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Abstract 

Supramolecular Hydrogels and Discrete Structures based on Metal 

Coordination and Hydrogen Bonding 

The complexation of thiolated nucleosides and nucleobases with a range of group 11 metal ions 

(Au(I), Ag(I), Cu(I/II), was observed to lead to the formation of hydrogels by simple inversion 

tests. Atomic force and electron microscopy of the xerogels showed, in many cases, the 

presence of fibres with lengths in the micrometre range and above; this provided evidence for 

the formation of coordination polymers. This thesis is concerned with the preparation, 

characterisation and investigation of the physical properties, mainly photoluminescence and 

conductivity, of these coordination polymers.  

2’-Deoxy-6-thioguanosine was successfully synthesised and characterized by UV, IR, Mass, 

1H-NMR, and 13C-NMR spectroscopy. The formation of coordination polymers upon reaction 

of Au(I), Ag(I), and Cu(II) ions with 2’-deoxy-6-thioguanosine and 6-thioguanosine in aqueous 

media produced hydrogels with up to 97% water+methanol by mass. The Au-6-thioguanosine 

gel was studied in more detail because of the interest in gold thiolate polymers and the novel 

properties observed for Au(I)-6-thioguanosine. Fluorescence spectroscopy observed a strong 

yellow emission (λmax = 606 nm) which is not present in 6-thioguanosine nor in the Au(I) 

solutions. The optical absorption spectrum of the coordination polymer showed a band at (λmax 

= 360 nm) assigned to the HOMO-LUMO transition located mainly on the S-Au-S…chain of 

the polymer. An induced CD band associated with the Au-S chain and an enhancement of the 

CD signal at shorter wavelengths, for transitions associated with the ligand, suggested the 

polymer has a helical structure. Further evidence was provided by analysis of the X-ray 

scattering pattern of the xerogel and atomic force microscopy of single fibres deposited on 

silicon chips. 

The observation of long Au(I)-6-thioguanosine fibres and strong photoluminescence suggests 

some delocalisation of the states associated with the Au-S chains and the possibility of 

electronic conductivity. This was demonstrated upon oxidative doping of Au(I)-6-

thioguanosine xerogels coated over platinum microband electrodes. Treatment with iodine 

vapour or ([Br(C6H4)3N]SbCl6) in anhydrous acetonitrile were found to result in linear current-

voltage characteristics. The temperature dependence of the conductance showed Arrhenius 

behaviour (over range of temperature 223 to 323 K) with an activation energy of 94 kJ mol-1. 
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More complex structures based on Au(I)-6-thioguanosine polymers were observed upon 

synthesising the polymer in the presence of duplex DNA (from calf thymus). The templating 

of the polymer on DNA produces long, regular, and uniform fibres with a beads-on-a-string  

morphology. An unusual self-assembly of Au(I)-6-thioguanosine at flat Si surfaces upon simple 

drop-casting, with slow evaporation was also observed. AFM images of these films showed the 

formation of well-defined layers, but with each layer comprising long ribbons exceeding the 

maximum length of the AFM scan (~15 micrometres). 

Ag(I)-containing hydrogels formed by reactions with 6-thioguanine, 6-mercaptopurine, and 2-

thiocytosine were prepared and characterised by AFM, TEM, XPS, X-Ray, FTIR, UV-Vis, and 

fluorescent spectroscopy. Au(I) 2-thiocytosine was also prepared, but this produced a discrete 

complex rather than a gel. AFM of the Ag(I) xerogels showed the formation of very long fibres 

and this was confirmed by TEM images. FTIR and X-ray diffraction studies suggested the metal 

coordination occurred via S atoms in all three gels. The Au(I) 2-thiocytosine was found to have 

strong luminescence (λmax 622 nm). A new Ag(I):6-thioethero nucleoside complex was 

prepared containing 6-methylmercaptopurine riboside (6-MMPR) which was shown by single 

crystal X-ray diffraction to unexpectedly feature coordination via N7 rather than the thioether 

sulfur atom. Cu(II) & Co(II):6-methylmercaptopurine(6-MMP) were also synthesised as new 

discrete complexes. The metals binding was studied by single crystal X-ray diffraction which 

showed that the binding sites were N3& N9 for Cu(II) ions, and N9 for Co(II) ion in the 

complexes.  
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Chapter 1. Introduction 

1.1 Nucleic acids and metal ions 

Nucleic acids are interesting compounds for metal ion coordination polymers because they 

possess many metal-ion binding sites, e.g. the nitrogen atoms1-6 of the nucleobases and the 

oxygen atoms of the phosphate groups.7-10 Hud11 referred to DNA as an ionophore where the 

monovalent and divalent cations are coordinated in specific sequences at the grooves of the 

DNA. He explained how the width of this groove and the order of the electronegative groups 

on the nitrogen bases are rationalized with the binding sites that are preferred by the cations. 

Metal ion coordination to nucleic acids plays a vital rule in biochemistry12, and DNA binding 

drugs based on platinum are well known anticancer treatments.13  

Alkali metal ions can be found- in the intracellular space bound to both RNA and DNA. K+ has 

the highest concentration but other counter cations include Mg+, Na+, and Ca+ are less 

concentration. Other metal ions such as Cu, Zn, Fe are present as trace elements. Increasing 

the concentration of these elements over the normal level is related to some known diseases, 

e.g. Fe in hematochromatosis and Cu in Wilson disease’s patients.11  

There are two types of interactions between metal ions and nucleic acid: first, the non-covalent 

which involves mainly electrostatic interactions. The second type is coordinate bonding ( inner-

sphere) which is a direct interaction between the metal ions and the donor binding site in the 

ligand.11 These two types of coordination are sometimes distinguished as first (outer) and 

second (inner) sphere coordination.   

Nucleobases are classified into purine and pyrimidines. The purines include adenine and 

guanine and are characterised by a higher heteroatom number which makes them good bridging 

ligands.14 In addition, N1 and N7 are the preferred binding sites in adenine along with O6 in 

guanine.15 Pyrimidines involve cytosine, uracil, and thymine and the favored binding site with 

metal ions is N3. The exocyclic amino group in nucleobases is not usually a good binding site 

because of delocalization of the lone pair of electrons at N in the aromatic ring.16 Fig.1.1 

displays the common binding sites in the nucleobases in natural and preferred tautomeric 

structures.     
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Figure 1.1. Common binding sites with metal ions in nucleobases guanine (G), cytosine (C), adenine 

(A), and thymine (T).11   

The complementary nucleobases pair via hydrogen bonding and dimers in DNA (A-T, G-C). 

They may also assemble into chains based on intermolecular hydrogen bonding interactions17 

to give networks with the common Watson-Crick pairing and the Hoogsteen pairing, as shown in 

Fig. 1.2. 

        

Figure 1.2. Shows adenine and thymine base pairs in Watson-Crick (left) and Hoogsteen pairing.18    

 

The presence of additional binding sites in the nucleobases gives them a high tendency to self- 

assemble and form large structures such as fibres or ribbons.19 Nucleosides and deoxynucleosides 

have been demonstrated to combine with several metal ions to form gels from an aqueous 

medium, i.e., hydrogels.20-22 Guanosine derivatives23 are known to form hydrogels in the 

presence of alkali metal ions such as K+.  Jean- Marie Lehn,24 who had won Nobel prize in 

1987 in supramolecular chemistry, demonstrated that in the presence of metal ions such as K+, 

Na+, and NH4
+, guanosine hydrazide forms stable gels. The natural nucleobases are O and N-

donor atom ligands; in this thesis the interaction of metal ions with various thiolated 

nucleobases, which are expected to prefer softer metals (Au, Ag, Cu, etc) are investigated.   

Scheme 1.1 presents the thio- nucleobases and thio -nucleosides that were used in this thesis.  
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Scheme1.1. Illustrates thio nucleobases and thio nucleosides that used in this work. 

1.2 Gel: definition and classification  

A gel has a crosslinked network in which there is a liquid phase, which is dominant in terms of 

volume, but the system which does not flow like liquid. Such a three-dimensional (3D) network 

may be formed by cross-linking polymer chains with either covalent or non-covalent bonds 

(e.g., H-bonds), Scheme 1.2. In the absence of these cross-links the interactions of entangled 

polymer chains required to form an extended network does not occur and the sample rheology 

and viscosity are not that of a true gel. In particular, the sample will not retain its shape under 

an applied force. A gel is characterised as weak, non-covalent and reversible when it has 

physical cross-links, while strong, covalent, and irreversible properties can be found for 

chemically cross-linked gels.25 
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Scheme. 1.2. Shows a gel with a network in three dimensions where the polymer chains (blue) are 

connected by cross links (red).     

 

 According to the solvent that is used to prepare the gel, a gel can be classified as hydrogel 

when the solvent is water and organogel when the solvent is an organic solvent. Another 

classification can be used depending on the state of the gel; drying the gel slowly at room 

temperature leads to a material called a xerogel.26 These are characterized with high surface 

area (150-900 m2/ g), high porosity (25%), typical pore sizes in range 1-10 nm and have found 

applications in electronics.27 A second kind is the aerogel, which is produced by drying the gel 

under supercritical conditions and this process leads to replace the liquid content by gas and in 

consequently a very low density solid is formed.28    

Gelation, the term that refers to the process of gel formation, occurs via physical or chemical 

cross linking.28 The classic test for gel-formation is to invert the test tube, in that the gel is 

stable towards gravitational force when it is put upside down. 

In general, the hydrophilic surface of a hydrogel makes it biocompatible with body fluids and 

proteins due to the low surface energy in such media, which reduces the tendency of 

macromolecules to adsorb.28 Furthermore, because hydrogels are soft, they may cause less 

irritation. The high quantity of water (up to 99 %)29 in their composition is similar to living 

tissue for these reasons hydrogels find numerous applications in the fields of pharmaceuticals 

and medical devices30,31 for example as lenses, artificial skin and heart, biosensor membranes, 

and devices for drug delivery. Steed32 used anion supramolecular gels as a new tool for 

controlling organic pharmaceutical crystal growth; bis (urea) with a variety of end groups were 

used as a crystallisation media. Gels can be obtained from various materials such as fatty acid, 

amino acid,33-35 steroids,36 metal complexes,37-39 saccharides,40-43 and amides,44-47 in addition 

to bis (urea).48-56   
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1.3 Coordination polymers 

The definition of coordination compound according to the IUPAC is a compound that has a 

coordinating entity, which can be defined as a metal ion or inorganic cluster to which is bound 

surrounding groups of atoms that form a ligand.57  

Coordination polymers (CPs) are hybrid compounds that are based on the reaction between 

metal ions and inorganic or organic compounds that connect by linkers to form structures of 

one, two, and three dimensions. This class of materials have attracted great attention due to the 

broad range of properties that found in these materials which make possible numerous 

applications e.g luminescence, electrical conductivity, porosity, and magnetisim.58  

Building the blocks of coordination polymer by using the metal, which typically acts as a node, 

and the ligands, which are linkers, can be followed by self-assembly of these blocks to form 

different architectures of one, two, and three dimensions. The way that the components are 

joined with each other defines the architectures.59 Fig. 1.3, 1.4, and 1.5 presents structural 

motifs of 1D, 2D, and 3D coordination polymers.60           

 

Figure 1.3. One-dimension coordination polymers.60 

 

Figure 1.4. Two-dimension coordination polymers.60 
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Figure 1.5. Three-dimension coordination polymers.60 

Metal ions usually bind to donor ligands with regard to the concept of hard-soft acids and bases. 

The term soft refers species which are large and polarizable, while hard refers to small species 

which are less polarizable.61 Metal ions are classified as Lewis acids, and the ligands as Lewis 

bases, and metal ions such as Au(I), Ag(I), Cu(I) can be classified as soft acids, while Co(III), 

Cr(III), Al(III), and Na(I) are hard acids. Some of them are classified as borderline, e.g. Cu(II), 

Co(II), Zn(II), and Fe(II). Table 1.1 shows some metal ions and ligands classified according to 

hard-soft acid-base theory.61 In general, soft acids prefer to combine with soft bases and hard 

acids with hard bases. 
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Table 1.1 Classification of metal ions and ligands according to hard-soft acid-base theory61.  

 

Coordination polymers that contain transition metal ions are attracting attention because they 

display various properties related to their geometry, and electronic functionality; which can 

make them useful as a means to introduce magnetism and redox properties into the final 

material.62 Different types of coordination geometries that may be seen with transition metals 

include linear, square planar, tetragonal, octahedral, etc.     

Coordination polymers complexes are typically, insoluble, a few are soluble, and in some cases 

their solubility can cause decomposition, this feature can be exploited in nanotechnology.59 

These new applications are based upon organizing the CP on surfaces such as mica and graphite 

as materials for applications in nanoelectronics, nanosensing, and spintronics.63 In the case of 

nanowires sonication of a suspension coordination polymers leads to cleavage the non-covalent 

bonds between single chains such as van der Waals and hydrogen bonds and the release of 

single CP chains which may be adsorbed on a smooth surface for study by probe microscopy. 

This strategy allows experimenters to obtain 1D CPs with controlled length such as the highly 

conductive wire of length 40 nm that was obtained from terpyridine and the metal ions, Co(II) 

& Fe(II).64 
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Using biomolecules as ligands can lead to the formation of a coordination polymer (CP) which 

has features that are compatible with the original ligand. Such ligands have multiple binding 

sites and that can increase the diversity of structures formed. The coordination of the metal ions 

is also affected by different conditions such as the oxidation state of the metal ion, the pH of 

the reaction, the mole ratio, etc. Nucleobases are ideal biomolecules to form different CPs with 

metal ions as they have different binding sites with lone pairs on atoms such as N, O, and S, 

and they have a hydrogen bonding system that helps to facilitate self-assembly of CPs. 

However, such spaces often do not form crystals and most of these compounds form amorphous 

material or particles.     

1.4 Chemistry of copper 

Copper ion exist in two common oxidation states Cu(I) and Cu(II). Cu(I) has the electronic 

configuration 3d10, and Cu(I)compounds are diamagnetic; the colour of these compounds is 

produced from charge transfer transitions or the anion. Cu(II) has the electronic configuration 

3d9; the configuration d9 makes Cu(II) complexes of both common geometries, octahedral and 

tetrahedral, subject to Jahn-Teller effect, and the compounds with this state are paramagnetic 

and blue in colour. In general, the blue or green colour of copper (II) complexes is produced 

by the absorption at 600-900 nm and this can be attributed to the d-d transitions or ligand to 

metal transition. The reduction potential is used to indicate the stability of the two states65 as 

the higher positive potential indicates a higher tendency for the complex to be reduced: 

                                            

𝐂𝐮+  +  𝐞−  =  𝐂𝐮   𝐄° = 𝟎. 𝟓𝟐𝟎 𝐕 

    𝐂𝐮+𝟐 +   𝐞− = 𝐂𝐮+     𝐄° = 𝟎. 𝟏𝟓𝟗 𝐕   

And  

𝐂𝐮   +    𝐂𝐮+𝟐 = 𝟐𝐂𝐮+      𝑬° = −𝟎. 𝟑𝟔𝟏 𝐕 ;      𝑲 = [ 𝐂𝐮+𝟐]/[𝐂𝐮+]𝟐  =  ~𝟏. 𝟑𝟔 𝐱 𝟏𝟎𝟔 at 

298 K.66 

Where K is the equilibrium constant. In aqueous solutions, the stability of Cu(I) and Cu(II) 

compounds depend on different factors such as the anion, solvent, and other atoms in the 

crystal.65 The only stable Cu(I) compounds in water are the simple compounds, for example 

CuCl and CuCN. The reason for the instability of Cu(I) complexes in water can be assigned to 

the solvation energies and the higher formation constants for complexes of Cu(II).65 Cu(I) d10 

has coordination number from 2 to 5 including linear, planar, tetrahedral disturbed planar, and 
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square planar geometries.  Cu(II) adopts square planar, tetrahedral, octahedral, pentagonal, and 

disturbed octahedral geometries. In contrast to Cu(I), most Cu(II) salts are water soluble. The 

magnetic moment of Cu(II) complexes is in range of 1.75-2.2 BM.65     

1.5 Chemistry of silver 

Silver possesses the highest electrical and thermal conductivity among all metals.65 It has 

electronic configuration 4d10 5s1. Ag(I), 4d10, is the most common oxidation state. In general, 

silver(I) d10 adopts coordination number in range of 2-6 involving linear, trigonal, tetrahedral 

and square planar, dist. pentagonal & pentagonal pyramidal, and octahedral geometries. The 

most common coordination geometry is linear as shown in Scheme 1.3. This can be assigned 

to the filled 4d10 and unfiled 5s which allows hybridization of the dz2 and s orbitals. Silver 

complexes with linear geometry are normally formed with monodentate ligands, however, 

chelating ligands lead to polynuclear complexes. The coordination number depends on the type 

of the ligand and the anion and according to that, different kinds of structures are able to form 

as consequence of the ligand bonding and geometry. Many ligands which have donor atoms 

such as S, N, P, As, Se, etc, can form complexes with silver.   

 

Scheme 1.3. Shows linear coordination for Ag(I) complexes. 

Silver with oxidation state (II) d9, was formed with fluoride AgF2 as a dark brown solid; other 

complexes with this state such as [Agpy4]
+2, [Ag(dipy)2]

+2, and [Ag(phen)2]
+2 were also 

synthesized.  Ag2O3 as black oxide was prepared for silver d8 with oxidation state (III) but it 

was not purified compared to Ag2O.65 However, Ag(II) is a powerful oxidant and relatively 

unusual oxidation state.    

1.6 Chemistry of gold     

Gold has two common oxidation states (III) and (I), while the state (V) was found only with 

fluoro gold complexes. The coordination geometry for gold complexes with oxidation state (I) 

are linear, trigonal, and tetrahedral, and  quadratic planar with oxidation state (III), while 

octahedral is the typical geometry for gold (V).65,67 No species were found for both bare Au(I) 
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and Au(III) in water because in aqueous solution both aurous and auric cations will be reduced 

to the metal by water.68 The electronic configuration for Au(I) is 5d10 6s0 6p0 and for Au(III) is 

5d8 6s06p0 . The closed shell 5d10 is not inert and can react with many elements. As a metal gold 

has high electric conductivity, thermal stability, and softness.69 Gold (I) complexes are 

normally linearly coordinated and can be found as mononuclear complexes with forms 

[AuXL], [AuL2],
+ and [AuX2]

-. In the solid state, these complexes are characterized with short 

intermolecular Au....Au distances. Au (I) complexes can be found with polydentate ligands 

such as diphosphines which form highly stable complexes with Au(I)69. Au(III) complexes can 

be found with ligands that have, C, N, P, S, and O donor atoms.69          

Among the three metals of group 11 that involve Au, Ag, and Cu (coinage metal), silver seems 

to be the normal metal compare to Au and Cu, as Au has strong aurophilic interactions due to 

the relativistic effect, while Cu has abnormal features owing to the tight d shell orbital and the 

strong electron-electron repulsion that leads to the formation of Cu(II) and is responsible for 

the brown color of copper.70 The massive Stokes shift of the luminescence in  copper complexes 

can be assigned to the distorted excited state.71 Fig. 1.6 displays the main difference in the 

orbital energy between gold and silver which can be assigned to the relativistic effect.72 

 

Figure 1.6. Comparison relativistic (R) and nonrelativistic (NR) energies in AgH and AuH showing 

the difference of orbital energy that is attributed to the relativistic effect. 72 

 

For gold oligomer complexes, the Au-Au bonding is stronger in the first excited state and 

weaker in ground state and that can be assigned to the electronic configuration of closed shell 

(5d10) in the ground state, compared to the excited state which has electronic configuration 

(5d96s1). Merging 6s and 6p with 5d orbitals, as a result of strong gold relativistic effects, can 

strengthen aurophilic bonding in the ground state.73 Comparison between the complexes of Au 

and Ag (which do not have relativistic effects) found that the Au-Au bond is weaker in the first 



11 
 

excited state and stronger in the ground state as a consequence of relativistic effects which 

helps to merge 6s, 6p, and 5d orbitals rather than Ag-Ag bond and this can rationalise the large 

Stokes shift of the luminescence of gold complexes.      

 1.7 Gold (I) complexes in medicine  

Among coinage metal ions, gold possesses special interest in pharmaceutical applications since 

ancient eras, because it was used by Arabic and Chinese people since 2500 BC to treat different 

diseases. More recently, it was used for rheumatoid arthritis treatment since 1930.74 Complexes 

of Au(I) have a linear geometry while Au(III) complexes are often square planar. The linear 

arrangements of P-Au-S and Au-S-Au-S- systems showed significant bioactivity. Fig. 1.7 

displays some of these compounds that are used for rheumatoid arthritis treatment such as 

myocrisin, auranofin, sanocrysin, solganol, and allocrysin.75 

 

Figure 1.7. Chemical structures for some of gold thiolate compounds that are used for rheumatoid 

arthritis treatment:751) aurothioglucose (solganol), 2) aurothiomalate (myocrisin), 3) sanocrysin, 4) 

allocrysin, 5) and   auranofin. 

1.8 Silver(I) complexes in medicine 

Silver has many applications; it has a long history of  us as an antibiotic, for the purification of 

water, as an antiseptic in surgery, in wound treatment, and recently it found applications in 

bone prostheses and reconstructive orthopaedic surgery.76  Silver sulfadiazine77-79 which is sold 

as a medicinal product under brands Silvadene and Flamazine, is the most common 

pharmaceutical product containing silver; it contains 1% silver, and is used for burns treatment 

in which it acts to prevent bacterial infection. Fig. 1.8 presents the chemical structure of silver 

sulfadiazine. 
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Figure 1.8. Silver sulfadiazine structure (left) and polymeric structure (right).78 

Other examples of bioactive silver (I) complexes include N-heterocyclic carbene complexes80 

which exhibit potential as antimicrobial agents. Fig. 1.9 displays the chemical structure of these 

complexes. 

                   

Figure 1.9. Silver(I)-2,6-bis(ethanolimidazolemethyl)pyridine hydroxide (left) and silver(I)-2,6-

bis(propanolimidazolemethyl) pyridine hydroxide (right).80 

1.9 Copper (I) complexes in medicine 

Copper plays important role in some non-enzymatic process in biological systems, such as 

angiogenesis and  nerve myelination,81 and in oxidative enzymes; electron transfer is the 

common biochemical function of copper ions, in addition to energy capture.82 The best known 

diseases that related to disorders of copper homeostasis are Wilson’s disease (autosomal 

recessive) and Menke’s disease (inherited disorder). Wilson’s disease involves an increase in 

the level of free copper and Menke’s disease is related to copper deficiency.83-85  The interest 

in copper complexes has increased recently due to the potential of these complexes as 

antimicrobial, antiviral, anti-inflammatory, antitumor agents, etc.85 Numerous Cu complexes 

were revealed to have potential of bioactivity.84,86-92 Some Cu complexes exhibit antibacterial 

activity such as the complex of Schiff bases derived from thio-benzyldithiocarbazate and 

salicylalehyde.93 The Cu(II) complex of salicylaldehyde benzoylhydrazone (H2sb) showed a 

dramatic increase in bioactivity compared to the bioactivity of the ligand. The Cu(II) complex 



13 
 

of salicylaldehyde acetylhydrazone (H2as) also showed similar function.94 Numerous Cu 

complexes were revealed to have potential of bioactivity. 84,86-92  

1.10 Nucleobase and nucleoside hydrogels with and without coinage metal ions  

The formation of gels has been widely reported, therefore this section will concentrate on 

metallogels. The incorporation of metals allows modification of the physical properties95 of the 

gel such as optical ,magnetic, and catalytic properties.96-98 On the other hand, the potential of 

using thio nucleobases in pharmaceutical application leads to more interest in these 

complexes.99,100 However the field of coinage metal/thionucleobase gels is relatively 

unexplored. There are a few examples of  synthesis of some crystalline compounds, such as 

the derivative of gold ferrocenyl amide phosphine thiolate101 and amino phosphine gold(I) 

thiolate.102 Mann103 synthesised a silver guanosine hydrogel and he assumed that the polymer 

is  a dimer of two molecules of guanosine mono phosphate and Ag(I) ion was binding via O6 

of one of the molecular and N7 of the other molecular, Fig. 1.10. 

 

Figure 1.10. (a): The scheme of adding Ag(I) into GMP (1), (2) deprotonation of N1, and (3) dimer 

formation of Ag: GMP via N7 and O6. (b): Photograph of Ag: GMP hydrogel.103 

 

A coordination polymer of Ag(I) and guanine was prepared by Loo;104 an increase in  circular 

dichroism upon addition of Ag(I) to the guanine was observed and the author suggested that 

Ag (I) forms a dimer with guanine via N7 and O6, Fig.1.11. 
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Figure 1.11. Dimer structure of Ag: guanine via N7 and O6.104 

 

The same complex of silver guanosine was synthesised by Matsuoka105 and Orioli.106 The 

former suggested that Ag(I) formed a dimer by replacing the enolic proton Ag(I) and also 

coordinated to N7 of another guanosine molecule, but the latter suggested that Ag(I) formed a 

chelate ring with the guanosine via N7 and O6. Studies of a series of monovalent cations 

including Ag(I), Au(I), Rb(I), K(I), Na(I), and Tl(I) ion on their ability to induce deoxy 

guanosine (d Gs) and guanosine (Gs) purine to form hydrogel were performed by Adhikari,20 

Fig. 1.12. 

 

Figure 1.12. (a) Chemical structure of guanosine and deoxy guanosine, (b) G –quartet formation with 

metal ions, (c) Photo of hydrogels of Rb+1, Ag+1, and Tl+1 with G from right to left respectively. (d) 

Photo of K+1: G hydrogel display formation of crystal/ decomposition the gel from left to right with 

increasing time over several hours.20 
 

Coordination hydrogels of Ag(I) ion with adenine, thymine, cytosine, uracil, and guanine were 

synthesised recently by Sharma.107 Single crystals of all the compounds were not obtained and 

it was assumed that the binding sites for coordinating Ag(I) with adenine, cytosine, uracil, and 
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thymine were via N9, N1, N3, and N3 ,respectively, while with guanine the binding site was 

via N7 and O6, Fig. 1.13 displays micrographs of the networks obtained.  

 

Figure 1.13. TEM (a) and SEM (b) images of Ag(I): adenine hydrogel, (c) SEM image of Ag(I): 

guanine precipitate that was prepared in basic medium.107  

 

The hydro-gels of guanosine derivatives were prepared by using binding modes via the sugar 

group, C8, and phosphate group. Peter108 prepared a guanosine borate monoester hydrogel in 

the presence of KB(OH)4 and KOH, Fig. 1.14, it was found that using KB(OH)4 is more 

effective than LiB(OH)4 and this was assigned to the more effective stabilising role of K+ than 

Li+ in the formation of G-quartets.109,110   

 

Figure 1.14. Synthesis of a guanosine borate monoester hydrogel in the presence of KB(OH)4 and 

KOH.108 

 

Using guanosine (G) and bromoguanosine (BrG), Das111 prepared hydrogels by heating a 

mixture of G and BrG in the presence of K+ to 100 °C. The gel was easily formed upon cooling 

the hot solution, Fig. 1.15.   
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Figure 1.15. TEM images with scale bar 200 nm of: A) guanosine (G), B) bromoguanosine (BrG), C) 

1:1 G:BrG, 2:1 G:BrG hydrogels.111 

 

Kwan10 observed that disodium 5-thioguanosine-5-monophosphate, Na2(5-GSMP) forms a 

gel in pH 8  (Fig. 1.16) but that disodium guanosine mono-5-phosphate, Na2(5-GMP) does 

not. The author attributes the reason to the higher pKa2 value (6.0) of Na2(5-GMP) compared 

to the lower value (5.1) for Na2(5-GSMP).      

 

Figure 1.16. Photograph of the gel and the chemical structure of disodium 5-thioguanosine-5-

monophosphate Na2(5-GSMP) at pH8.10 

 

A stable gel of guanosine and guanosine (Gs)monophosphate(GMP) was prepared112 at neutral 

pH, the binary mixture turned from liquid to gel upon heating. The high solubility of GMP at 

room temperature in water assists to solubilize Gs which is normally insoluble at the same 

conditions while the insolubility of Gs helps the formation of the gel, Fig. 1.17.        
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Figure 1.17. Binary mixture of guanosine (Gs) and guanosine monophosphate (GMP) from left to right, 

liquid, viscous fluid, and gel.112 

 

A stable supramolecular hydrogel was synthesised based on the formation of G-quartets of a 

guanosine hydrazide derivative24 in the presence of K+, Na+, and NH4
+, Fig. 1.18. The reaction 

of different aldehydes with hydrazide lead to form hydrogels of acylhydrazone. 

 

Figure 1.18. (a) Guanine derivatives self-assemble to G-quartets in the presence of metal ions. (b) photo 

image of the gel.24 

 

A stable supramolecular gel113 at neutral and basic pH was synthesised by coordination of Zn+2 

with adenosine monophosphate (AMP), Fig. 1.19.   

 

Figure 1.19. Coordination of Zn+2  to adenosine monophosphate  (AMP) to form stable supramolecular 

gel at natural and basic pH via N7 and phosphate group.113 The TEM image shows the fibrous natural 

of the gel. 
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Under ultrasonic radiation, a 2deoxyadenosine derivative (Fig. 1.20) formed a hydrogel.114 

The gelation was reversed by heating. Gelation was suggested to be driven by changes in the 

hydrophobic-hydrophilic nature of the compound upon oxidation of the 2deoxyadenosine 

derivative to a hydroxylated derivative, Fig.1.20 & Fig. 1.21. 

 

Figure 1.20. 2deoxyadenosine derivative with an octyl hydrocarbon tail and a urea linker. 

 

Figure 1.21. (a) & (c ) Photo and SEM image of 2deoxyadenosine derivative (Fig. 1.20)  before 

sonication, (b) & (d) after sonication.114 

 

A solution mixture of cationic gemini surfactant and uracil monophosphate(2U5MP) 

demonstrated gelling behaviour when added to adenosine monophosphate (2A5MP),115 Fig. 

1.22. The addition of guanosine showed formation of a precipitate while addition of cytidine 

formed a gel as result of forming non-complementary pairs by hydrogen bonding and base 

stacking. 

 

Figure 1.22. Gemini n-2- n - uracil 5monophosphate (2U5MP) solution demonstrated gelling 

behaviour upon addition of adenosine mono phosphate(2A5MP).115 
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A superparamagnetic porous hydrogel was formed from 5’adenosine monophosphate (5’-

AMP) and  β-iron oxyhydroxide (β-FeOOH) by Kumar.116 The morphology of the hydrogel 

was affected by the medium, pH, and temperature, Fig. 1.23. Also, the author observed that the 

morphology of the nanorods was altered to spherical nanoparticles upon addition of 5’-AMP 

into β-FeOOH and that lead to formation a porous hydrogel.   

 

Figure 1.23. Pours superparamagnetic hydrogel of 5’AMP & β-FeOOH.116 

 

No gel has been reported for coordination of gold ions with nucleobases or nucleosides to the 

best of my knowledge, but some researchers synthesised gold hydrogel with other compounds. 

The work by Odriozola,117 demonstrated the ability of Au(III) to form a transparent, thermally- 

stable hydrogel upon reaction with glutathione (GSH)  in water. Fig. 1.24 shows the primary 

structure of the thiolate-gold polymer where the atoms of sulfur and gold are ordered in a 2D 

plane and the vertically chains of gold with thiol are lying to each side of the plane. The 

aurophilic interactions of Au-Au were estimated to contributed to the stability of the structure 

by 21-41.8 kJmol-1. Self –assembly of the 2D sheets leads to the formation of a structure of 3D 

lamellar or multi bi layers via stacking of R groups.       

 

Figure 1.24. Gold (1) thiolate polymer structure, a) shows the 2D structure, b) showing the Au atoms 

are arranged to each other with a very small distance and stabilized by the effect of aurophilic.117 
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A few years later, the same researchers prepared a transparent hydrogel from gold (III) with 

the drug N-acetyl-L-cysteine (NAC), Fig. 1.25, using metallophilic attractions as a new system 

of drug delivery.33 The gelation occurred via the self-assembly of the Au(I) thiolate polymer.   

 

Figure 1.25. Au: N-acetyl-L-cysteine (NAC) hydrogel.33 

 

Recently, a luminescent hydrogel of the phosphine gold(I) alkynyl complex [Au(4-

pyridyethynyl)(DAPTA) was synthesised118 by reaction of 3,7-diacetyl-1,3,7-triaza-5-

phosphabicyclo[3.3.1] nonane (DAPTA)with [Au(CCC5H4N)n], Fig.1.26. Aggregation of 

the complex in water led to formation of very long fibres, Fig. 1.27.  

 

Figure 1.26. Synthesis [Au(CCC5H4N)(DAPTA)] hydrogel.118 

 

Figure 1.27. Optical microscopic image for [Au(CCC5H4N)(DAPTA)] hydro gel fibres, a) after 

one day, b) after five days.118 

  

Another water soluble luminescent [(PTA)Au(4-pyridylethynyl)] hydrogel was synthesised,119 

Fig. 1.28, by reacting [Au(CCC5H4N)n] with phosphine 1,3,5-triaza-7- phosphaadamantane 

(PTA), Fig. 1.29. The insoluble water complex of analogous derivative with 2-pyridyl was 
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reported in a previous publication,120 it was found that a small modification of the structure can 

cause a large change in the physical properties e.g. solubility in water.  

 

Figure 1.28. Synthesis [(PTA)Au(4-pyridylethynyl)] hydrogel.119 

 

Figure 1.29. Fluorescence microscopy image of a [(PTA)Au(4-pyridylethynyl)] hydrogel.119 

 

Rodriguez and co-workers121 reported the gelation of a phosphine-gold(I)-alkynyl- coumarin 

complex, [Au{7-(prop-2-ine-l-yloxy)-l-benzopyran-2-one}- (DAPTA)]. They explained the 

interesting role of aurophilic interactions in both the crystal structure of the gold complex in 

the aggregation process of this compound which affects the luminescence features of the gel. 

The other important impact of aurophilic interactions is on the stabilization of the structure; 

this was estimated to be in the range 29-50 kJ mol-1, this is comparable to the free energy 

associated with confirmed with hydrogen bonding, Figs. 1.30 & 1.31 show fluorescence image 

of the gel and the chemical structure of DAPTA, respectively.   

 

Figure 1.30. Fluorescence microscopy image of a dried solution of 1 mM (DAPTA) hydrogel using 

filters: 300-400 nm (a), and 450-490 nm (b).121 
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Figure 1.31. Shows the chemical structure (a), and crystal structure (b) of (DAPTA).121 The a-axis in 

(b) displays the aurophilic interactions. 

  

Similar to gold, no gel was recorded for copper with any nucleobase or nucleoside before the 

work in this thesis. Copper metallogels  are certainly known, such as the chiral coordination 

polymer gel of copper (II) that was prepared with L & D-aspartic acid (Asp),122 as shown in 

Fig. 1.32.    

 

Figure 1.32. (a) SEM image of Cu-Asp nanofibers, (b) illustration Cu-Asp synthesis as nanofibers, (c) 

CD spectra of Cu-Asp-L (blue) & D(red), (d) optical image of Cu-(D-Asp) fibres, (e) photo image of 

Cu(II) gel.122   

A chiral coordination hydrogel of (D) and (L)-phenylalanine(Phe) with Cu(II) was synthesised 

by Shen.34 The author found that the gelation formation process was increased upon increasing 

the percentage of enantiomeric excesses, Fig. 1.33.  
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Figure 1.33. (a) Cu(II) phenylalanine(Phe) gel reaction. (b) CD spectra of Cu-(D-Phe, blue line) and 

(L-Phe , red line).34  

A photo-switchable hydrogel of 22-bipyridine was synthesised using a pincer-type Cu(II) 

terpyridine complex by Fang.123 Upon UV irradiation at 320 nm the gel  collapsed and reformed 

again when irradiated under visible light after 15 min, as shown in Fig. 1.34.  

