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ABSTRACT

‘Bluetooth’ is a technology that can be integrated into Intelligent Transport
Systems (ITS) to facilitate smarter and enhanced traffic monitoring and
management to reduce congestion. The current research focus on Bluetooth is
principally on journey time management. However, the applicability and viability
of Bluetooth potential in problematic urban areas remains unknown. Besides the
generic problem of unavailability of processing algorithms, there is gap in
knowledge regarding the variability and errors in Bluetooth-derived metrics.
These unknown errors usually cause uncertainty about the conclusions drawn
from the data. Therefore, a novel Bluetooth-based vehicle detection and Traffic
Flow Origin-destination Speed and Travel-time (TRAFOST) model was
developed to estimate and analyse key traffic metrics. This research utilised
Bluetooth data and other independently measured traffic data collected
principally from three study sites in Greater Manchester, UK. The Bluetooth
sensors at these locations generated vehicle detection rates (7-16%) that varied
temporally and spatially, based on the comparison with flows from ATC
(Automatic Traffic Counters) and SCOOQOT (Split Cycle Offset Optimisation
Technique) detectors. Performance evaluation of the estimation showed
temporal consistency and accuracy at a high level of confidence (i.e. 95%)
based on criteria such as Mean Absolute Deviation (MAD) - (0.031 — 0.147),
Root Mean Square Error (RMSE) - (0.041 — 0.195), Mean Absolute Percentage
Error (MAPE) - (0.822 — 4.917) and Kullback-Leibler divergence (KL-D) (0.004 —
0.044). This outcome provides evidence of reliability in the results as well as
justification for further investigation of Bluetooth applications in ITS. However,
the resulting accuracy depends significantly on sample size, network
characteristics, and traffic flow regimes. The Bluetooth approach has enabled a
deeper understanding of traffic flow regimes and spatio-temporal variations
within the Greater Manchester Networks than is possible using conventional
traffic data such as from SCOOT. Therefore, the application of Bluetooth
technology in ITS to enhance traffic management to reduce congestion is a

viable proposition and is recommended.
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Chapter 1. Introduction

1.1 Introduction and Background to the Research

Traffic congestion poses many challenges to road transportation due to the
ever-growing population and increased levels of private car use around the
world (Miles and Chen, 2004). Traditionally, the challenges of traffic congestion
have been managed by increasing road capacity (Chowdhury and Sadek,
2003). Traffic management systems provide an improvement to road
congestion through surveillance, optimisation of subsystems (such as traffic
signals), and control on highways and local roads (Diebold, 1995; Miles and
Chen, 2004). However, despite the traffic management systems in place and
major expenditure on new road infrastructures, congestion problems continue to
rise, leading to different challenges for health and the economy (Chen and
Miles, 1999; Miles and Chen, 2004). In the UK, SCOOT-UTC (Split Cycle Offset
Optimisation Technique — Urban Traffic Control) has been widely implemented
to manage traffic (SCOOT-UTC, 2011). Traffic data collected by these systems
from diverse sources are processed and managed to carry out different
strategies to optimise the flow of traffic in order to reduce congestion (Hounsell
et al., 2009). While the traditional management systems continue to develop,
they are expensive in terms of both procurement and maintenance, and
SCOQOT is restricted to signalised junctions (Leduc, 2008). Intelligent Transport
Systems (ITS) are the integration of transportation systems with a variety of
tools (such as software and communications technologies) and are widely used
today for enhanced services such as efficiency and safety (Chowdhury and
Sadek, 2003; Kosta et al., 2011; Kindleysides, 2014). Through ITS, the
traditional solutions to transportation problems can be enhanced or substituted
(Chowdhury and Sadek, 2003). However, ITS are data hungry and depend on
different streams of measurements to provide useful information to end users
(Dalgleish and Hoose, 2009 ). The current technology-based systems which
include Global Navigation Satellite Systems (GNSS) provide a more dynamic
and comprehensive solution than is possible using traditional systems (Leduc,
2008). Currently, there is already a wide-spread use of GNSS commonly
referred to as satellite navigation (SatNav) for transport applications. While the



use of SatNav has received wide acceptance, it is limited by a number of factors
such as satellites’ geometry, and multi-path effect, particularly in urban areas
(Misra and Enge, 2006; Trimble, 2007; Meng et al., 2008). Exploring the
potential of other technological options such as wireless communications
provides further opportunities to enhance the existing systems using low-cost
sensors. Wireless communication technologies such as ‘Bluetooth’ provide the
prospect of gathering key traffic information (such as O-D matrix that has been
expensive and difficult to acquire in the past) anywhere across the networks.
Wireless technology is cost-effective, accurate, pervasive, easy to deploy and
maintain, and low-power (Srinivasan, 2011). Blythe (2006) highlighted the
importance of wireless technology in the areas of road user charging, pervasive
environmental monitoring, congestion control and fleet management. This is
echoed in the Foresight Project on Intelligent Infrastructure Systems (IIS) that
sought to address how science and technology could bring intelligence into the
infrastructure over the next 50 years (Foresight, 2006). Therefore, exploring the
potential benefits of Bluetooth for traffic metrics estimation could contribute to

achieving this aim.

Consequently, this research explores the use of Bluetooth sensors for vehicular
traffic detection and metrics estimation in urban areas within the context of the
applicability of the Bluetooth approach to enhancing traffic management
systems in order to reduce congestion. The assessment was conducted through
the analysis of data collected from a total of three UK study areas (Birtley,
Liverpool and Greater Manchester). Data from Bluetooth sensors and other
Independently Measured Traffic Data (IMTD) were used. A novel Bluetooth-
based processing and analysis techniqgue (TRAFOST), developed and
implemented in this research has helped to accomplish this investigation.
Methods of analysis include both quantitative and exploratory data analysis
such as time series, correlation, and Principal Component Analysis (PCA).



1.2 Context of the Research

Addressing the transportation problems of congestion from traffic monitoring
and management perspectives requires a more complete and efficient solution
than is currently available. Bluetooth is considered a technology with the
possibility to enhance current systems. Many devices such as mobile phones,
laptops and in-vehicle gadgets have Bluetooth embedded in them to exchange
data or communicate with one another over short distances without requiring
physical contact (Bluetooth, 2012). Literature demonstrates that research into
the use of Bluetooth in ITS is still a novel area and thus requires further
understanding of the approach, usability and limitations to fully exploit its
potential. This research considers these gaps and the applicability of the
Bluetooth approach to vehicular traffic sensing and metrics estimation to

enhance management systems in order to reduce traffic congestion.

Traffic congestion can be defined in terms of demand-capacity and delay in
travel time. Based on demand-capacity, it is the delay caused by one vehicle to
others, or when demand exceeds capacity (Thomson, 1978). In terms of travel
time, it is the delay in excess of what normally occurs under light or free-flow
travel conditions (Lomax et al., 1997). On the other hand, a delay is the amount
of extra time spent in congestion over the ideal or free-flow travel time (Camsys
and Texas Transportation Institute, 2004). Traffic congestion is generally
classified as either recurrent or non-recurrent (Chowdhury and Sadek, 2003). It
is usually caused by factors such as bottlenecks (the largest source of
congestion and traffic incidents) including crashes and vehicle breakdowns that
cause about 25% of congestion problems (DoT, 2012). Congestion problems
affect the economy with a detrimental effect on human health and the
environment, and thus there have been calls for improvement in road network
efficiency (WHO, 2005; Ayodele et al., 2014). Greater Manchester (the main
study area in this research) which is the second largest conurbation in the UK
after London, is not an exception. Economically, the annual congestion costs in
the UK could rise to as much as £22 billion by 2025 (Scullion, 2011). The

Eddington report outlines the challenges of congestion, climate change and
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sustainability (Eddington, 2006). Meanwhile, an efficient transport system has a
ripple effect on the economy, such as saving around £2.5 billion for a 5%
reduction in travel time for all business travel on the roads — some 0.2 per cent
of the UK GDP (Eddington, 2006). Schrank et al. (2012) gave a brief summary
of the problem of congestion highlighting the massive waste in time, fuel and
money. In 2011 in the US alone, fuel wastage was estimated to be 2.88 billion
gallons; total delay as 5.52 billion hours, while delay per commuter was 38
hours, making a total cost of $121.2 billion per year (Schrank et al., 2012). The
2009 report shows that the cost is more than $80 billion a year in the US
(Srinivasan, 2011). The reality is that an ever increasing population worldwide
calls for increased awareness of the importance of cutting-edge research to
achieve a smarter and more sustainable environment (Conservation, 2012;
Darey, 2012). Therefore, establishing a balance in the road networks through
operational efficiency becomes imperative to meet the present challenges. By
embracing innovative solutions, this balance in traffic management can be
achieved without necessarily investing in building new infrastructures. Bluetooth
possesses the potential to enhance the existing systems to reduce congestion

and time spent in traffic.

Bluetooth can be used to gather information concerning traffic patterns and to
raise awareness of suitable alternatives such as park and ride, or car sharing
options. The traffic information collected can be displayed through Variable
Message Signs (VMS) or relayed through in-vehicle (IV) technologies to
improve efficiency. However, to derive the maximum benefits from the
technology, policy changes must be at the heart of future transport guidelines.
This change in policy will include support for low-cost technological options.
Thereby leading to maintaining a balance in the development of techniques that
manage travel demand more efficiently, while upholding an individual’s right to
freedom of movement (Thorpe, 2005). Weigelt et al. (1973, page 2) also stated
that the need to attain a balance between city planning and its traffic is the key
problem of the urban transportation policy during a transition phase from a city

without any private automobiles to a city with a high degree of automobile

4



saturation’. For transport engineers and planners, the obvious problem is that
availability of timely and accurate data remains a fundamental challenge in

attaining this balance.

Interestingly, the availability of Bluetooth technology is increasing not only in
electronic devices and mobile phones but also in vehicles. Exploring the
potential of the technology in this way to enhance road network efficiency might
constitute a cutting-edge solution to traffic congestion problems. Meanwhile,
before economic or environmental benefits can be realised fully, understanding
the patterns of movement and regularity of trips made by people is essential.
The availability of such information will allow traffic management systems to
respond better to inform network users of alternative routes and modes. This
information has been difficult and expensive to acquire in the past, however
Bluetooth offers the opportunity to address this challenge at little cost.
Consequently, this research also seeks to investigate the use of Bluetooth data
to enhance reliable reconstruction of traffic patterns and trends, which have
hitherto been under-investigated. This contribution to knowledge further implies
a step towards realising smarter future transport systems, leading to a more

sustainable, efficient, and clean road network.

Using Bluetooth technology, two technological challenges are addressed. The
first is the monitoring of movements (or passage) of traffic across specific
known points in the network. The second is the management of the
computational intensity of processing large volumes of data (tens of gigabytes)
arising from day-to-day onsite monitoring of the passage of traffic to derive
useful information. Bluetooth sensors developed by TDC Systems were used to
meet the first requirement, while an appropriate model was developed to
address the second challenge. Consequently, there is a need for research to
gain a fundamental understanding of these two components (deployment of
Bluetooth for traffic detection and the processing and analysis of the acquired

data). To this end, an appropriate Bluetooth-based model termed TRAFOST
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(Traffic Flow Origin-destination Speed and Travel-time) was developed in this
research to process, data mine, and estimate traffic metrics to explore potential

applications in traffic management.

By harnessing the opportunities offered by this technology in this way,
potentially Bluetooth may take over some of the functionalities of the traditional
and more expensive monitoring systems such as the ANPR (Automatic Number
Plate Recognition) cameras and inductive loop detectors. The motivation to
demonstrate the value for money of using a low-cost Bluetooth sensor started in
2011. Peter Jones led the request from Mouchel/2020Liverpool on this project
(Jones, 2011). While qualitative assessment and a literature review suggest that
this is a possibility, the need for improved knowledge of statistically reliable
results is required to justify the viability of the proposition. Hence, the motivation
for this research is to improve the efficiency of the current systems to enhance
traffic management using low-cost sensors. This can be achieved by exploring
the reliability of the high resolution and timely data provided by Bluetooth to
derive traffic metrics such as O-D matrix, link-flow, travel time and speed.
Despite the recent rise in publications on the use of Bluetooth for traffic
monitoring and other related applications, it is still in a state of continuous
evolution. This evolution makes research into potential applications of Bluetooth

in ITS an area of enormous potential.

Implementing Bluetooth to improve traffic management has some limitations
that include the privacy issue, low vehicle counts (i.e. inability to measure the
actual traffic flow), and difficulty in differentiating between modes during
congestion. However, it is argued that the enormous potential possessed by the
technology far outweighs its limitations particularly in the context of low-cost
decision support systems (DSS) for traffic management. In this research due
process was followed to ensure respect for the privacy rights of people in
compliance with Data Protection Acts (Data Protection Commissioner, 2003).

This process includes obtaining ethical approval from Newcastle University.
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Also, encrypted data were used in this research to avoid associating any
captured device to a particular owner or vehicle. Therefore, this research is
neither for surveillance nor aimed at identifying or tracking any particular
individual or vehicle. Rather, it seeks answer to the reliability and sufficiency of
the accuracy of Bluetooth data to estimate traffic metrics for traffic management
applications to reduce congestion. The next section considers the research

problems and challenges.

1.3 Research Problems and Challenges

From the literature review presented extensively in Chapter 2, it is evident that
there remains a lot to be done regarding Bluetooth applications in traffic
management. Besides, the heterogenous sources (vehicles and other modes of
transport) of Bluetooth data collection as well as the possibility for duplicate
records, there is the generic problem of unavailability of algorithms showing
systematic analysis procedure for traffic metrics estimation. Also, the fact that
Bluetooth usage is increasing and its estimate is a sample of the total vehicular
traffic means a need for a continued study to correctly determine the detection
rate required for calibration. In addition, the need for a periodic calibration to
ensure reliable detection rate also constitutes a challenge on the use of
Bluetooth data for traffic management applications. Overall, the results of the
current research on the use of Bluetooth for traffic monitoring and management,
which is principally in the area of travel time analysis show that there is the
need for further studies (Araghi et al., 2015; Barcelo et al., 2013; Bhaskar et al.,
2014). These problems need to be addressed to optimally exploit the potential
of Bluetooth for traffic management. The next section considers the aim and
objectives of the research following the research problems and challenges
identified.



1.4Aim and Objectives of the Research

This research aim is to investigate the reliability and the sufficiency of the

accuracy of Bluetooth data to estimate traffic metrics for traffic management

applications to reduce congestion.

The specific objectives to achieve this aim are:

Vvi.

To carry out a critical review of literature on the application of Bluetooth
technology in traffic monitoring and management, and to consider other

technological options for road traffic monitoring;

To develop a Bluetooth-based data processing procedure (a model) to

derive link-flow, travel time, speed and origin-destination matrix;

To carry out data collection in selected study sites consisting of
Liverpool, Birtley and Manchester, and apply the model on a short-term

basis to investigate the potential of Bluetooth-derived traffic metrics;

To examine the performance of the model (TRAFOST) developed in
Objective ii and the consistency of Bluetooth-derived traffic metrics on a
long-term basis, for accuracy and reliability through validation against

diverse independent measures of traffic and statistical modelling;

To analyse the variability in Bluetooth-derived traffic metrics to enable
concrete deductions and sound inference based on the analysis of year
2013 data from the Greater Manchester Network (GMN); and

To interpret the results and make deductions from the research findings
in a wider context of applicability and viability in traffic management, and
make recommendations for Bluetooth traffic monitoring and metrics

estimation.



1.5 Contents of the Main Chapters

This thesis is organised into eight main chapters as follows.

Chapter 2 critically explores and reviews the available literature relating
to the application of Bluetooth traffic sensing and metrics estimation in
ITS with the view to enhancing traffic management systems. The review
includes the applications of Bluetooth to derive important traffic metrics, a
description of other technological options, and policy issues that include
privacy, safety and pollution. The literature review highlights a number of
key issues with the Bluetooth approach to traffic metrics estimation and
application in traffic management. These issues relate to methodology;
reliability and validity of the data based on a comparative analysis with
independent measurements as against simulation; variability and errors
arising from the data over-time, particularly in the problematic urban
areas; the growth and detection rates of Bluetooth; and the wider
knowledge of the viability of the Bluetooth approach in traffic

management.

Chapter 3 presents the research methodology which includes a novel
Bluetooth-based estimation and analysis procedure (TRAFOST), used in
this research. TRAFOST was developed to ensure automation,
reproducibility and transferability in the Bluetooth approach to traffic
metrics estimation. The discussion in this section includes primarily the
research design, methods of Bluetooth data cleansing, and the
estimation and validation methods of the traffic metrics. The research
design describes the research objectives, methods of accomplishment
and the expected results. The data cleaning section considers
consistency, reliability, representativeness, multiple detection, and
outliers. The traffic metrics estimation and validation methods conclude

the discussion of this chapter.

Chapter 4 describes the Bluetooth data collection and preliminary

investigation over the three pilot study areas (Liverpool, Birtley and



Manchester — consisting of Wigan, Stockport and Trafford) considered in
this research. The Liverpool pilot study presents primarily the results of
data quality assessment. Based on the methodology developed and
described in Chapter 3, the Birtley pilot study presents the results of the
evaluation of Bluetooth data at a micro scale to understand performance
and limitation of Bluetooth. The short-term Manchester pilot study builds
on the Birtley and Liverpool pilot studies to establish transferability in

exploring the potential of Bluetooth.

Chapter 5 builds on the preliminary investigation of the study sites to
establish two key things. Firstly, the assessment of the reliability of
TRAFOST. Secondly, the assessment of the validity and reliability of the
results obtained in the long-term study by employing different validation
techniques to ensure the maintenance of the concept of fit for purpose.
Through this understanding, the practicality of both the Bluetooth data
and TRAFOST developed in this research is established.

Chapter 6 presents the detailed description of the variability that may
affect any conclusion drawn on Bluetooth-derived traffic metrics. Different
temporal dimensions were considered in this exercise such as
measurement over hours, days and months to explore temporal
consistency. This chapter presents Bluetooth data collected over a period
of one year (2013) within the GMN study site which were processed and
analysed for this purpose. The computation of detection rates was through
the comparisons of Bluetooth and IMT-derived flows collected over the

same period in the study locations.

Chapters 7 and 8 present the results and interpretation of the Bluetooth-
estimated traffic metrics in the wider context to understand the added
value obtainable from the use of the technology for traffic monitoring and
management purposes. Primarily, these two chapters explore the

interpretation and application of four different Bluetooth-derived metrics
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(link-flow, travel time, speed, and O-D matrix) in traffic management to

enhance intelligent decisions.

Chapter 9 summarises the main outcomes of the research, and the
implication of the ideas developed in this research in a wider context.
This includes the limitation in the traffic estimation model (TRAFOST)
and the resulting generalisation of the research findings based on the
results validation. The variability assessment further removes any bias
on the conclusions drawn from the data. The results interpretation and
application to traffic management contribute to understanding policy
implications that include privacy and safety of the road users, and
environmental pollution. The chapter closes with recommendations for

future research.
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Chapter 2. Critical Review of Literature on Bluetooth

Traffic Monitoring and Applications in ITS

2.1 Introduction

This chapter presents a critical review of literature on Bluetooth technology as a
novel traffic monitoring sensor for ITS (Intelligent Transport System)
applications. Traffic monitoring is the process of collecting data that describes
the use and performance of the road network (FHWA, 2013). The traffic data
collected are used in a variety of ways to support traffic operations such as
design, planning, analysis, and performance evaluation. However, a major
drawback to some of the current data collection solutions, such as the inductive
loops, is the requirement for significant capital investment, government
commitment at several levels, as well as the support and backing of the public
(Srinivasan, 2011). Bluetooth is a low-cost technology with the potential to
address the current limitations by way of complimentary solutions and high
value for money to address the problems of congestion. For example, data
collected from across the roads using Bluetooth could be used to increase
network intelligence, and to derive strategies for traffic management. However,
such data need to be timely and reliable. A review of the literature identified
research gaps regarding the reliability of Bluetooth data in traffic management,
and this problem highlights the current research challenges. Therefore, this
chapter covers the description of known methods for collection of traffic data,
and a critique of the new method (Bluetooth approach).

Section 2.2 describes existing road traffic sensors, which include the data
requirements. Section 2.3 presents a critical review of Bluetooth technology in
contrast with other wireless technologies such as ZigBee and WiFi. Section 2.4
discusses estimation methods for analysing traffic sensor data. Section 2.5
presents the work done worldwide using Bluetooth for traffic sensing to define

further specific research gaps before drawing conclusions in Section 2.6.
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2.2 Sensors for Traffic Data Collection

2.2.1 Setting the data requirements for traffic management

The development of ITS requires high quality traffic information in real-time
(Leduc, 2008). The real-time information collected by the road sensors are used
in adaptive traffic management systems such as SCOOT for the management
of road networks. Traditionally, three key measurements are used to monitor
traffic operations on freeways (FHWA, 2013). They are volume, speed, and
occupancy (the percentage of time a road section is occupied by a vehicle, and
can be a surrogate for density) (FHWA, 2013). Other useful parameters for
traffic management are; flow, travel times, O-D matrix, location, queue length,
etc. Therefore, state-of-the-art traffic-sensing solutions should be able to
provide archived information such as commute times and congestion patterns to
help urban planners and traffic engineers make informed decisions in vital areas
such as: where to improve road capacity, where and when to encourage car-
pooling and where to enhance and increase the use of public transportation
(Srinivasan, 2011). In this research, the key data requirements for traffic
management considered are; flow, travel time, speed and O-D matrix. Yatskiv
et al. (2013) highlighted the importance of these metrics in model construction,
validation and calibration. As described in Table 2.1, other important criteria
considered to ensure a holistic evaluation include sustainability (both in terms of
acquisition and maintenance costs), sample size, and reliability. These
assessment criteria provide a platform to compare the estimate of traffic metrics
from Bluetooth with the existing methods to understand its strengths and
limitations. The subsequent sections describe the methods, while more detailed
information such as the operational principles is contained in the Traffic
Monitoring Guide (FHWA, 2008).
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Evaluation criteria

Description

Required traffic metrics (Flow,
travel time, speed, and O-D
matrix)

Flow: This is the rate at which vehicles pass a given point on the roadway and is stated as
vehicles per hour. Flow is termed as traffic volume for specified time periods other than an hour,
e.g. 15 minutes

Travel time: This is the average of the total time including control delay spent by vehicles traversing
a road segment measured in seconds or minutes

Speed: The average speed of a traffic stream obtained from the length of a road segment divided
by the average travel time is measured in kilometers (or miles) per hour (km/h)

O-D matrix: This is achieved by applying the concept of flow estimation to an area-wide network

Sustainability (acquisition and
maintenance costs)

Acquisition cost: This refers to the direct cost of acquiring a system or traffic sensor

Maintenance cost: This refers to the costs incurred to keep an item in good and working condition

Transferability

This refers to how far traffic sensors can be conveyed or transferred to other contexts or settings

Availability

This is the ability to provide the required function and performance within a specified range

Accuracy and Reliability

Accuracy means how well a measured value agrees with the true value

Reliability refers to the degree of consistency or repeatability of a measure

Sample size This refers to the proportion of the detected vehicles compared to the actual population
Coverage This refers to the maximum distance at which the approaching target or vehicle can be detected
Privacy issue This relates to determining whether the technology can impinge on people's rights or not

Safety issue This refers to the understanding of how well the technology can improve or affect road safety

Table 2.1: Description of the data requirements and the evaluation criteria for

traffic management

Table 2.2 and Table 2.3 present a summary of the traffic sensors aligned with

the evaluation criteria. While some of the current technologies are highly

accurate in providing traffic information, they are not sustainable especially from

a cost perspective, as they are either too expensive to acquire or maintain.

However, emerging technology such as Bluetooth could be used to overcome

the problem of cost without compromising accuracy. The subsequent sections

describe the relevant sensors.
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Required data for traffic management

Traffic sensors Flow Travel time Speed O-D matrix
Yes (with two
Inductive loop No (estimation by |consecutive
detectors Yes algorithm) loops) No
Yes (with two
detectors but not
Pneumatics tubes |Yes No (not accurate) |accurate) No (not accurate)
No (except
derived from No (except with
local speed using special algorithm,
specific and requiring high
Radar Yes algorithm) Yes number of sensors)
No (estimation by
Video detection Yes algorithm) Yes Not used
Yes (by tracking
ANPR Yes number plates) |Yes Yes
GNSS-based FCD |Yes Yes Yes Yes
GSM-based FCD |Yes Yes Yes Yes
Yes (if enough
vehicles are
Signpost system  |equipped) Yes Yes Yes (entry-exit)

Table 2.2: Comparison of relevant traffic sensors based on data requirements

Relevant sources: (Schmidt et al., 2005; BITRE, 2014)

Other evaluation criteria
Operation and Range of
maintenance Sample| detection/ Privacy
Traffic sensors Capital cost cost Transferrability | Availability | Accuracy | Reliability | size coverage issue | Safetyissue
Installation
and
Short range maintenance
Inductive loop and require lane
detectors Expensive |Expensive No Few High High High [unidirectional |No closure
Short range
Moderate and multiple
Pneumatics tubes |cost Low cost Yes Few High High High lanes No Relatively safe
Short range Safe (if non-
and multiple intrusive
Radar Expensive |Expensive Yes Few High High High |lanes No method)
Lane closure
Short range when camera
Low -high Medium - and multiple is mounted
Video detection cost Low cost Yes Few high High High [lanes Low over roadway
Short range
and
ANPR Expensive |Expensive Yes Few High High High  |unidirectional |High Safe
Long range
and
GNSS-based FCD |Expensive |Moderate Yes Ubiquitous |High High Low unidirectional | High Safe
Medium
Moderate - range and
GSM-based FCD |Lowcost |Low cost No Moderate |Low high Low unidirectional |High Safe
Short range
and multiple
Signpost system Expensive |Expensive Yes Few High High Low lanes No Safe

Table 2.3:

Comparison of traffic sensors based on other relevant requirements
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2.2.2 Inductive loop detectors

An inductive loop detector (ILD) is an electromagnetic communication or
detection system of insulated wire embedded in the road surface, and consists
of three main parts (a loop, loop extension cable, and a detector) (FHWA, 2013;
Windmill, 2016). The loop utilises the principle that an electrical current is
induced when a magnetic field is introduced near an electrical conductor
(Windmill, 2016). For traffic monitoring, the vehicle acts as the magnetic field
and the ILD as the electrical conductor, while a device at the roadside records
the signals generated (Windmill, 2016). An increase in the oscillator frequency
due to a change in the inductance of the loop makes vehicle detection possible
(FHWA, 2013). During installation, the smallest detail matters to ensure
accurate vehicle detection. Inductive loop detectors can accurately classify
vehicles by type and detect speeds, but they also have significant drawbacks
such as the cost of procurement (Leduc, 2008; Srinivasan, 2011). However,
reducing traffic congestion and its attendant costs is one of the main goals of
transport policy makers (Wang et al., 2009). Besides being expensive,
maintenance and installation work on the road often leads to traffic disruption
(Srinivasan, 2011). Furthermore, since the speed of vehicles is calculated from
the time taken to traverse the loops and congestion determined by the speed
below a certain threshold, this means that there is a possibility of error in the
estimation and inference (Chen and Miles, 1999; Morris, 2014). For example,
vehicles close together may be interpreted as one long vehicle. Another
limitation of these sensors is the inability for vehicle re-identification or the
determination of O-D movements. Nevertheless, the 99% detection rate
obtained from ILD shows that it is highly accurate for traffic data collection
(Klein, 1997).

2.2.3 Pneumatic tubes

Pneumatic tubes placed on road lanes produce changes in pressure when
vehicles pass over them (Leduc, 2008). One end of the data logger connects to

the rubber tube(s) stretched across the road (Windmill, 2016). The air pressure
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in the tube activates the data logger as wheels pass over the tube and it records
the time of event (Windmill, 2016). Pneumatic tubes can be stretched across
several lanes of traffic. The data logger determines the direction of vehicles
through the identification of the first crossing of the tubes (Alam, 2014).
Consequently, simultaneous crossing may lead to erroneous estimation. Also,
two close cars can be misinterpreted as one multi-axle vehicle (McGowen and
Sanderson, 2011; Windmill, 2016). However, marketers claim an accuracy level
of 99% but research based on 15-minute counts suggest approximately 10%
absolute error (McGowen and Sanderson, 2011; Windmill, 2016). Typical traffic
data captured by pneumatic tubes are vehicle speed, count and classification. It
is relatively inexpensive and easy to install, and is useful for short-term traffic
surveys of one or two weeks. This technology is easily damaged and unable to

provide important traffic information such as travel time and O-D matrix.

2.2.4 Radar

A microwave radar system makes use of radar technology to detect moving
vehicles. The detected transmitted energy scattered by the vehicle rear is
converted to traffic information by the sensor, or in conjunction with the roadside
controller (Klein et al., 2006). Radar detectors emit frequencies ranging from
100MHz to 100GHz (FHWA, 2013). Vehicle speeds are calculated based on the
Doppler principle with a decreasing frequency when the vehicle is moving away
from the radar and an increasing frequency when the vehicle is approaching
(Klein et al., 2006). This technology can provide measurements of lane
occupancy, vehicle count, speed, and vehicle classification (Klein et al., 2006).
It is limited in the provision of travel time and O-D information. The intrusive
method of this technology can replace the loop detector with improved accuracy
of 7.1% and 4.8% in length and speed respectively (Kim et al., 2001). The non-
intrusive method can achieve 8% accuracy over ILD both in length and speed
(Kim et al., 2001).
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2.2.5 Video detection

Video detection makes use of video technology and systems that automatically
analyse the video pictures as vehicles are passing through the detection zone
(Windmill, 2016). The system consists of one or more cameras, a
microprocessor-based computer for digitising and analysing imagery, and
software for interpreting the images and converting them to traffic data (Klein,
1997; Klein et al., 2006). A single camera can cover different directions of
multiple lanes at once. Also, real-time modifications can be made to the
detection zones from the control centre to accommodate the prevailing traffic
conditions (Windmill, 2016). This vehicle counting technology has several
advantages such as low procurement and maintenance costs and it can cover
both directions and turning movements at once compared to loop detector and
ANPR methods (Klein, 1997; Klein et al., 2006; Windmill, 2016). Real-time data
uploading and verification is simplified, with a detection accuracy similar to that
of manual counting (Windmill, 2016). Video technology is important for ramp
and lane management to enable informed decisions regarding any changes in
traffic conditions to be made (Klein et al., 2006; FHWA, 2013). This technology
can replace inductive loops, and can classify vehicles by length, report vehicle
presence, volume, lane occupancy, and speed for each vehicle class or lane
(Klein et al., 2006; FHWA, 2013). However, this technology is limited in the
provision of O-D information as is the case with technologies such as radar, as

vehicle re-identification across the network is not possible.

2.2.6 Automatic Number Plate Recognition (ANPR) camera

ANPR is a method used to detect and automatically read number plates using
instruments such as the optical character recognition method (OCR) (Blythe,
2006; National Policing Improvement Agency, 2012). The OCR software can
take repeated snapshots once a vehicle is near the camera, thus increasing the
confidence level of detection (Blythe, 2006; Augustin and Poppe, 2012). ANPR
is one of the methods most commonly used to calculate travel time and detect

incidents on roads (Augustin and Poppe, 2012). Without any human
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intervention, ANPR systems can process video images of number plates taken
by a roadside camera and convert this into the appropriate alphabetic/numeric
characters (Blythe, 2006). This capability makes ANPR suitable for real-time
application such as in crime detection and congestion management. While
ANPR can provide O-D information, and has found applications in road-user
charging, improved road safety, etc. the drawback is that ANPR cameras as
with inductive loop detectors are expensive both in terms of procurement of the
image processing software and installation (Biora et al., 2012). Blythe (2006)
also noted that while there is an improvement in the camera technology to
provide clear images under certain conditions, some unresolved issues remain.
These include, differences in shape and size of the letters, similarities in letters,
blurring, poor lighting, masking of the number plate due to snow/fog/dirt and
unrecognised number plate types such as number plates from foreign countries
(Blythe, 2006; Augustin and Poppe, 2012).

2.2.7 Global Navigation Satellite System (GNSS)

Global Navigation Satellite Systems (GNSS) which include GPS and Galileo
have varying applications in ITS (Misra and Enge, 2006). The operational
principle comprises the interaction between space, ground, and user segments
to provide accurate positions anywhere in the world using satellites as reference
points (Trimble, 2007). The current technology-based systems which include
GNSS provide a more dynamic and comprehensive solution than is possible
using traditional systems (Hounsell et al., 2009). For example, the emergence
of satellite navigation systems has brought a fundamental change. Real-time
tracking, route guidance, telematics, and location-based services are now
carried out using GNSS solutions (Hounsell et al., 2009). Booth (2005)
highlighted the advantages of the GNSS technology to include route guidance
in cars and buses, and warnings when approaching speed cameras. The
technology has found applications in the estimation of travel time and speed
(Quiroga, 2000; Mintsis et al., 2004; Sadoun and Al-Bayari, 2007). However,
this solution is sometimes limited in urban settings where positioning solutions
are highly dependent on the availability and geometric distribution of satellites
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that in turn are sometimes constrained by tall buildings (Boneberg et al., 2011).
However, despite the ubiquitous nature of the GNSS technology, the probe
vehicle method does not give the actual traffic count, but a proportion of the
total traffic. Although, this is also the case with other technological-based
options which include the GSM-based FCD (floating car data). Also, the
presence of multi-path errors due to tall buildings in urban areas can degrade

the quality of service of a GPS-based probe vehicle (Trimble, 2007).

2.2.8 Global System for Mobile Communications (GSM)

The Global System for Mobile Communications (GSM) or cellular-based FCD
makes use of the radio modem (AVL, 2004). Mobile positioning is the
technology used by telecommunication companies to approximate the location
of a mobile phone and/or its user (Bar-Gera, 2007; Pourabdollah et al., 2010).
Advanced services with high mast station distribution such as in urban areas
can attain about 50m accuracy and less in areas with masts widely spaced
(AVL, 2004). GSM-based FCD is cost-effective but has a lower accuracy
compared to the GPS-based and traditional systems. However, the sample size
of 4% - 5% probe vehicles was estimated to be a reasonable range to estimate
reliable travel times in metropolitan areas (Cheu et al., 2002; Li and McDonald,
2007; Leduc, 2008). This technology relies on the positioning of the vehicles
incorporating mobile phones to act as sensors over the network to capture
traffic data (Leduc, 2008). This causes inaccuracy in the estimation of the O-D
data while cost may be an issue in the implementation of the accurate GPS-
based solution (Biora et al., 2012). Nevertheless, the system has also shown
potential in providing traffic data for system augmentation. For example, the
integration of the system with other tracking and location-aware systems, such
as GPS, offers a considerable advantage. This was demonstrated for the
effective management of ambulance services (Derekenaris et al., 2001). Bar-
Gera (2007) used the technology to derive traffic speed, and travel time on a
14km freeway and found that it compared well with dual magnetic loop
detectors, thereby showing promise for different practical applications. FHWA
(2013) presents a detailed summary of the probe vehicle systems.
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2.2.9 The signpost system

This is the technology used to track and locate vehicles along fixed routes. It
utilises the proximity technique through RFID (Radio Frequency Identification)
to determine location and allow for vehicle progress monitoring. Vehicle
positions are determined as they pass through the sensor locations. The
determination of travel time is through the information collected at two
consecutive stations. While the most prevalent AVL (Automatic Vehicle
Location) system for bus transit is GPS-based, several systems that provide
real-time arrival/departure information are signpost-based including King County
Metro in Seattle and Transport for London Buses (DoT, 2007). These systems
are viable alternatives inside tunnels or other conveyances where there are
blockages by terrain to GPS signals (AVL, 2004). Systems using RFID
technology with appropriate algorithms and databases have found application in
multi-vehicle, multi-lane, and multi-road junction areas to provide an efficient
time management scheme (Al-Khateeb et al., 2008). However, in terms of
accuracy, the GPS-based system is better. The technology is capital intensive
both in terms of investment and staff resources to develop, implement, and
operate (FHWA, 2006a). While the technology can provide travel time and other
information related to the vehicle and passengers, it is limited in coverage and
non-representative given that its operation is mainly in buses (FHWA, 2006a,;
FHWA, 2013).

2.3 Bluetooth Technology

2.3.1 Description of Bluetooth

Bluetooth is a short-range, low-power wireless technology used for data
communication and monitoring applications in the ITS domain (Andersson and
Karlsson, 2000; Friesen and McLeod, 2014). Bluetooth operates in the globally
unlicensed Industrial, Scientific and Medical (ISM) 2.4 GHz short-range radio
frequency band (Information Age, 2001; Tabona, 2005). Bluetooth is named
after the Danish King Harald Blatand | (Kardach, 2008; BBC, 2011; Bluetooth,
2011). It was developed by the Bluetooth Special Interest Group (SIG), formed
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in May 1998 with five founding members: Ericsson, Nokia, Intel, IBM and
Toshiba (Vainio, 2000). Bluetooth SIG has member companies in the areas of
telecommunication, computing, networking, and consumer electronics (Tabona,
2005). In 2016, the SIG membership had reached 30,000 (Bluetooth SIG,
2016). The SIG oversees the development of the specification, manages the
gualification program, and protects the trademarks (Information Age, 2001).
Bluetooth technology has found application in several sectors including the
automotive industry. Currently this technology is one of the emerging
technologies with the potential to provide relevant traffic data. Within the road
transport network, Bluetooth-enabled devices such as mobile phones,
headsets, SatNavs and portable electronic devices are found onboard vehicles
or carried by cyclists/pedestrians. The development in this sector is attributed to
features such as hands-free calling, and security remote controls for locking and
unlocking vehicles (Persistent Market Research, 2017). Bluetooth technology is
considered the only proven wireless choice for both developers and consumers
worldwide (Business Wire, 2010). Therefore, its potential to estimate traffic
metrics for traffic management applications is considered in this research.

2.3.2 Bluetooth functionality

The installation of a Bluetooth sensor is usually on lamp posts at a height of
about 3m above the ground (McDonald, 2013). The basic information collected
by a typical Bluetooth sensor (Appendix 1) includes the date and time stamp of
the occurrence of a Bluetooth device and the identification code referred to as
MAC (Media Access Control) address. The MAC address is a combination of
unique hexadecimal alphanumeric characters. The first six characters are
allocated to the manufacturers (e.g. Nokia) and the device type (e.g. phone);
while the last six characters relate to the wireless device as defined by the
service provider (Barcel6 et al., 2010). Appendix 2 presents example data.
Bluetooth detected addresses are time-stamped with the possibility of re-
identification at different locations. This principle is used to estimate travel time

by computing the differences in the time stamps between different locations.
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Figure 2.1 presents the concept of Bluetooth traffic sensing and metrics

estimation.
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Figure 2.1: The concept of Bluetooth traffic sensing and metrics estimation
(Source: UMCATT, 2008)

The dwell time in a location is computed from the timestamps at entry (first
detection) and exit (last detection) of a device. For a device to be detected,
Bluetooth security provides authorisation before pairing through device
scanning or inquiry. However, Bluetooth traffic sensors do not require
authorisation as they only detect and register the MAC addresses and the time
stamps of the detected devices. A device can be detected up to 99% possibility
at 5s inquiry (discovery) time (Kasten and Langheinrich, 2001; Peterson et al.,
2006). However, an inquiry time of 10.24s is recommended for the maximum
detection of devices (Chakraborty et al., 2010). Due to the inquiry time, not all of
the devices are detected before leaving the zone. Experiments showed a
capture rate of 80% (Gurczik et al., 2012). While the detection rate is 2-50% of
all vehicles depending on the study location and the type of antennae used
(Young et al., 2013). The detection rate is the ratio of the matched-pairs of
Bluetooth detectable vehicles captured at two consecutive sensor locations
compared to the actual link flow (Young et al., 2013). However, the obtainable
accuracy is dependent upon the installation environment as the formation of the

RF (radio frequency) field of the antenna can be affected by trees, buildings,
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guard railings, and lighting columns (McDonald, 2013). Therefore, optimum

performance of the system requires field inspection to select a site.

2.3.3 Relevant technical details of a Bluetooth system

Bluetooth operates on radio frequency (RF) technology (Bluetooth, 2011). The
Bluetooth standard is IEEEB02.15. The transmission of the Bluetooth signal to
and from the cell phone consumes just 1 milliwatt of power which makes the
battery of the phone virtually unaffected (Howstuffworks, 2011). Bluetooth has a
typical range of 1- 100m depending on the class (Bluetooth SIG, 2001).
Essentially, there are three categories of Bluetooth. Class 1 is used primarily in
industry with a range of 100m; Class 2 is commonly found in mobile devices
with a range of 10m; and Class 3 have a range of up to 1m and are mostly used
in computer mouse and keyboard technologies (Bhaskar and Chung, 2013;
Bluetooth SIG, 2015). For traffic sensing, there are two classes of Bluetooth
antennae (the omni-directional and uni-directional) (TDC, 2011; Bhaskar and
Chung, 2013). The omni-directional antennae can detect devices within the
range of detection in every direction, while the uni-directional antennae can
detect devices in one direction only, but with capability to detect devices
travelling in opposing directions. The TDC uni-directional antenna used in this
research has a detection range of 93m. This range also defines the maximum
spatial error (positional error) that can be introduced to the data because the
exact time of detection of a device and the location within the detection zone is
unknown (Bhaskar and Chung, 2013). Therefore, the error in time can be up to
the 10.24s standard inquiry time. The direction of travel of a device is
determined by performing MAC address matching to determine the location of
the first detection. That is, a device is said to be travelling in the direction ‘A to
B’ if the time of detection at point A is before that of point B and vice-versa. This

principle is used to carry out directional distribution of traffic.
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2.3.4 Bluetooth capabilities and challenges

The growth of Bluetooth shows that billions of devices are expected to be
enabled in the future (Gomez et al., 2012). In the ITS domain, it is pertinent to
note that Bluetooth potential for traffic monitoring started around 2010 (Friesen
and McLeod, 2014). Currently, Bluetooth is potentially considered a viable
technology in understanding traffic characteristics in both urban roads and
motorways (Barcelo et al., 2010; Muhammed and Egemalm, 2012). For
example, Bluetooth has shown the potential for O-D estimation to address the
current challenges using existing technologies (Abrahamsson, 1998). If the
opportunities offered by this technology are well-harnessed, Bluetooth systems
may take over some of the functionalities of the traditional and more expensive

monitoring systems.

Using Bluetooth data, a wide variety of error sources could impact greatly on
the accuracy of the estimated traffic metrics that include travel time and O-D
matrix if not properly handled (Araghi et al., 2015; Bhaskar and Chung, 2013;
Cragg, 2013). These error sources include; duplicates (more than one valid
record for a device) in the data, especially during periods of congestion, error in
MAC addresses leading to unrealistic speed estimation, a pedestrian or vehicle
with multiple devices, road junctions with traffic lights and pedestrian crossings,
business locations and car park areas near a Bluetooth station. This shows that
Bluetooth traffic estimation in congested urban networks is more problematic
than on the free flow motorway, and corroborates the research of Moghaddam
and Hellinga (2013). For example, multiple devices may be counted as many
vehicles during congestion leading to overestimation of the traffic volume.
Bhaskar and Chung (2013) illustrated the effect of the entry and exit times of
devices at the detection zones on the estimated metrics. The errors introduced
are more pronounced on short links compared to the long links of motorways

due to the aforementioned factors.
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Generally, there are uncertainties regarding the carriers of Bluetooth enabled
devices upon which assumptions are made for optimum results. For example, a
device identified as a mobile phone may be carried in a vehicle or by a
pedestrian. Also during congestion, it may be difficult to differentiate between
the modes of transportation. With an increase in Bluetooth usage and new
automobiles incorporating Bluetooth devices, periodic calibration of the
detection rate will be required to obtain the actual flow estimation. However, the
challenge is not only in the calibration but also in determining the frequency of

the calibration for a continuous accurate estimation.

2.3.5 Bluetooth growth rate and market penetration in different sectors

Bluetooth, primarily designed for wireless connection of devices has found
application in automotive, computing, networking and electronic devices such
as speakers. Since the early 2000s, there has been an increasing penetration in
the market for Bluetooth products, largely in mobile phones (Gray, 2007). In the
automotive market, Bluetooth penetration started with vehicles beginning from
2003 models through the availability of features such as hands-free calling (In-
Stat/MDR, 2002). In 2012, the Bluetooth SIG adopted the GNSS Profile version
1.0 to enable the sharing of positional data through a Bluetooth connection
(Handheld, 2012). This adoption means that more Bluetooth devices can be
detected thereby increasing the sample size and reliability of the data. The
recent development in connected cars is also increasing the market penetration
with a projection of connectivity in every car by 2025 (SBD, 2012). In 2014,
Bluetooth had reached 90% penetration in all mobile phones (Bluetooth SIG,
2016). Currently, the Global Connected Car Market (GCCM) is poised to have
CAGR (Compound Annual Growth Rate) of around 11.7% over the next decade
with revenue of approximately $81.7 Billion by 2025 (PRNewswire, 2016). Table
2.4 presents the summary of the Bluetooth growth rate and market penetration
in the relevant key sectors.
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Shipment/Market CAGR (%)

Bluetooth Market size Projection Period Current Sector
Shipment was 88.29 million by 307.2 Retail, indoor navigation,
Bluetooth Beacon |80,000 in 2015 2020 2015 - 2020 |telematics
Shipment was 88.2 |$7 Billionin 38.73 Automotive, consummer

Bluetooth Speakers |millionin 2015 revenue by 2019 2014 - 2019 |electronics
Greater than 2.5

billion shipment in Automotive, consummer

2013 with market |$5.57- 8.4 Billion electronics, wearable
Bluetooth Smart and |size of $3.27 in revenue by 6.24 - 29 electronics, retail, IoT,
Smart Ready Billion 2020 2014 - 2020 |security, proximity sensing

Table 2.4: Bluetooth growth rate and market penetration in different sectors

2.3.6 Bluetooth vis-a-vis ZigBee and WiFi technologies

Wireless Sensor Networks (WSN), in particular the fusion of fixed and mobile
networks, have been identified as having a significant role in delivering future
intelligence to the transport sector for a safer, sustainable and robust future
transport system, based on its ability to collect, process, disseminate and use
data in a fully connected environment (Selvarajah et al., 2012). Table 2.5
presents a comparison of the main features of ZigBee, Bluetooth and WiFi. WiFi
is a technology based on the IEEE 802.11 standards, while ZigBee is an IEEE
802.15.4-based specification designed for small scale projects that require
wireless connection (ZigBee, 2014). While these technologies offer a
comparative advantage in terms of network range, Bluetooth is limited in
bandwidth compared to WiFi (12Mbps against 54Mbps), but much better than
ZigBee (250kbps). However, Bluetooth has a major advantage in the area of
power consumption over WiFi (medium against high). WiFi is mostly used for
internet connection with the advantage that it can connect many devices
compared to Bluetooth; however, WiFi may become slow when many devices
are connected (Bluetooth SIG, 2015). Like the cellular phone-based, WiFi is
used for wider area networking but has lower accuracy compared to Bluetooth
(Friesen and McLeod, 2014). Although ZigBee is designed to address the
unique needs of low-cost, low-power wireless sensor, it has been used mainly
for the interconnection of vehicles and infrastructure (Selvarajah et al., 2008;

ZigBee, 2014). Bluetooth remains the most widely-used wireless technology for
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in-vehicle communication due to its proven features (Kinney, 2003; Selvarajah
et al., 2008). For example, speakers and radio systems of new vehicles now
incorporate Bluetooth. The development in the automotive market, has shown
that despite some limitations these technologies have the potential to help
deliver an integrated transport system; this includes application in connected
vehicles. The major benefit of easy synchronisation and device connectivity
gives Bluetooth an edge in the choice of wireless technology for traffic

monitoring purposes. This further justifies the adoption of the Bluetooth method

in this research.

communication

Standard ZigBee 802.15.4 |Bluetooth 802.15.1 |WiFi 802.119g

Automotive Inter-vehicle and In-vehicle Inter-vehicle and

application vehicle to communicationand |vehicle to
infrastructure device connectivity |infrastructure

communication

power. (Power output
ranges between
1mW to 100mW)

Network range |Up to 100m Up to 100m Up to 100m
Bandwidth 250Kbps 12Mbps 54Mbps
Frequency 2.4GHz 2.4GHz 2.4GHz
Advantages Low power; many [Dominating PAN Dominating PAN;
devices; low (Personal Area widely available
overhead Network); easy
synchronisation
Disadvantages |Low bandwidth Consumes medium |Consumes high

power

Table 2.5: Comparison of the relevant features of ZigBee, Bluetooth and WiFi
(Modified from Selvarajah et al., 2008)

2.3.7 Bluetooth and Near Field Communications (NFC) technology

NFC is one of the more recent market entries with emphasis on low power and

personal communication (Friesen and McLeod, 2014). NFC has its roots in

radio-frequency identification (RFID) and is primarily used for devices of close
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proximity (4cm) without the need to set up a connection (Triggs, 2013; Faulkner,
2015; NFC, 2016). Table 2.6 presents the summary of NFC contrasted with
Bluetooth. Although, NFC is much more power-efficient with faster connectivity,
it is limited in range (less than 20cm), and transfer rate 424Kbps (APC, 2011;
Triggs, 2013). Currently, the use of NFC is more business-focused. From a
transport perspective, NFC has found application in seat adjustment and
unlocking of cars; parking aid, ticketing, and for obtaining information on
schedules and delays (NFC, 2016). However, given a 10cm range, NFC is not
considered feasible for traffic management. This is also the case with Third
Generation (3G) and Fourth Generation (4G) technologies which include Long
Term Evolution (LTE) — the only true 4G (Rouse, 2014). However, they could be
used to enhance traffic data collection. A recent application is the reporting of
car data using LTE (Salvo et al., 2016). The next section considers the

estimation methods of analysing traffic sensor data.

NFC Bluetooth
Much lower power consumption |Higher power consumption

Shorter range of about 10cm Longer range up to 10m or more
Slower in data transmission Faster in data transmission
(424kbits/s) (2. 1Mbits/s or 1Mbit/s for BLE

Faster connectivity (less than one-| Slower connectivity but BLE can
tenth of a second) match the speed of NFC

Table 2.6: Summary of NFC/Bluetooth comparison

2.4 Estimation Methods of Analysing Data from Traffic Sensors

2.4.1 Current estimation methods

Traffic estimation refers to the calculation of metrics such as travel times based
on known quantities up to the current point in time; while prediction forecasts
traffic metrics up to a defined time in the future (van Lint et al., 2005). Previous
literature demonstrates that different estimation methods have been used in the
past to analyse traffic data. The state of the art measurement for traffic
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estimation uses sensors such as loop detectors or traffic cameras, while a
manually conducted survey is the state of the art methodology for recording
origin-destination trips (FHWA, 2006b; Aslam et al., 2012). There is also the use
of the factoring method, identified as probably the simplest estimation method
and most used worldwide (Leduc, 2008). This method consists of permanent
traffic sites that are classified based on similarities in seasonal variability and
traffic characteristics. Critical issues with this method include obtaining the
optimal number of groups and assigning short counts to the seasonal factor
groups (Leduc, 2008). This method has a low accuracy, and the short-term
survey may not be representative. While traffic surveys and video surveillance
methods can provide traffic information such as flow and speed, they have
numerous drawbacks that include high cost of data collection and image
processing (Abedi et al., 2014).

The moving observer, floating car or probe vehicles, and historical data
(cumulative curve) are three categories of estimation techniques identified by
Maerivoet and Moor (2008). The moving observer technique involves a vehicle
driven in both directions of a traffic flow, each time recording important
information such as the number of oncoming vehicles, vehicles overtaken, and
the time taken to complete the two trips (Krishnamoorthy, 2008; Maerivoet and
Moor, 2008). Flow rate is calculated for the known average speed of the moving
vehicle, road length and trip time (Mulligan and Nicholson, 2002). This method
is economical according to the required accuracy. Beside the measurement of
speed, travel time and flow, vehicle classification as well as other information
such as location and causes of delay can be obtained. The disadvantages are
that the method requires many moving observer runs to obtain accurate flow
estimates (Mulligan and Nicholson, 2002; Krishnamoorthy, 2008). It is also
sensitive to interconnecting traffic from side streets, and is limited in gathering
O-D information (Mulligan and Nicholson, 2002). The floating cars or probe
vehicles are comparable to the moving observer method with the difference of
being equipped with GPS and GSM/GPRS devices for position determination

and transmission of information. Probe vehicle data can provide accurate
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measurements of current traffic speeds and travel times (Bachmann et al.,
2013). These methods were described previously in Sections 2.2.7 and 2.2.8.
The GPS-based method has been combined with GIS (geographic information
systems) for urban traffic flow analysis (Rewadkar and Dixit, 2013). Using the
historical data method, travel time is measured as the distance along the
horizontal time axis. Based on this, the travel times over a period of many
weeks, months, or even years can be analysed (Maerivoet and Moor, 2008).
However, the evolution in ITS demands more timely information and a
combination of the availability of modern, low-cost computing and
communications technology. The availability of real-time traffic data will
enhance rapid response to any anomalies by a way of re-routing to reduce
congestion and the associated impacts (FHWA, 2013). Bluetooth as a direct
method can be used in this regard to provide traffic information anytime and

anywhere within the road network.

2.4.2 Emerging estimation methods

One of the emerging estimation methods includes the use of satellites and
unmanned aerial vehicles (UAVSs) (Fricker and Kumapley, 2002). The satellites
and UAVs approach is primarily used to understand both temporal and spatial
variability in traffic flow at any instant. However, the high cost of acquiring high
resolution images and the processing software is a major disadvantage (Fricker
et al., 2002). Other limiting factors include weather, flight height, danger to
aircraft, and privacy issues. While motion detection algorithms can detect each
distinct moving vehicle, the algorithms are difficult to solve (Lee and Bovik,
2009). The optical flow estimation algorithms from traffic videos are considered
as a better alternative, although they pose the problem of efficiency and
computational complexity (Lee and Bovik, 2009). Other advances such as
LIDAR (Light Detection and Ranging) approach and drone cameras are also
emerging for the estimation of flow. Generally, there is a problem of incomplete
datasets, and mostly the inability to estimate O-D matrix. The problem of

incomplete datasets is usually addressed using estimation (predictive) and
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analytic methods such as log-linear model, linear regression, and neural
network (Leduc, 2008).

2.4.3 Predictive and analytic methods

Incomplete datasets resulting from a number of factors such as equipment
failure or scarce resources often lead to the requirement for data prediction.
Csikos et al. (2015) classified prediction methods into two classes (the classical
prediction methods and data driven methods). The classical prediction methods
(model-based estimation) utilised statistical methods such as Bayesian network
models, historical average, ARIMA (autoregressive integrated moving average),
regressions, and Kalman filter theory. Forecast is based on analysis of historical
time series data. Typical application includes the analysis of traffic flow using
particle filtering (Polson and Sokolov, 2015). Particle filtering allows for posterior
estimation of the most recent state with low computational complexity and the
possibility for frequent updating compared to Kalman filtering. Generally, the
classical approach is limited in an urban environment where the traffic
conditions change rapidly (Csikos et al., 2015). The data driven methods
(machine learning) offer self-learning pattern recognition methods such as ANN
(artificial neural network), fuzzy-rule based logics, k-mean clustering, and
expectation maximisation based algorithms. This approach has the advantage
of estimating and capturing the linkage of very complex traffic flows even under
rapidly changing conditions. In particular, ANN algorithm was used to predict
traffic speed in urban traffic networks (Csikos et al., 2015). van Lint et al.,
(2005) noted that ANN for travel time estimation is only suitable for freeway or
urban arterial networks. Generally, the data driven methods are sensitive to the
quality of the training data. However, this can be partly addressed by principal
component analysis (PCA) to handle the missing input data. Another way to
improve the accuracy is the combination of fuzzy logic and ANN as applied by
(Gastaldi et al., 2014). PCA has been used to analyse flow data, and is another
method to overcome reliance on the knowledge of data distribution. PCA was
used to measure variability in urban traffic flow to address the issue of both
temporal and spatial correlation in time series data (Tsekeris and Stathopoulos,
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2006). With the emergence of Bluetooth in traffic sensing, little reliance can now
be placed on historical datasets and prediction. The Bluetooth approach
provides platforms for the estimation of essential traffic data such as the area-
wide O-D matrix in a cost-effective way to overcome the challenges posed by
using traditional methods. Table 2.7 presents the summary of relevant
predictive and analytics methods with “yes” signifying metrics where they are

commonly applied.
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Traffic metrics

Predictive / Travel O-D
Analytical methods | Flow time | Speed | matrix Advantages Disadvantages
Not suitable for serial
correlation in time series
Suitable for count data; |data; applicable to
flexible; can readily datasets with positive
Log-linear model Yes Yes Yes |estimate odd ratios observations
Not applicable to non-
Flexible; allows for linear models;
Linear and multiple interaction between assumption of normality
regression Yes Yes |variables of errors
Candetectanomalyin [Assumption of normality
data; good for short- of errors; memory
ARIMA Yes Yes Yes term prediction intensive
Memory intensive; not
Can estimate variables |applicable to non-linear
Kalman filtering Yes Yes Yes Yes |of diverse nature models
Low computational Limited under rapidly
complexity; frequent changing traffic
Particle filtering Yes Yes Yes |updating is possible conditions
Reliance on historical
Offers direct and quick |data; data formats may
Historical average Yes Yes Yes [solution require standardisation
Requires independence
between input
Bayesian network Canimprove linear characteristics; memory
models Yes Yes Yes Yes |regression accuracy intensive
Allows the combination
of traffic survey and
count data and can be
updated in short time;
Generalised Least no assumption of Sensitive to non-
Squares Yes Yes |distribution negativity in datasets
Reliance on orthogonal
Can handle missing transformation of the
data; no reliance on original variables; it is not
data distribution; can scale-invariant; the
Principal Component account for temporal variables must be
Analysis (PCA) Yes Yes |and spatial correlation |correlated
Uses distances between
Suitable for varied attributes; memory
k-Nearest Neighbour parameters such as intensive; consumes
(kNN) Yes Yes Yes Yes |delayand dwelltimes |power
Can handle non-linearity
in data; good accuracy |Slow convergence;
Artificial Neural with short-term sensitive to the quality of
Network Yes Yes Yes Yes |prediction the training data
Can handle missing Sensitive to the quality of
Fuzzy logic Yes Yes |data the training data
Sensitive to the quality of
Spatial interaction Can handle missing the training data; few
model Yes Yes |data scholarly guides

Table 2.7: Summary of relevant methods of predicting and analysing traffic data
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2.5 The Use of Bluetooth in Traffic Sensing

2.5.1 Bluetooth traffic sensing

This section presents a review of literature on the use of Bluetooth for traffic
sensing. Consideration has been given to the areas adjudged to be the most
relevant to this research to explore the gaps in knowledge. The increased
awareness of the negative impacts of traffic congestion and the need for better
transport through technology has led to a significant rise in the management of
road traffic in recent years (White, 1989; Nellore and Hancke, 2016). Bluetooth
is one of the emerging technologies for traffic sensing and ITS applications,
which has been explored by authors such as Barcelo6 et al. (2010), UMCATT
(2008), Bhaskar and Chung (2013), and Araghi et al. (2015). This technology
could also form an important part in the concept of “Big data”. Big data are
gathered from different sources and formats that include mobile devices and the
web (Troester, 2012). However, based on the available information gathered in
this research, the current published studies on Bluetooth traffic sensing were
carried out outside the UK. From the accessible publications, a significant gap
identified was the absence of a comprehensive investigation of Bluetooth data
for various traffic management applications, and the added benefits both in the
short and long-term. Therefore, exploring the gaps in Bluetooth traffic sensing
research to gain a better knowledge of the traffic metrics estimation capability is
considered essential to support the delivery of a better optimised road network

than is currently obtainable.

