et al., 2007). The morphology of both triple mutants suggests 

that alteration in PG synthesis in the ugtP lytE mutant helps the cells to partially recover their 

rod shape. Taken together, these results suggest that a balanced PG synthesis and hydrolysis is 

important in cells lacking the LTA glucolipid precursor. 

These results provided evidence for the importance of LytE in cells lacking the LTA 

glucolipids, however, the reasons behind the upregulation of this endopeptidase or the PG 

synthesis are not clear. Hence, the isolation of mutants that suppress the growth and shape 

defects of the ugtP lytE mutant might be helpful to further understand the role of LTA in the 

cell. 

 

The impact of LTA on PG synthesis and hydrolysis  

In rod-shaped bacteria and in B. subtilis in particular, the elongation of the cell wall occurs by 

the homogenous incorporation of newly synthesised PG in the lateral surface of the sacculus 

(den Blaauwen et al., 2008; Daniel and Errington, 2003). The PG is also continuously modified 

and hydrolysed to maintain integrity and avoid thickening (Hayhurst et al., 2008). Therefore, 

the activity of both synthases and hydrolases must be coordinated during synthesis to avoid 

weak points in the sacculus that might lead to bursting by turgor. UgtP was suggested to play a 

role in modulating cell size by regulating the assembly of the master regulator for cell division 

FtsZ (Chien et al., 2012; Weart et al., 2007). UgtP is also responsible for the synthesis of the 

LTA glucolipid precursor (Jorasch et al., 1998). In S. aureus, the deletion of ugtP or ltaS 

resulted in increased LTA size suggesting longer glycerol phosphate chains (Reichmann et al., 

2014). Such changes in the LTA structure was coupled with increased LytE levels which was 

shown in this work to be important for cell growth and morphology in absence of glucolipids 

(Kasahara et al., 2016). The increased lytE expression in the ugtP mutant was paralleled with 

rough cell surface and altered muropeptide composition suggesting high DL-endopeptidase 

activity. These modification in the cell wall structure are probably one of the reasons causing 

the induction of the extracellular sigma factor SigM, which responds to cell wall synthesis and 

cell shape maintenance (Cao et al., 2002; Jervis et al., 2007; Matsuoka et al., 2011a). 

Interestingly, the loss of SigM or PBP1 was lethal in the absence of UgtP but not in the absence 

of both UgtP and LytE. Moreover, the ugtP lytE sigM and the ugtP lytE ponA mutants partially 

recovered the normal rod morphology. These results show that several dispensable proteins in 
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wild-type cells involved in PG synthesis, such as SigM and PBP1, seem to be crucial in the 

absence of UgtP when uncontrolled hydrolase activity occurs. Consequently, maintaining 

balanced PG synthesis and hydrolysis is essential for cells with altered LTA structure. 

Considering the above, this work enhanced our knowledge about the impact of ugtP deletion 

not only on FtsZ polymerization but also on PG synthesis (Figure 3.23). However, the reasons 

for the lytE upregulation in the cell with altered LTA structure is still unclear and the generation 

of suppressor mutants for the ugtP lytE phenotype might help in understanding the causes 

behind these complex genetic interactions.  
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Figure 3.23 Simplified scheme showing the effects of ugtP deletion on the cell wall 

To the left, the cartoon represents the synthesis and the structure of the PG and LTA in wild-type cells. 

To the right, the deletion of ugtP causes in the loss of the LTA UDP-Glucose resulting in longer LTA 

structure. The latter changes in the LTA resulted in higher LytE expression leading to altered cell wall 

structure. The absence of UDP-Glucose also caused increased expression of the extracellular sigma 

factor σM, which is probably resulting in the upregulation of PG synthesis.  
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4 Coordination of peptidoglycan synthesis during cell division  

4.1 In vitro and in vivo characterization of the role of PBP3 in PG synthesis 

4.1.1 Introduction 

B. subtilis has 16 PBPs but only PBP2B (encoded by pbpB) is essential for cell division. PBP2B 

is a class B PBP with a catalytic TPase domain and a non-catalytic domain. Interestingly, in 

cells expressing PBP2B with a substitution of the TPase active site serine to an alanine residue 

(PBP2B*), PBP3, which is a non-essential PBP2B homologue, becomes essential (Richard 

Daniel, unpublished data). Further work showed that the inactivation of the TPase domain of 

PBP3 is lethal in the pbpB* mutant suggesting enzymatic redundancy. In this work, the role of 

PBP3 in the pbpB* mutants was characterized by studying the localisation of both PBPs using 

immunofluorescence microscopy. The effect of the PBP2B* mutation on the cell morphology 

was investigated using TEM. Interactions and activities of PBP2B and PBP3 were characterised 

in vitro in assays with the class A PBP1.  

 

4.1.2 Similar localisation of PBP3 in 168CA and PBP2B* mutant cells 

Previously, the localisation of PBP3 was studied using a GFP-PBP3 construct (Scheffers et al., 

2004). In wild-type cells GFP-PBP3 predominantly localised in dots or foci at the cell periphery 

and more frequently at the cell poles after division was completed, but with relatively little 

enrichment at the division site (Scheffers et al., 2004). In the PBP2B* mutant, the localisation 

pattern of GFP-PBP3 was similar to that in the wild type cells. An alternative approach was 

also used to study the localisation of PBP3 by using immunofluorescence microscopy (IFM) 

(section 2.7.2). Full length PBP3 was purified and used to produce α-PBP3 antibodies from 

guinea pigs. Subsequently, affinity chromatography was used with immobilised PBP3 to purify 

the antibody from the serum (section 2.9.8). Western blot analysis using the α-PBP3 antibody 

for cells expressing GFP-PBP3 (168CA pbpC::(Pxyl gfp-pbpC) showed two strong and two 

weak bands. The upper strong band correspond to GFP-PBP3 whereas the lower strong one 

correspond to PBP3. The weak bands presumably correspond to degradation products. This 

result suggests that the GFP was removed from the N-terminal of some GFP-PBP3 molecules 

(Figure 3.24). Immunofluorescence microscopy (IFM) with the α-PBP3 antibody was used to 

localise PBP3 in 168CA and PBP2B* cells. The α-PBP2B antibody from Daniel et al., (2000) 

was used for the localisation of PBP2B in 168CA or PBP2B* cells as a control and the DNA 

was stained with DAPI. The localisation pattern of PBP3 in the PBP2B* mutant was 

comparable to that in 168CA cells, with PBP3 being slightly more enriched at the septum and 
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the cell poles (Figure 3.25). The differences in PBP3 localisation between wild-type cells and 

the PBP2B* mutant were difficult to quantify, thus an alternative method was required to 

investigate possible localisation differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 Cellular level of PBP3 (encoded by pbpC gene) 

Western blot using α-PBP3 antibody for 168CA, the pbpC and the pbpC::(Pxyl gfp-pbpC) mutants grown 

in LB with or without xylose. The blot shows 2 bands that correspond to PBP3 and GFP-PBP3 in 

addition to degradation products, suggesting the removal of the GFP from some of the PBP3 molecules.  
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Figure 3.25 Cellular localisation of PBP3 or PBP2B using α-PBP3 or α-PBP2B antibodies, 

respectively 

(A) PBP3 localisation in 168CA and PBP2B* mutant cells was determined by IFM using α-PBP3 

antibody and a secondary antibody bound to FITC. PBP3 localised at midcell and occasionally at the 

lateral cell wall in foci. The DNA was stained with DAPI. Scale bar: 5 µm.  

(B) PBP2B localisation in 168CA and PBP2B* mutant cells was determined by IFM using α-PBP2B 

antibody and a secondary antibody bound to a red fluorescent probe (Alexa 594). PBP2B localised at 

midcell in vegetative cells. The DNA was stained with DAPI. Scale bar: 5 µm.  
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4.1.3 PBP3 showed enhanced septal localisation in PBP2B* mutant cells 

IFM images were not sufficient to visualize the possible changes of PBP3 localisation during 

the cell cycle in cells with inactive PBP2B (Figure 3.26). To obtain quantitative data on the 

localisation of PBP3 and PBP2B, profile maps were generated for both PBPs in 168CA and the 

PBP2B* mutant. The profile maps represent the fluorescence intensity profile of individual 

cells normalized to the cell average fluorescence and sorted horizontally by cell length. For the 

PBP2B* mutant cells, the profile maps showed longer cell length than wild type cells at all 

stages of the cell cycle (Figure 3.26 A). In young 168CA cells PBP3 localised at the cell poles 

and periphery but later in the cell cycle PBP3 was mostly recruited to midcell with the exception 

of some PBP3 molecules that showed occasional cell periphery localisation. In the PBP2B* 

mutant, PBP3 exhibited similar cell pole localisation to young 168CA cells, however, a 

decrease in the level of fluorescence at the cell periphery was detected at the early and middle 

stages of the cell-cycle. Moreover, the localisation of PBP3 at midcell was observed earlier in 

the PBP2B* mutant cell cycle compared to wild-type (Figure 3.26 A). For comparison, the 

same analysis using α-PBP2B antibodies showed similar localisation of PBP2B at mid-cell in 

both 168CA and PBP2B* cells (Figure 3.26 B). This localisation pattern was observed at early 

stages of the cell cycle in both 168CA or in PBP2B* cells suggesting early recruitment of 

PBP2B to the septum. These results suggests that the early and enhanced localisation of PBP3 

at midcell in the PBP2B* mutant is presumably to complement the lack of PBP2B TPase 

activity.  
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Figure 3.26 Profile maps for the localisation of PBP3 and PBP2B in 168CA and the PBP2B* 

mutant  

(A) Profile maps representing the localisation of PBP3 by IFM using α-PBP3 antibody (n=450 cells). 

(B) Profile maps representing the localisation of PBP2B using α-PBP2B antibody (n=150 cells). The 

level of fluorescence was normalized to the mean cell fluorescence. The data was sorted using Python7 

and the profile maps were created with ImageJ. PBP3 showed early and enhanced midcell localisation 

in the PBP2B* mutant compared to 168CA. The DNA was stained with DAPI. 
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4.1.4 PBP2B* cells have aberrant septum morphology 

Microscopic images of the PBP2B* mutant showed an increase in cell length compared to 

168CA. We proposed that cells with inactive PBP2B have a delay in building the septal PG 

which is causing an increase in cell length. However, fluorescence microscopy was insufficient 

to observe any changes in the septum morphology. Thus, we analysed 168CA, ΔPBP3 or 

PBP2B* cells by TEM to obtain high resolution images which gave us more insight into septum 

morphology. Most of the PBP2B* mutant cells (83%) exhibited aberrant septum (n=50) (Figure 

3.27). The ΔPBP3 mutant had a similar septum morphology to 168CA cells suggesting a 

dispensable role for PBP3 in septal PG synthesis. These results suggest that although cells with 

active PBP3 TPase domain can compensate for the lack of TPase activity of PBP2B, the latter 

has a more important role in cell division.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΔPBP3 PBP2B*168CA

Figure 3.27 TEM images of 168CA, ΔPBP3 or PBP2B* mutant cells 

The absence of PBP3 had no effect on the cell morphology whereas the inactivation of the TPase domain 

of PBP2B caused aberrant septa. Scale bar: 100 nm.  
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4.1.5 HPLC analysis of muropeptides from 168CA, ΔPBP3 and PBP2B* cells 

B. subtilis has 16 PBPs that have redundant roles in PG synthesis, however, the inactivation of 

PBP2B alone distorted the septum of the cell. Next we analysed muropeptides isolated from 

ΔPBP3 or PBP2B* mutant cells to study the effect of such mutations on the PG composition. 