 

Figure 1.34. Synthesis of a hydrogel consist of 22-bipyridine and Cu(II) terpyridine(a) as picer type. 

The gel was collapsed when irradiation under UV at 320 nm and reformed again when irradiation to 

visible light after 15 min.123   

 

A copper metallogel124 was synthesised from copper chloride, 4-(1H-pyrazol-3-yl) 

pyridine(Hppy)2 complex, and triethylamine in dimethylformamide (DMF), the gel revealed 

the ability to encapsulate an europium cluster to produce a luminescent gel, Fig. 1.35.    
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Figure 1.35. Synthesis of CuCl2(Hppy)2 metallogel (a), photographic image of the gel (b), and emission 

spectrum of the xerogel encapsulated europium cluster with an excitation wavelength of 340 nm (c).124  

 1.11 Metal-nucleobase and nucleoside discrete entities    

Numerous compounds were reported concerning the formation of metal-nucleobases and metal 

nucleosides complexes. This class of compounds has a potential role in pharmaceuticals 

applications.58 Pt(II) was studied intensively as consequence of the role of Cisplatin as an 

antitumor agent. Pioneering researchers who did intensive work in metal-nucleobase chemistry 

include Lippert,6,125-127 Zamora,58,128-133 Verma,134-137 Houlton,138-141etc., they synthesised 

numerous compounds biased on metal coordination with nitrogen bases of  DNA and RNA and 

their derivatives. The reaction of metal ions with DNA and RNA bases usually forms 

amorphous142 or micro crystalline solids that are very difficult to characterize as a single crystal 

by using X-ray diffraction. Therefore, only a few metal-nucleobase compounds were 

successfully characterised in terms of their complete crystal structures by X-ray.  Most of these 

compounds were derivatives of nucleobases.143 Coordination of zinc with adenine and guanine 

compounds revealed that the complexation occurred via N7 and N9 respectively; the structure 

of these two complexes was successfully characterized by X-ray diffraction.144 The work in 

this thesis is related to preparation of complexes of thio nucleobase derivatives because thio 

bases have not received much attention  except the work of  Zamora145 and Dubler146 who were 

able to synthesise crystalline compounds for Cu(I)/Cu(II) with 6-thioguanine and 6-

mercaptopurine, respectively. In addition, the complexes of Co(II)/(III) were synthesised with 

6-mercaptopurine riboside and its corresponding deoxy nucleoside  by Zamora.131 Most other 

crystalline compounds that were synthesised with group 11 metals, for example, used non-thio 
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derivatives nucleobases such as Cu(II)- 9-methylguanine,147 while some other compounds were 

not able to give any crystals such as Ag (I) and Au(I) complexes that were prepared by Cuin.148  

1.12 Mechanism of fibre formation  

Intermolecular interactions such as hydrogen bonding,  stacking, electrical dipole 

interactions, and van der Waals forces are the factors implicated in the formation of fibrous 

structures.149 Growth of the fibres can be assigned to the self-assembly of the chains of the 

polymer followed by bundling of these chains into fibres with assistance of intermolecular 

interactions.150 The rate growth of most fibres increases with cooling, but some biological gels 

start to form upon heating.149 The hierarchical structure of the fibres can be affected by the 

concentration, temperature, speed of drying, and other parameters, and thus, fibre topology can 

show different hierarchical structures such as linear, branched, spherical, stars, lattice, combs, 

etc. Studies of the transition of polymer chains from gas phase to solid bundles by a sublimation 

process showed an increase in the length of the polymer as a result of supramolecular of weak 

chain interactions.150 The way that the chains of the polymer connected with each other can 

produce a diversity of structures which lead to different properties of the product in spite of the 

fact they consist of the same monomer. For example, the polymer of polyethylene can be found 

as a linear chain structure chains which is strong and hard or as a branched structure which is 

flexible, while combination more than one monomer can change the chemical properties and 

then different applications can be found.151            

1.13 Hydrogen bonding and supramolecular chemistry 

‘’Supramolecular Chemistry’’ was described by Jean-Marie Lehn (who received Nobel Prize 

together with Pedersen and Cram in 1987 for Chemistry)152 as Chemistry beyond the 

molecule. The elements of this subject include organic, inorganic, physical, coordination, and 

biochemistry. The essential kinds of bonds that connect atoms at the molecules are covalent, 

ionic, and metallic bonds, and the energy of these bonds is in the range 50-1000 kJmol-1. 

Another kind of interaction which is the weakest among other interactions (0.5-5 kJmol-1) is 

Van-der-Waals, but this may be crucial for the formation of aggregates such as micelles. In 

supramolecular chemistry, the important non-covalent interaction of hydrogen bonding forces 

has played a major role.153 Hydrogen bonds can be defined as an attractive electrostatic 

interaction that occur in polar molecules in which an H atom is bound to an electronegative 

atom (N, F, S, O) and interacts with another electronegative atom. Numerous studies have been 
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made on H bonds in different fields such as chemistry, physics, and biology. The strength of 

hydrogen bonding is in range 4-120 kJmol-1, the variety of bonds strength depends on the 

electronegative atom at the acceptor group to which the H atom is attached and on the geometry 

of the structure that is formed.154  Nucleobases, amino acids, and carbohydrates are examples 

of some natural materials that consider worth sources of donors and acceptors hydrogen bonds. 

The term donor (D) refers to the group that has an electronegative atom, such as O and N, to 

which H is attached and forms a dipole with a partial positive charge on H. The term acceptor 

(A) refers to the group that has withdrawing atoms to which the H atom that carrying positive 

charge can interact. For example, the O-H....N where the O-H is the donor and the N is the 

acceptor. This is illustrated in Fig. 1.36.   

 

 

Figure 1.36. Showing the secondary interactions DDD and AAA array attractions (a), and repulsions 

DAD and ADA between neighbouring groups. The bold arrows in (b) refers to the primary 

interactions.154   

 

The direct interaction between donor and acceptor groups generates a primary interaction, Fig. 

1.37, while interaction that occurred between neighbouring group called secondary interaction. 

Adenine and thymine binding is an example of double hydrogen bonding motif, this bond is 

not strong enough to form stable structures in solutions but it can help to drive the formation 

of ordered supramolecular structures in DNA.    

 

Figure 1.37.  Primary interaction (red dots) between Adenine (A) and thymine (T) nucleobases.155 

 

.  

Triple hydrogen bonding and quadruple hydrogen bonding are the systems that form secondary 

interaction. Triple hydrogen bonding can be found at purine and pyrimidine at DNA and RNA 

such as DDA-AAD triple hydrogen bonding that form between guanine and cytosine. It 
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includes three kinds of motifs, DAD-ADA, DDA-AAD, and DDD-AAA. The stability of the 

second kind is higher compare to the first kind, and the third one is higher than the second one 

and that can be assigned to the repulsions and attraction electrostatic that generated at these 

motifs accordingly to the theory of secondary interaction which is appeared for the three kinds 

as four repulsions, two repulsions, two attractions and four attractions, respectively.  

The interaction between guanine and cytosine nucleobases, Fig. 1.38 is a good example that 

shows both the primary (three interactions) and secondary (two attractive and one repulsive) 

interactions.   

 
Figure 1.38. Displays the primary interactions (black dots) and secondary interactions including 

attractive (red dots) and repulsive (black arrow) between guanine and cytosine nucleobases, ADD 

facing DAA arrays, D is the donor and A is the acceptor 
 

In quadruple hydrogen bonding, such as ADAD and AADD, the monomers can form 

homodimers while four different motifs of DAAD-ADDA, DDDA-AAAD, DDAD-AADA are 

formed heterodimeric system of quadruple hydrogen bonding, this system has found different 

application in supramolecular self-assembly.       

Hydrogen bonding plays a major rule in the hierarchical structure process by arranging the 

molecules with high precision for example, the organization of the nucleotides molecules at 

the DNA.156 The system of hydrogen bonding can be found as NH...N, NH...SH, HN...H, 

OH...O, HO...H, OH...NH, NH...O. The electronegativity of S atom is less than N or O atoms 

and that make hydrogen bonding systems that include S usually weak compared  to other H-

bonds.157 SH is considered as a good donor and it is able to form different H-bonds systems, 

and it was found that the hydrogen bonding system of NH....S bond is stronger than NH...O.158 

The strength of hydrogen bonding correlates with the length of the bond159,160 between the 

donor and the acceptor;  the shorter bonds are stronger than the longer bonds. The bond lengths 

are normally in range 3.5-2 Å. Programing the self-assembly of synthetic blocks building 

accompanying with the interactions of hydrogen bonding can lead to form more complicated 

structures.156   
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1.14 Thesis overview 

The structure of the thesis was organized as follows: Chapter 1 is an introduction, presents the 

importance of nucleic acids as ligands in coordination polymers with coinage metal ions. It 

also briefly discusses the definition, classification, and some applications of the gels, in 

addition, it gives a brief explanation about the chemistry of coinage metal ions, and discusses 

the mechanism of gel formation. Chapter 2, presents the techniques that were used to 

characterize the chemical structure and the morphology of the hydrogels and gives a brief 

description of the principles of these techniques. Chapter 3, concerns the synthesis and 

structural characterization of Au(I):6-thioguanosine hydrogel; the properties of this gel such as 

luminescence and conductivity are discussed.  In addition, it shows the helical structures of the 

gel by CD spectrometry and AFM. Chapter 4, describes hydrogels formed with other coinage 

metal ions (Cu and Ag) but the same nucleoside (6-TGR), XPS characterization showed that 

Cu(II) was reduced by 6-TGR to Cu(I), chemical structures and morphology of the gels were 

studied in this chapter. Chapter 5, presents synthesis of 2-deoxy-6-thioguanosine and displays 

the analytical techniques that were used to confirm the successful synthesis. This chapter also 

shows the ability of coinage metal ions to bind and form hydrogels in spite of the absence of 

2OH group from the sugar structure and the associated H bond capacity. This chapter also 

shows how the morphology of these hydrogels was affected by the absence of 2OH group. 

Chapter 6, covers the synthesis of three kinds of silver gels with two purine nucleobases (6-

MP & 6-Tg) and one pyrimidine nucleobase (2-TC), it shows the ability of these nucleobases 

to form hydrogels in spite of the absence sugar structures. Chapter 7, presents the synthesis and 

characterization crystalline coordination compounds between methyl thio purines and silver, 

copper, and cobalt ions. Chapter 8, concerns the synthesis and characterization crystal 

compound of gold thio pyrimidine.  Chapter 9, provides the conclusion and summarized the 

major results of this work.  
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Table 1.2 New compounds synthesized in this work. 

 

Name of Compound 

 

Chemical formula 

 

State 

 

Code 

Gold:6-thioguanosine       C10H12N5O4SAu Gel Au:6-TGR 

Copper:6-thioguanosine C10H12N5O4SCu Gel Cu:6-TGR 

Silver:6-thioguanosine C10H12N5O4SAg Gel Ag:6-TGR 

Gold:2-deoxy-6-thioguanosine C10H12N5O3SAu Gel Au:d TGR 

Copper :2-deoxy-6-thioguanosine C10H12N5O3SCu Gel Cu:d TGR 

Silver:2-deoxy-6-thioguanosine C10H12N5O3SAg Gel Ag:d TGR 

Silver:6-mercaptopurine C5H3N4SAg Gel Ag:6-MP 

Silver:6-mercaptopurine riboside C10H12N4O4SAg.NO3
- Gel Ag:6-MPR 

Silver:6-thioguanine C5H4N5SAg Gel Ag:6-TG 

Silver:2-thiocytosine C4H4N3SAg Gel Ag:2-TC 

Silver:6-methylmercaptopurine 

riboside 

C22H28AgN9O13S2 Crystal Ag:6-MMPR 

Gold:2-thiocytosine C8H10N6S2ClAu Crystal Au(I):2-TC 

Copper:6-methylmercaptopurine C12H12N8S2Cl4 Cu2 Crystal Cu(II):6-MMP 

Cobalt:6-methylmercaptopurine C12H22N8S2O6Co Crystal Co(II):6-MMP 
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Chapter 2. Experimental Methods 

2.1 Chemicals and Materials 

All chemicals were purchased from Sigma Aldrich and were used as received without further 

purification. Deionized water (nominal resistivity 18 MΩ cm) was obtained from a NanopureTM 

purification system, Barnstead). 2Deoxy-6-thioguanosine was prepared under N2 using 

standard Schlenk techniques. 1H and 13C NMR spectra were performed on a Bruker Advance 

300 spectrometer at 300 MHz and 500 MHz, with DMSO-d6 and D2O as a solvent. 

Electrospray mass spectra (MS-ESI) were recorded on a Waters Micromass LCT Premier mass 

spectrometer and Matrix-assisted laser desorption and ionization time-of-flight mass 

spectrometry (MALDI-TOF-MS) with matrix HCCA (α-Cyano-4-hydroxycinnamic acid). 

Elemental analysis, % C.H.N, was performed with a Carlo-Erba CE1108 in the School of 

Chemistry at Newcastle University and by the elemental analysis service (Stephen Boyer, 

London Metropolitan University). 

2.2 Silicon Chips preparation for AFM, XPS, and FTIR 

p-type silicon (100) chips were used as the substrate for AFM, XPS and FTIR measurements. 

Silicon wafers were cut into chips approximately 1 cm2 for AFM, XPS, and 4 cm2 for FTIR 

analysis, and were cleaned by placing in piranha solution (1:4, H2O2:H2SO4) for 1 h, then 

washed with deionised water and dried with nitrogen gas.    

2.3 Characterization of gels  

The composition of the gels was characterized by various techniques: UV-Vis-spectroscopy, 

Fourier transform infrared (FTIR), circular dichroism (CD), X-ray photoelectron spectroscopy 

(XPS), powder X-ray diffraction (XRD), fluorescence spectroscopy, and elemental (C.H.N) 

analysis. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and 

epifluorescence microscopy were used to determine the morphology of the xerogels. The 

electrical conductivity measurements of the xerogel fibres were measured using a probe station 

(Cascade Microtech with Agilent B1500A semiconductor parameter analyser and a Model 

ETC-200L, ESPEC-Japan temperature controller). In general, few of the compounds produced 

crystals of a size and quality suited to single crystal X-ray diffraction and those which did 

required a high intensity source to obtain usable data. These samples were investigated at the 
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Diamond Light Source, which was used to collect the single crystal diffraction data for the 

products produced from the reaction of some substituted nucleosides with silver ions.  

2.3.1 Fourier transform infrared (FTIR) spectroscopy  

Due to the large number of absorption bands in the mid IR range, infrared spectroscopy can 

provide detailed information about chemical structure. These bands may be assigned to 

vibrations of functional groups in a compound and provide evidence for particular chemical 

bonds in the structure. The traditional IR spectrometer consists of: 1- a radiation source using 

electrical heating (1000-1800°C) of a Nernst filament (zirconium or cerium oxide) or globar 

(silicon carbide) to produce black-body radiation; 2- a sample cell which normally comprises 

alkali metal halides such as NaCl, KCl, etc, because these materials are transparent in the IR 

region of the spectrum; 3- a monochromator which disperses the beam into different 

frequencies or wavenumbers and 4- a detector which measures the radiant energy. The spectra 

are presented as either transmittance (%T=100 Isample/Iblank) or absorbance (A = 

log10Iblank/Isample) against wavenumber. The FTIR instrument has many of the same elements, 

but includes a Michelson interferometer,1 Fig. 2.1. The beam splitter directs half the incident 

light to a moving and half to a fixed mirror. After the beams are reflected from the mirrors they 

are combine into a single beam, passed to the sample and recorded by the detector. As the 

pathlength is changed with the movement of one mirror, different wavenumbers of light come 

into constructive interference when the beams recombine; this results in a time-varying light 

intensity at the sample and detector. Fourier transformation by the FFT algorithm converts the 

time-varying signal to a spectrum (intensity against wavenumber or frequency). The FT 

spectrometer now dominates because all frequencies are present at the sample at once and this 

results in advantages of speed and signal-to-noise ratio over traditional instruments. 

Molecular vibration frequencies depend on atomic masses and the bond force constants, 𝜈̅ =

1

2𝜋𝑐
√

𝑘

𝜇
 where c is the speed of light, k the force constant and µ the reduced mass.  High 

wavenumber vibrations are typically stretching modes of groups containing light atoms. 

Bending/deformation modes have low k and appear at lower wavenumbers.2 In this project, 

FT-IR spectroscopy was carried out using a Varian 800 FT-IR instrument in transmittance 

mode with 60 scans co-added and averaged and 16 cm-1 spectral resolution in the range from 

400 to 4000 cm-1. Typically, the sample was prepared by depositing 10 µL of freshly prepared 

gel on a clean p- Si (100) wafer (2 cm x 2 cm) and left to dry by air overnight prior to analysis.      
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Figure 2.1. Schematic diagram of an FTIR spectrometer.1 Interference between the beams shown as 

the pathlength is adjusted by the moving mirror produces a time-varying intensity at the sample. The 

variation of intensity with time can be Fourier-transformed into a variation with wavenumber in order 

to display the spectrum. 

2.3.2 UV-Visible absorption spectroscopy 

UV-Vis absorption spectroscopy refers to absorption spectra of light with wavelengths in range 

about 200-800 nm. Strictly, the visible region is 400-700 nm, but many spectrometers extend 

the longer wavelength range slightly. Below 200 nm is the vacuum ultraviolet region.3 A 

typical UV-Vis spectrometer consists of a radiation source, monochromator, detector, 

amplifier, and recorder, as shown below in Fig.2.2. The radiation source for the UV region may 

be a hydrogen or deuterium discharge lamp. A separate source is usually required for the visible 

region, e.g., a tungsten filament lamp for the wavenumber range 400 nm to 800 nm. Directly 

after the light source, a monochromator disperses the light into different wavelengths and, 

unlike FT instruments, a narrow band of wavelengths is directed to the sample at any one time. 

Quartz optical components are most commonly used for this task as they are transparent in UV 

region, while glass may be used in visible region. In a double beam instrument, the light is 

passed to a beam divider in order to generate two equivalent intensity beams: the sample beam 

and the reference (blank) beam which pass through the sample cell and the reference (blank) 

cell, respectively. The other component is the detector which is normally a photomultiplier 

tube. UV-Vis spectra are recorded by scanning the monochromator trough the desired 

wavelength range and the data are presented as absorbance (A = log10Iblank/Isample) against 

wavenumber.  

The metal-ligand complexation reactions in this work were monitoring by UV-Vis absorption 

spectroscopy and the absorbance spectra of the ligands (nucleobases and nucleosides) and the 
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gels (metal- nucleobases, nucleosides) were recorded in situ on a Cary 100 Bio UV-Visible 

Spectrophotometer at room temperature with a typical wavelength range 200-600 nm. A quartz 

cuvette was used to measure the absorbance of the gel by dropping cast 10 µL of the gel on the 

one side of the cuvette to form a thin layer in a cavity in the quartz slide. The sample was left 

overnight at room temperature to dry by air prior to measurement.      

 

Figure 2.2. Schematic diagram of a double-beam UV-Vis spectrometer.2 

2.3.3 Fluorescence spectroscopy   

A typical Perrin-Jablonski diagram is shown in Scheme 2.1; it illustrates three processes: 

absorption, phosphorescence, and fluorescence. So, S1, and S2 refer to the singlet ground state, 

first and second singlet excited electronic states, respectively. The vertical lines depict the 

transitions between the electronic states–the Franck Condon principle states that because nuclei 

are so much more massive than electrons, the electronic transition takes place before the nuclei 

can respond. The transition from lowest vibrational energy level of the ground electronic state 

(So) to vibration energy levels in the S1 and S2 excited electronic states, occurs in very short 

times (10-15 s) this process is called absorption. However, a consideration of the fact that the 

equilibrium geometry of the upper state is usually different than of the ground state and the 

Franck-Condon shows that the transition is to vibrationally excited states of S1 or S2.  Return 

to the ground vibrational state of S1 by vibrational relaxation (smaller dashed arrow) occurs 

within 10-12 s. Fluorescence emission (typical lifetime 10-8 s) occurs from S1 with wavelength 

higher than that for absorption because of the energy lost as heat in vibrational relaxation and 

because the transition to So does not go directly to the ground vibrational level (Franck-Condon 

principle again), but to a vibrationally excited state followed by relaxation to the original 

ground vibrational state of So. Internal conversion is illustrated by the larger dashed arrow, it 

occurs rapidly (10-12 s) and usually much faster than fluorescence from S2, this gives rise to 

Kasha’s rule that fluorescence occurs from S1 even if the initial absorption event reaches a 

higher excited electronic state. Another process of importance is the crossing from S1 to the 

first excited triplet state T1, this is called inter system crossing. After vibrational relaxation in 
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T1, emission from T1 is called phosphorescence which occurs at higher wavelength (lower 

energy) compared to fluorescence. The transition from T1 to the ground state is 

spectroscopically “forbidden” and occurs at a much slower rate / with a longer lifetime than 

fluorescence (s or longer). However, the presence of heavy halide atoms such as iodine and 

bromine increases spin-orbit coupling and normally enhances the rates of inter crossing system 

and phosphorescence.4   

 

Scheme 2.1. Perrin-Jablonski diagram4. hA indicates energy changes associated with absorption 

processes; hF is the energy of the photon produced by fluorescence and hP is the energy of a photon 

produced by phosphorescence (involves a non-zero spin change). 

 

A typical instrument is shown in Fig. 2.3. It comprises a light source (xenon arc lamp),  

monochromators for excitation and emission, a sample chamber, prism polarizers, and 

detector.5  

 

Figure 2.3. Fluorescence spectrometer block diagram.6 
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2.3.4 Circular Dichroism spectroscopy (CD) 

Circular dichroism can be described as the difference between the absorption spectrum that is 

produced using left and right circularly polarized light.7 By applying Beer’s law, equation (2.1) 

is obtained:   

∆𝜀 =  𝜀𝐿 − 𝜀𝑅  =  
𝐴𝐿−𝐴𝑅

𝑐𝑙
 =  

∆𝐴

𝑐𝑙
      ..................(2.1) 

Where ∆ε and ∆A are the difference between the molar extinction coefficients and the the 

absorbance for left and right circularly-polarized light respectively. c is the molar concentration 

in mol/L, and l is the pathlength of the cuvette. The unit that used for measuring the CD signal 

is degree of ellipticity ( ); the origin of this unit relates to the means of obtaining the spectra 

before photoelastic modulators became available that  produce alternating beams of left and 

right circularly polarized light8. Molar ellipticity [] = 3298.2traditional deg cm2 dmol-1. 

Circular dichroism (CD) is an important technique for the study of chiral structures in part of 

this work. Circular dichroism spectra were recorded on a Jasco J-810 spectrometer with 

conditions: path length 0.01mm, sensitivity 100 mdeg, data pitch 0.2 nm, scan speed 10 

nm/min, response time 2 secs, bandwidth 2 nm, and 3 accumulations. Fig. 2.4 displays a block 

diagram of a CD spectrometer; Scheme 2.2 illustrates left and right circularly polarized light.9  

 

 

Figure 2.4. CD spectrometer block diagram.7 
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Scheme 2.2.  Diagram of left (a) and right (b) circularly polarized light.9 

2.3.5 X-Ray Photoelectron Spectroscopy (XPS) 

XPS spectra were acquired using a Thermo Scientific K-Alpha X-ray photoelectron 

spectrometer (Thermo Electron Corp., East Grinstead, UK), equipped with an Al Kα X-ray 

source (1486.6 eV). A take-off angle of 90° was used during data acquisition, and a charge 

neutralisation gun was used to compensate for surface charging. The CasaXPS software (Casa, 

http://www.casaxps.com, USA) was used to analyse the XPS spectra. All binding energies 

were calibrated with either the Au 4f signal at 84.8 eV or the C1s peak at 284.6 eV as reference. 

Wide scan (survey) spectra were recorded at a pass energy of 150 eV and 1 eV/step, while 

narrow scan (higher resolution) spectra were recorded at a pass energy of 50 eV and 0.1 

eV/step. The sample was prepared by depositing 10 µL of the gel onto a clean Si (100) chip (1 

cm x 1cm), followed by air drying at room temperature prior to analysis. 

2.3.6 Crystal and Powder X-Ray Diffraction (XRD) 

XRD is used to characterize the chemical structure of crystalline compounds. The energies of 

X-rays are in range of 100eV-10MeV and correspond to wavelengths in range of 0.01 -10 nm.10 

There are two principal ways used to generate X-rays.11 Laboratory sources employ a metal 

target bombarded with high energy electrons which are characteristic of the metal chosen.  

Synchrotron sources accelerate high electron energy electrons in a circular ring and produce 

X-rays at tangents to the ring. Synchrotron sources have high brightness and produce a range 

of X-ray wavelengths. In this work, they have been used to study some weakly-diffracting 

crystals not amenable to analysis by lab-based technology. As well as structural analysis, XRD 

may also be used to determine the size of crystallites in a powder by using Scherrer’s equation 

(eq. 2.2)10 which takes into account the incompleteness of constructive/destructive interference 

in small particles and predicts a finite breadth to the diffraction peaks.  Diffraction from a 

macroscopic single crystal occurs at a specific angle () because of interference effects 

http://www.casaxps.com/
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according to Bragg’s Law (eq. 2.3). However, in a small crystal or microcrystalline powder, 

incomplete interference (and instrumental limitations) result in finite diffracted intensity at 

angles slightly different from the Bragg angle. Smaller crystals yield broader, less intense peaks 

and the quantitative relation is:   

𝑡 =
𝐾𝜆

 𝐵1/2 𝑐𝑜𝑠𝜃𝐵
             (2.2)                     

Where t is diameter of the crystallites, K is the Scherrer constant which is = 0.9, B1/2 is the full 

width at half maximum (FWHM) of the diffraction peak.  is the Bragg angle (eq. 2.3).   

𝑛𝜆 = 2𝑑sin 𝜃                       (2.3) 

Where n is order of reflection, λ is the wavelength of the X-ray beam, d is the distance between 

lattice planes, and  is the angle of diffraction. The scattering of X-rays depends on the atomic 

number; generally, only a small fraction of the incident beam is scattered of each lattice plane. 

Most of the beam can penetrate to lower planes and a portion will be scattered from each of 

these. All the scattered beams will interfere constructively when their pathlengths are different 

by an integer multiple of the X-ray wavelength. The bold lines in Fig. 2.5 refer to the path 

length difference as: 

                   AB = d sin ,   AD = d sin ,  then:    AB+AD=2d sin   

 

Figure 2.5. Bragg diffraction describes the scattering of an incident beam from crystal planes separated 

by a distance d and constructive/destructive interference of the scattered beams at an angle   to the 

normal. The pathlength difference is AB + AD and constructive interference occurs when this is an 

integer multiple of the X-ray wavelength.12      

 

In this work, powder XRD data was acquired using of a PANalytical X'Pert Pro diffractometer 

(PANalytical) using Cu Kα radiation source (λ=1.54 Å). Samples were prepared by drop-
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casting 10 µL of the gel onto a glass slide and leaving it to dry in air prior to analysis. Some 

crystals of coordination complexes were investigated by single crystal diffraction at the 

Diamond Light Source.    

2.4 Gel characterization with the scanning probe microscope (SPM)  

2.4.1 Atomic force microscope (AFM) 

Atomic force microscopy is a technique that is used to image the topography of a sample 

surface with high resolution and produces a three-dimensional image; it was invented by 

Binning13 in 1986. AFM is one of the scanning probe microscopes (SPMs), a family of 

techniques that includes the scanning tunnelling microscope (STM) and scanning near field 

optical microscope (SNOM). All these techniques use a sharp probe (tip) which interacts with 

the sample as it is scanned over the sample surface. Originally, the motivation was to defeat 

the diffraction limit, because the spatial resolution is limited by tip size which may be much 

smaller than the wavelength of visible light.  Novel modes of operation have since been 

developed which allow imaging of various properties (charge, current, adhesion force, 

mechanical properties, friction etc). The AFM can be classified according to the contact, tip 

motion, and the nature of the application.14  There are two common classes of AFM operation 

contact and non-contact. In contact mode, the tip “touches” the sample (a high tip-sample force 

is present corresponding to very close contact); this may be destructive towards soft samples. 

In non-contact modes, the tip oscillates or taps the sample and these modes often result is less 

sample damage, but sometimes lower resolution. In tapping mode TM, the cantilever is in 

intermittent contact with the sample, as it is vibrated. During scans both the oscillation 

amplitude and phase are recorded and no horizontal force is applied to the sample surface, 

consequently less damage occurs to the sample surface. AFM senses the force on the tip via 

the deflection of the cantilever to which it is attached. In principle, the deflection x of the tip is 

related to the force f by Hooke’s law f = kx and the absolute force can be measured after 

determination of the cantilever spring constant k. However, it is usual to detect the deflection 

directly using a split photodiode and employ that signal in the feedback loop to control the 

tip/sample force.  The common compositions of the tip & cantilever are silicon or silicon nitride 

(Si3N4).
13 In general, an AFM will measure both vertical and horizontal deflection of the 

cantilever, using an optical lever / split photodiode which is cheap and easy to use, and obtains 

resolution similar to that of an interferometer. The principle of this lever is to reflect a laser 

beam from the back of the cantilever onto the centre of a photodetector which consist of four 
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sections. The difference in light intensity on the sections is related to the vertical and horizontal 

deflection of the light beam and hence the cantilever. In this work, AFM data was acquired 

using a Multimode 8 atomic force microscope with a NanoscopeV controller (Bruker), and an 

‘‘E’’ scanner. Nanoscope software version 9.1 was used to control the microscope. The system 

was operated in ScanAsyst in Air mode as a peak force tapping mode at ultra-low forces to 

minimise damage to the samples. To reduce vibrational noise, an isolation table/acoustic 

enclosure was used (Veeco Inc., Metrology Group). Silicon tips on silicon nitride cantilevers 

(ScanAsyst, Bruker) were used for imaging. The nominal tip radius was approximately 2 nm, 

resonant frequency 150 kHz and spring constant k ~0.7 N m-1. The AFM data were analysed 

with NanoScope Analysis 1.5 software (Bruker). The sample was prepared by adding 2µl of 

the gel onto a clean silicon wafer (1 cm x 1 cm) and drying in air.  Fig. 2.6 shows the main 

parts of the AFM.    

 

 

Figure 2.6 Atomic Force Microscope (AFM) components & block diagram. 

 

2.4.2 Epifluorescence Microscope  

Fluorescence images were obtained by using Zeiss Epifluorescence Microscope. The excitation 

light was provided by a mercury lamp with a filter to select wavelengths from 300 to 400 nm 

with 65% maximum transmission at 365 nm. A long-pass filter was used to separate the emitted 

light from the scattered light with a cut off at 420 nm and the image was collected with a 
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monochrome CCD camera. The samples were prepared by depositing 2 µL of diluted hydrogel 

on silicon wafer and were dried in air. 

2.4.3 Transmission electron microscope (TEM) 

Transmission electron microscopy is a technique that is used to record images of a thin sample 

with magnification in the range 103-106, it is also can be used to analyse crystalline samples by 

producing an electron diffraction pattern. All these processes are done using a source of 

electrons accelerated to a high energy called an electron gun.15 In TEM a beam of electrons is 

used to irradiate a thin film of sample with acceleration voltage in range of 100-200 kV, in 

some cases acceleration voltages of 200-500 kV is used to enhance the resolution and voltage 

of 500 kV-3MV is the highest voltage electron microscopy can be used (HVEM).16 Higher 

voltages produce shorter wavelength electrons via the de Broglie relation and, in principle, 

higher resolution images. Fig. 2.7 displays the components of a TEM microscope. In this work, 

TEM measurements were acquired using Philips CM100 electron microscope at accelerating 

voltage 100 kV with high resolution digital image. The sample was prepared by dropping 2 µL 

of diluted gel onto a carbon coated copper grid and left to dry overnight in air prior to analysis. 

 

Figure 2.7. A block diagram of a TEM.16  
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2.5 Electrical measurements  

All the electrical measurements were carried out under dry nitrogen without light illumination. 

Current-voltage measurements at different temperatures were measured on the probe station 

(Cascade Microtech, Inc., Oregon, USA) using a thermal chuck system (Model ETC-200L, 

ESPEC, Japan). Platinum microband electrodes (MBEs) (MBEs; Smart Microsystems Pt MB-

4000, Windsor Scientific Ltd. Slough, UK) were used to fabricate electronic devices for 

electrical characterisation of Au:6-thioguanosine gel. The MBEs were made up of Si/SiO2 

substrates. Four independent platinum electrodes were patterned on the top of the SiO2 layer. 

The height of the electrodes is 200 nm and their width is 10 µm with 10 µm spaces between 

them. The surfaces of the MBEs were electrical insulated except 2 x 2 mm2 area for depositing 

the gel, as shown in Fig. 2.8 (A). Devices were fabricated by depositing the gel onto the 

Platinum MBEs. The platinum MBEs were washed with ethanol and dried with nitrogen gas. 

The clean platinum electrodes were analysed on a probe station and reference current/voltage 

curves were recorded which showed the background currents to be less than 100 fA at 2 V. For 

the device, A drop (~1 µl) of Au:6-thioguanosine gel was casted onto the uninsulated area on 

the MBE. The device was left to dry for a week in Schlenk flask, which was maintained on a 

vacuum line (~750 mbar) at a temperature of 45 ˚C. The gel droplet dried to produce a film of 

the Au:6-thioguanosine fibres across the Pt-electrodes, as shown in Fig. 2.8 (B) and (D). The 

electrodes were connected to the probe station and current / voltage curves were collected. For 

doping, the xerogel was exposed to iodine or tris(4-bromophenyl)ammoniumyl 

hexachloroantimonate ([Br(C6H4)3N]SbCl6). In the former case, the xerogel on platinum MBEs 

was exposed to iodine vapor for 1h by heating 0.1 g of iodine to 45 °C in a 50 ml round bottom 

glass flask. For the latter, the xerogel on MBEs was treated with a drop (~1 µl) of 0.1 M of 

([Br(C6H4)3N]SbCl6) in anhydrous acetonitrile. The gel was left to dry for 30 min before the 

current/voltage curve was collected. Control experiments where iodine or([Br(C6H4)3N]SbCl6) 

was applied to MBEs in the absence of Au:6-thioguanosine xerogel showed negligible 

background currents.  
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Figure 2.8. (A) An optical microscopy image of the microband electrodes (MBE) on the probe station, 

showing the contact pads and needle probes at the bottom and the 10 µm-spaced Pt electrodes in the 

square region above, (B) AFM height image of a Au:6-TGR xerogel drop-cast onto the area between 

two microelectrodes, (C) a profile of the electrode gap region and (D) AFM height image of the xerogel 

between the microelectrodes. 
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Chapter 3. Au (I):6-Thioguanosine Hydrogel 

3.1 Introduction 

Gold is known as a noble metal and often cited as the most noble, or least reactive1 among all 

metals. It is the most electronegative metal on the Pauling scale and its cations are strong 

oxidants. The red-yellow colour of the gold is assigned to the transition from filled orbital 5d 

to 6s (Fermi level) upon the absorption of blue and violet light in the visible reign around 2.4 

eV. Gold is a soft metal and easy to stretch to form a wire (ductile); it is also very malleable. 