Bluetooth traffic sensing on rural freeways has shown great potential (Click and
Lloyd, 2012). In urban freeway and arterial roads, Bluetooth has been studied
for different purposes, such as the estimation of travel times (Wason et al.,
2008). Bluetooth traffic sensing has also found application in travel time
prediction over congested periods in signalised urban arterial roads, as well as
to understand delays in travel time in highway work zones (Haseman et al.,
2010; Quayle et al., 2010); Khoei et al. (2013). More recent applications of

Bluetooth include monitoring and tracking purposes (Stange et al., 2011).
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Researchers have also studied different antennae types (directional and omni-
directional antennae) to understand performance and found that omni-
directional antennae have a larger detection zone than the directional types
(Malinovskiy et al., 2010). On the other hand, Vo et al. (2012) and Click and
Lloyd (2012) recommended using more than one sensor in a site to increase
the data quality. Route choice analysis is another promising application for
Bluetooth traffic sensing (Hainen et al., 2011). However, results from these
studies showed that noise in the data can cause signficant variance in the
estimated metrics. Environmental factors such as weather could also impact
upon the results. For example, Martchouk et al. (2011) showed that Bluetooth
traffic sensing on a freeway segment under varying weather conditions (normal
and abnormal) can present a significant difference in the computed mean and
standard deviation of travel times. Therefore, these factors must be properly
handled to obtain accurate and reliable estimations. Using Bluetooth, sample
sizes of 5% - 7% of all vehicles are achievable with high levels of accuracy at a
much lower cost (Tarnoff et al., 2009). The subsequent sections present
Bluetooth traffic sensing in relation to the four key data requirements considered

in this research, with reference to other related applications.

2.5.2 Bluetooth for the estimation of link-flow

Flow is one of the key traffic data requirements considered in this research,
being one of the most important raw traffic datasets for modelling and
calibration in planning and congestion management applications. Bluetooth
traffic sensing presents the opportunity to derive real time traffic flows to
optimise the road networks. However, given that Bluetooth presents a sample of
the actual traffic, it is important to understand this fraction (detection rate) in
relation to the actual traffic. Table 2.8 to Table 2.13 present the summary of the
review to understand this metric. This metric is classified into six different
groups based on distinctly identifiable parameters that vary across the study
locations. Table 2.8 presents the detection rates relating to people count versus
the number of discoverable Bluetooth devices. Besides the limitation in scope,
in terms of scale and period, the information obtained is rarely useful to infer the
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general traffic conditions given that the main cause of traffic congestion are

vehicles and not people.

Study

Detection

people (gate count)
passing through the
gate.

Author (Year) Location Rate (%) Method Results
Discoverable Linear correlation
devices were was observed
scanned whilst taking | between the number
gate counts of of people and
people passing at discoverable

O'Neill et al . four (4) locations for |Bluetooth devices.

(2006) Bath, UK ! a short period of A detection rate of
about 30 minutes. 7% was obtained.
The counting of
people was
automated using the
phone method
it measured the The results obtained
percentage of showed a positive
people with linear correlation
discoverable between the number
Bluetooth devices of people and the
whilst number of discoverable

Nicolai and Bremen and 2 and 6 discoverable deyices dgvices. The

Kenn (2007) San respectively was plotted against dlffere_nce inthe

Francisco the total number of  |detection rate over

Bremen and San
Francisco is
attributed to
population and
variation in Bluetooth
usage

Table 2.8: Table showing the detection rate of people with discoverable

Bluetooth devices in Bath, Bremen and San Francisco

Table 2.9 presents the studies carried out on arterials of different urban areas

across Europe. From this table, the minimum detection rate (15%) was

computed by Roggendorf (2012) based on Bluetooth/manual count comparison.

Despite being the lowest detection rate, there is a concern that the different

Bluetooth pairs detected include those carried by cyclists and pedestrians.

Consequently, the vehicular traffic proportion was not represented which

explains the reason for the relatively high estimation of detection rate. A similar
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concern can be expressed over the high detection rates obtained in the other
studies (Barcel6 et al., 2010; Beca, 2011; Augustin and Poppe, 2012). Since a
node-based method (comparison based on detected Bluetooth devices over the
individual Bluetooth stations) was used in the computation of the detection rate
as against the link-based method, two sources of errors can be identified as
follows: i) contributions from vehicles from the opposing link; and ii) contribution
from non-vehicular sources with Bluetooth devices such as pedestrians. Taking
this into account is essential for a reliable estimation of traffic flow. Other
limitations include the period of observations and limited information on the type
of comparison made (Beca, 2011; Augustin and Poppe, 2012). However, these
studies have provided vital information regarding Bluetooth traffic sensing over
different geographical areas across Europe; thereby serving as a priori
knowledge of the expectation in the UK. That is, the variation observed in the
computed detection rates is indicative of levels of usage of Bluetooth-enabled
devices in the study locations. If any of these locations share similar traffic
characteristics and populations with a UK city, then one may assume that a
detection rate consistent with such location(s) is representative in such a UK
city. The above assumption informs an important research gap requiring the
understanding of the detection rates over the chosen study area in the UK to
enable a reliable estimate of traffic flow using Bluetooth. Hence, this research
will build on the knowledge gained from previous studies to determine the
detection rates. For example, detection rates will be computed based on
directional link-flows on a long-term basis covering all the hours of the day,
weekday, month and season; this is to minimise the errors in the estimation,
and to fully explore the variations that may affect any inference made.
Therefore, consideration will be given to these important research gaps to

ensure a fundamental understanding of estimation of flow using Bluetooth.
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Author (Year) Study Detection Method Results
Location Rate (%)
Simulation and pilot study The travel times
was conducted using well- predicted from the
calibrated inductive loops. study show a high
Barcelo etal. |Barcelona, 30 Simulation was performed  |level of reliability on
(2010) Spain based on the detectionrate |the use of Bluetooth
and the available information |to determine journey
inthe area time
Bluetooth count was The Bluetooth study
compared with traffic count  |using the BlipTrack
from SCATS loops. Floating |system suggests a
Beca (2011) New 32.1-34.4 |vehicle using GPS data possibility. Detection
Zealand logger was used to calibrate |rates of 32.1 - 34.4
travel time and monitor were obtained over
speed along the route the study locations
Bluetooth compared with 5250 d'ﬁerem
: Bluetooth pairs were
manual count of vehicles detected over 24
Roggendorf Aachen, sampled between 8am to o
15 : hours giving a
(2012) Germany 5pm. Blids sensors were ;
: . detection rate of 15%
used at intersection to :
. : against the manual
determine traffic flow
count
Blids sensors were used in  |Detection rate of 38%
Augustin and Austria 38 this study. Data used for the |was obtained from
Poppe (2012) evaluation was not explicitly [the study
mentioned

Table 2.9: Detection rates obtained from different urban arterials across Europe

Table 2.10 presents the results of the detection rates obtained from the studies
conducted by BlipTrack (2012) and Araghi et al. (2012b). These studies
conducted in a heavy traffic area of Aalborg both utilised the BlipTrack sensors,
and as with the previous studies identified in Table 2.9, the estimation of
detection rates was node-based. This means that it could not account for the
uncongested area as well as the temporal variability that may be present in the
data. There is also a concern with the method of installation of the sensors used
in both studies. Keeping the sensors used on the ground means that they could
easily be affected by many factors arising from displacement and damage that
may consequently affect the configuration of the orientation and inclination, and
the overall results. On the contrary, the Hi-Trac Blue sensors utilised in this
research are installed on lamp posts. This installation method takes care of the
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risk of displacement and any possible accidental damage that could easily

affect the sensors if they were ground-based, as used in the previous research.

A major observation from the two studies is a difference of 7% in the detection

rates (20 and 27%) computed at different sites in the same year in Aalborg. This

significant variation shows that great attention must be paid to the network of

varying characteristics, in order to obtain reliable results. Therefore, network

configuration is considered an important factor and shall be explored in this

research for a better understanding.

Study Detection
Author (Year) Location Rate (%) Method Results
Made use of The survey revealed that
historical flow record [some cars have
and also carried permanent discoverable
survey with some car|Bluetooth hands free with
E45 dealers for Bluetooth |a detection rate of 27%
BlipTrack (2012) |Aalborg, 27 information on car.
Denmark Study conducted in
the most heavily
trafficked route in the
region
Bluetooth was The proportion of
compared with Bluetooth detectionin
Araghi etal . general traffic the study area of
(2012b) Denmark 20 volume. The sensors |Denmark gave 20% of
used were placed on|the actual traffic
the ground

Table 2.10: Detection rates obtained in Denmark using the BlipTrack sensors

Table 2.11 presents a different cluster of the minute count ratio of Bluetooth to
ANPR carried out on a motorway in Denmark by Muhammed and Egemalm
(2012). The trial conducted on the motorway, E45 over 4 — 6 April 2012
distinguishes it from other studies piloted in arterials. Although this study
attempted to capture all the varying periods, such as holidays, that could affect
the estimation of travel time, there is concern about the choice of 5-minute
interval count adopted. At this level of resolution, Bluetooth count is expected to
yield a significant zero detection particularly during the off-peak periods thereby
leading to unrealistic and unreliable estimation. Therefore, there is a concern
that the result obtained contains a significant level of outliers arising from non-
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vehicular devices. Consequently, the minute count ratio of about 54 - 61% of
the total time of the investigation between ANPR and Bluetooth is not regarded
as the actual detection rate. However, the result obtained from travel time

analysis was said to be reliable up to 95% matching.

Author (Year) Study Detection Method Results
Location Rate (%)
ANPR and
Bluetooth
comparative study
with field test. Trial
between 4-6 April | The result obtained
About 61% 2012 orl motorway, |from travel time was
Muhammed and E45. Minute by accurate to 95%. The
(Based on . . . .
Egemalm Denmark minute count minute count ratio of |minute count ratio
(2012) . Bluetooth to ANPR [between ANPR and
ratio) .
was determined as |Bluetooth was up to
against the standard |61%.
method of
determing detection
rate.

Table 2.11: Minute count ratio of Bluetooth to ANPR on Motorway

Table 2.12 presents the result of the detection rate computed over long
distances (27.8 — 310km) in the Netherlands (Biora et al., 2012). While this
study has also provided useful knowledge on the potential of Bluetooth data,
there is a concern regarding the estimation of detection rate over such long
distances, particularly over 310km. At such range, not many vehicles are
expected to travel that far except vehicles on tour. The computed 25 - 40% was
based on the total devices captured, and this is rarely helpful for traffic planning
and management purposes because it can lead to an exaggeration of the traffic
volume. In this research, sections of roads of relatively short distances are
considered within the urban arterials in the study locations as opposed to
motorways. Also, metrics estimation is focused on vehicular traffic while the

preliminary stage will investigate the general traffic.
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Author Study Detection Method Results
(Year) Location Rate (%)
Made use of i-Travel Varying results
systems to determine were obtained
detection rates on four in the sections
) different sections ranging |of the road
Bioraetal. |\ eands 05.40 |fom27.8—-310kmlong. [investigated
(2012) Bluetooth was compared |ranging from
with total traffic volume. 25% to 40%
Sections of the road used
are: A6, A7, A32 & A31

Table 2.12: The detection rates obtained over long distances in the Netherlands

In a study carried out over nine days in Scotland, Cragg (2013) compared
Bluetooth station counts with data from ATC and obtained 20% and 33% for
weekends and weekdays respectively as shown in Table 2.13. As observed
from the literature, the node-based detection rate is rarely useful for traffic
management purposes due to the influence of non-vehicular devices on the
estimation and thereby resulting in incorrect and inflated rates. In general, the
current challenges in the derivation of the detection that include variations over
different geographical locations and network configurations, justifies the need
for continued investigation into exploring the potential of Bluetooth technology

for traffic flow estimation.

. Detection
Author (Year)| Study Location Method Results
5 ( ) uey ! Rate (%) 5
20 and 33 for The proportion of Bluetooth

Bluetooth station |station count was consistent
weekend and

Cragg (2013) |Scotland weekda counts compared |over different comparisons
res ectii/;l with ATC conducted between ATC and
P Y ANPR data

Table 2.13: The Bluetooth detection rate based on station counts against ANPR

2.5.3 Bluetooth for the estimation of travel times

The tendency to use Bluetooth technology for travel time estimation is rising for
many reasons such as, an increase in Bluetooth-enabled devices among road

users, anonymity of Bluetooth detections, flexibility of deployment and
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maintenance of Bluetooth sensors (Araghi et al., 2012a ). The first group
believed to use this new approach to determine travel time for traffic purposes
are a team of engineers from Indiana Department of Transportation and Purdue
University (work reported in June 2008) (UMCATT, 2008; Haghani and Hamedi,
2013). Following this development, other researchers have conducted studies
on the use of Bluetooth for the determination of travel times (TMCnet, 2011,
Muhammed and Egemalm, 2012; Bhaskar and Chung, 2013; Araghi et al.,
2015). Araghi et al. (2012a) showed that travel times measured by Bluetooth
compared well to those by tag readers (the use of radio frequency identification
and detection — RFID). Consequently, Bluetooth shows promise for travel time
estimation. Bluetooth travel time data is similar to that of ANPR with a
considerable advantage of continuity (Biora et al., 2012). Continuity defines the
ability of a system to function over a given period without interruption (Langley,
2011). Bluetooth data is also not degraded in the case of poor visibility,
nighttime, rainy, snowy and foggy conditions (Biora et al., 2012). Bluetooth
travel time estimation on motorways and on arterial roads has been shown to
have comparable accuracy to video cameras (Wang et al., 2011; Mei et al.,
2012). Webster et al.'s (2014) study also indicated the potential for travel time
estimation on sections of motorways. Erkan and Hastemoglu (2016) examined
the applicability of Bluetooth for travel time estimation in heterogeneous traffic in
Istanbul, Turkey. A detection rate of 5 % of all vehicles was obtained from this
study. The study utilised weighted linear regression methods to estimate travel
time, with a conclusion that Bluetooth can be used to estimate travel time in
heterogeneous traffic conditions. In addition, Bluetooth has been applied for
real-time travel time prediction to improve the road network management (Qiao
et al., 2013).

UMCATT (2008) showed that by sampling a portion of the travelling vehicles’
actual times from the traffic stream, Bluetooth traffic monitoring provided the
opportunity to collect high-quality travel time data. UMCATT (2008) provided the
knowledge of the basic concept of Bluetooth traffic monitoring; however, it is

limited in scope both in terms of duration of the study and the area covered. Not
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only that, the few systems deployed were over a long distance (2-4 miles apart)
while the data collection was over 48 — 96 hours. These limitations leave an
uncertainty regarding the evaluation of the behaviour of the data collected over
a short distance and a long period. These limitations need to be accounted for
by investigating Bluetooth data over relatively short distances such as 500m
links in different urban areas, and on a long-term basis spanning a year, to
capture any seasonal variations in travel time estimated by Bluetooth. This
research will explore this gap to increase the level of confidence of Bluetooth
travel time estimation. Table 2.14 and Table 2.15 present the summary of the

key research on Bluetooth for travel time estimation.
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Authors

Bluetooth research areas

Methods

Conclusions

Remarks

Puckett (2010)

Travel time monitoring for border
censoring

Anonymous Wireless Address Matching
(AWAM) system.

Confirmed that Bluetooth can be used to measure border
crossing times. Based on the AWAM proof-of-concept on
urban arterials, Bluetooth device penetration is sufficient to
collect high-quality travel time data

The report presented on behalf of TranStar presents no
evidence/analysis or a detailed discussion of the method of validation
used

Quayle et al. (2010)

Arterial travel time

Compared Bluetooth and GPS data

Concluded that Bluetooth has the ability to accurately
measure travel time over long spans of time

Study conducted in Portland, Oregon

Malinowskiy et al. (2011)

Travel time estimation

Used three types of antenna with three
different sensor arrangements on a short
corridor (0.98 mile) of a varying configurations.
Compared Bluetooth travel time to LPR

Larger detection zone is desirable while shorter corridor
will have greater travel time errors. A pair of sensors
mounted at opposing sides at each end of the corridor will
result in significantly less error. Omnidirectional antennae
have larger detection zone than unidirectional antennae
but are subject to more temporal and spatial errors

The study was conducted on a short corridor of 0.98 mile

Porter et al. (2011)

Calibration of sensor and travel
time estimation

Explored the suitability of five different types of
Bluetooth antennae

Antenna type has an impact on the quality of the data
collected

This may not require further study

Abbott-Jard et al. (2013)

Bluetooth and WiFi Scanning for
travel time estimation

Used exist-exist method, and Excel and
Matlab for data filtering. Used two types of
antenna

The study conducted in Brisbane showed that Bluetooth
has a higher match rate than WiFi - approximately 1:8;
percent of usable data suggested 81 percent for Bluetooth
and 19 percent for WiFi

WMS are not widely used, and their usage is still being explored. One
day trial. No quantitative analysis of the travel time data

Bhaskar and Chung (2013)

Bluetooth as complementary
data source

Explored the effects of detection zone on the
accuracy of travel time estimation using
Bluetooth

Proposed three mode of estimation for travel according to
the modelled section of the signalised urban environment

Explored accuracy and reliability of travel time

Moghaddam and Hellinga (2013)

Travel time error evaluation

Evaluation of algorithms to detect outliers in
travel time

Mean travel time error is always close to zero in all traffic
conditions

The evaluation was based on simulation study constrained to the
upstream and downstream of the traffic. This might not capture the
errors arising from vehicles using other connecting routes

Platt (2013)

Travel time estimation

Bluetooth experimental set-up in South Wales
was explored

The outcome of the experiment is positive as the
information from Bluetooth is being fed to the management
system for a display on VMS to aid commuters

No result was presented in this discussion

Qiao et al. (2013)

Real-time travel time prediction

The study implemented historical average,
auto-regressive integrated moving average
(ARIMA), Kalman filter, and K-nearest
neighbours (KNN) models

Results showed that using the non-parametric approach,
the prediction accuracy can improve by more than 10% for
all day period and 20% for peak-hour periods over the
other methods considered based the computed mean
absolute percentage error (MAPE)

This study proposed a new model called KNN-T to improve travel time
prediction accuracy, and also provided the knowledge of the suitable
models to apply in travel time prediction

Table 2.14: Bluetooth for travel time estimation and traffic management — 2010 to 2013 studies
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Authors

Bluetooth research areas

Methods

Conclusions

Remarks

Wu and Rilett (2014)

Reliability of real-time travel time
estimation

Studied the prediction of travel time at a 15-minute
level under different traffic conditions

The model comparison between the link-based
and corridor-based prediction of travel times
yielded comparable results

Established a correlation between the
reliability of link-based and corridor-based
short-term travel time prediction

Araghi et al. (2015)

Reliability of travel time
estimation

Bluetooth and GPS consisting of 1000 trips were
used as the controlled experiment. The GPS
formed the ground-truth used to calibrate the
Bluetooth detection rate.

Found that Bluetooth can be detected up to
80% of the time at a sensor location

The concern here is the use of only one
vehicle for the experiment. This may
introduce bias due to driving behaviour. The
fact that it was also conducted on a link may
not be representative enough

Stevanovic et al. (2015)

Accuracy and reliability testing
of arterial travel times

Application of MAC readers to measure travel time
in arterial roads. Used sensor dewveloped by Florida
Atlantic University (FAU) team. Four months field
test of two test-bed networks around FAU. Used
two type of antennae (omni and uni-directional),
and compared results with GPS floating car
technique. Also considered varying speed and
antennae

Regression analysis between Bluetooth and
GPS yielded R-Square equal to 0.65.
Placement of Bluetooth in vehicle is significant
(dashboard location is preferable)

Test statistics not presented but it was
concluded that there is no significant
difference in the travel time of Bluetooth and
GPS at 95% level of confidence

Yu et al. (2015)

Travel times and wolume for
incident detection on arterial
roads

The study used an incident detection algorithm
based on moving average

Moving average was used to address the
limitations resulting from sparse travel time
sample data to obtain

Propose an incident detection algorithm that
utilises travel time and traffic volume to
establish a good balance between the actual
detection rate and false-alarm rate

Araghi et al. (2016)

Mode-specific travel time
estimation

Clustering technigues was used to explore the
feasibility of Bluetooth to estimate mode-specific
travel time

Clustering techniques can be used to carry out
satisfactory classifiaction with an accuracy
comparable to that of ANPR

The use of class of device for classification
may not in all cases be feasible due to data
encryption for private reasons

Park et al. (2016)

Performance of travel time at
intersection

Utilised omnidirectional antennas for intersection-
intersection analysis of travel times to estimate
control delay at intersection. The data used
spanned 6 - 19 December 2011. Received signal
strength was used to transform the travel time
while the estimate of flow was compared with data
from loop detectors

Obtained detection rates between 5.8 - 84%
over the different sections of the road. The
estimated controlled delay was found to vary
proportionally with the actual travel time. That is
the control delay increases with an increase in
travel time

This study did not consisder statistical
analysis of the results

Table 2.15: Bluetooth for travel time estimation and traffic management — 2014 to 2016 studies
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2.5.4 Bluetooth for the estimation of vehicle speed

Vehicle speed measurement, particularly where precise timing is important, is
mainly carried out by a technological-based method for performance evaluation
of road network and queue analysis (White, 1989). The GPS-based method has
been used to gather precise travel times and speed information about the road
traffic for real-time application. Bluetooth is now considered as a viable option in
this regard. Table 2.16 presents the key studies. The effect of vehicular speed
and multipath fading was considered by Pasolini and Verdone (2002), while
Houston TranStar (2010) considered travel time speed estimation with a focus
on cost-comparison with other sensors. Average speed and time are
fundamental measurements of the traffic performance (May, 1990). Although,
they are inverse measures, they are used differently in traffic engineering
(Roess et al., 1998). Further, the profile analysis of both travel times and vehicle
speeds can be used to understand other traffic characteristics such as
congestion, while flow and speed can be used to derive density — defined as the
number of vehicles per unit length of the roadway (Roess et al., 1998).
Bachmann et al. (2013) compared data from Bluetooth and loop detectors with
GPS data on a stretch of Highway 401 in Toronto, Canada. The analysis
showed that the accuracy of traffic speed estimates obtained from loop
detectors can be improved through Bluetooth data fusion. Also, the comparison
of speeds based on GPS and Bluetooth data, and the simultaneous use of both
datasets to improve estimation accuracy has been studied (Borresen et al.,
2016). However, Bluetooth traffic sensing for vehicle speeds estimation is
currently under-investigated, and shall be explored in this research to contribute

to knowledge.
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Verdone (2002)

for guidance support, and
effect of vehicular speed and
multipath fading.

maximum distance
between devices to
communicate.

by Bluetooth. Link
performance is not
limited by vehicle speed
but by the amount of
signal-to-noise ratio,
and the transmitted
power

Authors Bluetooth research areas Methods Conclusions Remarks
Bluetooth
communication is
sturdy but the presence
of many \ehicles can
—— . Analytical and cause performance An indoor experiment. Examined
Suitability of Bluetooth in . . .
- ) experimental text- degradation due to the |connection set-up delays and
- ITS for provision of senices . . . . i
Pasolini and bed. Examined the [polling technique used [transmission reliability in a

dynamic scenario. Found that
file transfer delay is not affected
at distances less than 60m

Houston
TranStar (2010)

Speed, travel times, and
cost comparison

Toll tag and
Bluetooth data were
used. 3,271 toll tag
speed compared to
7,492 Bluetooth
speed data sample

The two sets of data
were virtually the same
after filtering to remove
outliers. Accuracy rate
of Bluetooth as high as
that of AVI system. AVI
cost per unit - $75,000.
LPR - $25,000 per four-
lane installation; and
Bluetooth - $2,000 is
low-cost

Focus mainly on speed data.
Low-rate not accounted for i.e.
how to know the real traffic
wlume, variability not discussed,
and detection rate is unknown.
The study was conducted on a
2.2 miles road for 24 hours (1
day). Speed less than 5 mph on
a freeway were removed. No
result was presented in the
report

Bachmann et al.
(2013)

Freeway traffic speed
estimation

Combined Bluetooth
with loop detector
data for improved
speed estimation

Bluetooth and probe
data such as GPS can
improve estimation

The study is carried out on a
freeway and not in urban roads
that has different characteristics

Table 2.16: Bluetooth for vehicle speed estimation and traffic management

2.5.5 Bluetooth for the estimation of origin-destination matrix

Origin-destination matrices are estimated using the observed link-flow

information (Aslam et al., 2012). Traditional methods such as roadside surveys
for the collection of O-D information often require additional resources in terms
of time and cost, and may not provide up-to-date data (Srinivasan, 2011; Wang
et al., 2013). However, sustainable mobility requires a better management of
the available infrastructure resources (Fernandez-Lozano et al., 2015).
Presently, Bluetooth is one the technologies used to overcome these
challenges within an urban network as have been previously demonstrated
(Barcel6 et al., 2012; Ayodele et al., 2013; Barcelo et al., 2013; Bhaskar et al.,
2014). Bluetooth has been identified as a potential candidate for O-D estimation
with the ability to provide real-time information as opposed to reliance on
historical data (Barcelo et al., 2010; Bhaskar et al., 2014). However, the

literature shows that continued research is required to maximise the potential of
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this technology in traffic management. In fact, Nantes et al. (2014) noted that

the issues of accuracies in Bluetooth data are yet to be adequately resolved.

Filgueiras et al. (2014) presented proof-of-concept deployment of Bluetooth
technology to detect traffic flow conditions. The results showed that different
information such as O-D matrices and travel times can be obtained using
Bluetooth. The significance of Bluetooth traffic monitoring as a reliable source
for O-D matrix was demonstrated in the study conducted in an urban area of
Brisbane using seventy-nine Bluetooth sensors. This study compared Bluetooth
results with loop detector data for assessment (Laharotte et al., 2014; Laharotte
et al., 2015). O-D matrix estimation based on Kalman filtering has also shown
promise for real-time estimation as previously demonstrated (Barcel6 et al.,
2013; Zhong and Lee, 2014). This feasibility was also affirmed by Fernandez-
Lozano et al.,(2015). Table 2.17 presents a summary of the key research on
Bluetooth O-D estimation. This research will build on the available knowledge of
the use of Bluetooth data to explore both the spatial and temporal variations in
the estimated O-D matrix within GMN to reveal relevant underlying information

about Bluetooth O-D estimation.
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Verdone (2002)

for guidance support, and
effect of vehicular speed and
multipath fading

the maximum
distance required
for devices to
communicate

by Bluetooth. Link
performance is not limited by
vehicle speed but by the
amount of signal-to-noise
ratio, and the transmitted
power

Authors Bluetooth research areas Methods Conclusions Remarks
Bluetooth communication is
sturdy but the presence of
Analytical and many wehicles can cause ) . .
A . . . An indoor experiment. Examined
Suitability of Bluetooth in experimental text-|performance degradation due )
L . . . A connection set-up delays and
. ITS for provision of senices [bed. Examined |[to the polling technique used o P
Pasolini and transmission reliability in a

dynamic scenario. Found that file
transfer delay is not affected at
distances less than 60m

Utilised station

The study location is more or
less a linear network. This may
not be representative of the
scenario for a complex O-D

data collection
and estimation

inter-city trips. It requires
longer observations to
increase the sample size

count from Reported that the results of network. This studv also utilised
Blogg et al. Travel time and O-D Bluetooth the O-D estimation compared the MAé detectionyto estimate
(2010) estimation sensors installed [well with ANPR and Video .
) . detection rate, and was
in Brisbane for O- [data. )
. subsequently compared with the
D analysis )
actual wlume. This does not
reflect the true estimation level
from Bluetooth
The data collection was over 2
months period in 2009. This
Study conducted . study appears to make use of
. A caution on the use of o
Barcelo et al. |Travel time and O-D on a 40-km long . both Bluetooth and WiFi in the
L . - |Bluetooth for O-D matrix N .
(2012) estimation in freeway section of road in . estimation of the O-D matrices.
_ |estimation )
Barcelona Spain Therefore, the conclusion drawn
cannot be generalised for
Bluetooth
Barcel6 et al. R . Kalman filtering | The numerical results shows |The use of Kalman filter is
Estimation of O-D matrices o ) .
(2013) approach Bluetooth possibility memory intensive
Detection of 17.6 percentage
Used cell phone |of the daily traffic. The
Wang et al. Dynamic O-D estimation Ecﬁizfﬁn:;afcolimg tr;i::zglzlgo?r:tomm lisi'stance or Six weeks observation in Kansas
(2013) and feasibility study 9 P ) Metro Corridor

Bhaskar, et al.
2014

Estimation of traffic state

Integrated
Bluetooth and
loop data to
estimate travel
time and density

Bluetooth provides a good
estimate of travel time but
there is variability in sample
size captured

The issue of variability in the
sample collected is not
discussed. Also the validation of
the estimated density was
through simulation. This is a
common practice in anyway

Table 2.17: Bluetooth applications to origin-destination analysis

2.5.6 Other relevant use of Bluetooth traffic sensing

Table 2.18 presents related studies to Bluetooth traffic sensing with a focus on

applications such as density estimation, sensors positioning and distributions,

stand-alone traffic monitoring, and traffic light management (Nantes et al., 2014,
Collotta and Pau, 2015; Park and Haghani, 2015; Salem et al., 2015). Also,

Ayodele et al. (2014) presented the autonomic concept of Bluetooth to estimate

vehicle emissions, while Bluetooth was used to detect passenger trips on public

transport buses in Funchal, Portugal. Bhaskar et al. (2014) have demonstrated
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the potential of Bluetooth for density estimation to understand traffic
characteristics. In the past, this quantity has been difficult and expensive to
acquire but the problem can now be overcome using Bluetooth data (Bhaskar et
al., 2014). Figure 2.2 presents the generalised relationship among speed,
density, and flow rate showing the three fundamental parts of a typical speed-
flow curve viz: upper part — free flow, low part — congestion, and the projected
part — busy (Purdue University, 2016). This and other applications such as
modes classification (Araghi et al., 2012a), automatic vehicle identification, toll
collection, and distress alert etc. can be explored to improve traffic
management. Other applications include congestion study through the analysis
of travel time index (TTI) — the ratio of the actual peak period to free-flow travel
times (Lomax, 2010). A working definition of congestion is ‘travel time or delay
in excess of that normally incurred under light or free-flow travel conditions’
(Gifford, 2003, page 181). HCM (2000) defined traffic delay as the delay
component resulting from reduction of speed below the free-flow speed due to
interaction of vehicles. When delivering a decision support system, objectives
are set out and performance measures designed against the most appropriate
option to be selected (Ayodele et al., 2014). LOS (level of service) measures
the performance level of the network at various operating conditions (Mathew,
2014). In the future, Bluetooth might be used in this regard to deliver an efficient
decision support system. For example, information gathered using Bluetooth
may be sent to drivers based on the driving condition to optimise the speed and
where possible to always arrive at junctions on a green light. Cooperative and
integrated deployment of Bluetooth technology is another potential application.
The European Commission defined cooperative systems in road traffic as:
cooperation between road operators, infrastructure, vehicles, their drivers and
other road users to deliver the most efficient, safe, secure and comfortable
journey beyond what stand-alone systems can achieve (European Commission,
2004). Cooperative mobility on the other hand is defined as the sharing of
information due to the interconnection of vehicles and infrastructure leading to
better cooperation amongst drivers, vehicles and roadside systems (Boethius,
2011). The intelligent use of Bluetooth data in this way could help deliver a safe,

sustainable and robust future transport system. In particular, the fusion of fixed
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and mobile networks (Edwards et al., 2012). Combining different data sources
in connected and inter-connected environments begins to deliver the essential
metrics that underpin a cooperative system. The added advantage of Bluetooth
is that it is not affected by weather conditions such as snow or fog, unlike ANPR
or video recording. This makes Bluetooth robust and complementary to the
existing ITS sensors to deliver the cooperative objectives. Bluetooth could also
serve as a ‘big data’ source to meet transport demands. Big data refers to
enormity in five dimensions namely volume, variety, velocity, variability, and
complexity, and are from different sources and formats that include mobile

devices and the web (Troester, 2012).

Speed (mi/h)
Speed (mi/h)

Flow (veh/hiln)

Legend

— -— Oversaturated flow

Flow (veh/h/in)

Density (veh/mi/ln)

Figure 2.2: Generalised relationships among speed, density, and flow rate on

uninterrupted-flow facilities

Source: Modified from Purdue University (2016)
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Motorola (10%), and Sonny Erickson (30%)

Authors Bluetooth research areas Methods Conclusions Remarks
?;E)lggrg etal. Positioning Bluetooth-based RSSI Developed positioning system based on Bluetooth. Not effective with personal Bluetooth devices
Castano et al. . Used RSSI (received signal Strength Indicator) [The application can be used to track patients in the Only the transmitted power and the RSSI provided reliable
Local positioning h L . . . . L
(2004) distance estimation based on Kalman filter hospital information for distance estimation
Solon et al. Bluetooth vulnerabilities Explored the winerability levels of Bluetooth zgz;tei:g:;?hzsztﬁggt]_\?jizlr{;ﬂilciifwfaiz (()é (;No/h I)Ch The outcome is more of a concern for a Bluetooth
(2006) from three different manufacturers over 5 days P 9 Y oh manufacturer than for a traffic engineer

Browning and
Kessler (2009)

Bluetooth Hacking

Explored different phones at varying operational
conditions to test for attack

Concluded that there is possibility of Bluetooth hacking

The issue of Bluetooth wilnerability is limited in traffic
management

Tarnoff et al.
(2009)

Performance evaluation of
freeway and arterials

Made use of Class 1 and Class 2 radios for
vehicle detection on freeway and arterials

Introduced capabilities for Class 1 and Class 2 radios.
Sample size of 5 - 7% with high level of accuracy

No results shown on the accuracy level

Martchouk et al.
(2011)

Variation in different weather
conditions (normal and
abnormal)

Anonymous Bluetooth sampling on freeway
using the hazard-based model

Significant difference in mean and standard deviation of
travel time in different weather conditions

the two weeks data may not give the knowledge of any
seasonal variability

types

Porter et al. Calibration of sensor and travel |Explored the suitability of five different types of |Antenna type has impact on the quality of the data . .
; S This may not require much further study
(2011) time estimation Bluetooth antennae collected
Abbas et al. Microscopic modelling of Used Bluetooth and GPS probe wehicle data The combination of Bluetooth and GPS data gives an T!ms arga needs further investigation as results are based on
(2013) control delay added advantage simulation
Abedi et al. Crowd data collection and WiFi and Bluetooth datg coIIecgon methods WiFi has shorter discovery time, and is preferable for crowd .
(2013) monitoring were contrasted. Investigated different antenna data Benefits, challenges and enhancements were considered

Bhaskar and
Chung (2013)

Bluetooth as complementary
data source

Explored the effects of detection zone on the
accuracy of travel time estimation using
Bluetooth

Proposed three modes of estimation for travel according to
the modelled section of the signalised urban environment

Explored accuracy and reliability of travel time

Quantitative evaluation of the

Demonstrated that crowd source data obtained from mobile

Made use of 12 days (30 August -13 September 2010) data

?2%'2;; etal. operations of airport security  |Exploratory analysis of the data was performed |devices can be used to develop multi-modal transportation |collected at George Bush International Airport. Exploratory
check point performance measures analysis was performed and not quantitative analysis
Allstrém et al Calibration framework based on \elocity based [The results showed that for travel time estimation when
(2014) ’ Calibration of traffic state cell transmission model and ensemble Kalman (calibrating the parameters on two-stage process is The scale needs to be extended for further generalisation
filter possible and even more important for travel time prediction
. . . . . . The issue of variability in the sample collected is not
Bhaskar, et al.  |Travel time and density Integrated Bluetooth and loop data to estimate |Bluetooth provides a good estimate of travel time but there | . - ) .
S ) . . o . discussed. Also the validation of the estimated density was
(2014) estimation travel time and density is variability in sample size captured . . L .
through simulation. This is a common practice anyway
Table 2.18: Other relevant applications of Bluetooth traffic sensing
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2.6 Knowledge Gap

Important research gaps are identified from the literature review conducted. For
example, little research has been carried out to understand the variability and
errors in Bluetooth-derived metrics that usually cause uncertainty about
conclusions drawn from the data (Turochy and Smith, 2002; Moghaddam and
Hellinga, 2013). Also, evidence of the accuracy levels of the estimated traffic
metrics as well as their statistical significance to ensure reliable reconstruction
of traffic patterns and trends is hitherto under-investigated. This is because
previous studies are limited in scale (period of data analysed) and also in terms
of test and validation of field data. Simulation studies are often carried out
instead. Besides, there is little knowledge of the variability and the spatial
relationships in the estimated traffic metrics. In addition, there is little knowledge
on the proportion (detection rate) of the actual traffic to understand the
representativeness and reliability of traffic metrics estimation using Bluetooth
sensors. For example, the current practice and research have estimated
detection rates in different ways, namely: i) estimation based on the total
devices captured at a station (Camacho et al., 2010; Beca, 2011; Srinivasan,
2011; Cragg, 2013); and ii) estimation based on the combined (total) directional
flow (O'Neill et al., 2006; Cragg, 2013) (Section 2.3.4). The major limitation in
the current practice of Bluetooth traffic flow and detection rate estimation is that
such information is inadequate to plan and manage a complex transport
network effectively. Three key reasons are identified for this limitation. Firstly,
the aggregate representation of the traffic flow using the total devices captured
does not represent the actual vehicular flow. For example, pedestrians carrying
Bluetooth-enabled devices do not contribute significantly to traffic congestion or
pollution. Secondly, the estimation of traffic flow using the total directional flow
(summation of flows on the opposing links) does not present the level of service
(LOS) each way in the network. Thirdly, the potential application and limitations
of the Bluetooth approach to traffic management needs to be understood. In
fact, Blogg et al. (2010) highlighted these problems as areas requiring
improvement in knowledge. Therefore, a critical assessment of these limitations
will enable a better understanding of the data to inform usability. Accordingly,

clear distinctions between the different types of flow estimation are made to
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underscore the importance of the specific flows. The above challenges are
considered very significant research gaps to inform usability; benefits derived,

statistical confidence and sound inference on the subject.

2.7Conclusions

This chapter presents a critical review of the relevant literature on the use of
Bluetooth technology as an ITS sensor for traffic monitoring and metrics
estimation (link-flow, travel times, speed and O-D matrix). The review focused
on vehicular traffic while examining the issues of data requirements, accuracy
and reliability. Currently, there is little work done in the area of ITS applications,
particularly the applicability and viability of Bluetooth technology. The early
studies showed that the availability of discoverable devices within the network is
essential to the reliability of the results. Studies on the detection rates (2- 40%)
of Bluetooth have been conducted on people and vehicles using different
methods and over different geographical locations. There is a gap in knowledge
regarding link-based estimations, accuracy, and the variability that may affect
the results, and these are therefore taken into account in this study.
Consideration was given to suitable analysis techniques such as exploratory
and quantitative methods as the basis for results validation. With time, research
into Bluetooth may form a key research area in the concept of Big data in
solving transport problems. That is, Bluetooth may constitute an important part
of the wide variety of data sources for transportation applications. Using a
technological-based option such as Bluetooth to collect traffic data is
considered a viable proposition. Therefore, Bluetooth could form an arm of
traffic management functionalities to deliver performance measures such as
travel time and speed to enhance traffic operations. However, the validity of
these performance measures needs to be explored with respect to the
established methods. The performance of Bluetooth at different temporal
dimensions is considered an important research gap given that Bluetooth traffic
monitoring is still a novel area. This review provides the motivation for continued
research on the use of Bluetooth in ITS to support the realisation of better

transport. Also highlighted are future directions and other potential applications.
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This PhD research will explore, through validation, the reliability of Bluetooth for
traffic sensing and metrics estimation in urban roads in the UK. Focus will be on
four key traffic metrics (flow, travel time, speed, and O-D matrix). The next

chapter presents the research methodology based on the Bluetooth approach to

traffic sensing and metrics estimation.
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Chapter 3. Research Methodology

3.1 Introduction

This chapter presents the methodology adopted in this research on Bluetooth
traffic detection and metrics estimation, based on Bluetooth-enabled devices
from vehicular traffic This chapter builds on the available knowledge such as
that presented by UMCATT (2008) and Bhaskar and Chung (2013), to design
and develop a Bluetooth-based data collection and processing model
(TRAFOST). The model was used to derive and analyse traffic metrics (link-
flow, travel time, speed and O-D matrix) at the chosen study sites in fulfilment of
Research Objective number ii. While progress has been made in the area of
travel time analysis, significant improvements are still required in order to
understand the systematic procedure to derive useful traffic metrics. Therefore,
this chapter presents a detailed discussion of the fundamental requirements to
realise reliable estimates of traffic metrics using Bluetooth data. The discussion
in this chapter encompasses research design through to results validation.

This chapter is structured as follows: Section 3.2 presents the research design
detailing the research objectives and the corresponding methods of
accomplishment, the data required, and the expected outcomes. The methods
of Bluetooth data cleansing are presented in Section 3.3. This section considers
the reliability and consistency of Bluetooth measurements of traffic data,
representativeness of the measurements, multiple detection, and outliers to
conclude the discussion. Section 3.4 presents the estimation methods of traffic
metrics using Bluetooth data with a focus on travel time, flow, speed, O-D
matrix, and detection rate. The validation methods for the results from Bluetooth
data are presented in Section 3.5. This section deals with the strategies to

validate Bluetooth results, before conclusions are drawn in Section 3.6.
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3.2 Research Design

3.2.1 Justification of the research method

This section establishes the research problem and justifies the Bluetooth
approach to traffic sensing and metrics estimation. As highlighted in research
literature, conventional methods of traffic data collection and estimation are
either very expensive to acquire and maintain, or difficult to implement. While
technologies such as the FCD, ZigBee and WiFi present valid alternatives in
terms of data requirements and cost, they have a lower penetration and growth
rate compared to Bluetooth. For example, the penetration of Bluetooth in
vehicles, mobile phones, and electronic devices gives Bluetooth an edge over
other valid alternatives. Since the first report published in June 2008 on the use
of Bluetooth for travel time estimation, there has been continuous evolution in
this regard. However, the literature review clearly shows that continuous
research is required to fully exploit the benefits of this technology in traffic
management. Accordingly, this research considers the reliability of Bluetooth
traffic sensing and metrics estimation, with a focus on the issues of accuracy
and variability. To accomplish this, the Bluetooth results will be validated using
already established methods to enable valid conclusions to be drawn on the
applicability of the technology to enhance road traffic monitoring and
management to reduce congestion. Central to this problem is the need to
design, and develop a Bluetooth-based data collection, processing, and
analysis procedure to derive useful traffic metrics. Currently the processing
software are commercial-based, and are not available to the public. R
programming language is adopted in this reasearch because R is free and open
source unlike for example, Matlab that requires a licence. Figure 3.1 presents
the diagrammatic flow of the research method showing the three main stages.
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selection and

Stage 2:
Algorithms design
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(TRAFOST) using
R programming v
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Figure 3.1: Research method diagrammatic flow

3.2.2 Data requirements and description

The research design consists of two sets of data: i) Bluetooth — the main data
under investigation; and ii) the validation data sets — obtained from ATC and
SCOOT loop detectors, ANPR cameras and GPS Traffic Master (TM) in the
same-location as the Bluetooth sensors. The data from the ATC and SCOOT
loop detectors are subsequently referred to as ATC and SCOOT flows. Table
3.1 presents a summary of the data required to accomplish this research. The
summary includes the data type, period of collection, location, purpose and the
number of stations and links used. Essentially, second-by-second Bluetooth
encrypted raw data captured over the period 2011 to 2014 were used.
Moreover, 15-minute Bluetooth counts obtained from C2-web — the software

used by Transport for Greater Manchester (TfGM) also formed part of the data
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used for the validation. The short-term study consisted of two weeks’ worth of

data, while the long-term study made use of the data collected over the year
2013. The SCOOQT data (15-minute link flows) complemented the ATC data (15-

minute lane-by-lane flows) to ensure a sound and robust investigation. The

limited ANPR data (vehicle-by-vehicle record over one day) were complimented

with GPS Traffic Master data comprising six months (April — September 2013)

of hourly averages to validate the estimated travel time and speed, in order to

ensure statistical significance. The validation is essential to adequately

establish the reliability of the Bluetooth approach to traffic metrics estimation.

Number
Task Data Source and Period Purpose Location (_)f
Type Stations/
Links
Model building
and estimation of
Model development Bluetooth (Encrypted | Over 3 years traffic metrics; Liverpool,
) . raw data and (data from . )
and traffic metrics data quality, Birtley, and 55
L summary data from |2011 to 2014 L
estimation . . variability and Manchester
C2-Web) inclusive) -
transferability
assessment
Manchester
I ATC (15-minute lane- |1 year over A (Wigan-1;
Results validation by-lane flow) 2013 Validation of flow Stockport — 2: 5
Trafford — 2)
s SCOOQOT (15-minute |1 year over — Stockport,
Results validation link flow) 2013 Validation of flow Manchester 2
Results validation |- R (Vehicle-by- 11 dayin '\éilrlr?: tlg;gfs and | A8: Stockport 2
vehicle record) March 2014 |! Y Road
speed
Traffic Master (Hourly SiX months Validation of
o . from April - . .
Results validation average of journey journey time and |Manchester 4
: September
time and speed) 2013 speed

Table 3.1: The description of the data requirements for the Bluetooth research

3.2.3 Bluetooth sensors set-up and data acquisition

TDC-Systems Ltd (TDC) developed and tested the Bluetooth sensors used in

the acquisition of data in this research. TDC, in conjunction with the relevant

Local Authorities, performed the set-up of the sensors for continuous onsite

monitoring and transmission of data to the online database. The site selection
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was based on a careful consideration of factors that could affect the quality of
data captured by the Bluetooth sensors (McDonald, 2013). That is, the sensor
locations were selected for optimum performance. The stations were chosen
and coordinated within the vicinity of existing traffic monitoring sensors, such as
SCOOT and ATC loop detectors, within the road networks. The Bluetooth
sensors were installed on an existing infrastructure at a height of 3m from the
ground at the chosen stations. Data was captured through an automatic
technique throughout the period of observations. Devices with their Bluetooth
switched on and enabled were detected as they passed through the detectors’
locations. This identification principle underpins the traffic data collection
technigue using Bluetooth technology. It is to be noted that the detected MAC
addresses were encrypted before transmission to the online database for
further analysis, either through real-time or post-processing. The encryption of
the data complies with the Data Protection Acts to ensure that the privacy right
of the device’s owner is not compromised (TDC, 2011). The data used for post-
processing and analysis of traffic metrics was downloaded from the online
database through the access codes provided by TfGM.

Data availability and the reputation of TDC in producing traffic management
systems are the reasons for making use of the data from TDC sensors. The
sensors are ‘Class 1’ type designed to operate through continuous detection of
Bluetooth discoverable devices carried by different traffic modes. The Hi-Trac
Blue sensors utilised were developed in line with the core specifications of
Bluetooth SIG (Special Interest Group) for automatic data capture (TDC, 2011).
The sensors can cover up to six lanes at speeds up to 70mph, and they are fully
compatible with all Bluetooth specifications (TDC, 2011). The sensors were
designed to detect Bluetooth-enabled devices within the detection zone (range
of 93m) seamlessly as opposed to the customary Bluetooth which is designed
to connect with discoverable devices through password authentication. These
Bluetooth sensors do not require code generation to initiate connection, and the
process of detection is unnoticed by the device carriers (TDC, 2011). The data

collection in this research was over five contrasting urban areas across three
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study sites (Liverpool, Birtley and Greater Manchester). The contrasting sites
enable the understanding of the variability in results as well as transferability of
the method. The study sites were chosen primarily due to data availability and
the suitability to test the objectives of this research. However, it should be noted
that changes to the research design due to limitations in the required sets of
data from the Liverpool and Birtley studies brought about the additional sites in
Manchester. The period of collection of Bluetooth and the validation data sets
spanned 2011 through to 2014.

3.2.4 Description of the methods

This section describes the research objectives, the methods and data used as
well as the expected outcomes. Table 3.2 and Table 3.3 present the research
design classified as preliminary and evaluation stages respectively. This
research design constitutes the plan to actualise the current problem, and to
arrive at logical conclusions. The preliminary stages consist of objective
numbers i to iii, while the evaluation stages consist of objective numbers iv to vi.
In the design, a thorough review of the literature is first considered to establish
gaps in knowledge and to contextualise the research. The second objective
focuses on the development of a Bluetooth-based traffic data collection and
processing procedure. Data collection and the pilot study were examined in
objective number iii to round up the preliminary stages. At the evaluation stage,
Bluetooth results were compared with the ground truth data to understand
consistency, accuracy and variability in the data to enable critical analysis and

interpretation in order to arrive at logical conclusions.
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comprehensive knowledge
on Bluetooth application in
traffic management and
related applications to
establish research gaps in
current literature to extend
the body of knowledge in
this field of study

as Web of Knowledge,
Scopus, etc will be used
to search for relevant
articles and journals in
this field

not required at
this stage.
However, relevant
information on the
research topic will
be acquired

Objective |Description of research |Methods to achieve . Expected
o - Required data
number objectives the objectives outcomes
i Thisisto gaina Online databases such |Data collectionis |Thorough

knowledge of the
field of study, and
identification of
gaps in the
literature as well as
contextualisation of
this PhD research

This involves the design
and development of a
model based on Bluetooth
to derive traffic metrics

Acquisition of the
relevant skills such as
algorithm development,
programming, data
management and
processing, etc. Liaising
with the relevant
stakeholders such as
TfGM and TDC

Bluetooth data
(few) to
understand the
physical
properties such
as structure and
formats

The processing
algorithms and a
prototype Bluetooth-
based model for
traffic metrics
estimation

This objective involves data
collection and the
application of the modelin
targeted pilot studies in
Liverpool, Birtley and
Manchester for an overview
of the potential of Bluetooth
data for traffic
management

Data collection shall be
mainly through online
download from TfGM
database. Site visitation
for verification where
necessary, and model
application for an
overview study

Bluetooth,
SCOOT, ATC,
ANPR, and Traffic
Master datasets
shall be collected
but only the
Bluetooth data
shall be utilised at
this stage

Availability of the
relevant data, and
general
understanding of
the research based
on the pilot studies

Table 3.2: Research design — preliminary stages
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and make deductions
from the research
findings in a wider
context of applicability
and viability and make
recommendations for
traffic management

interpretation and academic writing
will be employed

obtained from
the long-term
study shall be
interpreted for
this purpose

Objective |Description of Methods to achieve the .
o S Required data |Expected outcomes
number research objectives objectives
iv The performance of the [Results from the model will be Bluetooth, Calibrated and
model (TRAFOST) compared with the results from SCOOQT, ATC, |validated model and
developed in Objective [independent computation suchas |ANPR, and results. Establishment
number ii will be an independent software used by |Traffic Master of the accuracy and
examined for TfGM and Excel model. The use of |data reliability levels of the
consistency, and fitfor [repeated measurements where traffic metrics derived
purpose, while the validation data sets are not from Bluetooth.
Bluetooth-derived traffic |available. Results will be validated Statistical significance
metrics will be tested for |against diverse independent level of accuracy of
accuracy and reliability [measures of traffic to establish Bluetooth-derived
correlation. Relevant exploratory traffic metrics
and quantitative analysis such as
histogram, boxplot, and QQ plots
will be explored. RMSE, MAD, and
MAPE will be used as accuracy
metrics to understand the degree
of closeness of the estimated
metrics to the actual or "true"
values. ARIMA models shall be
employed in the modelling of the
estimated traffic metrics while the
80-20 rule of data splitting will be
used to separate the training and
test data sets. KL-D will be used to
match Bluetooth data with the
ground-truth to reach valid
conclusions
Y Objective number v Exploratory analysis to understand |A year (2013) Understanding of the
deals with the analysis [some underlying properties; Bluetooth data  |variability in Bluetooth-
of the variability in Principal Component Analysis from the Greater |derived traffic metrics.
Bluetooth-derived traffic |(PCA) for data reduction; and 1- Manchester Availability of releveant
metrics to enable way ANOVA and Tukey's test to Network (GMN) |information to make
concrete deductions and [determine possible homogeneous |will be used informed decisions.
sound inference subset. Variability statistics such Establishment of
as standard deviation and Bluetooth detection
coefficient of variation (CV) shall rates. Concrete
be used. The representativeness of conclusions to justify
the sample shall be established credibility
using the package
"samplesize4surveys" in R while
CV will help to remove spatial
differences such as scale in the
data
Vi To interpret the results  |Relevant skills such as critical The results Provision of relevant

information to enhance
traffic management
using Bluetooth data.
Contribution to the
body of knowledge on
the use of Bluetooth in
ITS and traffic
management

Table 3.3: Research design — assessment and interpretation stages
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3.2.5 Development of TRAFOST for data processing

Given that the currently available software are commercial-based, and are not
available to the public, a novel Bluetooth-based model (TRAFOST - Figure 3.2)
was developed in this research to optimise Bluetooth data processing in order
to derive useful insights. Appendix 3A presents the basic description of the four
stages of the model, while the relevant codes are presented in Appendix 3B.
The components relating to data cleaning and metrics estimation are presented
in the subsequent sections. While effective data processing and cleansing
requires the use of an existing or a novel algorithm, Heer (2014) stressed the
importance of adequate data preparation before sending an algorithm over raw
data to derive useful insights. Accordingly, the first major requirement will be the
ability to manage and process the data to derive new insights. The processing
of these huge data sets is usually carried out using machine learning, Hadoop
(a free Java-based programming framework), programming languages such as
R, cloud computing, and predictive analytics (Cook, 2014). Cleaning up data to
the point where it becomes meaningful and useful is very demanding, and
reconciling diverse data sources over which one has no control can take 80% of
the total time (Smith, 2014). Therefore, in the design and application of
TRAFOST, basic assumptions were made and tested in line with the research

problem in order to obtain meaningful results.

1. All sources of errors (natural, instrumental, and personal) are assumed to
be minimised at the time of installation of the Bluetooth sensors.
Consequently, the results and any deductions made are not affected in
this regard.

2. The Bluetooth traffic volume is expected to be higher during the
congested period than at free flow, and similarly it is expected to be
higher on weekdays than on weekends according to changes in the
traffic situation and vice versa.

3. The Bluetooth sample of the traffic is expected to be consistently lower
than the actual traffic, with a linear relationship corresponding to an

increase or decrease in traffic level.
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In a network of similar characteristics and under normal conditions, the
detection rate was assumed to be constant over hours, days and across
the network. This constancy is expected particularly if assumption
number 3 is valid. Otherwise, Bluetooth might be difficult to apply to
traffic management.

. Following the a priori knowledge of the road network, devices travelling
below 6km/h and above 120km/h are classified as outliers according to
the boundary filter which was designed based on the average walking
speed and the maximum speed the Bluetooth sensor can capture. These
outliers include pedestrians, and high-speed vehicles (such as an
ambulance), and are therefore not part of the traffic estimation.
Consequently, advanced data filtering is required to cleanse other
outlying values and noise remaining in the data, and these are taken into
consideration in order to obtain valid results.

Irrespective of the filtering algorithm employed, noise arising from
difficulty in differentiating devices during congestion, and unknown exact
detection time of a device due to the inquiry time will be present in the
estimation. Therefore, the design of the algorithm is subject to this
limitation. However, estimation errors are expected to be minimised in a
well-refined algorithm to obtain a valid result.

. Another assumption made is that following appropriate data filtering by
removing all sources of errors, Bluetooth results should present profiles
and distributions similar to the actual traffic. Otherwise, the estimation
algorithm will be considered to be in error and thus require modification;
and where there is a marked difference not due to algorithm error, the
data will be considered unusable.

If research assumption number 7 is valid, and the results are consistent
with precision and accuracy, then the estimated metrics are considered
reliable. Thus the reliability of Bluetooth for traffic metrics estimation to
support traffic management and ITS applications such as in decision

support systems and data augmentation will have been established.
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Figure 3.2: Bluetooth data processing algorithm design

3.3 Methods for Bluetooth Data Cleansing

3.3.1 The Rationale

Innovative traffic data collected from diverse sources such as Bluetooth, Twitter
and a wide variety of other sources are often under-utilised (Ngoduy, 2013;
Cook, 2014). This under-utilisation is believed to be primarily due to the
problems inherent in the processing of these data to derive useful information. It
is often challenging to analyse these data sets due to their enormity in volume
and nature, leading to the frequent arrival of incoherent data in the database. As
earlier stated in Sections 2.3.1 and 2.3.4, the data captured by Bluetooth
consisted of MAC addresses from mobile phones, headsets and SatNavs
carried by pedestrians, cyclists and onboard vehicles. This means that not all

the Bluetooth devices detected by the sensors are from vehicular traffic. Also, a
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vehicle may have more than one Bluetooth enabled device on-board, and their
location in the vehicle also influences their detection. For example, devices on
the dashboard are 3.5 times more likely to be detected than when they are in a
pocket or an obscured place (Stevanovic et al., 2015). Therefore, the
challenges in the Bluetooth data cleansing relate to the issues of reliability and
consistency, representativeness, multiple detection, and outliers in the
measurements. These important factors are considered in the next sections to

address Bluetooth data cleansing.

3.3.2 Reliability and consistency of measurements

The reliability of MAC readers refers to successful detection of Bluetooth
devices by the MAC readers (Stevanovic et al., 2015). Reliability is also defined
as the reciprocal of standard deviation (Bhaskar and Chung, 2013). This means
that reliability can inform the knowledge of dispersion in the acquired data, and
is in a way related to consistency that is determined by the precision
(closeness) of one observation to the other in a group. Figure 3.3 presents an
example plot of standard deviation of flows in both directions for weekdays’
observation to underscore the importance of data cleaning before the final
analysis. High reliability of a measure is determined through the ability to
produce similar results under consistent conditions (Chen et al., 2003).
Therefore, for the estimated metrics to be reliable, the standard deviations
computed under the same conditions must be similar (showing precision). This
is in line with Shinya and Dragana (1999) that emphasised the need for the
consistency of traffic volume data on different links of a network to ensure
reliability. Accordingly, the estimated flows were filtered to remove the outlying
values such as the spikes in the data using the Mahalanobis distance method. As
in variability, the absence of consistency in data can influence measurements,
analysis and in general the conclusion drawn (Lastdrager and Pras, 2009). It is to
be noted that while reliable observations are consistent, the opposite cannot be
said of consistent observations. Reliability is a function of a variety of factors
such as location of the sensors, type of sensor, range and quality of the
antenna used as well as the internal software settings such as the inquiry time.
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Also, speed of the approaching vehicles, location of the Bluetooth devices
within the car, and sensors’ hardware and software can affect the reliability
(Stevanovic et al., 2015). Vehicles travelling at lower speeds are detected more
reliably and omnidirectional antennae are detected more successfully
(Stevanovic et al., 2015). Successful detection in this context does not connote
accuracy but the tendency to capture more Bluetooth devices that include non-
vehicular modes. In particular, a longer range of detection zone is required to
reduce random errors (Malinovskiy et al., 2011). The closeness of vehicles to
the sensor location also increases the rate of detection (Stevanovic et al.,
2015). In this research, the Bluetooth sensor used for the data collection has
been configured to account for the range of detection and vehicle speed to
reduce random errors, and to ensure reliability and consistency in Bluetooth
detection. In other words, the manufacturer’s settings of the sensors that
include the inquiry time, second-by-second detection basis, and 93m detection

range remain unchanged because this research has no control over the

settings.
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3.3.3 Representativeness of the measurements

Duplicate or multiple detection, and the location of the sensors can impact
greatly on the representativeness of Bluetooth measurements by a way of
introducing systematic or random errors. For instance, non-vehicular
measurements captured by Bluetooth may be compared with traffic counts,
which will give a false representation of the measurements. For example, if half
of the detected devices are from non-vehicular sources, and are not removed
from the data, the resulting estimate will be twice the actual vehicular detection.
Blogg et al. (2010) referred to such representation as the capture rate and this
is non-representative of the actual vehicular traffic. Other factors that could
affect the representativeness of the estimation include missed detection — not
all the devices can be detected while in the detection zone; and loss of
information outside the detection zone, unlike the GPS method that could
provide continous information throughout the journey. While these factors
cannot be influenced after set-up, in this research, an appropriate data filtering
that includes the removal of all error sources such as multiple detection,
unrelialistic estimation, and outliers, is applied to ensure correct
representativeness of the Bluetooth measurements. The filtered Bluetooth
consisting of only the vehicular traffic is compared with the actual traffic count to
obtain the detection rate. Literature shows that the current detection rate is
greater than 2% of all vehicles, and it is considered a relatively modest sample
size that is sufficiently large to provide a statistically robust performance
evaluation (Hainen et al., 2011; Hainen et al., 2013). In this research, the
validity of the Bluetooth representativeness shall be established using the
package "samplesize4surveys" developed in R by Gutiérrez (2016).

