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Abstract

This thesis focuses upon text independent closed set speaker

identification. The contributions relate to evaluation studies in the

presence of various types of noise and handset effects. Extensive

evaluations are performed on four databases.

The first contribution is in the context of the use of the Gaussian

Mixture Model-Universal Background Model (GMM-UBM) with

original speech recordings from only the TIMIT database. Four main

simulations for Speaker Identification Accuracy (SIA) are presented

including different fusion strategies: Late fusion (score based), early

fusion (feature based) and early-late fusion (combination of feature and

score based), late fusion using concatenated static and dynamic

features (features with temporal derivatives such as first order

derivative delta and second order derivative delta-delta features,

namely acceleration features), and finally fusion of statistically

independent normalized scores.

The second contribution is again based on the GMM-UBM

approach. Comprehensive evaluations of the effect of Additive White

Gaussian Noise (AWGN), and Non-Stationary Noise (NSN) (with and

without a G.712 type handset) upon identification performance are

undertaken. In particular, three NSN types with varying Signal to

Noise Ratios (SNRs) were tested corresponding to: street traffic, a bus

interior and a crowded talking environment. The performance

evaluation also considered the effect of late fusion techniques based on

score fusion, namely mean, maximum, and linear weighted sum fusion.

The databases employed were: TIMIT, SITW, and NIST 2008; and 120

speakers were selected from each database to yield 3,600 speech

utterances.



The third contribution is based on the use of the I-vector, four

combinations of I-vectors with 100 and 200 dimensions were employed.

Then, various fusion techniques using maximum, mean, weighted sum

and cumulative fusion with the same I-vector dimension were used to

improve the SIA. Similarly, both interleaving and concatenated I-vector

fusion were exploited to produce 200 and 400 I-vector dimensions. The

system was evaluated with four different databases using 120 speakers

from each database. TIMIT, SITW and NIST 2008 databases were

evaluated for various types of NSN namely, street-traffic NSN,

bus-interior NSN and crowd talking NSN; and the G.712 type handset

at 16 kHz was also applied.

As recommendations from the study in terms of the GMM-UBM

approach, mean fusion is found to yield overall best performance in terms

of the SIA with noisy speech, whereas linear weighted sum fusion is

overall best for original database recordings. However, in the I-vector

approach the best SIA was obtained from the weighted sum and the

concatenated fusion.
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Chapter 1

Introduction

1.1 Background to Speaker Identification

Speaker recognition systems recognize individuals using their voice biometric. Such

systems locate an individual’s identity based upon who they are, rather than what

they have or remember, such as an ID card or password. Speaker recognition itself

is the operation of automatically recognizing who is speaking, depending on

individual information contained in speech waves. This information is then

compared to the entire biometric authentication across several biometric

samples [2]. Speaker recognition can be achieved by identification and verification

systems to verify an individual’s purported identity from their voice. Verification

systems are slightly different from speaker identification, which decides if a speaker

is a particular person or is among a group of individuals [3]. With speaker

identification, human speech from an individual is used to identify who is

speaking. Fig. 1.1 provides a general block diagram of a speaker identification

system. This system has two main stages, training and testing. Training, which is

also called enrolment, involves the training process for all speakers who are to be

identified, including the speech from each individual; testing processes are used to

match the training and testing samples to the same speaker, as well as to recognize

different speakers. Usually, the training phase is conducted off-line as a portion of

the system formation and before the system is circulated. In testing, the true

operation of the system is carried out, and the speech from an unidentified

utterance is compared online against each of the trained speaker models [4].

Fig. 1.2 illustrates the speaker recognition tasks. Fig. 1.2-Part A illustrates how a

1



1.1 Background to Speaker Identification

 

Speech  

 

Utterance 

 ADC 
 

Feature 

Extraction 

Digital Sample 

Data 

Pattern 

Matching 

Classification 

Build 

Speaker 

Models 

Speaker 

Models 

Most 

likely 

Speaker 

model 

Verified 

Speaker ID 

Feature Vectors  

 

frames 

Feature 

Vectors frames 

Testing  

Training 

Speaker            

Identified 

 

Figure 1.1: Block Diagram of a Speaker Identification System [3]

voice, a language or words can be recognised. A speaker identification system can

be categorized into two types: closed and open set, and this is shown in Fig. 1.2

Parts B, C and D, which show closed set speaker identification, open set speaker

identification, and speaker verification, respectively. Generally, speaker

identification is one to N matching (where N is the number of speakers).

With closed set identification, the unknown individual belongs to a pre-existing

pool or database of speakers (speaker models), and the next step is to match a

speaker from the pool with the unknown speech [4]. Closed set identification is an

exemplary independent community where the group members are known in terms

of their speaker profiles, which are kept in a database. Identification is thus within

this section and no users from outside are included within the model [4] [5],

Fig. 1.2, Part B illustrates this task.

In open set identification, as depicted in Fig. 1.2 Part C, the unknown individual

originates from the general population [4] [5]. Most speaker identification

applications are open set, meaning that the unknown speaker may not be within

the group of speaker models. In this situation, if no acceptable match is achieved,

a no-match decision is provided [5]. Thus, the main aim of an open set

identification system is to reveal whether the speaker belongs to the database of
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1.1 Background to Speaker Identification

 

Figure 1.2: The Speaker Recognition Tasks: (A) Speaker, Language and Speech
Recognition; (B) Task 1: Closed Set Speaker Identification; (C) Task 2: Open Set
Speaker Identification; (D) Task 3: Verification, Detection and Authentication

unknown speakers, and the speaker is rejected if they do not belong to the

pool [4] [5].

With speaker verification, human speech from an individual is used to verify

the purported identity of that individual via one to one matching, as explained in

Fig. 1.3 and in Fig. 1.2 Part D [3]. In this situation, the unknown speech sample is

matched only with the speaker model whose label is identical to that of the

identity being examined. If the value of the matching is suitable, the identity claim

is accepted, but rejected if the claim is otherwise. For a one-speaker target group

speaker verification is a particular case of open-set speaker identification. Only one

comparison is required in a speaker verification trace; therefore, the performance of

speaker verification is independent of speaker population size [4]. As in speaker

identification, the initial formation of the system is executed through enrolment or

training by verifying each speaker in the system, using samples of speech provided

to train the model to the speaker. In testing, verification happens when the person

3
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Figure 1.3: Block Diagram of a Speaker Verification System [3]

has to produce a claim as to who they are, and then the system verifies if the claim

is true or false. The speech of an unknown individual in speaker verification is

compared against each claimed identity and all other speakers or background

models or the imposter. Then, the proportion of the two measures is taken and

matched to a threshold; if the ratio is above the threshold, then the claim is

accepted, but if the ratio is below the threshold then the claim is rejected as

false [3].

In speaker detection, a third task of speaker recognition has recently been defined

by the National Institute of Standards and Technology (NIST). In this task, an

unknown speech sample is provided to determine whether one of a specific set of

known speakers is present in the sample. When the unknown sample includes

another speech from more than one speaker, then the task is more complicated.

An example of this could be a telephone conversation between two people. In this

situation, a further task called speaker tracking is possible; when the detected

speaker is talking, it is essential to locate the inter values in the test sample [3].

One other application of speech detection concerns multi-speaker speech samples

for speaker tracking, indexing and segmentation [4].
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1.2 Aims

The main aim of this study is to investigate a new robust closed set speaker

identification system using four feature combinations based on Mel Frequency

Cepstral Coefficients (MFCC) and Power Normalized Cepstral Coefficients

(PNCC). For each feature extraction method, two types of normalization are

employed, Cepstral Mean and Variance Normalization (CMVN) and Feature

Warping (FW). The aims can be summarized as as follows:

• To use two different approaches to improve Speaker Identification Accuracy

(SIA) with two different state of the art models using Gaussian Mixture Model-

Universal Background Model (GMM-UBM) and I-vector, and to determine

their effects in modelling speakers and identifying them. Fair comparisons will

then be made between the two models.

• To study the effect of two classifier methods on the SIA, the traditional Log-

Likelihood Ratio (LLR), and the Extreme Learning Machine (ELM).

• To test the system using 120 speakers from four databases (in total 480

speakers with 4,800 speech utterances): TIMIT Acoustic-Phonetic

Continuous Speech Corpus, the Speakers In The Wild (SITW) Speaker

Recognition Challenge, the 2008 NIST Speaker Recognition Evaluation

Training Set Part 2-2011, and the NTIMIT telephone bandwidth version of

TIMIT database (Network TIMIT).

• To study the quantitative perspective of noise and handset effects on SIA for

two models, GMM-UBM and I-vector, by adding various background noises

with handset when testing the speaker identification system through a wide

range of Gaussian mixture components, namely: mixture sizes {8, 16, 32,

64, 128, 256, 512} in original speech recordings and seven ranges of Signal to

Noise Ratio Levels (0-30 dB) with step size 5 dB for challenging environments,

utilizing Additive White Gaussian Noise (AWGN), and different types of Non-

Stationary Noise (NSN). These are street traffic, a bus interior, and crowd

talk.

• To provide fair comparisons between different databases, and between

different approaches of I-vector and GMM-UBM, in addition to creating
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multi-dimensional I-vectors, and then studying their effects on the SIA.

• This study provides benchmark evaluations of three databases for other

researchers working in the speaker identification field.

1.3 Motivation

Although the GMM-UBM approach is well established, no previous study has

comprehensively considered three databases, one of which only appeared in 2016,

nor the effect of such a wide range of NSN and handset effects. However, many

researchers have used the I-vector for speaker verification, and in this study a

multi-dimensional fusion-based I-vector model are exploited for speaker

identification with a thorough evaluation using four databases with a wide range of

environmental noise conditions.

1.4 Objectives

The main objective in this thesis is to exploit different fusion techniques to

improve the SIA. For this purpose, this study presents seven fusion methods:

weights, maximum, mean, cumulative, interleaving, and two types of concatenated

fusion I-vectors. In addition, the study applies both the Cepstral Mean and

Variance Normalization (CMVN) and Feature Warping (FW) to mitigate noise

and linear channel effects. Furthermore, the same settings are applied by using the

same number of utterances, sampling rate, speaker numbers, and number of

training and testing samples etc. Particular data from the SITW determines which

is fusion-based.

1.5 Difficulties with a Speaker Identification

System

Many factors can contribute to verification and identification errors. Some of these

problems are caused by humans while others are environmental. These problems

include [6] [7]:
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• Human Comprehension: words generally come spontaneously even though

there is a grammatical structure, and statistical methods have improved the

prediction of words; however, there remains a problem with modelling world

knowledge.

• Body language: human speakers use body gestures, such as waving hands,

moving eyes etc. but in Automatic Speaker recognition, such paralinguistic

features are not available.

• Noise: any unwanted information in a speech signal is called noise, for example

a ringing clock, hearing another speaker talking at the same time, or a TV

playing. Another type of noise is the echo effect, in which the speech signal

rebounds on a surrounding object and as a result a few milliseconds later it

appears in the microphone.

• Spoken language: this is not equal to written language as writing is more

structured than spoken language. In addition, speaking is a two-way active

communication, while writing is passively communicated. Disfluencies in

speech, such as slips of the tongue, repetitions, and unexpected changes of

subject, are also present in ordinary speech.

• Channel variability: one of the most critical difficulties faced in speaker

recognition systems is channel mismatch. Anything that impacts on the

acoustic waveform and its content to the speaker can also affect its discrete

representation in the computer, just as different kinds of microphones and

noise signals can change over time.

• Signal variation problems and time lapse effects may cause variation.

• Speaker variability: each person speaks differently to others.

Not only is each speaker’s speech different, but there is also variation within any

specific speaker. Such divergences can be [7]:

I) Speaking Style: the personality of each person is individual, causing all

speakers to talk differently, at different times. In addition, humans express

emotions by changing the behaviour of their speaking style, and this can be

achieved in different ways by each speaker; therefore, speaking in a public area

may be different from speaking with friends or teachers.
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II) Realization: over time the speech realization has changed. When words are

repeatedly pronounced, the resulting speech will never be the same, and so small

differences in the acoustic wave are created.

III) Speaker Sex: males and females are different, as males have a longer vocal

tract than females. The female pitch is almost twice that of males. The average

basic frequency for adult males is approximately 100Hz, 200Hz for adult females,

and 300 Hz for children.

IV) Dialects: dialects can be categorized as regional and social. Regional ones

include features of vocabulary, grammar, and pronunciation, according to a

geographical zone, while social dialects are determined by the social group that the

speaker is in.

1.6 Speaker Recognition Applications

Speaker recognition has many applications for verification and identification tasks.

Some are suitable for both tasks, and these are listed below [3], [5] and [6]:

• Telephone banking

• Telephone shopping

• Voice mail

• Control of access to services such as mobile banking, voice dialling, and mobile

shopping

• Remote access to computers

• Database access services

• Information services

• Security control for a confidential information area

• Forensics

• Intelligent answering machines

• Remote credit card purchases

• Surveillance, monitoring and automated ID
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1.7 Thesis structure

This thesis is organized as follows:

• Chapter One includes an overview of the speaker identification system, then

the main aims and objectives. In addition, the chapter handled the difficulties

and the applications for the speaker recognition task.

• Chapter Two includes the background and a related literature review in terms

of the GMM-UBM and I-vector approaches for the speaker identification.

• Chapter Three focuses on different databases; four were used in this thesis:

the TIMIT Acoustic-Phonetic Continuous Speech Corpus, the Speakers in

the Wild (SITW) Speaker Recognition Challenge 2016, the 2008 NIST

Speaker Recognition Evaluation Training Set Part 2, and the NTIMIT,

which is a telephone bandwidth version (Network TIMIT). However, this

chapter includes the family of TIMIT databases and some other databases

which were not used in this thesis, and the reasons for excluding them.

Furthermore, the chapter presents Speaker Identification Accuracy (SIA) and

how the performance accuracy was measured in this thesis.

• Chapter Four presents the first contribution chapter, and includes speaker

identification using the GMM-UBM approach with fusion and evaluated on

original speech recordings. This chapter includes four main simulations using

different fusion strategies for original speech recordings text independent

speaker identification. These are: late fusion, early fusion, and early-late

fusion. Late fusion is for concatenated static and dynamic features, and all

the above scores are statistically independent normalized scores.

• Chapter Five shows the second contribution chapter using closed set speaker

identification using the GMM-UBM approach with fusion for challenging

environments with three databases.

• Chapter Six presents the third contribution chapter on fusion-based speaker

identification using multi-dimensional I-vectors in challenging environments

for four databases. This chapter answered three significant questions: the

first question was how far the multi-dimensional I-vectors affect the SIA; the

second question is how far the feature combination of I-vector, SNR level, UBM
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mixture sizes, with and without fusion, affected the SIA; the final question is

whether the SIA is better with the I-vector or GMM-UBM methods of speaker

identification.

• Chapter Seven is the summary of the thesis and the main results in terms of

the databases, fusion techniques, speaker identification approaches. The thesis

conclusions and possible suggestions for improving the SIA in future work are

also presented here.
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Chapter 2

Background and Related

Literature Review

This chapter is focused on the background and literature review in terms of a new

speaker identification system, as explained in Fig. 2.1. Modelling, fusion

techniques and classification are explained in more depth in the contribution

chapters (Chapters 4, 5 and 6). For example, the Gaussian Mixture Model (GMM)

with a universal background model (UBM) is described in Chapters 4 and 5, and

some fusion methods are also considered. The main concept of the I-vector

approach and the mathematical model is fully explained in Chapter 6, where seven

fusion methods are also considered. The background for classification methods

such as the maximum likelihood and ELM are discussed in both Chapter 5 and 6.

This chapter includes general concepts behind the speaker identification system,

including the feature extraction and normalization methods used in this thesis. In

addition, the background for various types of databases are presented in Chapter

3, which includes the description of the four databases used in this thesis.

Different types of databases are also considered in Chapter 3. A literature review

is provided for each contribution chapter, this chapter summarizes the literature in

related work for other state of the art speaker identification systems.

2.1 The auditory perception system

Any simple communication system can be divided into the three main sections:

transmitter, channel and receiver; similarly, human speech is comprised of the
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Figure 2.1: The Main Speaker Identification Scheme in This Thesis

process of transferring speech from the speaker (the transmitter) to the listener

(the receiver) through free space (a noisy channel), as shown in Fig. 2.2 [8]. In

addition, the vocal system is practically responsible for speech production, while

physically the responsibility is retuned to the brain; likewise, the auditory system

is practically responsible for speech perception in the listener, whereas the

auditory nerve system is physically responsible. The two major parts of the body

responsible for auditory perception are the ears and brain; the peripheral auditory

system represented by the ears handles received speech signals on the basilar

membrane by converted them to a mechanical vibration paradigm. Thereby,

successive pulses can be transmitted through the auditory nerve, and then the

brain (the auditory nervous system) extracts the perceptual data. The human ear
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Figure 2.2: Human Communication System [8]

(the peripheral auditory system), as depicted in Fig. 2.3 is constructed of three
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2.1 The auditory perception system

major parts: the outer, middle and inner ear, as shown in [9]. Fig. 2.4 was taken

from the Manchester adult cochlear implant programme via Google. According to

Fig. 2.4, the cochlea is the major part of the inner ear, in which the sound is

represented to the brain through communication with the auditory nerve. This

figure is also available on Google via [10]. Furthermore, human cochlea figures and

cochlea implants can be viewed via by Wiley Online Library [11].

Moreover, the cochlea can be envisioned as a filter bank in which a

frequency-to-location conversion is achieved, where the higher frequencies initiate a

response in the filters closest to the cochlear base. In contrast, the lower

frequencies cause a response in those filters closest to the cochlear apex. It can be

seen through the cochlea’s behaviour that the human hearing system has

non-linear characteristics modelling generative speech. Fletcher researched the

modelling of the natural response using frequency scales that are a good

representation of the human perception system. Therefore, Fletcher’s work (1940)

recognised critical bands and pointed to the existence of the cochlear response.

The Mel and Bark frequency scales were used for this purpose, which is common

and widely used in both speech and speaker recognition. In this chapter,

non-linear behaviour is explored with Mel Frequency Cepstral Coefficients

 

 

 

 

Figure 2.3: A Cross Section of the Human Ear [9]
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Figure 2.4: Implant Cochlea [10]

(MFCC) features to mimic the human ear. However, as an alternative to the

logarithmic non-linearity produced by MFCC features, Power law non-linearity can

be achieved by using Power Normalized Cepstral Coefficients (PNCCs) features as

a feature extraction method. Hence, the Mel Filter Bank can be replaced by

Gammatone Filter Bank (GFB).

2.2 Background to Speaker Identification Systems

This section describes the essential parts of a speaker identification system,

including six major stages used to implement this system. These stages are:

feature extraction, feature normalization, speaker modelling, classification, fusion

techniques, and calculating SIA. The first part focuses on feature extraction, by

which the speech signal is transformed into a compressed form with effective

representation [6]. With speaker modelling, the feature vectors are trained via a

statistical model of the speaker’s acoustic space. For classification (matching),

scoring is undertaken between the testing processes of feature vectors (unknown

speakers) and the modelling process of speaker models (the known speaker(s)) to

determine the match score.
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2.2.1 Feature Extraction

Feature extraction is the transformation of the raw speech signal into the data set

with a reduced number of variables covering the most significant information this

process takes into the consideration. This may be on the principle of cost, or the

need to remove unwanted information, such as redundancy, or to reduce complexity

from the classifier so as to acquire a better performance [6]. In feature extraction,

the feature dimensionality can be reduced by using all variables and the data are

converted (using non-linear or a linear transformation). Thus, the goal is to replace

the original variables with a smaller set of underlying variables. There are many

reasons for executing feature extraction [6]: 1) to reduce the input data bandwidth,

with resulting improvements in speed and reduced data requirements; 2) to enhance

performance by providing an appropriate group of features for simple classifiers; 3) to

remove or reduce unwanted information from the speech signal, such as redundancy;

and 4) to recover features or new significant implicit variables so that the data may

be easily observed and the structure of, and relationships in, the data identified.

This chapter focuses on two major features, namely MFCC and PNCC features,

and both are considered for all contribution chapters in this thesis.

2.2.2 Mel Frequency Cepstral Coefficients (MFCCs)

Cepstrum is the inverse Fourier Transform of the log-spectrum. Bogert et al. (1963)

invented the word Cepstrum, which comes from reversing the letters in the first

syllable of the word spectrum. Fig. 2.5 shows the main block diagram for MFCC

features, classified into five sections [12] [13]:

Pre-emphasisa.

Frame blocking and windowingb.

Fast Fourier Transformc.

Mel-scaled filter bankd.

Cepstrume.

The main aim of the Pre-emphasis stage is to compensate for the high frequency

part of the speech signal that was suppressed during the human sound production
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mechanism. A first order Finite Impulse Response (FIR) high-pass filter is used to

achieve pre-emphasis filtering [3] [13]. This thesis has used pre-emphasis parameter

of 0.96 to mirror the work in [1]. In framing and windowing Part (b), the speech

signals are non-stationary, and each speech signal can be divided into frames which

are then analysed independently, as a feature vector has stationary behaviour. These

frames maintain a length which avoids degradation in the frequency resolution (when

too short), but can also capture the local spectral properties. In addition, to reduce

the discontinuities of the speech signal at the edges of each frame, a tapered window

is applied to each one. A Hamming window is the most common type and was

used in this thesis at 16 ms frame length and 8 ms intervals as well as the sampling

frequency is 16 kHz as in [1]. The Hamming windowing was employed to avoid

and reduce any unnatural discontinuities at the edges of each frame of the speech

signal [12] [13]. Part (c) is the Fast Fourier Transform (FFT), an N-point FFT is

employed. Uniform space with N
2

values of complex spectrum are produced between

0 to Fs

2
(Fs is the sampling frequency 16 kHz). The magnitude of FFT is only used in

speech processing by ignoring the phase information [3]. The magnitude coefficients

of the N-point FFT are converted to the triangular filter bank with K values (K

= 40). The cross wise multiplication between the N-point FFT with the weighting

function is the K filter bank. Then accumulating the results and denoting the output

by ith filter bank Y(i). In Part (d), a Mel-scaled filter bank is employed, which has

a triangular frequency response. The behaviour of the Mel-scale is linear frequency

spacing below 1 kHz (see equation 2.1). However, above 1 kHz, this behaviour is

logarithmic spacing and the bandwidth and spacing are calculated by a constant

interval of Mel-frequency [13]:

Mel(f) =

 f if f 6 1kHz

2595 log10
(
1 + f

700

)
if f > 1kHz

(2.1)

With the speech signal, the information obtained by the low frequency components

is more important than that carried by high frequency components. Therefore, Mel

filter banks have non-uniform frequency spacing to emphasise the low frequency

components. For this reason, the filter bank has more filters in low frequency zones

compared to high [12] [13]. Part (e), to convert the cepstrum to the time domain,

the log of the Mel spectrum, has to be transformed back to time in the final step to
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Figure 2.5: Mel Frequency Cepstral Coefficients Features (MFCCs) [3] [13]

produce the Mel Frequency Cepstrum Coefficients (MFCCs). Both the Mel spectrum

coefficients and their logarithms are real numbers, so the cepstral features are a good

representation of the local spectral properties. Then, the Discrete Fourier Transform

(DCT) is used to convert the log of filter bank spectral values to the L cepstral

coefficients [3] [13]. The MFCC is determined via the following equation [13]:

Cn =
K∑
i=1

(
log10 Y (i) cos

[
i

2πn

N

])
(2.2)

where: Cn is the Cepstrum coefficients, n = 1, 2,..., L, N is the number of FFT

points (N = 512), K is the number of channel filter banks (K = 40), and Y (i) is the

output of the ith filter bank.
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2.2.3 Power Normalized Cepstral Coefficients (PNCCs)

According to Fig. 2.6, there are three major stages in computing the PNCC feature

extraction algorithm [14], [15] and [16]:

Initial processing1.

Environmental processing2.

Final processing3.

In the initial processing, several stages are included and they are: pre-emphasis, in

which the speech signal pre-emphasis parameter is set at 0.96 to mirror [1], and

then the Short Time Fourier Transform (STFT) is utilized using a Hamming

window of 16 ms frame length and 8 ms overlap interval between the frames.

Then, the outputs to the magnitude of STFT are squared. In addition, 40

channels of Gammatone Filter Bank are employed to cover the telephone speech

bandwidth(300-3,400) Hz. The centre frequencies of the Gammatone filters are

linearly spaced in the Equivalent Rectangular Bandwidth (ERB), which is the

auditory frequency scale. In speech recognition, the PNCC gives better accuracy

than the MFCC in the presence of white noise [15], and this property was exploited

for the the speaker identification task in this thesis. For the environmental

processing, two sub-stages are included: temporal processing and spectral

smoothing, where both have a substantial impact on the accuracy performance in

white noise. In addition, the estimation and compensation of noise are considered

by using the medium time power. Also, asymmetric noise suppression is used to

reduce the noise effect by spectral subtraction of the noise level, estimated from

the power of non-speech segments. However, the final processing contains the DCT

and then the Mean Normalization, as explained in equation (2.3).

µ[m] = λµ µ(m− 1) +
(1− λµ)

L

L−1∑
l=0

T [m, l] (2.3)

where: m represents the frame incident, l is the channel incident, L is the number of

frequency channels, and λµ is the forgetting factor which is equal 0.999, whereas the

T [m, l] represents the time frequency normalization. The power-law non-linearity is

produced by a supposed value (1/15) that gives acceptable accuracy in white noise

and without any significant impact on recognition accuracy in clean speech, as in
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Figure 2.6: Power Normalized Cepstral Coefficients (PNCCs) Features [15]

equation (2.4), as explained in [14], [15] and [16].

V [m, l] = U [m, l]
1
15 (2.4)

where U[m,l]: is the normalized power.
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Figure 2.7: Comparison Between MFCC and PNCC Features Structure [6]

2.2.4 Comparisons Between MFCC and PNCC Features

Fig. 2.7 compares the structure of MFCC and PNCC features [6]. This figure

depicts the main differences between the MFCC and PNCC features, which can be

summarized by the following bullet points [14]:

• MFCC-Features

• Triangular / MEL Filter Bank (MFB)

• Logarithmic non-linearity

• Slightly less accurate in Automatic Speech Recognition (ASR) in

presence of white noise

• The complexity has less computation than the PNCC as in [15]

• PNCC-Features

• Gammatone Filter Bank (GFB)

• Power law non-linearity

• Slightly better accuracy in ASR in presence of white noise

• The complexity has 33% more computation than the MFCC [15]
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2.2.5 Feature Normalization Methods

Feature Compensation (Normalization) is common, and has been widely and

effectively used for speaker recognition in both verification and identification tasks.

Substantial aims can be achieved from using normalization, such as reducing the

channel, handset transducer, and linear and non-linear channel effects. Numerous

methods have previously been used for compensation features: Cepstral Mean

Subtraction (CMS), Modulation Spectrum Processing (MSP), Short-term

windowed and variance normalization CMS, CMVN and FW [17] [18] [19]. In this

chapter, FW and CMVN are robust to additive noise and handset effects, as well

as to mitigate the linear and non-linear channel effects [17]. This gives

improvements and robustness to the speaker identification accuracy system [3].

The important aspects to compare between feature warping and CMVN are as

listed bellow [20]:

• Feature Warping

• Purpose: Gaussianization for the short-term over a sliding window

• Over the specified time interval, and based on its rank in the array of

sorted feature values, the middle frame in the window is normalised

• Overall distribution of the feature stream is warped to the standard

normal distribution

• Aim: Mitigate the linear channel effects

• CMVN

• Purpose: Over a sliding window, Cepstral mean and variance

normalization

• Over the specified time interval, based on the mean and variance

computed, the middle frame in the window is normalised

• Feature stream distribution is almost mapped to the standard

normal distribution

• Aim: Remove the linear channel effects

Other speaker identification parts: such as modelling, fusion techniques and

classification, are discussed in more depth in the contribution chapters.
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2.3 Literature Review for Speaker Identification

According to the main speaker identification scheme, this section can be divided

into six subsections of related work: feature extraction, I-vector extraction,

modelling, noise robustness and challenging environments, classification, and

fusion technologies.

2.3.1 Feature Extraction

In 2005, Reda and Aoued [21] investigated artificial neural networks and the

employment of MFCC for speaker recognition. The aim of using MFCC features

was to imitate the human ear. The paper described two systems; System 1 was

trained by an artificial neural network, whereas System 2 was trained using a

vector quantizer design with Linde-Buzo-Gray (LBG) algorithm. To evaluate and

compare the performance of the two systems with speech from different types of

noise and sessions, 142 self collected subjects were employed. 203 subjects from

CMU dataset and 60 from the ASR database were also selected. The testing

recognition rates attained for System 1 were, respectively, 70.91%, 78.57% and

90.66% for ASR, self collected and CMU databases, respectively. However, System

2 obtained 80.01%, 85.71% and 69.33% for the ASR, self-collected and CMU

databases, respectively. The effect of noise and handset were not considered in this

paper. In addition, alternative features can be proposed and are more robust for

noisy speech, such as the PNCC features considered in this thesis.

In 2010, Wang et al. [22] presented the integration between the phase information

and MFCC features under noisy environments in terms of speaker recognition. The

paper tested 35 speakers from the NTT database and 270 speakers from JNAS

database. This paper has some drawbacks related to the use of Japanese speakers,

which can not be fairly compared with standard English speakers used in other

related work. In addition, using different settings, feature dimensions, number of

speakers, and DFT samples makes any comparisons unfair. For example, 12 MFCC

features from the NTT database compared with 25 in the JNAS database were then

applied to the 25 ms window size. There were 512 samples of DFT and 10 ms for

overlap, and for phase information the window size was 12.5 ms with 256 samples

of DFT. A fair comparison between the databases from the first trend, and between

the two features from the second trend, cannot therefore be made.
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In 2010, Yujin et al. [23] proposed merging between the MFCC and Linear

Prediction Cepstrum Coefficients for speaker recognition. To identify the speakers,

the system employs the Dynamic Time Warping (DTW) and Vector Quantization

(VQ). This paper showed that the highest recognition rate was achieved by

integrating both features, with 40 speakers being evaluated using continuous digit

speech (0-9). The system used LPCC coefficients with 12 order and 16 for MFCC

features. The highest Recognition Rate (RR) from the combination was 97.12%.

The main drawback of this paper was the use of different feature dimensions with

different numbers of speakers to improve the RR. This is technically an error

which will cause a combination of different features order (MFCC with the LPCC)

to achieve a higher RR, and thereby gives unfair comparisons. In addition, the

population size is limited.

In 2011, Ajmera et al. [24] developed a new feature extraction method based on

the speech spectrogram by employing the Radon and the Discrete Cosine Transform

(DCT) for text independent speaker identification. Basically, this paper converted

the speaker recognition problem to pattern image recognition, and then machine

learning tools were employed to resolve it. From the spectrogram to the speech

signal, the acoustic features can be derived using Radon techniques. Hence, the

speaker’s voice pattern was obtained by calculating the Radon projections in various

directions. However, to minimize the dimension to the feature vector, the DCT was

applied to the Radon projection in order to achieve effective speaker features. The

system was evaluated by using the Texas Instruments and Massachusetts Institute

of Technology (TIMIT) and Shri Guru Gobind Singhji (SGGS) databases with 630

and 151 speakers, respectively. The best recognition rate achieved in this paper was

96.69% and 98.41% for the TIMIT and SGGS databases. The study omitted testing

the system with a realistic database (such as the NIST) and different non-stationary

noise types with handset were not considered. In addition, no fair comparisons in

terms of number of speakers for the two databases can be made.

In 2012, Tazi et al. [25] developed a combination between Gammatone Frequency

Cepstral Coefficients (GFCC) with the Cepstral Mean Normalization (CMN) and

compared the MFCC baseline approach for a text independent speaker identification

system. The system was conducted with a self-built database of 51 Arabic speakers

(16 female and 35 male), with one utterance per speaker achieved for both the

training (20 seconds) and testing (10 seconds). The feature vector dimension was
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36 for both MFCC and GFCC features, with a window size of 32 ms and step size

of 16 ms; the sampling rate was 16 kHz, and GMM mixture size was 8. In addition,

testing under white noise was also considered with SNR levels from (0-40) dB. The

GFCC with CMN approach attained a higher identification rate compared with

MFCC in presence of white noise, at about 5.38%, when SNR levels were changed

from 0 dB to 40 dB. In this paper, a realistic database and the effect of different

non-stationary noise types and handset were missing. Also, fusion techniques might

have been used to merge the two features to improve identification performance.

Furthermore, using the SNR levels with (35 and 40) dB was worthwhile, but the

effects were similar to the clean speech.

In 2012, Sumithra and Devika [26] developed five feature extraction techniques:

the Linear Prediction Coefficient Cepstrum (LPCC), Revised Perceptual Linear

Prediction (RPLP), Bark Frequency Cepstral Coefficients (BFCC), MFCC and

Modified MFCC (MMFCC). These were used to study text independent speaker

identification. Depending on the calculating time, the performance of these

features was carried out and compared. Then, a Vector Quantization (VQ)

codebook was utilized for speaker modelling. The system was tested by 100

speakers from the TIMIT database and windowing by 512 samples and the

overlapping was 100 samples. The sampling frequency was 8 kHz with 40 filter

banks for the BFCC, MFCC and MMFCC. MFCC attained the highest

identification accuracy of 99.87% with a minimum distance of 4 and an initial

centroid of 128. Challenging environments, such as the handset and stationary and

non stationary background noise, and a realistic database such as NIST database,

were not considered. Moreover, fusion based techniques could have been suggested

to improve the performance accuracy.

In 2012, Trabelsi and Ayed [27] presented various feature extraction and

normalization techniques for text independent speaker identification. These

features extraction approaches were MFCC, LPC and Perceptual Linear Prediction

(PLP), used with two normalization methods CMN, and rasta filtering. Then, a

hybrid was created of the GMM with linear/non-linear Support Vector Machine

(SVM) system. The paper showed the performance accuracy based on each feature

extraction type and kernel functions. The system was conducted with 14 female

speakers selected from DR1 to the TIMIT database. The hybrid GMM-SVM

system showed that LPC and MFCC have better performance than PLP.
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Furthermore, the best accuracy was obtained from delta and delta delta was

achieved by LPC. In addition, normalization methods did not affect the

identification accuracy as there is no session variability in the TIMIT database.

The main drawback of this paper was that it did not consider any realistic

database or study noise and handset effects. In addition, fusion methods could

have been proposed for the feature extraction methods to improve the

identification accuracy of the system.

In 2012, Ambikairajah et al. [16] presented PNCC features as an alternative

to MFCC for robust speech recognition; hence, this paper presented it for speaker

verification. In addition, the system was modelling by the I-vector approach and

speakers were classified by Sparse Representation Classifier (SRC). In addition, the

fusion score was compared for PNCC/I-vector and MFCC/I-vector approaches to

improve the performance. The system was conducted using the NIST 2010 SRE,

and showed that the best performance achieved 0.498 for DCF when fused with

the SRC and both MFCC and PNCC features. However, Cosine Distance Scoring

(CDS) was also considered as well as fusion based using CDS between the MFCC

and the PNCC features; the best performance attained was 3.55% EER. The setting

for this paper was to use 16 features for both MFCC and PNCC, and a Hamming

window with 20 ms and 10 ms for overlap. In addition, the system was evaluated

by the NIST 2010 database. In this thesis, the idea for using an I-vector based

PNCC and MFCC was exploited for speaker identification by applying different

feature combinations and classifiers. Also, this thesis modified the system to be

more robust against AWGN and different non-stationary noise types with a handset

effect using different databases. Furthermore, various I-vector fusion based methods

can be used to modify the identification rate.

In 2013, Nidhyananthan et al. [28] developed the pitch based Dynamic MFCC

(DMFCC) and MFCC features as well the integrated DMFCC and MFCC features

with 19 coefficients for text independent language and speaker recognition. GMM

was also used to model speakers. The system was tested with 120 self collected

Tamil and English speakers recorded by GoldWave software employing a condenser

microphone with 16 kHz at 16 bit mono. The performance measure used the

IDentification Error Rate (IDER). The paper attained 5.8%, 2.9% and 1.2% for

MFCC, DMFCC and the combination of both features, respectively. However, a

realistic and standard database was missing from the paper, and noise and handset
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effects were also not considered. In addition using the GMM approach has a

drawback related to the limited Gaussian mixture components, and hence this

affects identification accuracy. Furthermore, using error rate performance rather

than identification accuracy was reported in this paper.

In 2014, Moinuddin and Kanthi [29] presented the GFCC to identify speakers

under noise conditions, but the ability of the human ear was the main motivation

for this paper. 23 feature dimensions from GFCC were compared with 13 from

MFCC, and then the system was modelled with GMM. In addition, the modified

MFCC (MMFCC) and GFCC (MGFCC) features were used, and instead of using

the log, the cubic root was employed. The system was modelled by GMM and

conducted using 630 speakers from both NTIMIT and TIMIT databases. The

system showed that GFCC features give better identification accuracy compared

with the traditional MFCC features in both clean (TIMIT) and noisy

environemnts (NTIMIT). The drawback with this system was again that the

effects of noise and handset, as well as realistic noise, were not considered.

Moreover, fusion methods were missing in this paper, and these might have

improved the accuracy.

In 2015, Almaadeed et al. [30] developed wavelet analysis for the feature

extraction method, and this was used with multimodal neural networks for a

speaker identification system. MFCC, wavelet packet transform, discrete wavelet

transform, and wavelet sub-band coding were used. The system was tested with 34

speakers from the GRID database. The system used wavelet analysis and showed

an improvement of 15% compared with the system with traditional MFCC.

However, this work lacked speaker numbers and did not consider the effect of noise

and handset, nor employ a realistic database.

In 2015, Zhang et al. [31] presented bottleneck feature mapping based on a

Deep Neural Network (DNN) under dereverberation conditions for speaker

identification of distant talking. This system used the Japanese Newspaper Article

Sentence (JNAS) database for clean speech. However, to generate simulations for

the dereverberation data various impulse responses were convoluted with clean

speech. The Real World Computing Partnership (RWCP) database was selected,

with eight multichannel impulse responses. In addition, the CENSREC-4 database

was used to produce the artificial reverberant speech. However, again the paper

did not study the effects of noise and handset, or consider a realistic database.

26



2.3 Literature Review for Speaker Identification

2.3.2 Literature Review in Terms of I-vector Extraction

This aspect is covered in depth in the contribution chapter, Chapter Six. In this

section, only the important initial research on the I-vector for speaker verification

is studied.

In 2005, Kenny [32] proposed the theory and algorithms of Joint Factor Analysis

(JFA) for both sessions and speaker variabilities.

In 2007, Matrouf et al. [33] efficiently exploited the Factor Analysis Model for

text independent speaker verification to tackle the session variability problem.

Eigen channel MAP and various compensation methods were employed, such as

GMM likelihood. In addition, Kernel based SVM was also applied. The system

was evaluated by the NIST SRE 2005 and 2006, and measured by the EER and

DCFmin. It attained a 50% improvement compared with the baseline of

GMM-UBM.

In 2008, Kenny et al. [34] studied inter-speaker variabilities for speaker

verification and the system was tested using the NIST 2006, and it attained a

10-15% reduction in EER. The JFA was proposed for this work and fusion for

multiple systems was also considered as well as factor analysis with 200 channel

factors and 300 speaker factors with less than 3% EER.

In 2008, Senoussaoui et al. [35] presented an I-vector extractor for both

telephone and microphone speech with channel compensation methods using

Linear Discriminant Analysis (LDA) and Within Class Covariance Normalization

(WCCN) for speaker verification. The system employed two classifiers, the SVM

and CDS. The system was tested by the NIST 2008 with interview data and the

best performance was achieved by fusing the JFA with the CDS and SVM.

In 2012, Kenny [36] presented the iterative method using the Variational Bayes

(VB) algorithm to reduce the running and training times for the extraction of the I-

vector. The aim of this paper was to compare the VB based I-vector with the JFA to

achieve an improvement in high dimensional I-vectors with the speaker verification.

The paper also presented the accuracy for different I-vector dimensions (400, 800,

1200 and 1600) and the evaluation was carried out by the NIST 2010.

In 2015, Verma and Das [37] provided a survey of I-vector applications in speech

processing. In this paper, the main concepts for JFA and the I-vector extractor were

described, and various applications were presented such as speech diarization, accent,
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dialect, speaker, emotion, and language recognition, as well as acoustic detection.

In addition, hybrid methods were also considered such as the prosodic, combination

of prosodic and cepstral approaches, and the phonotactic approach. Toolkits were

also included, such as the MSR Identity Toolbox, LIUM speaker diarization, ALIZE

3.0 and The Kaldi speech recognition toolkit.

2.3.3 Modelling

This subsection can be subdivided into two main parts: different state of the art

speaker identification modelling methods, and I-vector speaker identification.

Various state of the art speaker identification modelling methods have been used

and can be categorized into three main sections according to the modelling

method: Speaker Identification Systems (SISs) using the GMM model, and SISs

using the GMM-UBM model, and SISs using various modelling methods.