Cell wall material was harvested from exponentially growing cells (Section 2.11.1). The cell 

wall was purified from cell lysate followed by the PG purification (Section 2.11.2).  The PG 

was digested with cellosyl to muropeptides by cutting the β-1,4-glycosidic bond between the 

N-acetylmuramic acid and the N-acetylglucosamine. Muropeptides were reduced and analysed 

by HPLC using a reversed-phase column. The RP-HPLC muropeptide elution patterns of PGs 

from 168CA, ΔPBP3 and PBP2B* mutants showed comparable muropeptide profiles with only 

two minor differences for the PBP2B* mutant (Figure 3.28). First, a small unknown peak, 

observed in one of the experiments, had a retention time of 96 min and appeared in 168CA and 

ΔPBP3 muropeptide profiles but not in the PBP2B* muropeptide profile. Second, a mild 

reduction in the peak area for the muropeptide number 15 for the PBP2B* mutant was observed 

compared to wild-type. The relative quantification of the muropeptides identified a 2% decrease 

in the TriTetra(NH2) for the PBP2B* mutant compared to wild-type (Table 3.2). The lower 

levels of TriTetra(NH2) correlated with a 3.1% decrease in percentage of peptides in crosslinks 

and a 3.1% increase in the sum of monomeric muropeptides from PBP2B* compared to 168CA 

cells. The changes in muropeptide levels are probably caused by the expression of inactive 

PBP2B in the cell (Table 3.2). No changes were identified between muropeptides from 168CA 

or ΔPBP3 cells. To get more insights about the function of these PBPs, biochemical assays were 

used to characterize the activities and interactions of PBP2B, PBP3 and the class A PBP1.  
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Figure 3.28 RP-HPLC analysis of muropeptides from 168CA, ΔPBP3 and PBP2B* cells 

Muropeptide profiles for 168CA, ΔPBP3 and PBP2B* cells. The peaks 1-38 have been assigned 

according to Bisicchia et al., 2011. 168CA, ΔPBP3 or PBP2B* mutant cells have similar muropeptide 

profiles except two minor differences, the mild decreased peak area for the muropeptide number 15 in 

the PBP2B* mutant and the unknown peak (red arrow) detected in only one of the experiments for 

168CA and ΔPBP3.  
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Table 3.2 Muropeptide identities and quantification from 168CA, ΔPBP3 and PBP2B* cells  

BSB1, ΔPBP3 or PBP2B* mutants showed similar levels of muropeptides except for a 3.1% decrease 

in muropeptides in crosslink from the PBP2B* mutant compared to 168CA. Peak areas shown represent 

the mean ± standard deviation of two independent PG preparations.               
1 Nomenclature of muropeptides according to Glauner et al., (1988)                                         
2 calculated according to Glauner et al., (1988)             
3 calculated as 100% - % monomers. 

 

Peak area (%)

Muropeptides 1 Peak no 168CA ΔPBP3 PBP2B*

Tri 1 2.0  0.1 1.7  0.2 1.9  0.1

Tri (NH2) (PO4) 2 1.4  0.3 1.3  0.2 1.3  0.0

Tri (NH2) 3 14.1  0.1 14.1  0.1 14.1  0.1

Tri (NH2) (deAc) 4 0.1  0.1 0.1  0.1 0.1  0.1

Di 5 2.2  0.1 2.3  0.4 2.3  0.4

Tri-Ala-mDap (NH2) 6 1.3  0.3 1.3  0.2 1.3  0.4

tetra (NH2) 7 0.2  0.1 0.4  0.2 0.4  0.1

Tri-Ala-mDap (NH2)2 8 1.2  0.0 1.5  0.3 1.4  0.4

penta (Gly5) (NH2) 9 0.4  0.0 0.3  0.0 0.4  0.1

TriTetra (-GM) (NH2)2 10 0.8  0.1 0.7  0.1 0.7  0.0

penta (NH2) 11 0.4  0.1 0.4  0.0 0.6  0.0

TriTetra (-G) 12 0.6  0.1 0.6  0.0 0.6  0.1

TriTetra (NH2) (PO4) 13 1.6  0.8 1.7  0.5 0.6  0.3

TetraTetra (-GM) (NH2)2 14 1.2  0.3 1.0  0.0 1.0  0.1

TriTetra (NH2) 15 14.0  1.7 13.1  1.4 12.0  1.3

TriTetra (NH2) (deAc) 18 2.1  0.5 1.3  0.2 1.4  0.2

TriTetra (NH2) (deAc) 19 1.8  0.5 1.0  0.2 1.1  0.2

TriTetra (NH2) 20 2.8  0.0 2.4  0.0 2.5  0.2

TriTetra (NH2)2 21 25.6  3.1 27.7  0.6 24.2  1.0

TriTetra (NH2)2 (deAc) 22 0.1  0.1 0.1  0.1 0.1  0.1

TriTetra (NH2)2 (deAc) 23 0.3  0.1 0.3  0.1 0.4  0.0

Penta (Gly5) Tetra 24 0.5  0.1 0.4  0.2 0.4  0.1

Penta (Gly5) Tetra (NH2)2 25 0.4  0.2 0.6  0.4 0.5  0.1

TetraTetra (NH2)2 26 1.1  0.4 0.9  0.1 0.7  0.3

PentaTetra (NH2)2 27 0.5  0.2 0.5  0.1 0.5  0.0

TriTetraTetra (NH2)2 28 0.4  0.2 0.4  0.1 0.6  0.4

TriTetraTetra (-G) 29 1.2  0.1 1.1  0.2 0.7  0.3

TriTetraTetra (NH2)2 30 0.6  0.1 0.5  0.1 1.5  1.1

TriTetraTetra (NH2)3 31 2.7  0.3 2.5  0.4 2.1  0.1

TriTetraTetra (NH2)3 (deAc) 32 2.7  0.3 2.6  0.2 1.2  1.0

TriTetraTetra (NH2)3 (deAc) 33 0.5  0.1 0.4  0.1 0.3  0.2

Penta(Gly5)TetraTetra (NH2)2-3 34 0.3  0.1 0.2  0.1 0.3  0.0

TriTetraTetraTetra (NH2)2-3 35 0.2  0.0 0.3  0.1 0.5  0.3

TriTetra(Anh) (NH2)2 36 0.8  0.2 0.8  0.1 0.5  0.1

TriTetraTetraTetra (NH2)4 37 0.9  0.2 1.2  0.2 1.0  0.1

TriTetraTetra(Anh) (NH2)2 38 0.1  0.1 0.0  0.0 0.0  0.0

Sum monomers 25.3  0.0 25.7  0.9 28.4  0.3

Sum dimers 62.2  0.0 61.9  0.2 59.5  0.4

Sum trimers 9.8  0.2 8.9  0.6 8.6  0.2

Sum tetramers 1.4  0.1 1.7  0.3 1.8  0.5

Sum dipeptides 2.5  0.1 2.7  0.3 2.9  0.3

Sum tripeptides 55.8  0.6 56.2  0.3 57.0  0.2

Sum tetrapeptides 39.7  0.1 39.2  0.3 37.9  0.2

Sum pentapeptides 1.9  0.3 1.8  0.3 2.2  0.2

Degree of Crosslinkage 2 38.7  0.0 38.2  0.5 36.8  0.0

% Peptides in Crosslinkage 3 74.7  0.0 74.3  0.9 71.6  0.3
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4.1.6 Purification of full length PBPs 

In vivo work performed in Richard Daniel’s lab showed that the activity of PBP3 is essential to 

complement the lack of PBP2B TPase activity in the cell suggesting partial functional 

redundancy. The deletion of PBP2B is lethal suggesting that the protein has a non-catalytic role 

that cannot be replaced even by the overexpression of PBP3 in the cell. To test if PBP3 interacts 

with PBP2B, we adopted an in vitro approach using affinity chromatography and SPR. Thus, 

we first established the purification of PBP2B and PBP3 and we characterized their enzymatic 

activities in the presence of PBP1. PBP2B* and PBP3* featuring substitutions in the active site 

serine residues to alanine were also purified for control experiments.  

 

4.1.6.1 Purification of PBP2B 

PBP2B was purified using affinity chromatography and ion exchange chromatography (section 

2.9.2). PbpB (PBP2B gene) was cloned into pET28(a)+ (section 2.6.2). E. coli BL21(DE3) cells 

were used for the expression of PBP2B with an N-terminal hexahistidine tag (His-PBP2B). 

Cells were harvested and PBP2B was purified from the solubilised membrane fraction. Affinity 

chromatography was first performed to purify His-PBP2B from the membrane fraction (Figure 

3.29 A). The hexahistidine tag was removed using thrombin. The second purification step 

consisted of ion exchange chromatography. Using the protein calculator software 

(http://protcalc.sourceforge.net/), His-PBP2B was predicted to have a positive charge +19 at 

pH 6.0. Thus, a HiTrap SP HP column was used to further purify PBP2B. Samples containing 

PBP2B were dialysed to pH 6 which promoted the binding of the protein to the column followed 

by elution of PBP2B using a gradient of elution buffer with 1 M NaCl and pH 7.5. Collected 

fractions from the two chromatography experiments were analysed by SDS-PAGE (Figure 3.29 

A and B). Typically, 1.46 mg of PBP2B per litre of culture was obtained.  
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Figure 3.29 Purification of PBP2B 

SDS-PAGE analysis shows the fractions of the PBP2B purification steps. Gels were stained with 

Coomassie blue.  

(A) IMAC purification of His-PBP2B. App, applied fraction; FT, flow-through; M, Protein size marker 

(Fermentas PageRuler); W1-W4, wash fractions; E1-E3, elution fractions. The theoretical molecular 

weight of His-PBP2B is 81 kDa. 

(B) IEX of the purified PBP2B after thrombin cleavage. M, Protein size marker; the bands in F7, F8, 

F9 and F10 fractions with an apparent molecular weight of 79 kDa correspond to PBP2B.  
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4.1.6.2 Optimization of PBP2B* purification 

PbpB* gene, encoding PBP2B*, was cloned into pET28(a)+ expression plasmid using ligase 

free cloning (section 2.6.2). PBP2B* was expressed and solubilized in a similar way to PBP2B 

(section 4.1.6.2). Affinity chromatography was first performed to purify His-PBP2B* (section 

2.9.3) (Figure 3.30 A). Despite the correct DNA sequence for the thrombin recognition site, the 

enzyme did not cleave of the hexahistidine tag due to an unknown reason (Figure 3.30 C). 

Although the tag was still attached to PBP2B*, we proceeded to the second purification step to 

improve protein purity. Ion exchange chromatography was performed with a HiTrap SP HP 

column. PBP2B* was dialysed to pH 6.0, which promoted the binding of the protein to the 

column, followed by the elution of PBP2B* using elution buffer with 1 M NaCl and pH 7.5. 

Fractions collected from the two chromatography experiments were analysed by SDS-PAGE 

(Figure 3.30 A and B). Typically, 0.24 mg of PBP2B* per litre of culture was obtained. Western 

blot experiment using α-PBP2B antibody confirmed that the purified protein is PBP2B (Figure 

3.31 A). Several bands with smaller sizes than PBP2B were detected by SDS-PAGE and were 

also identified by the α-PBP2B antibody suggesting that these bands correspond to PBP2B 

degradation products. The bocillin-binding assay for PBP2B* showed no fluorescence when 

PBP2B* was incubated with bocillin or with both bocillin and PenG suggesting the inactivation 

of the TPase domain (Figure 3.31 C).  
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Figure 3.30 Purification of PBP2B* 

SDS-PAGE analysis showing the fractions of PBP2B* purification steps. Gels were stained with 

Coomassie blue.  

(A) IMAC purification of His-PBP2B*. Ap, applied fraction; FT, flow-through; M, protein size marker 

(Fermentas PageRuler); W1-W3, wash fractions; E1-E3, elution fractions. The theoretical molecular 

weight of His-PBP2B* is 81 kDa. 

(B) IEX of the purified PBP2B* after thrombin digest. M, protein size marker; the bands in E2-E9 

fractions with an apparent molecular weight of 79 kDa correspond to His-PBP2B*.  

(C) Hexahistidine-tag removal using Thrombin. M, protein size marker; B, before thrombin digest; Mi, 

a mixture of samples containing His-PBP2B with and without thrombin digest; A, after thrombin digest. 

No decrease in the apparent molecular weight of His-PBP2B* was observed suggesting that the 

Hexahistidine tag is still attached to PBP2B*.  
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4.1.6.3 Purification of PBP3  

PBP3 was purified using affinity and ion exchange chromatography (section 2.9.4). E. coli 

BL21(DE3) cells were used for the expression of PBP3 with an N-terminal Hexahistidine tag 

(His-PBP3). His-PBP3 was purified from the solubilised membrane fraction. Affinity 

chromatography was performed to purify His-PBP3 (Figure 3.32 A) and the hexahistidine tag 

was removed by thrombin. A second purification experiment was performed using ion 

exchange chromatography. PBP3 was predicted to have negative charge -7.0 at pH 8.3. 

Therefore, a HiTrap monoQ column was used to further purify PBP3. Samples containing PBP3 

were dialysed to pH 8.3 and injected into the column. PBP3 was eluted using a gradient of 

elution buffer with 1 M NaCl and pH 7.5. Collected samples from the two purification 

experiments were analysed by SDS-PAGE (Figure 3.32 A and B). Typically, 1 mg of PBP3 per 

litre of culture was obtained.  

PBP3* was purified in a similar way to PBP3 except that PBP3* was dialysed to pH 8.5 

permitting the binding of the protein to the HiTrap monoQ column followed by the elution of 

PBP3* (section 2.9.6) (Figure 3.33 A and B). Typically, 1.33 mg of PBP3* per litre of culture 

Figure 3.31 Western blot and bocillin-binding assay for PBP2B and PBP2B* 

(A) SDS-PAGE, (B) Western blot (using α-PBP2B antibody) and (C) bocillin binding assay for purified 

PBP2B and PBP2B*. M, Protein size marker (NEB); B, proteins incubated with bocillin; P+B, proteins 

incubated with PenG then bocillin. The bands in (A) and (B) with an apparent molecular weight of 79 

kDa correspond to PBP2B or PBP2B*. (C)  Only PBP2B molecules treated with bocillin showed 

fluorescence suggesting inability of PBP2B* to bind bocillin. PBP2B samples treated with PenG then 

bocillin showed no fluorescence suggesting a specific binding of bocillin to the TPase domain of 

PBP2B.  
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was obtained. Bocillin-binding assay for the purified PBP3* showed no fluorescence 

suggesting that the TPase domain of PBP3 is inactive (Figure 3.34).  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32 Purification PBP3 

SDS-PAGE analysis shows fractions from PBP3 purification steps. Gels were stained with Coomassie 

blue.   