3.3.4 Multiple detection

MAC noise arises from stationary and non-vehicular sources (Blogg et al.,
2010). However, appropriate data cleaning, extraction and aggregation are
used to reveal the important information in a data set (Chang, 2014; Cook,

2014). This information includes travel time and speed to identify patterns and
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trends, and improving efficiency and safety within the road transport network.
Araghi et al. (2015) investigated the effect of multiple detection using a three-
antenna configuration. For a single MAC address, RSSI was used as the
criterion to determine multiple detection. The study used the dwell time
approach to classify duplicate records given that different antenna
configurations were used. The time difference between the time of entry and
exit of device at a detection zone gives the dwell time of the device. Based on
this principle, duplicate records were removed from the data. The time of
detection such as entry and exit times has also been used (Quayle et al., 2010;
Bhaskar and Chung, 2013). This research utilised the exit-to-exit and the dwell
time approaches to deal with multiple detection. However, different antenna
configurations as carried out by Araghi et al. (2015) could not be performed to
test different scenarios due to the fact that the objectives of the Local
Authorities that supplied the data used are independent of this research.
Nevertheless, the dwell time approach is a valid method to identify multiple
detection and invalid records. That is, any device with dwell time less than the
average travel time of a link will be regarded as a duplicate record.

In the exit-to-exit approach, the time of last detection was used. While the dwell
time approach utilised the a priori knowledge of the network to set travel time
limits based on two conditions: (i) on a short link, say a length of 0.154km
(minimum within the network) and at 48km/h speed limit, which corresponds to
a travel time of 11.55 seconds, if the dwell time is less than 4 seconds (which
allows a margin of error for possible delay in the actual detection) it is a
duplicate; (ii) on a long link, say a length of 7.463km (maximum within the
network) and at 48km/h speed limit, which corresponds to a travel time of
559.73 seconds, if the time difference between successive unigue vehicle
records was less than 300 seconds (also to allow a margin of error given that
the data will be filtered), it is a duplicate because it is not expected that a
vehicle would have made a return journey at less than such a travel time. The

assumption here was that such a tracked device was either from a parked
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vehicle or vehicle with a stop over. Based on this principle, duplicate records

were removed from the data.

3.3.5 Outliers

A detailed review of outlier detection methods can be found in Stavig and
Gibbons (1977) and Seo (2002). However, an outlier is a value that deviates
markedly from other observations in the same sample (Hodge and Austin,
2004). It is to be noted that all outlier detection methods have their strengths
and weaknesses. Different outlier detection methods have been applied for
Bluetooth data cleansing. For example, the Box-and-Whisker method has been
used by Tsubota et al. (2011) while Kieu et al. (2012) combined Box-and-
Whisker and MAD (Median Absolute Deviation) methods for outlier filtering. This
research considers the Tukey’s method (Box-and-Whisker) in conjunction with
the Mahalanobis distance (MD). The Tukey’s method defines outliers as values
greater than Q3 + 1.5 x IQR and values less than Q1 - 1.5 = IQR, where Q1, Q3,
and IQR are the lower quartile, upper quartile, and inter-quartile range
respectively (Crawley, 2005). This method is resistant to extreme values and is
robust in handling large normal data, but is problematic with small data samples
(Seo, 2002). The MD method as demonstrated by Warren et al. (2011) is robust
to failures of assumption, flexible and incorporates both numerical and graphical
outputs. The MD method implemented in this research utilises the
chemometrics package in R (Filzmoser and Varmuza, 2013). The choice of the
combination of the Tukey and MD methods is based on the recommendation of
Warren et al. (2011) that any serious analysis of traffic or other pattern should
utilise more than one technique. The robustness check is also necessary to
avoid possible spurious outliers driving the model results as highlighted by Sebri
(2016). Warren et al. (2011) have also shown that MD is very useful in
analysing traffic volume data irrespective of the underlying assumptions. The
traditional limitation of the MD is that it cannot be calculated if the number of
variables exceeds the sample size due to the inverse of the weight matrix as

shown in equation 3.1 (Brereton, 2015). However, this limitation is not
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obtainable in this research because the sample sizes obtained are far greater
than the number of variables. Accordingly, the MD was used in this research to
check for multivariate outliers and to account for differences in scale and
variance of each of the variables in the data in line with Mahalanobis (1936) and
Starkweather (2013). Mahalanobis distance is defined as (Brereton, 2015):

dm = JG— S G— ) (3.1)

Where (x — p) is a matrix of distance from the mean, and S! is the inverse of

the covariance matrix.

For the illustration of the MD method of outlier detection, Figure 3.4 presents
the plot of Bluetooth flows against the Mahalanobis distances. The dotted line
signifies the cut-off point (2.457) for determining outlying values. In the
implementation, the R code based on the Moutlier function in R package
Chemometrics was cross-checked in Minitab to ensure the results are free from
systematic errors and blunders. Figure 3.5 and Figure 3.6 present the density
plot and square of the MDs against Chi-square values. The concept is that the
square of MDs has a Chi-square distribution with p degree of freedom, and
when the sample is large, the MDs have approximately Chi-square distribution
(Penn State Eberly College of Science, 2016). The expectation is that for a
multivariate normal distribution, the plot of MDs against Chi-square distribution
should follow a straight line while the density plot should be approximately
normal. Also, outliers are classified as points with significant difference between
the MDs and the Chi-square, and are shown at the upper right corner (Penn
State Eberly College of Science, 2016). Figure 3.7 presents another application
of the MD method in detecting outliers in a two-dimensional plot (scatter plot)

using Bluetooth/ANPR journey times for illustration.
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3.4 Estimation Methods of the Traffic Metrics

3.4.1 Estimation of flow

The fundamental approach to determining travel time and other variables useful
for inferring traffic conditions, such as flow and speed, using the Bluetooth
approach has been previously discussed (Abbas et al., 2013; Barcelo et al.,
2013; Bhaskar and Chung, 2013). This concept is based on the re-identification
principle from which travel time and other parameters can be estimated
(UMCATT, 2008; Young et al., 2013). The same concept is utilised in this
research to estimate traffic metrics using the information collected by the
Bluetooth sensors in the chosen study sites. Therefore, the term ‘estimate’ in
this context refers to the use of Bluetooth information to determine or calculate
an approximation for traffic metrics. The relevant codes for the estimation of the
traffic metrics are contained in Appendix 3B (R-codes for Bluetooth data
processing). Using Bluetooth, a single detector can detect and record the
information on vehicles travelling in one or both directions in a road network.
However, the challenge is that the data captured have no unique variables or
parameters which identify the direction of travel of the detected devices.
Therefore, the direction of travel of the devices cannot be differentiated using a
single Bluetooth detector. However, when combined with data from another
detector for example, the link-flow can be obtained through the separation and
classification of the devices into their directions of travel. Table 3.4 presents the
two (device and direction) main categories of classification performed by
TRAFOST through data filtering. The first category is the device classification.
As previously mentioned under the assumptions made in the algorithm design
(Section 3.2.5), pre-defined minimum and maximum boundary limits (6km/h and
120km/h) were set based on the a priori knowledge of the road network and
walking speed to remove outliers. Therefore, devices travelling at a speed
greater than the upper limit are said to be an emergency vehicle, traffic violator,
or error in the data such as an encryption error in the MAC addresses. Similarly,
devices travelling at speeds less than the lower limit are said to be pedestrians,
parked vehicles (vehicle stop over), vehicles making use of a bypass or

alternative route, and vehicles possibly not detected on time, particularly on a
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short link. Devices in these categories were excluded from the metrics
estimation as an initial step in the outlier removal process following the

exclusion of duplicate records to obtain reliable results.

The second classification involves the direction of travel given that at each
station, vehicles travelling both ways were detected and recorded together. With
the stations’ data merged, devices were classified into the direction of travel
according to whether the computed travel time was positive or negative.
Devices with a positive time difference were those travelling from origin-to-
destination, and devices with a negative time difference were those travelling
from destination-to-origin. This basic principle was used to group detected
devices into directional clusters within the networks. Accordingly, the individual
link-flows of the detected Bluetooth devices as they passed the detectors were
estimated to provide the time series records of flow at different temporal
dimensions; 5, 10, 15 and 60-minute averages as well as daily, weekly,
weekday, and monthly averages. In the future, handling this problem may
become more simplified with further technological advancement to improve

efficiency in automation and computation.

Classification
Types Classes
Device Vehicles Non-vehicles
Direction of
Travel Origin-to-destination |Destination-to-origin

Table 3.4: Summary of device and directional classifications

3.4.2 Estimation of travel time

The Bluetooth traffic monitoring approach makes use of the principle of

identification and re-identification of vehicles at different stations within the road
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network to calculate travel times by matching MAC addresses at successive
stations (Biora et al., 2012; Young et al., 2013). The time difference of the
matched MAC address provides a measure of travel time and space mean
speed determined by the link length between the successive stations within the
detection zones (Haghani and Hamedi, 2013). For a reliable travel time
estimation, Quayle et al. (2010) suggested the use of “ex-ex” (exit-to-exit) and
‘en-en” (entry-to-entry) detection time. Bhaskar and Chung (2013), on the other
hand, recommended ex-ex travel time due to the delay observed at the
upstream intersection. This recommendation is considered in this research in
the estimation of travel time. The travel time between two stations, A and B, is

given as (Bhaskar and Chung, 2013):
Tap = TTexzpx = TTexoex + (ED_d/S — €pq) (3.2)

Where TTgyee @and TTg,, g, denote the actual and the estimated travel time

respectively, and ¢, a / and epu/  are the error terms at the two stations. The

error terms are from the possible delay in the detection of a device due to the
inquiry time. However, if the magnitudes of the errors are the same, then the

estimated and actual travel time are the same.

3.4.3 Estimation of vehicle speed

The basic principle in time and speed calculations is that a vehicle with a unique
MAC address detected at two different sensor stations (say A and B) separated
by distance S5, metres will have travel time T, (Tg - T4), seconds defined as

equation 3.2 and speed V,5, m/s between A and B expressed mathematically as

follows: ¥, = 242 (3.3)
AB

Where V,; is the average speed of a device from point A to B
S, Is the network-based distance between stations 4 and B, and

T,5 I1s the time difference of the detection of the device at B and A. Where the

network-based lengths are not available, they are measured on Google Earth
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using the path measuring tool. The measured link lengths were preferred to the
computed lengths due to the curvature error in the computation, particularly

where the road nature is irregular.

3.4.4 Estimation of O-D matrix

As stated earlier, the Bluetooth approach offers a direct method of sample
estimation. However, using Bluetooth data collected from one station in isolation
from another replicates the traditional link detector capability. The limitation in a
single detector can be addressed by matching the MAC addresses between all
the Bluetooth detectors across a network to create the origin and destination
(O-D) information. In this research, an indication of O-D patterns within the
areas of study was obtained by identifying and matching the same MAC
addresses at different locations over the network. That is, the concept of the
flow estimation described earlier, was applied to an area-wide network of
Bluetooth array to estimate the network O-D matrix. Two types of O-D matrices
classified as ‘one-many’ and ‘many-many’ according to the road network design
and purpose, were estimated. In a one-many estimation, a reference station
was chosen from where the origin-to-destination information is computed. On
the other hand, the many-many estimation encompasses the computation of O-
D information in both directions (origin-to-destination and destination-to-origin)
across all the stations to obtain complete information about the network. Using
the ‘igraph’ network analysis package in R, a typical O-D matrix was
represented to show directional flow information. In the representation of the
estimated O-D matrix, a one-headed arrow indicates one-way flow while a
double-headed arrow indicates flows in both directions.

3.4.5 Estimation of detection rate

Bluetooth detection rate refers to the proportion of traffic captured by Bluetooth
sensors compared to the actual traffic (Biora et al., 2012; BlipTrack, 2012).

Recall that Bluetooth does not immediately give the actual estimation of the
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traffic but a proportion of the traffic. Therefore, the detection rate is required to
scale-up the Bluetooth sample of the traffic flow to the actual vehicular traffic
obtained from the ground truth data. This metric is computed as the ratio
between the estimate of Bluetooth flows and the corresponding SCOOT and ATC
flows collected over the same period and location. If a regression analysis is

performed between the two sets of data (estimated and actual), detection rate is
obtained as the slope, f, of the regression equation (Y; = B, + BiX; +¢&;). The

use of the flows collected from the SCOOT and ATC links to determine the
detection rates provide the opportunity to understand variability arising from
relative location of the Bluetooth sensors to the ground truth sources. The
computed ratio over different temporal dimensions were analysed to obtain the
most probable value (mpv). The theoretical implication of mpv is that the
estimation presents the best approximating values and not the actual value. That
is, the actual value of the total traffic remains unknown. The hypothesis testing for
variance in the detection rates was based on Bonett’s test and Levene’s test in
Minitab to understand directional differences. These tests are used given that
they give a type | error that is close to the specified significance level (a). They

also allowed for a balance in sample size and skewness in the distribution.

3.5 Validation Methods

3.5.1 Model (TRAFOST) validation

This considers the steps taken in the validation of TRAFOST before considering
the results generated using the model. Three steps are followed to accomplish
this. The first step consists of results comparison between the model and the
manual computation; while the second step involves the use of the output of
C2-Web software. The last stage consists of cross-validation using the outputs
of the model. Following these steps, the Bluetooth estimated metrics are

validated using the ground truth data sets.
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3.5.2 Results validation using diverse independent data sources

The availability of diverse sources of independent measures of traffic enabled
both rigorous and sound validation of the model outputs. The estimated metrics

computed by TRAFOST will be validated as follows:

i.  The Bluetooth-derived traffic flows are validated using real-life traffic data
obtained from the simultaneous observation of ATC and SCOOT flows at
the same location. The use of independent data sets for the validation
was performed over 2013 at different locations within the three networks
in Manchester to demonstrate transferability in the Bluetooth approach.

ii. The estimated travel times and speed computed using TRAFOST will be
validated using data from Traffic Master, consisting of six months’ (April -
September 2013) hourly averages covering four links in Stockport and
Trafford. The Traffic Master data was complimented with ANPR data of
1-day in Stockport for further validation. However, while the 1-day ANPR
data may be considered insufficient, it should otherwise be noted as an
added advantage because its absence will not have had any effect on
the conclusion of the results. The estimated O-D matrix, on the other
hand, will be validated through repeatability using six months’ worth of
data over the three locations in Greater Manchester. The exercise was
conducted primarily to test for consistency and variability in the estimated
matrices as well as to evaluate the robustness of the model in handling

large volumes of data.

The integration of the other sets of data with Bluetooth data for the validation
exercise is essential as Bluetooth data presents only a sample that is lower than
the actual traffic flow. However, the lower sample is expected because not
everybody and all modes within the network have Bluetooth-enabled devices;
and when they are switched on, the Bluetooth may not be enabled. Table 3.5
presents the summary of the methods of results validation. The comprehensive
results validation and testing are presented in Chapter 5. The appraisal of the
situation started with scatter plots to explore correlation. Edwards and Hamson
(2001) advised that an alternative model formula must be considered if the
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linear fit is poor with low R*and noncolinearity suggesting an invalid proposition.
Finally, considerations were given to the sites where simultaneous

measurements of the Bluetooth and ground truth data are possible.

Bluetooth-
derived
metrics Method of Validation Period of the Data used
Link Flows ATC and SCOQT flows One year

Journey Time ANPR and Traffic Master (TM) Six months for TM and 1 day for ANPR
Journey Speed |ANPR and Traffic Master (TM) Six months for TM and 1 day for ANPR
O-D Matrix Repeated Measurements of O-D [ Six months

Table 3.5: Table showing the methods of results validation

3.5.3 Statistical modelling of the Bluetooth estimated metrics

Characterising a time series data not only includes the estimation of mean and
standard deviation but also the correlation between observations separated in
time (Statgraphics, 2015). Time series models come in useful when dealing with
serially correlated data. The serially correlated errors can be written as (Fox and
Weisberg, 2010):

C(er,eres) = Clep, &) = O'ZPS (3.4)

Where ps is the error autocorrelation at lag s. This research utilised
Autoregressive Integrated Moving Average (ARIMA) models, being one of the
two most widely used approaches for time series forecasting, and the models
describe the autocorrelations in the data (Hyndman and Athanasopoulos,
2013). ARIMA models can be estimated following the Box-Jenkins approach
(Quddus, 2008), while the non-seasonal ARIMA models are generally denoted
as ARIMA(p, d, q). The parameters p, d, and q represent the order of the
autoregressive part, the degree of differencing, and the order of the moving-
average model, and are non-negative integers (Cowpertwait and Metcalfe,
2009; Fox and Weisberg, 2010). The special cases of ARIMA models such as
autoregression — ARIMA(p, 0,0), moving average ARIMA(0,0, q) are presented
in Hyndman and Athanasopoulos (2013). Combining Differencing, d with
Autoregressive, AR(p) and a Moving Average, MA(q) model gives the following
full ARIMA(p, d, q) model:
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y,=ct+oy',_ ++ (ppy’t_p + 016+ -+ 0geq te; (3.5)

where y’, is the differenced series; ¢; = parameters of the autoregressive part;

0;= parameters of the moving average part; e, = error terms; ¢ = expectation of
the model; and i = 1 to p and q respectively.

Using the backshift notation, equation (3.5) can be written as:

(1-¢B—-—¢@,BP)(1—-B)*y, =c+ (1+6,B+ -+ 6,Be, (3.6)
AR(p) Differencing (d) MA(Q)

As a first step in the modelling, the data used were prepared for conformity, and
separated into two for calibration and validation through a data splitting
technique. The separation of the calibration and validation datasets utilised the
“80/20” rule using the Caret package in R. The 80/20 rule means that 80% of
the data is used for calibration while the remaining 20% is used for validation
(Brownlee, 2014). However, to build a model, the issue of stationarity of the
series is essential to avoid any predictable patterns in the long-term (Fox and
Weisberg, 2010). Therefore, the next step explores the data for stationarity
through time series plots. The non-stationary series were stabilised through
transformation, detrending, and differencing as highlighted by Hyndman and
Athanasopoulos (2013). In addition to exploring the time plot, the ACF
(autocorrelation function) and PACF (partial autocorrelation function) plots are
also used to determine the parameters of the models. The ‘auto.arima’ function
in the forecast package in R was also used to determine these possible values,
while the adequate model selection utilised Akaike’s Information Criterion (AIC)
and personal judgement. AIC proposed by Akaike is an extension of the
classical likelihood principle, and it is based on Kullback-Leibler information or
distance as a fundamental basis for model selection (Burnham and Anderson,
2002). Using the AIC, the K-L information computed for each model in the set
helps in determining the most probable predictive model (MPPM) given as
(Burnham and Anderson, 2002):
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AIC =—2Iog(L(g?| y)j+2K (3.7)

Where K = number of estimable parameters, and the expression Iog(L(§| y)j is

the numerical value of the log-likelihood at its maximum point. AIC provides a
simple, effective, and objective means of model selection for both data analysis
and inference. That is, AIC takes care of model parsimony (the principle of the
simpler the better), and is therefore considered. As a final step, a portmanteau
test was performed to understand whether differences in the group of
autocorrelations are different from zero with a return of large p-value signifying
white noise residuals according to Fox and Weisberg (2010). In summary, the
following steps outlined by Srivastava (2015) are followed in the modelling. The
steps are: i) visualise the series; ii) make the series stationarys; iii) plot the
ACF/PACF and find optimal parameters; iv) build the ARIMA model; and v)

make predictions.

3.5.4 Exploratory and quantitative data analyses

In data analysis, the understanding of the distribution of the data is crucial to
avoid invalid inference (Dixon and Massey, 1983). The normal distribution is
considered in this analysis given its importance in statistics. Not only that, the
hypothesis tested in this research is dependent upon the validity of normality
and randomness of the residual errors. Another usefulness of the normal
distribution to this research is in understanding the sampling distribution given
that the Bluetooth-estimated traffic flow is a sample of the actual flow
(population). Therefore, the first phase of the analysis explored the
understanding of the distribution of the data. The analysis utilises quantile plots
in conjunction with histogram plots. Examples of such plots are presented in
Figure 3.8 (quantile plot) which suggests non-normality in the data distribution,
while Figure 3.9 showing the histogram plot of journey time suggests a
normality of distribution of the journey time data. This normality in the

distribution informs the use of parametric methods. Based on the literature, a
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test based on the mean provided the best power for symmetric distributions with
moderate tails (Brown and Forsythe, 1974). That is, the power of a test is the
probability of not committing a type Il error (error due to failure to reject the null
hypothesis when it is false) (Minitab, 2014). However, the non-parametric
approach was preferred given that the presence of an outlier in the data may
invalidate the test result (Tukey, 1980). Again, the non-parametric technique
was adhered to for the purpose of consistency. Dobson and Barnett (2008)
highlighted the importance of giving consideration to separate analysis, which
includes the understanding of the measurement scale, the shape of the
distribution and the association within variables. Burnham and Anderson (2002)
noted that deep thinking and exploratory data analysis (EDA) will result in good
scientific questions and confirmatory data analysis; Tukey (1980) concludes that
to properly implement the confirmatory hypothesis there is a need for extensive
exploratory work such as histogram, box-and-whisker based on four features
(location, dispersion, skewness, and potential outliers) and quantile plots to
explore distribution and normality assumptions (Open Learn, 2015). To check
for quality, each data was analysed separately as posited by Dobson and
Barnett (2008) and Burnham and Anderson (2002). This premise forms the
basis for employing both quantitative and exploratory statistical techniques in
this research to properly implement the confirmatory hypothesis. For clarity, a

‘standard normal’ is given by (Acevedo, 2013, page 69) as:

2
No.(z)= \/;_”exp[_zz J While a normal NM(X) is standardised to Ny, (z) by

subtracting the mean and dividing by the standard deviation and is given as:

X — N
Z= —ﬂx. The standardisation could as well adopt methods such as
O

X

specifying a range for the minimum or maximum (Minitab, 2014).
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Figure 3.8: Quantile plot showing non-normality in distribution for Bluetooth
journey times on Link7170 in Stockport on 3™ April 2014

— density curve
""" Mormal curve

0.015
|

Density
0.010
|

0.005

0.000

| | | | | | | |
60 80 100 120 140 160 180 200

Journey Time (sec)

Figure 3.9: Histogram plot of Bluetooth journey time overlaid with normal and
density curves on Link7170 in Stockport on 3 April 2014
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3.5.5 Relevant measures of variability in the data

Variability is a measure of spread in data and is used to understand similarities
or differences in a data set (Dixon and Massey, 1983; Adedayo, 2006).
Wedagama et al. (2007) highlighted the effect of variations in traffic flows and
speeds over congested and uncongested periods in an urban area such as the
GMN. Variability causes uncertainty and unpredictability and may affect the
conclusions drawn. In transportation, this uncertainty is a major concern for both
operators and commuters (Martchouk et al., 2011). Tsekeris and Stathopoulos
(2006) noted that the measurement of the spatial and temporal variation in
traffic flow is a major issue in tackling the analysis of network congestion
problems. Normally, a good way to start is to use the “range” of the distribution
(Adedayo, 2006). However, since the range is subjected to extreme values and
does not account for every value in the distribution, alternative statistics are
considered and compared together to obtain a more reliable result. In this case,
the variance and standard deviation are considered. These were chosen in lieu
of mean absolute deviation (MAD) given that further statistical analysis can be
performed on them, unlike the MAD that is based strictly on absolute values
(Adedayo, 2006). The MAD considers the spread in the data, but it is affected
by extreme values and is similar to standard deviation. Therefore, the best
approximating value of any measurement is the mpv. It is the value that
minimises the sum of the squares of the residuals and it is defined as the
arithmetic mean given as equation (3.6) (Whyte and Paul, 1997).

> x

mpv = =— 3.8
pv == (38)
. . >v?
The precision (standard deviation) is given as: o = (3.9)
n
o
The standard error of mean as: 0, = T (3.10)
n
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According to Cooper (1974), the precision of a measurement is quoted as: x =
mpv + o,,. Another useful statistic considered in the evaluation of variability is

the coefficient of variation (cv) defined as (Adedayo, 2006):

VRS %*100% (3.11)

The coefficient of variation describes dispersion without dependence on the unit
of measurement of the variable (Adedayo, 2006). This statistic was used to
compare the spread in the detection rate distribution across GMN. The

cv helped to account for geographical variations or changes in units over space
since it was measured in percentages. Its application in comparing two sets of

data is that the one with the smaller cv is the better of the two (Adedayo, 2006).

Since PCA is a variable reduction procedure (Minitab, 2014), it was used to
reduce the measured daily flows to develop smaller numbers to account for
most of the variance in the observed daily flows. This method not only provides
the numerical values, but also graphical outputs for visualisation to enhance
interpretation. The knowledge of data reduction is needed for optimisation and
efficiency in traffic flow modelling to avoid redundancy. Analysis of variance (1-
way ANOVA) was employed for post-analysis to further explore any significant
variations among groups (the speed metrics). ANOVA is considered given that
their distributions generally obey the parametric assumptions. The hypothesis
testing for the post analysis utilised the Tukey test (¢ = 0.05). The importance
of accurate classification of the metrics can be found in model optimisation for
improved efficiency. That is, it can help to determine when it becomes
significant to change the traffic management plan such as in the timing of traffic

lights.

88



3.5.6 Relevant measures of accuracy

This section discusses the key accuracy statistics and the quality measures
utilised in this research that include both the absolute and relative metrics such
as the mean absolute error (MAE), and root mean square error (RMSE) (useful
for the adjustment of unusual large errors) (Wood, 2012). Accuracy is defined
as the closeness of the value of a measurement to the ‘true’ or theoretically
correct value (Cooper, 1974). This was determined principally using quantitative
analysis as well as time series plots to compare trends in the profiles. High
levels of temporal similarity in trends and good performance metrics will inform
reliability in the data. Using the accuracy statistics, small values close to zero
were of good fit, while observations with a small standard error were of higher
accuracy than observations with a big standard error. Different combinations of
these metrics have been used in the past. For example, Tang et al. (2016) used
the combination of MAE, RMSE and MARE (mean absolute relative error).
According to Hyndman and Athanasopoulos (2013), the MAD (mean absolute
deviation) is just another name for the MAE. The MAD was used in this case to
compare similar models. The relative metrics include the mean absolute
percentage error (MAPE), mean percentage error (MPE), and mean squared
percentage error (MSPE) (Balcilar, 2007). In line with Sebri (2016), the MAPE
was used in this research because it is scale-invariant in order to account for
the different locations and periods. Also according to Hyndman (2006), the
mean absolute scaled error (MASE), which is equally scale free, was used to
avoid the problem of infinity (due to division by zero) or large value (due to
presence of small numbers) in MAPE. Correlational analysis was employed to
measure the linear association between the data sets, and a correlation
coefficient (r > 0.80) was considered to be a good relationship. Some of the

accuracy metrics used in this research are hereby mathematically defined:
MAE = mean(|e;|) (3.12)
MAPE = mean(|p;|) (3.13)

Where e; = y; — ¥; is the error term defined by the difference between the

observed and the adjusted values; and p; = 100e¢;/y; is the percentage error.
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For the statistician, the difficulty in discriminating between two populations with
the best test determines their differences (Kullback and Leibler, 1951). The
Kullback-Leibler distance (KL-D) measures the distance between two probability
distributions to address the problem of scales in two random variables (Allison,
2016). It is a measure of the difference between two probability distributions, or
a measure of dissimilarity or departure between two distributions (Wu, 2016). If
the distributions are similar, the KL-D should be small, and it should be large if
the distributions are far away from each other (Wu, 2016). That is, KL-D can be
used to measure the quality of an estimation, and was used in this way. Note
that the KL-D is generally not symmetric (Allison, 2016). Therefore, it is called a
divergence instead of distance. KL-D is expressed mathematically as:

KL(pllg) = —Zp(x)log T3 (3.14)

Where KL(p||q) is the KL-D relative to p; p represents the “true” distribution of
the observation while g represents an approximation p. In this case, p and q

correspond to the ground truth and Bluetooth data.

3.6 Conclusions

A description of the research methodology based on the Bluetooth approach to
traffic metrics estimation was presented in this chapter. Bluetooth data captured
from a road network consists not only of the devices from vehicular traffic but
also from other sources such as pedestrians and cyclists. The raw data
captured contain errors due to these different sources, and the mode of
measurements such as multiple detection and inquiry time. Therefore, the
methods of Bluetooth data cleansing to obtain a noise free data necessary for
reliable traffic metrics estimation was discussed. This stage leads to the next
step of estimation of traffic metrics that include flow and travel time. This
chapter covered the relevant stages required for a reliable traffic metrics
estimation for traffic management applications. While the methodology

described was based on a post-processing approach, it could be adapted for a
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real-time application. A functional model termed TRAFOST was developed in R
to automate and optimise the Bluetooth data processing and analysis. The use
of diverse independently measured traffic data (ground truth data) for results
validation was to ensure robustness in the analysis, and to establish the validity
of the Bluetooth results. The validation methods for the estimated flows, travel
times and speed were based on the ground truth data, and statistical modelling.
The validation of the network O-D matrix was based on repeated
measurements of Bluetooth data to understand consistency given that the
ground truth data are not available on every link. In the research design, five
different study sites of varying attributes over different geographical locations in
the UK were considered due to different challenges encountered in the data
acquisition. Basing the research design on more than one study site ensured
the knowledge of transferability to inform results generalisation. It is noted that
as with every model, the concept developed in this research is limited with its
range of validity. Therefore, consideration should be given to the replication of

this concept at a new study site to obtain reliable results.
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Chapter 4. Data Collection

4.1Introduction

4.1.1 Background to the data collection

Chapter 4 describes the data collection and short-term analysis performed to
understand the Bluetooth potential in traffic metrics estimation. The data
collection and short-term analysis provide the basis for the fulfilment of research
objective iii, and to test the methodology described in Chapter 3 on Bluetooth
traffic sensing and metrics estimation. Accordingly, this dicussion covers the
challenges, limitations and the specific methods used in the collection of
Bluetooth data in this research. The data collection covers three select study
sites (Liverpool, Birtley, and Manchester) of different network attributes. This
study covers three different study sites primarily due to the shortfalls
encountered in the provision of the required data in the Liverpool and Birtley
study sites. However, the different study sites have contributed in different ways
that include the understanding of the spatial variability in Bluetooth usage in the
UK. The Liverpool and Birtley studies cover a short-term data collection period
over two weeks. The former was used for preliminary data quality assessment
and the latter for flow and trip pattern analysis. The Manchester study site,
which provided the long-term data collection of more than a year consists of
three separate studies in Wigan, Stockport, and Trafford, and consolidated the
Birtley study to demonstrate transferability. The preliminary analysis conducted
in this chapter presents the initial understanding of the Bluetooth approach in
different road networks such as urban arterials and linear networks. The data
collection and the preliminary analysis also form the basis for the long-term

study presented in Chapters 5-7 of this thesis to enable valid conclusions.

This chapter is structured as follows: Section 4.2 focuses primarily on
preliminary data quality assessment (Liverpool pilot study) to understand the
condition of the variables contained in the Bluetooth data as a first step towards
understanding its relevance. Section 4.3 presents the evaluation platform for the
estimation of flow and analysis of trip patterns using the Birtley pilot study.
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Section 4.4 presents a description of the Manchester study sites by building on
the methodology tested in the Birtley study. Section 4.5 presents trip patterns
and speed distribution based on the Wigan study, while Section 4.6 (Stockport)
considers the discrepancies in results based on the applied methods. Section
4.7 (Trafford) deals primarily with monthly variation, before conclusions are

drawn in Section 4.8.

4.1.2 The study sites

This investigation was carried out in urban areas in the UK comprising Birtley in
Tyne and Weatr, Liverpool and Greater Manchester (consisting Wigan,Stockport
and Trafford). This makes a total of five different networks of varying
characteristics. These study sites were selected mainly based on data
availability to meet the data requirements described in Section 3.2.1. That is,
data were collected in these sites to meet the requirements of the research
design to achieve the overall aim and objectives of this research. The
distinguishing features of these study sites are primarily in their network
configuration, the land use type and the area covered. The total length of the
Birtley network is approximately 2km with seven Bluetooth stations while the
Liverpool network covers 2.2km with eight Bluetooth stations. The three
networks in Manchester are in residential and commercial areas and over larger
areas (approximately 50km x 40km with forty Bluetooth stations) compared to
Birtley and Liverpool study sites. The different geographical areas of dissimilar
attributes considered in this research are important to understand variability in
performance and transferability of Bluetooth approach of traffic monitoring. This
will in turn provide the knowledge of the scalability of the technology over the
study areas, and the UK in general. As described in Section 4.1.3, several
factors brought about the study sites used in this research. Table 4.1 presents
the summary of the description of the study sites, while Figure 4.1 shows their
respective locations colour-coded on a UK map.
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Number of Number of
Case Case Bluetooth
Location Studies Study Features Stations
Short and relatively linear. Located close to
high activity areas such as Docks and
Liverpool, UK 1|Liverpool |Shopping Centres in AQMA 8
Short and relatively linear. Located in a less
congested urban area in the vicinity of Banks
Birtley, UK 1|Birtley and Commercial Centres 7
Non-linear and over a large area within a built-
Wigan up area having access to M6 and train station 18
Linear on the A6 Buxton Road with high flows
of commercial vehicles gaining access to local
Stockport |motorways 11
A longer linear network mainly embracing the
A56 trunk road. Close to Old Trafford and
Greater having access to M60 and M602 among
Manchester, UK 3|Trafford |others 11

Table 4.1: The summary of the study sites description

94




370000 420000

540000

490000

440000

390000

s o ]

R oD Newcabtle A

B P ponAyne’ T
-’ 7 n

540000

440000

390000

490000

Scale
02565 10 16 20 25

Kilometers

320000 370000 420000

Figure 4.1: Map showing the study locations in the UK

4.1.3 Description of the Bluetooth traffic data collection

This section presents the specific methods used in the collection of Bluetooth
data used for traffic estimation in this research. In all the locations, the data
providers (Mouchel/2020Liverpool, Gateshead City Council, and TfGM in
conjunction with TDC and SkyHigh) performed the set up for the on-site
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Bluetooth traffic monitoring. As stated in Section 3.2.3, the study utilised the
data collected by the Bluetooth sensors (Hi-Trac Blue) developed and tested by
TDC Systems Ltd. These sensors were used to continuously detect the
Bluetooth-enabled devices passing through the sensor locations within the
networks and store their MAC addresses. While the focus was on vehicular
traffic detection, Bluetooth-enabled devices carried by other network users such
as pedestrians and cyclists in the traffic were also captured. The essential
records stored by the sensors are the MAC addresses, timestamp and the

details of sensor locations such as the coordinates.

Essentially, the detected MAC addresses in raw form were encrypted for the
purpose of privacy and security before they were transmitted to an online
database (C2-Web) through the traffic control network using routers and direct
cables from site to server. Specifically, in this research, all the data sets used
were either downloaded through the internet using access codes or received as
attachments either through e-mail or on an external hard disk. However, there
were site visits to the Liverpool and Birtley study locations primarily for better

understanding of the locations of the sensors and the traffic stream.

4.1.4 Challenges and limitations in the data collection

At the onset, the experimental design for this research was based on the use of
SCOOT measured flows and GPS tracking data, and where possible with
ANPR data to validate the Bluetooth results. However, different challenges were
met at different stages that put the completion of this research at a risk. For
example, the different councils that provided the data used have their specific
objectives that are independent of this research. Consequently, this research
had no control over when to deploy or remove the sensors. Originally, Liverpool
was considered as the only study site with the expectation to meet the data
requirements for this research through a collaboration with

Mouchel/2020Liverpool. However, the trial conducted over a short period of two
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weeks from 15th to 27th June 2011 was discontinued, thereby resulting in
insufficient Bluetooth data with a limitation in scope and coverage as well as in
the provision of the validation datasets. Due to these limitations, the research
design was adjusted to further this investigation. Following the modification to
the research design, the Birtley study site was chosen to provide solutions to
the challenges encountered in the Liverpool study site. However, similar
challenges as in the Liverpool study site were also encountered. In order to
achieve the research goal, further adjustment was made to the research design
to address the limitations in scope and coverage as well as in the provision of
the validation datasets, and in this case the Greater Manchester study site was
chosen. In Manchester, the installation of the Bluetooth sensors is on a
permanent basis across the three networks. Some of the sensors are installed
near SCOOT and ATC loop detectors for independent measurement of the
traffic, and for validation. However, prior to the final acquisition of the data sets,
there were further challenges in the process. Prior to the acquisition of the data
from the Manchester study site, data from ATC and ANPR were proposed as
the new datasets for results validation while the study area included Scotland
due to the availability of data for results validation. However, the inclusion of the
Scotland study site was discarded due to positive results from the Greater
Manchester area, leading to the provision of the required validation data sets
that include ATC and SCOOT flows captured over the same period as
Bluetooth.

4.2 Liverpool: Preliminary Study on Data Quality Assessment

4.2.1 Background to Liverpool study

Figure 4.2 presents the map of the study area showing the distribution of the
Bluetooth sensors, while Table 4.2 presents the description of the locations of
the eight Bluetooth sensors strategically chosen within an Air Quality
Management Area (AQMA) in Liverpool. As discussed above, Liverpool was
originally considered as the study site to meet the data requirements following a

mutual understanding between Newcastle University and
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Mouchel/2020Liverpool. However, the Bluetooth sensors installed in the

Liverpool study site were disengaged after two weeks of data acquisition. This

means that the objective of this research could not be realised based on just

two weeks worth of data, and thus required a modification to the research

design to further the research. However, the data collected over the two weeks

were used for preliminary data quality assessment to understand the structure

and condition of the variables in the data to aid further analysis.
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Figure 4.2: Location of Bluetooth sensors in the Liverpool study site
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Station Coordinates
Number | Latitude [Longitude | Station description
53.4114| -2.99908|Bath Street

53.4116| -2.99686|King Edward Street
53.4081| -2.99236|Chapel Street
53.4076| -2.98977|Dale Street

53.4052( -2.99070|James Street
53.4009| -2.98687|Liver Street
53.3970| -2.98582|Wapping

53.3941| -2.98301|Chaloner Street

O INO |0~ |W[IN |-

Table 4.2: Description of the Bluetooth sensors locations in the Liverpool study
site

4.2.2 Data quality assessment

The aspects of data quality assessment include accuracy, reliability,
presentation and consistency. This section considers the preliminary aspects of
the Bluetooth data quality to understand its relevance to this research. The
aspects under consideration in this section are data presentation,
completeness, update status (timeliness) and consistency. An example data is
presented in Appendix 4A, which shows that Bluetooth data are well-presented
with clear headers (variables) describing the data. The data also come as comma
separated values (csv) file format, which gives the data a defined structure in
terms of presentation. In terms of completeness, the Bluetooth sensors are
capable of continuous data recording throughout the day, which makes the data
acquired complete and adequate for studies such as temporal status monitoring.
Also, the time stamp recorded by the sensors is on a second-by-second basis
that shows the timeliness of the data. This one-second level of precision attribute
of the data is very significant in the classification of devices during data filtering.
For example, speed can be calculated on a second-by-second basis, while travel
time for devices detected on short links can be differentiated. For instance, a
short link of length 500m with a speed limit of 48km/h will require a travel time of
37.5 seconds to traverse the link. Clearly, this value is greater than the 1-second
resolution level measured by Bluetooth and thus confirms the sufficiency of the

precision level of the measurement. Furthermore, the quality of the Bluetooth
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data was analysed for consistency to serve as the benchmark for the subsequent
analysis. Therefore, the preliminary data quality investigation was conducted

under the following assumptions.

1. Bluetooth data are expected to present profiles similar to real life traffic
situations by capturing the variations in traffic flows over the day; and

2. The captured data are expected to present continuous profiles with
minimal gaps (missing data) over the period of observation with weekday

profiles contrasted to weekend profiles.

4.2.3 Results presentation and analysis

For a better understanding of the daily flows, Table 4.3 and Figure 4.3 present
respectively the summary of traffic flow over fourteen days and the equivalent
profile over seven days at Station 7. The profile of Station 7 having the highest
count (Figure 4.4) was presented as an example of the individual station
analysis because of the configuration of its position in the network to assess
consistency. Results from the other stations are presented in Appendix 4B. The
profile over seven days is presented to show the similarities and consistency
observed in the traffic count within this period. From Table 4.3, the total count
for the period of observation (Wednesday 15th June — Tuesday 28th June
2011) is 103,520. The highest daily count (8515) was observed on Friday 17th
June while the lowest count (4513) was observed on Sunday 26th June 2011.
From the profile, there are two prominent peak periods in the weekdays’
observations, the morning and evening peak periods with an average count of
700 devices over the hours of 8 am and 5 pm. These are related to the period of
trips to and from work as is the case with real life traffic data, and thus
confirming the first assumption of representing real-life traffic. In fact, the dual
peaks observed in the data were also observed in previous studies (Beca,
2011; Augustin and Poppe, 2012; Cragg, 2013). Similarly, the second
assumption is confirmed through the continuity observed in the profiles and the
similarities and high positive correlation observed in the weekdays/weekend
data. In the next chapter, the validity of the assumptions will be verified against
real life traffic data to ensure data quality assurance.
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Count of NumbPlat{ Days -7

Hours + [15-Jun [16-Jun|17-Junf18-Jun|19-Jun|20-Jun| 21-Jun| 22-Jun{ 23-Jun| 24-Jun| 25-Jun| 26-Jun| 27-Jun| 28-Jun| Grand Total
00 51 74 51| 160 180 66 57 34 72 74| 150 218 73 46 1306
01 34 22 48| 113| 161 49 32 29 32 37| 113 127 41 41 879
02 22 22 24 84| 108 26 22 20 21 20 95| 140 21 18 643
03 16 25 27 70 92 23 25 18 13 18 81| 118 27 21 574
04 37 18 32 53 63 35 30 26 32 27 45 79 43 39 559
05 83 71 69 69 80 72 78 64 77 70 52 70 81 86 1022
06 151 171| 145 79 82| 134| 178| 149| 179| 159 57 56 146| 165 1851
07 488| 461| 397| 130 98| 488| 465| 457| 444| 431| 127 63| 446| 476 4971
08 675| 648 612| 182 91| 644| 723| 691| 682| 635 182 78| 648| 671 7162
09 641| 614 543| 248| 123| 612| 588 607| 579 557| 288| 145 604| 620 6769
10 526| 459 507| 332| 281| 513| 449 476| 486 498| 354| 199| 474| 514 6068
11 495| 546| 484| 409| 359 535| 506| 488 470| 460 418| 222 506| 446 6344
12 521| 576 532| 460| 401| 437| 511| 486| 475 588| 456| 254| 501| 532 6730
13 495| 499| 539 520| 492 543| 518| 542| 600| 611 477] 303 526| 520 7185
14 545| 484| 579| 533| 459| 518| 550 496| 508 574| 461| 419| 478| 592 7196
15 585| 644 622| 578| 426| 496| 561| 523| 576 675| 448| 363| 489| 622 7608
16 714| 700( 660) 459| 442| 627| 630| 676| 668 662| 458| 359| 600| 713 8368
17 692| 725| 675| 462| 428| 693| 720( 635| 670 620| 457| 342| 588| 726 8433
18 487| 501| 509| 446| 301| 434| 406| 462| 449| 450 432] 245 395| 430 5947
19 302| 334| 428| 417| 263| 287| 271| 301| 306 340| 414| 230| 268| 284 4445
20 189 200| 309| 309 214| 165 202| 202| 225| 278| 261| 168| 159 208 3089
21 175 164| 340| 206 166| 164 146| 159 171| 198| 229 116| 152 158 2544
22 122| 134| 200{ 175( 137| 103| 126| 122| 131| 164| 222| 115 96| 133 1980
23 88| 105/ 183| 202 106 78 99| 125 84| 175| 342 84 82 94 1847
Grand Total 8134| 8197| 8515| 6696| 5553| 7742| 7893| 7788| 7950| 8321| 6619| 4513| 7444| 8155 103520

Table 4.3: Count of detected Bluetooth-enabled devices at Station 7 in June

2011
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Figure 4.3: Daily profiles of counts of detected devices at Station 7 over seven

days
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Figure 4.4 presents the summary of the daily flows over eight days in Liverpool.
The lowest and highest flows were observed respectively at Stations 1 and 7
over the days. Stations (2, 7, and 8) located close to the Docks and on A5036
connecting A562 in the South and A565 in the North have the highest flows as
expected compared to Stations (1, 3, 4, 5, and 6) located along minor roads.
Stations 5 and 6 on the other hand exhibited a different trend over the two
Saturdays (18/06/2011 and 25/06/2011) with a higher flow compared to the
weekdays. This change in trend at Stations 5 and 6 is attributed to the activities
around St John’s Shopping Centre and Liverpool John Moore’s University.
However, there is consistency in the data over days and stations. The
consistency in the result obtained at this level is very interesting because
Bluetooth data shows a strong indication to model the real world traffic and, in
that case, a candidate to provide transport data. The data were further analysed
as contained in Table 4.4 and Table 4.5. However, the reliability of the results

will be tested through validation in Section 5.3.1.
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Figure 4.4: Summary of the variations in daily flows over eight stations in

Liverpool
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From the second assumption, since the traffic count profile of the weekdays
differs significantly from that of the weekend, the two sets of data were analysed
separately. Table 4.4 shows the correlation analysis of the weekdays’ count
while Table 4.5 presents the descriptive statistics. Analysis performed on the
weekdays (Monday to Friday) showed a very strong positive relationship
(>0.09) with a corresponding high level of similarities in the data between the
weekdays as shown from the descriptive statistics, and thus indicates a level of
quality in the data. For example, the values of the kurtosis, a measure of the
peakedness of the distribution relative to the normal distribution as defined by
Adedayo (2006), showed that they all exhibit similar distribution and
peakedness. However, on Fridays (17" and 24" June), the results exhibit
negative skewness (-0.25 and -0.08 respectively) as would be expected due to
a translation from weekdays to weekends. The change in the skewness of the
data on a Friday is attributed to a change from weekdays to the weekend
normally associated with weekend travel and activities. Figure 4.5 shows the
scatter plot of Saturday and Sunday hourly flows overlaid with regression line

showing a very strong correlation (R? = 0.896).

15-Jun 16-Jun 17-Jun 20-Jun 21-Jun 22-Jun 23-Jun 24-Jun 27-Jun 28-Jun

15-Jun 1

16-Jun 0.992 1

17-Jun 0.967 0.969 1

20-Jun 0.991 0.980 0.954 1

21-Jun 0.991 0.987 0.958 0.989 1

22-Jun 0.995 0.988 0.967 0.991 0.991 1

23-Jun 0.991 0.986 0.969 0.989 0.991 0.995 1

24-Jun 0.977 0.979 0.981 0.963 0.975 0.979 0.984 1

27-Jun 0.991 0.983 0.951 0.993 0.990 0.994 0.990 0.972 1

28-Jun 0.995 0.987 0.966 0.985 0.993 0.989 0.991 0.982 0.985 1

Table 4.4: Correlation analysis between weekdays (Monday — Friday)
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Descriptors 15-Jun-11 16-Jun-11 17-Jun-11 18-Jun-11 19-Jun-11 20-Jun-11 21-Jun-11 22-Jun-11 23-Jun-11 24-Jun-11
No of Observations 24 24 24 24 24 24 24 24 24 24
Mean 338.9 3415 354.8 3226 328.9 3245 3313 346.7 310.2 339.8
Standard Error 51.55 51.50 4747 49.03 49.97 49.13 49.21 49.11 46.36 51.79
Median 395 397 413 361 339 379 375 386 332 357
Standard Deviation 252.54 252.30 232.57 240.18 24483 240.68 241.09 240.59 227.13 253.72
Kurtosis -1.71 -1.66 -1.55 -1.75 -1.57 -1.65 -1.64 -1.66 -1.79 -1.65
Skewness 0.03 0.03 -0.25 0.05 0.11 0.02 0.02 -0.08 0.03 0.09
Range 698.00 707.00 651.00 670.00 701.00 673.00 669.00 657.00 627.00 708.00
Minimum 16 18 24 23 22 18 13 18 21 18
Maximum 714 725 675 693 723 691 682 675 648 726
Table 4.5: Descriptive statistics for the weekdays count from 15" — 28" June
2011
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Figure 4.5: Scatter plot of weekend flows overlaid with regression line

4.2.4 Conclusion from the Liverpool study

The data collection conducted in Liverpool for quality assessment showed that

Bluetooth data is of high-resolution (one-second), consistent, and with a well-

structured presentation. Two peak periods consistent with real life traffic data

were observed: the morning peak hours (7-9am) and the evening peak hours (4-

6pm). Correlation analyses performed showed a very strong positive correlation

between weekdays and between weekend observations as would be expected of

real life traffic. The descriptive statistics also showed a high level of consistency.
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However, the reliability of the data will be established in Chapter 6. Summarily,
the preliminary data quality assessment conducted justifies the need for
continued research on Bluetooth data to establish its relevance and maximise its

potential to support the delivery of an enhanced traffic management.

4.3 Birtley: An Evaluation Platform for Bluetooth Traffic Metrics

Estimation

4.3.1 Background to the Birtley study

The Birtley study area is located north of County Durham and South-West of
Gateshead. The study consisted of seven Bluetooth monitoring stations located
mainly along the A167, Durham Road as shown in Figure 4.6. Table 4.6
presents the description of the location of the sensors. The data were collected
over two weeks from 5th March to 16th March 2012. The aim of the study was
to create an evaluation platform for Bluetooth data to enhance traffic
management by employing a post-processing data analysis technique
developed in this research. The major assumption made under this section
builds on the Liverpool study to further the preliminary assessment of Bluetooth
data. The assumption is that under normal conditions, the proportion of the
Bluetooth-enabled devices captured will vary in time and space (geographical
location) with variations in traffic patterns. The results of this test are presented

in the next section.
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Figure 4.6: Location of Bluetooth sensors in the Birtley study site
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Station Coordinates Station description
Number |Latitude |[Longitude P
1| 5488269 -1.57599 A167 Durham Road, Birtley (South of
Dorset Avenue)
5| 5489187 -1.57700 A167 Durham Road, Birtley (South of
Harras Bank)
3l s54.89610| -1.57770 A167 purham Road, Birtley (South
of Station Lane)
A167 Durham Road, Birtley (South of
4| 54.89700| -1.57757 Orchard Street)
5| 5490060 -157795 A167 Durham Road, Birtley (South of
Edward Road)
6| 5489549 -158360 Station Lane, Birtley (West of Factory
Access)
7| 54.89841| -1.56920 Mount Pleasant Road, Birtley (South
of Portmeads Road)

Table 4.6: Location description for the Bluetooth sensors in the Birtley study site

4.3.2 Results and Analysis

Figure 4.7 shows the count of MAC addresses captured daily throughout the
11-day survey period at Stations 6 and 7 and for the 6-day period for Stations 1
to 5. The non-uniformity observed in the daily count particularly at Stations 1 to
6 is due to the difference in the start and end time of the period of data
acquisition according to the time of installation and removal of the sensors. For
example, observations started at 1 pm on the first day and ended at around 4
pm on the 10" day. The counts of the detected MAC addresses represent the
proportion of the total traffic (all modes) passing the detectors. The proportion of
the actual flow is assumed to depend on the level of the road usage and the
consistency of detecting Bluetooth-enabled devices from day-to-day. However,
it is clear from Figure 4.7 that the Bluetooth counts from each station over 24
hours are similar from day to day. The spatial variations in the Bluetooth count
represent the level of Bluetooth usage across the stations. For example, the
lowest number of devices was recorded at Station 7 (60 devices) over the
weekdays. The highest number of devices was recorded at Station 3 with an

average of 210 devices over the weekdays.
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Figure 4.7: The profiles of Bluetooth hourly count at the seven stations

Daily trips were explored by matching MAC addresses at different stations and
calculating travel times. From the analysis of travel time and the direction of
travel, two main trip patterns emerged, based on their characteristic road usage
when passing along a link between two consecutive stations designated as
“single trip” and “round trip” commuters. Trips made without a return on the
same day were classified as a single trip, while any trip with a return trip on the
same day was classified as a round trip. Given that only a sample of the actual
traffic was captured by the Bluetooth sensors, other types of trip were classified
under the above two broad classifications.

= The “undetected” who were assumed to have either made the return trip
but no longer with the Bluetooth switched on (perhaps due to weak
battery or the device was switched off) or they left the network without
passing a Bluetooth detector and were not detected on the return trip, or

possibly made a return trip but were not detected by the sensors.
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= Those who stayed within the detection zone (either employed in the area,
were visiting or lived there) for a period and were detected later in the

day is another possibility.

Table 4.7 presents the scaled Bluetooth counts of devices through the network
in one (single trip) or both (round trip) directions. Scaling was done to ensure
uniformity in the presentation of the data. The links breakdown shows more
single-trip commuters than round trip commuters as would be expected.
Analysis shows that the smallest mean ratio (2.5) of single trip to round trip was
observed on Link36 while the highest (5.2) was observed on Link47. The ratio
gives a level of understanding of the usage of the routes. Link12 exhibits the
most similar characteristics based on the precision (range of 0.1) of the ratio
observed on the link. The widest departure (ratio 4.9 - 5.6) was observed on
Link47 with a range of 0.7. The spatial variation observed in the data confirmed
the assumption made on the data with detection dependent upon the location of
the sensors. Although not validated, there is an obvious reflection of the

movements of commuters (O-D patterns) across the network.

Analysis of the link speeds for the journeys made each way along selected links
between links (12), (23), (36) and (47) showed that the typical speed is in the
range of 10km/h and 65km/h with a higher percentage of the vehicles travelling
within 40km/h. This is considered reasonable given the average speed limit for
Gateshead (20.7mph) and Tyne and Wear 23.4mph (Thorgil, 2007; Tyne and
Wear, 2010; DfT, 2011; Tyne and Wear, 2011). This result also showed that
Bluetooth can provide estimates of speed for individual vehicles along stretches
of road as well as the proportion of vehicles moving at a particular speed, as
parameter to measure or understand delay (Ayodele et al., 2013). At this
preliminary stage of the analysis and without access to independent measures
of traffic flows, it was assumed that the Bluetooth estimates are representative

of the actual traffic.

109



Link length Trip Mean
Link (m) Date Single trip |Round trip ratio Ratio
06/03/2012 1112 426 2.6
07/03/2012 1155 430 2.7
L12 1,023.17 | 08/03/2012 1214 464 2.6 2.6
06/03/2012 1271 472 2.7
07/03/2012 1241 430 2.9
L23 479.84 08/03/2012 1039 331 3.1 2.9
06/03/2012 572 255 2.2
07/03/2012 495 220 2.3
L36 396.66 08/03/2012 467 160 2.9 2.5
06/03/2012 457 94 4.9
07/03/2012 529 106 5.0
L47 685.14 08/03/2012 507 90 5.6 5.2

Table 4.7: Summary of trip patterns on four prominent links in the Birtley study

site

4.3.3 Conclusion from the Birtley study

A preliminary study on the exploration of Bluetooth data to estimate traffic
metrics to enhance traffic management has been carried out. Analysis of the trip
patterns showed that a single trip was more prominent than a round trip over
the select road sections in the Birtley urban area. The preliminary results and
analysis indicate that Bluetooth could be used to understand the trip patterns in
a network. The ability to identify trip patterns (origins and destinations) offers
the potential to considerably enhance decision making with respect to managing
traffic demand and providing information to users of the network across modes
(Bell et al., 2012). Although at this stage, only a preliminary analysis of the pilot
survey is available but some interesting applications emerge. The counts from
day to day were consistent suggesting that the origins and destinations in the
area could be monitored successfully over time of the day. Such information is
useful to model traffic conditions, and to provide better congestion management
systems. On a link basis, this will enable a realistic evaluation of network

performance.
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4.4 Manchester: Exploring Transferability

4.4.1 Background to the Manchester study

Table 4.8 presents the description of the Bluetooth stations in the three study
sites of Wigan, Stockport and Trafford located in Greater Manchester. Due to
the small scale of the Manchester study site, the zoomed in (detailed) map of
each of the study sites is presented in subsequent sections for clarity. This pilot
study in Manchester builds on earlier work carried out in Birtley (Section 4.3),
which demonstrated the potential of Bluetooth data to classify network users
(such as, round-trip or single-trip commuters). It is also used to identify the
patterns of movement through a simple network to show the capability for
enhanced traffic management. This study in comparison to the earlier work in
Birtley was carried out on a larger scale (utilising 23 stations compared to 7
stations in Birtley) to demonstrate the transferability of the research method.
The data collection consists of three study sites — Wigan, Stockport and
Trafford, which have “non-linear, linear, and longer-linear” network layouts
respectively. In this case, the non-linear network is defined as the array of
sensors over urban roads with interconnecting routes forming area-wide O-Ds.
The linear network is defined as the array of sensors mainly in a linear form
over a road segment not exceeding 4km. On the other hand, the longer-linear
network is the array of sensors primarily in a linear form over a road segment up
to 4km or greater. The three case studies were chosen to investigate whether
there are any differences in traffic patterns over the entire network. Bluetooth
data captured from Wigan were analysed for trip patterns and speed
distribution, while data from Stockport were analysed for transferability checking
for possible differences in the results and interpretation. Data from Trafford
were analysed mainly to explore monthly variation. The results for each
demonstration are presented in turn with conclusions drawn and next steps

articulated.
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Coordinates
Station Name| Latitude |Longitude Station description
MAC1012WG |53.51902| -2.65240|Warrington Road

MAC1013WG |53.52892| -2.65498|Warrington Road/Smithy Brook Road
MAC1014WG | 53.54142| -2.64781|Wallgate Saddle Gyratory

MAC1015WG |53.54323| -2.63559|Wallgate/Caroline Street

MAC1016WG |53.52564| -2.64757|Poolstock Lane/St Pauls

MAC1017WG | 53.52975| -2.64372|Poolstock Lane/Rushdene

MAC1018WG |53.54121| -2.63077|Chapel Lane

MAC1021WG |53.56371| -2.63169|Wigan Lane/Brock Mill Lane

MAC1022WG | 53.55925| -2.62833|Wigan Lane/Royal Albert Edward Hospital
MAC1023WG | 53.54873| -2.62713|Central Park Way

MAC1024WG | 53.55758| -2.66141|Woodhouse Drive/Scot Lane

MAC1025WG | 53.55275| -2.66532|Scot Lane/Challenge Way

MAC1026WG |53.53649| -2.68501|Orrell Road/Fleet Street

MAC1027WG | 53.53570| -2.67097|Ormskirk Road/Sherwood Drive

MAC1028WG | 53.53768| -2.65721|0Ormskirk Road/Alker Street

MAC1029WG |53.51690| -2.68382|Pemberton Road VMS

MAC1030WG |53.53230| -2.66539|Billinge Road/Little Lane

MAC1031WG |53.52168| -2.66892|Holmes House Avenue

MAC1033ST |53.39596| -2.14980|A6 Buxton Rd/Nangreave Rd

MAC1034ST |53.39295| -2.14634|A6 Buxton Rd/Kennerley Rd

MAC1035ST |53.38990| -2.14066|A6 Buxton Rd south of Woodsmoor Rd
MAC1036ST |53.38672| -2.13178|A6 Buxton Rd north of Dialstone Ln

MAC1037ST |53.38432| -2.12700|A6 London Rd/Newmoor Rd

MAC1038ST |53.38317| -2.12574|A6 London Rd south of Vernon St

MAC1039ST |53.38057| -2.12262|A6 London Rd se of Hope St

MAC1040ST |53.37903| -2.11899|A6 London Rd south of Grundey St

MAC1041ST |53.37547| -2.11382|A6 London Rd/Buxton Rd

MAC1001TR |53.39044| -2.35031|Junction of Woodlands Road A56 / Church Street
MAC1002TR |53.39516| -2.35224|Junction Manchester Road A56 / Barrington Road
MAC1003TR |53.39766| -2.35218|Junction Manchester Road A56 / Navigation Road
MAC1004TR |53.40614| -2.34743|Junction Manchester Road A56 / Park Road
MAC1005TR |53.41149| -2.34117|Junction Washway Road A56 / Eastway
MAC1006TR |53.41964| -2.33187|Junction Washway Road A56 / Marsland Road
MAC1007TR |53.42565| -2.32525]|Junction Washway Road A56 / Ashton Lane
MAC1008TR |53.43115| -2.31897|Junction Cross Street A56 / Dane Road
MAC1009TR |53.39103| -2.34762|Junction Woodlands Road A560 / Barrington Road
MAC1010TR |53.39123| -2.34157|Junction Woodlands Road A560 / Stockport Road
MAC1011TR |53.39270| -2.31750|Junction Shaftsbury Avenue A560 / Thorley Lane
MAC1070MR [53.44900( -2.19217|Stockport Road/Matthew's Lane

MAC1071MR |53.44429| -2.19162|Stockport Road/Albert Road

Table 4.8: Location description for the Bluetooth sensors in Greater Manchester

4.5 Study Site 1: Wigan

4.5.1 The Wigan network

Figure 4.8 presents the Wigan network (Study site 1), near Central Park Way -
a busy urban area, with the reference station (MAC1014WG - highlighted with a
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red circle near Poolstock Brook) presenting a strategic advantage for

comprehensive data capture due to its central position within the network. The

Wigan network presents a good comparison with the linear networks of Sites 2

and 3 due to the area-wide positioning of the Bluetooth sensors within the road

network.
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Figure 4.8: Map of the Wigan network showing Bluetooth and ATC stations
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45.2 Estimation of traffic counts

Figure 4.9 presents the daily Bluetooth count for the period 3 -10"" September
2011 (inclusive) for all stations. A key assumption made in this study is that
there is daily consistency in the percentage of the detected Bluetooth-enabled
devices with variations across the different stations. Lower counts are also
expected during the weekend. An interesting observation is that traffic counts at
Stations 12, 14 and 18 on 10" September were systematically lower than the
3'd September at all stations despite both days being a Monday. This shows the
potential of Bluetooth to respond to changes in the network by capturing the
temporal changes in the traffic levels. The assumption is that any difference in
the observation represents the actual changes in traffic levels on the street.
Such changes were noticed on Friday (drop in flow below Station14) and
Saturday (rise in flow above Station12) at Station 21.
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Figure 4.9: Bluetooth daily count of devices at nine stations (stn) in Wigan

4.5.3 Travel time parameters

Araghi et al. (2012) proposed four statistical parameters to evaluate the

accuracy of travel time estimation using Bluetooth. The research showed that
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the minimum and median travel times provide more robust estimates of typical
route travel time compared to the maximum and the mean (Araghi et al, 2012).
However, since the minimum, maximum and mean travel times are all functions
of extreme values, this PhD research considered three additional parameters
namely: Twentieth Percentile, First Quartile and Third Quatrtile in order to
establish a richer understanding of travel times to enhance interpretation, and to
overcome the effect of extreme values. Overall, the results (Appendix 4C)
indicate that the maxima give a clear indication of the longest delay on the road
segment, while consistent with Araghi et al. (2012) and Araghi et al. (2013), the
median is considered the most robust and stable measure of travel times and
thus reflects the prevailing traffic conditions on the road. In the long-term study,
the mean and median travel time will be explored further for statistical
significance of the results.