In 1995, Reynolds [38] and likewise in [39] presented the GMM to represent

speakers for both speaker identification and verification applications. The aim was

to show the relationship between performance accuracy and population size for

both clean and telephone speech. In addition, verification experiments were also

considered. The identification system was conducted by TIMIT, NTIMIT and

Switchboard databases, and for the verification system, YOHO database was also

added for the evaluation. The Gaussian mixture components were limited by 32

and 64 for the experiments, which limited the performance accuracy. The system

attained the highest speaker identification accuracy at 99.5% for the TIMIT

database and 60.7% for the NTIMIT database. In addition, noise and handset

effects were not included, which is a drawback of this paper. Similarly in 1995 [40],

only TIMIT and NITIMIT databases were used to examine performance accuracy

against the number of speakers for clean and telephone speech for the NTIMIT

database. The identification accuracy obtained was 99.5% and 60.7% for the

TIMIT and NTIMIT databases, respectively. In 1995, Reynolds and Rose [41],

utilized the GMM for robust text independent speaker identification. The system

was tested with conversational speech from the KING database, which included 51

male speakers. The evaluation of conversational telephone speech for 49 male

speakers examined different issues such as variance limitation, initialization, and

selection order in the model, and the GMM was compared with various speaker
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modelling methods. The main drawback of this paper was the limited population

size and that the effect of noise and the handset were missing.

In 2012, Kumari et al. [1] produced fusion based between MFCC features and their

inverse features (IMFCC) for text independent speaker identification by employing

the GMM to model speakers. The identification system was conducted with 120

speakers from Dialect Region (DR) one and four from the TIMIT database. The

system achieved the highest identification rate of 93.88% at 16 Gaussian Mixture

Component (GMC) size using weighted sum fusion. The drawbacks of this

research were using a limited number of GMCs and only testing the system with

clean speech; real environments such as noise conditions and handset effects were

missing, and the study does not mention how many speakers were taken from DRs

1 and 4, respectively. In the current thesis, a higher identification rate was

achieved compared with this paper, and different background noise were included

with different feature and fusion methods, to improve the performance accuracy.

For GMM-UBM modelling, in 2011, Togneri and Pullella [3] presented an overview

of two main issues: robustness and accuracy of speaker identification. The authors

investigated the GMM-UBM system with 39 feature dimensions of the

concatenated MFCC, delta, and acceleration vectors, by employing the CMN to

remove the channel effects. The evaluation tested 64 speakers (32 male and 32

female) selected to balance gender and eight different dialect regions (for each

dialect region, there were four male and four female speakers). The G.712 handset

type was used in both training and testing phases and the system was modelled by

128 mixture components of GMM. The identification accuracy attained was 94.5%

for clean speech with handset with presence of CMN, while the system degrade at

white noise with 74.2% at 30 dB . The paper did not include different background

noises, and also new technologies such as fusion, which could have improved the

performance accuracy, were missing. In addition, evaluation with challenging and

realistic noise was missing and there was also a limited population size.

In 2009, Apsingekar and Leon [42] exploited a multi-class SVM for speaker

identification and compared it with the GMM-UBM approach as a baseline

system, by evaluating with the NIST 2002 database. The highest number of

speakers was 64 and the highest identification rate obtained was 97% based on

SVM, compared with 98.44% from GMM-UBM. The paper had a limited number

of speakers, and noise conditions were not considered.
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Various other approaches have also been used to model speakers. In 2009,

Revathi et al. [43] presented a clustering method for both speech and speaker

recognition, and the highest identification rate was 91%. For speech recognition,

TI digits1 and TI digits2 databases were exploited with isolated digits and

continuous speech, respectively. However, 50 speakers from the TIMIT database

were tested for speaker recognition. In this study, there was again a lack of

speakers and realistic noise conditions.

In 2013, Bhardwaj et al. [44] exploited the Generalized Fuzzy Model (GFM)

which used three forms for modelling speakers for speaker identification tasks:

HMM-GFM, GMM-GFM, and fusion based HMM-GFM, in which HMM is the

Hidden Markov Model. The system was tested with 40 speakers from the

VoxForge speech corpus and 140 males from the 2003 NIST 2003 (NIST 2003). In

addition, databases were studied with different SNRs (-5, 5, 10 and 20) dB by

applying various noises such as babble, a car, a destroyer engine, and factory noise

from the NOISEX database. The results for NIST 2003 were worse compared with

the VoxForge database. The highest identification accuracy was achieved using

HMM-GFM (fusion) with, respectively, 93%, 92%, 91%, 92% and 92% for clean,

car, babble, destroyer engine and factory noise using the VoxForge database,

compared with 51% for both GMM-GFM and HMM-GFM (fusion) on NIST 2003

database . Even though good results were achieved with the VoxForge database,

there was still a lack of speakers, and indeed there are limited researchers who

include the I-vector for modelling speakers, as discussed below.

In 2013, McLaren et al. [45] developed robust features for highly degraded speech

via transmission channels for speaker identification, and then at a later stage these

features were combined in the I-vector framework. In addition, the Hidden Markov

Model (HMM) and GMM were utilized with the Speech Activity Detector (SAD)

to extract the I-vector, and then Probabilistic Linear Discriminant Analysis

(PLDA) was used to recognize speakers. To improve the system performance, both

I-vector and score fusion were considered. The evaluation was interested in

multiple durations for tests and enrolment (3, 10, 30, 120) seconds. The

performance measure used the Equal Error Rate (EER) and the best EER at the

evaluation condition of 10-10 seconds was 9.4%, carried out with both score and

I-vector fusion. The drawback of this paper was the complexity of the system,
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which used the EER instead of the identification accuracy. However, realistic

background effects for different SNR levels were missing.

In 2014, Liu et al. [46] employed the I-vector with 400 dimension and three channel

compensation methods for text independent speaker identification. The session

compensations were: LDA, WCCN and Nuisance Attribute Projection (NAP).

However, for classification purpose, the SVM and CDS were applied. The

databases were a corpus designed by members of the author’s laboratory and a

voice library of MIT mobile phone speaker recognition. The sampling rate for the

speech utterances was 8 KHz. The evaluation involved 50 speakers, 30 males and

20 females, using the same microphone. In addition, the length of the training

data for each speaker was three minutes, and the testing data was 30 seconds. The

highest accuracy rate was achieved using the I-vector + LDA + WCCN approach,

with the CDS classifier at 94.14% . However, the authors presented two different

comparisons in terms of the accuracy rate for different compensation methods and

two classifiers (CDS and SVM), and there was again a lack of speakers. In

addition, different realistic noise and environments conditions were missing.

However, in the current thesis, a higher accuracy rate is achieved and includes

various challenging environments with a larger number of speakers.

In 2014, Schmidt et al. [47] presented a fast retrieval approach which combined the

Locality Sensitive Hashing (LSH) method with the I-vector approach through the

cosine distance for speaker identification. LSH is a compromise between running

time and accuracy. About a thousand single speakers from YouTube were studied,

with at least half an hour of talk from each video. The best results in terms of

relative accuracy are 92%, 96.1% and 98.4% for utterance lengths of 10, 20, 60

seconds, respectively. However, a standard database and challenging environments,

including studies of different background noise, were not considered in this paper.

Ultimately, the performance accuracy for 10s testing was lower than that achieved

in this thesis at 8s testing, where all the above points were considered.

In 2014, Karadaghi et al. [48] investigated three different techniques: GMM-UBM;

GMM-UBM with TZ-score normalization method; and I-vector with 300

dimension for text independent open set speaker identification. The database
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employed was the NIST speaker recognition evaluation SRE 2008. A sub-set of the

database of telephone-quality speech from 400 speakers and 200 unknown speakers

(out-of-set) were selected, from short 2 and short 3 as core condition. For UBM

training, 1,554 utterances from 932 females and 622 males (a subset from NIST

SRE 2005 database) were used. In addition, white noise, factory noise, car noise

from NOISEX-92 corpus were added to the telephone speech utterances of the

NIST 2008 database, with three levels of Signal to Noise Ratios (SNRs) (5-15) dB.

The first stage of the evaluation used 400 speakers for closed set speaker

identification, while the second was for verification. The highest identification rate

was 49.5% with the I-vector, which outperformed the GMM-UBM with and

without score normalization for clean speech. Also, the paper showed that the

I-vector approach is more robust than the GMM-UBM approach. The main

drawback for this paper concerns the lack of information about the early system

stages related to feature extraction methods, and feature dimensions. In addition,

very poor accuracy was achieved even for clean speech, and more than 50% of the

testing samples failed to be identified. This thesis used the microphone channel of

the NIST 2008 database, which has not been considered, as well as four different

databases, and realistic challenging noise databases, by providing different fusion

techniques to improve the performance accuracy.

In 2016, Matjka et al. [49] analysed the I-vector based approach for speaker

identification and employing the Bottleneck (BN) features of a Deep Neural

Network, as well as the conventional MFCC features and their concatenation. The

evaluation system tested the telephone condition of the NIST SRE 2010, the EER

and the Detection Cost Function (DCF) were used for the performance

measurements. The system did not show how far different background noises

affected the performance accuracy. In addition, the paper did not show the effect

of evolution on different databases with the same system.

In comparison to all the above research on speaker identification based on the

I-vector approach, this thesis achieves a through evaluation in terms of UBM

mixture sizes and SNR levels using four different databases. One of these

databases is the 2016 challenge database with different fusion technologies. In

addition, the system was evaluated for different challenging environments using the

handset and various background noises. However, these were not considered in any
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of the above studies.

2.3.4 Noise Robustness and Challenging Environments

In 1995, Reynolds et al. [50] presented a text independent speaker identification

system which examined the effect of increasing the number of speakers and the

degradations produced from telephone transmission. The system was implemented

by changing the number of speakers to 630 for clean, wideband and telephone

speech. The system was modelled by GMM and conducted with 630 speakers from

the TIMIT and NTIMIT databases, respectively. SIA of 60.7% and 99.5% was

obtained from NTIMIT and TIMIT databases, respectively. The paper also

measured the performance loss by telephone transmission with a large population.

This was achieved by regularly degrading the TIMIT speech to match with

measured NTIMIT degradation, and then gauging the performance loss at each

step. In addition, measuring the distortion of the non-linear microphone was also

considered in this paper. Different background noise effects, such as AWGN and

non-stationary noise, were missing. In addition, a database including realistic noise

rather than just noise added was not considered .

In 1996, Reynolds [51] presented a study using the Switchboard corpus in

experimental work on the effects of handset variability for text independent

speaker recognition. To include the handset, the caller’s telephone number was

utilized for each conversation. The same telephone handset was expected to have

been used in conversations produced by identical telephone numbers, while

different handsets were assumed to have been used for different telephone numbers.

Between the testing and training utterances, the first part of this study focused on

the mismatch and match handset conditions using the SPIDER database. The

second part employed the May95 NIST SRE database in terms of the handset

variability. In addition, some channel compensation methods were applied. The

empirical experiments included 160 imposter speakers (78 female, 82 male) and 45

claimant speakers (18 female, 27 male). Furthermore, in May 1995, the NIST

database SRE derived 80 imposter speakers (47 female, 33 male) and 26 claimant

(11 female, 15 male) from the Switchboard. The handset variability with one

handset type was used for training and testing by different type of handsets. The

study was limited to the handset effect, and other environments such as noise
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conditions were not considered.

In 2007, Ming et al. [52] presented speaker identification and verification under

noise conditions. The paper handled the worst-case scenario, which considered

real-world applications such as handheld devices or the Internet, in terms of the

fact that prior knowledge of the noise is not available. The authors provided a new

training method to model the noise by combining a multicondition training model

and missing information theory. In order to reduce the mismatch between training

and testing, both coarse and smooth compensations were used. Coarse

compensation for noise can be achieved by restricted noise variation, while smooth

compensation was achieved using missing information theory, conducted outside

the given training conditions by neglecting noise variation. However, in this paper

to attain the optimum recognition performance with less model complexity, various

training data were used. The speaker recognition system was conducted using

re-recordings from the TIMIT database in the presence of different noise types,

and a collected handheld device database in realistic noisy environments. The

paper showed that the new model achieved better performance compared with the

baseline systems. The drawback of this work was the lack of handset variability for

the TIMIT database. In addition, there is a limitation with the identification

accuracy, since only the Gaussian Mixture Components (GMCs) with {32, 64,

128} were used and increasing the GMCs might decrease the accuracy. In addition,

AWGN was not considered in this paper, nor was a realistic database in which the

noise had not been added artificially.

In 2009, Khanteymoori et al. [53] characterized both the implementation and

theory of Dynamic Bayesian Networks (DBN). MFCC and Delta MFCC were used

and the study employed DBN learning and compared it with the traditional GMM.

Different background noises were applied to see the effect on speaker identification

accuracy in presence of noise such as white noise, babble, and F16, and a factory,

and the noise was taken from the NOISEX database with various Signal to Noise

Ratios (5-20) dB with 5 dB step size. 50 out of 64 speakers were selected with

respect to gender, age, dialect region, and educational level from a Farsi telephony

speech database. Two speech datasets were employed; spontaneous data of three

seconds was utilized for testing, as well as for training 30-second utterances from

reading speech. The drawback was the limited population numbers and the omission

of the handset effect.
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In 2010, Wang et al. [22] presented an integration of the MFCC with phase

information for speaker recognition. In clean speech, the error rate for the speaker

identification was reduced to 78% using the phase information. Effectively, the

phase information was efficient in noisy environments. However, in the presence

of noise conditions, it was combined with the MFCC to decrease the identification

error rate by 20% to 70% compared to MFCC alone. The system was tested with

35 speakers from the NTT database and 270 speakers from Japanese Newspaper

Article Sentences. Many aspects of this study are of note, and one of these is the

use of Japanese speakers, which means that no fair comparison with other work

using standard language (English) can be made [22]. In addition, the paper does

not include a realistic database such as NIST, and challenging environments, such

as the handset effect, were missing.

In 2011, Togneri and Pullella [3] considered the effect of the G.712 type

handset on closed-set speaker identification. The authors utilized 64 speakers,

balanced for gender and dialect, using the GMM-UBM approach. The system

achieved identification accuracy of 94.5% with Cepstral Mean Normalization

(CMN) and the G.712 type handset. In addition, the system degraded when tested

with AWGN and attained 74.2% at 30 dB in presence of both CMN and the

handset effect. Other realistic background noise was not considered in this paper,

and there was also a limited population size and an absence of new technologies,

such as fusion.

In 2011, Wang et al. [54] used various techniques for denoising the effect of

additive noise from MFCC features (vocal tract) and the Wavelet Octave Coefficients

Of Residues (WOCOR), which represent the vocal source features. To remove the

residual signal and then improve the robustness of the WOCOR, the frequency

domain approach was employed. MFCC was calculated from enhanced speech by

applying spectral subtraction to the MFCC features. The paper showed that using

combined denoising for both WOCOR and MFCC were efficient in the presence of

additive noise for speaker recondition. The performance measures were EER and the

identification error rate. 50 male speakers from CU2C Cantonese speech database in

Hong Kong at the Chinese University were tested, and the NOISEX-92 database was

used to add noise. The paper focused on error rather than accuracy, but different

realistic noises and the handset effect were missing, and there was also a lack of

speakers.
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In 2011, Li and Huang [55] presented a new auditory feature extraction method

called Cochlear Filter Cepstral Coefficients (CFCCs). The main aim of this

research was to apply the new features CFCCs for speaker identification to handle

the mismatch problem effect between training and testing conditions (training

using clean speech and testing by noisy speech). This paper illustrates the

effectiveness of the CFCCs compared with MFCC in the presence of noises such as

babble, a car, and white noise. Both features achieved the same identification

accuracy for clean speech at 96%. However, at 6 dB CFCCs 88.3% was achieved,

compared to 41.2% from MFCC. CFCCs therefore outperformed PLP and

RASTA-PLP features under white noise, and had similar performance for babble

and car noise compared with RASTA PLP. The evaluation for this paper was

achieved by employing 460 speakers from the NTIMIT database for testing

purpose and 38 speakers for the development phase, to show that CFCCs were

better than MFCCs. In addition, 34 speakers from the Speech Separation

Challenge (SSC) were utilized under mismatch conditions, and the data including

several conditions. A realistic database for speaker identification, such as the

NIST, was missing and can be used as alternative to the SSC database. Also,

using SNRs limited to (0, 6) dB is not enough for studying the noise effect. New

technologies such as fusion were also missing and could have exploited these

features to improve the accuracy.

In 2013, Zhao and Wang [56] presented Gammatone Frequency Cepstral

Coefficients (GFCCs) as a new and more robust feature compared with MFCC.

This paper mainly focused on analysing robustness to noise for both GFCCs and

MFCC features in terms of speaker identification. The paper also showed how to

improve the robustness for both features. The evaluation was achieved by 330

speakers randomly selected from the TIMIT database. In addition, factory noise

from the NOISEX-92 database was considered. The paper illustrates that the

cubic root rectification produced by GFCCs is more robust compared with

non-linear rectification represented by the log function in MFCC. The paper

emphasized the comparisons in terms of the noise robustness between GFCCs and

MFCCs features, rather than focusing on identification accuracy. However, testing

with a challenging database as an alternative to the ideal TIMIT database was

missing. In addition, studying noise effects such as the AWGN and different

non-stationary types in presence of a handset were not included. However, the
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fusion of both features might have improved both the robustness and the accuracy,

which was not considered.

In 2014, Maged et al. [57] presented MFCCs features extracted from noisy

speech with AWGN and Discrete Wavelet Transform (DWT) for robust speaker

identification. To reduce the data, the Vector Quantization Linde-Buzo-Gray

method was used. From degraded speech, feature extraction was employed by

DWT to achieve higher identification accuracy, because the features in the

approximation part of the DWT were added. The system was tested with eight

and thirteen speakers under AWGN. The main drawback of this paper was the

lack of speakers and the failure to use standard and realistic databases. This paper

also did not cover handset and non-stationary noise.

In 2014, Zhao et al. [58] addressed reverberation and additive noise for robust

speaker identification. In this paper, a deep neural network was employed to remove

the noise over binary masking. Telephone conversation from the NIST 2008 was used

to evaluate the system by utilizing 300 random speakers, as well as 50 speakers from

the TIMIT database. However, this paper also did not cover a handset and, the

newest state of the art I-vector approach could have been exploited instead of the

GMM-UBM.

In 2016, Islam et al. [59] presented 2-D neurograms structured from the

auditory periphery for a new speaker identification system. To construct the

neurograms, speech signals were simulated for a broad range of characteristic

frequency of responses in auditory-nerve fibres. The GMM-UBM algorithm was

used to train the coefficients for the neurograms and model the speakers. The

system was tested with the TIMIT, TIDIGIT, and YOHO databases for text

independent speaker identification with 100, 40 and 137 speakers, respectively. In

addition, 39 Malaysian native speakers from University Malaya (UM) database

were enlisted for text dependent speaker identification. The system was tested

with street, pink and white Gaussian noise for various SNR levels. Furthermore,

MFCC, frequency domain linear prediction and Gammatone frequency cepstral

coefficients were employed. However, the handset problem and a realistic database

such as the NIST were not considered in this work. Moreover, the I-vector

approach might have been proposed to improve the identification accuracy. New

techniques such as fusion could also have been proposed to improve the

identification accuracy. New techniques such as fusion could also have been
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suggested to improve the identification accuracy.

2.3.5 Classification

In 2009, Apsingekar and Leon [42] presented the multi-class SVM as a classifier

for speaker identification. This was compared with the Maximum Likelihood (ML)

for GMM-UBM speaker modelling approach. Although, using a multi-class SVM

classifier gives better identification accuracy than the (ML), this study still had

a limited population size. In addition, their paper failed to consider the effect of

different noise and channel conditions, and their effects on the used classifier.

In 2013, Hu et al. [60] presented a fuzzy clustering speaker identification system

based on a decision tree under AWGN conditions and a large number of speakers.

The system compared the base lines of MFCC with GMM and

MFCC+GMM+UBM. The idea behind using a decision tree for classification is to

enable the system to succeed with a large population under AWGN. The system

was tested with 3,805 speakers collected online from the websites of audiobooks.

However, even though the authors used a large number of speakers, the database

was not standard for speaker identification. In addition, the system was not tested

for different realistic noise conditions such as non-stationary noise and other

challenging conditions. It would also have been helpful if the authors had used the

fusion based I-vector approach for speaker identification for big data.

In 2014, Nidhyananthan and Kumari [61] presented the ML for GMM and a single

hidden layer feed forward neural network, which exploited the ELM as a classifier.

The system classified 50 speakers and showed that the ELM is 20 times faster than

the GMM in the testing phase. However, the GMM outperformed the ELM and

obtained identification accuracy of 94%, compared with 79.25% achieved by the

ELM algorithm. In addition, it was found that the ML is effective for classification

when combining MMFCC and MFCC and attained the highest speaker identification

accuracy of 97.5%. This thesis shows that the ELM is efficient, fast and less time

consuming for speaker identification when using the I-vector approach, and this

combination has not been used to date.

In 2015, Almaadeed et al. [30] developed multimodal neural networks using

Probabilistic Neural Network (PNN), Radial Based Function Neural Network

(RBF-NN) and General Regressive Neural Network (GRNN). The feature
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extraction for the identification system was based on different wavelet features,

and the fusion was a decision level scheme. Major voting between three neural

network classifiers was used to identify speakers. On this basis, the system was

tested with 34 speakers, 16 females and 18 males, from the GRID speech corpus.

Cross validation with 10 fold was employed and the best accuracy was 97.5% using

wavelets based on the Multimodal NN (MNN). Again, the drawback with this

study was using a limited number of speakers and failing to consider more

challenging environments, such as noise and channel effects. However, in the

current thesis, all these points were handled.

In 2015, Nandya et al. [62] presented an Artificial Neural Network (ANN)

classifier for fixed text (text dependent) speaker identification based on MFCC

features. A Back Propagation Neural Network (BPNN) was exploited to identify

the individual voice characteristics of 50 users. The system achieved 92%

identification accuracy. But had the main drawback of a low population size and a

lack of consideration of different noise conditions and channel effects.

2.3.6 Fusion Technologies

In 2012, Kumar et al. [1] presented the weighted sum fusion between MFCC and

the inverse of MFCC (IMFCC) to improve the identification accuracy. The system

was tested with 120 speakers from the TIMIT database and the highest

identification efficiency was 93.88%. In the current thesis, alternative fusion

methods were proposed such as maximum, mean, interleaving, concatenated, and

cumulative fusion methods, to improve the identification accuracy. Chapters 5 and

6 describe all the fusion methods in more depth. In addition, in Chapter 4, feature

and score fusion were used to give different prospectives on improving performance

accuracy.

In 2012, Nidhyananthan et al. [63] developed a combination of vocal tract

features such as Dynamic Mel Frequency Cepstral Coefficients (DMFCCs) and

MFCC to improve speaker identification accuracy. However, score fusion was also

considered for the same purpose. The features extracted the spectral

characteristics and the dynamic behaviour such as formant, bandwidth formant

frequency, and pitch frequency. The system was modelled using GMM. The paper

tested 630 speakers from the TIMIT database and the maximum accuracy
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achieved was 89.78% and 92.53% for DMFCC and MFCC, respectively; the

weighted sum fusion attained 98.02%. The drawback for this paper was that no

realistic evaluation of different noise conditions and the handset effect were

considered. In the current thesis, other fusion methods are considered: maximum,

mean, concatenated, interleaving, and cumulative fusion methods, in order to

improve the identification accuracy.

In 2012, Nakagawa et al. [64] combined GMM, the MFCC and phase information

for speaker identification and verification tasks, as well as score fusion based on

weighted sum. Both tasks were conducted using the NTT database with 35 Japanese

speakers (13 female and 22 male) and JNAS database, which is a large-scale and has

270 speakers (135 female and 135 male). The best speaker identification performance

obtained was 98.8% and 97.7% for the combination of modified phase information

with the MFCC and the MFCC, respectively. However, the best speaker verification

EER was 0.45% and 0.72% for the combination and for MFCC, respectively. The

drawback for this paper is again that background noise conditions and channel effects

were not considered. In addition, using Japanese speakers for speaker identification

does not provide a fair comparison when the results are compared with other work

for standard English language.

In 2013, McLaren et al. [45] produced a multiple fusion system based on a fusion

I-vector framework using concatenated fusion and score level fusion. In this work, the

performance measure was the EER for the speaker identification system. The system

was very complicated, and the current thesis gives a new prospectives on fusion

technologies. In addition, concatenated and weighted sum fusion, which can also

improve the system performance, it considers interleaving, cumulative, maximum,

and fusion mean. Furthermore, McLaren et al. could also have include noise effects

in the system, while are considered in this thesis.

In 2014, Nidhyananthan and Kumari [61] presented an Extreme Learning

Machine and a Gaussian Mixture Model for text independent multi-lingual speaker

identification. The system utilized MFCC, Modified MFCC, BFCC and Linear

Predictive Residual Cepstral Coefficient (LPRCC). The system showed that the

GMM outperforms ELM and achieved 97.5% in speaker identification accuracy,

with a 40 filter bank size at frame size 256 and 128 frame shift. The system was

tested with a jyamagis tool kit (synthesized voices) and recorded voices. 50

speakers were used, some of which were recorded and some of which was
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synthesized speech selected from the jyamagis tool kit. Score level fusion was

applied and attained the highest speaker identification accuracy at 97.5%, by

combining the scores between MMFCC and MFCC by using the weighted sum

fusion. However, the drawback of this paper was its failure to consider both

channel and noise effect, and different fusion technologies such as those presented

in this thesis.

2.4 Summary

This chapter was organized as following: Section 2.1 included the auditory

perception system of the human communication system, and then the auditory

nervous system and the cochlea. Section 2.2 gave an overview of the speaker

identification system used in this thesis and focused on feature extraction methods

and the normalization techniques. However, other stages for the system will be

discussed in the contribution chapters. Section 2.3 described the literature review

in terms of the speaker identification task. This section can be categorized into six

subsections based on: feature extraction, I-vector extraction, modelling, noise

robustness, and challenging environments, classifiers and fusion techniques.

Section 2.4 summarised the chapter.

The literature review in this chapter covers 54 studies; 12 were on feature

extraction, and six on I-vector extraction. Furthermore, 14 were on modelling

speakers, and 5 of these were on the I-vector model; 9 out of the 14 were on other

modelling approaches. Moreover, 12 studies were included on different challenging

environments, such as background noise (AWGN, Non-Sationary Noise), handset,

and reverberant. In addition, five studies covered classifiers and five fusion

methods were present in more than one subsection. According to Fig. 2.8, the pie

chart represents the distribution within the literature review of the different

speaker identification stages in 54 studies, measured by their Percentage

proportion. The distributions were 22.22%, 11.11%, 25.93%, 22.22%, 9.26% and

9.26% for feature extraction, I-vector extraction, modelling, environments,

classifiers and fusion, respectively. In addition, in the modelling based section,

9.26% was on I-vector based speaker identification and 16.67% on other modelling

approaches. Only nine percent of the 54 studies included the I-vector approach to

speaker identification, and furthermore these studies did not include challenging
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Figure 2.8: Percentage Proportion of Each Stage of the Speaker Identification
System in 54 Studied in the Literature Review Based on Six Stages of the
System: Feature Extraction, I-vector Extraction, Modelling, Noise Robustness, and
Challenging Environments, Classifiers and Fusion Techniques.

environments, such as different stationary and non-stationary noise types or

handset effects. In addition, studies have not considered different databases with

and without fusion techniques, and the novel contribution of this thesis is that all

these deficits are addressed. The next chapter will discuss various databases, some

of which are used in this thesis, and the reasons for avoiding certain databases.
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Chapter 3

Databases and Performance

Measurement

3.1 Background

This chapter consists of two major parts: the first focuses on the databases, while

the second considers performance measurement. In part one, due to their different

characteristics, four main databases are used in this thesis: the TIMIT; the 2016

SITW Speaker Recognition Challenge; the 2008 NIST; and the NTIMIT, which is a

telephone bandwidth version of TIMIT. In addition, various databases are discussed

in terms of the reasons for excluding these databases, according to their drawbacks

for this study. In part two, performance measurement is employed to evaluate

the speaker identification systems, and the SIA is considered for all contribution

chapters in this thesis. In addition, Detection Error Tradeoff (DET curve), EER

and minimum DCF for speaker recognition are discussed in this chapter, especially

for the verification application, although they were not employed in this thesis.

3.2 Databases

In this section, two major types of databases are discussed: type 1 includes the

four databases used in this thesis, while type 2 covers other databases not

considered. One of the most important databases is the TIMIT database, which

has various types and versions that are widely used for different state of the art

applications. Therefore, before discussing type 1 and 2 separately, the TIMIT
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family of databases is discussed in this section, including some examples of both

types 1 and 2 databases. TIMIT is a speech corpus comprised of male and female

American English speakers with different dialects; in the database, the speech has

been lexically and phonemically transcribed. There are different versions of the

TIMIT database, which are called in this section the TIMIT Family:

• TIMIT Acoustic-Phonetic Continuous Speech Corpus-1993

• NTIMIT-1993

• CTIMIT-1996

• FFM-TIMIT-1996

• HTIMIT-1998

• MOCHA-TIMIT-1999

• The VidTIMIT Audio-Video Dataset-2001

• STC-TIMIT 1.0-2008

• WTIMIT 1.0-2010

• TCDTIMIT-2015

• Noisy TIMIT Speech-2017

A brief description of the TIMIT family databases is summarized in Tables 3.1, 3.2

and 3.3 below:

The tables are categorized into the two columns: the TIMIT type and the

description for each type. The description for eleven types of TIMIT databases

include: the data source, sample type, sample rate, applications, aims, authors,

number of speakers, language and further information from the websites.
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Table 3.1: Description of the TIMIT Family of Databases-Part A

Type of TIMIT Description

1- TIMIT Acoustic-Phonetic [65] Data source: microphone speech
Continuous Speech Corpus Application: speech recognition

Sample Type: 1-channel pcm
Sample Rate: 16 kHz, Language: English
Authors: John S. Garofolo, Lori F. Lamel,
William M. Fisher, Jonathan G. Fiscus,
David S. Pallett, Nancy L. Dahlgren, Victor Zue
Number of Speakers: 630 of 8 major dialects of
American English, Member Year: 1993

2- NTIMIT is [66] Data source: telephone speech,
(Network TIMIT) Application: speech recognition
a telephone Sample Type: 1-channel pcm
bandwidth of TIMIT corpus Sample Rate: 16 kHz

Authors: William M. Fisher, George R. Doddington,
Kathleen M. GoudieMarshall, Charles Jankowski,
Ashok Kalyanswamy, Sara Basson, Judith Spitz
Number of Speakers: 630 with 6,300 original
TIMIT recordings through a telephone handset and
over various channels in
the NYNEX telephone network
Member Year: 1993

3- CTIMIT is Cellular bandwidth [67] Data source: telephone speech,
to the TIMIT Speech Corpus Application: speech recognition

Sample Type: 1-channel pcm
Sample Rate: 8 kHz, Language: English
Authors: E. Bryan George, Kathy L. Brown,
Martha Birnbaum, Michael Macon
Aim: to provide a large database
to exploit for the evaluation and design of the
operating systems for speech processing
in varied cellular telephone environments
American English, Member Year: 1996

4- FFMTIMIT Far Field [68] Data source: microphone speech, Applications:
Microphone Recording Version speech recognition Sample Type: 1-channel pcm,

Sample Rate: 16 kHz, Author: John S. Garofolo,
Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus,
David S. Pallett, Nancy L. Dahlgren, Victor Zue
FFMTIMIT contains the secondary microphone
waveforms for TIMIT database. The primary were
recorded using a close-talking noise-cancelling
head-mounted Sennheiser microphone (model HMD414).
The secondary was a Breul and Kjaer (B and K)
1/2” free field microphone (model 4165).
Member Year: 1996
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Table 3.2: Description of the TIMIT Family of Databases-Part B

Type of TIMIT Description

5- HTIMIT [69] Data source: telephone speech,
Handset TIMIT, Applications: speech recognition,
which contains a subset of speaker identification
192 female and 192 male Sample Type: 1-channel pcm
speakers through Sample Rate: 8 kHz
different telephone handsets Author: Douglas Reynolds

Aim: to study handset transducer effects
on speech recognition systems,
Ten transducers (telephone handsets)
were used, Member Year: 1998

6- MOCHA-TIMIT [70] Data source: microphone speech,
Sample Rate: 16 kHz
Authors: Alan Wrench,
Queen Margaret University College
When created: November 1999,
Corpus: a set of 460 short sentences
for British-TIMIT sentences

7- VidTIMIT Audio-Video Dataset [71] Data source: Audio-Video
For useful topics: automatic lip reading,

is comprised of video and corresponding multi-modal speech recognition,
audio recordings of short multi-view face recognition
sentences from 43 people and person identification

Number of people: 43 people
Author: Conrad Sanderson
The dataset was recorded in 3 sessions.
The sentences were selected from
the test phase of the TIMIT/NTIMIT corpus.
Each person has ten sentences.
Session 1 includes the first six sentences.
Session 2 includes 2 sentences and also Session 3.
Each session from each person has a head rotation
sequence: Moving their head to the right, left,
back to the center, down, then up,
and back to the center.
The recording was made in an office environment.
A digital video camera of
broadcast quality was used, at a
resolution for each person of 512 x 384 pixels.
JPEG images have a setting quality of 90%.
Audio files are stored as 16 bit, mono, 32 kHz.
Years: 2001-2002, Website available:
http://conradsanderson.id.au/vidtimit/

8- STC-TIMIT 1.0 [72] Data source: telephone conversations
is a telephone version of the TIMIT database Application: speech recognition,

speech synthesis
Sample Type: ulaw, Sample Rate: 8 kHz
The training partition has 4,620 files,
and the test partition has 1,680 files
Two calibration tones with four sets were generated
2 sec. 1kHz tone, 2 sec. sweep tone from
10 Hz to 4000 Hz. Authors: Nicolas Morales
Member Year: 2008
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Table 3.3: Description of the TIMIT Family of Databases -Part C
Type of TIMIT Description

9- WTIMIT 1.0 wideband mobile [73] Data source: telephone speech,
telephony derivative from TIMIT database Application: speech recognition,

speaker identification
Sample Type: 1-channel signed linear PCM
Sample Rate: 16 kHz
Authors: Patrick Bauer, Tim Fingscheidt
The testing subset contains 1,680 speech files.
The training subset consists of
4,620 speech files.
Member Year: 2010

10- TCD-TIMIT [74]: An audio-visual Data source: audio-visual
corpus of continuous speech Consists of high-quality video footage and audio

Number of speakers: 62 speakers
In total, there are 6,913 phonetic sentences.
The database is freely available for research use
Application: audio-visual speech
recognition research to help
develop new approaches
for the state of the art.
To test the hypothesis using
lip-speakers; three of the
speakers are trained.
In video footage for two
angles were recorded
with 30 and degrees straight on
Aim: To create a new continuous
audio-visual corpus
designed for speech recognition research
Years: 2015

11- Noisy TIMIT Speech [75] Data source: microphone speech
Application: speech recognition
Sample Type: flac
Sample Rate: 16 kHz
Authors: Azhar Abdulaziz, Veton Kepuska
The additive noise is: white, pink,
blue, red, violet and babble noise
with noise levels varying in 5 dB (decibel)
steps and ranges from 5 to 50 dB
Noisy TIMIT Speech was developed by
the Florida Institute of Technology and
contains approximately 322 hours of speech
from the TIMIT database and modified
with different additive noise levels
Member Year: 2017
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The tables show that the TIMIT and NTIMIT databases are the best databases

in terms of the number of speakers, application and the availability, and hence the

TIMIT and NTIMIT were selected for the work in this thesis.

3.2.1 Type 1: Databases Used in This Thesis

Four types of database were used in this thesis: the TIMIT, NTIMIT, SITW and

NIST 2008 databases.

3.2.1.1 TIMIT Acoustic-Phonetic Continuous Speech Corpus-1993

Although the TIMIT corpus is common and widely used [3], and essentially

designed for automatic speech recognition systems, in this thesis it is exploited for

identification purposes. The corpus’ name is Texas Instruments (TI) and

Massachusetts Institute of Technology (MIT). The TIMIT corpus contains 630

speakers, and each speaker has ten sentences, making a total of 6,300 sentences;

the speakers were selected from eight dialect regions in the United States [65]. In

this thesis, 120 of the 630 speakers were selected from two Dialect Regions (DR)

namely, DR 1 and DR 4. 49 of the speakers were taken from DR 1 and the

remaining 71 from DR 4, to match the work in [1] and [76]. Ten speech utterances

were employed for each speaker; in the training phase, six utterances were used,

and the remainder were kept for testing. A fixed speech length of 8 seconds

(129,250 samples) was developed for all 120 speakers (1,200 speech utterances),

and concatenation was used when necessary. In addition, further details about the

TIMIT database concerning speaker distribution, text material and training/test

partitions can be found on the website [77] and also the documentation for TIMIT

on [65]. Firstly, Table 3.4 shows the TIMIT corpus speaker distribution, and the

number of speakers according to sex given in parentheses. In the whole database,

speakers who were children came from eight dialect regions represented in the

geographical areas for the U.S, but in this thesis only DR 1 and DR 4 were

exploited for speaker identification. Secondary, according to Table 3.5, there are

ten sentences for each speaker: two sentences were from the Dialect (SA), then five

from the Compact (SX), and the remaining three sentences from the Diverse (SI).

The SA sentences were intended to disclose the dialectal variants of the speakers,

while the SI sentences were chosen from existing text sources. To provide good
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Table 3.4: TIMIT Dialect Region Distribution of Speakers

U.S. area for each DR Dialect Region (DR) Male Female Total

New England DR 1 31 (63%) 18 (27%) 49 (8%)

Northern DR 2 71 (70%) 31 (30%) 102 (16%)

North Midland DR 3 79 (67%) 23 (23%) 102 (16%)

South Midland DR 4 69 (69%) 31 (31%) 100 (16%)

Southern DR 5 62 (63%) 36 (37%) 98 (16%)

New York City DR 6 30 (65%) 16 (35%) 46 (7%)

Western DR 7 74 (74%) 26 (26%) 100 (16%)

Army Brat DR 8 22 (67%) 11 (33%) 33 (5%)

Overall 8 438 (70%) 192 (30%) 630 (100%)

Table 3.5: Speech Material for TIMIT Corpus

Sentence Type Sentences Speakers Total Sentences/Speaker

Dialect (SA) 2 630 1260 2
Compact (SX) 450 7 3150 5

Diverse (SI) 1890 1 1890 3

Total 2342 6300 10

coverage of pairs of phones, the SX sentences were designed. Finally, in this thesis’

training and testing phases, partitioning was employed for six speech utterances

for training (two sentences from SA + three sentences SI sentences + one SX

sentence), and the rest (four SX sentences) for the testing phase to act as a mirror

to the work in [1] in terms of the number of training and testing samples for each

speaker.
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Table 3.6: The NTIMIT Database Files Lacking Speech Data

path/name nature of problem

ntimit/test/dr1/fdac1/sx394.flac (0’s in last 80%)
ntimit/test/dr1/fjem0/si634.flac (0’s in last 40%)
ntimit/test/dr2/mccs0/si839.flac (mostly 0; first 13 csec is noise)
ntimit/test/dr5/fmah0/sx29.flac (0’s in last 60%)
ntimit/test/dr5/fmah0/sx299.flac (0’s throughout)

ntimit/train/dr4/mjdc0/si1161.flac (0’s throughout)
ntimit/train/dr7/fkde0/sx331.flac (0’s in last 60%)

ntimit/train/dr7/mjdg0/si1042.flac (0’s in last 90%)

3.2.1.2 NTIMIT-Network TIMIT

This database was produced by the Linguistic Data Consortium and developed by

NYNEX Science and Technology Speech Communication Group [66] and [78]. This

corpus presents a telephone bandwidth to assist the common TIMIT

Acoustic-Phonetic Continuous Speech Corpus, and the data were contributed by

NYNEX to NIST for distribution. 630 speakers with 6,300 speech utterances were

transmitted over different channels by the NYNEX telephone network, and

collected by NTIMIT. In this thesis, the same setup setting selected by TIMIT was

used as well in the NTIMIT database in terms of: sampling frequency, dialect

regions, number and name of speakers and speech utterances, and training and

testing partitioning. After 1993, the NTIMIT database reported problems in the

data file content, but no further information or corrections have been recorded

by [78]. There are eight incomplete speech files, as explained in the Table 3.6.

