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ABSTRACT 

‘Bluetooth’ is a technology that can be integrated into Intelligent Transport 

Systems (ITS) to facilitate smarter and enhanced traffic monitoring and 

management to reduce congestion. The current research focus on Bluetooth is 

principally on journey time management. However, the applicability and viability 

of Bluetooth potential in problematic urban areas remains unknown. Besides the 

generic problem of unavailability of processing algorithms, there is gap in 

knowledge regarding the variability and errors in Bluetooth-derived metrics. 

These unknown errors usually cause uncertainty about the conclusions drawn 

from the data. Therefore, a novel Bluetooth-based vehicle detection and Traffic 

Flow Origin-destination Speed and Travel-time (TRAFOST) model was 

developed to estimate and analyse key traffic metrics. This research utilised 

Bluetooth data and other independently measured traffic data collected 

principally from three study sites in Greater Manchester, UK. The Bluetooth 

sensors at these locations generated vehicle detection rates (7-16%) that varied 

temporally and spatially, based on the comparison with flows from ATC 

(Automatic Traffic Counters) and SCOOT (Split Cycle Offset Optimisation 

Technique) detectors. Performance evaluation of the estimation showed 

temporal consistency and accuracy at a high level of confidence (i.e. 95%) 

based on criteria such as Mean Absolute Deviation (MAD) - (0.031 – 0.147), 

Root Mean Square Error (RMSE) - (0.041 – 0.195), Mean Absolute Percentage 

Error (MAPE) - (0.822 – 4.917) and Kullback-Leibler divergence (KL-D) (0.004 – 

0.044). This outcome provides evidence of reliability in the results as well as 

justification for further investigation of Bluetooth applications in ITS. However, 

the resulting accuracy depends significantly on sample size, network 

characteristics, and traffic flow regimes. The Bluetooth approach has enabled a 

deeper understanding of traffic flow regimes and spatio-temporal variations 

within the Greater Manchester Networks than is possible using conventional 

traffic data such as from SCOOT. Therefore, the application of Bluetooth 

technology in ITS to enhance traffic management to reduce congestion is a 

viable proposition and is recommended. 
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Chapter 1. Introduction 

1.1  Introduction and Background to the Research 

Traffic congestion poses many challenges to road transportation due to the 

ever-growing population and increased levels of private car use around the 

world (Miles and Chen, 2004). Traditionally, the challenges of traffic congestion 

have been managed by increasing road capacity (Chowdhury and Sadek, 

2003). Traffic management systems provide an improvement to road 

congestion through surveillance, optimisation of subsystems (such as traffic 

signals), and control on highways and local roads (Diebold, 1995; Miles and 

Chen, 2004). However, despite the traffic management systems in place and 

major expenditure on new road infrastructures, congestion problems continue to 

rise, leading to different challenges for health and the economy (Chen and 

Miles, 1999; Miles and Chen, 2004). In the UK, SCOOT-UTC (Split Cycle Offset 

Optimisation Technique – Urban Traffic Control) has been widely implemented 

to manage traffic (SCOOT-UTC, 2011). Traffic data collected by these systems 

from diverse sources are processed and managed to carry out different 

strategies to optimise the flow of traffic in order to reduce congestion (Hounsell 

et al., 2009). While the traditional management systems continue to develop, 

they are expensive in terms of both procurement and maintenance, and 

SCOOT is restricted to signalised junctions (Leduc, 2008). Intelligent Transport 

Systems (ITS) are the integration of transportation systems with a variety of 

tools (such as software and communications technologies) and are widely used 

today for enhanced services such as efficiency and safety (Chowdhury and 

Sadek, 2003; Kosta et al., 2011; Kindleysides, 2014). Through ITS, the 

traditional solutions to transportation problems can be enhanced or substituted 

(Chowdhury and Sadek, 2003). However, ITS are data hungry and depend on 

different streams of measurements to provide useful information to end users 

(Dalgleish and Hoose, 2009 ). The current technology-based systems which 

include Global Navigation Satellite Systems (GNSS) provide a more dynamic 

and comprehensive solution than is possible using traditional systems (Leduc, 

2008). Currently, there is already a wide-spread use of GNSS commonly 

referred to as satellite navigation (SatNav) for transport applications. While the 
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use of SatNav has received wide acceptance, it is limited by a number of factors 

such as satellites’ geometry, and multi-path effect, particularly in urban areas 

(Misra and Enge, 2006; Trimble, 2007; Meng et al., 2008). Exploring the 

potential of other technological options such as wireless communications 

provides further opportunities to enhance the existing systems using low-cost 

sensors. Wireless communication technologies such as ‘Bluetooth’ provide the 

prospect of gathering key traffic information (such as O-D matrix that has been 

expensive and difficult to acquire in the past) anywhere across the networks. 

Wireless technology is cost-effective, accurate, pervasive, easy to deploy and 

maintain, and low-power (Srinivasan, 2011). Blythe (2006) highlighted the 

importance of wireless technology in the areas of road user charging, pervasive 

environmental monitoring, congestion control and fleet management. This is 

echoed in the Foresight Project on Intelligent Infrastructure Systems (IIS) that 

sought to address how science and technology could bring intelligence into the 

infrastructure over the next 50 years (Foresight, 2006). Therefore, exploring the 

potential benefits of Bluetooth for traffic metrics estimation could contribute to 

achieving this aim. 

 

Consequently, this research explores the use of Bluetooth sensors for vehicular 

traffic detection and metrics estimation in urban areas within the context of the 

applicability of the Bluetooth approach to enhancing traffic management 

systems in order to reduce congestion. The assessment was conducted through 

the analysis of data collected from a total of three UK study areas (Birtley, 

Liverpool and Greater Manchester). Data from Bluetooth sensors and other 

Independently Measured Traffic Data (IMTD) were used. A novel Bluetooth-

based processing and analysis technique (TRAFOST), developed and 

implemented in this research has helped to accomplish this investigation. 

Methods of analysis include both quantitative and exploratory data analysis 

such as time series, correlation, and Principal Component Analysis (PCA). 
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1.2  Context of the Research 

Addressing the transportation problems of congestion from traffic monitoring 

and management perspectives requires a more complete and efficient solution 

than is currently available. Bluetooth is considered a technology with the 

possibility to enhance current systems. Many devices such as mobile phones, 

laptops and in-vehicle gadgets have Bluetooth embedded in them to exchange 

data or communicate with one another over short distances without requiring 

physical contact (Bluetooth, 2012). Literature demonstrates that research into 

the use of Bluetooth in ITS is still a novel area and thus requires further 

understanding of the approach, usability and limitations to fully exploit its 

potential. This research considers these gaps and the applicability of the 

Bluetooth approach to vehicular traffic sensing and metrics estimation to 

enhance management systems in order to reduce traffic congestion. 

 

Traffic congestion can be defined in terms of demand-capacity and delay in 

travel time. Based on demand-capacity, it is the delay caused by one vehicle to 

others, or when demand exceeds capacity (Thomson, 1978). In terms of travel 

time, it is the delay in excess of what normally occurs under light or free-flow 

travel conditions (Lomax et al., 1997). On the other hand, a delay is the amount 

of extra time spent in congestion over the ideal or free-flow travel time (Camsys 

and Texas Transportation Institute, 2004). Traffic congestion is generally 

classified as either recurrent or non-recurrent (Chowdhury and Sadek, 2003). It 

is usually caused by factors such as bottlenecks (the largest source of 

congestion and traffic incidents) including crashes and vehicle breakdowns that 

cause about 25% of congestion problems (DoT, 2012). Congestion problems 

affect the economy with a detrimental effect on human health and the 

environment, and thus there have been calls for improvement in road network 

efficiency (WHO, 2005; Ayodele et al., 2014). Greater Manchester (the main 

study area in this research) which is the second largest conurbation in the UK 

after London, is not an exception. Economically, the annual congestion costs in 

the UK could rise to as much as £22 billion by 2025 (Scullion, 2011). The 

Eddington report outlines the challenges of congestion, climate change and 
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sustainability (Eddington, 2006). Meanwhile, an efficient transport system has a 

ripple effect on the economy, such as saving around £2.5 billion for a 5% 

reduction in travel time for all business travel on the roads – some 0.2 per cent 

of the UK GDP (Eddington, 2006). Schrank et al. (2012) gave a brief summary 

of the problem of congestion highlighting the massive waste in time, fuel and 

money. In 2011 in the US alone, fuel wastage was estimated to be 2.88 billion 

gallons; total delay as 5.52 billion hours, while delay per commuter was 38 

hours, making a total cost of $121.2 billion per year (Schrank et al., 2012). The 

2009 report shows that the cost is more than $80 billion a year in the US 

(Srinivasan, 2011). The reality is that an ever increasing population worldwide 

calls for increased awareness of the importance of cutting-edge research to 

achieve a smarter and more sustainable environment (Conservation, 2012; 

Darey, 2012). Therefore, establishing a balance in the road networks through 

operational efficiency becomes imperative to meet the present challenges. By 

embracing innovative solutions, this balance in traffic management can be 

achieved without necessarily investing in building new infrastructures. Bluetooth 

possesses the potential to enhance the existing systems to reduce congestion 

and time spent in traffic. 

 

Bluetooth can be used to gather information concerning traffic patterns and to 

raise awareness of suitable alternatives such as park and ride, or car sharing 

options. The traffic information collected can be displayed through Variable 

Message Signs (VMS) or relayed through in-vehicle (IV) technologies to 

improve efficiency. However, to derive the maximum benefits from the 

technology, policy changes must be at the heart of future transport guidelines. 

This change in policy will include support for low-cost technological options. 

Thereby leading to maintaining a balance in the development of techniques that 

manage travel demand more efficiently, while upholding an individual’s right to 

freedom of movement (Thorpe, 2005). Weigelt et al. (1973, page 2) also stated 

that ‘the need to attain a balance between city planning and its traffic is the key 

problem of the urban transportation policy during a transition phase from a city 

without any private automobiles to a city with a high degree of automobile 
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saturation’. For transport engineers and planners, the obvious problem is that 

availability of timely and accurate data remains a fundamental challenge in 

attaining this balance. 

 

Interestingly, the availability of Bluetooth technology is increasing not only in 

electronic devices and mobile phones but also in vehicles. Exploring the 

potential of the technology in this way to enhance road network efficiency might 

constitute a cutting-edge solution to traffic congestion problems. Meanwhile, 

before economic or environmental benefits can be realised fully, understanding 

the patterns of movement and regularity of trips made by people is essential. 

The availability of such information will allow traffic management systems to 

respond better to inform network users of alternative routes and modes. This 

information has been difficult and expensive to acquire in the past, however 

Bluetooth offers the opportunity to address this challenge at little cost. 

Consequently, this research also seeks to investigate the use of Bluetooth data 

to enhance reliable reconstruction of traffic patterns and trends, which have 

hitherto been under-investigated. This contribution to knowledge further implies 

a step towards realising smarter future transport systems, leading to a more 

sustainable, efficient, and clean road network. 

 

Using Bluetooth technology, two technological challenges are addressed. The 

first is the monitoring of movements (or passage) of traffic across specific 

known points in the network. The second is the management of the 

computational intensity of processing large volumes of data (tens of gigabytes) 

arising from day-to-day onsite monitoring of the passage of traffic to derive 

useful information. Bluetooth sensors developed by TDC Systems were used to 

meet the first requirement, while an appropriate model was developed to 

address the second challenge. Consequently, there is a need for research to 

gain a fundamental understanding of these two components (deployment of 

Bluetooth for traffic detection and the processing and analysis of the acquired 

data). To this end, an appropriate Bluetooth-based model termed TRAFOST 
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(Traffic Flow Origin-destination Speed and Travel-time) was developed in this 

research to process, data mine, and estimate traffic metrics to explore potential 

applications in traffic management. 

 

By harnessing the opportunities offered by this technology in this way, 

potentially Bluetooth may take over some of the functionalities of the traditional 

and more expensive monitoring systems such as the ANPR (Automatic Number 

Plate Recognition) cameras and inductive loop detectors. The motivation to 

demonstrate the value for money of using a low-cost Bluetooth sensor started in 

2011. Peter Jones led the request from Mouchel/2020Liverpool on this project 

(Jones, 2011). While qualitative assessment and a literature review suggest that 

this is a possibility, the need for improved knowledge of statistically reliable 

results is required to justify the viability of the proposition. Hence, the motivation 

for this research is to improve the efficiency of the current systems to enhance 

traffic management using low-cost sensors. This can be achieved by exploring 

the reliability of the high resolution and timely data provided by Bluetooth to 

derive traffic metrics such as O-D matrix, link-flow, travel time and speed. 

Despite the recent rise in publications on the use of Bluetooth for traffic 

monitoring and other related applications, it is still in a state of continuous 

evolution. This evolution makes research into potential applications of Bluetooth 

in ITS an area of enormous potential. 

 

Implementing Bluetooth to improve traffic management has some limitations 

that include the privacy issue, low vehicle counts (i.e. inability to measure the 

actual traffic flow), and difficulty in differentiating between modes during 

congestion. However, it is argued that the enormous potential possessed by the 

technology far outweighs its limitations particularly in the context of low-cost 

decision support systems (DSS) for traffic management. In this research due 

process was followed to ensure respect for the privacy rights of people in 

compliance with Data Protection Acts (Data Protection Commissioner, 2003). 

This process includes obtaining ethical approval from Newcastle University. 



7 

 

Also, encrypted data were used in this research to avoid associating any 

captured device to a particular owner or vehicle. Therefore, this research is 

neither for surveillance nor aimed at identifying or tracking any particular 

individual or vehicle. Rather, it seeks answer to the reliability and sufficiency of 

the accuracy of Bluetooth data to estimate traffic metrics for traffic management 

applications to reduce congestion. The next section considers the research 

problems and challenges. 

 

1.3  Research Problems and Challenges 

From the literature review presented extensively in Chapter 2, it is evident that 

there remains a lot to be done regarding Bluetooth applications in traffic 

management. Besides, the heterogenous sources (vehicles and other modes of 

transport) of Bluetooth data collection as well as the possibility for duplicate 

records, there is the generic problem of unavailability of algorithms showing 

systematic analysis procedure for traffic metrics estimation. Also, the fact that 

Bluetooth usage is increasing and its estimate is a sample of the total vehicular 

traffic means a need for a continued study to correctly determine the detection 

rate required for calibration. In addition, the need for a periodic calibration to 

ensure reliable detection rate also constitutes a challenge on the use of 

Bluetooth data for traffic management applications. Overall, the results of the 

current research on the use of Bluetooth for traffic monitoring and management, 

which is principally in the area of travel time analysis show that there is the 

need for further studies (Araghi et al., 2015; Barceló et al., 2013; Bhaskar et al., 

2014). These problems need to be addressed to optimally exploit the potential 

of Bluetooth for traffic management. The next section considers the aim and 

objectives of the research following the research problems and challenges 

identified. 
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1.4 Aim and Objectives of the Research 

This research aim is to investigate the reliability and the sufficiency of the 

accuracy of Bluetooth data to estimate traffic metrics for traffic management 

applications to reduce congestion. 

The specific objectives to achieve this aim are: 

i. To carry out a critical review of literature on the application of Bluetooth 

technology in traffic monitoring and management, and to consider other 

technological options for road traffic monitoring; 

 

ii. To develop a Bluetooth-based data processing procedure (a model) to 

derive link-flow, travel time, speed and origin-destination matrix; 

 

iii. To carry out data collection in selected study sites consisting of 

Liverpool, Birtley and Manchester, and apply the model on a short-term 

basis to investigate the potential of Bluetooth-derived traffic metrics; 

 

iv. To examine the performance of the model (TRAFOST) developed in 

Objective ii and the consistency of Bluetooth-derived traffic metrics on a 

long-term basis, for accuracy and reliability through validation against 

diverse independent measures of traffic and statistical modelling;  

 

v. To analyse the variability in Bluetooth-derived traffic metrics to enable 

concrete deductions and sound inference based on the analysis of year 

2013 data from the Greater Manchester Network (GMN); and 

 

vi. To interpret the results and make deductions from the research findings 

in a wider context of applicability and viability in traffic management, and 

make recommendations for Bluetooth traffic monitoring and metrics 

estimation. 
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1.5  Contents of the Main Chapters 

This thesis is organised into eight main chapters as follows.  

▪ Chapter 2 critically explores and reviews the available literature relating 

to the application of Bluetooth traffic sensing and metrics estimation in 

ITS with the view to enhancing traffic management systems. The review 

includes the applications of Bluetooth to derive important traffic metrics, a 

description of other technological options, and policy issues that include 

privacy, safety and pollution. The literature review highlights a number of 

key issues with the Bluetooth approach to traffic metrics estimation and 

application in traffic management. These issues relate to methodology; 

reliability and validity of the data based on a comparative analysis with 

independent measurements as against simulation; variability and errors 

arising from the data over-time, particularly in the problematic urban 

areas; the growth and detection rates of Bluetooth; and the wider 

knowledge of the viability of the Bluetooth approach in traffic 

management.  

 

▪ Chapter 3 presents the research methodology which includes a novel 

Bluetooth-based estimation and analysis procedure (TRAFOST), used in 

this research. TRAFOST was developed to ensure automation, 

reproducibility and transferability in the Bluetooth approach to traffic 

metrics estimation. The discussion in this section includes primarily the 

research design, methods of Bluetooth data cleansing, and the 

estimation and validation methods of the traffic metrics. The research 

design describes the research objectives, methods of accomplishment 

and the expected results. The data cleaning section considers 

consistency, reliability, representativeness, multiple detection, and 

outliers. The traffic metrics estimation and validation methods conclude 

the discussion of this chapter. 

 

▪ Chapter 4 describes the Bluetooth data collection and preliminary 

investigation over the three pilot study areas (Liverpool, Birtley and 
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Manchester – consisting of Wigan, Stockport and Trafford) considered in 

this research. The Liverpool pilot study presents primarily the results of 

data quality assessment. Based on the methodology developed and 

described in Chapter 3, the Birtley pilot study presents the results of the 

evaluation of Bluetooth data at a micro scale to understand performance 

and limitation of Bluetooth. The short-term Manchester pilot study builds 

on the Birtley and Liverpool pilot studies to establish transferability in 

exploring the potential of Bluetooth. 

 

▪ Chapter 5 builds on the preliminary investigation of the study sites to 

establish two key things. Firstly, the assessment of the reliability of 

TRAFOST. Secondly, the assessment of the validity and reliability of the 

results obtained in the long-term study by employing different validation 

techniques to ensure the maintenance of the concept of fit for purpose. 

Through this understanding, the practicality of both the Bluetooth data 

and TRAFOST developed in this research is established.  

 

▪ Chapter 6 presents the detailed description of the variability that may 

affect any conclusion drawn on Bluetooth-derived traffic metrics. Different 

temporal dimensions were considered in this exercise such as 

measurement over hours, days and months to explore temporal 

consistency. This chapter presents Bluetooth data collected over a period 

of one year (2013) within the GMN study site which were processed and 

analysed for this purpose. The computation of detection rates was through 

the comparisons of Bluetooth and IMT-derived flows collected over the 

same period in the study locations. 

 

▪ Chapters 7 and 8 present the results and interpretation of the Bluetooth-

estimated traffic metrics in the wider context to understand the added 

value obtainable from the use of the technology for traffic monitoring and 

management purposes. Primarily, these two chapters explore the 

interpretation and application of four different Bluetooth-derived metrics 
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(link-flow, travel time, speed, and O-D matrix) in traffic management to 

enhance intelligent decisions. 

 

▪ Chapter 9 summarises the main outcomes of the research, and the 

implication of the ideas developed in this research in a wider context. 

This includes the limitation in the traffic estimation model (TRAFOST) 

and the resulting generalisation of the research findings based on the 

results validation. The variability assessment further removes any bias 

on the conclusions drawn from the data. The results interpretation and 

application to traffic management contribute to understanding policy 

implications that include privacy and safety of the road users, and 

environmental pollution. The chapter closes with recommendations for 

future research. 
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Chapter 2. Critical Review of Literature on Bluetooth 

Traffic Monitoring and Applications in ITS 

2.1  Introduction 

This chapter presents a critical review of literature on Bluetooth technology as a 

novel traffic monitoring sensor for ITS (Intelligent Transport System) 

applications. Traffic monitoring is the process of collecting data that describes 

the use and performance of the road network (FHWA, 2013). The traffic data 

collected are used in a variety of ways to support traffic operations such as 

design, planning, analysis, and performance evaluation. However, a major 

drawback to some of the current data collection solutions, such as the inductive 

loops, is the requirement for significant capital investment, government 

commitment at several levels, as well as the support and backing of the public 

(Srinivasan, 2011). Bluetooth is a low-cost technology with the potential to 

address the current limitations by way of complimentary solutions and high 

value for money to address the problems of congestion. For example, data 

collected from across the roads using Bluetooth could be used to increase 

network intelligence, and to derive strategies for traffic management. However, 

such data need to be timely and reliable. A review of the literature identified 

research gaps regarding the reliability of Bluetooth data in traffic management, 

and this problem highlights the current research challenges. Therefore, this 

chapter covers the description of known methods for collection of traffic data, 

and a critique of the new method (Bluetooth approach). 

 

Section 2.2 describes existing road traffic sensors, which include the data 

requirements. Section 2.3 presents a critical review of Bluetooth technology in 

contrast with other wireless technologies such as ZigBee and WiFi. Section 2.4 

discusses estimation methods for analysing traffic sensor data. Section 2.5 

presents the work done worldwide using Bluetooth for traffic sensing to define 

further specific research gaps before drawing conclusions in Section 2.6. 
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2.2  Sensors for Traffic Data Collection 

2.2.1 Setting the data requirements for traffic management 

The development of ITS requires high quality traffic information in real-time 

(Leduc, 2008). The real-time information collected by the road sensors are used 

in adaptive traffic management systems such as SCOOT for the management 

of road networks. Traditionally, three key measurements are used to monitor 

traffic operations on freeways (FHWA, 2013). They are volume, speed, and 

occupancy (the percentage of time a road section is occupied by a vehicle, and 

can be a surrogate for density) (FHWA, 2013). Other useful parameters for 

traffic management are; flow, travel times, O-D matrix, location, queue length, 

etc. Therefore, state-of-the-art traffic-sensing solutions should be able to 

provide archived information such as commute times and congestion patterns to 

help urban planners and traffic engineers make informed decisions in vital areas 

such as: where to improve road capacity, where and when to encourage car-

pooling and where to enhance and increase the use of public transportation 

(Srinivasan, 2011). In this research, the key data requirements for traffic 

management considered are; flow, travel time, speed and O-D matrix. Yatskiv 

et al. (2013) highlighted the importance of these metrics in model construction, 

validation and calibration. As described in Table 2.1, other important criteria 

considered to ensure a holistic evaluation include sustainability (both in terms of 

acquisition and maintenance costs), sample size, and reliability. These 

assessment criteria provide a platform to compare the estimate of traffic metrics 

from Bluetooth with the existing methods to understand its strengths and 

limitations. The subsequent sections describe the methods, while more detailed 

information such as the operational principles is contained in the Traffic 

Monitoring Guide (FHWA, 2008). 
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Table 2.1: Description of the data requirements and the evaluation criteria for 

traffic management 

 

Table 2.2 and Table 2.3 present a summary of the traffic sensors aligned with 

the evaluation criteria. While some of the current technologies are highly 

accurate in providing traffic information, they are not sustainable especially from 

a cost perspective, as they are either too expensive to acquire or maintain. 

However, emerging technology such as Bluetooth could be used to overcome 

the problem of cost without compromising accuracy. The subsequent sections 

describe the relevant sensors. 

 

Evaluation criteria Description

Flow: This is the rate at which vehicles pass a given point on the roadway and is stated as 

vehicles per hour. Flow is termed as traffic volume for specified time periods other than an hour, 

e.g. 15 minutes

Travel time: This is the average of the total time including control delay spent by vehicles traversing 

a road segment  measured in seconds or minutes

Speed: The average speed of a traffic stream obtained from the length of a road segment divided 

by the average travel time is measured in kilometers (or miles) per hour (km/h) 

O-D matrix: This is achieved by applying the concept of flow estimation to an area-wide network

Acquisition cost: This refers to the direct cost of acquiring a system or traffic sensor

Maintenance cost: This refers to the costs incurred to keep an item in good and working condition

Transferability This refers to how far traffic sensors can be conveyed or transferred to other contexts or settings

Availability This is the ability to provide the required function and performance within a specified range

Accuracy means how well a measured value agrees with the true value

Reliability refers to the degree of consistency or repeatability of a measure

Sample size This refers to the proportion of the detected vehicles compared to the actual population

Coverage This refers to the maximum distance at which the approaching target or vehicle can be detected

Privacy issue This relates to determining whether the technology can impinge on people's rights or not

Safety issue This refers to the understanding of how well the technology can improve or affect road safety

Required traffic metrics (Flow, 

travel time, speed, and O-D 

matrix)

Sustainability (acquisition and 

maintenance costs)

Accuracy and Reliability
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Table 2.2: Comparison of relevant traffic sensors based on data requirements 

Relevant sources: (Schmidt et al., 2005; BITRE, 2014) 

 

 

Table 2.3:  Comparison of traffic sensors based on other relevant requirements 

Flow Travel time Speed O-D matrix

Inductive loop 

detectors Yes

No (estimation by 

algorithm)

Yes (with two 

consecutive 

loops) No

Pneumatics tubes Yes No (not accurate)

Yes (with two 

detectors but not 

accurate) No (not accurate)

Radar Yes

No (except 

derived from 

local speed using 

specific 

algorithm) Yes

No (except with 

special algorithm, 

and requiring high 

number of sensors)

Video detection Yes

No (estimation by 

algorithm) Yes Not used

ANPR Yes

Yes (by tracking 

number plates) Yes Yes 

GNSS-based FCD Yes Yes Yes Yes

GSM-based FCD Yes Yes Yes Yes

Signpost system

Yes (if enough 

vehicles are 

equipped) Yes Yes Yes (entry-exit)

Required data for traffic management

Traffic sensors

Capital cost 

Operation and 

maintenance 

cost Transferrability Availability Accuracy Reliability

Sample 

size

Range of 

detection/ 

coverage

Privacy 

issue Safety issue

Inductive loop 

detectors Expensive      Expensive   No Few High High High

Short range 

and 

unidirectional No

Installation 

and 

maintenance 

require lane 

closure

Pneumatics tubes

Moderate 

cost Low cost Yes Few High High High

Short range 

and multiple 

lanes No Relatively safe

Radar Expensive      Expensive Yes Few High High High

Short range 

and multiple 

lanes No

Safe (if non-

intrusive 

method)

Video detection

Low -high 

cost Low cost Yes Few

Medium - 

high High High

Short range 

and multiple 

lanes Low

Lane closure 

when camera 

is mounted 

over roadway 

ANPR Expensive Expensive Yes Few High High High

Short range 

and 

unidirectional High Safe

GNSS-based FCD Expensive Moderate Yes Ubiquitous High High Low

Long range 

and 

unidirectional High Safe

GSM-based FCD Low cost Low cost No Moderate Low

Moderate - 

high Low

Medium 

range and 

unidirectional High Safe

Signpost system Expensive Expensive Yes Few High High Low

Short range 

and multiple 

lanes No Safe

Traffic sensors

Other evaluation criteria
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2.2.2 Inductive loop detectors 

An inductive loop detector (ILD) is an electromagnetic communication or 

detection system of insulated wire embedded in the road surface, and consists 

of three main parts (a loop, loop extension cable, and a detector) (FHWA, 2013; 

Windmill, 2016). The loop utilises the principle that an electrical current is 

induced when a magnetic field is introduced near an electrical conductor 

(Windmill, 2016). For traffic monitoring, the vehicle acts as the magnetic field 

and the ILD as the electrical conductor, while a device at the roadside records 

the signals generated (Windmill, 2016). An increase in the oscillator frequency 

due to a change in the inductance of the loop makes vehicle detection possible 

(FHWA, 2013). During installation, the smallest detail matters to ensure 

accurate vehicle detection. Inductive loop detectors can accurately classify 

vehicles by type and detect speeds, but they also have significant drawbacks 

such as the cost of procurement (Leduc, 2008; Srinivasan, 2011). However, 

reducing traffic congestion and its attendant costs is one of the main goals of 

transport policy makers (Wang et al., 2009). Besides being expensive, 

maintenance and installation work on the road often leads to traffic disruption 

(Srinivasan, 2011). Furthermore, since the speed of vehicles is calculated from 

the time taken to traverse the loops and congestion determined by the speed 

below a certain threshold, this means that there is a possibility of error in the 

estimation and inference (Chen and Miles, 1999; Morris, 2014). For example, 

vehicles close together may be interpreted as one long vehicle. Another 

limitation of these sensors is the inability for vehicle re-identification or the 

determination of O-D movements. Nevertheless, the 99% detection rate 

obtained from ILD shows that it is highly accurate for traffic data collection 

(Klein, 1997).  

 

2.2.3 Pneumatic tubes 

Pneumatic tubes placed on road lanes produce changes in pressure when 

vehicles pass over them (Leduc, 2008). One end of the data logger connects to 

the rubber tube(s) stretched across the road (Windmill, 2016). The air pressure 
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in the tube activates the data logger as wheels pass over the tube and it records 

the time of event (Windmill, 2016). Pneumatic tubes can be stretched across 

several lanes of traffic. The data logger determines the direction of vehicles 

through the identification of the first crossing of the tubes (Alam, 2014). 

Consequently, simultaneous crossing may lead to erroneous estimation. Also, 

two close cars can be misinterpreted as one multi-axle vehicle (McGowen and 

Sanderson, 2011; Windmill, 2016). However, marketers claim an accuracy level 

of 99% but research based on 15-minute counts suggest approximately 10% 

absolute error (McGowen and Sanderson, 2011; Windmill, 2016). Typical traffic 

data captured by pneumatic tubes are vehicle speed, count and classification. It 

is relatively inexpensive and easy to install, and is useful for short-term traffic 

surveys of one or two weeks. This technology is easily damaged and unable to 

provide important traffic information such as travel time and O-D matrix. 

 

2.2.4 Radar 

A microwave radar system makes use of radar technology to detect moving 

vehicles. The detected transmitted energy scattered by the vehicle rear is 

converted to traffic information by the sensor, or in conjunction with the roadside 

controller (Klein et al., 2006). Radar detectors emit frequencies ranging from 

100MHz to 100GHz (FHWA, 2013). Vehicle speeds are calculated based on the 

Doppler principle with a decreasing frequency when the vehicle is moving away 

from the radar and an increasing frequency when the vehicle is approaching 

(Klein et al., 2006). This technology can provide measurements of lane 

occupancy, vehicle count, speed, and vehicle classification (Klein et al., 2006). 

It is limited in the provision of travel time and O-D information. The intrusive 

method of this technology can replace the loop detector with improved accuracy 

of 7.1% and 4.8% in length and speed respectively (Kim et al., 2001). The non-

intrusive method can achieve 8% accuracy over ILD both in length and speed 

(Kim et al., 2001). 
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2.2.5 Video detection 

Video detection makes use of video technology and systems that automatically 

analyse the video pictures as vehicles are passing through the detection zone 

(Windmill, 2016). The system consists of one or more cameras, a 

microprocessor-based computer for digitising and analysing imagery, and 

software for interpreting the images and converting them to traffic data (Klein, 

1997; Klein et al., 2006). A single camera can cover different directions of 

multiple lanes at once. Also, real-time modifications can be made to the 

detection zones from the control centre to accommodate the prevailing traffic 

conditions (Windmill, 2016). This vehicle counting technology has several 

advantages such as low procurement and maintenance costs and it can cover 

both directions and turning movements at once compared to loop detector and 

ANPR methods (Klein, 1997; Klein et al., 2006; Windmill, 2016). Real-time data 

uploading and verification is simplified, with a detection accuracy similar to that 

of manual counting (Windmill, 2016). Video technology is important for ramp 

and lane management to enable informed decisions regarding any changes in 

traffic conditions to be made (Klein et al., 2006; FHWA, 2013). This technology 

can replace inductive loops, and can classify vehicles by length, report vehicle 

presence, volume, lane occupancy, and speed for each vehicle class or lane 

(Klein et al., 2006; FHWA, 2013). However, this technology is limited in the 

provision of O-D information as is the case with technologies such as radar, as 

vehicle re-identification across the network is not possible. 

 

2.2.6 Automatic Number Plate Recognition (ANPR) camera 

ANPR is a method used to detect and automatically read number plates using 

instruments such as the optical character recognition method (OCR) (Blythe, 

2006; National Policing Improvement Agency, 2012). The OCR software can 

take repeated snapshots once a vehicle is near the camera, thus increasing the 

confidence level of detection (Blythe, 2006; Augustin and Poppe, 2012). ANPR 

is one of the methods most commonly used to calculate travel time and detect 

incidents on roads (Augustin and Poppe, 2012). Without any human 
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intervention, ANPR systems can process video images of number plates taken 

by a roadside camera and convert this into the appropriate alphabetic/numeric 

characters (Blythe, 2006). This capability makes ANPR suitable for real-time 

application such as in crime detection and congestion management. While 

ANPR can provide O-D information, and has found applications in road-user 

charging, improved road safety, etc. the drawback is that ANPR cameras as 

with  inductive loop detectors are expensive both in terms of procurement of the 

image processing software and installation (Biora et al., 2012). Blythe (2006) 

also noted that while there is an improvement in the camera technology to 

provide clear images under certain conditions, some unresolved issues remain. 

These include, differences in shape and size of the letters, similarities in letters, 

blurring, poor lighting, masking of the number plate due to snow/fog/dirt and 

unrecognised number plate types such as number plates from foreign countries 

(Blythe, 2006; Augustin and Poppe, 2012). 

 

2.2.7 Global Navigation Satellite System (GNSS) 

Global Navigation Satellite Systems (GNSS) which include GPS and Galileo 

have varying applications in ITS (Misra and Enge, 2006). The operational 

principle comprises the interaction between space, ground, and user segments 

to provide accurate positions anywhere in the world using satellites as reference 

points (Trimble, 2007). The current technology-based systems which include 

GNSS provide a more dynamic and comprehensive solution than is possible 

using traditional systems (Hounsell et al., 2009). For example, the emergence 

of satellite navigation systems has brought a fundamental change. Real-time 

tracking, route guidance, telematics, and location-based services are now 

carried out using GNSS solutions (Hounsell et al., 2009). Booth (2005) 

highlighted the advantages of the GNSS technology to include route guidance 

in cars and buses, and warnings when approaching speed cameras. The 

technology has found applications in the estimation of travel time and speed 

(Quiroga, 2000; Mintsis et al., 2004; Sadoun and Al-Bayari, 2007). However, 

this solution is sometimes limited in urban settings where positioning solutions 

are highly dependent on the availability and geometric distribution of satellites 
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that in turn are sometimes constrained by tall buildings (Boneberg et al., 2011). 

However, despite the ubiquitous nature of the GNSS technology, the probe 

vehicle method does not give the actual traffic count, but a proportion of the 

total traffic. Although, this is also the case with other technological-based 

options which include the GSM-based FCD (floating car data). Also, the 

presence of multi-path errors due to tall buildings in urban areas can degrade 

the quality of service of a GPS-based probe vehicle (Trimble, 2007).  

 

2.2.8 Global System for Mobile Communications (GSM) 

The Global System for Mobile Communications (GSM) or cellular-based FCD 

makes use of the radio modem (AVL, 2004). Mobile positioning is the 

technology used by telecommunication companies to approximate the location 

of a mobile phone and/or its user (Bar-Gera, 2007; Pourabdollah et al., 2010). 

Advanced services with high mast station distribution such as in urban areas 

can attain about 50m accuracy and less in areas with masts widely spaced 

(AVL, 2004). GSM-based FCD is cost-effective but has a lower accuracy 

compared to the GPS-based and traditional systems. However, the sample size 

of 4% - 5% probe vehicles was estimated to be a reasonable range to estimate 

reliable travel times in metropolitan areas (Cheu et al., 2002; Li and McDonald, 

2007; Leduc, 2008). This technology relies on the positioning of the vehicles 

incorporating mobile phones to act as sensors over the network to capture 

traffic data (Leduc, 2008). This causes inaccuracy in the estimation of the O-D 

data while cost may be an issue in the implementation of the accurate GPS-

based solution (Biora et al., 2012). Nevertheless, the system has also shown 

potential in providing traffic data for system augmentation. For example, the 

integration of the system with other tracking and location-aware systems, such 

as GPS, offers a considerable advantage. This was demonstrated for the 

effective management of ambulance services (Derekenaris et al., 2001). Bar-

Gera (2007) used the technology to derive traffic speed, and travel time on a 

14km freeway and found that it compared well with dual magnetic loop 

detectors, thereby showing promise for different practical applications. FHWA 

(2013) presents a detailed summary of the probe vehicle systems. 



21 

 

2.2.9 The signpost system 

This is the technology used to track and locate vehicles along fixed routes. It 

utilises the proximity technique through RFID (Radio Frequency Identification) 

to determine location and allow for vehicle progress monitoring. Vehicle 

positions are determined as they pass through the sensor locations. The 

determination of travel time is through the information collected at two 

consecutive stations. While the most prevalent AVL (Automatic Vehicle 

Location) system for bus transit is GPS-based, several systems that provide 

real-time arrival/departure information are signpost-based including King County 

Metro in Seattle and Transport for London Buses (DoT, 2007). These systems 

are viable alternatives inside tunnels or other conveyances where there are 

blockages by terrain to GPS signals (AVL, 2004). Systems using RFID 

technology with appropriate algorithms and databases have found application in 

multi-vehicle, multi-lane, and multi-road junction areas to provide an efficient 

time management scheme (Al-Khateeb et al., 2008). However, in terms of 

accuracy, the GPS-based system is better. The technology is capital intensive 

both in terms of investment and staff resources to develop, implement, and 

operate (FHWA, 2006a). While the technology can provide travel time and other 

information related to the vehicle and passengers, it is limited in coverage and 

non-representative given that its operation is mainly in buses (FHWA, 2006a; 

FHWA, 2013). 

 

2.3  Bluetooth Technology 

2.3.1 Description of Bluetooth 

Bluetooth is a short-range, low-power wireless technology used for data 

communication and monitoring applications in the ITS domain (Andersson and 

Karlsson, 2000; Friesen and McLeod, 2014). Bluetooth operates in the globally 

unlicensed Industrial, Scientific and Medical (ISM) 2.4 GHz short-range radio 

frequency band (Information Age, 2001; Tabona, 2005). Bluetooth is named 

after the Danish King Harald Blåtand I (Kardach, 2008; BBC, 2011; Bluetooth, 

2011). It was developed by the Bluetooth Special Interest Group (SIG), formed 
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in May 1998 with five founding members: Ericsson, Nokia, Intel, IBM and 

Toshiba (Vainio, 2000). Bluetooth SIG has member companies in the areas of 

telecommunication, computing, networking, and consumer electronics (Tabona, 

2005). In 2016, the SIG membership had reached 30,000 (Bluetooth SIG, 

2016). The SIG oversees the development of the specification, manages the 

qualification program, and protects the trademarks (Information Age, 2001). 

Bluetooth technology has found application in several sectors including the 

automotive industry. Currently this technology is one of the emerging 

technologies with the potential to provide relevant traffic data. Within the road 

transport network, Bluetooth-enabled devices such as mobile phones, 

headsets, SatNavs and portable electronic devices are found onboard vehicles 

or carried by cyclists/pedestrians. The development in this sector is attributed to 

features such as hands-free calling, and security remote controls for locking and 

unlocking vehicles (Persistent Market Research, 2017). Bluetooth technology is 

considered the only proven wireless choice for both developers and consumers 

worldwide (Business Wire, 2010). Therefore, its potential to estimate traffic 

metrics for traffic management applications is considered in this research.  

 

2.3.2 Bluetooth functionality 

The installation of a Bluetooth sensor is usually on lamp posts at a height of 

about 3m above the ground (McDonald, 2013). The basic information collected 

by a typical Bluetooth sensor (Appendix 1) includes the date and time stamp of 

the occurrence of a Bluetooth device and the identification code referred to as 

MAC (Media Access Control) address. The MAC address is a combination of 

unique hexadecimal alphanumeric characters. The first six characters are 

allocated to the manufacturers (e.g. Nokia) and the device type (e.g. phone); 

while the last six characters relate to the wireless device as defined by the 

service provider (Barceló et al., 2010). Appendix 2 presents example data. 

Bluetooth detected addresses are time-stamped with the possibility of re-

identification at different locations. This principle is used to estimate travel time 

by computing the differences in the time stamps between different locations. 
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Figure 2.1 presents the concept of Bluetooth traffic sensing and metrics 

estimation. 

 

Figure 2.1: The concept of Bluetooth traffic sensing and metrics estimation 

(Source: UMCATT, 2008) 

 

The dwell time in a location is computed from the timestamps at entry (first 

detection) and exit (last detection) of a device. For a device to be detected, 

Bluetooth security provides authorisation before pairing through device 

scanning or inquiry. However, Bluetooth traffic sensors do not require 

authorisation as they only detect and register the MAC addresses and the time 

stamps of the detected devices. A device can be detected up to 99% possibility 

at 5s inquiry (discovery) time (Kasten and Langheinrich, 2001; Peterson et al., 

2006). However, an inquiry time of 10.24s is recommended for the maximum 

detection of devices (Chakraborty et al., 2010). Due to the inquiry time, not all of 

the devices are detected before leaving the zone. Experiments showed a 

capture rate of 80% (Gurczik et al., 2012). While the detection rate is 2-50% of 

all vehicles depending on the study location and the type of antennae used 

(Young et al., 2013). The detection rate is the ratio of the matched-pairs of 

Bluetooth detectable vehicles captured at two consecutive sensor locations 

compared to the actual link flow (Young et al., 2013). However, the obtainable 

accuracy is dependent upon the installation environment as the formation of the 

RF (radio frequency) field of the antenna can be affected by trees, buildings, 
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guard railings, and lighting columns (McDonald, 2013). Therefore, optimum 

performance of the system requires field inspection to select a site.   

 

2.3.3 Relevant technical details of a Bluetooth system 

Bluetooth operates on radio frequency (RF) technology (Bluetooth, 2011). The 

Bluetooth standard is IEEE802.15. The transmission of the Bluetooth signal to 

and from the cell phone consumes just 1 milliwatt of power which makes the 

battery of the phone virtually unaffected (Howstuffworks, 2011). Bluetooth has a 

typical range of 1- 100m depending on the class (Bluetooth SIG, 2001). 

Essentially, there are three categories of Bluetooth. Class 1 is used primarily in 

industry with a range of 100m; Class 2 is commonly found in mobile devices 

with a range of 10m; and Class 3 have a range of up to 1m and are mostly used 

in computer mouse and keyboard technologies (Bhaskar and Chung, 2013; 

Bluetooth SIG, 2015). For traffic sensing, there are two classes of Bluetooth 

antennae (the omni-directional and uni-directional) (TDC, 2011; Bhaskar and 

Chung, 2013). The omni-directional antennae can detect devices within the 

range of detection in every direction, while the uni-directional antennae can 

detect devices in one direction only, but with capability to detect devices 

travelling in opposing directions. The TDC uni-directional antenna used in this 

research has a detection range of 93m. This range also defines the maximum 

spatial error (positional error) that can be introduced to the data because the 

exact time of detection of a device and the location within the detection zone is 

unknown (Bhaskar and Chung, 2013). Therefore, the error in time can be up to 

the 10.24s standard inquiry time. The direction of travel of a device is 

determined by performing MAC address matching to determine the location of 

the first detection. That is, a device is said to be travelling in the direction ‘A to 

B’ if the time of detection at point A is before that of point B and vice-versa. This 

principle is used to carry out directional distribution of traffic. 
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2.3.4 Bluetooth capabilities and challenges 

The growth of Bluetooth shows that billions of devices are expected to be 

enabled in the future (Gomez et al., 2012). In the ITS domain, it is pertinent to 

note that Bluetooth potential for traffic monitoring started around 2010 (Friesen 

and McLeod, 2014). Currently, Bluetooth is potentially considered a viable 

technology in understanding traffic characteristics in both urban roads and 

motorways (Barceló et al., 2010; Muhammed and Egemalm, 2012). For 

example, Bluetooth has shown the potential for O-D estimation to address the 

current challenges using existing technologies (Abrahamsson, 1998). If the 

opportunities offered by this technology are well-harnessed, Bluetooth systems 

may take over some of the functionalities of the traditional and more expensive 

monitoring systems.  