4.5.4 Estimation of vehicle speeds

The speed of the captured devices was computed based on the methodology
described in Section 3.4.3. Figure 4.10 illustrates the average over eight days of
the distribution of speeds for the three major links within the network overlaid on
the study site area map to indicate location. The profiles are presented as line
graphs rather than as bar charts to allow for easy comparison with the
distribution of speeds for different links. Dual peak, which reflects the proportion
of traffic during the eight days at the particular location in the network was
observed. The first mode of the bimodal distribution reflects congestion with
speeds typically 10km/h and the mode at the higher level (35 - 50km/h) reflects
free-flow on the road. The highest flow level (25%) was observed on Link1412
in both directions, which can be attributed to the effect of the high levels of
cross-flows at the junction along the route. The least congested link was
Link1418 with a substantial number of vehicles on this link travelling at speeds
between 35 and 65km/h. The modal speed for Link1426 in both directions was
determined to be 45km/h, and is considered reasonable given the stated speed
limit (48km/h). With this information, appropriate control measures can be
implemented to optimise the flow of traffic in the network.
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On Links1214, 1814, and 2614, similar interpretation as described on the
opposing links above is given to the results. Overall, the similarities in the
profiles of the opposing links particularly on Link1412 and Link1214 means that
the same plan or strategy can be implemented to control the traffic on the links.
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Figure 4.10: Map of Wigan showing the distribution of speed across three links
(1412, 1418 & 1426) for each direction

4.5.5 Origin and destination analysis

Origin-destination analysis was carried out with Station 14 chosen as the critical
reference node due to its strategic location. One mode is considered at this
stage to test the research methods before extending the concept in the further
study. This station was considered strategic due to its central position forming a

nodal point for all the major routes. A “one-to-many” (defined as the estimation
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of link-flows from a reference station to all other stations in the O-D array). The
O-D matrix presented in Appendix 4D showing the flow levels alongside travel
times was generated based on the research method. From the results, the
highest number (38%) of all vehicles tracked at Station 14 was found at Station
18 while the least (1.9%) was tracked at Station 31. The highest and lowest
percentages of the vehicular total flow were also observed on these links but in
the opposing direction with 40% and 1.7% respectively. This is expected as
Station 18 leads to a commercial area while Station 31 is on a minor road not
directly linked either upstream or downstream to Station 14. With this type of
information, Bluetooth may be used in a variety of transport applications such

as planning and management.

4.5.6 Defining journey types using Bluetooth data

Table 4.9 shows the summary of the trip types classified based on the trips
made across the three major links, namely 1412, 1418 and 1426 identified
within the network. These links are considered very important because they
connect the network of the area to the M6 and Wigan North-Western Train
Station which as such are expected to be busier than the other links in the
network. “Out_unique” and “In_unique” as used in this context correspond to the
number of unique vehicles identified leaving for example, point A to B and from
point B to A respectively. The journey types are classified as either a single trip
or a round trip as earlier defined under the Birtley study (Section 4.3.2). The first
column under “count validation” gives the sum of out_unique and in_unique
while the second column gives the sum of single trip and 2 times the round trip.
The round trip is multiplied by 2 in this context to reflect the contributions from
the two opposing links. The small discrepancies observed on some days with a
maximum difference of six Bluetooth devices on 4" September on Link1426 is
attributed to the problem of non-uniqueness of MAC address or encription error
(See row 1 of an example data — Appendix 2B). Although these results are not
verified by any other method, they show Bluetooth potential for journey type

classification.
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Table 4.9 presents the analysis for the 8-day observations as presented in
columns 7 and 8. Link1426 showed the highest consistency in the count of
devices with a range of 0.5 between single trip to round trip ratio. Link1412 had
the highest range and a mean ratio corresponding to 1.6 and 3.9 respectively.
However, the least mean ratio was observed on Link1418, signifying the highest
amount of return journeys, thus indicating that this link probably has the highest
demand for local access in the area due to its proximity to a commercial area
and the train station (Ayodele et al., 2013). Consequently, the link was further
analysed to investigate the hourly count profiles for consistency over the

weekdays as presented in Figure 4.11.

Link
length Out_Unique | In_Unique | Singletrip | Round trip | Trips- | Mean- Count
Link (km) Date (Count/day) | (Count/day) |(Count/day) |(Count/day)| Ratio | Ratio Validation
03/09/2012 745 812 931 312 3.0 1557| 1555
04/09/2012 800 779 995 292 34 1579| 1579
05/09/2012 840 801 1069 286 3.7 1641| 1641
06/09/2012 817 741 984 286 34 1558| 1556
07/09/2012 595 649 860 192 4.5 1244| 1244
08/09/2012 352 374 492 117 4.2 726 726
09/09/2012 250 270 358 81 44 520 520
Link1412| 2.712 |10/09/2012 643 628 883 194 4.6/ 3.9 1271 1271
03/09/2012 2271 2431 2056 1323 1.6 4702| 4702
04/09/2012 2324 2448 2064 1354 15 4772 4772
05/09/2012 2309 2459 2128 1320 1.6 4768 4768
06/09/2012 2297 2385 2038 1322 15 4682 4682
07/09/2012 1747 1582 1755 787 2.2 3329 3329
08/09/2012 1467 1571 1330 854 1.6 3038 3038
09/09/2012 1040 1294 1146 594 1.9 2334 2334
Link1418| 1.284 |10/09/2012 1905 1858 1757 1003 18| 17 3763 3763
03/09/2012 1277 1303 1290 645 2.0 2580 2580
04/09/2012 645 688 665 337 2.0 1333| 1339
05/09/2012 1215 1247 1277 591 2.2 2462 2459
06/09/2012 1154 1211 1149 608 1.9 2365 2365
07/09/2012 1085 998 1137 473 24 2083 2083
08/09/2012 830 819 785 432 1.8 1649| 1649
09/09/2012 577 569 580 283 2.0 1146| 1146
Link1426| 2.700 |10/09/2012 1096 1168 1166 549 21 21 2264| 2264

Table 4.9: Summary of journey types on the top three busiest routes

The percentage hourly count of the profile of the Bluetooth devices presented in
Figure 4.11 and Figure 4.12 showed a high level of consistency between the
weekdays on both opposing links 1418 and 1814. The highest percentage flow
(about 12%) occurring at about 8-10am (morning peak) on Link1418 and 10%
between 2 — 4 pm on Link1814. The graphs showed the variation in the traffic

flow over the day that provides knowledge of when the section of the road may
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be congested. With this knowledge, traffic engineers and planners may begin to
put strategies in place to mitigate any impact arising from the traffic level at
those periods. From the analysis, the weekend distributions presented a clear
departure from the other weekdays as expected and, as a result, were analysed
separately. The information gathered was found to reveal patterns and
characteristics of the traffic such as high and low flows with a high level of
consistency even over the eight days of study both in terms of flow and speed.
This result thus demonstrates the value of Bluetooth useful traffic metrics for

traffic modelling performance evaluation for each link across the area.
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Figure 4.11: Bluetooth hourly count profile over the day for Link1418
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Figure 4.12: Bluetooth hourly count profile over the day for Link1814

4.6 Study Area 2: Stockport

The Bluetooth data for this study covered eight days. A similar analysis to the
Wigan study was performed by utilising the research method to demonstrate
reproducibility and transferability. This step provides the opportunity for a
preliminary validation of the results through repeatability. Figure 4.13 presents
the map of the Stockport network showing the nine Bluetooth stations
(MAC1033ST — MAC1041ST) and ATC (ATC1500 and ATC1013) locations.
Stockport (Study site 2) is a linear network on the A6 Buxton/London Road. The
characteristics of this study site contrast with the non-linear network-based ones
of Study site 1. Station MAC1033ST, which is located at the junction of
Nangreave/Aguinas College Road and Buxton Road leading to London Road,
was chosen as the reference point for Study area 2 in order to understand
whether the Bluetooth stations that are far apart have any influence on the
results. A key observation worthy of note in this study is that the two stations
furthest apart (MAC1033ST and MAC1041ST) have the least match records as
would be expected due to the possibility of vehicles making a detour between

O-D pairs. The results from this study site are presented in Appendix 4E, and
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were not reported further given that they are similar to the Wigan analysis and

added nothing additional.
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Figure 4.13: Location of Bluetooth sensors and ATC in the Stockport study site
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4.7 Study Area 3: Trafford

4.7.1 The Trafford network

Figure 4.14 presents the distribution of Bluetooth sensors and ATCs over Study
site 3, a longer linear network mainly embracing the A56 trunk road. Five
Bluetooth stations comprising MAC1001TR — MAC1005TR (where access to
data were first granted) were analysed to explore monthly variations over six
months for the period 15 October 2011 to 315t March 2012, as well as exploring
speed/flow relationships.
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Figure 4.14: Location of Bluetooth sensors and ATC in the Trafford study site

4.7.2 Understanding monthly flow levels

Having gained an initial understanding of the daily flow levels analysed in study
site 2, six months of 15-minute Bluetooth average flow collected were analysed
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to understand consistency and temporal variation. Table 4.10 presents the
monthly correlation analysis, while Figure 4.15 presents the profiles of the flow
showing a clear consistency over the period. However, temporal variations were
observed particularly at peak periods as expected. Flows in the months of
October, November and March are slightly above the average while the flows in
January, February, and December were slightly below the average flow. The
correlation analysis performed presents a better understanding of the monthly
flow. The highest correlation (correlation coefficient - 0.987) was reported
between the months October and November. The least correlation (correlation
coefficient - 0.971) between December and March is attributed to holiday in the
period. However, the range of the correlation coefficients (0.015) showed that
the difference is not significant. Therefore, the average flow over the period (six
months) may well be representative of a typical monthly flow level. The
consistency observed in the data from day to day and over months with a strong
positive correlation (r = 0.97) is indicative of a level of reliability in the data.
This consistency in the data is highlighted in the work of Biora et al. (2012). This

type of consistency is necessary for efficient traffic models to characterise the

network.
Jan Feb Mar Oct Nov Dec
Jan 1
Feb 0.982 1
Mar 0.976 0.974 1
Oct 0.979 0.986 0.981 1
Nov 0.984 0.986 0.980 0.987 1
Dec 0.985 0.978 0.971 0.976 0.979 1

Table 4.10: Correlation analysis for six months average flow in Trafford
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Figure 4.15: Average flow for six months (Oct 2011 — Mar 2012) at MAC1001TR
at Trafford

4.7.3 Estimation of the link volume

Table 4.11 presents the summary of the analysis of the detected devices from
Station MAC1001TR through Station MAC1005TR designated as Stations 1- 5
in the subsequent text. The second column presents the unfiltered MAC devices
detected at a station; while the third column shows the number of duplicates
present at each station. The column of the matched records presents the
number of the MAC devices detected at two consecutive stations. The filtered
column shows the number of unigue MAC devices captured at a station over
the day following the application of the boundary filtering condition, and the
exclusion of the duplicate records. The column of the link volume presents the
number of vehicles in each direction following a directional classification as
described in the methodology. The summation of the directional flows equals
the number of the filtered records in both directions. The results showed that the
traffic volume is greater in the opposite direction for all the links, which points to
the area of higher activities. The difference in flows was examined as shown in

Figure 4.16, which shows a typical flow on the link. Other matches carried out
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between Station 1 to Station 5 showed that the two detectors furthest apart
have the lowest match rate as seen on Link15. The reasons for this can be

largely due to drivers making use of the bypass and rat running in the network.

Filtered

. No of No of Link Link volume
Station , : Matched records . ,
unfiltered duplicate distance (No of Link
No records  records records  (6<V<120) (m) Vehicles/day)
(Vin Km/h)
1 4092 929
2 3628 773 2937 1,257 540.65 403;854 12
3 4142 881 4,279 1,875 278.05 669; 1,206 23
4 6546 1786 3,777 1,508 994.87 478;1,030 34
5 2996 495 3,767 1,858 726.09 626;1232 45
1 4092 929 1,172 586 2,539.66 172,414 15

Table 4.11: Summary of the link volume analysis over the Trafford network

Figure 4.16: MAC1001 located at the junction of Church Street, A56 Trafford

4.7.4 Understanding speed and travel time patterns

For the time-of-day speed distribution, links through Stations 3 to 5 are
designated 30mph (approximately 48km/h roads). It was observed that very few
vehicles violated the speed limit especially at midnight and between 12 noon - 2
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pm on Link34 (Figure 4.17). Despite the violations observed, this result shows a
high level of speed compliance in the area. On Link12, which is a dual
carriageway, a higher level of speed was observed (Appendix 4F) compared to
Link34. These types of results show that Bluetooth data can be used to infer
speed patterns within the network to aid policy formulation such as emission,
safety, and economic policies. Further statistical analysis of the travel time from
Station 1 to Station 2 shows that it is positively skewed with a value of 4.41, with
its mean and standard deviation as 63.67 and 42.94 respectively. The traffic
profile of Link12 shows the most populated cluster of vehicles at about 11-12
noon on the day signifying the most congested period along the stretch of the
road. Since congestion patterns are expected to be more pronounced during
the peak periods than in the off-peak, the pattern observed on this day may be
due to an incidence occurrence. Therefore, incident monitoring is another

possible application of Bluetooth.
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Figure 4.17: Speed distribution over hours of the day from Station 3 to Station 4
in Trafford

V34 is the speed from station 3 to 4.
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4.8 Conclusions

A description of the data collection for Bluetooth traffic metrics estimation was
presented. The description consisted of three pilot studies: Liverpool, Birtley,
and Greater Manchester all in the UK. The study conducted in Liverpool
showed that the quality of Bluetooth data is sufficient to estimate traffic metrics.
The Birtley study showed that Bluetooth has the potential to identify traffic
patterns through the analysis of trips of commuters. The Manchester study built
on the results from the Birtley study in an area-wide context to demonstrate
transferability. More Bluetooth matches were detected between closer stations
than stations farther apart as expected within an urban network that may at
times experience rat running or the use of side roads for other activities.
Generally, the Manchester study revealed higher traffic volumes in Stockport
and Trafford (Sites 2 and 3 respectively) compared to Wigan (Site 1). The
preliminary results obtained showed that Bluetooth could provide a viable
means of acquiring origin-destination information that has been difficult and
expensive to acquire in the past. The results also showed a high level of
consistency typified by strong positive correlation coefficient (r > 0.80). The
characteristics’ peak and off-peak nature of normal traffic were equally
observed in the data. This suggests the ability of Bluetooth data to represent the
actual traffic. The possibility of this application means that Bluetooth provides
the platform to acquire traffic data in a cost-effective way, thereby contributing
to the delivery of sustainable transport systems. At this stage, Bluetooth data is
believed to possess the potential for traffic management applications. The next
chapter discusses the validation of the results for large-scale applications based

on the concept of these pilot studies.
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Chapter 5. Validation of Results

5.1 Introduction

In Chapter 4, the preliminary analysis of Bluetooth data was performed on a
short-term scale to gain an initial understanding of the data quality and its
potential application in traffic metrics estimation. Chapter 5 builds on the pilot
studies presented in Chapter 4 with a specific objective of validating the results
obtained to establish the level of accuracy of the data. This is in fulfilment of the
Research Objective iv as stated in Section 1.4. The validation of the Bluetooth
results in this chapter utilises diverse independently measured traffic data
obtained from ATC, SCOOT, ANPR and Traffic Master (TM) In addition,
different validation techniques were used to assess the results from the long-
term study to ensure sound and robust judgement and maintenance of fit for
purpose concept. This is because there is a limited knowledge on the accuracy
and reliability of Bluetooth data conducted based on field tests. This validation is
also necessary because the available bespoke commercial software for
Bluetooth traffic metrics estimation is presently not accessible to the public.
Therefore, this chapter examines the question of whether Bluetooth data is
accurate enough to provide essential traffic metrics that include travel time and
speed. Hence, the following specific objectives are considered: i) calibration of
the traffic metrics estimation model (TRAFOST) developed in this research; ii)
validation of results using diverse independently measured traffic data; and iii)
modelling of the results using ARIMA models to understand the predictive
capability of Bluetooth data. The subsequent sections present the discussion of
the calibration and validation.

Chapter 5 has the following structure: Section 5.2 presents the calibration of
TRAFOST before the validation of the estimated metrics using independently
measured traffic data sets. This calibration is to ensure the validity of the model
outputs before any comparison of its results with other data sources. Three
steps contribute to the calibration namely i) the use of independent

computation; ii) the use of C2-Web outputs; and iii) cross validation using the
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model outputs. The validation of results using diverse measures of traffic data is
presented in Section 5.3. The analysis focused on the links where simultaneous
capture of Bluetooth and independent measurement of traffic data were
possible. In all, four specific links were investigated on a directional basis to
ensure better understanding and clarity of purpose on the use of Bluetooth data.
The estimated speed was further verified where possible using live traffic
information (example in Appendix 5A). Overall, the assessement is essential to
establish the validity of Bluetooth estimation by establishing its relatonship with
the “true” value. Section 5.4 presents the results of Bluetooth estimation based
on ARIMA models to conclude the validation process before conclusions are

drawn in Section 5.5.

5.2 Calibration of TRAFOST

5.2.1 Calibration of the model outputs against independent computation

This section describes the calibration of TRAFOST against an independent
computation utilising the Excel model (manual computation). The independent
checks introduced in the calibration is to detect and correct for any likely
difference or error in the TRAFOST-generated results. That is, the ability to
reproduce the independently generated results is a way of building proof into
the model. However, where necessary, consultations were made to TfGM and
TDC for clarifications of results. Table 5.1 presents the summary of such
comparisons. From the table, all the metrics from the two models present a high
level of precision with standard errors (0.298, 0.226, 0.095) for flow, journey
time and speed respectively. The maximum difference being: flow (5veh/hour),
which occurred during the peak period; journey time (4s); and speed (1km/h).
An important observation is that TRAFOST-derived metrics is consistently
higher throughout the day. This difference is attributed to approximations and
iterations in TRAFOST, and not the presence of systematic errors. TRAFOST is
adjudged to be correct due to the reproducibility of the previous results and the

day-to-day precision between the two methods of estimation.
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Manual Estimation TRAFOST Estimation Difference in Estimation
Period |Volume |Journey| Speed |Volume |Journey| Speed |Volume | Journey | Speed
(Hour) [ (Veh/h) [Time (s)| (km/h) | (Veh/h) |Time (s)| (km/h) | (Veh/h) | Time (s) | (km/h)
0 15 41 48 15 41 49 0 0 -1
1 5 43 44 5 43 44 0 0 0
2 3 35 53 3 35 54 0 0 -1
3 4 54 40 4 54 41 0 0 -1
4 10 51 42 10 51 43 0 0 -1
5 13 33 56 13 34 57 0 -1 -1
6 44 38 50 45 42 50 -1 -4 0
7 119 45 44 121 47 45 -2 -2 -1
8 136 52 38 137 53 39 -1 -1 -1
9 132 46 43 135 48 43 -3 -2 0
10 184 50 40 184 51 41 0 -1 -1
11 182 49 41 186 51 41 -4 -2 0
12 167 43 45 167 43 46 0 0 -1
13 158 46 42 158 47 43 0 -1 -1
14 192 51 40 197 54 40 -5 -3 0
15 168 56 36 170 57 37 -2 -1 -1
16 170 47 41 170 48 42 0 -1 -1
17 134 45 43 134 46 44 0 -1 -1
18 136 44 44 139 47 44 -3 -3 0
19 104 45 45 105 47 45 -1 -2 0
20 62 45 45 63 48 45 -1 -3 0
21 56 45 44 56 46 45 0 -1 -1
22 46 40 49 46 40 50 0 0 -1
23 12 38 50 12 38 50 0 0 0

Table 5.1: Results of the model calibration against independent computation

5.2.2 Calibration of the model against C2-Web outputs

Another assessment of the validity of the model developed in this research
considers a comparison of the model estimation of traffic counts with those
obtained from C2-Web. C2-Web is commercial software developed by
Drakewell/TDC used by TfGM for Bluetooth traffic analysis. A month of data
(July 2013) as available from the Wigan study area was used to carry out this
exercise. Wigan was used in this case primarily due to the configuration of the
road network connecting the Bluetooth stations (1022 and 1023) relative to the
validation station (ATC1074) as presented in Figure 4.8 (Section 4.5.1). Figure
5.1 presents the scatter plots and the adjusted R-squared of the weekday’s

traffic counts over the month. The results of the calibration showed that there is
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a strong positive relationship (r > 0.8) between the C2-Web software and
TRAFOST. An examination of the reason for the difference in estimation
showed that the C2-Web estimation was without exclusion of any Bluetooth-
enabled device. Notwithstanding, both software (C2-Web and TRAFOST)
showed a perfect agreement when compared on the basis of total devices
captured. Also, despite the observation in the C2-Web results, an independent
check has been provided for TRAFOST at the traffic count level.
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Figure 5.1: Calibration of TRAFOST against C2-Web count on Link2223 in
Wigan over July 2013

5.2.3 Cross-validation using journey time and speed results

In order to ensure a high level of reliability in the estimation, cross-validation
was incorporated into the verification exercise to reveal the presence of any
systematic errors in the estimation. This process serves as an external check
and by so doing building further proof into the process. In this case, journey

times and speed results were used to provide the proof given that journey time
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and speed curves are expected to produce a close reflection of each other. The
validity of this proof provides confidence in the estimated metrics. Also, cross-
validation is considered very useful as any mistake and/or systematic errors in
either of the metrics can be discovered thereby making the process robust. This
concept was extended to the examination of speed-time plot (Appendix 5B).
The speed-time graph is expected to produce a hyperbolic curve whose area
under the curve defines the distance travelled. That is, the distance travelled by
the individual vehicles or the average over time is expected to be approximately
equal to the actual link distance. The hyperbolic curve produced by the plot
conforms to the expectation, thereby building another level of confidence in the
estimation model. These theoretical concepts were all considered in the design
and verification exercise to further assess the accuracy and reliability of the
model and the derived metrics.

Figure 5.2 and Figure 5.3 show the hourly distributions of journey times and
speed over the month of July on Link3435 in Stockport. From the two graphs, it
Is evident that they both produce a mirror reflection of each other as postulated.
Both plots respectively captured the morning and evening peak periods with a
relatively uniform average journey time and speed over the weekend. The
highest journey time (52s) was observed on Monday over the morning peak
period corresponding to the lowest speed (38km/h). The graphs also showed
that the least travel time corresponding to the highest speed for the month was
observed over the early and late hours of the day as well as on the weekend.
The validity of the model outputs is further justified by the computed relative
absolute error of distance (absolute error/measurement) =~ 0.03%. This

shows that the chances of the measurements being in error is less than 1%.

Irrespective of the time taken, all vehicles are expected to travel a distance very
close to the link distance (0.511km). Figure 5.4 presents the profile of the
distance travelled averaged over hours of the day for the month of July 2013.
The 95% confidence limit for the distance is 0.514 to 0.519. Based on the
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0.511km actual link distance, the result obtained over the month is accurate to
1cm level of accuracy both on an hourly and daily basis. The high level of
accuracy and precision obtained gives another level of confidence and reliability
to the model and the estimated metrics. The next step considers the use of
independently measured traffic data for results validation.
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Figure 5.2: Profile of Bluetooth average journey time overlaid with 95%
confidence limit over July 2013 in Stockport
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Figure 5.4: Profile of distance travelled overlaid with 95% confidence limit over
July 2013 in Stockport

5.3 Validation of Results against Independent Measures of Traffic Data

5.3.1 Validation of flow

This section presents the results of Bluetooth estimated flow validated against
the flows measured by three other independent data collection systems (ATC,
SCOOT and ANPR) to understand their relationships. The question here is
whether Bluetooth can be used to reliably reconstruct the traffic patterns and
trends observed in the established systems. As a start, scatterplots and other
descriptive statistics were carried out to assess both the direction and strength
of the relationships between the traffic flow data collected by Bluetooth, ATC
and SCOOT over the weekdays. Table 5.2 presents the coefficients of the
correlation analysis performed on the weekday flows for the three variables in
both directions, for Stockport and Wigan validation stations. Generally, the
analysis of the link flows comparison showed that a strong positive correlation
(r = 0.80) exists between SCOOT/ATC/Bluetooth flows from day-to-day. This
means that where there is no actual flow, Bluetooth data could be used as a
proxy measure or to augment the historical data to avoid network failure. Given
ATC, the strength comparison over Link3435 and Link3637 showed that higher
correlation was observed on Link3637 compared to Link3435 in both directions.

Also, Bluetooth/SCOOT presented a stronger relationship due to the values of
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correlation coefficient compared to Bluetooth/ATC. This result suggests a better
performance with SCOOT compared to ATC. The difference is attributed to the
spatial location of the SCOOT and ATC detectors relative to the Bluetooth
stations. However, the focus of this analysis is not on SCOOT/ATC comparison,
The SCOOT links are positioned upstream and downstream of the link close to
the Bluetooth locations while the ATC detectors are positioned in-between the
two ends of a link. In Wigan, the results obtained (R? = 0.77 — 0.82) are very
similar and are comparable in both directions meaning the same level of

confidence can be placed on the observations.

Adjusted R-Square Based on Location and Variables
Stockport, Stockport, Stockport, Wigan,

BT3435T/ATC1500|BT3435T/SCOQOT3435T| BT3637T/ATC1013 |BT2223T/ATC1074
Weekday| NW SE NW SE N S SE NW
Mon 0.73 0.77 0.91 0.83 0.81 0.79 0.81 0.79
Tue 0.74 0.76 0.92 0.84 0.81 0.76 0.79 0.81
Wed 0.65 0.67 0.91 0.82 0.79 0.73 0.79 0.79
Thu 0.66 0.71 0.9 0.87 0.8 0.78 0.79 0.81
Fri 0.78 0.78 0.91 0.86 0.78 0.78 0.79 0.82
Sat 0.78 0.76 0.83 0.82 0.78 0.78 0.82 0.79
Sun 0.78 0.78 0.88 0.86 0.80 0.80 0.77 0.80

Table 5.2: The adjusted R-square showing the strength of relationship over

weekdays in Wigan and Stockport validation stations

Table 5.3 presents the adjusted R-square values between Bluetooth and ATC
over weekdays in Trafford on Link0506 in both directions. The results of the
validation showed a strong positive relationship over the days with the
adjusted R? values ranging from 0.713 — 0.914 for weekdays. The highest value
was observed on Saturday (0.914) and the lowest on Tuesday (0.874), giving
the knowledge of the level of variability in the weekday flow. The degree of the
variability in the data will be explored in the next chapter (Section 6.2.3). The
combined directional flows presented higher correlation coefficients, thereby
suggesting a better result compared to directional-based analysis and may be
preferable. However, total directional flows present less information regarding
the level of service (LOS) each way compared to directional flow estimation.

Overall, the coefficient of correlation, which explains the amount of variation in
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the data, coupled with the scatter plots, showed that both data sets are strongly
positively correlated. Further analysis of the estimated flows showed that
observations taken in two directions can be used to reduce systematic errors as
noted by Cooper (1974). The significant increase in the correlation coefficients
as observed from Table 5.3 confirmed the validity of this principle in reducing
systematic errors. Thus, it is argued that estimation based on total directional
flow is preferrable if errors in the estimated metrics are to be minimised. This
means that in a network of similar characteristics, directional estimation may not
be the preferred option because it may not give any added advantage and could
be a waste of resources. Overall, the strong positive relationship between
Bluetooth and ATC flows over the Trafford network is consistent with the Wigan
and Stockport networks, which is indicative of consistency and the possibility of

reliable traffic measurement.

Adjusted R-Square

Combined
Variables | Weekday | Southbound | Northbound | Direction
BT/ATC [Mon 0.724 0.766 0.889
BT/ATC |[Tue 0.713 0.763 0.874
BT/ATC |Wed 0.718 0.758 0.881
BT/ATC |[Thu 0.724 0.759 0.883
BT/ATC |Fri 0.753 0.778 0.891
BT/ATC |Sat 0.805 0.811 0.914
BT/ATC |Sun 0.768 0.763 0.894

Table 5.3: The adjusted R-square values between Bluetooth (BT) and ATC at

the Trafford validation station

In order to reach a valid conclusion, the flow was further analysed. Initially, a
month’s worth of data was analysed over the Greater Manchester Network
(GMN) for this purpose. This was later extended to twelve months to examine
monthly consistency and any seasonal variation. To explore these data sets,
the function “timeVariation” in the R package “openair” (Carslaw and Ropkins,
2012) was adapted to produce four different plots, showing the normalised

traffic metrics over four different dimensions to examine temporal consistency.
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A normalised time series is presesnted to enable comparison between the two
data sets. After standardisation, the aggregation of the data is as follows: i)
hourly-weekday (top), ii) hourly (bottom-left), iii) monthly (bottom-middle) and iv)
weekday (bottom-right). Figure 5.5 presents the combined plot of Bluetooth and
ATC flows to understand their relationships. Interestingly, the day-to-day
consistency in the patterns observed in ATC was also evident in the Bluetooth
estimation. This consistency includes the capturing of the peak and off-peak
periods as well as the weekdays/weekend variations. The absence of
coincidence in the results and the consistency in replicating the actual traffic
characteristics further highlight the credibility of Bluetooth data.
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Figure 5.5: Hourly-weekday time series plot of Bluetooth and ATC flows over a
year on Link0506 in Trafford (N = 33,646)

Given the similarity in the weekdays’ plots and the fact that variabilities are
observed over the peak period, a typical weekday’s (Monday) average is further
analysed and presented below (Figure 5.6) for a better understanding of the
relationships between the two data sets. Figure 5.6 presents the normalised
profiles of the Bluetooth/ATC flows, showing a high level of precision between
the measured flows over the off-peak periods of the early and late hours of the
days. However, between the hours of 7am to 6pm, variability is evident from
day-to-day and over the months. Further analysis of the results showed that the
proportion of Bluetooth to ATC on average is 14%. The histogram and normal
plots (Appendix 5C) showed that the distributions are not normally distributed.
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Therefore, the Mann-Whitney test (Wilcoxon test), the equivalent of a t-test was
employed. The test result showed that the Bluetooth estimated flow is not
statistically significantly different from the ATC measured flow at (alpha =0.05)
with a p-value of 0.7807 for the test, N1 = n2 vs n1 # n2 and CI (-0.462, 0.419)
for n1 - n2 for a point estimate of 0.041. As a final step, the Kullback-Leibler
divergence (KL-D) was computed for the whole data over the year using the
package “entropy” in R to compare the closeness or separateness of the
distributions. The KL-D value (0.0272) alludes to the closeness of the
distributions of the two data sets. Similarly, Figure 5.7 presents the SCOOT flow
equivalent showing the normalised hourly flows over the weekday in the NW-
direction. For holistic assessment, the combined plot of the directional flows
from Bluetooth, SCOOT and ATC is presented in Figure 5.8. Additional results
such as the opposing directional flow profiles and scatter plots for
Bluetooth/ATC/SCOOQOT are presented in Appendix 5D. In a nutshell, combining
the results from ATC, SCOOT and Bluetooth has led to increased

understanding and conviction on Bluetooth-derived flows.
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Figure 5.6: Normalised profiles of Bluetooth and ATC hourly flows (all Mondays)
in November 2013 on Link0506 in Trafford (N=24)
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Figure 5.7: NW-directional flow time series profiles of SCOOT and Bluetooth in
Stockport (N=2976)
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SCOOT on Link3435 over 2013 in Stockport (N=18761)
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Figure 5.9 presents the time plot of Bluetooth and ANPR flows to assess the
relationship between the two variables. Appendix 5E presents the descriptive
statistics for flow, journey times and speed for both ANPR and Bluetooth. Unlike
the journey time and speed results presented in the subsequent sections, the
flow comparison showed a poor correlation (R? = 0.23) between Bluetooth and
ANPR. This is primarily due to the data sample — one day of observations, and
the temporal dimension used. However, the resultant difference in the trend
particularly over the morning hours of about 7 am — 10 am may be due to other
factors given that the corresponding estimated journey times and speed are
strongly correlated with the ANPR measurements. However, the detection rate
from the two flows (12%), falls in the range of the detection rates obtained from
both ATC and SCOOT comparison. Detailed discussions on detection rate are
presented in Chapter 6 (Section 6.5). While there is a poor correlation between
the Bluetooth and ANPR flow data, at this level of the analysis, a conclusion
cannot be drawn given that only one-day data was available for the analysis.
However, the consistency of the detection rate with SCOOT and ATC-derived
rates suggests that with a large sample, there is a possibility of Bluetooth/ANPR
augmentation. Table 5.4 presents the summary of the quantitative assessment

of Bluetooth flow.
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Figure 5.9: Time plot of Bluetooth and ANPR flows of 3" April 2014 on Link7170
in Stockport (N=48)
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Metrics Point estimate Cl P-value | KL-D N Link
Normalised

Bluetooth/ATC Flows 0.04 (-0.462,0.419) 0.781 | 0.027 24 0506
Bluetooth/ATC Flows 19200 | (-206.00-175.00) | 0.000 | 99?8 | 384 | 3534
Bluetooth/ATC Flows -197.00 (-210.00,-166.00) | 0.000 | 0.022 384 3435
Normalised

Bluetooth/SCOOT Flows -0.06 (-0.4708,0.1977) | 0.452 | 0.025 24 3435
Bluetooth/SCOOT Flows -129.00 (-148.99,-102.00) | 0.000 | 0.027 384 3534
Bluetooth/SCOOT Flows -112.00 (-132.00,-84.00) 0.000 | 0.044 384 3435
Bluetooth/ANPR Flows -40.00 (-44.00,-36.00) 0.000 | 0.043 48 7170

Table 5.4: The summary of flow validation using IMTD

5.3.2 Validation of journey times

Two sets of IMTD (TM and ANPR) are considered in this section. For a quick
exploration, Appendix 5F presents the boxplots of both TM and Bluetooth-
derived journey times on four routes where data were available for validation in
Stockport (A6) and Trafford (A56) in both directions. From the exploration on
the A56, the journey times are comparable for both technologies (Bluetooth and
TM) showing that Point 33 is an outlying point. On the A6, the SE-bound
journey times presented more outlying points as observed in both Bluetooth and
TM than in NW-bound, which has in both cases Point 57 as an outlier. Less
time is spent along the SE (40s — 50s) compared to NW (40s — 75s). On the
other hand, correspondingly similar travel times in the range of 70s — 140s for
TM and 78s — 112s for Bluetooth were spent on route A56 in both directions
and were both higher than the A6, as will be expected given that it is about
twice the length of the A6.

Figure 5.10 presents the scatter plots of Bluetooth against TM journey times on
four routes over GMN. The scatter plots present a quick appreciation of both the
direction and strength of the two variables to understand the relationship

between them. A visual inspection of the graph indicates that all the routes are
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positively correlated with a stronger relationship on the A6 compared to the
A56. Table 5.5 shows the values of the adjusted R? for both journey times and
speed on the four routes. A further analysis of the routes on weekdays/weekend
basis as observed from the table showed that weekdays performed better than
weekends in terms of correlation. This observation is connected with the low
sample rates on weekends given that both technologies (Bluetooth and Traffic
Master) presented samples of the total traffic thereby leading to a low count
rate. In both the A6 and A56, the NW/SW-bound analysis presented a better
match compared to the SE/NE-bound equivalent. This shows that the
observations from the NW/SW flow are more reliable than the SE/NE flows.
Following this exploration, the next step considers the time plots of the data to
understand spatial relationships.
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Figure 5.10: Scatter plots of Bluetooth against TM journey times on four routes
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Adjusted R-Square | Adjusted R-Square

(Journey Times) (Speed)
Route |[Direction| Location |Weekdays |Weekend |Weekdays |Weekend
A56 NE Trafford 0.7826| 0.4202 0.8267| 0.4925
A56 SW Trafford 0.9231| 0.6039 0.7779| 0.4875
A6 NW Stockport 0.9376| 0.8339 0.9228| 0.8043
A6 SE Stockport 0.8805| 0.6788 0.8933| 0.6480

Table 5.5: The adjusted R-square values between Bluetooth and Traffic Master

validation for journey times and speed comparison

Figure 5.11 presents the time series plot of journey times for Bluetooth and TM
across the A6 route in Stockport. The results of the Trafford network are
presented in Appendix 5F. The first section of the plot shows the journey times
on weekdays in the NW direction while the second section of the NW series
presents the weekend journey times. Obviously and as expected, the
weekdays’ travel times are higher and with higher variability due to a higher
volume of traffic than on the weekend. Similarly, in the SE sections of the
profiles, travel times are higher and with higher variability over the weekdays
(first part) than the weekends (second part — last section). One key observation
is the similarity in trend between the two sensors as observed by Quayle et al.
(2010) and Haghani et al. (2010). However, dissimilarity in trend can be
observed at some points in the series, which may be due to a limitation in
Bluetooth. Therefore, a quantitative analysis technique was employed to reach
a logical conclusion. Table 5.6 presents the summary of the quantitative
analysis showing that there is no statistically significantly difference between the
two distributions of Bluetooth and TM journey times. The next discussion is
focused on the validation of Bluetooth journey times using ANPR

measurements.
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Figure 5.11: Profiles of Bluetooth and TM journey times over six months by
Routes in Stockport (N=96)

Figure 5.12 presents the boxplots of both ANPR and Bluetooth journey times on
Link7170 in Stockport. The exploratory analysis shows that Bluetooth-derived
journey times compared well with the ANPR in many respects such as in
skewness (positive — mean greater than the median journey times) of the data
and interquartile range (35s — 37s). The similarity in the results as observed by
Stevanovic et al. (2015) is very interesting giving another level of credence to
Bluetooth application in traffic management. Further appraisal of the similarity in
the results through scatter plots (Appendix 5G), showed that Bluetooth and
ANPR are positively strongly correlated for journey times (R? = 0.71). Figure
5.13 presents the time plot of the two data sets. The observation started at 7am
and ended at 7pm. The journey times for the observations fluctuate between
50s and 200s. From the plot, although there is similarity in trend, variability is
much more pronounced than ANPR, over the hours of 3pm — 5pm with
intermitent over/under-estimation of travel time. To conclude the analyis, a
Mann-Whitney test was performed to understand if there is any significant
diference between the two distributions. The test results (point estimate 14.0
and CI (6.0,22.99) - overlap) showed that the two groups are not statistically
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significantly different from each other at « = 0.05. The KL — D (0.006) also
showed that the two distributions are similar and are closely related (see Table
5.6 for the summary of journey times validation). In conclusion, it is evident from
all the tests conducted that Bluetooth is accurate enough to be used to estimate

travel time.
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Figure 5.12: Boxplot of Bluetooth and ANPR journey time of 3" April 2014 on
Link7170 in Stockport

Metrics Point estimate Cl P-value KL-D N Link
Bluetooth/ANPR

Journey Times 14.00 (6.00,22.99) 0.001 0.006 48 7170
Bluetooth/TM

Journey Times 0.94 (-1.001,2.751)| 0.261 0.004 96 A6

Bluetooth/TM

Journey Times -4.00 (-7.55,-0.73) 0.015 0.006 96 A 56

Table 5.6: Summary of journey times validation based on IMTD
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Figure 5.13: Time plot of Bluetooth and ANPR journey times of 3" April 2014 on
Link7170 in Stockport (N=48)

5.3.3 Validation of speed

Figure 5.14 presents the time plot of Bluetooth and TM speeds in both
directions (NW and SE) in Stockport. The first section of NW and SE represents
the weekdays speed while the second section represents the weekend speed.
Across the groups, the speeds fluctuate between 15km/h and 55km/h typifying
periods of free flow and congestion. Also, the speed distribution is higher on the
A6 with lesser variability compared to the opposing link speed. The weekend
speeds are higher in both directions as would be expected. Table 5.7 presents
the summary of the quantitative analysis showing that there is no significant
difference between the two distributions of Bluetooth and TM journey speeds.
The next discussion is focused on the validation of Bluetooth journey times

using ANPR measurements.
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Figure 5.14: Profiles of Bluetooth and TM speed over six months by Routes in
Stockport (N=96)

Figure 5.15 presents the time plot of Bluetooth and ANPR speeds for
observations starting from 7am — 7pm on 3™ April 2014. The highest variability
between the two series occured between 3pm — 6pm. The journey speed for the
observations fluctuates between 10km/h and 35km/h. From the plot, although
there is similarity in trend as well as evidence of strong correlation (R? = 0.71),
variability is much more pronounced than ANPR, over the hours of 7am — 10am
with occasional over/under-estimation of journey speed. To conclude the
analyis, a Mann-Whitney test was performed to understand if there is any
significant diference between the two distributions. The test results (point
estimate (-2.0), CI (-3.0,001) - overlap) showed that the two groups are not
statistically significantly different from each other at « = 0.05. The KL — D
(0.006) also showed that the two distributions are similar and are closely
related. Table 5.7 presents the summary of the test statistics. Summarily, the
test results showed that Bluetooth is sufficiently accurate to be used for the

estimation of speed.
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Figure 5.15: Time series plot of Bluetooth and ANPR speeds of 3 April 2014
on Link7170 in Stockport (N=48)

Metrics Point estimate Cl P-value | KL-D N Link
Bluetooth/ANPR

Journey Speed -2.00 (-3.000,-0.001)| 0.028 0.006 48 7170
Bluetooth/TM

Journey Speed 6.00 (4.000,8.000) 0.000 0.006 96 A6

Bluetooth/TM

Journey Speed 7.00 (6.000,8.000) 0.000 0.005 96 A 56

Table 5.7: Summary of journey speed validation using IMTD

5.3.4 Validation of O-D matrix

For the O-D matrix, six months of Bluetooth data (April — September 2013) were
analysed over the three networks in Greater Manchester for day-to-day
consistency. Across the networks, over 6,000 O-D matrices generated using
TRAFOST were analysed. The day-to-day correlation analysis between the
matrices showed a high level of positive relationship between the days over the
six months. This shows the potential of Bluetooth to support the delivery of O-D
matrices using low-cost sensors as demonstrated by Blogg et al. (2010) and
Barcel6 et al. (2012). Table 5.8 presents an example of such correlation
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analysis. One interesting thing from this result is the high value of the
correlation coefficients compared to those obtained from the link flows.
However, this is expected given that the O-D matrix correlations were computed
from larger samples compared to the link flows. The next step considers the
predictive capability of Bluetooth traffic estimation using the ARIMA models to

finalise the validation.

Sun Mon Tue Wed Thu Fri Sat
Sun 1
Mon 0.96 1
Tue 0.93 0.98 1
Wed 0.96 0.96 0.96 1
Thu 0.87 0.95 0.97 0.91 1
Fri 0.96 0.98 0.96 0.98 0.94 1
Sat 0.89 0.96 0.97 0.94 0.96 0.95

Table 5.8: Correlation analysis over weekdays in the Wigan network

5.4 ARIMA Modelling of Bluetooth Traffic Metrics

5.4.1 Modelling of flow data

After data splitting, the training and testing samples for flow consist of 26,188
and 6546 data points respectively. Figure 5.16 presents the time series plot of
the training sample based on a daily average (for clear visualisation) on
Link0506 in Trafford. The same approach was adopted for the processing of the
journey times and speed data. The exploration of the flow plotted in Figure 5.16
shows that the mean and variance are not constant (changing with time) due to
some sparks, and there is a visible cut off between the first day and 100" day.
The exploration also shows that the data exhibit trend and seasonal effect. The
presence of sparks and the lack of decay in the plots of autocorrelation function
(ACF) and partial autocorrelation function (PACF) (Figure 5.17) portray trend
and seasonality. Therefore, a first order regular difference was performed to
make the data stationary, and a logarithm transformation to improve the
performance of the prediction. The expectation at this level is a model of form

(p, 1, q). Figure 5.18 presents the residuals plot of flow after first difference and
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logarithm transformation showing that the residuals are distributed about the

mean, zero although with few sparks.
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Figure 5.16: Time series plot of Bluetooth flow on Link0506 in Trafford
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Figure 5.17: Plots of ACF and PACF from Bluetooth flow on Link0506
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Figure 5.18: Time series plot of residuals of flow after log and first difference

transformation

To determine the optimum parameters for the model, the ACF and PACF plots
were used as guides. Exploring the plots, the cut off after the first lag in the ACF
plot suggests that the AR parameter, p should be zero (0) while the MA
parameter, q should be greater than or equal to 1. As a start, a model of the
form ARIMA(0,1,1)(0,1,1) of period 12 was postulated due to the presence of
seasonal variation. Other combinations were explored, including the use of the
auto function in R to determine the best model (i.e the most probable predictive
model —MPPM). Given the least AIC, a model of the form (0,1,2) with a
seasonal component is considered the most parsimonious and adequate model.
This model not only presents the least MAE (0.147), MAPE (4.917) and MASE
(0.790), but also an RMSE (0.195) comparable to the least value (0.191) among
the groups. The MAPE value shows that normally, the forecast will capture 95%
of the trend (i.e. 95% accuracy level), and will possibly be off by approximately
5%. Given that the MASE is less than 1 also shows a good performance.
However, a MASE of 1.3 was proposed in a competition as a cut-off point
(Hyndman, 2006). A portmanteau test to check for the randomness or

autocorrelation of the residuals returned a p-value (0.824) which suggests that
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the residuals are white noise. Consequently, this model was used to make
predictions. Figure 5.19 presents the visualisation of the training data with the
prediction. Table 5.9 presents the postulated models with their corresponding

accuracy statistics.
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Figure 5.19: The log of flow and the prediction overlaid with 80% and 95%

confidence limits

Forecast Series AIC ME RMSE | MAE MPE MAPE | MASE
ARIMA(1,0,1)(1,0,1) | -152.26| -0.002| 0.191| 0.150| -0.521| 5.043| 0.811
AUTO.ARIMA(1,0,3)| -126.77| 0.000f 0.199| 0.162| -0.455| 5.426| 0.876

ARIMA(0,0,1) -123.18| 0.000| 0.202| 0.165| -0.445| 5.507| 0.890
ARIMA(1,1,1) -95.90( 0.123| 0.208] 0.171] -0.051| 5.694| 0.923
ARIMA(1,0,2) -127.78| 0.000| 0.199( 0.164| -0.455| 5.463| 0.883

ARIMA(0,1,2)(0,1,2) | -70.00| -0.024| 0.195| 0.147| -1.152| 4.917| 0.790

Table 5.9: Forecast series and accuracy statistics for flow

5.4.2 Modelling of journey time data

The training and testing samples used consist of 537,226 and 134,304 data

points respectively after splitting. Figure 5.20 presents the time series plot of the

training sample (daily average) on Link0506 in Trafford. The exploration of the
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journey time data shows the evidence of trend and seasonal effect. The
presence of sparks and slow decay in the plots of ACF and PACF (Appendix 5H
and Figure 5.21) portray trend and seasonality. Therefore, a first order regular
difference was performed to make the data stationary, and a logarithm
transformation to improve the performance of the prediction. The expectation at
this level is a model of form (p, 1, q). Figure 5.22 presents the residuals plot of
journey times after first difference and logarithm transformation showing that the

residuals are distributed about the mean although with few sparks.
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Figure 5.20: Plot of Bluetooth journey time on Link0506 in Trafford (N=365)
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Figure 5.21: Plots of ACF and PACF of Bluetooth journey times on Link0506

after first difference and log transformation

o ™
E (]
- _
@
E o
3 21
I _|
[15]
@ o
5 9 7]
‘n
[1}] —
o
I
o -
! I I I I
0 100 200 300
Time

Figure 5.22: Residuals of journey times after log and first difference

transformation

As with flow, a model of the form ARIMA(0,1,1)(0,1,1) of period 12 was
postulated due to the presence of seasonal variation and the behaviour of the

ACF and PACF plots. Other combinations were also explored to determine an
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optimum model based on the least AIC. A model of the form (0,1,1) with a
seasonal component presents the least AIC (-818.23). However, the outcome of
the portmanteau test p-value (0.768) suggests the adoption of the model of form
(0,1,2) with a seasonal component having an AIC value (-842.45). This model
also has a better MAE (0.050), MAPE (1.073) and MASE (0.946), but also an
RMSE (0.069) compared to the model with the least AIC. The MAPE value
shows that less than 2% of the forecast will possibly be in error. Given that the
MASE is less than 1 also shows a good performance. Summarily, all the
computed accuracy statistics suggest the validity of the model. Consequently,
this model was used to make a prediction. Figure 5.23 presents the
visualisation of the training data with the predicted journey times. Table 5.10

presents the postulated models with their corresponding accuracy statistics.
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Figure 5.23: Plot showing the log of journey times and prediction overlaid with
80% and 95% confidence limits
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Forecast Series AIC ME RMSE | MAE MPE | MAPE | MASE
ARIMA(0,1,1)(0,1,1) |-818.23| 0.000f 0.071| 0.053| -0.154| 1.130( 0.996
AUTO.ARIMA(2,1,2) | -889.80| -0.002| 0.068| 0.049| -0.064| 1.048| 0.926

ARIMA(0,1,1) -879.50| -0.002| 0.071] 0.052| -0.055| 1.109| 0.980
ARIMA(1,1,1) -894.91| -0.003| 0.069| 0.050| -0.071| 1.065| 0.941
ARIMA(0,1,2) -897.82| -0.002| 0.069| 0.050| -0.069| 1.060| 0.936

ARIMA(0,1,2)(0,1,2) | -842.45| -0.001| 0.069| 0.050( -0.025| 1.073| 0.946

Table 5.10: Forecast series and accuracy statistics for journey times

5.4.3 Modelling of speed data

The training and testing samples used for the modelling of the estimated speed
consist of 537,226 and 134,304 data points respectively after splitting. The
same procedure described in the modelling of the journey time was followed.
The exploration of the speed data also revealed the presence of trend and
seasonality as would be expected, and as is the case with the estimated
journey time. Figure 5.24 presents the residuals plot of speed after first
difference and logarithm transformation showing that the residuals are
distributed about the mean although with few sparks. This observation from the
residuals plot points to the practicality of modelling the estimated speed. Also,
as with journey times, a model of the form ARIMA(0,1,2)(0,1,2) of period 12 was
adopted following a series of combinations to determine the optimum model.
This model presents the second least AIC (-1186.73), (the least being -1125.43)
from the model of form ARIMA(0,1,1)(0,1,1),,. Despite the similarities in the
accuracy statistics between the two models, the preference was due to the
outcome of the portmanteau test with a p-value (0.668), which suggests the
randomness of the residuals and the adoption of the model. A key observation
is that the selection criterion or the use of auto.arima to determine the best
model may also require personal judgement to determine the optimum model.
From the selected model, the MAPE value (0.822) shows that less than 1% of
the forecast will possibly be in error. Also, given that the MASE is less than 1
this suggests a good performance. Summarily, all the computed accuracy

statistics are small (close to zero) which points to good performance of the
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model. Table 5.11 presents the postulated models and their corresponding

accuracy statistics, while Figure 5.25 presents the visualisation of the training

data with the prediction made using the adopted model. Other results including

the modelling of the data on a monthly basis are presented in Appendix 5I.

Overall, the high level of accuracy obtainable using Bluetooth estimated speed

is a significant benefit given that Bluetooth is a low-cost sensor. Therefore,

using Bluetooth in this way can contribute to achieving better transport through

technology.
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Figure 5.24: Plot of residuals of speed after logarithm and first difference

transformation

Forecast Series AIC ME RMSE | MAE MPE | MAPE | MASE

ARIMA(0,1,1)(0,1,1) | -1125.43| 0.002| 0.045| 0.035| 0.049| 0.913| 0.955
AUTO.ARIMA(2,1,2) | -1288.77( 0.001| 0.041| 0.031| 0.009| 0.833| 0.869
ARIMA(0,1,1) -1215.73| 0.001| 0.045| 0.036] 0.008| 0.941| 0.982
ARIMA(1,1,1) -1261.71| 0.001| 0.042| 0.033| 0.011| 0.883( 0.921
ARIMA(0,1,2) -1274.44( 0.001| 0.042| 0.033] 0.012] 0.868| 0.906
ARIMA(0,1,2)(0,1,2) | -1186.73| 0.002| 0.041| 0.031| 0.044| 0.822| 0.858

Table 5.11: Forecast series and accuracy statistics for speed
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Figure 5.25: Plot showing the log of flow and the prediction overlaid with 80%

and 95% confidence limits

5.4.4 Model validation of flow

This section presents the validation results using the test data based on flow
estimation to conclude the assessment. Figure 5.26 to Figure 5.28 present the
time plot, density plot, and the normal distribution plot of the validation results.
Although the forecast seems to be under-estimating with a lower density and
wider spread, the quantitative analysis showed that the difference is not
significant. The correlation analysis between the forecast using the training data
set and the validation using the test data set gives 0.824 with a p-value = 0.000
showing the significance of the result. In addition, the Mann-Whitney test and
95% confidence interval give a point estimate of -1.280 and CI (-2.073, -0.625),
and the test statistic is significant at 0.0007. The results show that the two
distributions are not statistically significantly different at o« = 0.05 confidence
level. The value of KL-D (0.0015) further buttressed the results. Overall, the test
data produced the following accuracy statistics: RSME =0.193077; MAE=
0.145761 MAPE= 4.89 with a p-value = 0.5858 for the portmanteau test which

signifies the validity of the estimation.
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Figure 5.26: Plot of forecast and validation (test) data
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Figure 5.27: Density plot of forecast (red) and validation (black)
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Figure 5.28: Normal probability and 95% confidence Interval plot of forecast
(red) and validation (black)

5.5 Conclusions

This chapter presents the results of the validation exercise carried out in this
research. The assessment started with the calibration of the estimation model
(TRAFOST) developed in this research to maintain the concept of fit for
purpose. This step was followed by the validation of the estimated metrics
against the independent measures of traffic. The validation concludes with
ARIMA modelling and forecasting to understand the predictability and validity of
the estimation. The exploratory and quantitative analysis techniques employed
ensured that a robust validation was performed. The outcome of the Mann-
Whitney-Wilcoxon test, Kullback-Leibler divergence as well as the forecast
accuracy statistics for flow, journey times and speed showed a high level of
precision and accuracy given a 95% confidence level. The overall result implies
the validity and practicality of the estimation — that is the possibility to derive
performance measures such as journey times and vehicle speeds, to enhance
traffic management using Bluetooth. Not only that, the forecast accuracy

suggests a possibility of predicting the future traffic state as well as data
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augmentation to realise enhanced traffic planning and management. It is noted
that only the range of conditions covered limits the resulting generalisation in
this validation. It is to be noted that the validity of the O-D matrix validation will
require further analysis to reach a logical conclusion. Therefore, validation and
testing need to be conducted to investigate whether the same generalisation
holds for data in other locations and for other related metrics such as the O-D
matrix and density. Interestingly, the results obtained agree with the findings
from the previous research. The next chapter considers the variability in the
estimated metrics to enhance the knowledge of the data usage and to avoid

invalid judgement and conclusion.
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Chapter 6. Exploring Variability in Bluetooth-Derived

Traffic Metrics

6.1 Introduction

Chapter 6 builds on the validation presented in Chapter 5 by investigating the
variability in the estimated metrics to ensure a valid statistical underpinning
(Research Objective number v). The understanding of this important factor in
Bluetooth is considered essential to ensure reliability, given that a number of error
sources can influence the estimated metrics, in particular, the variability relating
to the long-term variation in order to understand practicality. Consequently, this
chapter considers the following specific objectives: i) investigation of possible
reason(s) for over/under-estimation (that is, the issue of over/under-sampling
which may be due to outliers); ii) understanding of consistency and the modelling
capability of the data; iii) examining daily/weekday temporal changes to
understand the reliability of the metrics; and iv) understanding of any long-term
variation. Therefore, the Bluetooth data collected over the Trafford network on
Link0506 were analysed for this purpose using a combination of exploratory and
quantitative analysis techniques. Accordingly, the variability in the Bluetooth
derived metrics and its significance to ITS applications in road traffic

management was explored.

This chapter is structured as follows: Sections 6.2, 6.3 and 6.4 consider the
variability in the Bluetooth estimated metrics (flow, journey time and speed,
respectively) with a focus on over/under-sampling, the issue of consistency and
the modelling capability of Bluetooth and the day-to-day and long-term dynamics
in the estimated metrics. The spatio-temporal assessment of the variability in
Bluetooth detection rates is presented in Section 6.5; the problem considered in
this section focuses on the changes in the detection rates over GMN, and
whether the result holds, irrespective of the data source and location, before

conclusions are drawn in Section 6.6.
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6.2 Understanding Variability in Flow

6.2.1 Exploration of estimated flows

The estimated traffic flows were explored over different temporal dimensions
(with a focus on hourly, weekday and monthly averages), direction of travel and
over different periods of observation to understand variations. This investigation
was necessary to describe the estimated flows accurately to understand
possible limitations. Boxplots and other exploratory techniques were used to
rapidly characterise the flows. The results of the exploratory analysis are
presented in Appendix 6A. Following the exploration, Table 6.1 presents the
summary of NE and SW-directional flows based on the application of
Mahalanobis distance (MD) filtering. The mean and median values
corresponding to 21veh/h, 19veh/h, 18veh/h and 16veh/h for NE and SE flows,
respectively. On an average, the flows on the opposing links are similar. This
could mean that the two opposing links’ flows can be averaged to manage the
network using the same strategy, thereby reducing the amount of planning and

improving efficiency in performance.