According to the Table 3.6, two speech files for DR 1 are problematic for both

training and testing phases for two speakers from DR 1, and thereby could

possibly reduce the recognition rate.
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Table 3.7: NTIMIT Database Files Lacking Calibration Data

path/name BIN LTU

ntimit/test/dr3/fkms0/sx50.wav 01 0006
ntimit/test/dr2/fjas0/sx140.wav 01 0072
ntimit/test/dr5/mlih0/sx373.wav 01 0072
ntimit/test/dr7/fcau0/si1037.wav 01 0072
ntimit/test/dr7/mnjm0/si950.wav 01 0072

ntimit/train/dr1/mpsw0/sx437.wav 01 0072
ntimit/train/dr2/mbjv0/sx257.wav 01 0072
ntimit/train/dr3/mdhs0/si1530.wav 01 0072

ntimit/train/dr5/ftlg0/sx33.wav 01 0072
ntimit/train/dr7/fvkb0/si529.wav 01 0072

ntimit/train/dr7/mcre0/si1725.wav 01 0072
ntimit/test/dr2/fjre0/si1746.wav 01 0095
ntimit/test/dr2/mtas1/sx118.wav 01 0095
ntimit/train/dr1/fvfb0/sx222.wav 01 0095
ntimit/train/dr1/mrws0/sa1.wav 01 0095

ntimit/train/dr1/mwad0/sx72.wav 01 0095
ntimit/train/dr2/faem0/sx222.wav 01 0095
ntimit/train/dr2/fmjb0/si1177.wav 01 0095
ntimit/train/dr4/marw0/si646.wav 01 0095

ntimit/train/dr4/mbma0/si1222.wav 01 0095
ntimit/train/dr4/mlbc0/sx339.wav 01 0095
ntimit/train/dr7/mhbs0/si2205.wav 01 0095
ntimit/train/dr7/mmdg0/si1780.wav 01 0095

In addition, another serious problem was identified with 23 utterances, in terms of

not knowing the precise channel effects for files identified with uncalibrated circuits.

These 23 speech files are listed in Table 3.7, according to circuit ID for each file

(“LTU”). From Table 3.7, it is evident that from the seven speech files, four belong

to the DR 1, while the remaining three files are from DR 4. The problems in these

utterances might be effect on the identifying their speakers and hence on the SIA.
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3.2.1.3 The Speakers In The Wild Speaker Recognition Challenge 2016

This challenging database was fairly recently collected, and its main aim is to

develop novel state of the art algorithms to benchmark existing technologies for

researchers working in speaker recognition under various environments produced in

the SITW database. Furthermore, this database is free and publicly available for

research to those working in speaker recognition as explained in [79], [80]. The

database was exploited and described using the following references [81], and [82],

and then in addition to speaker recognition applications, various diarization

algorithms were employed to exploit the new database [83]. The database is open

source media, and has hand annotated speech samples from the database,

including single and multi-speakers audio obtained in wild conditions. The SITW

database contains about 300 persons under various conditions, such as: outdoors,

in a stadium, red carpet interviews, clean interview conditions, and multi-speaker

scenarios. In addition, the speech for each person was obtained using mobile

phones and camcorders and is void of professional editing. In the SITW database,

hundreds of individuals performed in a range of challenging environments, whereas

in the video, speaker identities were visually confirmed. In this corpus, all

compression, reverb, noise and artifacts were natural characteristics of authentic

audio. However, with this real-world data and the many different challenging, it is

expected to be difficult to recognize speakers in such conditions. In the thesis, 120

speakers were chosen; most of the selected speakers were single speakers and

several were unbalanced multi-speakers. To select the target single speaker,

Goldwave and Audacity software were employed to represent the single speakers

considered in this thesis. In addition, to mirror the work in [1], each recorded

speech was divided into ten equal lengths, of 8 seconds (129,250 samples) fixed

length. However, to achieve the same fixed length of 8 seconds for all speech

utterances, some were concatenated, and then six files were utilized for training

and four for testing.

3.2.1.4 2008 NIST Speaker Recognition Evaluation Training Set Part

2-2011

This database was developed by NIST and Linguistic Data Consortium (LDC),

and the authors were the NIST multi-modal information group in 2011, available
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on [84]. This database handles telephone speech, with approximately 523 hours,

and microphone speech, of about 427 hours, for both multilingual speakers using:

English, Italian, Spanish, Arabic, Egyptian Arabic, Moroccan Arabic, Russian,

Georgian, Uzbek, Iranian Persian, Persian, Urdu, Hindi, Panjabi, Tigrinya, Thai,

Tagalog, Dari, Korean, Central Khmer, Northern Khmer, Bengali, Vietnamese,

Yue Chinese, Wu Chinese, Min Nan Chinese, Lao, Mandarin Chinese, Chinese,

Japanese. The sample type was u-law and the sampling rate was 8 kHz. As such,

this database is intended for those generally interested in text independent speaker

recognition. This database includes 950 hours of English language interview and

multilingual telephone speech, with transcripts for training data in the Speaker

Recognition Evaluation (SRE) to the 2008 NIST. The segments of telephone

speech are summed-channel recordings and have length five minutes which are

shorten than the longer original conversations. However, each speech conversation

has two sides, the target and non target speakers where both participate and

summed together. The interview material consists of segments of single channel

conversation of at least eight minutes in length, taken from a longer interview. In

addition, silence intervals were not deleted. In this thesis, the data source used is a

microphone speech of native and bilingual English speakers in an interview

scenario. The sampling frequency was converted from the original 8 kHz to 16 kHz

for each speech file, and 120 speakers of English on a microphone channel were

selected for comparison with the SITW and the TIMIT databases. However, only

the single speakers were selected and the interviewers were removed. A fixed

speech duration of eight seconds was created for each speech utterance, and four

speech recordings were used for the testing phase and six for the training phase.

Additional documentation is obtainable from the 2008 SRE for NIST website, also

within the evaluation plan to the 2008 SRE.

53



3.2 Databases

3.2.1.5 Non Stationary Noise Database

Non-Stationary Noise (NSN) was used on the testing side only, and is available

from [85] and [86] and. Both NSN and AWGN were adapted to fit the speech

utterances by trimming them to the same fixed length of eight seconds (129,250

speech samples). In this thesis, three background noise types (NSN types) and

AWGN with varying SNRs were tested for: street traffic, the interior of a bus, and

a crowd environment. However, corresponding to the noise power (0dB to 30dB),

there were seven SNR levels with 5 dB step size for each level.

3.2.2 Type 2: Databases Not Used in This Thesis

First of all, from the TIMIT Family, only TIMIT and NTIMIT were employed in

this thesis; the other TIMIT family members not used in this thesis are: CTIMIT,

FFM-TIMIT, HTIMIT, MOCHA-TIMIT, the VidTIMIT Audio-Video Dataset,

STC-TIMIT, WTIMIT, TCDTIMIT and Noisy TIMIT Speech. However, these

databases were not chosen, either because of issues in terms of the number of

speakers, or the type of files and their availability. As well as the TIMIT Family

databases, there are other databases which were not used in this thesis, such as:

MOBIO, the GRID audiovisual sentence corpus, VoxForge, YOHO and the NIST

I-vector Machine Learning Challenge Databases, which include: the Speaker

I-vector Machine Learning Challenge, and the Language I-vector Machine Learning

Challenge. In addition, the MATLAB Audio Databases Toolbox is also available

but was not used in this thesis.

3.2.2.1 MOBIO Database

This database provides a bi-modal database with audio and video forms for 152

individuals, 100 males and 52 females, and the data are available in [87] and also

used in [88]. It was collected within approximately two years (August 2008 - July

2010) across five countries, but this led to a diversity of English speakers in the

database in terms of native and non-native. In addition, two mobile devices were

used with laptop computer (standard 2008 MacBook) and mobile phone (NOKIA

N93i mobile) to record this database. The database has 12 sessions in total for

each client, six sessions for Phase II, and the rest for Phase I. Phase II data include

11 questions and the range for the question types is short response questions, set
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speech, and free speech. However, the Phase I question types range from short

response questions, short response free speech, set speech, and free speech. This

phase includes 21 questions. The drawback for this database is that the data source

comes from a mobile and laptop, which makes it difficult to obtain a fair comparison

with other databases; therefore, this database was excluded from this thesis.

3.2.2.2 The GRID audiovisual sentence corpus

This database is a high-quality corpus of 34 talkers, 16 female and 18 male. These

audiovisual data contain both video (facial) and audio recordings in a thousand

sentence corpus. The main aim is to assist in speech perception in common

behavioural and computational studies. The data are freely available for research

purpose [89]. In addition, for each talker, all video, audio and word transcriptions,

as well as other associated information, are separately available. The absolute

maximum amplitude value was limited for all audio files of “One” and also down

sampled to 25 kHz where these have end pointed; the original 50 kHz signals raw

data were also considered. In addition, two video file formats are presented, of

high and normal quality, with (720 × 576; 6kbit
s

) and (360 × 288; 1kbit
s

),

respectively. Moreover, it is reported that the video of speaker 21 was unavailable

due to a technical oversight. The main drawback for this database is also the lack

of the speakers (only 34 speakers), and therefore this database was not considered

in this thesis.

3.2.2.3 VoxForge Database

VoxForge is a free speech database and Open Source Speech Recognition Engines

(OSSRE) and is free available as explained in [90]. This database was established to

collect transcribed speech, and hence a free GPL speech corpus was produced and

utilized with the open source speech recognition engines (on Linux, Windows and

Mac). In addition, the acoustic models were compiled using the speech audio files,

and then used for OSSRE, for instance ISIP, Julius (github), and HTK and Sphinx

(note: HTK has distribution restrictions). Furthermore, LibriVox as a source of

audio data, the VoxForge has been used since 2007. The major drawback of this

database in terms of this thesis was very short speech length, and so it was not

employed here.
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3.2.2.4 YOHO Database

This database is a high-quality, large scale speech corpus initially proposed for text-

dependent speaker verification tasks, for example in secure access technology. The

sample type is 1-channel pcm compressed, while the sampling rate is 8 kHz and

the data source was English microphone speech. These data were developed by the

LDC, 1994 [91]. Through a US Government contract, this database was collected

in 1989. In addition, the corpus was collected over a three month period from 108

males and 30 females. Further information can be seen in [92], [93], [94] and [95].

This database is not freely available and thus was not considered in this thesis.

3.2.2.5 NIST I-vector Machine Learning Challenge Databases

This database includes different challenging areas related to the Speaker I-vector

Machine Learning and the Language I-vector Machine Learning Challenge, as

explained in [96], from which the NIST I-vector 2014 database was produced. The

NIST Speaker Recognitions from 2004 to 2012 is an I-vectors database, and each

vector has 600 components derived from conversational telephone speech data.

However, the database is classified into four file types: one file is a table

representing the target speaker models; the other three files are three tables of

I-vector development, model, and test I-vectors. Each table includes several rows,

and each row includes: the corresponding speech length in seconds in order to

compute the I-vector, the i-vector ID, and the 600-dimensional i-vector. It seems

this database has ambiguity about the feature type and all system details and this

is the main drawback for this challenging database. In addition to this limitation,

the I-vector is of only 600 dimension and this requires a huge number of speakers

and training utterances. Therefore, this database was not considered in this thesis.

3.2.2.6 MATLAB Audio Databases Toolbox

The MATLAB for Audio Database Toolbox (ADT) gives simple accessing and

filtering as an alternative for manual custom coding and filtering, which is always

needed for accessing the various databases by their metadata for instance YOHO,

TIMIT. This avoids the time-consuming need to learn the database structure, and

thereby allows concentration on the arithmetical aspects. In addition, the

following databases are supported [97]:

• TIMIT Acoustic Phonetic Continuous Speech Corpus (AmericanEnglish)
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• NTIMIT Telephone Network Acoustic Phonetic Continuous Speech Corpus

• CTIMIT Cellular Telephone Acoustic Phonetic Continuous Speech Corpus

• YOHO Speaker Verification Corpus

• TIDigits SpeakerIndependent recognition of connected digit sequences

• Children Voices Hebrew Speech

• Hebrew BGU Hebrew word samples

• Gutenberg Books MP3 format books

The supported search criteria for the TIMIT and NTIMIT databases are: speaker

and sentence, dialect, sex, usage, phoneme, and word. However, the YOHO database

supported: speaker, usage, numbers, and session, while the TI-Digits supports:

speaker, digit, type, group and usage.

3.3 Performance Measurement

Generally, in the speaker recognition which includes both the speaker identification

and speaker verification tasks there are two parts to the performance measurements:

Part A, the EER and Part B, the SIA.

3.3.1 Part A: DET Curve, EER and min DCF

This part is essentially used in speaker authentication (speaker verification). In

recognition systems such as speaker, image, biometrics and pattern recognition, two

major types of errors can be classified, namely False Acceptance (FA) and False

Rejection (FR) (further details are discussed in [98] and [99]). False Acceptance

occurs when an imposter is successfully verified in error, whereas False Rejection

happens when the true user is rejected. However, the rates for FA and FR are

computed by the following formulas, as explained in equations 3.1 and 3.2 (employed

in [98] and [99]):

FAR =
Number of FA

Number of impostors accesses
(3.1)
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FRR =
Number of FR

Number of target accesses
(3.2)

Both rates (False Acceptance Ratio-(FAR) and False Rejection Ratio-(FRR) ) are

based on the decision threshold. There are fewer false acceptances, while false

rejections are more common when the decision thresholds are higher. On the other

hand, there is more FA compared to fewer false rejections for lower decision

thresholds, and so to compromise between the two operating rates, a decision

threshold is used. In addition, DCF is a fixed decision threshold used to measure

speaker verification performance; this decision is used to optimize the cost. This

can be achieved by a weighted sum of the FR and FA rates by what is called the

DCF. These weights correspond to probability of the target speaker, Ptar, which is

also equal to PFR Ptar = PFR and the a priori probability of impostor, Pimp, which

is equal to Pnontarget, Pimp = Pnontarget = PFA trials. The costs CFR and CFA

associated with the FRR, FAR, respectively, and the detection cost function, is

determined by the following formula [98] and [99]:

DCF = CFR Ptar FRR+CFA Pimp FAR = CMiss PMiss PFR+CFA Pimp PFA (3.3)

where: Ptar = 1 − Pimp = PMiss, Pimp = PNonTarget CFR = CMiss,

CFR = CFalseAlarm. Based on the value of decision threshold, the value of DCF is

dependent. When the decision threshold is changed, the minimum value of the

DCF is acquired (Min DCF). Furthermore, the EER is the point at which the false

acceptance rate is equal to the false rejection rate (FAR = FRR), represented in

the DET curve at the operating point. Moreover it could be used as another

criterion to compare the speaker verification systems regarding the performance of

these systems [98] and [99]. Moreover, in the DET Curve, both EER and DCF

give speaker verification performance that corresponds to the operating point for a

fixed decision threshold. To view the performance at different points, another

method is used for the same curve that is DET curve. Instead of the Receiver

Operating Characteristics (ROC) curve, the DET curve plots the variation for

both the FA and FR rates, corresponding to different decision thresholds.
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3.3.2 Part B: Speaker Identification Accuracy

The SIA is used to measure the percentage accuracy of the number of genuine

speakers identified (true speakers identified) compared with the total number of

speakers, as explained in (3.4) [3], [41] and [42]. The performance accuracy can be

calculated by the SIA, represented by (3.4); some authors have exploted the SIA

in [1] [100]:

SIA =
Number of True Speakers Identified

Total Number of Speakers
× 100% (3.4)

In this thesis, the SIA is considered for all experiments in the next contribution

chapters.

3.4 Summary
This chapter was organized as follows: Section 1 included the background; Section 2

dealt with the databases, including both the databases used in this thesis and those

which were excluded, and why; Section 3 consisted of the performance measurement;

In this chapter, four main databases (TIMIT, NTIMIT, SITW and NIST 2008)

were presented, as well as the performance measurements using the SIA. These were

all clearly and deeply discussed for all the experiments included in the following

contribution chapters.
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Chapter 4

Speaker Identification Using

GMM-UBM Approach With

Fusion and Evaluated on Original

Speech Recordings

In this chapter, a new combination of features and normalization methods is

investigated for text independent speaker identification. MFCCs features are

efficient for speaker identification in original speech recordings, while PNCCs

features are robust for noisy environments. Therefore, combining both features

together is expected to be better than taking each one individually. In addition,

CMVN and FW are used in order to remove or mitigate possible linear channel

effects, they are also robust for channel and handset mismatch and additive noise

in voice measurements. Speaker modelling is based on a GMM with a UBM.

Coupled parameter learning between the speaker models and UBM is utilized to

improve performance. Four main simulations for SIA are presented in this chapter

including different fusion strategies: Late fusion (score based), early fusion (feature

based) and early-late fusion (combination of feature and score based), late fusion

for concatenated static and dynamic features (features with temporal derivatives

such as first order derivative delta and second order derivative delta-delta features

which are called acceleration features) and finally the statistically independent

normalized scores for all the previous scores. 120 speakers from the TIMIT

database are used in order to evaluate closed set speaker identification and to
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mirror with [1]. Each speaker has ten speech recordings; six of them are used for

the training phase, while the remaining four are applied for testing purpose as

in [76] and [101]. A fixed speech length with 129250 samples (8 seconds for both

training and testing) is achieved for each utterance via concatenation [76].

4.1 Background

Speech is commonly exploited as a human biometric due to the unique

characteristics of individual voices [2]. In speaker identification and verification

tasks, choosing the best features to capture this information is one of the most

important issues. MFCC features are widely used for this purpose [3] [4]. However,

to improve the SIA, MFCC features were fused with inverse MFCC features

(IMFCC) in [1], but the approach was limited by the number of GMM components

and the improvement in the recognition rate is still low. In addition, [64] proposed

combining phase information with MFCC features to improve speaker

identification. According to [62], a text independent speaker identification system

can be achieved by using MFCC features and by using Back-Propagation Neural

Networks (BPNNs) for classification. The drawback to this system is the

complexity and the consuming training time for the BPNN. Furthermore, others

have proposed the wavelet transform for feature extraction and vector quantization

for the modelling technique, but, poor identification performance is achieved on

the database used (15 speakers) [102]. Moreover, three scenarios for speaker

identification were presented by [44] , exploiting the GFM. However, the

identification rate using the NIST 2003 database was poor. In addition, other

researchers have examined large population speaker identification such as in [47]

where the total variability space is used to capture both the speaker and channel

variabilities by the I-vector. Their main challenge was providing a suitable

database, so 1000 speakers were taken from a non standard YouTube database.

The system gave higher performance for large observation periods (20s and more),

but it was less efficient for shorter 10s speech lengths. In another study, a large

population was achieved by using fuzzy clustering presented in [60], which

employed hierarchical tree decisions for speaker identification. The study involved

3,805 speakers subjected to AWGN, and it was also noted that the system could

be improved using fusion; however, no tests for realistic noise were conducted. In
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addition, In [103], a mean clustering approach was proposed for GMM speaker

models, but the time complexity of the log-likelihood calculation was a bottleneck

for the testing phase. The system achieved highest performance with TIMIT, with

10% and 30% reductions for the NIST 2002, and NTIMIT databases, respectively.

However, the system was not evaluated under different environmental noise

conditions.

In this chapter, a better identification performance is achieved for large

populations compared with other work in [1] due to the following points: The

PNCC features are robust to different types of noise and can sometimes achieve

better SIA compared with MFCC and PLP features even in a clean

environment [14]. Therefore, combining PNCC and MFCC features will provide a

robust performance for original speech recordings and noisy environments which

will be addressed in the next chapter. In contrast with prior work the proposed

system also has the potential to achieve enhancement in SIA by removing and

reducing sensitivity due to the channel between the speaker and microphone

together with handsets by using normalization methods, feature warping and

CMVN [1]. Moreover, instead of modelling individual speakers with limited data

only by a GMM as in a previous study, a GMM-UBM is used based on modelling

strategy as in [3] utilizing all speakers’ data to increase the number of mixtures

and thereby enhance the identification rate. Furthermore, this chapter studies a

number of late fusion methods that includes weighted sum, maximum and mean

fusion of the combination of the features scores as methods to improve

SIA [76] [101]. In addition, early fusion and combination of early and late fusion

are used [76]. Moreover, speaker identification with late fusion for static and

dynamic features is also included in this work by using the vertical concatenated

fusion methods between MFCC and PNCC features. However, a new method of

speaker identification system is accomplished based on creation of a new score

vector from scores vectors used in late, early and late fusion, and the concatenated

of static and dynamic features mentioned above. This new vector was achieved via

assuming that all fusion scores vectors are statistically independent which are

essentially acquired from different feature dimensions 16, 32 and 39.

The organization for this chapter is as follows: Section 4.2 focus on biometric

speaker identification framework. Fusion strategies are overviewed in Section 4.3.

Section 4.4 includes the simulation setup. Overview of the related work is
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explained in Section 4.5. Section 4.6 shows all original speech recordings

simulation results for this chapter, while the discussions follow in Section 4.7.

Finally, a summary is presented in Section 4.8 for this chapter.

4.2 Biometric Speaker Identification Framework

4.2.1 Feature Extraction and Feature Normalization

The major issue in the feature extraction is to transform the speech signal to

compressed features that can provide a compact representation of the acoustic

speech signal. Each speech sample in both training and testing phases has 129250

sample length (8 seconds train / 8 seconds test) in order to create a fixed length

for all speech recordings which corresponds to a thousand frames for MFCC and

PNCC features. Two feature extraction methods are combined MFCC and PNCC:

a 16-feature dimension was selected from both MFCC and PNCC for each input

frame including the average long-power (features at zero-order) C0 and Pc0 for

both MFCC and PNCCC respectively [3] [76] and [101]. The speech samples were

filtered with a pre-emphasis filter by using a first order FIR high pass filter with

emphasis coefficient 0.96 [1] [12]. Hamming windowing was exploited for both

MFCC and PNCC features with frame duration 16ms with 50% inter frame rate

overlap [1] [13]. The implementation for MFCC and PNCC features are explained

in chapter 2, more details about both features can be found

in [16] [26] [27] [104] [105].

Feature normalization is also adopted by using feature warping and CMVN for

both the MFCC and PNCC features. The main purpose of feature warping is to

produce a stronger representation of the distribution for each cepstral feature. For

a specified time interval, warping the distribution of a stream of cepstral features

to match the normal Gaussian is called feature warping [17]. Feature warping and

CMVN approaches are used to improve the SIA for the system as well as reducing

sensitivity to the mismatch between types of telephone handsets and could also

help to reduce the linear channel effects [18] [19]. The features and feature

compensations are developed in [76] [101].
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4.2.2 Acoustic Modelling and Matching

Modelling a set of a speaker classes is one of the most important stages of the

recognition task. In GMMs, each speaker can be represented by a finite weighted

mixture of multivariate Gaussian components defined by the mean and covariance

parameters as in Equations (4.1) and (4.2) [1] [41] [106]:

p(x | λ) =
M∑
i=1

ωi pi(x) (4.1)

where: ωi is the i-th mixture weight, and

pi(x) =
1

(2π)
D
2 |Σi|

1
2

exp

{
−1

2
(x− µi)

TΣ−1i (x− µi)
}

(4.2)

where: x is a D-dimensional random feature vector, M is the number of Gaussian

Mixture Components. For each speaker model there is a parameter set

λ = {ωi,µi,Σi}, i = 1, ...,M , µi and Σi are respectively the mean and covariance

parameters of the i-th component density and (.)T denotes the transpose

operator [40]. Diagonal covariance matrices are assumed in this work instead of

full covariance matrices as in [3] [106], which is more efficient computationally and

no reduction in SIA is found. In most practical applications of GMMs in speaker

identification only limited training data are available, therefore we use a different

approach to learn these models as next described [76] [101].

4.2.2.1 Universal Background Model and GMM-UBM

Basically, the GMM is one of the early methods that was used for modelling

paradigms in speaker recognition. This method suffered from two major problems

and they are unseen and insufficient data, therefore a limitation for increasing the

Gaussian mixture dimension appeared and this caused degradation in the speaker

identification system when the number of speakers increased. The GMM-UBM was

proposed to solve the drawbacks from using GMM [3] and this is exploited in this

chapter. One of the most important reasons to use the UBM is to overcome the

problem of insufficient training data as well as unseen data. For understanding the

UBM, imagine the UBM as a large pool in which all speaker training sets are used

together with the Expectation Maximization (EM) method. As a consequence of

training with a large amount of data a larger number of parameters are estimated

than possible with individual speaker GMMs, and thereby increase the
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dimensionality of mixtures to cover all speakers which will improve the system

performance. In addition, the individual speaker models are trained by Maximum

A-Posteriori (MAP) adaptation initialized by the UBM with the training data for

each particular speaker. This approach by training on large data for the UBM

followed by adapting it for S different speakers will increase the dimensionality of

the models. Therefore this coupling between the UBM ( large training data) and

individual speaker models (small amount of data) makes the GMM-UBM system

better able to model unseen data through having estimates with sufficient

parameters to increase the mixture dimensionality (number of mixtures) and this

improves the identification rate. The UBM represents an effective model for all

non hypothesised speakers (in practice all the training speakers), and is defined as

p(X| λhyp) where X is the corresponding TF feature vectors, X = [x1, ...,xTF ], and

λhyp is the corresponding parameters set. This speaker independent model can

then be used to improve speaker identification performance [76] [101].

4.2.2.2 Adaptation of Speaker Models

The parameters of the speaker models are found from the old estimates from the

UBM training and the training data of the individual speakers. To control the

balance between the new and old estimates, adaptation coefficients are used for

weights, means and variances which can be represented by αwi , α
m
i , α

v
i respectively.

The adaptation coefficients are used in the following [76] [101] [106]:

ω̂i = [αωi ni/TF + (1− αωi )ωi]γ (4.3)

µ̂i = αmi Ei(x) + (1− αmi )µi (4.4)

σ̂i
2 = αvi Ei(x

2) + (1− αvi )(σ2
i + µ2

i )− µ̂i
2 (4.5)

where γ is the scale factor to assure all adapted mixture weights have a unity

summation. The data dependent mixing coefficients are calculated as in [106] as:

αρi =
ni

ni + rρ
(4.6)
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ni =

TF∑
t=1

Pr(i| xt) (4.7)

Pr(i| xt) =
ωi pi(xt)∑M
j=1 ωj pj(xt)

(4.8)

Ei(x) =
1

ni

TF∑
t=1

Pr(i| xt) xt (4.9)

Ei(x
2) =

1

ni

TF∑
t=1

Pr(i| xt) x2
t (4.10)

where rρ is a fixed relevance factor, i is the mixture in the UBM, TF is the number of

feature vectors, Pr(i| xt) = is the probabilistic alignment of the training vectors in

the UBM mixture components [41] [106]. In addition, the parameters and adaptation

coefficients used in the chapter can be listed as follows: for the initial UBM training

finaliter = 20; whereas for the MAP Adaptation the relevance factor rρ = 10, ρ ∈

{m, ω, v}; and Nmix ∈ {8, 16, 32, 64, 128, 256, 512}; αρi ∈ [0,1]. where: Nmix is the

number of Gaussian Components. finaliter is the number of EM iterations. More

details of the parameters and how they are used in the adaptation of speaker models

can be found in [101] and [106]. Depending on the counts of data ni, if αρi ' 0 for

a speaker, the estimate relies more on the old sufficient statistics (low probabilistic

count), while, αρi = 1 relies only on the new trained parameters (high probabilistic

count), whereas the relevance factor rρ is used as a control between the new and old

parameters [41] [106].

4.2.2.3 Maximum Log-likelihood Scores

Matching between training and testing is carried out by LLR. According to the

Bayesian adaptation learning formula to apply the MAP adaptation; maximum

log-likelihood should be achieved. The maximum a posteriori probability can be

determined using equation (4.11) [41]:

S = arg max
1≤k≤S

Pr(λk | x) = arg max
1≤k≤S

p(x| λk) Pr(λk)
p(x)

(4.11)

where: S are a set of speakers, S = {1, 2, ..., S}, which are represented by the

GMM’s models λ1, λ2, ..., λS. The second part of (4.11) is because the Bayes’ rule.
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Then, maximum likelihood classification can be derived as in equation (4.12) by

assuming equally likely speakers with Pr(λk) = 1
S

and for all speaker models, p(x)

is the same. The maximum likelihood can be determined as in (4.12) [41]:

S = arg max
1≤k≤S

p(x| λk) (4.12)

There are two reasons to use the Log function in the matching of likelihood one of

them is that the log-function has monotonically increasing property that makes the

maximum position unchanged after taking the log-likelihood for Gaussian models

as well as the log function will cancel the exponential function the Gaussian of the

GMM. The major purpose from ML estimation is to compute the speaker model

parameters that can be able to maximize the likelihood of the GMM. For a non-

linearity function such as GMM, it is not possible for direct maximization, therefore

estimation ML can be done iteratively by using the EM algorithm. In this technique,

initialization is started by choosing the initial model, then an expectation step is

performed which probabilistically aligns vectors to generate a new model; while the

maximization step is achieved by updating model parameters such that they be

larger or equal to the initial model and then repeated until convergence is reached

[106]. From a test speech signal (unknown speaker), features are extracted which

form the inputs to the speaker models i.e. all speaker models S = {λ1, λ2, ..., λS}.

The log-likelihood scores are taken for the GMM-UBM system for each trial, which

form a two-dimensional array with model-test set with a length 57,600 to represent

the multiplication between 120 models with 480 tests (4 testing files for each speaker

out of 120 speakers). So the trials are represented by model-test sets such as (Model

1,Test 1),..., (Model 120,Test 1) to describe the scoring between all speaker models

against the first test. However, each speaker has four tests therefore this will produce

(Model 1,Test 2)....(Model 120,Test 2) and so on for 480 tests such as (Model 1,Test

480) to the (Model 120,Test 480) as shown in Fig. 4.1.

67



4.2 Biometric Speaker Identification Framework
 

Trials Speaker 
Model 

Test 

1 1 1 

2 2 1 

3 3 1 

. . . 

. . . 

. . . 

120 120 1 

   

121 1 2 

122 2 2 

123 3 2 

. . . 

. . . 

. . . 

240 120 2 

   

241 1 3 

242 2 3 

243 3 3 

. . . 

. . . 

. . . 

360 120 3 

   

. . . 

. . . 

. . . 

   

57481 1 480 

57482 2 480 

57483 3 480 

. . . 

. . . 

. . . 

57600 120 480 

Figure 4.1: Trials Production for 120 Speakers From TIMIT Database with 120
speaker model and Four Testing Utterances Per Speaker (Total 480 Testing) to
Yield 57,600 Trials of Model-Test Sets
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The log-likelihood scores are calculated as [106] [101] [76].

LLR(X) = loge p(X | λGMM)− loge p(X | λUBM) (4.13)

In this work four combination vectors of Log-likelihood scores are produced based

on normalization and feature types. Each Log-likelihood score vector has a length

of 57,600 scores as above, to represent 120 speakers by the scoring between 120

training speech files against 480 test files (4 speech samples for each speaker). In

training and testing the resulting speaker models are scored with a maximum

likelihood approach. For the final decision to identify each speaker the maximum

log likelihood approach is used for speaker identification by taking the maximum

score for each set of test scores for each speaker model, as [3] [41] [42]:

The system performance can be measured by the SIA which can be represented as

in equation (3.4) [1] [100].

4.3 Speaker Identification Systems With Fusion

Strategies

4.3.1 System 1: Speaker Identification System With Late

Fusion

Fig. 4.2 represents the flowchart for late fusion speaker identification system. This

system is based on four different combinations of normalized MFCC and PNCC

features to represent multi bases with and without late fusion (late fusion is score

based fusion including three methods maximum, mean and weighted sum) for 16

feature dimension. Point A denotes scores for the normalized MFCC features such

as FWMFCC or CMVNMFCC, similarly point B represents the scores for the

normalized PNCC features (FWPNCC or CMVNPNCC). Four identification

systems (before fusion) can be produced by connecting either point A or B to the

point X, the first time for Feature Warping, while the second for CMVN features.

Two identification systems are produced by connecting point A with X depending

either upon applying FW or CMVN to the MFCC features and similarly for
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4.3 Speaker Identification Systems With Fusion Strategies

PNCC features at point B. On the other hand, late fusion is developed by

connecting Points A, B to the points S1, S2 respectively using one of the fusion

methods: maximum, mean and weighted sum [76] [101]. Three late fusion of scores

approaches are adopted: Depending on the features and normalization methods,

four combinations of log-likelihood scores are constructed. These are: f 1= Feature

warping MFCC scores vector (FWMFCC), f 2= CMVN MFCC scores vector, g1=

Feature Warping PNCC scores vector (FWPNCC) and g2= CMVN PNCC scores

vectors. These score vectors are found before the fusion process and form the

following composite vectors as (4.14a)and (4.14b).

f i =

f 1

f 2

 (4.14a)

gj =

g1
g2

 (4.14b)

To produce four types of maximum of fusion scores vectors: fmax11, fmax12,

fmax21 and fmax22, then the row wise maximum is evaluated as in equation

(4.15).

fmaxij = max(f i, gj) (4.15)

where: fmaxij is the fusion maximum scores vector, i, j = 1, 2.

Similarly, to produce four mean fusion scores vectors: fmean11, fmean12,

fmean21 and fmean22, then equation (4.16) is used to calculate the fusion

mean.

fmeanij = (f i + gj)/2 (4.16)

where: fmeanij is the fusion mean scores vector, i, j = 1, 2.

In addition, a linear weighted sum fusion of scores is used for the scores vectors:

fweight11, fweight12, fweight21 and fweight22, as in equation (4.17).

fweightij = ωβ f i + (1− ωβ) gj (4.17)

where: β =1, 2, 3, 4. while, ω1 , ω2 , ω3 and ω4 = 0.9, 0.8, 0.77 and 0.7 respectively.

where, both i and j take values 1 and 2, therefore fweightij takes one of four values

fweight11, fweight12, fweight13 and fweight22, and

fweight11 is the linear combination of f 1 and g1, likewise fweight12 is the linear
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Figure 4.2: Flowchart for Speaker Identification System Multi-Bases (16D)
With/Without (W/WO) Late Fusion
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combination of f 1 and g2 and so on. For each fweightij, ωβ can take on one

of four values namely, ωβ ∈ {0.9, 0.8, 0.77, 0.7} which is chosen to give empirically

the best SIA. ωβ is limited to these four values as lower values have been found to

be unsuitable to yield high SIA performance, because MFCC coefficients are more

important in the speaker identification task with clean speech.

4.3.2 System 2: Speaker Identification System With Early

Fusion and Early-Late Fusion

In Fig. 4.3 four bases systems are formed by vertical concatenation from

normalized 16 MFCC features (either FWMFCC or CMVNMFCC) with the

corresponding 16 normalized PNCC features (either FWPNCC or CMVPNCC) to

produce 32 features dimension which represent the early fusion. These early

systems can be modified using late fusion methods to improve the SIA [76]. In

early fusion the main feature fusion process is performed before modelling the

system by GMM-UBM and this process is limited by the same fixed size for each

feature type. The system can be described by the following [76]:

M = {M1,M2, ...,Mk}, M̂ = {M̂1,M̂2, ...,M̂k}, P = {P1,P2, ...,Pk},

P̂ = {P̂1, P̂2, ..., P̂k}, where: M = FWMFCC feature matrices, M̂ =

CMVNMFCC feature matrices, P = FWPNCC feature matrices, P̂ =

CMVNPNCC feature matrices, k is equal 720 for training phase and 480 for

testing side, each feature matrix = D × N, D= feature dimension is equal 16, N=

numbers of frames is equal 1000. Equation (4.18) (can be used to explain early

feature fusion as :

H i,j =
[
MFCCi PNCCj

]
, i, j = 1, 2. (4.18)

where: MFCCi is normalized MFCC feature matrices before modelling which

contains either MFCC1 as M , or MFCC2 as M̂ likewise for PNCC, PNCCi

= is normalized PNCC feature matrices before modelling where, PNCC1 is P

and PNCC2 is P̂ . Similarly, the system after matching can identify four bases

lines of early feature fusion by connecting Points A, B by the maximum likelihood

(ML) by Point X as well the system can extend to include the late fusion to produce

early-late fusion. This can be achieved by connecting points A, B to the points S1,

S2, respectively, then using one of the late fusion methods.
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4.3.3 System 3: Speaker Identification System With Late

Fusion for Concatenated Static and Dynamic Features

This system is quite similar to the system 1, while the main difference in this

system is the extension in the feature dimension to the feature parametrization to

include the static and dynamic MFCC and PNCC features to 39 features per

frame. This is achieved by concatenate 13 MFCC/PNCC features (original

features) with temporal derivatives including 13 features from the the first order

derivative (Delta) as well as the corresponding 13 features from the second order

derivatives (Delta-Delta) to yield 39 features such as

FeatureDim (39 MFCC) = 13 MFCC + 13 ∆MFCC + 13 ∆∆MFCC,

likewise for PNCC features

FeatureDim (39 PNCC) = 13 MFCC + 13 ∆PNCC + 13 ∆∆PNCC [3]. Late

fusion methods score based are applied to the normalized methods for MFCC

(FWMFCC and CMVNMFCC) with the corresponding scores for PNCC

normalized features (FWPNCC and CMVNPNCC). Equation (4.19) is applied to

calculate the delta feature (first order derivative) for both MFCC and PNCC [3].

dt =
del∑
δ=1

δ(ct+δ − ct−δ)
2
∑del

δ=1 δ
2

(4.19)

where: del is typically 2, ct = [c0, c1, ..., cL], L = 12, c is either MFCC or PNCC

features which is 13 coefficients (c0+L), dt is the feature vector for the first order

derivative, t is frame time index. Similarly, the acceleration parameter at vectors

which represent the second order derivative vectors can be produced by replacing ct

with the dt in equation (4.16). Therefore in order to boost the original MFCC and

PNCC features, temporal derivatives dt and at as dynamic features are concatenated

with the static features ct. This strategy was adopted for MFCC only in speech

recognition as well in recent researches in speaker recognition [3] as explained in

equation (4.20) as illustrated in the Fig. 4.4 . In this chapter, this technique is

exploited not only for MFCC features, but also for PNCC features.

cft =
[
cTt dTt aTt

]T
(4.20)

74



4.3 Speaker Identification Systems With Fusion Strategies

c0 c1 c2 c12…………… d0 d1 d2 a0d12 a12a2a1 ………………..………………..

13-dim MFCC / PNCC  ct 13-dim ∆ MFCC / ∆ PNCC  dt 13-dim ∆∆ MFCC /∆ ∆ PNCC  at

Figure 4.4: Concatenated MFCC/PNCC Static Features with the Dynamic Features
with 39 Dimension [3]

where: cft is the concatenated the static and dynamic temporal features for

(MFCC/ PNCC) with 39 dim.

4.3.4 System 4: Speaker Identification System With Late

Fusion For Normalized Independent Scores For

Systems 1, 2 and 3

This system was deduced from the vector scores from the three systems above; these

scores vectors are normalized for constancy of scores by subtracted each vector from

the mean for that vector and the result is divided by the standard deviation for this

vector. These scores are assumed statistically independent where the dimension for

each scores vector is 57600, while these scores are coming from different feature

dimensions (16, 32 and 39). The main purpose is to accomplish a new scores vectors

which are created by the multiplication of three independent scores vectors that

essentially developed from different features dimension (16, 32 and 39). This new

system is quite similar to those in genetic development systems where the new system

has scores are originally comes from mixing three different features dimensions. The

scores vectors for system 1, system 2 and system 3 are normalized and the equations

in (4.21), (4.22) and (4.23) are adopted to present system 4.

sysAi =
sysai − µ(sysai)

σ(sysai)
(4.21)

sysBi =
sysbi − µ(sysbi)

σ(sysbi)
(4.22)

sysCi =
sysci − µ(sysci)

σ(sysci)
(4.23)
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where: sysai, sysbi and sysci represent the four scores vectors for system 1, system

2 and system 3 respectively. sysAi , sysBi and sysCi are the normalized scores

vectors for previous systems respectively. i = 1, 2, 3, 4. sysAi are the normalized

scores vectors used to the scores vectors of system 1 as the following: f 1, f 2, g1, g2

for features 16 dim. sysBi are the normalized scores vectors used to the system 2 as

the following: h1, h2, h3, h4 for features 32 dim. Finally sysCi are the normalized

scores vectors used to the system 3 as the following: f̈1, f̈2, g̈1, g̈2 for features 39

dim. The new system is assumed all the normalized scores for the systems 1, 2 and

3 (sysAi, sysBi and sysCi) are statistically independent thereby multiplications

for these scores vectors are applied as in (4.24).

sindi = sysAi . sysBi . sysCi (4.24)

where: (.) represent the element wise multiplication, i=1, 2, 3 and 4.

sind1 = f 1 . h1 . f̈1

sind2 = f 2 . h2 . f̈2

sind3 = g1 . h3 . g̈1

sind4 = g2 . h4 . g̈2

There are four scores vectors are produced as a consequent of applying (4.24) and

similarly these vectors are normalized and (4.25) is used for normalization purpose

as explained in Fig. 4.5.

sind(norm)i =
sindi − µ(sindi)

σ(sindi)
(4.25)

4.4 Simulations Setup

In all the simulations, training and testing are conducted on a personal computer

with Intel(R) Core(TM) i5-3470 CPU 3.20 GHz with Installed Memory (RAM) 16.0

GB, and Windows 7 copyright@2009 service pack1 as an operating system. The

speech sampling frequency used is 16 kHz. In all the experiments for this chapter,

the TIMIT database was employed because it is a common speech corpus, widely

available and exploited in [3], [76] and [101]. 49 speakers are selected from Dialect

Region one (DR 1) and 71 speakers from (DR 4) to mirror those used in [1] to
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Figure 4.5: System 4 Independent Scores for Different Feature Dimensions

produce totally 120 speakers (1200 speech samples). All speech samples were taken

with fixed length of 129250 samples; concatenation is applied where necessary. There

are eight dialects in the TIMIT database, in this chapter both DR 1 from New

England and DR 4 from South Midland are employed. The main parameters used

in the experiments are explained in Table 4.1, these parameters can be categorized

according to database, dialect region, sampling rate, window size and frame shift,

pre-emphasis factor, window type, number of speakers used, number of samples per

speaker, total number of samples used, training and testing samples per speaker and

finally the average duration for each speech sample [76] [101].