The common oxidation state of gold is (III) and (I).2-4  

Nucleosides display a rich coordination chemistry because of the different binding sites 

available in these nitrogen bases; these include metal-ion binding modes that give rise to 

multinuclear, oligo, and polymeric structures.5,6 The resulting metal complexes can exhibit 

additional supramolecular interactions due to hydrogen bonding and such properties are 

important in the formation of metallogels.7-9 

 Simple thiopurines are sulfur-containing analogues of natural nucleosides, commonly used in 

treating a variety of medical conditions. They are readily incorporated into nucleic acids which, 

in fact, is a feature of their mode of action upon metabolism.10 Their metal-ion specificity and 

binding modes are different from the natural derivatives, most notably in their aurophilicity 

and an ability to form coordination chain polymers via a single-atom-bridge as 

{metalµS}n.
11,12 This was the basis of the hypothesis that synthesis of a gold-based polymer 

with such a nucleoside variant could provide a material with the required extended bonding 

motif for gel formation and even conductivity. Importantly, the aurophilicity of the thiol group 

would avoid competing reactions with metal ion binding sites on the natural nucleosides and 

so could be readily integrated into the framework of duplex DNA structures. The reaction of 

equimolar equivalents of Au(I) ions with the sulfur-modified nucleoside, 6- thioguanosine (6-

TGR) in aqueous-based solution at basic pH spontaneously forms a luminescent hydrogel. The 

broad luminescence ~606 nm is characteristic of the formation of oligomeric gold-thiolate 

species.13,14  Further characterization by a range of techniques was used to establish that the 

reaction yields a gold(I)-thiolate coordination polymer of general formula {-Au- μ-6-TGR-}-

n.  
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3.2 Experimental  

3.2.1 Synthesis of Gold:6-Thioguanosine (Au:6-TGR) gel with 10 mg /ml 6-TGR 

Au:6-TGR gel was prepared with a 1:1 metal / nucleoside molar ratio. Gelation was observed 

when an Au(I) solution, prepared by reduction of HAuCl4 with two equivalents of thiodiglycol 

(HO(CH2)2S(CH2)2OH), was added to the TGR solution. A typical sample of gel was prepared 

by adding the solution of HAuCI4 (13 mg, 0.033 mmol in 40 µL MeOH and 160 µL H2O), after 

reduction with 5 µL of thiodiglycol, to the warm solution of TGR (10 mg, 0.033 mmol in 400 

µL 0.1 N NaOH, 200 µL MeOH, and 200 µL H2O) after gently shaking the mixture, the 

resulting was 1 ml of yellow gel, that was stable to inversion in a vial.  

3.2.2 Synthesis Gold:6-Thioguanosine (Au:6-TGR) solutions with concentration 1, 0.1, 

and 0.01 mg of 6-TGR    

To study the morphology of the Au:6-thioguanosine polymer, a series of Au:6-TGR solutions 

with mole ratio 1:1 and with concentrations 1, 0.1, and 0.01 mg/ml of TGR were prepared by 

the same procedure that was used to prepare the Au:6-TGR gel at a concentration of 10 mg/ml 

of TGR. The sole difference in procedure was that both the solutions of Au(I) and TGR were 

diluted with water and then mixed with each other to give solutions of Au:6-TGR diluted by 

factors of: 10, 100, or 1000 times compared to the 10 mg/ml Au:6-TGR gel. The concentration 

of TGR in these preparations were 1,0.1,0.01 mg/ml. The Au:6-TGR was synthesised with the 

mole ratio 1:1, the solution of HAuCI4 (13 mg, 0.033 mmol in 40 µL MeOH and 160 µL H2O) 

was reduced with 5 µL thiodiglycol then diluted with water.  

TGR solution (10 mg, 0.033 mmol in 400 µL 0.1 N NaOH, 200 µL MeOH, and 200 µL H2O) 

was prepared and diluted with water. After appropriate dilution, the Au(I) solution and the TGR 

solution were mixed, gently shaking the mixture and clear yellow solutions were formed with 

the concentrations 1, 0.1, 0.01 mg/ml of Au:6-TGR respectively. The samples were prepared 

for AFM measurement by drop casting 2 µL of the sample on a clean p- Si < 100> chip and 

left to dry in air for 24h before AFM. Some samples were taken after different reaction times 

of 1 min, 1 h, 2 h, and 3 h, drop casted and dried immediately in a stream of N2 and then 

investigated by AFM. 
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3.2.3 Electrical measurements  

A drop (~1 µL) of Au:6-thioguanosine gel was cast onto the uninsulated area on platinum 

microband electrodes (MBEs). The MBEs were 10 µm wide and with 10 µm gaps between. 

The gel drop was dried under vacuum to produce a thin film of the Au:6-thioguanosine fibres 

on and between the Pt-electrodes.  The electrodes were connected to a probe station and 

current/voltage curves were collected. For doping, the gel on Platinum MBEs was exposed to 

iodine vapour for 1h by heating 0.1 g of iodine to 45 °C in a 50 ml round bottom glass flask. 

Current-voltage curves were also collected after oxidation. Control experiments where iodine 

was applied to MBEs in the absence of gel showed negligible current above background. 

Treatment with alternative oxidant tris(4-bromophenyl)ammoniumylhexachloroantimonate 

[(BrC6H4)3NSbCl6)] was also found to result in linear current-voltage characteristics similar 

obtained with iodine. The xerogel on the MBEs was treated with a drop (~1 µL) of 0.1 M of 

(BrC6H4)3NSbCl6 in anhydrous acetonitrile. The gel was left to dry for 30 min before the 

current/voltage curve was collected.  

 

3.3 Results &Dissociation   

3.3.1. Gold:6-thioguanosine (Au:6-TGR) gel synthesis and characterisation 

The reaction of equimolar equivalents of Au(I) ions with the sulfur-modified nucleoside, 6-

thioguanosine (6-TGR) in basic solution spontaneously forms a luminescent hydrogel, Fig. 3.1 

& 3.5. The broad luminescence ~600 nm is characteristic of the formation of oligomeric gold-

thiolate species.13,14 Further characterization by a range of techniques established the reaction 

to yield a gold(I)-thiolate coordination polymer of general formula {-Au- µ-6-TGR-}-n. 

 

Figure 3.1. Route synthesis of 1:1 Au:6-TGR hydrogel with photograph for thegel. 
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3.3.2 Fourier transform infrared spectroscopy (FTIR) characterisation 

The FTIR spectrum of 6-thioguanosine (6-TGR) in Fig. 3.2 shows stretching band at 1205 cm-

1 assigned to C=S,15 this band was absent in the spectrum of Au:6-TGR gel indicating that S 

atom was involving in the binding by forming charge transfer complex with Au(I), no band 

was shown in the spectrum of (6-TGR) at 2600 cm-1 which belongs to the stretch mode S-H16,17 

and that confirms that 6-thioguanosine was at thione form rather than thiol tautomeric form.15,18  

  

Figure 3.2. Comparison between the FTIR spectra of: a) 6-thioguanosine and b) Au-6-thioguanosine 

gel.  

3.3.3 UV-Vis Absorption spectroscopy 

The absorbance spectrum of the of 6-thioguanosine nucleoside (6-TGR) solution was 

investigated at pH 12, the spectrum showed a peak at 326 nm which is typically assigned to π-

π* transitions of the thiol form, Fig. 3.3, however, on going to pH 2, the spectrum was shifted 

to lower energy (345 nm) indicating that the 6-TGR solution was in the thione form. These 

data were in good agreement with Zhang.19 The spectrum of basic solution of 6-TGR at pH 9 

that used to react with Au(I) solution showed a peak at 325 nm indicates that the solution was 

in thiol form as a result of the deprotonation that occurred at N1H before coordinating with 

Au(I). A new band was observed at 360 nm after complexation with Au (I), Fig. 3.4. and this 

suggests the ligand–metal charge transfer transitions (LMCT)13,20 of a complex of the thiol 

form.      
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Figure 3.3. Shows absorption spectra of the thione and the thiol forms of 6-thioguanosine (6-TGR) 

solution at pH 2 (orange line) and pH 12 (blue line), respectively.    

 

Figure 3.4. UV-Vis absorbance spectrum of: a) 6-thioguanosine (6-TGR) nucleoside and b) spectrum 

of 50 µM Au:6-TGR gel. A new band was observed at 360 nm after complexation of Au (I) with 6-

TGR.  

3.3.4 Fluorescence spectroscopy characterization of Au:6-TGR 

Luminescent metal complexes are recently of growing interest for their different applications 

in photochemistry. It is well known that metallophilic interactions are observed with group 11 

(Au, Ag, and Cu) where the absolute value of G with Au(I) complexes, for instance, is higher 

than that of hydrogen bonding,  and the Au...Au interaction strength measurement, V(Re), was 

found to vary from 29-46 kJmol-1.21 The strength of Au...Au are observable in the short Au...Au 

distances. Relativistic effects are considered to be important in strengthening this interaction; 

such efforts are prominent for heavier elements because they depend on the electron velocity 

compared to the speed of light and the electron kinetic energy increases with the atomic 

number. Such interactions can play an interesting role in the photophysics features of the 
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complexes.22 In addition, the luminescence of gold (I) thiolate complexes can be interpreted in 

terms of charge transfer transitions from sulfur atom to gold ion (p(S) p(Au)) in which 

the effect of metallophilic interactions causes stabilization the empty bonding orbital p.13,20 

Gold also has a very high spin-orbital coupling (5104 cm-1), which contributes to the low triplet 

state energy;2 all these factors strongly affected at the luminescence of gold (I) complexes. The 

fluorescence emission spectrum of 6-thioguanosine (6-TGR), Fig. 3.5, with excitation at 326 

nm indicated a broad band around 347 nm to 514 nm and centred at 416 nm assigned to -* 

transitions. While the spectrum of Au:6-TGR gel with excitation at 360 nm showed an emission 

around 600 nm covering the area from 519 nm to 716 nm; this broad peak suggests that the 

interaction between Au(I) ions and 6-TGR leads to formation of a complex with lower lying 

charge transfer excited states (LMCT). 

 

Figure 3.5. The emission spectra of: a) 6-thiogunosine(6-TGR) nucleoside with excitation 320 nm and 

b) the spectra of Au:6-TGR gel with excitation 360 nm.  

 

The large Stokes shift (11276 cm-1) of the absorption and emission for Au:6-TGR suggest that 

the emission of the Au:6-TGR hydrogel was from a triplet excited state. Access to the triplet 

excited state is easy because the presence of Au increases the spin-orbital coupling in Au 

complexes.23,24 According to theoretical calculations of emission spectra, the emission in 

complexes of the gold(I) is attributed to the triplet state of the metal centre.25    

3.3.5 Circular dichroism (CD) 

The CD spectrum of the 6-thioguanosine (6-TGR) solution in Fig. 3.6 displays a positive and 

negative band at 256 and 324 nm assigned to -* and n-* transitions of the nucleoside, 

respectively. However, the corresponding CD spectrum of the Au:6-TGR hydro gel shows a 
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red shift for the band at 256 nm at the 6-TGR to lower energy (274 nm) alongside with a 

dramatic increase of intensity of the ellipticity upon the binding with Au(I) ions; this is 

attributed to increasing base stacking which causes ordering of the bases.26,27 In addition the 

spectrum of the gel shows formation of new negative and positive bands at 384 nm and 420 

nm, respectively which are not been seen in the CD spectrum of 6-TGR. This suggests the 

arrangement of lefthanded helical structures for the fibres at the hydrogel.28,29 Based on these 

findings, the Au:6-TGR hydrogel has a highly organized helical structure which is produced 

by forming a 1D polymer by coordinating Au(I) ions with 6-TGR nucleoside followed by self-

assembly of the polymer chains. 

 

Figure. 3.6 Comparison of CD spectra of: a) 6-thioguanosine (6-TGR) nucleoside (blue line) and b) 

Au:6-thioguanosine hydrogel (green line), the measurement was carried out with concentration 10 mg 

/ 1.8 ml using quartz cell with path length 0.1 mm for both 6-TGR and the hydrogel.  

 

3.3.6 Powder x-ray diffraction 

No sharp Bragg peaks were found in the X-ray diffraction pattern for Au:6-TGR hydrogel in 

Fig. 3.7 indicating that the sample was amorphous, but instead the data showed broad peaks in 

the range 20  Q  40. These correspond to distances d=2/Q of 0.318, 0.231, and 0.187 nm 

which can be assigned to Au…Au, Au-S, and C-S respectively, the data is presented in Table 

3.1, this data was a good agreement with the literature that showed the same distances in various 

other gold complexes.30-33 Larger values of d at distances 0.574 & 0.854 nm which can be 

assigned to intramolecular Au-Au, and 1.755 nm distance, which can be interpreted as the 

diameter of the helix, are also can be seen in the range Q  15, as shown in Fig.3.7.  
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Figure 3.7. XRD pattern for Au:6-TGR hydrogel. The blue line is the experimental diffraction data and 

the orange line is the theoretical fit to a sum of Gaussian function.   

 

Table 3.1. Distance di extracted from the analysis of the XRD data for Au:6-TGR gel. 

Distance / nm Suggested Assignment 

0.318 Au-Au 

0.231 Au-S 

1.757 Fibre diameter 

0.854 Intramolecular Au-Au 

0.574 Intramolecular Au-Au 

0.187 C-S 

 

3.3.7 X-ray photoelectron spectroscopy (XPS) of Au:6-TGR  

Survey scans of xerogel samples of Au:6-TGR identifying the elemental composition are 

shown in Fig. 3.8 c-h before and after oxidative treatment with iodine; the latter was used to 

effect oxidative doping for electrical conduction. Along with the gelating product Au:6-TGR, 

elements derived from starting materials are also observed. The survey spectra show the 

expected elemental composition of Au:6-TGR (i.e. C, N, O, S and Au) along with Cl 2p at a 

binding energy (BE) of ~198 eV, attributed to chloride ions from the starting material 

(HAuCl4.3H2O). The I 3d peak appears in the survey spectrum after the oxidation treatment, at 

a BE of 618 eV. 

Fig. 3.8 c and d shows the high-resolution spectra of Au 4f5/2 and 4f7/2 for Au:6-TGR. Au 4f5/2 

and 4f7/2 peaks are separated by 3.67 eV and the ratio of the component band areas is 6:8. Prior 
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to treatment with iodine the component at 84.6 eV is attributed to Au 4f7/2 and that at 88.3 eV 

to Au 4f5/2.
34,35 The BE value of  the 4f7/2 peak indicates the +1 formal oxidation state for the 

Au ions36 (typical range 84.3-85.5 eV).37,38 After doping with iodine, both the Au 4f5/2 and 4f7/2 

peaks are shifted to higher binding energy by 0.2 eV.  

The high resolution XPS spectra for sulfur were fitted with two spin-orbit components (2p1/2 

and 2p3/2) with a fixed splitting ~1.2 eV and with the ratio between the band areas fixed at 1:2. 

The S 2p3/2 at BE 163 eV is attributed to sulfur in Au(I)-thiolate form.35 This value, in fact, 

suggests a bridging thiolate mode in Au:6-TGR based on previous reports which show higher 

S 2p3/2 binding energy (~163 eV)39,40 for this compared to comparable terminal thiol binding 

(~162 eV).41 The S 2p3/2 peak at 166 eV is attributed to sulfoxide42,43 (R-SO-R) formed by 

oxidation of the thiodiglycol, used to reduce Au(III) in the HAuCl4.3H2O starting material to 

Au(I) ions. After iodine doping (Fig. 3.8f), a new S 2p3/2 peak appears at a BE of 169.2 eV that 

is attributed to sulfone35,43 (R-SO2-R). From the calculation of the area of S 2p3/2 peaks before 

oxidation by iodine, on average 68.1 % of the sulfur in the samples is thiolate and the rest is 

sulfoxide. After the oxidation, both of these components are reduced with 63.8 % thiolate, 27.3 

% sulfoxide and 8.8 % sulfone. These values show that only small fraction (~7 %) of the 

thiolate in the Au:6-thioguanosine has been oxidized to the corresponding sulfoxide- and 

sulfone-Au(I) complexes after treatment with iodine.44 Additionally, the S 2p3/2 spectra is 

shifted after oxidation to a higher BE by 0.2-0.3 eV. The high resolution scan of XPS spectra 

for iodine were fitted with two spin-orbit components (3d3/2 and 3d5/2) separated by 11.5 eV 

and with a component band area ratio of 2:3.35The I 3d5/2 spectrum of 1 was fitted with two 

components (619.4 and 621.1 eV), as shown in Fig. 3.8 h. The peak at 619.4 eV is attributed 

to I3
-,45,46 while the other peak at 621.1 eV is in the range of both I2

45,46
 and I5

- 46-49 as the 

binding energies of both are within a small range and can overlap. The presence of the I5
- is 

possible in the presence of I2 and I3
- (I2 + I3

- ⇌ I5
-). The iodine doping process is expected to 

initially form I3
-, which reacts subsequently through a reversible reaction with further I2 to form 

relatively stable species of polyiodide.48,49 Since the XPS spectra do not show Au(III) it 

indicates that the Au-thioguanosine xerogel is doped by injecting charge into Au:6-TGR 

forming polyiodide as counter anions rather than oxidative-addition of the I2 to the metal 

centers.50 Fig. 3.8i-l shows high resolution C 1s and N 1s spectra of Au:6-TGR xerogel before 

and after doping. The C 1s spectra were fitted with four components. The first peak at 285 eV 

is attributed to contributions from both C‒C and C=C.51The peak at 286.3 eV is attributed to 

C–O and C‒N35,51 and the peak at 287.6 eV is attributed to carbon atoms in N=C–N.52The peak 
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at binding energy 292.6 eV is attributed to π–π* shake up satellite peak.51,53,54 This peak 

disappears after doping, Fig. 3.8 i and j. The N 1s spectra were fitted with two peaks at BE of 

400.4 and 398.8 eV that are assigned to conjugated sp2 (C=N) and non-conjugated sp3 (C–N  

and –NH2) nitrogen atoms, respectively.55 The high resolution XPS spectra of the xerogel  

Au:6-TGR show little observable change in the chemical composition, except the noted 

oxidation of 7 % of thiolate, after iodine treatment. The binding energy shift in the Au 4f, S 2p, 

and N 1s spectra by 0.2 eV compared to C 1s after treatment is indicates of oxidative doping 

of the coordination polymer Au:6-TGR. In addition, the loss of the shake up satellite peak in 

the C 1s spectrum after doping confirms the change in electronic configuration upon 

oxidation.56  

 

Figure 3.8. XPS spectra of (dried) Au:6-thioguanosine gel samples. XPS survey spectra of Au-6-

thioguanosine gel samples (a) before and (b) after oxidation with iodine. High-resolution XPS spectra 
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of Au 4f, S 2p and I 3d. (c and d) Au 4f5/2 and 4f7/2, (e and f) S 2p1/2 and 2p3/2, (g and h) I 3d3/2 and 3d5/2, 

(i and j) C 1s and (k and l) N 1s regions of the XPS spectra of Au:6-thioguanosine gel samples (c, e, g, 

i and k) before and (d, f, h, j and l) after doping with iodine. 

3.4 Atomic force microscopy (AFM)  

 In order to probe the morphology and the size of the fibres in the gel, 2 µL of Au:6-TGR 

hydrogel was drop-cast onto a silicon wafer (1 x 1 cm), dried in air, and imaged using tapping 

mode AFM. The AFM images (a) & (b) in Fig. 3.9 revealed the formation of 1D strands 

spanning many microns in length. The alternating highly ordered waves with pitch 28 nm that 

are apparent in the cross section in Fig. 3.9 (d) which is a profile along the sloping white line 

along the individual fibre, in image (c) are consistent with a helical arrangement. The regular 

spacing reflects a highly-organized self -assembly for Au:6-TGR polymer to form a structured 

fibre. Image (c) also shows that the dried xerogel comprises one-dimensional molecular strands 

extending many microns in length with the smallest feature heights of ca. 3 nm. These strands 

entangle to form the necessary 3D network required for gel formation; the alternating light-

dark features along individual fibres are consistent with a highly organised helical structure.13 

A statistical analysis was carried out to show the height (diameter) distribution of the fibres in 

the gel. The data in Fig. 3.10, shows that the dimeter is  3 nm, some bars were with higher 

heights in range between 45 nm but with less frequency, and some were with more less 

frequency with heights up to 7 nm also were present at the histogram, in addition, lower height 

up to 2 nm with less frequency, corresponding to individual polymer strands, also can be seen.      
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Figure 3.9. Tapping mode AFM images of 1:1 gold:6-thioguanosine hydrogel drop-cast onto a silicon 

wafer and dried in air. The scale bars in (a), (b), and (c) are 1 µm, 250 nm, and 100 nm respectively. (a) 

Height image, the grayscale, corresponds to 11 nm at, (b) 9.7 nm, and (c) 3.9 nm. (d) The associated 

cross-section along the slopping white line in (c). shows the height of the fibres  3 nm and the distance 

between the alternating waves of the spiral is 28 nm which reflects highly helical arrangement.  

 

                             Figure 3.10. The histogram shows the size distribution of the fibres.  

 

The architectures of helical structure are present in nature, for instance, the -helical in proteins 

and double strands of DNA, where helical structures are formed spontaneously. In synthetic 

chemistry, researchers try to control the helical structure in order to use it in different 

applications for example, electronics and catalysis.57 A chiral molecule has a potential route to 

form helical structure via supramolecular self- assembly. In contrast, an achiral molecule has 

less opportunity to form helical compound.58-61 6-Thioguanosine nucleoside is chiral and this 
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gives rise to helical structure when coordinated with Au(I) and then self-assembled to form 3D 

network. The AFM images (a), (b), and (c) in Fig. 3.11 with scale bars 400, 120, and 100 nm 

respectively show more clearly helical fibres structure for Au:6-TGR hydrogel.  

 

Figure 3.11. Higher resolution AFM images of a single fibre for Au:6-TGR hydrogel, the images are 

suggestive a helical structure of the fibre. The scale bars at (a), (b), and (c) are 400 nm, 120 nm, and 

100 nm respectively, (b) a small area of (a). 

 

The height of the alternating light-dark features along individual fibres in the AFM image in 

Fig. 3.12 b, indicates that they contain several individual strands and the apparent periodicity 

seen by AFM arises from intertwining in some relatively ordered supramolecular structure-the 

pitch is too large to be easily explained on the basis of single polymer chains. The profile (c) 

is associated with the sloping blue and red lines across image (b), the difference at the thickness 

and the height between the individual and the twin fibres is very clear, as the height at the twin 

is  7.5 nm which two times higher than that at the single fibre. 
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Figure 3.12. AFM images of Au:6-TGR drop-cast onto a silicon wafer, (a) with scale bar 2 µm, (b) a 

small area of (a) with scale bar 400 nm shows intertwining of two strands of helical fibres. (c)The 

associated cross section along the two white slopping lines in (b), showing larger diameter with height 

 6 nm as a result of twining (blue curve) and smaller diameter with height  3 nm of individual fibre 

(red curve).    

3.5 Transmission electron microscopy (TEM)  

TEM measurement was performed with a Philips CM100 electron microscope at accelerating 

voltage 100 kV and the sample was prepared by casting 2 µL of 1:1 Au:6-TGR hydrogel onto 

a clean carbon coated copper grids followed by air drying prior to analysis. Fig. 3.13 reveals 

very long nano fibres, in some areas, some nano fibres can be seen entangled with each other.     
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Figure 3.13. TEM images of 1:1 Au-6-TGR hydrogel, the scale bar was 2 µm and 500 nm and the 

magnification was 10500x and 34000x at (a) and (b), respectively.       

3.6 Fluorescence microscopic imaging 

Optical fluorescence microscopic images were taken showing long luminescent fibres are 

produced; this morphology is consistent with the structures that observed by both AFM and 

TEM techniques. The most analysed area by microscopy displayed long fibres which was 

easily identified, however, helical features was not easily accessed by microscopy, as shown 

in Fig. 3.14. The luminesce of the gel can be also seen in this sample. The sample was prepared 

by depositing 2 µL of the gel on a clean Si substrate, leaving to dry in air prior to analysis using 

Zeiss Epifluorescence Microscope. The excitation was provided by a mercury lamp with 

bandpass filter to select wavelength between 300-400 nm and the emitted light was filtered by 

a longpass filter with cut-off at 420 nm. The scale bar was 10 µm.   

 

Figure 3.14. Fluorescence microscopic images of 1:1 Au:6-TGR measured using Zeiss Epifluorescence 

Microscope, excitation light was provided by mercury lamp with bandpass filter 300-400 nm, while 

longpass filter was used to filter the emitted light with cut-off at 420 nm. 
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3.7 Conductivity of Au:6-TGR hydro gel 

Conductive polymers are organic or inorganic electrical conductors that have an extended  

electron system. Very early, Letheby62 prepared poly aniline as a partly conductive polymer by 

oxidation aniline in sulphuric acid in 1862, and later many organic conductive polymers were 

synthesised. However, ployacetylene was the most important among all these compounds for 

it showed high conductivity (10-8-10-7 and 10-3-10-2 S m-1 for cis and trans polyacetylene, 

respectively).63 Conducting films of Au:6-TGR xerogel were prepared by exposure of the 

sample of Au xerogel to the vapor of I2. X-ray photoelectron (XPS) spectroscopy was used to 

characterize the oxidation states in the Au xerogel-I2. Since the XPS spectra did not show 

Au(III) it indicates that the Au:6-thioguanosine xerogel is doped by injecting charge into the 

xerogel forming polyiodide as counter anions rather than oxidative-addition of the I2 to the 

metal centers.64 There were two species of iodine forms I3
 ions and I5

 complex (I2 + I3
 ), the 

presence of the I5
 is possible in the presence of I2 and I3

 (I2 + I3
 ⇌ I5

). The iodine doping 

process is expected to initially form I3
, which reacts subsequently through a reversible reaction 

with further I2 to form relatively stable species of polyiodide.65,66 

3.7.1 Two-terminal IV characteristics and temperature dependence of the Au:6-TGR 

conductance   

The conductivity of Au:6-TGR hydrogel before and after oxidation by doping with I2 was 

recorded by using two-terminal IV technique with a probing station (Cascade Microtech) and 

a B1500A semiconductor analyser (Agilent) under dry nitrogen at room temperature. Fig.3.15 

shows the resulting data where the current is varying with potential at a constant temperature 

(298 K). The test was carried out with applied voltage from -3 to 3V in steps of 0.2 V with a 

constant rate 100 m s /0.2 V. Prior to aligning the fibres of the hydrogel at the electrode, the 

platinum electrodes were analysed on a probe station and reference current/voltage curves were 

recorded which showed the background currents less than 100 fA at 2 V.  Nonlinearity can be 

seen at the current–voltage curve for the Au:6-TGR xerogel before oxidation process, however 

a straight line (ohmic behaviour) can be observed upon doping the xerogel with I2.  

Using alternative oxidants such as  tris(4-bromophenyl)ammoniumyl hexachloroantimonate 

([Br(C6H4)3N]SbCl6) produced similar behaviour confirming the conductive nature of the 

doped coordination polymer and that the observed conductivity was not due simply to the 

presence of the polyiodide species.67 
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The I-V curve in Fig. 3.15 shows little evidence of conductivity for the undoped material. The 

differential conductance at zero bias was estimated as < 30 pS. The current at high bias, greater 

than about 1.5V, shows some increase, but this shape of I-V curve, which has almost zero slope 

at the origin, is not evidence of conductivity in the usual sense. Oxidative doping of Au xerogel 

does produce a material with finite zero bias conductance, whether the oxidant employed is a 

vapour such as I2 (7.1 +/- 0.05 nS) or a liquid such as a dry acetonitrile solution containing 

([Br(C6H4)3N]SbCl6 ) (12.9 +/- 0.09 nS). The XPS data of the doped and undoped material 

(Fig. 3.8) indicate that the positive charge introduced by oxidation resides mainly on Au and S 

atoms. 

 

 

Figure 3.15. Electrical characterisation of the Au:6-thioguanosine coordination polymer, I-V curves 

before (blue) and after doping with Tris(4-bromophenyl)ammoniumyl hexachloroantimonate (red) and 

iodine (green) at 298 K taken over a constant rate 100 ms / 0.2 V.   

 

The IV curve of Au:6-TGR hydrogel at various temperatures over the range of 223 to 323 K, 

as shown in Fig. 3.16 was carried out with two-terminal IV technique using a probe station 

under dry nitrogen and the temperature was controlled by a thermal chuck system (Model ETC-

200 L, ESPEC, Japan), this technique allows characterisation the conductance that temperature 

dependence. Upon using two cycles of cooling and heating measurements, as can be observed, 

the conductance (G) increased with temperature. Increasing conductivity with temperature is 

frequently observed with conducting polymers, however the structure of the polymer, 

dimensionality, and the degree of the crystallinity are the factors that may affected the details 

of the measurements. By moving from cooling to heating, no significant change at the 
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conductance value have been shown versus temperature (T) and that confirms thermal stability 

of Au:6-TGR xerogel.  

 

Figure 3.16. Conductance Vs. temperature of the Au:6-TGR hydro gel for cooling and heating over a 

temperature range of (223323 K). 

3.7.2 Calculation the activation energy from Arrhenius plot   

The Arrhenius plot that corresponding to the conductance in Fig. 3.16 is presenting in Fig. 3.17. 

It can be seen clearly that Arrhenius behaviour explains the conductance over range of 

temperatures that measured by plotting the ln G versus T-1 and a straight line was obtained.  

The data in Fig. 3.17 shows that the zero-bias conductance increases with temperature in 

accordance with an equation of Arrhenius form. This is characteristic of a semiconductor or 

hopping conductor and not of a metallic conductor. In principle, the increase in conductance 

could be explained in terms of thermal excitation across a gap, which would result in an 

activation energy of ½Egap. However, the activation energy of about 0.97 eV does not match 

the data from optical spectroscopy. Fluorescence excitation spectra show an optical gap of 360 

nm which is about 3.44 eV. Instead, the nature of the conductivity in doped xerogel is more 

like that of the conjugated polymers than crystalline inorganic semiconductors. Typically, 

conjugated polymers are poorly conducting when undoped and have optical gaps of several 

eV, but conduct via a hopping mechanism when doped. Although bulk samples of conjugated 

polymers typically show temperature-dependent conductances which follow variable range 

hopping models,68 simple Arrhenius behaviour was observed when they are constrained to form 

as one dimensional structures.69 In these systems, and doped polymer, the activation energy 
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extracted from the Arrhenius plot is much smaller than the optical gap because it corresponds 

to thermally-assisted tunnelling between somewhat localised states rather than carrier 

generation by excitation across the gap as in crystalline inorganic semiconductors. Finally, it 

is worth noting to observe essentially identical Arrhenius plots for both heating and cooling 

cycles and the doped polymer is stable up to 50 oC. 

 

Figure 3.17. An Arrhenius plot for the zero-bias conductance of the I2-doped Au:6-thioguanosine 

xerogel. Activation energy (Ea) = 0.97± 0.02 eV obtained from two independent heating (red)/cooling 

(blue) cycles.  

  

Table 3.2 Activation energy (Ea) of cooling and heating cycles for Au:6-TGR hydrogel. 

 

Energy Cooling Heating Average Error ± 

 Ea (kJ mol
-1

) 92.36 95.65 94.01 1.65 

 Ea (eV) 0.96 0.99 0.97 0.02 

 

            Ea (kJmol-1): Free standard cell voltage.   

            Ea (eV): The activated energy.  

 

AFM imaging after treatment with I2 vapor showed that no notable structural changes occurred 

and the molecular strands remained intact (Fig. 3.18 a and b). The chemical effects of this 

treatment, judged by XPS, indicated the reaction generally proceed via a redox mechanism 

with the formation of a polyiodide-doped coordination polymer. 
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Figure 3.18. AFM images of Au:6-thioguanosine hydrogel before (a) and after (b) oxidation with 

iodine. The scale bar was 2 µm.   

 

In conclusion, the Au:6-TGR shows electronic conductivity upon oxidation and the charge 

carriers are dominantly associated with the Au-S chains of the structure and not the nucleobase. 

The I-V curves show ohmic behaviour, i. e., the slope of the I-V curve is the same no matter 

how small or large the deviation from equilibrium. This behaviour is distinct from 

photoinduced electron transfer experiments (in DNA) in which long range electron transfer is 

observed for photon energies sufficient to populate the initial excited state and distinct from 

electrochemical experiments where the applied potential must exceed the formal potential of 

the relevant couple to drive electron transfer. 

Current-voltage curves collected before and after oxidation (Fig. 3.15) reveal a dramatic 

increase in conduction upon treatment. Essentially ohmic behaviour is observed over the ±2V 

range with an increase of at least two orders of magnitude in conductance upon treatment. The 

temperature-dependent I-V measurements (Fig. 3.16) show Arrhenius behaviour characteristic 

of a thermally-activated conduction mechanism with an activation energy of 94 kJ mol-1.  

The linearity and lack of hysteresis of the I-V data in Fig. 3.15 strongly argues against the 

interpretation in terms of electrochemical oxidation of the bases. The lack of hysteresis (doped 

or undoped polymer) and the linear I-V characteristic (doped polymer) are inconsistent with an 

electrochemical process driven by the interfacial potential and especially with the 

electrochemistry of the DNA bases where chemical steps following the electron transfer 

prevent observation of the reverse process except at scan rates (10 - 100 V s-1) orders of 

magnitude greater than applied in this work.70 Instead, the lack of hysteresis is a piece of 

evidence in favour interpretation of the measurements in terms of electron transport in the film.                                                                                                                                      
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3.8 Diluted solutions of 1:1 Au-6-TGR with con. 1, 0.1, and 0.01 mg/ml 6-TGR 

In this section, the effect of preparing Au:6-TGR at different concentrations was explored. In 

particular, the effect of dilution on the self-assembly of the material was investigated by AFM. 

The UV-Vis absorbance spectra of Au:6-TGR solution with concentrations 0.01 mg/ml of 6-

TGR was measured and a high intensity peak was found at 345 nm indicating that the 

compound was in the thione form as a result of the dilution, another peak (less pronounced) at 

360 nm was found assigned to form ligand metal charge transfer complex (LMCT) between 

Au(I) ion and 6-TGR via S atom, as shown in the Fig. 3.19 below. This result indicates that the 

dilution process which leads to reduction of the pH and disfavours the deprotonation at N1-H 

which is very necessary to produce the thiol form prior to binding with Au(I) and consequently 

the solution of 6-TGR was in a thione form before binding with Au(I) and no gel was formed. 

A broad peak at a similar wavelength (360 nm) was seen in the spectrum of Au:6-TGR hydrogel 

which was prepared with conc. 10 mg / ml of 6-TGR. The solutions with concentrations 1 mg 

/ ml & 0.1 mg / ml gave noisy spectra and the absorbance values for both were too small to 

acquire good data.  

 

Figure 3.19. The Absorbance spectrum of Au:6-TGR solution with conc. 0.01 mg / ml 6-TGR.  

3.9 Fluorescence spectra of Au:6-TGR solutions  

Fig. 3.20 shows the fluorescence emissions spectra of 1:1 Au:6-TGR gel and the solutions with 

concentrations 10 mg / ml and 1, 0.1, 0.01 mg / ml of 6-TGR, respectively. The data shows 

that the intensity of the fluorescence emission of the Au:6-TGR solutions decreased with the 

decline in the concentration, however a large reduction the intensity was found for the gel with 

concentration 10 mg / ml compare to the intensity of the more dilute solutions due to the inner-
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filter effects and that indicates that the gel with high concentration absorbs a large part of the 

energy of excitation or emission.   