(A) IMAC purification of His-tagged PBP3. App, applied fraction; FT, flow-through; M, Protein size 

marker (Fermentas PageRuler); W1-W4, wash fractions; E1-E3, elution fractions. The theoretical 

molecular weight of His-PBP3 is 74 kDa. 

(B) IEX of the purified PBP3 after thrombin cleavage. Collected samples were diluted four-fold to 

avoid overloading the gel. M, Protein size marker; the bands in E1, E2, F3 and F4 fractions with an 

apparent molecular weight of 73 kDa correspond to PBP3.  
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Figure 3.33 Purification of PBP3* 

SDS-PAGE analysis shows fractions from PBP3* purification steps. Gels were stained with Coomassie 

blue.   

(A) IMAC purification of His-tagged PBP3*. App, applied fraction; FT, flow-through; M, Protein size 

marker (NEB); W1-W4, wash fractions; E1-E5, elution fractions. The theoretical molecular weight of 

His-PBP3* is 74 kDa. 

(B) IEX of the purified PBP3* after thrombin cleavage. M, Protein size marker; the bands in E2-E4 

fractions with apparent molecular weight 73 KDa correspond to PBP3 however overloading the gel 

caused this smearing. 
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4.1.6.4 Purification of PBP3(17-668) 

PbpC gene (encoding PBP3) without the transmembrane coding sequence [PBP3(17-668)] was 

introduced into the expression plasmid pET28(a)+. E. coli BL21(DE3) cells were transformed 

with the latter plasmid and used for the expression of PBP3(17-668) with a hexahistidine-tag 

(Section 2.9.5). Affinity chromatography was first performed to purify His-PBP3(17-668) 

(Figure 3.35 A) and the hexahistidine tag was removed using thrombin. Second, ion exchange 

chromatography was performed using a HiTrap monoQ column to separate PBP3 from the 

hexahistidine -tag and to obtain a purer PBP3 product. The IEX was performed as described 

previously for full length PBP3. However, PBP3 did not bind to the column and was eluted in 

the flow through fractions (Figure 3.35 B). The third step was a gel filtration chromatography 

to further purify the protein by using a Superdex size exclusion column (Figure 3.35 C). 

Figure 3.34 Western blot and bocillin-binding assay for PBP3, PBP3(17-668) and PBP3* 

(A) SDS-PAGE, (B) Western blot (using α-PBP3 antibody) and (C) bocillin binding assay for purified 

PBP3, PBP3(17-668) and PBP3*. M, Protein size marker (NEB); B, proteins incubated with bocillin; 

P+B, proteins incubated with PenG then bocillin. The bands in (A) and (B) with an apparent molecular 

weight of 72 kDa correspond to PBP3, PBP3(17-668) or PBP3*. (C) Only PBP3 and PBP3(17-668) 

molecules treated with bocillin showed fluorescence suggesting the inability of PBP3* to bind bocillin. 

PBP3 and PBP3(17-668) samples treated with PenG then bocillin didn’t show a band suggesting a 

specific binding of bocillin to the TPase domain of PBP3. 
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Collected samples from all purification experiments were analysed by SDS-PAGE (Figure 3. 

35 A and B). Typically, 1.5 mg of PBP3 per litre of culture was obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 Purification of PBP3(17-668) 

SDS-PAGE analysis shows the fraction of PBP3(17-668) purification steps. Gels were stained with 

Coomassie blue.   

(A) IMAC purification of His-tagged PBP3(17-668). Ap, applied fraction; FT, flow-through; M, Protein 

size marker (Fermentas PageRuler); W1-W3, wash fractions; E1-E3, elution fraction. The theoretical 

molecular weight of His-PBP3(17-668) is 74 kDa. 

(B) IEX of the purified PBP3(17-668). F1-F9, flow-through; M, Protein size marker; the bands in F2, 

F3, F4 and F5 fractions with a size of 72 kDa correspond to PBP3(17-668).  

(C) SEC of the protein. The bands with an apparent molecular weight of 72 kDa in all fractions 

correspond to PBP3(17-668). 
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4.1.7 PBP3 interacts with PBP2B  

The interaction between PBP2B and PBP3 was studied using pull-down assay and Surface 

Plasmon Resonance (SPR). In a pull-down assay we tested if PBP2B interacts with a 

hexahistidine-tagged PBP3 (His-PBP3) (section 2.10.1). His-PBP3 and PBP2B were mixed 

with Ni-NTA beads in an interaction buffer. His-PBP3 had a hexahistidine tag which promoted 

the binding of PBP3 to the beads. SDS–PAGE analysis of the applied and bound fractions 

shows whether His-PBP3 was able to pull-down PBP2B (Figure 3.36 A). Both the applied and 

bound fractions for His-PBP3 showed a band with an apparent molecular weight corresponding 

to His-PBP3 showing that it was successfully pulled down by the Ni-NTA. PBP2B in the 

absence of His-PBP3 only appeared in the applied fraction suggesting that PBP2B was not 

pulled down by the beads. PBP2B in the presence of His-PBP3 appeared in both the applied 

and bound fractions suggesting that His-PBP3 was able to pull down some of the PBP2B 

molecules indicating an interaction between the two proteins.   

SPR was used to further analyse the interaction between PBP3 and PBP2B and to determine 

the dissociation constant (KD) of this interaction (section 2.10.2). First, ampicillin was 

immobilized to the sensor chip followed by the binding of PBP2B via its TPase domain. This 

method allows a homogeneous orientation of PBP2B proteins with their N-terminus accessible 

for interaction. The remaining free ampicillin was digested with β-lactamase. The chip was 

washed with NaCl buffer (1 M) to remove non-covalent bound protein. In parallel, the control 

surface was prepared in a similar way without the immobilized PBP2B. PBP3 was injected over 

the PBP2B surface and the control surface at concentration 400, 200, 100, 50 and 25 nM (Figure 

3.36 B). The binding of the injected protein (analyte) to the chip surface or the immobilized 

protein causes an increase in the SPR curves (Bravman et al., 2006). These SPR curves are 

called sensorgrams and represent the changes in response unite (RU) plotted against time (s). 

PBP3 was injected at a flow rate of 75 µl/min. The surface with immobilized PBP2B showed 

an increase in signal during association (from 0 to 300 s) compared to the control surface 

(Figure 3.36 B). The response almost reached saturation or equilibrium towards the end of the 

association (from 200 to 300 s). Subsequently, running buffer was injected after 300 s causing 

the dissociation of analytes. The increase in response unit for the control surface indicates 

unspecific binding of the analyte (PBP3) to the chip surface. A higher signal for the PBP2B-

surface compared to the control surface during association and equilibrium indicates a specific 

interaction between PBP2B and PBP3. The subtraction of the control signal from the PBP2B-

surface signal is represented in figure 3.36 C. The signal corresponding to analytes with 

concentration of 100 nM or higher overlapped suggesting a saturation of binding (Figure 3.36 
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C). The KD of the interaction was calculated using Sigma Plot software, based on a one site 

interaction with PBP3. The average response of PBP3 during equilibrium was calculated for 

every concentration and used for KD determination. The binding curve was generated by 

plotting the response in (RU) against analyte concentration in nM (Figure 3.36 D). The KD of 

the interaction of PBP2B with PBP3 was 8.7 ± 1.2 nM calculated from three independent 

experiments. 
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Figure 3.36 Interaction of PBP2B with PBP3 by in vitro pull-down and SPR   

(A) Pull-down assay performed to test if PBP2B and PBP3 interact. Coomassie stained SDS-PAGE 

analysis showing His-PBP3 and PBP2B. His-PBP3 and PBP2B were detected in both the applied and 

the bound fractions suggesting that His-PBP3 pull-down PBP2B. A, Applied; B, bound fractions.  

(B) SPR sensorgrams showing the response for PBP3 when injected over a surface with immobilized 

PBP2B or a control surface at concentration 20, 50, 100, 200 and 400 nM plotted against time (s). The 

signal for the PBP2B-surface was higher than the control surface upon PBP3 injection.   

(C) SPR sensorgram showing the response for the PBP2B-surface minus control. The signals 

corresponding to 100, 200 and 400 nM PBP3 overlapped suggesting ligand saturation.  

(D) The response values during equilibrium were plotted against the injected PBP3 concentrations. 

The KD of the PBP2B-PBP3 interaction was determined by non-linear regression using Sigma Plot 

software. The KD value is the mean ± standard deviation of three independent experiments. 
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A similar SPR experiment was performed with PBP2B immobilised to the chip surface as above 

except that PBP3 lacking its transmembrane domain (PBP3(17-668)) was injected as an analyte 

over the PBP2B-surface and a control surface at concentrations 1000, 500, 250, 125 and 62.5 

nM. The response over the PBP2B-surface was similar to the control surface upon the injection 

of PBP3(17-668) suggesting the absence of specific binding between the two proteins (Figure 

3.37 A). The subtraction of the control response from the PBP2B-surface response showed no 

saturation of signal upon increasing the concentration of the analyte supporting the premise of 

the absence of interaction between the two proteins (Figure 3.37 B). 

These results suggest that the interaction between PBP2B and PBP3 is specific and the N-

terminal region of PBP3 is required for interaction with PBP2B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37 PBP2B does not interact with PBP3(17-668) by SPR   

(A) SPR sensorgrams showing the response for PBP3(17-668) when injected over a surface with 

immobilized PBP2B or a control surface at concentration 62.5, 125, 250, 500 and 1000 nM plotted 

against time (s). The signal for the PBP2B-surface was similar to the control surface upon analyte 

injection. 

(B) SPR sensorgram showing the response for PBP3(17-668) minus the control response. The response 

for PBP3(17-668) at various concentrations was similar and did not result in a binding curve or signal 

saturation suggesting absence of interaction between the two proteins. 
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4.1.8 Interaction between PBP3 and PBP1 

B. subtilis has four bi-functional class A PBPs with PBP1, encoded by the ponA gene, involved 

in septal PG synthesis (Scheffers and Errington, 2004). PBP1 was purified (Section 2.10.1) and 

tested for interaction with PBP3 using in vitro pull-down assay and surface plasmon resonance. 

First, we used Ni2+-NTA pull down to test whether His-PBP3 would retain PBP1. SDS–PAGE 

analysis for the applied and bound fractions of His-PBP3 showed a band with an apparent 

molecular weight corresponding to His-PBP3 showing that it was successfully pulled down by 

the Ni-NTA (Figure 3.38 A). PBP1 in the absence of His-PBP3 only appeared in the applied 

fraction suggesting that PBP1 was not pulled down by the beads. PBP1 in the presence of His-

PBP3 appeared only in the applied fraction suggesting that His-PBP3 did not retain PBP1. To 

stabilize a possible weak interaction, formaldehyde (0.2%) was used to crosslink interacting 

proteins. Nevertheless, His-PBP3 did not retain PBP1 suggesting that PBP1 and PBP3 do not 

interact by pull-down assay. 

SPR was also used to test if PBP1 and PBP3 directly interact. Ampicillin was first immobilized 

to the sensor chip followed by the covalent binding of PBP1 via its TPase domain. A control 

surface was prepared in the same way without PBP1. The remaining free ampicillin was 

digested with β-lactamase. The chip was washed with NaCl buffer (1 M) followed by the 

injection of PBP3 at concentration 200, 100, 50, 25 and 12.5 nM. The sensorgram for the PBP1-

surface showed a higher signal during association and equilibrium compared to the control 

surface followed by a decrease in the signal for both surfaces during dissociation. To test if the 

PBP1-surface was saturated upon the injection of PBP3, the control signal was subtracted from 

the PBP1-surface (Figure 3.38 C). The binding levels saturated at 50 nM injected PBP3. This 

result suggests that PBP1 and PBP3 interact. Whilst three independent experiments have been 

performed for the interaction of PBP1 and PBP3, only 2 showed an increase in signal suggesting 

an interaction between PBP1 and PBP3.  

A similar experiment was performed with PBP3 being immobilized to the chip surface and 

PBP1 being injected as an analyte. However, the signal for the control surface when PBP1 was 

injected as an analyte was high suggesting unspecific binding of PBP1 to the chip surface. These 

results suggest that PBP3 is presumably interacting with PBP1 but additional experiments are 

required to confirm such interaction. Next, we proceeded to characterize the enzymatic 

activities of PBP3 or PBP3* in the presence of PBP1 in vitro using established methods in our 

lab.  
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Figure 3.38 Interaction of PBP1 with PBP3 by in vitro crosslink / pull-down and SPR 

(A) Ni-NTA affinity chromatography used to test if PBP1 and PBP3 directly interact. Coomassie stained 

SDS-PAGE analysis showing His-PBP3 and PBP1. PBP1 in the presence of His-PBP3 appeared only 

in the applied fraction suggesting that His-PBP3 did not retain PBP1. A, Applied; B, bound fractions. 