4.5 Related Work

Table 4.2 illustrates a comparison among all aspects between the work in [1] and

all other simulations in this chapter. In addition, Table 4.2 gives a summary of all

simulations infrastructures for this chapter compared with [1] such as speakers

dialect region, features and feature dimension used, feature compensation methods

(normalization), modelling, Gaussian mixture components (GMCs), type of

77



4.6 Simulation Results

Table 4.1: Experimental Parameters for the Work in [1] and in All Proposed
Simulations in This Chapter

Database TIMIT
Dialect DR1 and DR4

Sampling frequency 16000
Window size 16 ms
Frame shift 8 ms

Pre-emphasis factor 0.96
Window type Hamming

Number of speakers 120
No. of samples per speaker 10

Total samples used 1,200
Training samples 6 per speaker(total 720)
Testing samples 4 per speaker(total 480)

Average sample duration 8 seconds (work [1] 3 Seconds)

classifier, fusion types, speaker identification accuracy and the system

environment. The work in [1] used 120 speakers from two dialect regions DR1 and

DR4 which are randomly chosen without mentioning how many speakers are taken

from each dialect region, whereas all speakers (49 speakers) are taken from DR1

and 71 speakers from DR4. Furthermore, in [1] MEL is used without using any

kind of normalization. In this work two types of features are employed one of them

is robust for noise (PNCC) which is fused with MFCC features which are efficient

for original speech recordings; in addition feature normalization is investigated to

solve the linear channel effect problems. Table 4.3 shows results for the approach

in [1] with three settings of the number of Gaussian mixtures components in [1],

{8, 16, 32}. The highest SIA achieved in Table 4.3 is 93.88% at the mixture size 16

whilst continuous increasing the mixture components caused decreasing the SIA,

the reason for that is for limited GMM data trained and this is one of the most

important problems are tackled in this work. Furthermore, in [1] only Mel features

is used with and fused with Inverse MEL features (IMEL) by using the fusion

weights: 0.5, 0.7, 0.77 and 0.8.

4.6 Simulation Results

4.6.1 Simulation Results For System 1

According to Table 4.4, presents the simulation results for system 1 which include

the SIA based on late fusion. This table shows the SIA to the four combinations
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Table 4.2: Main Comparison Between the Work in [1] and the Proposed Algorithm

Aspects Methods in [1] The Proposed Simulations
in This Chapter

Speakers DR DR1& DR4 49 DR1& 71 DR4
Features 1-MEL 2-IMEL 1-MFCC 2-PNCC
Features Dim N/A 16
Feature Norm. Not Used FW and CMVN
Modelling GMM GMM-UBM
GMCs (Mixtures) [8, 16, 32] [8, 16, 32, 64, 128, 256, 512]
Classifier LLR LLR
Fusion Types Fusion Weight Early, Late, Early-Late,

Concatenated Statistic
and Dynamic features
and Score independent fusion

SIA 93.88% 95%
System Environment Clean Clean and Noisy

(Noisy in the next chapter)

Table 4.3: SIA Results for Original Speech Recordings as in [1]

SIA Results for Work in [1]
Methods Mix8 Mix16 Mix32

MEL 67.35% 74.36% 71.43%
IMEL 55.10% 58.97% 53.06%

Fused ω1=0.5 79.59% 87.75% 83.67%
Fused ω2=0.7 88.2% 90.31% 89.15%
Fused ω3=0.77 89.8% 93.88% 91.84%
Fused ω4=0.8 89.8% 91.84% 91.84%

of features based on MFCC and PNCC features for different GMCs namely {8,

16, 32, 64, 128, 256, 512}. These combinations are: FWMFCC, CMVNMFCC,

FWPNCC and CMVNPNCC. It is clear from the Table 4.4 that the SIA for the

MFCC features is higher as compared with the corresponding results in PNCC

features and that because the MFCC have a better performance compared with

PNCC in clean environments. The scores for the best SIA between the MFCC

features (FWMFCC and FWMCC i.e (f 1) or (f 2)) are fused with the corresponding

scores for the best SIA for the PNCC features (FWPNCC and FWPNCC i.e g1 or

g2). Then three late fusion methods are applied to the scores vectors belongs to

the fusion decision; the late fusion methods are weighted sum, maximum and mean

fusion methods. This work presented four main weights; 0.9, 0.8, 0.77, 0.7, while the

weight 0.77 is selected to mirror the work in [1] for comparison purpose. The first
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highest SIA is achieved by the fusion weights with weight 0.9 and at mixture size

512 with SIA 95%, whereas the second highest SIA is accomplished at the weighted

sum 0.8, 0.77, 0.7 as well at the mean fusion at mixture sizes 512 and 256 with

SIA 94.17%. However, related to all mixtures sizes the weighted sum fusion appears

to be the best fusion methods compared with all late fusion methods. There is a

benefit in SIA from fusion both MFCC and PNCC features together as compared

with each feature alone. In addition, increasing the Gaussian mixture component

size causes additional increment in the data trained by GMM-UBM then this will

increase the accuracy for the SIA. [76].

Table 4.4: Simulation 1: Speaker Identification System with Late Fusion

Speaker Identification Accuracy (SIA %) for Different GMCs
Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

FWMFCC (f1) 80% 84.17% 89.17% 93.33% 93.33% 93.33% 94.17%
CMVNMFCC (f2) 77.5% 80.83% 86.67% 91.67% 91.67% 92.5% 90.83%

FWPNCC (g1) 60% 71.67% 80.83% 86.67% 88.33% 90% 90%
CMVNPNCC (g2) 70% 74.17% 83.33% 86.67% 90% 89.17% 90.83%

Fusion Decision (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f1,g1) (f1,g2)
Fused ω1=0.9 79.17% 84.17% 90% 91.67% 93.33% 93.33% 95%
Fused ω2=0.8 80.83% 83.33% 90% 92.5% 93.33% 94.17% 94.17%
Fused ω3=0.77 80.83% 83.33% 90% 92.5% 93.33% 94.17% 94.17%
Fused ω4=0.7 79.17% 82.5% 89.17% 92.5% 93.33% 94.17% 93.33%
Fusion Max 77.5% 75% 85% 90% 94.17% 93.33% 93.33%
Fusion Mean 78.33% 80.83% 90% 92.5% 93.33% 94.17% 94.17%

4.6.2 Simulation Results For System 2

Table 4.5, presents the simulation results for system 2 which is early fusion and

early-late fusion. This table provides four early fusions by vertically concatenated

16 MFCC features (FWMFCC and CMVNMFCC) with the corresponding 16 PNCC

features (FWPNCC and CMVNPNCC) to produce four combinations each with 32

dimension and the early fused matrices with 32 feature dimensions before modelling

are explained as the following: H1,1, H2,1, H1,2 and H2,2. Early fusion scores

vectors for the corresponding previous matrices are: h1, h2, h3 and h4. where the

highest SIA for the early fusion is accomplished at score vector h3 with SIA 91.67%

at mixture size 256. Late fusion strategies to the early scores vectors are used to

improve the SIA belongs to the fusion decision which is effectively fusion the scores

vector for highest SIA between h1 and h3 with the corresponding highest SIA for

the scores vector between both h2 and h4. Highest SIA accuracy is achieved via
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fusion h3 with the h4 92.5% at mixture size 256 at weighted sum fusion for all

weights used and at fusion mean. On the other hand, the fusion mean is appears as

a better performance accuracy than other fusion methods. There is an advantage

in SIA from fusion and increasing the mixture sizes causes additional increment in

the SIA, while increasing the GMCs size to the 512 will started to reduce the SIA.

This mean, the best SIA can be achieved at mixture size 256.

Table 4.5: Simulation 2: Speaker Identification System with Early Fusion and Early-
Late Fusion

Speaker Identification Accuracy (SIA %) for Different GMCs
Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

h1 (Scores of H1,1) 61.67% 66.67% 76.67% 86.67% 90.83% 89.17% 86.67%
h2(Scores of H2,1) 65% 65% 73.33% 84.17% 86.67% 88.33% 85.83%
h3 ( Scores of H1,2) 64.17% 70.83% 75% 85% 90% 91.67% 86.67%
h4 ( Scores of H2,2) 65% 65% 79.17% 85.83% 91.67% 90% 89.17%

Fusion Decision h3-h4 h3-h4 h1-h4 h1-h4 h1-h4 h3-h4 h3-h4

Fused ω1=0.9 64.17% 70% 76.67% 87.5% 90.83% 92.5% 86.67%
Fused ω2=0.8 65.83% 71.67% 77.5% 88.33% 90.83% 92.5% 87.5%
Fused ω3=0.77 65.83% 71.67% 77.5% 88.33% 90.83% 92.5% 87.5%
Fused ω4=0.7 65% 71.67% 78.33% 89.17% 91.67% 92.5% 88.33%
Fusion Max 64.17% 66.67% 80% 88.33% 90% 90.83% 88.33%
Fusion Mean 65% 68.33% 79.17% 90.83% 90.83% 92.5% 89.17%
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4.6.3 Simulation Results For System 3

Table 4.6, provides the simulation results for system 3 which contained speaker

identification system with late fusion for the concatenated of static and dynamic

features. Generally, this table is similar to the Table 4.4; where is only one main

difference is the feature dimension used is extended to the 39 features instead of 16

that used in Table 4.4. The concatenation are adopted for 13 features from MFCC,

Delta and Delta Delta to produced 39 features and likewise for PNCC features. Then

fusion decision between the highest SIA for the concatenated MFCC features (f̈ 1,f̈ 2)

with the corresponding PNCC features (g̈1,g̈2). It is evident from the Table 4.6 that

the mixture size and the dynamic features that represented by the first and second

derivatives are playing the significant role for calculation the SIA. Moreover, it can

recognize about 50% dropping in SIA at mixture size 8 as compared with Table 4.4

and Table 4.5, while acceptable SIA can be achieved by increasing the GMCs (128-

512). The maximum SIA occurs at mixture size 512 with 87.5% at weights 0.9 and

o.8 as well as at fusion mean when fused f̈ 2 with g̈2.

Table 4.6: Simulation 3: Speaker Identification System with Late Fusion for the
Concatenated of the Static and Dynamic Features

Speaker Identification Accuracy (SIA %) for Different GMCs
Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

cf of FWMFCC (f̈1) 40.83% 44.17% 49.17% 66.67% 74.17% 82.5% 80%

cf of CMVNMFCC (f̈2) 42.5% 47.5% 57.7% 69.17% 84.17% 85% 85.83%
cf of FWPNCC (g̈1) 36.67% 40% 43.33% 60.83% 67.5% 71.67% 78.33%
cf of CMVNPNCC (g̈2) 38.33% 40% 48.33% 65% 80% 75% 80%

Fusion Decision (f̈2-g̈2) (f̈2-g̈2) (f̈2-g̈2) (f̈2-g̈2) (f̈2-g̈2) (f̈2-g̈2) (f̈2-g̈2)
Fused ω1=0.9 45.83% 48.33% 61.67% 71.67% 85% 87.5% 87.5%
Fused ω2=0.8 45% 50% 63.33% 72.5% 86.67% 86.67% 87.5%
Fused ω3=0.77 45% 51.67% 63.33% 72.5% 85% 86.67% 86.67%
Fused ω4=0.7 45% 50.83% 63.33% 73.33% 85% 86.67% 86.67%
Fusion Max 41.67% 43.33% 53.33% 65% 79.17% 82.5% 85%
Fusion Mean 47.5% 50.83% 58.33% 72.5% 84.17% 86.67% 87.5%

4.6.4 Simulation Results For System 4

Table 4.7, gives the simulation results for system 4 which contained the fusion for

normalized independent scores for systems 1, 2 and 3. Similarly, Table 4.4, Table 4.5

and Table 4.6 are constructed. Each scores vector in sind(norm)i is developed

from the normalized to the element multiplications for statistically independent
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vectors in three previous simulations. The highest SIA achieved at mixture size 128

at fusion maximum between sind(norm)2 and sind(norm)4 with SIA 93.33%.

Generally, the results achieved by this table are better than those in Table 4.5 and

Table 4.6. The most important issue is that the scores used are created from different

scores essentially from three different features dimensions for instance 16, 32 and

39. Therefore, similar to genetic development it can improved the performance by

fusion scores with different features dimensions.

Table 4.7: Simulation 4: Speaker Identification System with Late Fusion for
Normalized Independent Scores for Systems 1, 2 and 3

Speaker Identification Accuracy (SIA %) for Different GMCs
Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

sind(norm)1 = 1 79.17% 85% 84.17% 89.17% 91.67% 90.83% 92.5%
sind(norm)2 = 2 78.33% 83.33% 86.67% 90% 91.67% 91.67% 90.83%
sind(norm)3 = 3 68.33% 70.83% 76.67% 83.33% 85.83% 85.83% 86.67%
sind(norm)4 = 4 70.83% 71.67% 79.17% 85.83% 88.33% 87.5% 89.17%

Fusion Decision (1,4) (1,4) (2-4) (2,4) (2-4) (2-4) (1-4)
Fused ω1=0.9 78.33% 83.33% 86.67% 89.17% 91.67% 91.67% 90.83%
Fused ω2=0.8 79.17% 83.33% 85.83% 89.17% 91.67% 91.67% 90.83%
Fused ω3=0.77 79.17% 81.67% 85.83% 89.17% 91.67% 91.67% 90%
Fused ω4=0.7 79.17% 80.83% 85.83% 89.17% 91.67% 91.67% 90%
Fusion Max 77.5% 78.33% 84.17% 90.83% 93.33% 92.5% 92.5%
Fusion Mean 77.5% 78.33% 85% 89.17% 90.83% 91.67% 90.83%
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and Late Fusion Proposed Algorithms for 16D and Relate to Simulation 1, with
represents ωβ Weights

4.7 Discussions

Simulation 1 and Simulation 2 described three major original speech recordings

results [76]: late, early and early-late fusion based on scores, features and their

combination. Fig. 4.6 is focused on the SIA against all methods used for simulation

1 only, while Fig. 4.7 emphasises the relationship between the mixture size of GMCs

and SIA (simulation 1).

In Fig. 4.6 each box plot denotes seven SIA values for different dimension of

GMCs {8, 16, 32, 64, 128, 256, 512}. Essentially, the first four boxes (red, pink,

green and blue) are used to represent the SIA in the context of multi-bases boxes

for different features before using fusion techniques FWMFCC, CMVNMFCC,

FWPNCC and CMVNPNCC (f 1, f 2, g1, g2). On the other hand, five boxes show

late fusion methods: fusion weights at ωβ= 0.9, 0.8 and 0.7 respectively which have

been found empirically to yield best SIA as well as maximum and mean fusion;

this fusion can be done by fusing the highest SIA features between (f 1, f 2) which

is the f 1 red box with the corresponding highest SIA between (g1, g2) which is the
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Figure 4.7: Ribbon Plot for Original Speech Recordings Based on Late Fusion
Approaches for 16D and Relate to Simulation 1

g2 blue box for all mixure sizes except at mixture size 256 which is represent g1.

Effectively, fusion boxes have higher SIA against bases boxes, the highest

performance is achieved (95%) at weighted sum fusion with ωβ = 0.9 and mixture

size 512. It is evident from Fig. 4.6 that the late fusion gives higher SIA than

MFCC or PNCC features alone as shown in the multi-bases boxes. However,

Fig. 4.7 depicts how far increasing the mixture size will affect the SIA performance

as explained in the form of a 3D ribbon plot, it can see when increasing the

mixture size from 8 towards mixture size 512 the SIA is growing which is because

the benefits are exploited from GMM-UBM and augmented it by fusion methods

to improve the SIA. Although, the best SIA result at mixture size 256 is slightly

less (94.17%) compared with mixture size 512 (95%) generally the other SIA

results for mixture 256 are better than those in mixture 512 [76].

The second original speech recordings simulation results are described in

Fig. 4.8 where doubling the feature dimension is accomplished by concatenating

different features. In contrast with the first simulation part (simulation 1) 32

feature dimension is used instead of 16. According to Fig. 4.8, there are four bases

lines which represent the SIA for the early fusion: BLN1 is concatenated 16

FWMFCC features (M) with the corresponding FWPNCC (P ) to produce H1,1

with 32 features, similarly BLN2 is concatenated 16 CMVNMFCC features (M̂)

with the corresponding FWPNCC (P ) to produce H2,1 with 32 features, also in
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BLN3 16 FWMFCC features (M ) are concatenated with the corresponding

CMVNPNCC (P̂ ) to produce H1,2 with 32 features and finally in BLN4 the

concatenation of 16 CMVNMFCC features (M̂ ) with the corresponding

CMVNPNCC (P̂ ) to produce H2,2 to yield 32 features as in equation (4.15).

However, the second part from simulation 2 is achieved by adding the late fusion

methods; the scores which have higher SIA between (H2,1, H2,2) are selected for

each mixture size and fused them by late fusion methods with corresponding scores

which have the highest SIA between (H1,1, H1,2). Ultimately, the highest SIA

from all early-late fusion methods are taken for each mixture to produce the

proposed early-late fusion algorithm based on the score-feature combination as

explained in Fig. 4.8 as a green line. Furthermore, an early-late fusion algorithm

gives slightly higher SIA (92.5%) at mixture size 256 compared with the highest

SIA (91.67%) at BLN3 on mixture size 256 as shown in Fig. 4.8 [76].

According to Fig. 4.9, the bar chart demonstrates the comparison between SIA

for late fusion (simulation 1) with combination of early-late fusion (simulation 2);

empirically the bar chart gives an indication that the late fusion with 16 feature

dimension is better (95%) than the early and late fusion which gives higher SIA

(92.5%).
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Simulation 1 and simulation 2 are presented with three techniques of fusion

depending on the 16 and 32 Feature Dimensions (FD); the late fusion scheme with

(16FD) yielded the best SIA; the early-late with (32FD) the next best and early

features fusion (32FD) the lowest SIA [76] [101]. Each fusion method provided

higher SIA than the separate normalized MFCC or PNCC features. On the other

hand, Fig. 4.10 demonstrates all the highest fusion results are selected for each

Gaussian mixture component size were selected from the tables of results to the

simulations 1, 2, 3 and 4. It is clear that simulation 1 (Red curve in Fig. 4.10) gives

the best performance 95% at mixture size 512, while the second best is achieved by

simulation 4 with 93.33% at mixture size 128 (Green curve in Fig. 4.10) followed by

simulation 2 with 92.5% at 256 mixture size (Pink curve in Fig. 4.10), whereas the

lowest performance accuracy is simulation 3 with 87.5% at both mixture sizes 256

and 512 (Blue curve in Fig. 4.10). Moreover, it is clear from both simulations curves

1 and 4, the SIA curves are gradually increased between mixture size 8 to 64, whilst

it seems to be semi-stable for the remaining between mixture size 128 to the 512.
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Figure 4.10: SIA Against GMCs for ALL Original Speech Recordings Simulations

However, the SIA for curves in simulations 2 and 3 are dramatically increment for

(8-64) mixture sizes, whereas simulation 3 is increasing the SIA to the 128 size then

tend to be stable to the end at mixture 512. In contrast, simulation 2 curve is slightly

increased for mixtures span 64-256 and tends to reduce the SIA to the end point

at mixture size 512. Furthermore, Fig. 4.10 shows empirically the concatenated

between the static and dynamic features for the first and second order derivatives in

simulation 3 ( the blue dot curve) gives the significant results at mixture sizes (128-

512), however the worst SIA can be achieved using this simulation compared with

other simulations. In addition, in the noise environment the dynamic features are

derivatives in the time domain and represented as a multiplication when converted

to the frequency domain and that will increase the noise when the increasing the

frequency and this will reduce the performance accuracy for speaker identification.

It can be deduced from all simulation tables of results that the mixture size 256

represents the best mixture which give almost the highest SIA.

4.8 Summary

In this chapter, four main simulations with fixed original speech recordings length

(129250 samples with 8 seconds length) were performed to calculate the speaker

identification accuracy for different Gaussian mixture components and different
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features dimensions based on different fusion techniques. These fusion methods

namely: late fusion (score based 16 FD), early fusion (feature based 32 FD) and

early-late fusion (feature-score based 32 FD), concatenated static and dynamic

features (feature based 39FD) and finally the multiplication of scores independent

for different feature dimensions (16, 32 and 39). This chapter can be summarized

by the following points:

• Late fusion is dominant compared with other fusion methods for evaluation

the SIA; therefore the late fusion will be considered in the next chapter when

applied different environments such as the handset, AWGN and NSN types.

In addition, the late fusion consist of three main fusion methods and these are

weighted sum, mean and maximum.

• The Gaussian mixture with size 256 gives the highest or second highest SIA

for all original speech recordings simulations used in this chapter; therefore

the mixture size at 256 is considered for all noisy speech simulations in the

next chapter.

• The highest SIA is 95% achieved at mixture size 512 on simulation 1 with late

fusion.

• This chapter is used for different feature dimensions such as 16, 32 and 39 and

it is clear from simulations the best performance accuracy is accomplished on

16 feature dimension. Subsequently, this feature dimension is used for the all

simulations in the next chapter.

• Fusion based for MFCC and PNCC features gives better accuracy than each

feature alone.

• Late fusion is the first highest SIA with 95%, while the fusion by multiplication

different scores is the second best SIA with 93.33%. Then the combination of

early-late is the third order of the best SIA with 92.5% compared with 91.67%

achieved by early fusion only and finally the lowest SIA with 87.5% is the late

fusion for concatenated static and dynamic features.
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Although, the evaluation of this chapter gives improvement related to other work,

but the system was still evaluated under ideal acquisition database by using only

original speech recordings of TIMIT database. Therefore, various background noise

types with and without the handset and their effects on both feature and fusion

based will be evaluated in the next chapter with three types of databases: TIMIT,

SITW and NIST 2008.
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Chapter 5

Speaker Identification Using

GMM-UBM Approach With

Fusion For Challenging

Environments With Three

Databases

Voice biometrics are used to recognize a person’s voice, thereby avoiding the

constraints associated with a smart identification card or password recall. In this

chapter, a speaker identification system is considered consisting of a feature

extraction stage which utilizes both PNCC and MFCC features. Normalization is

applied by employing CMVN and FW, together with acoustic modelling using a

GMM-UBM. The main contributions are comprehensive evaluations of the effect of

both AWGN, and NSN (with and without a G.712 type handset) upon

identification performance. In particular, three NSN types with varying SNRs were

tested corresponding to: street traffic, a bus interior and a crowded talking

environment. The performance evaluation also considered the effect of late fusion

techniques based on score fusion, namely mean, maximum, and linear weighted

sum fusion. The databases employed were: TIMIT, SITW, and NIST 2008; and

120 speakers were selected from each database to yield 3,600 speech utterances. As

recommendations from the study, mean fusion is found to yield overall best

performance in terms of SIA with noisy speech, whereas linear weighted sum

fusion is overall best for original database recordings.
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5.1 Background

Speaker identification is one important application of biometrics and forensics to

identify speakers based on their unique voice pattern [107], [108] and [109].

According to [37], feature extraction within speaker identification should be less

influenced by noise or the person’s health. An overview of speaker identification

was presented in [3], and increasing the number of speakers and using different

types of realistic NSN in evaluation was suggested to develop the field along with

exploiting fusion techniques. Despite this research, recognition rate is still a

subject of focus. Murty and Yegnanarayana [110] elucidate improvements in a

speaker verification system by combining the residual phase derived from linear

prediction analysis of the speech signal with the spectral MFCC features. In

addition, the NIST 2003 database [110] was used; a 14% EER performance was

achieved for MFCC and a 22% rate for the residual phase. Although the

combination was better than the individual features alone, the system was not

subjected to realistic noise conditions and handset effects. Similar to this

approach, Wang et al. [111] used a linear weighted sum for the score fusion but the

work did not consider noise, and likewise in [22] channel distortion seems to have

been ignored. In [23], different feature combinations were presented using MFCC

and LPCC to improve the recognition rate. However, a limited number of speakers

was used, only digit speech was employed, and the system was only tested in ideal

conditions.

In [58], both the NIST 2008 and TIMIT databases were employed to achieve

robust speaker identification and mitigate room reverberation and additive noise,

but again handset effects were ignored. Also, to accomplish robust speaker

identification, Li and Huang [55] employed CFCCs and used the NTIMIT and

Speech Separation Challenge databases, although fusion can also be used to

enhance the identification performance. Various neural network based approaches

were proposed in [31], without considering different noise and handset conditions.

Furthermore, other researchers have employed DNN analysis for speaker

identification [49]. In [112], the authors selected 100 speakers from the TIMIT and

self-collected databases using Novel Fuzzy Vector Quantization (NFVQ) techniques

to enhance the SIS. However, increasing the number of speakers reduced the

recognition rate and there was no testing under realistic noise and channel
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distortion conditions. Moreover, [30] produced a multi-modal neural network by

exploiting wavelet analysis, without testing for noise and channel effects and only

using 34 speakers. Other researchers have focused on speaker identification and

verification applications with background noise to improve and create robust

speaker recognition [54]. Khanteymoori et al. [53] utilized a DBN to model

speakers and improve identification compared with GMMs, but a limited number

of speakers was used. Furthermore, a new discriminative likelihood score weighting

technique was proposed for speaker identification, and a likelihood score weighting

method was presented for the speaker identification task [113]. In [114], a state of

the art speech recognition system was exploited for noisy environments and

reverberation. In addition, an empirical study was presented by Reynolds [51],

which included the handset variability effects for the speaker recognition purpose

using the Switchboard corpus. On the other hand, Reynolds et al. [50] focused on

two issues in the speaker identification task, the size of the population and the

degradation produced from the noisy telephone channel; their study used the

TIMIT and the NTIMIT databases. However, only a limited number of studies

have involved a handset, AWGN, and NSN types in conjunction with fusion

strategies. In this work, our previous work in [76], [101] was extended with four

combinations of features and their score fusion methods for the original recordings;

and with AWGN, and three types of NSN: street traffic, bus interior and crowd

talk, with and without the G.712 type handset at 16kHz, to provide a wide range

of environmental noise conditions. This study emphasise that, although the

GMM-UBM approach is well established, no previous study has comprehensively

considered three databases, one of which only appeared in 2016, nor the effect of

such a wide range of NSN and handset effects.

Section 5.2 contextualises robust biometric speaker identification; Section 5.3

describes adding the noise and applying the handset; Section 5.4 explains the

databases and simulation setup; Section 5.5 presents the simulation results and

discussions; Section 5.6 includes comparisons with related work; Section 5.7

presents the summary and future work.
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Figure 5.1: Robust Biometric Speaker Identification and Evaluation Framework.

5.2 An Overview of a Robust Biometric Speaker

Identification System

The main system used in this chapter is represented in Fig. 5.1. The figure has three

sections: feature extraction and normalization, speaker modelling and matching, and

fusion strategies; it also shows test signals.
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5.2.1 Feature Extraction and Compensation

In this chapter, to mimic human ear perception, MFCC features are used [115] and

combined with the corresponding PNCC features presented in speech recognition

systems; these provide robustness [14], and are expected to improve SIA in the

presence of background noise. A 16-feature dimension was used to mirror the work

in [16] and [76], which used both MFCC and PNCC. In addition, the MFCC features

included the zero order C0 coefficient and the PNCC features, including the Pc0

coefficent. A pre-emphasis FIR filter realising a first order high pass filter was

employed to filter the speech samples with emphasis coefficient 0.96 [1]. In addition,

framing and Hamming windowing were employed with a frame length of 16ms with

an inter-frame overlap of 8ms [13]. Moreover, this work exploits a triangular/MFB

and the logarithmic nonlinearity used in MFCC [6], as well as the GFB and power

law nonlinearity for PNCC [14], [26] and [27]. This chapter focus on using the

PNCC by exploiting the GFB to improve SIA in the presence of stationary AWGN

and NSN background noise. In addition, temporal masking, Asymmetric Noise

Suppression (ANS) and power law non linearity with a 1/15 exponent and GFB were

the main elements in the PNCC construction. Further information about PNCC

features is provided in [16] [104] [105]. Feature Compensation (Normalization) is

widely and effectively used for speaker verification and identification tasks. The main

aims of using normalization are to reduce the effects of noise, channel, and handset

transducers, and to alleviate linear and nonlinear channel effects. In this study,

FW and CMVN over a sliding window are used [18] and [19] to reduce the noise

and handset effects, and mitigate linear channel effects; this gives improvements

and robustness to SIA [3]. The features and feature normalization are as employed

in [76].

5.2.2 Speaker Modelling and Matching

5.2.2.1 Gaussian Mixture Model (GMM)

In GMMs, each speaker can be represented by the multivariate parameters of the

Gaussian components, namely, mean, covariance and a finite weighted mixture. The

weighted sum of the Gaussian mixture components is called a Gaussian mixture

density, as presented in equations (4.1) and (4.2) in chapter 4, section 4.2.2 [76]. In

this chapter, nodal, diagonal covariance matrices are used instead of full covariance
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as used in [3], [76]. In speaker modelling, the EM method estimates parameters for

each mixture.

5.2.2.2 Gaussian Mixture Model-Universal Background Model (GMM-

UBM)

A GMM-UBM was used as in [76] and trained offline with a large amount of data

through EM. Furthermore, MAP approach adaptation was employed to train the

individual speaker models, and this adaptation was initialized by the UBM and

then coupled with the training data for each speaker. The coupling between large

training data (UBM) and a small amount of class specific data (individual speaker

models) makes the GMM-UBM able to estimate a larger number of parameters

which increases the mixture size dimension, and thus the SIA. As in our previous

work [101], adaptation coefficients are used in the learning of the means, weights,

and variances of the GMM models which can be represented by αmi , α
w
i , α

v
i , where

i = 1,..., S, respectively. Furthermore, the adaptation coefficients and parameters

used in this chapter are same as presented in chapter 4, section 4.2.2.2.

5.2.2.3 Maximum Log-Likelihood Scores

Matching between models built during training and evaluating datasets was

carried out by Log Likelihood Ratios (LLRs). In our evaluating studies, 120

speakers were selected from each database. Each speaker has 10 speech utterances,

six were employed for training, while the remaining four speech recordings were

used for testing. In total, 720 utterances were used for training purpose (6 training

files for each of the 120 speakers = 6 × 120). In addition, 480 speech utterances

were exploited for testing (4 tests for each of the 120 speakers = 4 × 120). The

model-test set with a length 57,600 represents the multiplication between 120

models with 480 tests (120 × 480). The log-likelihood ratios were calculated as

in [76]. Four sets of LLRs were found based on feature and normalization types as

described in the next section. A maximum likelihood approach was used to

identify speakers as a final decision, as in [3] [42]. The SIA can be calculated as in

equation (3.4) [1] [100].
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5.2.3 Fusion Strategies

Three methods to form a late fusion score were employed as in [76]: weighted sum,

maximum and mean fusion. Combined normalization methods were employed to

produce normalized MFCC features (FWMFCC and CMVNMFCC). Likewise,

normalized methods were used to form PNCC features (FWPNCC and

CMVNPNCC). Four sets of score vectors could therefore be calculated and are

denoted as [101], [76]: f 1= Feature Warping MFCC scores vector (FWMFCC),

f 2= CMVN MFCC scores vector, g1= Feature Warping PNCC scores vector

(FWPNCC) and g2= CMVN PNCC scores vector. The maximum, mean, linear

weighted sum fusion are defined in chapter 4 in equations (4.15), (4.16) and (4.17),

respectively. Further details for fusion strategies can be found in [116] and [117].

5.3 Adding Noise and Applying The G.712 Type

Handset

5.3.1 Adding Stationary AWGN and Non-Stationary Noise

Non Stationary Noise available online from the websites [86] and [85] were used to

test the system. Both AWGN and NSN were trimmed to the same fixed length

129,250 speech samples (8 seconds). Different background noise types as well as

AWGN were added only in the testing phase with seven SNR levels based on the

corresponding noise power (0dB to 30dB) with step size 5dB for each level as in [76].

5.3.2 G.712 Type Handset

A G.712 type handset at 16 kHz with a 4th order linear IIR filter was derived from

the Z transform multiplication of two second order cascaded filters as previously

exploited in [3]. The G.712 type handset is applied to the normalized speech signal

for both training and testing phases as employed in [76]. The main reason for

applying and testing this channel distortion was to achieve robust SIA under original

speech recordings, AWGN noisy speech, and realistic NSN conditions. The transfer

function of the IIR filter in the z-domain is given as [76]:

97



5.3 Adding Noise and Applying The G.712 Type Handset

H (Z) =
b0 + b1Z

−1 + b2Z
−2 + b3Z

−3 + b4Z
−4

a0 + a1Z−1 + a2Z−2 + a3Z−3 + a4Z−4
(5.1)

where the numerator parameters are [1, -0.0216047, -1.92904276, -0.0216047, 1]

and denominator parameters are [1, -0.2288945, -1.29745904, 0.06100624,

0.57315888]. The figures for the frequency response and the impulse response for

the G.712 handset are added as in Fig. 5.2 and Fig. 5.3. In order to demonstrate

the degradation caused by the handset Fig. 5.2 is used and shows there is a

degradation in the system bandwidth due to the cut-off frequency and that causes

reduction in the speaker identification accuracy.

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Frequency Response for G.712 Type Handset

Sample Number

Figure 5.3: Impulse Response for G.712 Type Handset

98



5.4 Databases and Simulation Setups

5.4 Databases and Simulation Setups

5.4.1 Databases

5.4.1.1 TIMIT Acoustic-Phonetic Continuous Speech Corpus-1993

The TIMIT database is one of the most familiar and widespread speech corpuses

used for speech recognition [3], and is available online at the Linguistic Data

Consortium website [65]. This corpus has 630 speakers recorded in eight main

dialects of American English. In this work, 120 speakers were selected from dialect

regions one and four to mirror the work in [1] and the study in [76]. Each speaker

has ten speech utterances; six were used for training and four for testing. A fixed

speech length of 129,250 samples (8 seconds) was adopted for all 1,200 speech

utterances of the 120 speakers, concatenation was used when necessary.

5.4.1.2 The Speakers In The Wild Speaker Recognition Challenge 2016

This challenging database was collected to encourage researchers to develop novel

algorithms for benchmarking speaker recognition technology, and is available at

[118]. The SITW database was collected under different challenging conditions for

open source media: clean interview, outdoor conditions, stadium conditions, and red

carpet interviews for single and multi-speakers. In the current study, 120 speakers

were selected; most were single speakers, but some were unbalanced multi-speakers.

In this case, the target speaker was selected so as to obtain a single speaker, using

Goldwave and Audacity software. In addition, each speech file was divided into ten

equal lengths, with a fixed length (129,250 samples), to mirror our previous work.

However, speech files of less than eight seconds were concatenated to achieve the

same fixed length. Six files were used for training and four for testing.

5.4.1.3 2008 NIST Speaker Recognition Evaluation Training Set Part

2-2011

The database is available at [84], and its sources are multilingual telephone and

microphone speech of native and bilingual English interview speakers. The sampling

frequency was converted from the original 8 kHz to 16 kHz, and 120 English only

microphone channel speakers were selected for comparison with the TIMIT and

the SITW databases. Again, only single speakers were selected by deleting the
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Table 5.1: Parameters and setup used in all experiments and simulations

Aspects Parameters and experimental setup

Sampling frequency 16000
Window type Hamming
Frame length 16 ms
Frame shift 8 ms
Pre-emphasis factor 0.96
Databases TIMIT, SITW and NIST 2008
Number of speakers 120 speakers for each database, total 360

speakers for all databases
Total speech utterances used 1,200 for each database, total

3,600 for all databases
Language English
Data Source (s) Microphone Speech for TIMIT and NIST 2008,

Hand Annotated Speech from Open Source
Media for SITW

No. of samples per speaker 10 for TIMIT, 10 created
as well for both SITW and NIST 2008

Testing samples for each database Total 480 utterances
Training samples for each database Total 720 utterances
Dialect region 49 speakers are selected from DR1

& 71 speakers are selected from DR4
for TIMIT database
to mirror the studies in [76] and [101]

Average sample duration 8 seconds (for each speech utterance
in both training and testing);
All speech samples were taken with fixed length;
concatenation is applied where necessary

Features MFCC and PNCC
Feature vector dimension 16
Feature normalization FW and CMVN
Modelling GMM-UBM
Classifier LLR
GMCs (Mixtures) {8, 16, 32, 64, 128, 256, 512 }
Fusion Types Late Fusion:

Mean, Linear Weights, Maximum
System Environment Original speech recordings, AWGN with

G.712 type handset at 16 kHz and
(Street-traffic, Bus-interior and
Crowd talking NSN) with handset

SNR levels in dB {0, 5, 10, 15, 20, 25, 30}

interviewers and created six training files and four testing utterances, with a fixed

length of eight seconds.
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5.4.2 Simulation Setups

Six main simulations were performed utilizing the TIMIT, SITW and NIST 2008

databases. Simulation one tested the system without additional noise and handset

effects, while simulation two evaluated noisy speech with both AWGN and the G.712

type handset at 16 kHz. Simulations 3-5 employed street traffic, a bus interior and

crowd talk NSN, with handset at 16 kHz, respectively. In Simulation 6, Percentage

Reduction in SIA (PRSIA) was created to measure the reduction caused by noise

and handset effects. Table 5.1 explains the parameters used in the simulations for

the three databases, as well as system details, conditions, databases and methods.

5.5 Simulation Results and Discussion

In this section, the simulations will be considered in two groups, A and B.

Part A includes the five simulations using the three databases: original speech

recordings, AWGN with handset, street NSN with handset, bus NSN with handset

and crowd talking NSN with handset, respectively. Part B includes further

examination of the effects of noise and handset on SIA based on features and

fusion methods.

In Part A, Simulation 1 shows the effect of the number of Gaussian Mixture

Components (GMCs), namely {8, 16, 32, 64, 128, 256, 512}, upon SIA for speech

utterances from the three databases, without noise or a handset. All other

simulations in Part A were on noisy speech, with seven SNR levels between (0-30)

dB for the same databases at mixture size 256. This noisy speech included the

G.712 type handset at 16 kHz under AWGN and three NSN types: street traffic,

bus interior and crowd talking.

In Part B, Percentage Reduction in SIA (PRSIA) is used to give further

quantitative perspective on each feature type (without fusion) and each fusion

technique. In general, all simulations for Part A and Part B present the SIA for

the four feature combinations based on MFCC and PNCC, these are: FWMFCC,

CMVNMFCC, FWPNCC and CMVNPNCC. The scores for the best SIA between

the MFCC features (FWMFCC (f 1) and CMVNMFCC (f 2) ) were fused to obtain

the best SIA with the PNCC features (FWPNCC (g1) and CMVNPNCC (g2).

In Tables 5.2 to 5.6, the row corresponding to fusion decision defines which f and g

vectors yield the highest SIA and therefore only two score vectors were fused. For

example, for fweightij i is equal 1 or 2, that means include either f 1 or f 2, and j
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is equal 1 or 2 implying using either g1 or g2, respectively. For example when the

fusion decision is given as f 1, g1 and ωβ equals to 0.9, then fweight11 =

0.9 × f 1 + 0.1 × g1. Their selection is based upon achieving the highest SIA.

Furthermore, in this work, mixture sizes of 1024 and 2048 are not considered,

because in this work there are insufficient data size for training; utilizing these

mixture sizes causes a decline in the SIA performance.

5.5.1 Simulations and Experiments for Part A

In all experiments of Part A and Part B, the training and the testing of the GMM-

UBM are achieved in total by 120 speakers (1,200 speech utterances are split into

720 for training and 480 for testing) from the TIMIT database in order to produce

the SIA for TIMIT. Likewise, the same partitioning method of training and testing,

and number of speakers, was applied to both additional databases SITW and NIST

2008.

5.5.1.1 Evaluation of Speech Data from TIMIT, SITW and NIST 2008

Without Handset and Noise (Part A)

In this subsection, Table 5.2 shows the relationship between SIA and GMCs for

the three databases according to feature combinations (without fusion), based on

MFCC and PNCC features, and various fusion schemes are also considered.