 

Figure 3.20. The fluorescence emission spectrum of: a) 1:1 Au:6-TGR gel with concentration 10 mg / 

ml and b), c), and d) the solutions with concentrations 1, 0.1, 0.01 mg/ml of 6-TGR, respectively. 

3.10 Atomic force microscopy (AFM) 

The AFM images of diluted solutions of Au:6-TGR with concentrations 1, 0.1, 0.01 mg / ml 

revealed different morphology depending upon the concentration, time taken after sample 

preparation, and the speed of drying. For instance, the AFM images of the sample with conc. 

1 mg / ml of 6-TGR that have been taken 24 h after preparation and dried by air showed 

circularly organized fibres with clockwise and anticlockwise morphology and a height of 3 nm.                                        

The chirality of the compound, which normally leads to helical fibres, can be considered the 

reason for the clockwise and anticlockwise spiral morphology, this phenomenon was observed 

with numerous fibres.71-75 In addition, the morphology of spiral was also seen with different 

fibres76 and crystalline compounds.77-79 The practical experiment which was carried out with 

different conc. of Au:6-TGR has shown that the solutions with conc.  0.01 & 0.1 mg / ml were 

not able to form spiral fibres, however, upon increasing the conc. to 1 mg / ml both clockwise 

and anticlockwise fibres are formed, as shown in Fig. 3.21, 3.22 and this indicates that the 

morphology of Au:6-TGR can be controlled by the concentration.   
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Figure 3.21. Tapping mode AFM images of 1:1 gold:6-thioguanosine solution with con. 1 mg / ml, the 

sample was taken 24h after preparation and drop-cast into a silicon wafer followed by drying in air with 

scale bar 500 nm and height (grayscale) 5.4 nm, the image shows both clockwise and anticlockwise 

fibrous morphology. 

 

Figure 3.22. Tapping mode AFM images of 1:1 gold:6-thioguanosine solution with con. 1 mg / ml, the 

sample was taken 24h after preparation and drop-cast onto a silicon wafer followed by drying in air. 

The scale bars in (a), (b) & (c) are 350 nm, 100 nm, and 400 nm, respectively and (d) the associated 

cross-section along the white vertical line in (b) shows the height of the fibres 3 nm. The morphology 

of the fibres in these images is circularly organised fibres.  
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Upon taken the sample of solution of 1:1 Au:6-TGR with conc. 1 mg / ml one min after 

preparation, drop casting onto a substrate and drying by N2 prior to analysis with AFM, no 

spiral was formed at the AFM images as a result of increasing the speed that used to dry the 

sample. This suggests that time is another factor that can be added to control the morphology 

in addition to the concentration as mentioned before. Fig. 3.23 shows the AFM images of this 

sample with the cross section. The height of the fibres ( 6.5 nm) in this sample is higher than 

that at the same concentration but with air drying (3 nm) this difference can be attributed to 

the stream of N2 which may be causes bundling the fibres with each other. 

 

Figure 3.23. Tapping Mode Height AFM images of 1:1 Au-6-TGR solution with con. 1 mg / ml, the 

sample was taken 1 min after preparation and was dried with N2. The scale bar and the height (grayscale) 

at (a) & (b) were 1 µm, 30.5 nm, and 400 nm, 25.1 nm, respectively. (d) The height profile measured 

along the white line of the corresponding fibre  6.2 nm in image (b).   

 

The AFM images of the diluted sample with conc. 0.1 mg / ml that was drop cast onto a 

substrate 1 min after preparation and dried by air demonstrated a dense network of fibres with 

height 1 nm but no spiral was seen and that indicates a strong effect of the factors 

aforementioned on the morphology of the fibres, Fig. 3.24.  
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Figure 3.24. Tapping Mode AFM Height images of Au:6-TGR solution with con. 0.1 mg / ml, the 

sample was taken 1 min after preparation and dried by air. Scale bars and height (grayscale) at (a) & 

(b), 1 µm, 4.4 nm and 400 nm, 3.4 nm, respectively. (c) The associated cross section along the vertical 

line at (b) shows the height of fibres ~1 nm.  

Upon increasing the speed of drying by using dry N2 and the period of time taken for sample 

preparation from 1 min to 1 h for sample 0.1 mg / ml, a less dens network was obtained, as 

shown in Fig. 3.25. By using the same condition of drying with N2 gas and period 1 min for 

sample 1 mg / ml, the circular fibres (clockwise and anticlockwise) were disappeared and 

honeycomb cell-like network was formed instead as observed in Fig. 3.23. 

 

Figure 3.25. Tapping Mode AFM image of Au:6-TGR solution with con. 0.1 mg / ml, the sample was 

taken 1h after preparation thereafter drying by N2 gas and drop -casted onto a substrate. The scale bar 

in image (a), (b), and (c) were 1 µm, 250 nm, and 100 nm, respectively, d) is the profile of the vertical 

white line across image (c) shows that the height of the fibres is  2.3 nm.     
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Preparing the Au:6-thioguanosine solution with greater dilution (0.01 mg /ml) and drying by 

air leads to form thick fibres with height 3 nm, Fig. 3.26. It is worthwhile to note here that, 

the speed of sample’s drying effect on the morphology of the fibres and that can be observed 

at the AFM images of samples Au:6-TGR solutions with different concentrations.     

 

Figure 3.26. Tapping Mode AFM Height images of 1;1 Au:6-thiouanosine solution (Au:6-TGR) with 

con. 0.01 mg /ml, the sample was taken 1 min after preparation and drop cast onto a silicon wafer 

followed by drying by air. The scale bar is 1 µm at: (a) & (b) and 250 nm at (c), respectively. (d) The 

associated cross-section along the white vertical line in (c) shows the height of fibres ~ 3 nm.   
 

3.11 Fluorescence microscopic imaging  

Fluorescence images which were carried out for samples prepared from solutions of Au:6-

thioguanosine with concentration 0.01, 0.1, and 1 mg /ml, showed important differences of 

morphology. Fibres formed with concentration 0.01 and 0.1 mg /ml were very thin while 

entangle sheet-like structures can be seen for samples with concentration 1 mg /ml. The 

difference of the morphology depending on the concentration reflects the possibility to control 

the size, thickness and the morphology of the polymer Au:6-TGR by control the concentration. 

Fig. 3.27 presents the data.      
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Figure 3.27. Fluorescence microscopic images of 1:1 Au: 6-TGR solutions, the concentrations were 

0.01, 0.1, and 1 mg / ml 6-TGR in images (a), (b), and (c), respectively, the sample in image (c) was 

taken 24 h after preparation.   

3.12 Templating 6-thioguanosine polymer on DNA  

3.12.1 Synthesis Au(I):6-TGR hydrogel in the presence of DNA 

Au:6-TGR gel was prepared with concertation 10 mg/ ml of 6-TGR, after two min of the gel 

synthesis, 40 µL of 1 mg/ml of calf thymus DNA solution was added to the gel, shaking gently 

and incubated for 10 min at room temperature. 1.5 µL of the gel was drop casted onto a clean 

silicon wafer (n-Si100 1 x 1 cm), dried in air for 24h and then imaged by AFM. The aim of 

these experiments was to observe the effect of DNA as a template for the structures formed by 

the Au:6-TGR complex   

3.12.2 Atomic force microscopy studies 

Using DNA as scaffold with different metals which leads to form nanowires is reported in 

numerous papers,69,80-82 however, in this work the fibres that obtained from the coordinated 

polymer of Au:6-TGR hydrogel was used as a template for DNA to shed light on the molecular 

interactions in these supramolecular nano fibres by adding a small volume of DNA to the Au:6-

TGR hydrogel 10 min after preparation the hydrogel. After deposition of the gel with DNA 

onto a substrate followed by air drying, the morphology of the hydrogel was investigated by 

Tapping Mode AFM; the results revealed that the morphology of the hydrogel was transferred 

from helical nano fibres to a long, regular, and uniform fibres coated with DNA with a beads-

on-a-string morphology.83-85 The AFM image (a) in Fig. 3.28 shows more clearly the 

aforementioned features. The mechanism of this interesting morphology is not understood very 

well but it possibly be owing to the interactions of the DNA with the 6-thioguanosine at the 

Au:6-TGR hydrogel via hydrogen bonding.  The analysis for the cross section along image (c) 
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shows that the height of the fibres is 8.5 nm, and the statistical analysis for image (a) in Fig. 

3.29 displays that the size distribution of the fibres is between 10-12 nm, some of lower 

structure heights between 6-8 nm and lower than that up to 2 nm can be observed but with less 

frequency, in addition, some of higher structures heights between 14-16 nm can be seen but 

with lower frequency. These heights are substantially greater than the apparent height of duplex 

DNA in AFM images, which is typically about 1nm; the height data therefore suggests the 

DNA molecules are coated with Au:6-TGR polymer. The addition of DNA to the hydrogel 

increased the surface roughness up to height 8.5 nm compare to the height of the hydrogel 

which was 3 nm by forming new hierarchical structure. It is worthwhile to note here that, 

electrospinning technique85 is the method that used with most preparations to produce beads-

on-string structures.      

 

Figure 3.28. Tapping Mode AFM Height images of Au-6-TGR gel with DNA. Scale bars and height 

(grayscale) at (a), (b), and (c) are 300 nm, 500 nm, 150 nm and 14.8 nm, 11.5 nm, 8.9 nm, respectively. 

(d) The associated cross section along the white line at (c) shows the height of fibres ~8.5 nm.  
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Figure 3.29. (a) Height AFM image with scale bar 1 µm and height (grayscale) 11.1 nm shows the 

fibrous morphology of Au-6-TGR gel as a consequence of addition DNA to Au-6-TGR gel, (b) the 

histogram shows the size distribution of the fibres.   

 

3.13 Synthesis of gold:6-thioguanosine (Au:6-TGR) gel with urea 

To assess the role of hydrogen bonding in the gel formation, urea solution was used as a 

denaturing agent. The working hypothesis was that urea could compete with 6-TGR hydrogen-

bonding interactions and disrupt the gel in an analogous manner to the well-known effect of 

urea on proteins. 1 ml of 8M urea solution was added to 1 ml of Au:6-TGR gel with 

concentration 10 mg of 6-TGR, in a similar manner, 1 ml of water was added to 1 ml of gel 

while the third vial with gel left without additive (indicated with symbol X at the schematic 

which refers that it was left with no additive). 

3.13.1 Interaction Au:6-TGR gel with urea   

Scheme 3.1 below shows four parts, part (a) shows three vials of 1:1 Au:6-TGR gel labelled 

with (1), (2), and (3), at part (b) 1 ml of H2O and 1 ml of 8 M urea solution was added to vials 

(2) and (3) respectively, while the third vial (3) left without additive (indicated with symbol X 

at the schematic which refers that it was left with no additive). The contents of the three vials 

were shaken with a vortex mixer for 15 min, after vigorous mixing, the gel with urea solution 

(vial 3) became a viscous liquid and mixed with the solution of urea, while the other two vials 

(1&2) were not affected. However, the solution with urea reformed a gel again after leaving to 

stand for 24 h at room temperature, as shown at part (c). The reformed gel was drop-cast onto 

a clean silicon chip and dried in air prior to imaging by AFM. After three weeks, the gel with 

urea transformed into a yellow powder and a clear solution (part d). Testing the powder under 

microscope showed crystals of urea, the powder was imaged by AFM and characterised by 

powder X-ray diffraction. This experiment was designed to study the effect of hydrogen 

bonding on the formation of Au:6-TGR hydrogel.  
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Scheme 3.1. Shows three vials of 1:1 Au:6-TGR gel (part a), 1 ml of H2O and 1 ml of 8 M urea solution 

was added to vial (2) and (3), respectively, while vial (1) left without additive, marked with x, the three 

vials was shaken for 15 min causes collapsed the gel at vial (3), no change was occurred for the gel at 

vial (1&2) (part b).  After 24h the gel with urea reformed again (part c), and after three weeks reformed 

gel was collapsed (part d).    

 

3.13.2 AFM images of reformed gel with urea solution 

The right-handed helical morphology of the reformed gel of Au:6-TGR with urea is very clear 

in Fig. 3.30. It is interesting that the reformed gel, that produced by reaction of Au:6-TGR gel 

with 8 M urea, retains the helical morphology and the height of the fibres ( 3.5 nm) which is 

very close to that at the gel without urea (24 nm) as shown in Fig. 3.30. However, the distances 

between the pitches along a single fibre are decreased from 28 nm in the Au:6-TGR hydrogel 

without urea to 16 nm in the reformed gel with urea and that may be assigned to reduce the 

concentration of the Au:6-TGR hydrogel upon adding the urea solution to the half of the orginal 

concentration (10 mg/ ml). It is suggested that urea breacks up the innerchan hydrogen bonds, 

but the Au:6-TGR coordination polymer -Au-S-Au-S- backbone is unaffected. 
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Figure 3.30. Tapping Mode Height AFM images of 1:1 Au:6-TGR gel after reformed gel with 8 M 

urea solution. The scale bar and the height (grayscale) at (a), (b), and (c) are 250 nm, 40 nm, 100 nm 

and 7.7 nm, 4.7, 6.9 nm, respectively, (d) the height profile measured along the white vertical line of 

the corresponding helical fibre  3.5 nm in image (b). The distance between the top waves of the helix 

fibre is 16 nm as shown at the cross section. 

3.13.3 Fluorescence microscopy 

Fig. 3.31 displays fluorescence microscopic images for the re-formed Au(I):6-thioguanosine 

gel with 8 M urea (a), and the final product of the gel after collapsing (b) as a consequence of 

denaturing by urea solution. Image (a) showed very long fibres and it seems that the urea is 

connected to the Au(I) gel by hydrogen bonding, however, after three weeks, the gel collapsed 

and turned to yellow precipitate and crystals. These crystals represent the urea that gathered 

after losing the hydrogen bonding (cross-link) with the gel after collapse. 

 

Figure 3.31.  Shows the fluorescence microscopic image of: a) gold:6-thioguanosine gel that reformed 

with 8 M urea, b) the collapse gold:6-thioguanosine gel with urea after three weeks of reformation. 
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3.14 Conclusion 

A new luminescent 1D coordination polymer based on the self-assembly of Au(I) ions with the 

sulfur-modified nucleoside, 6-thioguanosine have been prepared. The material’s molecular 

structure is highly analogous to duplex DNA and, as a gold-thiolate polymer uniquely exhibits 

electrical conduction upon oxidative doping. This semiconducting motif can to be readily 

incorporated, co-axially, into the framework of DNA structures due to the metal-ion binding 

that assembles the chain being specific for the “mutant” nucleoside. This work advances the 

field of DNA-materials towards further complexity by allowing the incorporation of 

semiconducting properties co-axial via an alternative method and making possible new types 

of construction protocols, compositional architectures and material combinations. 

 

The work in this chapter has been published. 
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Chapter 4. Synthesis and Structural Study of Copper and Silver Complexes 

of 6-Thioguanosine  

Abstract 

This chapter demonstrates the synthesis and the characterization of 3D coordination polymers 

of a thiolated metal-nucleoside, 6-thioguanosine. Two hydrogels were prepared by 

complexation of copper and silver with 6-thioguanosine (6-TGR). The morphology of the 

hydrogel was examined by atomic force microscopy and confirmed with TEM images which 

showed the formation of dense fibres. The copper hydrogel displays strong luminescence, 

however the silver gel did not. Circular dichroism measurements for both Cu and Ag hydrogel 

displayed formation of new bands upon metal complexation indicating an ordered chiral 

structure. The coordination polymers were formed via Cu-S6 and Ag-S6 binding, respectively.             

4.1 Introduction 

A hydrogel of guanosine was prepared in 19621 by using 5-guanosine mono phosphate (5-

GMP). This nucleoside and its derivatives are able to self-assemble under suitable conditions 

of concentration and pH to form a helical structure of G-quartets via hydrogen bonding. 

Recently, all types of interactions were found to be involved in the formation of the structure 

including - stacking, cationdipole coordination, and metal ion–phosphate (electrostatic 

binding).2 Most guanosine hydrogels that are prepared with metals ions were based on binding 

to guanosine via O6/N7 and the hydro-gels of its derivatives use binding modes via the sugar 

group3, C84, and derivatives via N9.5 Houlton6 synthesised a chelate ring of Co- 6-

thioguanosine complex ion, he found that the coordination occurred via S6 and N7, while 

Zamora7 was able to prepare a 1D polymer of Cd with 6-mercaptopurine via S6 and N7. 

Adhikari8 studied the effect of a series of monovalent cations including silver() ion which 

induce deoxy guanosine (d Gs) and guanosine (Gs) purine to form hydrogels. No complex has 

yet been observed for 6-thioguanosine (6-TGR) with coinage ions and this indicates specific 

properties of group 11 to self-assemble and aggregate to form supramolecular compounds of 

3D hydrogels with 6-thioguanosine. In this work, we demonstrate for the first time the metal 

hydrogel of the thio analogue of O6-guanosine, that is 6-thioguanosine (6-TGR), which was 

capable to coordinate with coinage metal ions, copper and silver via the S6 atom. Interestingly, 

using this nucleoside with other metals showed different results, and the formation of gels 
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based on the concept of coordination polymer was not shown with other metals ions and it was 

only found with group 11.  

4.2 Experimental  

4.2.1 Synthesis of copper:6-thioguanosine (Cu:6-TGR) hydrogel 

A Cu:6-TGR hydrogel was prepared with the mole ratio 1:2. Cu(CO2CH3)2 solution (6 mg, 

0.033 mmol in 40 µL MeOH and 160 µL H2O) was added to warm solution of TGR (20 mg, 

0.066 mmol in 400 µL NaOH (0.1N), 200 µL MeOH, and 200 µL H2O), after gently mixing 

the two solutions and leaving to stand for 5 min, 1 ml of an orange gel was formed.  

4.2.2 Synthesis of silver: 6-thioguanosine (Ag:6-TGR) hydrogel 

Ag-TGR hydrogel was prepared with 1:1 mole ratio Ag:6-TGR, by adding solution of AgNO3 

(9 mg, 0.0534 mmol in 40 µL MeOH and 160 µL H2O) to warm solution of 6-TGR (16 mg, 

0.0534 mmol in 400 µL NaOH(0.1N), 200 µL MeOH, and 200 µL H2O) the two solutions were 

gently mixed. 1 ml of a stable, transparent yellow hydrogel was formed immediately. To 

prepare hydrogel in the ratio 2:1 of Ag:6-TGR, the same procedure was followed, except the 

mass of AgNO3 used was 1.8 mg.                    

4.3 Results &Discussion 

4.3.1 Copper:6-thioguanosine (Cu:6-TGR) hydrogel 

The reaction of Cu (acetate)2 with 6-thioguanosine(6-TGR) with mole ratio 2:1 ligand to metal 

was necessary to produce the hydrogel as using 1:1 was failed to obtain the gel. In addition, 

the reaction was performed in basic medium, and this was important to dissolve the ligand 6-

TGR which is difficult to dissolve in water, and it assists to make deprotonation at N1-H. The 

ligand is expected to be in the thiol form (-SH).  A simple inversion test was used to indicate 

the stability of the gel. Scheme 4.1 presents the reaction route and a photo-graph of the gel.   
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Scheme 4.1. Proposed structure for Cu(I):6-thioguanosine hydrogel with an image of the gel inverted 

in a glass vial. 

4.3.1.1 Fourier transform infrared spectroscopy (FTIR) characterisation  

The spectrum of 6-thioguanosine nucleoside (6-TGR) in Fig. 4.1 shows a band at 1205 cm-1, 

which is typically assigned to the C=S stretch, this band was changed to 1222 cm-1 after 

complexation with Cu(II) ions. In addition, the two bands at 1604 cm-1and 1558 cm-1 that 

belong to C=C and C=N stretching mode at the nucleoside (TGR) was shifted to1587cm-1 and 

1564 cm-1, respectively, in Cu:6-TGR. These changes are assigned to the effects of 

complexation with metal ions. This data indicates the involvement of exocyclic S6 atom with 

Cu (I) ion, based on this it is suggested that complexation leads to a 1D polymer of form -S-

Cu-S-Cu-. Fig. 4.1 shows the FTIR spectrum of 6-TGR before and after complexation with 

Cu(II) ions. Zamora9 found that the reaction between  Cu(I) and 6-thioguanine leads to form 

tetramer complex of Cu() via S6 and the reduction of the Cu() to Cu() was occurred by 6-

thioguanine. Odriozola10-14 prepared thiolate hydrogels with Au, Ag, and Cu via -S-M-S-M- 

systems. Based on the observations mentioned above, the binding site for the reaction of Cu 

ion with 6-thoguanosine is S6 atom.   

  

Figure 4.1. FTIR spectrum of: a) 6-thioguanosine (TGR) and b) Cu:6-TGR gel. 
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4.3.1.2 UV-Vis absorption spectroscopy 

Spectroscopic characterization of 6-thioguanosine (6-TGR) in pH 2 and pH 12 showed that 6-

TGR can exist thione (C=S) and thiol (-SH) forms by forming bands at 348 nm and 320 nm, 

respectively, as shown in Fig. 4.2, this data was consistent with reports in this area.15-17 The 

UV-Vis spectrum of the basic solution (pH 10.7) of 6-thioguanosine (6-TGR) showed 

characteristic peaks at 273 nm, 326 nm and 345 nm associated with π-π* transitions, the peak 

at 326 nm is due to the excitation energy of the π-π*  transition of the thiol form, may be 

deprotonation was occurred to NH1 at basic medium and that revealed the ligand appears at 

thiol form, in addition the band at 345 nm is frequently relates to the emerging of the thiol base 

π-π* transitions and the transition of the stacked π-π* of the neighbours nucleosides.18 The 

spectrum of the 6-TGR showed dramatically red shift for the bands at 273 nm and 326 nm to 

lower energy (324 nm and 380 nm respectively) after complexation with Cu ions, the change 

in the spectrum is due to the formation of ligand to metal charge transfer complex via binding 

of Cu ion with S6 at the nucleoside 6-thioguanosine, as shown in Fig. 4.3.  

 

Figure 4.2 Comparison UV-Vis absorbance spectra of 6-thioguanosine (6-TGR) solution at pH 2 and 

pH 12 and showed that 6-thioguanosine (6-TGR) was in thione and thiol form, respectively. 

 

Figure 4.3. Comparison UV-Vis spectrum of: a) basic solution of 50 µM 6-thioguanosine (6-TGR) vs 

b) Cu:6-thioguanosine (Cu:6-TGR) gel. 
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4.3.1.3 Fluorescence spectroscopy 

Fig. 4.4 displays the fluorescence emission spectrum of the basic solution of 6-thioguanosine 

(6-TGR) nucleoside with excitation at 326 nm and the fluorescence emission spectrum of Cu-

TGR gel with excitation at 380 nm. The spectrum of 6-TGR solution showed a broad peak 

centred at 420 nm covering the area from 347 nm to 514 nm associated with π- π* transitions, 

while the spectrum of Cu:6-TGR gel showed red shift to lower energy and exhibited a broad 

peak centred at 580 nm over the range 494 nm to 727 nm indicating the strong interactions 

between Cu(I) ion and the nucleoside 6-TGR. The emission is tentatively assigned to metal–

ligand charge transfer transitions because the oxidation state of the Cu is (I) at the gel as shown 

by XPS data below.19 Its known that the aggregation via metallophilic interactions tends to 

reduce the HOMO–LUMO gap20,21 and hence, the strong luminescence of  Cu(I):6-TGR 

complex is suggestive of strong Cu…Cu intermolecular interactions because of the large 

Stokes shift (9074 cm-1). Such large Stokes shifts are known for Cu(I) complexes22-24 and no 

overlap may be observed for the absorbance and emission bands in these complexes.19  

  

Figure 4.4. Fluorescence spectra of: a) basic solution of 50 µM 6-thioguanosine (6-TGR) nucleoside, 

and b) the spectrum of Cu:6-TGR gel. The excitation wavelength was 326 nm and 380 nm for 6-TGR 

and Cu:6-TGR, respectively. 

4.3.1.4 Circular dichroism spectroscopy (CD) characterization 

CD spectroscopy was used to investigate the optical and chiral properties of the gels. Fig. 4.5 

displays the optical activities of 6-TGR solution and Cu:6-TGR gel. The CD spectrum of the 

6-thioguanosine nucleoside (6-TGR) showed a negative band ellipticity under 200 nm that is  

attributed to the ribose moiety,25 and two bands, positive and negative, at 228 nm and 246 nm 

that are associated with n- π*, along with two bands, positive and negative, at 262 nm and 326 
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nm that due to π-π* transitions, respectively. However, the spectrum of 1:2 Cu:6-TGR gel 

showed remarkably hyperchromicity and marked red shift in the bands of n-π* transition to 

232 nm and higher intensity and red shift to the bands of π-π* transitions at negative 262 nm 

and positive 330 nm. Increasing the intensity of the ellipticity after complexation with metal 

ions is assigned to increases in the base stacking and thereby increasing the molecular 

ordereing.26,27 Chantot28 suggested that the optical activity of the bromo guanosine gel is 

assigned to the formation of a highly ordered helical structure. 

 

Figure 4.5. CD spectra of: a) the aqueous solution of 6-thioguanosine (6-TGR) (blue line) vs b) CD 

spectrum of 1:2 Cu:6-TGR gel (orange line). 

 

 4.3.1.5 X-Ray photoelectron spectroscopy (XPS) characterization of Cu:6-thioguanosine 

gel (Cu:6-TGR)   

The colour change upon addition of the blue solution of Cu(II) to the solution of the 6-

thioguanosine (6-TGR) suggests that the oxidation state of the Cu(II) ion was changed from 

(+2) to (+1) in the orange Cu:6-TGR gel. In order to establish the oxidation state of the Cu ion 

at the gel, X-ray photoelectron spectroscopy (XPS) was carried out. The XPS spectrum of 

Cu:6-TGR xerogel, Fig. 4.6, detected the Cu 2p3/2 and Cu 2p1/2 at binding energy 932.78 with 

FWHM 1.8 eV and 952.58 eV with FWHM 2.3 eV respectively with a splitting of 19.8 eV, 

and this agree with the separation value of Cu 2p3/2 and Cu 2p1/2 for Cu(I).29-31 Distinguishing 

between Cu(II) and Cu(I) in XPS is not difficult, as Cu(II) shows shake-up satellites32,33 due to 

interaction of the photoelectron with the incomplete d-shell of nearby Cu atoms, this satellite 

peak usually appears at 942 eV which is absent in the XPS spectrum of Cu:6-TGR gel, 

suggesting that Cu(II) is not present and the oxidation state of the copper at the gel is (+1).  
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Figure 4.6. The XPS spectra of Cu:6-TGR shows the photoelectron for Cu2p3/2 and Cu2p1/2 at binding 

energy 932.78 eV, FWHM 1.8 eV and 952.58 eV, FWHM 2.3 eV, respectively with a splitting of 19.8 

eV. 

To ensure no Cu(0) was formed at the gel, Auger Parameter data (AP) was used to distinguish 

between Cu(0) and Cu(I); the appearance a peak at 915.6 K.E which is lower than that 

associated with Cu(0) by 3 eV indicates that the oxidation state of Cu at the gel is Cu(I) , as 

shown in Fig. 4.7 , and this consistent with the literature.34  

 

Figure 4.7. The XPS spectrum of auger parameter for L3M45M45 Kinetic Energy (eV) of Cu:6-TGR 

shows the Auger parameter (AP) data at 915.5 K.E.  

 

To confirm no Cu2O at the sample, O1s XPS was measured, Fig. 4.8 shows no component 

centred at 530.4 eV that belongs to Cu2O and the band at 532.7eV with FWHM 1.68 eV belongs 

to the oxide layer at silicon substrate35,36 and possibly to water/acetate. The above observations 

confirm that copper acetate (Cu(CH3COO)2) was reduced by the purine compound (6-
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thioguanosine), and that agrees with studies37-39 which showed reduction of Cu(II) by purine 

to Cu(I).                                                                      

 

Figure 4.8. XPS spectrum of Cu:6-TGR shows the photoelectron of O1s with FWHM 1.68 eV. 

4.3.1.6 Powder x-ray diffraction (XRD) 

Cu(I) is soft acid has affinity towards S atom (soft base), the Cu-S40-42 distance is found in the 

range 0.247-0.268 nm, and the S…S40 interdimer was found at 0.327 nm. Other reports found 

that the distance of Cu-S  at thiourea is 0.231-0.242 nm, Cu-Cu43,44 was found 0.255 nm, while 

Saxena45 observed that Cu-Cu distance at 0.269 nm and 0.2722 nm. Cu-N7 distance was found 

at 0.1992 nm by Sletten46 who prepared  dichloro-(6-thio-9-methyl purine)copper(II) 

monohydrate, this band was not found here suggests that Cu(I) was not binding via N atoms. 

Fig. 4.9 and Table 4.1 below show the XRD pattern and the distance (di) that extracted from 

analysis XRD data for Cu:6-TGR gel.  

 

Figure 4.9. XRD pattern for Cu:6-TGR hydrogel. The blue line is the experimental diffraction data and 

the red dotted line is the theoretical fit to a sum of Gaussian functions.   
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Table 4.1. Distances extracted from the analysis of the XRD data for Cu:6-TGR gel. 

Distance / nm Suggested Assignment 

0.257 Cu-S  

0.325 S…S  

0.394 - distance45 

between layers  

 

4.3.2 Silver: 6-thioguanosine (Ag:6-TGR) hydrogel 

The reaction of AgNO3 with 6-thioguanosine (6-TGR) in basic medium leads to form a stable 

hydrogel. The classic inversion test was used to confirm the formation of the gel as shown in 

Scheme 4.2. Using basic medium to achieve this reaction was important to dissolve the 6-TGR, 

at the same time it helps to make deprotonation at N1-H and this reveals 6-TGR in a thiol form.        

 

Scheme 4.2 Proposed structure for Ag(I):6-thioguanosine hydrogel and photo image for the yellow 

hydrogel.                           

4.3.2.1 Fourier transform infrared spectroscopy (FTIR) characterisation  

The IR spectra of Ag:6-TGR gel in Fig. 4.10 shows shifts for the band at 1205 cm-1 that we 

attribute to the C=S stretch mode to higher frequency (1211 cm-1) indicates that the binding 

occurred via the S6 atom. No change was observed for the bands at 1604 cm-1 and 1558 cm-1 

at the 6-TGR nucleoside that assigned to stretch mode C=C and N=C and that suggests that no 

binding was occurred via N7. No broad band at 1319 cm-1 in the complex indicating that nitrate 

group was not take part in the binding. The above observations indicate that Ag(I) is binding 

to S6 and forming 1D polymer of -Ag-S-Ag-S-, this data was consistent with Odriozola10,13 

who prepared thiolate hydrogels with coinage metal ions. Orioli15 and Tu47 prepared a complex 

of Ag:6-guanosine and they suggested that forming a chelate ring stabilized Ag complexes, 
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while Mann2, Gancharova48, and Loo49 found that the coordination of Ag(I) to guanosine 

monophosphate (GMP) occurred via O6 and N7 by forming a dimeric structure.  

    

Figure 4.10. FTIR spectrum of: a) 6-thioguanosine (6-TGR) nucleoside vs b) silver:6-thioguanosine 

(Ag:6-TGR) xerogel.  

4.3.2.2 UV-Vis absorption spectroscopy   

The UV-Vis spectrum of a basic (pH 10.3) solution of 6-thioguanosine nucleoside (6-TGR) 

showed a band at 326 nm that belongs to π-π* transitions of the thiol form as a result of the 

deprotonation at NH1. This band was shifted to lower energy (340 nm) after complexation with 

Ag (I) ions, Fig. 4.11.  

 

Figure 4.11. UV-Vis spectrum of: a) basic solution of 6-thioguanosine nucleoside (6-TGR) vs b) 

spectrum of Ag:6-TGR gel.  

4.3.2.3 Fluorescence spectroscopy 
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that the absence the Ag....Ag interactions increases the HOMO-LUMO gap 21 and weak 

luminesce, similar to the free ligand, is at least consistent with this. A very few reports that 

prepared silver nucleoside compounds have shown no fluorescence,2,8 and numerous papers on 

different Ag(I) complexes showed no fluorescence,50 except for the dimeric complexes of silver 

and gold that prepared by Ray.51  He observed fluorescence for a dimeric Ag complex and he 

claimed that as a result of shorter Ag…Ag contacts. Fig. 4.12 shows the fluorescence emission 

spectrum of Ag:6-TGR. 

 

Figure 4.12. Fluorescence emission spectra of: a) basic solution of 50 µM 6-thioganosine (6-TGR) 

nucleoside (blue line), and b) the spectrum of Ag:6-TGR gel (orange line), the excitation was 326 nm 

and 340 nm for 6-TGR and Ag:6-TGR, respectively.    

4.3.2.4 Circular dichroism spectroscopy (CD) characterization 

The positive and negative bands at 228 nm and 246 nm that belongs to n-π* transition in the 

spectrum of the nucleoside 6-thioguanosine (6-TGR) showed red shift in the spectrum of Ag:6-

TGR to negative bands at 238 nm and 300 nm with high intensity as a result of binding Ag ion 

with the nucleoside 6-TGR, Fig. 4.13. The positive and negative bands at 262 nm and 328 nm 

that belongs to π-π* were shifted with high intensity to negative and positive bands at 342 nm 

and 406 nm respectively in the spectrum of the complex. The CD spectrum of the 6-TGR ligand 

is dramatically altered upon the addition of Ag(I) and that reflects the ordered structure of the 

coordination polymer. 
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Figure 4.13. Comparison between the CD spectra of: a) 6-thioguanosine nucleoside (6-TGR), and b) 

CD spectrum of 1:1 Ag:6-TGR gel.  

4.3.2.5 Powder X-ray diffraction (XRD) 

Ag(I) is a relatively soft acid that prefers to coordinate with soft bases such as sulfur but also 

coordinates to nitrogen.52 Fig. 4.14 displays the X-ray diffraction data of Ag:6-TGR hydrogel; 

the scattering is typical of amorphous systems with partial order and can be analysed by fitting 

sums of Gaussian functions to the data. The peak positions to these fitted components are 

related to the interatomic distances by Braggs’ low and Table 4.2 represents the distance 

between the atoms in the polymer. The distances of Ag-S and Ag-Ag were found 0.272 and 

0.374 nm, respectively, the data were consistent with the literature.53,54 The absence of Ag-N7 

distance indicates that the binding site in the Ag(I) gel was only through S6 atom.      

 

Figure 4.14. XRD pattern for Ag:6-TGR hydrogel. The blue line is the experimental diffraction data 

and the red dotted line is the theoretical fit to a sum of Gaussian functions.   
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Table 4.2. Distances extracted from the analysis of the XRD data for Ag:6-TGR gel. 

Distance / nm Suggested Assignment 

0.272 Ag-S53 

0.374 Ag-Ag 

 

4.3.3 Atomic force microscopy (AFM) 

In order to probe the morphology and the size of the fibres in the gels, surface topographic 

imaging was carried out using tapping mode AFM by depositing 2 µL of Cu:6-TGR and Ag:6-

TGR gels onto a clean silicon (100) wafer (1cm x 1cm). The samples were left to dry overnight 

in air prior to analysis. All AFM images showed a network of long fibres. A statistical analysis 

was carried out to show the height and the size (diameter) distribution of the fibres in the gel.  