(B) SPR sensorgrams showing the response for PBP3 when injected over a surface with immobilized 

PBP1 or a control surface at concentration 12.5, 25, 50, 100 and 200 nM. The signal for the PBP1-

surface was higher than the control surface during association suggesting that PBP1 interacts with 

PBP3.  

(C) SPR sensorgram showing the response for the PBP1-surface minus control. The binding levels 

saturated at 50 nM injected PBP2B.  

Time (s)

R
es

p
o

n
se

 (
R

U
)

Time (s)

R
es

p
o

n
se

 (
R

U
)

B

ControlPBP1-surface 200 nM

100 nM
50 nM

25 nM

12.5 nM
0 nM

100

200

300

-200 200 400 600 8000

100

200

300

-200 200 400 600 8000

00

A

His-PBP3

+ PBP1

A

His-PBP3

A

PBP1

A

PBP1

His-PBP3

B B B

Time (s)

R
es

p
o

n
se

 (
R

U
)

C
PBP1-surface

(Minus control)

40

80

120

-200 200 400 600 8000

0



122 

4.1.9 PBP3 has DD-transpeptidase and DD-carboxypeptidase activities  

The enzymatic activities of the class B PBP3 alone or together with the bifunctional synthase 

PBP1, were tested using radioactive Lipid II, which is the precursor for peptidoglycan synthesis. 

To test whether PBP3 contributes to the synthesis of peptides in cross-link, PBP3 with an 

inactive TPase domain (PBP3*) was also purified (section 2.10.6) and tested. The detection of 

monomeric muropeptides suggest that lipid was polymerized into a glycan chain by the GTase 

activity of PBPs and the levels of oligomeric muropeptides (peptides in crosslink) correlate 

with the TPase activity of the synthases. PBP3 alone had no activity against lipid II (Figure S1). 

PBP1 alone has GTase and TPase activities, consequently PBP1 polymerised lipid II into glycan 

strands with crosslinked peptides (Cleverley et al., 2016; Lebar et al., 2014). PBP3 and PBP3* 

tested together with PBP1 had similar levels of peptides in crosslinks suggesting that PBP3 did 

not contribute to this activity (Figure 3.39). A mild but significant (4.8%) decrease in levels of 

peptides in crosslinks was detected for PBP1 with PBP3 compared to PBP1 alone. A similar 

decrease (6.0%) was noticed for PBP1 with PBP3* suggesting that PBP3 caused a mild 

reduction in the TPase activity of PBP1 (Figure 3.39). The activity of PBPs was also tested in 

the presence of sacculi isolated from wild type B. subtilis (tripeptide rich) or ΔdacA mutant 

(pentapeptide rich). Samples were incubated for 1 h at 37˚C then the reaction was stopped by 

boiling the samples for 5 min. The mixture of old and newly synthesised PG was digested with 

cellosyl overnight, reduced and analysed by HPLC. Muropeptides identified by the HPLC 

radioactivity detector represented the newly synthesised PG material. An insignificant decrease 

in the levels of peptides in cross-link was identified for PBP1 with PG compared to PBP1 alone 

(figure 3.39). PBP1 alone or together with PBP3 in the presence of 168CA or ΔdacA PG had 

similar levels of peptides in crosslink. However, PBP3* with PBP1 had a significant decrease 

in levels of peptides in crosslink when tested in the presence of 168CA or ΔdacA PG (Figure 

3.39). These results suggest that PBP3 contributes to the level of peptides in crosslink and has 

a transpeptidase activity. The decrease in the level of peptides in crosslink for PBP1 with PBP3* 

compared to PBP1 alone in presence of 168CA or ΔdacA PG suggested that PBP3 inhibits the 

TPase activity of PBP1 in presence of PG.  

DD-carboxypeptidase (CPase) activity causes the removal of the fifth D-Ala residue from the 

GlcNAc-MurNAc-pentapeptide. Thus, the CPase activity of PBPs is quantified by measuring 

the levels of GlcNAc-MurNAc-tetrapeptide (Tetra) and of the crosslinked bis-GlcNAc-

MurNAc-tetrapeptide (TetraTetra) muropeptides. PBP1 alone had 18.7% of CPase products 

suggesting that PBP1 has a CPase activity which is consistent with previously publish data 

(Figure 3.40) (Cleverley et al., 2016). PBP3 and not PBP3* together with PBP1 showed 15.8% 
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increase in the levels of CPase products suggesting that PBP3 has a CPase activity. PBP1 alone 

had similar levels of CPase products when tested in the presence of 168CA or ΔdacA PG 

suggesting that PBP1 has a CPase activity independent of the presence or absence of PG. PBP3 

with PBP1 had 14.5% and 10.3% increase in CPase products when tested in the presence of 

168CA or ΔdacA PG, respectively. The decrease in CPase products for PBP1 with PBP3 in the 

presence of PG was complemented by an increase in levels of peptides in crosslink. These 

results suggest that PBP3 has a CPase activity in the absence of PG and a TPase and a CPase 

activity in the presence of PG. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39 TPase activities of PBP1 and PBP3  

The percentage of cross-linked peptides in PG produced by PBP1 alone, PBP1 and PBP3 or PBP1 

and PBP3*, with or without PG. In the absence of PG, PBP1 with PBP3 or PBP3* had similar levels 

of peptides in crosslink. In samples containing PG, PBP3 and not PBP3* contributed to the levels of 

peptides in crosslink. PBP3* caused a mild decrease in the levels of peptides in crosslink produced by 

PBP1 in presence of 168CA or ΔdacA PG. *, P<0.05; **, P<0.01 
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4.1.10 PBP3 has no effect on the GTase activity of PBP1 

The effect of PBP3 on the GTase activity of PBP1 was tested in vitro using fluorescently 

labelled dansyl-lipid II (Section 2.10.3). Class A PBPs have a GTase activity that polymerizes 

dansyl-lipid II into glycan strands. This polymerization causes a decrease in the fluorescence 

signal, which is detected by a spectrophotometer and recorded over time. Figure 3.41 shows the 

mean florescence presented as a percentage of initial fluorescence at a given time-point. 

Consistent with the TPase assay shown in section 4.1.9, PBP3 showed no decrease in 

fluorescence detected over time suggesting that PBP3 has no activity against dansyl-lipid II 

(Figure 3.41). The fluorescence signal detected for PBP1 alone decrease over time suggesting 

that the dansyl-lipid is polymerised into a glycan chain by a GTase activity which is consistent 

with previously published data (Cleverley et al., 2016). PBP3 together with PBP1 showed a 

Figure 3.40 DD-Carboxypeptidase activity of PBP1 and PBP3 

The percentage of CPase products (Tetra and TetraTetra) produced by PBP1 alone, PBP1 and PBP3 

or PBP1 and inactive PBP3*, with or without PG. PBP1 alone with or without PG exhibited an 

increase in the levels of CPase products suggesting a CPase activity. PBP3 and not PBP3* together 

with PBP1 showed a significant increase in the levels of CPase products compared to PBP1 alone 

suggesting that PBP3 has CPase activity. *, P<0.05; **, P<0.01 
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similar decrease in the fluorescence signal over time compared to PBP1 alone suggesting that 

PBP3 has no effect of the GTase activity of PBP1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.41 The effect of PBP3 on the GTase activity of PBP1 

The diagram represent the GTase activity of PBP1 and PBP3. A decrease in relative fluorescence 

suggests the presence of a GTase activity. PBP3 alone had no activity against dansyl-lipid II. PBP3 had 

no effect on the GTase activity of PBP1. Values represent the mean ± standard deviation of three 

independent experiments. 
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4.2 Characterization of PBP2B in vitro  

4.2.1 Introduction 

PbpB (encoding PBP2B) is the only essential PBP gene in B. subtilis (Yanouri et al., 1993). 

PBP2B is highly conserved across bacterial species and plays a crucial role in cell division 

(Daniel et al., 1996, 2000; Yanouri et al., 1993). PBP2B is recruited to the septum at the early 

stages of cell division followed by other PG synthases and hydrolases. PBP2B is the first PBP 

to be recruited to midcell during cell division and the depletion of PBP2B caused 

mislocalisation of GFP-PBP1 (Scheffers and Errington, 2004). To further characterise the 

interaction and biochemical roles of PBP1 and PBP2B in cell division, both proteins were 

purified and tested in vitro.  

 

4.2.2 Dimerization of PBP2B 

Bacterial two-hybrid experiments suggested that PBP2B dimerizes in vivo (Daniel et al., 2006). 

In this work, we studied the dimerization of PBP2B by SPR. First, ampicillin was immobilized 

to the sensor chip followed by the binding of PBP2B via its TPase domain. The remaining free 

ampicillin was digested with β-lactamase. The chip was washed with NaCl buffer (1 M) to 

remove non-covalently bound protein. A control surface was prepared in the same way without 

PBP2B. PBP2B molecules were injected over the PBP2B surface and the control surface at ten 

different concentrations ranging from 0 to 350 nM. The sensorgrams in figure 3.42 A and B for 

the PBP2B-surface showed an increase in signal during association compared to the control 

surfaces. The signal almost reached equilibrium for all PBP2B injected concentrations during 

association followed by a continuous decrease during the dissociation phase (Figure 3.42 A). 

The signal for the PBP2B-surface minus the control showed saturation of binding at 80 nM 

injected PBP2B (Figure 3.42 B). These results suggest that PBP2B dimerises under the tested 

conditions. The KD of the interaction was calculated using SigmaPlot software, based on a one 

site interaction with PBP2B. The average response of PBP2B during equilibrium was calculated 

for every concentration and used for KD determination. The binding curve was generated by 

plotting the response in (RU) against analyte concentration in nM (Figure 3.42 C). The KD of 

the dimerization of PBP2B was 21.7 ± 11.4 nM calculated from three independent experiments. 
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4.2.3 Interaction of PBP2B and PBP1 by SPR 

PBP1 was tested for interaction with PBP2B using SPR. PBP1 showed substantial unspecific 

binding to the chip surface when it was injected as an analyte in previous SPR experiments. 

Thus, PBP1 was immobilized to the surface and PBP2B was injected as an analyte. First, 

ampicillin was immobilized to the sensor chip followed by the binding of PBP1. The remaining 

free ampicillin was digested with β-lactamase and the chip was washed with NaCl buffer (1 M). 

A control surface was prepared in a similar way without the immobilized PBP1. PBP2B was 

Figure 3.42 Dimerization of PBP2B by SPR 

(A) SPR sensorgrams showing the response for PBP2B when injected over the PBP2B-surface and the 

control surface. The interaction was tested using ten different concentrations of PBP2B and the 

sensorgrams suggest dimerization of PBP2B. 

(B) SPR sensorgram showing the response for the PBP2B-surface minus the control response. The 

binding levels saturated at 80 nM injected PBP2B. 

(C) The response values during equilibrium were plotted against injected PBP2B concentrations. 

The KD of the dimerization of PBP2B was determined by non-linear regression using Sigma Plot. The 

value shown is the mean KD ± standard deviation of three independent experiments. 
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injected over the control surface and the PBP1-immobilized surface at concentrations 500, 250, 

125, 62.5 and 31.25 nM. The sensorgrams showed higher signal for the PBP1-surface compared 

to the control surface during association (Figure 3.43 A). The SPR signals reached equilibrium 

towards the end of the association phase followed by a decrease in signal during dissociation 

phase upon the injection of running buffer (Figure 3.43 A). The curves for the PBP1-surface 

minus the control overlapped upon the injection of PBP2B at 250 nM concentration and above 

suggesting a saturation of binding (Figure 3.43 B). This result suggests that PBP2B directly 

interacts with PBP1. This interaction has been observed in two independent experiments for 

five PBP2B concentrations however, more experiments are required for the calculation of the 

interaction KD of PBP1 with PBP2B. Following the observed interaction between PBP1 and 

PBP2B, we characterized the enzymatic activities of PBP1 and PBP2B using radioactive or 

fluorescently labelled lipid II 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.43 Interaction of PBP1 with PBP2B by SPR 

(A) SPR sensorgrams showing the response for PBP2B when injected over a surface with immobilized 

PBP1 or a control surface at concentration 31.2 , 62.5, 125, 250 and 500 nM. The signal for the PBP1-

surface was higher than the control surface during association suggesting that PBP1 interacts with 

PBP2B.  