Directional Flow (veh/h)
NE SW MD
Min. 0 0 0.02
1st Qu. 6 4 0.90
Median 19 16 1.19
Mean 21 18 1.18
3rd Qu. 36 31 1.35
Max. 63 56 2.45

Table 6.1: Summary of NE and SW-directional flows based on MD filtering

Figure 6.1 presents the time series plot of flows in both directions aggregated
on four temporal dimensions. The results showed that the monthly average has
the highest variability. Appendix 6B presents further results on the analysis of
the flow data such as the table of adjusted R? to understand the goodness of fit.

The result obtained gives a level of reliability to the data, and the possibility for
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data reduction to improve computational and operational efficiency. That is, the
data could be averaged to reduce the number of the variables to be modelled.
In addition, the monthly analysis of the flow data is consistent with Johnson
(1989) and DfT (2014), which stated that the neutral months of April/May and
September/October are supposed to have minimum variability of flows. The
combined flows over these months averaged 42veh/h. Other analysis
performed also showed that Bluetooth flows aggregated at high resolutions,
(such as a 5-minute average), present many dispersions between weekdays.
Higher aggregate levels on the other hand showed better precision (less
dispersion), which signifies a better level of estimation for traffic prediction.
Generally, there exists a high level of temporal consistency with the maximum
variability being about 3veh/h for all. This temporal consistency was analysed
further through their mean and standard deviation plots. However, given the
day-to-day similarities in the flows from the opposing links, the subsequent
discussion is focused on the NE-directional flows while the SW-equivalent flows

are presented in the Appendix 6C.
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Figure 6.1: Time series plots of directional flows on Link0506 (N=31937)
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Figure 6.2 presents the time series plot of the NE-directional flows averaged on
a daily basis. The flow average over the year is between 13-25veh/h. From day-
to-day, there is an evidence of seasonality caused by the daily and weekly
effect. A few sparks are also noticed on the 100" and 208™ day. The gap
between the 52" and 54™ day may be due to equipment failure or corrupt data
as it is not expected that no vehicles were recorded over these periods. There is
also a significant drop in the flow at the end of the year, which relates to the
festivity during this period. The trend in the data will be explored further in later
discussions to understand long-term variation. The next step considers the
consistency of the data. Consistency in this context as earlier defined is when the
Bluetooth estimation corresponds to the actual traffic pattern given any temporal
dimension, such as hourly or daily average, and is measured in terms of the
precision of the mean and standard deviation of the data on a given average. In

this case, standard deviation shall be used to measure consistency.
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Figure 6.2: Time series plot of NE-directional daily average flow

6.2.2 Understanding consistency and reliability in flow

This section explores the use of standard deviation to understand the precision

of the estimated flows to establish reliability. This investigation is expanded
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further in the next section by exploring the degree of variability in flow to provide
answers to the specific objectives ii and iii in this chapter. Figure 6.3 presents
the standard deviations of flow in the NE direction to understand dispersion and
consistency in the data. The result shows that standard deviations of flows are
clustered mainly between 12veh/h and 18veh/h with a few fluctuations at some
points, such as on days 99 and 100. Generally, the standard deviation of the NE
flow is consistent and is considered to not change with time. Although the result
portrays the daily-weekly seasonal effect, the reproducibility of these
measurements confirms the reliability of the Bluetooth estimated flow data on

this temporal dimension as a useful traffic metric.
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Figure 6.3: Standard deviation of flows in both directions after filtering

6.2.3 Understanding the degree of variability in flow

As a further step, the data was analysed to understand the reliability and
modelling capability using Principal Components Analysis (PCA) and seasonal
decomposition. PCA was used for the weekdays’ flows given that it is a useful
tool in understanding complexity in large urban networks (Tsekeris and
Stathopoulos, 2006). On the other hand, the seasonal decomposition helps in

understanding both the seasonal effect and the trend in the data to aid
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modelling. Using PCA, the starting point is to explore the data to understand the
correlation between the variables. Box 1 shows that there is a correlation
between the weekday’s flows signifying the presence of redundancy in the
observations and a strong indication to use PCA. For example, between the
weekdays (Monday to Friday), the correlation is very high (>0.95). The p-value
of 0.000 suggests that the results are highly significant. Therefore, the
assumption here is that two distinct groups are possible, consisting of weekdays
and weekends as would be expected. This assumption is investigated further in
the analysis of the eigenvalues (the variances in the traffic flows).

The analysis of the eigenvalues presented in Box 2 shows that the first principal
component has a variance of 6.2549 and accounts for 89.4% of the total
variance. The second principal component has a variance of 0.5272 and
accounts for 7.5%. The first two components together account for more than
96% of the total variance and are deemed sufficient to explain the variability in
the data. This was confirmed in the scree plot presented in Figure 6.4, which
shows a sharp drop from the first principal component to the second principal
component while the rest of the principal components are very close to zero,
and are considered not significant. From the first two components, equation
(6.1) and equation (6.2) were formed. From equation (6.1), the coefficients of all
the variables are positive but with higher values over the weekdays than over
the weekend. Furthermore, given two decimal places, the coefficients of the
weekdays are equal (0.39), showing a high degree of agreement indicative of
redundancy in the observations. On the other hand, the weekend coefficients
are also similar (0.37 and 0.33) for Saturday and Sunday, respectively. From
equation (6.2) the transition or change in the algebraic sign of the coefficients
from negative to positive, from weekdays to weekends, further implies the
possibility of a reduction of the data into two smaller components to represent
the whole in the future analysis. The differences noted in the coefficients of the
variables typify the daily changes in flows between the weekdays. The
assumption was further assessed using a loading plot, which confirms the

validity of this assumption, for visual examination and interpretation. The
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implication of this result is that the use of PCA to analyse traffic flow can help in

capturing temporal dynamics in a complex urban network, such as the GMN.

Mon Tue Wed Thu Fri Sat
Tue 0.966
0.000

Wed 0.972 0.966
0.000 0.000

Thu 0.969 0.969 0.979
0.000 0.000 0.000

Fri 0.958 0.957 0.970 0.968
0.000 0.000 0.000 0.000

Sat 0.811 0.839 0.824 0.849 0.855
0.000 0.000 0.000 0.000 0.000

Sun 0.706 0.725 0.703 0.733 0.718 0.885
0.000 0.000 0.000 0.000 0.000 0.000

Cell Contents: Pearson correlation
P-Value

Box 1: Box showing the correlation matrix and p-values of weekday flows

Eigenanalysis of the Correlation Matrix

Eigenvalue 6.2549 0.5272 0.0984 0.0413 0.0303 0.0291 0.0188
Proportion 0.894 0.075 0.014 0.006 0.004 0.004 0.003
Cumulative 0.894 0.969 0.983 0.989 0.993 0.997 1.000

Variable PC1 PC2 PC3 PC4 PC5 PCé6 PC7
Mon 0.387 -0.249 0.273 0.119 -0.727 -0.408 -0.069
Tue 0.390 -0.191 0.097 0.735 0.495 -0.124 0.047
Wed 0.389 -0.250 0.070 -0.253 -0.014 0.394 0.749
Thu 0.392 -0.182 0.038 -0.097 -0.025 0.632 -0.634
Fri 0.390 -0.184 -0.228 -0.566 0.395 -0.511 -0.158
Sat 0.365 0.452 -0.751 0.186 -0.240 0.038 0.070
Sun 0.327 0.753 0.542 -0.132 0.115 -0.030 0.004

Box 2: Box showing the eigenvalues of the correlation matrix of weekday flows
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Figure 6.4: Scree plot to judge the relative magnitude of eigenvalues

71 = 0.387Mon + 0.390Tue + 0.389Wed + 0.392Thu + 0.390Fri +
0.365 Sat + 0.327Sun
(6.1)

72 = —0.249Mon — 0.191Tue — 0.25Wed — 0.182Thu — 0.184Fri
+0.452 Sat + 0.753Sun (6.2)

Figure 6.5 presents the plot of loadings for the second component (y-axis)

versus the loadings for the first component (x-axis) with a line drawn from each

loading to the (0, 0) point based on Minitab (2014). The analysis of the loading

plot showed that the groups (weekdays and weekend flows) started off at the
same point and diverged with an increase in the first component particularly
with Sunday flows showing higher loading. The clustering of the weekdays’
loadings signifies closeness in observations (presence of redundancy), and
therefore, higher precision compared to weekend flows. Irrespective of the

separation observed in the weekend flows, they are considered as another
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cluster as revealed in the earlier analysis above; but in this case with a better

understanding of the separation in the weekend flows.
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Figure 6.5: Loading plot of weekday flows showing two different groups in flow

Figure 6.6 presents the seasonal decomposition of the flow data showing four
components. The first component (top) is data, which comprises all the other
three components while the second component presents the seasonality. The
third component is the trend in the data while the fourth (bottom) is the
remainder after the removal of the seasonal and trend components from the
data. The results show that the seasonal component does not change with time
while trend presents the entire movement in the series with a flexible pattern.
The start and end of the year have a low flow that corresponds to negative
values in the remainder component. The bars at the end of the plots represent
the relative scales and the amount of variation of the components (Hyndman
and Athanasopoulos, 2013). For example, the long bar in the seasonal
component means smaller variation compared to the data and remainder
components with short bars. The modelling capability of the flow data is further
confirmed in Figure 6.7 that shows the autocorrelation and cross-autocorrelation

between the two-directional flows. The ACF plots show that there remains some
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serial correlation in the data; nevertheless, there is a strong indication that the

data can be modelled as shown in Chapter 5.

NE Flow
(1]
g [
= Mm o
c
(@]
(7)) N
I
(]
2 U o
T o
cC
o
g | :
< 1|J||J|l |||.|I|J|u Llilll]l.lll.nll]h [N A|l|.|‘|||||li;|||lll o
I || || LA I LA I L I T ||'rr||||| Lidl i\
: | | .
g
0 10 20 30 40 50
time
Figure 6.6: Time series decomposition of NE-directional flow
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Figure 6.7: Autocorrelation and cross-autocorrelation of directional flows
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6.2.4 Post-analysis of flows to understand temporal changes

This section concludes the investigation and the focus is to understand
temporal variations within homogenous groups. Zhang et al. (2013) highlighted
the necessity to understand the evolution of traffic states in both time and space
as a critical step to improving freeway modelling and operations. The
assessment is based on five groups of periodic flows over 24 hours in a month.
Table 6.2 and Table 6.3 present the output of the post-analysis based on (a =
0.05) using Statistical Package for the Social Sciences (SPSS), where alpha
defines the cut-off point upon which a rejection or acceptance of the hypothesis
test is determined. The tables show the test results of multiple comparison and
homogenous subsets of the grouped flows. Analysis of Table 6.2 suggests that
the groups designated 07-10hrs and 16-20hrs are the most variable groups
compared to other groups. This information points to the period of less precision
in the estimated flows as evident in the computed standard error (column 3 of
Table 6.2). The significance of this result can be found in weight assignment in
modelling to ensure accurate and precise prediction. That is, the knowledge of
the period of high or low level of reliability in flow can be determined based on
this information. Table 6.3 presents a clearer picture of the significant
differences among the grouped flows. From this result, four homogeneous
subsets were identified among the five groups. The p-value (0.257) computed
for the subset 3 clearly shows that the means of the two most variable groups
are statistically not significantly different from each other. If the same condition
is applicable in all situations, a typical traffic plan or strategy can be
implemented to manage the two periods. This thereby reduces the amount of
planning and operational activities and consequently increases efficiency in

production and optimisation of input.
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Multiple Comparisons

Measure: MEASURE_1

~ Mean 85% Confidence Interval

Difference (-
il period  (J) period J) Std. Error Siq. Lower Bound | Upper Bound
TukeyHSD  01-07hrs  07-10hrs -22.36 1.053 .00o -25.29 -19.43
10-16hrs -28.66 848 .0oo -31.02 -26.29
16-20hrs -20.26 56 .0oo -22.92 -17.60
20-23hrs -4.88 956 .0oo -7.54 -2.22
07-10hrs  01-07hrs 2236 1.053 .0oo 19.43 2529
10-16hrs -6.29° 1.079 .0oo -8.29 -3.2
16-20hrs 210 1.165 a8 -1.14 5.34
20-23hrs 17.49 1.165 .0oo 14.24 2073
10-16hrs  01-07hrs 2866 848 .0oo 26.29 31.02
07-10hrs 6.29 1.079 .0oo 3.29 9.2
16-20hrs 839 485 .0oo 5.65 1113
20-23hrs 2378 985 .00o 21.04 26.52
16-20hrs  01-07hrs 2026 956 .0oo 17.60 22.82
07-10hrs -2.10 1.165 a8 -5.34 1.14
10-16hrs -8.39 485 .0oo -11.13 -5.65
20-23hrs 1538 1.079 .0oo 12.38 18.39
20-23hrs  01-07hrs 488 956 .0oo 2122 7.54
07-10hrs -17.49 1.165 .0oo -20.73 -14.2
10-16hrs -23.78 485 .0oo -26.52 -21.04
16-20hrs -15.38" 1.079 .0oo -18.39 -12.38

Table 6.2: Table of multiple comparison tests between the grouped flows

MEASURE_1
Subset

period ! 2 3 4
Tukey HSD*®  01-07hrs 2 4.33

20-23hrs 16 8.21

16-20hrs 16 24.59

07-10hrs 2 26.69

10-16hrs 24 32.88

Sig. 1.000 1.000 257 1.000

Means for groups in homogeneous subsets are displayed.
Eased on observed means.
The errorterm is Mean Square(Error) = 9.313.

a. Uses Harmonic Mean Sample Size =17.500.
h. Alpha= .05,

Table 6.3: Table showing the homogeneous subset of the grouped flows
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6.3 Understanding Variability in Journey Time

6.3.1 Understanding temporal variability in journey times

Figure 6.8 presents the combined plots of mean and median journey times over
four temporal dimensions — hourly-weekday (top), hour (bottom-right), month
(bottom-middle) and weekday (bottom-right). Over the four averages, the mean
journey times are consistently higher, with the highest variability in the monthly
average (88s-140s). Variability is also higher over the peak periods than in free
flows, so also on weekdays as compared to weekends. However, the two
estimators present similar trends over the year with the exception of the trends
over the weekday average. The median travel time presents relatively the same
time over Monday to Wednesday but in the case of the mean, the travel time on
Tuesday is a little higher. The obvious difference is the reversal in trend from
Wednesday to Friday. While the mean travel time increases, the median
equivalent decreases. However, they both show a decrease in travel time from
Friday to Saturday as expected. Overall, a conclusion is reached that the day-
to-day variability captured by the mean estimator better represents the real-life
situation. However, an assessment of any significant differences between the
mean and median estimators presented in Table 6.4 based on the Mann-
Whitney test shows that the two journey time metrics are good estimators for

traffic management. Other relevant results are presented in Appendix 6D.

To establish the day-to-day reliability in travel time estimation, the daily average
is analysed. Yildirimoglu et al. (2015) emphasised the significance of the day-to-
day travel time variability and reliability. Figure 6.9 presents the time series plot
of journey times over a year on a daily average to understand the day-to-day
variability. Unlike the flow data, the journey time over the year fluctuates with
irregular patterns between 80s and 140s. Over the year, three clusters of
journey times can be identified with the highest variability over the first three
months and in November. The most consistent period (day 150-300)
corresponds to June-October, signifying the most reliable period of the year as

captured by the established systems. Given this information, an unreliable travel
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time that has been identified as one of the problems of congestion can be

addressed accordingly using Bluetooth. This includes the provision of real-time

traffic information obtainable from Bluetooth instead of reliance on archived data

for better prediction of journey times and by extension leading to improved

service delivery and more confidence in route planning. Accordingly, real-time

traffic information obtained from Bluetooth can be disseminated based on the

changes in the network traffic.
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Figure 6.8: Mean and median (med_jt) journey times on Link0506
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Mann-Whitney Test
Parameter Point Estimate | 95% Confidence Interval | P-Value N
Hourly -13.00 (-14.000,-13.000) 0.0000 168
Hourly-Weekday -17.00 (-18.000,-16.000) 0.0000 8205
Daily -11.25 (-12.991,-9.880) 0.0000 365
Week -10.42 (-20.943,-7.920) 0.0000 53
Month -9.25 (-33.500,-5.600) 0.0001 12
Weekday -17.00 (-19.000,-14.000) 0.0022 7

Table 6.4: Table showing the summary of Mann-Whitney Test over different

temporal dimensions
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Figure 6.9: Time series plot of daily journey time on Link0506 in Trafford

6.3.2 Understanding consistency and reliability in journey time

Figure 6.10 presents the standard deviation plot of journey time over the year

showing non-uniformity in the daily pattern, which is usually what happens in

real life. The analysis shows that standard deviations of journey times range

between 5s and 33s symbolising the degree of variability over the year.

Approximately, drivers may experience up to a 30s time difference compared to

normal in traversing this link. Variability is highest over the first three months
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and least between the months of June and October. A decomposition of the
journey times (Figure 6.11 — plotted on a weekly time scale) shows a better
understanding of the trend in the data over the year. Clearly, from the plot, the
weeks over the period 23-44 present the minimum variability. The results also
show that there is a constant seasonal effect, with the trend showing three to
four distinct patterns. The bars on the plots show that variability is least in the
seasonal component compared to others, while the positive and negative
values in the remainder component signify the points of rise and fall in trend, as
well as, the description of the amount of variability in the trend. For example, the
rise in journey time over the end of the year corresponds to a positive rise in the
remainder that may be due to the end of year rush or other events. This result is
consistent with Martchouk et al. (2011) who noted that factors, such as weather
conditions and driver behaviour, may significantly influence variability in travel

times over a particular period.
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Figure 6.10: Standard deviation of daily journey time on Link0506 in Trafford
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Figure 6.11: Seasonal decomposition of daily journey time over a year on
Link0506 in Trafford

6.4 Understanding Variability in Speed

6.4.1 Understanding temporal variability in journey speed

Figure 6.12 presents the combined plots of mean and median journey speeds
averaged over four different temporal dimensions to illustrate both short and
long-term variations. The hourly variation presents almost a perfect agreement
between the two estimators and has a minimum variability compared to the
other averages. Consistent with the journey time estimators, the monthly
average presents the highest variability over the year with a range of 5km/h.
This indicates the degree of variability that could be experienced in speed over
the year on the link. Further discussion of the implication of the results will be
presented in the next chapter. However, to conclude the analysis, the Wilcoxon
test was performed to test for significant differences between the two
estimators. The test results showed that the two estimators are not significantly
different at a 95% confidence limit with a p-value less than 0.01. Figure 6.13

presents the time series plot of vehicle speeds over a year on a daily average to
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understand day-to-day variability, while Appendix 6E presents other relevant
results. Consistent with the journey times, there is a fluctuation in speed over
the year between 42km/h and 53km/h. On an average, two dominant clusters of
speed can be identified with the period of high-speed corresponding to a short
journey time. The next section examines the long-term variability on a daily

basis by exploring the standard deviation and decomposition of speed over the

year.
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Figure 6.12: Mean and median vehicle speeds on four temporal dimensions
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Figure 6.13: Profile of daily vehicle speeds on Link0506 in Trafford

6.4.2 Understanding consistency and reliability in journey speed

Figure 6.14 presents the standard deviation of speed over the year. Consistent
with the journey times’ data, there is non-uniformity in the daily pattern. The
analysis also shows that the degree of variability of the daily vehicle speeds
over the year is depicted by the range of the standard deviations (between
2km/h-8km/h). In terms of reliability of vehicle speed over the year, the period
that is more consistent is more reliable. A decomposition of the vehicle speed
(Figure 6.15 — plotted on a weekly time scale) presents a clearer understanding
of the changes over time. From the results, while the seasonal component is not
changing with time, the trend component is (as in journey time). The remainder
plot presents the magnitude of the variability in the trend. The bars on the plots
show that the variability in the trend and remainder components is about half
the variability in the data and about three times the variability in the seasonal
component. The fall in speed at the end of the year also corresponds to the
equivalent rise in journey time over the year as previously observed. Clearly,
there is evidence of changes over time as would be expected due to different

traffic regimes, such as free flow and congestion. Ability of Bluetooth speed to

181



reconstruct the actual traffic situation captured by the established systems gives

credence to its applicability in this regard.
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Figure 6.15: Time series decomposition of vehicle speeds
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6.4.3 Post analysis of journey speed to understand temporal changes

In this section, the focus is on the Bluetooth-estimated speed, given that it is a
derivative of journey time and not a direct measurement. This investigation
helps in determining whether Bluetooth derivatives, such as the journey speed,
are as reliable as the direct measurements, such as journey times. To
investigate this, variability in journey speed was explored using analysis of
variance (1 —way ANOVA, a = 0.05). ANOVA was considered because speed
data is normally distributed. The alpha level determines the rejection or
acceptance cut-off point of the test statistic (IBM Corporation, 2012). In this
case, directional speed data based on weekdays and months were analysed.
The null hypothesis (Ho) testing assumes equality of means in the speed
distributions across the groups. In this case, acceptance of Ho means that there
is no evidence of significant change across the groups and hence no periodic or
temporal variations. Otherwise, the rejection of Ho (the acceptance of the
alternative hypothesis) means that there are temporal variations. Post analysis
based on the Tukey test (a¢ = 0.05) using R (R Core Team, 2013) was used to
identify differences in the group means as shown in Table 6.5 and Table 6.6 —
Link0506; and Table 6.7 and Table 6.8 — Link0605. Tukey tests helped to
classify the periods that are statistically significantly different from one another.
From the tables, the first column (Groups) shows different classes in the
treatments (weekday and months) indicated by the letters assigned to the
groups. The test results indicate temporal variations across weekdays and over
months in the speed distributions. If this is consistent over time on the link, it
means that different strategies will be required to manage and control traffic

over the different groups.

From Table 6.5 to Table 6.8, means with the same letter are not significantly
different from each other. For example, with an Honestly Significant Difference
(HSD) of 0.389, (Table 6.5) suggests that the means of speed on Thursday and

Monday (groups “a” and “b”, respectively) are significantly different from the

means of the other weekdays at alpha level 0.05. Interestingly on the reverse
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link (Table 6.7), the same feature was identified, but in this case with a lower
speed averaging 45km/h (HSD: 0.318) compared to the opposing link averaging
47km/h. Another interesting feature revealed by this analysis is the fact that all
the weekdays’ means are within the speed limit of the road (48km/h) and are
reasonably close to one another. These results suggest a level of speed limit

compliance and the possibility of using Bluetooth for this application.

Groups | Treatments | Means

a Thurs 47.29
ab Sat 47.21
ab Fri 47.05
ab Tues 46.95
ab Wed 46.95
ab Sun 46.94
b Mon 46.83

Table 6.5: HSD test for weekday means of speed (km/h) over Link0506

Table 6.6 and Table 6.8 show the HSD tests of the monthly speed variations on
both sides of the road. Unlike the weekday summary that presented similar
output, in this case, it was not so. However, this is expected to be a possibility
given the effects of seasonal variations. As earlier stated in Section 6.2.1, the
neutral months of April/May and September/October are supposed to have the
minimum variability of flows (DfT, 2014). This, in turn, is expected to influence
the computed speed over these periods. From Table 6.6 with HSD (0.563),
clearly, the mean speed of the months of April and May (groups “c” and “d”,
respectively) are significantly different from the means of the other months.
September and October are in the same cohort of “bc” together with the months
of June and July. August is in a separate cohort “a” while December is in “b”
and the other four months (January, February, March and November) are in the

cohort “e”.
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Groups|Treatments [Means
a Aug 48.59
b Dec 47.83
bc Oct 47.69
bc Jul 47.60
bc Sep 47.48
bc Jun 47.41
C Apr 47.24
d May 46.65
e Mar 45.65
e Jan 45.63
e Feb 45.56
e Nov 4551

Table 6.6: HSD test for monthly means of speed (km/h) over Link0506

In Table 6.8 (HSD: 0.466), seven significantly different groups are identified
compared to the six groups identified on the opposing link. In this case, May

and August are in the same group “a”. While April and June are in different
groups of “ab” and “bc”, serving as the connection or transition between group
“a” and the next group “c” consisting of January, February, March and July.
September and December are in different groups of “d” and “de”, respectively
while October and November constitute the last group, “e€”. An interesting
outcome of this analysis is that while the weekdays’ speed showed the same
subsets over opposing links, the same cannot be said of the monthly speed. For
example, the month of August classified in a different group on Link0506 is
grouped with May on the opposing Link0605. Therefore, estimating speed using
Bluetooth data may be better considered on a weekday basis than on a monthly
basis, particularly when considering the LOS (level of service) each way due to
the significant variations in the monthly average speed. However, the monthly
variation in the speed data is consistent with the flow; thereby indicating a level
of reliability in Bluetooth derivatives as indirect measurements. The next step

considers the Bluetooth detection rates to round up the investigation.
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Groups | Treatments [Means

a Thurs 45.36
ab Mon 45.13
b Sat 45.04
b Tues 45.03
b Wed 45.03
b Fri 45.00
b Sun 44.97

Table 6.7: HSD test for weekday means of speed (km/h) over Link0605

Groups |Treatments |Means
a May 46.00
a Aug 45.92
ab Apr 45.86
bc Jun 45.45
C Mar 45.39
C Feb 45.38
C Jul 45.28
C Jan 45.12
d Sep 43.98
de Dec 43.58
e Oct 43.41
e Nov 43.21

Table 6.8: HSD test for monthly means of speed (km/h) over Link0605

6.5 Understanding Variability in Bluetooth Detection Rates

6.5.1 Background to the detection rate

Bluetooth presents a sample of the actual traffic. Therefore, it becomes
imperative to understand the spatio-temporal variability in the estimated
proportion of the actual vehicular flow captured by Bluetooth to inform usability.
The early studies on Bluetooth have suggested that approximately 5% of all
vehicles contain a form of Bluetooth-detectable device (UMCATT, 2008).
However, with an increase in Bluetooth usage, as well as differences over

different geographical locations (Beca, 2011, Biora et al., 2012; Roggendorf,
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2012), a proper understanding of this factor is considered essential. The
knowledge of applicability is necessary to avoid over-generalisation, particularly
given the contrasting nature of GMN. To this end, temporal and spatial
variations in detection rates were investigated using the Bluetooth data collected
over 2013 in Manchester, U.K. Overall, the problem considered here is to
determine the changes in the detection rates over GMN, and whether the result

holds irrespective of the data source and the location.

Clear distinctions were made between the rates obtainable based on different
types of estimation and the ground-truth data used to inform usability. This
distinction consisted of all devices, directional and total directional-based
estimation to account for spatial relation and transferability. Dissanayake et al.
(2012) noted the importance of the consideration for spatial transferability of a
model. As a result, the consistency of the detection rate over the GMN was also
examined to understand the differences and similarities spatially. Of course,
differences are expected to be seen because the three networks are of a
differing nature but how significant they are remains unknown. Appendix 6F
presents other relevant results such as the detection rate variability plots over
the hours of the day to understand temporal changes. Further, the hourly
variation, weekday, monthly and seasonal variations were all examined for any
significant differences over the different temporal dimensions. This information
is also useful in determining the temporal transferability of a model to ensure

efficiency in management.

6.5.2 Detection rate: all detected devices

In this section, the detection rate derived from the estimation of traffic flow
based on the total devices detected is presented to understand the proportion of
the total traffic equipped with Bluetooth-enabled devices. The Bluetooth data
captured at Station 1011 co-located at ATC1283 location (the second validation

station in Trafford), was filtered to remove duplicates and processed into 15-
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minute flows. The total flow on both sides of the road measured by ATC was
compared against the total flow at the Bluetooth station over the weekdays. A
very strong relationship exists between Bluetooth and ATC flows with

adjusted R? of 0.87 and 0.89 for the weekdays and weekends, respectively. The
analysis of the data based on total modes gave the detection rate of 30% based
on the flow ratio. A similar value (33%) was obtained over the weekday in the
study conducted in Scotland (Cragg, 2013). However, it should be noted that
this figure is not a representative of the actual vehicular proportion detected,
and hence, rarely useful for congestion control. Consequently, directional

estimation is considered in the next sections.

6.5.3 Detection rate: Wigan study site

In Wigan, Bluetooth Stations 1022 and 1023 are co-located with the validation
Station (ATC1074) and are therefore considered for the analysis in this section.
From the configuration, the location of ATC1074 is closer to the Bluetooth
Station 1023 than 1022 (=585m to 790m). The network configuration also
suggests a possibility of a reduction in the devices detected at Station 1023
before reaching Station 1022. This is due to the possibility of vehicles taking an
alternate route from Station 1023. Following the recap of the location
description, the analysis of the detection rates (Table 6.9) showed a constant
rate of 10% over the weekdays (Mon-Sun) in NW-bound. The rate of 14-16%
was observed in SE-bound with the lowest rate observed on a Sunday. The
difference between the directional rates is attributed to the relative position of
the Bluetooth stations to the validation station as shown in the network
configuration. The 5% difference on average between the NW and SE-detection
rates showed that station calibration might not be sufficient to scale up an entire
network especially in a network of varying characteristics. That is, the use of
either of the computed rates (NW or SE) to predict the traffic flows on both links

will result in over or under-estimation.
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ATC1074

Direction Mon Tue Wed Thu Fri Sat Sun MAC1022
NW 10 10 10 10 10 10 10 MAC1023
SE Weekday 16 15 15 15 16 16 14|Adj. R* |0.77 - 0.82

Table 6.9: Detection rates (%) derived from ATC, Wigan

6.5.4 Detection rate: Stockport study site

Two different independent measures of traffic flows (ATC and SCOOT) were
used to derive detection rates in Stockport. The use of the data from the two
ground truth sources presents the opportunity to explore variability in the rates
arising from the two systems given they are positioned differently on the road.
Each of the independent systems comprises two sets of validation stations.
ATC1500 and SCOQOT links 1034 and 1035 are co-located with Bluetooth
Stations 1034 and 1035. Station 1035 is located close to ATC1500 (= 63m)
while Station1034 is further apart (= 450m) with two main cross routes
contributing to the traffic towards 1035. The SCOOQOT links, on the other hand,
are located upstream and downstream from the link. Similarly, ATC1013 is a
little closer to Station 1037 than 1036 (173m and 248m, respectively).

From the analysis, the detection rate of Bluetooth to SCOOT (13-16% as
presented in Table 6.10) is higher than that of Bluetooth to ATC (7-12%).
SCOOT rates were observed to be more consistent and precise than the ATC
derived rates. This result showed that the location or positioning of the
validation source relative to Bluetooth stations is significant in determining
detection rates. This is due to the contributions from the connecting routes by
way of vehicles leaving or joining the traffic. Therefore, an important practical
implication of this result is that combining the SCOOT and ATC flows over a
complex urban network to derive the Bluetooth detection rate may not yield the
best result. This further means that the use of either of the two may be the
preferred option for the purpose of consistency instead of the combined rates.
Irrespective of the differences, an important observation from the results is that
estimation of the detection rate is affected by both temporal and spatial
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variations. Therefore, the choice of sensor location is considered to play a
critical role in the reliability of the resulting generalisation. Consequently, it must
be taken as an important element for consideration during the installation of

Bluetooth sensors.

ATC1500/SCOOT
Direction [Sensor [Weekday| Mon Tue Wed Thu Fri Sat Sun MAC1034
NW ATC 12 12 11 12 12 10 8 MAC1035
SE ATC 9 9 9 10 10 7 7|Adi. R® |0.65-0.78
NW SCOOT 16 16 16 16 16 16 16
SE SCOOT 13 13 13 14 14 13 13|Adi. R’ [0.82-0.92
ATC1013

Weekday| Mon Tue Wed Thu Fri Sat Sun MAC1036
N 13 14 13 13 13 9 8 MAC1037
s 8 7 7 8 8 5 5|Adj.R* [0.73-0.81

Table 6.10: Detection rates (%) derived from ATC and SCOOT, Stockport

6.5.5 Detection rate: Trafford study site

As with the previous cases, the validation station (ATC1024) is not centrally
located between the two Bluetooth detectors. ATC1024 is closer to Station 1005
(508m) than 1006 (589m). The NE-bound and SW-bound monthly rates are 13-
14% and 10-13%, respectively (Table 6.11). The January to September rate
remains constant in a NE-direction while it remains constant from January to
August for SW-bound traffic. December has the lowest rate (10%) while the
September to November rate is 11% in a SW- bound direction. The 2%
difference between August and September in the SW direction, as well as, the
2-3% difference over September to December between the directional rates,
gives a strong indication of periodic variation. This means that periodic
calibration will be required. This was established further through the seasonal
differences observed in the data. For the seasonal-weekday studies, the
summer period has the highest rate (15%) while the lowest rate was observed
during autumn and winter (13%). However, for the “seasonal-weekend”, a
constant rate of 12% was observed over the four seasons in the NE-bound
direction and remains consistent (10-12%) in the SW-bound direction. The

better precision observed over the weekend was as expected, given that
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variability is less over the free-flow than in congested period. Spatial
consistency was observed where the networks exhibited similar characteristics
and configurations. Overall, there is a presence of temporal and spatial
variability in the estimated rates in the network. Therefore, Bluetooth traffic
estimation requires both periodic and spatial calibration to obtain up-to-date and

reliable predictions.

Direction| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

NE 14 14 14 13 14 14 14 14 14 13 13 13

SW 13 13 13 13 13 13 13 13 11 11 11 10

Weekday Weekend Type Adj. R?

Spring | Summer| Autumn| Winter | Spring | Summer| Autumn| Winter [ Month |0.72 -0.82

NE 14 15 13 13 12 12 12 12|Season [0.85-0.92

SW Season 13 13 11 12 12 11 10 11|Weekday [0.76 - 0.81

Mon Tue Wed Thu Fri Sat Sun
NE 14 14 14 14 14 12 11
Sw Weekday 12 12 12 12 12 11 10 MAC1005, MAC1006

Table 6.11: Detection rates (%) derived from ATC1024, Trafford

The monthly directional detection rates were analysed further to understand the
statistical significance of the results. The monthly detection rates at the
ATC1024 location in Trafford were investigated to understand monthly
variability and the possibility of obtaining the most representative value. As a
first step, the possibility to compute the mean of the two monthly directional
rates were established through statistical testing. Figure 6.16 presents the
summary of the analysis showing that the NE detection rates have ¢ =

0.452; (CI = 0.252,0.971) whilst the SW detection rates have ¢ = 1.138; (CI =
0.706,2.194). The overlap in the CI signifies that the two groups are not different
and can be averaged. Further statistics showed that the ratio of ¢ = 0.397 and
ratio of o2 = 0.158. Bonett's test (p-value = 0.039) suggests a significant
difference between the two groups, and therefore, a rejection of the null
hypothesis that the ratio is equal to 1. However, given that the sample size of 12
is less than 20, the Levene’s test (p-value = 0.171), which is the greater of the
two tests coupled with the overlap in the 95% CI for standard deviations,
suggests the acceptance of the null hypothesis. This thus signifies that there is

no significant difference in the ratio. Consequently, 13% was computed as the
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most probable value, (mpv) for the monthly detection rates over the Trafford
based site on the mean of the two-directional monthly detection rates. The
evidence from this research suggests that 13% is the best approximating value
of the detection rate of Bluetooth vehicular detection over Trafford. The
theoretical implication of this figure is that it only represents the best
approximating value and not the true value. Therefore, it may be subject to over
or under-estimation in some cases and thus require further investigation. The
next step considers the comparison of detection rates in both directions on a
day-to-day basis to understand long-term variability and the reliability of the

detection rates.
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Figure 6.16: Plot of the F-test and CI for variances of NE and SW detection

rates over Trafford

6.5.6 Understanding consistency and reliability in detection rates

Figure 6.17 and Figure 6.18 present the mean of the day-to-day NE-detection
rates and Total-detection rates (both directions) over a year. The summary of the
descriptive statistics for all the directional flows is presented in Table 6.12 while
Appendix 6G presents additional results and the SW-equivalent time series plot.

The quantitative analysis of the opposing directional rates showed that they could
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be averaged, as they are not significantly different. The hypothesis test of their
distributions gave a point estimate of 0.02188 and 95% CI (0.02031, 0.02346)
and the result is significant at 0.0000. In addition, the p-values for F-test (0.107)
and Levene’s test (0.118) at «« = 0.05 confidence level for ratio 0 = 0.918, (CI =
0.822,1.023) and 6? = 0.843,(CI = 0.676,1.046) showed that the ratios are not
significantly different from 1. As a result, the plots of NE and Total-detection rates
are presented in the discussion with reference to the SW-detection rates.
Generally, the results show that detection rates fluctuate between 10% and 17%
of all vehicles according to the time of the day and the day of the week. However,
this result is in accordance with literature, such as Blogg et al. (2010), which
obtained 17% on an average with a range of 2%-30% depending on the time of
day. The combined detection rates present better stability and appears to be
more reliable than the individual directional flow ratio, given the coefficient of
variation 5.02 compared to 6.74 and 8.63 for the NE and SW ratios, respectively.
On directional basis, variability is higher in the SW-direction compared to the NE-
direction. The histogram plot presented in Appendix 6H as well as the
coincidence of the mean and median show normality and symmetry in the
detection rates. Overall, the results showed a negligible error and little variability
over time. This signifies a high level of consistency and reliability in the
estimation. For a better appreciation of the spread, the standard deviations are

analysed further.
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Figure 6.18: Time series plot of mean total directional flow ratio
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Descriptive Statistics: RatioNE, Ratio_ SW, Ratio_Total
Variable Ratio NE Ratio SW Ratio_Total
Total Count 357 357 357
Mean 0.15 0.13 0.13
SE Mean 0.00 0.00 0.00
StDev 0.01 0.01 0.01
CoefVar 6.74 8.63 5.02
Minimum 0.12 0.10 0.11
Q1 0.14 0.12 0.13
Median 0.15 0.13 0.13
Q3 0.15 0.13 0.14
Maximum 0.17 0.16 0.15

Table 6.12: Descriptive statistics of directional flow ratios

Figure 6.19 presents the time series plot of the standard deviations of day-to-
day NE-detection rates over a year, while Figure 6.20 presents the standard
deviation of the combined detection rates. From the results, the highest
variability was observed in August for the NE detection rates and in November
for the total detection rates. As shown earlier, the result of the estimated
detection rates for the total flow (sum of the flows on the two opposing links)
presents a better level of reliability given that it is more consistent than the
individual link detection rates. However, any resulting generalisation must take
into account the nature of the network. For example, two opposing links of
differing attributes will present a different scenario. However, for all, the
standard deviations of the detection rates clearly show a high level of precision
— NE (0.03 - 0.10) and Total (0.03 — 0.06) — which signifies a high level of
reliability. The representativeness of the Bluetooth sample of the actual traffic
flow is established in Figure 6.21. The result showed that estimated sample
sizes of 2331 and 8275 are required to obtain a maximum coefficient of
variation of 5% and a maximum relative margin of error of 5%, respectively. The
estimation corresponds to approximately 3% and 10% of the actual traffic,
respectively, which is less than the average sample size obtainable over GMN.

Interestingly, this result is also greater than the 2% sample size required to
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provide a statistically robust description of system performance as posited by
Hainen et al. (2013).
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Figure 6.19: Time series plot of standard deviation of NE flow ratio
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Figure 6.20: Time series plot of standard deviation of total directional flow ratio
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6.6 Conclusions

This chapter presented the investigation conducted on the variability in the
estimated Bluetooth traffic metrics to understand consistency and reliability and
how the validity of the results might be affected by temporal variations.
Exploratory analysis was used to understand the underlying properties of the
estimated metrics, while post-analysis using the Tukey test confirmed the
presence of significant temporal variations. The metrics showed contiguous
homogeneous subsets over the am and pm peak and off-peak periods as would
be expected in a real traffic situation. The test performed provided a concrete
answer to the question “can Bluetooth capture temporal variations in traffic?”
Analysis showed that the weekday average is the most consistent compared to
other averages. Spatially, the highest variability was observed in Stockport,
while in a network of similar attributes, total directional estimation is preferable
on the grounds of accuracy and cost compared to the individual opposing links.
The detection rates required to calibrate the Bluetooth estimate of the actual
vehicular traffic computed over GMN using ATC and SCOOT flows yielded
variable results, with an , mpv (most probable value) of 13% in Trafford. This

means that in GMN, a unique detection rate is not representative as a scaling
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factor for practical applications to avoid over/under-estimation. Therefore,
caution must be taken in generalising the results over the entire network, and by
extension over other geographical locations in the U.K. The relative position of
the validation stations to the Bluetooth stations is also significant, and must be
considered to obtain optimal results.

Finally, the results have so far shown that estimation of traffic metrics using
Bluetooth can yield highly consistent and reliable results both in the short and
long-term, and at the same time capturing the expected temporal variability. The
results have also shown factors that must be considered, such as the level of
aggregation of the data and the placement of the Bluetooth sensors relative to
the validation stations. It is argued that harnessing this information might form
an essential building block for more advanced theory on the use of Bluetooth
data in ITS for traffic monitoring and management. The next chapter presents a

discussion of the results interpretation and potential applications.
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Chapter 7. Results and Interpretation of the Estimated

Metrics

7.1 Introduction

In the previous two chapters, the Bluetooth estimated traffic metrics (flow, travel
time and speed) were validated using diverse independently measured traffic
data to establish consistency and the level of accuracy of Bluetooth traffic
measurements. The estimated journey times, vehicle speeds and link-flows
following the validation exercise all portend a high level of temporal and spatial
consistency and a high level of accuracy. The results were also assessed for
variability to avoid any biased conclusions. Following these steps, this chapter
presents primarily the discussions of the Bluetooth results and their potential
applications in traffic monitoring and management as well as the added benefits
derivable from using Bluetooth in traffic sensing. This is in partial fulfilment of
Research Objective iv to be complemented by Chapter 8, which considers the
applicability and viability of the estimated traffic metrics in a wider context. This
discussion focuses on the results obtained from the long-term study in the
Greater Manchester Network (GMN) following the validation to avoid any bias in
the interpretation.

Chapter 7 is structured as follows: the estimated traffic flow and the
interpretation to traffic management application is described in Section 7.2.
Three different types of traffic flow estimation using Bluetooth are presented for
a better understanding of the applications namely i) all devices; ii) directional
estimation; and iii) total directional estimation. Section 7.3 considers the
interpretation of the results from the Bluetooth journey time by building on the
previous studies such as UMCATT (2008) and Araghi et al. (2013) which
showed that by sampling a portion of the travelling vehicles’ actual times,
reliable journey times data can be provided. In Section 7.4, are the results from
the vehicle speeds and the interpretation to congestion management and traffic
pattern analysis through a reconstruction of the actual traffic state at the time of

observation. Section 7.5 discusses the results from the estimated O-D matrix
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and its usefulness in transportation planning and optimisation. The key focus of
this section utilised a well-structured spatio-temporal analysis of origin-
destination data from Bluetooth to provide answers to many relevant questions
that may arise in the course of decision-making such as: i) Given a set of
Bluetooth data, which part of the network is free of congestion? ii) Where within
the network are road users likely to be exposed to pollution? iii) What time of
the dayl/year is the congestion level highest/lowest? iv) Which link is most/least
used? These important questions are considered before conclusions are drawn

in Section 7.6.

7.2 Estimated Traffic Flows using Bluetooth Data

7.2.1 Estimation of total flow based on all Bluetooth detected devices

Figure 7.1 presents the profiles of the total (unfiltered generic traffic) and
estimated (filtered vehicular traffic) flows derived from the Bluetooth data on
Link3435 in Stockport. Link3435 is considered a good example for this
illustration because it is a relatively short link (approximately 511m) with a
speed limit (30mph — = 48km/h). Further, the Bluetooth stations on the link are
co-located with ATC and SCOOT detectors for validation. From the flow profiles
that are deemed to be representative of the reconstruction of the real traffic at
the time of detection on Link45 in Stockport, the total flow measured up to 700
vehicles an hour on average. However, there is, for example, the presence of
other road users in the measurements that shows the profile does not reflect the
true status of the vehicular traffic. From Figure 7.1, the presence of other modes
accounts for more than 50% of the devices detected (from = 300 to 700
vehicles at peak periods). Recall that Bluetooth sensors capture a range of
enabled devices such as mobile phones and laptops carried by different road
users moving in both directions once they are within the detection range.
Consequently, any traffic parameter or metric derived from such measurement
as performance measures will contain other road users that may not necessarily
contribute to the traffic. Accordingly, such estimation is rarely useful for traffic

management. However, data filtering as described in Section 3.2 helped in
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removing outliers, which reduced the flows to 200 — 300 vehicles on average
over the 7 am — 6 pm period. The filtered flow (the lower profile of Figure 7.1)
presents the actual reconstruction of the traffic state as shown in the validation
presented in Figure 7.6. The filtered flow also presents typical traffic flow
regimes compared to the total estimation that contains some amount of noise
that usually causes unpredictability. However, the data filtering applied enabled
the realisation of the ideal state of the vehicular traffic. This result shows the
necessity for adequately handling outliers in Bluetooth data to obtain a realistic
estimation. Otherwise, the results may be misleading.
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Figure 7.1: Flow profiles of unfiltered and filtered devices on Link3435

For a better understanding of the errors that might arise from the use of total
flows, the speed distributions were plotted using histograms as shown in

Figure 7.2. The histograms present the opportunity to understand the
distribution of speed variations from the detected devices. The knowledge of
these speed distributions can be utilised in congestion and vehicle emissions
studies. Generally, speed distribution is usually normal or approximately normal.
The plot of the unfiltered speed does not follow this behaviour while the filtered
speed is best represented with a normal distribution. The histogram plot of the

filtered devices presents a clearer picture of the speed distributions over the
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links. The variation in speed as would be expected is due to temporal changes
in traffic volume on the link over the day. The first bin of the histogram of the
unfiltered devices presents the highest frequency (n=15,500) associated with
the group of devices travelling at less than 10km/h. This group was classified as
non-motorised modes, and other extreme cases such as vehicle stop-over were
excluded from devices classified as vehicles in the analysis. Accordingly,
devices that were too slow or too fast were rejected according to the boundary
and outliers filters described in Section 3.2. The filtering of the data leads to a
13% detection rate compared to 30% of the total estimation. Further analysis of
the link speed on hourly average showed that vehicle speeds range between 35
— 51km/h. This signifies a high level of speed limit compliance as would be
expected in UK urban areas. This is expected in an urban road given the UK

policy on traffic violation that includes strict penalties.
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Figure 7.2: Histogram plots of the speed of all and filtered devices on Link3435

In addition, note that the station data captured by Bluetooth contains no
information to indicate the direction of travel and is therefore limited in
application without combining it with data from another station. Combining or

merging Bluetooth data captured at different locations across the network leads
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to the realisation of the direction of travel, O-D matrix and the overall traffic
metrics estimation. For example, the merging and analysis of the tracked
devices at Stations 34 and 35 (a total of 33,651 devices - Figure 7.3 showed
that about 50% of the total devices on the link were travelling within the
boundary of the first filtering condition (speed > 6km/h and speed <120km/h
based on average walking speed of 5km/h). The implication of this is that if all
the captured devices contribute to traffic and are considered as vehicles, about
701m road length per hour on average will be required to accommodate all the
vehicles. This is assuming an average vehicle length of 2m in a 4-lane road
(both directions) and with no gap between the cars and without scaling up the
estimation. That is, the product of number of devices (33651) and the vehicle
length (2) divided by the product of number of lanes (4) and number of hours
(24). However, this situation is practically impossible considering the road
configuration given above. This type of unrealistic scenario is presented when
analysing Bluetooth data based on total devices captured. For a clearer picture,
the speeds of all the 33,651 merged devices was analysed using the
Mahalanobis distance method while boxplot was used to understand the
properties of the distribution. The results clearly showed an unrealistic
skewness in the data (except in extreme and rare occasions such as heavy
congestion, which in this case, is not). Figure 7.4 shows the skewness in the

data and the Mahalanobis cut-off point (2.448) for the outlying values.
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Figure 7.3: Boxplot showing the speed distribution of all devices on Link3435
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Figure 7.4: Plot of speed against the Mahalanobis’ distances with the cut-off

point

Figure 7.5 presents the boxplot of the vehicle speeds after filtering. The boxplot
representation of the filtered devices showed that speeds <15km/h are outliers.
Based on evidence from the SCOOT comparison, the boxplot of the filtered
devices shows a better and cleaner representation of the road conditions
compared to Figure 7.3. As shown in Figure 7.5, about 50% of the vehicles
travelled between 35- 50km/h, which is more realistic and sensible, based on
the road configuration. However, it should be noted that for a short distance,
estimation errors might increase due to locational uncertainty arising from the
detection zone. That is, the actual position of the detected device within the
detection zone is unknown. If the device was detected at the exit and entry
points at two consecutive stations, this will lead to an underestimation of travel
time, and may consequently be interpreted as over speeding. Similarly, a
detection of a device at the entry and exit points of the detection zone will lead
to an over-estimation of travel time, leading to lower speed than reality. This is
by extension affecting the vehicle count and any subsequent analysis such as
pollution level monitoring. This is because valid vehicle records may be
regarded as outliers and filtered out. Given this knowledge, the application of

Bluetooth for speed compliant monitoring on a short link may not be desirable,
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particularly in an urban setting, as in this case.
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Figure 7.5: Boxplot showing the filtered speed on Link3435 in Stockport

7.2.2 Estimation of directional flows

In Section 5.3.1, the combined normalised flow profiles of Bluetooth, ATC and
SCOOT in the NW-direction was presented showing a high level of consistency
and reliability. This section presents the SE-equivalent of the results with
emphasis on the hourly-weekday temporal variation over the months of April to
October, to build on the discussion of flow estimation using Bluetooth.
Consistent with the NW-directional flow profiles, Bluetooth and SCOOT flows
present a better correlation compared to Bluetooth and ATC comparison over
all the temporal dimensions considered. Figure 7.6 presents the hourly-
weekday profiles of the flows over the period. Overall, variability is much
pronounced over the peak period particularly with ATC flows. However, at low
flow, the measured flows by Bluetooth showed a very strong relationship with
the flows measured by SCOOT and ATC detectors. The evidence from this
research shows that despite the variability, there exist the possibility of data
reduction to minimise redundancy and consequently increase efficiency in data
processing and information dissemination. This is evident from the day-to-day

consistency in weekdays’ (Monday — Friday) average and over the weekend
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(Saturday and Sunday) as would be expected of real life traffic.

Overall, the consistency observed in the data over time following the validation
presented in Section 5.3.2 signifies reliability, which indicates that the Bluetooth
estimated flow can be used to build-up historical data for traffic management in
the event of network failure. That is, the typical flow level obtained from
Bluetooth for a particular day may be used as a substitute to avoid disruption in
operation. In addition, the temporal correlation of Bluetooth with the ground-
truth data implies the validity of the estimated flows. This is evidenced from the
reproducibility of the actual pattern observed from the SCOOT measured flows.
Therefore, Bluetooth has potential to understand temporal variability in a traffic
network. In turn, this knowledge will serve as an aid to traffic signal timing and

adjustment to ensure efficiency in the network.
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Figure 7.6: SE-directional flow profiles on link3435 in Stockport (18761)

7.2.3 Estimation of total directional flows

Figure 7.7 presents the profiles of the total directional flow on four different
temporal dimensions on Link0506 in 2013 in Trafford. Figure 7.8 on the other
hand, presents the superposition of the directional flows for a better
understanding of the differences in the level of service each way on the link.

The interpretation of the total directional flow profiles is consistent with the
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directional flows but in this case, the summation of the flows on the opposing
links is presented. However, the slightly different peaks noticed (as expected) in
the directional flows in the morning and evening for the SW and NE-bound flows
respectively are evened out in the total flow. From the evidence presented in
Section 6.5.5, the total flow thus shows less variability compared to the
directional flow. One interesting thing about this result is that the temporal
variation arising from work/school time and the close of work was captured in
the data as reflected in the opposing links. The variability that is more
pronounced in the NE-bound monthly flow has also been smoothed with the
precision (less dispersion in the trend of the data) observed in the NE-bound
monthly flow. Similarly, all the profiles at the varied resolutions present less
variability in flows compared to the directional flow. The NE flows were higher
than the SW flows on the weekdays and months in the year. However, similar
trends such as variation between the peak and off-peak periods were observed
on the opposing links. Through this analysis, one could infer the period of the
day (giving the knowledge of “when”) different strategies may be required on the
opposing links because of differences in the level of service. For example,
different strategies may be required between the hours of 12 noon and 6 pm as
observed from the hourly-weekday profiles of Figure 7.8. Based on the
evidence provided in this research, the results obtained showed a possibility of
Bluetooth application to traffic congestion monitoring using Bluetooth measured
flows. The next step examines the potential application of Bluetooth estimated

flow.
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Figure 7.7: Profiles showing the total directional flow at different resolutions on
Link0506 over 2013 in Trafford (N=31306)
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Figure 7.8: Profiles showing the superposition of the directional flows at different
temporal dimensions on LinkO506 over 2013 in Trafford (N=31306)
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7.2.4 Understand temporal and spatial variations in flow

This section explores the capability of Bluetooth to understand both temporal
and spatial variations in a network. Three non-consecutive links with
independent measurement of flows in the Stockport network on the A6, Buxton
Road were analysed to carry out this investigation. The first two links (3534 and
3736) are separated by 694m while the third link (4039) is 815m away from the
second link. Normally, little variation is expected in the flows across the links
due to the connecting routes and given the fact that the total link length is 2km.
(See the location map - Figure 4.13 for the road configuration). However, if
there should be any significant variation across the road, the first two links are
expected to be more closely related given the evidence from the ATC validation.
Therefore, the applicability of Bluetooth to capture both temporal and spatial
variations in the measured flows is explored in this way as presented in the
following figure (Figure 7.9) using a month’s data over July 2013. Interestingly,
all the links are closely related with a fine precision with the SCOOT measured
flows as evidenced from the overlapping profiles. The correlation coefficients
between the Link3534 to Link3736, Link4039 and the SCOOT measured flows
are 0.999, 0.954, and 0.958 respectively. The results showed a very strong
relationship between Bluetooth and the SCOOT measured flows with
consistently similar patterns of traffic regimes over the hours and weekdays.
Therefore, what readily comes to mind is that traffic from the connecting routes
in this case has had no effect on the volume of the road network. That is, the
number of vehicles joining and leaving the road section seems to cancel each
other out. Given this situation, the same strategy might be sufficient to manage
the network. The uniformilty in the traffic volume also means that the same
detection rate may be used to scale up the estimated flow across the links
whilst achieving the same level of accuracy in the estimation. However, special
cases involving a network of different attributes must be carefully considered
when computing detection rates to be used as a scaling factor for other links
where they have not been directly computed, to avoid estimation error. Where
the difference in volume reflects the actual change in flow levels spatially, for
instance, this may signify a higher activity on that link than the other links.
Therefore, to keep the traffic flowing to prevent congestion and blocking back
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on the link with the higher volume, more time will be required when the traffic
light is on green. Temporal changes characterised by higher flows over the
weekdays than on the weekend are evident from the results with evidence from
the SCOOT modelled flow pattern. Therefore, the capability of Bluetooth to
provide both spatial and temporal status information if utilised will inevitably
contribute to efficient network management. For instance, real-time provision of
traffic data to inform both temporal and spatial changes will enhance the
management of traffic such as in traffic signal control for an optimised road. The
knowledge of the spatial changes in traffic level will also facilitate a timely
solution to avoid the building up of traffic. This will in turn, help the road users in
the choice of optimum route during congestion to save time and fuel used in
traffic. Using Bluetooth in this way offers a considerable advantage over the

more expensive conventional data collection systems particularly in terms of

Ccost.
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Figure 7.9: Bluetooth (BT) flow profiles on three routes over the month of July
overlaid with SCOOT (SCT) flows northwards on London/Buxton Road, A6
(N=2976)
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Figure 7.10 presents the normalised time series plot of Bluetooth and SCOOT
flows captured during the month of July 2013 in Stockport over Link3435 SE-
bound. The normalised flow profiles showed that Bluetooth is consistent with the
SCOOT measured flow and representative of the actual flow captured by the
SCOQOT links over all the averages. This research has also shown that Bluetooth
can detect temporal changes not only in the long-term but also on a day-to-day
basis. An interesting thing in the use of Bluetooth as seen from these results and
as evidenced in Chapter 5 is that despite being a low-cost sensor measuring a
lower flow, quality is not compromised. This is a clear advantage offered by
Bluetooth technology in terms of sustainable options over the conventional
methods. Therefore, the application of Bluetooth for temporal status monitoring is
considered a possibility. A significant advantage of Bluetooth technology in this
respect over the conventional methods such as the inductive loop detector (ILD)
is that Bluetooth can be installed in large numbers in a network, thereby leading
to a more comprehensive monitoring of the network traffic than would be

possible using ILD.
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Figure 7.10: SE-directional time series flow profiles of Bluetooth and SCOQOT on
Link3435 in Stockport (N=2976)

7.2.5 Using Bluetooth estimated flow for data augmentation

One of the merits of Bluetooth technology is highlighted in its possibility in an
integrated system through data fusion and augmentation to ensure continuous
undisrupted network management (Bhaskar et al., 2014). The possibility of this
application is accentuated in the scatter plots presented in Figure 7.11 showing
positive correlation in the monthly flows of Bluetooth and SCOOT. The scatter
plots also showed hourly correlation with dispersion more pronounced over the
peak periods. The evidence following the validation presented in Section 5.3
shows that Bluetooth data could be utilised to augment the existing systems as
previously demonstrated by Bhaskar and Chung (2013). In some cases, such
as understanding of the generic stream (total traffic), the technology may serve

as a stand-alone sensor. Also, changes in temporal relationships of Bluetooth
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data with the IMT data inform the knowledge of usage and performance such as

in peak and off-peak periods.

The concept of data augmentation becomes even more significant when there
Is a system failure arising from the traditional method of data collection.
However, it may be argued that system failure is not frequent and, as a result,
may not be a cause for concern. While this argument is valid, the application of
Bluetooth helps removes reliance on archive data by the traditional system and
is thus a significant added advantage to the existing system. Application of
Bluetooth for data augmentation will include node-to-node data adjustment and
fine-tuning of erroneous data points, thereby leading to avoidance of disruption
in service provision. However, it should be noted that for a complex urban road
network monitoring, Bluetooth may be insufficient because error from the
detection rate will result in poor accuracy in the estimation. Therefore, its
application should take into account the limiting factors highlighted in Section
2.3.3. Despite some limitations such as low count rate, the analysis of the
results of Bluetooth data as seen in the scatter plots and based on the evidence
from the validation exercise, suggests the possibility of data augmentation.
Therefore, harnessing the potential of Bluetooth in data fusion and
augmentation to extract value will be essential to capitalise on investment and

to benefit from the resulting opportunities as noted by Harris (2014).
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Figure 7.11: Monthly scatter plots of Bluetooth against SCOOT measured flows
on Link3435 NW-bound, Stockport

7.3 Using Bluetooth Journey Time for Traffic Management

7.3.1 Journey time management using mean and median travel times

From the pilot study (Section 4.5.4), it was shown through the preliminary
analysis that the median is the best estimator of journey times. In Section 6.3.1,
a discussion of the analysis of the two estimators on a larger scale (using a year
data) was presented. The analysis conducted a test for any significant
difference between the two estimators to support the findings of the pilot study.
That is, to find out if the median journey time is a better estimator than the mean
for journey time management. On exploration of the time series plots presented
in Figure 6.8, the median journey times can initially be argued as a better
estimator. However, the confirmatory test performed between the two

estimators at 95% confidence level stated otherwise. The result showed that the
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probability of a difference between the two estimators (irrespective of the
temporal dimension) is less than 0.01. This is evidenced from the overlap of the
point estimate with the 95% confidence interval (CI), with the p-values showing
the significance level of the results as presented in Table 6.4. Therefore, the
application of Bluetooth mean journey time is comparable to the median, and is

thus considered a good estimator for journey time management.