 

Using Bluetooth data, a wide variety of error sources could impact greatly on 

the accuracy of the estimated traffic metrics that include travel time and O-D 

matrix if not properly handled (Araghi et al., 2015; Bhaskar and Chung, 2013; 

Cragg, 2013). These error sources include; duplicates (more than one valid 

record for a device) in the data, especially during periods of congestion, error in 

MAC addresses leading to unrealistic speed estimation, a pedestrian or vehicle 

with multiple devices, road junctions with traffic lights and pedestrian crossings, 

business locations and car park areas near a Bluetooth station. This shows that 

Bluetooth traffic estimation in congested urban networks is more problematic 

than on the free flow motorway, and corroborates the research of Moghaddam 

and Hellinga (2013). For example, multiple devices may be counted as many 

vehicles during congestion leading to overestimation of the traffic volume. 

Bhaskar and Chung (2013) illustrated the effect of the entry and exit times of 

devices at the detection zones on the estimated metrics. The errors introduced 

are more pronounced on short links compared to the long links of motorways 

due to the aforementioned factors.  
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Generally, there are uncertainties regarding the carriers of Bluetooth enabled 

devices upon which assumptions are made for optimum results. For example, a 

device identified as a mobile phone may be carried in a vehicle or by a 

pedestrian. Also during congestion, it may be difficult to differentiate between 

the modes of transportation. With an increase in Bluetooth usage and new 

automobiles incorporating Bluetooth devices, periodic calibration of the 

detection rate will be required to obtain the actual flow estimation. However, the 

challenge is not only in the calibration but also in determining the frequency of 

the calibration for a continuous accurate estimation. 

 

2.3.5 Bluetooth growth rate and market penetration in different sectors 

Bluetooth, primarily designed for wireless connection of devices has found 

application in automotive, computing, networking and electronic devices such 

as speakers. Since the early 2000s, there has been an increasing penetration in 

the market for Bluetooth products, largely in mobile phones (Gray, 2007). In the 

automotive market, Bluetooth penetration started with vehicles beginning from 

2003 models through the availability of features such as hands-free calling (In-

Stat/MDR, 2002). In 2012, the Bluetooth SIG adopted the GNSS Profile version 

1.0 to enable the sharing of positional data through a Bluetooth connection 

(Handheld, 2012). This adoption means that more Bluetooth devices can be 

detected thereby increasing the sample size and reliability of the data. The 

recent development in connected cars is also increasing the market penetration 

with a projection of connectivity in every car by 2025 (SBD, 2012). In 2014, 

Bluetooth had reached 90% penetration in all mobile phones (Bluetooth SIG, 

2016). Currently, the Global Connected Car Market (GCCM) is poised to have 

CAGR (Compound Annual Growth Rate) of around 11.7% over the next decade 

with revenue of approximately $81.7 Billion by 2025 (PRNewswire, 2016). Table 

2.4 presents the summary of the Bluetooth growth rate and market penetration 

in the relevant key sectors. 
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Table 2.4: Bluetooth growth rate and market penetration in different sectors 

 

2.3.6 Bluetooth vis-a-vis ZigBee and WiFi technologies 

Wireless Sensor Networks (WSN), in particular the fusion of fixed and mobile 

networks, have been identified as having a significant role in delivering future 

intelligence to the transport sector for a safer, sustainable and robust future 

transport system, based on its ability to collect, process, disseminate and use 

data in a fully connected environment (Selvarajah et al., 2012). Table 2.5 

presents a comparison of the main features of ZigBee, Bluetooth and WiFi. WiFi 

is a technology based on the IEEE 802.11 standards, while ZigBee is an IEEE 

802.15.4-based specification designed for small scale projects that require 

wireless connection (ZigBee, 2014). While these technologies offer a 

comparative advantage in terms of network range, Bluetooth is limited in 

bandwidth compared to WiFi (12Mbps against 54Mbps), but much better than 

ZigBee (250kbps). However, Bluetooth has a major advantage in the area of 

power consumption over WiFi (medium against high). WiFi is mostly used for 

internet connection with the advantage that it can connect many devices 

compared to Bluetooth; however, WiFi may become slow when many devices 

are connected (Bluetooth SIG, 2015). Like the cellular phone-based, WiFi is 

used for wider area networking but has lower accuracy compared to Bluetooth 

(Friesen and McLeod, 2014). Although ZigBee is designed to address the 

unique needs of low-cost, low-power wireless sensor, it has been used mainly 

for the interconnection of vehicles and infrastructure (Selvarajah et al., 2008; 

ZigBee, 2014). Bluetooth remains the most widely-used wireless technology for 

Bluetooth Market

Shipment/Market 

size Projection

CAGR (%) 

Period Current Sector

Bluetooth Beacon

Shipment was 

80,000 in 2015

88.29 million by 

2020

307.2          

2015 - 2020

Retail, indoor navigation, 

telematics

Bluetooth Speakers

Shipment was 88.2 

million in 2015

$7 Billion in 

revenue by 2019

38.73                   

2014 - 2019

Automotive, consummer 

electronics

Bluetooth Smart and 

Smart Ready

Greater than 2.5 

billion shipment in 

2013 with market 

size of $3.27 

Billion 

$5.57- 8.4 Billion 

in revenue by 

2020

6.24 - 29              

2014 - 2020

Automotive, consummer 

electronics, wearable 

electronics, retail, IoT, 

security, proximity sensing
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in-vehicle communication due to its proven features (Kinney, 2003; Selvarajah 

et al., 2008). For example, speakers and radio systems of new vehicles now 

incorporate Bluetooth. The development in the automotive market, has shown 

that despite some limitations these technologies have the potential to help 

deliver an integrated transport system; this includes application in connected 

vehicles. The major benefit of easy synchronisation and device connectivity 

gives Bluetooth an edge in the choice of wireless technology for traffic 

monitoring purposes. This further justifies the adoption of the Bluetooth method 

in this research.  

 

Table 2.5: Comparison of the relevant features of ZigBee, Bluetooth and WiFi 

(Modified from Selvarajah et al., 2008) 

 

2.3.7 Bluetooth and Near Field Communications (NFC) technology 

NFC is one of the more recent market entries with emphasis on low power and 

personal communication (Friesen and McLeod, 2014). NFC has its roots in 

radio-frequency identification (RFID) and is primarily used for devices of close 

Standard ZigBee 802.15.4 Bluetooth 802.15.1 WiFi 802.11g

Automotive 

application

Inter-vehicle and 

vehicle to 

infrastructure 

communication

In-vehicle 

communication and 

device connectivity

Inter-vehicle and 

vehicle to 

infrastructure 

communication

Network range Up to 100m Up to 100m Up to 100m

Bandwidth 250Kbps 12Mbps 54Mbps

Frequency 2.4GHz 2.4GHz 2.4GHz

Advantages Low power; many 

devices; low 

overhead

Dominating PAN 

(Personal Area 

Network); easy 

synchronisation

Dominating PAN; 

widely available

Disadvantages Low bandwidth Consumes medium 

power. (Power output 

ranges between 

1mW to 100mW)

Consumes high 

power
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proximity (4cm) without the need to set up a connection (Triggs, 2013; Faulkner, 

2015; NFC, 2016). Table 2.6 presents the summary of NFC contrasted with 

Bluetooth. Although, NFC is much more power-efficient with faster connectivity, 

it is limited in range (less than 20cm), and transfer rate 424Kbps (APC, 2011; 

Triggs, 2013). Currently, the use of NFC is more business-focused. From a 

transport perspective, NFC has found application in seat adjustment and 

unlocking of cars; parking aid, ticketing, and for obtaining information on 

schedules and delays (NFC, 2016). However, given a 10cm range, NFC is not 

considered feasible for traffic management. This is also the case with Third 

Generation (3G) and Fourth Generation (4G) technologies which include Long 

Term Evolution (LTE) – the only true 4G (Rouse, 2014). However, they could be 

used to enhance traffic data collection. A recent application is the reporting of 

car data using LTE (Salvo et al., 2016). The next section considers the 

estimation methods of analysing traffic sensor data. 

 

Table 2.6: Summary of NFC/Bluetooth comparison 

 

2.4  Estimation Methods of Analysing Data from Traffic Sensors 

2.4.1 Current estimation methods 

Traffic estimation refers to the calculation of metrics such as travel times based 

on known quantities up to the current point in time; while prediction forecasts 

traffic metrics up to a defined time in the future (van Lint et al., 2005). Previous 

literature demonstrates that different estimation methods have been used in the 

past to analyse traffic data. The state of the art measurement for traffic 
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estimation uses sensors such as loop detectors or traffic cameras, while a 

manually conducted survey is the state of the art methodology for recording 

origin-destination trips (FHWA, 2006b; Aslam et al., 2012). There is also the use 

of the factoring method, identified as probably the simplest estimation method 

and most used worldwide (Leduc, 2008). This method consists of permanent 

traffic sites that are classified based on similarities in seasonal variability and 

traffic characteristics. Critical issues with this method include obtaining the 

optimal number of groups and assigning short counts to the seasonal factor 

groups (Leduc, 2008). This method has a low accuracy, and the short-term 

survey may not be representative. While traffic surveys and video surveillance 

methods can provide traffic information such as flow and speed, they have 

numerous drawbacks that include high cost of data collection and image 

processing (Abedi et al., 2014). 

 

The moving observer, floating car or probe vehicles, and historical data 

(cumulative curve) are three categories of estimation techniques identified by 

Maerivoet and Moor (2008). The moving observer technique involves a vehicle 

driven in both directions of a traffic flow, each time recording important 

information such as the number of oncoming vehicles, vehicles overtaken, and 

the time taken to complete the two trips (Krishnamoorthy, 2008; Maerivoet and 

Moor, 2008). Flow rate is calculated for the known average speed of the moving 

vehicle, road length and trip time (Mulligan and Nicholson, 2002). This method 

is economical according to the required accuracy. Beside the measurement of 

speed, travel time and flow, vehicle classification as well as other information 

such as location and causes of delay can be obtained. The disadvantages are 

that the method requires many moving observer runs to obtain accurate flow 

estimates (Mulligan and Nicholson, 2002; Krishnamoorthy, 2008). It is also 

sensitive to interconnecting traffic from side streets, and is limited in gathering 

O-D information (Mulligan and Nicholson, 2002). The floating cars or probe 

vehicles are comparable to the moving observer method with the difference of 

being equipped with GPS and GSM/GPRS devices for position determination 

and transmission of information. Probe vehicle data can provide accurate 
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measurements of current traffic speeds and travel times (Bachmann et al., 

2013). These methods were described previously in Sections 2.2.7 and 2.2.8. 

The GPS-based method has been combined with GIS (geographic information 

systems) for urban traffic flow analysis (Rewadkar and Dixit, 2013). Using the 

historical data method, travel time is measured as the distance along the 

horizontal time axis. Based on this, the travel times over a period of many 

weeks, months, or even years can be analysed (Maerivoet and Moor, 2008). 

However, the evolution in ITS demands more timely information and a 

combination of the availability of modern, low-cost computing and 

communications technology. The availability of real-time traffic data will 

enhance rapid response to any anomalies by a way of re-routing to reduce 

congestion and the associated impacts (FHWA, 2013). Bluetooth as a direct 

method can be used in this regard to provide traffic information anytime and 

anywhere within the road network. 

 

2.4.2 Emerging estimation methods 

One of the emerging estimation methods includes the use of satellites and 

unmanned aerial vehicles (UAVs) (Fricker and Kumapley, 2002). The satellites 

and UAVs approach is primarily used to understand both temporal and spatial 

variability in traffic flow at any instant. However, the high cost of acquiring high 

resolution images and the processing software is a major disadvantage (Fricker 

et al., 2002). Other limiting factors include weather, flight height, danger to 

aircraft, and privacy issues. While motion detection algorithms can detect each 

distinct moving vehicle, the algorithms are difficult to solve (Lee and Bovik, 

2009). The optical flow estimation algorithms from traffic videos are considered 

as a better alternative, although they pose the problem of efficiency and 

computational complexity (Lee and Bovik, 2009). Other advances such as 

LIDAR (Light Detection and Ranging) approach and drone cameras are also 

emerging for the estimation of flow. Generally, there is a problem of incomplete 

datasets, and mostly the inability to estimate O-D matrix. The problem of 

incomplete datasets is usually addressed using estimation (predictive) and 
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analytic methods such as log-linear model, linear regression, and neural 

network (Leduc, 2008). 

 

2.4.3 Predictive and analytic methods 

Incomplete datasets resulting from a number of factors such as equipment 

failure or scarce resources often lead to the requirement for data prediction. 

Csikos et al. (2015) classified prediction methods into two classes (the classical 

prediction methods and data driven methods). The classical prediction methods 

(model-based estimation) utilised statistical methods such as Bayesian network 

models, historical average, ARIMA (autoregressive integrated moving average), 

regressions, and Kalman filter theory. Forecast is based on analysis of historical 

time series data. Typical application includes the analysis of traffic flow using 

particle filtering (Polson and Sokolov, 2015). Particle filtering allows for posterior 

estimation of the most recent state with low computational complexity and the 

possibility for frequent updating compared to Kalman filtering. Generally, the 

classical approach is limited in an urban environment where the traffic 

conditions change rapidly (Csikos et al., 2015). The data driven methods 

(machine learning) offer self-learning pattern recognition methods such as ANN 

(artificial neural network), fuzzy-rule based logics, k-mean clustering, and 

expectation maximisation based algorithms. This approach has the advantage 

of estimating and capturing the linkage of very complex traffic flows even under 

rapidly changing conditions. In particular, ANN algorithm was used to predict 

traffic speed in urban traffic networks (Csikos et al., 2015). van Lint et al., 

(2005) noted that ANN for travel time estimation is only suitable for freeway or 

urban arterial networks. Generally, the data driven methods are sensitive to the 

quality of the training data. However, this can be partly addressed by principal 

component analysis (PCA) to handle the missing input data. Another way to 

improve the accuracy is the combination of fuzzy logic and ANN as applied by 

(Gastaldi et al., 2014). PCA has been used to analyse flow data, and is another 

method to overcome reliance on the knowledge of data distribution. PCA was 

used to measure variability in urban traffic flow to address the issue of both 

temporal and spatial correlation in time series data (Tsekeris and Stathopoulos, 



33 

 

2006). With the emergence of Bluetooth in traffic sensing, little reliance can now 

be placed on historical datasets and prediction. The Bluetooth approach 

provides platforms for the estimation of essential traffic data such as the area-

wide O-D matrix in a cost-effective way to overcome the challenges posed by 

using traditional methods. Table 2.7 presents the summary of relevant 

predictive and analytics methods with “yes” signifying metrics where they are 

commonly applied. 
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Table 2.7: Summary of relevant methods of predicting and analysing traffic data 

  

 

Flow

Travel 

time Speed

O-D 

matrix

Log-linear model Yes Yes Yes

Suitable for count data; 

flexible; can readily 

estimate odd ratios

Not suitable for serial 

correlation in time series 

data; applicable to 

datasets with positive 

observations

Linear and multiple 

regression Yes Yes

Flexible; allows for 

interaction between 

variables

Not applicable to non-

linear models; 

assumption of normality 

of errors

ARIMA Yes Yes Yes

Can detect anomaly in 

data; good for short-

term prediction

Assumption of normality 

of errors; memory 

intensive

Kalman filtering Yes Yes Yes Yes

Can estimate variables 

of diverse nature

Memory intensive; not 

applicable to non-linear 

models

Particle filtering Yes Yes Yes

Low computational 

complexity; frequent 

updating is possible

Limited under rapidly 

changing traffic 

conditions

Historical average Yes Yes Yes

Offers direct and quick 

solution

Reliance on historical 

data; data formats may 

require standardisation

Bayesian network 

models Yes Yes Yes Yes

Can improve linear 

regression accuracy

Requires independence 

between input 

characteristics; memory 

intensive

Generalised Least 

Squares Yes Yes

Allows the combination 

of traffic survey and 

count data and can be 

updated in short time; 

no assumption of 

distribution

Sensitive to non-

negativity in datasets

Principal Component 

Analysis (PCA) Yes Yes

Can handle missing 

data; no reliance on 

data distribution; can 

account for temporal 

and spatial correlation

Reliance on orthogonal 

transformation of the 

original variables; it is not 

scale-invariant; the 

variables must be 

correlated

k-Nearest Neighbour 

(kNN) Yes Yes Yes Yes

Suitable for varied 

parameters such as 

delay and dwell times

Uses distances between 

attributes; memory 

intensive; consumes 

power

Artificial Neural 

Network Yes Yes Yes Yes

Can handle non-linearity 

in data; good accuracy 

with short-term 

prediction

Slow convergence; 

sensitive to the quality of 

the training data

Fuzzy logic Yes Yes

Can handle missing 

data

Sensitive to the quality of 

the training data

Spatial interaction 

model Yes Yes

Can handle missing 

data

Sensitive to the quality of 

the training data; few 

scholarly guides

Predictive / 

Analytical methods

Traffic metrics

Advantages Disadvantages
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2.5  The Use of Bluetooth in Traffic Sensing 

2.5.1 Bluetooth traffic sensing 

This section presents a review of literature on the use of Bluetooth for traffic 

sensing. Consideration has been given to the areas adjudged to be the most 

relevant to this research to explore the gaps in knowledge. The increased 

awareness of the negative impacts of traffic congestion and the need for better 

transport through technology has led to a significant rise in the management of 

road traffic in recent years (White, 1989; Nellore and Hancke, 2016). Bluetooth 

is one of the emerging technologies for traffic sensing and ITS applications, 

which has been explored by authors such as Barceló et al. (2010), UMCATT 

(2008), Bhaskar and Chung (2013), and Araghi et al. (2015). This technology 

could also form an important part in the concept of “Big data”. Big data are 

gathered from different sources and formats that include mobile devices and the 

web (Troester, 2012). However, based on the available information gathered in 

this research, the current published studies on Bluetooth traffic sensing were 

carried out outside the UK. From the accessible publications, a significant gap 

identified was the absence of a comprehensive investigation of Bluetooth data 

for various traffic management applications, and the added benefits both in the 

short and long-term. Therefore, exploring the gaps in Bluetooth traffic sensing 

research to gain a better knowledge of the traffic metrics estimation capability is 

considered essential to support the delivery of a better optimised road network 

than is currently obtainable.  

 

Bluetooth traffic sensing on rural freeways has shown great potential (Click and 

Lloyd, 2012). In urban freeway and arterial roads, Bluetooth has been studied 

for different purposes, such as the estimation of travel times (Wason et al., 

2008). Bluetooth traffic sensing has also found application in travel time 

prediction over congested periods in signalised urban arterial roads, as well as 

to understand delays in travel time in highway work zones (Haseman et al., 

2010; Quayle et al., 2010); Khoei et al. (2013). More recent applications of 

Bluetooth include monitoring and tracking purposes (Stange et al., 2011). 
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Researchers have also studied different antennae types (directional and omni-

directional antennae) to understand performance and found that omni-

directional antennae have a larger detection zone than the directional types 

(Malinovskiy et al., 2010). On the other hand, Vo et al. (2012) and Click and 

Lloyd (2012) recommended using more than one sensor in a site to increase 

the data quality. Route choice analysis is another promising application for 

Bluetooth traffic sensing (Hainen et al., 2011). However, results from these 

studies showed that noise in the data can cause signficant variance in the 

estimated metrics. Environmental factors such as weather could also impact 

upon the results. For example, Martchouk et al. (2011) showed that Bluetooth 

traffic sensing on a freeway segment under varying weather conditions (normal 

and abnormal) can present a significant difference in the computed mean and 

standard deviation of travel times. Therefore, these factors must be properly 

handled to obtain accurate and reliable estimations. Using Bluetooth, sample 

sizes of 5% - 7% of all vehicles are achievable with high levels of accuracy at a 

much lower cost (Tarnoff et al., 2009).  The subsequent sections present 

Bluetooth traffic sensing in relation to the four key data requirements considered 

in this research, with reference to other related applications. 

 

2.5.2 Bluetooth for the estimation of link-flow 

Flow is one of the key traffic data requirements considered in this research, 

being one of the most important raw traffic datasets for modelling and 

calibration in planning and congestion management applications. Bluetooth 

traffic sensing presents the opportunity to derive real time traffic flows to 

optimise the road networks. However, given that Bluetooth presents a sample of 

the actual traffic, it is important to understand this fraction (detection rate) in 

relation to the actual traffic. Table 2.8 to Table 2.13 present the summary of the 

review to understand this metric. This metric is classified into six different 

groups based on distinctly identifiable parameters that vary across the study 

locations. Table 2.8 presents the detection rates relating to people count versus 

the number of discoverable Bluetooth devices. Besides the limitation in scope, 

in terms of scale and period, the information obtained is rarely useful to infer the 
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general traffic conditions given that the main cause of traffic congestion are 

vehicles and not people. 

 

Table 2.8: Table showing the detection rate of people with discoverable 

Bluetooth devices in Bath, Bremen and San Francisco 

 

Table 2.9 presents the studies carried out on arterials of different urban areas 

across Europe. From this table, the minimum detection rate (15%) was 

computed by Roggendorf (2012) based on Bluetooth/manual count comparison. 

Despite being the lowest detection rate, there is a concern that the different 

Bluetooth pairs detected include those carried by cyclists and pedestrians. 

Consequently, the vehicular traffic proportion was not represented which 

explains the reason for the relatively high estimation of detection rate. A similar 

Author (Year)
Study 

Location

Detection 

Rate (%)
Method Results

O'Neill et al . 

(2006)
Bath, UK 7

Discoverable 

devices were 

scanned whilst taking 

gate counts of 

people passing at 

four (4) locations for 

a short period of 

about 30 minutes. 

The counting of 

people was 

automated using the 

phone method

Linear correlation 

was observed 

between the number 

of people and 

discoverable 

Bluetooth devices.  

A detection rate of 

7% was obtained.

Nicolai and 

Kenn (2007)

Bremen and 

San 

Francisco

2 and 6 

respectively

It measured the 

percentage of 

people with 

discoverable 

Bluetooth devices 

whilst number of 

discoverable devices 

was plotted against 

the total number of 

people (gate count) 

passing through the 

gate.

The results obtained 

showed a positive 

linear correlation 

between the number 

of people and the 

discoverable 

devices. The 

difference in the 

detection rate over 

Bremen and San 

Francisco is 

attributed to 

population and 

variation in Bluetooth 

usage 
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concern can be expressed over the high detection rates obtained in the other 

studies (Barceló et al., 2010; Beca, 2011; Augustin and Poppe, 2012). Since a 

node-based method (comparison based on detected Bluetooth devices over the 

individual Bluetooth stations) was used in the computation of the detection rate 

as against the link-based method, two sources of errors can be identified as 

follows: i) contributions from vehicles from the opposing link; and ii) contribution 

from non-vehicular sources with Bluetooth devices such as pedestrians. Taking 

this into account is essential for a reliable estimation of traffic flow. Other 

limitations include the period of observations and limited information on the type 

of comparison made (Beca, 2011; Augustin and Poppe, 2012). However, these 

studies have provided vital information regarding Bluetooth traffic sensing over 

different geographical areas across Europe; thereby serving as a priori 

knowledge of the expectation in the UK. That is, the variation observed in the 

computed detection rates is indicative of levels of usage of Bluetooth-enabled 

devices in the study locations. If any of these locations share similar traffic 

characteristics and populations with a UK city, then one may assume that a 

detection rate consistent with such location(s) is representative in such a UK 

city. The above assumption informs an important research gap requiring the 

understanding of the detection rates over the chosen study area in the UK to 

enable a reliable estimate of traffic flow using Bluetooth. Hence, this research 

will build on the knowledge gained from previous studies to determine the 

detection rates. For example, detection rates will be computed based on 

directional link-flows on a long-term basis covering all the hours of the day, 

weekday, month and season; this is to minimise the errors in the estimation, 

and to fully explore the variations that may affect any inference made. 

Therefore, consideration will be given to these important research gaps to 

ensure a fundamental understanding of estimation of flow using Bluetooth. 
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Table 2.9: Detection rates obtained from different urban arterials across Europe 

 

Table 2.10 presents the results of the detection rates obtained from the studies 

conducted by BlipTrack (2012) and Araghi et al. (2012b). These studies 

conducted in a heavy traffic area of Aalborg both utilised the BlipTrack sensors, 

and as with the previous studies identified in Table 2.9, the estimation of 

detection rates was node-based. This means that it could not account for the 

uncongested area as well as the temporal variability that may be present in the 

data. There is also a concern with the method of installation of the sensors used 

in both studies. Keeping the sensors used on the ground means that they could 

easily be affected by many factors arising from displacement and damage that 

may consequently affect the configuration of the orientation and inclination, and 

the overall results. On the contrary, the Hi-Trac Blue sensors utilised in this 

research are installed on lamp posts. This installation method takes care of the 

Author (Year)
Study 

Location

Detection 

Rate (%)
Method Results

Barceló et al . 

(2010)

Barcelona, 

Spain
30

Simulation and pilot study 

was conducted using well-

calibrated inductive loops. 

Simulation was performed 

based on the detection rate 

and the available information 

in the area

The travel times 

predicted from the 

study show a high 

level of reliability on 

the use of Bluetooth 

to determine journey 

time

Beca (2011)
New 

Zealand
32.1 – 34.4

Bluetooth count was 

compared with traffic count 

from SCATS loops. Floating 

vehicle using GPS data 

logger was used to calibrate 

travel time and monitor 

speed along the route

The Bluetooth study 

using the BlipTrack 

system suggests a 

possibility. Detection 

rates of 32.1 - 34.4 

were obtained over 

the study locations

Roggendorf 

(2012)

Aachen, 

Germany
15

Bluetooth compared with 

manual count of vehicles 

sampled between 8am to 

5pm. Blids sensors were 

used at intersection to 

determine traffic flow

5250 different 

Bluetooth pairs were 

detected over 24 

hours giving a 

detection rate of 15% 

against the manual 

count

Augustin and 

Poppe (2012)
Austria 38

Blids sensors were used in 

this study. Data used for the 

evaluation was not explicitly 

mentioned

Detection rate of 38% 

was obtained from 

the study
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risk of displacement and any possible accidental damage that could easily 

affect the sensors if they were ground-based, as used in the previous research. 

A major observation from the two studies is a difference of 7% in the detection 

rates (20 and 27%) computed at different sites in the same year in Aalborg. This 

significant variation shows that great attention must be paid to the network of 

varying characteristics, in order to obtain reliable results. Therefore, network 

configuration is considered an important factor and shall be explored in this 

research for a better understanding. 

 

Table 2.10: Detection rates obtained in Denmark using the BlipTrack sensors 

 

Table 2.11 presents a different cluster of the minute count ratio of Bluetooth to 

ANPR carried out on a motorway in Denmark by Muhammed and Egemalm 

(2012). The trial conducted on the motorway, E45 over 4 – 6 April 2012 

distinguishes it from other studies piloted in arterials. Although this study 

attempted to capture all the varying periods, such as holidays, that could affect 

the estimation of travel time, there is concern about the choice of 5-minute 

interval count adopted. At this level of resolution, Bluetooth count is expected to 

yield a significant zero detection particularly during the off-peak periods thereby 

leading to unrealistic and unreliable estimation. Therefore, there is a concern 

that the result obtained contains a significant level of outliers arising from non-

Author (Year)
Study 

Location

Detection 

Rate (%)
Method Results

BlipTrack (2012)

E45 

Aalborg, 

Denmark

27

Made use of 

historical flow record 

and also carried 

survey with some car 

dealers for Bluetooth 

information on car.  

Study conducted in 

the most heavily 

trafficked route in the 

region 

The survey revealed that 

some cars have 

permanent discoverable 

Bluetooth hands free with 

a detection rate of 27% 

Araghi et al . 

(2012b)
Denmark 20

Bluetooth was 

compared with 

general traffic 

volume. The sensors 

used were placed on 

the ground

The proportion of 

Bluetooth detection in 

the study area of 

Denmark gave 20% of 

the actual traffic
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vehicular devices. Consequently, the minute count ratio of about 54 - 61% of 

the total time of the investigation between ANPR and Bluetooth is not regarded 

as the actual detection rate. However, the result obtained from travel time 

analysis was said to be reliable up to 95% matching. 

 

Table 2.11: Minute count ratio of Bluetooth to ANPR on Motorway 

 

Table 2.12 presents the result of the detection rate computed over long 

distances (27.8 – 310km) in the Netherlands (Biora et al., 2012). While this 

study has also provided useful knowledge on the potential of Bluetooth data, 

there is a concern regarding the estimation of detection rate over such long 

distances, particularly over 310km. At such range, not many vehicles are 

expected to travel that far except vehicles on tour. The computed 25 - 40% was 

based on the total devices captured, and this is rarely helpful for traffic planning 

and management purposes because it can lead to an exaggeration of the traffic 

volume. In this research, sections of roads of relatively short distances are 

considered within the urban arterials in the study locations as opposed to 

motorways. Also, metrics estimation is focused on vehicular traffic while the 

preliminary stage will investigate the general traffic. 

Author (Year)
Study 

Location

Detection 

Rate (%)
Method Results

Muhammed and 

Egemalm 

(2012)

Denmark

About 61% 

(Based on 

minute count 

ratio)

ANPR and 

Bluetooth 

comparative study 

with field test. Trial 

between 4-6 April 

2012 on motorway, 

E45. Minute by 

minute count ratio of 

Bluetooth to ANPR 

was determined as 

against the standard 

method of 

determing detection 

rate.

The result obtained 

from travel time was 

accurate to 95%. The 

minute count ratio 

between ANPR and 

Bluetooth was up to 

61%.
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Table 2.12: The detection rates obtained over long distances in the Netherlands 

 

In a study carried out over nine days in Scotland, Cragg (2013) compared 

Bluetooth station counts with data from ATC and obtained 20% and 33% for 

weekends and weekdays respectively as shown in Table 2.13. As observed 

from the literature, the node-based detection rate is rarely useful for traffic 

management purposes due to the influence of non-vehicular devices on the 

estimation and thereby resulting in incorrect and inflated rates. In general, the 

current challenges in the derivation of the detection that include variations over 

different geographical locations and network configurations, justifies the need 

for continued investigation into exploring the potential of Bluetooth technology 

for traffic flow estimation. 

 

Table 2.13: The Bluetooth detection rate based on station counts against ANPR 

 

2.5.3 Bluetooth for the estimation of travel times 

The tendency to use Bluetooth technology for travel time estimation is rising for 

many reasons such as, an increase in Bluetooth-enabled devices among road 

users, anonymity of Bluetooth detections, flexibility of deployment and 

Author 

(Year)

Study 

Location

Detection 

Rate (%)
Method Results

Biora et al . 

(2012)
Netherlands 25-40

Made use of i-Travel 

systems to determine 

detection rates on four 

different sections ranging 

from 27.8 – 310 km long. 

Bluetooth was compared 

with total traffic volume. 

Sections of the road used 

are: A6, A7, A32 & A31

Varying results 

were obtained 

in the sections 

of the road 

investigated 

ranging from 

25% to 40%

Author (Year) Study Location
Detection 

Rate (%)
Method Results

Cragg (2013) Scotland

20 and 33 for 

weekend and 

weekdays 

respectively

Bluetooth station 

counts compared 

with ATC

The proportion of Bluetooth 

station count was consistent 

over different comparisons 

conducted between ATC and 

ANPR data
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maintenance of Bluetooth sensors (Araghi et al., 2012a ). The first group 

believed to use this new approach to determine travel time for traffic purposes 

are a team of engineers from Indiana Department of Transportation and Purdue 

University (work reported in June 2008) (UMCATT, 2008; Haghani and Hamedi, 

2013). Following this development, other researchers have conducted studies 

on the use of Bluetooth for the determination of travel times (TMCnet, 2011; 

Muhammed and Egemalm, 2012; Bhaskar and Chung, 2013; Araghi et al., 

2015). Araghi et al. (2012a) showed that travel times measured by Bluetooth 

compared well to those by tag readers (the use of radio frequency identification 

and detection – RFID). Consequently, Bluetooth shows promise for travel time 

estimation. Bluetooth travel time data is similar to that of ANPR with a 

considerable advantage of continuity (Biora et al., 2012). Continuity defines the 

ability of a system to function over a given period without interruption (Langley, 

2011). Bluetooth data is also not degraded in the case of poor visibility, 

nighttime, rainy, snowy and foggy conditions (Biora et al., 2012). Bluetooth 

travel time estimation on motorways and on arterial roads has been shown to 

have comparable accuracy to video cameras (Wang et al., 2011; Mei et al., 

2012). Webster et al.'s (2014) study also indicated the potential for travel time 

estimation on sections of motorways. Erkan and Hastemoglu (2016) examined 

the applicability of Bluetooth for travel time estimation in heterogeneous traffic in 

Istanbul, Turkey. A detection rate of 5 % of all vehicles was obtained from this 

study. The study utilised weighted linear regression methods to estimate travel 

time, with a conclusion that Bluetooth can be used to estimate travel time in 

heterogeneous traffic conditions. In addition, Bluetooth has been applied for 

real-time travel time prediction to improve the road network management (Qiao 

et al., 2013). 

 

UMCATT (2008) showed that by sampling a portion of the travelling vehicles’ 

actual times from the traffic stream, Bluetooth traffic monitoring provided the 

opportunity to collect high-quality travel time data. UMCATT (2008) provided the 

knowledge of the basic concept of Bluetooth traffic monitoring; however, it is 

limited in scope both in terms of duration of the study and the area covered. Not 
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only that, the few systems deployed were over a long distance (2-4 miles apart) 

while the data collection was over 48 – 96 hours. These limitations leave an 

uncertainty regarding the evaluation of the behaviour of the data collected over 

a short distance and a long period. These limitations need to be accounted for 

by investigating Bluetooth data over relatively short distances such as 500m 

links in different urban areas, and on a long-term basis spanning a year, to 

capture any seasonal variations in travel time estimated by Bluetooth. This 

research will explore this gap to increase the level of confidence of Bluetooth 

travel time estimation. Table 2.14 and Table 2.15 present the summary of the 

key research on Bluetooth for travel time estimation. 
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Table 2.14: Bluetooth for travel time estimation and traffic management – 2010 to 2013 studies 

Authors Bluetooth research areas Methods Conclusions Remarks

Puckett (2010)
Travel time monitoring for border 

censoring

Anonymous Wireless Address Matching 

(AWAM) system.

Confirmed that Bluetooth can be used to measure border 

crossing times.  Based on the AWAM proof-of-concept on 

urban arterials, Bluetooth device penetration is sufficient to 

collect high-quality travel time data

The report presented on behalf of TranStar presents no 

evidence/analysis or a detailed discussion of the method of validation 

used

Quayle et al.  (2010) Arterial travel time Compared Bluetooth and GPS data
Concluded that Bluetooth has the ability to accurately 

measure travel time over long spans of time
Study conducted in Portland, Oregon

Malinovskiy et al.  (2011) Travel time estimation

Used three types of antenna with three 

different sensor arrangements on a short 

corridor (0.98 mile) of a varying configurations. 

Compared Bluetooth travel time to LPR

Larger detection zone is desirable while shorter corridor 

will have greater travel time errors. A pair of sensors 

mounted at opposing sides at each end of the corridor will 

result in significantly less error. Omnidirectional antennae 

have larger detection zone than unidirectional antennae 

but are subject to more temporal and spatial errors

The study was conducted on a short corridor of 0.98 mile

Porter et al.  (2011)
Calibration of sensor and travel 

time estimation

Explored the suitability of five different types of 

Bluetooth antennae

Antenna type has an impact on the quality of the data 

collected
This may not require further study

Abbott-Jard et al.  (2013)
Bluetooth and WiFi Scanning for 

travel time estimation

Used exist-exist method, and Excel and 

Matlab for data filtering. Used two types of 

antenna

The study conducted in Brisbane showed that Bluetooth 

has a higher match rate than WiFi - approximately 1:8; 

percent of usable data suggested 81 percent for Bluetooth 

and 19 percent for WiFi

WMS are not widely used, and their usage is still being explored. One 

day trial. No quantitative analysis of the travel time data

Bhaskar and Chung (2013)
Bluetooth as complementary 

data source

Explored the effects of detection zone on the 

accuracy of travel time estimation using 

Bluetooth

Proposed three mode of estimation for travel according to 

the modelled section of the signalised urban environment
Explored accuracy and reliability of travel time

Moghaddam and Hellinga (2013) Travel time error evaluation
Evaluation of algorithms to detect outliers in 

travel time

Mean travel time error is always close to zero in all traffic 

conditions

The evaluation was based on simulation study constrained to the 

upstream and downstream of the traffic. This might not capture the 

errors arising from vehicles using other connecting routes

Platt  (2013) Travel time estimation
Bluetooth experimental set-up in South Wales 

was explored

The outcome of the experiment is positive as  the 

information from Bluetooth is being fed to the management 

system for a display on VMS to aid commuters

No result was presented in this discussion

Qiao et al.  (2013) Real-time travel time prediction 

The study implemented historical average, 

auto-regressive integrated moving average 

(ARIMA), Kalman filter, and K-nearest 

neighbours (KNN) models

Results showed that using the non-parametric approach, 

the prediction accuracy can improve by more than 10% for 

all day period and 20% for peak-hour periods over the 

other methods considered based the computed mean 

absolute percentage error (MAPE)

This study proposed a new model called KNN-T to improve travel time 

prediction accuracy, and also provided the knowledge of the suitable 

models to apply in travel time prediction
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Table 2.15: Bluetooth for travel time estimation and traffic management – 2014 to 2016 studies

Authors Bluetooth research areas Methods Conclusions Remarks

Wu and Rilett (2014)
Reliability of real-time travel time 

estimation

Studied the prediction of travel time at a 15-minute 

level under different traffic conditions

The model comparison between the link-based 

and corridor-based prediction of travel times 

yielded comparable results

Established a correlation between the 

reliability of link-based and corridor-based 

short-term travel time prediction

Araghi et al.  (2015)
Reliability of travel time 

estimation

Bluetooth and GPS consisting of 1000 trips were 

used as the controlled experiment. The GPS 

formed the ground-truth used to calibrate the 

Bluetooth detection rate.

Found that Bluetooth can be detected up to 

80% of the time at a sensor location 

The concern here is the use of only one 

vehicle for the experiment. This may 

introduce bias due to driving behaviour. The 

fact that it was also conducted on a link may 

not be representative enough

Stevanovic et al.  (2015) 
Accuracy and reliability testing 

of arterial travel times

Application of MAC readers to measure travel time 

in arterial roads. Used sensor developed by Florida 

Atlantic University (FAU) team. Four months field 

test of two test-bed networks around FAU. Used 

two type of antennae (omni and uni-directional), 

and compared results with GPS floating car 

technique. Also considered varying speed and 

antennae 

 Regression analysis between Bluetooth and 

GPS yielded R-Square equal to 0.65. 

Placement of Bluetooth in vehicle is significant 

(dashboard location is preferable)

Test statistics not presented but it was 

concluded that there is no significant 

difference in the travel time of Bluetooth and 

GPS at 95% level of confidence

Yu et al.  (2015)

Travel times and volume for 

incident detection on arterial 

roads

The study used an incident detection algorithm 

based on moving average 

Moving average was used to address the 

limitations resulting from sparse travel time 

sample data to obtain 

Propose an incident detection algorithm that 

utilises travel time and traffic volume to 

establish a good balance between the actual 

detection rate and false-alarm rate 

Araghi et al.  (2016)
Mode-specific travel time 

estimation

Clustering techniques was used to explore the 

feasibility of Bluetooth to estimate mode-specific 

travel time

Clustering techniques can be used to carry out 

satisfactory classifiaction with an accuracy 

comparable to that of ANPR

The use of class of device for classification 

may not in all cases be feasible due to data 

encryption for private reasons

Park et al.  (2016)
Performance of travel time at 

intersection

Utilised omnidirectional antennas for intersection-

intersection analysis of travel times to estimate 

control delay at intersection. The data used 

spanned 6 - 19 December 2011. Received signal 

strength was used to transform the travel time 

while the estimate of flow was compared with data 

from loop detectors

Obtained detection rates between 5.8 - 84% 

over the different sections of the road. The 

estimated controlled delay was found to vary 

proportionally with the actual travel time. That is 

the control delay increases with an increase in 

travel time

This study did not consisder statistical 

analysis of the results
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2.5.4 Bluetooth for the estimation of vehicle speed 

Vehicle speed measurement, particularly where precise timing is important, is 

mainly carried out by a technological-based method for performance evaluation 

of road network and queue analysis (White, 1989). The GPS-based method has 

been used to gather precise travel times and speed information about the road 

traffic for real-time application. Bluetooth is now considered as a viable option in 

this regard. Table 2.16 presents the key studies. The effect of vehicular speed 

and multipath fading was considered by Pasolini and Verdone (2002), while 

Houston TranStar (2010) considered travel time speed estimation with a focus 

on cost-comparison with other sensors. Average speed and time are 

fundamental measurements of the traffic performance (May, 1990). Although, 

they are inverse measures, they are used differently in traffic engineering 

(Roess et al., 1998). Further, the profile analysis of both travel times and vehicle 

speeds can be used to understand other traffic characteristics such as 

congestion, while flow and speed can be used to derive density – defined as the 

number of vehicles per unit length of the roadway (Roess et al., 1998). 

Bachmann et al. (2013) compared data from Bluetooth and loop detectors with 

GPS data on a stretch of Highway 401 in Toronto, Canada. The analysis 

showed that the accuracy of traffic speed estimates obtained from loop 

detectors can be improved through Bluetooth data fusion. Also, the comparison 

of speeds based on GPS and Bluetooth data, and the simultaneous use of both 

datasets to improve estimation accuracy has been studied (Borresen et al., 

2016). However, Bluetooth traffic sensing for vehicle speeds estimation is 

currently under-investigated, and shall be explored in this research to contribute 

to knowledge. 
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Table 2.16: Bluetooth for vehicle speed estimation and traffic management 

 

2.5.5 Bluetooth for the estimation of origin-destination matrix 

Origin-destination matrices are estimated using the observed link-flow 

information (Aslam et al., 2012). Traditional methods such as roadside surveys 

for the collection of O-D information often require additional resources in terms 

of time and cost, and may not provide up-to-date data (Srinivasan, 2011; Wang 

et al., 2013). However, sustainable mobility requires a better management of 

the available infrastructure resources (Fernández-Lozano et al., 2015). 

Presently, Bluetooth is one the technologies used to overcome these 

challenges within an urban network as have been previously demonstrated 

(Barceló et al., 2012; Ayodele et al., 2013; Barceló et al., 2013; Bhaskar et al., 

2014). Bluetooth has been identified as a potential candidate for O-D estimation 

with the ability to provide real-time information as opposed to reliance on 

historical data (Barceló et al., 2010; Bhaskar et al., 2014). However, the 

literature shows that continued research is required to maximise the potential of 

Authors Bluetooth research areas Methods Conclusions Remarks

Pasolini and 

Verdone (2002)

Suitability of Bluetooth in 

ITS for provision of services 

for guidance support, and 

effect of vehicular speed and 

multipath fading.

Analytical and 

experimental text-

bed. Examined the 

maximum distance 

between devices to 

communicate.