A typical AFM image of the Cu:6-TGR xerogel in Fig. 4.15, shows a very dense, entangled 

fibres with heights in range 10 - 34 nm. The size distribution of the fibres was calculated as 

shown in the histogram, and the modal height was 28 nm, some lower structure heights 

between 10 - 16 nm with lower frequency can be seen, in addition to a few larger structures 

with heights between 31- 46 nm. These larger structures can be assigned to bundles of two or 

more single fibres. As shown in the section analysis, some of the peaks are single fibres and 

some peaks are most likely two or more fibres on top of another. This likely also explains the 

bimodal distribution of Fig. 4.15 b. 
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Figure 4.15. Tapping Mode AFM Height image of 1: 2 Cu-6-thioguanosine gel (Cu:6-TGR), (a)&(c) 

the scale bar was 2 µm and the height (grayscale) were 46.2 nm & 27.5 nm, (b) the histogram shows 

the size (diameter) distribution of the fibre. (d) A cross section associated the white horizontal line in 

(c) shows the height of the fibres ~28 nm, as shown at the section, some of the peak is a single fibre and 

some peaks are corresponding to two fibres on top of the other and for this reason the distribution looks 

bimodal.  

In the AFM image that is shown in Fig. 4.16, a regular needle-like morphology can be 

observed; it is apparent from image (b) that some fibres are entangled with each other but, in 

general the images show that the common morphology of the fibres was needle-like. A 

statistical analysis shows that the modal height of the fibres was 3 nm and the range observed 

was 2-7 nm, much thinner than for the Cu fibres of Fig. 4.15. The profile of the white section 

in image (c) shows that the height of the fibres is 2-3 nm and the regular nature of the heights 

suggests fibres whose heights match individual polymer chain dimensions.  
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Figure 4.16.  Tapping Mode AFM Height images of 1:1 Ag:6-thioguanosine gel (Ag:6-TGR). The 

scale bars and the heights (grayscales) were 200 nm & 3 nm, 400 nm & 7.3 nm, and 400 nm & 8.1 

nm at a), b), and c), respectively, d) the associated cross- section along the white horizontal line in 

(c) shows the height of the fibres  3 nm, e) the histogram shows the size (diameter) distribution of 

the fibres.   

In Fig. 4.17, silver: 6-thioguanosine was prepared with mole ratio 2:1, by increasing the 

concentration of silver ions, the morphology of the gel was changed compared to the gel with 

ratio 1:1. It is not clear if another silver ion was coordinated to a second binding site of the 

nucleobase, though an experiment was done to test if the excess of silver ions were free or 

binding, by reducing the gels with both ratios with DMAB (Dimethylamine Borane) at the 

same conditions. The results showed that the gel with ratio 2:1 was reduced very fast (formation 

of black, metallic Ag), however the gel with ratio 1:1 was very difficult to reduce and that 

suggested that the excess of silver ions in the gel with ratio 2:1 were free, even though, the 

reason that causes the different morphology of this gel is still not clear.    

The AFM images in Fig. 4.18 show lattice-like fibre network. The white line across image (a) 

along several microns of fibres displays structure height  3 nm, while the histogram in Fig. 
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4.18 (d) demonstrates the average fibre height for  50 fibres of Ag:6-TGR gel, the structure 

height was observed at 3 nm, some larger structure height up to 5 nm was seen in much lower 

frequency, in addition, to lower structure height up to 2 nm in much lower frequency was also 

seen.  Interestingly, the height of the fibres was similar at both stoichiometry (3 nm).     

                                                                                                               

 

Figure 4.17. Tapping Mode AFM Height images of 2:1 Ag:6-thiouanosine gel (Ag:6-TGR) drop casted 

onto a silicon wafer and drying by air. The scale bars are 1µm & 300 nm and the height (grayscale) are 

4.2 nm and 3.9 nm in (a) and (c), respectively. (b) The associated cross- section along the white 

horizontal line in (a) shows the height of fibrous ~ 3 nm, (d) the histogram of the size (diameter) 

distribution of ~50 fibres of Ag:6-TGR.  

4.3.4 Transmission electron microscopy (TEM)  

The morphology of Ag & Cu:6-TGR xerogels were examined using TEM, based on this 

approach, two types of substrate were used to prepare the samples, carbon coated copper grids 

and holy carbon copper grids. The sample was prepared by drop casting 1.5 µL of the gel onto 

the substrate, followed by air drying prior to imaging. The inspection of the Ag:6-TGR samples 

with concentrations 2:1 and 1:1 as shown in Fig. 4.18 and 4.19, respectively, revealed the 

formation of very dense, entangled networks of fibres.      
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Figure 4.18. TEM of 2:1 Ag:6-TGR xerogel, the scale bar was 100 nm, 500 nm, 100 nm at (a), (b), and 

(c), while the magnification was 64000x, 34000x, and 180000x, respectively.  

 

It is worthwhile to note here that; no silver nanoparticles were seen at the TEM images for 

Ag:6-TGR gel that prepared with metal to ligand stoichiometry 2:1.  

 

Figure 4.19. TEM images of 1:1 Ag:6-TGR hydrogel, the scale bar and the magnification was 100 nm 

and 64000x at (a)& (b), and 500 nm and 46000x at (c)     

 

Fig. 4.20 shows the TEM images of Cu xerogels using carbon-copper grids (a & b), further 

inspection was carried out by preparing the sample with holey carbon (c & d), all the images 

display networks of highly uniform fibres consist of entangled thin nano fibres.  
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Figure 4.20. TEM of 1:2 Cu:6-TGR hydrogel, the scale bar was 500 nm at (a) and (b), while the 

magnification was 13500x and 19000x, respectively. Images (c)&(d) were measured by holey copper 

grids with scale bar 500nm and magnification 34000x &13500x, respectively.  

4.4 Conclusion   

This study demonstrates synthesis of 3D hydrogels for Cu (I) & Ag (I) with 6-thioguanosine 

nucleoside based on coordination polymer formation and metal binding via the S6 atom. The 

data suggested forming 1D polymer of -{-S-M-S-M-}-n for Cu and Ag hydrogels, respectively, 

entanglement of the polymer chains leads to form 3D hydrogels via hydrogen bonds. The 

fluorescence measurements showed that Cu hydrogel has a very strong luminescence, which 

may be due to the strong Cu…Cu interactions and a small HOMO-LUMO gap. The Ag 

hydrogel showed weak fluorescence and small Stokes shift which may indicates weak Ag…Ag 

interactions. The AFM data was consistent with TEM data as both techniques show formation 

of very long fibres (many micrometres).       
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Chapter 5. Complexation of Coinage Metal Ions with 2-deoxy-6-

Thioguanosine (d TGR) 

Abstract    

Coordination polymers of 2-deoxy-6-thiopurine riboside with coinage metal ions were 

prepared as 3D networks. The polymers entangle via hydrogen bonding to form 3D networks 

and hydrogels. 2-Deoxy-6-guanosine (Gs) was used to synthesize the corresponding 6-thio 

purine derivative, 2-deoxy-6-thioguanosine (d TGR). Upon coordination the metal ions of Au, 

Cu, and Ag with d TGR stable hydrogels were formed.        

5.1 Introduction 

Metal thio purine complexes have been of recent research interest partly because of the 

potential applications of these compounds in the pharmaceutical field1,2 but also some gels have 

been reported. A 2-deoxyadenosine derivative with alky chain and urea linker was prepared as 

a gel under ultrasonic treatment. The formation of the gel occurred by the balance of 

hydrophilic-hydrophobic interactions3. Deoxy guanosine gels with monovalent cations (Na+, 

K+, Ag+, Au+, Hg+, and Tl+) have prepared by Adhikair.4 For 5azido-2- deoxy thymidine lipids 

the gelation occurred by hydrogen bonding,  stacking, and hydrophobic interactions.5 

Zhao6 demonstrated a very clear example to present the influence of a lack of hydroxyl 

group(2OH) from the sugar structure, he found that the 2OH group has the main role at the 

orientation of the supramolecular structure by forming flower-shaped structures with 

pyrimido[4,5-d]pyrimidine nucleoside.  Coinage metals or group 11, which include Au, Ag, 

and Cu, displayed highly affinity towards thio purine by forming hydrogels with 6-

thioguanosine as mentioned in chapter three.   

5.2 2-Deoxy-6-thioguanosine nucleoside metal ions complexation 

To prepare coinage metals ions:2-deoxy nucleoside gels, 2-deoxy-6-thioguanosine (d TGR) 

was synthesised by thiolation of 2-deoxy-6-guanosine and characterized using NMR, Mass 

spectroscopy, FTIR, and UV-Vis spectroscopy. The commercial d TGR is very expensive (£ 

2860.00 for 250 mg, Sigma), and for this reason it was synthesised. 
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5.2.1 Synthesis of 2-deoxy-6-thioguanosine (d TGR) 

The method of A. Jones7 (1991) was used to prepare 2-deoxy-6-thioguanosine (d TGR). The 

reaction was carried out in a Schlenk flask under nitrogen by adding 30 ml of cooled pyridine 

anhydrous to 2-deoxy6-guanosine (0.4 gm, 150 mmol) in ice bath, then 1.8 ml (12.6 mmol) of 

trifloroacetic anhydride was added drop wise and left stirring for 40 min. Then a suspension of 

NaSH (2.6 gm, 23 mmol) in 45.2 ml of anhydrous DMF was added and stirred for 24 h. After 

that, 76 ml of ammonium bicarbonate was added with vigorous stirring, then the mixture was 

concentrated and the residue was dissolved in methanol and filtered. After concentrated the 

filtrate to dryness, 0.1 M of TEAA buffer (triethylammonium acetate) was added and the 

product was recrystallized with H2O: MeOH to give a yellow powder (60%). 

5.2.2 Mechanism of the reaction 

The mechanism of Jones7 reaction involves the formation of a pyridinium intermediate as a 

result of adding   trifluoroacetic anhydride to d Gs in dry  pyridine . After that, adding sodium 

sulfide in anhydrous dimethylformamide to the pyridinium intermediate gives d TGR with 

yield 40%, as shown in Scheme (5.1). 

 

 

 

 

 

 

 

 

 

 

Scheme 5.1. Jones7 route for synthesis of 2-deoxy-6-thioguanosine (d TGR). 
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5.3 2-Deoxy-6-thioguanosine (d TGR) characterization   

To characterize 2-deoxy-6-thioguanosine (d TGR), ESI-MS on a Waters LCT -Premier mass 

spectrometer, NMR spectra on a 300 and 500 MHz Delta Jeol, UV-Vis-spectroscopy, and 

Fourier transform infrared (FTIR) were used. 

5.3.1 Mass spectroscopy characterization  

Mass spectroscopy (ESI-MS) was carried out in methanol with concentration 100 µg/ml with 

Waters LCT-Premier mass spectrometer. The major peak at ES-Mass spectra, Fig. 5.1, 

(positive mode) for 2-deoxy-6-guanosine (d Gs) was found at 290.0850 m/z corresponding to 

the formula C10H13N5O4 Na (calculated 290.086), while the positive mode peak in Fig. 5.2 

corresponding to deoxy 6-thioguanosine with formula C10H13N5O3SNa displayed at 306.067 

m/z (the calculated 306.0639). Based on these data the synthesis of d TGR was successfully 

achieved.  

 

Figure 5.1. Mass spectrum (ESI-MS) of 2-deoxy-6-guanosine (d Gs). The solvent was methanol and 

the concentration was 100 µg/ml.   
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Figure 5.2. Mass spectrum (ESI-MS) of 2-deoxy-6-thioguanosine (d TGR). The solvent was methanol 

and the concentration was 100 µg/ml.   

5.3.2 NMR studies 

The 1H NMR (300 MHz, DMSO-d6, 25oC) spectrum in Fig. 5.3 confirmed the data of FTIR 

and UV-Vis which showed successful formation of 2-deoxy-6-thioguanosine.  Comparison of 

the 1H-NMR data of synthesized d TGR with corresponding d Gs, Table 5.1, showed that N1-

H was observed at 11.94 ppm while at d Gs it was found at 10.63 ppm, this data was consistent 

with that reported by Jones.7 Small chemical changes have been seen at the protons of NH2 and 

C8-H at d TGR compared to d Gs as a result of the distance from S6.    

 

Figure 5.3. Comparison between 1H-NMR for a) d Gs and b) d TGR in DMSO-d6. 

a 

b 
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Table 5.1. Comparison of H signals in 1H- NMR spectra of d Gs and d TGR. 

 

 

 

The 13C-NMR spectrum of d TGR displayed that a signal for C6 at 175.94 ppm, while the 

signal of the corresponding atom of d Gs before modification was found at 157.19 ppm. Fig. 

5.4. The data was comparable with Jones7 and that indicates successful synthesis of d TGR. 

The peak of C2 was found at 40.02 and 40 ppm at d Gs and d TGR, respectively. Table 5.2. 

shows comparison C signal in 13C NMR spectra between d Gs and d TGR.      

 

Figure 5.4 13C-NMR spectra comparison between a) d Gs and b) d TGR in DMSO-d6. 

 

 

Number of 

H atom 

 

1H in d Gs 

/ppm 

 

1H in d TGR 

/ppm 

H1 10.63 11.94 

H8 7.95 8.12 

NH2 6.46 6.81 

H1 6.14 6.14 

H2 2.55, 2.23 2.55, 2.23 

H3 4.35 4.35 

H4 3.83 3.83 

H5 3.55,3.56 3.55,3.56 

OH3 5.28 5.28 

OH5 4.98 4.98 

b 

a 
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Table 5.2. Comparison of C atom signals in 13C- NMR spectra of d Gs and d TGR.    

 

Number 

of C atom 

 

13C-NMR of d Gs 

/ppm 

 

13C-NMR of d TGR 

/ppm 

1’ 83 83.16 

2’ 40.02 40 

3’ 71.19 71.05 

4’ 88.01 88.13 

5’ 62.16 62.02 

2 154.09 153.47 

4 151.33 147.91 

5 117.10 128.79 

6 157.19 175.49 

8 135.72 138.69 

 

5.3.3 UV-Vis absorption characterization  

A comparison of UV-Vis spectra of basic solutions of d Gs and d TGR (Fig. 5.5) displayed a 

peak at 273 nm assigned to a * transition of the C=O moiety. This peak was red shifted to 

320 nm in the spectrum of d TGR and indicates successful substitution of the O atom of the 

carbonyl group by S. Formation of the new peak in the spectrum of a basic solution of d TGR 

at 320 nm which is assigned to the *, indicates that the d TGR was in thiol (-SH) form.8 

This peak that appears for the solution of d TGR is comparable with that found to the basic 

solution of 6-TGR.     

 
Figure 5.5. Comparison absorption spectrum between: a) 50 µM of 2-deoxy-6-guanosine (d Gs) (blue 

line) and b) 50 µM of 2-deoxy-6-thioguanosine (d TGR) (orange line) in basic aqueous solution 

(pH=9). 

0

0.2

0.4

0.6

0.8

255 275 295 315 335 355 375 395

A
b

so
rb

an
ce

Wavelength (nm)

b 
a 



125 
 

5.3.4 Fourier transform infrared (FTIR) Characterization  

The C=O stretching mode9-11 was a good band to distinguish between d Gs and d TGR, as this 

band was seen at 1681 cm-1 in the FTIR spectrum of d Gs and absent in the spectrum of d TGR 

(Fig. 5.6). In addition, the band at 1200 cm-1 which assigned to the stretching mode12 C=S was 

apparent in the spectrum of d TGR, while the band at 2600 cm-1 that belongs to the stretching 

mode12-14 S-H was absent in the spectrum of d TRG, these data clearly support forming d TGR 

and indicates that it was in thione form. The above observation data of mass, NMR, UV-Vis, 

and FTIR show that the convesion of d Gs to d TGR was performed successfully.           

 
Figure. 5.6. Comparison FTIR spectra between: a) 2-deoxy-6-guanosine (d Gs) (blue line) and b) 2-

deoxy-6-thioguanosine (d TGR) (orange line). 

5.4 Synthesis of Au, Ag, and Cu:d TGR hydrogels 

The same procedure that used to prepare hydrogels of Au, Ag, and Cu:6-TGR was used to 

prepare the gels of Au, Ag, and Cu:d TGR and the colour of the obtained hydrogels were 

yellow, transparent yellow, and orange, respectively, Fig. 5.7.   

5.5 Results & Dissociation   

The stability of 6-thioguanosine (6-TGR) gels with time is higher than that in 2-deoxy-6-

thioguanosine (d TGR) gel which suggests an important role for hydrogen bonding involving 

the 2OH groups. The stability of metal:d TGR gels is reduce with time with the order Au:d 
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TGR< Cu:d TGR < Ag:d TGR. It was found15 that no significant affect for the absence of 2OH 

group at the monohydrate structure of 2-deoxy-6-guanosine (d Gs) compared to the 

corresponding 6-guanosine(Gs) , however,  at dihydrated cluster d Gs reveals less stability. The 

driving forces in the gelation process involve hydrogen bonding,  interactions, van der 

Waal16, and dipole-dipole interactions, however it seems that hydrogen bonding17 plays the key 

role in the forming of hydrogel.18 Hydrogen bonding and perpendicular - stacking are 

responsible of the high arrangement at nucleic acid structure, in addition that makes 

nucleosides as a good template for making hydrogels.19       

 
Figure 5.7 Photographs of Au, Ag, and Cu:d TGR hydrogels. 

5.5.1 Atomic force microscopy (AFM) characterization  

The morphology of the 2-deoxy-6-thioguanosine (d TGR) hydrogels that were prepared with 

metal ions of group 11 (Au, Cu, Ag) were investigated to study the effect of the absence of the 

2OH group from the sugar structure on the morphology of the gels. AFM tapping mode was 

used to carry out this study on the xerogels. The morphology of the polymer that forming upon 

coordination Au(I) with 2-deoxy-6-thioguanosine is apparent in the height AFM images in 

Fig. 5.8. Image (a) shows individual fibres with close imaging (scale bar 250 nm), the fibre 

was found to be long, uniform, and has breakages in the structure make it seems to be a granular 

linear fibre with height 10 nm as shown in image (b) which is associated with the cross section 

of the horizontal white line along image (a). Image (d) displays the linearity at the morphology 

of the fibres clearly. 2-Deoxy-6-thioguanosine exhibits ability to form 3D networks, as shown 

by image (c), in spite of the absence of the 2OH group. A statistical analysis was carried out 

to evaluate the size distribution of the fibres in the gel, the data which is presenting in the 

histogram (e) shows structures up to 11 nm in height recorded, in addition some higher height 

structures up to 23 nm but with low frequency is observed, and a number of smaller height 

structure in range 5-8 nm also can be seen with less frequency.  Comparison the AFM images 
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in Fig. 5.8 for Au:d TGR with those for the Au:6-TGR gel (chapter 3) showed drastically 

different in the height and the dimeter of the fibres; as the height was 10 nm and the dimeter 

was 11 nm in the former, while the latter displayed 3 nm for both. This indicates the effect of 

a lack of 2OH group on the morphology of the gel.  

 

Figure 5.8. Tapping Mode AFM images of (a) height image of a section of a single fibre of Au:d TGR, 

the scale bar 250 nm and the height (grayscale) 12.1 nm. (c)& (d) are height images of the Au:d TGR 

gel show the entangle and single fibres, the scale bar was 500 nm and 2 µm and the height (grayscale) 

was 22.4 nm and 21.1 nm at (c)& (d), respectively. (b) Cross section of the white line at (a) shows the 

height of the fibres ~ 10 nm. (e) Height distribution of Au:d TGR fibres. The difference between images 

(c) & (d) is assigned to the area of imaging, as image (c) was imaged from a thick area to show the 

network while image (d) was imaged from a thin area to display single fibres.   

 

The AFM image (a) in Fig. 5.9 for the Ag:d TGR hydrogel shows that the fibre is very smooth 

with height 1.4 nm, as shown in the profile (b). There is evidence of entwining of some fibres 

with each other in the cross section from left to right along image (c) which is obviously shows 

the height structure of ~7.5 nm, (d) is the profile of the cross section along image (c). The 

height of the fibres for this gel is different from that for Ag(I):6-TGR that obtained with 

concentration 1:1 of metal to ligand stoichiometry (chapter 4). The Ag(I):6-TGR was needle-
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like fibres with 3 nm height and diameter. While the Ag:d TGR gel is more thinner and has 

lower height and diameter (1.5 nm). In addition, this gel showed entwining their fibres with 

each other to produce fibres with height 7 nm as shown in Fig. 5.9.  

 

 

Figure 5.9. (a) Height image of Ag:d TGR gel drop cast onto a silicon wafer and air drying, the scale 

bar and the height (grayscale) in (a) was 400 nm and 1.9, the image were taken by Tapping Mode AFM 

image. (b) is the profile of the cross section along image (a) show the height is  1.4 nm. The cross 

section from left to right shows the regions highlighted in (c), scale bar 1 µm, height (grayscale) 16.5 

nm.  (d) Showing the profile of the corresponding cross section of (c).  

 

AFM images of Cu:d TGR hydrogel is shown in Fig. 5.10, it is clear that the fibre  is linear and 

no branching was seen at the images, the result of the statistical analysis displays that the 

diameter of the fibre was 7 nm as shown at the histogram (b), some higher height in range of 

9-13 nm can be seen and some lower height between 5-3 nm also was found at the histogram, 

but both the higher and the lower height were with less frequency. The profile (d) of the 

individual fibre along the cross section in image (c) shows a height of ~7 nm.  Comparison the 

AFM images for this gel with that for Cu:6-TGR (chapter 4) revealed that the fibres for Cu-gel 

with a lack of hydroxyl group is thinner and has less height (7 nm) as shown in Fig. 5.10, while 

Cu:6-TGR has fibres with height 28 nm.  
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Figure 5.10. Tapping mode AFM image of 1:2 Cu- deoxy 6-thioguanosine gel drop cast onto a silicon 

wafer and drying by air. (a) Height images with scale bar 500 nm and the height (grayscale) is 18.9 nm, 

(c) a small area of (a) with scale bar 250 nm and 10.8 nm height (grayscale). (b) The histogram of the 

size (diameter) distribution of the fibres, (d) the associated cross section along the white line in (c) 

shows the height of the fibres at ~7 nm.   

 

In conclusion, the influence of a lack of 2OH group on the polymer morphology was very 

clear with Au:d TGR among other hydrogels of Cu and Ag.  

5.5.2 Transmission electron microscope (TEM) characterization  

The morphology of the metal ions deoxy hydrogels was inspected by TEM. Samples were 

prepared by drop casting 2 µL of the hydrogel onto a TEM grid, followed by drying prior to 

inspect. A typical TEM images of Ag:d TGR casted onto a carbon coated copper grids was 

indicated in Fig. 5.11, the TEM images revealed very long, linear, and uniform fibre and the 

fibre was stretching along the substrate.  This fibrous morphology is a good evidence to support 

the data of AFM images.    



130 
 

 

Figure 5.11. TEM of Ag d TGR gel. The scale bar was 2 µm, and the magnification was 10500x and 

7900x at (a) and (b), respectively.  

 

The TEM images of Au:d TGR in Fig. 5.12 display long highly continues fibres and it is clearly 

apparent that the fibres were avoiding the holes of the carbon substrate as there was no bridge 

across the holes in the substrate.    

 

Figure 5.12. TEM of Au d TGR gel. The scale bar and the magnification were 500 nm and 46000x   

at (a) and (b), 500 nm and 34000x at (c), respectively. 

 

The morphology of TEM of Cu:d TGR in Fig. 5.13 revealed thick linear continuous fibres. 

These appear to consist of two or more fibres entwined with each other, as shown in image (a), 

the red arrow refers to roughly three fibres. The morphology of these images is a good 

agreement to that obtained by AFM where the fibre was found long and thick.     
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Figure 5.13. TEM of Cu -d TGR gel. The scale bar was 500 nm at (a) and (b), and the magnification 

was 46000x and 34000x, respectively. 

5.6 Conclusion 

2-Deoxy-6-thioguanosine (d TGR) was successfully synthesis from 2-deoxy-6-guanosine via 

thiolation reaction and characterised by NMR, Mass spectroscopy, FTIR, and UV-Vis. The 

characterisation’s data of the pale powder product showed a good agreement with the 

compound that prepared by Jones7. The reaction of d TGR with group 11 (Au, Ag, Cu) in 

aqueous solutions revealed formation 3D hydrogels. A combination of AFM and TEM 

techniques that used to inspect the morphology of the gels displayed long, linear, uniform 

fibres. The AFM images for Ag:d TGR and Cu:d TGR showed the formation of fibres with 

less height compare to that for Ag:6-TGR and Cu:6-TGR (chapter 4). However, some changes 

have been seen with Au:d TGR fibre as the height increased (11 nm) compare to the fibres’ 

height for Au:6-TGR (3 nm), these observations indicate that the coordination of d TGR with 

group 11 was not affected by the lack of hydrogen bonding which assigned to absence 2OH 

group from the structure of sugar group.                
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Chapter 6. Synthesis and Characterisation of Supramolecular Hydrogels 

formed by Silver Thionucleobases 

Abstract 

This work demonstrates synthesis and characterization of silver: 6-thio purine & 2-thio 

pyrimidine nucleobase hydrogels. The coordination polymers of silver-nucleobases were 

prepared by complexation of Ag(I) with 6-mercaptopurine (6-MP), 6-thioguanine(6-TG), and 

2-thiocytosine (2-TC). The FTIR spectra of the hydrogels show that the fundamental 

coordination site the S6 and S2 atoms of the purine and pyrimidine nucleobases, respectively. 

The coordination polymer of silver:2-TC nucleobase was followed by formation tiny amount 

of silver sulphide which turns the colour of the compound to black with the time. Studying the 

morphology for the three types of the hydrogels by AFM and TEM show very long linear fibre 

with dense networks for the hydrogels.   

6.1 Introduction 

Using biomolecules as ligands can lead to formation a coordination polymer (CP) which has 

features that are compatible with the original ligand. Normally the biomolecular ligand has 

multiple binding sites and that can increase the diversity of coordination polymers in 

accordance with the kind of the metal ions because the orientation of metal ion towards the 

binding site is usually affected by different conditions such as the oxidation state of the metal 

ion, the pH of the reaction, the mole ratio, etc. Nucleobases are ideal biomolecules to form 

different CPs with metal ions as they have different binding sites with electron lone pairs on 

atoms such as N, O, and S, and they have a hydrogen bonding system that helps to drive self-

assembly of CPs. However, biomolecules are difficult to form crystals with metal ions and 

most of these compounds form amorphous particles. Davidson1 was able to prepare a 2D linear 

polymer by coordinating Ag(I) with adenine via N7 and N9, while Zamora was able to prepare 

1D polymer of  [Cd(6-MP)2.2H2O]n by reaction of Cd ions with 6-mercaptopurine(6-MP), the 

binding occurred via S6 and N72. Houlton3 synthesised a chelate ring of Co:6-thioguanine 

complex, and he found that the coordination was occurred via S6 and N7. Gagnon4 prepared a 

dimeric structure of adenine nucleobase and silver ion in which silver atoms were bonded via 

N3 and N9 atoms of bridging bidentate adeninium ligands.   

6-Mercaptopurine (6-MP) and 6-Thioguanine (6-TG) nucleobases are analogues of 

hypoxanthine and guanine obtained by replacing the O6 with S6. Both of the nucleobases are 
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used as anticancer agents for patients who suffer from acute lymphoblastic leukaemia.5,6 The 

potentiometric studies show that the proton at S6 at 6-TG and 6-MP is more acidic than that at 

N97, and the behaver of silver atom as soft acid to soft base was studied by Sigel8 who confirms 

in his report the rule of affinity hard bases to hard acids and vice versa, and he found that the 

binding of Mn+2 as hard base was very weakly towards sulfur compared to Cu+2. At guanine, 

N7 is the favoured site for binding due to higher basicity and higher dipole moment > 7D9 of 

guanine. Adhikari10 studied the effect of a series of monovalent cations including silver(1) ion 

which induce deoxy guanosine (d Gs) and guanosine (Gs) to form hydrogels. A supramolecular 

hydrogel of guanosine 5-monophosphate (Na25GMP) with Ag(I) was prepared by Mann11who 

suggested the formation of dimer of Ag-GMP via N7 and O6, Mann’s result was reported 

before by Loo12 who used several nucleobases including guanine, he suggested that it forms a 

dimer with silver ion via N7 and O6 and recently by Goncharova13, who suggested the same 

result with 5-guanosine monophosphate. Previously studies by Orioil14 and Tu15 at Ag-

guanosine complex were suggested forming a chelate ring involving N7 and O6. 

2-Thiosytocine (2-TC) is a derivative of a natural nucleic acid base cytosine by replacement of 

the exocyclic oxygen of cytosine with sulphur atom. It is found in the tRNA of some organisms 

(E.cola) but not in mammals.16 This nucleobase exhibits strong biological effects such as 

antitumor,17,18 antifungal, and anti-inflammatory activity.19 Due to thiol-thione and amino-

imino equilibria, 2-TC presents six tautomeric forms,19 the most common forms are thiol( 2-

TC1) and thione (2-TC2) with an exocyclic amino group. According to Latosinska,19 the 

stability order in the solid phase is 2-TC2 > 2-TC1 as shown in Scheme 6.1, while Vetter20 and 

Lapinski21 found that 2-TC exhibits the thiol form in the solid state. Reports of interaction of 

pyrimidines with metals ions showed that 2-thiocytosine act as bidentate while isocytosine act 

as monodentate upon coordination with Pt and Pd ions.22  It was found that Ruthenium (III) ion 

and Cu(II) ion coordinated with 2-thiocytosine via N3 and S atoms.23,24 Complexes of 2-

thiocytosine and 1-methyl-2-thiocytosine with trimethylplatinum(IV) was prepared and it was 

found that the coordination of  these monodentate ligands was occurred via the S atom of the 

nucleobase.20 Herne, we demonstrated for the first time the morphology structure of a new 3D 

polymers of 6-thio purine and 2-thio pyrimidine of 6-mercaptopurine (6-MP), 6-thioguanine 

(6-TG), and 2-thiocytosine(2-TC), respectively, with Ag(I) via S atom.  
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Scheme 6.1. Amine–thiol( 2-TC1) and amine- thione (2-TC2) of 2-thiocytosine tautomers. 

   

6.2 Experimental  

6.2.1 Synthesis of Silver: 6-Thioguanine (Ag:6-TG) hydrogel 

1:1 mole ratio was used to prepare the Ag:6-TG hydrogel by Adding the solution of 

AgNO3(16.2 mg, 0.0956 mmol in 40 µL MeOH and 160 µL H2O) to the warm solution of 6-

TG (16 mg, 0.0956 mmol 400 µL DMSO, 200 µL MeOH, and 200 µL H2O (the % of DMSO 

that used for dissolving 6-TG was represented 40% of the total volume of the gel), 1 ml of 

constant yellow hydrogel was formed at once. 

6.2.2 Synthesis of Silver: 6-Mercaptopurine (Ag:6-MP) gel 

Ag:6-MP gel was prepared with 1:1 mole ratio by adding the solution of AgNO3(8.1 mg, 0.047 

mmol in 40 µL MeOH, and 160 µL H2O) to the warm solution of 6-MP (8.12 mg, 0.047 mmol 

in 400 µL DMSO, 200 µL MeOH, and 200 µL H2O), after mixing the solution 1 ml of a clear 

yellow gel was formed.   

6.2.3 Synthesis of Silver: 2-Thiocytosine (Ag:2-TC) gel 

Ag:2-TC was prepared with 1:1 mole ratio, AgNO3 (0.1132 g, 0.666 mmol in 400 µl MeOH, 

and 1.6 ml H2O) was added to the solution of 2-TC (0.0847 g, 0.666 mmol in 2 ml DMSO, 2 

ml MeOH, and 4 ml H2O) after gently shacking, a clear pale solution was formed at once, after 

two mins a small aggregation was formed, testing these aggregations under the microscope 

showed long filaments, pale solid Ag:2-TC (yield  0.0768 g with respect to the weight of the 

ligand, 91%) was collected by filtering the precipitate. However, leaving the precipitate at the 

solution leads to increase the size of the filaments after two weeks, and followed two weeks 

later the filaments be more grown and entangled with each other and the colour turned to 

brown. At the end of 30 days as a total period since preparing time, the compound was 

completely black and the entangled filaments converted to long bundles belts ribbon as shown 

by fluorescent microscope then converted to fibres after six weeks. Scheme 6.4 showing the 
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route reaction to synthesis the pale Ag:2-TC, while Fig. 6.11 displays photo image for black 

Ag:2-TC hydrogel 

6.3 Results & Discussion  

6.3.1 Silver: 6-Thioguanine (Ag:6-TG) hydrogel 

Silve:6-thioguanine hydrogel was synthesised by reaction of AgNO3 with 6-thioguanine (6-

TG), the product would be expected to have a linear geometry25 with coordination number 2,  

and the chains of the polymer will be in form  -S-Ag-S-Ag- . The product of the reaction was 

a stable hydrogel which was characterized with a range of spectroscopic techniques aiming to 

address the chemical structure of the complex, while the morphology was characterized by 

using the AFM and TEM. Scheme 6.2 presents the reaction route to the hydrogel. The 

photograph shows a simple inversion test of a glass vial containing a sample of the gel.  

     

Scheme 6.2. Synthetic route for Ag:6-TG hydrogel, and photograph of the gel. 

 

6.3.1.1 Fourier transform infrared spectroscopy (FTIR) of Ag:6-thioguanine (Ag:6-TG) 

The sharp band at 1226 cm-1 that observed in the spectrum of the 6-thioguanine nucleobase, 

Fig. 6.1, is characteristic of the stretching mode of C=S, this band was absent in the spectrum 

of the Ag:6-TG gel after complexation indicating that the binding of Ag ion to the nucleobase 

occurred via S the atom, Moreno-Sanchez26 found that 6-thioguanine bound via S6 with Ag (I) 

and the ligand acts as unidentate and monoanionic (but his preparation was not a gel). A new 

band at 1317 cm-1 that relates to the nitrate group3 was observed in the spectrum of the complex 

confirms the presence of the nitrate group in the structure of the gel. The bands at 1535 cm-1 

and 1612 cm-1which are typically assigned to stretching modes of C=N and C=C in the ligand 

6-TG are shifted to form one band at 1660 cm-1 in the complex, changes at the vibrations spectra 
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regions27 of the nucleobase are apparent for both the intensities and the band positions around 

1570-1700 cm-1, and that was not evidence to take part N7 atom at the complexation.    

 

Figure 6.1. Compression FTIR spectra between: (a) the spectrum of the nucleobase 6-TG and (b) the 

spectrum of Ag:6-TG gel. The green vertical line indicates the position of the C=S stretch. 

6.3.1.2 UV-Vis absorption spectroscopy of Ag:6-thioguanine hydrogel (Ag:6-TG) 

The spectrum of 6-thioguanine at pH 2 and pH 12, Fig. 6.2, showed two bands at 345 and 320 

nm assigned to thione (C=S) and thiol (SH), respectively, Zhang28 found the same result. The 

spectrum of the aqueous solution of 6-thioguanine (6-TG) at pH (7.3), Fig. 6.3, showed a band 

at 342 nm that associated with π-π* transitions assigned to thione form(C=S) which is observed 

at neutral or acidic pH.28,29 The spectrum of the complex demonstrated similar band at 342 nm. 

Khizhnya30 found that Ag(I) binding with N-acetyl-L- cysteine(NAC) via the S atom and forms 

linear chains of AgSAgS and he assigned the weak absorbance peak that forms upon 

complexation to participate the electrons of one of pairs of S atom with the orbital of Ag(I).  