7.3.2 Journey times for network planning

This section presents the results of journey times to show both temporal and
spatial variation in travel time across the Wigan network. Figure 7.12 presents
the O-D analysis of the network journey times distribution on an hourly basis
across the Wigan Network. The results showed the amount of time it takes to
traverse the network from Station 12 located on the A49 southwards to the
respective stations under consideration as shown in this figure. The x-axis
presents the different routes under consideration. From the weekly and daily
analyses of the results, it was observed that it takes a longer time to move from
Station 12 to Station 21 (a distance of 5.83km) connected with a major road
than to move to Station 24 (a distance of 4.87km). The shortest distance
0.89km (Link1216) has the shortest journey times (150 seconds on average).
However, this is expected as seen in the network configuration between the two
stations — the location map is presented in Figure 4.8 — Section 4.5. The
capability of Bluetooth to capture the spatial variations implies the possibility to
support network planning for the delivery of enhanced services. While these
variations could be captured by other methods of data collection, these other

methods cannot be deployed in large numbers, unlike Bluetooth.

The analysis of the network in terms of the journey times showed clearly that
the length between two stations might not necessarily correlate with their
journey times. For example, Link1231 has a shorter distance (1.6km) with an

average journey time of 294s compared to Link1218 (3.02km) with a journey
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time of 423s on average. This shows that the journey times within an urban
network are not solely dependent on the link length, but also on other important
variables, including but not limited to, the road types linking the stations
together and the land use of the area. With the capability of Bluetooth data to be
transmitted and analysed in real time, this type of information presents network
engineers with the opportunity to optimally manage the network for efficient
flow. This can be seen in the areas of traffic signal timing control, suggestion of
alternative route(s) and parking guidance through a personal alert system or
VMS. Summarily, the consistency observed in the data as in Bhaskar and
Chung (2013), and as noted by Beca (2011), gives a level of reliability to
Bluetooth journey time estimation to support decision-making for network
optimisation. From the above, answering questions such as “which is the
optimum route in the network?”; “what is the time it takes from one origin to
another destination?”; “what time of the day is the journey time longer?” or
“‘when or where can congestion be experienced in the network?” becomes
realistic. Any change or sharp departure from the normal trend might be
indicative of an incidence occurrence that needs to be investigated and/or given
attention. This type of information is also useful in understanding travel time
index (TTI).
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Figure 7.12: Weekly distribution of journey times across the Wigan Network
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7.3.3 Using Bluetooth for the study of travel time index

This section presents the knowledge of how Bluetooth might be used to
evaluate travel time index. A working definition of congestion is travel time or
delay in excess of that normally incurred under light or free-flow travel
conditions’ (Gifford, 2003, page 181). HCM (2000) defined traffic delay as the
delay component resulting from reduction of speed below the free-flow speed
due to the interaction of vehicles. Travel time index (TTI) found significance in
calculating and understanding of the reliability of performance measures
through the day-to-day variation in travel time (Lomax, 2010). In Section 6.3.3,
the knowledge of the day-to-day variability in journey times was explored.
According to Lomax (2010), this variation describes the amount of time that
road users should allow for in an important trip. Furthermore, reliability
measures are particularly useful for identifying the effect of system
management strategies designed for efficient traffic operations (Lomax, 2010).
TTl is defined as (Lomax, 2010, page 6):

Delay Time+Free flow Time

Travel Time Index (TTI) = Free flow Time (7.1)
Simplifying Equation (7.1) becomes:
TTI = Time at Congestion (7.2)

Time at Free flow

The mean journey times over free-flow and congested periods on the A56, NE-
bound, Trafford were analysed.

Figure 7.13 presents the hourly journey times over the month of November
showing temporal variations. Consistent with other results on journey times
which are characterised by temporal changes, the analysis showed that more
time was spent in traffic during the congested period (250 s) compared to the
free-flow period (100 s). Over Link0506, a TTI of 2.5 was computed based on
equation 7.2. This factor (TTI) is useful in determining the amount of extra time
spent in traffic. For example, a journey of 100 seconds at free-flow will translate
to 114 seconds during the congested period for a TTI of 1.14. This showed that
an extra time of 14 seconds was spent in traffic given a TTI of 1.14. With a
higher value of TTI, the amount of time spent in traffic will increase accordingly.
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This information provides not only the knowledge of the additional time spent in
traffic but also the idea of the changes that might occur in the network. Such
information can also be evaluated in terms of the amount of fuel consumed to
evaluate the economic impact of the additional time spent in traffic. The
application of Bluetooth to understand this phenomenon can help route
planners to put in place an appropriate management strategy to reduce
unpredictability in travel time that may in turn affect driving behaviour. However,
while other methods of traffic data collection can be used in this regard,
Bluetooth offers the advantage of cost. Summarily, the accuracy of travel time

estimation using Bluetooth data suggests the possibility of TTI application.
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Figure 7.13: Hourly travel time over the month of November on Link0506 (N=
2880)

7.4 Using Bluetooth Journey Speed for Traffic Management

7.4.1 Using the mean and median speeds for congestion management

This section explores the use of the Bluetooth estimated mean and median
speeds to reconstruct traffic state to understand congestion patterns such as
free flow and congestion. Journey speed in kilometers per hour (km/h) is the
average speed of a traffic stream obtained from the length of a road segment
divided by the average travel time (HCM, 2000). Figure 7.14 presents the
reconstruction of journey speed over each hour of the day with consistency
observed in the profiles from day-to-day. Unlike the journey time, the mean and
median speeds overlap each other showing clearly that there is no significant
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difference between the two estimators. This shows that either of the two
estimators can be used to understand congestion patterns to achieve the same
results. Figure 7.14 shows that the speeds of vehicles using both estimators are
higher over the early hours and late in the night than during the working hours
of the day. The regular dip observed over weekdays at about 8 am indicates
that this is the most congested period of the day, thereby giving an indication to
when pollution may be highest in the day. The speed over the weekend is
higher with less variability compared to the weekdays as expected. From the
available evidence and the validation of the vehicle speed presented in Section
5.3.3, which showed a high level of accuracy, it is concluded that Bluetooth can
be used in congestion management to minimise pollution arising from vehicle
emissions. Potential applications include congestion level monitoring and
density estimation. Already, density estimation has been demonstrated using
Bluetooth through data fusion (Bhaskar et al., 2014).

In addition, the traffic regimes depicted in the Figure 7.14 showing variations in
speed level are analogous to the reconstruction of real traffic at the time of
occurrence. As expected, speeds of vehicles are higher over the weekend
(47km/h) compared to 45km/h over the weekdays. The closeness of the speed
distribution over the weekday is attributed to the speed regulation, and thus
suggests the possibility of Bluetooth to contribute to monitoring the speed
compliance level in a given road network. Based on the available evidence,
using Bluetooth in this way will assist traffic managers to understand what time
of the day or day of the week speeds are usually low such as days on which
football matches are played, or an hour before or after football matches. If this
trend is monitored efficiently over time using Bluetooth, appropriate control
measures could be put in place based on the information provided by Bluetooth
to minimise traffic congestion, and thus its attendant environmental pollution.
Control measures may include re-routing by relaying the information gathered
from Bluetooth to road users through VMS. For example, the displayed
information may include a restriction to private cars on key corridors to promote

the use of public buses, and thus a reduction in the number of vehicles on the
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road and the amount of emissions generated. Alternatively, there could be the
implementation of road-user charging communicated using Bluetooth to control
traffic in such instances. In that case, private car users will have to pay to use
the roads over these specific periods. A significant advantage of using
Bluetooth in this regard is that additional infrastructure such as radio frequency
identification (RFID) tag may not be required.
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Figure 7.14: Non-normalised mean and median journey speed on Link0506

7.4.2 Application of Bluetooth for speed limit compliance monitoring

A speed limit is defined as the maximum, legally permissible driving speed
along a specific good road section and under good travel conditions (RTA,
2011). Speed limits are usually imposed on roads to control traffic and are
primarily for two things: i) To reduce risks imposed by drivers’ speed choices
leading to potential vehicle conflicts; and ii) To provide the basis for punishment
for road offenders who endanger the life of others (DoT, 2015). In this regard,
Bluetooth was analysed to understand whether it could be used to monitor the
compliance level of motorists to the speed limit and to understand the safety
level of the road users. From the investigation, analysis showed that on a road
with 48km/h speed limit, from day-to-day, the average speed over the link is
between 30km/h and 65km/h. The first observation from this result is that a
certain percentage of the detected vehicles travelled at speeds above and
below the speed limit. The compliance level analysis also suggests that about
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20% of the total vehicles plying the route travelled above the speed limit while
about 80% are speed limit compliant. Given that 20% of the vehicles travelled
above the speed limit over the year, the conclusion here is that this percentage
cannot be attributed to only high-speed vehicles such as ambulances but also
some road offenders who break the speed limit. With this type of information,
there are different possibilities to address this issue to reduce the risk posed by
the offenders which include: i) deployment of security personnel to arrest
offenders; ii) the use of VMS to warn road users of over speeding; iii)
introduction of traffic calming where necessary, and iv) implementation of a
policy to register the MAC address of a vehicle which, in this case, will be
synonymous to the registration of vehicles’ numbers. The possibility of this type
of application will be of significant benefit in terms of both cost and safety.
However, it may raise security and privacy issues. That is, motorists may
attribute such application as a breach of privacy right and that they are covertly
monitored. To clear any doubts will require policy review and public
sensitisation to educate the road users. If this is a welcome idea by the public,
then the implementation of a real-time warning system to reduce the risk on the
road also becomes a possibility. However, it is to be noted that a certain
percentage of the defaulters may not be captured given that Bluetooth only
captures the sample of the total traffic. Nevertheless, Bluetooth can be
harnessed in this regard to complement existing technology such as speed
cameras to derive safety benefits and an enhanced operation. The next section

considers the possible application areas of O-D matrix using Bluetooth data.

7.5 Using Bluetooth O-D Matrix for Traffic Management

7.5.1 Origin-destination matrix for network planning

In this research, 6,159 hourly O-D matrices were analysed over six months
across the three networks in Greater Manchester to understand temporal and
spatial variations in the network traffic. Figure 7.15 conceptually shows the
origins and destinations for the Wigan network and, for each hour, a matrix was

produced. The stations used were selected within the network at strategic
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locations to cover the spread of the Bluetooth sensors while improving the
computational efficiency. A one-headed arrow indicates one-directional flow
while a double-headed arrow indicates bi-directional flows. For computational
efficiency and ease of understanding, the data were transformed to vector form.
That is, each O-D matrix was transformed from a 2-dimensional object to a 1-
dimensional object. Table 7.1 gives the proportion of the vehicles tracked
across the network. O-D pair 12 and 16 has the highest proportion (12%) of the
hourly network flow while O-D pairs 21-29 and 26-29 both have the lowest
proportion (0.1%).

The vectors for each hour from day-to-day were compared against each other
using the function ‘rcorr’ to compute the correlation coefficients and the p-values
as given in Table 7.2. The function rcorr is in R statistical package (R Core
Team, 2013). The p-values help in understanding the significance of the results.
A very strong positive correlation was observed from day-to-day, with a high
significance level at 95% confidence. Unlike the link-based analysis, the O-D
matrices comparison showed a strong correlation between weekdays and
weekends. The improvement in the correlation coefficients is expected given
the volume of the data used in the O-D matrix compared to the link flow
estimation. The strong relationship in weekday data thus suggests a possibility
for data reduction to improve computational efficiency. The day-to-day
consistency in the measurements means a level of reliability in the data. This
demonstrates that the day-to-day monitoring of the O-D can provide the data
needed to compute and plan traffic management interventions in response to,
for example, air pollution events and incidents. In addition, routine assessment
of the impact of the intervention is made possible. More important is the
monitoring of any significant changes in O-D that may occur because of

roadworks and accidents.
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Figure 7.15: A typical plot of an O-D matrix in the Wigan network

Stn12 | Stn16 Stnl8 Stn21 Stn24 | Stn26 Stn29
Stnl2 0 0.085 0.072 0.003 0.019 0.01 0.011
Stnl6 0.12 0 0.096 0.002 0.004 0.003 0.017
Stnl8 0.071 0.107 0 0.024 0.017 0.022 0.014
Stn21 0.017 0.018 0.044 0 0.032 0.005 0.001
Stn24 0.022 0.003 0.018 0.014 0 0.017 0.003
Stn26 0.014 0.005 0.029 0.004 0.021 0 0.001
Stn29 0.017 0.005 0.007 0 0.004 0.007 0

Table 7.1: Proportion (%) of traffic flow across Wigan network
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Sun Mon Tue Wed Thu Fri Sat

Sun 0.0001| 0.0003 0| 0.0041 0| 0.0022
Mon 0.0001 0 0| 0.0003 0 0
Tue 0.0003 0 0.0004 0 0 0
Wed 0 0| 0.0004 0.0054 0| 0.0013
Thu 0.0041| 0.0003 0| 0.0054 0.0014| 0.0002
Fri 0 0 0 0| 0.0014 0.0003
Sat 0.0022 0 0| 0.0013| 0.0002| 0.0003

Table 7.2: P-values of hourly O-Ds in Wigan for seven days

7.5.2 Hourly origin-destination matrix for network optimisation

In the previous section, the day-to-day consistency in Bluetooth O-D matrix
estimation was demonstrated through correlation analysis to understand
relationship and strength. The results from Table 7.3 demonstrate the ability of
Bluetooth as a technology to provide hour by hour O-D matrices as
demonstrated by Barcel6 et al. (2012). Such information can be used in traffic
models to explore solutions for tactical intervention plans to optimise specific (or
a combination of) performance measures for the smooth running of the network.
Finally, Table 7.4 presents the correlation coefficients (0.96 — 0.98) of the
weekday O-D matrices. The values of the correlation coefficients signify a
strong positive relationship between the weekday O-D matrices. The
consistency of the hourly O-D from day-to-day signifies the possibility of building
up historical data, for example, in the event of data failure. Based on the
evidence provided in this research and from literature, Bluetooth is considered a
viable option to enhance traffic management. This enhancement can be seen in
different traffic management applications using the O-D matrix information for

planning and implementation purposes.
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Flow
(Veh/h)
JT (S) Stn1012 |Stn1016 |Stn1018 |Stn1021 |Stn1024 |Stn1026 |Stn1029
Speed
(Km/h)
78 38 3 11 3 3
Stn1012 131 390 1038 1546 996 396
26 29 21 16 21 29
114 56 3 1 3 11
Stn1016 121 247 609 1097 2193 330
28 32 30 16 16 25
66 119 25 18 8 16
Stn1018 362 237 574 788 1534 836
31 33 23 19 11 29
6 7 23 28 1 1
Stn1021 1380 1225 388 239 1147 878
21 22 30 37 19 34
16 3 17 35 10 3
Stn1024 1337 1836 891 419 517 1695
18 12 18 30 27 15
2 5 22 3 14 4
Stn1026 1266 1082 466 1456 1262 729
14 26 32 21 14 48
6 11 7 1 1 6
Stn1029 525 342 565 908 540 1187
28 34 34 32 41 24

Table 7.3: O-D matrix showing flow, journey times (JT) and speed in the Wigan
network

Sun Mon Tue Wed Thu Fri Sat
Sun 1 0.99 0.98 0.97 0.97 0.98 0.99
Mon 0.99 1 0.99 0.99 0.99 0.98 0.98
Tue 0.98 0.99 1 0.99 0.99 0.99 0.98
Wed 0.97 0.99 0.99 1 0.99 0.99 0.96
Thu 0.97 0.99 0.99 0.99 1 0.98 0.97
Fri 0.98 0.98 0.99 0.99 0.98 1 0.97
Sat 0.99 0.98 0.98 0.96 0.97 0.97 1

Table 7.4: Correlation analysis between the weekday O-D matrices in Wigan
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7.5.3 Using origin-destination matrix to understand the impact of traffic

Table 7.5 presents the analysis of the traffic impacts across GMN to understand
the location that is most affected as part of the potential application of
Bluetooth. Across the three locations, the amount of time spent in traffic based
on the Bluetooth information was analysed per unit kilometre to normalise the
data. The Stockport link is the shortest (3.37 km) while Trafford and Wigan are
5.24 km and 5.83 km respectively. From the sample analysed, Stockport had
the highest number of vehicles in both directions (1147 and 1189 vehicles),
followed by Trafford (209 and 258 vehicles) and Wigan (144 and 198 vehicles)
from which average speed and time were computed over the period under
consideration. Given that Stockport links are the shortest and have the highest
sample (number of vehicles) over the same period suggests that Stockport
possesses the highest number of vehicles incorporating Bluetooth devices.
However, this is not necessarily so given the fact that over short links,
contributions arising from connecting routes, whether by a way of reducing or
increasing the volume on the main link, is minimised compared to long links. For
example, the arterial network of Wigan is expected to have the lowest match
rate over a long distance compared to the other two networks in Stockport and
Trafford. Besides, one of the interesting features captured by the analysis is that
more time per kilometre (4.942 and 5.575 for inbound and outbound flows
respectively) corresponding to the lowest speed/km is spent in the conurbation
(Wigan) than on the routes within Trafford and Stockport. The Stockport links
had the least time spent per kilometre (2.746 and 3.268 for inbound and
outbound flows respectively). Consequently, it may be inferred that within GMN,
given the same factors such as vehicle composition, weather and period,
spatially, more fuel will be burnt in Wigan which is therefore more susceptible to
pollution, while in Stockport, less fuel will be used thereby saving cost with less
pollution. Using Bluetooth to enhance this understanding and other useful
applications in traffic management is considered viable with the obvious
advantage of low-cost compared to the traditional methods of traffic data

collection. The next discussion presents the conclusions drawn.
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Daily Average | Normalised |Normalised
Distance |Speed |Time Speed Time
Location Link (km) [(km/h) |(min) (Speed/km) | (Time/km) | Sample
Trafford |1001-1008| 5.24 21 22.24 4.005 4.241 209
Stockport [1033-1041| 3.37 25 11.01 7.421 3.268 1147
Wigan 1012-1021| 5.83 16 32.50 2.744 5.575 144
Trafford |1008-1001| 5.24 23 20.14 4.386 3.841 258
Stockport (1041-1033| 3.37 27 9.25 8.04 2.746 1189
Wigan 1021-1012| 5.83 18 28.81 3.087 4.942 198

Table 7.5: Analysis of traffic impacts across GMN for a typical weekday

7.6 Conclusions

In Chapter 7, the discussion and interpretation of Bluetooth estimated traffic
metrics comprising flow, journey time, speed and O-D matrix was presented.
The results and interpretations covered the relevance of Bluetooth technology
and how it provided the knowledge of potential traffic management applications.
Potential applications include the use of journey time and speed metrics to
reconstruct typical traffic regimes to understand temporal variations arising from
peak and off-peak periods, and analysis of traffic impact. For example, over the
GMN, Stockport links are the most efficient with the least time spent per
kilometre (2.746 and 3.268 minutes for inbound and outbound flows
respectively) while Wigan is least efficient due to the effect of conurbation.
Spatially and temporally, the consistency observed in the data provides the
opportunity to build historical data, and thus the possibility for data
augmentation. The realisation of O-D information using Bluetooth is justified by
the high level of temporal consistency, which signifies reliability. Using
Bluetooth in this way presents an added advantage in terms of both cost and
time of data acquisition as well as safety benefits. The significantly low-cost of
acquisition, installation and maintenance of Bluetooth sensors compared to the
traditional systems of data collection presents another added advantage to
densify the road networks for an area-wide coverage. This will of course bring
about timely response to incident management as an incident can be localised

to the exact scene with precision.

227



However, the limitations observed in Bluetooth data such as the low count rate,
and challenges in accurately differentiating between carriers of a Bluetooth-
enabled device during congestion means that it cannot be used as a stand-
alone system in all applications. Similarly, the estimation of the actual traffic flow
is dependent upon calibration against an independent measure of traffic to
determine the scaling factor, which is obtained from the detection rate. In a
network of similar attributes, estimation of flow based on combined directional
flows is preferable to the link-based (directional) estimation on the grounds of
accuracy and cost. However, the link-based estimation presents a better
reconstruction of the traffic states and level of service in each direction. Data
filtering is required to obtain the proportion of the vehicle captured by the
Bluetooth sensors, and estimation based on all the detected devices does not
provide the actual traffic state. Based on the available evidence, in particular,
from a typical network within GMN, Bluetooth has a number of viable
applications in traffic management. The next chapter concludes the discussion
on the potential applicability and viability of Bluetooth in a wider context to round
up Research Objective iv.
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Chapter 8. Bluetooth Traffic Monitoring in the Context of
Applicability

8.1 Introduction

Chapter 8 considers the key policy and technological implications emanating
from the research conducted using Bluetooth for traffic sensing and metrics
estimation for traffic management applications. This discussion concludes
Research Objective iv, and sets the platform for possible recommendations
from the research. This chapter also considers issues relating to public
acceptance, and the economic benefits offered by the technology over other
possible alternatives. That is, it considers key issues relating to the reliability of
Bluetooth in traffic sensing as well as the applications and benefits it could
deliver both in the present and future. Exploring the applications in this way will
help traffic engineers and ITS managers as well as policy makers understand
how the technology could potentially improve traffic management. That is, at a
glance, how technological improvements through the use of Bluetooth can lead
to an enhanced solution in traffic management and can be understood. The
potential of this technology in traffic management includes an optimised road
network and improved safety, reduction in pollution and fuel consumption
through reduced traffic congestion. Using Bluetooth, twelve potential
applications are presented with their benefits to inform usability. The evaluation
criteria considered in this research include a consideration for cost, accuracy
and precision, and temporal and spatial consistency of the data. Exploring
Bluetooth in this way is in agreement with the recommendation to use pricing
and technological measures as solutions to traffic congestion (Mitchell et al.,
2011). Therefore, knowledge of the Bluetooth approach in a wider context of
traffic management might form the foundation for viable alternatives and

essential policy formulation.

Chapter 8 comprises the following key sections; Section 8.2 completes the
discussion on the applicability of Bluetooth technology in traffic management

while the transferability of the Bluetooth approach is presented in Section 8.3.
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Section 8.4 examines the theoretical implications while Section 8.5 considers
the policy implication. The concept of ‘Bluetooth Economic 4-Way Test’ is
presented in Section 8.6 to underpin the cost-accuracy benefits of the

technology, before conclusions are drawn in Section 8.7.

8.2 Applicability of Bluetooth in Traffic Management

Table 8.1 presents the summary of the potential applications of Bluetooth and
their benefits in traffic management. UTMC, as we know it today, can be made
to respond better to the management of road traffic if the opportunities offered
by technologies such as Bluetooth are well-harnessed (Ayodele et al., 2014).
From the evidence in this research and literature, exploring this option will lead
to significant potential benefits. The derivable benefits include low procurement
and operational cost, potential to support a reduction in traffic delay and
improved road safety. Derivation of traffic metrics such as journey time and
speed through the detection of Bluetooth-enabled devices carried onboard
vehicles, and of other modes of transportation is a possibility. Potentially, the
efficiency of the signal control models such as SCOOT can be improved upon
through the use of, for example, hour by hour O-D matrices provided by
Bluetooth instead of reliance on the traditional fixed simulation periods of typical
daily peak and off-peak (Ayodele et al., 2014). Journey times and vehicle
speeds from Bluetooth can contribute to performance measures required to

determine the effectiveness of the road network.

Traffic metrics such as O-D matrix and density that have been difficult and
expensive to acquire in the past can now be obtained in a fast and cost-
effective manner compared to the traditional systems (Barcel6 et al., 2013;
Bhaskar et al., 2014). The possibility of computing the penetration rate presents
the opportunity for scalability and transferability of Bluetooth estimated flow over
other links of similar traffic characteristics. In addition, the possibility of real-time
communication will contribute to road safety such as in collision avoidance,

particularly on sharp bends and at road junctions. It is anticipated that Bluetooth
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sensors may take over some of the functionalities of the current systems in both

infrastructures and vehicles. Possible transportation applications besides traffic

management will also emerge which include wireless tyre pressure monitoring,

keyless entry, and the emergence of an ecosystem, where the head unit

consists of Bluetooth sensors instead of a combination of different wireless

technologies (Kuchinskas, 2013). Bluetooth also has more potential in electric

vehicles (EVs) such as in reduced weight through a reduction in the wiring

systems (Kuchinskas, 2013). The positioning applications and telemetry

services can now be achieved with efficiency using Bluetooth (Gakstatter,

2014). Therefore, using Bluetooth technology to support traffic management

applications is recommended.

S/IN Application Traffic Metric Benefit
Cost benefit, improved traffic prediction,
Link-flow estimation for optimised road through congestion
1|congestion control Link-Flow management
Link-Flow/Journey Improved accuracy, avoidance of network failure
2|Data augmentation time/Speed and better reliability
Temporal and spatial status  |O-D matrix/Journey |Enhanced traffic management leading to safety,
3|network monitoring time/Speed cost and health benefits
Support for network O-D matrix/Journey |Enhanced traffic management leading to safety,
4|optimisation time/Speed cost and health benefits, optimised road network
Health and cost benefits as well as social and
5| Traffic impact analysis O-D matrix psychological benefits
Enhanced traffic management through rapid
6|Incident detection Journey time/speed |response to emergency situations
Cost and safety benefits, enhanced fleet
7 |Dwell ime analysis Journey time management and vehicle monitoring
Cost benefit, variability index and congestion
8| Travel time index study Journey time management for an optimised road
Speed limit compliant level
9| monitoring Journey speed Safety benefit
10(Level of service analysis Flow/Speed Enhanced traffic management
11|Density estimation Flow/Speed Enhanced traffic management
O-D matrix/Journey
12| Decision support system time/Speed Enhanced traffic management

Table 8.1: Bluetooth potential traffic management applications and benefits

8.3 Transferability of Bluetooth Traffic Monitoring Method

One of the factors to consider in the choice of any system is transferability

(Srinivasan, 2011). Although there are different vendors of Bluetooth sensors

such as TDC Systems Ltd, BlipTrack, and Blids, the approach for traffic
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monitoring remains the same. Few exemptions can be seen in performance
such as in data acquisition and transmission. Besides, the basic operational
principle remains the same irrespective of vendor or geographical location. For
example, the method described in the literature was built upon in this thesis,
and was applied to the data collected from different urban areas in the UK.
However, it should be noted that network configuration and attributes play an
important role in the results obtained. For example, sensors installed at
roundabouts will detect more vehicles going in different directions than those at
T-junctions. Consequently, for vehicular traffic detection, care must be taken to
distinguish between different road users. Otherwise, the method for the generic
network traffic is not transferable for a vehicular detection. Care must also be
taken when transferring the method over networks of different attributes such as
in urban or rural networks to avoid over/under-estimation. Nevertheless, the
investigation conducted over the different geographical locations and the
evidence from the literature showed that Bluetooth technology application for
ITS purposes is transferable on temporal and spatial dimensions. Another
advantage is that it is not difficult to move a Bluetooth detector from one
location to another (UMCATT, 2008). However, as with any equipment, there is
the requirement to calibrate the sensor over the new location to determine the
detection rate to be used as the scaling factor to obtain the actual traffic flow.
Overall, the transferability of the Bluetooth approach presents a significant

economic benefit to support transport sustainability.

8.4 Theoretical Implications of the Research

The scope of this study within the UK means that more case studies and, in
particular, real-time application will be required for further assessment and
generalisation on this subject. That is, the results obtained are considered valid
based on the data used in this research. This means that a new set of data may
produce different results particularly if there is a significant rise in Bluetooth
usage in the next few years. This further means that the use of Bluetooth for
traffic estimation will require periodic calibration to account for any changes in

usage. However, the major challenge is in determining how often the calibration
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will be required to ensure continuously accurate and reliable estimations. Not
only that, the transferability of the technology is another important factor to be
critically examined. While the methodology and the processing techniques may
be the same and transferable, there is a need to consider the differences in the
road networks where the Bluetooth sensors are deployed. For example, the
results obtained in a less urbanised area may not be transferable to a more
urbanised city due to the increase in the traffic volume in the new location and
vice versa. Similarly, traffic estimation within the city centres or in congested
networks will require a more robust validation to account for uncertainties
arising from the contributions from other road users such as pedestrians than in
a free-flowing network such as the motorway. For example, video recording
may be required to obtain the disaggregation of traffic to accurately classify
different modes to remove uncertainty. As with any technology and a direct
consequence of the methodology, this research encountered some limitations,

which need to be considered. This includes:

= Low count rate

» Heterogeneous data sources leading to difficulty in differentiating traffic
modes during congestion

= The requirement for high-speed processing platform to handle the timely

processing of the high-resolution data.

Irrespective of the challenges, the outcomes of this research, which spanned
quality assessment to a demonstration of transferability, and proof of concept
showed that the Bluetooth approach to traffic solutions is a viable proposition.
The accuracy and reliability of the results obtained suggests the possibility of
using Bluetooth data to inform policies that will help to optimise road transport

planning and management.

The current literature on studies conducted outside the UK suggests the
practicality of the Bluetooth approach to traffic monitoring and management.
This concept of Bluetooth-based traffic monitoring and metrics estimation was

analysed further and proven viable at 95% confidence through the validation
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exercise. This research demonstrated the possibility of Bluetooth application in
temporal and status monitoring through the use of flows, journey times, vehicle
speeds, and O-D matrix to support an optimised road network. The design,
development and implementation of a model termed TRAFOST aided the
resulting contribution to knowledge on the Bluetooth concept. In the future,
research on Bluetooth applications in ITS can benefit from the use of TRAFOST
to improve the understanding of Bluetooth approach. Currently, Bluetooth data

processing algorithms are custom-based and are not available to the public.

The application of a novel and a low-cost wireless sensor such as Bluetooth to
enhance the management systems to address congestion problems within the
road transport network constitutes ground-breaking and cutting-edge research.
The obvious benefits in terms of optimised road network are improved safety
and reduced travel time leading to a reduction in pollution and the amount of
fuel consumed, thereby saving cost. The provision of timely and accurate data
that have been difficult and expensive to acquire in the past addresses the
problem of data availability in transport modelling. Bluetooth technology has the
potential for real-time applications and can account for a network of varying
characteristics to provide traffic data. The required number of sensors to be
deployed depends on the nature of the network and the purpose of the data
collection. For instance, an O-D survey will require more sensors that are well-
distributed at strategic nodes than a link-based study. Similarly, a complex
urban area will require more sensors than a free-flowing motorway. Bluetooth
technology is an emerging solution in ITS and related transport applications.
Currently the only available publications which have been identified are from
studies conducted outside the UK. Therefore, an investigation into the reliability
of the applicability of Bluetooth data to address road congestion at UK study site
areas, constitutes a significant contribution. That is, the enhancement of the
knowledge of the applicability and viability of Bluetooth data as a novel solution
to traffic congestion. This contribution to knowledge also includes the

understanding of the variability in Bluetooth-derived metrics to enable sound
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inference and avoidance of uncertainty and unreliability in journey time

predictions. Currently, there is limited information on this.

The advances in in-vehicle technologies make this research more compelling.
This PhD research conducted within the UK has generated a fundamental
understanding of spatial and temporal variations within the GMN more than is
possible using traditional systems. Not only that, this research has informed the
knowledge of the quality, limitations and usability of Bluetooth data through
exploratory and quantitative analysis techniques to realise efficient and smarter
decision support systems. In addition, to demonstrating the modelling and
forecasting capability of the data using seasonal ARIMA models, the knowledge
of the detection rate required to obtain the actual traffic flow is also enhanced.
This knowledge thus provides the platform and justification for further research
on the use of Bluetooth for transport applications. Clearly, the outcome of this
research will undoubtedly put the City of Greater Manchester and the UK in
general at the forefront of utilising low-cost and innovative technologies to
enhance the road network through a better management of the increasingly

congested roads.

8.5 Policy Implications of the Research

One particular policy issue relates to how technological-based solutions can be
embraced to establish a balance in the road network through smart
management without compromising the privacy of the road users. Such policies
can be seen in the objective of ITS-UK and the Foresight projects. However,
public awareness of the benefits of Bluetooth technology will be essential in the
process. This awareness will help to remove concern for covert monitoring from
the public. The fact that carriers of Bluetooth-enabled devices have full control
on the discoverability and connectivity is to be stressed. The use of encrypted
data coupled with an unnoticed process of detection that constitutes no
interference is another added advantage. The empirical findings based on

vehicular traffic in this research showed that Bluetooth application is a
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possibility in ITS to realise smarter and efficient solutions to congestion
management. Therefore, policy formulation such as road speed limit using
Bluetooth as a complementary monitoring system will be beneficial. In this way,
Bluetooth can contribute to meeting the ITS objective of a safe and efficient
network. Moreover, the objective of the Climate Change Act can be achieved
through a better-managed network leading to all-inclusive benefits. The next
section considers the assessment of Bluetooth on a cost-accuracy scale to

understand their implications.

8.6 The Economic 4-Way Test of Bluetooth Application

Addressing the problem of traffic congestion from a technology perspective
requires exploring different alternatives. From a transport and sustainability
perspective, one of the different alternatives is Bluetooth. This is justified in the
‘Bluetooth Economic 4-Way Test’ presented in this section. This concept stands
on the principle of ‘economy of accuracy’, which simply means maintaining a
balance between the standard of accuracy aimed at, and the needs of the
particular task (Whyte and Paul, 1997). The general rule of thumb is that the
higher the standards of accuracy required, the higher the cost in terms of both
time and money (Whyte and Paul, 1997). Figure 8.1 shows the concept of the
Bluetooth Economic 4-Way Test consisting of four quadrants segmented based
on cost and accuracy. Evidence from this research and literature showed that
Bluetooth falls in the upper left quadrant of low-cost and high-accuracy,
considered as the ‘green zone’. Also, despite some of the limitations of
Bluetooth, it could be used in some cases to characterise the road network
more than is possible using the traditional systems This highlights the smart
benefits that could be derived using Bluetooth data for traffic monitoring and
management as well as other related transport applications. Bluetooth is a low-
cost smart solution and is cheaper than the traditional systems both in terms of

cost of acquisition, installation and maintenance, and is recommended.
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Figure 8.1: The concept of Bluetooth Economic 4-Way Test

8.7 Conclusions

In this chapter, key policy and technological issues relating to Bluetooth for
traffic metrics estimation in a wider context of traffic monitoring and
management are presented. Using the Bluetooth approach, twelve potential
applications and their benefits were presented to inform usability. Generally,
Bluetooth presents a smarter solution than is currently possible with the
traditional systems both in terms of deployment and cost. The use of Bluetooth
for traffic management will contribute to improved mobility, safety, efficiency,
reliable journey time management and economic benefits. Bluetooth application
will equally contribute to a reduction in waste and pollution through enhanced
performance in traffic management systems. Therefore, the applicability of

Bluetooth technology will support the establishment of a balanced network.

In a connected environment, Bluetooth could help improve the accuracy and the
reliability of the monitoring sensors through data fusion and augmentation in a
smart way. In fact, the dividends are all encompassing. Hence, this discussion
is by no means exhaustive; meaning a need for future research on this subject.

Over time, new applications such as automatic vehicle identification, toll
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collection, and distress alert, etc., will almost certainly continue to appear due to
the novelty of the technology in the domain of ITS. The deductions made on the
research findings in the wider context of applicability present a broad knowledge
of the potential applications of Bluetooth technology in traffic management. The
conclusion is that the Bluetooth approach, irrespective of any limitations,
presents an innovative means that changes the way traffic information can be
collected. The next chapter presents the conclusions and the thesis summary
as well as recommendations for further research on the use of Bluetooth in ITS
and related transport applications.
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Chapter 9. Conclusions and Recommendations for Future

Research

9.1 Introduction

This research has explored the concept of Bluetooth-based traffic monitoring
and metrics estimation as an effective, smart and low-cost means to enhance
traffic management systems to mitigate road congestion. The study found within
the UK study sites, the nature, limitations and characteristics of Bluetooth-
derived traffic metrics; the correlation with other independently measured traffic
data (IMTD); the variability in the estimated metrics, and the usability of the
traffic metrics in traffic management. This research has assessed the potential
applications of the Bluetooth approach to traffic management in a wider context
of traffic sensing and metrics estimation as well as whether the technology can
enhance the traditional systems as a low-cost sensor. The need for low-cost
consideration is to establish a balance in the road networks through innovative
thinking — such as the use of novel and emerging technologies as viable
alternatives or to complement the existing systems. This enormous potential
makes research into the use of Bluetooth in ITS of high relevance, particularly
with the UK being one of the leaders in ITS with a focus on ‘better transport
through technology’. This research sought an answer to the question: is
Bluetooth data reliable and of sufficient accuracy to estimate traffic metrics for
traffic management applications to reduce congestion? It found within the UK
study sites that Bluetooth data is reliable, sufficiently accurate and low-cost for

traffic management applications.

In the remaining three sections of this chapter, Section 9.2 presents the findings
from the key chapters. Section 9.3 presents the recommendations for future

research before the overall conclusion in Section 9.4.
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9.2 Findings from the Key Chapters based on the Objectives of the Thesis

A number of research objectives were outlined at the outset of this research;
this section summarises how each of these objectives were addressed.
Research Objective i: To carry out a comprehensive and critical review of the
literature on the application of Bluetooth technology in traffic management, and
to consider other technological options in road traffic monitoring. Chapter 2
critically addressed Research Objective i. The literature review showed that the
knowledge of the reliability and validity of Bluetooth traffic sensing and metrics
estimation for traffic management remains largely unknown due to the novelty
of the technology in the area of ITS. The early research was conducted on
journey time management and O-D estimation both on arterials and motorways.
The positive outcome of the early research regarding the applicability of the
technology provided the motivation for continued research towards the
realisation of the ITS objective of a safe and efficient road network. This chapter
of the thesis explored the gaps in methodology, usability and limitations in the
Bluetooth approach to traffic sensing and metrics estimation with a focus on the
reliability and validity of the solution for various road transportation applications.
Exploring Bluetooth in this way will contribute to knowledge in realising the

potential of the technology in ITS and related applications.

Research Objective ii: To design and develop a Bluetooth-based data
processing procedure (a model) to derive origin-destination matrix, link-flow,
journey time and speed in the chosen study areas. Chapter 3 addressed
Research Objective ii and presented the description of the research design,
methods of Bluetooth data cleansing, estimation and the validation methods of
the traffic metrics. A Bluetooth-based traffic detection and estimation model
termed TRAFOST (Traffic Flow Origin-destination Speed and Travel-time) was
developed to accomplish the data processing. The model was developed based
on R-programing language to estimate traffic metrics following the earlier Excel
and Fortran models. Relevant assumptions were made such as in establishing
the boundaries for the outlying values in the development of the model. The

model’s significance is in the acceleration of the data processing and the
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reproducibility of the estimated traffic metrics (link-flow, origin-destination
matrix, journey times and vehicle speeds). The final research design
incorporating diverse independent measures of traffic for results validation
ensured that a sound and robust investigation was carried out. This design
involving the use of diverse IMTD provided an unbiased interpretation of the
results and consequently increased reliability. The robust procedure thus
removed any bias that might surround the analysis if it were only Bluetooth-
validated (i.e., using the base data for validation). The processing and the
analysis procedures, as well as the TRAFOST described in this thesis,
contributed to knowledge of the methodology on the use of Bluetooth data. The
procedure described here can be used in the future research on Bluetooth by
other researchers with an interest in Bluetooth study. The validity of the model
outputs given a 95% confidence level means the research assumptions are
valid. However, the results should be applied within a limited range of validity

given the prevailing conditions.

Research Objective iii: To apply the model in targeted pilot studies in selected
study sites consisting of Liverpool, Birtley and Manchester, for an overview of
the potential of Bluetooth-derived traffic metrics. Chapter 4 addressed Research
Objective iii by exploring the potential of Bluetooth data to support the delivery
of a smarter and more efficient transport network. The preliminary data quality
assessment in the Liverpool study provided the motivation for continual
investigation on the use of Bluetooth data to estimate traffic metrics. The Birtley
study, on the other hand, served as an evaluation platform to test the research
methodology for both limitations and strengths. The Manchester study
implemented the research methods in an area-wide context to demonstrate the
transferability of the methods, taking into account the limitations discovered in
the earlier study. The demonstration of the credibility of Bluetooth data was in
the form of consistency of the repeated measurements with the correlation
coefficient (r > 0.80) between weekdays’ observations. The time series plots of
the preliminary results showed similarity in the periodic trend signifying

consistency over time. The time series plots also showed clear evidence of
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typical traffic patterns associated with temporal variations, having morning peak
hours (7-9 am) and evening peak hours (4-6 pm). The outcome of the data
collection over the study site provided the platform and the justification for the
long-term study and validation of the estimated metrics using diverse methods.

The key findings are:

= Each Bluetooth sensor provides the records of all the detected devices
passing through the location (site) irrespective of direction. This shows
the possibility of understanding the level of service each way at a given
period without the need to install additional Bluetooth sensors to monitor
the opposing link, thereby saving cost.

= Analysis of two weeks’ worth of data collected in the study area of
Liverpool and Birtley showed that Bluetooth has the potential to provide
traffic flows and journey time, and can be used to understand journey
patterns.

= Correlation analyses showed a very strong positive correlation (r = 0.90)
between weekdays and weekend observations. While the descriptive
statistics also showed a high level of consistency in terms of both spread
and distribution of the data which suggests reliability in the data.

= This reliability can also be observed in the form of spatial variability
reflecting the volume of traffic across the networks.

= The high-resolution data (one-second) provided by Bluetooth presents
the opportunity to estimate traffic metrics to support up-to-date traffic

information without reliance on archive data.

Research Objective iv: To examine the performance of the model (TRAFOST)
developed in Objective ii and the consistency of Bluetooth-derived traffic metrics
for accuracy and reliability through validation against diverse independent
measures of traffic and modelling. Chapter 5 addressed Research Objective iv
using diverse IMTD (Independently Measured Traffic Data). The use of
TRAFOST in this research facilitated the data processing and analysis by
combining automation, repeatability and efficiency. delivery This advantage, in

turn, culminated into an in-depth knowledge of the traffic flow patterns and
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spatio-temporal variations within the study sites. The development of TRAFOST
proved to be of significant advantage in terms of both the credibility and
reliability of the estimated metrics, as well as in speed and reproducibility. The
comparisons of Bluetooth data against the IMTD as well as the modelling of the
data showed a strong relationship and an accuracy level up to 95% given the
MAPE values (0.822 — 4.917). In addition, Kullback-Leibler divergence analysis
with values 0.004 — 0.044, showed a very good match between the data sets.
Bluetooth/SCOOT presented a better correlation than Bluetooth/ATC. However,
the difference cannot be attributed to technological differences but to their
spatial positioning. SCOOT links are positioned upstream and downstream of
the link while ATCs are in-between the link. The data from ANPR and TM are
not co-located; therefore, were not compared against each other. Individually,
the two data sets showed a strong relationship with Bluetooth-derived journey
time and speed (R? > 0.70). Detection rates required to calibrate the estimated
flows were computed (from the ratio of the flows or slope of the regression
equation) between 7-15% for ATC, 13-16% for SCOOT and 12% for ANPR.
Scaling up this rate over the network showed that estimations are best at the
validation link and degrade further away with changes in the network
characteristics, thus informing the knowledge of usability. That is, the range
(8%) of the detection rate obtained in GMN means that spatial variation must be
taken into consideration when generalising the results. Combining the results
from ATC, SCOOT, TM and ANPR with Bluetooth has led to an increased
understanding and conviction of the potential of Bluetooth data for traffic metrics
estimation. Generally, the accuracy statistics from the ARIMA models all

portend a high level of reliability and validity of the estimation.

Research Objective v: To analyse the variability in Bluetooth-derived traffic
metrics to enable concrete deductions and sound inference based on the
analysis of year 2013 data from the Greater Manchester Network (GMN).
Chapter 6 addressed Research Objective v as a way of further validation.
Overall, the results showed that Bluetooth can capture the temporal and spatial

dynamics in the traffic network. The aggregation on a weekday basis presented
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the best consistency and accuracy while the monthly average presented the
highest variability. This type of information is very significant to the practical
applications of Bluetooth data to avoid unpredictability. The knowledge of the
data distribution informed the statistical method applied. Generally, and
consistent with SCOOT and ATC flows, the Bluetooth flows are not normally
distributed while journey time and speed are best represented with a normal
distribution. Higher variability was observed in the directional flows (coefficient
of variation = 6.74 and 8.63 for NE and SW flows respectively) compared to the
total directional flows (coefficient of variation = 5.02), signifying a better result
and a higher reliance level in the total directional flows compared to the
directional flows. Using Bluetooth, particularly in a network of similar traffic
characteristics, total directional flow estimation may be preferred to directional-
based estimation according to this information. Similarly, variability was more
pronounced over the congested period than in free-flow, thus informing the
knowledge of the period of better reliability. Higher variability was observed in
ATC-derived detection rates than in the SCOOT-derived. An mpv (most
probable value) of 13% for ATC-derived penetration rate was obtained in
Trafford, based on monthly and daily directional flows. The day-to-day analysis
of the detection rates on a long-term basis showed a high level of precision with
a standard deviation of 0.01. This value is considered the representative
proportion of the total vehicles detected by Bluetooth sensors in the Trafford
network. Spatially, Stockport presented the highest variability with a cv
(coefficient of variation) of 0.14 — 0.20. Post-analysis tests showed that hourly
and periodic metrics can be grouped into different homogenous subsets to
enhance traffic prediction. The variability study in general, provided the
knowledge of essential factors that must be considered in the application of
Bluetooth-derived metrics that include the averaging of the data and time of
observation. It is noted that harnessing this information is critical to arriving at
valid and sound conclusions from the results, and thus contributing to the
reliability of the solution. The importance of variability can be seen in reliable
journey time prediction and thus a removal of uncertainty in the mind of road
users. That is, road users can effectively plan their routes and journeys without

having to worry about unpredictability in journey time.
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Research Objective vi: To interpret the results and make deductions on the
research findings in a wider context of applicability and viability and make
recommendations for traffic management. Chapter 7 partly addressed the
interpretation element of Research Objective vi, while Chapter 8 summed up
the applicability of the results. This chapter serves as the basis for informing the
knowledge of the applicability and viability of the results. That is, the reliability of
the Bluetooth approach to traffic monitoring as well as how the results obtained
provided knowledge of the overarching research question. Generally, and
consistent with the validation results, when the opposing links are of differing
traffic characteristics, the link-based estimation presents a better reconstruction
of the actual traffic compared to the total link-flow. However, if the level of
service is similar, the total link-flow is preferable. The Bluetooth approach
showed the possibility of answering questions relating to problem or incident
identification in a network such as recurrent patterns and where a delay
happens in a section of a road; this can be seen in the form of an unusual spike
in a trend that calls for attention. The understanding of turning points and origin-
destination (O-D) matrix of the network flows; and travel time and traffic regimes
characterised by peak and off-peak periods are very important metrics to
characterise and manage traffic for an optimised road network. From the results
obtained, it is obvious that the requirement to provide accurate and reliable
traffic information to support the delivery of enhanced traffic management can
be met using Bluetooth data. The analysis of the Bluetooth-estimated metrics in
this chapter enabled a deeper knowledge of the characteristics of Bluetooth
data. This knowledge includes the various applicability and limitations of the
metrics, the spatio-temporal variations, station and link-based estimation of
traffic metrics, and reliability in different time averages (hourly, monthly,
seasonal, etc.). In particular, it enabled the knowledge of a typical network
within GMN (Greater Manchester Network) than is possible using any of the

traditional systems.

Chapter 8 partly addressed the applicability and viability element of Research

Objective vi to complement Chapter 7. This chapter presented the summary of
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the wider context of the applicability and viability of the results as well as the
knowledge of what applications might emerge to sum up the aim of the
research. Analysis of the Bluetooth economic 4-way test to understand
Bluetooth scope in terms of cost and accuracy showed that the technology
presents a means of collecting accurate traffic data at a low-cost. This is a
major advantage considering the need for a sustainable transport network using
low-cost technological options without investing heavily in a new infrastructure.
The adoption of Bluetooth data for transportation applications means smart or
innovative thinking (based on safety, economic and environmental benefits).
The overriding benefits are accruable to both the road users, traffic engineers
and other stakeholders. Overall, the Bluetooth approach presents an innovative
means that changes the way traffic information can be collected. Bluetooth is
considered a potential candidate in automated vehicle and the provision of big
data for transport application. Overall, twelve different applications such as data
fusion and augmentation, journey time management, and network planning and
optimisation were presented with reference made to other possibilities. The
conclusion drawn does not in any way assume a generalisation for the whole
public, but a personal judgement based on the research outcomes and

evidence provided.

9.3 Recommendations for Future Research

Bluetooth-based traffic monitoring is an emerging solution to congestion
problems, and it is almost certain that different applications will continue to
emerge. The scope of this research is within the study sites considered in the
UK (Birtley, Liverpool and Manchester) using Bluetooth sensors developed by
TDC Systems. To obtain a more generalisable result over different geographical
locations and networks of differing traffic characteristics requires more study
sites spread over the UK. This study has offered an assessment of the reliability
and validity of Bluetooth traffic monitoring and metrics estimation as a
contribution to a novel approach to traffic management. Overall, it is evident
from this research that further investigation is needed to continue to exploit the

potential of this near-ubiquitous technology. For example, the real-time
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application of the technology as a decision support system to enhance traffic

management is a welcome idea and is strongly recommended.

The following are the recommendations for further research.

Real time/autonomic application of Bluetooth technology in an ITS
environment such as the UTMC. This area was not investigated and
tested in real-time. Therefore, future work should consider the real-time
application of this technology to fully explore the opportunities offered by
Bluetooth. This application, of course, will involve the knowledge of
artificial intelligence, artificial neural network, data mining, Kalman
filtering and patrticle filtering. The implementation of this application will
undoubtedly require collaboration for research and development between
the Research University and relevant stakeholders such as the Transport
for Greater Manchester (TfGM) and TDC-Systems. This collaboration will

provide a balance in resources and technical know-how.

The model developed runs on a Windows platform that is limited in
memory compared to platforms such as Linux. Consequently, a huge
amount of data cannot be processed instantaneously. For a large scale
and real-time deployment, parallel or cloud computing is recommended.
Exploring the research in this way will enable an area-wide, timely and
efficient solution. Also, exploring the current R applications such as
“data.table” instead of “read.csv” and interactive online package such as
“shiny” will be an advantage in the data processing and real-time
analysis. In the future, these aspects of data import and analysis need to
be explored to improve the efficiency of Bluetooth deployment in real-

time applications.

Using Bluetooth data to classify the network traffic based on the mode of
transport is considered a research area for the future. This is another

useful area to explore in the future to support a multi-modal transport
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system. In this way, better policy relating to the use of roads can be
designed to accommodate all modes to ensure the safety of all road

users.

iv.  Vehicle and pedestrian tracking and monitoring: This area of research is
recommended for future study given the need for security of lives and
properties. Exploring Bluetooth in this context is considered paramount
for the delivery of efficiency and safety in freight and allied services as

well as pedestrian’s safety.

9.4 Overall Conclusions on Bluetooth-Based Traffic Monitoring and

Metrics Estimation

Increased levels of population and car use mean that the problem of traffic
congestion will remain within the road networks. The negative impacts of traffic
congestion cuts across both economic and health spheres. Different
approaches to congestion management have been considered in the past.
These include the use of technological solutions such as the traffic
management systems, road-user charging and road expansion. However,
capital investment on new infrastructures such as road construction and/or
expansion as well as continued reliance on the traditional systems for traffic
data collection and management are not sufficient to achieve smarter solutions.
Bluetooth is a novel technology that can be integrated into ITS to achieve
smarter solutions through the provision of accurate and real-time traffic data.
Bluetooth is in a state of evolution in ITS. In this research, the understanding of
the reliability and validity as well as the underlying factors that could affect the
application of Bluetooth technology in traffic management is improved upon to
demonstrate practicality. This research has demonstrated that Bluetooth traffic
sensing and metrics estimation for the enhancement of traffic management

systems to reduce road congestion is a viable proposition and is recommended.
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Appendix 1

Appendix 1: A typical Bluetooth sensor mounted on a lamp post
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Appendix 2

Site ID

'MAC090001001
‘MAC090001001
‘MAC090001001
'MAC090001001
'MAC090001001
'MAC090001001
'MAC090001001
'MAC090001001
‘MAC090001001
'MAC090001001
‘MAC090001001
'MAC090001001
'MAC090001001
'MAC090001001
'MAC090001001
'MAC090001001
'MAC090001001
‘MAC090001001
'MAC090001001
'MAC090001001

Date

01/09/2012 00:00:13
01/09/2012 00:00:22
01/09/2012 00:00:33
01/09/2012 00:06:27
01/09/2012 00:09:47
01/09/2012 00:10:49
01/09/2012 00:12:42
01/09/2012 00:16:56
01/09/2012 00:18:42
01/09/2012 00:19:44
01/09/2012 00:19:53
01/09/2012 00:21:20
01/09/2012 00:21:22
01/09/2012 00:21:36
01/09/2012 00:21:36
01/09/2012 00:21:57
01/09/2012 00:22:07
01/09/2012 00:25:42
01/09/2012 00:25:51
01/09/2012 00:28:03

Lane

P R R R RPRRPRRPRRPRREPRRERRRERERERPR

Lane Name Direction Direction Name Class Scheme Class

MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC

2 South
2 South
2 South
2 South
2 South
2 South
2 South
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2 South
2 South
2 South
2 South
2 South
2 South
2 South
2 South
2 South
2 South
2 South
2 South

Class Name Length (ft) Headway (s) Gap (s) Speed (mph) Weight (Ib) Vehicle Id

0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0
0 Class 0

9.7093E+11
521E0E0051C7
DD22550541DC
180F720072EC
3473BE41D113
4EOAGE0029FC
D5E2408E4D69
87555FC55C87
56D5D102A073
1E36FABE4B61
B12ECCO001FB3
A3194E00A6C9
D4DD36073F26
D315D700D6CF
FE13F800AA4E
6B9448CE35BB
E52AF5005CF7
E08065007982
C123FDO04FE9
3E77EC8C1759

Appendix 2: An example Bluetooth sensor data (encrypted) captured at station MAC1001 in Trafford
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Appendix 3

Appendix 3A: Description of TRAFOST

The development of TRAFOST has very significant advantages such as in
processing time, the volume of data processed, reproducibility and reliability.
The TRAFOST and outputs enabled a well-structured analysis and presentation
of the data unlike the output from the Excel/manual computation. In line with
Sebesta (1999), TRAFOST is considered reliable since it is reproducible and
time-saving as well as performing to specification. Another advantage derivable
from the use of the TRAFOST is in organisation. Programming languages
provide ways of organising computations (Sethi, 1996). However, its choice
depends partly on the programming to be done, and partly on other external
factors that include availability, support, and training (Sethi, 1996). Another
factor that calls for consideration is the semantics of a programming language
that concerns how programs behave when executed (Watt, 1990). Several
factors such as cost, accessibility and speed of processing were given
consideration before arriving at the choice of R. For example, Matlab
programming language was considered suitable, but it does require the
purchase of a licence, unlike R that is open source. That is, R is available for
free download and works on multiple computing platforms (Dalgaard, 2002). Not
only that, for many years, R is a leading software in terms of data and results
visualisation (Chang, 2014). The basic four stages of the model (TRAFOST)
developed in this research as well as the input sources and the formats of the
data used are presented. The stages are: i) data capture and storage; ii) data

manipulation; iii) analysis; and iv) display of results.

Stage 1. Data Capture and Storage
Data upload and storage

As discussed in Section 3.2.2, following the on-site data capture and online data
storage, the encrypted data (for privacy reasons) were downloaded and

assessed for physical quality such as in resolution, structure and format before
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the final storage in the processing environment. The storage format is comma
separated variables (csv). The downloaded files were stored accordingly in a
directory with unique names for easy manipulation and retrieval. At the same

time, the original data remains unaltered for future use.
Input sources and data types

The input sources and the data types used in the implementation of the model
are as previously described in Section 3.2.1. As a reminder, TRAFOST was
implemented using Bluetooth, SCOOT, ATC, ANPR and TM data consisting of

varying resolutions and formats.
Stage 2: Data Manipulation

According to Andrienko and Andrienko (2006), data manipulation is chiefly to
derive new data from existing data for more convenient or comprehensive
analysis. The TRAFOST deployed was used to massage the data into a useful
form. The process of the data manipulation was automated and executed in
turn, over different phases. These stages include recoding and renaming,
sorting and merging datasets, aggregating, reshaping, sub-setting using some
specified criteria through the use of arithmetic and logical operators as well as
statistical functions. The operations include data merging, file reduction and
ordering, data filtering and the creation of time series objects as well as merging

data from different stations to create O-D patterns of the network.

It is a known fact that data size is a key factor requiring adequate consideration
in any data processing for the purpose of software efficiency. Therefore, file
reduction is paramount to conserve memory and gain computational speed.
Each originally downloaded data file used in this study contains 15, and in some
cases 20 variables. The initial set of the data collected contains 15 variables
while the subsequent data collected contains 20 variables following the
modification of the software of the sensors. Some of the variables include lane,
lane name, direction and direction name. However, only three of the variables

(Station Id, Timestamp, and Vehicle Id) are required in this research. Hence,
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each file was reduced to the required three variables with the original data file
unaltered. Data ordering, on the other hand, was performed to organise the
data appropriately to enable easy and efficient manipulation. The captured
Bluetooth data contain MAC addresses of different devices such as mobile
phones (on pedestrians or in vehicles) and vehicles (cars, buses, HGVSs).
However, since the research focuses on vehicle detection to estimate traffic
metrics rather than tracking pedestrians or other road users, high-level data
filtering is required to separate the devices reasonably. Hence, filtering is
considered one of the intricate aspects of Bluetooth data processing. The
filtering involved different phases to carry out the data mining process. Section

3.3 discusses the methods of Bluetooth data cleansing.

The timestamp of the Bluetooth data was used to create time series records of
different resolutions such as 5-min, 10-min, 15-min etc. This is necessary to
examine Bluetooth profiles at different temporal dimensions to come to a logical
conclusion on the usability of the data. That is to understand at what levels of
resolution the data could be of best use. It is also to determine whether
fluctuations in hourly/daily/monthly traffic flows provide any evidence of some
underlying change in traffic that must be taken into account. The understanding
of such variations, as well as travel patterns and movement across a network, is
fundamental to effective traffic flow modelling, and was considered in the

algorithm design.
Link distance computation

Table Al presents the summary of the sources of the road (link) length used,
the formats and the input mode at the execution stage. TRAFOST takes
distance information (input) from either an existing file or onscreen. Distances
are also computed from station coordinates either in the form of a grid or
geographic coordinates where possible according to the road configuration.
Other sources of distance information include TfGM database and Google
Earth/Maps.
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Metric Source Input type Input mode Purpose
Station
coordinates, Real number (Grid
TfGM database |or geographic
and Google coordinates) and  |File import
Length maps grid length or onscreen |Distance computation

Table Al: Summary of the distance functional component of the TRAFOST
Traffic metrics estimation components

Table A2 presents the summary of the estimated metrics using TRAFOST.
Source defines the primary variables such as MAC address, timestamp and
distance used to derive the metrics. Input type defines the nature of the data
used such as raw, summary, date/time and link length. The format gives the
form of the data such as character/string, factor, hour, minute, second, metre or
kilometre and the like. The output type defines the form of the processed data
that include integer and real variables while extension presents an appendage
to the primary function of the module. For example, the chief role of the matrix
module is to compute matrices of traffic flow data but it can also compute O-Ds
for journey times and speed.

Estimated
Traffic Metrics Source Input type Format Output type Extension
Encrypted raw
Traffic Count MAC address data Character/string Integer number
SCOOT and
Encrypted raw ATC link-by-link
Flow MAC address data Character/string Integer number |[flows
dd/mm/yyyy hh:mm:ss;
or
Journey Time [Time stamp Date and time  |dd-mm-yyyy hhimm:ss |Real number
Time stamp and |DateTime and |dd/mm/yyyy hh:imm:ss;
Journey Speed |link-distance real number m or km Integer number
MAC address, Encrypted raw  [Character/string, m or
link-distance and |data, DateTime, |km and Real and Journey time
O-D Matrix time stamp length dd/mm/yyyy hhimm:ss |integer number |and speed

Table A2: Table showing the traffic metrics estimation components
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Data aggregation and integration

Table A3 presents the summary of the types of data aggregation and integration
performed by TRAFOST. The aggregation types range from 5-min to monthly
averages. “Yes” or “No” defines whether such averages were performed on a
specified data or not. They also define whether the validation data sets were
analysed against Bluetooth at the specified temporal dimension or not. The
column of “Integrated metrics” on the other hand presents the types of metrics

integrated with the IMTD for accuracy and validity assessments.