Bluetooth 

communication is 

sturdy but the presence 

of many vehicles can 

cause performance 

degradation due to the 

polling technique used 

by Bluetooth. Link 

performance is not 

limited by vehicle speed 

but by the amount of 

signal-to-noise ratio, 

and the transmitted 

power

An indoor experiment. Examined 

connection set-up delays and 

transmission reliability in a 

dynamic scenario. Found that 

file transfer delay is not affected 

at distances less than 60m

Houston 

TranStar (2010)

Speed, travel times, and 

cost comparison

Toll tag and 

Bluetooth data were 

used. 3,271 toll tag 

speed compared to 

7,492 Bluetooth 

speed data sample

The two sets of data 

were virtually the same 

after filtering to remove 

outliers. Accuracy rate 

of Bluetooth as high as 

that of AVI system. AVI 

cost per unit - $75,000. 

LPR - $25,000 per four-

lane installation; and 

Bluetooth - $2,000 is 

low-cost

Focus mainly on speed data. 

Low-rate not accounted for i.e. 

how to know the real traffic 

volume, variability not discussed, 

and detection rate is unknown. 

The study was conducted on a 

2.2 miles road for 24 hours (1 

day). Speed less than 5 mph on 

a freeway were removed. No 

result was presented in the 

report

Bachmann et al. 

(2013)

Freeway traffic speed 

estimation

Combined Bluetooth 

with loop detector 

data for improved 

speed estimation

Bluetooth and probe 

data such as GPS can 

improve estimation

The study is carried out on a 

freeway and not in urban roads 

that has different characteristics
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this technology in traffic management. In fact, Nantes et al. (2014) noted that 

the issues of accuracies in Bluetooth data are yet to be adequately resolved. 

 

Filgueiras et al. (2014) presented proof-of-concept deployment of Bluetooth 

technology to detect traffic flow conditions. The results showed that different 

information such as O-D matrices and travel times can be obtained using 

Bluetooth. The significance of Bluetooth traffic monitoring as a reliable source 

for O-D matrix was demonstrated in the study conducted in an urban area of 

Brisbane using seventy-nine Bluetooth sensors. This study compared Bluetooth 

results with loop detector data for assessment (Laharotte et al., 2014; Laharotte 

et al., 2015). O-D matrix estimation based on Kalman filtering has also shown 

promise for real-time estimation as previously demonstrated (Barceló et al., 

2013; Zhong and Lee, 2014). This feasibility was also affirmed by Fernández-

Lozano et al.,(2015). Table 2.17 presents a summary of the key research on 

Bluetooth O-D estimation. This research will build on the available knowledge of 

the use of Bluetooth data to explore both the spatial and temporal variations in 

the estimated O-D matrix within GMN to reveal relevant underlying information 

about Bluetooth O-D estimation. 
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Table 2.17: Bluetooth applications to origin-destination analysis 

 

2.5.6 Other relevant use of Bluetooth traffic sensing 

Table 2.18 presents related studies to Bluetooth traffic sensing with a focus on 

applications such as density estimation, sensors positioning and distributions, 

stand-alone traffic monitoring, and traffic light management (Nantes et al., 2014; 

Collotta and Pau, 2015; Park and Haghani, 2015; Salem et al., 2015). Also, 

Ayodele et al. (2014) presented the autonomic concept of Bluetooth to estimate 

vehicle emissions, while Bluetooth was used to detect passenger trips on public 

transport buses in Funchal, Portugal. Bhaskar et al. (2014) have demonstrated 

Authors Bluetooth research areas Methods Conclusions Remarks

Pasolini and 

Verdone (2002)

Suitability of Bluetooth in 

ITS for provision of services 

for guidance support, and 

effect of vehicular speed and 

multipath fading

Analytical and 

experimental text-

bed. Examined 

the maximum 

distance required 

for devices to 

communicate

Bluetooth communication is 

sturdy but the presence of 

many vehicles can cause 

performance degradation due 

to the polling technique used 

by Bluetooth. Link 

performance is not limited by 

vehicle speed but by the 

amount of signal-to-noise 

ratio, and the transmitted 

power

An indoor experiment. Examined 

connection set-up delays and 

transmission reliability in a 

dynamic scenario. Found that file 

transfer delay is not affected at 

distances less than 60m

Blogg et al. 

(2010)

Travel time and O-D 

estimation  

Utilised station 

count from 

Bluetooth 

sensors installed 

in Brisbane for O-

D analysis

Reported that the results of 

the O-D estimation compared 

well with ANPR and Video 

data. 

The study location is more or 

less a linear network. This may 

not be representative of the 

scenario for a complex O-D 

network. This study also utilised 

the MAC detection to estimate 

detection rate, and was 

subsequently compared with the 

actual volume. This does not 

reflect the true estimation level 

from Bluetooth

Barcelo et al. 

(2012)

Travel time and O-D 

estimation in freeway

Study conducted 

on a 40-km long 

section of road in 

Barcelona Spain

A caution on the use of 

Bluetooth for O-D matrix 

estimation

The data collection was over 2 

months period in 2009. This 

study appears to make use of 

both Bluetooth and WiFi in the 

estimation of the O-D matrices. 

Therefore, the conclusion drawn 

cannot be generalised for 

Bluetooth

Barceló et al. 

(2013)
Estimation of O-D matrices

Kalman filtering 

approach

The numerical results shows 

Bluetooth possibility

The use of Kalman filter is 

memory intensive

Wang et al. 

(2013)

Dynamic O-D estimation 

and feasibility study

Used cell phone 

location tracking 

algorithms for 

data collection 

and estimation

Detection of 17.6 percentage 

of the daily traffic. The 

tracking algorithm is 

preferable for long distance or 

inter-city trips. It requires 

longer observations to 

increase the sample size

Six weeks observation in Kansas 

Metro Corridor

Bhaskar, et al. 

2014
Estimation of traffic state

Integrated 

Bluetooth and 

loop data to 

estimate travel 

time and density 

Bluetooth provides a good 

estimate of travel time but 

there is variability in sample 

size captured

The issue of variability in the 

sample collected is not 

discussed. Also the validation of 

the estimated density was 

through simulation. This is a 

common practice in anyway
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the potential of Bluetooth for density estimation to understand traffic 

characteristics. In the past, this quantity has been difficult and expensive to 

acquire but the problem can now be overcome using Bluetooth data (Bhaskar et 

al., 2014). Figure 2.2 presents the generalised relationship among speed, 

density, and flow rate showing the three fundamental parts of a typical speed-

flow curve viz: upper part – free flow, low part – congestion, and the projected 

part – busy (Purdue University, 2016). This and other applications such as 

modes classification (Araghi et al., 2012a), automatic vehicle identification, toll 

collection, and distress alert etc. can be explored to improve traffic 

management. Other applications include congestion study through the analysis 

of travel time index (TTI) – the ratio of the actual peak period to free-flow travel 

times (Lomax, 2010). A working definition of congestion is ‘travel time or delay 

in excess of that normally incurred under light or free-flow travel conditions’ 

(Gifford, 2003, page 181). HCM (2000) defined traffic delay as the delay 

component resulting from reduction of speed below the free-flow speed due to 

interaction of vehicles. When delivering a decision support system, objectives 

are set out and performance measures designed against the most appropriate 

option to be selected (Ayodele et al., 2014). LOS (level of service) measures 

the performance level of the network at various operating conditions (Mathew, 

2014). In the future, Bluetooth might be used in this regard to deliver an efficient 

decision support system. For example, information gathered using Bluetooth 

may be sent to drivers based on the driving condition to optimise the speed and 

where possible to always arrive at junctions on a green light. Cooperative and 

integrated deployment of Bluetooth technology is another potential application. 

The European Commission defined cooperative systems in road traffic as: 

cooperation between road operators, infrastructure, vehicles, their drivers and 

other road users to deliver the most efficient, safe, secure and comfortable 

journey beyond what stand-alone systems can achieve (European Commission, 

2004). Cooperative mobility on the other hand is defined as the sharing of 

information due to the interconnection of vehicles and infrastructure leading to 

better cooperation amongst drivers, vehicles and roadside systems (Boethius, 

2011). The intelligent use of Bluetooth data in this way could help deliver a safe, 

sustainable and robust future transport system. In particular, the fusion of fixed 
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and mobile networks (Edwards et al., 2012). Combining different data sources 

in connected and inter-connected environments begins to deliver the essential 

metrics that underpin a cooperative system. The added advantage of Bluetooth 

is that it is not affected by weather conditions such as snow or fog, unlike ANPR 

or video recording. This makes Bluetooth robust and complementary to the 

existing ITS sensors to deliver the cooperative objectives. Bluetooth could also 

serve as a ‘big data’ source to meet transport demands. Big data refers to 

enormity in five dimensions namely volume, variety, velocity, variability, and 

complexity, and are from different sources and formats that include mobile 

devices and the web (Troester, 2012). 

 

Figure 2.2: Generalised relationships among speed, density, and flow rate on 

uninterrupted-flow facilities 

Source: Modified from Purdue University (2016) 
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Table 2.18: Other relevant applications of Bluetooth traffic sensing 

Authors Bluetooth research areas Methods Conclusions Remarks

Hallberg et al. 

(2003)
Positioning Bluetooth-based RSSI Developed positioning system based on Bluetooth. Not effective with personal Bluetooth devices

Castano et al. 

(2004)
Local positioning

Used RSSI (received signal Strength Indicator) 

distance estimation based on Kalman filter

The application can be used to track patients in the 

hospital

Only the transmitted power and the RSSI provided reliable 

information for distance estimation

Solon et al. 

(2006)
Bluetooth vulnerabilities

Explored the vulnerability levels of Bluetooth 

from three different manufacturers over 5 days

Detected over 340 Bluetooth-enabled devices of which 

Nokia presented the highest vulnerability rate (60%), 

Motorola (10%), and Sonny Erickson (30%)

The outcome is more of a concern for a Bluetooth 

manufacturer than for a traffic engineer

Browning and 

Kessler (2009)
Bluetooth Hacking

Explored different phones at varying operational 

conditions to test for attack
Concluded that there is possibility of Bluetooth hacking

The issue of Bluetooth vulnerability is limited in traffic 

management

Tarnoff et al. 

(2009)

Performance evaluation of 

freeway and arterials

Made use of Class 1 and Class 2 radios for 

vehicle detection on freeway and arterials

Introduced capabilities for Class 1 and Class 2 radios. 

Sample size of 5 - 7% with high level of accuracy
No results shown on the accuracy level

Martchouk et al. 

(2011)

Variation in different weather 

conditions (normal and 

abnormal)

Anonymous Bluetooth sampling on freeway 

using the hazard-based model

Significant difference in mean and standard deviation of 

travel time in different weather conditions

the two weeks data may not give the knowledge of any 

seasonal variability

Porter et al. 

(2011)

Calibration of sensor and travel 

time estimation

Explored the suitability of five different types of 

Bluetooth antennae

Antenna type has impact on the quality of the data 

collected
This may not require much further study

Abbas et al. 

(2013)

Microscopic modelling of 

control delay
Used Bluetooth and GPS probe vehicle data

The combination of Bluetooth and GPS data gives an 

added advantage

This area needs further investigation as results are based on 

simulation

Abedi et al. 

(2013)

Crowd data collection and 

monitoring

WiFi and Bluetooth data collection methods 

were contrasted. Investigated different antenna 

types

WiFi has shorter discovery time, and is preferable for crowd 

data
Benefits, challenges and enhancements were considered

Bhaskar and 

Chung (2013)

Bluetooth as complementary 

data source

Explored the effects of detection zone on the 

accuracy of travel time estimation using 

Bluetooth

Proposed three modes of estimation for travel according to 

the modelled section of the signalised urban environment
Explored accuracy and reliability of travel time

Hainen et al. 

(2013)

Quantitative evaluation of the 

operations of airport security 

check point

Exploratory analysis of the data was performed

Demonstrated that crowd source data obtained from mobile 

devices can be used to develop multi-modal transportation 

performance measures

Made use of 12 days (30 August -13 September 2010) data 

collected at George Bush International Airport. Exploratory 

analysis was performed and not quantitative analysis

Allström et al. 

(2014)
Calibration of traffic state

Calibration framework based on velocity based 

cell transmission model and ensemble Kalman 

filter

The results showed that for travel time estimation when 

calibrating the parameters on two-stage process is 

possible and even more important for travel time prediction

The scale needs to be extended for further generalisation

Bhaskar, et al. 

(2014)

Travel time and density 

estimation

Integrated Bluetooth and loop data to estimate 

travel time and density 

Bluetooth provides a good estimate of travel time but there 

is variability in sample size captured

The issue of variability in the sample collected is not 

discussed. Also the validation of the estimated density was 

through simulation. This is a common practice anyway
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2.6  Knowledge Gap 

Important research gaps are identified from the literature review conducted. For 

example, little research has been carried out to understand the variability and 

errors in Bluetooth-derived metrics that usually cause uncertainty about 

conclusions drawn from the data (Turochy and Smith, 2002; Moghaddam and 

Hellinga, 2013). Also, evidence of the accuracy levels of the estimated traffic 

metrics as well as their statistical significance to ensure reliable reconstruction 

of traffic patterns and trends is hitherto under-investigated. This is because 

previous studies are limited in scale (period of data analysed) and also in terms 

of test and validation of field data. Simulation studies are often carried out 

instead. Besides, there is little knowledge of the variability and the spatial 

relationships in the estimated traffic metrics. In addition, there is little knowledge 

on the proportion (detection rate) of the actual traffic to understand the 

representativeness and reliability of traffic metrics estimation using Bluetooth 

sensors. For example, the current practice and research have estimated 

detection rates in different ways, namely: i) estimation based on the total 

devices captured at a station (Camacho et al., 2010; Beca, 2011; Srinivasan, 

2011; Cragg, 2013); and ii) estimation based on the combined (total) directional 

flow (O'Neill et al., 2006; Cragg, 2013) (Section 2.3.4). The major limitation in 

the current practice of Bluetooth traffic flow and detection rate estimation is that 

such information is inadequate to plan and manage a complex transport 

network effectively. Three key reasons are identified for this limitation. Firstly, 

the aggregate representation of the traffic flow using the total devices captured 

does not represent the actual vehicular flow. For example, pedestrians carrying 

Bluetooth-enabled devices do not contribute significantly to traffic congestion or 

pollution. Secondly, the estimation of traffic flow using the total directional flow 

(summation of flows on the opposing links) does not present the level of service 

(LOS) each way in the network. Thirdly, the potential application and limitations 

of the Bluetooth approach to traffic management needs to be understood. In 

fact, Blogg et al. (2010) highlighted these problems as areas requiring 

improvement in knowledge. Therefore, a critical assessment of these limitations 

will enable a better understanding of the data to inform usability. Accordingly, 

clear distinctions between the different types of flow estimation are made to 



55 

 

underscore the importance of the specific flows. The above challenges are 

considered very significant research gaps to inform usability; benefits derived, 

statistical confidence and sound inference on the subject. 

 

2.7 Conclusions 

This chapter presents a critical review of the relevant literature on the use of 

Bluetooth technology as an ITS sensor for traffic monitoring and metrics 

estimation (link-flow, travel times, speed and O-D matrix). The review focused 

on vehicular traffic while examining the issues of data requirements, accuracy 

and reliability. Currently, there is little work done in the area of ITS applications, 

particularly the applicability and viability of Bluetooth technology. The early 

studies showed that the availability of discoverable devices within the network is 

essential to the reliability of the results. Studies on the detection rates (2- 40%) 

of Bluetooth have been conducted on people and vehicles using different 

methods and over different geographical locations. There is a gap in knowledge 

regarding link-based estimations, accuracy, and the variability that may affect 

the results, and these are therefore taken into account in this study. 

Consideration was given to suitable analysis techniques such as exploratory 

and quantitative methods as the basis for results validation. With time, research 

into Bluetooth may form a key research area in the concept of Big data in 

solving transport problems. That is, Bluetooth may constitute an important part 

of the wide variety of data sources for transportation applications. Using a 

technological-based option such as Bluetooth to collect traffic data is 

considered a viable proposition. Therefore, Bluetooth could form an arm of 

traffic management functionalities to deliver performance measures such as 

travel time and speed to enhance traffic operations. However, the validity of 

these performance measures needs to be explored with respect to the 

established methods. The performance of Bluetooth at different temporal 

dimensions is considered an important research gap given that Bluetooth traffic 

monitoring is still a novel area. This review provides the motivation for continued 

research on the use of Bluetooth in ITS to support the realisation of better 

transport. Also highlighted are future directions and other potential applications. 
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This PhD research will explore, through validation, the reliability of Bluetooth for 

traffic sensing and metrics estimation in urban roads in the UK. Focus will be on 

four key traffic metrics (flow, travel time, speed, and O-D matrix). The next 

chapter presents the research methodology based on the Bluetooth approach to 

traffic sensing and metrics estimation. 
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Chapter 3. Research Methodology 

3.1  Introduction 

This chapter presents the methodology adopted in this research on Bluetooth 

traffic detection and metrics estimation, based on Bluetooth-enabled devices 

from vehicular traffic This chapter builds on the available knowledge such as 

that presented by UMCATT (2008) and Bhaskar and Chung (2013), to design 

and develop a Bluetooth-based data collection and processing model 

(TRAFOST). The model was used to derive and analyse traffic metrics (link-

flow, travel time, speed and O-D matrix) at the chosen study sites in fulfilment of 

Research Objective number ii. While progress has been made in the area of 

travel time analysis, significant improvements are still required in order to 

understand the systematic procedure to derive useful traffic metrics. Therefore, 

this chapter presents a detailed discussion of the fundamental requirements to 

realise reliable estimates of traffic metrics using Bluetooth data. The discussion 

in this chapter encompasses research design through to results validation. 

  

This chapter is structured as follows: Section 3.2 presents the research design 

detailing the research objectives and the corresponding methods of 

accomplishment, the data required, and the expected outcomes. The methods 

of Bluetooth data cleansing are presented in Section 3.3. This section considers 

the reliability and consistency of Bluetooth measurements of traffic data, 

representativeness of the measurements, multiple detection, and outliers to 

conclude the discussion. Section 3.4 presents the estimation methods of traffic 

metrics using Bluetooth data with a focus on travel time, flow, speed, O-D 

matrix, and detection rate. The validation methods for the results from Bluetooth 

data are presented in Section 3.5. This section deals with the strategies to 

validate Bluetooth results, before conclusions are drawn in Section 3.6. 
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3.2  Research Design 

3.2.1 Justification of the research method 

This section establishes the research problem and justifies the Bluetooth 

approach to traffic sensing and metrics estimation. As highlighted in research 

literature, conventional methods of traffic data collection and estimation are 

either very expensive to acquire and maintain, or difficult to implement. While 

technologies such as the FCD, ZigBee and WiFi present valid alternatives in 

terms of data requirements and cost, they have a lower penetration and growth 

rate compared to Bluetooth. For example, the penetration of Bluetooth in 

vehicles, mobile phones, and electronic devices gives Bluetooth an edge over 

other valid alternatives. Since the first report published in June 2008 on the use 

of Bluetooth for travel time estimation, there has been continuous evolution in 

this regard. However, the literature review clearly shows that continuous 

research is required to fully exploit the benefits of this technology in traffic 

management. Accordingly, this research considers the reliability of Bluetooth 

traffic sensing and metrics estimation, with a focus on the issues of accuracy 

and variability. To accomplish this, the Bluetooth results will be validated using 

already established methods to enable valid conclusions to be drawn on the 

applicability of the technology to enhance road traffic monitoring and 

management to reduce congestion. Central to this problem is the need to 

design, and develop a Bluetooth-based data collection, processing, and 

analysis procedure to derive useful traffic metrics. Currently the processing 

software are commercial-based, and are not available to the public. R 

programming language is adopted in this reasearch because R is free and open 

source unlike for example, Matlab that requires a licence. Figure 3.1 presents 

the diagrammatic flow of the research method showing the three main stages. 
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Figure 3.1: Research method diagrammatic flow 

 

3.2.2 Data requirements and description 

The research design consists of two sets of data: i) Bluetooth – the main data 

under investigation; and ii) the validation data sets – obtained from ATC and 

SCOOT loop detectors, ANPR cameras and GPS Traffic Master (TM) in the 

same-location as the Bluetooth sensors. The data from the ATC and SCOOT 

loop detectors are subsequently referred to as ATC and SCOOT flows. Table 

3.1 presents a summary of the data required to accomplish this research. The 

summary includes the data type, period of collection, location, purpose and the 

number of stations and links used. Essentially, second-by-second Bluetooth 

encrypted raw data captured over the period 2011 to 2014 were used. 

Moreover, 15-minute Bluetooth counts obtained from C2-web – the software 

used by Transport for Greater Manchester (TfGM) also formed part of the data 
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used for the validation. The short-term study consisted of two weeks’ worth of 

data, while the long-term study made use of the data collected over the year 

2013. The SCOOT data (15-minute link flows) complemented the ATC data (15-

minute lane-by-lane flows) to ensure a sound and robust investigation. The 

limited ANPR data (vehicle-by-vehicle record over one day) were complimented 

with GPS Traffic Master data comprising six months (April – September 2013) 

of hourly averages to validate the estimated travel time and speed, in order to 

ensure statistical significance. The validation is essential to adequately 

establish the reliability of the Bluetooth approach to traffic metrics estimation. 

 

Table 3.1: The description of the data requirements for the Bluetooth research 

 

3.2.3 Bluetooth sensors set-up and data acquisition 

TDC-Systems Ltd (TDC) developed and tested the Bluetooth sensors used in 

the acquisition of data in this research. TDC, in conjunction with the relevant 

Local Authorities, performed the set-up of the sensors for continuous onsite 

monitoring and transmission of data to the online database. The site selection 

Task
Data Source and 

Type
Period Purpose Location

Number 

of 

Stations/

Links

Model development 

and traffic metrics 

estimation

Bluetooth (Encrypted 

raw data and 

summary data from 

C2-Web)

Over 3 years 

(data from 

2011 to 2014 

inclusive)

Model building 

and estimation of 

traffic metrics; 

data quality, 

variability and 

transferability 

assessment

Liverpool, 

Birtley, and 

Manchester

55

Results validation
ATC (15-minute lane-

by-lane flow)

1 year over 

2013
Validation of flow

Manchester 

(Wigan – 1; 

Stockport – 2; 

Trafford – 2)

5

Results validation Validation of flow

Results validation
ANPR (Vehicle-by-

vehicle record)

1 day in 

March 2014

Validation of 

journey times and 

speed

A6, Stockport 

Road
2

Results validation

Traffic Master (Hourly 

average of journey 

time and speed)

Six months 

from April - 

September 

2013 

Validation of 

journey time and 

speed

Manchester 4

1 year over 

2013

Stockport, 

Manchester
2

SCOOT (15-minute 

link flow)



61 

 

was based on a careful consideration of factors that could affect the quality of 

data captured by the Bluetooth sensors (McDonald, 2013). That is, the sensor 

locations were selected for optimum performance. The stations were chosen 

and coordinated within the vicinity of existing traffic monitoring sensors, such as 

SCOOT and ATC loop detectors, within the road networks. The Bluetooth 

sensors were installed on an existing infrastructure at a height of 3m from the 

ground at the chosen stations. Data was captured through an automatic 

technique throughout the period of observations. Devices with their Bluetooth 

switched on and enabled were detected as they passed through the detectors’ 

locations. This identification principle underpins the traffic data collection 

technique using Bluetooth technology. It is to be noted that the detected MAC 

addresses were encrypted before transmission to the online database for 

further analysis, either through real-time or post-processing. The encryption of 

the data complies with the Data Protection Acts to ensure that the privacy right 

of the device’s owner is not compromised (TDC, 2011). The data used for post-

processing and analysis of traffic metrics was downloaded from the online 

database through the access codes provided by TfGM. 

 

Data availability and the reputation of TDC in producing traffic management 

systems are the reasons for making use of the data from TDC sensors. The 

sensors are ‘Class 1’ type designed to operate through continuous detection of 

Bluetooth discoverable devices carried by different traffic modes. The Hi-Trac 

Blue sensors utilised were developed in line with the core specifications of 

Bluetooth SIG (Special Interest Group) for automatic data capture (TDC, 2011). 

The sensors can cover up to six lanes at speeds up to 70mph, and they are fully 

compatible with all Bluetooth specifications (TDC, 2011). The sensors were 

designed to detect Bluetooth-enabled devices within the detection zone (range 

of 93m) seamlessly as opposed to the customary Bluetooth which is designed 

to connect with discoverable devices through password authentication. These 

Bluetooth sensors do not require code generation to initiate connection, and the 

process of detection is unnoticed by the device carriers (TDC, 2011). The data 

collection in this research was over five contrasting urban areas across three 
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study sites (Liverpool, Birtley and Greater Manchester). The contrasting sites 

enable the understanding of the variability in results as well as transferability of 

the method. The study sites were chosen primarily due to data availability and 

the suitability to test the objectives of this research. However, it should be noted 

that changes to the research design due to limitations in the required sets of 

data from the Liverpool and Birtley studies brought about the additional sites in 

Manchester. The period of collection of Bluetooth and the validation data sets 

spanned 2011 through to 2014.  

 

3.2.4 Description of the methods 

This section describes the research objectives, the methods and data used as 

well as the expected outcomes. Table 3.2 and Table 3.3 present the research 

design classified as preliminary and evaluation stages respectively. This 

research design constitutes the plan to actualise the current problem, and to 

arrive at logical conclusions. The preliminary stages consist of objective 

numbers i to iii, while the evaluation stages consist of objective numbers iv to vi. 

In the design, a thorough review of the literature is first considered to establish 

gaps in knowledge and to contextualise the research. The second objective 

focuses on the development of a Bluetooth-based traffic data collection and 

processing procedure. Data collection and the pilot study were examined in 

objective number iii to round up the preliminary stages. At the evaluation stage, 

Bluetooth results were compared with the ground truth data to understand 

consistency, accuracy and variability in the data to enable critical analysis and 

interpretation in order to arrive at logical conclusions.  
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Table 3.2: Research design – preliminary stages 

 

 

Objective 

number

Description of research 

objectives

Methods to achieve 

the objectives
Required data

Expected 

outcomes

i This is to gain a 

comprehensive knowledge 

on Bluetooth application in 

traffic management and 

related applications to 

establish research gaps in 

current literature to extend 

the body of knowledge in 

this field of study

Online databases such 

as Web of Knowledge, 

Scopus, etc will be used 

to search for relevant 

articles and journals in 

this field

Data collection is 

not required at 

this stage. 

However, relevant 

information on the 

research topic will 

be acquired

Thorough 

knowledge of the 

field of study, and 

identification of 

gaps in the 

literature as well as 

contextualisation of 

this PhD research

ii This involves the design 

and development of a 

model based on Bluetooth 

to derive traffic metrics

Acquisition of the 

relevant skills such as 

algorithm development, 

programming, data 

management and 

processing, etc.  Liaising 

with the relevant 

stakeholders such as 

TfGM and TDC

Bluetooth data 

(few) to 

understand the 

physical 

properties such 

as structure and 

formats

The processing 

algorithms and a 

prototype Bluetooth-

based model for 

traffic metrics 

estimation

iii This objective involves data 

collection and the 

application of the model in 

targeted pilot studies in 

Liverpool, Birtley and 

Manchester for an overview 

of the potential of Bluetooth 

data for traffic 

management

Data collection shall be 

mainly through online 

download from TfGM 

database. Site visitation 

for verification where 

necessary, and model 

application for an 

overview study

Bluetooth, 

SCOOT, ATC, 

ANPR, and Traffic 

Master datasets 

shall be collected 

but only the 

Bluetooth data 

shall be utilised at 

this stage

Availability of the 

relevant data, and 

general 

understanding of 

the research based 

on the pilot studies
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Table 3.3: Research design – assessment and interpretation stages 

 

 

Objective 

number

Description of 

research objectives

Methods to achieve the 

objectives
Required data Expected outcomes

iv The performance of the 

model (TRAFOST) 

developed in Objective 

number ii will be 

examined for 

consistency, and fit for 

purpose, while the 

Bluetooth-derived traffic 

metrics will be tested for 

accuracy and reliability

Results from the model will be 

compared with the results from 

independent computation such as 

an independent software used by 

TfGM and Excel model. The use of 

repeated measurements where 

validation data sets are not 

available. Results will be validated 

against diverse independent 

measures of traffic to establish 

correlation. Relevant exploratory 

and quantitative analysis such as 

histogram, boxplot, and QQ plots 

will be explored. RMSE, MAD, and 

MAPE will be used as accuracy 

metrics to understand the degree 

of closeness of the estimated 

metrics to the actual or "true" 

values. ARIMA models shall be 

employed in the modelling of the 

estimated traffic metrics while the 

80-20 rule of data splitting will be 

used to separate the training and 

test data sets. KL-D will be used to 

match Bluetooth data with the 

ground-truth to reach valid 

conclusions

Bluetooth, 

SCOOT, ATC, 

ANPR, and 

Traffic Master 

data

Calibrated and 

validated model and 

results. Establishment 

of the accuracy and 

reliability levels of the 

traffic metrics derived 

from Bluetooth.

Statistical significance 

level of accuracy of 

Bluetooth-derived 

traffic metrics

v Objective number v 

deals with the analysis 

of the variability in 

Bluetooth-derived traffic 

metrics to enable 

concrete deductions and 

sound inference

Exploratory analysis to understand 

some underlying properties; 

Principal Component Analysis 

(PCA) for data reduction; and 1-

way ANOVA and Tukey’s test to 

determine possible homogeneous 

subset. Variability statistics such 

as standard deviation and 

coefficient of variation (CV) shall 

be used. The representativeness of 

the sample shall be established 

using the package 

"samplesize4surveys" in R while 

CV will help to remove spatial 

differences such as scale in the 

data

A year (2013) 

Bluetooth data 

from the Greater 

Manchester 

Network (GMN) 

will be used

Understanding of the 

variability in Bluetooth-

derived traffic metrics. 

Availability of releveant 

information to make 

informed decisions. 

Establishment of 

Bluetooth detection 

rates. Concrete 

conclusions to justify 

credibility

vi To interpret the results 

and make deductions 

from the research 

findings in a wider 

context of applicability 

and viability and make 

recommendations for 

traffic management

Relevant skills such as critical 

interpretation and academic writing 

will be employed

The results 

obtained from 

the long-term 

study shall be 

interpreted for 

this purpose

Provision of relevant 

information to enhance 

traffic management 

using Bluetooth data. 

Contribution to the 

body of knowledge on 

the use of Bluetooth in 

ITS and traffic 

management
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3.2.5 Development of TRAFOST for data processing 

Given that the currently available software are commercial-based, and are not 

available to the public, a novel Bluetooth-based model (TRAFOST - Figure 3.2) 

was developed in this research to optimise Bluetooth data processing in order 

to derive useful insights. Appendix 3A presents the basic description of the four 

stages of the model, while the relevant codes are presented in Appendix 3B. 

The components relating to data cleaning and metrics estimation are presented 

in the subsequent sections. While effective data processing and cleansing 

requires the use of an existing or a novel algorithm, Heer (2014) stressed the 

importance of adequate data preparation before sending an algorithm over raw 

data to derive useful insights. Accordingly, the first major requirement will be the 

ability to manage and process the data to derive new insights. The processing 

of these huge data sets is usually carried out using machine learning, Hadoop 

(a free Java-based programming framework), programming languages such as 

R, cloud computing, and predictive analytics (Cook, 2014). Cleaning up data to 

the point where it becomes meaningful and useful is very demanding, and 

reconciling diverse data sources over which one has no control can take 80% of 

the total time (Smith, 2014). Therefore, in the design and application of 

TRAFOST, basic assumptions were made and tested in line with the research 

problem in order to obtain meaningful results. 

1. All sources of errors (natural, instrumental, and personal) are assumed to 

be minimised at the time of installation of the Bluetooth sensors. 

Consequently, the results and any deductions made are not affected in 

this regard.  

2. The Bluetooth traffic volume is expected to be higher during the 

congested period than at free flow, and similarly it is expected to be 

higher on weekdays than on weekends according to changes in the 

traffic situation and vice versa. 

3. The Bluetooth sample of the traffic is expected to be consistently lower 

than the actual traffic, with a linear relationship corresponding to an 

increase or decrease in traffic level. 
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4. In a network of similar characteristics and under normal conditions, the 

detection rate was assumed to be constant over hours, days and across 

the network. This constancy is expected particularly if assumption 

number 3 is valid. Otherwise, Bluetooth might be difficult to apply to 

traffic management. 

5. Following the a priori knowledge of the road network, devices travelling 

below 6km/h and above 120km/h are classified as outliers according to 

the boundary filter which was designed based on the average walking 

speed and the maximum speed the Bluetooth sensor can capture. These 

outliers include pedestrians, and high-speed vehicles (such as an 

ambulance), and are therefore not part of the traffic estimation. 

Consequently, advanced data filtering is required to cleanse other 

outlying values and noise remaining in the data, and these are taken into 

consideration in order to obtain valid results. 

6. Irrespective of the filtering algorithm employed, noise arising from 

difficulty in differentiating devices during congestion, and unknown exact 

detection time of a device due to the inquiry time will be present in the 

estimation. Therefore, the design of the algorithm is subject to this 

limitation. However, estimation errors are expected to be minimised in a 

well-refined algorithm to obtain a valid result. 

7. Another assumption made is that following appropriate data filtering by 

removing all sources of errors, Bluetooth results should present profiles 

and distributions similar to the actual traffic. Otherwise, the estimation 

algorithm will be considered to be in error and thus require modification; 

and where there is a marked difference not due to algorithm error, the 

data will be considered unusable. 

8. If research assumption number 7 is valid, and the results are consistent 

with precision and accuracy, then the estimated metrics are considered 

reliable. Thus the reliability of Bluetooth for traffic metrics estimation to 

support traffic management and ITS applications such as in decision 

support systems and data augmentation will have been established. 
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Figure 3.2: Bluetooth data processing algorithm design 

 

3.3  Methods for Bluetooth Data Cleansing 

3.3.1 The Rationale 

Innovative traffic data collected from diverse sources such as Bluetooth, Twitter 

and a wide variety of other sources are often under-utilised (Ngoduy, 2013; 

Cook, 2014). This under-utilisation is believed to be primarily due to the 

problems inherent in the processing of these data to derive useful information. It 

is often challenging to analyse these data sets due to their enormity in volume 

and nature, leading to the frequent arrival of incoherent data in the database. As 

earlier stated in Sections 2.3.1 and 2.3.4, the data captured by Bluetooth 

consisted of MAC addresses from mobile phones, headsets and SatNavs 

carried by pedestrians, cyclists and onboard vehicles. This means that not all 

the Bluetooth devices detected by the sensors are from vehicular traffic. Also, a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START 

CLASSIFICATION OF 

DEVICES 

COMPUTATION 

OF SPEED 

DISTANCE COMPU- 
TATION FROM 
COORDS OF 
STATIONS 

COMPUTATION 

OF TRAV. TIME 

DATA MERGING 

FILTERING & TIME 

SERIES CREATION 

FILE REDUCTION 

& ORDERING 

CLASSIFICATION 

BASED ON DIRECTION 

DATA 

OK? 

DATA 

ANALYSIS, 

STAT. 

TESTING & 

MODELLING 

DATA 

STORAGE 

OUTPUT 

YES 

NO 

DATA 

DOWNLOAD 

    

1 2 
3 4 

 



68 

 

vehicle may have more than one Bluetooth enabled device on-board, and their 

location in the vehicle also influences their detection. For example, devices on 

the dashboard are 3.5 times more likely to be detected than when they are in a  

pocket or an obscured place (Stevanovic et al., 2015). Therefore, the 

challenges in the Bluetooth data cleansing relate to the issues of reliability and 

consistency, representativeness, multiple detection, and outliers in the 

measurements. These important factors are considered in the next sections to 

address Bluetooth data cleansing. 

 

3.3.2 Reliability and consistency of measurements 

The reliability of MAC readers refers to successful detection of Bluetooth 

devices by the MAC readers (Stevanovic et al., 2015). Reliability is also defined 

as the reciprocal of standard deviation (Bhaskar and Chung, 2013). This means 

that reliability can inform the knowledge of dispersion in the acquired data, and 

is in a way related to consistency that is determined by the precision 

(closeness) of one observation to the other in a group. Figure 3.3 presents an 

example plot of standard deviation of flows in both directions for weekdays’ 

observation to underscore the importance of data cleaning before the final 

analysis. High reliability of a measure is determined through the ability to 

produce similar results under consistent conditions (Chen et al., 2003). 

Therefore, for the estimated metrics to be reliable, the standard deviations 

computed under the same conditions must be similar (showing precision). This 

is in line with Shinya and Dragana (1999) that emphasised the need for the 

consistency of traffic volume data on different links of a network to ensure 

reliability. Accordingly, the estimated flows were filtered to remove the outlying 

values such as the spikes in the data using the Mahalanobis distance method. As 

in variability, the absence of consistency in data can influence measurements, 

analysis and in general the conclusion drawn (Lastdrager and Pras, 2009). It is to 

be noted that while reliable observations are consistent, the opposite cannot be 

said of consistent observations. Reliability is a function of a variety of factors 

such as location of the sensors, type of sensor, range and quality of the 

antenna used as well as the internal software settings such as the inquiry time. 
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Also, speed of the approaching vehicles, location of the Bluetooth devices 

within the car, and sensors’ hardware and software can affect the reliability 

(Stevanovic et al., 2015). Vehicles travelling at lower speeds are detected more 

reliably and omnidirectional antennae are detected more successfully 

(Stevanovic et al., 2015). Successful detection in this context does not connote 

accuracy but the tendency to capture more Bluetooth devices that include non-

vehicular modes. In particular, a longer range of detection zone is required to 

reduce random errors (Malinovskiy et al., 2011). The closeness of vehicles to 

the sensor location also increases the rate of detection (Stevanovic et al., 

2015). In this research, the Bluetooth sensor used for the data collection has 

been configured to account for the range of detection and vehicle speed to 

reduce random errors, and to ensure reliability and consistency in Bluetooth 

detection. In other words, the manufacturer’s settings of the sensors that 

include the inquiry time, second-by-second detection basis, and 93m detection 

range remain unchanged because this research has no control over the 

settings.  

 

Figure 3.3: Standard deviation of flows in NE and SW directions for weekdays 

on Link0506 
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3.3.3 Representativeness of the measurements 

Duplicate or multiple detection, and the location of the sensors can impact 

greatly on the representativeness of Bluetooth measurements by a way of 

introducing systematic or random errors. For instance, non-vehicular 

measurements captured by Bluetooth may be compared with traffic counts, 

which will give a false representation of the measurements. For example, if half 

of the detected devices are from non-vehicular sources, and are not removed 

from the data, the resulting estimate will be twice the actual vehicular detection. 

Blogg et al. (2010) referred to such representation as the capture rate and this 

is non-representative of the actual vehicular traffic. Other factors that could 

affect the representativeness of the estimation include missed detection – not 

all the devices can be detected while in the detection zone; and loss of 

information outside the detection zone, unlike the GPS method that could 

provide continous information throughout the journey. While these factors 

cannot be influenced after set-up, in this research, an appropriate data filtering 

that includes the removal of all error sources such as multiple detection, 

unrelialistic estimation, and outliers, is applied to ensure correct 

representativeness of the Bluetooth measurements. The filtered Bluetooth 

consisting of only the vehicular traffic is compared with the actual traffic count to 

obtain the detection rate. Literature shows that the current detection rate is 

greater than 2% of all vehicles, and it is considered a relatively modest sample 

size that is sufficiently large to provide a statistically robust performance 

evaluation (Hainen et al., 2011; Hainen et al., 2013). In this research, the 

validity of the Bluetooth representativeness shall be established using the 

package "samplesize4surveys" developed in R by Gutiérrez (2016). 

 

3.3.4 Multiple detection 

MAC noise arises from stationary and non-vehicular sources (Blogg et al., 

2010). However, appropriate data cleaning, extraction and aggregation are 

used to reveal the important information in a data set (Chang, 2014; Cook, 

2014). This information includes travel time and speed to identify patterns and 
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trends, and improving efficiency and safety within the road transport network. 

Araghi et al. (2015) investigated the effect of multiple detection using a three-

antenna configuration. For a single MAC address, RSSI was used as the 

criterion to determine multiple detection. The study used the dwell time 

approach to classify duplicate records given that different antenna 

configurations were used. The time difference between the time of entry and 

exit of device at a detection zone gives the dwell time of the device. Based on 

this principle, duplicate records were removed from the data. The time of 

detection such as entry and exit times has also been used (Quayle et al., 2010; 

Bhaskar and Chung, 2013). This research utilised the exit-to-exit and the dwell 

time approaches to deal with multiple detection. However, different antenna 

configurations as carried out by Araghi et al. (2015) could not be performed to 

test different scenarios due to the fact that the objectives of the Local 

Authorities that supplied the data used are independent of this research. 

Nevertheless, the dwell time approach is a valid method to identify multiple 

detection and invalid records. That is, any device with dwell time less than the 

average travel time of a link will be regarded as a duplicate record. 

 

In the exit-to-exit approach, the time of last detection was used. While the dwell 

time approach utilised the a priori knowledge of the network to set travel time 

limits based on two conditions: (i) on a short link, say a length of 0.154km 

(minimum within the network) and at 48km/h speed limit, which corresponds to 

a travel time of 11.55 seconds, if the dwell time is less than 4 seconds (which 

allows a margin of error for possible delay in the actual detection) it is a 

duplicate; (ii) on a long link, say a length of 7.463km (maximum within the 

network) and at 48km/h speed limit, which corresponds to a travel time of 

559.73 seconds, if the time difference between successive unique vehicle 

records was less than 300 seconds (also to allow a margin of error given that 

the data will be filtered), it is a duplicate because it is not expected that a 

vehicle would have made a return journey at less than such a travel time. The 

assumption here was that such a tracked device was either from a parked 
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vehicle or vehicle with a stop over. Based on this principle, duplicate records 

were removed from the data. 

 

3.3.5 Outliers 

A detailed review of outlier detection methods can be found in Stavig and 

Gibbons (1977) and Seo (2002). However, an outlier is a value that deviates 

markedly from other observations in the same sample (Hodge and Austin, 

2004). It is to be noted that all outlier detection methods have their strengths 

and weaknesses. Different outlier detection methods have been applied for 

Bluetooth data cleansing. For example, the Box-and-Whisker method has been 

used by Tsubota et al. (2011) while Kieu et al. (2012) combined Box-and-

Whisker and MAD (Median Absolute Deviation) methods for outlier filtering. This 

research considers the Tukey’s method (Box-and-Whisker) in conjunction with 

the Mahalanobis distance (MD). The Tukey’s method defines outliers as values 

greater than 𝑄3 +  1.5 ∗ 𝐼𝑄𝑅 and values less than 𝑄1 –  1.5 ∗ 𝐼𝑄𝑅, where 𝑄1, 𝑄3, 

and 𝐼𝑄𝑅 are the lower quartile, upper quartile, and inter-quartile range 

respectively (Crawley, 2005). This method is resistant to extreme values and is 

robust in handling large normal data, but is problematic with small data samples 

(Seo, 2002). The MD method as demonstrated by Warren et al. (2011) is robust 

to failures of assumption, flexible and incorporates both numerical and graphical 

outputs. The MD method implemented in this research utilises the 

chemometrics package in R (Filzmoser and Varmuza, 2013). The choice of the 

combination of the Tukey and MD methods is based on the recommendation of 

Warren et al. (2011) that any serious analysis of traffic or other pattern should 

utilise more than one technique. The robustness check is also necessary to 

avoid possible spurious outliers driving the model results as highlighted by Sebri 

(2016). Warren et al. (2011) have also shown that MD is very useful in 

analysing traffic volume data irrespective of the underlying assumptions. The 

traditional limitation of the MD is that it cannot be calculated if the number of 

variables exceeds the sample size due to the inverse of the weight matrix as 

shown in equation 3.1 (Brereton, 2015). However, this limitation is not 
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obtainable in this research because the sample sizes obtained are far greater 

than the number of variables. Accordingly, the MD was used in this research to 

check for multivariate outliers and to account for differences in scale and 

variance of each of the variables in the data in line with Mahalanobis (1936) and 

Starkweather (2013). Mahalanobis distance is defined as (Brereton, 2015): 

𝑑𝑚 = √(𝑥 − 𝜇)𝑆−1(𝑥 − 𝜇)       (3.1) 

Where (𝑥 − 𝜇) is a matrix of distance from the mean, and 𝑆−1 is the inverse of 

the covariance matrix. 