 

Figure 6.2. Shows the thione and the thiol forms of 6-thioguanine (6-TG) solution at pH 2 (orange line) 

and pH 12 (blue line), respectively. 
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Figure 6.3. Displays comparison between UV-Vis absorption spectra of: (a) 60 µM 6-Thioguanine (6-

TG) nucleobase at pH 7.3 and (b) Ag:6-thioguanine (Ag:6-TG) gel.  

 

6.3.1.3 Fluorescence spectroscopy of Ag: 6-thioguanine (Ag:6-TG) 

The fluorescence spectrum of 6-thioguanine(6-TG) with excitation 340 nm, Fig. 6.4 shows a 

broad emission covered the area from 355 nm to 590 nm and centred at 417 nm, while the 

fluorescence spectrum of Ag:6-thioguanine (Ag:6-TG) displayed a weak emission over the 

range from 493 nm to 660 nm. This emission, though it was not very strong, is very interesting 

as most of silver compounds with nucleobases, nucleosides, and other ligands that prepared 

before10,11,31 were non-fluorescent. Gelation leads to a red-shift of the λexn. this is known for 

supramolecular structures.32
  

 

Figure 6.4. Comparison between the fluorescence emission spectrum of (a) aqueous solution of 50 µM 

6-thioguanine (6-TG) vs the spectrum of (b) 1:1 Ag:6-TG gel, the excitation wavelength was 342 nm 

for both 6-TG and Ag:6-TG, respectively. 
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6.3.1.4 Powder x-ray diffraction (XRD) 

The X-ray diffraction patterns for Ag: 6-TG hydrogel, Fig. 6.5 displayed that the distances of 

Ag-S were 0.276 nm, while the length bands of Ag-Ag were 0.395 nm and 0.488 nm 

,respectively, Table 6.1. These data were a good agreement with the literature which gives 

typical lengths of Ag-S bonds in range 0.237-0.27233,34 nm and Ag-Ag was 0.374 -0.45834,35 

nm. The intramolecular Ag…Ag separation35,36 was found at 0.453 nm. A short Ag…Ag 

distance was found by Bosch37 from 0.288 to 0.297 nm.  

 

Figure 6.5. XRD pattern for Ag:6-TG hydrogel. The blue line is the experimental diffraction data and 

the red dotted line is the theoretical fit to a sum of Gaussian functions.   

 

Table 6.1. Distances extracted from the analysis of the XRD data for Ag:6-TG gel. 

Distance /nm Suggested Assignment 

0.488 Ag....Ag 

0.276 Ag-S 

0.395 Ag…Ag 

 

6.3.2 Silver: 6-Mercaptopurine (Ag:6-MP) gel  

In similar manner to the synthesis of Ag:6-TG hydrogel, the reaction of AgNO3 with 6-

mercaptopurine (6-MP) leads to a stable hydrogel, Scheme 6.3 shows the chemical reaction 

route with photograph of an inversion test of the gel.  
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Scheme 6.3. Chemical reaction route for synthesis of Ag:6-MP hydrogel, and photograph of a gel 

inversion test.  

6.3.2.1 Fourier transform infrared spectroscopy (FTIR) of Ag:6-mercaptopurine hydrogel 

(Ag:6-MP) 

The stretching band at 1273 cm-1 which belongs to C=S in the spectrum of the nucleobase (6-

MP)38-40 was not seen in the spectrum of the complex Ag:6-MP, Fig. 6.6, which suggests that 

the binding of Ag ion to the nucleobase occurred via the S6 atom. The stretching band observed 

around 1566 cm-1 due to C=C and C=N in the spectrum of 6-MP nucleobase was significantly 

shifted to higher frequency (1658 cm-1) in the spectrum of the complex. The change of the 

vibrations in the region 1570-1700 cm-1 was apparent in the nucleobase spectra,27 however, 

this was not evidence that N7 participated in the complexation. A new band at the 1319 cm-1 

indicating the presence of nitrate group at the molecular structure of the polymer in the gel. 

              

Figure 6.6. FTIR spectrum of the 6-Mp nucleobase (a) vs the spectrum of Ag:6-MP complex (b) in the 

600-4000 cm-1 region. The green vertical line indicates the position of the C=S stretch. 
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6.3.2.2 UV-Vis absorption of Ag:6-mercaptopurine hydrogel (Ag:6-MP) 

The spectrum of the 6-MP, Fig. 6.7, was carried out at pH 2 and pH 12. The data showed 

absorption peak at 320 nm relates to π-π* which observed at natural and acidic medium 

associated with the thione form (C=S) and a peak at 300 nm which assigned to the thiol form 

(SH),28,29 respectively, furthermore, Kiefer39 found that 6-MP at a basic medium has a thiol 

form (SH) . Fig. 6.8, shows the spectrum of aqueous solution of 6-MP at pH (6) which displays 

a peak at 320 nm assigned to thione (C=S), this peak was red-shifted in the spectrum of Ag:6-

MP hydrogel to 330 nm after complexation with Ag (I).  

 

Figure 6.7. UV-Vis absorption spectra of 6-MP at pH 2 and pH 12 show the thione and thiol form, 

respectively. 

 

Figure 6.8. UV-Vis spectrum of: (a) 60 µM 6-Mercaptopurine (6-MP) nucleobase at pH 6 and (b) 

spectrum of Ag:6-Mercaptopurine (Ag:6-MP) gel.  
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6.3.2.3 Fluorescence spectroscopy of Ag:6-mercaptopurine (Ag:6-MP) 

The fluorescence spectrum of an aqueous solution of 6-mercaptopurine(6-MP) with excitation 

320 nm (absorption peak 320 nm) showed a broad emission covered the area from 372 nm to 

510 nm and centred at 412 nm, this data was a good agreement with Selvaraj40 who displayed 

strong fluorescence for 6-MP at around 380 nm with excitation at 320 nm, while Shen41 

reported that the fluorescence of 6-MP is weak and no peak was seen at area 340-390 nm. 

However, our data shows a good fluorescence for 6-MP. Weak emission was found to the 

spectrum of Ag:6-MP gel at 495-630 nm as shown in Fig. 6.9, most complexes of silver with 

nucleosides that known or with other ligands were either non-fluorescence or very weak 

fluorescence.  

 

Figure 6.9. Comparison between the fluorescence emission spectrum of (a) aqueous solution of 6-

Mercaptopurine (6-MP) vs the spectrum of (b) 1:1 Ag:6-MP gel, the excitation was 320 nm and 328   

nm for 6-MP and Ag:6-MP, respectively. 

6.3.2.4 Powder x-ray diffraction (XRD) 

The X-ray diffraction patterns for Ag: 6-MP hydrogel in Fig. 6.10 revealed that the distance of 

Ag-S was 0.273 nm33,34, while the length band of Ag-Ag was 0.405 nm.35,36 Table 6.2 presents 

the data. 
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Figure 6.10. XRD pattern for Ag:6-MP hydrogel. The blue line is the experimental diffraction data and 

the red dotted line is the theoretical fit to a sum of Gaussian functions. 

   

Table 6.2. Distances extracted from the analysis of the XRD data for Ag: 6-MP gel. 

Distance/nm Suggested Assignment 

0.405 Ag-Ag 

0.273 Ag-S 

 

6.3.3 Silver: 2-Thiocytosine (Ag:2-TC) gel 

The reaction of AgNO3 with 2-thiocytosine with mole ratio 1:1 of metal to ligand in mixture 

solvents of DMSO, MeOH, and H2O leads to prepare pale polymer of Ag:2-thiocytosine, 

testing the polymer under microscope showed formation of a very long fibres. Scheme 6.4 

displays the reaction route. The solid isolated by filtration after forming and dried at 45 C for 

2 h. Leaving the solid in the solvents produces black gel after six weeks, as shown in Fig. 6.11.      

 

Scheme 6.4. Chemical reaction route for synthesis Ag:2-TC. 
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Figure 6.11. Photo images for black Ag:2-thiocytosine (Ag:2-TC) hydrogel that produced after six 

weeks when pale Ag:2-TC was left with solvents mixture that used for preparation. Inversion classic 

test was used to confirm the formation of the hydrogel. 

6.3.3.1 Fourier transform infrared spectroscopy (FTIR) of Ag:2-thiocytosine(Ag:2-TC)  

The spectrum of 2-TC, Fig. 6.12, shows a very weak band at 2546 cm-1 that assigned to the S-

H42-44 stretching mode, this band was absent in the spectrum of the Ag:2-TC pale complex, in 

addition the bending mode S-H which was detected at the region from 925-850 cm-1 at the 

ligand21 was not seen in the spectra of the pale complex, these observations indicating 

coordination silver ion to the S atom of 2-TC.  Furthermore, no band was observed at 3400 cm-

1, 1206 cm-1 & 1098 cm-1 related to stretching modes N1-H and C=S, respectively, in the 

spectrum of the ligand indicates that the ligand was at thiol form.45 The two narrow bands at 

3101 and 3317 cm-1 that assigned to stretch symmetric (sym ) and asymmetric (asym ) modes 

of NH2 were found in the spectra of 2-TC46,47 and black complex and that confirms no binding 

was occurred via N atom of NH2. 

 

Figure 6.12. FTIR spectra of: (a) 2-Thiocytosine (2-TC) nucleobase, (b) pale complex of Ag:2-TC, and 

(c) black complex of Ag:2-TC. The red vertical line indicates the position of the S-H stretch. 
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6.3.3.2 UV-Vis absorption spectroscopy of Ag:2-TC 

The UV-Vis spectrum of the 2-TC, Fig. 6.13, shows two bands at 280 nm and 241 nm assigned 

to -*,48 the band at 280 nm was shafted at the pale colour complex that formed after 

complexation between 2-TC and Ag(I) to lower energy(295 nm), this new band can be assigned 

to -* transitions, the same band that formed for pale complex can be seen at the black 

complex.  

 

Figure 6.13. UV-Vis absorbance spectra of (a) 2-Thiocytosine (2-TC) nucleobase with concentration 

50 µM, (b) pale complex of Ag:2-TC, and (c) black complex of Ag:2-TC. 

6.3.3.3 Powder X-ray diffraction (XRD) 

The XRD data showed formation of two species of microcrystalline and amorphous. The 

microcrystalline is belong to the compound that produces from coordination 2-thiocytosine 

with Ag(I) ions, isolated this compound from the mixture solvents DMSO, MeOH, and H2O 

leads to produce pale stable compound. However, leaving this compound in the mixture 

solvents for six weeks leads to loss the microcrystallinity and forms amorphous structure 

alongside with forming black gel. 

The X-ray diffraction pattern for pale Ag:2-TC in Fig. 6.14 revealed sharp Bragg peaks in range 

between 5< Q < 30 corresponding to distance (d), d = 2/Q. Higher distances where found in 

range of 4 < Q < 19. 

The sharp Bragg peaks that apparent in Fig. 6.14 for the pale compound indicates that the 

compound has microcrystalline structures. Table 6.3 displays the d for pale Ag:2-TC.      
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Figure 6.14. XRD pattern for pale Ag:2-TC. The blue line is the experimental diffraction data and the 

red dots line is the theoretical fit.   

 

Table 6.3. Distance di extracted from the analysis of the XRD data for pale Ag:2-TC. 

 

Distance/nm 
 

Suggested Assignment 

0.386 Intramolecular Ag-Ag 

0.274 Ag-S 

0.255 Ag-S 

0.242 Ag-S 

 

The X-ray diffraction data for the black compound of Ag:2-TC in Fig. 6.15 shows amorphous 

structure and no Bragg peaks were found compared to the pale Ag:2-TC compound which 

showed microcrystalline structure. Fitting the data displays that the Ag-Ag distance was found 

at 0.39 nm, however, no distance for Ag-S was observed which is expected to be found at 0.27 

nm according to the literature, and that can be reasoned to the small size of Ag2S that formed. 

Table 6.4 displays the d for black Ag:2-TC.  
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Figure 6.15. XRD pattern for black Ag:2-thiocytosine hydrogel. The red dots line is the theoretical fit 

and the blue line is the experimental diffraction data. 

 

Table 6.4. Distance di extracted from the analysis of the XRD data for black Ag:2-TC gel. 

Distance / nm Suggested Assignment 

0.317 Ag-Ag 

0.457 Ag-Ag 

0.392 Ag-Ag 

 

6.3.3.4 X-ray photoelectron spectroscopy (XPS) of 2-thiocytosine 

The contradiction in the binding energy value for 3d5/2 at Ag in different oxidations state make 

it difficult to use it for distinguishing between them because the small difference (1.2 eV) 

between the three oxidation states of binding energy values for instance the Ag 3d5/2 at Agо, 

Ag2O, and AgO were found to be 367.9-368.4, 367.6-368.5, and 367.3-368.1, respectively,49 

thus, the Auger Parameter (AP) is more useful to distinguish between silver species. The AP is 

independent on the charge of the sample, as it represents the difference between photoelectron 

energy and Auger electron energy. Furthermore, the chemical shifts at the peaks is higher than 

that for photoelectron peaks,50-53 for instance, the AP for Agо  is higher by 2 eV than the values 

for other oxidation states.49 However, it is difficult to use it to distinguish the Ag(I) from other 

oxidation states for silver, for instance in Ag2O and AgO, the shape of photoelectron peaks use 

to distinguish between them as they appear as a complex doublet in AgO and a single doublet 

in Ag2O.49,51 Fig. 6.16, shows the XPS spectrum of photoelectron for Ag 3d5/2 and 3d3/2 in Ag-

TC, as shown in the figure a doublets peaks with binding energy 368.28 eV and 374.28 eV 
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with separation 6.0 eV and FWHM= 1.10 eV assigned to Ag 3d5/2 and Ag 3d3/2, respectively, 

indicating that the oxidation state of Ag at Ag:2-TC is (+1).51 

 

Figure 6.16. The XPS spectrum of Ag:2-TC shows the photoelectron for 3d5/2 and 3d3/2 with separation 

6.0 eV and FWHM 1.1 eV.      

 

To establish the oxidation state of the silver at the sample with more reliable evidence, AP 

parameter have been measured also. Fig. 6.17 shows the Ag Auger peaks with BE values 

1137.41 and 1129.64 eV which correspond to KEs of Auger lines for Ag 3d5/2 M4N45N45 and 

Ag 3d3/2 M5N45N45 of  357.04 and 349.27 eV and the Auger Parameter (AP)  can be calculated 

as 725.32 eV and 723.55 eV, respectively, and this suggests bonding Ag-S, these data are a 

good agreement with the data of Kaushik51 who found that AP value of Ag 3d5/2, M4N45N45 for 

Ag(I) at Ag2S was 724.8 eV which is close to the value in this thesis. 

 

Figure 6.17. The XPS spectrum of Ag-TC shows the Auger lines for Ag 3d5/2, M4N45N45 and Ag 3d3/2, 

M5N45N45 for Ag-TC at 349.27 eV and 357.04 eV, AP = 725.32, and 723.55 eV, respectively. 
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Fitting S 2p XPS peaks as shown in Fig. 6.18, displayed two sets of doublet bands, the first 

doublet at 162.28 eV and 163.78 are assigned to 2p3/2 and 2p1/2, respectively, while the second 

doublet set for the same electronic configuration was apparent at 165.88 eV, 167.28 eV. The 

apparent of those sets of peaks at these positions are attributed to the presence of Ag2S.54   

 

Figure 6.18. XPS spectrum of S 2p for 2p3/2 and 2p1/2 shows doublet sets of peaks. 

Moreover, to confirm that the sample does not have silver oxide, examining Ag O 1S showed 

one component assigned to O 1S located at 532 eV which is attributed to the surface oxide layer 

of the silicon substrate27 and no peak was centred at 530.4 eV55,56 that is normally observed 

when the oxide is present in the sample, the absence of this peak indicating that no oxide was 

at the sample, as shown in Fig. 6.19. 

 

Figure 6.19. XPS spectrum of Ag:2-TC shows the photoelectron of O1s. 
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6.3.3.5 Mass spectra characterization for pale Ag:2-TC 

The data of mass spectra that carried out at Sheffield University using matrix-assisted laser 

desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for pale Ag:2-

TC in acetonitrile revealed presence of [L + Ag +NO3
-] and confirms the proposal formula 

C4H4N4SAgO3, m/z found: 295.9607 (calculated: 295.8688), the data confirms the proposal 

structure for pale Ag:2-TC. The isotope at m/z 485.0079 is attributed to [2L+Ag+2NO3
-].  Fig. 

6.19 presents the mass spectrum.  

 

Figure 6.19. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) mass spectrum for pale Ag-2TC in acetonitrile. 

6.4 Atomic force microscopy (AFM)  

6.4.1 Atomic force microscopy (AFM) characterization of the Ag: 6-TG & 6-MP hydrogels 

Self- assembly helps to synthesis a new class of material with multiple length scales. Both 

natural biomolecules57 and synthetic molecules are capable to assemble and form nanofibres 

by supramolecular aggregates. The term nanofiber refers to the fibres with a diameter 100 

nm.58 Nanofibres can be found as a helix structure by twisting fibre or produce from twisting 

of two or more fibres to form bundles, in this case the possibility to observe the helix by AFM 

will be only for one fibre and the helical must be not ruled out from describing the structure. 

The helical structure is possible to seen by AFM, however the formation of dens networks 

sometimes makes observation of the helix difficult. In order to probe the morphology and the 

size of the fibres in the gels, surface topography imaging was carried out using tapping mode 

AFM on samples prepared by depositing 2µL of Ag:6-TG &Ag:6-MP hydrogels onto a silicon 

substrates. The AFM images revealed the formation of extremely long polymer molecules (10 

µm the maximum scan range) with a dense network. A statistical analysis was carried out to 

show the size (diameter) distribution and the height of the fibres in the Ag:6-TG & 6-MP 
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hydrogels. Fig. 6.20 image (c) shows the histogram of the Ag:6-TG hydro gel structure, the 

peak height is revealed to be 9-11 nm. Peaks with heights larger than that, up to15 nm, were 

appeared at low frequency, some peaks lower than 9 nm, from 3-7 nm, are also seen at the 

histogram. The profile of the individual fibre structure on the surface, Fig. 6.20 (b) showed that 

the height was typically in range of 9 nm. Interestingly, the shape of the fibres was linear, and 

there was no branching have been observed at all AFM images that have been measured and 

that indicates that the chains have a linear structure. 

 

Figure 6.20. AFM of Ag:6-TG gel drop cast onto a silicon wafer and air drying, the image was taken 

in tapping mode. (a) Height image, the grayscale 16.6 nm and scale bar 1 µm. (b) the cross section of 

(a) shows the height of the fibres at a diameter ~9 nm, (c) the histogram of the size(diameter) distribution 

of the fibres of Ag:6-TG gel. 

 

The size distribution of the fibres at Ag:6-MP gel is shown in Fig. 6.21 d, the common (modal) 

diameter is observed to be about 7-9 nm, number of peaks at low frequency with larger heights, 

up to 17 nm, or lower heights, down to 3 nm, are also apparent at the histogram.   
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Figure 6.21. Tapping mode AFM images of 1:1 silver 6-mercaptopurine hydrogel drop-cast onto a 

silicon wafer and dried in air. The scale bars in (a) & (c) are 1 µm and 300 nm, respectively. (a) Height 

image, the grayscale corresponds to 25.2 nm (b) the associated cross-section along the white horizontal 

line in (a) shows the height of the fibres at a diameter ~9 nm, (c) a small area of (a) with 

height(grayscale) 22.8 nm, and (d) the size distribution of ~50 Ag:6-MP fibres.  

 

6.4.2 Atomic force microscopy (AFM) of Ag:2-TC 

The intermolecular potentials represent one of the most important factors that help the 

molecules to form a polymer structure, furthermore the interactions of dipolar moments that 

involve hydrogen bonding, van der Waals, and - stacking lead to form fibre and 

supramolecular polymers.59 To understand the factors that limit the length and the rate 

formation of fibres, the light must be first shed on the growth process which includes self-

assembly of the chains of the polymer into fibre depending on intermolecular interactions.60 

The AFM image in Fig. 6.22 was taken from the pale Ag:2-TC. Image (a) shows the microfibre 

structure, (b) is the profile of the white vertical line along image (a) which revealed that the 

height was  300 nm. While the AFM images in Figs. 6.23 & 6.24 were taken from the black 

compound of Ag:2-TC. The images showed nano fibre structure, the histogram (d) displays the 

distribution size of the fibres. The profile of image (a) in Fig. 6.24. indicates the height of the 

fibres which was  12 nm. 
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The difference in the AFM images between the pale compound (Fig.6.22) and the black 

compound (Figs. 6.23 & 6.24) in the morphology and the height of the fibres is assigned to the 

microcrystalline structure of the pale compound and the amorphous structure of the black 

compound. These observations are consistent with the XRD data which shows conversion the 

structure from microcrystalline to amorphous upon conversion the Ag:2-TC from pale 

compound to black gel.    

 

Figure 6.22. a) Height AFM image for pale Ag:2-TC with scale bar 2.5 µm, b) the profile of the white 

vertical line in image (a) shows the height 300 nm. The high value for the height in this image reflects 

the microcrystalline structure for the pale Ag:2-TC.  

 

 

Figure 6.23. Tapping Mode AFM Height images of 1:1 Ag-2-thiocytosine gel, the scale bar was 1 µm 

in images (a) and (b), and 500 nm in image (c), the mean height was 8.3 nm, 51.4nm, and 31.6 nm at 

(a), (b), and (c), respectively. d) The histogram shows the size (Diameter) distribution of   the fibres. 
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Figure 6.24. a) Height AFM image with scale bar 500 nm and height 31 nm, b) the profile of the white 

vertical line in image (a) shows the height 12 nm. 

 

6.5 Transmission electron microscopy (TEM) characterization  

Transmission Electron Microscopy (TEM) was used to assess the morphology of the gel, 

identical sample was prepared by placing 1.5 µL of the gel onto a carbon coated copper grid 

substrate, after drying at ambient conditions, the sample was imaging by using Philips CM100 

electron microscope at accelerating voltage 100 kV with high resolution, and a typical TEM 

images of networks of Ag: 6-TG & 6-MP hydrogels are shown in Fig. 6.25 & 6.26, it is apparent 

from the images that the gels have very long linear fibres with uniform distribution morphology 

upon the grids, it is also clearly apparent the absent of branching fibres and that was not 

occurred by chance, this finding strengthen the proposal that the binding site was only S6. 

These images show agreement with the morphology of the gels that obtained by AFM.          

 

Figure 6.25. TEM of 1: 1 Ag:6-thioguanine (6-TG), the scale bar was 100 nm and 500 nm at (a)& (b), 

while the magnification was 64000x and 46000x, respectively.  
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Figure 6.26. TEM of 1: 1 Ag- 6-mercapto purine (6-MP), the scale bar and the magnification was 500 

nm 34000x at (a) & (b), respectively. 

 

The TEM images for Ag:2-TC in Fig. 6.27show very long fibres with tiny particles which may 

be attributed to the presence of Ag2S.  

 

 

Figure 6.27. Transmission electron microscopy images of Ag:2-TC prepared with 1:1, the scale bar 

and the magnification were 500 nm, 13500x at (a) and 2 µm, 10500x at (b & c), respectively, the images 

which were for the black compound that formed after six weeks, show very long bundles with black 

particles that belongs to Ag2S. 

 

6.6 Fluorescence microscopic images 

Studying the hierarchical process formation of polymer Ag:2-TC, Fig. 6.29, was carried out by 

using fluorescence microscope. Comparison between the morphology of 2-TC, AgNO3, and 

Ag:2-TC at mixture solvents of DMSO, MeOH, and H2O showing the difference between the 

three compounds. As shown in Fig. 6.28, 2-TC (a, b) and AgNO3 (c) have crystal structures, 

while the Ag:2-TC (d) has a polymeric structure. This comparison was achieved to confirm 
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that the polymer was belong to Ag:2-TC and not for 2-TC or AgNO3, it was found that Ag(I) 

can form corrugated structure upon coordinated with DMSO.61 On the other hand, the chemical 

structure of 2-TC can form dimer, ribbons, and bundles as a result of the presence of two kinds 

of hydrogen bonding NH...N and NH...S.62       

 

Figure. 6.28. Fluorescence image for 2-TC after 5 min (a) and optical image after 1h (b) of preparation 

in mixture solvents of DMSO, MeOH, and H2O. Fluorescence image for AgNO3 in solvents DMSO, 

MeOH, and H2O (c), and Ag:2-TC(d) in a mixture of DMSO, MeOH, and H2O solvents, showing crystal 

structure for (a, b) & (c) and polymer structure for (d), respectively.   

 

The first stage was included formation of pale colour small clusters of micro filaments, Fig. 

6.29 (images a &b) followed by growing these clusters into long branched micro fibres (c &d), 

next, the micro fibres begin converted into very thin fibres (e) which in turn forming a very 

thin layer (f) that represents a 3D network of hydrogel that indicted by using AFM. 

Remarkably, this process was accompanied by changing the colour of the mixture from pale to 

black, and the last stage (f) was not be formed before changing the colour completely to black 

indicating formation amount of Ag2S, the total period from synthesis to obtained the gel was 6 

weeks.       
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Figure 6.29. Fluorescence microscopic images of 1:1Ag:2-TC in different periods of polymerization, 

images a &b at the first week, images c & d after two weeks, and images e & f after eight weeks.    

6.7 Conclusion 

In summary, we prepared 3D hydrogels based on Ag-S bond with thio purine and thio 

pyrimidine, the coordination of metal ion to the nucleobase provide access to synthesis a new 

class of material by forming network consist of entanglement very long fibres. Importantly, the 

affinity of Ag(I) to form linear bonding with S atom leads to form very long chains of linear 

SAgS. The X-ray data revealed formation two species compounds for the reaction of 2-

thiocytosine with Ag(I) ions, microcrystalline and amorphous, the former produces when 

isolated the pale product from the mixture solvents DMSO, MeOH, and H2O, while the latter 

produces when leaving the pale compound in the mixture solvents which leads to loss the 
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microcrystallinity and forms amorphous structure alongside and forms black gel. The XPS data 

displayed that the black colour of the gel is due to the formation of Ag2S.        
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Chapter 7. Synthesis and Crystal Structure Determination Complexes of 

Silver, Copper, and Cobalt with Thioether Purines 

Abstract 

Ag(I):6-methylmercaptopurineriboside (1) (Ag(I):6-MMPR), Cu(II):6-methylmercaptopurine 

(2 and 3) (Cu(II):6-MMP), and Co(II):6-methylmercaptopurine (4) (Co(II):6-MMP) were 

synthesised and characterized using UV-Vis, FTIR, fluorescence spectroscopy, elemental 

analysis (C.H.N), mass spectroscopy, NMR, fluorescence microscopy, and powder X-ray 

diffraction. The crystal structure data for C22H28AgN9O13S2 (1) shows that Ag(I) lies on a 

crystallographic 2-fold rotation axis and the nitrate anion is loosely coordinated as a bidentate 

ligand in a discrete molecular complex. The complex and water molecules are connected by 

hydrogen bonding. The X-ray data revealed that the crystal of C12H12N8S2Cl4Cu2 (2) is triclinic, 

the structure is a partial methanol solvate, the methyl group and subsequently one proton 

bonded to nitrogen have been modelled as disordered over two positions. A dimeric Cu(II):6-

MMP complex with proposed formula C12H12Cu2N8O2S2 (3) with 2:2 metal to ligand M2L2 

stoichiometry was also isolated. X-ray data for C12H22N8S2O6Co (4) shows that the compound 

has monoclinic crystal system with an extensive 3D hydrogen bonding network.     

7.1 Introduction 

6-Thiopurines, which are derivatives of purine show antitumor activity1-3 and for this reason 

the current studies are shedding light on these unnatural compounds to understand the 

coordination site and the bonding of metal ions in the purine complexes. In fact, the presence 

of multiple binding sites at the nucleobases and nucleosides compounds make these materials 

have special interesting as ligands towards numerous metal ions which give arise to obtain 

variable structures according to the site of coordination.4,5 The diversity of structure in these 

metal complexes has led to interest in various in different fields, e.g. luminescence,6,7 

electronics,8 catalysis,9 gas adsorption,10 in addition to the pharmaceutical applications.11-14 6-

methylmercaptopurine riboside (6-MMPR) is strong specific inhibitor of protein kinase N 

(PKN) and the activity of nerve growth factor (NGF).15,16 It was observed that 6-MMPR affects 

at the formation and conservation  blood vessel.16 Hepatotoxicity was seen in patients who have 

very low concentration of 6-MMPR.17 6-MMP is formed18 in patients who are suffering from 

leukaemia. Using oral dosing of the drug 6-mercaptopurine (6-MP), the metabolism of 6-MP 

that occurs in the liver by methyltransferase (TPMT) was shown to lead to leads to formation 
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of 6-MMP. The common metal binding site in purine is N7, however,  N3 is a rare binding 

site,19-21 Houlton22 was able to prepare Na+ and K+ complexes with 9-ethyl adenine that 

attached to 18-aza-crown at the position of the deoxy ribose ring and he found that the 

coordination of the metal ions  to the ligand was occurred via N3. The same researcher later, 

investigated the effect of 2-amino group at the orientation of metal ions towards binding at N3-

position of purine.23 He found that Cu(I) and Ag(I) bind to dithioether-derivatives of adenine 

via N3. M+ bound to adenine (where M includes Li+, Na+, K+, and Cs+) was investigated by 

Rajabi,24 who found that this group of metal ions coordinate via N3 and N9.  A dimeric adenine 

copper complex was synthesised25 with a ligand to metal stoichiometry of 2:1, and the crystal 

structure was determined by Sletten,26 who found that copper was binding via N9 and N3 and 

formed a chelating ring with Cu(II). Further study of magnetic properties of this compound 

were reported by Goodgame.27 A distorted trigonal bipyramidal Cu(II) complex was prepared 

with 6-(2-chlorobenzylamino) purine by Marek;28 in this complex, Cu ion adopted a penta 

coordinated geometry with two molecules of the ligands and three chloride ions, coordination 

Cu ion to the ligands molecules was occurred via N9 atoms.  

Many complexes29-31 were reported by the reaction of aliphatic or aromatic thioethers with 

metal ions; for example, the reaction of thianthrene (TA) with AuCl3 in the presence of liquid 

SOCl2.
32 The product of this reaction was a black crystalline compound of 

dichloridobis(thianthrene) gold(+1) tetrachloridoaurate(-1) with square planar geometry. The 

asymmetric unit showed that two cations [AuCl2(TA)2]+ and two inions [AuCl4]-  were located 

on inversion centres, and crystallographic Ci symmetry was resulted for all cations and anions. 

Fig. 7.1. 

 

Figure 7.1. Structure of two cation [AuCl2(TA)2]+ and two inion [AuCl4]- that prepared by 

Tjahjanto32.  
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Using an aliphatic thioether, Houlton33 synthesised a Cu(I) complex. In this complex, the Cu(I) 

ion coordinated with (1-(N9-adenine)-3,6-dithiaheptane) via four S atoms to form Cu(I) 

complex which contains two adeninyl residues, Fig. 7.2.     

 

   

Figure 7.2. Showing: a) the ligand of (1-(N9-adenine)-3,6-dithiaheptane, and b) the Cu(I) complex that 

prepared with ligand (a) by Houlton.33  

       

No reports were found concerning the reaction of metal ions with 6-MMPR, while for 6-MMP, 

the complex of  Zn:6-MMP was  very recently  prepared by Perea-Cachero,34 Fig. 7.3. This 

complex has a polymeric structure of two dimensions with two Zn atoms which act as bridges 

between the molecules of the ligands via N atoms at the positions N9 and N7.      

 

Figure 7.3. Crystal structure of [Zn2(6-MMP)3(NO3)(DMF)(H2O)]n. nDMF.34 

 

The work in this chapter presents the reaction of silver, copper, and cobalt ions with thio ether 

purines derivatives.  
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7.2 Experimental  

7.2.1 Synthesis silver (I):6-methylmercaptopurine riboside  

The solution of AgNO3 (0.0569 g, 0.0335 mmol in 400 µL MeOH and 1.6 ml H2O) was added 

to the warm solution of 6-MMPR (0.1 g, 0.0335 mmol, which was prepared by dissolving the 

6-MMR in 2 mL DMSO, 2 mL MeOH, and 4 mL H2O). After 5 min, small white crystals 

formed, the solution was left in dark for 3h then the crystals were isolated by filtering, washed 

with water and dried by air.  The product was re-crystallised from 1:1 MeOH:H2O then filtered 

and dried again by air (yield 0.075 g with respect to the ligand, 75%). Observation under 

microscope showed a regular, thick, and rectangular crystals. The crystals were examined by 

X-ray diffraction, UV-Vis, FTIR, NMR, mass spectra, and elemental analysis (C.H.N). 

7.2.2 Synthesis of copper(II):6-methylmercaptopurine nucleobase C12H12N8S2Cl4Cu2 (2) 

and C12H12Cu2N8O2S2 (3) 

Two methods can be used to prepare this compound with mole ratios (ligand to metal) of 1:4 

and 1:2 as descibed below:  

1- An olive-green C12H12N8S2Cl4Cu2 complex was prepared with 4:1 mole ratio metal to 

ligand by adding, with stirring, CuCl2.2H2O solution (0.209 g, 1.197 mmol in 200 µL 

MeOH and 800 µL H2O) to a hot solution of 6-MMP (0.05 g, 0.3008 mmol in 4 ml MeOH). 

A further 2 ml of MeOH was added to the mixture and an olive-green precipitate formed 

after 2 min. The solution was heated and stirred for 5 min, then left to stand and afterwards 

filtered, washed with MeOH and dried under vacuum at 45oC for 2h (yield 0.04 g with 

respect to the ligand, 80%).  

2- The complex can be prepared with mole ratio 2:1 metal to ligand by using the same metal 

salt and the ligand, and the same procedure was applied. An olive-green precipitate was 

formed, however after 10 min a blue precipitate began to form as a second layer over the 

olive-green precipitate. To avoid forming a mixture of precipitates, the olive-green 

precipitate was separated by filtration immediately after formation and washed with MeOH 

several times. The blue precipitate was isolated by filtration after its formation and washed 

with MeOH. Observing the morphology of olive-green and blue crystals under an optical 

microscope showed a rhombus and cuboid habit which indicates formation of two different 

kinds of complexes. 
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To avoid forming a mixture of blue and olive-green crystals, the 4:1 mole ratio for metal to 

ligand was adopted to prepare one kind of crystal that is the olive-green crystal of Cu(II):6-

MMP (procedure 1).  

7.2.3 Synthesis of cobalt (II): 6-methylmercaptopurine C12H22N8S2O6Co (4) 

CoCl2.6H2O (0.0357 g, 0.03 mmol in 0.5 mL H2O and 2 ml methanol) was added with mixing 

to a hot solution of 6-MMP (0. 0.05 gm, 0.06 mmol in 10 ml methanol). A pink solution was 

formed at once. The mixture was heated with stirring for 5 min, and the resulting solution was 

left to cool at room temperature to crystallize. After one week, pink crystals suitable for X-ray 

diffraction were formed by slow evaporation.  

 7.3 Results & Dissociation 

7.3.1 Silver:6-methylmercaptopurine riboside C22H28AgN9O13S2 (1) (Ag:6-MMPR) 

7.3.1.1 Synthesis of C22H28AgN9O13S2 (1) 

The reaction of AgNO3 and 6-methylmercaptopurine riboside in mixed solvents of DMSO, 

MeOH, and H2O leads to prepare a distorted tetrahedral silver complex. Scheme 7.1 shows the 

chemical reaction route. FTIR spectroscopy, UV-Vis, elemental analysis, mass spectra, and X-

ray diffraction were used to characterize the structure of the complex.   