According to Table 5.2, the best SIA values were highlighted that achieved using

the same fusion decision (f 1, g2) for all three databases and they are at 95.83% for

the mixture size 64, 95% for the mixture size 512 and 82.5% for the mixture size

512 for the NIST 2008, TIMIT and SITW databases, respectively. These best SIAs

for the TIMIT and NIST 2008 databases were obtained with weighted sum fusion

and ωβ equal 0.9, while for SITW database the best SIA was also acquired with

the weighted sum fusion but with ωβ equal 0.7. Additionally, from the results of

Simulation 1 in Table 5.2, the plots in Fig. 5.4 are formed to give more analysis

and discussion. In Fig. 5.4, the highest SIA was selected regardless of using any

feature type (without fusion) or fusion method for each mixture size for TIMIT,

SITW and NIST 2008 databases. On this basis, the following observations were

made. Firstly, increasing the GMCs always increases the SIA for all databases as

in the simulations (1 A, 1 B, 1 C), except in mixture size 64 for the NIST 2008
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database which obtains better SIA than other mixtures. This is because the

GMM-UBM system was trained on a large number of speakers through the UBM,

and individual speaker models were adapted through the GMMs. This coupling

increases the dimensionality of the GMCs to cover all speakers. Hence, this

generally improves the SIA. Secondly, the NIST 2008 evaluation, which is

represented by the violet curve in Fig. 5.4 attained the best SIA performance,

followed by the red curve for the TIMIT database. In contrast, the evaluation of

the SITW database (blue curve) has the lowest SIA performance, as expected,

most probably due to the wild and challenging environments compared to the

semi-ideal TIMIT database and the less challenging conditions of NIST 2008.

Finally, in Fig. 5.4 the NIST 2008 database curve has the smallest variation

between the highest SIA (at mixture size 512) and the lowest SIA achieved at

mixture size 8. The second smallest variation is for the SITW database. However,

the largest variation was attained with the TIMIT database. The main reason for

this is that TIMIT is pure clean speech (ideal database as described by [3]), so the

highest SIA was achieved with the highest mixture component size (512) which

gives very accurate modelling, whereas modelling with the smallest mixture size

(8) was not very accurate thereby giving the lowest SIA. On the other hand, for

the other databases which do not contain pure speech, such accurate speech

modelling is not possible and therefore less variation in SIA as a function of

mixture size is generally observed. Firstly, increasing the GMCs mostly increased

the SIA for all databases (1 A, 1 B, 1 C), except in mixture size 64 for the NIST

2008 database which gave better SIA comparisons than other mixtures. This may

be because the GMM-UBM system was used to train a large number of speakers

through the UBM to estimate a larger number of parameters, and individual

speaker models were adapted through the GMMs; this coupling increases the

dimensionality of the GMCs to cover all speakers, and hence this generally

improves the SIA. Secondly, Table 5.2 shows that the NIST 2008 evaluation had

the best SIA performance, followed by the TIMIT. In contrast, the evaluation for

the SITW database had the lowest SIA performance, as expected, possibly due to

the wild and challenging environments compared with the semi ideal TIMIT

database and the less challenging conditions of NIST 2008. Finally, the SIA

reduction between the lowest GMCs at mixture size 8 and the highest GMCs at

mixture size 512 was much lesser with the NIST 2008 than both SITW and TIMIT
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Figure 5.4: Evaluations in Terms of SIA for the TIMIT, SITW and NIST 2008
Databases for Widespread Gaussian Mixture Components {8, 16, 32, 64, 128, 256,
512} Without Handset and Noise Using the GMM-UBM Algorithm

databases.

5.5.1.2 Evaluation of Noisy Speech Data from TIMIT, SITW and NIST

2008 With Handset and Noise (Part A)

This subsection is represented by Tables 5.3 to 5.6, which show the evaluation of

TIMIT, SITW and NIST 2008 for noisy speech with handset using different

background noises: AWGN, street traffic NSN, bus interior NSN, and crowd

talking NSN, respectively. In addition, the handset used in all simulations was the

G.712 type handset at 16 kHz. From using time-frequency analysis of the three

types of NSN the street traffic and crowd talking have been observed that have

broad spectra and therefore have similar effect as AWGN. On the other hand, the

dominant energy of the bus-interior noise is low frequency and therefore has least

effect on the speech when it is added. Therefore for the AWGN, street and crowd

talking, the reduction in SIA performance between 10 and 30 dB was only

considered; whereas, for bus-interior, between 0 and 30 dB are considered.

According to the tables from Table 5.3 to Table 5.6, the highest SIA results are

selected regardless of feature type (without fusion) or fusion method for each SNR

level. Then, these results are shown in Fig. 5.5.
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Table 5.2: Simulation 1: 1 A, 1 B and 1 C are the SIA for Different Gaussian
Mixture Components (GMC) for the TIMIT, SITW and NIST 2008, Respectively

Simulation 1 A: the SIA for Clean Speech TIMIT Database

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

FWMFCC (f1) 80% 84.17% 89.17% 93.33% 93.33% 93.33% 94.17%

CMVNMFCC (f2) 77.5% 80.83% 86.67% 91.67% 91.67% 92.5% 90.83%

FWPNCC (g1) 60% 71.67% 80.83% 86.67% 88.33% 90% 90%

CMVNPNCC (g2) 70% 74.17% 83.33% 86.67% 90% 89.17% 90.83%

Fusion Decision (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f1,g1) (f1,g2)

Fused ω1=0.9 79.17% 84.17% 90% 91.67% 93.33% 93.33% 95%

Fused ω2=0.8 80.83% 83.33% 90% 92.5% 93.33% 94.17% 94.17%

Fused ω3=0.77 80.83% 83.33% 90% 92.5% 93.33% 94.17% 94.17%

Fused ω4=0.7 79.17% 82.5% 89.17% 92.5% 93.33% 94.17% 93.33%

Fusion Max 77.5% 75% 85% 90% 94.17% 93.33% 93.33%

Fusion Mean 78.33% 80.83% 90% 92.5% 93.33% 94.17% 94.17%

Simulation 1 B: The SIA for SITW Database

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

FWMFCC (f1) 71.67% 75% 76.67% 77.5% 78.33% 78.33% 80%

CMVNMFCC (f2) 69.17% 74.17% 75.83% 78.33% 80.83% 80% 79.17%

FWPNCC (g1) 64.17% 70.83% 78.33% 79.17% 80.83% 79% 79.17%

CMVNPNCC (g2) 67.5% 73.33% 77.5% 78.33% 80.83% 80% 80%

Fusion Decision (f1,g2) (f1,g2) (f1,g1) (f2,g1) (f2,g2) (f2,g2) (f1,g2)

Fused ω1=0.9 71.67% 75.83% 77.5% 77.5% 80.83% 80.83% 81.67%

Fused ω2=0.8 71.67% 74.17% 77.5% 77.5% 80.83% 80.83% 81.67%

Fused ω3=0.77 71.67% 74.17% 76.67% 77.5% 80.83% 80.83% 81.67%

Fused ω4=0.7 71.67% 75.83% 75.83% 78.33% 80.83% 80.83% 82.5%

Fusion Max 72.5% 75% 77.5% 78.33% 79.17% 78.33% 79.17%

Fusion Mean 73.33% 76.67% 74.17% 79.17% 79.17% 80% 81.67%

Simulation 1 C: The SIA for NIST 2008 Database

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

FWMFCC (f1) 90% 89.17% 92.5% 95.83% 93.33% 92.5% 94.17%

CMVNMFCC (f2) 83.33% 87.5% 88.33% 90.83% 90% 90.83% 89.17%

FWPNCC (g1) 83.33% 86.67% 87.5% 87.5% 89.17% 88.33% 88.33%

CMVNPNCC (g2) 84.17% 85% 89.17% 89.17% 89.17% 88.33% 88.33%

Fusion Decision (f1,g2) (f1,g1) (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f1,g2)

Fused ω1=0.9 89.17% 90.83% 94.17% 95.83% 95% 95% 95%

Fused ω2=0.8 91.67% 91.67% 93.33% 95% 94.17% 95% 94.17%

Fused ω3=0.77 90.83% 91.67% 93.33% 94.17% 94.17% 95% 94.17%

Fused ω4=0.7 90.83% 90.83% 93.33% 94.17% 94.17% 95% 94.17%

Fusion Max 90% 86.67% 93.33% 93.33% 92.5% 92.5% 91.67%

Fusion Mean 88.33% 90% 90.83% 91.67% 92.5% 94.17% 92.5%
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Table 5.3: Simulation 2: 2 A, 2 B and 2 C are the SIA Under AWGN and G.712
Type Handset at 16 kHz for Different Signal to Noise Ratio (SNR) Levels for the
TIMIT, SITW and NIST 2008, Respectively, at Mixture Size 256

Simulation 2 A: The SIA for Noisy Speech Using TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 0.83% 1.67% 5.83% 14.17% 25.83% 45% 64.17%

CMVNMFCC (f2) 0.83% 1.67% 2.5% 5.83% 14.17% 31.67% 57.5%

FWPNCC (g1) 1.67% 4.17% 5.83% 15.83% 31.67% 47.5% 60%

CMVNPNCC (g2) 2.5% 3.33% 7.5% 20% 39.17% 51.67% 60.83%

Fusion Decision (f1,g2) (f1,g1) (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f1,g2)

Fused ω1=0.9 0.83% 1.67% 6.67% 15% 30% 46.67% 66.67%

Fused ω2=0.8 0.83% 1.67% 5.83% 17.5% 33.33% 45.83% 70%

Fused ω3=0.77 0.83% 1.67% 5% 17.5% 35% 45.83% 70.83%

Fused ω4=0.7 0.83% 1.67% 4.17% 16.67% 35.83% 48.33% 70.83%

Fusion Max 2.5% 1.67% 7.5% 16.67% 34.17% 50% 73.33%

Fusion Mean 0.83% 1.67% 6.67% 18.33% 36.67% 51.67% 75.83%

Simulation 2 B: The SIA for Noisy Speech Using SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 3.33% 9.17% 16.67% 31.67% 52.5% 65% 71.67%

CMVNMFCC (f2) 3.33% 6.67% 15% 27.5% 47.5% 63.33% 73.33%

FWPNCC (g1) 3.33% 6.67% 22.5% 51.67% 71.67% 75.83% 78.33%

CMVNPNCC (g2) 1.67% 5% 23.33% 53.33% 74.17% 75.83% 78.33%

Fusion Decision (f1,g1) (f1,g1) (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f2,g2)

Fused ω1=0.9 3.33% 9.17% 18.33% 35.83% 55.83% 71.67% 73.33%

Fused ω2=0.8 3.33% 10% 20% 38.33% 58.33% 73.33% 75%

Fused ω3=0.77 3.33% 10% 20% 40.83% 60% 73.33% 75.83%

Fused ω4=0.7 4.17% 10.83% 21.67% 45% 62.5% 73.33% 76.67%

Fusion Max 4.17% 10% 23.33% 48.33% 62.5% 74.17% 76.67%

Fusion Mean 4.17% 10% 25% 51.67% 73.33% 78.33% 77.5%

Simulation 2 C: The SIA for Noisy Speech Using NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 0.83% 1.67% 3.33% 7.5% 14.17% 18.33% 20.83%

CMVNMFCC (f2) 0.83% 1.67% 2.5% 5% 15.83% 19.17% 23.33%

FWPNCC (g1) 0.83% 1.67% 2.5% 2.5% 5.83% 13.33% 25.83%

CMVNPNCC (g2) 0.83% 1.67% 2.5% 3.33% 5.83% 13.33% 26.67%

Fusion Decision (f1,g2) (f1,g2) (f1,g2) (f1,g2) (f2,g2) (f2,g2) (f2,g2)

Fused ω1=0.9 0.83% 1.67% 3.33% 7.5% 15.83% 20% 22.5%

Fused ω2=0.8 0.83% 1.67% 3.33% 6.67% 15.83% 20.83% 23.33%

Fused ω3=0.77 0.83% 1.67% 3.33% 7.5% 15% 21.67% 24.17%

Fused ω4=0.7 0.83% 1.67% 3.33% 9.16% 12.5% 21.67% 24.17%

Fusion Max 0.83% 2.5% 3.33% 5% 10.83% 20% 23.33%

Fusion Mean 0.83% 1.67% 3.33% 7.5% 14.38% 18.33% 26.67%
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Table 5.4: Simulation 3: 3 A, 3 B and 3 C are the SIA for Street Traffic NSN and
G.712 Type Handset at 16 kHz for Different Signal to Noise Ratio (SNR) Levels for
the TIMIT, SITW and NIST 2008, Respectively, at Mixture Size 256

Simulation 3 A: The SIA for Street Traffic NSN Using TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 5.83% 15% 26.67% 47.5% 67.5% 78.33% 82.5%

CMVNMFCC (f2) 5.83% 15.83% 29.17% 50% 68.33% 79.17% 85%

FWPNCC (g1) 1.67% 4.17% 13.33% 30% 40.83% 51.67% 61.67%

CMVNPNCC (g2) 1.67% 5% 13.33% 35% 50.83% 60% 66.67%

Fusion Decision (f2,g2) (f2,g2) (f2,g2) (f2,g2) (f2,g2) (f2,g2) (f2,g2)

Fused ω1=0.9 6.67% 18.33% 29.17% 51.67% 72.5% 80.83% 86.67%

Fused ω2=0.8 5% 18.33% 30.83% 52.5% 73.33% 82.5% 88.33%

Fused ω3=0.77 5% 17.5% 30% 52.5% 74.17% 82.5% 88.33%

Fused ω4=0.7 6.67% 17.5% 31.67% 53.33% 73.33% 83.33% 88.33%

Fusion Max 3.33% 9.17% 27.5% 50% 70.83% 82.5% 86.67%

Fusion Mean 2.5% 14.17% 30.83% 55% 73.33% 84.17% 90%

Simulation 3 B: The SIA for Street Traffic NSN Using SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 15.83% 23.33% 41.67% 62.5% 71.67% 76.67% 79.17%

CMVNMFCC (f2) 15% 22.5% 32.5% 52.5% 70% 73.33% 75.83%

FWPNCC (g1) 5.83% 8.33% 28.33% 50.83% 69.17% 74.17% 78.33%

CMVNPNCC (g2) 5.83% 9.17% 29.17% 48.33% 69.17% 75.83% 79.17%

Fusion Decision (f1,g2) (f1,g2) (f1,g2) (f1,g1) (f1,g2) (f1,g2) (f1,g2)

Fused ω1=0.9 15% 24.17% 46.88% 63.33% 70.84% 76.67% 80%

Fused ω2=0.8 14.17% 24.17% 39.17% 63.33% 71.67% 76.67% 80%

Fused ω3=0.77 14.17% 24.17% 40% 63.33% 71.67% 76.67% 80%

Fused ω4=0.7 14.17% 22.5% 39.17% 62.5% 73.33% 77.5% 80%

Fusion Max 10.83% 21.67% 35% 62.5% 70.83% 77.5% 79.17%

Fusion Mean 10.83% 20.83% 35.83% 65% 74.17% 79.17% 81.67%

Simulation 3 C: The SIA for Street Traffic NSN Using NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 1.67% 2.5% 10.83% 17.5% 29.17% 37.5% 47.5%

CMVNMFCC (f2) 1.67% 1.67% 6.67% 12.5% 23.33% 35% 45.83%

FWPNCC (g1) 1.67% 2.5% 15% 34.17% 55.83% 74.17% 80%

CMVNPNCC (g2) 1.67% 1.67% 6.67% 30% 54.17% 71.67% 78.33%

Fusion Decision (f1,g1) (f1,g1) (f1,g1) (f1,g1) (f1,g1) (f1,g1) (f1,g1)

Fused ω1=0.9 1.67% 5.83% 10.83% 20% 30% 40% 50.83%

Fused ω2=0.8 1.67% 3.33% 10.83% 21.67% 34.17% 42.5% 55%

Fused ω3=0.77 1.67% 3.33% 10.83% 22.5% 34.17% 45% 57.5%

Fused ω4=0.7 1.67% 3.33% 10.83% 24.17% 35.83% 48.33% 60%

Fusion Max 1.67% 3.33% 13.33% 25.83% 39.17% 58.33% 64.17%

Fusion Mean 0.83% 3.33% 12.5% 28.33% 40.83% 50.83% 69.17%
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5.5 Simulation Results and Discussion

Table 5.5: Simulation 4: 4 A, 4 B and 4 C are the SIA for Bus Interior NSN and
G.712 Type Handset at 16 kHz for Different Signal to Noise Ratio Levels for the
TIMIT, SITW and NIST 2008, Respectively, at Mixture Size 256

Simulation 4 A: The SIA for Bus Interior NSN Using TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 50.83% 65% 75.83% 79.17% 85% 87.5% 89.17%

CMVNMFCC (f2) 53.33% 68.33% 77.5% 82.5% 87.5% 90.83% 91.67%

FWPNCC (g1) 10% 23.33% 35.83% 50.83% 65% 70% 72.5%

CMVNPNCC (g2) 13.33% 27.5% 45% 55.83% 63.33% 69.17% 73.33%

Fusion Decision (f2,g2) (f2,g2) (f2,g2) (f2,g2) (f2,g1) (f2,g1) (f2,g2)

Fused ω1=0.9 55% 69.17% 80.83% 84.17% 88.33% 91.67% 91.67%

Fused ω2=0.8 56.67% 71.67% 83.33% 85.83% 89.17% 91.67% 90%

Fused ω3=0.77 56.67% 72.5% 82.5% 85.83% 90% 91.67% 90%

Fused ω4=0.7 56.67% 70% 83.33% 85.83% 90.83% 90% 89.17%

Fusion Max 40.83% 65% 76.67% 83.33% 84.17% 87.5% 89.17%

Fusion Mean 51.67% 68.33% 78.33% 84.17% 86.67% 88.33% 90.83%

Simulation 4 B: The SIA for Bus Interior NSN Using SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 65.83% 70.83% 73.33% 75.83% 77.5% 79.17% 79.17%

CMVNMFCC (f2) 66.67% 70.83% 72.5% 73.33% 76.67% 77.5% 79.17%

FWPNCC (g1) 27.5% 49.17% 64.17% 71.67% 75.83% 77.5% 79.17%

CMVNPNCC (g2) 28.33% 48.33% 65% 72.5% 75% 79.17% 80%

Fusion Decision (f2,g2) (f2,g1) (f1,g2) (f1,g2) (f1,g1) (f1,g2) (f1,g2)

Fused ω1=0.9 66.67% 71.67% 73.33% 75.83% 77.5% 80% 80%

Fused ω2=0.8 65% 72.5% 74.17% 75.83% 77.5% 80.83% 80%

Fused ω3=0.77 66.67% 72.5% 75% 76.67% 77.5% 81.67% 80%

Fused ω4=0.7 65.83% 72.5% 75% 76.67% 78.33% 80.83% 80.83%

Fusion Max 63.33% 72.5% 73.33% 79.17% 80% 80.83% 80.83%

Fusion Mean 59.17% 70.83% 73.33% 76.67% 79.17% 81.67% 80.83%

Simulation 4 C: The SIA for Bus Interior NSN Using NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 22.5% 32.5% 36.67% 42.5% 59.17% 72.5% 85.83%

CMVNMFCC (f2) 19.17% 28.33% 36.67% 45% 60% 74.17% 85.83%

FWPNCC (g1) 7.5% 15% 37.5% 57.5% 71.67% 80% 80%

CMVNPNCC (g2) 6.67% 14.17% 35.83% 57.5% 73.33% 82.5% 84.17%

Fusion Decision (f1,g1) (f1,g1) (f2,g1) (f2,g2) (f2,g2) (f2,g2) (f2-g2)

Fused ω1=0.9 20.83% 32.5% 39.17% 49.17% 60.83% 78.33% 88.33%

Fused ω2=0.8 17.5% 30% 40.83% 53.33% 63.33% 84.17% 90%

Fused ω3=0.77 17.5% 27.5% 40.83% 53.33% 64.17% 84.17% 90.83%

Fused ω4=0.7 17.5% 26.67% 42.5% 54.17% 68.33% 83.33% 90.83%

Fusion Max 15% 28.33% 41.67% 53.33% 69.17% 85% 89.17%

Fusion Mean 15.83% 25.83% 45.83% 58.33% 75% 86.67% 92.5%
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5.5 Simulation Results and Discussion

Table 5.6: Simulation 5: 5 A, 5 B and 5 C are The SIA for Crowded Talking NSN
and G.712 Type Handset at 16 kHz for Different Signal to Noise Ratio Levels for
the TIMIT, SITW and NIST 2008, Respectively, at Mixture Size 256

Simulation 5 A: The SIA for Crowded Talking NSN Using TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 9.17% 18.33% 35% 50.83% 66.67% 74.17% 80%

CMVNMFCC (f2) 7.5% 19.17% 34.17% 55.83% 69.17% 81.67% 87.5%

FWPNCC (g1) 1.67% 2.5% 15.83% 29.17% 43.33% 56.67% 59.17%

CMVNPNCC (g2) 1.67% 5% 19.17% 35% 54.17% 60.83% 68.33%

Fusion Decision (f1,g2) (f2,g2) (f1,g2) (f2,g2) (f2,g2) (f2,g2) (f2,g2)

Fused ω1=0.9 10% 19.17% 35.83% 57.5% 70.83% 83.33% 87.5%

Fused ω2=0.8 10% 16.67% 36.67% 59.17% 71.67% 83.33% 90%

Fused ω3=0.77 10% 16.67% 36.67% 60% 72.5% 83.33% 88.33%

Fused ω4=0.7 8.33% 16.67% 37.5% 61.67% 74.17% 84.17% 88.33%

Fusion Max 2.5% 9.17% 39.17% 52.5% 73.33% 84.17% 88.33%

Fusion Mean 5% 15% 38.33% 62.5% 73.33% 82.5% 89.17%

Simulation 5 B: The SIA for Crowded Talking NSN Using SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 18.33% 33.33% 45.83% 64.17% 73.33% 75.83% 78.33%

CMVNMFCC (f2) 15.83% 30% 43.33% 59.17% 72.5% 75.83% 77.5%

FWPNCC (g1) 5% 15% 33.33% 59.17% 71.67% 76.67% 79.17%

CMVNPNCC (g2) 4.17% 12.5% 30% 53.33% 70% 75.83% 80.83%

Fusion Decision (f1,g1) (f1,g1) (f1,g1) (f1,g1) (f1,g1) (f1,g1) (f1-g2)

Fused ω1=0.9 20% 65% 48.33% 67.5% 73.33% 75.83% 80%

Fused ω2=0.8 18.33% 61.67% 50% 68.33% 73.33% 75.83% 80%

Fused ω3=0.77 17.5% 60% 50.83% 69.17% 73.33% 75.83% 80%

Fused ω4=0.7 17.5% 57.5% 53.33% 70% 73.33% 77.5% 80%

Fusion Max 14.17% 48.33% 46.67% 65.83% 73.33% 76.67% 80.83%

Fusion Mean 11.67% 45% 50.83% 72.5% 75% 78.33% 82.5%

Simulation 5 C: The SIA for Crowded Talking NSN Using NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB

FWMFCC (f1) 7.5% 12.5% 24.17% 30% 37.5% 47.5% 66.67%

CMVNMFCC (f2) 3.33% 10.83% 18.33% 28.33% 40.83% 46.67% 67.5%

FWPNCC (g1) 3.33% 11.67% 29.17% 29.17% 67.5% 78.33% 80.83%

CMVNPNCC (g2) 2.5% 10% 24.17% 24.17% 68.33% 79.17% 82.5%

Fusion Decision (f1,g1) (f1,g1) (f1,g1) (f1,g2) (f2,g2) (f1,g2) (f2,g2)

Fused ω1=0.9 6.67% 15% 24.17% 34.17% 45.83% 55.83% 70.83%

Fused ω2=0.8 10% 15% 24.17% 35% 48.33% 60.83% 75.83%

Fused ω3=0.77 10% 15% 25.83% 36.67% 49.17% 61.67% 77.5%

Fused ω4=0.7 10% 15% 28.33% 40.83% 49.17% 64.17% 80%

Fusion Max 8.33% 15.83% 29.17% 45.83% 51.67% 70% 77.5%

Fusion Mean 8.33% 17.5% 30% 45% 57.5% 73.33% 84.17%
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5.5 Simulation Results and Discussion

a 

d 

c 

b 

Figure 5.5: Performance Measurement for Noisy Speech for the TIMIT, SITW and
NIST 2008 Database at Mixture Size 256 Under G.712 Type Handset at 16 kHz
With Background Noise (a) AWGN , (b) Street Traffic NSN, (c) Bus-Interior and
(d) Crowd Talking NSN for Wide Range of SNR Levels (0-30) dB and Using GMM-
UBM Algorithm.

110



5.5 Simulation Results and Discussion

Firstly, for AWGN and G.712 type handset, represented in Table 5.3, the

bar charts in Fig. 5.5 (a) can be used to analyse and discuss the results given in

Table 5.3. The figure shows the reduction in SIA was from 75.83% at 30 dB to 7.5%

at 10 dB for the TIMIT database, while in SITW the reduction in the SIA was from

78.33% at 30 dB to 25% at 10 dB . In contrast, the NIST 2008 had the lowest SIA

among all other databases at 30 dB with 26.67% then this was reduced to the 3.33%

at 10 dB, as such all databases were affected by stationary noise, with a constant

spectrum profile. The particular sensitivity to such noise when applied to the NIST

2008 database may be due to the natural characteristics of the interview speech.

Secondly, for street traffic NSN with handset, seen in Table 5.4, Fig. 5.5 (b) shows

that the reduction in SIA was from 90% at 30 dB to 31.67% at 10 dB for the TIMIT

database. similarly, the reduction in SIA obtained by the NIST 2008 database was

from 80% to 15%. In contrast, the lowest reduction in the performance accuracy

was attained using the SITW database with SIA 81.67% at 30 dB dropping down

to 46.88% at 10 dB. As a consequence, the SITW database has the lowest reduction

in SIA compared with the other three databases used for the evaluation.

Thirdly, for the bus interior NSN, seen in Table 5.5, Fig. 5.5 (c) illustrates that

the reduction in SIA was from 91.67% at 30 dB to 56.67% at 0 dB for the TIMIT

database. Likewise, for the SITW database the SIA reduction was from 80.83% to

66.67% for 30 dB and 0 dB, respectively. However, the highest reduction in SIA was

for the NIST 2008 database with SIA 92.5% at 30 dB to 22.5% at 0 dB.

Finally, the results in Table 5.6, Fig. 5.5 (d) show that the evaluation of the crowd

talking NSN with the handset evaluation was similar to the street NSN. For the

TIMIT database, the reduction in SIA was from 90% at 30 dB to 39.17% at 10 dB.

Similar to this reduction the figure for the NIST 2008 database were 84.17% at 30 dB

to 30% at 10 dB. In contrast, for the SITW database the reduction in SIA was from

82.5% to 53.33%. Considering the reduction in SIA for all simulations as a result of

noise and handset effects, the most important issue is the relative sensitivities of the

various methods to the environments. To address this point, further comparative

analysis are considered.
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5.5 Simulation Results and Discussion

5.5.2 Simulations and Experiments for Part B

In this study, based on the feature types (using four feature combinations without

fusion) and fusion methods, the quantitative perspectives were measured by

calculating the PRSIA.

5.5.2.1 Quantitative Perspective for Noise and Handset Effects in PartB

The PRSIA was calculated for different conditions as in equation (5.2):

PRSIAcond =
SIAcond − SIAclean

SIAclean
× 100% (5.2)

where: cond ∈ {1, 2, 3, 4}, 1 refers to the AWGN and handset, 2 to street traffic NSN

and handset, 3 to the bus interior NSN and handset, and 4 to the crowded talking

NSN and handset. The handset used was G.712 type at 16 kHz. This equation

measured the SIAclean at mixture size 256 for the original recordings in TIMIT,

SITW and NIST 2008, without noise and handset conditions. Then the SIAcond

was measured under the four conditions in the testing phase. Table 5.7 presents the

results of PRSIA for each condition, depending on the noise type with handset, each

feature type, and each fusion method. The negative sign “-” refers to reduction,

while “+” refers to increase. It is surprising to see a few positive sign values in

Table 5.7, as different background noise with handset effects are considering, and

the system should generally be degraded; but at SNR 30 dB the very small amount of

noise may have a stabilization effect on the speaker identification system. Moreover,

all positive sign values in Table 5.7 are for the challenging new database (SITW).

Generally, however, from Table 5.7 all the results for TIMIT and NIST 2008 can

noticed at SNR 30 dB have negative sign values, meaning a reduction in the SIA

as a result of the noise and handset effects. Secondly, most of the fusion methods

reduced the PRSIA for all databases used.
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5.6 Related Works Based on the Proposed Speaker Identification
System

Further, and most importantly, NIST 2008 is more sensitive to noise, especially

AWGN, and has a higher reduction in PRSIA compared with TIMIT and SITW. In

contrast, SITW seems relatively robust against noise. The fusion mean seems to have

the lowest reduction in SIA compared with other fusion methods. However, MFCC

features have less reduction in SIA for the TIMIT database, while this position is

reversed for SITW and NIST 2008. For PNCC, the features have less reduction

than MFCC in terms of the SIA. Finally, the highest reduction in all databases

occurred under the AWGN with handset condition, which is due to the uniformity

of the spectrum effect of the noise. The bus interior NSN and handset has the lowest

reduction which as stated earlier is due to its low frequency nature. The results for

other noise conditions (street and crowded talking) are between the AWGN and bus

NSN effects.

5.6 Related Works Based on the Proposed

Speaker Identification System

Table 5.8 summarizes results mostly at SNR 30 dB, where Cond.1 is speech files

from TIMIT, SITW and NIST 2008 without handset and noise, termed original

speech recordings; Cond.2 is noisy speech by AWGN and handset; Cond.3 is street

NSN and handset; Cond.4 is bus NSN and handset; Cond.5 is crowded talking NSN

and handset. The handset used in all noise conditions is G.712 type at 16 kHz.

Comparisons show improvement in SIA with the TIMIT database in cond.1 over

the state of the art methods due to Kumar et al. [1] and Togneri and Pullella [3].

However, Ming et al. in their earlier work in [52] attain higher SIA in Cond.1 with

TIMIT but only with a GMM model and 630 speakers, but they do not consider a

handset in Cond. 3. New benchmark figures contributed from this study for a range

of environmental noise conditions with the three databases are provided by Cond.2

- Cond.5.
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5.7 Summary

Table 5.7: Percentage Reduction in SIA (PRSIA) for the TIMIT, SITW and NIST
2008, Respectively, Under G.712 Type Handset at 16 kHz at Mixture Size 256 and
SNR 30 dB, AWGN, Street Traffic, Bus Interior, Crowded Talking NSN

Simulation 6 A: PRSIA for TIMIT Database

Environments Methods AWGN-WH Street-WH Bus-WH Crowd -WH
Feature based FWMFCC (f1) -31.24% -11.6% -4.46% -14.28%

CMVNMFCC (f2) -37.84% -8.11% -0.9% -5.41%
FWPNCC (g1) -33.33% -31.48% -19.44% -34.26%

CMVNPNCC (g2) -31.78% -25.23% -17.76% -23.37%
Fusion based Fused ω1=0.9 -28.57% -7.14% -3.57% -6.25%

Fused ω2=0.8 -25.67% -6.2% -4.43% -4.43%
Fused ω3=0.77 -24.78% -6.2% -4.43% -6.2%
Fused ω4=0.7 -24.78% -6.2% -5.31% -6.2%
Fusion Max -21.43% -7.14% -4.46% -5.36%
Fusion Mean -19.48% -4.43% -3.55% -5.31%

Simulation 6 B: PRSIA for SITW database

Environments Methods AWGN-WH Street-WH Bus-WH Crowd -WH
Feature based FWMFCC (f1) -8.5% +1.07% +1.07% 0%

CMVNMFCC (f2) -8.34% -5.21% -3.13% -3.13%
FWPNCC (g1) -0.85% -0.85% -1.9% +0.22%

CMVNPNCC (g2) -2.09% -1.04% -1.04% +1.04%
Fusion based Fused ω1=0.9 -9.28% -1.03% -1.02% -1.03%

Fused ω2=0.8 -7.21% -1.03% -1.02% -1.03%
Fused ω3=0.77 -6.19% -1.03% -1.02% -1.03%
Fused ω4=0.7 -5.15% -1.03% 0% -1.03%
Fusion Max -2.12% +1.07% +3.19% +3.19%
Fusion Mean -3.13% +2.09% +2.09% +3.13%

Simulation 6 C: PRSIA for NIST 2008 database

Environments Methods AWGN-WH Street-WH Bus-WH Crowd -WH
Feature based FWMFCC (f1) -77.48% -48.65% -7.21% -27.92%

CMVNMFCC (f2) -74.31% -49.54% -5.5% -25.69%
FWPNCC (g1) -70.76% -9.43% -9.43% -8.49%

CMVNPNCC (g2) -69.81% -11.32% -4.71% -6.6%
Fusion based Fused ω1=0.9 -76.32% -46.49% -7.02% -25.44%

Fused ω2=0.8 -75.44% -42.11% -5.26% -20.18%
Fused ω3=0.77 -74.56% -39.47% -4.39% -18.42%
Fused ω4=0.7 -74.56% -36.84% -4.39% -15.79%
Fusion Max -78.38% -30.63% -3.6% -16.22%
Fusion Mean -71.68% -26.55% -1.77% -10.62%

5.7 Summary

In this study, a comprehensive evaluation was provided of text independent closed

set speaker identification in the presence of AWGN and NSN types with a G.712

type handset at 16 kHz, to provide benchmark evaluations of three different

databases. Different feature combinations are presented based on MFCC and

PNCC, modelled by the GMM-UBM approach with and without fusion techniques
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5.7 Summary

(maximum, mean and weighted sum fusion). The evaluations were conducted

under challenging environments including in the presence of the G.712 handset,

AWGN, and various NSN types. Three databases (TIMIT, NIST 2008 and SITW)

with a wide range of seven SNR levels (0-30) dB with step size 5 dB were

employed. In addition, a wide range of Gaussian mixture components {8, 16, 32,

64, 128, 256, 512} for original speech recordings was also considered. Thorough

evaluation and results were provided by this research in order to give benchmark

evaluations and results for the three databases for other researchers working in the

speaker identification area. The major findings from this study are:

• On the basis of the evaluations of three databases without the noise

and handset conditions, the best speaker identification method for

all three databases used was weighted sum fusion.

• Based on the three databases without the noise and handset

conditions, the order for best SIAs were: NIST2008, TIMIT,

SITW with 95.83%, 95% and 82.5%, respectively at mixture sizes

64, 512 and also 512, respectively. These SIAs were achieved by

using weighted sum fusion with 90 percent from FWMFCC

features and 10 percent from the corresponding CMVNPNCC

features for both the TIMIT and NIST 2008 database. On the

other hand, in the SITW database 70 percent from FWMFCC

features was fused with 30 percent from the corresponding

CMVNPNCC features. The weighting should therefore be chosen

as a function of the fidelity of the speech recordings.

• On the basis of the results in this chapter, the evaluations in noisy

conditions suggest that mean fusion of four combinations of two

types of features from (FWMFCC, CMVNMFCC, FWPNCC and

CMVNPNCC) is the most robust method for a practical speaker

identification system, but there is not a consistent best pairing.

The next chapter will consider a similar extensive evaluation for a speaker

identification system built from an I-vector approach [37].

115



5.7 Summary

T
ab

le
5.

8:
C

om
p
ar

is
on

s
w

it
h

th
e

S
ta

te
of

th
e

A
rt

of
S
IA

A
u

th
o
rs

D
a
ta

b
a
se

S
y
st

e
m

A
p

p
ro

a
ch

C
o
n

d
.1

C
o
n

d
.2

C
o
n

d
.3

C
o
n

d
.4

C
o
n

d
.5

P
ro

p
o
se

d
T

IM
IT

F
u

si
on

B
as

ed
9
5
%

7
5
.8

3
%

9
0
%

9
1
.6

7
%

9
0
%

12
0

sp
ea

ke
rs

G
M

M
-U

B
M

S
N

R
30

d
B

S
N

R
30

d
B

S
N

R
30

d
B

S
N

R
30

d
B

In
th

is
ch

a
p

te
r

M
ic

ro
p

h
on

e
ch

an
n

el

P
ro

p
o
se

d
S

IT
W

F
u

si
on

B
as

ed
8
2
.5

%
7
8
.3

3
%

8
1
.6

7
%

8
1
.6

7
%

8
2
.5

%
12

0
sp

ea
ke

rs
G

M
M

-U
B

M
S

N
R

30
d

B
S

N
R

30
d

B
S

N
R

30
d

B
S

N
R

30
d

B
In

th
is

ch
a
p

te
r

P
ro

p
o
se

d
N

IS
T

2
0
0
8

F
u

si
on

B
as

ed
9
5
.8

3
%

2
6
.6

7
%

8
0
%

9
2
.5

%
8
4
.1

7
%

12
0

sp
ea

ke
rs

G
M

M
-U

B
M

S
N

R
30

d
B

S
N

R
30

d
B

S
N

R
30

d
B

S
N

R
30

d
B

In
th

is
ch

a
p

te
r

M
ic

ro
p

h
on

e
ch

an
n

el

K
u

m
ar

et
a
l.

T
IM

IT
G

M
M

93
.8

8%
[1

]
[2

0
1
2]

12
0

sp
ea

ke
rs

T
og

n
er

i
a
n

d
P

u
ll

el
la

T
IM

IT
G

M
M

-U
B

M
94

.5
%

74
.2

%
[3

]
[2

0
1
1]

64
sp

ea
ke

rs
at

S
N

R
30

d
B

M
in

g
et

a
l.

T
IM

IT
G

M
M

96
.5

1%
92

.8
6%

[5
2
]

[2
00

7
]

63
0

sp
ea

ke
rs

M
ix

12
8

at
20

d
B

w
it

h
ou

t
h

an
d

se
t

116



Chapter 6

Fusion-based Speaker

Identification Using

Multi-Dimensional I-vectors in

Challenging Environments for

Four Databases

I-vectors represent the state of the art, especially for speaker recognition

applications, and yet few researchers have exploited fusion-based I-vectors for this

task. In this chapter, a novel fusion I-vectors with classification approach using an

ELM is employed. The system is tested using original speech recordings and

various types of NSN as background context, including street traffic NSN, a

bus-interior NSN, and crowd talking NSN, as well as AWGN. In addition, the

evaluation includes G.712 type handset effects at 16 kHz. Hence, four I-vector

combinations are achieved using CMVN and FW to the MFCC, and PNCC

features. Various fusion I-vectors are employed to improve the identification

accuracy, and the ELM is exploited to identify speakers; in this way, SIA is

calculated. The system is evaluated with four different databases: the 2016 SITW

database, the NIST 2008, the TIMIT and the NTIMIT. From each database, 120

speakers with 1,200 speech utterances are used (overall 480 speakers with 4,800

speech utterances are used in this chapter). A limited experiment is also

performed in this chapter using the original speech recordings from NTIMIT
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database without noise conditions or handset effects. The proposed system is

compared with the GMM-UBM and other state of the art approaches. The results

show that the I-vector approach outperforms the GMM-UBM approach and other

state of the art methods under specific conditions. This chapter also gives fair

comparisons in terms of the SIA for the different databases with a wide range of

UBM mixture sizes and seven SNR levels for AWGN and different NSN types. No

previous study has comprehensively considered four databases, nor the effect of

such a wide range of NSN and handset effects.

6.1 Background

The I-vector is a recent and most interesting state of the art method initially

proposed by Dehak et al. in 2011 [119] for speaker verification applications. Prior

to the I-vector, the traditional approaches for modelling speakers were JFA [34],

GMM-UBM, supervector GMM, and GMM. Some researchers were interested in

text independent speaker recognition such as in [120] and [121], while others

focused on speaker dependent recognition [122]. However, the majority of

researchers have concentrated on exploiting the modern modelling approach using

I-vectors for speaker verification [16, 35, 36, 123–128]. They have also proposed

different compensation methods for channel variabilities, such as WCCN, NAP,

and LDA. For system classification, PLDA, SRC, CDS and SVM have been

proposed. The NIST 2008 database plays an important role in the evaluation of

the state of the art methods, especially the I-vector approach with different

dimensions (400, 800, 1200 and 1600). In addition, Deep Belief Networks (DBNs)

were considered to improve the I-vector system in [129] and [130], respectively.

Further research on I-vector speaker recognition and verification applications were

made in [131–135], and in [136] for spoof voice verification. JFA is another

approach in the presence of noise, and fusion based speaker verification, as in [137].

More generally, a survey of speech processing, including the I-vector approach to

the concept, applications, challenges, approaches and hybrid approaches, as well as

the main toolkits, were made in [37].