(B) SPR sensorgram showing the response for the PBP1-surface minus control. The binding levels 

saturated at 250 nM injected PBP2B. 
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4.2.4 PBP2B has DD-transpeptidase and DD-carboxypeptidase activities 

The GTase and TPase activities of PBP1 and PBP2B were tested using in vitro PG synthesis 

assay (section 2.10.4). To test whether PBP2B contributes to the synthesis of peptides in cross-

link, PBP2B with an inactive TPase domain (PBP2B*) was also purified (section 2.9.3) and 

tested with PBP1. PBP2B* featured a substitution of the active site serine residue to alanine 

making the TPase domain non-functional. PBP2B alone had no activity against lipid II (Figure 

S3).  The TPase and GTase activity of PBP1 was previously described in section 4.1.9. PBP2B 

together with PBP1 had a mild increase of 4.6% in the levels of peptides in crosslinks compared 

to PBP1 alone (Figure 3.44 A) and an increase of 8.5% compared to PBP1 with PBP2B*. This 

suggested that PBP2B contributed to the formation of peptides in crosslinks and has TPase 

activity. PBP1 and PBP2 were also tested in the presence of 168CA and ΔdacA PG. In the 

presence of 168CA PG, no significant changes were observed for PBP1 alone, PBP1 with 

PBP2B or PBP1 with PBP2*. In presence of ΔdacA PG, PBP1 with PBP2B showed an mild 

but significant increase in the levels of peptides in crosslink compared to PBP1 alone or PBP1 

with PBP2B*, supporting previous results about the TPase activity of PBP2B.  

The CPase activity of PBP1 alone in the presence or absence of PG was previously described 

in section 4.1.9. PBP1 with PBP2B showed a significant increase of 7.1 and 6.5% in the levels 

of CPase products compared to PBP1 alone or PBP1 with PBP2B*, respectively. These results 

suggests that PBP2B contributed to the levels of CPase products and has a CPase activity 

(Figure 3.44 B). In the presence of 168CA or ΔdacA PG, no significant differences were 

detected in the levels of CPase products for PBP1 alone, with PBP2B or with PBP2* suggesting 

that PBP2B has a CPase activity only in the absence of PG. Taken together, these results 

suggested that PBP2B has DD-carboxypeptidase and DD-transpeptidase activities. The levels 

of peptides in crosslink for PBP1 alone or with PBP2B* were similar suggesting that PBP2B* 

has no effect on the TPase activity of PBP1. 
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Figure 3.44 Enzymatic activities of PBP1 and PBP2B 

(A) The percentage of cross-linked peptides in PG produced by PBP1 alone, PBP1 and PBP2B or PBP1 

and inactive PBP2B*, with or without PG. PBP1 with PBP2B had higher levels of peptides in crosslinks 

compared to PBP1 alone or PBP1 with PBP2B* in the absence of PG or in the presence of ΔdacA PG. 

PBP2B and not PBP2B*, contributed to the levels of peptides in crosslinks suggesting a TPase activity.  

(B) The percentage of CPase products produced by PBP1 alone, PBP1 and PBP2B or PBP1 and 

PBP2B*, with or without PG. PBP1 with PBP2B and not PBP2B* showed increased levels of CPase 

products only in the absence of PG suggesting that PBP2B has CPase activity.    
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4.2.5 PBP2B stimulates the GTase activity of PBP1 

The In vitro PG synthesis assay showed that PBP2B had no GTase activity and no effect on the 

TPase activity of PBP1. Here, PBP1 and PBP2B were tested for activity against dansyl-lipid II 

by an in vitro glycosyltransferase assay. Supporting previous results (section 4.2.4), there was 

no decrease in fluorescence for samples with PBP2B alone suggesting that PBP2B has no 

activity against lipid II (Figure 3.45). PBP1 with PBP2B had a moderately faster decrease in 

the fluorescence signal compared to PBP1 alone. This suggests that the polymerization of lipid 

II into glycan strands is occurring at a faster rate when PBP2B is added to PBP1. The GTase 

rate was 2.0 ± 0.02 fold higher in the presence of PBP2B compared to PBP1 alone, suggesting 

that PBP2B stimulates the GTase activity of PBP1.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.45 PBP2B stimulates the GTase activity of PBP1  

In vitro glycosyltransferase assay performed for PBP1, PBP2B or PBP1 with PBP2B. PBP2B alone 

had no effect on the substrate. PBP1 with PBP2B had a faster decrease in fluorescence compared to 

PBP1 alone. The rate of the GTase reaction for PBP1 increased by 2.0 ± 0.02 fold in presence of 

PBP2B. Values represent the mean ± standard deviation of three independent experiments. 
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4.2.6 In vitro pull-down for His-PBP3, PBP1 and PBP2B  

The interactions of PBP1, PBP2B and PBP3 were characterized previously using various 

interaction assays. The formation of multi-protein complexes during cell division is well 

established in other bacterial species such as E. coli (Egan et al., 2015). Therefore, to test 

whether PBP1, PBP2B and PBP3 form a ternary complex, Ni-NTA crosslink/pull down assay 

was performed with His-PBP3, PBP1 and PBP2B. Formaldehyde was used as a crosslinker to 

stabilise possible weak interactions. SDS–PAGE analysis for the applied and bound fractions 

of His-PBP3 showed a band with an apparent molecular weight corresponding to His-PBP3 

showing that it was successfully pulled down by the beads (Figure 3.46). PBP2B and PBP1 in 

the absence of His-PBP3 appeared only in the applied fraction suggesting that PBP1 and PBP2B 

were not pulled down by Ni-NTA. The elution fraction of the mixture PBP1, PBP2B and His-

PBP3 showed only two bands in the elution fraction corresponding to PBP2B and His-PBP3 

suggesting that His-PBP3 was able to pull down PBP2B but not PBP1. These results suggest 

that the formation of a ternary complex between PBP1, PBP2 and His-PBP3 is doubtful. The 

KD of the interaction between PBP2B and PBP3 was 8.7 nM suggesting a strong interaction 

between the two proteins. Thus, we hypothesised that the presence of PBP3 destabilises the 

interaction of PBP2B with PBP1. To test this hypothesis we used the in vitro GTase assay to 

monitor the activity of PBP1 in the presence of PBP2B and PBP3.  

 

 

 

 

 

 

 

 

 

 

Figure 3.46 In vitro crosslink / pull-down assay of His-PBP3 with PBP1 and PBP2B 

Ni-NTA pull-down for His-PBP3, PBP1 and PBP2B. Coomassie stained SDS-PAGE analysis showing 

His-PBP3 and PBP2B but not PBP1 in the bound fraction suggesting that His-PBP3 pulled down 

PBP2B but not PBP1. A, Applied; B, bound fractions. 
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4.2.7 GTase activity of PBP1 in the presence of PBP2B and PBP3 

The pull-down experiment proposed that PBP1, PBP2B and PBP3 do not form a ternary 

complex. PBP2B, unlike PBP3, stimulated the GTase activity of PBP1 (Sections 4.1.10 and 

4.2.5). The GTase activity of PBP1 was tested in the presence of both PBP2B and PBP3. PBP1 

in the presence of both PBP2B and PBP3 had a similar decrease in fluorescence to PBP1 alone 

(Figure 3.47), suggesting that the stimulation of the GTase activity of PBP1 by PBP2B was 

diminished upon the addition of PBP3. This effect was probably caused by the destabilization 

of the interaction between PBP1 and PBP2B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.47 The GTase activity of PBP1 in the presence of PBP2B and PBP3  

In vitro glycosyltransferase assay for PBP1 alone or PBP1 with PBP2B and PBP3. PBP1 with PBP2B 

and PBP3 had a similar decrease in the fluorescence signal to PBP1 alone. Values represent the mean 

± standard deviation of three independent experiments. 
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4.3 Conclusions and discussion  

The depletion of the essential PBP2B (BsPBP2B) resulted in a block in cell division followed 

by lysis (Daniel et al., 2000). Work done by Meizhu Xu showed that cells expressing a 

catalytically inactive BsPBP2B were viable, but they required functional PBP3 (BsPBP3), a 

homologue of BsPBP2B that is dispensable in wild-type cells (Unpublished data). These results 

suggests that BsPBP2B has a crucial non-catalytic and a dispensable catalytic roles. In young 

wild-type cells BsPBP3 localised at the cell poles or in foci at the cell periphery (Scheffers et 

al., 2004). At later stages of the cell cycle most BsPBP3 molecules were recruited to mid-cell, 

however distinct foci along the cell periphery were still detected. The depletion of BsPBP2B or 

FtsZ in the cell resulted in a scattered localisation of BsPBP3 along the cell periphery, 

suggesting that BsPBP3 is part of the septal PG synthesis machinery and requires the presence 

of BsPBP2B to find the mid-cell (Richard Daniel, unpublished). Moreover, BsPBP2B and 

BsPBP3 interact, which supports that the physical presence of PBP2B is essential for PBP3 to 

find the divisome. Why two class B PBP homologues are needed together for septal PG 

synthesis is not known. The absence of BsPBP3 had no effect on cell growth, morphology or 

sporulation (Murray et al., 1996). The amino acid sequence analysis and the crystal structure of 

BsPBP3 revealed the presence of a MecA domain, which is also present in the SaPBP2a from 

S. aureus (Unpublished data) (Wei Wu et al., 2001). SaPBP2a is responsible for the methicillin-

resistance phenotype in S. aureus however, since B. subtilis cells are sensitive to methicillin, 

the role of BsPBP3 remains unclear (Matsuhashi et al., 1986). Cells expressing BsPBP2B* 

exhibited an earlier and enhanced recruitment of PBP3 to mid-cell possibly to complement the 

lack of TPase activity.  However, the BsPBP2B* mutant exhibited longer cell morphology and 

aberrant septa suggesting a lower efficiency in septal PG synthesis despite the enhanced 

presence of BsPBP3.  

BsPBP2B is a monofunctional transpeptidase presumably catalysing cross-links in the murein 

(Daniel et al., 1996; Yanouri et al., 1993). However, BsPBP2B alone cannot synthesize the 

murein net during cell division and requires a synthetic glycosyltransferase activity to 

polymerize the murein glycan strands. BsPBP2B is the first PBP recruited to the assembling 

divisome and the depletion of BsPBP2B resulted in the loss of the class A BsPBP1 septal 

localisation (Scheffers and Errington, 2004). Moreover, BsPBP2B interacts with BsPBP1 by 

bacterial two-hybrid (Richard Daniel, unpublished) and by SPR suggesting that BsPBP1 is 

recruited to midcell through its interaction with BsPBP2B. The interaction between class A and 

B PBPs have been studied previously in E. coli where the essential cell division class B PBP3 

(EcPBP3) interacts with the class A synthase PBP1B (Bertsche et al., 2006). These results 
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support a consistent model of murein synthesis between E. coli and B. subtilis rods where class 

A PBPs are recruited by class B PBPs for septal PG synthesis.  

An interaction between BsPBP3 and BsPBP1 was also detected in vitro and in vivo (this work 

and Richard Daniel, unpublished), however the loss of BsPBP3 in cells lacking BsPBP1 didn’t 

not have any additional effect on cell growth or morphology (Murray et al., 1996). This is an 

evidence of a redundancy between PBPs in B. subtilis which produces a robust system for cell 

wall synthesis. Furthermore, since the cooperation between class A and B PBPs is important 

for PG synthesis, perhaps the interaction of the class B BsPBP3 with BsPBP1 is important for 

murein synthesis and it is one on the reasons why BsPBP3 was able to complement the inactive 

BsPBP2B*.  

Purified BsPBP2B and BsPBP3 bound the β-lactam antibiotic bocillin indicating that the TPase 

domain was folded and potentially active. BsPBP2B and BsPBP3 both had mild transpeptidase 

and carboxypeptidase activities in assays with BsPBP1. Consequently, both BsPBP2B and 

BsPBP3 require ongoing PG synthesis by BsPBP1 for activity. The cell division class B 

SpPBP2x from S. pneumoniae is also required for the GTase activity of the class A SpPBP2A 

to produce PG (Zapun et al., 2013). However, EcPBP3 showed no TPase activity despite the 

presence of EcPBP1B, FtsN, and/or PG (Waldemar Vollmer, unpublished). The presence of a 

tripeptide rich PG or a pentapeptide rich PG had no effect on the activity of BsPBP2B, similar 

to SpPBP2x, which did not require the presence of PG from S. pneumoniae for activity (Zapun 

et al., 2013). In contrast, BsPBP3 from B. subtilis showed a TPase activity only in the presence 

of PG similar to the class B PBP2 from  E. coli (EcPBP2), which is involved in cell elongation 

(Banzhaf et al., 2012). These results suggests that BsPBP2B is able to crosslink two nascent 

glycan strands synthesised by BsPBP1 while BsPBP3 is more involved in attaching newly 

synthesised PG to the sacculi. The subtle differences between the activities of BsPBP2B and 

BsPBP3 could be a reason for the partial complementation of the BsPBP2B* mutant by 

BsPBP3.   