 

Scheme 7.1 Chemical reaction for synthesis silver:6-methylmercaptopurine riboside (Ag:6-MMPR). 

7.3.1.2 FTIR spectroscopy characterization of C22H28AgN9O13S2 (1) 

The stretching mode that belongs to C-S35,36 band was found in both the spectra of the ligand 

(632 cm-1) and the complex (624 cm-1) and this confirms no binding was occurred via S, the 

small different in the frequency (8 cm-1) can be assigned to the changes in bond force constant 

at the vibrations that occurs upon coordinating with the metal ion, Fig. 7.4. On the other hand, 

the new stretch mode at 1296 cm-1 in the complex can be assigned to the N-O vibrations of a  
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nitrato-silver moiety.37,38 Perturbation of the nitrate ion spectrum is indicated by the two bands 

(1296 cm-1 and 1381 cm-1) that result from splitting the antisymmetric N-O stretching modes.38-

40 The other new band at 516 cm-1 in the complex can be assigned to a symmetric Ag-N 

stretching bands,37 the Ag-N band has two stretching bands symmetric (usually can be found 

in 380 cm-1) and asymmetric (between 430-500 cm-1).36,41,42 The stretching mode of C=N at 

1442 cm-1 in the ligand is shifted to higher frequency in the complex (1450 cm-1) which 

suggests the involvement of metal ion coordination  at N7. The band observed (3741cm-1)43-46 

is due to the presence of the free-associated water molecules. The bending47,48 mode of H2O 

can be seen around at 1660 cm-1. 

 

Figure 7.4. Comparison between FTIR spectra of: (a) 6-methylmercaptopurine riboside and (b) Ag:6-

MMPR complex. 

7.3.1.3 Ultraviolet-Visible (UV-Vis) characterization  

The spectrum of the 6-methylmercaptopurine riboside(6-MMPR) nucleoside in methanol in 

Fig. 7.5 showed a band at 290 nm49,50 attributed to π–π* transitions. A similar band was 

observed in the complex indicating that only small perturbations of the  system occur as a 

result of the reaction of Ag(I) with the 6-MMPR.  
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Figure 7.5. Comparison UV-Vis spectra between: a) 6-methylmercaptopurine riboside (6-MMPR), and 

b) Ag: 6-MMPR in methanol. 

    

7.3.1.4 X-ray diffraction (XRD) characterization for C22H28AgN9O13S2 (1)   

The crystal structure data (obtained by X-ray diffraction) shows that Ag(I) lies on a 

crystallographic 2-fold rotation axis and the nitrate anion is loosely coordinated as a bidentate 

ligand to give a discrete molecular complex. These molecules and water molecules are 

connected by hydrogen bonding. The Ag-N7 distance was 2.153 Å, and Ag-O was 2.627 Å, 

this data was a good agreement with distorted tetrahedral geometry of Ag(I) complexes.51,52 

Fig. 7.6 displays the crystal structure of Ag(I):6-MMPR.     

    

Figure 7.6. Molecular structure of Ag:6-methylmercaptopurine riboside (Ag:6-MMPR). 

7.3.1.5 Elemental analysis (C.H.N)  

Elemental analysis (C.H.N) for Ag:6-MMPR was used to further confirm the structure, the 

sample was tested on a Carlo Erba 1108 Elemental Analyser controlled with CE Eager 200 

software, run in accordance with the manufacturer's instructions and weighed using a certified 

Mettler MX5 Microbalance. The C.H.N analysis indicated Ag:6-MMPR complex with formula 
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C22H28AgN9O13S2 to have 2:1 ligand-metal stoichiometry, theoretical: C 33.06 , H 3.50 %, N 

15.77%, Found: C 32.96 %, H 3.23 %, N 15.75 %. Table 7.1 presents the data.  

Table 7.1. Elemental analysis of Ag:6-Methylmercaptopurne riboside. 

 

Element  
 

% Theoretical 
 

% Found 

C 33.06  32.96  

H 3.50  3.23  

N 15.77  15.75  

 

7.3.1.6 Crystal morphology characterization 

Optical microscopy was used to examine the morphology of the Ag:6-MMPR crystal formed 

by coordinating Ag(I) with 6-MMPR. The optical image with scale bar 10 µm showed that the 

crystals are long, regular, colourless, and ‘ruler shaped’ as shown in Fig. 7.7 (a). Further 

investigation of the sample was carried out with scanning electron microscopy (SEM); a large 

scan SEM image (50 µm) displayed with more clearly the arrangement of the crystal as shown 

in Fig. 7.7(b). It is apparent from these images that the crystals have a highly uniform shape.   

 

Figure 7.7. Showing: a) optical microscope image of Ag:6-MMPR showing the regular colourless 

ruler-like crystal, the size of the crystal examined by X-ray diffraction was 0.060 x 0.020 x 0.010 mm3, 

b) SEM image of Ag:6-MMPR crystal.                        

7.3.1.7 Mass spectra characterization 

ESI-MS (positive mode) was carried out at Sheffield University for Ag(I):6-MMPR with 

formula [C22H28AgN8O8S2] in acetonitrile revealed m/z: [M] 703.3138, (calculated:704.0151). 

Fig. 7.8 displays the spectrum.  
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Fig. 7.8. ESI-MS (positive mode) for Ag(I):6-MMPR with formula [C22H28N8O8S2Ag] in acetonitrile. 

7.3.2 Copper:6-methylmercaptopurine C12H12N8S2Cl4Cu2 (2)  

7.3.2.1 Synthesis of C12H12N8S2Cl4Cu2 (2) 

The reaction of 6-methylmercaptopurine with CuCl2.2H2O in methanol leads to prepare 

octahedral coordination complex C12H12N8S2Cl4Cu2 (2). In this complex two nucleobases 

coordinate to two metal ions centres by N3 and N9 atoms in a dimeric mode. Scheme 7.2 shows 

the route to prepare the olive- green and a photograph of the solid.  

 

Scheme 7.2. Reaction route for synthesis of the olive-green complex of copper:6-

methylmercaptopurine (Cu(II):6-MMP) with stoichiometry 2:2 ligand to metal (M2L2). 

7.3.2.2 FTIR spectroscopy characterization of C12H12N8S2Cl4Cu2 (2) 

The two stretching modes that belongs to N-H53 at 2800 cm-1 and 2993 cm-1 in the spectrum of 

the ligand, Fig. 7.9, were shifted to higher frequency (2970 cm-1 and 3093 cm-1, respectively) 

in the complex. This indicates that N atoms participate in the coordination of the metal.54 A 

new broad band at 3495 cm-1 can be seen in the spectrum of the complex and this assigned to 

the O-H group53 of methanol that was used as solvent. The proton of this group was binding to 
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N7 atoms at two positions of the dimer leading to form disordered model; this band was not 

found in the spectrum of the ligand before complexation with Cu ions. Furthermore, the 

stretching mode that belongs to C=N55 at 1550 cm-1 at the ligand was shifted56 to 1597 cm-1 

after coordination with Cu ions and this can be attributed to take part the N atoms in the 

complexation. The band at 547 cm-1 in the spectrum of the complex can be assigned to the 

stretching mode Cu-N.56-59    

Figure 7.9. Comparison the FTIR spectrum of: (a) 6-methylmercaptopurine (6-MMP) and (b) olive-

green Cu(II):6-MMP complex. 

It is worthwhile to note here that, in this complex, Cu(II) does not bind to S6 atom that 

substituted with methyl group and it preferred to bind via N3 and N9 instead. This is in contrast 

with the Cu(I) tetrahedral complex that was synthesised by Houlton,33 where the Cu(I) ion was 

coordinating with (1-(N9-adenine)-3,6-dithiaheptane) via S atoms.  

 7.3.2.3 Ultraviolet-Visible (UV-Vis) characterization of C12H12N8S2Cl4Cu2 (2) 

The absorption spectrum of the ligand 6-methylmercapto purine (6-MMP) in DMF revealed a 

single band at 292 nm which can be assigned to *transitions. Upon coordinating Cu ions, 

this band is slightly shifted and a tail at a longer wavelength appears, but there is also a new 

band at lower energy (435 nm) in the spectrum of olive-green Cu(II):6-methylmercapto purine 

(Cu(II):6-MMP) complex in DMF. It is suggested that this band can be assigned to a ligand-

to-metal charge transfer (LMCT) transitions.60,61 It may also contain ClCu transitions,28,62 
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however LMCT transitions from chloride to copper has been reported to be weak.63 Fig. 7.10 

shows the absorption spectra for the ligand and the complex.  

 

Figure 7.10. Comparison UV-Vis absorption spectrum between: a) 6-methylmercaptopurine (6-MMP), 

and b) Cu(II): 6-MMP in DMF. 

 

7.3.2.4 X-ray diffraction (XRD) characterization for C12H12N8S2Cl4Cu2 (2) 

Investigation of the olive-green crystal of Cu(II):6-MMP by synchrotron radiation revealed 

that the system of the crystal is triclinic and the compound consists of a dimer of two Cu ions 

and two ligands. Each ligand is connected to Cu atom via N9 and N3, in addition, each atom 

of Cu is bound to two chloride ions and there is bridge bond between the two copper atoms. 

The resulting geometry is a distorted octahedral coordination for both Cu atoms. It is 

worthwhile to observe here that, deprotonation occurred to N9 after the complexation and the 

proton transferred to N7. The data revealed that the bond length of Cu-Cu atoms is 2.9124 Å 

and this agree with the literature.26,64-67 Cu-Cl1 bond distance was 2.36 Å and Cu-Cl2 was 2.25 

Å and these distances were in a good agreement with the literature.4,68,69 While Cu-N3 and Cu-

N9  distances were 2.00 Å and 1.981 Å, respectively.70 Fig. 7.11 presents the crystal structure 

without (left) and with (right) methanol of solvation.    
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Figure 7.11. Molecular structure of olive Cu(II):6-MMP with (right) and without (left) solvent 

molecules of methanol. 

7.3.2.5 Elemental analysis (C.H.N)  

Elemental analysis (C.H.N) for olive Cu(II):6-MMP with formula C12H12N8S2Cl4Cu2 was 

carried out at the School of Human Sciences, Metropolitan University, London to address 

further structure characterisation. The data indicated that the complex olive Cu:6-MMP has the 

expected 2:2 ligand-metal stoichiometry M2L2, theoretical: C 23.97 %, H 2.01 %, N 18.63 %, 

found: C 23.98 %, H 2.08 %, and N 18.3 %. This data was a good agreement with data from 

X-ray diffraction. Table 7.2 shows the data.  

Table 7.2 Elemental Analysis of olive Cu(II):6-Methylmercaptopurne.   

 

Element  
 

% Theoretical 
 

% Found 

C 23.97  23.98 

H 1.99  2.08 

N 18.63  18.3 
 

7.3.2.6 Mass spectra characterization 

 Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-

TOF-MS) with matrix HCCA (α-Cyano-4-hydroxycinnamic acid) that carried out at Sheffield 

University for the olive-green Cu(II):6-MMP with formula [C12H12N8S2Cl4Cu2] in acetonitrile 

revealed m/z (positive mode) data for [C12H12N8S2Cl4Cu2 + 2Na +H]+ 648.003, (calculated 

647.9545), Fig. 7.12 shows the spectrum. 
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Fig. 7.12. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-

TOF-MS) in acetonitrile carried out with matrix HCCA (α-Cyano-4-hydroxycinnamic acid for the 

olive-green Cu(II):6-MMP with formula [C12H12N8S2Cl4Cu2 + 2Na +H]+. 

7.3.2.7 Crystal morphology characterization 

The optical and SEM images that obtained for Cu:6-MMP complexes show two different types 

of morphology owing to the presence of either chloride or water in the complex. As mentioned 

in the experimental section for the synthesis of Cu:6-MMP, there are two possibilities to 

prepare this compound depending on the mole ratio used. First by using 1:2 mole ratio ligand-

metal which gives a mixture of blue and olive-green crystals of Cu(II):6-MMP, and second, 

using 1:4 mole ratio ligand-metal and this method produces only the olive-green compound of 

Cu(II):6-MMP. Fig. 7.13 displays the optical (a) and SEM image (b) of olive-green Cu(II):6-

MMP and blue Cu(II):6-MMP, respectively, one can see with more clearly the difference at 

the morphology between the two complexes.  

 

Figure 7.13. Shows: a) fluorescence microscopic images of rhombus crystal structure of olive Cu(II):6-

methylmercapto purine, b) SEM image of blue Cu(II):6-methylmercapto purine.  
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7.3.3 Copper:6-methylmercaptopurine C12H12Cu2N8O2S2 (3) 

7.3.3.1 Synthesis of C12H12Cu2N8O2S2 (3) 

The reaction of CuCl2.2H2O with 6-methylmercaptopurine with mole ratio 1:2 ligand to metal 

afforded a blue Cu(II) complex. The proposed structure for this complex with proposed formula 

C12H12Cu2N8O2S2 (3) is presented in Scheme 7.3.  The two Cu(II) ions are probably coordinated 

by two hydroxyl groups, this proposal is consistent with the literature precedent for dimeric blue 

Cu(II) complexes which have a Cu-O-Cu71-75 bridge and adopt tetragonal geometry.72,73       

 

Scheme 7.3.  Route reaction and proposed structure for synthesis blue Cu(II):6-MMP. 
 

7.3.3.2 FTIR spectroscopy characterization C12H12Cu2N8O2S2 (3) 

The spectrum of Cu2L2(OH)2 (3) in Fig. 7.14 displays a new band at 3425 cm-1, this band which 

is belongs to the stretching mode of OH group56,76,77 was not found in the spectrum of the 

ligand, and this suggests the presence of OH group in the complex. In addition, the OH bending 

( in plane ) and OH bend (out of plane)77-79 which are in ranges of 1330-1430 cm-1 and 650-

770 cm-1, respectively, were found in the complex at frequencies 1396 cm-1 and 687 cm-1, 

respectively, and this also suggests the presence of OH in the complex. The band that can be 

seen in the ligand at 1550 cm-1 which belongs to C=N55 was shifted to higher frequency56 (1573 

cm-1) as a strong band in the complex and this suggested that Cu ion was binding via N atom. 

The band at 447 cm-1 in the complex can be assigned to the Cu-O bond,59,77,80  while the Cu-O 

band which is related to hydroxy-bridge copper can be observed at 540 cm-1, most copper 

complexes that has hydroxy bridge displays this bind in this frequency.77,81 The stretching 

mode Cu-N56-59 can be seen at 540 cm-1.  
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Figure 7.14. Comparison the FTIR spectrum of: (a) 6-methylmercaptopurine (6-MMP) and (b) blue 

Cu(II):6-MMP complex. 

7.3.3.3 Ultraviolet-Visible (UV-Vis) characterization  

The optical absorbance spectrum of blue Cu(II):6-MMP in DMF showed formation a new weak 

band at 628 nm, this band can be assigned to d-d absorption which is usually forms at very low 

energy for Cu(II) complexes.82 The d-d transitions in this complex are related to geometry of 

tetragonal of Cu(II) complexes.72,73 Fig, 7.15 displays the absorbance spectra of the ligand 6-

MMP and the blue Cu(II) complex showing with more clearly the difference at the absorbance 

between the two compounds.  

 

Figure 7.15. Comparison UV-Vis absorption spectrum of: a) 6-methylmercaptopurine (6-MMP), and 

b) blue copper (II) 6-methylmercaptopurine (Cu(II): 6-MMP) in DMF. 
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7.3.3.4 Elemental analysis (C.H.N)  

The elemental analysis data (C.H.N) for blue Cu(II):6-MMP complex in Table 7.3 below, 

revealed a good agreement with the theoretical data for the proposed formula C12H12Cu2N8O2S2 

(3) (calculated mass: 491.1450), and this suggests that the complex is a dimer with 

stoichiometry M2:L2 obtained by coordinating two molecules of the ligand 6-MMP to two 

Cu(II) atoms via N9 and N3 alongside participation of two ions of hydroxyl coordinated to 

each atom of copper.  

Table 7.3 Elemental Analysis of blue Cu(II): 6-Methylmercaptopurne. 

 

Element  
 

% Theoretical 
 

% Found 

C 29.31 30.39 

H 2.44 2.95 

N 22.80 22.76 

 

7.3.3.5 Mass spectroscopy characterization  

The ESI-MS (positive mode) for blue Cu(II) complex with proposal formula C12H10Cu2N8S2 

(3) in acetonitrile displayed m/z [M + Na + H]+ 481.2152, (calculated: 481.1372). Fig. 7.16 

shows the spectrum. 

  

Fig. 7.16. ESI-MS (positive mode) for [C12H10Cu2N8S2 + Na +H]+ in acetonitrile. 
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7.3.4 Cobalt:6-methylmercaptopurine C12H22N8S2O6Co (4)  

7.3.4.1 Synthesis of C12H22N8S2O6Co (4) 

The reaction of CoCl2.6H2O with 6-Methylmercaptopurine in methanol with stoichiometry 

ligand to metal 2:1 leads to synthesis pink-coloured crystal of octahedral coordination complex 

of C12H22N8S2O6Co (4). In this complex, two nucleobases coordinate to the Co(II) ion by N9 

atoms in a monodentate mode. Drying the pink compound in 60 C for 2h in vacuo leads to 

formation of an amorphous blue compound. The change of the colour and loss of crystallinity 

upon heating can be assigned to the conversion in the geometry of the pink complex from 

octahedral to tetrahedral geometry83-85 with formula C12H14CoN8O2S2 (5). Scheme 7.4 displays 

synthetic route.   

 

Scheme 7.4.  Reaction route for synthesis of Co(II):6-MMP complexes with two geometries octahedral 

(pink, crystalline) and tetrahedral (blue, amorphous). 

7.3.4.2 FTIR spectroscopy characterization C12H14CoN8O2S2 (5) 

FTIR characterization was carried out on the blue Co(II) complex with tetrahedral geometry 

which resulted from drying the hydrated crystalline pink octahedral complex. The bending 

mode at 1550 cm-1 that belongs to N-H band86 in the spectrum of the ligand was shifted to 1612 

cm-1 in the complex; this suggests that binding was occurred via N atom. On the other hand, 

this bending47,48 mode in the spectrum of complex at 1612 cm-1 can also be assigned to the 

presence of water. New bands can be seen in the spectrum of the complex at 536 cm-1 and 416 

cm-1, this attributed to the M-N and M-O58,59,87 bands, respectively. In addition, a new band 

was formed at 3441 cm-1 and this can be attributed to the stretching88 mode of water molecules.  

Fig. 7.17 presents a comparison of FTIR spectra for the ligand and the Co complex.   
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Figure 7.17. Comparison the FTIR spectrum of: (a) 6-methylmercaptopurine (6-MMP) and (b) 

Co(II):6-MMP complex. 

7.3.4.3 Ultraviolet-Visible (UV-Vis) characterization of C12H14CoN8O2S2 (5) 

According to Cotton,89 the pink complex of Co(II) with water molecules has octahedral 

geometry and has an absorbance maximum around 530 nm, while the blue Co(II) complex has 

tetrahedral geometry and has an absorbance maximum around 675 nm. Fig. 7.18 presents the 

spectra of octahedral (A) and tetrahedral (B) for Co(II) complexes reported by Cotton.89 

 

Figure 7.18. UV-Vis spectra for octahedral of [Co(H2O)6]+2 (A) and tetrahedral of [CoCl4]-2(B) 

complexes89. 
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The spectrum of Co(II) complex in methanol, Fig. 7.19, which produced a pink solution in this 

solvent, revealed a broad band at 530 nm, this band can be assigned to the formation of ligand 

metal charge transfer complex (LMCT) or can be assigned to d-d transitions.  In addition, this 

band is usually forms in this area of visible reign for octahedral complexes of Co(II).90-93 While 

the spectrum of the ligand displayed a single peak at 290 nm that belongs to *.  

 

Figure 7.19. UV-Vis absorption spectra of: a) 6-methylmercaptopurine (6-MMP), and b) Co(II): 6-

MMP in MeOH. 

 

Measuring the absorption for Co(II) complex in dimethylformamide (DMF), which gave blue 

colour in this solvent, displayed a peak at 675 nm which is typical of tetrahedral complexes of 

Co(II).91-94  

The formation of two different absorption bands for Co complex indicates that the geometry 

of the complex was changing depending on the solvent. In DMF, where the colour of the 

complex is blue and the band appears at 675 nm, the complex has tetrahedral geometry, 

however, changing the solvent to methanol, where the complex has a pink colour and the band 

displays at 530 nm, suggests conversion of the geometry around the metal centre from 

tetrahedral to octahedral. The change in the geometry from octahedral to tetrahedral and vice 

versa upon changing the solvents was widely discussed, and it was found that octahedral 

species are favoured in methanol and water, while tetrahedral species are favoured in DMF and 

4-methyl-2-pentanone.95-98  The characteristics of the complex will change in accordance with 

the geometry, such as the magnetic and conductance properities.89,99 Fig.7.20 displays the 

absorption spectra for the Co complex in DMF. The ability of the solvent to change the 
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geometry may be assigned to the porosity features in the complex which helps the solvent to 

penetrate the complex molecules and make such change. Beauvaais95 assigned the 

vapochromic response to the porosity features in the complex that allows the solvent molecules 

to enter the solid and obstruct the hydrogen bonded which induces to release water molecules 

and makes inversion in the geometry from octahedral to tetrahedral without destroy the three-

diminution  network. In accord to this,  the vapochromic response to change the solvent can be 

find applications as sensor.100  

               

Figure 7.20. UV-Vis absorption spectra of: a) 6-methylmercaptopurine (6-MMP), and b) Co(II): 6-

MMP in DMF. 

 

The absorbance intensity of Co complex in methanol (octahedral) was red shifted to lower 

energy in DMF (tetrahedral) as shown in Fig.7.21 below. In general, the intensities of d-d 

transitions in tetrahedral complexes are higher than that in octahedral complexes and the reason 

can be attributed to the centre of symmetry which is present in octahedral and lacking in 

tetrahedral complexes.101 The spectral properties in Fig. 7.21 are consistent with most Co(II) 

complexes that convert from octahedral to tetrahedral geometry,95 as the tetrahedral 

coordination complex of Co(II) exhibits two typical electronic absorption bands in visible 

region (611 nm) assigned to transition  4A2  4T1(P) and in infrared region (675 nm) due to 

transition 4A2  4T1(F).100,102 The broadening that can be seen in these two bands can be 

attributed to the spin-orbital coupling and deflection from the typical symmetrical tetrahedral 

geometry.95,103    
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Figure 7.21. The visible spectra for Co complex (4) with geometries octahedral (a) and tetrahedral (b) 

in MeOH and DMF, respectively. 

 

Based on these observations, the Co:6-MMP complex has two geometries, octahedral in 

(MeOH) and tetrahedral in (DMF). The colour change in this complex that associated with the 

kind of the solvent can allow to use this complex in the future as a porous solid material that 

able to detect volatile organic compounds.83,95 On the other hand, nucleobases are attractive 

compounds to build porous materials with many applications.5,104,105 Transition metal ions 

complexes such as Co complexes were incorporated to prepare porous complexes for example, 

the complex that synthesis by Gutschke,106 who found that the colour of the complex was 

changed from red to blue upon dehydration and he assigned the reason to the change in the 

coordination number which leads to loss  the crystallinity of the complex.     

7.3.4.4 X-ray diffraction (XRD) of C12H22CoN8O6S2 (4) 

X-ray diffraction data for Co(II):6-MMP indicates a monoclinic crystalline system with 3D 

hydrogen bonding network. The Co (II) metal ion adopts an octahedral geometry, and in this 

complex, it bonds with two molecules of 6-MMP via N9 and four water molecules to form 

octahedral geometry. The N3 atoms of the ligands molecules at the crystal involved in 

hydrogen bonding. The mode of binding Co(II) ion with the molecules of water in this complex 

is very close to the Co complex that prepared by Verma,107 who found that the reaction of 

cobalt ion with modified adenine leads to form octahedral geometry of Co complex where Co 

(II) ion was binding to four molecules of waters in addition to two oxygen of carboxylic groups 

at the complex. Zamora108 prepared a Co complex with modified thymine and uracil, the data 

showed  that Co ion was binding at the complex to four molecular of waters and two oxygen 

atoms of carboxyl groups. The data of X-ray for Co:6-MMP showed that Co-N distance was 

2.12 Å and this consistent with what was found at the literature.107,109,110 The distances of Co-
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O1&O11 and Co-O2&O21 at the complex were 2.12 Å and 2.09 Å, respectively, and this 

matches with the literature.46,108,110  Fig. 7.22 displays the structure.  

 

Figure 7.22. Molecular structure of Co(II) complex (4) with (right) and without (left) solvent 

molecules of water. 

7.3.4.5 Mass spectroscopy characterization of C12H14CoN8O2S2 (5) 

The ESI-MS m/z (positive mode) spectra obtained in Sheffield University for Co(II):6-MMP 

with formula C12H14CoN8O2S2 in acetonitrile [M + H]+ are displayed in Fig. 7.23 (Found: 

426.1124, calculated: 426.0096).  

 

Figure. 7.23. ESI-MS m/z (positive mode) for Co(II):6-MMP with formula [C12H14CoN8O2S2 + H+] in 

acetonitrile.  

7.4 Conclusion 

In summary, new coordination complexes based on Ag-N, Cu-N, and Co-N bonds were formed 

with 6-methylmercaptopurine riboside and 6-methylmercaptopurine, respectively. The X-ray 

data for the Ag(I) complex revealed that the distances between the atoms were a good 

agreement with Ag(I) complexes that have distorted tetrahedral geometry.51,52 The molecules 

in the Ag(I) complex crystal were connected by hydrogen bonding. The X-ray crystal structure 
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data of the olive Cu:6-MMP complex revealed that the compound is triclinic and the Cu(II) 

forms a dimeric structure with 6-MMP via N9 and N3. No complex hydrogen bonding network 

was observed for this complex. The elemental analysis (C.H.N) data for blue Cu(II):6-MMP 

revealed agreement between the found and the calculated values and this supports the proposed 

formula, in addition the FTIR displayed stretching and bending (in plane) modes of OH group 

at 3425 cm-1 and 1396 cm-1, respectively, and this confirms the presence of OH group in the 

structure of the complex. The X-ray data for the Co(II):6-MMP complex showed that the 

complex has monoclinic crystalline system with 3D hydrogen bonding network and the Co ion 

bound two molecules of the ligands via N9.     

 

 

Table 7.4. Crystal data and structure refinement for Ag:6-MMPR 

 
Identification code  aho150019 

Chemical formula (moiety) C22H24AgN8O10S2
+·NO3

 ·2H2O 

Chemical formula (total) C22H28AgN9O13S2 

Formula weight  798.52 

Temperature  100(2) K 

Radiation, wavelength  synchrotron, 0.6889 Å 

Crystal system, space group  orthorhombic, C2221 

Unit cell parameters a = 4.8791(10) Å  = 90° 

 b = 22.049(5) Å  = 90° 

 c = 28.256(6) Å  = 90° 

Final R indices [F2>2σ] R1 = 0.0472, wR2 = 0.1185 

R indices (all data) R1 = 0.0599, wR2 = 0.1243 

 

 

Table 7.5. Bond lengths [Å] and angles [°] for Ag:6-MMPR 

 

 
Ag1–N7  2.153(5) Ag1–N7a  2.153(5) 

Ag1–O23  2.627(6) Ag1–O23a  2.627(6) 

N1–C2  1.358(9) N1–C6  1.357(7) 

C2–H2  0.950 C2–N3  1.333(9) 

N3–C4  1.358(7) C4–C5  1.390(9) 

C4–N9  1.378(8) C5–C6  1.418(9) 

C5–N7  1.394(8) C6–S10  1.740(7) 

N7–C8  1.317(9) C8–H8  0.950 

C8–N9  1.383(8) N9–C12  1.489(8) 

S10–C11  1.816(7) C11–H11A  0.980 

N7–Ag1–N7a           164.0(3)   N7–Ag1–O23 98.2(2) 

N7a–Ag1–O23 96.3(2) N7a–Ag1–O23a 98.2(2) 

N7–Ag1–O23a 96.3(2) O23–Ag1–O23a 48.8(3) 

C2–N1–C6 118.8(6) N1–C2–H2 115.9 

N1–C2–N3 128.2(6) H2–C2–N3 115.9 

C2–N3–C4 111.9(6) N3–C4–C5 126.0(6) 

N3–C4–N9 127.2(6) C5–C4–N9 106.8(5) 

C4–C5–C6 117.1(5) C4–C5–N7 109.3(5) 

C6–C5–N7 133.6(6) N1–C6–C5 117.9(6) 

N1–C6–S10 121.9(5) C5–C6–S10 120.2(4) 

Ag1–N7–C5 128.1(4) Ag1–N7–C8 126.5(4) 
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C5–N7–C8 105.4(5) N7–C8–H8 123.6 

N7–C8–N9 112.7(5) H8–C8–N9 123.6 

C4–N9–C8 105.9(5) C4–N9–C12 125.0(5) 

C8–N9–C12 129.0(5) C6–S10–C11 101.9(3) 

S10–C11–H11A 109.5 S10–C11–H11B 109.5 

S10–C11–H11C 109.5 H11A–C11–H11B 109.5 

H11A–C11–H11C 109.5 H11B–C11–H11C 109.5 

N9–C12–H12 110.0 N9–C12–O13 108.6(5) 

N9–C12–C16 111.2(6) H12–C12–O13 110.0 

H12–C12–C16 110.0 O13–C12–C16 107.0(5) 

C12–O13–C14 109.8(5) O13–C14–H14 109.0 

O13–C14–C15 103.7(5) O13–C14–C17 109.5(5) 

H14–C14–C15 109.0 H14–C14–C17 109.0 

C15–C14–C17 116.5(6) C14–C15–H15 109.9 

C14–C15–C16 101.8(6) C14–C15–O19 114.3(5) 

H15–C15–C16 109.9 H15–C15–O19 109.9 

C16–C15–O19 110.9(5) C12–C16–C15 100.5(5) 

C12–C16–H16 112.3 C12–C16–O20 107.7(7) 

C15–C16–H16 112.3 C15–C16–O20 111.1(5) 

H16–C16–O20 112.3 C14–C17–O18 112.0(6) 

C17–O18–H18 105(4) C15–O19–H19 109(7) 

C16–O20–H20 106(8) O22–N21–O23 120.6(4) 

O22–N21–O23a 120.6(4) O23–N21–O23a 118.7(8) 

Ag1–O23–N21 96.2(5) H24A–O24–H24B 107(8) 

 

 

Table 7.6. Hydrogen bonds for Ag:6-MMPR [Å and °]. 

 

D–H...A d(D–H) d(H...A) d(D...A) <(DHA) 

 
O18–H18...O23b 0.85(4) 2.07(5) 2.895(9) 164(9) 

O19–H19...O24 0.86(4) 1.85(5) 2.679(7) 163(10) 

O20–H20...N3c 0.83(4) 2.00(5) 2.814(8) 166(11) 

O24–H24A...O19d 0.83(4) 2.00(5) 2.770(7) 155(8) 

O24–H24B...N1e 0.83(4) 2.12(4) 2.941(8) 168(9) 

 

 

Table 7.7. Crystal data and structure refinement for Cu(II):6-MMP. 

Identification code aho170021_fa 

Empirical formula C13.68H18.7Cl4Cu2N8O1.68S2 

Formula weight 655.11 

Temperature/K 150.0(2) 

Crystal system triclinic 

Space group P-1 

a/Å 7.0847(3) 

b/Å 9.9830(6) 

c/Å 10.0660(4) 

α/° 63.790(5) 

β/° 70.263(4) 

γ/° 79.811(4) 

Final R indexes [I >=2σ (I)]        R1 = 0.0470, wR2 = 0.1233 

Final R indexes [all data]                      R1 = 0.0502, wR2 = 0.1262 
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Table 7.8. Bond Lengths for Cu(II):6-MMP. 

Atom Atom Length/Å   Atom Atom Length/Å 

Cu1 Cu11 2.9124(12)   N1 C6 1.322(6) 

Cu1 Cl1 2.3686(12)   N3 Cu11 2.000(3) 

Cu1 Cl11 2.5429(12)   N3 C2 1.336(6) 

Cu1 Cl2 2.2554(13)   N3 C4 1.361(6) 

Cu1 N31 2.000(3)   N7 C5 1.384(6) 

Cu1 N9 1.981(3)   N7 C8 1.368(6) 

Cl1 Cu11 2.5429(12)   N9 C4 1.377(6) 

S1 C6 1.737(5)   N9 C8 1.331(6) 

S1 C10A 1.809(5)   C4 C5 1.382(6) 

S1 C10B 1.833(17)   C5 C6 1.404(6) 

N1 C2 1.330(6)   O1 C11 1.385(7) 

11-X,1-Y,-Z 

Table 7.9. Bond Angles for Cu(II):6-MMP. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

Cl11 Cu1 Cu11 50.92(3)   C2 N3 Cu11 125.2(3) 

Cl1 Cu1 Cu11 56.44(3)   C2 N3 C4 112.9(4) 

Cl1 Cu1 Cl11 107.36(4)   C4 N3 Cu11 121.9(3) 

Cl2 Cu1 Cu11 171.44(6)   C8 N7 C5 106.5(4) 

Cl2 Cu1 Cl1 132.04(6)   C4 N9 Cu1 123.3(3) 

Cl2 Cu1 Cl11 120.59(5)   C8 N9 Cu1 131.6(3) 

N31 Cu1 Cu11 83.78(11)   C8 N9 C4 105.1(3) 

N31 Cu1 Cl11 85.16(11)   N1 C2 N3 129.2(4) 

N31 Cu1 Cl1 87.55(11)   N3 C4 N9 127.8(4) 

N31 Cu1 Cl2 97.06(11)   N3 C4 C5 121.9(4) 

N9 Cu1 Cu11 83.12(11)   N9 C4 C5 110.3(4) 

N9 Cu1 Cl1 86.99(11)   N7 C5 C6 134.2(4) 

N9 Cu1 Cl11 84.94(11)   C4 C5 N7 106.0(4) 

N9 Cu1 Cl2 95.58(11)   C4 C5 C6 119.8(4) 

N9 Cu1 N31 166.73(15)   N1 C6 S1 122.2(3) 

Cu1 Cl1 Cu11 72.64(4)   N1 C6 C5 118.1(4) 

C6 S1 C10A 102.2(2)   C5 C6 S1 119.6(4) 

C6 S1 C10B 94.1(9)   N9 C8 N7 112.2(4) 

C6 N1 C2 118.1(4)           

11-X,1-Y,-Z 

Table 7.10. Hydrogen Bonds for Cu(II):6-MMP. 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

N7 H7 O1 0.78(7) 1.93(7) 2.707(5) 175(7) 
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Table 7.11. Crystal data and structure refinement for Co(II):6-MMP. 

Identification code aho170046 

Empirical formula C12H22CoN8O6S2 

Formula weight 497.42 

Temperature/K 150.0(2) 

Crystal system monoclinic 

Space group P21/c 

a/Å 9.3913(5) 

b/Å 7.7232(3) 

c/Å 13.7575(7) 

α/° 90 

β/° 103.464(5) 

γ/° 90 

Crystal size/mm3 0.19 × 0.15 × 0.07 

   

Final R indexes [I >=2σ (I)]   R1 = 0.0298, wR2 = 0.0609 

Final R indexes [all data]   R1 = 0.0401, wR2 = 0.0657 

 

Table 7.12. Bond Lengths for Co(II):6-MMP. 