However, various researchers have exploited I-vectors for other applications; [138]

and [139] proposed emotional speaker and speech recognition based on I-vectors;

the interesting point in [138] is the comparison of the I-vector results with
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6.1 Background

GMM-UBM. Another application for I-vectors was suggested in [140], which

sought to estimate the age of speakers. In [141], an I-vector framework was utilized

within a MAP approach estimation with additive noise to achieve robustness in

speaker recognition using the NIST 2008 database. Previous studies have also

focused on using a fusion based GMM-UBM for speaker identification with

different feature combinations basically constructed from MFCC and PNCC, such

as [76, 101] which both evaluated 120 speakers from the TIMIT database for

original speech recordings and AWGN with and without a handset, including

feature and score fusion.

The main contributions of this chapter are as follows. Firstly, a new text

independent closed set speaker identification system is established which mainly

consists of four feature combinations of I-vectors with 100 and 200 I-vector

dimensions without fusion, consisting of the normalized MFCC and PNCC

features (FW and CMVN), mainly FWMFCC, CMVNMFCC, FWPNCC and

CMVNPNCC. Then, I-vector fusion with the two normalized MFCC features with

the corresponding normalized PNCC features were applied using maximum, mean,

weighted sum and cumulative fusion and have the same dimension for the feature

combinations of the I-vector (without fusion), to improve the SIA. Similarly, both

interleaved and concatenated I-vector fusion were used with doubled I-vector

dimensions, as a consequence of fusion, to produce 200 and 400 I-vector

dimensions. On the other hand, fusion of the four combinations of I-vectors

together was achieved (FWMFCC, CMVNMFCC, FWPNCC and CMVNPNCC),

using concatenated fusion to yield 400 and 800 I-vector dimensions. Furthermore,

interleaved and concatenated fusion I-vectors were employed for the different

hidden layer nodes with the ELM, to classify the genuine speakers with the

fusion-based I-vectors. Secondly, the proposed system is evaluated with four

different databases using 120 speakers (1,200 speech utterances) from each

database (equalling 480 speakers with 4,800 speech utterances from all the

experiments). The novel 2016 SITW challenge database, and the 2008 NIST

database, were exploited for speaker identification. Morever, American English

speakers from the popular and widely available TIMIT database [65], which is also

called TIMIT Acoustic-Phonetic Continuous Speech Corpus was also

considered [3]. Also, a further small experiment was undertaken using a telephone

bandwidth version called NTIMIT. Thirdly, the system was evaluated under
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original speech recordings, AWGN, and various types of NSN namely, street-traffic

NSN, bus-interior NSN and crowd talking NSN; and all noise was added in the

testing phase. However, the G.712 type handset at 16 kHz was applied to both

phases (training and testing). This research uses a wide range of SNR levels and

UBM mixture sizes. Moreover, the system provides fair comparisons with the

corresponding fusion-based GMM-UBM system and other state of the art

methods. In this work, the I-vector is exploited for a lower dimension compared

with standard research, because the training and testing is achieved for each

database alone. Therefore there was no need to compensate for channel

variabilities, as only speaker variability is considered.

The motivation for this study was to implement a new speaker identification

system with a smaller I-vector dimension, which cannot be built with normal

dimensions using limited speakers for one database. However, different I-vector

dimensions can be created using fusion methods to improve system performance.

In addition, the main aim of the current system is to provide benchmark

evaluations for other researchers working on speaker identification. Furthermore,

this study demonstrates how far SIA is affected by the following: I-vector

dimension; environment, including the handset and AWGN and various types of

NSN; database type; fusion type; and, different I-vector combinations based on

four features without fusion.

This chapter is structured as follows: Section 6.1 gives an overview of the

background; Section 6.2 focuses on previous work related to the current research;

Section 6.3 explains the fundamental framework for speaker identification,

including all methodologies for I-vector schemes with fusion to the text

independent speaker identification; Section 6.4 describes the simulation setup,

including databases and environments; Section 6.5 presents the experimental

results, and then elaborates on and analyses these with the discussion; Section 6.6

shows the recent works related to I-vector and GMM-UBM techniques for speaker

identification; Section 6.7 presents a summary, including the conclusion; then

Appendix 6.1 presents twenty one tables of results for the four databases.

120



6.2 Related Work

6.2 Related Work

This section can be divided into two main parts; the first part is the related work

on speaker identification, while the second includes the related work on I-vector

speaker identification. In the context of the first part, some researchers extended

their aims to include text-independent work on both identification and verification

recognition. They applied a non-linear frame likelihood transformation for

likelihood normalization purposes as well as likelihood normalization at the frame

level, as well as weighted model rank transformation [142]. This system was

evaluated for TIMIT and NTT databases, but this work was limited by the

number of Gaussian mixtures and did not test different environment conditions.

Furthermore, other researchers have applied second order statistics measurements

for closed set text independent speaker identification for three different databases,

originally derived from the TIMIT database: TIMIT (high quality speech),

NTIMIT (telephone speech), and FTIMIT (0-4 kHz of TIMIT) [143]. Although,

these comparisons of the three databases are significant, this work is still limited

by the lack of testing under real noise conditions.

Additionally [39] developed four databases to evaluate the Gaussian mixture

models for both verification and identification recognition in these databases:

TIMIT, NTIMIT, Switchboard and YOHO. The main drawback, however, was the

limited number of Gaussian mixtures, which may have affected the system

accuracy. Moreover, concerning text-independent speaker identification, [144]

investigated the relationship between speaker characteristics and frequency

components, and tested these with the NTT-VR database. However, this system

was not examined for noise robustness. Recent researchers, such as [1], have

suggested fusion scores between the MFCC and the inverse MFCC features to

improve performance accuracy. 120 speakers from dialect region one and four from

the TIMIT database were tested using GMM, but evaluation in noisy

environments was missing. A different view for both identification and verification

was achieved by [145], which exploited lip biometrics as new features to capture

both behavioural and physiological aspects. This was based on joining hierarchical

pooling and spatiotemporal sparse coding, for one to 40 speakers, together with

matching for identification and one to one matching for authentication.

A robust speaker identification approach was suggested in [59], using neural

121
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responses based metrics. System identification with this system was compared

with identification results for MFCC, GFCC, and Frequency Domain Linear

Prediction (FDLP) features. Four databases were evaluated, and three of these

were text-independent (TIMIT, TIDIGT and YOHO). UM was used for

text-dependent with white Gaussian noise, street, and pink background noise.

Also, the system was compared with a GMM-UBM approach with 128 Gaussian

mixture components. However, this study does not give a balanced comparison of

the number of speakers and the sampling rate with limited mixture components in

the GMM.

In [24], novel features were investigated by combining the spectrogram for both

the Radon Transform (RT) and DCT. The system was tested with the TIMIT and

SGGS databases. Although white noise was tested, both handset effects and

non-stationary noise were missing from the evaluation. Furthermore, [41] presented

a GMM method for text independent speaker identification through noisy

telephone channels, and likewise other researchers have emphasised robust speaker

identification under noisy environments, for instance: [52], [53], [146] and [147].

Additionally, original speech recordings were evaluated for language and speaker

identification tasks in [28] and [61], while in [148] an I-vector was applied for

robust language identification and verification recognition. Moreover, different

feature modelling approaches were developed for original speech recordings to

identify speakers in [149], [29] and [30]. Other researchers employed different

approaches for speaker identification, such as employing neural network, wavelet

transform, and audio visual approaches and other real time applications [150–154].

In the second part of this section, the related work is considered on speaker

identification using an I-vector scheme. In [46] an I-vector approach was

investigated with session compensations using LDA, NAP and WCCN for TISI

purposes. In spite of 50 self-collected speakers being tested with different classifiers

such as SVM and CDS, the study still lacks a sufficient number of tested speakers.

For large populations, 1, 000 speakers were selected from YouTube for speaker

identification using an I-vector framework. On the other hand, a standard

database was not used and the evaluation was not under noise conditions [47].

Fusion I-vector and score fusion were also developed by [45] for Speaker

Identification (SID), whereas GMM and Hidden Markov Model (HMM) were both

used to extract the I-vector. The system complexity was expected to be higher

122



6.3 Fusion-based I-vector scheme

Figure 6.1: Text-Independent Speaker Identification Scheme

than other systems for SID. Moreover, open-set text-independent speaker

identification and recognition were evaluated with noisy NIST 2008. This system

compared the normalized GMM-UBM with I-vector for different background noise

types [48]. Recently, the NIST 2010 was evaluated with a deep neural network,

which provides Bottleneck Neural (BN) features and concatenated MFCC features

to the I-vector framework, and noisy environments were taken into

consideration [49].

6.3 Fusion-based I-vector scheme

Fig. 6.1 illustrates the main block diagram for text independent closed-set speaker

identification. The system can be divided into five main parts, namely: A, B,

C, D and E. In addition, G.712 type handset type at 16 kHz was applied to a

normalized speech signal in both training and testing phases, to handle the handset

problem effects in this work. Various background noises were added in the testing

phase. Basically, the system consists of the following parts: Part A deals with the

feature extraction methods (MFCC and PNCC); Part B includes the normalization

methods represented by CMVN and FW; Part C involves the modelling system using

the I-vector based on the Total Variability Space (TVS), the UBM and the BWS;

Part D includes the four I-vector combinations without fusion with d-dimensions,
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6.3 Fusion-based I-vector scheme

depending on MFCC and PNCC features (FWMFCC, CMVNMFCC, FWPNCC and

CMVNPNCC), and these were fused utilizing seven methods to improve the SIA.

The seven fusion methods are: Maximum, Mean, Cumulative, and Weighted sum

with d-dimensional I-vector. In addition, Concatenated and Interleaved fusion with

double I-vector dimensions (2-d) were also considered, alongside quadruple I-vector

dimensions (4-d) using concatenation of all MFCC and PNCC feature combinations.

Finally, in Part E, the ELM is exploited for signal classification to identify the

genuine speakers, and then the speaker identification accuracy is calculated.

6.3.1 Compact features extraction and normalization

In any recognition tasks such as image and pattern recognition, speech and speaker

recognition, the extraction of features is the first step. For speaker identification,

compact features in the speech data are extracted to attain a good representation of

the acoustic signal. In this study, 16 features per speech frame were extracted from

both PNCC and MFCC features, and both are represented in Part A of Fig. 6.1. In

addition, the features were normalized by employing the FW to mitigate the linear

channel mismatch effects, and CMVN to remove the linear channel effects [20].

Both features are depicted in Part B for Fig. 6.1. Moreover, four combinations are

investigated and the main infrastructure for these combinations is the MFCC and the

PNCC features to produce four feature combinations: FWMFCC, CMVNMFCC,

FWPNCC, CMVNPNCC. These are described in [76,101].

6.3.2 I-vectors extraction framework

The total factors, intermediate vector or i-vector is a compact, fixed length, low

dimension and modern state of the art approach. The I-vector is exploited to

represent the acoustic models for the MFCC and PNCC feature vectors in order to

possibly improve the speaker identification system. The extraction of I-vector is

illustrated in Fig. 6.1 as Part C. Substantially, the I-vector can be extracted based

on the UBM, which employed the Expectation Maximization (EM) algorithm for

training speech utterances to the UBM, TVS and sufficient statistics from centered

first order statistics, derived from the BWS algorithm, as shown in Fig. 6.2. Six

I-vectors were found from the training data for each speaker, and four I-vectors

were developed for testing purposes, according to the training and testing strategy
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Figure 6.2: I-vector Extraction Block Diagram

for the previous work in [76], in order to accomplish a fair comparison. In [119],

the I-vector was initially employed, which gave fixed and low dimension for speaker

verification whilst, this work exploited the I-vector for identification purposes. The

mathematical framework to construct the I-vector is listed in [33], [119] and [36]

and the important equations used are (6.1), (6.2) and (6.3).

S = µ+Ux + V y +D z (6.1)

S = µ+ TV i (6.2)

where: S is a dependent supervector for both speaker and channel; µ is the
independent supervector for the speaker and channel; V , U and D are the

speaker, channel and diagonal residual matrices, respectively. In addition, factors

y, x and z represent the speaker, channel and residual factor, respectively.

Furthermore, the low rank matrix is called the total variability TV , while the total

factor identity vector is i. Finally, I-vectors can be determined as in [119], and

described in ((6.3):

i = (I + (TV )T Σ−1 N̂ (u) TV )−1 (TV )T Σ−1F̌ (u) (6.3)
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where: i is the identity vector (I-vector), TV is the total variability matrix, I is

the identity matrix, Σ is the (CF × CF ) diagonal covariance matrix, where C

is the number of mixture components, F is the dimension of the feature vectors.

Furthermore, u is the given speech utterance and N̂(u) is a diagonal matrix of

dimension (CF ×CF ), F̌ is the (CF ×1) dimension supervector and is obtained by

concatenating all first-order BaumWelch statistics, and (.)T denotes transpose. To

summarize the main steps to extract the I-vector are as follows [20]:

Step 1: Forming a UBM from training data using the EM algorithm and Gaussian

mixture components for the speakers.

Step 2: Extract the sufficient statistics for the training features using the Baum-

Welch (BW) algorithm.

Step 3: Learning a total variability subspace.

Step 4: Extract the I-vector.

6.3.3 Fusion Methods Based on I-vectors

Fig. 6.1 Part D represents the fusion of normalized MFCC I-vectors (FWMFCC

and CMVNMFCC) with the corresponding normalized PNCC I-vectors

(FWPNCC and CMVNPNCC).

According to Fig. 6.3, seven I-vector fusions are achieved, namely: Maximum,

Mean, Cumulative and Weighted sum (with d-dimension), Concatenated and

Interleaving fusion (with 2d-dimension), and concatenated with 4d-dimension.

Four out of seven fusion techniques are employed with the same input I-vector

dimension, but only interleaving and concatenating fusion give double the input

I-vector dimension. Essentially, normalized PNCC I-vector features ( FWPNCC

and CMVNPNCC ) with d-dimension are fused with the corresponding

d-dimension of the normalized MFCC I-vector features ( FWMFCC and

CMVNMFCC ). However, all fusion approaches give the same d-dimension as a

consequence of the fusion process. In contrast, both interleaved and concatenated

fusion produce double dimension (2d), and, finally the concatenated fusion of all

feature combinations of I-vectors produces 4d dimension. In addition, through the

I-vectors fusion process, the training I-vectors based on MFCC features are fused

with the corresponding training I-vectors from PNCC features. The process is

similarly achieved for testing I-vectors. The seven fusion-based I-vectors
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a 
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b e 
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Figure 6.3: I-vector Fusion Scheme Methods: (a) Maximum, (b) Mean, (c)
Cumulative and (d) Weighted Sum (with d-Dimension), (e) Concatenated with 2d
and 4d-Dimensions, and (f) Interleaving Fusion (with 2d-Dimension)
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techniques are explained below in equations (6.4)-(6.10):

iWSF = ωk i̇j + (1− ωk) ïj (6.4)

where: k = 1, 2, 3, 4. while, ω1 , ω2 , ω3 and ω4 = 0.9, 0.8, 0.77 and 0.7 respectively,

which have been found to yield a higher identification rate empirically.

iMaximum = max(i̇j, ïj) (6.5)

iMean = (i̇j + ïj)/2 (6.6)

iCumulative = i̇j + ïj (6.7)

iConcatenated(2d) =
[
i̇
T

j ï
T

r

]T
(6.8)

iinterleaving(2d) =
[
i̇
T

jjodd
ï
T

jjeven

]T
(6.9)

iConcatenated(4d) =
[
iTM1 iTM2 iTP1 iTP2

]T
(6.10)

and d = dimension of I-vector, where j = 1,..., d, r = d+1,..., 2d, jj = 1,..., 2d, i̇ is

the I-vector for the normalized MFCC features, which has the highest SIA of

CMVNMFCC and FWMFCC, which are denoted by iM1 and iM2, ï is the

normalized PNCC I-vector features, which has the highest SIA of FWPNCC and

CMVNPNCC, denoted by iP1 and iP2. iWSF , iMaximum and iMean are the

weighted sum, maximum and mean fusion I-vectors with d-dimensions.

Also, iCumulative is the Cumulative fusion with the d-dimension I-vector;

iConcatenated(2d) and iinterleaving are Concatenated and Interleaved fusion

I-vectors with 2d-dimension I-vector; iConcatenated(4d) is the concatenated fusion

I-vectors for all feature combinations of I-vector (without fusion) with

4d-dimension for all feature combinations of the I-vectors.

128



6.3 Fusion-based I-vector scheme

6.3.4 ELM classification and calculating the identification

accuracy

Recently, ELMs have recieved significant interest from various research fields.

They have been used in widespread areas such as computer vision, biomedical

engineering and control and robotics, because of their simple, efficient and

impressive performance [155]. ELM operates as a single hidden layer feed-forward

network, in which the hidden layer does not need to be tuned and no iterations are

required. The connections of these hidden neurons or nodes are randomly

generated independently from the training dataset or the target functions. ELM is

used for extremely fast learning, and classification and regression applications. In

addition, the ELM has the following properties: this fast method saves time;

testing accuracy is high; it is independent of both training dataset and target

function; before the training data are seen ELM randomly generates the

connections of the hidden nodes.

In this study, an ELM was employed, as explained in Fig. 6.1 Part E, as a single

layer feedforward network classifier to identify genuine speakers. The ELM was

exploited for speaker identification [61]. Fig. 6.4 shows the ELM network scheme

also produced in [156] and [157]. The number of input nodes is equal to the

I-vector dimension, which is equal to the number of hidden neurons in most of the

experiments used in this work. In addition, different neuron numbers are also

selected when it is necessary to achieve higher performance accuracy. However, the

number of output neurons is equal to the number of classes, and this work

developed 120 classes to represent 120 speakers. The activation function is also

required, and sigmoid function is used in this chapter. Furthermore, details about

the ELM can be found in [158], [159], [160], [161] and [162]. To calculate the

output weights of the ELM, the following equations are used to find regularized

values [156] [159].
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Figure 6.4: Structure of Single Layer Feedforword Extreme Learning Machine with
Input Dimension d, L hidden nodes and L outputs [159]

Hβ = Ť (6.11)

β = H†Ť (6.12)

β =

(
I

r
+HTH

)−1
HT Ť (6.13)

where: β is the output weight matrix β = [β1, ...,βL]T , H =
[
hT (x1) , ..., h

T (xN)
]T

,

h (x) = [ g
(
aT1 x + b1

)
, ..., g

(
aTLx + bL

)
] is the hidden node outputs, x is the input

vector, g
(
aTj x + bj

)
is the output of the jth hidden node. N is the number of training

samples, Ť is the target label matrix, Ť =
[
ť1, ..., ťN

]T
, H† is the Moore-Penrose

generalized inverse of matrix H , r is the regularization factor. The target label

matrix Ť is represented by (no. of speakers × no. of training samples (L × N))

dimensions. Each I-vector with 100 dimension is entered into the ELM classifier.

The outputs represent the speaker classes in this work of 120 speakers. In addition,

the actual outputs are real numbers, while the maximum is selected for the output

vector and this maximum refers to the identified speaker position. Ultimately, the

SIA is as determined in equation 3.4.
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To summarize the main steps for ELM classifier then calculation the SIA as

follows:

Step 1: Compute the I-vectors from training and testing data.

Step 2: Assume the number of output neurons is equal to the number of speakers.

Step 3: Form the target matrix for training.

Step 4: Generate randomly the input weights and biases for the hidden neurons.

Step 5: Suppose the number of hidden neurons is equal to the I-vector dimension.

Step 6: Calculate hidden neurons output Matrix H.

Step 7: Calculate the output weights.

Step 8: Apply the testing data to the trained ELM.

Step 9: Calculate the genuine speaker identified for each training example by the

position of the maximum in the output of the ELM.

Step 10: Calculate the Speaker Identification Accuracy.

In addition, the fusion based I-vectors can be achieved in step 1 by fusing the the

I-vectors found with MFCC and PNCC features.

6.4 Simulation Setups

Table 6.1 shows the parameters used in all simulations used for this chapter, which

involves four databases, as well as system details, background noise and various

challenging environments. This table also includes the number of speakers, training

and testing partitioning for each database, feature types, normalization methods,

classifier method and the fusion techniques.

6.4.1 Databases and Environments

This chapter considers four main databases: TIMIT Acoustic-Phonetic Continuous

Speech Corpus-1993 [65]; the 2016 SITW Speaker Recognition Challenge [79] and

[80]; the 2008 NIST Speaker Recognition Evaluation Training Set Part 2-2011 [84];

NTIMIT, available on [66]. However, the AWGN and NSN were only in the testing

phase with seven SNR levels (0dB to 30dB) with step size 5dB for each level, based

on the corresponding noise power, as in [76]. The NSN is available from [86] and [85],

which were both used in the testing phase. In addition, A G.712 type handset at 16

kHz with a 4th order linear IIR filter was derived from the Z transform multiplication
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Table 6.1: Parameters and Setup Used in All Experiments and Simulations
Aspects Parameters and Experimental Setup

Sampling frequency 16000
Window type Hamming
Frame length 16 ms
Frame shift 8 ms
Pre-emphasis factor 0.96
Databases TIMIT, SITW and NIST 2008, NTIMIT
Number of speakers 120 speakers for each database,

total 480 speakers for all databases
Total speech utterances used 1,200 for each database, total 4,800 for all databases
Language English
Data Source (s) Microphone Speech for TIMIT and NIST 2008,

Hand Annotated Speech from Open Source Media
for SITW, Telephone Speech for NTIMIT

No. of samples per speaker 10 for each of TIMIT and NTIMIT, 10 created
as well for both SITW and NIST 2008

Testing samples for each database Total 480 utterances
Training samples for each database Total 720 utterances
Dialect region In this chapter, 49 speakers from DR1

&71 from DR4 are selected
for each of TIMIT and NTIMIT databases

Average sample duration 8 seconds in length 129250 (for each speech
utterance in both training and testing); All speech
samples were taken with fixed length of 129250
samples; concatenation is applied where necessary

Features MFCC and PNCC
Features dimension 16
Feature normalization Feature warping (FW) and

Cepstral Mean Variance Normalization (CMVN)
Modelling I-vector
Classifier Extreme Learning Machine (ELM)
UBM Mixture Sizes {8, 16, 32, 64, 128, 256, 512}
Fusion Types Fusion I-vectors methods: Mean, Weighted Sum,

Maximum, Cumulative d-dimension
Concatenated, Interleaved 2d-dimension
Concatenated 4d-dimension

System Environment Original speech recordings, AWGN with
G.712 type handset at 16 kHz and (Street-traffic,
Bus-interior and Crowd talking NSN) with handset

SNR levels in dB {0, 5, 10, 15, 20, 25, 30}

of two second order cascaded filters, as previously exploited in [3]. In this chapter,

the G.712 type handset at 16 kHz is applied to a normalized speech signal for both

training and testing phases, as employed in [76]. Furthermore, all noise, handset

and databases, except for the NTIMIT database, are explained in more depth in

Chapters 3 and 5.
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6.5 Experimental Results and Discussions

In this chapter, according to the databases used, four main experiments are

considered, namely Experiments 1-4. The results for all experiments are shown in

Appendix 6.1, from Table 6.3 to Table 6.23. Table 6.3 - Table 6.12 show the SIA

results for the TIMIT database, while Table 6.13 - Table 6.17 give those for the

SITW database. Table 6.18 - Table 6.22 illustrate the results for the NIST 2008

database, and Table 6.23 shows the single simulation for the NTIMIT database.

In Experiment 1, there were ten simulations and their results are represented in

Table 6.3-Table 6.12, for the 120 speakers (1,200 speech utterances) from the TIMIT

database, based on four combinations of I-vectors without fusion, and seven different

I-vector fusion methods. Table 6.3 shows the SIA for original speech recordings

with the TIMIT database, based on 100, 200 and 400 I-vector dimensions, while

Table 6.4 considered 200, 400 and 800 dimensions. Table 6.5 - Table 6.8 show the

SIA under AWGN, street traffic NSN, bus interior NSN and crowd talking NSN,

respectively, without handset for 100, 200 and 400 I-vector dimensions. However,

Table 6.9 - Table 6.12 are the corresponding AWGN, street NSN, bus-interior NSN,

crowd talking NSN with G.712 type handset at 16 kHz for the same 100, 200 and

400 I-vector dimensions. In all tables Table 6.3 - Table 6.12, the SIA for the four

feature combinations of I-vectors (without fusion) are: FWMFCC, CMVNMFCC,

FWPNCC and CMVNPNCC, and the SIA of the seven fusion methods are presented

in this chapter.

In Experiment 2, there were five simulations for the 120 speakers (1,200 speech

utterances) of the SITW database, and the results are presented in Table 6.13 -

Table 6.17. These tables show the SIA under the original speech recordings, AWGN,

street NSN, bus-interior NSN, and crowd talking NSN with G.712 type handset at 16

kHz based on 100, 200 and 400 I-vector dimensions. Similarly, in Experiment 3, for

the same environments, five simulations were completed and their results are given

in (Table 6.18-Table 6.22) for the 120 speakers (1,200 speech utterances) from the

NIST 2008 database. However, in Experiment 4, only one simulation was completed

and the results for this are explained in Table 6.23 for 1,200 speech utterances (120

speakers) with the telephone channel NTIMIT database. According to [163], the

SIA was calculated for only 100 I-vector dimension for the four combinations of

I-vector (without fusion) and with three fusion methods (weighted sum, maximum
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Figure 6.5: The Highest SIA Using the I-vector with 100, 200 and 400 Dimensions
per UBM Mixture Size for TIMIT, SITW, NIST2008 and NTIMIT Databases; which
Represented the Best SIA for the Tables: Table 6.3, Table 6.13, Table 6.18 and
Table 6.23, Respectively

and mean fusion). The system was evaluated using 120 speakers from each of TIMIT

and NTIMIT databases. The results were taken from Table 6.3 and Table 6.23.

The analysis and discussion for all these results is complex. Therefore, in this

chapter the best SIA was selected for each mixture or each SNR level, according

to similar environment for all databases, regardless of feature combination type

(without fusion) or fusion method and/or the I-vector dimensions. Then, these

results are presented in figures so that they can be analysed and discussed clearly

and easily.

Firstly, according to Fig. 6.5, the best SIA using the I-vector with 100, 200 and

400 dimensions using the original speech recordings from four databases and are

given as follows: Table 6.3 for TIMIT; Table 6.13 for SITW; Table 6.18 for NIST

2008, and Table 6.23 for NTIMIT. These are presented based on the UBM mixture
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sizes {8, 16, 32, 64, 128, 256, 512}. However, from this figure, it can be observed that

increasing UBM mixture sizes also increases the SIA for all databases. The highest

SIAs were 96.67%, 85.83%, 96.67% at UBM mixture size 256 for the TIMIT, SITW,

NIST 2008, respectively. SIA of 42.5% was achieved at a mixture of 512 for the

NTIMIT database. It is clear from the figure that the performance for the NTIMIT

database was the worst, compared with other databases because of the noise effects

on the telephone channel from the NTIMIT database. Therefore, this database was

excluded for all other environments and experiments. In addition, the order for these

databases, according to the best to worst SIA, is as follows: NIST 2008, TIMIT,

SITW and NTIMIT. It clear that the SIA for NIST 2008 database is better than

the SIA for the TIMIT database at UBM mixture sizes {8, 64, 128}, while TIMIT

is best at sizes (16, 32), and both are equal at the mixtures {256 and 512} with the

same highest SIA 96.67% at the same mixture size 256.

Secondly, Fig. 6.6 depicts the best SIA per SNR level using the I-vector with 100,

200 and 400 dimensions at UBM mixture size 256, under AWGN with the G.712

type handset at 16 kHz (Table 6.9 for TIMIT, Table 6.14 for SITW, Table 6.19

for NIST 2008). In addition, increasing the SNR levels also increased the SIA for

all the databases used in this simulation. The highest SIAs were 74.17%, 84.17%,

81.7% at SNR with 30 dB for the TIMIT, SITW and NIST 2008, respectively. It

is evident that the new database (SITW) had the best performance compared with

other databases. However, the second best SIA was for the NIST 2008; in contrast,

TIMIT had the worst performance accuracy. This was expected with noisy speech

databases such as the SITW and NIST 2008, which are robust under conditions of

background noise compared with an ideal acquisition database, such as TIMIT.

Thirdly, Fig. 6.7 shows the best SIA at each SNR level using the I-vector with 100,

200 and 400 dimensions at UBM mixture size 256 for street traffic with the G.712

type handset at 16 kHz (Table 6.10 for TIMIT, Table 6.15 for SITW, Table 6.20

for NIST 2008). The highest SIAs were 82%, 84.17%, 78.33% at SNR 30 dB for

TIMIT, SITW and NIST 2008, respectively. Likewise with Fig. 6.6, it is clear that

for street NSN the SITW had the best performance, compared with other databases,

the second best SIA was the TIMIT database, and the worst was the NIST 2008

database. These results were due to the non-stationary characteristics of the street

noise. Furthermore, increasing the SNR increases the SIA for all the databases in

this figure.
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Figure 6.6: The Bar Chart Shows the Highest SIA at each SNR Level (0 dB-30
dB) Using the I-vector with 100, 200 and 400 Dimensions at UBM Mixture Size
256 for TIMIT, SITW and NIST2008 Databases Under AWGN with G.712 Type
Handset at 16 kHz; the Best SIAs are found in: Table 6.9, Table 6.14 and Table 6.19,
Respectively

Fourthly, in Fig. 6.8 shows the best SIA at each SNR level using the I-vector

with 100, 200 and 400 dimensions at UBM mixture size 256 for bus interior NSN

with the G.712 type handset at 16 kHz (Table 6.11 for TIMIT; Table 6.16 for SITW;

Table 6.21 for NIST 2008). The highest SIAs were 89.17%, 86.67%, 87.5% at SNR

with 30 dB for TIMIT, SITW and NIST 2008, respectively. This figure demonstrates

that the best SIA was achieved for TIMIT, then NIST 2008, and SITW. Although

the SITW database had the lowest SIA, it was still close to other databases.

Finally, Fig. 6.9 shows the highest SIA for each SNR level using the I-vector with

100, 200 and 400 dimensions at UBM mixture size 256 under crowd talking NSN

with the G.712 type handset at 16 kHz (Table 6.12 for TIMIT; Table 6.17 for SITW;

Table 6.22 for NIST 2008). The highest SIAs were equal in all databases, with 85%

at SNR 30 dB for the TIMIT, SITW, and NIST 2008, respectively. Increasing the
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SNR level increased the SIA for all the databases, but it is clear that the SITW

performance significantly outperformed both TIMIT and NIST 2008 for SNR levels

(0-25) dB, and for (0-15) dB the second best SIA was the TIMIT database. In

addition, for SNR levels (20-25) dB, the NIST 2008 databases seem better than the

SIA for the corresponding SNR for the TIMIT database. Furthermore, additional

evaluations for the TIMIT database only, as seen in Fig. 6.10, show the highest SIA

for each SNR level using the I-vector with 100, 200 and 400 dimensions at UBM

mixture size 256 with AWGN, street NSN, bus NSN and crowd talking NSN without

the handset effect. This figure includes the best SIAs in Table 6.5 to Table 6.8 for

the TIMIT database. In this figure, increasing the SNR increases the SIA for all

simulations, in all environments, from the TIMIT database. The highest SIAs were

80.83%, 90%, 93.33% and 90.83 % at SNR with 30 dB for the TIMIT database with

AWGN, street traffic NSN, bus interior NSN and crowd talking NSN, respectively. It
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dB) Using the I-vector with 100, 200 and 400 Dimensions at UBM Mixture Size 256
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is very clear from the figure that the worst results were achieved in the presence of a

stationary spectrum of noise (AWGN). In addition, depending on the non stationary

noise, which has unequal noise distribution, the results were similar under street

and crowd talking NSN. Each outperforms the other with different SNR levels. In

contrast, the bar chart under bus interior NSN had the best SIA compared with other

types of noise, because of the natural characteristics and spectrum, as discussed

in Chapter 5. In addition, this chapter discusses three major questions in three

subsections in this part of discussion: Q6.1 the first question concerns how far the

I-vector dimensions affect the SIA; the second question is Q6.2 how far the UBM

mixture sizes, SNR level, feature combination of I-vector, with and without fusion,

affected the SIA; the final question is Q6.3 which is best, GMM-UBM or I-vector
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approaches for speaker identification.

6.5.1 The Relationship Between Multi-Dimensional

I-vectors and SIA in TIMIT Database Evaluations

In order to answer the first question Q6.1, this subsection considers the best SIA

results as presented in Table 6.3 and Table 6.4 which were used to create Fig. 6.11.

This gives a good representation of the I-vector dimensions (100, 200, 400 and 800)

with wide ranges of UBM mixture sizes against the SIA for original speech recordings

for the TIMIT database. It is clear that the best SIA 96.67% was achieved at small I-
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vectors dimensions (100 and 200) at UBM mixture size 256. Moreover, increasing the

I-vector dimensions reduced the performance accuracy, while the lowest accuracy was

(91.67%) for the highest I-vector dimension with 800 dimension, due to insufficient

data having been trained. In addition, increasing the UBM mixture size increases the

SIA and the best SIA was achieved at mixture size 256 for small I-vector dimensions

such as at 100, 200 dimensions. However, in the higher dimensions of the I-vectors

(400, and 800) which are achieved through the fusion techniques, the best SIA is

achieved at the largest mixture size 512.
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Figure 6.11: The Relationship Between SIA and Multi-Dimensional I-vectors for
Different UBM Mixture Sizes for the original speech recordings of TIMIT Database

6.5.2 The Effects of Mixture Sizes, SNR Levels and Feature

Combinations of I-vectors Without/With Fusion for

SIA in TIMIT Database Evaluations

Three major simulations were performed using the TIMIT database to answer the

second question Q6.2 stated in the discussion. These simulations produced the

results in Table 6.3 to Table 6.5. All the simulations consisted of four feature

combinations for I-vectors without fusion, FWMFCC, CMVNMFCC, FWPNCC

and CMVNPNCC, represented by the symbols f1, f2, g1, g2 respectively, as

explained in Fig. 6.12. Furthermore, the I-vector with the highest SIA of the

I-vector MFCC features (FWMFCC and CMVNMFCC) was fused with the

corresponding I-vector PNCC features (FWPNCC and CMVNPNCC). In addition,

seven I-vector fusion methods were used based on four feature combinations with

the I-vector, denoted by F1, F2, F3 for weighted sum, maximum and mean fusion

respectively, as proposed in [76]. Similarly, the symbols F4, F5 and F6 represent

the fusion for cumulative, concatenated and interleaved fusion respectively.
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cba
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Figure 6.12: Box Plots for TIMIT Database Evaluation in original speech recordings
and AWGN Noisy Speech Based on I-vector With/Without (W/WO) Fusion :
Simulation 1 Represented by Part (a) and Part (c); Simulation 2 Represented
by Part (b) and Simulation 3 Represented by Part (d) and Part (e): where f1
and f2, g1 and g2 are FWMFCC, CMCNMFCC, FWPNCC and CMVNPNCC I-
vector Features with d-Dimension; Fusion Sets Symbols F1, F2, F3 are d-Dimension
I-vectors for Weighted Sum, Maximum and Mean Fusion. F4 is d-Dimension
Cumulative Fusion I-vector, F5 and F6 are Concatenated and Interleaving Fusion
I-vectors with 2d Dimension, F7 is Concatenated Fusion for the Four Feature
Combinations of the I-vectors with 4d-Dimension.

However, both concatenated and interleaved fusion gave a double I-vector

dimension. Finally, F7 represents the fusion of all four feature combinations of the

I-vector to create a new I-vector four times the original dimension. i̇ is the I-vector

for the normalized MFCC features, and had the highest SIA for CMVNMFCC and

FWMFCC, denoted by f1 and f2, ï is the normalized PNCC I-vector features,

which had the highest SIA for FWPNCC and CMVNPNCC, denoted by g1

and g2. In addition, iWSF , iMaximum and iMean are the weighted sum, maximum

and mean fusion I-vectors with d-dimension I-vector, denoted by F1, F2, F3

respectively. Also, iCumulative, iConcatenated and iinterleaving are Cumulative,

Concatenated and Interleaved fusion I-vectors which are denoted by F4, F5 and

F6, respectively. F4 was with the d-dimension I-vector, while both F5 and F6 had

2d-dimension for the I-vector; F7 was concatenated fusion of the four feature
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combinations of the I-vectors with 4d-dimension. The mathematical models for all

fusion methods are explained by the equations from 6.2 to 6.8 in subsection 6.3.3.

This work has presented three main simulations: Simulation 1 is represented by

Parts (a) and (c); Simulation 2 is represented by Part (b); and Simulation 3 is

represented by Part (d) and Part (e). However, Simulation 1, represented by Part

(a) and Part (c) in Fig.6.12, is based on the I-vector for original speech recordings

TIMIT speech with a wide range of UBM mixture sizes. The results were taken

from Table 6.3. In addition, the combination features I-vectors f1, f2, g1, g2 are

proposed for 100 dimension without fusion and classified by ELM with 100 hidden

neurons, whereas the symbols F1, F2, F3 and F4 used a 100 I-vector dimension

with 100 hidden neurons for the ELM classifier. However, a double I-vector

dimension (200) was created in both concatenated and interleaved fusion

represented by F5 and F6 with 200 hidden neurons for the ELM. Moreover, the

concatenated F5 used two vertically concatenated features for I-vectors (features

which give the best SIA for MFCC with the corresponding PNCC). Finally, F7

was used for concatenation fusion of all four feature combinations of I-vectors with

400 dimension and 250 hidden neurons for the ELM, to give the best results

empirically. Both Part (a) and Part (c) were taken for Simulation 1. Part (a) was

mainly used to focus on the accuracy, while Part (c) emphasised the UBM mixture

size. Fusion methods show improvement using a weighted sum between MFCC and

PNCC features with the I-vectors, and a 1.76% improvement compared with

traditional GMM-UBM. The highest SIA for the I-vector approach was 96.67%, as

in Part (a) compared with 95% from GMM-UBM approach. It shows the best

UBM size is 256, as explained in Part (c).

Likewise, for Simulation 2, represented in Part (b) of Fig.6.12, the results were

taken from Table 6.4 and the original speech recordings of TIMIT database were

evaluated for the 200 dimension for the I-vector combinations f1, f2, g1, g2, and

also for fusion based I-vectors F1, F2, F3 and F4 for 200 hidden neurons.

Furthermore, Simulation 2 extended the I-vector dimension to involve 400

dimensions with F5 and F6 using empirical hidden neurons numbers as 400 and

300, respectively, compared with 350 neurons, as used in F7 to create the highest

I-vector dimension at 800. The fusion methods improved the system in Part (b),

but this was for limited UBM mixtures below a mixture size 256. The reason for

this is that an I-vector is created from a limited number of speakers, and the
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system succeeded with a small I-vector size of 200 dimension, which could be

extended using fusion methods.

In Simulation 3, the results were taken from Table 6.5 noisy speech and the TIMIT

database was evaluated by adding AWGN without handset for a wide range of

SNR levels to I-vectors based on 100, 200 and 400 dimensions with a UBM

mixture size of 256, as represented in Simulation 3. Parts (d) and (e) focused on

the SIA in noisy AWGN without handset and the relationship between SIA and

the SNR level. All symbols proposed in Simulation 1 and Simulation 3 had the

same I-vector dimensions and number of neurons, except in F7 in Simulation 3,

which had 300 hidden neurons. Both concatenated and interleaved fusion based

I-vector improved the SIA to 80.83% compared with 79.17% from GMM-UBM, a

2.1% improvement, compared with the GMM-UBM approach at 30 dB SNR,

which was a significant improvement over other SNR levels. In Part (d) Fig.6.12,

the box plot illustrates that both F5 and F6 had higher SIA compared with other

fusion methods and slightly less SIA in F7.

6.5.3 Comparisons of I-vector and GMM-UBM Approaches

in Terms of The Speaker Identification Accuracy

This subsection answers the third question Q6.3 mentioned in the discussion. Fig.

6.13 shows comparisons between the two modelling approaches to produce the two

speaker identification systems used in this thesis: GMM-UBM (used in Chapter 5)

and the I-vector (Chapter 6). Both systems were trained as in Part A in Fig. 6.13,

and tested as in Part B. Depending on the database used, there are three

comparisons. In the first comparison, the results between the I-vector and

GMM-UBM approaches are presented based on the TIMIT database. Secondly,

there are related comparisons of the SITW database. Thirdly, the same

comparisons are made depending on the NIST 2008 database. The evaluations of

the comparison of the TIMIT database for the I-vector and GMM-UBM

techniques included various background noise types with/without a handset:

original speech recordings, AWGN Without Handset (WOH), AWGN With

Handset (WH), street traffic NSN WOH and WH, bus interior NSN WOH and

WH, and finally, crowd talk NSN WOH and WH. In addition, a G.712 type

handset at 16 kHZ was used and each simulation was achieved by employing eleven
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Figure 6.13: Comparison of Two Speaker Identification Frameworks Using
GMM-UBM and I-vector Approaches Evaluated Under Different Environmental
Conditions: Part A, Training Phase; Part B, Testing Phase

I-vectors based on four feature combinations with and without fusion methods.