PBP2B moderately stimulated the GTase activity of BsPBP1. Since the N-terminals of both 

synthases are anchored in the membrane, it is possible that the non-catalytic domain of 

BsPBP2B interacts with the GTase domain of BsPBP1 near to the cytoplasmic membrane 

resulting in the stimulation of the GTase activity (see section 1.3.1). On the other hand, EcPBP3 

had no effect on the GTase or TPase activity of its cognate EcPBP1B [(Egan et al., 2015) and 

Khai Bui, unpublished]. Despite the homology between BsPBP2B and BsPBP3, the latter 

modulated the activity of BsPBP1 differently in vitro, where BsPBP3 had no effect on the GTase 

activity but reduced the TPase activity of BsPBP1. Taken together, class B PBPs may have 
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dissimilar roles in the PG synthesis process by differentially modulating the activity of the class 

A BsPBP1.  

The formation of a multi-protein complex in E. coli was previously described between cell 

division proteins (Egan et al., 2015; Trip and Scheffers, 2015). Thus, we tested if a ternary 

complex exists in B. subtilis between PBP1, PBP2B and PBP3 since binary interactions 

between each protein was observed. Pull down experiments suggested that His-PBP3 only 

interacted with PBP2B despite the presence of PBP1 in the mixture. Moreover, the GTase 

activity of PBP1 increased 2 fold in the presence of PBP2B. However, the GTase activity of 

the synthase with PBP2B and PBP3 together was similar to that of PBP1 alone suggesting that 

stimulatory effect of PBP2B on the activity of PBP1 is blocked in the presence of PBP3. The 

loss of the stimulation could be caused by the destabilization of the PBP1-PBP2B interaction 

by PBP3 supported by the pull-down experiment, or by a direct effect of the PBP3 interaction 

on PBP1. However, more experiments are required to verify these suggestions. 

 

PG synthesis in B. subtilis 

Cells lacking the FtsZ regulators SepF and EzrA do not recruit the essential PG synthase 

BsPBP2B to the divisome, resulting in cell death (Hamoen et al., 2006). Moreover, EzrA 

interacts with GpsB and BsPBP1 and coordinates the recruitment of the synthase to the division 

site (Claessen et al., 2008; Cleverley et al., 2014; Tavares et al., 2008). Therefore, the 

recruitment of cell wall synthase seems to be regulated by cytosolic proteins that act as a 

scaffold to assemble the cell division machinery. In this work, we have shown an interaction 

between BsPBP1 and BsPBP2B in vitro suggesting that the recruitment of BsPBP1 to mid-cell 

is dependent on the physical presence and interaction of BsPBP1with the class B BsPBP2B, a 

model that has been observed as well in E. coli cells between EcPBP3 and its cognate EcPBP1B 

(Bertsche et al., 2006; Scheffers and Errington, 2004). BsPBP3 was recruited at later stages in 

the cell cycle and its recruitment was dependent on BsPBP2B. However, the biochemical 

characterization of BsPBP3 in vitro suggests three criteria for BsPBP3. First, BsPBP3 showed 

a significantly higher CPase than TPase activity in assays with BsPBP1. CPases are thought to 

have a role in the regulation of cell shape by limiting the availability of pentapeptides as donor 

substrates for TPase reactions, hence regulating the extent of cross-linking in PG (Potluri et al., 

2010). Second, PBP3 reduced the TPase activity of BsPBP1. Third, BsPBP3 diminished the 

stimulatory effect of BsPBP2B on the GTase activity of BsPBP1. Taken together, we propose 

that BsPBP3 is recruited late to mid-cell to finalise the septal PG synthesis by reducing the 
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activity of the main synthase and dissociating the BsPBP2B-PBP1 complex. This hypothesis 

correlates with partial complementation of BsPBP3 to the BsPBP2B*, however, it does not take 

into account the presence of other proteins in the divisome complex that might be modulate PG 

synthesis. Therefore, for future work, if BsPBP3 is indeed playing a role in the termination of 

the septal PG synthesis then the overexpression of BsPBP3 should cause a delay or a block in 

cell division leading to the formation of longer cells.   

The lipid II flippase EcFtsW interacts with EcPBP3 and recruits it to mid-cell during cell 

division (Derouaux et al., 2008; Fraipont et al., 2011; Mohammadi et al., 2014). EcPBP3 also 

interacts with EcPBP1B and recruits it (Bertsche et al., 2006). Therefore, EcPBP3 is possibly 

recruiting the synthase EcPBP1B to the lipid II substrate at midcell by interacting with EcFtsW 

and EcPBP1B. The interaction between MtPBP3 and MtFtsW in Mycobacterium tuberculosis 

was also observed suggesting that the interaction of the lipid II flippase with a cognate PBP is 

conserved across several bacterial species. In B subtilis, the recruitment of BsFtsW to midcell 

is interdependent on the localisation of BsPBP2B and FtsL (Gamba et al., 2016). Moreover, 

BsPBP2B interacts with BsFtsW (Richard Daniel, unpublished). Therefore, perhaps the non-

catalytic domain of BsPBP2B is essential in B. subtilis due to its role in the recruitment of cell 

division proteins to midcell where the lipid II is being delivered by BsFtsW. Hence, the inability 

of BsPBP3 to complement the loss of BsPBP2B may be caused by the absence of interaction 

with the flippase BsFtsW or other essential cell division proteins such as FtsL or DivIC.   

B. subtilis has four class A PBPs, PBP1, PBP2c, PBP4 and PBP2d (Section 1.3.1). Cells lacking 

the four class A PBP were viable and an unknown GTase activity in this quadruple mutant was 

detected (McPherson and Popham, 2003). Recently, RodA, a presumed lipid II flippase, was 

suggested to be the missing GTase and responsible for PG synthesis in the quadruple mutant 

(Meeske et al., 2016). This hypothesis was based on the ability of the RodA overexpression to 

alleviate the growth and morphology defects of the quadruple mutant. Partially purified RodA 

showed weak PG polymerization activity, however, the purity of the protein was low which 

makes it unclear whether the detected activity was from RodA or a contaminant. Another paper 

by the same group suggested that EcFtsW has a similar GTase activity to RodA and proposed 

the cytoskeleton-directed SEDS/bPBP (class B PBPs) model for PG synthesis highlighting the 

separation of labour between the class A PBP system and the SEDS/bPBP system in E. coli 

(Cho et al., 2016). In B. subtilis, the localisation of BsPBP1 is dependent on the presence of  

BsPBP2B and our results shows that class A BsPBP1 interacts with two class B BsPBP2B and 

BsPBP3 (Scheffers and Errington, 2004). Therefore, these results suggest a collaboration 
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between class A and B PBPs and SEDS proteins to synthesise the PG regardless of being SEDS 

being glycosyltransferases or not.  
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5 Characterization of the role of YrrL  

5.1 Introduction 

A synthetic lethal screen for regulators of the PG synthase PBP1B in E. coli identified a 

membrane bound potential lytic transglycosylase, MltG (Yunck et al., 2016). MltG interacted 

with PBP1B by bacterial two-hybrid assay and was described as a terminase for peptidoglycan 

polymerization in E. coli (Yunck et al., 2016). Since MltG is suggested to be part of a conserved 

lytic transglycosylase enzyme family, a sequence comparison was conducted using the 

SubtiList web address (http://genolist.pasteur.fr/SubtiList/) in search for a B. subtilis 

homologue. A hypothetical protein, named YrrL, with a YceG-like superfamily domain was 

identified with 32% amino acid sequence identity and 50% similarity to MltG (Figure 3.53). To 

characterize the role of YrrL the corresponding gene was deleted and the effect of such deletion 

on cell morphology was studied using fluorescence microscopy. A homologue for YrrL, YocA, 

was also identified within the B. subtilis proteome and was suggested to have the YceG-like 

superfamily domain. YocA showed 23.8% amino acid sequence identity and 55.8% similarity 

to YrrL. To characterise the potential role of YrrL in PG synthesis or hydrolysis, the full length 

protein was purified and tested in vitro. YrrL was tested for interaction with PBP1 or PBP2B 

using in vitro crosslink/pull-down assays and SPR. The effects of such interactions on the 

GTase and TPase activities of PBP1 were also characterised using various enzymatic assays.  

 

5.2 The effect of yrrL or yocA deletions on cell morphology 

To study the effect of the absence of YrrL on cell morphology, the yrrL gene was replaced with 

an erythromycin resistance cassette in the 168CA strain, and the morphology of the mutant was 

characterised using fluorescence microscopy. The loss of YrrL had no effect on the cell 

morphology during vegetative growth when grown in nutrient rich media at 37˚C (Figure 3.48). 

The effect of yocA deletion on cell morphology was also studied using florescence microscopy. 

The ΔyocA mutant had a similar morphology to 168CA with an occasional mild chaining 

phenotype during exponential phase suggesting a delay in cell separation (Figure 3.48).   
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5.3 The effect of the double deletion of yrrL and yocA on the cell morphology 

Cells lacking either yrrL or yocA had similar morphology to wild type cells. Thus, a strain 

lacking both genes, yrrL and yocA, was constructed and morphologically characterised using 

fluorescence microscopy. Cells lacking both genes were viable and the majority of the cells had 

a similar morphology to wild type cells (Figure 3.49 A). However, a few cells (10% of cells) 

were bloated or wider than 168CA cells (Figure 3.49 B). Bulges were also observed at the cell 

periphery and sometimes even lysis. Using fluorescence microscopy with a membrane stain 

showed white foci along the periphery of the cell (Figure 3.49 B). These results suggest that the 

deletion of yrrL and yocA causes alterations in the membrane integrity which occasionally leads 

to cell lysis.  

 

 

 

 

 

 

ΔyrrL ΔyocA168CA

Figure 3.48 Morphology of 168CA, ΔyrrL or ΔyocA mutants 

Phase contrast and cell membrane stained images of 168CA, ΔyrrL or ΔyocA mutants. ΔyrrL or ΔyocA 

cells had similar morphology to wild type cells, with ΔyocA having a mild chain morphology. Scale 

bars: 4 µm. 
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5.4 Purification of YrrL 

The TMHMM server (http://www.cbs.dtu.dk/services/TMHMM-2.0/) predicted that YrrL, 

similar to MltG, has a transmembrane helix (Sonnhammer et al., 1998). The use of the SignalP 

prediction server (http://www.cbs.dtu.dk/services/SignalP/) did not identify an amino acid 

sequence recognised by peptidases suggesting that YrrL, like MltG, is a membrane bound 

protein (Petersen et al., 2011). Based on this prediction, yrrL was cloned into an expression 

plasmid pET28(a)+ using ligase free cloning (sections 2.6.2). E. coli BL21(DE3) cells were 

used for the expression of YrrL with an N-terminal hexahistidine tag (His-YrrL). Cells were 

harvested and YrrL was purified from the solubilised membrane fraction using affinity 

chromatography and ion exchange chromatography (section 2.10.7). Affinity chromatography 

using Ni-NTA was first performed to purify His-YrrL (Figure 3.50 A). The hexahistidine tag 

was removed using thrombin. The second purification step consisted of ion exchange 

chromatography. Protein Calculator v3.4 predicted YrrL to have a  positive charged of +18.3 at 

pH 6.0. Thus, a HiTrap SP HP column was used to further purify YrrL. Samples were dialysed 

to pH 6.0 which promoted the binding of YrrL to the column followed by the elution of the 

protein using a gradient of elution buffer with 1 M NaCl and pH 7.5. Collected fractions from 

the two chromatography steps were analysed by SDS-PAGE (Figure 2.50 A and B). Typically, 

2.3 mg of YrrL per litre of culture was obtained.  

 

 

ΔyrrL ΔyocA

A B

Figure 3.49 Morphology of 168CA Δyrrl ΔyocA cells 

Phase contrast and cell membrane stained images of 168CAΔyrrl ΔyocA mutant. The majority of cells 

had similar morphology to 168CA (A). However, we observed few cells to have a mildly bloated shape 

(B). Membrane stain showed white foci along the periphery suggesting cell lysis. Scale bars: 4 µm. 
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5.5 YrrL had no activity against PG  

MltG is a potential lytic transglycosylase with a weak endoglycosidase activity (Yunck et al., 

2016). The activity of YrrL was tested against PG from B. subtilis cells at pH 7.5 or 5, in the 

presence of 20 or 150 mM NaCl, and with or without MgCl2 and CaCl2. After overnight 

incubation with PG at 30 or 37˚C, samples were pelleted and the supernatant was reduced and 

analysed by HPLC. However, no muropeptides were detected suggesting that YrrL has no 
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Figure 3.50 Purification of YrrL 

SDS-PAGE analysis shows the fractions of YrrL purification steps. Gels were stained with Coomassie 

blue 

(A) IMAC purification of His-YrrL. S, soluble fraction; Ap, applied fraction; FT, flow-through; M, 

Protein size marker (Fermentas PageRuler); W1-W3, wash fractions; E1-E3, elution fractions. The 

theoretical molecular weight of His-YrrL is 46 kDa. 