 

For the illustration of the MD method of outlier detection, Figure 3.4 presents 

the plot of Bluetooth flows against the Mahalanobis distances. The dotted line 

signifies the cut-off point (2.457) for determining outlying values. In the 

implementation, the R code based on the Moutlier function in R package 

Chemometrics was cross-checked in Minitab to ensure the results are free from 

systematic errors and blunders. Figure 3.5 and Figure 3.6 present the density 

plot and square of the MDs against Chi-square values. The concept is that the 

square of MDs has a Chi-square distribution with 𝑝 degree of freedom, and 

when the sample is large, the MDs have approximately Chi-square distribution 

(Penn State Eberly College of Science, 2016). The expectation is that for a 

multivariate normal distribution, the plot of MDs against Chi-square distribution 

should follow a straight line while the density plot should be approximately 

normal. Also, outliers are classified as points with significant difference between 

the MDs and the Chi-square, and are shown at the upper right corner (Penn 

State Eberly College of Science, 2016). Figure 3.7 presents another application 

of the MD method in detecting outliers in a two-dimensional plot (scatter plot) 

using Bluetooth/ANPR journey times for illustration. 
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Figure 3.4: Plot of flow against Mahalanobis distance showing outlying points 

 

 

Figure 3.5: Density plot of Mahalanobis distances of 2-degree of freedom 
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Figure 3.6: Q-Q plot of square of Mahalanobis distances against Chi-square of 

2-degree of freedom 

 

 

Figure 3.7: Plot showing outlying points in Bluetooth and ANPR journey time 

based on Mahalanobis distance method 
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3.4  Estimation Methods of the Traffic Metrics 

3.4.1 Estimation of flow  

The fundamental approach to determining travel time and other variables useful 

for inferring traffic conditions, such as flow and speed, using the Bluetooth 

approach has been previously discussed (Abbas et al., 2013; Barceló et al., 

2013; Bhaskar and Chung, 2013). This concept is based on the re-identification 

principle from which travel time and other parameters can be estimated 

(UMCATT, 2008; Young et al., 2013). The same concept is utilised in this 

research to estimate traffic metrics using the information collected by the 

Bluetooth sensors in the chosen study sites. Therefore, the term ‘estimate’ in 

this context refers to the use of Bluetooth information to determine or calculate 

an approximation for traffic metrics. The relevant codes for the estimation of the 

traffic metrics are contained in Appendix 3B (R-codes for Bluetooth data 

processing). Using Bluetooth, a single detector can detect and record the 

information on vehicles travelling in one or both directions in a road network. 

However, the challenge is that the data captured have no unique variables or 

parameters which identify the direction of travel of the detected devices. 

Therefore, the direction of travel of the devices cannot be differentiated using a 

single Bluetooth detector. However, when combined with data from another 

detector for example, the link-flow can be obtained through the separation and 

classification of the devices into their directions of travel. Table 3.4 presents the 

two (device and direction) main categories of classification performed by 

TRAFOST through data filtering. The first category is the device classification. 

As previously mentioned under the assumptions made in the algorithm design 

(Section 3.2.5), pre-defined minimum and maximum boundary limits (6km/h and 

120km/h) were set based on the a priori knowledge of the road network and 

walking speed to remove outliers. Therefore, devices travelling at a speed 

greater than the upper limit are said to be an emergency vehicle, traffic violator, 

or error in the data such as an encryption error in the MAC addresses. Similarly, 

devices travelling at speeds less than the lower limit are said to be pedestrians, 

parked vehicles (vehicle stop over), vehicles making use of a bypass or 

alternative route, and vehicles possibly not detected on time, particularly on a 
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short link. Devices in these categories were excluded from the metrics 

estimation as an initial step in the outlier removal process following the 

exclusion of duplicate records to obtain reliable results. 

 

The second classification involves the direction of travel given that at each 

station, vehicles travelling both ways were detected and recorded together. With 

the stations’ data merged, devices were classified into the direction of travel 

according to whether the computed travel time was positive or negative. 

Devices with a positive time difference were those travelling from origin-to-

destination, and devices with a negative time difference were those travelling 

from destination-to-origin. This basic principle was used to group detected 

devices into directional clusters within the networks. Accordingly, the individual 

link-flows of the detected Bluetooth devices as they passed the detectors were 

estimated to provide the time series records of flow at different temporal 

dimensions; 5, 10, 15 and 60-minute averages as well as daily, weekly, 

weekday, and monthly averages. In the future, handling this problem may 

become more simplified with further technological advancement to improve 

efficiency in automation and computation. 

 

Table 3.4: Summary of device and directional classifications 

 

3.4.2 Estimation of travel time 

The Bluetooth traffic monitoring approach makes use of the principle of 

identification and re-identification of vehicles at different stations within the road 

Classification 

Types

Device Vehicles Non-vehicles

Direction of 

Travel Origin-to-destination Destination-to-origin

Classes
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network to calculate travel times by matching MAC addresses at successive 

stations (Biora et al., 2012; Young et al., 2013). The time difference of the 

matched MAC address provides a measure of travel time and space mean 

speed determined by the link length between the successive stations within the 

detection zones (Haghani and Hamedi, 2013). For a reliable travel time 

estimation, Quayle et al. (2010) suggested the use of “ex-ex” (exit-to-exit) and 

“en-en” (entry-to-entry) detection time. Bhaskar and Chung (2013), on the other 

hand, recommended ex-ex travel time due to the delay observed at the 

upstream intersection. This recommendation is considered in this research in 

the estimation of travel time. The travel time between two stations, A and B, is 

given as (Bhaskar and Chung, 2013): 

𝑇𝐴𝐵    =   𝑇𝑇𝐸𝑥2𝐸𝑥 = 𝑇𝑇𝐸𝑥2𝐸𝑥
′ + (𝜀𝐷,𝑑 𝑠⁄ − 𝜀𝐷,𝑢 𝑠⁄ )     (3.2) 

Where  𝑇𝑇𝐸𝑥2𝐸𝑥 and  𝑇𝑇𝐸𝑥2𝐸𝑥
′  denote the actual and the estimated travel time 

respectively, and 𝜀𝐷,𝑑 𝑠⁄  and  𝜀𝐷,𝑢 𝑠⁄  are the error terms at the two stations. The 

error terms are from the possible delay in the detection of a device due to the 

inquiry time. However, if the magnitudes of the errors are the same, then the 

estimated and actual travel time are the same.  

 

3.4.3 Estimation of vehicle speed 

The basic principle in time and speed calculations is that a vehicle with a unique 

MAC address detected at two different sensor stations (say A and B) separated 

by distance 𝑆𝐴𝐵, metres will have travel time 𝑇𝐴𝐵 (𝑇𝐵 – 𝑇𝐴), seconds defined as 

equation 3.2 and speed 𝑉𝐴𝐵, m/s between 𝐴 and 𝐵 expressed mathematically as 

follows: 𝑉𝐴𝐵 =
𝑆𝐴𝐵

𝑇𝐴𝐵
          (3.3) 

Where 𝑉𝐴𝐵 is the average speed of a device from point 𝐴 to 𝐵 

𝑆𝐴𝐵 is the network-based distance between stations 𝐴 and 𝐵, and 

𝑇𝐴𝐵 is the time difference of the detection of the device at 𝐵 and 𝐴. Where the 

network-based lengths are not available, they are measured on Google Earth 
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using the path measuring tool. The measured link lengths were preferred to the 

computed lengths due to the curvature error in the computation, particularly 

where the road nature is irregular.  

 

3.4.4 Estimation of O-D matrix 

As stated earlier, the Bluetooth approach offers a direct method of sample 

estimation. However, using Bluetooth data collected from one station in isolation 

from another replicates the traditional link detector capability. The limitation in a 

single detector can be addressed by matching the MAC addresses between all 

the Bluetooth detectors across a network to create the origin and destination 

(O-D) information. In this research, an indication of O-D patterns within the 

areas of study was obtained by identifying and matching the same MAC 

addresses at different locations over the network. That is, the concept of the 

flow estimation described earlier, was applied to an area-wide network of 

Bluetooth array to estimate the network O-D matrix. Two types of O-D matrices 

classified as ‘one-many’ and ‘many-many’ according to the road network design 

and purpose, were estimated. In a one-many estimation, a reference station 

was chosen from where the origin-to-destination information is computed. On 

the other hand, the many-many estimation encompasses the computation of O-

D information in both directions (origin-to-destination and destination-to-origin) 

across all the stations to obtain complete information about the network. Using 

the ‘igraph’ network analysis package in R, a typical O-D matrix was 

represented to show directional flow information. In the representation of the 

estimated O-D matrix, a one-headed arrow indicates one-way flow while a 

double-headed arrow indicates flows in both directions. 

 

3.4.5 Estimation of detection rate 

Bluetooth detection rate refers to the proportion of traffic captured by Bluetooth 

sensors compared to the actual traffic (Biora et al., 2012; BlipTrack, 2012). 

Recall that Bluetooth does not immediately give the actual estimation of the 
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traffic but a proportion of the traffic. Therefore, the detection rate is required to 

scale-up the Bluetooth sample of the traffic flow to the actual vehicular traffic 

obtained from the ground truth data. This metric is computed as the ratio 

between the estimate of Bluetooth flows and the corresponding SCOOT and ATC 

flows collected over the same period and location. If a regression analysis is 

performed between the two sets of data (estimated and actual), detection rate is 

obtained as the slope,  of the regression equation ( ). The 

use of the flows collected from the SCOOT and ATC links to determine the 

detection rates provide the opportunity to understand variability arising from 

relative location of the Bluetooth sensors to the ground truth sources. The 

computed ratio over different temporal dimensions were analysed to obtain the 

most probable value (𝑚𝑝𝑣). The theoretical implication of 𝑚𝑝𝑣 is that the 

estimation presents the best approximating values and not the actual value. That 

is, the actual value of the total traffic remains unknown. The hypothesis testing for 

variance in the detection rates was based on Bonett’s test and Levene’s test in 

Minitab to understand directional differences. These tests are used given that 

they give a type I error that is close to the specified significance level (𝛼). They 

also allowed for a balance in sample size and skewness in the distribution. 

 

3.5  Validation Methods 

3.5.1 Model (TRAFOST) validation 

This considers the steps taken in the validation of TRAFOST before considering 

the results generated using the model. Three steps are followed to accomplish 

this. The first step consists of results comparison between the model and the 

manual computation; while the second step involves the use of the output of 

C2-Web software. The last stage consists of cross-validation using the outputs 

of the model. Following these steps, the Bluetooth estimated metrics are 

validated using the ground truth data sets. 

 

 

iiii xy   0 iiii xy   0
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3.5.2 Results validation using diverse independent data sources 

The availability of diverse sources of independent measures of traffic enabled 

both rigorous and sound validation of the model outputs. The estimated metrics 

computed by TRAFOST will be validated as follows: 

i. The Bluetooth-derived traffic flows are validated using real-life traffic data 

obtained from the simultaneous observation of ATC and SCOOT flows at 

the same location. The use of independent data sets for the validation 

was performed over 2013 at different locations within the three networks 

in Manchester to demonstrate transferability in the Bluetooth approach.  

ii. The estimated travel times and speed computed using TRAFOST will be 

validated using data from Traffic Master, consisting of six months’ (April - 

September 2013) hourly averages covering four links in Stockport and 

Trafford. The Traffic Master data was complimented with ANPR data of 

1-day in Stockport for further validation. However, while the 1-day ANPR 

data may be considered insufficient, it should otherwise be noted as an 

added advantage because its absence will not have had any effect on 

the conclusion of the results. The estimated O-D matrix, on the other 

hand, will be validated through repeatability using six months’ worth of 

data over the three locations in Greater Manchester. The exercise was 

conducted primarily to test for consistency and variability in the estimated 

matrices as well as to evaluate the robustness of the model in handling 

large volumes of data. 

 

The integration of the other sets of data with Bluetooth data for the validation 

exercise is essential as Bluetooth data presents only a sample that is lower than 

the actual traffic flow. However, the lower sample is expected because not 

everybody and all modes within the network have Bluetooth-enabled devices; 

and when they are switched on, the Bluetooth may not be enabled. Table 3.5 

presents the summary of the methods of results validation. The comprehensive 

results validation and testing are presented in Chapter 5. The appraisal of the 

situation started with scatter plots to explore correlation. Edwards and Hamson 

(2001) advised that an alternative model formula must be considered if the 
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linear fit is poor with low and noncolinearity suggesting an invalid proposition. 

Finally, considerations were given to the sites where simultaneous 

measurements of the Bluetooth and ground truth data are possible. 

 

Table 3.5: Table showing the methods of results validation 

 

3.5.3 Statistical modelling of the Bluetooth estimated metrics 

Characterising a time series data not only includes the estimation of mean and 

standard deviation but also the correlation between observations separated in 

time (Statgraphics, 2015). Time series models come in useful when dealing with 

serially correlated data. The serially correlated errors can be written as (Fox and 

Weisberg, 2010): 

𝐶(𝜀𝑡 , 𝜀𝑡+𝑠) = 𝐶(𝜀𝑡 , 𝜀𝑡−𝑠) = 𝜎2𝜌𝑠       (3.4) 

Where 𝜌𝑠  is the error autocorrelation at lag 𝑠. This research utilised 

Autoregressive Integrated Moving Average (𝐴𝑅𝐼𝑀𝐴) models, being one of the 

two most widely used approaches for time series forecasting, and the models 

describe the autocorrelations in the data (Hyndman and Athanasopoulos, 

2013). 𝐴𝑅𝐼𝑀𝐴 models can be estimated following the Box-Jenkins approach 

(Quddus, 2008), while the non-seasonal 𝐴𝑅𝐼𝑀𝐴 models are generally denoted 

as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞). The parameters 𝑝, 𝑑, and 𝑞 represent the order of the 

autoregressive part, the degree of differencing, and the order of the moving-

average model, and are non-negative integers (Cowpertwait and Metcalfe, 

2009; Fox and Weisberg, 2010). The special cases of 𝐴𝑅𝐼𝑀𝐴 models such as 

autoregression – 𝐴𝑅𝐼𝑀𝐴(𝑝, 0,0), moving average 𝐴𝑅𝐼𝑀𝐴(0,0, 𝑞) are presented 

in Hyndman and Athanasopoulos (2013). Combining Differencing, 𝑑 with 

Autoregressive, 𝐴𝑅(𝑝) and a Moving Average, 𝑀𝐴(𝑞) model gives the following 

full 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model:  

2R

Bluetooth-

derived 

metrics Method of Validation Period of the Data used

Link Flows ATC and SCOOT flows One year

Journey Time ANPR and Traffic Master (TM) Six months for TM and 1 day for ANPR

Journey Speed ANPR and Traffic Master (TM) Six months for TM and 1 day for ANPR

O-D Matrix Repeated Measurements of O-D Six months
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𝑦′
𝑡

= 𝑐 + 𝜑1𝑦′
𝑡−1

+ ⋯ + 𝜑𝑝𝑦′
𝑡−𝑝

+ 𝜃1𝑒𝑡−1 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 + 𝑒𝑡        (3.5) 

where 𝑦′
𝑡
 is the differenced series; 𝜑𝑖 = parameters of the autoregressive part; 

𝜃𝑖= parameters of the moving average part; 𝑒𝑡 = error terms; 𝑐 = expectation of 

the model; and 𝑖 =  1 𝑡𝑜 𝑝 𝑎𝑛𝑑 𝑞 respectively. 

Using the backshift notation, equation (3.5) can be written as: 

(1 − 𝜑1𝐵 − ⋯ − 𝜑𝑝𝐵𝑝)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞)𝑒𝑡        (3.6)   

 

AR(p)  Differencing (d)      MA(q) 

 

As a first step in the modelling, the data used were prepared for conformity, and 

separated into two for calibration and validation through a data splitting 

technique. The separation of the calibration and validation datasets utilised the 

“80/20” rule using the Caret package in R. The 80/20 rule means that 80% of 

the data is used for calibration while the remaining 20% is used for validation 

(Brownlee, 2014). However, to build a model, the issue of stationarity of the 

series is essential to avoid any predictable patterns in the long-term (Fox and 

Weisberg, 2010). Therefore, the next step explores the data for stationarity 

through time series plots. The non-stationary series were stabilised through 

transformation, detrending, and differencing as highlighted by Hyndman and 

Athanasopoulos (2013). In addition to exploring the time plot, the ACF 

(autocorrelation function) and PACF (partial autocorrelation function) plots are 

also used to determine the parameters of the models. The ‘auto.arima’ function 

in the forecast package in R was also used to determine these possible values, 

while the adequate model selection utilised Akaike’s Information Criterion (AIC) 

and personal judgement. AIC proposed by Akaike is an extension of the 

classical likelihood principle, and it is based on Kullback-Leibler information or 

distance as a fundamental basis for model selection (Burnham and Anderson, 

2002). Using the AIC, the LK   information computed for each model in the set 

helps in determining the most probable predictive model (𝑀𝑃𝑃𝑀) given as 

(Burnham and Anderson, 2002): 
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KyLAIC 2)|(log2 











        (3.7) 

Where K  = number of estimable parameters, and the expression 






 

)|(log yL   is 

the numerical value of the log-likelihood at its maximum point. AIC provides a 

simple, effective, and objective means of model selection for both data analysis 

and inference. That is, 𝐴𝐼𝐶 takes care of model parsimony (the principle of the 

simpler the better), and is therefore considered. As a final step, a portmanteau 

test was performed to understand whether differences in the group of 

autocorrelations are different from zero with a return of large p-value signifying 

white noise residuals according to Fox and Weisberg (2010). In summary, the 

following steps outlined by Srivastava (2015) are followed in the modelling. The 

steps are: i) visualise the series; ii) make the series stationary; iii) plot the 

ACF/PACF and find optimal parameters; iv) build the ARIMA model; and v) 

make predictions. 

 

3.5.4 Exploratory and quantitative data analyses  

In data analysis, the understanding of the distribution of the data is crucial to 

avoid invalid inference (Dixon and Massey, 1983). The normal distribution is 

considered in this analysis given its importance in statistics. Not only that, the 

hypothesis tested in this research is dependent upon the validity of normality 

and randomness of the residual errors. Another usefulness of the normal 

distribution to this research is in understanding the sampling distribution given 

that the Bluetooth-estimated traffic flow is a sample of the actual flow 

(population). Therefore, the first phase of the analysis explored the 

understanding of the distribution of the data. The analysis utilises quantile plots 

in conjunction with histogram plots. Examples of such plots are presented in 

Figure 3.8 (quantile plot) which suggests non-normality in the data distribution, 

while Figure 3.9 showing the histogram plot of journey time suggests a 

normality of distribution of the journey time data. This normality in the 

distribution informs the use of parametric methods. Based on the literature, a 



85 

 

test based on the mean provided the best power for symmetric distributions with 

moderate tails (Brown and Forsythe, 1974). That is, the power of a test is the 

probability of not committing a type II error (error due to failure to reject the null 

hypothesis when it is false) (Minitab, 2014). However, the non-parametric 

approach was preferred given that the presence of an outlier in the data may 

invalidate the test result (Tukey, 1980). Again, the non-parametric technique 

was adhered to for the purpose of consistency. Dobson and Barnett (2008) 

highlighted the importance of giving consideration to separate analysis, which 

includes the understanding of the measurement scale, the shape of the 

distribution and the association within variables. Burnham and Anderson (2002) 

noted that deep thinking and exploratory data analysis (EDA) will result in good 

scientific questions and confirmatory data analysis; Tukey (1980) concludes that 

to properly implement the confirmatory hypothesis there is a need for extensive 

exploratory work such as histogram, box-and-whisker based on four features 

(location, dispersion, skewness, and potential outliers) and quantile plots to 

explore distribution and normality assumptions (Open Learn, 2015). To check 

for quality, each data was analysed separately as posited by Dobson and 

Barnett (2008) and Burnham and Anderson (2002). This premise forms the 

basis for employing both quantitative and exploratory statistical techniques in 

this research to properly implement the confirmatory hypothesis. For clarity, a 

‘standard normal’ is given by (Acevedo, 2013, page 69) as: 

. While a normal  is standardised to  by 

subtracting the mean and dividing by the standard deviation and is given as:

. The standardisation could as well adopt methods such as 

specifying a range for the minimum or maximum (Minitab, 2014). 
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Figure 3.8: Quantile plot showing non-normality in distribution for Bluetooth 

journey times on Link7170 in Stockport on 3rd April 2014 

 

 

Figure 3.9: Histogram plot of Bluetooth journey time overlaid with normal and 

density curves on Link7170 in Stockport on 3rd April 2014 
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3.5.5 Relevant measures of variability in the data 

Variability is a measure of spread in data and is used to understand similarities 

or differences in a data set (Dixon and Massey, 1983; Adedayo, 2006). 

Wedagama et al. (2007) highlighted the effect of variations in traffic flows and 

speeds over congested and uncongested periods in an urban area such as the 

GMN. Variability causes uncertainty and unpredictability and may affect the 

conclusions drawn. In transportation, this uncertainty is a major concern for both 

operators and commuters (Martchouk et al., 2011). Tsekeris and Stathopoulos 

(2006) noted that the measurement of the spatial and temporal variation in 

traffic flow is a major issue in tackling the analysis of network congestion 

problems. Normally, a good way to start is to use the “range” of the distribution 

(Adedayo, 2006). However, since the range is subjected to extreme values and 

does not account for every value in the distribution, alternative statistics are 

considered and compared together to obtain a more reliable result. In this case, 

the variance and standard deviation are considered. These were chosen in lieu 

of mean absolute deviation (MAD) given that further statistical analysis can be 

performed on them, unlike the MAD that is based strictly on absolute values 

(Adedayo, 2006). The MAD considers the spread in the data, but it is affected 

by extreme values and is similar to standard deviation. Therefore, the best 

approximating value of any measurement is the 𝑚𝑝𝑣. It is the value that 

minimises the sum of the squares of the residuals and it is defined as the 

arithmetic mean given as equation (3.6) (Whyte and Paul, 1997). 

         (3.8) 

The precision (standard deviation) is given as:   (3.9) 

The standard error of mean as:      (3.10) 
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According to Cooper (1974), the precision of a measurement is quoted as: 𝑥 =

𝑚𝑝𝑣 ∓  𝜎𝑚. Another useful statistic considered in the evaluation of variability is 

the coefficient of variation (𝑐𝑣) defined as (Adedayo, 2006): 

        (3.11) 

The coefficient of variation describes dispersion without dependence on the unit 

of measurement of the variable (Adedayo, 2006). This statistic was used to 

compare the spread in the detection rate distribution across GMN. The 

𝑐𝑣 helped to account for geographical variations or changes in units over space 

since it was measured in percentages. Its application in comparing two sets of 

data is that the one with the smaller 𝑐𝑣 is the better of the two (Adedayo, 2006). 

 

Since PCA is a variable reduction procedure (Minitab, 2014), it was used to 

reduce the measured daily flows to develop smaller numbers to account for 

most of the variance in the observed daily flows. This method not only provides 

the numerical values, but also graphical outputs for visualisation to enhance 

interpretation. The knowledge of data reduction is needed for optimisation and 

efficiency in traffic flow modelling to avoid redundancy. Analysis of variance (1-

way ANOVA) was employed for post-analysis to further explore any significant 

variations among groups (the speed metrics). ANOVA is considered given that 

their distributions generally obey the parametric assumptions. The hypothesis 

testing for the post analysis utilised the Tukey test (𝛼 = 0.05). The importance 

of accurate classification of the metrics can be found in model optimisation for 

improved efficiency. That is, it can help to determine when it becomes 

significant to change the traffic management plan such as in the timing of traffic 

lights. 
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3.5.6 Relevant measures of accuracy 

This section discusses the key accuracy statistics and the quality measures 

utilised in this research that include both the absolute and relative metrics such 

as the mean absolute error (𝑀𝐴𝐸), and root mean square error (𝑅𝑀𝑆𝐸) (useful 

for the adjustment of unusual large errors) (Wood, 2012). Accuracy is defined 

as the closeness of the value of a measurement to the ‘true’ or theoretically 

correct value (Cooper, 1974). This was determined principally using quantitative 

analysis as well as time series plots to compare trends in the profiles. High 

levels of temporal similarity in trends and good performance metrics will inform 

reliability in the data. Using the accuracy statistics, small values close to zero 

were of good fit, while observations with a small standard error were of higher 

accuracy than observations with a big standard error. Different combinations of 

these metrics have been used in the past. For example, Tang et al. (2016) used 

the combination of 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝑅𝐸 (mean absolute relative error). 

According to Hyndman and Athanasopoulos (2013), the 𝑀𝐴𝐷 (mean absolute 

deviation) is just another name for the 𝑀𝐴𝐸. The 𝑀𝐴𝐷 was used in this case to 

compare similar models. The relative metrics include the mean absolute 

percentage error (𝑀𝐴𝑃𝐸), mean percentage error (𝑀𝑃𝐸), and mean squared 

percentage error (𝑀𝑆𝑃𝐸) (Balcilar, 2007). In line with Sebri (2016), the 𝑀𝐴𝑃𝐸 

was used in this research because it is scale-invariant in order to account for 

the different locations and periods. Also according to Hyndman (2006), the 

mean absolute scaled error (𝑀𝐴𝑆𝐸), which is equally scale free, was used to 

avoid the problem of infinity (due to division by zero) or large value (due to 

presence of small numbers) in 𝑀𝐴𝑃𝐸. Correlational analysis was employed to 

measure the linear association between the data sets, and a correlation 

coefficient (𝑟 ≥ 0.80) was considered to be a good relationship. Some of the 

accuracy metrics used in this research are hereby mathematically defined: 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑖|)        (3.12) 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(|𝑝𝑖|)        (3.13) 

Where 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 is the error term defined by the difference between the 

observed and the adjusted values; and 𝑝𝑖 = 100𝑒𝑖/𝑦𝑖 is the percentage error. 
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For the statistician, the difficulty in discriminating between two populations with 

the best test determines their differences (Kullback and Leibler, 1951). The 

Kullback-Leibler distance (KL-D) measures the distance between two probability 

distributions to address the problem of scales in two random variables (Allison, 

2016). It is a measure of the difference between two probability distributions, or 

a measure of dissimilarity or departure between two distributions (Wu, 2016). If 

the distributions are similar, the KL-D should be small, and it should be large if 

the distributions are far away from each other (Wu, 2016). That is, KL-D can be 

used to measure the quality of an estimation, and was used in this way. Note 

that the KL-D is generally not symmetric (Allison, 2016). Therefore, it is called a 

divergence instead of distance. KL-D is expressed mathematically as: 

𝐾𝐿(𝑝||𝑞) =  − ∑ 𝑝(𝑥)𝑙𝑜𝑔
𝑞(𝑥)

𝑝(𝑥)
      (3.14) 

Where 𝐾𝐿(𝑝||𝑞) is the KL-D relative to 𝑝; 𝑝 represents the “true” distribution of 

the observation while 𝑞 represents an approximation 𝑝. In this case, 𝑝 and 𝑞 

correspond to the ground truth and Bluetooth data. 

 

3.6  Conclusions 

A description of the research methodology based on the Bluetooth approach to 

traffic metrics estimation was presented in this chapter. Bluetooth data captured 

from a road network consists not only of the devices from vehicular traffic but 

also from other sources such as pedestrians and cyclists. The raw data 

captured contain errors due to these different sources, and the mode of 

measurements such as multiple detection and inquiry time. Therefore, the 

methods of Bluetooth data cleansing to obtain a noise free data necessary for 

reliable traffic metrics estimation was discussed. This stage leads to the next 

step of estimation of traffic metrics that include flow and travel time. This 

chapter covered the relevant stages required for a reliable traffic metrics 

estimation for traffic management applications. While the methodology 

described was based on a post-processing approach, it could be adapted for a 
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real-time application. A functional model termed TRAFOST was developed in R 

to automate and optimise the Bluetooth data processing and analysis. The use 

of diverse independently measured traffic data (ground truth data) for results 

validation was to ensure robustness in the analysis, and to establish the validity 

of the Bluetooth results. The validation methods for the estimated flows, travel 

times and speed were based on the ground truth data, and statistical modelling. 

The validation of the network O-D matrix was based on repeated 

measurements of Bluetooth data to understand consistency given that the 

ground truth data are not available on every link. In the research design, five 

different study sites of varying attributes over different geographical locations in 

the UK were considered due to different challenges encountered in the data 

acquisition. Basing the research design on more than one study site ensured 

the knowledge of transferability to inform results generalisation. It is noted that 

as with every model, the concept developed in this research is limited with its 

range of validity. Therefore, consideration should be given to the replication of 

this concept at a new study site to obtain reliable results. 
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Chapter 4. Data Collection 

4.1 Introduction 

4.1.1 Background to the data collection 

Chapter 4 describes the data collection and short-term analysis performed to 

understand the Bluetooth potential in traffic metrics estimation. The data 

collection and short-term analysis provide the basis for the fulfilment of research 

objective iii, and to test the methodology described in Chapter 3 on Bluetooth 

traffic sensing and metrics estimation. Accordingly, this dicussion covers the 

challenges, limitations and the specific methods used in the collection of 

Bluetooth data in this research. The data collection covers three select study 

sites (Liverpool, Birtley, and Manchester) of different network attributes. This 

study covers three different study sites primarily due to the shortfalls 

encountered in the provision of the required data in the Liverpool and Birtley 

study sites. However, the different study sites have contributed in different ways 

that include the understanding of the spatial variability in Bluetooth usage in the 

UK. The Liverpool and Birtley studies cover a short-term data collection period 

over two weeks. The former was used for preliminary data quality assessment 

and the latter for flow and trip pattern analysis. The Manchester study site, 

which provided the long-term data collection of more than a year consists of 

three separate studies in Wigan, Stockport, and Trafford, and consolidated the 

Birtley study to demonstrate transferability. The preliminary analysis conducted 

in this chapter presents the initial understanding of the Bluetooth approach in 

different road networks such as urban arterials and linear networks. The data 

collection and the preliminary analysis also form the basis for the long-term 

study presented in Chapters 5-7 of this thesis to enable valid conclusions. 

 

This chapter is structured as follows: Section 4.2 focuses primarily on 

preliminary data quality assessment (Liverpool pilot study) to understand the 

condition of the variables contained in the Bluetooth data as a first step towards 

understanding its relevance. Section 4.3 presents the evaluation platform for the 

estimation of flow and analysis of trip patterns using the Birtley pilot study. 
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Section 4.4 presents a description of the Manchester study sites by building on 

the methodology tested in the Birtley study. Section 4.5 presents trip patterns 

and speed distribution based on the Wigan study, while Section 4.6 (Stockport) 

considers the discrepancies in results based on the applied methods. Section 

4.7 (Trafford) deals primarily with monthly variation, before conclusions are 

drawn in Section 4.8. 

 

4.1.2 The study sites 

This investigation was carried out in urban areas in the UK comprising Birtley in 

Tyne and Wear, Liverpool and Greater Manchester (consisting Wigan,Stockport 

and Trafford). This makes a total of five different networks of varying 

characteristics. These study sites were selected mainly based on data 

availability to meet the data requirements described in Section 3.2.1. That is, 

data were collected in these sites to meet the requirements of the research 

design to achieve the overall aim and objectives of this research. The 

distinguishing features of these study sites are primarily in their network 

configuration, the land use type and the area covered. The total length of the 

Birtley network is approximately 2km with seven Bluetooth stations while the 

Liverpool network covers 2.2km with eight Bluetooth stations. The three 

networks in Manchester are in residential and commercial areas and over larger 

areas (approximately 50km x 40km with forty Bluetooth stations) compared to 

Birtley and Liverpool study sites. The different geographical areas of dissimilar 

attributes considered in this research are important to understand variability in 

performance and transferability of Bluetooth approach of traffic monitoring. This 

will in turn provide the knowledge of the scalability of the technology over the 

study areas, and the UK in general. As described in Section 4.1.3, several 

factors brought about the study sites used in this research. Table 4.1 presents 

the summary of the description of the study sites, while Figure 4.1 shows their 

respective locations colour-coded on a UK map. 
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Table 4.1: The summary of the study sites description  

Location

Number of 

Case 

Studies

Case 

Study Features

Number of 

Bluetooth 

Stations

Liverpool, UK 1 Liverpool

Short and relatively linear. Located close to 

high activity areas such as Docks and 

Shopping Centres in AQMA 8

Birtley, UK 1 Birtley

Short and relatively linear. Located in a less 

congested urban area in the vicinity of Banks 

and Commercial Centres 7

Wigan

Non-linear and over a large area within a built-

up area having access to M6 and train station 18

Stockport

Linear on the A6 Buxton Road with high flows 

of commercial vehicles gaining access to local 

motorways 11

Trafford

A longer linear network mainly embracing the 

A56 trunk road.  Close to Old Trafford and  

having access to M60 and M602 among 

others 11

Greater 

Manchester, UK 3
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Figure 4.1: Map showing the study locations in the UK 

 

4.1.3 Description of the Bluetooth traffic data collection 

This section presents the specific methods used in the collection of Bluetooth 

data used for traffic estimation in this research. In all the locations, the data 

providers (Mouchel/2020Liverpool, Gateshead City Council, and TfGM in 

conjunction with TDC and SkyHigh) performed the set up for the on-site 
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Bluetooth traffic monitoring. As stated in Section 3.2.3, the study utilised the 

data collected by the Bluetooth sensors (Hi-Trac Blue) developed and tested by 

TDC Systems Ltd. These sensors were used to continuously detect the 

Bluetooth-enabled devices passing through the sensor locations within the 

networks and store their MAC addresses. While the focus was on vehicular 

traffic detection, Bluetooth-enabled devices carried by other network users such 

as pedestrians and cyclists in the traffic were also captured. The essential 

records stored by the sensors are the MAC addresses, timestamp and the 

details of sensor locations such as the coordinates. 

 

Essentially, the detected MAC addresses in raw form were encrypted for the 

purpose of privacy and security before they were transmitted to an online 

database (C2-Web) through the traffic control network using routers and direct 

cables from site to server. Specifically, in this research, all the data sets used 

were either downloaded through the internet using access codes or received as 

attachments either through e-mail or on an external hard disk. However, there 

were site visits to the Liverpool and Birtley study locations primarily for better 

understanding of the locations of the sensors and the traffic stream. 

 

4.1.4 Challenges and limitations in the data collection 

At the onset, the experimental design for this research was based on the use of 

SCOOT measured flows and GPS tracking data, and where possible with 

ANPR data to validate the Bluetooth results. However, different challenges were 

met at different stages that put the completion of this research at a risk. For 

example, the different councils that provided the data used have their specific 

objectives that are independent of this research. Consequently, this research 

had no control over when to deploy or remove the sensors. Originally, Liverpool 

was considered as the only study site with the expectation to meet the data 

requirements for this research through a collaboration with 

Mouchel/2020Liverpool. However, the trial conducted over a short period of two 
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weeks from 15th to 27th June 2011 was discontinued, thereby resulting in 

insufficient Bluetooth data with a limitation in scope and coverage as well as in 

the provision of the validation datasets. Due to these limitations, the research 

design was adjusted to further this investigation. Following the modification to 

the research design, the Birtley study site was chosen to provide solutions to 

the challenges encountered in the Liverpool study site. However, similar 

challenges as in the Liverpool study site were also encountered. In order to 

achieve the research goal, further adjustment was made to the research design 

to address the limitations in scope and coverage as well as in the provision of 

the validation datasets, and in this case the Greater Manchester study site was 

chosen. In Manchester, the installation of the Bluetooth sensors is on a 

permanent basis across the three networks. Some of the sensors are installed 

near SCOOT and ATC loop detectors for independent measurement of the 

traffic, and for validation. However, prior to the final acquisition of the data sets, 

there were further challenges in the process. Prior to the acquisition of the data 

from the Manchester study site, data from ATC and ANPR were proposed as 

the new datasets for results validation while the study area included Scotland 

due to the availability of data for results validation. However, the inclusion of the 

Scotland study site was discarded due to positive results from the Greater 

Manchester area, leading to the provision of the required validation data sets 

that include ATC and SCOOT flows captured over the same period as 

Bluetooth. 

 

4.2  Liverpool: Preliminary Study on Data Quality Assessment 

4.2.1 Background to Liverpool study 

Figure 4.2 presents the map of the study area showing the distribution of the 

Bluetooth sensors, while Table 4.2 presents the description of the locations of 

the eight Bluetooth sensors strategically chosen within an Air Quality 

Management Area (AQMA) in Liverpool. As discussed above, Liverpool was 

originally considered as the study site to meet the data requirements following a 

mutual understanding between Newcastle University and 
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Mouchel/2020Liverpool. However, the Bluetooth sensors installed in the 

Liverpool study site were disengaged after two weeks of data acquisition. This 

means that the objective of this research could not be realised based on just 

two weeks worth of data, and thus required a modification to the research 

design to further the research. However, the data collected over the two weeks 

were used for preliminary data quality assessment to understand the structure 

and condition of the variables in the data to aid further analysis. 

 

Figure 4.2: Location of Bluetooth sensors in the Liverpool study site 
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Table 4.2: Description of the Bluetooth sensors locations in the Liverpool study 

site 

 

4.2.2 Data quality assessment 

The aspects of data quality assessment include accuracy, reliability, 

presentation and consistency. This section considers the preliminary aspects of 

the Bluetooth data quality to understand its relevance to this research. The 

aspects under consideration in this section are data presentation, 

completeness, update status (timeliness) and consistency. An example data is 

presented in Appendix 4A, which shows that Bluetooth data are well-presented 

with clear headers (variables) describing the data. The data also come as comma 

separated values (csv) file format, which gives the data a defined structure in 

terms of presentation. In terms of completeness, the Bluetooth sensors are 

capable of continuous data recording throughout the day, which makes the data 

acquired complete and adequate for studies such as temporal status monitoring. 

Also, the time stamp recorded by the sensors is on a second-by-second basis 

that shows the timeliness of the data. This one-second level of precision attribute 

of the data is very significant in the classification of devices during data filtering. 

For example, speed can be calculated on a second-by-second basis, while travel 

time for devices detected on short links can be differentiated. For instance, a 

short link of length 500m with a speed limit of 48km/h will require a travel time of 

37.5 seconds to traverse the link. Clearly, this value is greater than the 1-second 

resolution level measured by Bluetooth and thus confirms the sufficiency of the 

precision level of the measurement. Furthermore, the quality of the Bluetooth 

Latitude Longitude Station description

1 53.4114 -2.99908 Bath Street

2 53.4116 -2.99686 King Edward Street

3 53.4081 -2.99236 Chapel Street

4 53.4076 -2.98977 Dale Street

5 53.4052 -2.99070 James Street

6 53.4009 -2.98687 Liver Street

7 53.3970 -2.98582 Wapping

8 53.3941 -2.98301 Chaloner Street

Station 

Number

Coordinates
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data was analysed for consistency to serve as the benchmark for the subsequent 

analysis. Therefore, the preliminary data quality investigation was conducted 

under the following assumptions. 

1. Bluetooth data are expected to present profiles similar to real life traffic 

situations by capturing the variations in traffic flows over the day; and 

2. The captured data are expected to present continuous profiles with 

minimal gaps (missing data) over the period of observation with weekday 

profiles contrasted to weekend profiles. 

 

4.2.3 Results presentation and analysis 

For a better understanding of the daily flows, Table 4.3 and Figure 4.3 present 

respectively the summary of traffic flow over fourteen days and the equivalent 

profile over seven days at Station 7. The profile of Station 7 having the highest 

count (Figure 4.4) was presented as an example of the individual station 

analysis because of the configuration of its position in the network to assess 

consistency. Results from the other stations are presented in Appendix 4B. The 

profile over seven days is presented to show the similarities and consistency 

observed in the traffic count within this period. From Table 4.3, the total count 

for the period of observation (Wednesday 15th June – Tuesday 28th June 

2011) is 103,520. The highest daily count (8515) was observed on Friday 17th 

June while the lowest count (4513) was observed on Sunday 26th June 2011. 

From the profile, there are two prominent peak periods in the weekdays’ 

observations, the morning and evening peak periods with an average count of 

700 devices over the hours of 8 am and 5 pm. These are related to the period of 

trips to and from work as is the case with real life traffic data, and thus 

confirming the first assumption of representing real-life traffic. In fact, the dual 

peaks observed in the data were also observed in previous studies (Beca, 

2011; Augustin and Poppe, 2012; Cragg, 2013). Similarly, the second 

assumption is confirmed through the continuity observed in the profiles and the 

similarities and high positive correlation observed in the weekdays/weekend 

data. In the next chapter, the validity of the assumptions will be verified against 

real life traffic data to ensure data quality assurance. 
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Table 4.3: Count of detected Bluetooth-enabled devices at Station 7 in June 

2011 

 

 

Figure 4.3: Daily profiles of counts of detected devices at Station 7 over seven 

days  

 

Count of NumbPlateDays

Hours 15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun 22-Jun 23-Jun 24-Jun 25-Jun 26-Jun 27-Jun 28-Jun Grand Total

00 51 74 51 160 180 66 57 34 72 74 150 218 73 46 1306

01 34 22 48 113 161 49 32 29 32 37 113 127 41 41 879

02 22 22 24 84 108 26 22 20 21 20 95 140 21 18 643

03 16 25 27 70 92 23 25 18 13 18 81 118 27 21 574

04 37 18 32 53 63 35 30 26 32 27 45 79 43 39 559

05 83 71 69 69 80 72 78 64 77 70 52 70 81 86 1022

06 151 171 145 79 82 134 178 149 179 159 57 56 146 165 1851

07 488 461 397 130 98 488 465 457 444 431 127 63 446 476 4971

08 675 648 612 182 91 644 723 691 682 635 182 78 648 671 7162

09 641 614 543 248 123 612 588 607 579 557 288 145 604 620 6769

10 526 459 507 332 281 513 449 476 486 498 354 199 474 514 6068

11 495 546 484 409 359 535 506 488 470 460 418 222 506 446 6344

12 521 576 532 460 401 437 511 486 475 588 456 254 501 532 6730

13 495 499 539 520 492 543 518 542 600 611 477 303 526 520 7185

14 545 484 579 533 459 518 550 496 508 574 461 419 478 592 7196

15 585 644 622 578 426 496 561 523 576 675 448 363 489 622 7608

16 714 700 660 459 442 627 630 676 668 662 458 359 600 713 8368

17 692 725 675 462 428 693 720 635 670 620 457 342 588 726 8433

18 487 501 509 446 301 434 406 462 449 450 432 245 395 430 5947

19 302 334 428 417 263 287 271 301 306 340 414 230 268 284 4445

20 189 200 309 309 214 165 202 202 225 278 261 168 159 208 3089

21 175 164 340 206 166 164 146 159 171 198 229 116 152 158 2544

22 122 134 200 175 137 103 126 122 131 164 222 115 96 133 1980

23 88 105 183 202 106 78 99 125 84 175 342 84 82 94 1847

Grand Total 8134 8197 8515 6696 5553 7742 7893 7788 7950 8321 6619 4513 7444 8155 103520
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Figure 4.4 presents the summary of the daily flows over eight days in Liverpool. 