 

Atom Atom Length/Å   Atom Atom Length/Å 

Co1 O1 2.1276(14)   N1 C6 1.339(3) 

Co1 O11 2.1276(14)   N3 C2 1.323(3) 

Co1 O21 2.0943(14)   N3 C4 1.347(2) 

Co1 O2 2.0943(14)   N7 C5 1.381(3) 

Co1 N91 2.1222(15)   N7 C8 1.343(2) 

Co1 N9 2.1222(15)   N9 C4 1.366(2) 

S1 C6 1.7455(19)   N9 C8 1.347(2) 

S1 C10 1.793(2)   C4 C5 1.402(3) 

N1 C2 1.350(2)   C5 C6 1.393(3) 

12-X,1-Y,1-Z 

Table 7.13. Bond Angles for Co(II):6-MMP. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

O11 Co1 O1 180.0   C2 N3 C4 113.27(16) 

O2 Co1 O1 85.57(6)   C8 N7 C5 102.20(15) 

O2 Co1 O11 94.43(6)   C4 N9 Co1 128.94(12) 

O21 Co1 O11 85.57(6)   C8 N9 Co1 127.75(13) 

O21 Co1 O1 94.43(6)   C8 N9 C4 102.88(15) 

O2 Co1 O21 180.0   N3 C2 N1 128.24(18) 

O2 Co1 N9 90.66(6)   N3 C4 N9 127.41(16) 

O2 Co1 N91 89.34(6)   N3 C4 C5 123.74(17) 

O21 Co1 N91 90.66(6)   N9 C4 C5 108.84(16) 

O21 Co1 N9 89.34(6)   N7 C5 C4 109.01(16) 

N91 Co1 O1 90.93(6)   N7 C5 C6 133.39(17) 

N9 Co1 O1 89.07(6)   C6 C5 C4 117.59(17) 

N9 Co1 O11 90.93(6)   N1 C6 S1 121.44(14) 

N91 Co1 O11 89.07(6)   N1 C6 C5 119.11(17) 

N91 Co1 N9 180.0   C5 C6 S1 119.43(15) 
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C6 S1 C10 102.16(10)   N7 C8 N9 117.03(17) 

C6 N1 C2 117.87(16)           

12-X,1-Y,1-Z 

 

Table 7.14. Hydrogen Bonds for Co(II):6-MMP. 

 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

O1 H1A N31 0.80(3) 1.99(3) 2.748(2) 157(2) 

O1 H1B N72 0.82(2) 2.09(3) 2.909(2) 175(2) 

O2 H2A O3 0.79(3) 1.98(3) 2.772(2) 172(2) 

O2 H2B O33 0.81(2) 1.97(3) 2.768(2) 171(2) 

O3 H3A N14 0.79(3) 2.06(3) 2.838(2) 165(2) 

O3 H3B N75 0.76(3) 2.11(3) 2.862(2) 169(2) 

12-X,1-Y,1-Z; 22-X,2-Y,1-Z; 32-X,1/2+Y,1/2-Z; 41-X,-1/2+Y,1/2-Z; 5+X,-1+Y,+Z 
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Chapter 8. Synthesis and Properties of a Au(I): 2-Thiocytosine Complex  

Abstract 

In this work, a gold(I):2-thiocytosine (Au:2-TC) complex was prepared and characterised with 

powder X-ray diffraction, FTIR, UV-Vis, elemental analysis (C.H.N), NMR, mass spectra, 

fluorescence spectroscopy, and fluorescence microscopy. Elemental analysis revealed that the 

complex has 1:2 metal-ligand stoichiometry.  The complex was observed to be photosensitive 

in solution but not in solid state. The crystals were needle-like, similar to Ag-2TC, but after 

oxidation with I2(g) showed evidence of electronic conductivity similar to Au:6-TGR (chapter 

three).         

8.1 Introduction 

Photochemical properties of thio nucleobases1 have been exploited in photo-chemotherapy, 

e.g. skin cancer treatment2, and some thio nucleobases have demonstrated potential in 

photodynamic therapy  towards different kinds of cancers.3 In particular, 2-thiocytocine(2-TC) 

possess numerous medical applications owing to its bioactivity as an antibacterial,4 anticancer,5 

antiviral,6 and anti-cytotoxic agent.7 Common gold thiolate complexes which are light sensitive 

include myochrysine (sodium aurothiomalate) and auranofin.8,9 Myochrysine is photostable in 

the solid state but in aqueous it is light sensitive.8 Auranofin is light sensitive in solution but 

not in colloidal form8. They are a few reports of compounds that include Au(I), 2-TC, and 

phosphine thiolates such as gold ferrocenyl amide phosphine thiolate derivative10 and 

aminophosphine gold(I) thiolate.4 Gold reactions with nucleobases were found such as the 

reaction reported by Lippert11 between KAuCl4 and 1,3-dimethyl uracil which exhibited metal 

binding via C5; oxidation of the dimer leads to produce a complex of di(1,3-dimethyl uracil-

C5, C5) with gold. The same reaction was carried out later by the same researchers12 and by 

using trans-K[Au(CN)2Cl2], K[Au(CN)2Cl(1,3-dimethyluracil-C5)] was isolated and 

characterized by X-ray diffraction. Au:2-TC was prepared in this work as part of a study of 

metal thiolate complexes because of the interesting structure formed by Au:6-TGR (chapter 

three in the thesis). Moreover, the most known and important complex for gold (I) in aqueous 

solutions13 is Au(CN)2
-, and preparing gold(I):2-TC in aqueous medium in this work will 

acquire this compound a special importance in similar manner to Au(CN)2
-. 

Au(I) can bind to sulfur atoms in the ligands and forms complexes with either thiol forms 

(SAu) or thione forms (=SAu). For example the reaction of 2-thiocytosine with bis 
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(phosphine) gold complexes lead to the corresponding phosphine gold (I) thiolate complexes,14 

as shown in Fig. 8.1. 

 

Figure. 8.1. Synthesis phosphine Au(I) thiolate complexes.14   

In the gold ferrocenyl amide phosphine thiolate complex prepared by Goitia10 and 

aminophosphine gold(I) thiolate complex synthesised by Fillat,4 the Au(I) was bound via the S 

atom with the ligand in thiol form, as shown in Figs. 8.2 & 8.3, respectively. 

 

Figure. 8.2. Au(I) phosphine thiolate complex that prepared by the reaction of 2-thiocytosine with gold 

chloride derivative of ferrocenyl-amide phosphine of in the presence of K2CO3 and CH2Cl2.10 

 

Figure 8.3. Au(I) thiolate complex  that produce from the reaction of (aminophosphane)gold(I) chloride 

and 2-thiocytosine in the presence of triethylamine.4  

 

An Au(I) complex with the thione form was prepared by Jones15 by reaction of Au(I) with 

bis(ethylenethiourea). Fig. 8.4 displays the unit cell of the complex. In this complex, the O 

atom of a water molecule forms a bridge to connect two molecules of the ligand, while Au(I) 

bound to with two S atoms in a linear geometry.   
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Figure 8.4. Unit cell for Au(I):bis(ethylenethiourea) thionate complex.15 

The analogous complexes of auranofin, thionate (triethylphosphine) gold (I) were synthesised 

by Isab,16 to give another example of  a gold (I) complex in thione form, Fig. 8.5. 

 

Figure 8.5. Au(I) thionate complexes: 1) Imidazolidine-2-thionato(triethyIphosphine)gold(I) chloride, 

2)1,3-Diazinane-2-thionato(triethylphosphine)gold(I)chloride.16  

In addition, a gold (I) complex of  bis(N-propel-1,3-imidazolidine-2-thione) in Fig. 8.6, which 

was prepared by Hussain,17 is also an example of a gold (I) thionate complex. 

 

Figure 8.6. Au (I) complex of  bis(N-propel-1,3-imidazolidine-2-thione).17 

Cationic Au(III) tetrakis –(methimazole) was synthesised as a hydrated square planar complex 

with thione form by Lynch18. The complex was prepared in methanol with mole ratio 1:4 of 

metal to ligand. Fig. 8.7 displays the chemical structure of the complex.    
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Figure 8.7. Chemical structure of Au(III) tetrakis –(methimazole).18    

 

The cationic complex, [bis(1-(2,6-xylyl)-2-imidazolidinethione)Au(I)]Cl, was synthesised by 

Quillian,19 by the reaction of HAuCl4  with the thionic ligand  1-(2,6-xylyl)-2-imidazolidine in 

methanol. A pale-yellow crystal was produced and characterised by X-ray diffraction. In this 

complex, the Au(III) ion was reduced to Au(I) during the reaction. Fig. 8.8 displays the reaction 

route.  

 

Figure. 8.8. Route for synthesis of cationic[bis(1-(2,6-xylyl)-2-imidazolidinethione)Au(I)]Cl.19   

 

Gold complexes, Fig. 8.9, with thione form were also synthesised using ligand N-

methylbenzothiazole-2-thione (mbtt),20 X-ray diffraction was used to characterise the structure 

of the complexes.   

 

Figure. 8.9. Route for synthesis of gold complexes using the ligand N-methylbenzothiazole-2-thione 

(mbtt).20  
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8.2 Experimental   

8.2.1 Synthesis of Au(I) 2-thiocytosine complex  

The complex of gold (I): 2-thiocytosine (Au:2-TC) was prepared with a mole ratio 1:1 of L:M. 

HAuCl4.3H2O (130 mg, 0.33 mmol in 400 µL MeOH and 1.6 ml H2O), was reduced with two 

equivalents of thiodiglycol (50 µL), and then added to a warm solution of 2-thiocytosine (42 

mg, 0.33 mmol in 8 ml of 1 N HCl, after dissolving, 8 ml of hot H2O was added). After leaving 

the solution 10 min in the dark, a pale precipitate formed. Inspection of the precipitate under 

an optical microscope showed the presence of small crystals. The solution was left for a further 

2 h then filtered or left overnight in the dark. After Buchner filtration, the crystals were washed 

with water and dried for 2h at 50oC and kept in the dark, (yield with respect to the ligand was 

0.033 gm,  80%). 

8.3 Results & Discussion 

8.3.1 Proposed structure 

The oxidation states of gold range from +1 to +5, however the most common are (+1) and (+3) 

with electronic configuration of 5d10 6s0 6p0 and 5d8 6s0 6p0, respectively. Complexes of Au(I) 

have a linear geometry while Au(III) complexes are often to be square planar.18 2-Thiocytosine, 

which  is present as the thiol form in solid state5,21 and as the thione form in water,5 was reacted 

with Au(I) ions in acidic medium to form a crystalline compound of Au(I):2-TC with a metal 

to ligand stoichiometry of 1:2. The reaction was very rapid and easy to prepare; Fig. 8.10 

displays the reaction route to prepare the complex. The linear geometry with coordination state 

(2) is common in Au(I) complexes.22-27 Electroneutrality is maintained with chloride as 

counterion; this consistent with several literatures for gold complexes in which Au(I) was 

bonded to the ligand via thione-S.15-17  

 

Figure 8.10. Chemical reaction route for synthesis Au:2-TC complex with simplified proposed 

structure and photograph of the product Au:2-TC.  
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Gold (I) complexes9 with strong reducing ligands (azide, iodide, and thiolate) show ligand to 

metal charge transfer (LMCT) transitions at long wavelength and this may be accompanied 

with  metal centred transitions (MC). Upon reaction with 2-TC a pale yellow crystalline 

compound was formed with high percentage (% 80), 2-TC pyrimidine nucleobase exhibits 

several tautomers,5 the common forms are thione (a &b) and thiol (c) as shown in Scheme 8.1. 

In the solid state the thiol form is dominant rather than the thione, 5,21  while in water the order 

of stability is a ~ b > c.5  

 

Scheme 8.1. Tautomers of 2-TC in thione (a & b) and thiol (c) forms. 

In addition, the crystal structure of ligand 2-thiocytosine (2-TC) showed two non-equivalent 

molecules linked by two kinds of hydrogen bonding: N-H....N and N-H....S, the difference 

between the molecules was found in the length of the C4-C5 double bond.28  

8.3.2 Fourier transform infrared spectroscopy (FTIR) characterisation  

The weak band at 2696 cm-1 in the 2-TC spectrum, Fig. 8.11 (a) or (b), which is assigned to 

the stretching mode S-H29 was not found in the spectrum of Au:2-TC, in addition, a new sharp 

peak at 1219 cm-1 which can be assigned to C=S stretching mode was found in the complex 

indicates that the complex is in thione form, and this change in the form comes from dissolving 

the ligand  in water prior to bind with Au(I). The two bands at 925 cm-1 and 856 cm-1 which 

belong to bending mode S-H21 were found in the ligand indicates that the ligand was in the thiol 

form; both of these bands were disappeared in the Au:2-TC spectrum. This is additional 

evidence for the thione form of the complex and suggests that the binding of Au(I) occurred 

via S. The N-H21,30,31 in-plane bending mode in the ligand can be observed at 1627 cm-1; this 

band was shifted to 1639 cm-1 in the complex. The stretching mode of symmetric N-H30 which 

was found at 3317 cm-1 in the ligand was shifted in the Au:2-TC complex, but to lower 

frequency (3155 cm-1) as a result of intermolecular hydrogen bonding. The band at 1296 cm-1 

in the ligand that is related to a stretching mode29 N1-C2 was also shifted to 1327 cm-1 in the 

complex  which suggests coordination of Au(I) to S atom at C2. The bending mode of NH2 at 

1627 cm-1 was also slightly shifted to lower frequency (1639 cm-1). Over-all the FTIR spectra 
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of the ligand and the complex Au:2-TC are broadly in agreeement with the proposed structure 

of Fig. 8.10. 

  

Figure 8.11. FTIR spectra of: (a) 2-thiocytosine (2-TC) and (b) gold (I):2-thiocytosine (Au:2-TC).  

8.3.3 UV-Vis Absorption spectroscopy 

The spectrum of 2-thiocytosine (2-TC) in Fig. 8.12 shows two peaks at 245 nm and 281 nm 

which belong to -*.32 After complexation with Au(I), the peak at 245 nm disappeared from 

the spectrum of the Au:2-TC complex, and  a new peak at 402 nm was formed. This longer 

wavelength band in the spectrum of Au:2-TC recorded in MeOH is attributed to a ligand-metal 

charge transfer transitions (LMCT).22,33   

 

Figure 8.12. UV-Vis absorption spectra in MeOH for: (a) 2-thiocytosine (2-TC), red line, and (b) gold 

(I):2-thiocytosine (Au:2-TC), blue line.  
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8.3.4 Fluorescence spectroscopy of Au:2-TC   

A fluorescence spectrum of Au:2-TC in methanol in Fig. 8.13 was carried out with excitation 

light of wavelength λ= 405 nm corresponding to the absorption feature in the Au:2-TC 

spectrum of Fig. 8.12. A broad peak can be seen in the spectrum covering the region from 495 

nm to 753 nm and centred at 622 nm. This peak can be assigned to lowest energy of the triplet 

excited state which leads to p(S) pσ(Au) charge transfer transitions (LMCT) in Au 

complexes. In addition, aerophilic interactions may contributed via metal centred transitions 

dσ*(Au)pσ(Au).22,33-35    

 

Figure 8.13. Fluorescence spectrum of gold (I):2-thiocytosine(Au:2-TC) in methanol with an excitation 

wavelength of 405 nm.  

The fluorescence spectrum of 2-thiocytosine(2-TC) ligand in Fig. 8.14 was also recorded with 

an excitation wavelength of 242 nm; it shows a broad peak from 280 nm to 427 nm and centred 

at 342 nm. The peaks related to second order scattering can also be seen in the spectrum of the 

ligand. No emission is observed corresponding to that shown in Fig. 8.13 under 405 nm 

excitation, in keeping with the assignment to transitions involving Au.     
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Figure 8.14. Fluorescence spectrum of 2-thiocytosine(2-TC) in DMSO with excitation 242 nm. 

8.3.5 Elemental analysis (C.H.N) 

Elemental analysis (C.H.N) was obtained from the service at the School of Human Sciences, 

London Metropolitan University. For Au:2-thiocytosine complex with proposed formula 

C8H10N6S2Au.Cl.2H2O, the theoretical values were: %C 18.37, %H 2.67, and %N 16.07, 

Found: %C 18.16, % H 2.04, and % N 15.53. Table 8.1 displays the data. According to the 

elemental analysis data, Au(I) binds two molecules of 2-TC and the proposed structure of Fig. 

8.10 is consistent with the literature on Au(I) chemistry which indicates the linear two 

coordination of Au(I) complexes predominates.22,36,37   

Table 8.1. Elemental analysis of Au:2-thiocytosine. 

 

Element  
 

% Theoretical 
 

% Found 

C 18.37  18.16 

H 2.67 2.04 

N 16.07  15.53 

 

8.3.6 Mass spectra  

Mass spectra was carried out at Sheffield University with Matrix-assisted laser desorption and 

ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for Au:2-TC in acetonitrile, 

m/z (positive mode) for C8H10N6S2Au found: 451.0245, (calculated: 451.0078), the data 

revealed metal to ligand of M:L2 stoichiometry and this confirms the linear geometry for Au:2-

TC, Fig. 8.15. displays the spectrum.      
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Figure 8.15. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) mass spectrum for Au:2-TC in acetonitrile. 

 

8.3.7 1H and 13C NMR of Au(I):2-TC complex 

A comparison of the 1H NMR spectra of the ligand 2-TC and Au:2-TC complex in DMSO-d6 

(500 MHz, 25 C) displays shifts in the positions of several signals, as shown in Fig. 8.16. H1, 

which was sharp in the ligand (s, 11.96 ppm), is shifted downfield by 1.26 ppm in the complex 

(s, 13.22 ppm). The broadening of the -NH peak (H1) in the complex can be assigned to the 

inductive effect of the metal binding at S which makes H1 at the nearby N atom more acidic,38 

and since the internal NH (which has acidity in rang 5-11pKa)19 is strongly acid-dependent39 

and the chemical shift is pH-dependent,40 this leads to form a broadened downfield H1 signal.  

In addition, all other peaks at the ligand include doublet H6 (d, 7.39 & 7.35 ppm, J= 7.0 Hz), 

doublet H5 (d, 5.93 & 5.91 ppm, J= 7.0 Hz), and  NH2 (s, 7.54 & 7.4 ppm, 2H) were shifted 

downfield also in the complex: H6 (d, 7.76, 7.75 ppm, J= 7.1 Hz) , H5 (d, 6.35, 6.33 ppm, J= 

7.1 Hz), and NH2 (s, 8.50, 8.38 ppm) and this can be assigned to the decrease of electronic 

density41 in the ligand upon binding with Au(I) ion.       
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Figure 8.16. 1H NMR of 2-TC and Au(I):2-TC at DMSO-d6 in 500 MHz. 

 

The peak assigned to NH2 splits into two peaks and this can be attributed to the non-equivalence 

of the NH bonds (the difference is  around 0.05 Å between the N-H bonds in solid 2-TC),28 

Fig. 8.17 shows small area of Fig. 8.16 to display with more clearly the splitting in the peak of 

NH2 that assigned to non-equivalent NH bonds, in addition, to show the very small splitting in 

the doublet  peaks of H6 and H5.   
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Figure 8.17. Region 8.7-5.7 ppm of Figure 8.13 displaying details of the 1H NMR of Au(I):2-TC at 

DMSO-d6 in 500 MHz to show the doublets H6 and H5, the splitting of NH2, and the corresponding 

integrals.   

 

Fig. 8.18 presents a comparison of the 13C NMR spectra between the ligand 2-TC and the Au:2-

TC complex in DMSO-d6 (500 MHz, 25 C). The spectrum of the ligand displayed four signals 

at 180.43(C2), 162.95(C4), 142.92(C6), 96.88(C5) ppm. Notably, all peaks for C atoms in the 

Au:2-TC complex were not strongly shifted except C2 which was shifted upfield (171.90 ppm) 

and this can be attributed to the resonances in the complex that occurred upon coordination 

with Au(I) which reduced the shielding for C=S carbon in the complex as a result of forming 

two coordinate species and this supports thione-S bonding to Au(I) ion.17 C5 was slightly 

shifted downfield in the complex (100.53 ppm) due to increase the character of double bond of 

thione group C=S.42  
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Figure 8.18. 13C NMR of 2-TC and Au(I):2-TC at DMSO-d6 in 500 MHz. 

 

8.3.8 Powder X-ray diffraction (XRD) of Au:2-TC 

Sharp Bragg peaks were found in the X-ray diffraction pattern for Au:2-TC as shown in Fig. 

8. 19 indicating that the sample was microcrystalline. This is very different to the case of Au:6-

TGR discussed in chapter 3 which shows only very broad bands and appears amorphous. A 

few peaks in the pattern correspond to distances d=2/Q of 0.281 and 0.264 nm which are 

consistent with Au-Au interactions and d = 0.247 nm is consistent with Au-S bond length.ll43,44 

Table 8.2, is presents the data.  

 

Figure 8. 19. XRD pattern for Au:2-TC. The blue line is the experimental diffraction data and the red 

dotted line is the theoretical fit. 
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Table 8.2. Distances extracted from the analysis of the XRD data for Au:2-TC. 

Distance /nm Suggested Assignment 

0.281 Au-Au 

0.264 Au-Au 

0.247 Au-S 

 

8.3.9 Conductivity of Au(I):2-thiocytosine    

In chapter 3, Au:6-thioguanosine was shown to produce a novel conductive coordination 

polymer upon oxidative doping. The Au:2-TC was also found to display similar behaviour 

upon treatment with iodine vapour. This is also significant for a more detailed interpretation of 

the structure of Au:2-TC, because it suggests extended Au/S interactions not depicted in the 

simple proposal of Fig. 8.10. 

To fabricate electronic devices for electrical characterisation of Au:2-thiocytosine 

microcrystalline, platinum microband electrodes (MBEs) were used, which were made up of 

Si/SiO2 substrates. On the top of the SiO2 layer there were four platinum electrodes are 

patterned with height 200 nm and 10 µm width with 10 µm spaces between them. The surfaces 

of the MBEs were electrically insulated except for a 2 x 2 mm2 area for depositing the sample.  

Devices were fabricated by depo casting the Au:2-TC solution onto the Platinum MBEs. A 

drop (~1 µl) of Au:2-thiocytosine solution that contained the microcrystalline of Au:2-TC was 

casted onto the uninsulated area on the platinum microband electrodes (MBE). The drop was 

dried at 45 °C under vacuum to produce a dry layer of the Au:2-TC on and between the Pt-

electrodes. The dried Au:2-TC on platinum MBEs was exposed to iodine vapour for 1h by 

heating 0.1 g of iodine to 45 °C in a sealed flask. Current-voltage curves were collected before 

and after oxidation. 

8.3.9.1 Two-terminal IV characteristics of the Au:2-TC complex  

A two terminal IV technique with a probing station (Cascade Microtech) and a B1500A 

semiconductor analyser (Agilent) was used to assess the conductance of Au(I):2-TC before and 

after oxidation with I2. The I-V characterisation was carried out under a dry nitrogen 

atmosphere at room temperature. The data in Fig. 8.20 presents the variation the current with 

applied potential at room temperature, the voltage was swept from -2 to 2 V in 0.2 V steps with 

a measurement time of 100 ms at each step constant rate (100 m s /0.2 V). As also observed 
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for Au:6-thioguanosine, the complex is insulating prior to oxidation, but after oxidation, an 

ohmic I-V curve was obtained.     

 

Figure 8. 20. Showing current varies with potential before (red line) and after (blue line) oxidation with 

I2 at room temperature taken over a constant rate 100 m s / 0.2 V.    

 

The observed change in conductance suggests, by comparison with chapter 3, that conductivity 

in Au:thionucleobases complexes may be common. It is interesting that the microcrystalline 

Au:2-TC shows conductance comparable to that of polymer Au:6-thioguanosine despite the 

clear differences in the morphology of the two materials.    

8.3.10 Morphology of solid Au(I):2-TC  

The presence of two kinds potential of hydrogen bonding (N-H....N and N-H....S) in the 

chemical structure of the molecular of 2-TC gives a rise to festinating structures for the 

complexes of this pyrimidine nucleobase with metal ions. Fig. 8.21 shows optical (right) and 

fluorescence (left) images for Au:2-TC. In the images, long needle-like crystals were formed. 

The material is definitely microcrystalline from the XRD data, but the crystals have a large 

aspect ratio and in this respect have some similarity to the long polymeric fibres of Ag:2-

thiocytosine.    
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Figure 8. 21. Optical (right) and fluorescence (left) images showing the morphology and the size of 

Au:2-TC crystal. The left image displaying the fluorescence of the compound.  

 

 As mentioned in Chapter 6 the reaction of Ag(I) with 2-TC forms a polymer which is converted 

with time into bundles. Upon comparing the initial structure of the optical images for Ag(I):2-

TC with that for Au(I):2-TC, an interesting similarity was found. Both compounds have very 

similar morphology, but the XRD data show Ag(I) compound is an amorphous polymer and 

the Au(I) is crystalline. Fig. 8.22 displays the comparison between Au and Ag:2-TC complexes. 

 

Figure 8. 22. Comparison the morphology between Au & Ag:2-TC complexes display the similarity at 

the morphology between the two complexes and this reflects orientation the metals ions (Au/Ag) to 

bind with the same binding site (S atom) at the two complexes.   
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8.4 Conclusion 

A new gold (I) complex with 2-thiocytocine (2-TC) was synthesised and characterized. FTIR 

characterization has shown that Au(I) ion binds vis S atom, and the elemental analysis (C.H.N) 

suggested that the complex of Au:2-TC has 2:1 ligand to metal stoichiometry. This suggests a 

linear coordination for Au(I) in the complex. The data of x-ray diffraction showed sharp Bragg 

peaks indicating that the complex was microcrystalline, unlike the coordination polymers 

observed for other thionucleobases and the distances d=2/Q of 0.34, 0.264, and 0.247 nm can 

be tentatively assigned to Au…Au, Au-S. The complex displayed fluorescence properties 

similar to other gold complexes. The crystal structure of 2-TC molecular has two non-

equivalent molecules which are linked by two types of hydrogen bonds NH....N and NH....S. 

The existence of two molecules at the crystal structure of 2-TC gives a rise to form interesting 

architecture for the 2-TC and the compounds that are prepared upon coordination 2-TC with 

metal ions such as Au(I). According to the importance 2-TC as a ligand at medicine field and 

the rule of gold at different importing medicine, the complex of Au:2-TC is expected to have a 

promising application in the pharmaceutical field.                          
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Chapter 9. Conclusion   

 

This chapter includes two parts: the first part displays the data for silver:6-mercaptopurine 

riboside hydrogel (Ag:6-MPR). The second part presents some general conclusions from all 

the complexes in this thesis.  

9.1 Silver 6-mercaptopurine riboside (Ag:6-MPR) 

9.1.1 Experimental  

This gel was prepared by reaction AgNO3 solution (11.95 mg, 0.07 mmol in 40 µL MeOH, 160 

µL H2O) to the warm solution of 6-mercaptopurinr riboside (20 mg, 0.07 mmol in 400 µL 

NaOH (0.1N), 200 µL MeOH, and 200 µL H2O) after mixing the two solutions, 1 ml of yellow 

gel was formed. Fig. 9.1.1 displays the reaction route. 

   

Figure. 9.1.1. Reaction route for Ag(I):6-mercaptopurine riboside hydrogel. 

 

9.1.2 Results &Dissociation  

9.1.2.1 Fourier Transform Infrared Spectroscopy (FTIR) characterisation of Ag:6-MPR 

hydrogel 

Fig. 9.1.2 shows the FTIR spectra of 6-mercaptopurine riboside (6-MPR), and Ag:6-MPR 

hydrogel. The band at 1203 cm-1 which is related to the stretching mode C=S in the nucleoside 

6-MPR does not change at the complex and that confirms that S6 atom does not participate in 

the binding with Ag(I), while the bands in the nucleoside at 1589 cm-1 and 1473 cm-1 which in 

particular belongs to the stretching mode of C=C and C=N were shifted to 1573 cm-1 and 1597 
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cm-1, respectively suggesting that the binding of Ag ion to the 6-MPR nucleoside was occurred 

via N7. 

 

Figure 9.1.2. FTIR spectra compression between: (a) 6-mercaptopurine riboside (6-MPR) and (b) Ag:6-

MPR gel.  

 

9.1.2.2 UV-Vis Absorption Spectroscopy 

The absorption spectrum of 6-mercaptopurine riboside (6-MPR) in pH 12 and pH 2 gave peaks 

at 310 nm and 324 nm as a result of the thiol and thione forms, respectively. The formation of 

thiol form in pH 12 was probably combined with deprotonation of N1-H, Fig. 9.1.3.   

 

 

 

 

 

 

 

Figure 9.1.3. UV-Vis absorbance spectra of 6-mercaptopurine riboside(6-MPR) at pH 12 and pH 2 

show thiol and thione forms, respectively. 

 

The basic solution of the 6-mercaptopurine riboside in pH 12 displays a band at 312 nm and 

this suggests that the solution is in thiol form. While the absorption spectrum of Ag:6-MPR 

hydrogel which was prepared in pH (12) showed a new band at 335 nm, as shown in Fig. 9.1.4.  
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Figure 9.1.4. Comparison between: (a) the spectrum of 6-Mercaptopurine riboside (6-MPR) in pH 12 

and the spectrum of 1:1 Ag:6-MPR (b) gel. 

 

9.1.2.3 Fluorescence Spectrum of Ag: 6-Mercaptopurine riboside (Ag:6-MPR) 

Ag(I):6-MPR hydrogel shows a weak fluorescence florescence in the region between 498 to 

640 nm. Fig. 9.1.5 

 

Figure 9.1.5. of, Ag:6-MPR gels, the excitation was 310 nm and 332 nm for 6-MPR, Ag:6-MPR, 

respectively.    

 

9.1.2.4 Circular Dichroism (CD) studies 

Fig. 9.1.6 presents the CD spectra of the ligand (6-MPR) and the gel Ag(I):6-MPR. The 

spectrum of the ligand displayed two peaks at 203 nm and 330 nm. While the spectrum of the 

gel showed new peaks at 252 nm and 400 nm along with a substantial increase in the intensity 

suggests that the gel has fibres with a helical structure. 
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Figure 9.1.6. Displays the CD spectra for: (a) the ligand (6-MPR) and (b) the Ag (I):6-MPR 

hydrogel.  

9.1.2.5 Powder X-Ray Diffraction 

The data of XRD for Ag:6-MPR shows amorphous scattering. Analysis of this data distances 

for Ag-N and Ag-Ag at 0.228 nm and 0.318 nm, respectively. This supports the proposed 

structure in Fig. 9.1.7 that Ag(I) bounds to N7 in the gel.     

 

 

 

 

 

 

 

Figure 9.1.7. XRD pattern for Ag:6-MPR hydrogel. The blue line is the experimental diffraction data 

and the red dotted line is the theoretical fit.   

Table 9.1.1. Distance extracted from the analysis of the XRD data for Ag:6-MPR gel. 

Distance /nm Suggested Assignment 

0.318 Ag-Ag 

0.228 Ag-N 
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9.1.2.6 Atomic Force Microscopy (AFM)  

To probe the morphology and the size of the fibres in the gels, surface topography imaging was 

carried out using tapping mode AFM by depositing 2 µL of Ag:6-MPR, gel into a silicon wafer. 

All AFM images showed long fibres, Fig. 9.1.8. The statistical analysis was carried out to show 

the height and the size (diameter) distribution of the fibres in the gel, as shown in Fig. 9.1.9. 

 

Figure 9.1.8. Tapping mode AFM height image of Ag:6-MPR. The scale bar in both A & B was 5 µm 

and the grayscale are 78.9 nm & 20.5 nm, respectively. 

 

 

Figure 9.1.9. Tapping mode AFM image of 1:1 Ag-6-mercaptopurine riboside gel prepared with 0.1 N 

NaOH and drop cast onto a silicon wafer. The scale bars are 4 µm &1 µm and the height (grayscale) 

are 60.1 nm & 24.4 nm in (a) and (c) respectively. (b) The cross section of (a) shows the height of the 

fibrous ~ 40 nm. (d) Histogram of the size (diameter) distribution of the Ag:6-MPR fibres. Image (c) 

was imaging from the end of one of the rough fibre which displays that was formed from gathering 

several small fibres.  
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9.1.2.7 Transmission Electron Microscopy (TEM) 

TEM images in Fig. 9.1.10 showed long, uniform, and branched fibres. Most TEM images for 

other kinds of the gels that prepared in the thesis showed entangle networks, however, Ag(I):6-

MPR gel is different in its morphology and this may be assigned to the binding site which is 

suggested to be by N7.        

 

Figure 9.1.10. TEM of 1: 1 Ag- 6-mercapto purine riboside (Ag:6-MPR), the scale bar was 100 nm and 

500 nm at (a), (b)& (c), while the magnification was 64000x, 34000x, and 25000x, respectively. 

9.2 Conclusions 

The work in this thesis has focused on studies of the reaction of metal ions (Au, Ag, Cu, and 

Co) with thio nucleobases and thio nucleosides as ligands to prepare coordination complexes. 

Most previous studies of similar systems concentrated on natural nitrogen bases or their 

alkylated derivatives rather than the thio bases.  

In this thesis, different thionucleobase and thionucleoside based hydrogels and discrete 

structures were formed by coordinating with range of metal ions (Au, Cu, Ag, etc). The 

compounds were investigated with different spectroscopies and microscopies aiming to address 

their chemical structures and morphologies. Metal-nucleobases complexes have attracted great 

interest for many years in order to understand the biological roles of these compounds; in 

particular they form a good model to understand the interaction between metal ions and DNA 

(e.g. cis -platin). However, coordination between metal ions and nucleobases also allows the 

preparation of different kinds of materials:  simple complexes (discrete entities), coordination 

polymers, and more complex architectures (supramolecules).  

The reaction of 6-thioguanosine with coinage metal ions (Au, chapter 3), (Cu & Ag, chapter 4) 

lead to the formation of hydrogels comprising networks of an Au, Cu, Ag:6-TGR coordination 

polymers. Different spectroscopic techniques were used to characterize the chemical structures 
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such as FTIR, UV-Vis, XPS, XRD, and fluorescent spectroscopy. While AFM, TEM, and 

fluorescent microscope were used to characterize the morphology. The Au:6-TGR 

coordination polymer itself showed interesting luminescence and, upon oxidative doping, it 

became electronically conductive. In chapter 5, 2-deoxy-6-thioguanosine was prepared and 

characterized with different techniques and used to prepare hydrogels with coinage metal ions. 

It shows the ability to form hydrogels despite a lack of hydroxyl group (2OH) from the sugar 

structure. In chapter 6, thionucleobases also exhibit ability to form hydrogels despite the 

absence of sugar group in their structures. Also in chapter 6, 2-thiocytosne formed a polymer 

with Ag(I), the compound was very stable in solid state and has microcrystalline structure, 

however, leaving the complex in the solution lead to loss of the microcrystallinity and 

formation of a black hydrogel. Chapter 7, showed the formation of three complexes (Ag:6-

MMPR, Cu:6-MMP, and Co:6-MMP) as discrete structures. The structures of these complexes 

were characterized by X-ray diffraction. In chapter 8, the reaction of Au(I) with 2-thiocytosine 

formed a stable complex in the solid state with a microcrystalline structure.  

 

 