Types of Aggregation and Integration
Data class [5-min 10-min 15-min [Hourly |Weekday|Daily Monthly [ Integrated metrics
Flow, journey times
Bluetooth |Yes Yes Yes Yes Yes Yes Yes and speed
SCOOT No No Yes Yes Yes Yes Yes Flow
ATC No No Yes Yes Yes Yes Yes Flow
Flow, journey times
ANPR No No Yes Yes No No No and speed
Journey times and
™ No No No Yes No No No Speed

Table A3: Summary of the types of data aggregation and integration

Stage 3: Data Analysis

Data analysis helps in the understanding of the phenomena in data (Andrienko
and Andrienko, 2006). TRAFOST was used in this research to characterise
Bluetooth data through data analysis to understand its underlying behaviour.
TRAFOST incorporates both exploratory and quantitative methods of data
analysis to obtain a richer understanding of the Bluetooth data than could be
obtained using any manual method. The implementation of the model is

dependent upon R statistical packages.
Detection of outliers and data cleaning

Cleaning of the data to remove outliers to obtain an accurate estimate of the
traffic stream is essential. The error sources include the possibility of redundant

observations (occurring due to repeated measurements or multiple matches of
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a device at a location); conflicting MAC address (arising from WiFi devices or
encryption error); unknown mode or carrier that may lead to inclusion of other
modes during classification, particularly at peak periods; unknown exact time of
detection of a device leading to error in the estimation; missed detection — not
all the devices can be detected leading to small sample or low detection rate;
and loss of information outside the detection zone, unlike the GPS method that
could provide continous information throughout the journey. TRAFOST
incorporates the Mahalanobis distance method of outliers’ detection and data
cleaning due to its versatility to handle multivariate normal data as well as the
possibility to handle markedly non-normal traffic data as demonstrated by
Warren et al. (2011). Boxplots were used to visualise the data for exploratory

assessment.
Integration of diverse data sources for validation of results

The availability of diverse sources of independently measured traffic data
enabled both rigorous and sound validation of the model outputs. The
integration of the other sets of data with Bluetooth data for the validation
exercise is essential as Bluetooth estimates present only a sample of the total
population that is lower than the actual traffic flow. The model design
accommodated validation, refinement and re-validation using these set of data
for the purpose of establishing a generalisable relationship between them. The
comprehensive results of the validation and testing are presented in Chapter 5.
In accordance with Edwards and Hamson (2001) the model and the
methodology developed in this research is not thought of as the only right and

proper solution for Bluetooth traffic metrics estimation.
Stage 4: Display of Output

Good data visualisation provides for a balance between scepticism and
discovery, which helps in the general understanding of the data (Cook, 2014).
Therefore, offline and web data display techniques and technologies were used
for presentation of results to discover and characterise salient features in
Bluetooth data. The outputs of the data processing were primarily two-fold:

guantitative and graphical outputs. The quantitative output comprises

287



information such as the network summary, daily and hourly flow. These were
stored as a csv file. The graphical outputs were either displayed on R graphical
console or customised where possible to be viewed on Google maps or Google
Earth. Results were also explored using statistical data graphics covering static
data visualisations as well as interactive and dynamic graphics. Table A4
presents the summary of the capabilities of TRAFOST both in terms of display
and output of results. The “Yes” or “No” in the table is according to whether the

indicated functionality is available or not.

Metrics

Display option |Map Count [Flow |JT Speed |O-D Matrix
Static Yes Yes Yes Yes Yes Yes
Interactive Yes Yes Yes Yes Yes No

Google Earth  |Yes No No No No No

Line Graph No Yes Yes Yes Yes No

Bar Graph No Yes Yes Yes Yes No

Bubble Graph [No Yes Yes Yes Yes No

Colour Yes Yes Yes Yes Yes No

Table A4: Summary of the TRAFOST display and output capabilities
Typical time taken for the processing of sample data

TRAFOST was implemented on Windows-based computing systems. Table A5
presents the summary of the typical time taken to process data using
TRAFOST. For example, a data size of 1.01GB processed with the Laptop
described above over four O-D nodes and for 7 days worth of data took 1 hr 33
mins from upload to subsetting of the data and to the final processing of the
hourly O-D matrix. Using the Desktop, it took 2 hrs 10 mins to complete the
same process. This shows a significant change in the time spent. Another trial
based on an increase in the number of days and nodes also showed a
significant increase in time spent using the Desktop. It took 5 hrs 22 mins to
complete the processing of 30 days of five nodes of O-D extracted from 660MB
of data. Similarly, a significant decrease in time was observed with a decrease
in the volume of the uploaded data (35MB) and the number of days processed
at a time (8 days) despite an increase in the number of O-D nodes (9). In this
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case, the Desktop processing time was 8 mins. This shows an improvement in

productivity, therefore, informing the knowledge of the management of

TRAFOST for speed and efficiency. However, with cloud computing and the

recent developments in R packages such as the introduction of ‘data.table’

DataCamp (2014), greater speed and efficiency can be achieved in real-time

application.

No of Hourly O-D

No of days processing
Computer Specification [Type Data size stations [processed |time
Intel ® Core ™ {5-3230M
CPU @2.60 GHz 2.60,
6GB RAM, 64-bit Laptop [1.01GB (13 months) 4 7|1hr 33mins
Intel ® Core ™ i5 CPU
650 @ 3.20 GHz 3.19,
4GB RAM, 64-bit Desktop [1.01GB (13 months) 4 7|2hrs 10mins
Intel ® Core ™ i5 CPU
650 @ 3.20 GHz 3.19,
4GB RAM, 64-bit Desktop [660MB (7 months) 5 30|5hrs 22mins
Intel ® Core ™ i5 CPU
650 @ 3.20 GHz 3.19,
4GB RAM, 64-bit Desktop |[35MB (8 days) 9 8|8mins

Table A5: Typical time taken to process Bluetooth data on a Windows platform

based system and data configuration

Appendix 3B: R-codes for Bluetooth processing

See codes at the end of the appendices
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Appendix 4

Siteld

"MACO000000001"

SiteName

||1||

SiteDescription

"Bath Street"

SiteLatitude

53.41139

SiteLongitude

-2.99908

RecTime

Vehicleld

13/06/2011 16:43:43

"8914E600163E"

13/06/2011 16:43:43

"8914E600163E"

13/06/2011 16:43:43

"83FD3507895A"

13/06/2011 16:43:43

"83FD3507895A"

13/06/2011 16:43:43

"8914E600163E"

13/06/2011 16:43:44

"8914E600163E"

13/06/2011 16:43:44

"3E19C600D3AA"

13/06/2011 16:43:45

"D31E740086C7"

13/06/2011 16:43:45

"D31E740086C7"

13/06/2011 16:43:45

"83FD3507895A"

13/06/2011 16:43:45

"D31E740086C7"

13/06/2011 16:43:45

"83FD3507895A"

13/06/2011 16:43:46

"83FD3507895A"

Appendix 4A: An example data (encrypted) for the Liverpool study area
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Appendix 4B-1: Profile of count of detected devices at Station 1 over weekdays
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Appendix 4B-2: Profile of count of detected devices at Station 2 over weekdays
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Appendix 4B-3: Profile of count of detected devices at Station 3 over weekdays
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Appendix 4B-4: Profile of count of detected devices at Station 4 over weekdays
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Appendix 4B-5: Profile of count of detected devices at Station 5 over weekdays
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Appendix 4B-6: Profile of count of detected devices at Station 6 over weekdays
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Appendix 4B-7: Profile of count of detected devices at Station 7 over weekdays

293



4000 -

3500 X
3000 - X
w
B 2500 -
8 % X X Maximum
@ 2000 Third Quart
(2] X
'a’ X X X X ¢ Mean
£ 1500 - X m Median
— X X
- © First Quart
1000 - x . & . ,
[ ] - X 20%ile
P o ® Mini
500 | ¥ A Minimum
. ° ) . L
0 ! A A A A A A
) ™ a9 N N © O
N L N 9 %) 3 U
*'\\OQ *'x\o(\ *'\>°(\ ’\\0(\ "\\OQ *'\\OQ '\\0(\
> > > ) ) > >
S e - R AR
Stations

Appendix 4C-1: Plot of time estimate parameters to station 14
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Appendix 4C-2: Plot of time estimate parameters from station 14
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STATION 12 16 18 il 2 2% 2 1
UNITS |(SEC,KM/H)TIME ~ SPEED TIME  SPEED TIME  SPEED TIME SPEED TIME SPEED TIME SPEED TIME (SPEED TIME SPEED | TOTAL
N 5216 11 12501 1352 2037 75 1920 616 32499
MEAN 609 219 A7 111 2937 398 1053 M6 8557 137 8514 08 10578 296 1030 152
FROM |MEDIAN B onB7 M8 87 1 44 845 13 87 103 4M 35 465 34 105 113
STATION {MIN 95 5 3 5 57 5 93 5 82 50 1 5 162 50010 5
14 |MAX 1832 %4 163 7530 1353 187 2195 1181 1683 10280 2800 1035 M2 1072 B4 1131
20%ile 8L 83 44 61 14 186 4922 68 4022 64 3168 1008 3868 9 43 66
ISTQUART | 293, 98 46575 65 1300 306 S5 74 457 75 125 38 106 5975 72
ROQUART: 9315 313 975 136 210 521 90 211 12 184 185 M5 1645 436 1595 2
YTOTAL 16.05 34 3847 4,16 6.17 B8 591 130 100.00
N 5138 1041 13721 1104 2155 3364 2102 568 3193
MEAN 6075 215 6351 1360 3490 326 1546 124 M7 142 989 34 974 303 1116613 1411954
T0  |MEDIAN | M 562 13 188 3} 1195 98 803 105 393 39 47T %A 005 15
STATION {MIN 9 5 85 5 58 5106 5 7 5 18 5 16 513 5
14 |MAX 183 975 162 744 133 1167 295 1036 1685 1187 2980 1165 M7 1079 205 101
20%ile 977, 94 %5 64 S W7 1Ml 64 B2 64 1474 05 109 1020 1012 68
ISTQUART | 3170, 115 35400 68 1450 147 6788 69 4140 68 340 135S 30 127 6 74
ROQUART! 7958 288 9400 179 45900 467 1593 162 123700 04 1073 475 D3 435 15660 18
YTOTAL 15.03 304 013 30 6.30 2446 6.15 1.66 100.00

Appendix 4D: One-many origin-destination matrix in the Wigan network
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STATION Y % % 3 3 0 10 i
UNITS |(SEC,KM/H)TIME  SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED [TIME SPEED TIME SPEED | TOTAL
N 29018 22010 50330 24786 21641 16433 20993 31000 26211
MEAN 6L0; 385 138 458 813 42 M8 B0 490 369 M4 M3 5865 600 LS B
FROM |MEDIAN 8 B/Y W 6T 4 466 /00 4 WL B ML BT M B ML %
STATION |MIN 16 5008 5 8 5008 5010 50105 50019 500 ul 5
B |MAX ¥ 149 8B 156 162 193 NSL 153 A8 07 K03 192 ME U84 BB 177
20%ile B 00n¥y M ML BT OB 4 M1 W 1Y K N2 W 1AW N4
15T QUART yOBE OTTO®I M M2 MW 08 B W6 WM Bl W6 B3 W U3
3RD QUART 787 WL 5L W ST 3 N3 35 475 48 &5 5B 46 60 833
%TOTAL 1180 8.90 2040 10.10 8.80 18.90 8.50 1260 100.00
N 31397 2189 54499 25486 20603 48361 21155 31792 257982
MEAN 75 314 140 BT WS 418 454 38 457 B8 554 B SE0 341 6737758 3556055
TO  [MEDIAN B B2 13 B 18 B2 BT ¥ B FA 6L W7 WS B4 M0 369
STATION |MIN 16 50037 50 68 50009 50 103 50107 500 118 5001 5
3 |MAX 7. 149 8% 188 162 193  N51 1036 218 106 503 17 B8 194 B 1168
20%ile 7 189 15 KL B ¥ M2 BI &1 B W A1 68 21 68 BS
ISTQUART | 4401 208 8800 2841 1530 37 2400 292 4500 90 970 Bl 300 63 3% 278
ROQUART: 8801 418 1550 4991 2480 5300 35L00 479 37600 446 4990 Al 5600 M4 5% 44
%TOTAL 1217 .60 2113 9.8 8.76 1894 3.20 1232 10000

Appendix 4E: Journey times, speeds and O-D matrix in Stockport network

296




90
80 @
60 = i P
50 * -
0% e '. ]
2 | Y
2 4 )

: it ] ]

1 v Re *

0

00:00:00 02:24:00 04:48:00 07:12:00 09:36:00 12:00:00 14:24:00 16:48:00 19:12:00

Time of occurrence at end point

Vehicle speed (Km/h)

V12

Appendix 4F: Speed distribution over hours of the day from Station 1 to Station
2 in Trafford
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Appendix 5
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Appendix 5A: Validation of journey speed with live traffic information on the A56

Washway Road, Trafford

298



1 1 1 1 | 1 1
7O = -
41
4] hour
4] < Do
&0 — £ - FARN |
o + 02
D3
e’ < 04
w05
=, 5 08
. B | #  0O7F
= =0 “gﬂ % 08
IS & 0B
= 10
=z BH 11
o1z
2 2 13
9 ag T o =14
* 15
& 18
- 17
* 1g
L]
o 20
20 B O =21
o 22
FA-T:1
20 - L
T T T T T T T
20 40 50 &0 7O 50
Time (sec)

Appendix 5B: Scatter plot of speed against time grouped by hour on link3435 in
Stockport
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Appendix 5C-1: Histogram plots of normalised flows of ATC and Bluetooth

overlaid with normal curve
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Descriptive Statistics: norm_BT, norm_ATC

Variable |Total Count| Mean |SE Mean| StDev |CoefVar|Minimum| Q1 Median| Q3 |Maximum
norm_BT 24 15 0.204 1| 66.67 0.19] 0.389| 1.709| 2.496 2.811
norm_ATC 24 15 0.204 1| 66.67 0.119] 0.336 2.014| 2.267 2.804

Appendix 5C-2: Descriptive statistics of normalised flows of ATC and Bluetooth
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Appendix 5C-3: Diagnostics plots of Bluetooth flows for all Mondays in
November (N=378)
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Appendix 5C-4: Histogram plots of normalised flows of SCOOT and Bluetooth

overlaid with a density curve

Descriptive Statistics: norm_BT, norm_SCOOT

Variable Total Count| Mean |SE Mean| StDev [CoefVar [Minimum| Q1 Median Q3 [Maximum
norm_BT 24 1.023 0.161 0.789 77.1 0 0.147 0.947 1.783 2
norm_SCOOT 24 1.121 0.17 0.833 74.35 0 0.187 1.216 1.962 2

Appendix 5C-5: Descriptive statistics of normalised flows of SCOOT and

Bluetooth
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Appendix 5D-1: Flow profiles of Bluetooth and ATC on Link0506 in Trafford
(N=33,646)
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Appendix 5D-2: SE-directional flow profiles on 1ink3435 in Stockport (N=18,761)
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cor(JuBAST2[,2:7])

BT NW|[ATC_NW[BT SE [ATC_SE[SCT NW][SCT SE
BT _NW 1
ATC_ NW| 084 1
BT SE 0.84 0.78 1
ATC_SE 0.85 094] 085 1
SCT NW| 095 0.88] 0.92 0.90 1
SCT_SE 0.96 0.87] 0.92 0.90 0.98 1

Appendix 5D-3: Table of correlation coefficients between the measured flows in

both directions
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Appendix 5D-4: Profiles of Bluetooth monthly-weekday flows on Link0506
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Appendix 5D-5: Weekday scatter plot of Bluetooth against SCOOT flow (NW-

bound)
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Appendix 5D-6: Monthly scatter plot of Bluetooth against SCOOT flow (NW-
bound)
Descriptive Statistics: BT_Flow, ANPR_Flow, BT _jtime, ANPR_jtime, BT_speed, ANPR_speed
Variable Total Count| Mean |SE Mean| StDev |CoefVar|Minimum| Q1 |Median| Q3 |Maximum
BT _Flow 48| 24.521 0.859 595 24.27 10| 20.25 25 28 38
ANPR_Flow 48| 70.44 3.34] 23.14| 32.84 40| 55.25 64| 83.75 143
BT jtime 48| 123.54 351 24.34 19.7 77 106 119 1375 200
ANPR_jtime 48| 108.75 3.07( 21.24|] 19.53 66| 94.25| 105.5| 1185 171
BT_speed 48| 18.208 0.528 3.661| 20.11 10 16 18 20 28
ANPR_speed 48] 19.813 0.532| 3.682] 18.59 12 18 19.5 22 31

Appendix 5E: Table of descriptive statistics for flow, journey times and vehicle

speeds
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Appendix 5F-1: Boxplot of TM journey times over four routes in GMN
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Appendix 5F-2: Boxplot of Bluetooth journey times over four routes in GMN
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Appendix 5F-3: Profiles of Bluetooth and TM journey times over six months by

Routes in Trafford (N

=96)
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Appendix 5F-4: Profiles of Bluetooth and TM journey times over six months by
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Appendix 5G: Scatter plot of Bluetooth against ANPR journey times (overlaid

with regression line) of 3" April 2014 on Link7170 in Stockport
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Appendix 5H: Plot of Autocorrelation and Partial Autocorrelation Function of

journey times before transformation

308




Lo ] Lo}
L
" g | |
o o | - o
g © |I||‘ T £ ° |'|" [ ]
L
o
o 0o
I e e T Q@ Theeemmm
1 3 5 7 9 1 1 3 5 T 9
Lag Lag

Appendix 51-1: ACF and PACF from monthly journey times modelling
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Appendix 51-2: ACF, PACF, and Residuals plots after transformation of journey
times
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Appendix 51-3: Plot of Autocorrelation Function of flow for different ARIMA
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Appendix 51-6: Box and Whisker plot of Northbound Bluetooth flow for July 2013
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Appendix 6

Squared Mahalanobis distances, n=27740, p=3
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Appendix 6A-1: Density plot of squared of Mahalanobis distances
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Appendix 6A-2: Q-Q plot of Squared of Mahalanobis distance against quantiles

of Chi-square of degree of freedom 3
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Appendix 6A-3: Histogram plots of Unfiltered (left) and Filtered (right)
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Appendix 6B-1: Plot of flow against Mahalanobis distances
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Appendix 6B-2: Histogram plots of Unfiltered (left) and Filtered (right)
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Appendix 6B-3: Density plot of squared of Mahalanobis distances
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Appendix 6B-4: Q-Q plot of Squared of Mahalanobis distance against quantiles
of Chi-square of degree of freedom 3
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Appendix 6C-1: Time series plots of SW-flows on Link0506 in Trafford in 2013
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Appendix 6C-2: Time series plots of NE-flows on Link0506 in Trafford in 2013

Adjusted R-Square

Year Combined
Variables| Month [Southbound |Northbound |Direction
BT/ATC [Jan 0.745 0.721 0.883
BT/ATC |Feb 0.737 0.761 0.884
BT/ATC |Mar 0.736 0.788 0.891
BT/ATC |Apr 0.769 0.757 0.879
BT/ATC |[May 0.776 0.751 0.886
BT/ATC |Jun 0.765 0.796 0.887
BT/ATC |Jul 0.756 0.816 0.904
BT/ATC |Aug 0.775 0.817 0.901
BT/ATC |[Sep 0.736 0.767 0.890
BT/ATC |Oct 0.724 0.767 0.879
BT/ATC |[Nov 0.720 0.746 0.870
BT/ATC |Dec 0.733 0.768 0.887

Appendix 6C-3: Table showing the monthly adjusted R-square for directional
and combined flows on LinkO506T in Trafford in 2013
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Appendix 6C-5: Standard deviation of SW-directional flow
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Appendix 6C-6: Hour-by-hour SW-directional flow over a year
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Appendix 6C-7: Scatter plots of Link0506 total flow between Bluetooth and ATC
by season in Trafford

318



il 50 100
| | | | | 1 | 1 1
Thurs Fri Sat
- - 20
- - 15
=M - 10
z . -5
o
L
m
E - - o
5 Sun Maon Tues Wed
‘qc: _
= 20 o
= -
o
15 o o
10 o
5 ’7 -
o - L
T T T T T T T T T T T T
0 50 100 il 50 100
Bluetooth Flow (15-minute Average)

Appendix 6C-8: Typical daily flow profiles for each day in the week showing

variation (%) in traffic proportions
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Appendix 6D-1: Plot of mean journey times against Mahalanobis distances
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Appendix 6D-2: Plot of median journey times against Mahalanobis distances

Q-Q plot of Mahalanobis D* vs. quantiles of XE
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Appendix 6D-3: Plot of squared of Mahalanobis distances against Chi-square of

degree of freedom 2
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Appendix 6D-4: Histogram plots of Unfiltered (left) and Filtered (right)

Mahalanobis distances

100
|

60
|

20

0 100

Standard Deviation of Journey Time

200

Index of Time

300

Appendix 6D-5: Standard deviation of journey time before cleansing
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Appendix 6D-6: Histogram plots of weekday journey times on Link0605 (SW)
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Appendix 6D-7: Diagnostic plots of linear modelling of ANPR and Bluetooth

journey times
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Appendix 6D-8: Histogram of ANPR journey times overlaid with Normal and
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Appendix 6E-1: Plot of mean speed against the Mahalanobis distances
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Appendix 6E-2: Plot of median speed against the Mahalanobis distances
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Appendix 6E-3: Histogram plots of Unfiltered (left) and Filtered (right)

Mahalanobis distances
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Appendix 6E-4: Standard Deviation of vehicle speeds before filtering
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Appendix 6E-5: Histogram of vehicle speeds before (left) and after (right)
filtering

325



g0

Speed (km/h)
40

Appendix 6E-6: Boxplot of speed after filtering on Link3435

weekday = Sun weekday = Mon weekday = Tues
E oo = E W E o _] T
£ o1 _r|'|_ —I_h’l—.-._ g o7 m 5 _n—rr —I_h—v—»-._
= T T T T 1 T o T T T T 1 = T T T T 1 T
30 35 40 45 50 55 30 35 40 45 50 55 30 35 40 45 50 55
Speed (km/h) Speed (kmv/h) Speed (km/h)
weekday = Wed weekday = Thurs weekday = Fri

percent
o 15
L1l
percernt
o 15
111
percent
o 15
111

30 35 40 45 50 55 30 35 40 45 50 55 30 35 40 45 50 55

Speed (kmih) Speed (kmfh) Speed (kmih)

weekday = Sat

o I_.—Il—r!_ TH_r_IﬂTH
30 35 40 45 50 55

percent
11

Speed (km/h)

Appendix 6E-7: Histogram plots of weekday journey speeds on Link0605 (SW)

in Trafford
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Speed (km/h) Journey Time (S)
Median Mean Median Mean
Min. 27 28 62 62
1st Qu. 44 43 78 85
Median 48 46 84 98
Mean 47.51 47.07 85.66 102.3
3rd Qu. 51 51 91 115
Max. 65 64 163 207
N 8760 8760 8760 8760

Appendix 6E-8: Summary of journey times and speed after the application MD

filtering
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Appendix 6F-1: Standard deviation of NE ratio (detection rate) before cleansing

on LinkO506
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Appendix 6F-2: Standard deviation of ratio (SW) before cleansing on Link0506
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Appendix 6F-3: Mean of ratio (NE) before cleansing on Link0506
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Appendix 6F-4: Histogram plots of ratio in both directions on Link0506
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Appendix 6F-5: Interval plot of standard deviations of ratios at 95% confidence

level
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Appendix 6F-6: Plot of ratios on four temporal dimensions on Link0506 (NE)
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Appendix 6F-7: Plot of ratios on four temporal dimensions on Link0506 (SW)
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Appendix 6F-8: Bluetooth-ATC flow ratio profiles on Link3534 (Northbound)
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Appendix 6F-9: Bluetooth-ATC flow ratio profiles on Link3435 (Southbound)
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Appendix 6F-10: Bluetooth-SCOOT flow ratio profiles on Link3534 (Northbound)
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Appendix 6G-1: Day-to-day SW-bound ratio on Link0506
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Appendix 6G-2: Day-to-day SW-bound standard deviations of ratio on Link0506

Directional Ratio
NE SW | Total Flow MD
Min. 0.00 0.00 0.00 0.09
1st Qu. 0.11 0.09 0.11 0.45
Median 0.14 0.12 0.13 0.69
Mean 0.15 0.13 0.13 0.83
3rd Qu. 0.18 0.16 0.16 1.04
Max. 0.50 0.44 0.29 2.79
N 27740 27740 27740 27740

Appendix 6G-3: Summary of directional flow ratios
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Ratio Statistics for Ratio NE / Ratio. SW

Coefficient of

Variation
Price Related Coefficient of Median
Std. Deviation Differential Dispersion Centered
.137 1.008 .093 11.7%

Appendix 6G-4: Statistics of NE-ratio to SW-ratio
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Appendix 6H: Histogram plots of day-to-day NE and SW detection rates
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Appendix 3B: R Codes for Bluetooth Processing

## Bluetooth script

## Program lines starting with # are for comments

## This program is used to load, process, analyse and display
#BTuetooth data and the estimated traffic metrics. ##

## The model termed TRAFOST computes traffic metrics such as: Flow,

# 0-D Matrix, vehicle speeds and travel times from Bluetooth data.

## Analysis performed using TRAFOST includes daily, hourly, 15-minutes
## etc. summary, geospatial analysis and data sets comparison for

## validation and computation of penetration or detection rates.

## The program also performs graphical presentation of results on the
## plot window. It also has a function with the capability to produce
## motion charts on Google map as well as plotting locations on Google
## Earth/Google map. TRAFOST makes use of the different functions of
# the computational model to accomplish the four stages of the
#analysis procedures developed in this research. TRAFOST 1is developed
#in R language and is dependent upon R packages for effective running.
# The Key packages used in plotting are ‘openair’ by Carslaw, 2006 and
# Rcommander (‘Rcmdr’) by Fox, 2005.

## Program written by E. G. Ayodele, PhD Civil Engineering and
#Geosciences

## Newcastle University, United Kingdom. 2013 Edition. Last modified
## December 2016.

## For further information, please contact:
#e.g.ayodele@newcastle.ac.uk

paste("Start date/time is", date()) # to write the start time and date
#of operation

## loading some pre-installed packages to be used

Tibrary(plyr)

Tibrary(lubridate)

Tibrary(reshape)

Tibrary(ggplot)

Tibrary(cluster)

Tibrary(latticeExtra)

Tibrary(grid)

## specify the files directory and load the data files

path.files <- "H:\\R\\stockport\\"

bt.data <- Tlapply(list.files(path = path.files, pattern = ".csv"),
function(.file) read.csv(paste(path.files, .file,
sep = ""), header = TRUE))

## Examine part of the data to access structure

head(bt.datal[[1]])

HAHBHHBHHB R AR AR AR BB AR RAHBHHBRH R AR R AHRHH B R BB HRRAH R H R AR R R
## Function to reduce the data size to 3 columns. Columns 1, 2 and 15
## “Site ID”, “Date” and “vehicle Id” are required.

btr.data <- Tapply(bt.data, function(bt.data) bt.data[c(1:2,15)])

## Examine part of the data to ensure that the output is correct
head(btr.data[[1]])

HAHBHHBHHB R AR AR AR BB AR AR HHRHH R AR HHRHH B R BB HRRAH R H R AR R R A
## Function to order the data by vehicleid. A1l the columns are kept
bt.order<-Tapply(btr.data, function(btr.data)
btr.datalorder(btr.datal[,3]1),1:3])

HAHBHHBHHBRAH B AR AU BB AR RAHBHH R AR R H R HH BB HG AR BB RS R AR R R
## Apply time format to the 1list and remove duplicates from data using
## function fdup

btr.data <- bt.order # assign a new name to the ordered data Tist

fdup <- function(btr.data){

for(i in btr.data){

tm <- dmy_hms(btr.data$pate)

btr.data$day <- day(tm) # retrieve date value from the data
btr.data$hour <- hour(tm) # extract hour component and add to df

# Extract the minute component of dateTime and add to the df
btr.data$min <- minute(tm)

btradata$second <- second(tm) #This extracts the seconds part of the
## data

# Compute time in seconds and add to station data
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btr.data$tsec <- as.numeric(btr.data$hour*3600 + btr.data$min*60

+ btr.data$sec)

# Convert data to vectors to apply unique()

hour <- btr.data$hour

min <- btr.data$min

# compute the 15-minute interval summary

minl5 <- floor(as.numeric(min)/15)

# multiply by 15 to obtain the 15-minute format

btr.data$minl5 <- minl5*%15 +0 # addition of 0 makes the 1st 0-15mins O
# compute the 10-minute interval summary

minl0 <- floor(as.numeric(min)/10)

# multiply by 10 to obtain the 10-minute format

btr.data$minl0 <- minl1l0*10 +0 # add 0 to make the 1st 0-10mins 0

# compute the 5-minute interval summary

min5 <- floor(as.numeric(min)/5)

# multiply by 5 to give the minutes a proper format

btr.data$min5 <- min5*5 +0 # add 0 so that the first 0-5mins will be 0
## assign new variables to tsec and Vehicleld

X <- btr.datal, 8]

y <- btr.datal,3]

n <- length(x)

## Compute time difference in seconds between successive points
btr.data$secdif <- c(0,as.numeric(abs(diff(x))))

## Remove the duplicate records from the data to obtain a subset
yl<-y[2:n]

y2<-y[1:(n-1)]

yc<-as.character(yl) !=as.character(y2)

bgr.data$yc <-c("TRUE",yc)#add "TRUE" to the 1st point for completion
ndup <-
btrjd?ta[(btr.data$yc=="FALSE"&btr.data$secdif>=300)|(btr.data$yc=="TR
UEII ,

riturn(ndup)

}

bt.rdup <- lapply(btr.data, fdup)
RHBHBHHHHRHRHBHRRHRHBHBHR AR R BHBHRRRRHRHBHBHRHR AR BH R AR AR AR RHRHRHRH
# Function to reduce the file size to 8 columns before merging
bt.rdup2 <- lapply(bt.rdup,function(bt.rdup) bt.rdup[c(1:5,9:11)])
HHBHBHHHHHH R AR AR RHRHBHRAR AR AR RHRHR AR AR RHRHRH R AR AR R RH R AR AR AR RS H
# Duplicates are removed before files are merged to avoid creating
# unwanted large files

HHBHBHHHHHH R AR AR R RHBHB AR AR RHRAR AR AR AR RHRAR AR AR R RHRAR AR AR AR H
# Merging more than 2 data files (one-many mapping) or (many -many)
# Create 2 lists of the reduced data to enable the merging process
mdata <- bt.rdup2 # 1st Tist

mdatal <- bt.rdup2 # 27 1ist

# enter 0 or 1 for “mgopt” according to merging option (l-many or

# many-many)

mgopt <- O

# data merging starts here

if(mgopt==0) {

mgr <- function(mdata){

mdat <- mdatal[[1]]

mdat <- merge(mdat, mdata, by = "vehicleild", sort=T,all = FALSE)
return(mdat)

?g1<—{1app1y(mdata,mgr) # The 1list of the merged files is created here
else

BAHBHHHRAHBHHBHH BB HHBHHBHH BB H BB AH B AR HH BB HBBHFRHH BB RHSR 21

mgr <- function(mdata){

mdat<-T1ist()

for(j in 1l:length(mdatal)){

mdatl <- mdatal[[j]]

# names(mdata) <- names(mdat)

mdat[[j]] <- merge(mdata, mdatl, by = "vehicleId", sort=T,all = FALSE)

return(mdat)
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system.time(mg <- lapply(mdata,mgr))# Tist of the merged files is
?created

# many- many produces a list of lists

BAHBHHBHH B R AR B AR HH BB H BB H BB R BB RHRHH R AR R AR R AR R A H R AR LR H LR AR R R LR R S R3S
# Select the desired 1list file if many to many mapping

if(mgopt==1){

mga <- mg # save the Targe file with a different name for preservation
mgl <- mga[[1]] # the first list n the bigger 1ist (change the index
## accordingly)

mgl <- mgl[-1] # drops the first file in the first list

mg <- mgl # assign a new mg to the created 1list

} else {mg <- mg[-1] }# to remove the unwanted file

BAHBHH B R AR R AR AR AR BB AR R AR R R HRHH LR H LB RH R HH R H BB R BB R HRHH R RSB SRHH
# The next step is to compute distance from station coordinates and
# subsequently the vehicle speed
coords=read.csv("H:\\R\\bt_st_details.csv",header=T)

## Function to compute distance,time and speed
fsvt=function(mg){

stl <- substring(as.character(mg[1,2]),2,13)

st2 <- substring(as.character(mg[1,9]),2,13)

latl <- coords[as.character(coords[,1])==as.character(stl),c(8)]
lat2 <-coords[as.character(coords[,1])==as.character(st2),c(8)]
lonl <-coords[as.character(coords[,1])==as.character(stl),c(7)]
lon2 <-coords[as.character(coords[,1])==as.character(st2),c(7)]

# computation of time differences between two data ponits. And

# addition of the computed differences to the merged dataframe
tl<-strptime(mg$Date.x, "%d/%m/%Y %H:%M:%S")

t2<-strptime(mg$Date.y, "%d/%m/%Y %H:%M:%S")

jtime<- difftime(t2,tl,units="secs")

# jtime<- difftime(t2,tl,units="auto")

## Distance computation using spherical coordinates. Distance in km
R=6378137 # WGS84 radius of the earth

sn=sin(latl)*sin(lat2)

cs=cos(latl)*cos(lat2)*cos(Ton2-1onl)
dist=(Cacos(sn+cs)*pi/180)*R/1000

dst <- as.numeric(sprintf("%.2f",dist))

# or use "dst <- print(dst,digits=3)"

## computation of vehicle speed begins here

tme <- as.numeric(jtime/3600)

# thr <- as.numeric(sprintf("%.2f",tme))

tmin <- as.numeric(tme*60)

tmin <- as.numeric(sprintf("%.2f",tmin))

spd <- ceiling(as.numeric(abs(dst/tme)))

mg2 <- data.frame(mg, jtime,tmin,spd)

# remove point data with different days merged together

tfl <- dmy_hms(mg2$Date.x)

tf2 <- dmy_hms(mg2$Date.y)

dayl <- day(tfl)

day2 <- day(tf2)

mg2<-subset(mg2,dayl==day2) # Subset for same day merged records

# remove vehicles travelling at very Tow speed and at very high speed
mg2 <- subset(mg2,spd>5&spd<=120)

# mg2 <- subset(mg2,spd>=0&spd<=120)# all the tracked devices

#mg2 <- subset(mg2,spd>=0&spd<=5)# assumes to be pedestrians and

# cyclists

# mg2$wf <- cut(mg2$hour.y,5)

;eturn(ng)

svt <- Tapply(mg, fsvt)

svtl<-svt[[1]] # to obtain the first element of the 1ist

head(svtl) # to examine the data (the first Tink)

HERAH YRR RAHH B R BAAH YRR BAHH B BB AR H BB BARH R BB BAHH BB RARHH BB RHH SRR RAHH SRR
## Normality test using quantile plots

# spd.ntp <-

Tapply(svt, function(svt) {qqnorm(svt$spd) ;qqline(svtl$spd)})

## remove outliers to obtain 95% of the remaining data if normally

## distributed
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#attach(svtl)

#ulim <-mean(spd) +1.96*sd(spd)

#11im <-mean(spd) -1.96*sd(spd)

#%pdf95<—subset(m92,spd>=11im) # to obtain all the values greater than
im

#spdf95<-subset(spdf95,spd<=uTlim) # to remove values greater than ulim

#spdf95<-subset(mg2, (spd>=11im)&(spd<=ulim))

#detach(svt)

HAHBHHRRAHRAHBHHBRARBHHBHHBRHRRARBHHRHHRRHG R AR HHRRHRRA R R AR AR AR

## The following is to separate the merged files into two based on the

## travel direction

# par(mfrow=c(3,3))

drn_pos <- Tapply(svt,function(svt) svt[svt$jtime>0,])

drn_posl <-drn_pos[[1]]

HAHBHHURAHBHHBHHBRARBHHBHH B RHRRAHRHHRHHRRHG R AR AHRAHRRARRAR R AR AR AR A

## Rule of thumb to remove outliers Crawley, 2005

attach(drn_posl )

Imtquant <-subset(drn_posl , spd<=upquant&spd>=Twquant)

outquan <- subset(drn_posl,spd<lwquant]|spd>upquant) # outliers

BAHBHH BB AR HHBHH BB R B HHRHH BB H R R R R HHRHH BB H BB R LB HH BB R AR R R

## Station Summary

# convert Tist to a dataframe using Tdply function and do a summary of

# daily count per station

dfbt.rdup <- 1dply(bt.rdup)

## reduce the file size to the desired variables

#(site.id,date,vehicleid,day,hour,minl5,minl10, min5, secdif)

dfbt.rdup_red <- dfbt.rdup[c(1,4:5,9:11)]

dfbt.rdup_red <- dfbt.rdup_red[dfbt.rdup_red$day==3,] #to subset day 3

## summarise the data for daily count per station

#stn <- t(stn)

stn_sum <- as.data.frame(ftable(dfbt.rdup_red, row.vars=c(l),

col.vars=c(2))) #long format of above

## plot the bar chart of the daily count data

barplot(stn_sum[,3], main="Sept 3 bar plot", ylab="Daily count",

col=c(1:8,"purple"), xlab= "Stations 33-41",las=2,

cex.main=1.0,cex.lab=0.8,cex.axis=0.8)

#legend("topleft", " "Stockport™)

dfbt.rdup_red <- dfbt.rdup[c(1,4:5,9:11)]

stn <- ftable(dfbt.rdup_red, row.vars=c(2), col.vars=c(l))

ftable(dfbt.rdup_red, row.vars=c(2), col.vars=c(1l))

## Bar plot stations. Plot the stations side-by-side

#barplot(stn[,2:9], main="Sept 3-10 bar plot", ylab="Daily count",

# col=c(1:9,"purple"), xlab= "stations 33-41",las=2,beside=TRUE)

## Line plot station

plot(stn[,2], xlab=c("weekdays from Mon-Mon"),ylab="Daily count",

y1im=c(3500,12000), main="Stockport Bluetooth daily profile at nine

stations",

xaxt="n",cex.main=1.0)

mtext(side=1,at=1:8, text=c("Mon3","Tue4", "wed5","Thu6","Fri7","sat8",

"sun9", "Mon10"))

for(k in 1:9){

Tines(stn[,k],col=k,Tty=k)}

1§gend(5tg§right",1ty=c(1:9),co1=c(1:9),1egend=paste("Stn",33:41,sep="

"), cex=0.

BAHBHH BB AR HHBHH BB AR HHRHH BB H LR HFBRHRHH BB H LR H LB HH RSB RR R

print("Begin inbound processing and analysis from here")

# Section to analyse the vehicles travelling from origin to

# destination (pos direction)

BAHBHHHRAHBHHBHH BB AR HHBHH BB H BB AR B HHBHH BB H BB RFBHHBHH BB H SRR RS R R 3H

## Data summary, statistical analysis and plotting. Each 1link is

# processed in turn and stacked over one another

drn_pos <- Tapply(svt,function(svt) svt[svt$jtime>0,])

# reduce the file size. drn.posr is a 1list containing reduced data

drn.posr <- lapply(drn_pos, function(drn_pos)drn_pos[c(1:2,9:16,18)1)

#drn.posr <- lapply(drn_pos,function(drn_pos)drn_pos[c(1,10:14,16)])

# summarise the data using package plyr

ld_drn.posr <- 1ldply(drn.posr) # convert list to a dataframe

# order the data file by datetime
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Td_drn.posr.order <- function(ld_drn.posr){
posr.order <- Td_drn.posr[order(ld_drn.posr[,4]),1:11]
return(posr.order)

Tdposr <- Td_drn.posr.order(ld_drn.posr)

# write the data to file

write.csv(ldposr, "H:\\R\\stockport2\\1ldposr.csv')

#1dposri <-ldposr[1]

stn.num <- as.numeric(substring(as.character(ldposr[,3]),10,13))
Tink.num <- as.numeric(substring(as.character(ldposr[,3]),10,13))
# Extract a specific 1link by day based

T1ink3334.3 <- T1dposr[ldposr$day.y==3&stn.num==1034, ]
write.csv(1ink3334.3, "H:\\R\\stockport2\\1ink3334.3.csv")
#day.num <- Tdposr$day.y

## Extract a specific Tink by day and create a 1list for all the days
## Function to run the days in turn

# Ink <- function(ldposr){

#for(ldy in 3:10){

# 1ink3334.5 <- subset(ldposr,day.num==1dy&1ink.num==1034)

# ;eturn(]ink3334.5)

#

# write.csv(1ink3334.5, "H:\\R\\stockport2\\1ink3334.5.csv")

# }

#1ink <-Tnk(Tdposr)

# Get the count of VvehicleIds

#id.count <- ddply(ldposr, .(Site.ID.y,day.y,vehicleld), "nrow")
#write.csv(id.count,file="idcount.csv")

# This takes some time to run

# create a summary of the data based on the specified variable
#avgtsec <- ddply(ldposr, .(Site.ID.y, day.y),
summarise,Vcount=length(vehicleld),

# min_jtime= min(jtime), max_jtime= max(jtime), mean_jtime=
mean(jtime))

#speed <- Tdposr$spd

#Date.y <- ldposr$Date.y

# 5-minute speed flow summary based on repeated flow within an
interval

#sum_T1ink3334.5.3 <- ddply(1ink3334.5.3, .(Site.ID.y,
day.y,hour.y,min5.y),

summarise,VvVcount=rep(length(vehicleld), Tength(vehicleIld)))

speed <- 1ink3334.3%spd

Date.y <- 1ink3334.3$Date.y

Site.ID.y <- 1ink3334.3$Site.ID.y

vg_1ink3334.5.3 <- ddply(1ink3334.3, .Chour.y,min5.y),
summarise,Vcount= rep(1ength(Veh1c1eId), 1ength(Veh1c1eId)))
#scatterp10t3d(11nk3334 S5plot)

summary(1ink3334.5plot)

#plot(link3334.5plot[,2],1ink3334.5plot[,3])

tsplot <- ts(1ink3334.5pTlot)

plot(tsplot[,3])

boxplot(tsplot[,3])

hist(tsplot[,3],col="Tight blue",border="dark blue", freq=FALSE,
HAHBHHBR AR R AR AU B R H BB AR AR HHRRH BB H BB HHRHH R H BB H R B R H BB RRHR AR
## 10-minute summary

vg_1ink3334.10.3 <- ddply(1ink3334.3, .(Chour.y,minl0.y),
summarise,Vcount=rep(length(vehicleld), Tength(vehicleld)))
vg_1ink3334.10.3 <-
data.frame(Site.ID.y,Date.y,vqg_11nk3334.10.3,speed)
write.csv(vg_1ink3334.10.3, "H:\\R\\stockport2\\vg_1ink3334.10.3.csv")
HAHBHHBH AR R AU B AR AR BB AR AR HHR AR R H BB AR R HHBHH BB HRRRHRHH BB H R R RA
## 15-minute summary

vg_1ink3334.15.3 <- ddply(1ink3334.3, .(Chour.y,minl5.y),
summarise,Vcount=rep(length(vehicleid), length(vehicleIld)))
vg_T1ink3334.15.3 <-
data.frame(Site.ID.y,Date.y,vg_11nk3334.15.3,speed)
write.csv(vq_1ink3334.15.3, "H:\\R\\stockport2\\vqg_1ink3334.15.3.csv")
BAHBHH B R AR R AU B AU B HH BB AR BAHBHHBRH BB R BHHRHH BB H BB HH B R BB B AR HH RS RR3
## summary per link for all days. Change the index in turn to compute
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## the entire network on 1link basis

drn.posri <- drn.posr[[1]]

#spd.count <- ddply(drn.posri, .(day.y,min5.y,spd,todp. c1ass) "nrow")
var.count5 <- ddply(drn.posri, .(day. y,hour Y, mins. y), "nrow' )
write.csv(var.count5, "H: \\R\\stockportZ\\var count5.csv")
#attach(spd.count5)

#coplot(hour.y~nrow|day.y) # for conditioning plots
#coplot(spd~nrow|todp.class)

#detach(spd.count5)

# Ssummarise the daily traffic flow at different Tinks by mean and

# median of journey time and speed

var.suml5 <- ddply(drn.posri, .(day.y,hour.y,minl5.y),
summarise,Vcount=length(vehicleld),

med_spd = ceiling(median(spd)),mean_spd ceiling(mean(spd)),

med_jt = ceiling(median(jtime)),mean_jt ceiling(mean(jtime)))
write.csv(var.suml5, "H:\\R\\stockport2\\var.suml5.csv")

#var.suml5 <- var.suml5[order(var.suml5$todp.class),1:8]
var.suml5.d3 <- var.suml5[var.suml5%day.y==3,] # change this
#accordingly

## compute percentage count

var.suml5.d3$vcount.pct <-

round((var.suml5.d3$vcount/sum(var.suml5. d3$Vcount))?100,2)

palette <- c("red","yellow","blue",'"green","orange")

# map.class <- avgspdl5.d3$todp.class

# plot of average speed grouped by time of the day
#plot(avgspdl5.d3$mean_spd,avgspdl5.d3$vcount.pct,

# x1ab="15-minute average speed (km/h)",ylab="Time of the day class",
# main="Daily Speed Classification",pch=21)

BAHBHHH B AU B HHBHH BB AR HHRHH BB H BB RHBRH R H BB H BB HL B HH RSB RHR R
drn.posri<-drn.posr[[1]] # change the index in turn according to the
Tist #length

# Classify the Bluetooth count according to peak and off-peak

# periods

todp.class <- rep("0 - 07hrs", times=nrow(drn.posri))
todp.class[drn.posri$hour.y>=7&drn.posri$hour.y<10] <- "07 - 10hrs"
todp.class[drn.posri$hour.y>=10&drn.posri$hour.y<16] <- "10 - 16hrs"
todp.class[drn.posri$hour.y>=16&drn.posri$hour.y<20] <- "16 - 20hrs"
todp.class[drn.posri$hour.y>=20] <- "20 - 24hrs"
drn.posri$todp.class <- factor(todp.class)

boxplot(drn.posri$spd ~ todp.class, horizontal=T, xlab="5-minute
average speed

(km/h)™,

las=1, cex.axis=0.8, cex.main=1.0,main="Box Plot of Journey Speed",
col="orange")

abline(v=mean(drn.posri$spd), 1ty="dashed")

# Adds the mean value to the plot

legend("topright", Tegend="Grand Mean", Tty="dashed",cex=0.8)
#todp_sum <- tapply(drn.posri$spd,drn.posri$todp.class,summary)
tapply(drn.posri$spd,drn. posr1$todp class,summary)

tod.count5 <- ddp1y(drn posri, .(day. m1n5 y,spd,todp.class), "nrow")
write.csv(tod.count5, "H: \\R\\stockportZ\\tod count5 csv'™)
#attach(spd.count)

#coplot(spd~nrow|day.y) # for conditioning plots
#coplot(spd~nrow|todp.class)

#detach(spd.count)

tod.suml5 <- ddply(drn.posri, .(day.y,minl5.y,todp.class),
summarise,Vcount=length(vehicleid),

min_spd = min(spd) ,med_spd = median(spd),

mean_spd = ceiling(mean(spd)),

mean_journey times = ceiling(mean(jtime)))

write.csv(tod.suml5, "H:\\R\\stockport2\\tod.suml5 .csv")

tod.suml5 <- tod.suml5[order(tod.suml5 $todp.class),1:8]
tod.suml5.d3 <- tod.suml5[tod.suml5 $day.y==3,] # change this
accordingly

tod.suml5.d3%$vcount.pct <-
ceiling((tod.suml5.d3%vcount/sum(tod.suml5. d3$Vcount))*100)

palette <- c("red","yellow","blue",'"green","orange")

map.class <- tod.suml5.d3$todp.class
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# plot of percentage count by maximum speed (vmax) classification
#plot(avgspdl5.d3$mean_spd,avgspdl5.d3$vcount.pct, ylim=c(0,12),

# xlab="15-minute average speed (km/h)",ylab="15-minute daily

# Bluetooth ## function palette adapted from Harris, 2013

count (%)", main="Speed Profile",pch=21,bg=palette[map.class])
#legend("topright",
Tegend=paste("<",tapply(as.numeric(avgspdl5.d3$mean_spd),

legvals <- c(0,7,10,16,20) # cf Harris, 2013

# plot of percentage count by daytime classification
plot(tod.suml5.d3$mean_spd,tod.suml5.d3$vcount.pct,ylim=c(0,12),
xlab="15-minute average speed (km/h)", ylab="15-minute daily Bluetooth
count(%)" ,main="Percentage Daily Speed
Distribution",pch=21,bg=palette[map.class])

Tegend("topright", legend=paste(">=",legvals),pch=21,

pt.bg=palette, pt.cex=1.5, bg="white,title="DayTime classification",
cex=0.8) # code adapted from Harris 2013

Tegend("right",
Tegend=paste("<",tapply(as.numeric(tod.suml5.d3$mean_spd),

map.class, max)),pch=21, pt.bg=palette,

pt.cex=1.5, bg="white",

title="DayTime class by vmax",6cex=0.8)

HAHBHH B R AR R AU B AR HH BB AR AR A H R AR LR H LR HH BB H LR R F R HH RSB R
#ftable(drn.posr, row.vars = c(5,7), col.vars = c(11))# count based on
#specified ré&c

drn.posri$todp.class <- NULL # to remove the column from the dataframe
HAHBHH B R AR R AR AR AR BB AR AR R H R AR BB H LB RH R HH R H BB R R B RH BB RSB
drn.posr.m <- melt(drn.posri, id.vars = 1:9) # to obtain Tink summary
#_d;n.posr.m <- melt(drn.posr, id.vars = 1:5) # ditto the above but
wit

reduced vars

cst_hrly <- cast(drn.posr.m, day.y ~ hour.y, length) # gives hourly
# daily summary

write.csv(cst_hrly, "H:\\R\\stockport2\\hrly.count.csv", row.names=F)
write.csv(cst_hrly,
"H:\\R\\stockport2\\daily.counthrly.csv", row.names=F)
#write.csv(cst_daily, file="cstp_daily.csv")

avghrly <- cast(drn.posr.m, day.y + hour.y ~ variable, mean)# gives
the mean of

Jtime& speed

write.csv(avghrly, "H:\\R\\stockport2\\avghrly.csv", row.names=F)
daily.counthrly <- cst_hrly

daily.counthrly <- t(daily.counthrly)

colnames(daily.counthrly) <-
c("Mon3","Tue4","wed5","Thu6","Fri7","sat8","sun9", "Monl0")
#hist(daily.counthrly[,2], ylab="Frequency",

# xTab="Hourly count per day", main="Histogram plot of 3 Sept 2012")
pr <- pairs(daily.counthrly,main="Scatter plot of hourly count for 3-
10 sept 2012"

,panel=panel.smooth,col.smooth="red",cex.main=1.0)

#pmt <- plot(daily.counthrly[,2],daily.counthrly[,3],main="Scatter
plot of 15-minutes count", xlab="Monday", ylab="Tuesday",cex.main=1.0)
# To obtain the sum total of row and column based on the total daily
#count.

#daily.count <- cast(drn.posr.m, day.y ~ variable, length,

# margins=c("grand_col", "grand_row"))

#write.csv(daily.count,
"H:\\R\\stockport2\\daily.count.csv", row.names=F)

# To obtain the summary based on 15-minute daily count.

daily.countl5 <- cast(drn.posr.m, day.y ~ hour.y + minl5.y, Tength)
write.csv(daily.countl5,
"H:\\R\\stockport2\\daily.countl5.csv", row.names=F)

daily.countl5 <- t(daily.countl5)

colnames(daily.countl5) <-
c("Mon3","Tue4","wed5","Thu6","Fri7","sat8",

"sun9", "Monl10")

#hist(daily.countl5[,2], ylab="Frequency",

# xTab="Daily count (15-minute average)", main="Histogram plot of 3
Sept 2012")
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pr <- pairs(daily.countl5, main ="Scatter plot of 15-min count for 3-
10 sept 2012", panel= panel.smooth, col.smooth="red",cex.main=1.0)
pmt <- plot(daily.countl5[,2],daily.countl5[,3],main="Scatter plot of
15-minutes count",

xTab="Monday", ylab="Tuesday")

pmt.Tm <- Tm(daily.countl5[,3]~daily.countl5[,2])
abline(pmt.Tm,col="red")

summary (pmt. Tm)

legend("topleft", Tegend="Adjusted R-sq=0.84", cex=0.6)
legend("1eft", legend="Sept 3", cex=0.6)

# To obtain the summary based on 10-minute daily count.

daily.countl0 <- cast(drn.posr.m, day.y ~ hour.y + minl0.y, length)
write.csv(daily.countlO,
"H:\\R\\stockport2\\daily.countl0.csv", row.names=F)

daily.countl0 <- t(daily.countl0)

colnames(daily.countl0) <-
c("Mon3","Tue4","wed5","Thu6","Fri7","sat8",

"sun9", "Mon10")

#hist(daily.countl0[,2], ylab="Frequency",

# x1ab="Daily count (10-minute average)", main="Histogram plot of 3
Sept

2012™)

pr <- pairs(daily.countl0,main="Scatter plot of 10-min count for 3-10
Sept 2012"

,panel=panel.smooth,col.smooth="red",cex.main=1.0)

pmt <- plot(daily.countlO[,2],daily.countl0[,3], main="Scatter plot of
10-minutes count",

xTab="Monday", ylab="Tuesday")

# To obtain the summary based on 5-minute daily count.

daily.count5 <- cast(drn.posr.m, day.y ~ hour.y + min5.y, length)
write.csv(daily.count5,
"H:\\R\\stockport2\\daily.count5.csv", row.names=F)

daily.count5 <- t(daily.count5)

colnames(daily.count5) <- c("Mon3","Tue4","wed5","Thu6","Fri7","sat8",
"sun9", "Mon10™")

hist(daily.count5[,2], ylab="Frequency",

x1ab=;Dai1y count (5-minute average)", main="Histogram plot of 3 Sept
2012"

pr <- pairs(daily.count5,main="Scatter plot of 5-min count for 3-10
Sept 2012"

,panel=panel.smooth,col.smooth="red",cex.main=1.0)

pmt <- plot(daily.count5[,2],daily.count5[,3],main="Scatter plot of 5-
minutes

count",

xTab="Monday", ylab="Tuesday")

#abline(pmt,col="red")

# computes the vehicle count as well as the mean of time and speed
#cast(drn.posr.m, day.y + hour.y ~ variable, c(length, mean),

# subset = variable %in% c("jtime", "spd"))
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# Summarise based on a particular day on a chosen 1link

drn.posrid <- drn.posri[drn.posri$day.y==3,]1# change the index
#accordingly

# order the data by datetime

drn.posrid <- drn.posrid[order(drn.posrid[,4]),1:11]

# change file in order not to overwrite the previous one
write.csv(drn.posrid,
"H:\\R\\stockport2\\drn.posrid3.csv", row.names=F)
attach(drn.posrid)

drn.posrid$journey times.cut <- cut(as.numeric(jtime),10)
plot(jtime, spd, main="Plot of Journey Time against Speed",
xTab="Time (sec)", ylab="Speed (km/h)", pch="+")

# The follwing demonstrates k-means clustering with R.

tsec <- jtime

#Apply kmeans to the data, and store the clustering result in kc.
#The cluster number is set to 3.