The lowest and highest flows were observed respectively at Stations 1 and 7 

over the days. Stations (2, 7, and 8) located close to the Docks and on A5036 

connecting A562 in the South and A565 in the North have the highest flows as 

expected compared to Stations (1, 3, 4, 5, and 6) located along minor roads. 

Stations 5 and 6 on the other hand exhibited a different trend over the two 

Saturdays (18/06/2011 and 25/06/2011) with a higher flow compared to the 

weekdays. This change in trend at Stations 5 and 6 is attributed to the activities 

around St John’s Shopping Centre and Liverpool John Moore’s University. 

However, there is consistency in the data over days and stations. The 

consistency in the result obtained at this level is very interesting because 

Bluetooth data shows a strong indication to model the real world traffic and, in 

that case, a candidate to provide transport data. The data were further analysed 

as contained in Table 4.4 and Table 4.5. However, the reliability of the results 

will be tested through validation in Section 5.3.1. 

 

Figure 4.4: Summary of the variations in daily flows over eight stations in 

Liverpool 
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From the second assumption, since the traffic count profile of the weekdays 

differs significantly from that of the weekend, the two sets of data were analysed 

separately. Table 4.4 shows the correlation analysis of the weekdays’ count 

while Table 4.5 presents the descriptive statistics. Analysis performed on the 

weekdays (Monday to Friday) showed a very strong positive relationship 

(>0.09) with a corresponding high level of similarities in the data between the 

weekdays as shown from the descriptive statistics, and thus indicates a level of 

quality in the data. For example, the values of the kurtosis, a measure of the 

peakedness of the distribution relative to the normal distribution as defined by 

Adedayo (2006), showed that they all exhibit similar distribution and 

peakedness. However, on Fridays (17th and 24th June), the results exhibit 

negative skewness (-0.25 and -0.08 respectively) as would be expected due to 

a translation from weekdays to weekends. The change in the skewness of the 

data on a Friday is attributed to a change from weekdays to the weekend 

normally associated with weekend travel and activities. Figure 4.5 shows the 

scatter plot of Saturday and Sunday hourly flows overlaid with regression line 

showing a very strong correlation (𝑅2 =  0.896). 

 

Table 4.4: Correlation analysis between weekdays (Monday – Friday) 

 

15-Jun 16-Jun 17-Jun 20-Jun 21-Jun 22-Jun 23-Jun 24-Jun 27-Jun 28-Jun

15-Jun 1

16-Jun 0.992 1

17-Jun 0.967 0.969 1

20-Jun 0.991 0.980 0.954 1

21-Jun 0.991 0.987 0.958 0.989 1

22-Jun 0.995 0.988 0.967 0.991 0.991 1

23-Jun 0.991 0.986 0.969 0.989 0.991 0.995 1

24-Jun 0.977 0.979 0.981 0.963 0.975 0.979 0.984 1

27-Jun 0.991 0.983 0.951 0.993 0.990 0.994 0.990 0.972 1

28-Jun 0.995 0.987 0.966 0.985 0.993 0.989 0.991 0.982 0.985 1
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Table 4.5: Descriptive statistics for the weekdays count from 15th – 28th June 

2011 

 

 

Figure 4.5: Scatter plot of weekend flows overlaid with regression line 

 

4.2.4 Conclusion from the Liverpool study 

The data collection conducted in Liverpool for quality assessment showed that 

Bluetooth data is of high-resolution (one-second), consistent, and with a well-

structured presentation. Two peak periods consistent with real life traffic data 

were observed: the morning peak hours (7-9am) and the evening peak hours (4-

6pm). Correlation analyses performed showed a very strong positive correlation 

between weekdays and between weekend observations as would be expected of 

real life traffic. The descriptive statistics also showed a high level of consistency. 

Descriptors 15-Jun-11 16-Jun-11 17-Jun-11 18-Jun-11 19-Jun-11 20-Jun-11 21-Jun-11 22-Jun-11 23-Jun-11 24-Jun-11

No of Observations 24 24 24 24 24 24 24 24 24 24

Mean 338.9 341.5 354.8 322.6 328.9 324.5 331.3 346.7 310.2 339.8

Standard Error 51.55 51.50 47.47 49.03 49.97 49.13 49.21 49.11 46.36 51.79

Median 395 397 413 361 339 379 375 386 332 357

Standard Deviation 252.54 252.30 232.57 240.18 244.83 240.68 241.09 240.59 227.13 253.72

Kurtosis -1.71 -1.66 -1.55 -1.75 -1.57 -1.65 -1.64 -1.66 -1.79 -1.65

Skewness 0.03 0.03 -0.25 0.05 0.11 0.02 0.02 -0.08 0.03 0.09

Range 698.00 707.00 651.00 670.00 701.00 673.00 669.00 657.00 627.00 708.00

Minimum 16 18 24 23 22 18 13 18 21 18

Maximum 714 725 675 693 723 691 682 675 648 726
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However, the reliability of the data will be established in Chapter 6. Summarily, 

the preliminary data quality assessment conducted justifies the need for 

continued research on Bluetooth data to establish its relevance and maximise its 

potential to support the delivery of an enhanced traffic management.  

 

4.3  Birtley: An Evaluation Platform for Bluetooth Traffic Metrics 

Estimation 

4.3.1 Background to the Birtley study 

The Birtley study area is located north of County Durham and South-West of 

Gateshead. The study consisted of seven Bluetooth monitoring stations located 

mainly along the A167, Durham Road as shown in Figure 4.6. Table 4.6 

presents the description of the location of the sensors. The data were collected 

over two weeks from 5th March to 16th March 2012. The aim of the study was 

to create an evaluation platform for Bluetooth data to enhance traffic 

management by employing a post-processing data analysis technique 

developed in this research. The major assumption made under this section 

builds on the Liverpool study to further the preliminary assessment of Bluetooth 

data. The assumption is that under normal conditions, the proportion of the 

Bluetooth-enabled devices captured will vary in time and space (geographical 

location) with variations in traffic patterns. The results of this test are presented 

in the next section. 
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Figure 4.6: Location of Bluetooth sensors in the Birtley study site 
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Table 4.6: Location description for the Bluetooth sensors in the Birtley study site 

 

4.3.2 Results and Analysis 

Figure 4.7 shows the count of MAC addresses captured daily throughout the 

11-day survey period at Stations 6 and 7 and for the 6-day period for Stations 1 

to 5. The non-uniformity observed in the daily count particularly at Stations 1 to 

6 is due to the difference in the start and end time of the period of data 

acquisition according to the time of installation and removal of the sensors. For 

example, observations started at 1 pm on the first day and ended at around 4 

pm on the 10th day. The counts of the detected MAC addresses represent the 

proportion of the total traffic (all modes) passing the detectors. The proportion of 

the actual flow is assumed to depend on the level of the road usage and the 

consistency of detecting Bluetooth-enabled devices from day-to-day. However, 

it is clear from Figure 4.7 that the Bluetooth counts from each station over 24 

hours are similar from day to day. The spatial variations in the Bluetooth count 

represent the level of Bluetooth usage across the stations. For example, the 

lowest number of devices was recorded at Station 7 (60 devices) over the 

weekdays. The highest number of devices was recorded at Station 3 with an 

average of 210 devices over the weekdays. 

Latitude Longitude

1 54.88269 -1.57599
A167 Durham Road, Birtley (South of 

Dorset Avenue)

2 54.89187 -1.57700
A167 Durham Road, Birtley (South of 

Harras Bank)

3 54.89610 -1.57770
A167 Durham Road, Birtley  (South 

of Station Lane)

4 54.89700 -1.57757
A167 Durham Road, Birtley (South of 

Orchard Street)

5 54.90060 -1.57795
A167 Durham Road, Birtley (South of 

Edward Road)

6 54.89549 -1.58360
Station Lane, Birtley (West of Factory 

Access)

7 54.89841 -1.56920
Mount Pleasant Road, Birtley (South 

of Portmeads Road)

Station 

Number

Coordinates
Station description
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Figure 4.7: The profiles of Bluetooth hourly count at the seven stations 

 

Daily trips were explored by matching MAC addresses at different stations and 

calculating travel times. From the analysis of travel time and the direction of 

travel, two main trip patterns emerged, based on their characteristic road usage 

when passing along a link between two consecutive stations designated as 

“single trip” and “round trip” commuters. Trips made without a return on the 

same day were classified as a single trip, while any trip with a return trip on the 

same day was classified as a round trip. Given that only a sample of the actual 

traffic was captured by the Bluetooth sensors, other types of trip were classified 

under the above two broad classifications. 

▪ The “undetected” who were assumed to have either made the return trip 

but no longer with the Bluetooth switched on (perhaps due to weak 

battery or the device was switched off) or they left the network without 

passing a Bluetooth detector and were not detected on the return trip, or 

possibly made a return trip but were not detected by the sensors. 
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▪ Those who stayed within the detection zone (either employed in the area, 

were visiting or lived there) for a period and were detected later in the 

day is another possibility. 

Table 4.7 presents the scaled Bluetooth counts of devices through the network 

in one (single trip) or both (round trip) directions. Scaling was done to ensure 

uniformity in the presentation of the data. The links breakdown shows more 

single-trip commuters than round trip commuters as would be expected. 

Analysis shows that the smallest mean ratio (2.5) of single trip to round trip was 

observed on Link36 while the highest (5.2) was observed on Link47. The ratio 

gives a level of understanding of the usage of the routes. Link12 exhibits the 

most similar characteristics based on the precision (range of 0.1) of the ratio 

observed on the link. The widest departure (ratio 4.9 - 5.6) was observed on 

Link47 with a range of 0.7. The spatial variation observed in the data confirmed 

the assumption made on the data with detection dependent upon the location of 

the sensors. Although not validated, there is an obvious reflection of the 

movements of commuters (O-D patterns) across the network. 

 

Analysis of the link speeds for the journeys made each way along selected links 

between links (12), (23), (36) and (47) showed that the typical speed is in the 

range of 10km/h and 65km/h with a higher percentage of the vehicles travelling 

within 40km/h. This is considered reasonable given the average speed limit for 

Gateshead (20.7mph) and Tyne and Wear 23.4mph (Thorgil, 2007; Tyne and 

Wear, 2010; DfT, 2011; Tyne and Wear, 2011). This result also showed that 

Bluetooth can provide estimates of speed for individual vehicles along stretches 

of road as well as the proportion of vehicles moving at a particular speed, as 

parameter to measure or understand delay (Ayodele et al., 2013). At this 

preliminary stage of the analysis and without access to independent measures 

of traffic flows, it was assumed that the Bluetooth estimates are representative 

of the actual traffic. 
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Table 4.7: Summary of trip patterns on four prominent links in the Birtley study 

site 

 

4.3.3 Conclusion from the Birtley study 

A preliminary study on the exploration of Bluetooth data to estimate traffic 

metrics to enhance traffic management has been carried out. Analysis of the trip 

patterns showed that a single trip was more prominent than a round trip over 

the select road sections in the Birtley urban area. The preliminary results and 

analysis indicate that Bluetooth could be used to understand the trip patterns in 

a network. The ability to identify trip patterns (origins and destinations) offers 

the potential to considerably enhance decision making with respect to managing 

traffic demand and providing information to users of the network across modes 

(Bell et al., 2012). Although at this stage, only a preliminary analysis of the pilot 

survey is available but some interesting applications emerge. The counts from 

day to day were consistent suggesting that the origins and destinations in the 

area could be monitored successfully over time of the day. Such information is 

useful to model traffic conditions, and to provide better congestion management 

systems. On a link basis, this will enable a realistic evaluation of network 

performance. 

Link

Link length 

(m) Date Single trip Round trip

Trip 

ratio

Mean 

Ratio

06/03/2012 1112 426 2.6

07/03/2012 1155 430 2.7

08/03/2012 1214 464 2.6

06/03/2012 1271 472 2.7

07/03/2012 1241 430 2.9

08/03/2012 1039 331 3.1

06/03/2012 572 255 2.2

07/03/2012 495 220 2.3

08/03/2012 467 160 2.9

06/03/2012 457 94 4.9

07/03/2012 529 106 5.0

08/03/2012 507 90 5.6

2.6

2.9

2.5

5.2

L12

L23

L36

L47

1,023.17

479.84

396.66

685.14
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4.4  Manchester: Exploring Transferability  

4.4.1 Background to the Manchester study 

Table 4.8 presents the description of the Bluetooth stations in the three study 

sites of Wigan, Stockport and Trafford located in Greater Manchester. Due to 

the small scale of the Manchester study site, the zoomed in (detailed) map of 

each of the study sites is presented in subsequent sections for clarity. This pilot 

study in Manchester builds on earlier work carried out in Birtley (Section 4.3), 

which demonstrated the potential of Bluetooth data to classify network users 

(such as, round-trip or single-trip commuters). It is also used to identify the 

patterns of movement through a simple network to show the capability for 

enhanced traffic management. This study in comparison to the earlier work in 

Birtley was carried out on a larger scale (utilising 23 stations compared to 7 

stations in Birtley) to demonstrate the transferability of the research method. 

The data collection consists of three study sites – Wigan, Stockport and 

Trafford, which have “non-linear, linear, and longer-linear” network layouts 

respectively. In this case, the non-linear network is defined as the array of 

sensors over urban roads with interconnecting routes forming area-wide O-Ds. 

The linear network is defined as the array of sensors mainly in a linear form 

over a road segment not exceeding 4km. On the other hand, the longer-linear 

network is the array of sensors primarily in a linear form over a road segment up 

to 4km or greater. The three case studies were chosen to investigate whether 

there are any differences in traffic patterns over the entire network. Bluetooth 

data captured from Wigan were analysed for trip patterns and speed 

distribution, while data from Stockport were analysed for transferability checking 

for possible differences in the results and interpretation. Data from Trafford 

were analysed mainly to explore monthly variation. The results for each 

demonstration are presented in turn with conclusions drawn and next steps 

articulated. 



112 

 

 

Table 4.8: Location description for the Bluetooth sensors in Greater Manchester 

 

4.5  Study Site 1: Wigan 

4.5.1 The Wigan network 

Figure 4.8 presents the Wigan network (Study site 1), near Central Park Way - 

a busy urban area, with the reference station (MAC1014WG – highlighted with a 

Latitude Longitude

MAC1012WG 53.51902 -2.65240 Warrington Road

MAC1013WG 53.52892 -2.65498 Warrington Road/Smithy Brook Road

MAC1014WG 53.54142 -2.64781 Wallgate Saddle Gyratory

MAC1015WG 53.54323 -2.63559 Wallgate/Caroline Street

MAC1016WG 53.52564 -2.64757 Poolstock Lane/St Pauls

MAC1017WG 53.52975 -2.64372 Poolstock Lane/Rushdene

MAC1018WG 53.54121 -2.63077 Chapel Lane

MAC1021WG 53.56371 -2.63169 Wigan Lane/Brock Mill Lane

MAC1022WG 53.55925 -2.62833 Wigan Lane/Royal Albert Edward Hospital

MAC1023WG 53.54873 -2.62713 Central Park Way

MAC1024WG 53.55758 -2.66141 Woodhouse Drive/Scot Lane

MAC1025WG 53.55275 -2.66532 Scot Lane/Challenge Way

MAC1026WG 53.53649 -2.68501 Orrell Road/Fleet Street

MAC1027WG 53.53570 -2.67097 Ormskirk Road/Sherwood Drive

MAC1028WG 53.53768 -2.65721 Ormskirk Road/Alker Street

MAC1029WG 53.51690 -2.68382 Pemberton Road VMS

MAC1030WG 53.53230 -2.66539 Billinge Road/Little Lane

MAC1031WG 53.52168 -2.66892 Holmes House Avenue

MAC1033ST 53.39596 -2.14980 A6 Buxton Rd/Nangreave Rd

MAC1034ST 53.39295 -2.14634 A6 Buxton Rd/Kennerley Rd

MAC1035ST 53.38990 -2.14066 A6 Buxton Rd south of Woodsmoor Rd

MAC1036ST 53.38672 -2.13178 A6 Buxton Rd north of Dialstone Ln

MAC1037ST 53.38432 -2.12700 A6 London Rd/Newmoor Rd

MAC1038ST 53.38317 -2.12574 A6 London Rd south of Vernon St

MAC1039ST 53.38057 -2.12262 A6 London Rd se of Hope St

MAC1040ST 53.37903 -2.11899 A6 London Rd south of Grundey St

MAC1041ST 53.37547 -2.11382 A6 London Rd/Buxton Rd

MAC1001TR 53.39044 -2.35031 Junction of Woodlands Road A56  / Church Street

MAC1002TR 53.39516 -2.35224 Junction Manchester Road A56 / Barrington Road

MAC1003TR 53.39766 -2.35218 Junction Manchester Road A56 / Navigation Road

MAC1004TR 53.40614 -2.34743 Junction Manchester Road A56 / Park Road

MAC1005TR 53.41149 -2.34117 Junction Washway Road A56 / Eastway

MAC1006TR 53.41964 -2.33187 Junction Washway Road A56 / Marsland Road

MAC1007TR 53.42565 -2.32525 Junction Washway Road A56 / Ashton Lane

MAC1008TR 53.43115 -2.31897 Junction Cross Street A56 / Dane Road

MAC1009TR 53.39103 -2.34762 Junction Woodlands Road A560 / Barrington Road

MAC1010TR 53.39123 -2.34157 Junction Woodlands Road A560 / Stockport Road

MAC1011TR 53.39270 -2.31750 Junction  Shaftsbury Avenue A560 / Thorley Lane

MAC1070MR 53.44900 -2.19217 Stockport Road/Matthew's Lane

MAC1071MR 53.44429 -2.19162 Stockport Road/Albert Road

Coordinates

Station Name Station description
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red circle near Poolstock Brook) presenting a strategic advantage for 

comprehensive data capture due to its central position within the network. The 

Wigan network presents a good comparison with the linear networks of Sites 2 

and 3 due to the area-wide positioning of the Bluetooth sensors within the road 

network. 

 

Figure 4.8: Map of the Wigan network showing Bluetooth and ATC stations 
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4.5.2 Estimation of traffic counts 

Figure 4.9 presents the daily Bluetooth count for the period 3rd -10th September 

2011 (inclusive) for all stations. A key assumption made in this study is that 

there is daily consistency in the percentage of the detected Bluetooth-enabled 

devices with variations across the different stations. Lower counts are also 

expected during the weekend. An interesting observation is that traffic counts at 

Stations 12, 14 and 18 on 10th September were systematically lower than the 

3rd September at all stations despite both days being a Monday. This shows the 

potential of Bluetooth to respond to changes in the network by capturing the 

temporal changes in the traffic levels. The assumption is that any difference in 

the observation represents the actual changes in traffic levels on the street. 

Such changes were noticed on Friday (drop in flow below Station14) and 

Saturday (rise in flow above Station12) at Station 21. 

 

Figure 4.9: Bluetooth daily count of devices at nine stations (stn) in Wigan 

 

4.5.3 Travel time parameters 

Araghi et al. (2012) proposed four statistical parameters to evaluate the 

accuracy of travel time estimation using Bluetooth. The research showed that 
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the minimum and median travel times provide more robust estimates of typical 

route travel time compared to the maximum and the mean (Araghi et al, 2012). 

However, since the minimum, maximum and mean travel times are all functions 

of extreme values, this PhD research considered three additional parameters 

namely: Twentieth Percentile, First Quartile and Third Quartile in order to 

establish a richer understanding of travel times to enhance interpretation, and to 

overcome the effect of extreme values. Overall, the results (Appendix 4C) 

indicate that the maxima give a clear indication of the longest delay on the road 

segment, while consistent with Araghi et al. (2012) and Araghi et al. (2013), the 

median is considered the most robust and stable measure of travel times and 

thus reflects the prevailing traffic conditions on the road. In the long-term study, 

the mean and median travel time will be explored further for statistical 

significance of the results. 

 

4.5.4 Estimation of vehicle speeds 

The speed of the captured devices was computed based on the methodology 

described in Section 3.4.3. Figure 4.10 illustrates the average over eight days of 

the distribution of speeds for the three major links within the network overlaid on 

the study site area map to indicate location. The profiles are presented as line 

graphs rather than as bar charts to allow for easy comparison with the 

distribution of speeds for different links. Dual peak, which reflects the proportion 

of traffic during the eight days at the particular location in the network was 

observed. The first mode of the bimodal distribution reflects congestion with 

speeds typically 10km/h and the mode at the higher level (35 - 50km/h) reflects 

free-flow on the road. The highest flow level (25%) was observed on Link1412 

in both directions, which can be attributed to the effect of the high levels of 

cross-flows at the junction along the route. The least congested link was 

Link1418 with a substantial number of vehicles on this link travelling at speeds 

between 35 and 65km/h. The modal speed for Link1426 in both directions was 

determined to be 45km/h, and is considered reasonable given the stated speed 

limit (48km/h). With this information, appropriate control measures can be 

implemented to optimise the flow of traffic in the network.  
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On Links1214, 1814, and 2614, similar interpretation as described on the 

opposing links above is given to the results. Overall, the similarities in the 

profiles of the opposing links particularly on Link1412 and Link1214 means that 

the same plan or strategy can be implemented to control the traffic on the links. 

 

Figure 4.10: Map of Wigan showing the distribution of speed across three links 

(1412, 1418 & 1426) for each direction 

 

4.5.5 Origin and destination analysis 

Origin-destination analysis was carried out with Station 14 chosen as the critical 

reference node due to its strategic location. One mode is considered at this 

stage to test the research methods before extending the concept in the further 

study. This station was considered strategic due to its central position forming a 

nodal point for all the major routes. A “one-to-many” (defined as the estimation 



117 

 

of link-flows from a reference station to all other stations in the O-D array). The 

O-D matrix presented in Appendix 4D showing the flow levels alongside travel 

times was generated based on the research method. From the results, the 

highest number (38%) of all vehicles tracked at Station 14 was found at Station 

18 while the least (1.9%) was tracked at Station 31. The highest and lowest 

percentages of the vehicular total flow were also observed on these links but in 

the opposing direction with 40% and 1.7% respectively. This is expected as 

Station 18 leads to a commercial area while Station 31 is on a minor road not 

directly linked either upstream or downstream to Station 14. With this type of 

information, Bluetooth may be used in a variety of transport applications such 

as planning and management. 

 

4.5.6 Defining journey types using Bluetooth data 

Table 4.9 shows the summary of the trip types classified based on the trips 

made across the three major links, namely 1412, 1418 and 1426 identified 

within the network. These links are considered very important because they 

connect the network of the area to the M6 and Wigan North-Western Train 

Station which as such are expected to be busier than the other links in the 

network. “Out_unique” and “In_unique” as used in this context correspond to the 

number of unique vehicles identified leaving for example, point A to B and from 

point B to A respectively. The journey types are classified as either a single trip 

or a round trip as earlier defined under the Birtley study (Section 4.3.2). The first 

column under “count validation” gives the sum of out_unique and in_unique 

while the second column gives the sum of single trip and 2 times the round trip. 

The round trip is multiplied by 2 in this context to reflect the contributions from 

the two opposing links. The small discrepancies observed on some days with a 

maximum difference of six Bluetooth devices on 4th September on Link1426 is 

attributed to the problem of non-uniqueness of MAC address or encription error 

(See row 1 of an example data – Appendix 2B). Although these results are not 

verified by any other method, they show Bluetooth potential for journey type 

classification. 



118 

 

Table 4.9 presents the analysis for the 8-day observations as presented in 

columns 7 and 8. Link1426 showed the highest consistency in the count of 

devices with a range of 0.5 between single trip to round trip ratio. Link1412 had 

the highest range and a mean ratio corresponding to 1.6 and 3.9 respectively. 

However, the least mean ratio was observed on Link1418, signifying the highest 

amount of return journeys, thus indicating that this link probably has the highest 

demand for local access in the area due to its proximity to a commercial area 

and the train station (Ayodele et al., 2013). Consequently, the link was further 

analysed to investigate the hourly count profiles for consistency over the 

weekdays as presented in Figure 4.11.  

 

Table 4.9: Summary of journey types on the top three busiest routes 

 

The percentage hourly count of the profile of the Bluetooth devices presented in 

Figure 4.11 and Figure 4.12 showed a high level of consistency between the 

weekdays on both opposing links 1418 and 1814. The highest percentage flow 

(about 12%) occurring at about 8-10am (morning peak) on Link1418 and 10% 

between 2 – 4 pm on Link1814. The graphs showed the variation in the traffic 

flow over the day that provides knowledge of when the section of the road may 

Link

Link 

length 

(km) Date

Out_Unique 

(Count/day)

In_Unique 

(Count/day)

Single trip 

(Count/day)

Round trip 

(Count/day)

Trips-

Ratio

Mean-

Ratio

03/09/2012 745 812 931 312 3.0 1557 1555

04/09/2012 800 779 995 292 3.4 1579 1579

05/09/2012 840 801 1069 286 3.7 1641 1641

06/09/2012 817 741 984 286 3.4 1558 1556

07/09/2012 595 649 860 192 4.5 1244 1244

08/09/2012 352 374 492 117 4.2 726 726

09/09/2012 250 270 358 81 4.4 520 520

10/09/2012 643 628 883 194 4.6 1271 1271

03/09/2012 2271 2431 2056 1323 1.6 4702 4702

04/09/2012 2324 2448 2064 1354 1.5 4772 4772

05/09/2012 2309 2459 2128 1320 1.6 4768 4768

06/09/2012 2297 2385 2038 1322 1.5 4682 4682

07/09/2012 1747 1582 1755 787 2.2 3329 3329

08/09/2012 1467 1571 1330 854 1.6 3038 3038

09/09/2012 1040 1294 1146 594 1.9 2334 2334

10/09/2012 1905 1858 1757 1003 1.8 3763 3763

03/09/2012 1277 1303 1290 645 2.0 2580 2580

04/09/2012 645 688 665 337 2.0 1333 1339

05/09/2012 1215 1247 1277 591 2.2 2462 2459

06/09/2012 1154 1211 1149 608 1.9 2365 2365

07/09/2012 1085 998 1137 473 2.4 2083 2083

08/09/2012 830 819 785 432 1.8 1649 1649

09/09/2012 577 569 580 283 2.0 1146 1146

10/09/2012 1096 1168 1166 549 2.1 2264 2264

Count 

Validation

3.9

1.7

2.1

Link1412 2.712

Link1418 1.284

Link1426 2.700
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be congested. With this knowledge, traffic engineers and planners may begin to 

put strategies in place to mitigate any impact arising from the traffic level at 

those periods. From the analysis, the weekend distributions presented a clear 

departure from the other weekdays as expected and, as a result, were analysed 

separately. The information gathered was found to reveal patterns and 

characteristics of the traffic such as high and low flows with a high level of 

consistency even over the eight days of study both in terms of flow and speed. 

This result thus demonstrates the value of Bluetooth useful traffic metrics for 

traffic modelling performance evaluation for each link across the area. 

 

Figure 4.11: Bluetooth hourly count profile over the day for Link1418 
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Figure 4.12: Bluetooth hourly count profile over the day for Link1814 

 

4.6  Study Area 2: Stockport 

The Bluetooth data for this study covered eight days. A similar analysis to the 

Wigan study was performed by utilising the research method to demonstrate 

reproducibility and transferability. This step provides the opportunity for a 

preliminary validation of the results through repeatability. Figure 4.13 presents 

the map of the Stockport network showing the nine Bluetooth stations 

(MAC1033ST – MAC1041ST) and ATC (ATC1500 and ATC1013) locations. 

Stockport (Study site 2) is a linear network on the A6 Buxton/London Road. The 

characteristics of this study site contrast with the non-linear network-based ones 

of Study site 1. Station MAC1033ST, which is located at the junction of 

Nangreave/Aquinas College Road and Buxton Road leading to London Road, 

was chosen as the reference point for Study area 2 in order to understand 

whether the Bluetooth stations that are far apart have any influence on the 

results. A key observation worthy of note in this study is that the two stations 

furthest apart (MAC1033ST and MAC1041ST) have the least match records as 

would be expected due to the possibility of vehicles making a detour between 

O-D pairs. The results from this study site are presented in Appendix 4E, and 
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were not reported further given that they are similar to the Wigan analysis and 

added nothing additional. 

 

Figure 4.13: Location of Bluetooth sensors and ATC in the Stockport study site 
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4.7  Study Area 3: Trafford 

4.7.1 The Trafford network 

Figure 4.14 presents the distribution of Bluetooth sensors and ATCs over Study 

site 3, a longer linear network mainly embracing the A56 trunk road. Five 

Bluetooth stations comprising MAC1001TR – MAC1005TR (where access to 

data were first granted) were analysed to explore monthly variations over six 

months for the period 1st October 2011 to 31st March 2012, as well as exploring 

speed/flow relationships. 
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Figure 4.14: Location of Bluetooth sensors and ATC in the Trafford study site 

 

4.7.2 Understanding monthly flow levels 

Having gained an initial understanding of the daily flow levels analysed in study 

site 2, six months of 15-minute Bluetooth average flow collected were analysed 
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to understand consistency and temporal variation. Table 4.10 presents the 

monthly correlation analysis, while Figure 4.15 presents the profiles of the flow 

showing a clear consistency over the period. However, temporal variations were 

observed particularly at peak periods as expected. Flows in the months of 

October, November and March are slightly above the average while the flows in 

January, February, and December were slightly below the average flow. The 

correlation analysis performed presents a better understanding of the monthly 

flow. The highest correlation (correlation coefficient - 0.987) was reported 

between the months October and November. The least correlation (correlation 

coefficient - 0.971) between December and March is attributed to holiday in the 

period. However, the range of the correlation coefficients (0.015) showed that 

the difference is not significant. Therefore, the average flow over the period (six 

months) may well be representative of a typical monthly flow level. The 

consistency observed in the data from day to day and over months with a strong 

positive correlation (𝑟 ≥ 0.97) is indicative of a level of reliability in the data. 

This consistency in the data is highlighted in the work of Biora et al. (2012). This 

type of consistency is necessary for efficient traffic models to characterise the 

network. 

 

Table 4.10: Correlation analysis for six months average flow in Trafford 

 

Jan Feb Mar Oct Nov Dec

Jan 1

Feb 0.982 1

Mar 0.976 0.974 1

Oct 0.979 0.986 0.981 1

Nov 0.984 0.986 0.980 0.987 1

Dec 0.985 0.978 0.971 0.976 0.979 1
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Figure 4.15: Average flow for six months (Oct 2011 – Mar 2012) at MAC1001TR 

at Trafford 

 

4.7.3 Estimation of the link volume 

Table 4.11 presents the summary of the analysis of the detected devices from 

Station MAC1001TR through Station MAC1005TR designated as Stations 1- 5 

in the subsequent text. The second column presents the unfiltered MAC devices 

detected at a station; while the third column shows the number of duplicates 

present at each station. The column of the matched records presents the 

number of the MAC devices detected at two consecutive stations. The filtered 

column shows the number of unique MAC devices captured at a station over 

the day following the application of the boundary filtering condition, and the 

exclusion of the duplicate records. The column of the link volume presents the 

number of vehicles in each direction following a directional classification as 

described in the methodology. The summation of the directional flows equals 

the number of the filtered records in both directions. The results showed that the 

traffic volume is greater in the opposite direction for all the links, which points to 

the area of higher activities. The difference in flows was examined as shown in 

Figure 4.16, which shows a typical flow on the link. Other matches carried out 
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between Station 1 to Station 5 showed that the two detectors furthest apart 

have the lowest match rate as seen on Link15. The reasons for this can be 

largely due to drivers making use of the bypass and rat running in the network. 

 

Table 4.11: Summary of the link volume analysis over the Trafford network 

 

 

Figure 4.16: MAC1001 located at the junction of Church Street, A56 Trafford 

 

4.7.4 Understanding speed and travel time patterns 

For the time-of-day speed distribution, links through Stations 3 to 5 are 

designated 30mph (approximately 48km/h roads). It was observed that very few 

vehicles violated the speed limit especially at midnight and between 12 noon - 2 

Filtered 

records 

(6≤V≤120)

(V in Km/h)

1 4092 929

2 3628 773 2937 1,257 540.65 403; 854 12

3 4142 881 4,279 1,875 278.05 669; 1,206 23

4 6546 1786 3,777 1,508 994.87 478; 1,030 34

5 2996 495 3,767 1,858 726.09 626; 1232 45

1 4092 929 1,172 586 2,539.66 172; 414 15

Link
Station

No

No of 

unfiltered 

records

No of 

duplicate 

records

Matched 

records

Link 

distance 

(m)

Link volume 

(No of 

Vehicles/day)
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pm on Link34 (Figure 4.17). Despite the violations observed, this result shows a 

high level of speed compliance in the area. On Link12, which is a dual 

carriageway, a higher level of speed was observed (Appendix 4F) compared to 

Link34. These types of results show that Bluetooth data can be used to infer 

speed patterns within the network to aid policy formulation such as emission, 

safety, and economic policies. Further statistical analysis of the travel time from 

Station 1 to Station 2 shows that it is positively skewed with a value of 4.41, with 

its mean and standard deviation as 63.67 and 42.94 respectively. The traffic 

profile of Link12 shows the most populated cluster of vehicles at about 11-12 

noon on the day signifying the most congested period along the stretch of the 

road. Since congestion patterns are expected to be more pronounced during 

the peak periods than in the off-peak, the pattern observed on this day may be 

due to an incidence occurrence. Therefore, incident monitoring is another 

possible application of Bluetooth.  

 

Figure 4.17: Speed distribution over hours of the day from Station 3 to Station 4 

in Trafford 

V34 is the speed from station 3 to 4. 
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4.8  Conclusions 

A description of the data collection for Bluetooth traffic metrics estimation was 

presented. The description consisted of three pilot studies: Liverpool, Birtley, 

and Greater Manchester all in the UK. The study conducted in Liverpool 

showed that the quality of Bluetooth data is sufficient to estimate traffic metrics. 

The Birtley study showed that Bluetooth has the potential to identify traffic 

patterns through the analysis of trips of commuters. The Manchester study built 

on the results from the Birtley study in an area-wide context to demonstrate 

transferability. More Bluetooth matches were detected between closer stations 

than stations farther apart as expected within an urban network that may at 

times experience rat running or the use of side roads for other activities. 

Generally, the Manchester study revealed higher traffic volumes in Stockport 

and Trafford (Sites 2 and 3 respectively) compared to Wigan (Site 1). The 

preliminary results obtained showed that Bluetooth could provide a viable 

means of acquiring origin-destination information that has been difficult and 

expensive to acquire in the past. The results also showed a high level of 

consistency typified by strong positive correlation coefficient (𝑟 ≥ 0.80). The 

characteristics’ peak and off-peak nature of normal traffic were equally 

observed in the data. This suggests the ability of Bluetooth data to represent the 

actual traffic. The possibility of this application means that Bluetooth provides 

the platform to acquire traffic data in a cost-effective way, thereby contributing 

to the delivery of sustainable transport systems. At this stage, Bluetooth data is 

believed to possess the potential for traffic management applications. The next 

chapter discusses the validation of the results for large-scale applications based 

on the concept of these pilot studies. 
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Chapter 5. Validation of Results 

5.1  Introduction 

In Chapter 4, the preliminary analysis of Bluetooth data was performed on a 

short-term scale to gain an initial understanding of the data quality and its 

potential application in traffic metrics estimation. Chapter 5 builds on the pilot 

studies presented in Chapter 4 with a specific objective of validating the results 

obtained to establish the level of accuracy of the data. This is in fulfilment of the 

Research Objective iv as stated in Section 1.4. The validation of the Bluetooth 

results in this chapter utilises diverse independently measured traffic data 

obtained from ATC, SCOOT, ANPR and Traffic Master (TM) In addition, 

different validation techniques were used to assess the results from the long-

term study to ensure sound and robust judgement and maintenance of fit for 

purpose concept. This is because there is a limited knowledge on the accuracy 

and reliability of Bluetooth data conducted based on field tests. This validation is 

also necessary because the available bespoke commercial software for 

Bluetooth traffic metrics estimation is presently not accessible to the public. 

Therefore, this chapter examines the question of whether Bluetooth data is 

accurate enough to provide essential traffic metrics that include travel time and 

speed. Hence, the following specific objectives are considered: i) calibration of 

the traffic metrics estimation model (TRAFOST) developed in this research; ii) 

validation of results using diverse independently measured traffic data; and iii) 

modelling of the results using ARIMA models to understand the predictive 

capability of Bluetooth data. The subsequent sections present the discussion of 

the calibration and validation.  

 

Chapter 5 has the following structure: Section 5.2 presents the calibration of 

TRAFOST before the validation of the estimated metrics using independently 

measured traffic data sets. This calibration is to ensure the validity of the model 

outputs before any comparison of its results with other data sources. Three 

steps contribute to the calibration namely i) the use of independent 

computation; ii) the use of C2-Web outputs; and iii) cross validation using the 
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model outputs. The validation of results using diverse measures of traffic data is 

presented in Section 5.3. The analysis focused on the links where simultaneous 

capture of Bluetooth and independent measurement of traffic data were 

possible. In all, four specific links were investigated on a directional basis to 

ensure better understanding and clarity of purpose on the use of Bluetooth data. 

The estimated speed was further verified where possible using live traffic 

information (example in Appendix 5A). Overall, the assessement is essential to 

establish the validity of Bluetooth estimation by establishing its relatonship with 

the “true” value. Section 5.4 presents the results of Bluetooth estimation based 

on ARIMA models to conclude the validation process before conclusions are 

drawn in Section 5.5. 

 

5.2  Calibration of TRAFOST 

5.2.1 Calibration of the model outputs against independent computation 

This section describes the calibration of TRAFOST against an independent 

computation utilising the Excel model (manual computation). The independent 

checks introduced in the calibration is to detect and correct for any likely 

difference or error in the TRAFOST-generated results. That is, the ability to 

reproduce the independently generated results is a way of building proof into 

the model. However, where necessary, consultations were made to TfGM and 

TDC for clarifications of results. Table 5.1 presents the summary of such 

comparisons. From the table, all the metrics from the two models present a high 

level of precision with standard errors (0.298, 0.226, 0.095) for flow, journey 

time and speed respectively. The maximum difference being: flow (5𝑣𝑒ℎ/ℎ𝑜𝑢𝑟), 

which occurred during the peak period; journey time (4𝑠); and speed (1𝑘𝑚/ℎ). 

An important observation is that TRAFOST-derived metrics is consistently 

higher throughout the day. This difference is attributed to approximations and 

iterations in TRAFOST, and not the presence of systematic errors. TRAFOST is 

adjudged to be correct due to the reproducibility of the previous results and the 

day-to-day precision between the two methods of estimation. 
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Table 5.1: Results of the model calibration against independent computation 

 

5.2.2 Calibration of the model against C2-Web outputs  

Another assessment of the validity of the model developed in this research 

considers a comparison of the model estimation of traffic counts with those 

obtained from C2-Web. C2-Web is commercial software developed by 

Drakewell/TDC used by TfGM for Bluetooth traffic analysis. A month of data 

(July 2013) as available from the Wigan study area was used to carry out this 

exercise. Wigan was used in this case primarily due to the configuration of the 

road network connecting the Bluetooth stations (1022 and 1023) relative to the 

validation station (ATC1074) as presented in Figure 4.8 (Section 4.5.1). Figure 

5.1 presents the scatter plots and the adjusted R-squared of the weekday’s 

traffic counts over the month. The results of the calibration showed that there is 

Period 

(Hour)

Volume 

(Veh/h)

Journey 

Time (s)

Speed 

(km/h)

Volume 

(Veh/h)

Journey 

Time (s)

Speed 

(km/h)

Volume 

(Veh/h)

Journey 

Time (s)

Speed 

(km/h)

0 15 41 48 15 41 49 0 0 -1

1 5 43 44 5 43 44 0 0 0

2 3 35 53 3 35 54 0 0 -1

3 4 54 40 4 54 41 0 0 -1

4 10 51 42 10 51 43 0 0 -1

5 13 33 56 13 34 57 0 -1 -1

6 44 38 50 45 42 50 -1 -4 0

7 119 45 44 121 47 45 -2 -2 -1

8 136 52 38 137 53 39 -1 -1 -1

9 132 46 43 135 48 43 -3 -2 0

10 184 50 40 184 51 41 0 -1 -1

11 182 49 41 186 51 41 -4 -2 0

12 167 43 45 167 43 46 0 0 -1

13 158 46 42 158 47 43 0 -1 -1

14 192 51 40 197 54 40 -5 -3 0

15 168 56 36 170 57 37 -2 -1 -1

16 170 47 41 170 48 42 0 -1 -1

17 134 45 43 134 46 44 0 -1 -1

18 136 44 44 139 47 44 -3 -3 0

19 104 45 45 105 47 45 -1 -2 0

20 62 45 45 63 48 45 -1 -3 0

21 56 45 44 56 46 45 0 -1 -1

22 46 40 49 46 40 50 0 0 -1

23 12 38 50 12 38 50 0 0 0

TRAFOST EstimationManual Estimation Difference in Estimation



132 

 

a strong positive relationship (𝑟 > 0.8) between the C2-Web software and 

TRAFOST. An examination of the reason for the difference in estimation 

showed that the C2-Web estimation was without exclusion of any Bluetooth-

enabled device. Notwithstanding, both software (C2-Web and TRAFOST) 

showed a perfect agreement when compared on the basis of total devices 

captured. Also, despite the observation in the C2-Web results, an independent 

check has been provided for TRAFOST at the traffic count level.  

 

Figure 5.1: Calibration of TRAFOST against C2-Web count on Link2223 in 

Wigan over July 2013 

 

5.2.3 Cross-validation using journey time and speed results 

In order to ensure a high level of reliability in the estimation, cross-validation 

was incorporated into the verification exercise to reveal the presence of any 

systematic errors in the estimation. This process serves as an external check 

and by so doing building further proof into the process. In this case, journey 

times and speed results were used to provide the proof given that journey time 
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and speed curves are expected to produce a close reflection of each other. The 

validity of this proof provides confidence in the estimated metrics. Also, cross-

validation is considered very useful as any mistake and/or systematic errors in 

either of the metrics can be discovered thereby making the process robust. This 

concept was extended to the examination of speed-time plot (Appendix 5B). 

The speed-time graph is expected to produce a hyperbolic curve whose area 

under the curve defines the distance travelled. That is, the distance travelled by 

the individual vehicles or the average over time is expected to be approximately 

equal to the actual link distance. The hyperbolic curve produced by the plot 

conforms to the expectation, thereby building another level of confidence in the 

estimation model. These theoretical concepts were all considered in the design 

and verification exercise to further assess the accuracy and reliability of the 

model and the derived metrics. 

 

Figure 5.2 and Figure 5.3 show the hourly distributions of journey times and 

speed over the month of July on Link3435 in Stockport. From the two graphs, it 

is evident that they both produce a mirror reflection of each other as postulated. 

Both plots respectively captured the morning and evening peak periods with a 

relatively uniform average journey time and speed over the weekend. The 

highest journey time (52s) was observed on Monday over the morning peak 

period corresponding to the lowest speed (38km/h). The graphs also showed 

that the least travel time corresponding to the highest speed for the month was 

observed over the early and late hours of the day as well as on the weekend. 

The validity of the model outputs is further justified by the computed relative 

absolute error of distance (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟/𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) ≈  0.03%. This 

shows that the chances of the measurements being in error is less than 1%. 

  

Irrespective of the time taken, all vehicles are expected to travel a distance very 

close to the link distance (0.511km). Figure 5.4 presents the profile of the 

distance travelled averaged over hours of the day for the month of July 2013. 

The 95% confidence limit for the distance is 0.514 to 0.519. Based on the 
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0.511km actual link distance, the result obtained over the month is accurate to 

1cm level of accuracy both on an hourly and daily basis. The high level of 

accuracy and precision obtained gives another level of confidence and reliability 

to the model and the estimated metrics. The next step considers the use of 

independently measured traffic data for results validation. 