(B) IEX of the purified YrrL after thrombin cleavage. M, Protein size marker; the bands in E3 to E10 

fractions with an apparent molecular weight of 44 kDa correspond to YrrL. The bands above the marker 

and YrrL are gel artefacts due to unknown reasons.  
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activity on PG under the conditions tested. Since MltG is potentially interacting with the cell 

division synthase PBP1B in E. coli, the activity of YrrL was tested in the presence of B. subtilis 

PBP1, PBP2B and PBP3. As before, the supernatant from samples containing YrrL and one or 

multiple PBPs with B. subtilis PG were analysed by HPLC. However, no muropeptides were 

detected in all samples tested suggesting the absence of muropeptides released into the 

supernatant. Hence, YrrL showed no activity against tripeptide-rich PG isolated from 168CA 

cells. The activity of YrrL was also tested against pentapeptide rich PG isolated from 168CA 

ΔdacA mutant cells, but no activity was observed. These results suggest that YrrL is inactive in 

vitro against B. subtilis PG under the conditions tested.  

 

5.6 YrrL interacts with PBP1 

MltG presumably interacts with the PG synthase PBP1B in E.coli (Yunck et al., 2016). YrrL 

was tested for interaction with the cell division PG synthase, PBP1, by SPR and pull-down 

experiments using purified PBP1 and YrrL. First, an in vitro pull-down experiment was 

performed using Ni-NTA to test if a hexahistidine-tagged YrrL (His-YrrL) retains PBP1 

(section 2.10.1) and formaldehyde was used to stabilize possible weak interactions. SDS-PAGE 

analysis shows that His-YrrL bound to Ni-NTA and PBP1 was not retained by the beads in the 

absence of His-YrrL (Figure 3.51 A). PBP1 in the presence of His-YrrL appeared in both the 

applied and bound fractions suggesting that His-YrrL was able to pull down PBP1 indicating 

an interaction between the two proteins.   

The interaction between PBP1 and YrrL was investigated using SPR as a second method 

(section 2.10.2). First, ampicillin was immobilized to the sensor chip followed by the covalent 

binding of PBP1 via its TPase domain. The remaining free ampicillin was digested with β-

lactamase followed by a 1 M NaCl buffer wash of the chip surface. A surface without PBP1 

was prepared in the same way as a control. YrrL molecules were injected over the PBP1-surface 

and the control surface at concentration 500, 250, 125, 62.5 and 31.2 nM. Sensorgrams 

representing both surfaces showed a strong increase in signal during association upon YrrL 

injection. The PBP1-surface showed slightly higher signal than the control surface (Figure 3.51 

B). The signals for the PBP1-surface minus the control for YrrL injected at 250 and 500 nM 

overlapped suggesting a saturation of binding (Figure 3.51 C). The high signal over the control 

surface is caused by the unspecific binding of YrrL to the chip surface. Thus, further 

optimization of the condition is essential to decrease the signal generated by YrrL over the 
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control surface. Otherwise, an alternative method need to be used to confirm the interaction 

between the two proteins.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.51 Interaction of PBP1 with YrrL by in vitro crosslink / pull-down and SPR 

(A) Ni-NTA pull-down used to test if PBP1 and YrrL directly interact. Coomassie stained SDS-PAGE 

analysis for the His-YrrL and PBP1 sample shows both proteins in the applied and bound fractions 

suggesting that His-YrrL retained PBP1. His-YrrL efficiently bound to the bead and PBP1 was not 

pulled down in the absence of His-YrrL. A, Applied; B, bound fractions.  

(B) SPR sensorgrams showing the signal generated by the injection of Yrrl over the PBP1-surface or 

the control surface at concentration 31.2, 62.5, 125, 250 and 500 nM. The high signal on the control 

surface is caused by the unspecific binding of YrrL to the chip surface.     

(C) SPR sensorgram showing the response for the PBP1-surface minus control. The binding levels 

saturated at 250 nM injected YrrL concentration. 
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5.7 YrrL had no effect on the GTase activity of PBP1  

A GTase assay was used to study the activity of YrrL against dansyl-lipid II and the effect of 

YrrL on the GTase activity of PBP1. The fluorescence signal was monitored using a 

spectrophotometer. Based on DNA sequence analysis, YrrL is a lytic-transglycosylase and 

lacks a GTase domain. Consistent with this, no decrease in fluorescence was observed for YrrL 

alone, suggesting the absence of activity against lipid II (Figure 3.52). PBP1 with YrrL showed 

a similar decrease in fluorescence to PBP1 alone suggesting that YrrL has no effect on the 

GTase activity of PBP1.  

 

 

 

 

 

 

 

 

 

 

5.8 YrrL reduces the TPase activity of PBP1  

The activity of YrrL against radio-labelled lipid II and the effect of YrrL on the TPase activity 

of PBP1 was studied using the in vitro PG synthesis assay (section 2.11.4). YrrL alone had no 

activity against lipid II (Figure S5). The relative percentage of peptides in crosslinks decreased 

10.9% in samples containing YrrL and PBP1 compared to samples with PBP1 alone (Figure 

3.53). The activity of PBP1 and YrrL was also studied in the presence of 168CA PG or ΔdacA 

PG. A decrease of 7.5 and 5.0% in levels of peptides in crosslinks was identified for PBP1 with 
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Figure 3.52 The effect of YrrL on the GTase activity of PBP1 

The diagram represents the GTase activity of PBP1, PBP1 with YrrL or YrrL alone. A decrease in 

fluorescence suggests the presence of a GTase activity. YrrL alone has no activity against lipid II and 

has no effect of the GTase activity of PBP1. Values represent the mean ± standard deviation of three 

independent experiments. 
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YrrL compared to PBP1 alone in the presence of 168CA or ΔdacA PG, respectively. These 

results suggest that YrrL reduces the TPase activity of PBP1 in the presence or absence of PG. 

Moreover, the HPLC chromatogram representing the radioactive signal for muropeptides 

produced by PBP1with YrrL showed a small unknown peak (Figure S5). The peak eluted at 64 

min on a reversed phase column and represented 9.6% ± 0.5 of the total muropeptides. A similar 

peak was identified for PBP1 with YrrL in the presence of 168CA or ΔdacA PG. Due to the 

low levels of the unknown product in the aforementioned reactions, we were not able to identify 

the chemical structure of this component by mass spectrometry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.53 YrrL reduces the TPase activity of PBP1  

The level of cross-linked peptides in PG produced by PBP1 alone or PBP1 with YrrL in the presence 

or absence of 168CA or ΔdacA PG. The levels of muropeptides in crosslinks for PBP1 with YrrL 

significantly decreased compared to PBP1 alone suggesting that YrrL reduces the TPase activity of 

PBP1 in the presence or absence of PG. *, P<0.05; **, P<0.01 
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5.9 PBP2B interacts with YrrL  

To test if YrrL interacts with the class B PBP2B, pull-down assays and SPR were performed 

using purified YrrL and PBP2B. First, in vitro pull-down assays were used with Ni-NTA to test 

if His-YrrL retains PBP2B. Formaldehyde (0.2%) was used to stabilise possible weak 

interactions. For controls, beads were incubated with His-YrrL or PBP2B alone. SDS-PAGE 

analysis shows that His-YrrL bound to Ni-NTA and PBP2B was not pulled down by the beads 

in the absence of His-YrrL (Figure 3.54 A). PBP2B in the presence of His-YrrL appeared in 

both the applied and bound fractions suggesting that His-YrrL pulled down PBP2B. These 

results indicate that PBP2B interacts with YrrL.   

SPR was used as a second method to study the interaction between YrrL and PBP2B and 

determine the interaction KD. Ampicillin was immobilized to the sensor chip, followed by the 

covalent binding of PBP2B. The remaining free ampicillin was digested with β-lactamase, 

followed by a 1 M NaCl buffer wash of the chip surface. As a control, a surface without PBP2B 

was prepared in the same way. YrrL was injected at concentration 500, 250, 125, 62.5 and 31.2 

nM and the responses were recorded. An increase in the signal was observed upon the injection 

of YrrL over both surfaces during association (Figure 3.54 B). However, at equilibrium, the 

signal for the PBP2B surface was significantly higher than the control surface followed by a 

decrease in both signals during dissociation. The signal for the PBP2B-surface minus the 

control did not show saturation of binding at the injected PBP2B concentrations (Figure 3.54 

C). Although higher concentrations of injected YrrL are required to reach saturation, the SPR 

and the binding curves suggests that YrrL interacts with PBP2B.  

The KD of the interaction was calculated using SigmaPlot software based on the assumption of 

one interaction site with YrrL. The response values (RU) at equilibrium during the association 

phase were plotted against analyte concentrations (nM) to generate the binding curve (Figure 

3.54 D). The KD of the interaction of PBP2B with PBP3 was 101.6 ± 11.6 nM calculated from 

three independent experiments.  
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Figure 3.54 Interaction of PBP2B with YrrL by SPR and in vitro crosslink/pull-down  

(A) Pull down experiment performed to test if PBP2B and His-YrrL interact. Coomassie stained SDS-

PAGE analysis for the His-YrrL and PBP2B sample shows both proteins in the applied and bound 

fractions suggesting that His-YrrL retained PBP2B. His-YrrL efficiently bound to the bead and PBP2B 

was not pulled down in the absence of His-YrrL. A, Applied; B, bound fractions.  

(B) SPR sensorgrams showing the response for YrrL when injected over a surface with immobilized 

PBP2B or a control surface at concentrations 25, 50, 100, 300 and 500 nM. The PBP2B-surface 

exhibited a higher signal than the control surface during association suggesting an interaction between 

PBP2B and YrrL.  

(C) SPR sensorgram showing the response for the PBP2B-surface minus control. The saturation of 

binding was not achieved at the injected YrrL concentrations.  

The response values during equilibrium were plotted against the injected YrrL concentrations. 

The KD of the PBP2B-YrrL interaction was determined by non-linear regression using Sigma Plot 

software. The value is the average KD ± standard deviation of three independent experiments. 
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5.10 Conclusions and discussion 

MltG from E. coli (EcMltG) was proposed to be have an endolytic transglycosylase activity 

based on its ability to hydrolyse bonds at internal positions within the glycan polymer (Yunck 

et al., 2016). YrrL is the B. subtilis homologue of the lytic transglycosylase (LT) EcMltG, 

however, YrrL showed no activity against PG from wild-type cells or the ΔdacA mutant 

irrespective of the presence or absence of cell division PBPs. Therefore, it remains a conundrum 

what the activity of YrrL is and/or what activates it in the cell. The comparison of the amino 

acid sequence of YrrL and Lmo1499, a membrane bound lytic transglycosylase from Listeria 

monocytogenes (LmMltG), showed 67% similarity and 50% identity between the two proteins 

(Figure 3.55). EcMltG was also described to have high similarity with LmMltG, and both 

proteins featured a LysM domain, which is known to be involved in PG binding, and a catalytic 

domain close to the C-terminus of the protein (Figure 3.56) (Buist et al., 2008). Moreover, the 

LysM domain of YrrL had 49% sequence identity to the LysM domain of LmMltG. This 

sequence homology appears at the N-termini of both LTs close to the transmembrane domain 

region of the protein (Figure 3.55 and 3.56). These results suggest that the LysM domain of 

YrrL perhaps binds to the newly synthesised glycan strand in close proximity to the cytoplasmic 

membrane.  

Pulse chase studies indicated that the formation of the anhydroMurNAc sugar by LT enzymes 

occurs shortly after lipid II polymerization (Burmant and Park, 1983; Glauner and Höltje, 

1990). This result suggests that LT enzymes exist in close proximity to PG synthases or as part 

of the PG synthesis machinery. Moreover, EcMltG interacts with PBP1B by bacterial two-

hybrid (Yunck et al., 2016). Consistent with these results, YrrL interacts with two cell division 

synthases PBP1 and PBP2B. Moreover, the interaction between YrrL and PBP1 had no effect 

on the GTase activity of the synthase, however, YrrL significantly reduced the TPase activity 

of PBP1. These results suggest that lytic transglycosylases like YrrL and MltG might modulate 

PG synthesis not only through their catalytic activities but also by regulating the activities of 

PG synthases.  

The absence of MltG from S. pneumoniae cells caused a round cell morphology, suggesting a 

role in cell elongation (Tsui et al., 2016). Conversely, the interaction of EcMltG with the cell 

division synthase EcPBP1B suggests that MltG is part of the cell division machinery. In B. 

subtilis, YrrL interacted with the cell division synthase BsPBP2B, however, the absence of both 

YrrL and YocA resulted in occasionally bloated cells and bulges at the lateral cell wall. 