The feature combinations of the I-vector are: FWMFCC, CMVNMFCC,

FWPNCC and CMVNPNCC with a 100 I-vector dimension. There were seven

other fusion methods: weighted sum, maximum, mean, cumulative I-vector fusion

with d-dimension (100), concatenated and interleaved fusion with a 2d-I-vector

dimension (200), and concatenated fusion with a 4d-dimension (400). In Fig. 6.14,

the results are for GMM-UBM and I-vector comparisons in original speech

recordings for TIMIT, and the best SIA for each mixture size was selected from

both approaches regardless of feature or fusion method used. For small mixture

sizes (8-64), the GMM-UBM outperformed the I-vector approach, while the

I-vector showed better SIA compared with GMM-UBM at mixtures 128 and 256.

However, the highest SIA was with a rate 96.67% at mixture size 256, as explained

in Fig. 6.14; thereby, the mixture size 256 was used for the evaluation of all noise

conditions. The results based on the I-vector approach for original speech

recordings from TIMIT database was taken from Table 6.3.

Fig. 6.15 and Fig. 6.16 include the comparisons for both GMM-UBM and
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Figure 6.14: Bar Chart Plot Comparisons Between SIA Against Gaussian Mixture
Components for GMM-UBM and I-vector Approaches in Terms of Original Speech
Recordings From TIMIT Database

I-vector systems in AWGN, street NSN, bus NSN and crowd talking NSN

with/without a handset for a wide range of SNR (0-30) dB. The results for

I-vector in Fig. 6.15 were taken from Table 6.5-Table 6.8 for noisy results without

handset. While other results in Fig. 6.16 were taken from Table 6.9 - Table 6.12

for noisy results with handset. The continuous coloured curves with NSN square

nodes for SNR levels represent the I-vector approach, while the dash-dot coloured

curves with circle nodes for SNR levels depict the GMM-UBM approach.

Furthermore, the same colours were used for the same noise types for both

systems. The worst performance was using the AWGN because it has a constant

noise spectrum, while bus NSN achieved less reduction in SIA in the presence of

noise, compared to all other non-stationary noise types.

On the other hand, both SIAs for street and crowd talking NSN were located

between AWGN and the bus NSN. The relationship between the SIA for both

GMM-UBM and I-vector approaches is explained in Fig. 6.15 and Fig. 6.16 with

different noise conditions with/without the handset. Secondly, Fig. 6.17 shows the
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Figure 6.15: Curve Plot Comparison GMM-UBM and I-vector Approaches for
AWGN and NSN without Handset at UBM Mixture Size 256 for TIMIT Database

evaluations of the SITW database for the I-vector and GMM-UBM techniques

based on speech utterances from the SITW database without noise and handset.

In Fig. 6.17, the best SIA for the I-vector approach was achieved using the SITW

database is 85.83% at UBM mixture size 512, compared with 82.5% for the

GMM-UBM with the same mixture size. However, Fig. 6.18 illustrates the noisy

speech from SITW database and the best SIA values using the I-vector approach

at 30 dB were 84.17%, 84.17%, 86.67% and 85% under AWGN-WH, street

traffic-WH NSN, bus interior-WH NSN and crowd talking-WH NSN, respectively.

However, while the best SIAs using the GMM-UBM at 30 dB are 78.33% , 81.67%,

80.83% and 82.5% for AWGN-WH, street traffic-WH NSN, bus interior-WH NSN

and crowd talking-WH NSN, respectively. It is evident that the SIA for the

I-vectors outperform the corresponding SIA for the GMM-UBM approach for all

environments. Thirdly, Fig. 6.19 depicts the evaluations of the NIST 2008 database

for the I-vector and GMM-UBM techniques based on speech utterances from NIST

2008 database without noise and handset. Fig. 6.19 shows that the highest SIA for
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for TIMIT Database

the I-vector approach using the NIST 2008 database was 96.67% at UBM mixture

size 256 compared with 95.83% at mixture size 64 for the GMM-UBM. It is

evident that the SIA is better for GMM-UBM than the corresponding SIA I-vector

for the range of mixture sizes (8-64). On the other hand, the SIA was either equal

or the I-vector approach outperformed the GMM-UBM for the remaining ranges of

mixtures (128-512). Fig. 6.20 illustrates the noisy speech from NIST 2008 database

under AWGN-WH, street-WH NSN, bus interior-WH NSN and crowd talking-WH

NSN, respectively. In addition, the results were taken from Table 6.19 - Table 6.22,

respectively. The best SIAs at 30 dB were 81.67% , 78.33%, 87.5% and 85% for the

AWGN-WH, street traffic-WH NSN, bus interior-WH NSN and crowd talking-WH

NSN, respectively. However, the best SIAs using the GMM-UBM at 30 dB were

26.67% , 80%, 92.5% and 84.17% for AWGN-WH, street traffic-WH NSN, bus

interior-WH NSN and crowd talking-WH NSN, respectively. It is evident that the

148



6.6 Recent Works Related to I-vector and GMM-UBM Techniques
Speaker Identification

Gaussian Mixture Components
Mix 8 Mix 16 Mix 32 Mix 64 Mix 128 Mix 256 Mix 512

S
p

ea
ke

r 
Id

en
ti

fi
ca

ti
o

n
 A

cc
u

ra
cy

 (
S

IA
%

)

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GMM-UBM Using Speech Utterances for The SITW Database 
I-vector Using Speech Utterances for The SITW Database

76.67% 78.33% 79.17% 80.83% 80.83%
73.33%

53.33%

72.5%

81.67% 84.17% 85.83% 85.83%82.5%

85.83%

Figure 6.17: The Comparison Between the SIA for the GMM-UBM and I-vector
Approaches for Speech Utterances From SITW Database without Noise and Handset

SIA for the I-vectors outperformed the corresponding SIA for the GMM-UBM

approach for all mentioned environments.

6.6 Recent Works Related to I-vector and GMM-

UBM Techniques Speaker Identification

This section summarizes the related work based on I-vector and GMM-UBM

approaches, and other approaches are also considered, as explained in Table 6.2.

This table presents previous work in [76] and other state of the art

methods [1], [3], [46], [47], [48] and [52]. This shows the state of the art methods

using the I-vector and GMM-UBM approaches, which can be compared with the

results obtained in this chapter. It is evident that the current work using the

I-vector outperforms other work using original speech recordings when testing with

the TIMIT and NIST 2008 databases, and in other challenging environments. It is

clear from the simulations and results discussed earlier in this chapter that better

SIA based on the I-vector were achieved compared with the GMM-UBM under
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Figure 6.18: The Comparison Between the SIA for the GMM-UBM and I-vector
Approaches for AWGN, Street Traffic NSN, Bus Interior NSN and Crowd Talking
NSN with G.712 Type Handset at 16 kHz (at UBM mixture size 256 ) for The SITW
Database

original speech recordings for TIMIT, and were equal for the NIST 2008 databases.

The results also outperformed all original speech recordings measurements by

other researchers. For TIMIT, the proposed I-vector approach achieved higher SIA

under AWGN compared with the previous study on the GMM-UBM system,

compared with other work. In contrast, the previous work in [76] with GMM-UBM

had better SIA than the proposed I-vector for AWGN WH, in line with other

work. In addition, for non-stationary background noise WH, the performance

accuracy of GMM-UBM was better than the I-vector at SNR 30dB, but this was

reversed for some SNR levels. Finally, in [52], it seems the SIA for street noise was

higher than in the proposed work, but this was achieved using a different noise

database with 630 speakers.
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6.7 Summary

In this chapter, four feature combinations with seven fusion methods based on

I-vector were investigated to develop a novel closed-set text independent speaker

identification system. The new system exploited fusion based multi-dimensional

I-vectors and classification with a single layer ELM neural network. The system

was tested by four different databases separately (each database is tested alone):

TIMIT, NTIMIT, SITW and NIST 2008 databases with 120 speakers for each

database (total 480 speakers, 4,800 speech utterances). The fusion techniques were

used to improve the SIA in the original speech recordings and reduce the reduction

in SIA in the presence of noise and/or handset. This chapter can be summarized

by the following points:

• Firstly, the identification accuracy for the I-vector seems to outperform the

GMM-UBM for most environments for the SITW and NIST 2008 databases

and this is due to using the combination of the ELM and the I-vector which

improves the SIA. However, with the TIMIT database the system

outperformed the GMM-UBM techniques for original speech recordings, and

also outperformed under AWGN WOH, so that it seems better for some SNR

levels with street and crowd talking. In contrast, for bus interior NSN, the

GMM-UBM achieved less reduction in SIA compared with the I-vector

approach. Additionally, fusion techniques may mitigate the reduction in SIA

caused by different noise environments and the handset effect, whereas

weighted fusion generally seem to be the best of all the feature and fusion

methods used. However, the new database using SITW demonstrated that

the identification accuracy achieved by the I-vector approach is better than

the corresponding results for the GMM-UBM method for all challenging

environments. With the NIST 2008 database, it seems the output from

GMM-UBM is better than small mixture sizes I-vector, but this was reversed

with an increase in the UBM mixture size, to give slightly better results in

the original speech recordings. The I-vector gives slightly higher SIA than

GMM-UBM in different noise types, except for the bus NSN, where the

GMM-UBM outperforms the I-vector. In the TIMIT database, the I-vector

approach has better performance than GMM-UBM in original speech

recordings and for AWGN without handset, while in other types of NSN the
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I-vector outperforms the GMM-UBM in some SNR levels.

• Secondly, this chapter considered a simple, efficient ELM classifier for the

speaker identification task.

• Thirdly, the smallest I-vector with 100 and 200 dimensions has higher SIA

compared with other I-vector dimensions of 400 and 800.

• Fourthly, the best UBM mixture size is 256, while the best SIA in noise and

handset conditions was achieved at SNR 30 dB for all databases used. Fifthly,

in noisy conditions the worst SIA is achieved at AWGN due to the stationary

spectrum for the noise, while the highest SIA is obtained with bus interior

NSN. In addition, the SIA for the street and crowd talking NSN were between

the SIA values for the bus NSN and AWGN.

• Finally, the best fusion method according to the highest SIA for the TIMIT

database was the weighted sum fusion, while in the SITW and NIST 2008

databases the best fusion type was concatenated fusion with 2d I-vector

dimension. In addition, some other fusion types were also useful to achieve

improvements in SIA for different environments and in different SNR level,

as explained clearly in the tables of results in the appendix section for this

chapter.

The chapter also answered three important questions and they are: the first

question Q6.1 concerns how far the I-vector dimensions affect the SIA; the second

question Q6.2 is how far the UBM mixture sizes, SNR level, feature combination of

I-vector, with and without fusion, affected the SIA; the final question Q6.3 is which

is best, GMM-UBM or I-vector approaches for speaker identification. The next

chapter will consider the thesis conclusion and the future work related to the

speaker identification system.

153



6.7 Summary

T
ab

le
6.

2:
R

el
at

ed
W

or
k

w
it

h
I-

ve
ct

or
an

d
G

M
M

-U
B

M
P

ro
p

os
ed

W
or

k

R
e
c
e
n
t

w
o
rk

s
R

e
la

te
d

to
I-

v
e
c
to

r
a
n

d
G

M
M

-U
B

M
T

e
ch

n
iq

u
e
s

S
p

e
a
k
e
r

Id
e
n
ti

fi
c
a
ti

o
n

A
p

p
ro

a
ch

e
s

D
a
ta

b
a
se

N
u

m
b

e
r

o
f

S
p

e
a
k
e
rs

T
h

e
b

e
st

fe
a
tu

re
/

E
n
v
ir

o
n

m
e
n
ts

T
h

e
b

e
st

S
IA

A
u

th
o
rs

fu
si

o
n

B
a
se

d

F
u

si
o
n

b
a
se

d
T

IM
IT

12
0

sp
ea

ke
rs

W
ei

g
h
te

d
su

m
C

le
a
n

9
5
%

A
l-

ka
lt

a
k
ch

i
et

a
l.

G
M

M
-U

B
M

[7
6
]

[2
0
1
6]

F
u

si
o
n

b
a
se

d
T

IM
IT

12
0

sp
ea

ke
rs

M
a
x
im

u
m

fu
si

o
n

A
W

G
N

7
9
.1

7
%

(3
0
d

B
)

A
l-

ka
lt

a
kc

h
i

et
a
l.

G
M

M
-U

B
M

[7
6
]

[2
0
1
6
]

F
u

si
o
n

b
a
se

d
T

IM
IT

12
0

sp
ea

ke
rs

F
W

M
F

C
C

-f
ea

tu
re

A
W

G
N

w
it

h
H

a
n

d
se

t
7
5
.8

3
%

(3
0
d

B
)

A
l-

ka
lt

a
kc

h
i

et
a
l.

G
M

M
-U

B
M

[7
6
]

[2
0
1
6
]

I-
v
e
c
to

r
A

p
p

ro
a
ch

N
IS

T
-2

00
8

40
0

re
g
is

te
re

d
sp

ea
ke

rs
W

it
h

o
u

t
fu

si
o
n

C
le

a
n

4
9
.5

%
[4

8
]

[2
0
1
4]

I-
v
e
c
to

r
A

p
p

ro
a
ch

N
IS

T
-2

00
8

40
0

sp
ea

ke
rs

W
it

h
o
u

t
fu

si
o
n

W
h

it
e

n
o
is

e
3
9
.3

%
(1

5
d

B
)

[4
8
]

[2
0
1
4
]

G
M

M
-U

B
M

A
p

p
ro

a
ch

N
IS

T
-2

00
8

40
0

sp
ea

ke
rs

W
it

h
o
u

t
fu

si
o
n

C
le

a
n

3
9
.7

%
[4

8
]

[2
0
1
4
]

G
M

M
-U

B
M

A
p

p
ro

a
ch

N
IS

T
-2

00
8

40
0

sp
ea

ke
rs

W
it

h
o
u

t
fu

si
o
n

W
h

it
e

n
o
is

e
2
4
.6

%
(1

5
d

B
)

[4
8
]

[2
0
1
4]

G
M

M
-U

B
M

-Z
T

n
o
rm

N
IS

T
-2

00
8

40
0

sp
ea

ke
rs

W
it

h
o
u

t
fu

si
o
n

C
le

a
n

4
2
.5

%
[4

8
]

[2
0
1
4
]

G
M

M
-U

B
M

-Z
T

n
o
rm

N
IS

T
-2

00
8

40
0

sp
ea

ke
rs

W
it

h
o
u

t
fu

si
o
n

W
h

it
e

n
o
is

e
2
9
.7

%
(1

5
d

B
)

[4
8
]

[2
0
1
4]

a
t

S
N

R
1
5

d
B

I-
v
e
c
to

r+
L

D
A

+
W

C
C

N
C

or
p

u
s

d
es

ig
n

ed
50

sp
ea

ke
rs

W
it

h
o
u

t
fu

si
o
n

C
le

a
n

9
4
.1

4
%

(C
D

S
)

[4
6
]

[2
0
1
4
]

I-
v
e
c
to

r+
L

D
A

+
W

C
C

N
an

d
M

IT
50

sp
ea

ke
rs

W
it

h
o
u
t

fu
si

o
n

C
le

a
n

9
2
.3

6
%

(S
V

M
)

[4
6
]

[2
0
1
4
]

I-
ve

ct
or

40
0

D
im

m
ob

il
e

p
h

on
e

L
D

A
30

0
D

im

I-
v
e
c
to

r
re

tr
ie

v
a
l

Y
ou

T
u

b
e

1,
0
0
0

sp
ea

ke
rs

W
it

h
o
u
t

fu
si

o
n

C
le

a
n

9
2
%

te
st

(1
0
s)

[4
7
]

[2
0
1
4
]

I-
v
e
c
to

r
re

tr
ie

v
a
l

Y
ou

T
u

b
e

1,
0
0
0

sp
ea

ke
rs

W
it

h
o
u
t

fu
si

o
n

C
le

a
n

9
6
.1

%
(2

0
s)

[4
7
]

[2
0
1
4
]

F
u

si
o
n

B
a
se

d
G

M
M

T
IM

IT
12

0
sp

ea
ke

rs
W

ei
g
h
te

d
su

m
C

le
a
n

9
3
.8

8
%

[1
]

[2
0
1
2]

G
M

M
-U

B
M

w
it

h
o
u

t
fu

si
o
n

T
IM

IT
64

sp
ea

ke
rs

W
it

h
o
u

t
fu

si
o
n

C
le

a
n

9
4
.5

%
[3

]
[2

0
1
1
]

A
W

G
N

w
it

h
H

a
n

d
se

t
7
4
.2

%
(3

0
d

B
)

[3
]

[2
0
1
1
]

N
e
w

m
o
d

e
l

w
it

h
G

M
M

T
IM

IT
63

0
sp

ea
ke

rs
W

it
h

o
u

t
fu

si
o
n

C
le

a
n

9
6
.5

1
%

[5
2
]

[2
0
0
7
]

T
h

e
b

e
st

re
su

lt
a
t

M
ix

1
2
8

S
tr

ee
t

N
S

N
(2

0
d

B
)

9
2
.8

6
%

[5
2
]

[2
0
0
7]

154



6.8 Appendix 6.1

6.8 Appendix 6.1

Table 6.3: Simulation 1: The Speaker Identification Accuracy (SIA) as a Function of
the UBM Mixture Sizes {8, 16, 32, 64, 128, 256, 512 } for the I-vector Approach for
100, 200 and 400 Dimensions for the Original Speech Recordings of TIMIT Database

Simulation 1: The SIA for Original Speech Recordings of TIMIT Database

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 29.17% 55.83% 87.5% 86.6% 90.83% 90.83% 89.17%

CMVNMFCC(f2) 35% 61.67% 85% 90% 93.33% 95.83% 91.67%
FWPNCC (g1) 25% 49.17% 70.83% 76.67% 82.5% 87.5% 84.17%

CMVNPNCC (g2) 21.67% 45.83% 66.67% 85% 86.67% 91.67% 89.17%
Fusion Decision (f2, g1) (f2, g1) (f1, g1) (f2, g2) (f2, g2) (f2, g2) (f2, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 44.16% 65.83% 85% 88.33% 93.33% 96.67% 89.17%
iWSF at ω2=0.8 40% 65.83% 85% 89.17% 93.33% 93.33% 90%
iWSF at ω3=0.77 43.33% 65.83% 86.67% 90% 90.83% 93.33% 89.17%
iWSF at ω4=0.7 35% 65% 80.83% 86.67% 91.67% 91.67% 86.67%
iMaximum 10% 29.17% 44.17% 60.83% 65% 70.83% 71.67%
iMean 34.17% 63.33% 66.67% 77.5% 85.83% 86.67% 80.83%

iCumulative 20% 45.83% 65% 75.33% 82.5% 85% 83.33%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 100 27.5% 55% 68.33% 81.67% 84.16% 85% 87.5%
NoHN = 150 27.5% 56.67% 81.67% 86.67% 90% 95% 91.67%
NoHN = 200 30% 65% 80% 87.5% 94.17% 93.33% 92.5%

iinterleaving (2d)

NoHN = 100 27.5% 56.67% 70.83% 78.33% 85% 87.5% 85.83%
NoHN = 150 34.17% 61.67% 84.17% 90% 95% 92.5% 93.33%
NoHN = 200 35% 56.67% 80% 88.33% 95% 92.5% 92.5%

Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 100 27.5% 39.17% 68.33% 70.83% 80.83% 85% 81.66%
NoHN = 150 35.83% 49.17% 80.83% 84.17% 87.5% 90.83% 87.5%
NoHN = 200 32.5% 55.83% 78.33% 84.17% 90.83% 90.83% 93.33%
NoHN = 250 29.17% 57.5% 78.33% 85% 90% 90.83% 95%
NoHN = 300 30% 45% 73.33% 86.67% 88.33% 93.33% 90%
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Table 6.4: Simulation 2: The Speaker Identification Accuracy (SIA) as a Function
of the UBM Mixture Sizes {8, 16, 32, 64, 128, 256, 512 } for the I-vector Approach
for 200, 400 and 800 Dimensions for Original Speech Recordings for the TIMIT
Database

Simulation 2: The SIA for Original Speech Recordings for the TIMIT Database

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512
Feature based I-vector

Without Fusion
With 200 dimension

NoHN = 200
FWMFCC (f1) 15.83% 29.17% 58.33% 83.33% 93.33% 95% 92.5%

CMVNMFCC(f2) 12.5% 32.5% 58.33% 91.67% 94.17% 96.67% 95.83%
FWPNCC (g1) 9.16% 19.17% 50% 90% 83.33% 87.5% 88.33%

CMVNPNCC (g2) 7.5% 12.5% 26.67% 50.83% 55.83% 63.33% 60.83%
Fusion Decision (f1, g1) (f2, g1) (f2, g1) (f2, g1) (f2, g1) (f2, g1) (f2, g1)

Fusion based I-vector
With 200 dimension

NoHN = 200
iWSF at ω1=0.9 15% 30.83% 65% 85.83% 95% 95.83% 94.17%
iWSF at ω2=0.8 15% 24.17% 64.17% 86.67% 94.17% 95% 94.17%
iWSF at ω3=0.77 12.5% 30% 58.33% 86.67% 92.5% 95% 93.33%
iWSF at ω4=0.7 17.5% 26.67% 55.83% 82.5% 91.67% 93.33% 92.5%
iMaximum 0.83% 3.33% 13.33% 40.83% 52.5% 65.83% 70.83%
iMean 10% 17.5% 43.33% 73.33% 77.17% 84.17% 85.83%

iCumulative 3.33% 12.5% 23.33% 70.83% 78.33% 85% 86.67%
Fusion based I-vector
With 400 dimension
iConcatenated (2d)

NoHN = 200 8.33% 26.67% 48.33% 75% 76.67% 90% 92.5%
NoHN = 250 10.83% 20.83% 55.83% 78.33% 80.83% 86.67% 90%
NoHN = 300 12.5% 24.17% 57.5% 81.67% 84.17% 91.67% 90.83%
NoHN = 400 9.17% 14.17% 43.33% 73.33% 82.5% 90.83% 91.67%

iinterleaving (2d)

NoHN = 200 10.83% 25.83% 47.5% 75% 79.17% 89.17% 92.5%
NoHN = 250 10% 27.5% 56.67% 80% 84.17% 94.17% 91.67%
NoHN = 300 9.17% 22.5% 50.83% 80.83% 88.33% 94.17% 93.33%
NoHN = 400 6.67% 9.17% 35.83% 73.33% 84.17% 92.5% 92.5%

Fusion based I-vector
With 800 dimension
iConcatenated (4d)

NoHN = 350 6.67% 15% 35.83% 73.33% 80.83% 87.5% 91.67%
NoHN = 300 10.83% 17.5% 44.17% 72.5% 80.83% 90.83% 89.17%
NoHN = 250 12.5% 28.33% 40.83% 71.67% 79.17% 88.33% 90.83%
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Table 6.5: Simulation 3: The SIA for the I-vector Approach for 100, 200 and 400
Dimensions Under AWGN at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB
Without Handset at UBM Mixture Size 256 for the TIMIT Database

Simulation 3: The SIA for AWGN Without Handset for The TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 3.33% 5% 8.33% 12.5% 26.67% 49.17% 76.67%

CMVNMFCC(f2) 0.83% 1.67% 5.83% 10.83% 27.5% 45% 67.5%
FWPNCC (g1) 1.67% 7.5% 19.17% 33.33% 45% 59.17% 58.33%

CMVNPNCC (g2) 5% 5.83% 12.5% 32.5% 47.5% 58.33% 64.17%
Fusion Decision (f1, g1) (f1, g1) (f1, g1) (f1, g1) (f2, g2) (f1, g1) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 1.67% 5% 8.33% 12.5% 23.33% 46.67% 69.17%
iWSF at ω2=0.8 1.67% 3.33% 7.5% 16.67% 20.83% 46.67% 68.33%
iWSF at ω3=0.77 1.67% 3.33% 7.5% 16.67% 21.67% 49.17% 74.17%
iWSF at ω4=0.7 2.5% 4.17% 7.5% 18.33% 20% 50% 68.33%
iMaximum 1.67% 0.83% 9.16% 12.5% 36.67% 33.33% 50%
iMean 1.67% 8.33% 6.66% 23.33% 29.17% 45.83% 66.67%

iCumulative 2.5% 7.5% 11.66% 23.33% 22.5% 46.67% 62.5%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 3.33% 5% 13.33% 25% 34.17% 60% 80.83%
iinterleaving (2d)

NoHN = 200 2.5% 6.67% 13.33% 25.83% 35% 65% 80.83%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 0.83% 3.33% 5.83% 16.67% 29.17% 45.83% 65.83%
NoHN = 300 1.67% 4.17% 9.17% 23.33% 39.17% 56.67% 79.17%
NoHN = 400 1.67% 0.83% 9.17% 20.83% 35.83% 52.5% 74.17%
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Table 6.6: Simulation 4: The SIA for Different Gaussian Mixture Components
(GMCs) for the I-vector Approach for 100, 200 and 400 Dimensions Under Street
Traffic NSN Without Handset at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB
at UBM Mixture Size 256 for the TIMIT Database

Simulation 4: The SIA for Street Traffic NSN Without Handset for the TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 13.33% 33.33% 41.67% 61.67% 77.5% 81.67% 87.5%

CMVNMFCC(f2) 10% 23.33% 40% 55.83% 66.67% 75% 78.33%
FWPNCC (g1) 5.83% 15% 30% 40% 55% 60% 65.83%

CMVNPNCC (g2) 5% 9.17% 29.17% 48.33% 52.5% 68.33% 71.67%
Fusion Decision (f1, g1) (f1, g1) (f1, g1) (f1, g2) (f1, g1) (f1, g2) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 13.33% 30% 43.33% 62.5% 80% 83.33% 90%
iWSF at ω2=0.8 13.33% 28.33% 45.83% 62.5% 80.83% 83.33% 83.33%
iWSF at ω3=0.77 18.33% 27.5% 44.17% 59.17% 80.33% 81.67% 85.83%
iWSF at ω4=0.7 15% 25.83% 42.5% 58.33% 74.17% 80% 80%
iMaximum 4.17% 13.33% 15.83% 34.17% 46.67% 50.83% 56.67%
iMean 6.67% 20% 30.83% 53.33% 61.67% 71.67% 76.67%

iCumulative 6.67% 23.33% 31.67% 51.67% 63.33% 70% 75%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 8.33% 25% 43.33% 66.67% 75.83% 87.5% 89.17%
iinterleaving (2d)

NoHN = 200 7.5% 20.83% 38.33% 60.83% 75.83% 85.83% 89.17%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 5% 20.83% 42.5% 60.83% 75% 79.17% 83.33%
NoHN = 300 6.67% 21.67% 32.5% 56.67% 69.17% 75.83% 87.5%
NoHN = 400 3.33% 14.17% 30% 44.17% 64.17% 79.17% 80.83%

‘

158



6.8 Appendix 6.1

Table 6.7: Simulation 5: The SIA for Different GMCs for the I-vector Approach for
100, 200 and 400 Dimensions Under Bus Interior NSN Without Handset at Different
SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture Size 256 for the TIMIT
Database

Simulation 5: The SIA for Bus Interior NSN Without Handset for the TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 53.33% 65% 78.33% 85.83% 86.67% 90.83% 92.5%

CMVNMFCC(f2) 50.83% 63.33% 70.83% 80.83% 85% 85.83% 90.83%
FWPNCC (g1) 19.17% 36.67% 51.67% 65.83% 65% 70% 67.5%

CMVNPNCC (g2) 23.33% 31.67% 51.67% 63.33% 69.17% 68.33% 75%
Fusion Decision (f1, g2) (f1, g1) (f1, g2) (f1, g1) (f1, g2) (f1, g1) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 51.67% 67.5% 77.5% 83.33% 88.33% 89.17% 89.17%
iWSF at ω2=0.8 47.5% 63.33% 75% 80% 87.5% 89.17% 91.67%
iWSF at ω3=0.77 42.5% 64.17% 73.33% 80.83% 88.33% 88.33% 88.33%
iWSF at ω4=0.7 39.17% 52.5% 74.17% 81.67% 84.17% 85.83% 85.83%
iMaximum 18.33% 43.33% 48.33% 52.5% 52.5% 58.33% 63.33%
iMean 34.17% 49.17% 69.17% 68.33% 72.5% 76.67% 79.17%

iCumulative 30% 42.5% 66.67% 70.83% 71.67% 75% 79.17%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 35% 68.33% 78.33% 82.5% 87.5% 90% 90%
iinterleaving (2d)

NoHN = 200 38.33% 65% 80% 83.33% 88.33% 90% 93.33%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 35% 61.67% 74.17% 83.33% 90% 87.5% 87.5%
NoHN = 300 32.5% 65% 70.83% 79.17% 83.33% 85% 89.17%
NoHN = 400 21.67% 50.83% 62.5% 70.83% 81.67% 78.33% 84.17%

159



6.8 Appendix 6.1

Table 6.8: Simulation 6: The SIA for Different GMCs for the I-vector Approach
for 100, 200 and 400 Dimensions Under Crowd Talking NSN Without Handset at
Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture Size 256 for the
TIMIT Database

Simulation 6: The SIA for Crowd Talking NSN Without Handset for the TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 11.67% 23.33% 47.5% 64.17% 74.17% 84.17% 85.83%

CMVNMFCC(f2) 4.17% 20.83% 36.67% 52.5% 69.17% 75% 84.17%
FWPNCC (g1) 4.17% 12.5% 23.33% 34.17% 55.83% 58.33% 67.5%

CMVNPNCC (g2) 1.67% 10.83% 25.83% 43.33% 53.33% 63.33% 65.83%
Fusion Decision (f1, g1) (f1, g1) (f1, g2) (f1, g2) (f1, g1) (f1, g2) (f1, g1)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 13.33% 23.33% 46.67% 61.67% 71.67% 85% 84.17%
iWSF at ω2=0.8 11.67% 22.5% 45.83% 61.67% 74.17% 80% 86.67%
iWSF at ω3=0.77 14.17% 25% 43.33% 61.67% 73.33% 76.67% 88.33%
iWSF at ω4=0.7 13.33% 25% 41.67% 60% 67.5% 75.83% 84.17%
iMaximum 5.83% 10.83% 24.17% 38.33% 39.17% 54.17% 54.17%
iMean 5% 16.67% 33.33% 51.67% 55.83% 68.33% 74.16%

iCumulative 9.17% 15% 39.17% 51.67% 56.67% 67.5% 73.33%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 9.17% 19.17% 50% 70% 78.33% 86.67% 90.83%
iinterleaving (2d)

NoHN = 200 12.5% 21.67% 54.17% 69.17% 74.17% 85% 88.33%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 5.83% 24.17% 37.5% 65% 75% 79.17% 83.33%
NoHN = 300 8.33% 20.83% 34.17% 66.67% 72.5% 81.67% 85.83%
NoHN = 400 4.17% 15% 29.17% 51.67% 67.5% 72.5% 76.67%
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Table 6.9: Simulation 7: The SIA for Different GMCs for the I-vector Approach for
100, 200 and 400 Dimensions Under AWGN with G.712 Type Handset (WH) at 16
kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture Size 256
for the TIMIT Database

Simulation 7: The SIA for AWGN-WH at 16 kHz for the TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 2.5% 3.33% 5% 10.83% 30% 54.17% 72.5%

CMVNMFCC(f2) 0.83% 2.5% 2.5% 9.17% 19.17% 45.83% 65%
FWPNCC (g1) 1.67% 3.33% 10.83% 23.33% 35.83% 55% 56.67%

CMVNPNCC (g2) 0.83% 5% 7.5% 25.83% 43.33% 59.17% 56.67%
Fusion Decision (f1, g1) (f1, g2) (f1, g1) (f1, g2) (f1, g2) (f1, g2) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 1.67% 3.33% 5.83% 10% 28.33% 54.16% 70%
iWSF at ω2=0.8 1.67% 4.17% 4.17% 13.33% 30% 49.17% 70%
iWSF at ω3=0.77 0.83% 2.5% 3.33% 12.5% 30% 48.33% 69.17%
iWSF at ω4=0.7 1.67% 5% 4.17% 12.5% 25.83% 50% 69.17%
iMaximum 0% 1.67% 4.17% 7.5% 15.83% 35% 46.67%
iMean 5% 16.67% 33.33% 51.67% 55.83% 68.33% 74.16%

iCumulative 1.67% 4.17% 5% 13.33% 32.5% 47.5% 65%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 0.83% 3.33% 9.17% 25% 41.67% 57.5% 70%
iinterleaving (2d)

NoHN = 200 0.83% 2.5% 7.5% 21.67% 37.5% 57.5% 70%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 0% 0.83% 9.17% 19.17% 40% 51.67% 71.67%
NoHN = 300 0% 0.83% 5% 16.67% 33.33% 51.67% 70%
NoHN = 400 0.83% 0% 4.17% 4.17% 18.33% 36.67% 57.5%
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Table 6.10: Simulation 8: The SIA for Different GMCs for the I-vector Approach for
100, 200 and 400 Dimensions Under Street Traffic NSN with G.712 Type Handset
at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture
Size 256 for the TIMIT Database

Simulation 8: The SIA for Street Traffic NSN-WH TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 15.83% 30% 37.5% 50.83% 63.33% 75.83% 80%

CMVNMFCC(f2) 10.83% 21.67% 38.33% 47.5% 59.17% 71.67% 72.5%
FWPNCC (g1) 4.17% 5.83% 13.33% 29.17% 39.17% 54.17% 53.33%

CMVNPNCC (g2) 4.17% 5% 12.5% 22.5% 38.33% 46.67% 64.17%
Fusion Decision (f1, g1) (f1, g1) (f2, g1) (f1, g1) (f1, g1) (f1, g1) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 16.67% 25.83% 35% 54.17% 66.67% 75.83% 82%
iWSF at ω2=0.8 15% 25.83% 31.67% 55% 66.67% 73.33% 80.83%
iWSF at ω3=0.77 11.66% 23.33% 30% 53.33% 66.67% 74.17% 80.83%
iWSF at ω4=0.7 15% 21.67% 29.17% 44.17% 63.33% 75% 79.17%
iMaximum 0.83% 8.33% 8.33% 20% 31.67% 41.67% 49.17%
iMean 5% 13.33% 17.5% 35.83% 48.33% 65% 63.33%

iCumulative 5% 13.33% 15% 35.83% 43.33% 60.83% 66.67%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 9.17% 14.17% 32.5% 48.33% 65% 75% 77.5%
iinterleaving (2d)

NoHN = 200 10% 14.17% 30% 49.17% 61.67% 73.33% 79.17%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 6.67% 17.5% 26.67% 34.17% 41.67% 74.17% 70%
NoHN = 300 6.67% 13.33% 31.67% 34.17% 57.5% 62.5% 77.5%
NoHN = 400 5% 11.67% 18.33% 26.67% 43.33% 55% 67.5%
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Table 6.11: Simulation 9: The SIA for Different GMCs for the I-vector Approach for
100, 200 and 400 Dimensions Under Bus Interior NSN With G.712 Type Handset
at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture
Size 256 for the TIMIT Database

Simulation 9: The SIA for Bus Interior NSN-WH for the TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 44.17% 62.5% 74.17% 75.83% 78.33% 83.33% 89.17%

CMVNMFCC(f2) 45.83% 53.33% 67.5% 79.17% 76.67% 83.33% 88.33%
FWPNCC (g1) 15% 23.33% 39.17% 51.67% 55.83% 61.67% 60.83%

CMVNPNCC (g2) 14.17% 29.17% 35% 49.17% 57.5% 65% 67.5%
Fusion Decision (f2, g1) (f1, g2) (f1, g1) (f2, g1) (f1, g2) (f1, g2) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 47.5% 64.17% 70% 79.17% 78.33% 85% 88.33%
iWSF at ω2=0.8 48.33% 57.5% 72.5% 75% 79.17% 79.17% 89.17%
iWSF at ω3=0.77 45% 57.5% 69.17% 71.67% 81.67% 81.67% 89.17%
iWSF at ω4=0.7 46.67% 55.83% 65.83% 72.5% 75% 82.5% 84.17%
iMaximum 25.83% 23.33% 25% 36.67% 37.5% 50.83% 54.17%
iMean 32.5% 38.33% 46.67% 60.83% 60% 68.33% 68.33%

iCumulative 30.83% 34.17% 45.83% 58.33% 59.17% 65% 68.33%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 30% 44.17% 70.83% 71.67% 71.67% 69.17% 82.5%
iinterleaving (2d)

NoHN = 200 32.5% 45% 70% 75% 69.17% 74.17% 82.5%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 34.17% 43.33% 61.67% 60.83% 78.33% 80% 85.83%
NoHN = 300 30% 36.67% 55% 70.83% 75% 83.33% 81.67%
NoHN = 400 21.67% 30% 45% 55.83% 67.5% 64.17% 74.17%
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Table 6.12: Simulation 10: The SIA for Different GMCs for the I-vector Approach for
100, 200 and 400 Dimensions Under Crowd Talking NSN with G.712 Type Handset
at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture
Size 256 for the TIMIT Database

Simulation 10: The SIA for Crowd Talking NSN-WH for the TIMIT Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 10% 25% 40.83% 50% 60% 73.33% 85%

CMVNMFCC(f2) 4.17% 15% 30.83% 50% 63.33% 73.33% 77.5%
FWPNCC (g1) 4.17% 9.17% 20% 37.5% 45% 55% 55.83%

CMVNPNCC (g2) 1.67% 10% 17.5% 30.83% 37.5% 50.83% 56.67%
Fusion Decision (f1, g1) (f1, g2) (f1, g1) (f1, g1) (f2, g1) (f1, g1) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 7.5% 24.17% 40% 50% 61.67% 75.83% 82.5%
iWSF at ω2=0.8 10% 19.17% 33.33% 55.83% 60% 76.67% 77.5%
iWSF at ω3=0.77 6.67% 18.33% 33.33% 55.83% 60% 72.5% 77.5%
iWSF at ω4=0.7 6.67% 18.33% 30% 54.17% 60% 72.5% 77.5%
iMaximum 0.83% 10.83% 8.33% 27.5% 38.33% 39.17% 50.83%
iMean 4.17% 11.67% 12.5% 40% 49.17% 60.83% 67.5%

iCumulative 6.67% 10.83% 12.5% 44.17% 47.5% 58.33% 67.5%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 5.83% 15.83% 40% 57.5% 58.33% 76.67% 79.17%
iinterleaving (2d)

NoHN = 200 5% 15.83% 35.83% 56.67% 63.33% 75% 80%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 2.5% 15% 24.17% 54.17% 57.5% 62.5% 78.33%
NoHN = 300 2.5% 11.67% 37.5% 46.67% 65% 73.33% 76.67%
NoHN = 400 6.67% 10.83% 19.17% 32.5% 53.33% 58.33% 72.5%
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Table 6.13: Simulation 1: The Speaker Identification Accuracy (SIA) as a Function
of the UBM Mixture Sizes {8, 16, 32, 64, 128, 256, 512 } for the I-vector Approach
for 100, 200 and 400 Dimensions for Original Speech Recordings (OSR) without
Handset at UBM Mixture Size 256 for the SITW Database

Simulation 11: The SIA for OSR Without Handset for the SITW Database

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 47.5% 61.67% 77.5% 79.17% 85% 84.17% 83.33%

CMVNMFCC(f2) 49.17% 68.33% 78.33% 82.5% 83.33% 82.5% 85%
FWPNCC (g1) 41.67% 63.33% 73.33% 81.67% 84.17% 85% 82.5%

CMVNPNCC (g2) 1.67% 10% 17.5% 30.83% 37.5% 50.83% 56.67%
Fusion Decision (f2, g2) (f2, g2) (f2, g2) (f2, g2) (f1, g2) (f1, g1) (f2, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 47.5% 65% 79.17% 82.5% 84.17% 81.67% 84.17%
iWSF at ω2=0.8 50.83% 68.33% 78.33% 84.17% 83.33% 81.67% 83.33%
iWSF at ω3=0.77 52.5% 69.17% 77.5% 84.17% 82.5% 80% 83.33%
iWSF at ω4=0.7 49.17% 63.33% 79.17% 80.83% 84.17% 80.83% 82.5%
iMaximum 25.83% 44.17% 59.17% 71.67% 70% 73.33% 80%
iMean 46.67% 61.67% 74.17% 79.17% 81.67% 81.67% 81.67%

iCumulative 36.67% 49.17% 75.83% 78.33% 83.33% 80% 82.5%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 53.33% 72.5% 81.67% 81.67% 85.83% 83.33% 85%
iinterleaving (2d)