 

Figure 5.2: Profile of Bluetooth average journey time overlaid with 95% 

confidence limit over July 2013 in Stockport 

 

 

Figure 5.3: Profile of Bluetooth average journey speed overlaid with 95% 

confidence limit over July 2013 in Stockport 
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Figure 5.4: Profile of distance travelled overlaid with 95% confidence limit over 

July 2013 in Stockport 

 

5.3  Validation of Results against Independent Measures of Traffic Data 

5.3.1 Validation of flow 

This section presents the results of Bluetooth estimated flow validated against 

the flows measured by three other independent data collection systems (ATC, 

SCOOT and ANPR) to understand their relationships. The question here is 

whether Bluetooth can be used to reliably reconstruct the traffic patterns and 

trends observed in the established systems. As a start, scatterplots and other 

descriptive statistics were carried out to assess both the direction and strength 

of the relationships between the traffic flow data collected by Bluetooth, ATC 

and SCOOT over the weekdays. Table 5.2 presents the coefficients of the 

correlation analysis performed on the weekday flows for the three variables in 

both directions, for Stockport and Wigan validation stations. Generally, the 

analysis of the link flows comparison showed that a strong positive correlation 

(𝑟 ≥ 0.80) exists between SCOOT/ATC/Bluetooth flows from day-to-day. This 

means that where there is no actual flow, Bluetooth data could be used as a 

proxy measure or to augment the historical data to avoid network failure. Given 

ATC, the strength comparison over Link3435 and Link3637 showed that higher 

correlation was observed on Link3637 compared to Link3435 in both directions. 

Also, Bluetooth/SCOOT presented a stronger relationship due to the values of 
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correlation coefficient compared to Bluetooth/ATC. This result suggests a better 

performance with SCOOT compared to ATC. The difference is attributed to the 

spatial location of the SCOOT and ATC detectors relative to the Bluetooth 

stations. However, the focus of this analysis is not on SCOOT/ATC comparison, 

The SCOOT links are positioned upstream and downstream of the link close to 

the Bluetooth locations while the ATC detectors are positioned in-between the 

two ends of a link. In Wigan, the results obtained (𝑅2 = 0.77 − 0.82) are very 

similar and are comparable in both directions meaning the same level of 

confidence can be placed on the observations. 

 

Table 5.2: The adjusted R-square showing the strength of relationship over 

weekdays in Wigan and Stockport validation stations  

 

Table 5.3 presents the adjusted R-square values between Bluetooth and ATC 

over weekdays in Trafford on Link0506 in both directions. The results of the 

validation showed a strong positive relationship over the days with the 

adjusted 𝑅2 values ranging from 0.713 – 0.914 for weekdays. The highest value 

was observed on Saturday (0.914) and the lowest on Tuesday (0.874), giving 

the knowledge of the level of variability in the weekday flow. The degree of the 

variability in the data will be explored in the next chapter (Section 6.2.3). The 

combined directional flows presented higher correlation coefficients, thereby 

suggesting a better result compared to directional-based analysis and may be 

preferable. However, total directional flows present less information regarding 

the level of service (LOS) each way compared to directional flow estimation. 

Overall, the coefficient of correlation, which explains the amount of variation in 

NW SE NW SE N S SE NW

Mon 0.73 0.77 0.91 0.83 0.81 0.79 0.81 0.79

Tue 0.74 0.76 0.92 0.84 0.81 0.76 0.79 0.81

Wed 0.65 0.67 0.91 0.82 0.79 0.73 0.79 0.79

Thu 0.66 0.71 0.9 0.87 0.8 0.78 0.79 0.81

Fri 0.78 0.78 0.91 0.86 0.78 0.78 0.79 0.82

Sat 0.78 0.76 0.83 0.82 0.78 0.78 0.82 0.79

Sun 0.78 0.78 0.88 0.86 0.80 0.80 0.77 0.80

Stockport, 

BT3435T/ATC1500 

Stockport, 

BT3435T/SCOOT3435T

Stockport, 

BT3637T/ATC1013

Wigan, 

BT2223T/ATC1074

Adjusted R-Square Based on Location and Variables 

Weekday
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the data, coupled with the scatter plots, showed that both data sets are strongly 

positively correlated. Further analysis of the estimated flows showed that 

observations taken in two directions can be used to reduce systematic errors as 

noted by Cooper (1974). The significant increase in the correlation coefficients 

as observed from Table 5.3 confirmed the validity of this principle in reducing 

systematic errors. Thus, it is argued that estimation based on total directional 

flow is preferrable if errors in the estimated metrics are to be minimised. This 

means that in a network of similar characteristics, directional estimation may not 

be the preferred option because it may not give any added advantage and could 

be a waste of resources. Overall, the strong positive relationship between 

Bluetooth and ATC flows over the Trafford network is consistent with the Wigan 

and Stockport networks, which is indicative of consistency and the possibility of 

reliable traffic measurement. 

 

Table 5.3: The adjusted R-square values between Bluetooth (BT) and ATC at 

the Trafford validation station 

 

In order to reach a valid conclusion, the flow was further analysed. Initially, a 

month’s worth of data was analysed over the Greater Manchester Network 

(GMN) for this purpose. This was later extended to twelve months to examine 

monthly consistency and any seasonal variation. To explore these data sets, 

the function “timeVariation” in the R package “openair” (Carslaw and Ropkins, 

2012) was adapted to produce four different plots, showing the normalised 

traffic metrics over four different dimensions to examine temporal consistency. 

Southbound Northbound

Combined 

Direction

BT/ATC Mon 0.724 0.766 0.889

BT/ATC Tue 0.713 0.763 0.874

BT/ATC Wed 0.718 0.758 0.881

BT/ATC Thu 0.724 0.759 0.883

BT/ATC Fri 0.753 0.778 0.891

BT/ATC Sat 0.805 0.811 0.914

BT/ATC Sun 0.768 0.763 0.894

Adjusted R-Square

WeekdayVariables
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A normalised time series is presesnted to enable comparison between the two 

data sets. After standardisation, the aggregation of the data is as follows: i) 

hourly-weekday (top), ii) hourly (bottom-left), iii) monthly (bottom-middle) and iv) 

weekday (bottom-right). Figure 5.5 presents the combined plot of Bluetooth and 

ATC flows to understand their relationships. Interestingly, the day-to-day 

consistency in the patterns observed in ATC was also evident in the Bluetooth 

estimation. This consistency includes the capturing of the peak and off-peak 

periods as well as the weekdays/weekend variations. The absence of 

coincidence in the results and the consistency in replicating the actual traffic 

characteristics further highlight the credibility of Bluetooth data. 

 

Figure 5.5: Hourly-weekday time series plot of Bluetooth and ATC flows over a 

year on Link0506 in Trafford (N = 33,646) 

 

Given the similarity in the weekdays’ plots and the fact that variabilities are 

observed over the peak period, a typical weekday’s (Monday) average is further 

analysed and presented below (Figure 5.6) for a better understanding of the 

relationships between the two data sets. Figure 5.6 presents the normalised 

profiles of the Bluetooth/ATC flows, showing a high level of precision between 

the measured flows over the off-peak periods of the early and late hours of the 

days. However, between the hours of 7am to 6pm, variability is evident from 

day-to-day and over the months. Further analysis of the results showed that the 

proportion of Bluetooth to ATC on average is 14%. The histogram and normal 

plots (Appendix 5C) showed that the distributions are not normally distributed. 
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Therefore, the Mann-Whitney test (Wilcoxon test), the equivalent of a t-test was 

employed. The test result showed that the Bluetooth estimated flow is not 

statistically significantly different from the ATC measured flow at (alpha =0.05) 

with a p-value of 0.7807 for the test, η1 = η2 vs η1 ≠ η2 and CI (-0.462, 0.419) 

for η1 - η2 for a point estimate of 0.041. As a final step, the Kullback-Leibler 

divergence (KL-D) was computed for the whole data over the year using the 

package “entropy” in R to compare the closeness or separateness of the 

distributions. The KL-D value (0.0272) alludes to the closeness of the 

distributions of the two data sets. Similarly, Figure 5.7 presents the SCOOT flow 

equivalent showing the normalised hourly flows over the weekday in the NW-

direction. For holistic assessment, the combined plot of the directional flows 

from Bluetooth, SCOOT and ATC is presented in Figure 5.8. Additional results 

such as the opposing directional flow profiles and scatter plots for 

Bluetooth/ATC/SCOOT are presented in Appendix 5D. In a nutshell, combining 

the results from ATC, SCOOT and Bluetooth has led to increased 

understanding and conviction on Bluetooth-derived flows. 

 

Figure 5.6: Normalised profiles of Bluetooth and ATC hourly flows (all Mondays) 

in November 2013 on Link0506 in Trafford (N=24)  

 

 



140 

 

 

Figure 5.7: NW-directional flow time series profiles of SCOOT and Bluetooth in 

Stockport (N=2976) 

 

 

Figure 5.8: Combined normalised NW flow between Bluetooth, ATC and 

SCOOT on Link3435 over 2013 in Stockport (N=18761) 
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Figure 5.9 presents the time plot of Bluetooth and ANPR flows to assess the 

relationship between the two variables. Appendix 5E presents the descriptive 

statistics for flow, journey times and speed for both ANPR and Bluetooth. Unlike 

the journey time and speed results presented in the subsequent sections, the 

flow comparison showed a poor correlation (𝑅2 = 0.23) between Bluetooth and 

ANPR. This is primarily due to the data sample – one day of observations, and 

the temporal dimension used. However, the resultant difference in the trend 

particularly over the morning hours of about 7 am – 10 am may be due to other 

factors given that the corresponding estimated journey times and speed are 

strongly correlated with the ANPR measurements. However, the detection rate 

from the two flows (12%), falls in the range of the detection rates obtained from 

both ATC and SCOOT comparison. Detailed discussions on detection rate are 

presented in Chapter 6 (Section 6.5). While there is a poor correlation between 

the Bluetooth and ANPR flow data, at this level of the analysis, a conclusion 

cannot be drawn given that only one-day data was available for the analysis. 

However, the consistency of the detection rate with SCOOT and ATC-derived 

rates suggests that with a large sample, there is a possibility of Bluetooth/ANPR 

augmentation. Table 5.4 presents the summary of the quantitative assessment 

of Bluetooth flow. 

 

Figure 5.9: Time plot of Bluetooth and ANPR flows of 3rd April 2014 on Link7170 

in Stockport (N=48) 
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Table 5.4: The summary of flow validation using IMTD 

 

5.3.2 Validation of journey times 

Two sets of IMTD (TM and ANPR) are considered in this section. For a quick 

exploration, Appendix 5F presents the boxplots of both TM and Bluetooth-

derived journey times on four routes where data were available for validation in 

Stockport (A6) and Trafford (A56) in both directions. From the exploration on 

the A56, the journey times are comparable for both technologies (Bluetooth and 

TM) showing that Point 33 is an outlying point. On the A6, the SE-bound 

journey times presented more outlying points as observed in both Bluetooth and 

TM than in NW-bound, which has in both cases Point 57 as an outlier. Less 

time is spent along the SE (40s – 50s) compared to NW (40s – 75s). On the 

other hand, correspondingly similar travel times in the range of 70s – 140s for 

TM and 78s – 112s for Bluetooth were spent on route A56 in both directions 

and were both higher than the A6, as will be expected given that it is about 

twice the length of the A6.  

 

Figure 5.10 presents the scatter plots of Bluetooth against TM journey times on 

four routes over GMN. The scatter plots present a quick appreciation of both the 

direction and strength of the two variables to understand the relationship 

between them. A visual inspection of the graph indicates that all the routes are 

Metrics Point estimate CI P-value KL-D N Link

Normalised 

Bluetooth/ATC Flows 0.04 (-0.462,0.419) 0.781 0.027 24 0506

Bluetooth/ATC Flows -192.00 (-206.00,-175.00) 0.000
0.028

384 3534

Bluetooth/ATC Flows -197.00  (-210.00,-166.00) 0.000 0.022 384 3435

Normalised 

Bluetooth/SCOOT Flows -0.06 (-0.4708,0.1977) 0.452 0.025 24 3435

Bluetooth/SCOOT Flows -129.00  (-148.99,-102.00) 0.000 0.027 384 3534

Bluetooth/SCOOT Flows -112.00 (-132.00,-84.00) 0.000 0.044 384 3435

Bluetooth/ANPR Flows -40.00 (-44.00,-36.00) 0.000 0.043 48 7170
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positively correlated with a stronger relationship on the A6 compared to the 

A56. Table 5.5 shows the values of the adjusted 𝑅2 for both journey times and 

speed on the four routes. A further analysis of the routes on weekdays/weekend 

basis as observed from the table showed that weekdays performed better than 

weekends in terms of correlation. This observation is connected with the low 

sample rates on weekends given that both technologies (Bluetooth and Traffic 

Master) presented samples of the total traffic thereby leading to a low count 

rate. In both the A6 and A56, the NW/SW-bound analysis presented a better 

match compared to the SE/NE-bound equivalent. This shows that the 

observations from the NW/SW flow are more reliable than the SE/NE flows. 

Following this exploration, the next step considers the time plots of the data to 

understand spatial relationships. 

 

Figure 5.10: Scatter plots of Bluetooth against TM journey times on four routes 
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Table 5.5: The adjusted R-square values between Bluetooth and Traffic Master 

validation for journey times and speed comparison 

 

Figure 5.11 presents the time series plot of journey times for Bluetooth and TM 

across the A6 route in Stockport. The results of the Trafford network are 

presented in Appendix 5F. The first section of the plot shows the journey times 

on weekdays in the NW direction while the second section of the NW series 

presents the weekend journey times. Obviously and as expected, the 

weekdays’ travel times are higher and with higher variability due to a higher 

volume of traffic than on the weekend. Similarly, in the SE sections of the 

profiles, travel times are higher and with higher variability over the weekdays 

(first part) than the weekends (second part – last section). One key observation 

is the similarity in trend between the two sensors as observed by Quayle et al. 

(2010) and Haghani et al. (2010). However, dissimilarity in trend can be 

observed at some points in the series, which may be due to a limitation in 

Bluetooth. Therefore, a quantitative analysis technique was employed to reach 

a logical conclusion. Table 5.6 presents the summary of the quantitative 

analysis showing that there is no statistically significantly difference between the 

two distributions of Bluetooth and TM journey times.  The next discussion is 

focused on the validation of Bluetooth journey times using ANPR 

measurements. 

Weekdays Weekend Weekdays Weekend

A56 NE Trafford 0.7826 0.4202 0.8267 0.4925

A56 SW Trafford 0.9231 0.6039 0.7779 0.4875

A6 NW Stockport 0.9376 0.8339 0.9228 0.8043

A6 SE Stockport 0.8805 0.6788 0.8933 0.6480

Route Direction Location

Adjusted R-Square 

(Journey Times)

Adjusted R-Square 

(Speed)
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Figure 5.11: Profiles of Bluetooth and TM journey times over six months by 

Routes in Stockport (N=96) 

 

Figure 5.12 presents the boxplots of both ANPR and Bluetooth journey times on 

Link7170 in Stockport. The exploratory analysis shows that Bluetooth-derived 

journey times compared well with the ANPR in many respects such as in 

skewness (positive – mean greater than the median journey times) of the data 

and interquartile range (35s – 37s). The similarity in the results as observed by 

Stevanovic et al. (2015) is very interesting giving another level of credence to 

Bluetooth application in traffic management. Further appraisal of the similarity in 

the results through scatter plots (Appendix 5G), showed that Bluetooth and 

ANPR are positively strongly correlated for journey times (𝑅2 = 0.71). Figure 

5.13 presents the time plot of the two data sets. The observation started at 7am 

and ended at 7pm. The journey times for the observations fluctuate between 

50s and 200s. From the plot, although there is similarity in trend, variability is 

much more pronounced than ANPR, over the hours of 3pm – 5pm with 

intermitent over/under-estimation of travel time. To conclude the analyis, a 

Mann-Whitney test was performed to understand if there is any significant 

diference between the two distributions. The test results (point estimate 14.0 

and CI (6.0,22.99) - overlap) showed that the two groups are not statistically 
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significantly different from each other at 𝛼 = 0.05. The 𝐾𝐿 − 𝐷 (0.006) also 

showed that the two distributions are similar and are closely related (see Table 

5.6 for the summary of journey times validation). In conclusion, it is evident from 

all the tests conducted that Bluetooth is accurate enough to be used to estimate 

travel time. 

 

Figure 5.12: Boxplot of Bluetooth and ANPR journey time of 3rd April 2014 on 

Link7170 in Stockport 

 

 

Table 5.6: Summary of journey times validation based on IMTD 

 

Metrics Point estimate CI P-value KL-D N Link

Bluetooth/ANPR 

Journey Times 14.00 (6.00,22.99) 0.001 0.006 48 7170

Bluetooth/TM 

Journey Times 0.94 (-1.001,2.751) 0.261 0.004 96 A 6

Bluetooth/TM 

Journey Times -4.00  (-7.55,-0.73) 0.015 0.006 96 A 56
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Figure 5.13: Time plot of Bluetooth and ANPR journey times of 3rd April 2014 on 

Link7170 in Stockport (N=48)  

 

5.3.3 Validation of speed 

Figure 5.14 presents the time plot of Bluetooth and TM speeds in both 

directions (NW and SE) in Stockport. The first section of NW and SE represents 

the weekdays speed while the second section represents the weekend speed. 

Across the groups, the speeds fluctuate between 15km/h and 55km/h typifying 

periods of free flow and congestion. Also, the speed distribution is higher on the 

A6 with lesser variability compared to the opposing link speed. The weekend 

speeds are higher in both directions as would be expected. Table 5.7 presents 

the summary of the quantitative analysis showing that there is no significant 

difference between the two distributions of Bluetooth and TM journey speeds.  

The next discussion is focused on the validation of Bluetooth journey times 

using ANPR measurements. 
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Figure 5.14: Profiles of Bluetooth and TM speed over six months by Routes in 

Stockport (N=96) 

 

Figure 5.15 presents the time plot of Bluetooth and ANPR speeds for 

observations starting from 7am – 7pm on 3rd April 2014. The highest variability 

between the two series occured between 3pm – 6pm. The journey speed for the 

observations fluctuates between 10km/h and 35km/h. From the plot, although 

there is similarity in trend as well as evidence of strong correlation (𝑅2 = 0.71), 

variability is much more pronounced than ANPR, over the hours of 7am – 10am 

with occasional over/under-estimation of journey speed. To conclude the 

analyis, a Mann-Whitney test was performed to understand if there is any 

significant diference between the two distributions. The test results (point 

estimate (-2.0), CI (-3.0,001) - overlap) showed that the two groups are not 

statistically significantly different from each other at 𝛼 = 0.05. The 𝐾𝐿 − 𝐷 

(0.006) also showed that the two distributions are similar and are closely 

related. Table 5.7 presents the summary of the test statistics. Summarily, the 

test results showed that Bluetooth is sufficiently accurate to be used for the 

estimation of speed.  
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Figure 5.15: Time series plot of Bluetooth and ANPR speeds of 3rd April 2014 

on Link7170 in Stockport (N=48) 

 

 

Table 5.7: Summary of journey speed validation using IMTD 

 

5.3.4 Validation of O-D matrix 

For the O-D matrix, six months of Bluetooth data (April – September 2013) were 

analysed over the three networks in Greater Manchester for day-to-day 

consistency. Across the networks, over 6,000 O-D matrices generated using 

TRAFOST were analysed. The day-to-day correlation analysis between the 

matrices showed a high level of positive relationship between the days over the 

six months. This shows the potential of Bluetooth to support the delivery of O-D 

matrices using low-cost sensors as demonstrated by Blogg et al. (2010) and 

Barceló et al. (2012). Table 5.8 presents an example of such correlation 

Metrics Point estimate CI P-value KL-D N Link

Bluetooth/ANPR 

Journey Speed -2.00  (-3.000,-0.001) 0.028 0.006 48 7170

Bluetooth/TM 

Journey Speed 6.00 (4.000,8.000) 0.000 0.006 96 A 6

Bluetooth/TM 

Journey Speed 7.00 (6.000,8.000) 0.000 0.005 96 A 56
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analysis. One interesting thing from this result is the high value of the 

correlation coefficients compared to those obtained from the link flows. 

However, this is expected given that the O-D matrix correlations were computed 

from larger samples compared to the link flows. The next step considers the 

predictive capability of Bluetooth traffic estimation using the ARIMA models to 

finalise the validation. 

 

Table 5.8: Correlation analysis over weekdays in the Wigan network 

 

5.4  ARIMA Modelling of Bluetooth Traffic Metrics 

5.4.1 Modelling of flow data 

After data splitting, the training and testing samples for flow consist of 26,188 

and 6546 data points respectively. Figure 5.16 presents the time series plot of 

the training sample based on a daily average (for clear visualisation) on 

Link0506 in Trafford. The same approach was adopted for the processing of the 

journey times and speed data. The exploration of the flow plotted in Figure 5.16 

shows that the mean and variance are not constant (changing with time) due to 

some sparks, and there is a visible cut off between the first day and 100th day. 

The exploration also shows that the data exhibit trend and seasonal effect. The 

presence of sparks and the lack of decay in the plots of autocorrelation function 

(ACF) and partial autocorrelation function (PACF) (Figure 5.17) portray trend 

and seasonality. Therefore, a first order regular difference was performed to 

make the data stationary, and a logarithm transformation to improve the 

performance of the prediction. The expectation at this level is a model of form 

(𝑝, 1, 𝑞). Figure 5.18 presents the residuals plot of flow after first difference and 

Sun Mon Tue Wed Thu Fri Sat

Sun 1

Mon 0.96 1

Tue 0.93 0.98 1

Wed 0.96 0.96 0.96 1

Thu 0.87 0.95 0.97 0.91 1

Fri 0.96 0.98 0.96 0.98 0.94 1

Sat 0.89 0.96 0.97 0.94 0.96 0.95 1
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logarithm transformation showing that the residuals are distributed about the 

mean, zero although with few sparks.  

 

Figure 5.16: Time series plot of Bluetooth flow on Link0506 in Trafford 

 

 

Figure 5.17: Plots of ACF and PACF from Bluetooth flow on Link0506  
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Figure 5.18: Time series plot of residuals of flow after log and first difference 

transformation 

 

To determine the optimum parameters for the model, the ACF and PACF plots 

were used as guides. Exploring the plots, the cut off after the first lag in the ACF 

plot suggests that the AR parameter, p should be zero (0) while the MA 

parameter, q should be greater than or equal to 1. As a start, a model of the 

form 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1) of period 12 was postulated due to the presence of 

seasonal variation. Other combinations were explored, including the use of the 

auto function in R to determine the best model (i.e the most probable predictive 

model –𝑀𝑃𝑃𝑀). Given the least AIC, a model of the form (0,1,2) with a 

seasonal component is considered the most parsimonious and adequate model. 

This model not only presents the least MAE (0.147), MAPE (4.917) and MASE 

(0.790), but also an RMSE (0.195) comparable to the least value (0.191) among 

the groups. The MAPE value shows that normally, the forecast will capture 95% 

of the trend (i.e. 95% accuracy level), and will possibly be off by approximately 

5%. Given that the MASE is less than 1 also shows a good performance. 

However, a MASE of 1.3 was proposed in a competition as a cut-off point 

(Hyndman, 2006). A portmanteau test to check for the randomness or 

autocorrelation of the residuals returned a p-value (0.824) which suggests that 
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the residuals are white noise. Consequently, this model was used to make 

predictions. Figure 5.19 presents the visualisation of the training data with the 

prediction. Table 5.9 presents the postulated models with their corresponding 

accuracy statistics. 

 

Figure 5.19: The log of flow and the prediction overlaid with 80% and 95% 

confidence limits 

 

Table 5.9: Forecast series and accuracy statistics for flow 

 

5.4.2 Modelling of journey time data 

The training and testing samples used consist of 537,226 and 134,304 data 

points respectively after splitting. Figure 5.20 presents the time series plot of the 

training sample (daily average) on Link0506 in Trafford. The exploration of the 

Forecast Series AIC ME RMSE MAE MPE MAPE MASE

ARIMA(1,0,1)(1,0,1) -152.26 -0.002 0.191 0.150 -0.521 5.043 0.811

AUTO.ARIMA(1,0,3) -126.77 0.000 0.199 0.162 -0.455 5.426 0.876

ARIMA(0,0,1) -123.18 0.000 0.202 0.165 -0.445 5.507 0.890

ARIMA(1,1,1) -95.90 0.123 0.208 0.171 -0.051 5.694 0.923

ARIMA(1,0,2) -127.78 0.000 0.199 0.164 -0.455 5.463 0.883

ARIMA(0,1,2)(0,1,2) -70.00 -0.024 0.195 0.147 -1.152 4.917 0.790
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journey time data shows the evidence of trend and seasonal effect. The 

presence of sparks and slow decay in the plots of ACF and PACF (Appendix 5H 

and Figure 5.21) portray trend and seasonality. Therefore, a first order regular 

difference was performed to make the data stationary, and a logarithm 

transformation to improve the performance of the prediction. The expectation at 

this level is a model of form (𝑝, 1, 𝑞). Figure 5.22 presents the residuals plot of 

journey times after first difference and logarithm transformation showing that the 

residuals are distributed about the mean although with few sparks.  

 

Figure 5.20: Plot of Bluetooth journey time on Link0506 in Trafford (N=365) 
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Figure 5.21: Plots of ACF and PACF of Bluetooth journey times on Link0506 

after first difference and log transformation 

 

 

Figure 5.22: Residuals of journey times after log and first difference 

transformation 

 

As with flow, a model of the form 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1) of period 12 was 

postulated due to the presence of seasonal variation and the behaviour of the 

ACF and PACF plots. Other combinations were also explored to determine an 
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optimum model based on the least AIC. A model of the form (0,1,1) with a 

seasonal component presents the least AIC (-818.23). However, the outcome of 

the portmanteau test p-value (0.768) suggests the adoption of the model of form 

(0,1,2) with a seasonal component having an AIC value (-842.45). This model 

also has a better MAE (0.050), MAPE (1.073) and MASE (0.946), but also an 

RMSE (0.069) compared to the model with the least AIC. The MAPE value 

shows that less than 2% of the forecast will possibly be in error. Given that the 

MASE is less than 1 also shows a good performance. Summarily, all the 

computed accuracy statistics suggest the validity of the model. Consequently, 

this model was used to make a prediction. Figure 5.23 presents the 

visualisation of the training data with the predicted journey times. Table 5.10 

presents the postulated models with their corresponding accuracy statistics.  

 

Figure 5.23: Plot showing the log of journey times and prediction overlaid with 

80% and 95% confidence limits 
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Table 5.10: Forecast series and accuracy statistics for journey times 

 

5.4.3 Modelling of speed data 

The training and testing samples used for the modelling of the estimated speed 

consist of 537,226 and 134,304 data points respectively after splitting. The 

same procedure described in the modelling of the journey time was followed. 

The exploration of the speed data also revealed the presence of trend and 

seasonality as would be expected, and as is the case with the estimated 

journey time. Figure 5.24 presents the residuals plot of speed after first 

difference and logarithm transformation showing that the residuals are 

distributed about the mean although with few sparks. This observation from the 

residuals plot points to the practicality of modelling the estimated speed. Also, 

as with journey times, a model of the form 𝐴𝑅𝐼𝑀𝐴(0,1,2)(0,1,2) of period 12 was 

adopted following a series of combinations to determine the optimum model. 

This model presents the second least AIC (-1186.73), (the least being -1125.43) 

from the model of form 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)12. Despite the similarities in the 

accuracy statistics between the two models, the preference was due to the 

outcome of the portmanteau test with a p-value (0.668), which suggests the 

randomness of the residuals and the adoption of the model. A key observation 

is that the selection criterion or the use of auto.arima to determine the best 

model may also require personal judgement to determine the optimum model. 

From the selected model, the MAPE value (0.822) shows that less than 1% of 

the forecast will possibly be in error. Also, given that the MASE is less than 1 

this suggests a good performance. Summarily, all the computed accuracy 

statistics are small (close to zero) which points to good performance of the 

Forecast Series AIC ME RMSE MAE MPE MAPE MASE

ARIMA(0,1,1)(0,1,1) -818.23 0.000 0.071 0.053 -0.154 1.130 0.996

AUTO.ARIMA(2,1,2) -889.80 -0.002 0.068 0.049 -0.064 1.048 0.926

ARIMA(0,1,1) -879.50 -0.002 0.071 0.052 -0.055 1.109 0.980

ARIMA(1,1,1) -894.91 -0.003 0.069 0.050 -0.071 1.065 0.941

ARIMA(0,1,2) -897.82 -0.002 0.069 0.050 -0.069 1.060 0.936

ARIMA(0,1,2)(0,1,2) -842.45 -0.001 0.069 0.050 -0.025 1.073 0.946
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model. Table 5.11 presents the postulated models and their corresponding 

accuracy statistics, while Figure 5.25 presents the visualisation of the training 

data with the prediction made using the adopted model. Other results including 

the modelling of the data on a monthly basis are presented in Appendix 5I. 

Overall, the high level of accuracy obtainable using Bluetooth estimated speed 

is a significant benefit given that Bluetooth is a low-cost sensor. Therefore, 

using Bluetooth in this way can contribute to achieving better transport through 

technology. 

 

Figure 5.24: Plot of residuals of speed after logarithm and first difference 

transformation 

 

 

Table 5.11: Forecast series and accuracy statistics for speed 

 

Forecast Series AIC ME RMSE MAE MPE MAPE MASE

ARIMA(0,1,1)(0,1,1) -1125.43 0.002 0.045 0.035 0.049 0.913 0.955

AUTO.ARIMA(2,1,2) -1288.77 0.001 0.041 0.031 0.009 0.833 0.869

ARIMA(0,1,1) -1215.73 0.001 0.045 0.036 0.008 0.941 0.982

ARIMA(1,1,1) -1261.71 0.001 0.042 0.033 0.011 0.883 0.921

ARIMA(0,1,2) -1274.44 0.001 0.042 0.033 0.012 0.868 0.906

ARIMA(0,1,2)(0,1,2) -1186.73 0.002 0.041 0.031 0.044 0.822 0.858



159 

 

 

Figure 5.25: Plot showing the log of flow and the prediction overlaid with 80% 

and 95% confidence limits 

 

5.4.4 Model validation of flow 

This section presents the validation results using the test data based on flow 

estimation to conclude the assessment. Figure 5.26 to Figure 5.28 present the 

time plot, density plot, and the normal distribution plot of the validation results. 

Although the forecast seems to be under-estimating with a lower density and 

wider spread, the quantitative analysis showed that the difference is not 

significant. The correlation analysis between the forecast using the training data 

set and the validation using the test data set gives 0.824 with a p-value = 0.000 

showing the significance of the result. In addition, the Mann-Whitney test and 

95% confidence interval give a point estimate of -1.280 and CI (-2.073, -0.625), 

and the test statistic is significant at 0.0007. The results show that the two 

distributions are not statistically significantly different at ∝ = 0.05 confidence 

level. The value of KL-D (0.0015) further buttressed the results. Overall, the test 

data produced the following accuracy statistics: RSME =0.193077; MAE= 

0.145761 MAPE= 4.89 with a p-value = 0.5858 for the portmanteau test which 

signifies the validity of the estimation. 
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Figure 5.26: Plot of forecast and validation (test) data 

 

 

Figure 5.27: Density plot of forecast (red) and validation (black) 
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Figure 5.28: Normal probability and 95% confidence Interval plot of forecast 

(red) and validation (black) 

 

5.5  Conclusions 

This chapter presents the results of the validation exercise carried out in this 

research. The assessment started with the calibration of the estimation model 

(TRAFOST) developed in this research to maintain the concept of fit for 

purpose. This step was followed by the validation of the estimated metrics 

against the independent measures of traffic. The validation concludes with 

ARIMA modelling and forecasting to understand the predictability and validity of 

the estimation. The exploratory and quantitative analysis techniques employed 

ensured that a robust validation was performed. The outcome of the Mann-

Whitney-Wilcoxon test, Kullback-Leibler divergence as well as the forecast 

accuracy statistics for flow, journey times and speed showed a high level of 

precision and accuracy given a 95% confidence level. The overall result implies 

the validity and practicality of the estimation – that is the possibility to derive 

performance measures such as journey times and vehicle speeds, to enhance 

traffic management using Bluetooth. Not only that, the forecast accuracy 

suggests a possibility of predicting the future traffic state as well as data 
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augmentation to realise enhanced traffic planning and management. It is noted 

that only the range of conditions covered limits the resulting generalisation in 

this validation. It is to be noted that the validity of the O-D matrix validation will 

require further analysis to reach a logical conclusion. Therefore, validation and 

testing need to be conducted to investigate whether the same generalisation 

holds for data in other locations and for other related metrics such as the O-D 

matrix and density. Interestingly, the results obtained agree with the findings 

from the previous research. The next chapter considers the variability in the 

estimated metrics to enhance the knowledge of the data usage and to avoid 

invalid judgement and conclusion. 
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Chapter 6. Exploring Variability in Bluetooth-Derived 

Traffic Metrics 

6.1  Introduction 

Chapter 6 builds on the validation presented in Chapter 5 by investigating the 

variability in the estimated metrics to ensure a valid statistical underpinning 

(Research Objective number v). The understanding of this important factor in 

Bluetooth is considered essential to ensure reliability, given that a number of error 

sources can influence the estimated metrics, in particular, the variability relating 

to the long-term variation in order to understand practicality. Consequently, this 

chapter considers the following specific objectives: i) investigation of possible 

reason(s) for over/under-estimation (that is, the issue of over/under-sampling 

which may be due to outliers); ii) understanding of consistency and the modelling 

capability of the data; iii) examining daily/weekday temporal changes to 

understand the reliability of the metrics; and iv) understanding of any long-term 

variation. Therefore, the Bluetooth data collected over the Trafford network on 

Link0506 were analysed for this purpose using a combination of exploratory and 

quantitative analysis techniques. Accordingly, the variability in the Bluetooth 

derived metrics and its significance to ITS applications in road traffic 

management was explored. 

 

This chapter is structured as follows: Sections 6.2, 6.3 and 6.4 consider the 

variability in the Bluetooth estimated metrics (flow, journey time and speed, 

respectively) with a focus on over/under-sampling, the issue of consistency and 

the modelling capability of Bluetooth and the day-to-day and long-term dynamics 

in the estimated metrics. The spatio-temporal assessment of the variability in 

Bluetooth detection rates is presented in Section 6.5; the problem considered in 

this section focuses on the changes in the detection rates over GMN, and 

whether the result holds, irrespective of the data source and location, before 

conclusions are drawn in Section 6.6. 
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6.2  Understanding Variability in Flow 

6.2.1 Exploration of estimated flows 

The estimated traffic flows were explored over different temporal dimensions 

(with a focus on hourly, weekday and monthly averages), direction of travel and 

over different periods of observation to understand variations. This investigation 

was necessary to describe the estimated flows accurately to understand 

possible limitations. Boxplots and other exploratory techniques were used to 

rapidly characterise the flows. The results of the exploratory analysis are 

presented in Appendix 6A. Following the exploration, Table 6.1 presents the 

summary of NE and SW-directional flows based on the application of 

Mahalanobis distance (MD) filtering. The mean and median values 

corresponding to 21veh/h, 19veh/h, 18veh/h and 16veh/h for NE and SE flows, 

respectively. On an average, the flows on the opposing links are similar. This 

could mean that the two opposing links’ flows can be averaged to manage the 

network using the same strategy, thereby reducing the amount of planning and 

improving efficiency in performance.  

 

Table 6.1: Summary of NE and SW-directional flows based on MD filtering 

 

Figure 6.1 presents the time series plot of flows in both directions aggregated 

on four temporal dimensions. The results showed that the monthly average has 

the highest variability. Appendix 6B presents further results on the analysis of 

the flow data such as the table of adjusted 𝑅2 to understand the goodness of fit. 

The result obtained gives a level of reliability to the data, and the possibility for 

NE SW MD

Min. 0 0 0.02

1st Qu. 6 4 0.90

Median 19 16 1.19

Mean 21 18 1.18

3rd Qu. 36 31 1.35

Max. 63 56 2.45

Directional Flow (veh/h)
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data reduction to improve computational and operational efficiency. That is, the 

data could be averaged to reduce the number of the variables to be modelled. 

In addition, the monthly analysis of the flow data is consistent with Johnson 

(1989) and DfT (2014), which stated that the neutral months of April/May and 

September/October are supposed to have minimum variability of flows. The 

combined flows over these months averaged 42veh/h. Other analysis 

performed also showed that Bluetooth flows aggregated at high resolutions, 

(such as a 5-minute average), present many dispersions between weekdays. 

Higher aggregate levels on the other hand showed better precision (less 

dispersion), which signifies a better level of estimation for traffic prediction. 

Generally, there exists a high level of temporal consistency with the maximum 

variability being about 3veh/h for all. This temporal consistency was analysed 

further through their mean and standard deviation plots. However, given the 

day-to-day similarities in the flows from the opposing links, the subsequent 

discussion is focused on the NE-directional flows while the SW-equivalent flows 

are presented in the Appendix 6C. 

 

Figure 6.1: Time series plots of directional flows on Link0506 (N=31937) 
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Figure 6.2 presents the time series plot of the NE-directional flows averaged on 

a daily basis. The flow average over the year is between 13-25veh/h. From day-

to-day, there is an evidence of seasonality caused by the daily and weekly 

effect. A few sparks are also noticed on the 100th and 208th day. The gap 

between the 52nd and 54th day may be due to equipment failure or corrupt data 

as it is not expected that no vehicles were recorded over these periods. There is 

also a significant drop in the flow at the end of the year, which relates to the 

festivity during this period. The trend in the data will be explored further in later 

discussions to understand long-term variation. The next step considers the 

consistency of the data. Consistency in this context as earlier defined is when the 

Bluetooth estimation corresponds to the actual traffic pattern given any temporal 

dimension, such as hourly or daily average, and is measured in terms of the 

precision of the mean and standard deviation of the data on a given average. In 

this case, standard deviation shall be used to measure consistency. 

 

Figure 6.2: Time series plot of NE-directional daily average flow 

 

6.2.2 Understanding consistency and reliability in flow 

This section explores the use of standard deviation to understand the precision 

of the estimated flows to establish reliability. This investigation is expanded 
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further in the next section by exploring the degree of variability in flow to provide 

answers to the specific objectives ii and iii in this chapter. Figure 6.3 presents 

the standard deviations of flow in the NE direction to understand dispersion and 

consistency in the data. The result shows that standard deviations of flows are 

clustered mainly between 12veh/h and 18veh/h with a few fluctuations at some 

points, such as on days 99 and 100. Generally, the standard deviation of the NE 

flow is consistent and is considered to not change with time. Although the result 

portrays the daily-weekly seasonal effect, the reproducibility of these 

measurements confirms the reliability of the Bluetooth estimated flow data on 

this temporal dimension as a useful traffic metric. 

 

Figure 6.3: Standard deviation of flows in both directions after filtering 

 

6.2.3 Understanding the degree of variability in flow 

As a further step, the data was analysed to understand the reliability and 

modelling capability using Principal Components Analysis (PCA) and seasonal 

decomposition. PCA was used for the weekdays’ flows given that it is a useful 

tool in understanding complexity in large urban networks (Tsekeris and 

Stathopoulos, 2006). On the other hand, the seasonal decomposition helps in 

understanding both the seasonal effect and the trend in the data to aid 

Index of Time

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f 
F

lo
w

0 100 200 300

8
1

2
1

6
2

0

sd_FlowNE



168 

 

modelling. Using PCA, the starting point is to explore the data to understand the 

correlation between the variables. Box 1 shows that there is a correlation 

between the weekday’s flows signifying the presence of redundancy in the 

observations and a strong indication to use PCA. For example, between the 

weekdays (Monday to Friday), the correlation is very high (>0.95). The p-value 

of 0.000 suggests that the results are highly significant. Therefore, the 

assumption here is that two distinct groups are possible, consisting of weekdays 

and weekends as would be expected. This assumption is investigated further in 

the analysis of the eigenvalues (the variances in the traffic flows). 

 

The analysis of the eigenvalues presented in Box 2 shows that the first principal 

component has a variance of 6.2549 and accounts for 89.4% of the total 

variance. The second principal component has a variance of 0.5272 and 

accounts for 7.5%. The first two components together account for more than 

96% of the total variance and are deemed sufficient to explain the variability in 

the data. This was confirmed in the scree plot presented in Figure 6.4, which 

shows a sharp drop from the first principal component to the second principal 

component while the rest of the principal components are very close to zero, 

and are considered not significant. From the first two components, equation 

(6.1) and equation (6.2) were formed. From equation (6.1), the coefficients of all 

the variables are positive but with higher values over the weekdays than over 

the weekend. Furthermore, given two decimal places, the coefficients of the 

weekdays are equal (0.39), showing a high degree of agreement indicative of 

redundancy in the observations. On the other hand, the weekend coefficients 

are also similar (0.37 and 0.33) for Saturday and Sunday, respectively. From 

equation (6.2) the transition or change in the algebraic sign of the coefficients 

from negative to positive, from weekdays to weekends, further implies the 

possibility of a reduction of the data into two smaller components to represent 

the whole in the future analysis. The differences noted in the coefficients of the 

variables typify the daily changes in flows between the weekdays. The 

assumption was further assessed using a loading plot, which confirms the 

validity of this assumption, for visual examination and interpretation. The 
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implication of this result is that the use of PCA to analyse traffic flow can help in 

capturing temporal dynamics in a complex urban network, such as the GMN. 

 

Box 1: Box showing the correlation matrix and p-values of weekday flows 

 

 

Box 2: Box showing the eigenvalues of the correlation matrix of weekday flows 



170 

 

 

Figure 6.4: Scree plot to judge the relative magnitude of eigenvalues 

 

Z1 =  0.387Mon +  0.390Tue +  0.389Wed +  0.392Thu +  0.390Fri +

 0.365 Sat +  0.327Sun        

          (6.1) 

Z2 =  −0.249Mon −  0.191Tue −  0.25Wed −  0.182Thu −  0.184Fri  

+ 0.452 Sat +  0.753Sun       (6.2) 

Figure 6.5 presents the plot of loadings for the second component (y-axis) 

versus the loadings for the first component (x-axis) with a line drawn from each 

loading to the (0, 0) point based on Minitab (2014). The analysis of the loading 

plot showed that the groups (weekdays and weekend flows) started off at the 

same point and diverged with an increase in the first component particularly 

with Sunday flows showing higher loading. The clustering of the weekdays’ 

loadings signifies closeness in observations (presence of redundancy), and 

therefore, higher precision compared to weekend flows. Irrespective of the 

separation observed in the weekend flows, they are considered as another 
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cluster as revealed in the earlier analysis above; but in this case with a better 

understanding of the separation in the weekend flows. 

 

Figure 6.5: Loading plot of weekday flows showing two different groups in flow 

 

Figure 6.6 presents the seasonal decomposition of the flow data showing four 

components. The first component (top) is data, which comprises all the other 

three components while the second component presents the seasonality. The 

third component is the trend in the data while the fourth (bottom) is the 

remainder after the removal of the seasonal and trend components from the 

data. The results show that the seasonal component does not change with time 

while trend presents the entire movement in the series with a flexible pattern. 

The start and end of the year have a low flow that corresponds to negative 

values in the remainder component. The bars at the end of the plots represent 

the relative scales and the amount of variation of the components (Hyndman 

and Athanasopoulos, 2013). For example, the long bar in the seasonal 

component means smaller variation compared to the data and remainder 

components with short bars. The modelling capability of the flow data is further 

confirmed in Figure 6.7 that shows the autocorrelation and cross-autocorrelation 

between the two-directional flows. The ACF plots show that there remains some 
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serial correlation in the data; nevertheless, there is a strong indication that the 

data can be modelled as shown in Chapter 5. 