(kc <- kmeans(tsec, 10))
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# Compare the class labels with the clustering result
table(drn.posrid$journey times.cut, kc$cluster)

plot(tsec, col = kc$cluster,main="Clustering of Journey Time")
#points(kc$centers[,c("spd", "jtime")], col = 1:10, pch = 8, cex=2)

# The follwing demonstrates k-means clustering with R.

speed.kmph <- spd

# Apply kmeans to the data and store the clustering result in kc.

# The cluster number is set to 10.

(kc <- kmeans(speed.kmph, 10))

# Compare the class labels with the clustering result
table(drn.posrid$journey times.cut, kc$cluster)

plot(speed.kmph, col = kc$cluster)

boxplot(spd, ylab="Speed (km/h)", Tlas=1, cex.axis=0.8,

main="Box Plot of Journey Speed")

Tegend("bottomright", Tegend=c("mean=", round(mean(spd)),

"sd =",round(sd(spd))),cex=0.8)

Tegend("topright",legend=c("Sept 3, 2012"),cex=0.6)

## savePlot(filename = "Rplot", type = c("pdf"),device=postscript,

# restoreConsole = TRUE)

# dev.copy2pdf(device=postscript, out.type = "pdf")

#summary (spd)

detach(drn.posrid)

HHBHBHBHBHHRHRHR AR R HHRHRHR AR R G HHRHR AR AR HHHHRH R AR AR R HHH R AR AR AR BB H
## The following performs data summary by first converting a list to a
dataframe

# This section helps to carry out the entire network summary at a go
# reduce the file size

# drn.posr <- lapply(drn_pos,function(drn_pos)drn_pos[c(1:2,8:14,16)]1)
# drn.posr <- lapply(drn_pos,function(drn_pos)drn_pos[c(1,10:14,16)]1)
drn.posrd <-1dply(drn.posr)

## To obtain sum (mean or....) use the following

drn.posrd.m <- melt(drn.posrd, id.vars = 1:9)

# drn.posrd.m <- melt(drn.posrd, id.vars = 1:5)

count_daily <- cast(drn.posrd.m, Site.ID.y + day.y ~ hour.y, Tength) #
#gives daily summary per each station

write.csv(count_daily, "H:\\R\\stockport2\\count_dly.hrly.csv")
#write.csv(cst_daily, file="cst_daily.csv'")

mean_daily <- cast(drn.posrd.m, Site.ID.y + day.y + hour.y ~ variable,
mean)# gives the mean of time & speed

write.csv(mean_daily, "H:\\R\\stockport2\\mean_dly.hrly.csv'")

# to obtain the sum total of row and column based on the total daily #
#count.

dlymean <- cast(drn.posrd.m, Site.ID.y + day.y ~ variable, mean)
write.csv(dlymean, "H:\\R\\stockport2\\dlymean.csv")

#,margins=c("grand_col", "grand_row"))

attach(avghrly)

bxt <- split(jtime, day.y)

boxplot(bxt, col = "lavender", notch = FALSE, varwidth = TRUE,

main="Boxplot of hourly journey time", ylab="Time(secs)",
xlab="weekdays (Mon - Mon)",xaxt="n")

mtext(side=1,at=1:8, text=c("Mon3","Tue4","wed5","Thu6","Fri7","sat8",
"sun9", "Mon10"))

sapply(bxt, sd)

sapply(bxt, mean)

# plot journey speed

bxv <- split(spd, day.y)

boxplot(bxv, col = "grey", notch = FALSE, varwidth = TRUE,
main="Boxplot of hourly speed",xlab="weekdays (Mon - Mon)",
ylab="speed (km/h)",xaxt="n")

mtext(side=1,at=1:8, text=c("Mon3","Tue4", "wed5","Thu6","Fri7","sat8",
"sun9", "Mon10"))

sapply(bxv, sd)

sapply(bxv, mean)

detach(avghrly)

# computes the vehicle summary such as mean time and speed etc

## 15-minute average

sum_dml5 <- cast(drn.posrd.m, Site.ID.y + day.y + hour.y + minl5.y ~
variable,
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c(sd, mean), subset = variable %in% c("jtime", "spd"))

write.csv(sum_dml5, "H:\\R\\stockport2\\sum_avg.sdl5.csv")
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# Models to test if there is any difference between the days

# transpose the data

qr1y <-t(cst_hrly) # open and close cst_hrly before running the next
ine

hrly <-data.frameChrly)

co1na?es(hr1y) <-c("mon", "Tue","wed", "Thu", "Fri", "sat", "Sun",
"MOn"

# analysis of variance and model testing

modl <- Tm(Mon ~ Tue, data=hrly)

summary (modl)

# Model 2

mod2 <- update(modl,
summary (mod2)

# Model 3

mod3 <- update(mod2,
summary (mod3)

#Model 4

mod4 <- update(mod3,
summary (mod4)

# Model 5

mod5 <- update(mod4,
summary (mod5)

# Model 6

mod6 <- update(mod5,
summary (mod6)

# Model 7

mod7 <- update(mod4, . ~ .- Fri, data=hrly)

summary (mod7)

# An ANOVA to judge if we are supposed to drop Sat and Sun
anova(mod7, mod4)

# Model for the Mon -Thu

mod.4 <- Tm(Mon ~ Tue + wed +Thu, data=hrly)

summary(mod.4)

# Model for the Sat-Sun

mod.2 <- Tm(Sat ~ Sun , data=hrly)

summary(mod.2)
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## Perform analysis of variance (AOV)

daytest5 <- read.csv("~/R/daytest5.csv")

head(daytest5)

attach(daytest5)

plot(aov(count~weekdays))

summary (aov (count~weekdays))

#rmv<-weekdays!="Fri7"

summary (aov (count~weekdays, subset=weekdays!="Fri7"))

# remove Friday to Sunday from the data

Page 14

Bluetooth_script

rmv <-(weekdays!="Fri7"&weekdays!="sat8"&weekdays!="sun9")

summary (aov (count~weekdays, subset=rmv))

## Remove only Sunday and Saturday to test the significance
rmv<-(weekdays!="sat8"&weekdays!="sun9")

summary (aov (count~weekdays, subset=rmv))
summary.Im(aov(count~weekdays)) ##summary based on 5-minute count

aj <- Im(count~weekdays)

## Note that aov summary appears in alphabetical order

summary . Im(aov(count~weekdays, subset=rmv))

## post analysis

an <- aov(count~weekdays)

postan<- TukeyHSD(x=an, 'weekdays', conf.level=0.95)

postan

library(agricolae) # a simplified version of the above

HSD.test(aj, 'weekdays')

# HSD.test(an, 'weekdays') # aliter

BAHBHHHRAHBHHBHH BB AR B AR HHBBH BB HHBHHBHH BB H BB HF B AR R BB R AR
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. + Wed, data=hrly)

14

. + Thu, data=hrly)

14

. + Fri, data=hrly)

14

. + Sat, data=hrly)

14

. + Sun, data=hrly)
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# Time series analysis, decomposition and classification

# A time series of hourly vehicle count over some days

RAHBHHRAARRAHBAHRRHRRARRAHRRHHBRHRRHR R AR HHRHH BB AR RAHRHH BB R AR AH R

#daily <- cst_daily # Daily contains the hourly count per day

#daily$Site.ID.y <- NULL

daily <- cst_hrly

#daily=read.csv("H:\\R\\stockport2\\daily.csv",f header=T)

daily <- t(daily)

daily <- ts(daily)

%p1§t(dai1y[,l],type="b", xaxt="n",ylab="Daily count",xlab="Time
Hr| ll,

# x1lim=c(1,24), ylim=c(0,450))

plot(daily[,1], xaxt="n",ylab="Hourly count per day",xlab="Time (Hr)",

y1lim=c(0,450), main="Plot of hourly count")

for(1 in 1:4){

Tines(daily[,1],col=1,Tty=1)}

xaxislab <- seq(1:25)

axis(l, at=1:25, labels=xaxislab, Tas=1,cex=0.2)

Tegend("topleft",1ty=c(1:4),col=c(1l:4),c("Mon","Tue","wed","Thu"))
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# Time series analysis using a Tinear filtering

bt <-read.csv("H:\\R\\bt.altrincham.csv", header=T)

plot(bt[,5],type="1", ylab="Trend",

main="Time series analysis using linear filtering")

bt.1 <- filter(bt[,5],filter=rep(1/5,5))

bt.2 <- filter(bt[,5],filter=rep(1/25,25))

bt.3 <- filter(bt[,5],filter=rep(1/81,81))

Tines(bt.1l,col="red")

Tines(bt.2,col="purple")

Tines(bt.3,col="blue")

rm(bt)

######################################################################

# Daily count

daily5 <-read.csv("H:\\R\\stockport2\\daily.count5.csv",6 header=T)

daily5 <- t(daily5)

bt <- daily5

plot(bt[,1],type="1", ylab="Trend",

main="Time series analysis using linear filtering")

bt.1 <- filter(bt[,5],filter=rep(1/5,5))

bt.2 <- filter(bt[,5],filter=rep(1/25,25))

bt.3 <- filter(bt[,5],filter=rep(1/81,81))

Tines(bt.1l,col="red")

Tines(bt.2,col="purple")

Tines(bt.3,col="blue")
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# Times series analysis

bt.ts <- t(bt)

#bt.ts <- ts(bt,frequency=12,start= c(2011, 10),end=c(2012, 03))

bt.ts <- ts(bt,frequency=12,start= c(2011))

plot(bt.ts[,5], ylab="Trend",main="Time series analysis"
,xaxt="n")

for(m in 1:8){

Tines(bt.ts[,m],col=m, T1ty=m)

# plot each profile on a different pan

plot(daily,main="Time series analysis (Mon-Mon)",col=2, cex.main=1.0)
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# exploring the relationships between two (or more) quantitative
#variables.some ideas from #Stackoverflow

# Interactively choose file bt.altrincham

# bluetooth <- read.csv(file.choose())

#par(mfrow=c(1,1))

#bluetooth <- bt

bluetooth <- data.frame(daily5) # daily5 contains 5-minute count/day
colnames(bluetooth) <- c("Mon", "Tue", "wed", "Thu","Fri","sat",
"Sun","MOh")

attach(bluetooth)

# names(bTuetooth)
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boxplot(bluetooth[,1:8],col="grey",

notch=T, varwidth=T, las=1, tcl=.5,

xTlab=expression("weekdays"),

y1qb=§§pression("5—minute Bluetooth count"),

main=
HAHBHHBRAHRAHBHHRHHRRHGRAHBAHBRHRRARRAGRRAHBAHRRARRHHRHH BB AR R BB AR A
# analysis btw station pair . This section will be executed if many-
many

# merging is done

# mg2 is a list containing the computed time and speed and other
variables

# within the dataframes

mgl <- svt[[1]]

pos <-mgl[mgl$jtime>0,]

neg <-mgl[mgl$jtime<O0,]

pos <-pos[c(4,12)]

neg <-neg[c(4:5)]

pl <- as.data.frame(table(pos))

nl <- as.data.frame(table(pos))

pl <-pl[pl$day.x==4,]

nl <-pl[pl$day.x==4,]

# order the data by hour

pl <- pllorder(pl$hour.y),c(1:3)]

nl <- nllorder(nl$hour.y),c(1:3)]

# Covariance of two variables

# import 1ink3839

cov(pl$Freq, 1ink3839)

# correlation of two variables

cor(pl$Freq, 1ink3839)

cor(nl$Freq, 1ink3938)

num <- as.numeric(pl$hour.y)

map.class <- cut(num, 24) #Division into 24 classes (1-24hrs)

pplot <-plot(1ink3839, pl$Freq, col=c(2:25))

abline(Im(pl$Freq ~ 1ink3839))

nplot <-plot(1ink3938, pl$Freq)

abline(Im(nl$Freq ~ 1ink3938))
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# The file size 1is reduced before performing 0-D summary. Note that
#duplicates have been removed from the data

# The 0-D result is a symmetric matrix. However, if the direction

# of travel is to be considered, then we have to reverse the operation
bg.count <- Tapply(bt.rdup, function(bt.rdup) bt.rdup[c(l:4)]) #station
#data

bg.count1 <- lapply(drn_pos, function(drn_pos) drn_pos[c(1:4)]) # 1link
#data

# bt.countl <- bt.count[[1]] # first element of the Tist bt.count
Ctl<é 1 # ct =1 for daily 0-D summary else the total summary

n=1:

if(ct<1){

bt.countx <- bt.count

stn.count <- function(bt.count){

countx <- bt.countx[[n]]

int <- length(intersect(countx$vehicleld,bt.count$vehicleld))
return(int)

count <- Tlapply(bt.count,stn.count)

ddcount <- ldply(count)

for(n in 1l:Tength(bt.count)){

stn.count <- function(bt.count){

countx <- bt.countx[[n]]

int <- length(intersect(countx$vehicleld,bt.count$vehicleld))
return(int)

count <- Tlapply(bt.count,stn.count)
ddcount[n] <- Tdply(count)

colnames(ddcount) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
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"Stn8","Stn9")
rownames (ddcount) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
"Stn8","5tn9“)
ddcount
¥r1%e.%sv(ddcount, "H:\\R\\stockport2\\ddcount.csv")

else
# 0-D summary on daily basis
# bt.count <- subset(bt.count, bt.count$day==3)
bt.count <- Tapply(bt.count,function(bt.count)
bt.count[bt.count$day==3,])
bt.countx <- bt.count
stn.count <- function(bt.count){
countx <- bt.countx[[n]]
int <- length(intersect(countx$vehicleld,bt.count$vehicleid))
return(int)

count <- Tlapply(bt.count,stn.count)

ddcount <- ldply(count)

for(n in 1:length(bt.count)){

stn.count <- function(bt.count){

countx <- bt.countx[[n]]

int <- Tength(intersect(countx$vehicleld,bt.count$vehicleld))
return(int)

count <- lapply(bt.count,stn.count)
ddcount[n] <- Tdply(count)

colnames(ddcount) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
"Stn8" , "Stng“)

rownames (ddcount) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
"Stn8" , "Stng“)

write.csv(ddcount, "H:\\R\\stockport2\\ddcount3.csv'")

ddcount

#paste("Today is", date())
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# Determine the number of Ids tracked in both directions

# This gives the number of unique Ids tracked i.e it lists all

# the intersection points. This helps to understand the ids that made
# return journey. x and y are the 2 stations under consideration
#int.xy<-intersect(drn.xy$vehicleld,drn.yx$vehicleld)
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# This function Tists all the ids that make a return journey
attach(svtl)

int <- function(svtl){

int.xy <- 1ist(Q)

for(i in 3:10){

svitx <- svtl[svtl$jtime<0&svtl$day.x==i,] # opposite direction

svty <- svtl[svtl$jtime>0&svtl$day.y==i,] # forward direction

int.xy <-intersect(svty$vehicleld,svtx$vehicleld)

return(int.xy)

int.res <- int(svtl)

detach(svtl)
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## summary per Tlink for all days. change the index in turn to compute
## the entire network on 1link basis

#id.count <- ddply(ldnegr, .(Site.ID.x,day.x,VvVehicleId), "nrow")# get
#the countof variable vehicleld
#write.csv(id.count,file="idcount.csv")

# lines 225-226 take time to run

# create a summary of the data based on the specified variable
#avgtsec <- ddply(ldnegr, .(Site.ID.x, day.x),
summarise,VvVcount=length(vehicleld),
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# min_jtime= min(jtime), max_jtime= max(jtime), mean_jtime=
mean(jtime))

var.suml5n <- ddply(ldnegr, .(Site.ID.x, day.x, minl5.x),
summarise,VvVcount=length(vehicleld),

min_spd = min(spd), mean_spd = ceiling(mean(spd)), med_spd =
median(spd),

max_spd = max(spd), med_journey times = median(jtime),mean_journey
times =

ceiling(mean(jtime)))

write.csv(var.suml5n, "H:\\R\\stockport.neg\\var.suml5n.csv")
#write.csv(var.suml5n, "H:\\R\\wigan.neg\\var.suml5n.csv'")
#var.suml5n <- var.suml5n[order(var.suml5n$todp.class),1:8]
var.suml5n.d3 <- var.suml5n[var.suml5n$day.x==3,] # change this
#accordingly

var.suml5n.d3$vcount.pct <-
round((var.suml5n.d3$vcount/sum(var.suml5n.d3$vcount))*100,2)
palette <- c("red","yellow","blue",'"green","orange")

# map.class <- var.suml5n.d3$todp.class

#library(reshape)

# summarise based on 1link

drn.negri<-drn.negr[[1]] # change the index in turn according to the
Tist Tength

#drn.negri$jtime<- abs(drn.negri$jtime) # to obtain absolute value of
JOURNEY TIMES

# c]aésify the Bluetooth count according to the peak and off-peak
periods

todp.class <- rep("0 - 07hrs", times=nrow(drn.negri))
todp.class[drn.negri$hour.x>=7&drn.negri$hour.x<10] <- "07 - 10hrs"
todp.class[drn.negri$hour.x>=10&drn.negri$hour.x<16] <- "10 - 16hrs"
todp.class[drn.negri$hour.x>=16&drn.negri$hour.x<20] <- "16 - 20hrs"
todp.class[drn.negri$hour.x>=20] <- "20 - 24hrs"
drn.negri$todp.class <- factor(todp.class)

boxplot(drn.negri$spd ~ todp.class, horizontal=T, xlab="Speed (km/h)",
las=1, cex.axis=0.8, main="Box Plot of Journey Speed2")

# Includes options to draw the boxes and Tabels horizontally
abline(v=mean(drn.negri$spd), 1ty="dashed")

# Adds the mean value to the plot

legend("topleft", legend="Grand Mean", 1ty="dashed")

#todp_sum <- tapply(drn.negri$spd,drn.negri$todp.class,summary)
tapply(drn.negri$spd,drn.negri$todp.class, summary)

tod.cogntSn <- ddply(drn.negri, .(day.x,min5.x,spd,todp.class),
"nr‘OW"

write.csv(tod.count5n, "H:\\R\\stockport.neg\\tod.count5n.csv'")
#write.csv(tod.count5n, "H:\\R\\wigan.neg\\tod.count5n.csv")
plot(tod.suml5n.d3$mean_spd, tod.suml5n.d3%$todp.class,ylim=c(0,6),
xlab="15-minute average speed (km/h)",ylab="Time of the day class",
main="Daily Speed Classification2",pch=21,bg=palette[map.class])
legvals <- ¢(0,7,10,16,20)

legend("right", legend=paste(">=",Tlegvals),pch=21,

pt.bg=palette, pt.cex=1.5, bg="white",

title="DayTime classification")

# plot of percentage count by maximum spped (vmax) classification
#plot(tod.suml5n.d3$mean_spd, tod.suml5n.d3$vcount.pct, ylim=c(0,12),
# xlab="15-minute average speed (km/h)",ylab="15-minute daily
Bluetooth

count (%)",

# main="Speed Profile2",pch=21,bg=palette[map.class])
#legend("topright",
legend=paste("<",tapply(as.numeric(tod.suml5n.d3$mean_spd),

# map.class, max)),pch=21,

pt.bg=palette, pt.cex=1.5, bg="white",

# title="DayTime class by vmax")

# plot of percentage count by daytime classification
plot(tod.suml5n.d3%$mean_spd, tod.suml5n.d3$vcount.pct,ylim=c(0,12),
xlab="15-minute average speed (km/h)",ylab="15-minute daily Bluetooth
count

", o

main="Speed2 distribution over the day",pch=21,bg=palette[map.class])
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Tegend("topright"”, Tegend=paste(">=",legvals),pch=21)
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# The file size is reduced before performing 0-D summary. Note that
duplicates have been removed from the data

# The 0-D result is a symmetric matrix. However, if the direction

# of travel is to be considered, then we have to reverse the operation
bg.count <- Tapply(bt.rdup,function(bt.rdup) bt.rdup[c(1:4)]) #station
#data

bg.countp <- Tapply(drn_neg, function(drn_neg) drn_neg[c(1:4)]) # T1ink
#data

# bt.countl <- bt.count[[1]] # first element of the Tist bt.count

ct <é 1 # ct =1 for daily 0-D summary else the total summary

n=1:

if(ct<1){

#bt.countp <- bt.count ## for station summary

bt.county <- bt.countp

stn.countn <- function(bt.countp){

county <- bt.county[[n]]

intn <- length(intersect(county$vehicleld,bt.countp$vehicleid))
return(intn)

countn <- Tapply(bt.countp,stn.count)

ddcountn <- Tdply(countn)

for(n in 1:1ength(bt.countp)){

stn.countn <- function(bt.countp){

county <- bt.county[[n]]

intn <- length(intersect(county$vehicleld,bt.countp$vehicleid))
return(intn)

countn <- Tapply(bt.countp,stn.countn)
ddcountn[n] <- ldpTly(countn)

colnames (ddcountn) <-

c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",

II'I k19ll)

rownames (ddcountn) <-

c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",

II'I k19ll)

# colnames(ddcountn) <-

c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",

# "stn8","stn9")

# rownames(ddcountn) <-

c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",

# "stn8","stn9")

ddcountn

gri%e.isv(ddcountn, "H:\\R\\stockport.neg\\ddcountn.csv")
else

# 0-D summary on daily basis

# bt.count <- subset(bt.count, bt.count$day==3)

bt.countn <- lapply(bt.countp,function(bt.countp)

bt.countp[bt.countp$day==3,])

bt.county <- bt.countn

stn.countn <- function(bt.countn){

county <- bt.county[[n]]

intn <- length(intersect(county$vehicleld,bt.countn$vehicleid))

return(intn)

countn <- Tapply(bt.countn,stn.countn)

ddcountn <- Tdply(countn)

for(n in 1:l1ength(bt.countn)){

stn.countn <- function(bt.countn){

county <- bt.county[[n]]

intn <- length(intersect(county$vehicleld,bt.countn$vehicleld))
return(intn)

countn <- Tapply(bt.countn,stn.countn)
?dcountn[n] <- ldply(countn)
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colnames(ddcountn) <-
c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",
II‘I klgll)

rownames (ddcountn) <-
c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",
II‘I klgll)
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# colnames(ddcountn) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
# "stn8","stn9")

# rownames(ddcountn) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
# "stn8","stn9")

write.csv(ddcountn, "H:\\R\\stockport.neg\\ddcountn.csv'")

ddcountn

#paste("Today is", date())

HBRHAHHH BB AHHH BB RAHH B BB RAH BB BAHH SRR AAHH B BB AR BB RAAHH BB RAAH R BB RAH SRR
## Link summary for the forward direction

if(ct<1){

bt.countx <- bt.countl

stn.count <- function(bt.countl){

countx <- bt.countx[[n]]

int <- length(intersect(countx$vehicleld,bt.countl$vehicleid))
return(int)

count <- Tapply(bt.countl,stn.count)

ddcount <- ldply(count)

for(n in 1:length(bt.count1)){

stn.count <- function(bt.countl){

countx <- bt.countx[[n]]

int <- length(intersect(countx$vehicleld,bt.countl$vehicle1d))
return(int)

count <- Tlapply(bt.countl,stn.count)
gdcount[n] <- ldply(count)

colnames(ddcount) <-

c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",

II'I klgll)

rownames (ddcount) <-

c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",

II'I klgll)

# colnames(ddcount) <-

c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",

# "stn8","stn9")

# rownames(ddcount) <-

c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",

# "stn8","stn9")

ddcount

¥ri%e.%sv(ddcount, "H:\\R\\stockport2\\ddcount.csv'")
else

# 0-D summary on daily basis

# bt.count <- subset(bt.count, bt.count$day==3)

bt.countd <- Tapply(bt.countl,function(bt.countl)

bt.count1[bt.countl$day==3,])

bt.countx <- bt.countd

stn.count <- function(bt.count){

countx <- bt.countx[[n]]

int <- length(intersect(countx$vehicleld,bt.countd$vehicleid))

return(int)

count <- Tapply(bt.countd,stn.count)
ddcount <- ldply(count)

for(n in 1:Tlength(bt.countd)){
stn.count <- function(bt.countd){
countx <- bt.countx[[n]]
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int <- length(intersect(countx$vehicleld,bt.countd$vehicleld))
return(int)

count <- Tapply(bt.countd,stn.count)
ddcount[n] <- Tdply(count)

colnames(ddcount) <-
c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",
II'I k19")

rownames (ddcount) <-
c("Tk12","1k13","1k14","1k15","1k16","1k17","1k18",
"Tk19™)
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# colnames(ddcount) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
# "stn8","stn9")

# rownames(ddcount) <-
c("stnl","stn2","stn3","stn4","stn5","stn6","stn7",
# "stn8","stn9")

write.csv(ddcount, "H:\\R\\stockport2\\ddcountd.csv'")

ddcount

RURHBHBHHHHRHRHR AR AR RHRHRHR AR AR RHRHRAR AR HHRHRH B AR AR HHRHRHBHB AR AR HH R AR
# Determine the number of Ids tracked in both directions

# This gives the number of unique Ids tracked i.e it lists all

# the intersection points. This helps to understand the ids that made
# return journey. x and y are the 2 stations under consideration
#int.xy<-intersect(drn.xy$vehicleld,drn.yx$vehicleld)

RURHBHBHHHHRHRHB AR HRRHRHRHR AR RRRHRHRAR AR HHRHRH B AR AR HHRHRHRHR AR AR HH R HRH
# count of vehicles making a return journey

for(lk in 1:8){

for(di in 3:10){

svtx <- subset(svt[[1k]],svt[[1k]]$jtime<0)

svty <- subset(svt[[1k]],svt[[1k]]$jtime>0)

svtx <- svitx[svtx$day.x==di,] # opposite direction

svty <- svty[svty$day.y==di,] # forward direction

int.xy <- length(intersect(svty$vehicleld,svtx$vehicleld))
grint(int.xy)

~~

## End of the analyis on the opposite direction

HAHBHH B R AR R AR AU B R H BB AR B AR R HRHH LB H BB HHRHH R H BB H R B R H BB H R H R
## Plot of speed distribution

HAHBHH B A AR R AU BHH R AR BB AR AR HH R AR B R AR R HH BB HG R AR HH R ARG R R R R
# Histogram plot of average journey speed

#attach(avghrly)

# import avghrly

#hs <- subset(avghrly,avghrly$day.y<7)

# hs <- hs$spd

hs <- avghrly$spd

#hist(Chs,freq=TRUE) # for frequency plot

Eiiﬁghs,co1=“1ight blue",border="dark blue", freq=FALSE, xlab="Speed

m u’

main="Histogram of hourly speed")

Tegend("right",legend="Hourly average for 8 days", cex=0.6)
hist(hs,col="grey",border="dark blue",main="Histogram of hourly speed"
,cex=0.6, xlab="speed km/h)", freq=FALSE)
Tegend("right",legend="Hourly average for 8 days", cex=0.6)

# Add a density curve

Tines(density(sort(hs)),col="blue")

# Add a Normal curve

xhs = seq(from=0, to=70, by=0.1)

yhs = dnorm(xhs, meanChs), sd(hs))

Tines(xhs, yhs, 1ty="dotted",col="red")

rm(xhs, yhs)

Tegend("topleft", legend=c("density curve","Normal curve"),
Tty=c("solid","dotted"),col=c("blue","red"),cex=0.6)
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## Plotting of points on Google map
HAHBHHHRAHRHHRHHBRARBHH R HHGRAGRAHRHHBRHR R AR AH R AR R AR RAR B AH R AR R ARRAHH
#coords$Easting <- as.numeric(substring(coords[,5],1,6))
#coords$Northing <- as.numeric(substring(coords[,5],7,12))
#write.csv(coords,file="coords2.csv'")

coords <- read.csv("H:\\R\\coords2.csv", header=T)

attach(coords)

# A simple plot of point data

BAHBHH BB AR HHBHH BB R B HHRHH BB H BB AR R RHRHH BB H BB R LR HH BB R R
## Plotting X, Y data on Google map

## Load required packages

Tibrary(maptools)

Tibrary(rgdal)

## Load the data for Bluetooth locations.

#bt.stns<- read.csv(file.choose()) # choose file coords2 interactively
## Inspect column headings

#bt.stns <- coords

#bt.stns <- read.csv(file="Bluetooth_stations.csv",header=TRUE)
BT_ATC_stations <- read.csv("~/R/BT_ATC_stations.csv'")

## Inspect column headings

bt.stns <- BT_ATC_stations[,1:5]

head(bt.stns)

## Plot the XY coordinates

attach(bt.stns)

#attach(lonTlat2)

# X= Easting

# Y= Northing

plot(X, Y)

#plot(Easting,Northing)

coordinates(bt.stns)<- c("Xx", "Y")
#coordinates(bt.stns)<- c("Easting", "Northing")
BNG<- CRS("+init=epsg:27700")

p4s <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")
bt_wgs84 <- spTransform(bt.stns, CRS= p4s)
writeOGR(bt_wgs84, dsn="sensors.stn.kml", Tayer= "sites_wgs84",
driver="KML", dataset_options=c("NameField=name"))

detach(bt.stns)# create a simple colour palette which will be used to
split the region

palette <- c("yellow",'"green","red", "purple™)

# divide the region into class according to the easting coordinates
map.class <- cut(Easting, 4, labels=FALSE, include.Towest=TRUE)

plot(Easting, Northing, asp=1, main="Map of Bluetooth stations 1in
Greater Manchester", pch=21, bg=palette[map.class])
text(345000,410000, "wigan Area")

text (365000, 390000, "ATtrincham Area")

text(395000,390000, "stockport Area')

HAHBHHHRAHRHHBHH B R AR R HHBHH R AR AHRHH R R BB AH R AR HH R AR AR R R RS
## Plotting Google Static Map

Tibrary(RgoogleMaps)

# Choose the coordinates file

bt_stations <- read.csv(file.choose())

# Create a simple colour palette which will be used to split the
region

#palette <- c("yellow","green","red","purple") # A1l Bluetooth
stations over UK

palette <- c("green","purple","red")

palette <- c("purple","red","green") # Manchester Bluetooth stations
attach(bt_stations)

# divide the region into class accordingly

map.class <- Location

# Plot the map

#plot(Easting, Northing, asp=1, main="", pch=21,
bg=palette[map.class])

#text(345000,410000, "wigan Area")
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#text(365000,390000, "Altrincham Area™)

#text(395000,390000, "stockport Area')

# Google Static Map plot

MyMap <- MapBackground(lat=latitude, Ton=longitude)

PlotonStaticMap(MyMap, Tlatitude, longitude, pch=21,

bg=palette[map.class])

#legend("bottomright"”, Tegend=paste("<",tapply(Easting, map.class,

max)), pch=21,

# pt.bg=palette, pt.cex=1.5, bg="white", title="Easting coords")

Tegend("bottomright™, c("Birtley","Liverpool","Manchester"), pch=21,
pt.bg=palette, pt.cex=1.5, bg="white", title="Study

Location")## simple geographical analysis

# Converting the data into a spatial object in R

detach(coords)

coords.xy <- coords

Tibrary(sp)

attach(coords.xy)

coordinates(coords.xy) <- c("Easting", "Northing")

# Converts into a spatial object

class(coords.xy)

detach(coords.xy)

# Demonstration of Google motion chart

Tibrary(googlevis)

ggmt <- read.csv("H:/R/avgspd.csv", header=T)

# ggmt <- avgspd

gT <E ggisMotionChart(ggmt, idvar="Site.ID.y", timevar="day.y'")

plot(gm

HHBHBHBHBHHRHRHR AR AR HHRHRHR AR R HHRHR AR AR HHHHRH B AR AR A HHRHR AR AR A BB H

## Plotting data on Google map based on the ideas gained from

##http//:spatialanalysis.co.uk

## Load required packages

Tibrary(maptools)

Tibrary(rgdal)

## Load the data for Bluetooth Tocations.

#bt.stns<- read.csv(file.choose()) # choose file coords2 interactively

## Inspect column headings

#bt.stns <- coords

bt.stns <- read.csv(file="Bluetooth_stations.csv",6header=TRUE)

## Inspect column headings

head(bt.stns)

## Plot the XY coordinates window.

attach(bt.stns)

# X= Easting

# Y= Northing

plot(X, Y) ## or use plot(Easting,Northing) depending on data format

HHBHBHRHBHHRHRHR AR R HHRHRHR AR R HHRHR AR AR HHHHRHRH R AR R HR AR AR AR AR R AR

## Processing and analysis of ANPR data

Tibrary(plyr) # advanced aggregation functions

Tibrary(lubridate) # datetime function

Tibrary(reshape)

MAC1070_2014.03.04_v2 <-
read.csv("v:/val_analysis/Disc_Graham_CeGComputing/Raw Bluetooth Data
A6/MAC1070_2014-03-04_v2.csv'")

View(MAC1070_2014.03.04_v2)

MAC1071_2014.03.04_v2 <-
read.csv("Vv:/val_analysis/Disc_Graham_CeGComputing/Raw Bluetooth Data
A6/MAC1071_2014-03-04_v2.csv")

stnl1l070 <- MAC1070_2014.03.04_v2
stnl071 <- MAC1071_2014.03.04_v2
rm(MAC1070_2014.03.04_v2,MAC1071_2014.03.04_v2) # to conserve memory
bt.data <- 1ist(stnl070,stn1071)

## function to reduce the file data size as desired
bt.data <- lapply(bt.data,function(bt.data) bt.datal[c(1:2,10)])
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head(bt.datal[[2]])

## function to order the data by vehicleld
bt.data <-Tapply(bt.data, function(bt.data)
bt.datal[order(bt.datal,3]),1:3]1)
head(bt.data[[1]])# to examine part of the data

# apply time format to the 1list and remove duplicates from data using
# function fdup
#btr.data <- bt.order # assign a new name to the ordered data Tist

fdup <- function(bt.data){
for(i in bt.data){

nos

# tm <- dmy_hms(btr.data$pate)
tfx <-strptime(bt.data$pate, "%d/%m/%Y %H:%M:%S")
#tfx <-strptime(bt.data$pate, "%Y-%m-%d %H:%M:%S")

day <- day(tfx) # retrieve date value from the data
hour <- hour(tfx) # extract hour component and add to df

# Extract the minute component of dateTime and add to the df
min <- minute(tfx)

sec <- second(tfx) #This extract the seconds part of the data

# compute time in seconds and add to station data
tsec <- as.numericChour*3600 + min*60 + sec)

# convert data to vectors to apply unique()

#hour <- btr.data$hour

#min <- btr.data$min

# compute the 15-minute interval summary
minl5 <- floor(as.numeric(min)/15)

# multiply by 15 for correct minutes format
minl5 <- minl5%15 # the 1st 0-15mins is O

# compute the 10-minute interval summary
minl0 <- floor(as.numeric(min)/10)

# multiply by 10 for correct minutes format
minl0 <- minl0*10 # the 1st 0-15mins O

# compute_the 5-minute interval summary
min5 <- floor(as.numeric(min)/5)

# multiply by 5 for correct minutes format
min5 <- min5*5 # the first 0-5mins will be O

## assign new variables to tsec and Vvehicleld
y <- bt.datal[,3]
n <- length(y)

## compute time difference in seconds between successive points
# secdif2 <- c(0,as.numeric(abs(tsec[-1]- tsec[-Tength(tsec)])))
secdif <- c(0,as.numeric(abs(diff(tsec)))) #same result as above

## make a dataframe of the vectors
bt.data <- data.frame(bt.data,day,hour, minl5,minl0, min5, secdif)

## remove the duplicate records from the data to obtain a subset
yl<-y[2:n]

y2<-y[1:(n-1)]

yc<-as.character(yl) !=as.character(y2)

bt.data$yc <-c("TRUE",yc)#add "TRUE" to the 1st pt to add up to pt
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ndup <-
bt.data[(bt.data$yc=="FALSE"&bt.data$secdif>=300) | (bt.data$yc=="TRUE")

return(ndup)

}
bt.data <- Tapply(bt.data, fdup)
head(bt.data[[1]]) # to examine part of the data

# Function to reduce the file size before merging
bt.rdup <- Tlapply(bt.data,function(bt.data) bt.data[c(1:3)])
head(bt.rdup[[1]])

mg <- merge(bt.rdup[[1]], bt.rdup[[2]], by = "vehicle.1d", sort=T,all
= FALSE)
head(mg)

dst <- 0.532 # A6, Stockport (1070-1071)

tfx <-strptime(mg$pate.x, "%d/%m/%Y %H:%M:%S")
tfy <-strptime(mg$pate.y, "%d/%m/%Y %H:%M:%S")

## Create time series from the data

wday <- weekdays(tfy)

day <- day(tfy)

hour <- hour(tfy)

min <- minute(tfy)

# compute the 15-minute interval summary

minl5 <- floor(as.numeric(min)/15)

# multiply by 15 to obtain the minutes'proper format
minl5 <- minl5%15

#ijtime<- difftime(tfy,tfx,units="secs")
jtime<- difftime(tfy,tfx,units="auto")
jtime<- as.numeric(jtime)

## Computation of vehicle speed begins here

tmin <- as.numeric(abs(jtime/60))

tmin <- as.numeric(sprintf("%.2f",tmin))

spd <- ceiling(as.numeric(abs(dst/(as.numeric(jtime/3600)))))
mg <- data.frame(mg,day,hour,minl5,wday, jtime,tmin,spd)

# remove point data with different days merged together
mg <-subset(mg,day(tfx)==day(tfy))

# remove vehicles travelling at very low speed and at very high speed
(1st condition)
mg <- subset(mg, spd>5&spd<=120)

BAHBHH B R AR R AR AR R H BB R R AR R HRRH LB H BB AHRHH R H BB H R B R H BB RH LRSS

Require(openair)

scatterPlot (BTAN2
type

x = "ANPR_jtime", y = "jtime7170", group=NA,
"default", method="scatter",linear = TRUE, ci =

FALSE,
] xTab="ANPR Journey Time (sec)", ylab="Bluetooth Journey
Time (sec)™)

scatterPlot(BTAN2, x = "ANPR_spd", y = "spd7170", group=NA,

type = "default", method="scatter",Tinear = TRUE, ci =
FALSE,

xTab="ANPR Journey Speed (Km/h)", ylab="Bluetooth Journey
Speed (Km/h)"™)

scatterPlot(BTAN2, x = "ANPR7170N", y = "bt7170N", group=NA,
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type = "default"”, method="scatter",linear = TRUE, ci =
FALSE,

xlab="ANPR flow (veh/15-min)", ylab="Bluetooth flow
(veh/15-min)")

timevariation(BTAN2, pollutant = "flow_ratio",

Tocal.time = FALSE, normalise = F,ci =
TRUE,col="green2",

xTab = c("hour", "hour", "month", "weekday"))

timevariation(BTAN2, pollutant = "flow_ratio",

local.time = FALSE, normalise = F,ci =
TRUE,col="green2",

xTab = c("hour", "hour", "month", "weekday"))

timevariation(BTAN2, pollutant = "flow_ratio",

Tocal.time = FALSE, normalise = F,ci =
TRUE,col="green2",

xTab = c("hour", "hour", "month", "weekday"))

HEHHHBH AR HHRHHRBHHRHRRBHR BB HHR BB BH BB R B RH BB R R R R BH BB HHRHBRBH B RS
## 0-D Analysis

path.files <- "H:\\R\\wigan\\"

path.files <-"C:\\Users\\Ayodele\\Documents\\R\\wigan\\"

t.data <- Tapply(list.files(path = path.files, pattern = ".csv"),
function(.file) read.csv(paste(path.files, .file,
sep = ""),header =
TRUE))

#btl<-bt.data[[1]]
#head(btl) # to examine part of the data
BAHBHHHBAHBHHBHH BB HBBHHRHH BB H BB R R B RHRHH BB H SRR R R R HH BB RR R
## Function to reduce the file data size as desired
bt.data <- Tapply(bt.data,function(bt.data) bt.data[c(1:2,15)])
#btrl<-btr.datal[[1]]
head(bt.data[[1]])# to examine part of the data
HAHBHHHRAHBAHBHH B R AR B HHBHH B R HRRAHBHHRHHRRHGRHG B AH R AR AR R AR R RS
## Function to order the data by vehicleld
bt.data <-Tapply(bt.data, function(bt.data)
bt.datalorder(bt.datal,3]),1:3]1)
head(bt.data[[1]])
BAHBHHHRAHBHHBHH BB H BB HHRHH BB H LR RF B R HRHH BB H LR R SRR HH R H LR H SRR R R
# Apply time format to the 1list and remove duplicates from data using
# function fdup
fdup <- function(bt.data){
for(i in bt.data){
# tme <- dmy_hms(btr.data$pate)
tme <- strptime(bt.data$pate, "%d/%m/%Y %H:%M:%S")
#tme <- strptime(bt.data$pate, "%Y-%m-%d %H:%M:%S™)
day <- day(tme) # retrieve date value from the data

hour <- hour(tme) # extract hour component and add to df

# Extract the minute component of dateTime and add to the df

min <- minute(tme)
sec <- second(tme) #This extract the seconds part of the data
# compute time in seconds and add to station data

tsec <- as.numericChour*3600 + min*60 + sec)

# convert data to vectors to apply unique()

# hour <- bt.data$hour

# min <- bt.data$min

# compute the 15-minute interval summary

minl5 <- floor(as.numeric(min)/15)

# multiply by 15 to obtain the minutes'proper format
minl5 <- minl5%15 +15 # add 15 to make the 1st 0-15mins 15

# compute the 10-minute interval summary
minl0 <- floor(as.numeric(min)/10)
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# multiply by 10 to obtain the minutes'proper format
minl0 <- minl0¥*10 +10 # add 10 to make the 1st 0-15mins 15

# compute_the 5-minute interval summary
min5 <- floor(as.numeric(min)/5)

# multiply by 5 to give the minutes a proper format
min5 <- min5*5 +5 # add 5 so that the first 0-5mins will be 5

## assign new variables to tsec and Vehicleld
#x <- bt.datal[,8]

y <- bt.datal,3]

n <- length(y)

## compute time difference in seconds between successive points
# secdif2 <- c(0,as.numeric(abs(tsec[-1]- x[-length(tsec)])))
secdif <- c(0,as.numeric(abs(diff(tsec)))) #same result as line 64

## make a dataframe of the vectors
bt.data <- data.frame(bt.data, day, hour, secdif)

## remove the duplicate records from the data to obtain a subset

yl<-y[2:n]

y2<-y[1:(n-1)]

yc<-as.character(yl) !=as.character(y2)

bt.data$yc <-c("TRUE",yc)#add "TRUE" to the 1st pt to add up to pt
nos

ndup <-
bt.datal[(bt.data$yc=="FALSE"&bt.data$secdif>=300) | (bt.data$yc=="TRUE")

return(ndup)

}
bt.rdup <- Tlapply(bt.data, fdup)

head(bt.rdup[[1]])

## Function for computing OD using merge option as well as removing
#outliers

#bt.count <- Tlapply(btc.rdup,function(btc.rdup) btc.rdup[c(1:5)]1)
#station data

bg.count <- Tlapply(bt.rdup,function(bt.rdup) bt.rdup[c(1:5)]) #station
#data

# bt.ctod <- Tapply(bt.count,function(bt.count)
bt.count[bt.count$day==4,]) # daily

## Import the distance matrix
distM <- read.csv("H:\\R\\wigan_distM2.csv", 6 header=T)

## Interactively choose the distance file

#distM <- read.csv(file.choose())

## opt 0 or 1 according to whether flow or journey time OD 1is required
## flow = 0 and JOURNEY TIMES = 1

opt <- 0

if(opt == 0){
##Note: Number of days = 28, 29, 30, 31 depending on the month and
#year
#cycle through the selected hour and days
for(day_selec in 3:10){
forChour_selec in 0:23){

bt.ctod <- Tapply(bt.count,function(bt.count)

Et.cgunt[bt.count$day==day_se1ec & bt.count$hour==hour_selec,]) #
ourly
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bt.

countl <- bt.ctod

# k=2 # single (needed to compute between two station pairs)

ddcount <-1ist()
for(k in 1:Tength(bt.ctod)){
# kk <- 0 # Initialise kk

all
all
all

stn.count <- function(bt.ctod){

countx <- bt.countl[[k]]
# distM <- read.csv("H:\\R\\wigan_distM2.csv", 6 header=T)

stl <- substring(as.character(countx[1,1]),10,13)
st2 <- substring(as.character(bt.ctod[1,1]),10,13)

stf <- substring(as.character(dist™m[,1]),4,7)
stt <- substring(as.character(dist™m[,2]),4,7)

dst <- distM[(as.numeric(stl)==as.numeric(stf))&
(as.numeric(st2)==as.numeric(stt)),c(3)]

m.count <- merge(countx, bt.ctod, by = "vehicleid", sort=T,
FALSE)

#m.count <- merge(countx, bt.ctod, by = "vehicle.Id", sort=T,
FALSE)

#m.count <- merge(countx, county, by = "vehicleid", sort=T,

FALSE)# single

t.org <-strptime(m.count$pate.x, "%d/%m/%Y %H:%M:%S")
t.dst <-strptime(m.count$pate.y, "%d/%m/%Y %H:%M:%S")

#m.count$tdif.od <- difftime(t.dst,t.org,units="secs") # time

diffences btw origins and destinations

# time

tdif.od <- difftime(t.dst,t.org,units="secs")
diffences btw origins and destinations

## Computation of vehicle speed begins here

jt <- as.numeric(tdif.od/3600)

# thr <- as.numeric(sprintf("%.2f",journey timesme))
tmin <- as.numeric(abs(journey timesme*60))

tmin <- as.numeric(sprintf("%.2f",tmin))

spd <- ceiling(as.numeric(abs(dst/journey timesme)))

m.count <- data.frame(m.count,tdif.od, tmin,spd)
#m.count <- data.frame(m.count,tdif.od,tmin)

# remove vehicles travelling at very Tow speed and at very

high speed

points

m.count <- subset(m.count,spd>5&spd<=120)

## remove the vehicles travelling in opposite direction
m.count <- m.count[m.count$tdif.od>0,]

# remove outliers from the data i.e. compute the outlier data
## Rule of thumb to remove outliers (Crawley,2005)

upquant <- quantile(m.count$tdif.od,0.75) +

1.5*(Cquantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25))

Twquant <- quantile(m.count$tdif.od,0.25) -

1.5%(quantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25))

# compute the data range free of outliers
m.count <-subset(m.count |,

m.count$tdif.od<=upquant&m.count$tdif.od>=Twquant)
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## count the number of vehicles
c.org <- nrow(m.count)

return(c.org)

count <- lapply(bt.ctod,stn.count)
ddcount[k] <- TdpTly(count)

ddcount <- 1dply(ddcount)

#Aliter
#this bit didn't work
#diag(as.matrix(ddcount))<-0

#this will make the diagonals zero though
for(c in 1l:length(ddcount[1,])){ddcount[c,c]=0}

## Assign column and row names to the variables

## Stockport

#colnames(ddcount) <-
c(";tn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41"

#rownames (ddcount) <-
c(";tn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41"

## wigan

colnames(ddcount) <-
c("stnl2","stnl6","stnl8","stn21","stn24","stn26","stn29")

rownames (ddcount) <-
c("stnl2","stnl6","stnl8","stn2l","stn24","stn26","stn29")

## Trafford

#colnames(ddcount) <- c("stnl001","stn1l002","stnl1l008","stnl1011")

#rownames (ddcount) <- c("stnl001","stnl1002","stn1l008","stnl1011")

## write the results to the specified file
#res_path="c:/od/result/"
#res_path <-"C:\\Users\\Ayodele\\Documents\\R\\wigan2\\"
res_path <- "H:\\R\\wigan_utsg\\"
fname <-
paste(res_path,"od_d",day_selec,"_h",hour_selec,".csv",sep="")
. 1\élvrite.csv(ddcount,fname,quote=F )# This writes the result to a
#folder

1
} else {
for(day_selec in 3:10){
forChour_selec in 0:23){

bt.ctod <- Tapply(bt.count,function(bt.count)
Et.c?unt[bt.count$day==day_se1ec & bt.count$hour==hour_selec,]) #
ourly

bt.countl <- bt.ctod
# k=2 # single (needed to compute between two station pairs)

ddcount <-1ist()

for(k in 1:Tength(bt.ctod)){
# kk <- 0 # Initialise kk
stn.count <- function(bt.ctod){

countx <- bt.countl[[k]]
# distM <- read.csv("H:\\R\\wigan_distM2.csv", 6 header=T)

stl <- substring(as.character(countx[1,1]),10,13)
st2 <- substring(as.character(bt.ctod[1,1]),10,13)

stf <- substring(as.character(dist™m[,1]),4,7)

359



stt <- substring(as.character(dist™m[,2]),4,7)

dst <- distM[(as.numeric(stl)==as.numeric(stf))&
(as.numeric(st2)==as.numeric(stt)),c(3)]

m.count <- merge(countx, bt.ctod, by = "vehicle1id",
sort=T,all = FALSE)

#m.count <- merge(countx, bt.ctod, by = "vehicle.Id",
sort=T,all = FALSE)

#m.count <- merge(countx, county, by = "vehicle1id",
sort=T,all = FALSE)# single

t.org <-strptime(m.count$Date.x, "%d/%m/%Y %H:%M:%S")
t.dst <-strptime(m.count$Date.y,"%d/%m/%Y %H:%M:%S")

#m.count$tdif.od <- difftime(t.dst,t.org,units="secs") #
time diffences btw origins and destinations

tdif.od <- difftime(t.dst,t.org,units="secs") # time
diffences btw origins and destinations

## Computation of vehicle speed begins here

jt <- as.numeric(tdif.od/3600)

# thr <- as.numeric(sprintf("%.2f",journey timesme))
tmin <- as.numeric(abs(journey timesme*60))

tmin <- as.numeric(sprintf("%.2f",tmin))

spd <- ceiling(as.numeric(abs(dst/jt)))

m.count <- data.frame(m.count,tdif.od, tmin,spd)
#m.count <- data.frame(m.count,tdif.od,tmin)

# remove vehicles travelling at very Tow speed and at very
high speed
m.count <- subset(m.count,spd>5&spd<=120)

## remove the vehicles travelling in opposite direction
m.count <- m.count[m.count$tdif.od>0,]

# remove outliers from the data i.e. compute the outlier
data points )
## Rule of thumb to remove outliers (Crawley,2005)

upquant <- quantile(m.count$tdif.od,0.75) +
1.5*(Cquantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25))

Twguant <- quantile(m.count$tdif.od,0.25) -
1.5*Cquantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25))

# compute the data range free of outliers
m.count <-subset(m.count ,
m.count$tdif.od<=upquant&m.count$tdif.od>=Twquant)

## compute the hourly average journey time in seconds for
the vehicles

jt.org <- m.count$tdif.od

#c.org <- round(mean(jt.org),0)

c.org <- nrow(m.count)

c.org <- round(c.org*6.0606,0) # multiply the flow by the
inverse of penetratiin rate

## compute the hourly average speed for the vehicles

speed.org <- m.count$spd

X <- round(mean(speed.org),0)

c.org <- (602.8 + 50.25*x - 0.7237%xA2 + 0.009258%xA3 -
0.00002583*xA4)*c.org

return(c.org)

count <- Tlapply(bt.ctod,stn.count)
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) ddcount[k] <- 1dpTly(count)
ddcount <- 1dply(ddcount)
#Aliter

#This will make the diagonals zero though
for(c in 1l:Tength(ddcount[1,])){ddcount[c,c]=0}

## Assign column and row names to the variables

## Stockport

#colnames(ddcount) <-
c("§tn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41"

#rownames (ddcount) <-
c("§tn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41"

## wigan

colnames(ddcount) <-
c("stnl2","stnl6","stnl8","stn21","stn24","stn26","stn29")

rownames (ddcount) <-
c("stnl2","stnl6","stnl8","stn21","stn24","stn26","stn29")

## Trafford

#colnames(ddcount) <- c("stnl1l001","stn1002","stnl1008","stn1011")

#rownames (ddcount) <- c("stnl001","stn1002","stnl1l008","stnl1011")

## write the results to the specified file
res_path <- "H:\\R\\wigan_utsg\\"
fname <-
paste(res_path,"od_d",day_selec,"_h" ,hour_selec,".csv",sep="")

write.csv(ddcount,fname,quote=F )# This writes the result to a
folder

3}

}
HEHRHHAHBHRBHBH R AR A BB HBHRHRRHRH R AR ARG AR HRR AR ARG AR ARG AR AR SRR A RS
#### Program to summarise SCOOT data based on 15-minute average flow

## Read in the required scooT file(s)
N12643T_3940 <- read.csv("~/R/scoot/N12643T_3940.csv")

N12642F_4039 <- read.csv("~/R/scoot/N12642F_4039.csv")
## Drop column 9 from the data
N12642F_4039[9] <- NULL

## Create the time format for the data
tfx <- strptime(N12642F_4039%Time,"%H:%M:%S")

## Create time series from the data
hour <- hour(tfx)
min <- minute(tfx)

# compute the 15-minute interval summary
minl5 <- floor(as.numeric(min)/15)

# multiply by 15 to obtain the minutes in proper format
minl5 <- minl5%15 +15

N12642F_4039 <- data.frameChour,minl5, N12642F_4039)
## Subset for the complete days
N12642F_4039 <- subset(N12642F_4039, Day!="Mo")

# Create the summary of the data using doBy function
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scoot_4039 <- summaryBy(FLOW+Norm_occ+0CC~Day+hour+minl5,
data=N12642F_4039, FUN=c(sum))

#write.csv(cst_hrly, "H:\\R\\stockport2\\hrly.count.csv",row.names=F)
write.csv(scoot_4039, "H:\\R\\scoot\\scoot_4039.csv",row.names=F)
HERHAHUHHBHHH YRR HAHH BB R AR BB RHHH BB RAHH BB BHHH BB R AR BB B HHH BB H B
## Date Filter Function
##fym <- function(bt.data){
for(ym in bt.data){
tfx <- strptime(bt.data$pate, "%Y-%m-%d %H:%M:%S")

bt.data$year <- year(tfx) # retrieve date value from the data
bt.data$month <- month(tfx)

bt.data$day <- day(tfx)

return(bt.data)
}}
bt.data <- Tapply(bt.data, fym)
head(bt.data[[1]])
# subsetting for a specific year and month(s)
bt.r <- lapply(bt.data, function(bt.data)

subset(bt.data,year==2013&month==4))

head(bt.r[[1]])
bt.r <- Tapply(bt.r,function(bt.r) bt.r[c(1:3)1)
head(bt.r[[1]])
BAHBHH U R AR HHBHHRHH BB R BB RH R AR AR BB AR HH BB H LR H LB HHBAHRHH BB R AR R
## Function to generate series of date time
# Generate 15-min time series for a 31-day month
mnth <- rep("2013/07/",2976)
dy <- rep(1l:31,each=96)
hr <- rep(rep(00:23,each=4),31)
min <- rep(c(00,15,30,45),744)
sec <- rep( 00,2976)
date <- paste(mnth dy," ",hr,":" min,":",sec,sep=""
####################################################################
## R codes to compute Mahalanobis distance using Bluetooth data by
#E.G. Ayodele, Newcastle University, United Kingdom.
# e.g.ayodele@newcastle.ac.uk. 2016 Edition
## Last modified on 7th December 2016. Codes adapted from: 1) Dr. Jon
#Starkweather, Research and Statistical Support consultant, and 2)
#https://stat.ethz.ch/R-manual/R-
#devel/library/stats/html/mahaTlanobis.html
require(graphics)
Tibrary(rgl)
Tibrary(chemometrics)
#Remove the date column and save as another name to preserve file
1ink0506 <- read.csv("C:/B0925688/0ther_Results/1ink0506.csv")
#1ink0506 <- na.exclude(1ink0506)
date <- 1ink0506[,1]
x <- 1ink0506[,c(3:6)] # subsetting for only mean JT and speed
#directional flows
#xX <- na.exclude(x)
stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))

#use the Moutlier function to compute MDs
md.ratio <- Moutlier(x, quantile = 0.95, plot = FALSE)

#Find the cut-off value
cut.off <- round(md.ratio$cutoff,3)

MD <- round(md.ratio$md, 3)

#summarise result
summary (MD)

#Add the computed MDs to the dataframe
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X <- data.frame(x,MD)

#Add date to preserve time series

x2 <- data.frame(date,x)

#Plot the individual MDs if necessary to visualise

qgplot(MD, x$mean_jt, plot.it = TRUE, xTab = "Mahalanobis' distance",
ylab = "Mean Journey Time (s)", main = "")

##Remove the outlying data points based on the computed cut-off value
x2.md <- subset(x2,MD <=cut.off )
#Plot the individual MDs if necessary to visualise
qgplot(MD, x2.md$med_jt, plot.it = TRUE, xlab = "Mahalanobis'
distance",

ylab = "Median Journey Time (s)", main = "")

#summary (x2.md)
## Plot the MDs against Chi Square distribution
x2.md <- x2.md[,c(2:5)]
summary (x2.md)
stopifnot(mahalanobis(x2.md, 0, diag(ncol(x2.md))) ==
rowsums (x2.md*x2.md))
Sx <- cov(x2.md)
D2 <- mahalanobis(x2.md, colMeans(x2.md), Sx)
plot(density(p2, bw = 0.5),
main="Squared Mahalanobis distances, n=27740, p=3") ; rug(D2)
ggplot(gchisq(ppoints(27740), df = 3), D2,
main = expression("Q-Q plot of Mahalanobis" * ~DA2 *
" vs. quantiles of" * ~ chi[3]A2))

# Compare the Mahalanobis' distances of each data file with simple
#histograms

par(mfrow = c(1,2))

hist(x2$MD, main = "", xlab= "Unfiltered MD")

hist(x2.md$MD, main = "", xlab="Filtered MD")

#A¥erage the filtered data (x2.md) preferrably on daily basis for
#clarity
Tibrary("openair", 1ib.loc="C:/Program Files/R/R-3.0.2/Tibrary")
x2.md.plot <- subset(x2,MD <=cut.off )
x2.md.plot <- x2.md.plot[,c(1:5)]
dly.sd <- timeAverage(x2.md.plot, avg.time = "day", statistic = "sd")
d1y.me§n <- timeAverage(x2.md.plot, avg.time = "day", statistic =
llmeanll
#Make a ts data
dly.sd.plot <- ts(dly.sd)
dly.mean.plot <- ts(dly.mean)
#Plot the data
plot(dly.sd.plot[,c(2:3)], plot.type="single",

#main="Plot of Standard Deviation of Flow",

ylab="Standard Deviation of Speed", xlab= "Index of Time",
col=c("blue", "red"), Twd=1)
legend (10,8, legend=c("sd_FlowNE","sd_Flowsw"),col=c("blue",
"red"),lty=1,

cex=0.8, Twd=1l, border ="1ty", box.col="white")

##NE Directional Ratio
p1?t(d1¥.?ean.p1ot[,3],y1ab="Speed (km/h)", xlab= "Index of Time",
Co =llre n
Tegend (10,51, Tegend=c("speed"),col=c( "red"),lty=1,
cex=0.8, lTwd=1l, border ="1ty", box.col="white")

plot(dly.sd.plot[,3],ylab="Sstandard Deviation of Speed", xTab= "Index
of Time", col="bTlue")
legend(220,3, Tegend=c("sd_Speed™),col=c( "blue"),lty=1,
cex=0.8, Twd=1l, border ="1ty", box.col="white")
##SW Directional Ratio
#par(mfrow=c(1,1))
p1?tgd1éﬁ?ean.p1ot[,5],y1ab="Journey Time (s)", xTlab= "Index of Time",
col="re
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legend(2,90, Tegend=c("Journey Time"),col=c( "red"),lty=1,
cex=0.8, lwd=1, border ="Tty", box.col="white")

p1ot(d1y sd. p1ot[ 5] ylab="Standard Deviation of Flow", xlab= "Index
of Time", col="bTue' )
1egend(220 33, legend=c('"sd_Journey Time"),col=c( "blue"),lty=1,
cex=0.8, Twd=1, border ="1ty", box. co ="white")
##Total Directional ratio
plot(dly.mean.plot[,4],ylab="Ratio", xlab= "Index of Time", col="red")
legend(20,0.115, legend=c("RatioTotal"),col=c( "red"),lty=1,
cex=0.8, lwd=1, border ="T1ty", box.col="white")

p1ot(d1y sd. p1ot[ 4] ylab="Standard Deviation of Ratio", xlab= "Index
of Time", col="bTue' )
1egend(20 0.057, legend=c("sd_RatioTotal"),col=c( "blue"),lty=1,
cex=0.8, Twd=1, border ="1ty", box.co1=“white")
BAHBHH BB AR B HHBHHRHH BB RFRRFRHHRHH AR R AR R AR R H BB H LR H BB H RSB RH
timevariation(x2.md.plot, pollutant = c("Ratio_NE", "Ratio_Sw",
"Ratio_Total"),
Tocal.time = FALSE, normalise = F,ci =

TRUE,col=c("blue","red", "orange"),

o™ xTab = c("hour", "hour", "month", "weekday"), ylab="Flow
Ratio"
HAHBHH U R AR HHBHHBHHR R AR AR HHBRHBRHRRARRAHBHH B R AR B AR R HH BB H R AR AR R A
# ARIMA Modelling using Bluetooth data by E.G. Ayodele
#(e.g.ayodele@ncl.ac.uk)
## Reference: Data Splitting in R by Jason Brownlee, 2014
## http://machinelearningmastery.com/how-to-estimate-model-accuracy-
#in-r-using-the-caret-package/
# Hyndman, R.J. and Athanasopoulos, G. (2013) Forecasting: principles
#and practice. OTexts. Available at: http://otexts.org/fpp/
#R and Data Mining: Examples and Case Studies by Yanchang zhao
# http://www.RDataMining.com
Tibrary(openair)
Tibrary(caret)
Tibrary(klar)
Tibrary(forecast)
# read in the data
ts0506 <-
read.csv("C:/b0925688/vDriveCopy220116/trafford2013/ts0506.csv")
##Remove the column containing day, hour and minl5 to reduce the data
#size
ts0506 <- ts0506[c(1,5:6)]
# Define an 80%/20% train/test split of the dataset.
sp1it=0.80
trainIndex <- createDataPartition(ts0506%jtime, p=split, 1ist=FALSE)
data_train <- ts0506[ trainIndex,]
data_test <- ts0506[-trainIndex, ]
# Convert test data to time series
jt_test <- ts(data_test[,2], start=c(2013, 1), end=c(2013,
12) ,frequency=12)
seasonplot(jt_test, type="b", ylab="Journey Time
(s)",xlab="Time" ,main="")
# Make daily average from the training data set
jt_train <- timeAverage(data_train, avg.time = "day")
# Convert data to time series
jt_train <- ts(jt_train[,2])#, start=c(2013, 1), end=c(2013, 12),
frequency=12)
#Plot data to explore series
plot(jt_train, type="b", ylab="Journey Time (s)",xlab="Time",main="")
par(mfrow=c(1,2))
Acf(jt_train,main="")
Pacf(jt_train,main=""
acf(log(jt_train),main="")
pacf(log(jt_train),main="")
# Difference and transform the data
acf(diff(log(jt_train)),main="")
pacf(diff(log(jt_train)),main="")
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tsdisplay(diff(jt_train),main="")
# train an arima model
(fit <- arima(log(jt_train), c(0, 1, 1),seasonal = list(order = c(0,
1, 1), period = 12)))
fita <- auto.arima(log(jt_train),seasonal=FALSE)
fit0 <- Arima(log(jt_train),order=c(0,1,1))
fitl <- Arima(log(jt_train),order=c(1,1,1))
fit2 <- Arima(log(jt_train),order=c(0,1,2))
(fits <- arima(log(jt_train), c(0, 1, 2),seasonal = list(order = c(0,
1, 2), period = 12)))
#par(mfrow=c(1,2))
summary (fit)
summary(fita)
summary (fit0)
summary(fitl)
summary(fit2)
summary(fits)
# Plot the residuals of the chosen model
#plot(residuals(fit), type="b",ylab="Journey time residuals')
plot(residuals(fit), ylab="Residuals of journey time")
# make predictions
pred <- predict(fits, n.ahead = 2%12)
ts.plot(jt_train,2.718Apred$pred, log = "y", Tty = c(1,3), col=
c(2,4),ylab= "Journey time (s)")
pred_corr <- 2.718Apred$pred
pred_test <- ts(pred_corr, start=c(2013, 1), end=c(2013,
12) ,frequency=12)
## Aliter
plot(forecast(fit), main=
xlab="Time")
#plot(fcast <- forecast(fit),main="")
Box.test(residuals(fits), type="Ljung")
#Plot the two series for comparison
val <- cbind(pred_test,jt_test)
write.csv(val,file="H:\\R\\val.csv'")
plot(val, plot.type="single",
main="Plot of training and test data",
ylab="Journey Time (s)",
col=c("blue™, "red"), 1ty=1:2)
Tegend("topleft", legend=c("Train","Test"), col=c("blue",
"red"),lty=1:2)
HAHBHHBHHB R AR AR AHRRHGRRAHBHHBRH R R AR R AHRHH B H BB AR AH R HH R AR R R

, Ylab= "Log of journey time (s)",
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