NoHN = 200 10% 9.17% 12.5% 19.17% 31.67% 26.67% 27.5%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 52.5% 69.17% 80.83% 85% 83.33% 85.83% 82.5%
NoHN = 300 48.33% 65% 79.17% 80.83% 81.67% 85.83% 85.83%
NoHN = 400 39.17% 52.5% 71.67% 78.33% 77.5% 80.83% 80%
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Table 6.14: Simulation 2: The SIA for Different GMCs to the I-vector Approach for
100, 200 and 400 Dimensions Under AWGN with G.712 Type Handset (WH) at 16
kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture Size 256
for the SITW Database

Simulation 12: The SIA for AWGN-WH at 16 kHz for the SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 5.83% 10.83% 20.83% 42.5% 66.67% 74.17% 80%

CMVNMFCC(f2) 5.83% 15.83% 21.67% 42.5% 65% 74.17% 80%
FWPNCC (g1) 4.17% 11.67% 31.67% 58.33% 76.67% 78.33% 84.17%

CMVNPNCC (g2) 4.17% 13.33% 35% 65.83% 79.17% 82.5% 82.5%
Fusion Decision (f2, g2) (f2, g2) (f2, g2) (f2, g2) (f1, g2) (f1, g2) (f1, g1)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 5% 14.17% 21.67% 45.83% 68.33% 75.83% 80.83%
iWSF at ω2=0.8 5.83% 12.5% 20% 46.67% 69.17% 75% 80%
iWSF at ω3=0.77 5.83% 12.5% 20% 48.33% 68.33% 77.5% 78.33%
iWSF at ω4=0.7 4.17% 12.5% 20.83% 45% 68.33% 75.83% 80%
iMaximum 3.33% 7.5% 16.67% 45% 53.33% 68.33% 70%
iMean 5% 8.33% 25.83% 54.17% 67.5% 77.5% 78.33%

iCumulative 4.17% 7.5% 25% 54.17% 68.33% 76.67% 76.67%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 6.67% 16.67% 30.83% 56.67% 74.17% 79.17% 81.67%
iinterleaving (2d)

NoHN = 200 6.67% 5.83% 8.33% 17.5% 25% 26.67% 24.17%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 2.5% 13.33% 25.83% 59.17% 71.67% 77.5% 80%
NoHN = 300 2.5% 14.17% 32.5% 57.5% 70% 75% 82.5%
NoHN = 400 0.83% 7.5% 22.5% 46.67% 65.83% 73.33% 78.33%
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Table 6.15: Simulation 3: The SIA for Different GMCs to the I-vector Approach for
100, 200 and 400 Dimensions Under Street Traffic NSN with G.712 Type Handset
(WH) at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM
Mixture Size 256 for the SITW Database

Simulation 13: The SIA for Street Traffic NSN-WH at 16 kHz for the SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 21.67% 33.33% 53.33% 65.83% 74.17% 81.67% 82.5%

CMVNMFCC(f2) 19.17% 34.17% 48.33% 61.67% 74.17% 79.17% 81.67%
FWPNCC (g1) 5% 10% 23.33% 50.83% 70.83% 77.5% 83.33%

CMVNPNCC (g2) 6.67% 14.17% 33.33% 54.17% 74.17% 81.67% 84.17%
Fusion Decision (f1, g2) (f2, g2) (f1, g2) (f1, g2) (f1, g2) (f1, g2) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 22.5% 35.83% 54.17% 65% 75.83% 76.67% 80%
iWSF at ω2=0.8 20.83% 34.17% 51.67% 66.67% 75% 77.5% 80%
iWSF at ω3=0.77 20% 34.17% 51.67% 62.5% 73.33% 78.33% 79.17%
iWSF at ω4=0.7 20% 33.33% 52.5% 63.33% 72.5% 78.33% 81.67%
iMaximum 10% 19.17% 29.17% 46.67% 61.67% 65.83% 73.33%
iMean 13.33% 23.33% 42.5% 55.83% 70.83% 76.67% 80.83%

iCumulative 13.33% 20.83% 43.33% 50.83% 71.67% 78.33% 81.67%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 12.5% 32.5% 53.33% 70.83% 78.33% 84.17% 82.5%
iinterleaving (2d)

NoHN = 200 6.67% 7.5% 13.33% 24.17% 23.33% 30% 19.17%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 2.5% 29.17% 47.5% 63.33% 74.17% 81.67% 79.17%
NoHN = 300 14.17% 35.83% 50.83% 65% 75% 78.33% 81.67%
NoHN = 400 12.5% 27.5% 50% 63.33% 75% 75.83% 75.83%
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Table 6.16: Simulation 4: The SIA for Different GMCs for the I-vector Approach
for 100, 200 and 400 Dimensions Under Bus Interior NSN with G.712 Type Handset
(WH) at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM
Mixture Size 256 for the SITW Database

Simulation 14: The SIA for Bus Interior-WH at 16 kHz for the SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 65% 71.67% 75.83% 77.5% 80% 83.33% 80.83%

CMVNMFCC(f2) 63.33% 70% 75.83% 78.33% 78.33% 80% 85%
FWPNCC (g1) 25.83% 46.67% 65% 75% 79.17% 80.83% 80.83%

CMVNPNCC (g2) 30% 46.67% 65.83% 75% 80% 83.33% 84.17%
Fusion Decision (f1, g2) (f1, g2) (f2, g2) (f2, g2) (f1, g2) (f1, g2) (f2, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 63.33% 71.67% 75% 79.17% 79.17% 82.5% 84.17%
iWSF at ω2=0.8 63.33% 75.83% 73.33% 76.67% 78.33% 81.67% 82.5%
iWSF at ω3=0.77 64.17% 75% 72.5% 76.67% 78.33% 82.5% 81.67%
iWSF at ω4=0.7 60.83% 72.5% 72.5% 75.83% 77.5% 81.67% 80.83%
iMaximum 36.67% 50.83% 55% 78.33% 70.83% 74.16% 80%
iMean 40% 60% 65.83% 76.67% 75.83% 81.67% 83.33%

iCumulative 43.33% 58.33% 66.67% 77.5% 75% 80% 82.5%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 64.17% 70% 77.5% 80% 81.67% 84.17% 86.67%
iinterleaving (2d)

NoHN = 200 23.33% 15.83% 25.83% 25% 27.5% 30% 28.33%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 57.5% 69.17% 75.85% 80.83% 82.5% 83.33% 83.33%
NoHN = 300 61.67% 67.5% 74.17% 80% 83.33% 83.33% 83.33%
NoHN = 400 50.83% 60.83% 70.83% 75.83% 76.67% 79.17% 80.83%
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Table 6.17: Simulation 5: The SIA for Different GMCs to the I-vector Approach for
100, 200 and 400 Dimensions Under Crowd Talking NSN with G.712 Type Handset
(WH) at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM
Mixture Size 256 for the SITW Database

Simulation 15: The SIA for Crowd Talking-WH at 16 kHz for the SITW Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 29.17% 45.83% 58.33% 71.67% 78.33% 80.83% 81.67%

CMVNMFCC(f2) 26.67% 44.17% 59.17% 70.83% 76.67% 79.17% 80%
FWPNCC (g1) 5% 24.17% 45% 61.67% 76.67% 80.83% 83.33%

CMVNPNCC (g2) 5.83% 25% 45% 61.67% 80% 84.16% 83.33%
Fusion Decision (f1, g2) (f1, g2) (f2, g2) (f1, g2) (f1, g2) (f1, g2) (f1, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 26.67% 45% 56.67% 72.5% 73.33% 81.67% 81.67%
iWSF at ω2=0.8 29.17% 46.67% 57.5% 70% 73.33% 80% 80.83%
iWSF at ω3=0.77 27.5% 46.67% 57.5% 70% 71.67% 78.33% 80%
iWSF at ω4=0.7 26.67% 44.17% 52.5% 66.67% 74.17% 79.17% 80.83%
iMaximum 14.17% 27.5% 37.5% 54.17% 66.67% 71.67% 74.5%
iMean 19.17% 34.17% 49.17% 62.5% 71.67% 80.83% 82.5%

iCumulative 17.5% 32.5% 47.5% 65.83% 71.67% 81.67% 81.67%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 22.5% 46.67% 65.83% 78.33% 80.83% 85% 85%
iinterleaving (2d)

NoHN = 200 7.5% 9.17% 15% 25% 17.5% 17.5% 34.17%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 18.33% 36.67% 62.5% 73.33% 84.17% 85% 85%
NoHN = 300 22.5% 46.67% 61.67% 73.33% 81.67% 80.83% 81.67%
NoHN = 400 17.5% 37.5% 55.83% 65.83% 75% 78.33% 80%
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Table 6.18: Simulation 1: The Speaker Identification Accuracy as a Function of the
UBM Mixture Sizes {8, 16, 32, 64, 128, 256, 512 } for the I-vector Approach for 100,
200 and 400 Dimensions for Original Speech Recordings (OSR) Without Handset at
UBM Mixture Size 256 for the NIST 2008 Database

Simulation 16: The SIA for OSR Without Handset for the NIST 2008 Database

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 50% 54.17% 85.83% 89.17% 90.83% 94.17% 91.67%

CMVNMFCC(f2) 51.67% 58.33% 80% 86.67% 95% 95% 91.67%
FWPNCC (g1) 34.17% 50% 75% 85% 85.83% 87.5% 85.83%

CMVNPNCC (g2) 34.17% 50.83% 78.33% 84.17% 89.17% 93.33% 89.17%
Fusion Decision (f2, g2) (f2, g2) (f1, g2) (f1, g1) (f2, g2) (f2, g2) (f2, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 60% 59.17% 75.83% 88.33% 91.67% 93.33% 95%
iWSF at ω2=0.8 50.83% 59.17% 75.83% 92.5% 89.17% 92.5% 94.17%
iWSF at ω3=0.77 44.17% 60.83% 70.83% 87.5% 90% 93.33% 92.5%
iWSF at ω4=0.7 49.17% 55% 77.5% 84.17% 87.5% 92.5% 91.67%
iMaximum 11.67% 53.33% 41.67% 51.67% 70.83% 73.33% 80%
iMean 35% 58.33% 67.5% 73.33% 84.17% 89.17% 89.17%

iCumulative 23.33% 45% 59.17% 70% 84.17% 89.17% 88.33%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 50.83% 65% 81.67% 89.17% 95% 95.83% 94.17%
iinterleaving (2d)

NoHN = 200 47.5% 55% 81.67% 90.83% 93.33% 96.67% 95%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 46.67% 53.33% 83.33% 86.66% 91.67% 92.5% 95%
NoHN = 300 39.17% 52.5% 75.83% 86.67% 86.67% 90.83% 89.17%
NoHN = 400 25% 42.5% 65% 80.83% 87.5% 88.33% 87.5%

170



6.8 Appendix 6.1

Table 6.19: Simulation 2: The SIA for Different GMCs for the I-vector Approach
for 100, 200 and 400 Dimensions Under AWGN with G.712 Type Handset (WH) at
16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM Mixture Size
256 for the NIST 2008 Database

Simulation 17: The SIA Under AWGN-WH for NIST 2008 for the NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 1.67% 3.33% 9.17% 18.33% 34.17% 43.33% 48.33%

CMVNMFCC(f2) 1.67% 3.33% 6.67% 20.83% 36.67% 44.17% 52.5%
FWPNCC (g1) 0.83% 0.83% 1.67% 7.5% 16.67% 33.33% 52.5

CMVNPNCC (g2) 1.67% 1.67% 3.33% 5% 17.5% 33.33% 48.33%
Fusion Decision (f1, g2) (f1, g2) (f1, g2) (f2, g1) (f2, g2) (f2, g2) (f2, g1)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 1.67% 3.33% 9.16% 21.67% 38.33% 45.84% 48.33%
iWSF at ω2=0.8 1.67% 3.33% 8.33% 16.67% 30.83% 40% 51.67%
iWSF at ω3=0.77 1.67% 3.33% 8.33% 18.33% 32.5% 40.83% 53.33%
iWSF at ω4=0.7 1.67% 3.33% 11.67% 15.83% 35.83% 40.83% 55%
iMaximum 0.83% 0.83% 5.83% 7.5% 19.17% 18.33% 36.67%
iMean 1.67% 2.5% 11.67% 13.33% 15% 25% 45%

iCumulative 0.83% 2.5% 13.33% 12.5% 20.83% 23.33% 45%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 0.83% 1.67% 1.67% 56.67% 74.17% 79.17% 81.67%
iinterleaving (2d)

NoHN = 200 0.83% 1.67% 6.67% 10.83% 12.5% 7.5% 9.17%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 0.83% 2.5% 5.83% 7.5% 19.17% 40% 54.17%
NoHN = 300 1.67% 0.83% 1.67% 10.83% 21.67% 40% 52.5%
NoHN = 400 0.83% 0.83% 1.67% 4.17% 10.83% 32.5% 37.5%
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Table 6.20: Simulation 3: The SIA for Different GMCs for the I-vector Approach for
100, 200 and 400 Dimensions Under Street Traffic NSN with G.712 Type Handset
(WH) at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM
Mixture Size 256 for the NIST 2008 Database

Simulation 18: The SIA for Street Traffic NSN-WH for the NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 4.17% 10% 21.67% 31.67% 37.5% 47.5% 51.67%

CMVNMFCC(f2) 2.5% 12.5% 16.67% 26.67% 41.67% 54.17% 57.5%
FWPNCC (g1) 1.67% 11.67% 17.5% 37.5% 63.33% 73.33% 78.33

CMVNPNCC (g2) 1.67% 3.33% 17.5% 43.33% 53.33% 71.67% 75.83%
Fusion Decision (f1, g1) (f2, g1) (f1, g2) (f1, g2) (f2, g1) (f2, g1) (f2, g1)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 4.17% 14.17% 21.67% 29.17% 40.83% 51.67% 57.5%
iWSF at ω2=0.8 5% 13.33% 19.17% 30.83% 39.17% 58.33% 59.16%
iWSF at ω3=0.77 8.33% 12.5% 17.5% 27.5% 41.67% 60.83% 59.17%
iWSF at ω4=0.7 5% 13.33% 16.67% 26.67% 39.17% 57.5% 55.83%
iMaximum 2.5% 4.17% 10% 21.67% 27.5% 64.6% 54.17%
iMean 5.83% 9.17% 19.17% 29.17% 45% 67.5% 70%

iCumulative 5% 8.33% 17.5% 28.33% 43.33% 68.33% 72.5%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 0.83% 5% 15.83% 28.33% 39.17% 52.5% 60.83%
iinterleaving (2d)

NoHN = 200 4.17% 6.67% 10% 10% 9.17% 14.17% 23.33%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 2.5% 13.33% 13.33% 39.17% 45.83% 70.83% 64.17%
NoHN = 300 3.33% 5.83% 17.5% 32.5% 52.5% 59.17% 63.33%
NoHN = 400 1.67% 1.67% 6.67% 18.33% 32.5% 66.67% 57.5%
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Table 6.21: Simulation 4: The SIA for Different GMCs for the I-vector Approach
for 100, 200 and 400 Dimensions Under Bus-Interior NSN with G.712 Type Handset
(WH) at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM
Mixture Size 256 for the NIST 2008 Database

Simulation 19: The SIA for Bus-Interior NSN-WH for the NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 31.67% 32.5% 40.83% 44.17% 61.67% 71.67% 85%

CMVNMFCC(f2) 25.83% 30.83% 42.5% 47.5% 56.67% 75.83% 86.67%
FWPNCC (g1) 10% 19.17% 37.5% 59.17% 77.5% 80% 85%

CMVNPNCC (g2) 9.17% 20% 38.33% 60.38% 77.5% 84.17% 82.5%
Fusion Decision (f1, g1) (f1, g2) (f2, g2) (f2, g2) (f1, g2) (f2, g2) (f2, g1)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 26.67% 36.67% 41.67% 48.33% 55.83% 74.17% 83.33%
iWSF at ω2=0.8 21.67% 34.17% 44.17% 50% 58.33% 75% 87.5%
iWSF at ω3=0.77 19.17% 32.5% 45% 50.83% 57.5% 71.67% 87.5%
iWSF at ω4=0.7 17.5% 33.33% 41.67% 50% 55% 68.33% 85%
iMaximum 11.67% 14.17% 30% 34.17% 53.33% 58.33% 69.17%
iMean 15% 30.83% 37.5% 47.5% 56.67% 73.33% 82.5%

iCumulative 13.33% 25% 35% 43.33% 61.67% 73.33% 84.17%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 20.83% 25% 33.33% 54.17% 62.5% 77.5% 87.5%
iinterleaving (2d)

NoHN = 200 6.67% 8.33% 15% 17.5% 15% 17.5% 25%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 20.83% 36.67% 41.67% 52.5% 80.83% 74.17% 85%
NoHN = 300 23.33% 23.33% 40.83% 55.83% 70% 79.17% 83.33%
NoHN = 400 16.67% 22.5% 32.5% 43.33% 53.33% 67.5% 79.17%
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Table 6.22: Simulation 5: The SIA for Different GMCs for the I-vector Approach for
100, 200 and 400 Dimensions Under Crowd Talking NSN with G.712 Type Handset
(WH) at 16 kHz at Different SNR Levels {0, 5, 10, 15, 20, 25, 30} dB at UBM
Mixture Size 256 for the NIST 2008 Database

Simulation 20: The SIA for Crowd Talking NSN-WH for the NIST 2008 Database

Methods 0dB 5dB 10dB 15dB 20dB 25dB 30dB
Feature based I-vector

Without Fusion
With 100 dimension

NoHN = 100
FWMFCC (f1) 1.67% 4.17% 6.67% 20% 43.33% 55.83% 66.67%

CMVNMFCC(f2) 4.17% 14.17% 23.33% 35% 45.83% 58.33% 70.83%
FWPNCC (g1) 5% 20.83% 25.83% 50% 63.33% 78.33% 82.5

CMVNPNCC (g2) 2.5% 10% 26.67% 40% 68.33% 80.83% 85%
Fusion Decision (f2, g1) (f2, g1) (f2, g2) (f2, g1) (f2, g2) (f2, g2) (f2, g2)

Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF at ω1=0.9 5.83% 13.33% 21.67% 32.5% 50% 58.33% 75%
iWSF at ω2=0.8 5.83% 14.17% 20.83% 32.5% 48.33% 58.33% 75%
iWSF at ω3=0.77 5.83% 16.67% 20% 30% 47.5% 57.5% 75.83%
iWSF at ω4=0.7 4.17% 13.33% 25% 30.83% 50% 57.5% 74.17%
iMaximum 5.83% 6.67% 12.5% 30% 31.67% 48.33% 60.83%
iMean 5% 12.5% 17.5% 36.67% 48.33% 62.5% 74.17%

iCumulative 5% 9.17% 19.17% 38.33% 51.67% 63.33% 78.33%
Fusion based I-vector
With 200 dimension
iConcatenated (2d)

NoHN = 200 5.83% 11.67% 23.33% 30.83% 47.5% 60.83% 67.5%
iinterleaving (2d)

NoHN = 200 6.67% 2.5% 14.17% 10.83% 11.67% 18.33% 15.83%
Fusion based I-vector
With 400 dimension
iConcatenated (4d)

NoHN = 200 4.17% 19.16% 21.67% 26.67% 50% 70.83% 79.17%
NoHN = 300 2.5% 20.83% 15.83% 30% 54.17% 70% 77.5%
NoHN = 400 0.83% 3.33% 4.16% 10.83% 42.5% 55% 55.83%
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Table 6.23: Simulation 1: The Speaker Identification Accuracy as a Function of the
UBM Mixture Sizes {8, 16, 32, 64, 128, 256, 512 } for the NTIMIT Database

Simulation 21: Results For the NTIMIT Database

I-vector Mix=8 Mix=16 32 64 128 256 Mix=512
Methods

Feature based I-vector
Without Fusion

With 100 dimension
NoHN = 100

i̇FW 6.67% 5% 15.83% 22.5% 36.67% 37.5% 40%

i̇CMV N 5.33% 5% 14.67% 20.33% 34.33% 35.83% 38.67%

ïFW 1.67% 10% 25.83% 29.17% 29.17% 35% 34.17%

ïCMV N 3.33% 8.33% 20% 35% 36.67% 39.17% 40%

Fusion Decision (f1, g2) (f1, g1) (f1, g1) (f1, g2) (f1, g2) (f1, g2) (f1, g2)
Fusion based I-vector
With 100 dimension

NoHN = 100
iWSF ω1=0.9 0.83% 7.5% 20% 25.83% 34.17% 37.5% 42.5%
iWSF ω2=0.8 3.33% 5.83% 20.83% 21.67% 31.67% 37.5% 39.17%
iWSF ω3=0.77 2.5% 3.33% 15.83% 26.67% 32.5% 36.67% 38.33%
iWSF ω4=0.7 3.33% 6.67% 15% 20% 30% 35.83% 35.83%
iMaximum 1.67% 2.5% 6.67% 9.17% 14.17% 20% 19.17%
iMean 3.33% 5% 17.5% 20% 23.33% 27.5% 31.67%
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Chapter 7

Conclusions and Future Work

In this chapter, there are three sections. Section 7.1 summarizes the contributions

of this thesis, Section 7.2 covers the conclusion, and Section 7.3 has suggestions for

future work.

7.1 Contributions Overview

This section presents the main contributions of this thesis as covered in chapters

four, five and six, respectively.

In Chapter 4, a closed set text independent speaker identification system was

established. Four main simulations using a fixed original speech recordings length

(129,250 samples 8 seconds in length) were performed to calculate the speaker

identification accuracy for different Gaussian mixture components and different

feature dimensions based on different fusion techniques. These fusion methods are:

late fusion (score-based 16 Feature Dimension FD), early fusion (feature-based 32

FD) and early-late fusion (feature score-based 32 FD), concatenated static and

dynamic features (feature-based 39FD), and finally the multiplication of scores

independent of different feature dimensions (16, 32 and 39).

In Chapter 5, a comprehensive evaluation based on GMM-UBM approach was

provided of text independent closed set speaker identification in the presence of

AWGN and NSN types with a G.712 type handset at 16 kHz, to provide

benchmark evaluations of three different databases for other researchers working in

this area. It was found that the NIST 2008 database seems to have the best

performance in the evaluation without noise and handset. However, it appears to

be very sensitive and achieved the worst performance compared with other
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databases used, in the presence of AWGN with handset and for NSN types with

handset, at ranges of SNRs (0-15) dB. In addition, the TIMIT database showed

the second best performance in both original speech recordings speech and AWGN.

However, the new SITW database had less reduction in SIA compared with the

TIMIT and the NIST 2008 databases in terms of AWGN and NSN over the range

(0-15) dB. Fusion scores using equal weighting between the MFCC and the PNCC

features represented by the fusion mean method was the best fusion method in

both original speech recordings and NSN, and sometimes for AWGN, while for a

constant spectrum of noise as in AWGN it seems the maximum fusion approach

mitigated the reduction in SIA much better.

In Chapter 6, four feature combinations with seven fusion methods based on

I-vector were investigated to develop a novel closed set text independent speaker

identification system. The new system was modelled with fusion-based

multi-dimensional I-vectors and classified with a single layer neural network using

ELM. This has not been used before for speaker identification purposes. The

system was tested using four different databases: TIMIT, NTIMIT, SITW and

NIST 2008 databases, with 120 speakers from each database (total 480 speakers,

4,800 speech utterances). The fusion techniques were used to improve the SIA in

original speech recordings and improve the reduction in SIA in the presence of

noise and handset. This chapter can be summarized by the following points.

Firstly, the identification accuracy for the I-vector seems to outperform the

GMM-UBM for most environments with the SITW and NIST 2008 databases.

However, in the TIMIT database, the system outperformed GMM-UBM

techniques for original speech recordings, and also outperformed under AWGN

without handset. It also seemed better for some SNR levels with street and crowd

talking. In contrast, for bus interior NSN, the GMM-UBM achieved less reduction

in SIA compared with the I-vector approach. Additionally, fusion techniques may

mitigate the reduction caused by different noise environments and the handset

effect, whereas fusion weights generally seem to be the best of all feature and

fusion methods used. However, the new database using SITW demonstrated that

the identification accuracy achieved by the I-vector approach was better than the

corresponding results for GMM-UBM method for all challenging environments.

With the NIST 2008 database, it seems the output from GMM-UBM is better

than small mixture sizes with the I-vector, while this result was reversed when the
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UBM mixture size was increased, to give slightly better results in original speech

recordings. The I-vector generally gives higher SIA than GMM-UBM for different

noise types, except for the bus NSN, where the GMM-UBM outperforms the

I-vector. With the TIMIT database, the I-vector approach has better performance

than GMM-UBM in original speech recordings and for AWGN without handset,

while in other types of NSN the I-vector outperforms GMM-UBM on some SNR

levels.

Secondly, this chapter also suggests a simple, efficient ELM classifier, which

no one has yet used for this combination of features with the I-vector for speaker

identification. Thirdly, the smallest I-vector with 100 and 200 dimensions has higher

SIA compared with other I-vector dimensions with 400 and 800. Fourthly, almost

the best SIAs are achieved at UBM mixture size 256 for original speech recordings,

while in noise and handset conditions the best SIA achieved at SNR 30 dB for all

databases used. Fifthly, in noisy conditions, the worst SIA was achieved at AWGN

due to the stationary spectrum for the noise, while the highest SIA was obtained for

bus interior NSN followed by the street NSN, then by crowd talking NSN. Finally, the

best fusion type for the best SIA is considered in this chapter. Then there follows the

best fusion method for the various environments, such as original speech recordings,

AWGN-WO/WH, street NSN-WO/WH, bus NSN-WO/WH, crowd talking NSN-

WO/WH. With the TIMIT database, the best fusion methods for the highest SIA

is the weighted sum fusion, while in the SITW and NIST 2008 databases the best

fusion method, according to the best SIA, is the fusion for concatenated-2d. In

addition, some other fusion types are also useful to achieve improvements in SIA for

different environments and different SNR levels.

7.2 Conclusions

This thesis includes comprehensive experiments, simulations and evaluations, and,

therefore, this section will focus on the most significant findings concerning the

best methods and approaches, as well as the improvements achieved in this thesis.

Firstly, this section presents three main tables which show the improvements found

in using the I-vector approach, compared with the GMM-UBM for the three

databases, TIMIT, SITW and NIST 2008 databases, as explained in the tables

from Table 7.1 to Table 7.3. In addition, 120 speakers from each database were
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selected using a total of 360 speakers and 3,600 speech utterances. In this thesis,

four databases were used with 480 speakers in total (4,800 speech utterances), and

a small experiment was also completed using the NTIMIT database. This section

emphasises only the three databases. Table 7.1 shows the improvements of the

I-vector approach compared with the GMM-UBM for the TIMIT database under

original speech recordings, AWGN With Handset (WH), street traffic NSN-WH,

bus interior NSN-WH and crowd talking NSN-WH, represented by parts (a), (b),

(c), (d) and (e) from Table 7.1, respectively. The best SIA is selected per mixture

size or per SNR level for the I-vector, regardless of feature combination type,

fusion type and I-vector dimensions (100, 200 and 400), and then the

corresponding SIA for the GMM-UBM are selected. It can be observed that there

was no improvements in parts (d) and (e) and the GMM-UBM; however, the

major improvements are achieved for part (b) at AWGN-WH as explained in green

highlights. Also, for original speech recordings part (a), the I-vector attained the

highest SIA with 96.67 % at mixture size 256 with 2.65 % improvement over the

GMM-UBM. Table 7.2 is the most important table, which shows that the new

database (SITW 2016) has significant improvements for the I-vector approach over

the GMM-UBM in all challenging environments. However, very few SNR levels in

parts (a), (d) and (e) for the GMM-UBM have better accuracy than the I-vector.

Table 7.3 illustrates the NIST 2008 improvements, and is considered the second

database after the SITW in terms of the I-vector improvements. Only a few SNR

levels for noisy speech in parts (c), (d) and (e) have an accuracy for the

GMM-UBM that outperforms the corresponding point in the I-vector method.

Moreover, the I-vector with small mixture sizes has lower SIA for the I-vector

compared with the GMM-UBM for original speech recordings evaluation.

Secondly, the best feature combination for the I-vector with and without fusion

based I-vector according to each database used, can be seen in Table 7.4 and

Table 7.5 which are proposed for this section. where the symbols F1,F2,F3,F4

represent the feature based methods (without fusion) namely FWMFCC,

CMVNMFCC, FWPNCC and CMVNPNCC, respectively. Furthermore, the

symbols F5, F6, and F7 represent the feature based methods with weighted sum,

maximum and mean fusion, respectively. In addition, F8, F9, F10, and F11

represent cumulative, concatenated-2d, interleaving-2d and concatenated-4d. In

Table 7.4, the best feature with and without fusion based I-vector is selected
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according to the highest SIA for each environment with the three databases

(TIMIT, SITW and NIST 2008). According to Table 7.4, it is clear that the

fusion-based I-vector has better SIA compared with feature combination based

without the fusion; thereby, the fusion has a significant effect on improving the

SIA. Furthermore, the weighted sum fusion and the concatenated fusion have the

best fusion methods which work to improve the SIA in the I-vector approach.
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Table 7.1: Percentage Improvements for the I-vector Approach Compared with the
GMM-UBM Approach for the TIMIT Database Under Different Environments

(a) TIMIT Database for Original  Speech Recordings 
Approaches Mix 8 Mix 16 Mix 32 Mix 64 Mix 128 Mix 256 Mix 512 

GMM-UBM 80.83% 84.17% 90% 93.33% 94.17% 94.17% 95% 

I-vector 44.16% 65.83% 87.5% 90% 94.17% 96.67% 95% 

Improvement 0% 2.65% 0% 

(b) TIMIT Database for AWGN with G.712 Type Handset at 16 kHz 

Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 2.5% 4.17% 7.5% 20% 39.17% 51.67% 75.83% 

I-vector 5% 16.67% 33.33% 51.67% 55.83% 68.33% 74.16% 

Improvement 100% 299.76% 344.4% 158.35% 42.53% 32.24% 

(c)  TIMIT Database for Street Traffic NSN  with G.712 Type Handset at 16 kHz 

Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 6.67% 18.33% 31.67% 55% 74.17% 84.17% 90% 

I-vector 16.67% 30% 38.33% 55% 66.67% 75.83% 82% 

Improvement 149.93% 63.67% 21.03% 0% 

(d) TIMIT Database for Bus Interior NSN  with G.712 Type Handset at 16 kHz 

Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 56.67% 72.5% 83.33% 85.83% 90.83% 91.67% 91.67% 

I-vector 48.33% 64.17% 74.17% 79.17% 81.67% 85% 89.17% 

Improvement 

(e) TIMIT Database for Crowd Talking NSN  with G.712 Type Handset at 16 kHz 

Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 10% 19.17% 39.17% 62.5% 74.17% 84.17% 90% 

I-vector 10% 25% 40.83% 57.5% 65% 76.67% 85% 

Improvement 

 NA  NA  NA  NA

 NA

 NA  NA  NA

 NA  NA  NA  NA  NA  NA  NA

 NA  NA  NA  NA  NA  NA  NA

 Highlighted the SIA to the I-vector and GMM-UBM When Both are Equal

 Highlighted the SIA to the I-vector and GMM-UBM When SIA of I-vector Outperform GMM-UBM

 Highlighted the Percentage Improvement of the SIA to the I-vector Compared with the GMM-UBM
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Table 7.2: Percentage Improvements for the I-vector Approach Compared with the
GMM-UBM Approach for the SITW Database Under Different Environments

(a) SITW Database for Original  Speech Recordings 
Approaches Mix 8 Mix 16 Mix 32 Mix 64 Mix 128 Mix 256 Mix 512 
GMM-UBM 73.33% 76.67% 78.33% 79.17% 80.83% 80.83% 82.5% 

I-vector 53.33% 72.5% 81.67% 84.17% 85.83% 85.83% 85.83% 
Improvement 4.26% 6.32% 6.19% 6.19% 4.03% 

(b) SITW Database for AWGN with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 4.17% 10.83% 23.33% 53.33% 74.17% 78.33% 78.33% 
I-vector 6.67% 16.67% 35% 65.83% 79.17% 82.5% 84.17% 

Improvement 59.95% 53.92% 50.02% 23.44% 6.74% 5.32 7.46% 

(c) SITW Database for Street Traffic NSN  with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 15.83% 24.17% 46.88% 63.33% 74.17% 79.17% 81.67% 
I-vector 22.5% 35.83% 54.17% 70.83% 78.33% 84.17% 84.17% 

Improvement 42.13% 48.24% 15.55% 11.84% 5.61% 6.32% 3.06% 

(d) SITW Database for Bus Interior NSN  with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 66.67% 72.5% 75% 79.17% 80% 81.67% 80.83% 
I-vector 65% 75.83% 77.5% 80.83% 83.33% 84.17% 86.67% 

Improvement 4.59% 3.33% 2.1% 4.16% 3.06% 7.23% 

(e) SITW Database for Crowd Talking NSN  with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 20% 65% 53.33% 72.5% 75% 78.33% 82.5% 
I-vector 29.17% 46.67% 65.83% 78.33% 84.17% 85% 85% 

Improvement 45.85% 8.04% 12.23% 8.52% 3.03%  NA  NA

 NA

 NA  NA

 Highlighted the SIA to the I-vector and GMM-UBM When Both are Equal

 Highlighted the SIA to the I-vector and GMM-UBM When SIA of I-vector Outperform GMM-UBM

 Highlighted the Percentage Improvement of the SIA to the I-vector Compared with the GMM-UBM
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Table 7.3: Percentage Improvements for the I-vector Approach Compared with the
GMM-UBM Approach for the NIST 2008 Database Under Different Environments

(a) NIST 2008 Database for Original  Speech Recordings 
Approaches Mix 8 Mix 16 Mix 32 Mix 64 Mix 128 Mix 256 Mix 512 
GMM-UBM 91.67% 91.67% 94.17% 95.83% 95% 95% 95% 

I-vector 60% 65% 85.83% 92.5% 95% 96.67% 95% 
Improvement 0% 1.76% 0%

(b) NIST 2008  Database for AWGN with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 0.83% 2.5% 3.33% 9.16% 15.83% 21.67% 26.67% 
I-vector 1.67% 3.33% 13.33% 56.67% 74.17% 79.17% 81.67% 

Improvement 101.2% 33.2% 300.3% 518.67% 368.54% 265.34% 206.22% 

(c) NIST 2008  Database for Street Traffic NSN  with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 1.67% 5.83% 15% 34.17% 55.83% 74.17% 80% 
I-vector 8.33% 14.17% 21.67% 43.33% 63.33% 73.33% 78.33% 

Improvement 398.8% 143.06% 44.46% 26.8% 13.43% 

(d) NIST 2008  Database for Bus Interior NSN  with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 22.5% 32.5% 45.83% 58.33% 75% 86.67% 92.5% 
I-vector 31.67% 36.67% 45% 60.38% 80.83% 84.17% 87.5% 

Improvement 40.76% 62.98% 3.51% 7.77% 

(e) NIST 2008  Database for Crowd Talking NSN  with G.712 Type Handset at 16 kHz 
Approaches SNR 0dB SNR 5dB SNR 10dB SNR 15dB SNR 20dB SNR 25dB SNR 30dB 

GMM-UBM 10% 15.83% 30% 45.83% 68.33% 79.17% 84.17% 
I-vector 6.67% 20.83% 26.67% 50% 68.33% 80.83% 85% 

Improvement 31.59% 9.1% 0% 2.1% 0.99% 

 Highlighted the SIA to the I-vector and GMM-UBM When Both are Equal

 Highlighted the SIA to the I-vector and GMM-UBM When SIA of I-vector Outperform GMM-UBM

 Highlighted the Percentage Improvement of the SIA to the I-vector Compared with the GMM-UBM

 NA NA

 NA  NA  NA

 NA  NA

 NA NA NA NA

In Table 7.5, the best feature with and without fusion method based GMM-UBM

approach are presented according to the highest SIA for each speech condition for

the TIMIT, SITW and NIST 2008 databases. Likewise in Table 7.4, it is evident

that the fusion-based GMM-UBM in Table 7.5 also outperforms the corresponding

feature combination for the same approach. However, both fusion mean and the
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Table 7.4: The Best Feature With and Without Fusion I-vector Methods According
to the Highest SIA for Three Databases

Environments Feature Based (Without Fusion) Feature Based (With Fusion) 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

Table 6.3

AWGN-WOH
at 30 dB 

AWGN-WH
at 30 dB 

Street NSN-
WOH at 30 dB 

Street NSN-WH
at 30 dB 

Bus NSN-WOH
at 30 dB 

Bus NSN-WH
at 30 dB 

Crowd talking –
NSN WOH at 30 
dB
Crowd-talking-
NSN WH at 30 

dB 

Where: F1:  FWMFCC  F2:  CMVNMFCC    F3:  FWPNCC F4:  CMVNPNCC   F5:  Weighted Sum 

F6:  Maximum    F7:  Mean F8:  Cumulative    F9:   Concatenated-2d    F10:  Interleaving-2d   

F11: Concatenated-4d. 

WOH Without Handset 

WH With G.712 Type Handset at 16 kHz 

This symbol for TIMIT-Database 

This symbol for SITW-Database

This symbol for NIST 2008-Database 

Original 
databases 
recordings 

Table 6.5 Table 6.5

Table 6.6

Table 6.7

Table 6.8

Table 6.9

Table 6.10

Table 6.11 Table 6.11

Table 6.12

Table 6.13 Table 6.13

Table 6.14

Table 6.14

Table 6.16

Table 6.17 Table 6.17

Table 6.18

Table 6.19

Table 6.20

Table 6.21 Table 6.21

Table 6.22

weighted sum have the best fusion methods. It is clear from this figure that the best

method for all databases without any noise and handset conditions was the weighted

sum fusion, which is represented by F5. However, in noisy conditions mean fusion

which is represented by F7 achieved the best SIAs for all databases.
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Table 7.5: Best SIA Performance for Feature Based Speaker Identification With and
Without Fusion for Three Databases Using GMM-UBM Approach

Environments Feature Based (Without Fusion) Feature Based (With Fusion) 

F1 F2 F3 F4 F5 F6 F7 

Original databases 
recordings  without 
additional noise and 

handset effects 
Results were taken from 

Table 5.2  

AWGN-WH 
Results were taken 

from Table 5.3 

Street NSN-WH 
Results were taken 

from Table 5.4 

Bus NSN-WH 
Results were taken 

from Table 5.5 

Crowd-talking-NSN WH 
Results were taken from 

Table 5.6

where: F1:  FWMFCC  F2:  CMVNMFCC    F3:  FWPNCC  F4:  CMVNPNCC  F5:  Weighted Sum 

F6:  Maximum  F7:  Mean     

WH With G.712 Type Handset at 16 kHz 

This Symbol for TIMIT-Database 

This Symbol for SITW-Database 

This Symbol for NIST 2008-Database 

 30 dB  30 dB 25 dB

   30 dB    30 dB

30 dB 30 dB

  25 dB   25 dB   30dB

  30 dB     30 dB   30 dB

 30 dB     30 dB   30 dB
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7.3 Suggestions for future work

Suggestions for future work are summarized by the following bullet points:

• Student’s-t Mixture Model instead of Gaussian mixture model is suggested

as alternative for future work, due to that having heavier tails than the

corresponding Gaussian distribution, which can improve the performance

accuracy.

• According to the I-vector approach, the work for this thesis can be extended

to other applications, such as emotion and language recognition based on the

I-vector, and the NIST 2008 database already has different languages; only

English speakers were exploited in this thesis.

• Speaker I-vector Machine Learning Challenge as well as the Language I-vector

Machine Learning Challenge can be exploited to develop a new I-vector speaker

and language identification system for future work, perhaps to compare the

results with a new identification system.

• This thesis opens the door for other biometric recognitions to exploit total

variability space, so instead of using the speaker and channel variabilities

based on voice-print or speech biometrics, it might be used to improve two

different variabilities based on image processing, and then implement their

total variability space for Iris, fingerprint, finger texture, face, or any other

biometrics applications.

• Increasing the number of speakers can be suggested, while different channel

variabilities can be considered as well. In addition, a telephone channel from

NIST 2008 can be exploited with the new simulations to implement or

compare the results with the new system. In addition, a new database could

be employed, such as: the GRID audiovisual, the MOBIO, VoxForge and

MOCHA TIMIT databases.

• This thesis gives new suggestions for fusion systems, which might be useful

for other biometrics recognition, for example using maximum, cumulative,

interleaving and concatenated fusion methods for multi-features, as well as

those classical fusion methods using mean and weighted sum.
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• The Extreme Learning Machines have been shown in this thesis to be simple,

powerful and efficient compared with other traditional classification methods,

and, therefore, they can be exploited for other works based on other biometrics

applications. Furthermore, the current thesis encourages other researchers

working in biometrics applications to exploit the characteristics for the ELM

to improve their systems.

• A new speaker identification system can be developed for multi-speakers/

multi-channels instead of the single speakers/single channel used in this

thesis. This can be achieved by exploiting both NIST 2008 and the new

database SITW 2016, where both databases contain multi-speakers.

• A very recent new database “ Noisy TIMIT Speech” appeared after the

generation of the work in this thesis in 2017 and it would be interesting to

use this for comparative evaluations.
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