 

Figure 6.6: Time series decomposition of NE-directional flow 

 

Figure 6.7: Autocorrelation and cross-autocorrelation of directional flows 

 

NE Flow

1
0

2
0

3
0

d
a

ta

-6
-2

2

s
e

a
s
o

n
a

l

1
6

2
0

tr
e

n
d

-5
0

5

0 10 20 30 40 50

re
m

a
in

d
e

r

time

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0
.2

0
.6

Lag

A
C

F

flow_NE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0
.2

0
.6

Lag

flow_NE & flow_SW

-3.0 -2.0 -1.0 0.0

-0
.2

0
.6

Lag

A
C

F

flow_SW & flow_NE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0
.2

0
.6

Lag

flow_SW



173 

 

6.2.4 Post-analysis of flows to understand temporal changes 

This section concludes the investigation and the focus is to understand 

temporal variations within homogenous groups. Zhang et al. (2013) highlighted 

the necessity to understand the evolution of traffic states in both time and space 

as a critical step to improving freeway modelling and operations. The 

assessment is based on five groups of periodic flows over 24 hours in a month. 

Table 6.2 and Table 6.3 present the output of the post-analysis based on (𝛼 =

0.05) using Statistical Package for the Social Sciences (SPSS), where alpha 

defines the cut-off point upon which a rejection or acceptance of the hypothesis 

test is determined. The tables show the test results of multiple comparison and 

homogenous subsets of the grouped flows. Analysis of Table 6.2 suggests that 

the groups designated 07-10hrs and 16-20hrs are the most variable groups 

compared to other groups. This information points to the period of less precision 

in the estimated flows as evident in the computed standard error (column 3 of 

Table 6.2). The significance of this result can be found in weight assignment in 

modelling to ensure accurate and precise prediction. That is, the knowledge of 

the period of high or low level of reliability in flow can be determined based on 

this information. Table 6.3 presents a clearer picture of the significant 

differences among the grouped flows. From this result, four homogeneous 

subsets were identified among the five groups. The p-value (0.257) computed 

for the subset 3 clearly shows that the means of the two most variable groups 

are statistically not significantly different from each other. If the same condition 

is applicable in all situations, a typical traffic plan or strategy can be 

implemented to manage the two periods. This thereby reduces the amount of 

planning and operational activities and consequently increases efficiency in 

production and optimisation of input. 
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Table 6.2: Table of multiple comparison tests between the grouped flows 

 

 

Table 6.3: Table showing the homogeneous subset of the grouped flows 
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6.3  Understanding Variability in Journey Time 

6.3.1 Understanding temporal variability in journey times 

Figure 6.8 presents the combined plots of mean and median journey times over 

four temporal dimensions – hourly-weekday (top), hour (bottom-right), month 

(bottom-middle) and weekday (bottom-right). Over the four averages, the mean 

journey times are consistently higher, with the highest variability in the monthly 

average (88s-140s). Variability is also higher over the peak periods than in free 

flows, so also on weekdays as compared to weekends. However, the two 

estimators present similar trends over the year with the exception of the trends 

over the weekday average. The median travel time presents relatively the same 

time over Monday to Wednesday but in the case of the mean, the travel time on 

Tuesday is a little higher. The obvious difference is the reversal in trend from 

Wednesday to Friday. While the mean travel time increases, the median 

equivalent decreases. However, they both show a decrease in travel time from 

Friday to Saturday as expected. Overall, a conclusion is reached that the day-

to-day variability captured by the mean estimator better represents the real-life 

situation. However, an assessment of any significant differences between the 

mean and median estimators presented in Table 6.4 based on the Mann-

Whitney test shows that the two journey time metrics are good estimators for 

traffic management. Other relevant results are presented in Appendix 6D. 

 

To establish the day-to-day reliability in travel time estimation, the daily average 

is analysed. Yildirimoglu et al. (2015) emphasised the significance of the day-to-

day travel time variability and reliability. Figure 6.9 presents the time series plot 

of journey times over a year on a daily average to understand the day-to-day 

variability. Unlike the flow data, the journey time over the year fluctuates with 

irregular patterns between 80s and 140s. Over the year, three clusters of 

journey times can be identified with the highest variability over the first three 

months and in November. The most consistent period (day 150-300) 

corresponds to June-October, signifying the most reliable period of the year as 

captured by the established systems. Given this information, an unreliable travel 
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time that has been identified as one of the problems of congestion can be 

addressed accordingly using Bluetooth. This includes the provision of real-time 

traffic information obtainable from Bluetooth instead of reliance on archived data 

for better prediction of journey times and by extension leading to improved 

service delivery and more confidence in route planning. Accordingly, real-time 

traffic information obtained from Bluetooth can be disseminated based on the 

changes in the network traffic. 

 

Figure 6.8: Mean and median (med_jt) journey times on Link0506 
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Table 6.4: Table showing the summary of Mann-Whitney Test over different 

temporal dimensions 

 

 

Figure 6.9: Time series plot of daily journey time on Link0506 in Trafford 

 

6.3.2 Understanding consistency and reliability in journey time 

Figure 6.10 presents the standard deviation plot of journey time over the year 

showing non-uniformity in the daily pattern, which is usually what happens in 

real life. The analysis shows that standard deviations of journey times range 

between 5s and 33s symbolising the degree of variability over the year. 

Approximately, drivers may experience up to a 30s time difference compared to 

normal in traversing this link. Variability is highest over the first three months 

Parameter Point Estimate 95% Confidence Interval P-Value N

Hourly -13.00 (-14.000,-13.000) 0.0000 168

Hourly-Weekday -17.00 (-18.000,-16.000) 0.0000 8205

Daily -11.25 (-12.991,-9.880) 0.0000 365

Week -10.42 (-20.943,-7.920) 0.0000 53

Month -9.25 (-33.500,-5.600) 0.0001 12

Weekday -17.00 (-19.000,-14.000) 0.0022 7

Mann-Whitney Test
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and least between the months of June and October. A decomposition of the 

journey times (Figure 6.11 – plotted on a weekly time scale) shows a better 

understanding of the trend in the data over the year. Clearly, from the plot, the 

weeks over the period 23-44 present the minimum variability. The results also 

show that there is a constant seasonal effect, with the trend showing three to 

four distinct patterns. The bars on the plots show that variability is least in the 

seasonal component compared to others, while the positive and negative 

values in the remainder component signify the points of rise and fall in trend, as 

well as, the description of the amount of variability in the trend. For example, the 

rise in journey time over the end of the year corresponds to a positive rise in the 

remainder that may be due to the end of year rush or other events. This result is 

consistent with Martchouk et al. (2011) who noted that factors, such as weather 

conditions and driver behaviour, may significantly influence variability in travel 

times over a particular period. 

 

Figure 6.10: Standard deviation of daily journey time on Link0506 in Trafford 
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Figure 6.11: Seasonal decomposition of daily journey time over a year on 

Link0506 in Trafford 

 

6.4  Understanding Variability in Speed 

6.4.1 Understanding temporal variability in journey speed 

Figure 6.12 presents the combined plots of mean and median journey speeds 

averaged over four different temporal dimensions to illustrate both short and 

long-term variations. The hourly variation presents almost a perfect agreement 

between the two estimators and has a minimum variability compared to the 

other averages. Consistent with the journey time estimators, the monthly 

average presents the highest variability over the year with a range of 5km/h. 

This indicates the degree of variability that could be experienced in speed over 

the year on the link. Further discussion of the implication of the results will be 

presented in the next chapter. However, to conclude the analysis, the Wilcoxon 

test was performed to test for significant differences between the two 

estimators. The test results showed that the two estimators are not significantly 

different at a 95% confidence limit with a p-value less than 0.01. Figure 6.13 

presents the time series plot of vehicle speeds over a year on a daily average to 
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understand day-to-day variability, while Appendix 6E presents other relevant 

results. Consistent with the journey times, there is a fluctuation in speed over 

the year between 42km/h and 53km/h. On an average, two dominant clusters of 

speed can be identified with the period of high-speed corresponding to a short 

journey time. The next section examines the long-term variability on a daily 

basis by exploring the standard deviation and decomposition of speed over the 

year.  

 

Figure 6.12: Mean and median vehicle speeds on four temporal dimensions 
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Figure 6.13: Profile of daily vehicle speeds on Link0506 in Trafford 

 

6.4.2 Understanding consistency and reliability in journey speed 

Figure 6.14 presents the standard deviation of speed over the year. Consistent 

with the journey times’ data, there is non-uniformity in the daily pattern. The 

analysis also shows that the degree of variability of the daily vehicle speeds 

over the year is depicted by the range of the standard deviations (between 

2km/h-8km/h). In terms of reliability of vehicle speed over the year, the period 

that is more consistent is more reliable. A decomposition of the vehicle speed 

(Figure 6.15 – plotted on a weekly time scale) presents a clearer understanding 

of the changes over time. From the results, while the seasonal component is not 

changing with time, the trend component is (as in journey time). The remainder 

plot presents the magnitude of the variability in the trend. The bars on the plots 

show that the variability in the trend and remainder components is about half 

the variability in the data and about three times the variability in the seasonal 

component. The fall in speed at the end of the year also corresponds to the 

equivalent rise in journey time over the year as previously observed. Clearly, 

there is evidence of changes over time as would be expected due to different 

traffic regimes, such as free flow and congestion. Ability of Bluetooth speed to 
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reconstruct the actual traffic situation captured by the established systems gives 

credence to its applicability in this regard.  

 

Figure 6.14: Standard deviation of vehicle speeds 

 

 

Figure 6.15: Time series decomposition of vehicle speeds 
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6.4.3 Post analysis of journey speed to understand temporal changes 

In this section, the focus is on the Bluetooth-estimated speed, given that it is a 

derivative of journey time and not a direct measurement. This investigation 

helps in determining whether Bluetooth derivatives, such as the journey speed, 

are as reliable as the direct measurements, such as journey times. To 

investigate this, variability in journey speed was explored using analysis of 

variance (1 − 𝑤𝑎𝑦 𝐴𝑁𝑂𝑉𝐴, 𝛼 = 0.05). ANOVA was considered because speed 

data is normally distributed. The alpha level determines the rejection or 

acceptance cut-off point of the test statistic (IBM Corporation, 2012). In this 

case, directional speed data based on weekdays and months were analysed. 

The null hypothesis (H0) testing assumes equality of means in the speed 

distributions across the groups. In this case, acceptance of H0 means that there 

is no evidence of significant change across the groups and hence no periodic or 

temporal variations. Otherwise, the rejection of H0 (the acceptance of the 

alternative hypothesis) means that there are temporal variations. Post analysis 

based on the Tukey test (𝛼 = 0.05) using R (R Core Team, 2013) was used to 

identify differences in the group means as shown in Table 6.5 and Table 6.6 – 

Link0506; and Table 6.7 and Table 6.8 – Link0605. Tukey tests helped to 

classify the periods that are statistically significantly different from one another. 

From the tables, the first column (Groups) shows different classes in the 

treatments (weekday and months) indicated by the letters assigned to the 

groups. The test results indicate temporal variations across weekdays and over 

months in the speed distributions. If this is consistent over time on the link, it 

means that different strategies will be required to manage and control traffic 

over the different groups. 

 

From Table 6.5 to Table 6.8, means with the same letter are not significantly 

different from each other. For example, with an Honestly Significant Difference 

(HSD) of 0.389, (Table 6.5) suggests that the means of speed on Thursday and 

Monday (groups “a” and “b”, respectively) are significantly different from the 

means of the other weekdays at alpha level 0.05. Interestingly on the reverse 
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link (Table 6.7), the same feature was identified, but in this case with a lower 

speed averaging 45km/h (HSD: 0.318) compared to the opposing link averaging 

47km/h. Another interesting feature revealed by this analysis is the fact that all 

the weekdays’ means are within the speed limit of the road (48km/h) and are 

reasonably close to one another. These results suggest a level of speed limit 

compliance and the possibility of using Bluetooth for this application. 

 

Table 6.5: HSD test for weekday means of speed (km/h) over Link0506 

 

Table 6.6 and Table 6.8 show the HSD tests of the monthly speed variations on 

both sides of the road. Unlike the weekday summary that presented similar 

output, in this case, it was not so. However, this is expected to be a possibility 

given the effects of seasonal variations. As earlier stated in Section 6.2.1, the 

neutral months of April/May and September/October are supposed to have the 

minimum variability of flows (DfT, 2014). This, in turn, is expected to influence 

the computed speed over these periods. From Table 6.6 with HSD (0.563), 

clearly, the mean speed of the months of April and May (groups “c” and “d”, 

respectively) are significantly different from the means of the other months. 

September and October are in the same cohort of “bc” together with the months 

of June and July. August is in a separate cohort “a” while December is in “b” 

and the other four months (January, February, March and November) are in the 

cohort “e”. 

Groups Treatments Means

a Thurs 47.29

ab Sat 47.21

ab Fri 47.05

ab Tues 46.95

ab Wed 46.95

ab Sun 46.94

b Mon 46.83
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Table 6.6: HSD test for monthly means of speed (km/h) over Link0506 

 

In Table 6.8 (HSD: 0.466), seven significantly different groups are identified 

compared to the six groups identified on the opposing link. In this case, May 

and August are in the same group “a”. While April and June are in different 

groups of “ab” and “bc”, serving as the connection or transition between group 

“a” and the next group “c” consisting of January, February, March and July. 

September and December are in different groups of “d” and “de”, respectively 

while October and November constitute the last group, “e”. An interesting 

outcome of this analysis is that while the weekdays’ speed showed the same 

subsets over opposing links, the same cannot be said of the monthly speed. For 

example, the month of August classified in a different group on Link0506 is 

grouped with May on the opposing Link0605. Therefore, estimating speed using 

Bluetooth data may be better considered on a weekday basis than on a monthly 

basis, particularly when considering the LOS (level of service) each way due to 

the significant variations in the monthly average speed. However, the monthly 

variation in the speed data is consistent with the flow; thereby indicating a level 

of reliability in Bluetooth derivatives as indirect measurements. The next step 

considers the Bluetooth detection rates to round up the investigation. 

Groups Treatments Means

a Aug 48.59

b Dec 47.83

bc Oct 47.69

bc Jul 47.60

bc Sep 47.48

bc Jun 47.41

c Apr 47.24

d May 46.65

e Mar 45.65

e Jan 45.63

e Feb 45.56

e Nov 45.51
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Table 6.7: HSD test for weekday means of speed (km/h) over Link0605 

 

 

Table 6.8: HSD test for monthly means of speed (km/h) over Link0605 

 

6.5  Understanding Variability in Bluetooth Detection Rates 

6.5.1 Background to the detection rate 

Bluetooth presents a sample of the actual traffic. Therefore, it becomes 

imperative to understand the spatio-temporal variability in the estimated 

proportion of the actual vehicular flow captured by Bluetooth to inform usability. 

The early studies on Bluetooth have suggested that approximately 5% of all 

vehicles contain a form of Bluetooth-detectable device (UMCATT, 2008). 

However, with an increase in Bluetooth usage, as well as differences over 

different geographical locations (Beca, 2011; Biora et al., 2012; Roggendorf, 

Groups Treatments Means

a Thurs 45.36

ab Mon 45.13

b Sat 45.04

b Tues 45.03

b Wed 45.03

b Fri 45.00

b Sun 44.97

Groups Treatments Means

a May 46.00

a Aug 45.92

ab Apr 45.86

bc Jun 45.45

c Mar 45.39

c Feb 45.38

c Jul 45.28

c Jan 45.12

d Sep 43.98

de Dec 43.58

e Oct 43.41

e Nov 43.21
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2012), a proper understanding of this factor is considered essential. The 

knowledge of applicability is necessary to avoid over-generalisation, particularly 

given the contrasting nature of GMN. To this end, temporal and spatial 

variations in detection rates were investigated using the Bluetooth data collected 

over 2013 in Manchester, U.K. Overall, the problem considered here is to 

determine the changes in the detection rates over GMN, and whether the result 

holds irrespective of the data source and the location. 

 

Clear distinctions were made between the rates obtainable based on different 

types of estimation and the ground-truth data used to inform usability. This 

distinction consisted of all devices, directional and total directional-based 

estimation to account for spatial relation and transferability. Dissanayake et al. 

(2012) noted the importance of the consideration for spatial transferability of a 

model. As a result, the consistency of the detection rate over the GMN was also 

examined to understand the differences and similarities spatially. Of course, 

differences are expected to be seen because the three networks are of a 

differing nature but how significant they are remains unknown. Appendix 6F 

presents other relevant results such as the detection rate variability plots over 

the hours of the day to understand temporal changes. Further, the hourly 

variation, weekday, monthly and seasonal variations were all examined for any 

significant differences over the different temporal dimensions. This information 

is also useful in determining the temporal transferability of a model to ensure 

efficiency in management. 

 

6.5.2 Detection rate: all detected devices 

In this section, the detection rate derived from the estimation of traffic flow 

based on the total devices detected is presented to understand the proportion of 

the total traffic equipped with Bluetooth-enabled devices. The Bluetooth data 

captured at Station 1011 co-located at ATC1283 location (the second validation 

station in Trafford), was filtered to remove duplicates and processed into 15-
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minute flows. The total flow on both sides of the road measured by ATC was 

compared against the total flow at the Bluetooth station over the weekdays. A 

very strong relationship exists between Bluetooth and ATC flows with 

adjusted 𝑅2 of 0.87 and 0.89 for the weekdays and weekends, respectively. The 

analysis of the data based on total modes gave the detection rate of 30% based 

on the flow ratio. A similar value (33%) was obtained over the weekday in the 

study conducted in Scotland (Cragg, 2013). However, it should be noted that 

this figure is not a representative of the actual vehicular proportion detected, 

and hence, rarely useful for congestion control. Consequently, directional 

estimation is considered in the next sections. 

 

6.5.3 Detection rate: Wigan study site 

In Wigan, Bluetooth Stations 1022 and 1023 are co-located with the validation 

Station (ATC1074) and are therefore considered for the analysis in this section. 

From the configuration, the location of ATC1074 is closer to the Bluetooth 

Station 1023 than 1022 (≈585m to 790m). The network configuration also 

suggests a possibility of a reduction in the devices detected at Station 1023 

before reaching Station 1022. This is due to the possibility of vehicles taking an 

alternate route from Station 1023. Following the recap of the location 

description, the analysis of the detection rates (Table 6.9) showed a constant 

rate of 10% over the weekdays (Mon-Sun) in NW-bound. The rate of 14-16% 

was observed in SE-bound with the lowest rate observed on a Sunday. The 

difference between the directional rates is attributed to the relative position of 

the Bluetooth stations to the validation station as shown in the network 

configuration. The 5% difference on average between the NW and SE-detection 

rates showed that station calibration might not be sufficient to scale up an entire 

network especially in a network of varying characteristics. That is, the use of 

either of the computed rates (NW or SE) to predict the traffic flows on both links 

will result in over or under-estimation. 
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Table 6.9: Detection rates (%) derived from ATC, Wigan 

 

6.5.4 Detection rate: Stockport study site 

Two different independent measures of traffic flows (ATC and SCOOT) were 

used to derive detection rates in Stockport. The use of the data from the two 

ground truth sources presents the opportunity to explore variability in the rates 

arising from the two systems given they are positioned differently on the road. 

Each of the independent systems comprises two sets of validation stations. 

ATC1500 and SCOOT links 1034 and 1035 are co-located with Bluetooth 

Stations 1034 and 1035. Station 1035 is located close to ATC1500 (≈ 63m) 

while Station1034 is further apart (≈ 450m) with two main cross routes 

contributing to the traffic towards 1035. The SCOOT links, on the other hand, 

are located upstream and downstream from the link. Similarly, ATC1013 is a 

little closer to Station 1037 than 1036 (173m and 248m, respectively).  

 

From the analysis, the detection rate of Bluetooth to SCOOT (13-16% as 

presented in Table 6.10) is higher than that of Bluetooth to ATC (7-12%). 

SCOOT rates were observed to be more consistent and precise than the ATC 

derived rates. This result showed that the location or positioning of the 

validation source relative to Bluetooth stations is significant in determining 

detection rates. This is due to the contributions from the connecting routes by 

way of vehicles leaving or joining the traffic. Therefore, an important practical 

implication of this result is that combining the SCOOT and ATC flows over a 

complex urban network to derive the Bluetooth detection rate may not yield the 

best result. This further means that the use of either of the two may be the 

preferred option for the purpose of consistency instead of the combined rates. 

Irrespective of the differences, an important observation from the results is that 

estimation of the detection rate is affected by both temporal and spatial 

Direction Mon Tue Wed Thu Fri Sat Sun MAC1022

NW 10 10 10 10 10 10 10 MAC1023

SE 16 15 15 15 16 16 14 Adj. R
2

0.77 - 0.82

ATC1074

Weekday
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variations. Therefore, the choice of sensor location is considered to play a 

critical role in the reliability of the resulting generalisation. Consequently, it must 

be taken as an important element for consideration during the installation of 

Bluetooth sensors. 

 

Table 6.10: Detection rates (%) derived from ATC and SCOOT, Stockport 

 

6.5.5 Detection rate: Trafford study site 

As with the previous cases, the validation station (ATC1024) is not centrally 

located between the two Bluetooth detectors. ATC1024 is closer to Station 1005 

(508m) than 1006 (589m). The NE-bound and SW-bound monthly rates are 13-

14% and 10-13%, respectively (Table 6.11). The January to September rate 

remains constant in a NE-direction while it remains constant from January to 

August for SW-bound traffic. December has the lowest rate (10%) while the 

September to November rate is 11% in a SW- bound direction. The 2% 

difference between August and September in the SW direction, as well as, the 

2-3% difference over September to December between the directional rates, 

gives a strong indication of periodic variation. This means that periodic 

calibration will be required. This was established further through the seasonal 

differences observed in the data. For the seasonal-weekday studies, the 

summer period has the highest rate (15%) while the lowest rate was observed 

during autumn and winter (13%). However, for the “seasonal-weekend”, a 

constant rate of 12% was observed over the four seasons in the NE-bound 

direction and remains consistent (10-12%) in the SW-bound direction. The 

better precision observed over the weekend was as expected, given that 

Direction Sensor Weekday Mon Tue Wed Thu Fri Sat Sun MAC1034

NW ATC 12 12 11 12 12 10 8 MAC1035

SE ATC 9 9 9 10 10 7 7 Adj. R
2

0.65 - 0.78

NW SCOOT 16 16 16 16 16 16 16

SE SCOOT 13 13 13 14 14 13 13 Adj. R
2

0.82 - 0.92

Weekday Mon Tue Wed Thu Fri Sat Sun MAC1036

N 13 14 13 13 13 9 8 MAC1037

S 8 7 7 8 8 5 5 Adj. R
2

0.73 - 0.81

ATC1500/SCOOT

ATC1013
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variability is less over the free-flow than in congested period. Spatial 

consistency was observed where the networks exhibited similar characteristics 

and configurations. Overall, there is a presence of temporal and spatial 

variability in the estimated rates in the network. Therefore, Bluetooth traffic 

estimation requires both periodic and spatial calibration to obtain up-to-date and 

reliable predictions.  

 

Table 6.11: Detection rates (%) derived from ATC1024, Trafford 

 

The monthly directional detection rates were analysed further to understand the 

statistical significance of the results. The monthly detection rates at the 

ATC1024 location in Trafford were investigated to understand monthly 

variability and the possibility of obtaining the most representative value. As a 

first step, the possibility to compute the mean of the two monthly directional 

rates were established through statistical testing. Figure 6.16 presents the 

summary of the analysis showing that the NE detection rates have 𝜎 =

0.452; (𝐶𝐼 = 0.252, 0.971) whilst the SW detection rates have 𝜎 = 1.138; (𝐶𝐼 =

0.706, 2.194). The overlap in the 𝐶𝐼 signifies that the two groups are not different 

and can be averaged. Further statistics showed that the ratio of 𝜎 = 0.397 and 

ratio of 𝜎2 = 0.158. Bonett’s test (p-value = 0.039) suggests a significant 

difference between the two groups, and therefore, a rejection of the null 

hypothesis that the ratio is equal to 1. However, given that the sample size of 12 

is less than 20, the Levene’s test (p-value = 0.171), which is the greater of the 

two tests coupled with the overlap in the 95% CI for standard deviations, 

suggests the acceptance of the null hypothesis. This thus signifies that there is 

no significant difference in the ratio. Consequently, 13% was computed as the 

Direction Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

NE 14 14 14 13 14 14 14 14 14 13 13 13

SW 13 13 13 13 13 13 13 13 11 11 11 10

Type Adj. R
2

Spring Summer Autumn Winter Spring Summer Autumn Winter Month 0.72 - 0.82

NE 14 15 13 13 12 12 12 12 Season 0.85 - 0.92

SW 13 13 11 12 12 11 10 11 Weekday 0.76 - 0.81

Mon Tue Wed Thu Fri Sat Sun

NE 14 14 14 14 14 12 11

Sw 12 12 12 12 12 11 10Weekday MAC1005, MAC1006

WeekendWeekday

Season
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most probable value, (𝑚𝑝𝑣) for the monthly detection rates over the Trafford 

based site on the mean of the two-directional monthly detection rates. The 

evidence from this research suggests that 13% is the best approximating value 

of the detection rate of Bluetooth vehicular detection over Trafford. The 

theoretical implication of this figure is that it only represents the best 

approximating value and not the true value. Therefore, it may be subject to over 

or under-estimation in some cases and thus require further investigation. The 

next step considers the comparison of detection rates in both directions on a 

day-to-day basis to understand long-term variability and the reliability of the 

detection rates. 

 

Figure 6.16: Plot of the F-test and CI for variances of NE and SW detection 

rates over Trafford 

 

6.5.6 Understanding consistency and reliability in detection rates 

Figure 6.17 and Figure 6.18 present the mean of the day-to-day NE-detection 

rates and Total-detection rates (both directions) over a year. The summary of the 

descriptive statistics for all the directional flows is presented in Table 6.12 while 

Appendix 6G presents additional results and the SW-equivalent time series plot. 

The quantitative analysis of the opposing directional rates showed that they could 



193 

 

be averaged, as they are not significantly different. The hypothesis test of their 

distributions gave a point estimate of 0.02188 and 95% CI (0.02031, 0.02346) 

and the result is significant at 0.0000. In addition, the p-values for F-test (0.107) 

and Levene’s test (0.118) at ∝ = 0.05 confidence level for ratio 𝜎 =  0.918, (𝐶𝐼 =

0.822, 1.023) and 𝜎2  = 0.843, (𝐶𝐼 =  0.676, 1.046) showed that the ratios are not 

significantly different from 1. As a result, the plots of NE and Total-detection rates 

are presented in the discussion with reference to the SW-detection rates. 

Generally, the results show that detection rates fluctuate between 10% and 17% 

of all vehicles according to the time of the day and the day of the week. However, 

this result is in accordance with literature, such as Blogg et al. (2010), which 

obtained 17% on an average with a range of 2%-30% depending on the time of 

day. The combined detection rates present better stability and appears to be 

more reliable than the individual directional flow ratio, given the coefficient of 

variation 5.02 compared to 6.74 and 8.63 for the NE and SW ratios, respectively. 

On directional basis, variability is higher in the SW-direction compared to the NE-

direction. The histogram plot presented in Appendix 6H as well as the 

coincidence of the mean and median show normality and symmetry in the 

detection rates. Overall, the results showed a negligible error and little variability 

over time. This signifies a high level of consistency and reliability in the 

estimation. For a better appreciation of the spread, the standard deviations are 

analysed further. 
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Figure 6.17: Mean plots of NE-directional flow ratio 

 

 

Figure 6.18: Time series plot of mean total directional flow ratio 
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Table 6.12: Descriptive statistics of directional flow ratios 

 

Figure 6.19 presents the time series plot of the standard deviations of day-to-

day NE-detection rates over a year, while Figure 6.20 presents the standard 

deviation of the combined detection rates. From the results, the highest 

variability was observed in August for the NE detection rates and in November 

for the total detection rates. As shown earlier, the result of the estimated 

detection rates for the total flow (sum of the flows on the two opposing links) 

presents a better level of reliability given that it is more consistent than the 

individual link detection rates. However, any resulting generalisation must take 

into account the nature of the network. For example, two opposing links of 

differing attributes will present a different scenario. However, for all, the 

standard deviations of the detection rates clearly show a high level of precision 

– NE (0.03 – 0.10) and Total (0.03 – 0.06) – which signifies a high level of 

reliability. The representativeness of the Bluetooth sample of the actual traffic 

flow is established in Figure 6.21. The result showed that estimated sample 

sizes of 2331 and 8275 are required to obtain a maximum coefficient of 

variation of 5% and a maximum relative margin of error of 5%, respectively. The 

estimation corresponds to approximately 3% and 10% of the actual traffic, 

respectively, which is less than the average sample size obtainable over GMN. 

Interestingly, this result is also greater than the 2% sample size required to 

Variable Ratio_NE Ratio_SW Ratio_Total

Total Count 357 357 357

Mean 0.15 0.13 0.13

SE Mean 0.00 0.00 0.00

StDev 0.01 0.01 0.01

CoefVar 6.74 8.63 5.02

Minimum 0.12 0.10 0.11

Q1 0.14 0.12 0.13

Median 0.15 0.13 0.13

Q3 0.15 0.13 0.14

Maximum 0.17 0.16 0.15

Descriptive Statistics: Ratio_NE, Ratio_SW, Ratio_Total 
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provide a statistically robust description of system performance as posited by 

Hainen et al. (2013). 

 

Figure 6.19: Time series plot of standard deviation of NE flow ratio 

 

Figure 6.20: Time series plot of standard deviation of total directional flow ratio 
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Figure 6.21: Plots showing the sample size in relation to coefficient of variation 

and relative error margin in percentage 

 

6.6  Conclusions 

This chapter presented the investigation conducted on the variability in the 

estimated Bluetooth traffic metrics to understand consistency and reliability and 

how the validity of the results might be affected by temporal variations. 

Exploratory analysis was used to understand the underlying properties of the 

estimated metrics, while post-analysis using the Tukey test confirmed the 

presence of significant temporal variations. The metrics showed contiguous 

homogeneous subsets over the am and pm peak and off-peak periods as would 

be expected in a real traffic situation. The test performed provided a concrete 

answer to the question “can Bluetooth capture temporal variations in traffic?” 

Analysis showed that the weekday average is the most consistent compared to 

other averages. Spatially, the highest variability was observed in Stockport, 

while in a network of similar attributes, total directional estimation is preferable 

on the grounds of accuracy and cost compared to the individual opposing links. 

The detection rates required to calibrate the Bluetooth estimate of the actual 

vehicular traffic computed over GMN using ATC and SCOOT flows yielded 

variable results, with an , 𝑚𝑝𝑣 (most probable value) of 13% in Trafford. This 

means that in GMN, a unique detection rate is not representative as a scaling 
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factor for practical applications to avoid over/under-estimation. Therefore, 

caution must be taken in generalising the results over the entire network, and by 

extension over other geographical locations in the U.K. The relative position of 

the validation stations to the Bluetooth stations is also significant, and must be 

considered to obtain optimal results. 

 

Finally, the results have so far shown that estimation of traffic metrics using 

Bluetooth can yield highly consistent and reliable results both in the short and 

long-term, and at the same time capturing the expected temporal variability. The 

results have also shown factors that must be considered, such as the level of 

aggregation of the data and the placement of the Bluetooth sensors relative to 

the validation stations. It is argued that harnessing this information might form 

an essential building block for more advanced theory on the use of Bluetooth 

data in ITS for traffic monitoring and management. The next chapter presents a 

discussion of the results interpretation and potential applications. 
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Chapter 7. Results and Interpretation of the Estimated 

Metrics 

7.1  Introduction 

In the previous two chapters, the Bluetooth estimated traffic metrics (flow, travel 

time and speed) were validated using diverse independently measured traffic 

data to establish consistency and the level of accuracy of Bluetooth traffic 

measurements. The estimated journey times, vehicle speeds and link-flows 

following the validation exercise all portend a high level of temporal and spatial 

consistency and a high level of accuracy. The results were also assessed for 

variability to avoid any biased conclusions. Following these steps, this chapter 

presents primarily the discussions of the Bluetooth results and their potential 

applications in traffic monitoring and management as well as the added benefits 

derivable from using Bluetooth in traffic sensing. This is in partial fulfilment of 

Research Objective iv to be complemented by Chapter 8, which considers the 

applicability and viability of the estimated traffic metrics in a wider context. This 

discussion focuses on the results obtained from the long-term study in the 

Greater Manchester Network (GMN) following the validation to avoid any bias in 

the interpretation. 

 

Chapter 7 is structured as follows: the estimated traffic flow and the 

interpretation to traffic management application is described in Section 7.2. 

Three different types of traffic flow estimation using Bluetooth are presented for 

a better understanding of the applications namely i) all devices; ii) directional 

estimation; and iii) total directional estimation. Section 7.3 considers the 

interpretation of the results from the Bluetooth journey time by building on the 

previous studies such as UMCATT (2008) and Araghi et al. (2013) which 

showed that by sampling a portion of the travelling vehicles’ actual times, 

reliable journey times data can be provided. In Section 7.4, are the results from 

the vehicle speeds and the interpretation to congestion management and traffic 

pattern analysis through a reconstruction of the actual traffic state at the time of 

observation. Section 7.5 discusses the results from the estimated O-D matrix 
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and its usefulness in transportation planning and optimisation. The key focus of 

this section utilised a well-structured spatio-temporal analysis of origin-

destination data from Bluetooth to provide answers to many relevant questions 

that may arise in the course of decision-making such as: i) Given a set of 

Bluetooth data, which part of the network is free of congestion? ii) Where within 

the network are road users likely to be exposed to pollution? iii) What time of 

the day/year is the congestion level highest/lowest? iv) Which link is most/least 

used? These important questions are considered before conclusions are drawn 

in Section 7.6. 

 

7.2  Estimated Traffic Flows using Bluetooth Data 

7.2.1 Estimation of total flow based on all Bluetooth detected devices 

Figure 7.1 presents the profiles of the total (unfiltered generic traffic) and 

estimated (filtered vehicular traffic) flows derived from the Bluetooth data on 

Link3435 in Stockport. Link3435 is considered a good example for this 

illustration because it is a relatively short link (approximately 511m) with a 

speed limit (30mph – ≈ 48km/h). Further, the Bluetooth stations on the link are 

co-located with ATC and SCOOT detectors for validation. From the flow profiles 

that are deemed to be representative of the reconstruction of the real traffic at 

the time of detection on Link45 in Stockport, the total flow measured up to 700 

vehicles an hour on average. However, there is, for example, the presence of 

other road users in the measurements that shows the profile does not reflect the 

true status of the vehicular traffic. From Figure 7.1, the presence of other modes 

accounts for more than 50% of the devices detected (from ≈ 300 to 700 

vehicles at peak periods). Recall that Bluetooth sensors capture a range of 

enabled devices such as mobile phones and laptops carried by different road 

users moving in both directions once they are within the detection range. 

Consequently, any traffic parameter or metric derived from such measurement 

as performance measures will contain other road users that may not necessarily 

contribute to the traffic. Accordingly, such estimation is rarely useful for traffic 

management. However, data filtering as described in Section 3.2 helped in 
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removing outliers, which reduced the flows to 200 – 300 vehicles on average 

over the 7 am – 6 pm period. The filtered flow (the lower profile of Figure 7.1) 

presents the actual reconstruction of the traffic state as shown in the validation 

presented in Figure 7.6. The filtered flow also presents typical traffic flow 

regimes compared to the total estimation that contains some amount of noise 

that usually causes unpredictability. However, the data filtering applied enabled 

the realisation of the ideal state of the vehicular traffic. This result shows the 

necessity for adequately handling outliers in Bluetooth data to obtain a realistic 

estimation. Otherwise, the results may be misleading. 

 

Figure 7.1: Flow profiles of unfiltered and filtered devices on Link3435 

 

For a better understanding of the errors that might arise from the use of total 
flows, the speed distributions were plotted using histograms as shown in  

Figure 7.2. The histograms present the opportunity to understand the 

distribution of speed variations from the detected devices. The knowledge of 

these speed distributions can be utilised in congestion and vehicle emissions 

studies. Generally, speed distribution is usually normal or approximately normal. 

The plot of the unfiltered speed does not follow this behaviour while the filtered 

speed is best represented with a normal distribution. The histogram plot of the 

filtered devices presents a clearer picture of the speed distributions over the 
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links. The variation in speed as would be expected is due to temporal changes 

in traffic volume on the link over the day. The first bin of the histogram of the 

unfiltered devices presents the highest frequency (n=15,500) associated with 

the group of devices travelling at less than 10km/h. This group was classified as 

non-motorised modes, and other extreme cases such as vehicle stop-over were 

excluded from devices classified as vehicles in the analysis. Accordingly, 

devices that were too slow or too fast were rejected according to the boundary 

and outliers filters described in Section 3.2. The filtering of the data leads to a 

13% detection rate compared to 30% of the total estimation. Further analysis of 

the link speed on hourly average showed that vehicle speeds range between 35 

– 51km/h. This signifies a high level of speed limit compliance as would be 

expected in UK urban areas. This is expected in an urban road given the UK 

policy on traffic violation that includes strict penalties. 

 

  

Figure 7.2: Histogram plots of the speed of all and filtered devices on Link3435  

 

In addition, note that the station data captured by Bluetooth contains no 

information to indicate the direction of travel and is therefore limited in 

application without combining it with data from another station. Combining or 

merging Bluetooth data captured at different locations across the network leads 
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to the realisation of the direction of travel, O-D matrix and the overall traffic 

metrics estimation. For example, the merging and analysis of the tracked 

devices at Stations 34 and 35 (a total of 33,651 devices - Figure 7.3 showed 

that about 50% of the total devices on the link were travelling within the 

boundary of the first filtering condition (speed ≥ 6km/h and speed ≤120km/h 

based on average walking speed of 5km/h). The implication of this is that if all 

the captured devices contribute to traffic and are considered as vehicles, about 

701m road length per hour on average will be required to accommodate all the 

vehicles. This is assuming an average vehicle length of 2m in a 4-lane road 

(both directions) and with no gap between the cars and without scaling up the 

estimation. That is, the product of number of devices (33651) and the vehicle 

length (2) divided by the product of number of lanes (4) and number of hours 

(24). However, this situation is practically impossible considering the road 

configuration given above. This type of unrealistic scenario is presented when 

analysing Bluetooth data based on total devices captured. For a clearer picture, 

the speeds of all the 33,651 merged devices was analysed using the 

Mahalanobis distance method while boxplot was used to understand the 

properties of the distribution. The results clearly showed an unrealistic 

skewness in the data (except in extreme and rare occasions such as heavy 

congestion, which in this case, is not). Figure 7.4 shows the skewness in the 

data and the Mahalanobis cut-off point (2.448) for the outlying values. 

 

Figure 7.3: Boxplot showing the speed distribution of all devices on Link3435 
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Figure 7.4: Plot of speed against the Mahalanobis’ distances with the cut-off 

point  

 

Figure 7.5 presents the boxplot of the vehicle speeds after filtering. The boxplot 

representation of the filtered devices showed that speeds <15km/h are outliers. 

Based on evidence from the SCOOT comparison, the boxplot of the filtered 

devices shows a better and cleaner representation of the road conditions 

compared to Figure 7.3. As shown in Figure 7.5, about 50% of the vehicles 

travelled between 35- 50km/h, which is more realistic and sensible, based on 

the road configuration. However, it should be noted that for a short distance, 

estimation errors might increase due to locational uncertainty arising from the 

detection zone. That is, the actual position of the detected device within the 

detection zone is unknown. If the device was detected at the exit and entry 

points at two consecutive stations, this will lead to an underestimation of travel 

time, and may consequently be interpreted as over speeding. Similarly, a 

detection of a device at the entry and exit points of the detection zone will lead 

to an over-estimation of travel time, leading to lower speed than reality. This is 

by extension affecting the vehicle count and any subsequent analysis such as 

pollution level monitoring. This is because valid vehicle records may be 

regarded as outliers and filtered out. Given this knowledge, the application of 

Bluetooth for speed compliant monitoring on a short link may not be desirable, 
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particularly in an urban setting, as in this case. 

 

 

Figure 7.5: Boxplot showing the filtered speed on Link3435 in Stockport 

 

7.2.2 Estimation of directional flows 

In Section 5.3.1, the combined normalised flow profiles of Bluetooth, ATC and 

SCOOT in the NW-direction was presented showing a high level of consistency 

and reliability. This section presents the SE-equivalent of the results with 

emphasis on the hourly-weekday temporal variation over the months of April to 

October, to build on the discussion of flow estimation using Bluetooth. 

Consistent with the NW-directional flow profiles, Bluetooth and SCOOT flows 

present a better correlation compared to Bluetooth and ATC comparison over 

all the temporal dimensions considered.  Figure 7.6 presents the hourly-

weekday profiles of the flows over the period. Overall, variability is much 

pronounced over the peak period particularly with ATC flows. However, at low 

flow, the measured flows by Bluetooth showed a very strong relationship with 

the flows measured by SCOOT and ATC detectors. The evidence from this 

research shows that despite the variability, there exist the possibility of data 

reduction to minimise redundancy and consequently increase efficiency in data 

processing and information dissemination. This is evident from the day-to-day 

consistency in weekdays’ (Monday – Friday) average and over the weekend 



206 

 

(Saturday and Sunday) as would be expected of real life traffic. 

 

Overall, the consistency observed in the data over time following the validation 

presented in Section 5.3.2 signifies reliability, which indicates that the Bluetooth 

estimated flow can be used to build-up historical data for traffic management in 

the event of network failure. That is, the typical flow level obtained from 

Bluetooth for a particular day may be used as a substitute to avoid disruption in 

operation. In addition, the temporal correlation of Bluetooth with the ground-

truth data implies the validity of the estimated flows. This is evidenced from the 

reproducibility of the actual pattern observed from the SCOOT measured flows. 

Therefore, Bluetooth has potential to understand temporal variability in a traffic 

network. In turn, this knowledge will serve as an aid to traffic signal timing and 

adjustment to ensure efficiency in the network. 

 

Figure 7.6: SE-directional flow profiles on link3435 in Stockport (18761) 

 

7.2.3 Estimation of total directional flows 

Figure 7.7 presents the profiles of the total directional flow on four different 

temporal dimensions on Link0506 in 2013 in Trafford. Figure 7.8 on the other 

hand, presents the superposition of the directional flows for a better 

understanding of the differences in the level of service each way on the link. 

The interpretation of the total directional flow profiles is consistent with the 
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directional flows but in this case, the summation of the flows on the opposing 

links is presented. However, the slightly different peaks noticed (as expected) in 

the directional flows in the morning and evening for the SW and NE-bound flows 

respectively are evened out in the total flow. From the evidence presented in 

Section 6.5.5, the total flow thus shows less variability compared to the 

directional flow. One interesting thing about this result is that the temporal 

variation arising from work/school time and the close of work was captured in 

the data as reflected in the opposing links. The variability that is more 

pronounced in the NE-bound monthly flow has also been smoothed with the 

precision (less dispersion in the trend of the data) observed in the NE-bound 

monthly flow. Similarly, all the profiles at the varied resolutions present less 

variability in flows compared to the directional flow. The NE flows were higher 

than the SW flows on the weekdays and months in the year. However, similar 

trends such as variation between the peak and off-peak periods were observed 

on the opposing links. Through this analysis, one could infer the period of the 

day (giving the knowledge of “when”) different strategies may be required on the 

opposing links because of differences in the level of service. For example, 

different strategies may be required between the hours of 12 noon and 6 pm as 

observed from the hourly-weekday profiles of Figure 7.8. Based on the 

evidence provided in this research, the results obtained showed a possibility of 

Bluetooth application to traffic congestion monitoring using Bluetooth measured 

flows. The next step examines the potential application of Bluetooth estimated 

flow. 
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Figure 7.7: Profiles showing the total directional flow at different resolutions on 

Link0506 over 2013 in Trafford (N=31306) 

 

Figure 7.8: Profiles showing the superposition of the directional flows at different 

temporal dimensions on Link0506 over 2013 in Trafford (N=31306) 
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7.2.4 Understand temporal and spatial variations in flow 

This section explores the capability of Bluetooth to understand both temporal 

and spatial variations in a network. Three non-consecutive links with 

independent measurement of flows in the Stockport network on the A6, Buxton 

Road were analysed to carry out this investigation. The first two links (3534 and 

3736) are separated by 694m while the third link (4039) is 815m away from the 

second link. Normally, little variation is expected in the flows across the links 

due to the connecting routes and given the fact that the total link length is 2km. 