Therefore, based on the existing results it is not clear what role YrrL plays in B. subtilis.  
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Figure 3.55 Amino acid sequence alignment for L. monocytogenes MltG and YrrL     

The amino acid sequence analysis for LmMltG and YrrL showed 67% similarity and 50% 

identity between the two proteins. The amino acid sequence analysis of the LysM domain 

(Black Square) of YrrL and LmMltG identified 41% identity and 63% similarity. *, highly 

conserved residues within the LysM domain. †, MltG active site 

Figure 3.56 The crystal structure of MltG from L. monocytogenes 

Cartoon representation of the structure of LmMltG (Lmo1499) from the PDB data base (PDB 

ID: 4IIW) (http://www.rcsb.org/pdb/home/home.do). 180˚ rotation of LmMltG structure along 

the Y axis. The active site is in red and the LysM domain is in green. Blue arrows indicate the 

N- or C-terminus of the protein.  
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 Association between PG synthases and lytic transglycosylases 

Koch and Doyle proposed the inside-to-outside model for PG growth in Gram-positive cells 

(Koch and Doyle, 1985). In their model, the synthesis of new PG material occurs at the 

innermost layer of the sacculus close to the cytoplasmic membrane whereas the hydrolysis of 

the PG happens at the outermost layer. The PG protects the cell from rupture and maintains cell 

shape hence, its enlargement must occur by a safe mechanism to avoid defects that could lead 

to lysis. Despite progress made in the understanding of PG growth, the molecular mechanisms 

of cell wall growth are largely unknown particularly in Gram-positive bacteria. B. subtilis has 

at least five hypothetical lytic transglycosylases (YomI, SleB, CwlQ, YuiC and SleC) only 

known to play roles in the lysis of the spore cortex for germination (Kumazawa et al., 2007; 

Quay et al., 2015; Smith et al., 2000; Sudiarta et al., 2010). Recently, Bernhardt and colleagues 

identified a potential membrane bound LT with endo-lytic activity in E. coli named MltG that 

interacts with the PG synthase EcPBP1B (Yunck et al., 2016). The absence of MltG resulted in 

increased average length of the glycan strand suggesting a role in chain length determination. 

Moreover, EcPBP1B interacts with the lytic transglycosylase MltA via the scaffold protein 

MipA (Vollmer et al., 1999). Slt, another LT from E. coli, selectively interacted with PBP3 and 

PBP7/8 supporting a multi-protein model that includes both synthases and hydrolases (Romeis 

and Höltje, 1994). As shown in this work, the lytic transglycosylase homologue from B. subtilis 

YrrL interacted with the class A and B PG synthases PBP1 and PBP2B. Moreover, YrrL 

modulated the TPase activity of the synthase PBP1 in the presence or absence of PG. The lack 

of enzymatic activity and the limited knowledge about YrrL made it challenging to understand 

the role of such a protein in PG synthesis. However, based on our current knowledge, we 

propose that hypothetical LT enzymes in B. subtilis may not only be associated with lysis of 

the spore cortex but also with PG synthesis complexes. However, more experimental evidences 

are required to characterize the function of YrrL in the cell.  
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Table S1  List of primers used in this study 

Name 
Restriction 

site 
5’-3’ sequence Reference/comment 

AG124 - CCATCATCTGGTGCGAAAGG ponA seq F 

AG125 - CCGCAAAGCCGATTAATTGG ponA seq R 

JS01 - AAGCACACGCAGGTCATTTG 
Check for integration into 

aprE 

JS02 - CCATCCGTCGATCATGGAAC 
Check for integration into 

aprE 

JS05 SalI 
CGGTCGACGCTTGTTGTTGAT

TACATTGAGGTG 

5’ ugtP (construction of 

pJS01) 

JS06 SphI 
CTGCATGCCGTATGCTCTCAA

GTACGCC 

3’ ugtP (construction of 

pJS01) 

JS07 BamHI 
GTGGATCCGTGACAGAGGCA

CCCGCTTC 

5’ pgcA (construction of 

pJS02) 

JS8 SacI 
GCGAGCTCAGCCGGATCATTT

ACAATGAC 

3’ pgcA (construction of 

pJS02) 

JS09 SalI 
GAGTCGACCGATCATAAGGA

AGGTGC 

5’ gtaB (construction of 

pJS03) 

JS10 EcoRI 
GTGAATTCGCCGTTGATCAGG

TCTTCGCAG 

3’ gtaB (construction of 

pJS03) 

JS17 - 
GTGGCGACAGATTACGTGAA

GG 
5’ ugtP for sequencing 

JS18 - 
TTGCTTGGATGAGTGCCGATC

TCCAG 
3’ ugtP for sequencing 

JS19 - 
CTCCACTGTTACATCGCCGAA

CC 
5’ pgcA for sequencing 

JS20 - 
TCGCGTTTACCTGCTCAATGA

C 
3’ pgcA for sequencing 

JS35 - 
TCCGTTTCCCGCATCTCAGCC

TC 

5’ ponA upstream 

(construction of JS06) 

JS36 - 
CCGTTCCCAAGACTGTTAAAC

C 

3’ ponA downstream 

(construction of JS06) 

JS43  
GAAAGCGCCCTTTCCGATATT

AC 

5’ gtaB upstream 

(construction of JS07) 

JS46  
CCTCTTCCAAAGTAATATCGA

CACATGC 

3’ gtaB downstream 

(construction of JS07) 

JS49 - ACCACCAGTGATTATGCC 
Check for integration in 

amyE (5’) 

JS50 - 
CCGCTCGCCATGACTTCACTA

AC 

Check for integration in 

amyE (3’) 
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JS51 XbaI 
TCTAGAACGCTAGCACCCATT

AGTTCAACAAACG 

Amplification of Cm cassette 

from PCotC-cotC-gfp (5’) 

JS53 BsgI 
CGTGCAGAATTCGTACAGTCG

GCATTATCTC 

Amplification of Cm cassette 

from PCotC-cotC-gfp (3’) 

JS56 - 
GCTCTAGATTTCGGTAATCAG

CTCATCAAG 

5’ ponA downstream 

(construction of JS06) 

JS57 XbaI 
GCTCTAGATCACGGCTGTTAA

ATTGATCTG 

3’ ponA upstream 

(construction of JS06) 

JS59 NdeI 

GCGCCATATGTTAAAAAAGTG

TATTCTACTAGTATTTCTATGC

GTCGGATTG 

5’ pbpC (construction of 

pJS05) 

JS60 BamHI 
GCGGATCCTAGTTCATTCGGC

CTCAGATCCC 

3’ pbpC (construction of 

pJS05) 

JS63 NdeI 
CGCATATGTGGGATCGCATGG

AAGCATTCGTGAAAC 

5’ pbpC (construction of 

pJS06) 

JS67 XbaI 
CGCTCTAGAAAGACGGTTCGT

GTTCGTGCTGAC 

Amplification of erm cassette 

from pMUTIN4 (5’) 

JS68 EcoRI 
CGCGAATTCAGCTCCTTGGAA

GCTGTCAGTAG 

Amplification of erm cassette 

from pMUTIN4 (3’) 

JS69 XbaI 
CGCTCTAGAAGCCTGCTGCTG

GAATTATGGCTTTACG 

3’ gtaB upstream 

(construction of JS07) 

JS70 EcoRI 
CAGGAATTCGCTCTTCATTAT

CAACTGCGAAGAC 

5’ gtaB downstream 

(construction of JS07) 

JS79 - CAAGCAGCTGGCTGACGAC pbpC internal for sequencing  

JS80 - AGGACGGCGAGGATCTTCAC pbpC internal for sequencing 

JS81 - CCCGATCCAGAAATCGTC pbpC internal for sequencing 

JS82 - 
CCCTACAGTGTTATGGCTTGA

ACAATC 
5’ Phy-spank for pDR111 

JS83 - 
CCCTACAGTGTTATGGCTTGA

ACAATC 
3’ amyE for pDR111 

JS84 NheI 
GCGCTAGCCGCATGATTCAAA

TGCCAAAAAAG 

5’ pbpB (construction of 

pJS07) 

JS85 BamHI 
GGATCCGCGGTAGAACGATG

CTCCTCTGAAG 

3’ pbpB (construction of 

pJS07) 

JS88 - GTCTGTGCTTGAGGATAAGG lytE upstream  

JS89 - GATCCGTTTGCGTGTTTC lytE downstream  

JS90 - 
CCCGCTCCCGACATTCCAGTT

ATAATGAC 
cwlO upstream 
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JS91 - 
GTTAATGGCTTCCCATGGCCT

TTACC 
cwlO downstream 

JS93  GGTGATTGTAATGAAGCTCAG 3’ ugtP  downstream 

JS94 NheI 

CGGCTAGCTGTATTCAAATAA

CCGGAAAAGCGAACGGCGAA

G 

5’ pbpB (construction of 

pJS08) 

JS95 - 
AAGCGACAAATCCGGCTGGG

AG 
pbpB internal for sequencing 

JS98 - GTGGCAGCAGCCAACTCAG 5’ PT7-promotor for pET-28a(+)  

JS99 - GCCACGATGCGTCCGGCGTAG 3’ PT7-terminator for pET-28a(+) 

JS100 EagI 
GAACGGCCGAGCTCCTTGGA

AGCTGTCAGTAG 

Amplification of erm cassette 

from pMUTIN4 (3’) 

JS101 - CTGCGAGAGAACACCTTGAC 
5’ S827 upstream 

(construction of JS32) 

JS102 XbaI 
CGTCTAGAACGCCATTACGAT

AGCAC 

3’ S827 upstream 

(construction of JS32) 

JS103 EagI 
CACGGCCGATATTCAGCCATC

AATAAAAGCGGTTAC 

5’ S827downstream 

(construction of JS32) 

JS104 SphI 
GAGCATGCCCGTCAAGTTGCG

AAACGGCTTAT 

3’ ugtP (construction of 

pJS04) 

JS128 - 
ATGGCTAGCATGACTGGTGGA

C 

5’ to amplify pET-28a(+) for 

ligase free cloning 

JS129 - 
ATGGCTGCCGCGCGGCACCA

G 

3’ to amplify pET-28a(+) for 

ligase free cloning 

JS130 - 

CTGGTGCCGCGCGGCAGCCAT

ATGCCAAAAAAGAATAAATT

TATGAATAGAG 

5’ pbpB* (construction of 

pJS09) 

JS131 - 

TGTCCACCAGTCATGCTAGCC

ATGCCTGCATAACGACGGCTT

TC 

3’ pbpB* (construction of 

pJS09) 

JS132 - 

CTGGTGCCGCGCGGCAGCCAT

ATGTTAAAAAAGTGTATTCTA

CTA 

5’ pbpC* (construction of 

pJS10) 

JS133 - 

TGTCCACCAGTCATGCTAGCC

ATGTTCATTCGGCCTCAGATC

CC 

3’ pbpC* (construction of 

pJS10) 

JS134 - 

CTGGTGCCGCGCGGCAGCCAT

ATGTATATCAATCAGCAAAAA

AAATCG 

5’ yrrL (construction of 

pJS11) 
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JS135 - 

TGTCCACCAGTCATGCTAGCC

ATGCGGAAAGCGAACAAAAG

GAGAG 

3’ yrrL (construction of 

pJS11) 
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Figure S1 HPLC chromatograms corresponding to Figure 3.39 and 3.40 

HPLC analysis of new peptidoglycan synthesised by PBP1 alone, PBP1 with PBP3, PBP1 with PBP3* 

or PBP3 alone. Muropeptide peaks are annotated as in Figure 2.5. 
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Figure S2 HPLC chromatograms corresponding to Figure 3.39 and 3.40 

HPLC analysis of new peptidoglycan synthesised by PBP1 alone, PBP1 with PBP3 or PBP1 with 

PBP3*, in the presence of PG from 168CA cells or ΔdacA mutant. Muropeptide peaks are annotated as 

in Figure 2.5. 
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Figure S3 HPLC chromatograms corresponding to Figure 3.44 (A) and (B) 

HPLC analysis of new peptidoglycan synthesised by PBP1 alone, PBP1 with PBP2B, PBP1 with 

PBP2B* or PBP2B alone. Muropeptide peaks are annotated as in Figure 2.5. 
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Figure S4 HPLC chromatograms corresponding to Figure 3.44 (A) and (B) 

HPLC analysis of new peptidoglycan synthesised by PBP1 alone, PBP1 with PBP2B or PBP1 with 

PBP2B*, in the presence of PG from 168CA cells or ΔdacA mutant. Muropeptide peaks are annotated 

as in Figure 2.5. 
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Figure S5 HPLC chromatograms corresponding to Figure 3.53 

HPLC analysis of lipid II or of new peptidoglycan synthesised by PBP1 alone, PBP1 with YrrL or YrrL 

alone. Muropeptide peaks are annotated as in Figure 2.5. The muropeptide of Peak number 7 is 

unknown. 
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Figure S6 HPLC chromatograms corresponding to Figure 3.53 

HPLC analysis of new peptidoglycan synthesised by PBP1 alone or PBP1 with YrrL, in the presence 

of PG from 168CA cells or ΔdacA mutant. Muropeptide peaks 1-6 are annotated as in Figure 2.5. The 

muropeptide of Peak number 7 is unknown. 
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