(See the location map - Figure 4.13 for the road configuration). However, if 

there should be any significant variation across the road, the first two links are 

expected to be more closely related given the evidence from the ATC validation. 

Therefore, the applicability of Bluetooth to capture both temporal and spatial 

variations in the measured flows is explored in this way as presented in the 

following figure (Figure 7.9) using a month’s data over July 2013. Interestingly, 

all the links are closely related with a fine precision with the SCOOT measured 

flows as evidenced from the overlapping profiles. The correlation coefficients 

between the Link3534 to Link3736, Link4039 and the SCOOT measured flows 

are 0.999, 0.954, and 0.958 respectively. The results showed a very strong 

relationship between Bluetooth and the SCOOT measured flows with 

consistently similar patterns of traffic regimes over the hours and weekdays. 

Therefore, what readily comes to mind is that traffic from the connecting routes 

in this case has had no effect on the volume of the road network. That is, the 

number of vehicles joining and leaving the road section seems to cancel each 

other out. Given this situation, the same strategy might be sufficient to manage 

the network. The uniformilty in the traffic volume also means that the same 

detection rate may be used to scale up the estimated flow across the links 

whilst achieving the same level of accuracy in the estimation. However, special 

cases involving a network of different attributes must be carefully considered 

when computing detection rates to be used as a scaling factor for other links 

where they have not been directly computed, to avoid estimation error. Where 

the difference in volume reflects the actual change in flow levels spatially, for 

instance, this may signify a higher activity on that link than the other links. 

Therefore, to keep the traffic flowing to prevent congestion and blocking back 
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on the link with the higher volume, more time will be required when the traffic 

light is on green. Temporal changes characterised by higher flows over the 

weekdays than on the weekend are evident from the results with evidence from 

the SCOOT modelled flow pattern. Therefore, the capability of Bluetooth to 

provide both spatial and temporal status information if utilised will inevitably 

contribute to efficient network management. For instance, real-time provision of 

traffic data to inform both temporal and spatial changes will enhance the 

management of traffic such as in traffic signal control for an optimised road. The 

knowledge of the spatial changes in traffic level will also facilitate a timely 

solution to avoid the building up of traffic. This will in turn, help the road users in 

the choice of optimum route during congestion to save time and fuel used in 

traffic. Using Bluetooth in this way offers a considerable advantage over the 

more expensive conventional data collection systems particularly in terms of 

cost. 

 

Figure 7.9: Bluetooth (BT) flow profiles on three routes over the month of July 

overlaid with SCOOT (SCT) flows northwards on London/Buxton Road, A6 

(N=2976) 
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Figure 7.10 presents the normalised time series plot of Bluetooth and SCOOT 

flows captured during the month of July 2013 in Stockport over Link3435 SE-

bound. The normalised flow profiles showed that Bluetooth is consistent with the 

SCOOT measured flow and representative of the actual flow captured by the 

SCOOT links over all the averages. This research has also shown that Bluetooth 

can detect temporal changes not only in the long-term but also on a day-to-day 

basis. An interesting thing in the use of Bluetooth as seen from these results and 

as evidenced in Chapter 5 is that despite being a low-cost sensor measuring a 

lower flow, quality is not compromised. This is a clear advantage offered by 

Bluetooth technology in terms of sustainable options over the conventional 

methods. Therefore, the application of Bluetooth for temporal status monitoring is 

considered a possibility. A significant advantage of Bluetooth technology in this 

respect over the conventional methods such as the inductive loop detector (ILD) 

is that Bluetooth can be installed in large numbers in a network, thereby leading 

to a more comprehensive monitoring of the network traffic than would be 

possible using ILD. 
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Figure 7.10: SE-directional time series flow profiles of Bluetooth and SCOOT on 

Link3435 in Stockport (N=2976) 

 

7.2.5 Using Bluetooth estimated flow for data augmentation 

One of the merits of Bluetooth technology is highlighted in its possibility in an 

integrated system through data fusion and augmentation to ensure continuous 

undisrupted network management (Bhaskar et al., 2014). The possibility of this 

application is accentuated in the scatter plots presented in Figure 7.11 showing 

positive correlation in the monthly flows of Bluetooth and SCOOT. The scatter 

plots also showed hourly correlation with dispersion more pronounced over the 

peak periods. The evidence following the validation presented in Section 5.3 

shows that Bluetooth data could be utilised to augment the existing systems as 

previously demonstrated by Bhaskar and Chung (2013). In some cases, such 

as understanding of the generic stream (total traffic), the technology may serve 

as a stand-alone sensor. Also, changes in temporal relationships of Bluetooth 
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data with the IMT data inform the knowledge of usage and performance such as 

in peak and off-peak periods.  

 

The concept of data augmentation becomes even more significant when there 

is a system failure arising from the traditional method of data collection. 

However, it may be argued that system failure is not frequent and, as a result, 

may not be a cause for concern. While this argument is valid, the application of 

Bluetooth helps removes reliance on archive data by the traditional system and 

is thus a significant added advantage to the existing system. Application of 

Bluetooth for data augmentation will include node-to-node data adjustment and 

fine-tuning of erroneous data points, thereby leading to avoidance of disruption 

in service provision. However, it should be noted that for a complex urban road 

network monitoring, Bluetooth may be insufficient because error from the 

detection rate will result in poor accuracy in the estimation. Therefore, its 

application should take into account the limiting factors highlighted in Section 

2.3.3.  Despite some limitations such as low count rate, the analysis of the 

results of Bluetooth data as seen in the scatter plots and based on the evidence 

from the validation exercise, suggests the possibility of data augmentation. 

Therefore, harnessing the potential of Bluetooth in data fusion and 

augmentation to extract value will be essential to capitalise on investment and 

to benefit from the resulting opportunities as noted by Harris (2014). 
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Figure 7.11: Monthly scatter plots of Bluetooth against SCOOT measured flows 

on Link3435 NW-bound, Stockport 

 

7.3  Using Bluetooth Journey Time for Traffic Management 

7.3.1 Journey time management using mean and median travel times 

From the pilot study (Section 4.5.4), it was shown through the preliminary 

analysis that the median is the best estimator of journey times. In Section 6.3.1, 

a discussion of the analysis of the two estimators on a larger scale (using a year 

data) was presented. The analysis conducted a test for any significant 

difference between the two estimators to support the findings of the pilot study. 

That is, to find out if the median journey time is a better estimator than the mean 

for journey time management. On exploration of the time series plots presented 

in Figure 6.8, the median journey times can initially be argued as a better 

estimator. However, the confirmatory test performed between the two 

estimators at 95% confidence level stated otherwise. The result showed that the 
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probability of a difference between the two estimators (irrespective of the 

temporal dimension) is less than 0.01. This is evidenced from the overlap of the 

point estimate with the 95% confidence interval (CI), with the p-values showing 

the significance level of the results as presented in Table 6.4. Therefore, the 

application of Bluetooth mean journey time is comparable to the median, and is 

thus considered a good estimator for journey time management. 

 

7.3.2 Journey times for network planning 

This section presents the results of journey times to show both temporal and 

spatial variation in travel time across the Wigan network. Figure 7.12 presents 

the O-D analysis of the network journey times distribution on an hourly basis 

across the Wigan Network. The results showed the amount of time it takes to 

traverse the network from Station 12 located on the A49 southwards to the 

respective stations under consideration as shown in this figure. The x-axis 

presents the different routes under consideration. From the weekly and daily 

analyses of the results, it was observed that it takes a longer time to move from 

Station 12 to Station 21 (a distance of 5.83km) connected with a major road 

than to move to Station 24 (a distance of 4.87km). The shortest distance 

0.89km (Link1216) has the shortest journey times (150 seconds on average). 

However, this is expected as seen in the network configuration between the two 

stations – the location map is presented in Figure 4.8 – Section 4.5. The 

capability of Bluetooth to capture the spatial variations implies the possibility to 

support network planning for the delivery of enhanced services. While these 

variations could be captured by other methods of data collection, these other 

methods cannot be deployed in large numbers, unlike Bluetooth.  

 

The analysis of the network in terms of the journey times showed clearly that 

the length between two stations might not necessarily correlate with their 

journey times. For example, Link1231 has a shorter distance (1.6km) with an 

average journey time of 294s compared to Link1218 (3.02km) with a journey 
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time of 423s on average. This shows that the journey times within an urban 

network are not solely dependent on the link length, but also on other important 

variables, including but not limited to, the road types linking the stations 

together and the land use of the area. With the capability of Bluetooth data to be 

transmitted and analysed in real time, this type of information presents network 

engineers with the opportunity to optimally manage the network for efficient 

flow. This can be seen in the areas of traffic signal timing control, suggestion of 

alternative route(s) and parking guidance through a personal alert system or 

VMS. Summarily, the consistency observed in the data as in Bhaskar and 

Chung (2013), and as noted by Beca (2011), gives a level of reliability to 

Bluetooth journey time estimation to support decision-making for network 

optimisation. From the above, answering questions such as “which is the 

optimum route in the network?”; “what is the time it takes from one origin to 

another destination?”; “what time of the day is the journey time longer?” or 

“when or where can congestion be experienced in the network?” becomes 

realistic. Any change or sharp departure from the normal trend might be 

indicative of an incidence occurrence that needs to be investigated and/or given 

attention. This type of information is also useful in understanding travel time 

index (TTI). 

  

Figure 7.12: Weekly distribution of journey times across the Wigan Network 
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7.3.3 Using Bluetooth for the study of travel time index 

This section presents the knowledge of how Bluetooth might be used to 

evaluate travel time index. A working definition of congestion is ‘travel time or 

delay in excess of that normally incurred under light or free-flow travel 

conditions’ (Gifford, 2003, page 181). HCM (2000) defined traffic delay as the 

delay component resulting from reduction of speed below the free-flow speed 

due to the interaction of vehicles. Travel time index (TTI) found significance in 

calculating and understanding of the reliability of performance measures 

through the day-to-day variation in travel time (Lomax, 2010). In Section 6.3.3, 

the knowledge of the day-to-day variability in journey times was explored. 

According to Lomax (2010), this variation describes the amount of time that 

road users should allow for in an important trip. Furthermore, reliability 

measures are particularly useful for identifying the effect of system 

management strategies designed for efficient traffic operations (Lomax, 2010). 

TTI is defined as (Lomax, 2010, page 6): 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑇𝑇𝐼) =  
𝐷𝑒𝑙𝑎𝑦 𝑇𝑖𝑚𝑒+𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑇𝑖𝑚𝑒

𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑇𝑖𝑚𝑒
   (7.1) 

Simplifying Equation (7.1) becomes: 

𝑇𝑇𝐼 =  
𝑇𝑖𝑚𝑒 𝑎𝑡 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒 𝑎𝑡 𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤
       (7.2) 

The mean journey times over free-flow and congested periods on the A56, NE-
bound, Trafford were analysed.  

Figure 7.13 presents the hourly journey times over the month of November 

showing temporal variations. Consistent with other results on journey times 

which are characterised by temporal changes, the analysis showed that more 

time was spent in traffic during the congested period (250 s) compared to the 

free-flow period (100 s). Over Link0506, a TTI of 2.5 was computed based on 

equation 7.2. This factor (TTI) is useful in determining the amount of extra time 

spent in traffic. For example, a journey of 100 seconds at free-flow will translate 

to 114 seconds during the congested period for a TTI of 1.14. This showed that 

an extra time of 14 seconds was spent in traffic given a TTI of 1.14. With a 

higher value of TTI, the amount of time spent in traffic will increase accordingly. 
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This information provides not only the knowledge of the additional time spent in 

traffic but also the idea of the changes that might occur in the network. Such 

information can also be evaluated in terms of the amount of fuel consumed to 

evaluate the economic impact of the additional time spent in traffic. The 

application of Bluetooth to understand this phenomenon can help route 

planners to put in place an appropriate management strategy to reduce 

unpredictability in travel time that may in turn affect driving behaviour. However, 

while other methods of traffic data collection can be used in this regard, 

Bluetooth offers the advantage of cost. Summarily, the accuracy of travel time 

estimation using Bluetooth data suggests the possibility of TTI application. 

 

Figure 7.13: Hourly travel time over the month of November on Link0506 (N= 
2880) 

  

7.4  Using Bluetooth Journey Speed for Traffic Management 

7.4.1 Using the mean and median speeds for congestion management 

This section explores the use of the Bluetooth estimated mean and median 

speeds to reconstruct traffic state to understand congestion patterns such as 

free flow and congestion. Journey speed in kilometers per hour (km/h) is the 

average speed of a traffic stream obtained from the length of a road segment 

divided by the average travel time (HCM, 2000). Figure 7.14 presents the 

reconstruction of journey speed over each hour of the day with consistency 

observed in the profiles from day-to-day. Unlike the journey time, the mean and 

median speeds overlap each other showing clearly that there is no significant 
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difference between the two estimators. This shows that either of the two 

estimators can be used to understand congestion patterns to achieve the same 

results. Figure 7.14 shows that the speeds of vehicles using both estimators are 

higher over the early hours and late in the night than during the working hours 

of the day. The regular dip observed over weekdays at about 8 am indicates 

that this is the most congested period of the day, thereby giving an indication to 

when pollution may be highest in the day. The speed over the weekend is 

higher with less variability compared to the weekdays as expected. From the 

available evidence and the validation of the vehicle speed presented in Section 

5.3.3, which showed a high level of accuracy, it is concluded that Bluetooth can 

be used in congestion management to minimise pollution arising from vehicle 

emissions. Potential applications include congestion level monitoring and 

density estimation. Already, density estimation has been demonstrated using 

Bluetooth through data fusion (Bhaskar et al., 2014). 

 

In addition, the traffic regimes depicted in the Figure 7.14 showing variations in 

speed level are analogous to the reconstruction of real traffic at the time of 

occurrence. As expected, speeds of vehicles are higher over the weekend 

(47km/h) compared to 45km/h over the weekdays. The closeness of the speed 

distribution over the weekday is attributed to the speed regulation, and thus 

suggests the possibility of Bluetooth to contribute to monitoring the speed 

compliance level in a given road network. Based on the available evidence, 

using Bluetooth in this way will assist traffic managers to understand what time 

of the day or day of the week speeds are usually low such as days on which 

football matches are played, or an hour before or after football matches. If this 

trend is monitored efficiently over time using Bluetooth, appropriate control 

measures could be put in place based on the information provided by Bluetooth 

to minimise traffic congestion, and thus its attendant environmental pollution. 

Control measures may include re-routing by relaying the information gathered 

from Bluetooth to road users through VMS. For example, the displayed 

information may include a restriction to private cars on key corridors to promote 

the use of public buses, and thus a reduction in the number of vehicles on the 
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road and the amount of emissions generated. Alternatively, there could be the 

implementation of road-user charging communicated using Bluetooth to control 

traffic in such instances. In that case, private car users will have to pay to use 

the roads over these specific periods. A significant advantage of using 

Bluetooth in this regard is that additional infrastructure such as radio frequency 

identification (RFID) tag may not be required. 

 

Figure 7.14: Non-normalised mean and median journey speed on Link0506  

 

7.4.2 Application of Bluetooth for speed limit compliance monitoring 

A speed limit is defined as the maximum, legally permissible driving speed 

along a specific good road section and under good travel conditions (RTA, 

2011). Speed limits are usually imposed on roads to control traffic and are 

primarily for two things: i) To reduce risks imposed by drivers’ speed choices 

leading to potential vehicle conflicts; and ii) To provide the basis for punishment 

for road offenders who endanger the life of others (DoT, 2015). In this regard, 

Bluetooth was analysed to understand whether it could be used to monitor the 

compliance level of motorists to the speed limit and to understand the safety 

level of the road users. From the investigation, analysis showed that on a road 

with 48km/h speed limit, from day-to-day, the average speed over the link is 

between 30km/h and 65km/h. The first observation from this result is that a 

certain percentage of the detected vehicles travelled at speeds above and 

below the speed limit. The compliance level analysis also suggests that about 
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20% of the total vehicles plying the route travelled above the speed limit while 

about 80% are speed limit compliant. Given that 20% of the vehicles travelled 

above the speed limit over the year, the conclusion here is that this percentage 

cannot be attributed to only high-speed vehicles such as ambulances but also 

some road offenders who break the speed limit. With this type of information, 

there are different possibilities to address this issue to reduce the risk posed by 

the offenders which include: i) deployment of security personnel to arrest 

offenders; ii) the use of VMS to warn road users of over speeding; iii) 

introduction of traffic calming where necessary, and iv) implementation of a 

policy to register the MAC address of a vehicle which, in this case, will be 

synonymous to the registration of vehicles’ numbers. The possibility of this type 

of application will be of significant benefit in terms of both cost and safety. 

However, it may raise security and privacy issues. That is, motorists may 

attribute such application as a breach of privacy right and that they are covertly 

monitored. To clear any doubts will require policy review and public 

sensitisation to educate the road users. If this is a welcome idea by the public, 

then the implementation of a real-time warning system to reduce the risk on the 

road also becomes a possibility. However, it is to be noted that a certain 

percentage of the defaulters may not be captured given that Bluetooth only 

captures the sample of the total traffic. Nevertheless, Bluetooth can be 

harnessed in this regard to complement existing technology such as speed 

cameras to derive safety benefits and an enhanced operation. The next section 

considers the possible application areas of O-D matrix using Bluetooth data. 

 

7.5  Using Bluetooth O-D Matrix for Traffic Management 

7.5.1 Origin-destination matrix for network planning 

In this research, 6,159 hourly O-D matrices were analysed over six months 

across the three networks in Greater Manchester to understand temporal and 

spatial variations in the network traffic. Figure 7.15 conceptually shows the 

origins and destinations for the Wigan network and, for each hour, a matrix was 

produced. The stations used were selected within the network at strategic 
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locations to cover the spread of the Bluetooth sensors while improving the 

computational efficiency. A one-headed arrow indicates one-directional flow 

while a double-headed arrow indicates bi-directional flows. For computational 

efficiency and ease of understanding, the data were transformed to vector form. 

That is, each O-D matrix was transformed from a 2-dimensional object to a 1-

dimensional object. Table 7.1 gives the proportion of the vehicles tracked 

across the network. O-D pair 12 and 16 has the highest proportion (12%) of the 

hourly network flow while O-D pairs 21-29 and 26-29 both have the lowest 

proportion (0.1%). 

 

The vectors for each hour from day-to-day were compared against each other 

using the function ‘rcorr’ to compute the correlation coefficients and the p-values 

as given in Table 7.2. The function rcorr is in R statistical package (R Core 

Team, 2013). The p-values help in understanding the significance of the results. 

A very strong positive correlation was observed from day-to-day, with a high 

significance level at 95% confidence. Unlike the link-based analysis, the O-D 

matrices comparison showed a strong correlation between weekdays and 

weekends. The improvement in the correlation coefficients is expected given 

the volume of the data used in the O-D matrix compared to the link flow 

estimation. The strong relationship in weekday data thus suggests a possibility 

for data reduction to improve computational efficiency. The day-to-day 

consistency in the measurements means a level of reliability in the data. This 

demonstrates that the day-to-day monitoring of the O-D can provide the data 

needed to compute and plan traffic management interventions in response to, 

for example, air pollution events and incidents. In addition, routine assessment 

of the impact of the intervention is made possible. More important is the 

monitoring of any significant changes in O-D that may occur because of 

roadworks and accidents. 
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Figure 7.15: A typical plot of an O-D matrix in the Wigan network 

 

 

Table 7.1: Proportion (%) of traffic flow across Wigan network 

 

Stn12 Stn16 Stn18 Stn21 Stn24 Stn26 Stn29

Stn12 0 0.085 0.072 0.003 0.019 0.01 0.011

Stn16 0.12 0 0.096 0.002 0.004 0.003 0.017

Stn18 0.071 0.107 0 0.024 0.017 0.022 0.014

Stn21 0.017 0.018 0.044 0 0.032 0.005 0.001

Stn24 0.022 0.003 0.018 0.014 0 0.017 0.003

Stn26 0.014 0.005 0.029 0.004 0.021 0 0.001

Stn29 0.017 0.005 0.007 0 0.004 0.007 0
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Table 7.2: P-values of hourly O-Ds in Wigan for seven days 

 

7.5.2 Hourly origin-destination matrix for network optimisation 

In the previous section, the day-to-day consistency in Bluetooth O-D matrix 

estimation was demonstrated through correlation analysis to understand 

relationship and strength. The results from Table 7.3 demonstrate the ability of 

Bluetooth as a technology to provide hour by hour O-D matrices as 

demonstrated by Barceló et al. (2012). Such information can be used in traffic 

models to explore solutions for tactical intervention plans to optimise specific (or 

a combination of) performance measures for the smooth running of the network. 

Finally, Table 7.4 presents the correlation coefficients (0.96 – 0.98) of the 

weekday O-D matrices. The values of the correlation coefficients signify a 

strong positive relationship between the weekday O-D matrices. The 

consistency of the hourly O-D from day-to-day signifies the possibility of building 

up historical data, for example, in the event of data failure. Based on the 

evidence provided in this research and from literature, Bluetooth is considered a 

viable option to enhance traffic management. This enhancement can be seen in 

different traffic management applications using the O-D matrix information for 

planning and implementation purposes. 

Sun Mon Tue Wed Thu Fri Sat

Sun 0.0001 0.0003 0 0.0041 0 0.0022

Mon 0.0001 0 0 0.0003 0 0

Tue 0.0003 0 0.0004 0 0 0

Wed 0 0 0.0004 0.0054 0 0.0013

Thu 0.0041 0.0003 0 0.0054 0.0014 0.0002

Fri 0 0 0 0 0.0014 0.0003

Sat 0.0022 0 0 0.0013 0.0002 0.0003
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Table 7.3: O-D matrix showing flow, journey times (JT) and speed in the Wigan 

network 

 

 

Table 7.4: Correlation analysis between the weekday O-D matrices in Wigan 

 

 

Flow 

(Veh/h)

JT (S)

Speed 

(Km/h)

78 38 3 11 3 3

131 390 1038 1546 996 396

26 29 21 16 21 29

114 56 3 1 3 11

121 247 609 1097 2193 330

28 32 30 16 16 25

66 119 25 18 8 16

362 237 574 788 1534 836

31 33 23 19 11 29

6 7 23 28 1 1

1380 1225 388 239 1147 878

21 22 30 37 19 34

16 3 17 35 10 3

1337 1836 891 419 517 1695

18 12 18 30 27 15

2 5 22 3 14 4

1266 1082 466 1456 1262 729

14 26 32 21 14 48

6 11 7 1 1 6

525 342 565 908 540 1187

28 34 34 32 41 24

Stn1018

Stn1012 Stn1016 Stn1018 Stn1029

Stn1012

Stn1016

Stn1021 Stn1024 Stn1026

Stn1029

Stn1021

Stn1024

Stn1026

Sun Mon Tue Wed Thu Fri Sat

Sun 1 0.99 0.98 0.97 0.97 0.98 0.99

Mon 0.99 1 0.99 0.99 0.99 0.98 0.98

Tue 0.98 0.99 1 0.99 0.99 0.99 0.98

Wed 0.97 0.99 0.99 1 0.99 0.99 0.96

Thu 0.97 0.99 0.99 0.99 1 0.98 0.97

Fri 0.98 0.98 0.99 0.99 0.98 1 0.97

Sat 0.99 0.98 0.98 0.96 0.97 0.97 1
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7.5.3 Using origin-destination matrix to understand the impact of traffic 

Table 7.5 presents the analysis of the traffic impacts across GMN to understand 

the location that is most affected as part of the potential application of 

Bluetooth. Across the three locations, the amount of time spent in traffic based 

on the Bluetooth information was analysed per unit kilometre to normalise the 

data. The Stockport link is the shortest (3.37 km) while Trafford and Wigan are 

5.24 km and 5.83 km respectively. From the sample analysed, Stockport had 

the highest number of vehicles in both directions (1147 and 1189 vehicles), 

followed by Trafford (209 and 258 vehicles) and Wigan (144 and 198 vehicles) 

from which average speed and time were computed over the period under 

consideration. Given that Stockport links are the shortest and have the highest 

sample (number of vehicles) over the same period suggests that Stockport 

possesses the highest number of vehicles incorporating Bluetooth devices. 

However, this is not necessarily so given the fact that over short links, 

contributions arising from connecting routes, whether by a way of reducing or 

increasing the volume on the main link, is minimised compared to long links. For 

example, the arterial network of Wigan is expected to have the lowest match 

rate over a long distance compared to the other two networks in Stockport and 

Trafford. Besides, one of the interesting features captured by the analysis is that 

more time per kilometre (4.942 and 5.575 for inbound and outbound flows 

respectively) corresponding to the lowest speed/km is spent in the conurbation 

(Wigan) than on the routes within Trafford and Stockport. The Stockport links 

had the least time spent per kilometre (2.746 and 3.268 for inbound and 

outbound flows respectively). Consequently, it may be inferred that within GMN, 

given the same factors such as vehicle composition, weather and period, 

spatially, more fuel will be burnt in Wigan which is therefore more susceptible to 

pollution, while in Stockport, less fuel will be used thereby saving cost with less 

pollution. Using Bluetooth to enhance this understanding and other useful 

applications in traffic management is considered viable with the obvious 

advantage of low-cost compared to the traditional methods of traffic data 

collection. The next discussion presents the conclusions drawn.  
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Table 7.5: Analysis of traffic impacts across GMN for a typical weekday 

 

7.6  Conclusions 

In Chapter 7, the discussion and interpretation of Bluetooth estimated traffic 

metrics comprising flow, journey time, speed and O-D matrix was presented. 

The results and interpretations covered the relevance of Bluetooth technology 

and how it provided the knowledge of potential traffic management applications. 

Potential applications include the use of journey time and speed metrics to 

reconstruct typical traffic regimes to understand temporal variations arising from 

peak and off-peak periods, and analysis of traffic impact. For example, over the 

GMN, Stockport links are the most efficient with the least time spent per 

kilometre (2.746 and 3.268 minutes for inbound and outbound flows 

respectively) while Wigan is least efficient due to the effect of conurbation. 

Spatially and temporally, the consistency observed in the data provides the 

opportunity to build historical data, and thus the possibility for data 

augmentation. The realisation of O-D information using Bluetooth is justified by 

the high level of temporal consistency, which signifies reliability. Using 

Bluetooth in this way presents an added advantage in terms of both cost and 

time of data acquisition as well as safety benefits. The significantly low-cost of 

acquisition, installation and maintenance of Bluetooth sensors compared to the 

traditional systems of data collection presents another added advantage to 

densify the road networks for an area-wide coverage. This will of course bring 

about timely response to incident management as an incident can be localised 

to the exact scene with precision. 

 

Speed 

(km/h)

Time 

(min)

Trafford 1001-1008 5.24 21 22.24 4.005 4.241 209

Stockport 1033-1041 3.37 25 11.01 7.421 3.268 1147

Wigan 1012-1021 5.83 16 32.50 2.744 5.575 144

Trafford 1008-1001 5.24 23 20.14 4.386 3.841 258

Stockport 1041-1033 3.37 27 9.25 8.04 2.746 1189

Wigan 1021-1012 5.83 18 28.81 3.087 4.942 198

SampleLocation Link

Distance 

(km)

Daily Average Normalised 

Speed 

(Speed/km)

Normalised 

Time 

(Time/km)
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However, the limitations observed in Bluetooth data such as the low count rate, 

and challenges in accurately differentiating between carriers of a Bluetooth-

enabled device during congestion means that it cannot be used as a stand-

alone system in all applications. Similarly, the estimation of the actual traffic flow 

is dependent upon calibration against an independent measure of traffic to 

determine the scaling factor, which is obtained from the detection rate. In a 

network of similar attributes, estimation of flow based on combined directional 

flows is preferable to the link-based (directional) estimation on the grounds of 

accuracy and cost. However, the link-based estimation presents a better 

reconstruction of the traffic states and level of service in each direction. Data 

filtering is required to obtain the proportion of the vehicle captured by the 

Bluetooth sensors, and estimation based on all the detected devices does not 

provide the actual traffic state. Based on the available evidence, in particular, 

from a typical network within GMN, Bluetooth has a number of viable 

applications in traffic management. The next chapter concludes the discussion 

on the potential applicability and viability of Bluetooth in a wider context to round 

up Research Objective iv. 
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Chapter 8. Bluetooth Traffic Monitoring in the Context of 

Applicability  

8.1  Introduction 

Chapter 8 considers the key policy and technological implications emanating 

from the research conducted using Bluetooth for traffic sensing and metrics 

estimation for traffic management applications. This discussion concludes 

Research Objective iv, and sets the platform for possible recommendations 

from the research. This chapter also considers issues relating to public 

acceptance, and the economic benefits offered by the technology over other 

possible alternatives. That is, it considers key issues relating to the reliability of 

Bluetooth in traffic sensing as well as the applications and benefits it could 

deliver both in the present and future. Exploring the applications in this way will 

help traffic engineers and ITS managers as well as policy makers understand 

how the technology could potentially improve traffic management. That is, at a 

glance, how technological improvements through the use of Bluetooth can lead 

to an enhanced solution in traffic management and can be understood. The 

potential of this technology in traffic management includes an optimised road 

network and improved safety, reduction in pollution and fuel consumption 

through reduced traffic congestion. Using Bluetooth, twelve potential 

applications are presented with their benefits to inform usability. The evaluation 

criteria considered in this research include a consideration for cost, accuracy 

and precision, and temporal and spatial consistency of the data. Exploring 

Bluetooth in this way is in agreement with the recommendation to use pricing 

and technological measures as solutions to traffic congestion (Mitchell et al., 

2011). Therefore, knowledge of the Bluetooth approach in a wider context of 

traffic management might form the foundation for viable alternatives and 

essential policy formulation. 

 

Chapter 8 comprises the following key sections; Section 8.2 completes the 

discussion on the applicability of Bluetooth technology in traffic management 

while the transferability of the Bluetooth approach is presented in Section 8.3. 
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Section 8.4 examines the theoretical implications while Section 8.5 considers 

the policy implication. The concept of ‘Bluetooth Economic 4-Way Test’ is 

presented in Section 8.6 to underpin the cost-accuracy benefits of the 

technology, before conclusions are drawn in Section 8.7. 

 

8.2  Applicability of Bluetooth in Traffic Management 

Table 8.1 presents the summary of the potential applications of Bluetooth and 

their benefits in traffic management. UTMC, as we know it today, can be made 

to respond better to the management of road traffic if the opportunities offered 

by technologies such as Bluetooth are well-harnessed (Ayodele et al., 2014). 

From the evidence in this research and literature, exploring this option will lead 

to significant potential benefits. The derivable benefits include low procurement 

and operational cost, potential to support a reduction in traffic delay and 

improved road safety. Derivation of traffic metrics such as journey time and 

speed through the detection of Bluetooth-enabled devices carried onboard 

vehicles, and of other modes of transportation is a possibility. Potentially, the 

efficiency of the signal control models such as SCOOT can be improved upon 

through the use of, for example, hour by hour O-D matrices provided by 

Bluetooth instead of reliance on the traditional fixed simulation periods of typical 

daily peak and off-peak (Ayodele et al., 2014). Journey times and vehicle 

speeds from Bluetooth can contribute to performance measures required to 

determine the effectiveness of the road network.  

 

Traffic metrics such as O-D matrix and density that have been difficult and 

expensive to acquire in the past can now be obtained in a fast and cost-

effective manner compared to the traditional systems (Barceló et al., 2013; 

Bhaskar et al., 2014). The possibility of computing the penetration rate presents 

the opportunity for scalability and transferability of Bluetooth estimated flow over 

other links of similar traffic characteristics. In addition, the possibility of real-time 

communication will contribute to road safety such as in collision avoidance, 

particularly on sharp bends and at road junctions. It is anticipated that Bluetooth 
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sensors may take over some of the functionalities of the current systems in both 

infrastructures and vehicles. Possible transportation applications besides traffic 

management will also emerge which include wireless tyre pressure monitoring, 

keyless entry, and the emergence of an ecosystem, where the head unit 

consists of Bluetooth sensors instead of a combination of different wireless 

technologies (Kuchinskas, 2013). Bluetooth also has more potential in electric 

vehicles (EVs) such as in reduced weight through a reduction in the wiring 

systems (Kuchinskas, 2013). The positioning applications and telemetry 

services can now be achieved with efficiency using Bluetooth (Gakstatter, 

2014). Therefore, using Bluetooth technology to support traffic management 

applications is recommended. 

 

Table 8.1: Bluetooth potential traffic management applications and benefits  

 

8.3  Transferability of Bluetooth Traffic Monitoring Method 

One of the factors to consider in the choice of any system is transferability 

(Srinivasan, 2011). Although there are different vendors of Bluetooth sensors 

such as TDC Systems Ltd, BlipTrack, and Blids, the approach for traffic 

S/N Application Traffic Metric Benefit

1

Link-flow estimation for 

congestion control Link-Flow

Cost benefit, improved traffic prediction, 

optimised road through congestion 

management

2 Data augmentation

Link-Flow/Journey 

time/Speed

Improved accuracy, avoidance of network failure 

and better reliability

3

Temporal and spatial status 

network monitoring

O-D matrix/Journey 

time/Speed

Enhanced traffic management leading to safety, 

cost and health benefits

4

Support for network 

optimisation

O-D matrix/Journey 

time/Speed

Enhanced traffic management leading to safety, 

cost and health benefits, optimised road network

5 Traffic impact analysis O-D matrix

Health and cost benefits as well as social and 

psychological benefits

6 Incident detection Journey time/speed

Enhanced traffic management through rapid 

response to emergency situations

7 Dwell time analysis Journey time

Cost and safety benefits, enhanced fleet 

management and vehicle monitoring

8 Travel time index study Journey time

Cost benefit, variability index and congestion 

management for an optimised road

9

Speed limit compliant level 

monitoring Journey speed Safety benefit

10 Level of service analysis Flow/Speed Enhanced traffic management

11 Density estimation Flow/Speed Enhanced traffic management

12 Decision support system

O-D matrix/Journey 

time/Speed Enhanced traffic management
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monitoring remains the same. Few exemptions can be seen in performance 

such as in data acquisition and transmission. Besides, the basic operational 

principle remains the same irrespective of vendor or geographical location. For 

example, the method described in the literature was built upon in this thesis, 

and was applied to the data collected from different urban areas in the UK. 

However, it should be noted that network configuration and attributes play an 

important role in the results obtained. For example, sensors installed at 

roundabouts will detect more vehicles going in different directions than those at 

T-junctions. Consequently, for vehicular traffic detection, care must be taken to 

distinguish between different road users. Otherwise, the method for the generic 

network traffic is not transferable for a vehicular detection. Care must also be 

taken when transferring the method over networks of different attributes such as 

in urban or rural networks to avoid over/under-estimation. Nevertheless, the 

investigation conducted over the different geographical locations and the 

evidence from the literature showed that Bluetooth technology application for 

ITS purposes is transferable on temporal and spatial dimensions. Another 

advantage is that it is not difficult to move a Bluetooth detector from one 

location to another (UMCATT, 2008). However, as with any equipment, there is 

the requirement to calibrate the sensor over the new location to determine the 

detection rate to be used as the scaling factor to obtain the actual traffic flow. 

Overall, the transferability of the Bluetooth approach presents a significant 

economic benefit to support transport sustainability. 

 

8.4  Theoretical Implications of the Research 

The scope of this study within the UK means that more case studies and, in 

particular, real-time application will be required for further assessment and 

generalisation on this subject. That is, the results obtained are considered valid 

based on the data used in this research. This means that a new set of data may 

produce different results particularly if there is a significant rise in Bluetooth 

usage in the next few years. This further means that the use of Bluetooth for 

traffic estimation will require periodic calibration to account for any changes in 

usage. However, the major challenge is in determining how often the calibration 
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will be required to ensure continuously accurate and reliable estimations. Not 

only that, the transferability of the technology is another important factor to be 

critically examined. While the methodology and the processing techniques may 

be the same and transferable, there is a need to consider the differences in the 

road networks where the Bluetooth sensors are deployed. For example, the 

results obtained in a less urbanised area may not be transferable to a more 

urbanised city due to the increase in the traffic volume in the new location and 

vice versa. Similarly, traffic estimation within the city centres or in congested 

networks will require a more robust validation to account for uncertainties 

arising from the contributions from other road users such as pedestrians than in 

a free-flowing network such as the motorway. For example, video recording 

may be required to obtain the disaggregation of traffic to accurately classify 

different modes to remove uncertainty. As with any technology and a direct 

consequence of the methodology, this research encountered some limitations, 

which need to be considered. This includes: 

▪ Low count rate 

▪ Heterogeneous data sources leading to difficulty in differentiating traffic 

modes during congestion 

▪ The requirement for high-speed processing platform to handle the timely 

processing of the high-resolution data. 

Irrespective of the challenges, the outcomes of this research, which spanned 

quality assessment to a demonstration of transferability, and proof of concept 

showed that the Bluetooth approach to traffic solutions is a viable proposition. 

The accuracy and reliability of the results obtained suggests the possibility of 

using Bluetooth data to inform policies that will help to optimise road transport 

planning and management.  

 

The current literature on studies conducted outside the UK suggests the 

practicality of the Bluetooth approach to traffic monitoring and management. 

This concept of Bluetooth-based traffic monitoring and metrics estimation was 

analysed further and proven viable at 95% confidence through the validation 
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exercise. This research demonstrated the possibility of Bluetooth application in 

temporal and status monitoring through the use of flows, journey times, vehicle 

speeds, and O-D matrix to support an optimised road network. The design, 

development and implementation of a model termed TRAFOST aided the 

resulting contribution to knowledge on the Bluetooth concept. In the future, 

research on Bluetooth applications in ITS can benefit from the use of TRAFOST 

to improve the understanding of Bluetooth approach. Currently, Bluetooth data 

processing algorithms are custom-based and are not available to the public. 

 

The application of a novel and a low-cost wireless sensor such as Bluetooth to 

enhance the management systems to address congestion problems within the 

road transport network constitutes ground-breaking and cutting-edge research. 

The obvious benefits in terms of optimised road network are improved safety 

and reduced travel time leading to a reduction in pollution and the amount of 

fuel consumed, thereby saving cost. The provision of timely and accurate data 

that have been difficult and expensive to acquire in the past addresses the 

problem of data availability in transport modelling. Bluetooth technology has the 

potential for real-time applications and can account for a network of varying 

characteristics to provide traffic data. The required number of sensors to be 

deployed depends on the nature of the network and the purpose of the data 

collection. For instance, an O-D survey will require more sensors that are well- 

distributed at strategic nodes than a link-based study. Similarly, a complex 

urban area will require more sensors than a free-flowing motorway. Bluetooth 

technology is an emerging solution in ITS and related transport applications. 

Currently the only available publications which have been identified are from 

studies conducted outside the UK. Therefore, an investigation into the reliability 

of the applicability of Bluetooth data to address road congestion at UK study site 

areas, constitutes a significant contribution. That is, the enhancement of the 

knowledge of the applicability and viability of Bluetooth data as a novel solution 

to traffic congestion. This contribution to knowledge also includes the 

understanding of the variability in Bluetooth-derived metrics to enable sound 
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inference and avoidance of uncertainty and unreliability in journey time 

predictions. Currently, there is limited information on this.  

 

The advances in in-vehicle technologies make this research more compelling. 

This PhD research conducted within the UK has generated a fundamental 

understanding of spatial and temporal variations within the GMN more than is 

possible using traditional systems. Not only that, this research has informed the 

knowledge of the quality, limitations and usability of Bluetooth data through 

exploratory and quantitative analysis techniques to realise efficient and smarter 

decision support systems. In addition, to demonstrating the modelling and 

forecasting capability of the data using seasonal ARIMA models, the knowledge 

of the detection rate required to obtain the actual traffic flow is also enhanced. 

This knowledge thus provides the platform and justification for further research 

on the use of Bluetooth for transport applications. Clearly, the outcome of this 

research will undoubtedly put the City of Greater Manchester and the UK in 

general at the forefront of utilising low-cost and innovative technologies to 

enhance the road network through a better management of the increasingly 

congested roads.  

 

8.5  Policy Implications of the Research 

One particular policy issue relates to how technological-based solutions can be 

embraced to establish a balance in the road network through smart 

management without compromising the privacy of the road users. Such policies 

can be seen in the objective of ITS-UK and the Foresight projects. However, 

public awareness of the benefits of Bluetooth technology will be essential in the 

process. This awareness will help to remove concern for covert monitoring from 

the public. The fact that carriers of Bluetooth-enabled devices have full control 

on the discoverability and connectivity is to be stressed. The use of encrypted 

data coupled with an unnoticed process of detection that constitutes no 

interference is another added advantage. The empirical findings based on 

vehicular traffic in this research showed that Bluetooth application is a 
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possibility in ITS to realise smarter and efficient solutions to congestion 

management. Therefore, policy formulation such as road speed limit using 

Bluetooth as a complementary monitoring system will be beneficial. In this way, 

Bluetooth can contribute to meeting the ITS objective of a safe and efficient 

network. Moreover, the objective of the Climate Change Act can be achieved 

through a better-managed network leading to all-inclusive benefits. The next 

section considers the assessment of Bluetooth on a cost-accuracy scale to 

understand their implications. 

 

8.6  The Economic 4-Way Test of Bluetooth Application 

Addressing the problem of traffic congestion from a technology perspective 

requires exploring different alternatives. From a transport and sustainability 

perspective, one of the different alternatives is Bluetooth. This is justified in the 

‘Bluetooth Economic 4-Way Test’ presented in this section. This concept stands 

on the principle of ‘economy of accuracy’, which simply means maintaining a 

balance between the standard of accuracy aimed at, and the needs of the 

particular task (Whyte and Paul, 1997). The general rule of thumb is that the 

higher the standards of accuracy required, the higher the cost in terms of both 

time and money (Whyte and Paul, 1997). Figure 8.1 shows the concept of the 

Bluetooth Economic 4-Way Test consisting of four quadrants segmented based 

on cost and accuracy. Evidence from this research and literature showed that 

Bluetooth falls in the upper left quadrant of low-cost and high-accuracy, 

considered as the ‘green zone’. Also, despite some of the limitations of 

Bluetooth, it could be used in some cases to characterise the road network 

more than is possible using the traditional systems This highlights the smart 

benefits that could be derived using Bluetooth data for traffic monitoring and 

management as well as other related transport applications. Bluetooth is a low-

cost smart solution and is cheaper than the traditional systems both in terms of 

cost of acquisition, installation and maintenance, and is recommended. 
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Figure 8.1: The concept of Bluetooth Economic 4-Way Test 

 

8.7  Conclusions 

In this chapter, key policy and technological issues relating to Bluetooth for 

traffic metrics estimation in a wider context of traffic monitoring and 

management are presented. Using the Bluetooth approach, twelve potential 

applications and their benefits were presented to inform usability. Generally, 

Bluetooth presents a smarter solution than is currently possible with the 

traditional systems both in terms of deployment and cost. The use of Bluetooth 

for traffic management will contribute to improved mobility, safety, efficiency, 

reliable journey time management and economic benefits. Bluetooth application 

will equally contribute to a reduction in waste and pollution through enhanced 

performance in traffic management systems. Therefore, the applicability of 

Bluetooth technology will support the establishment of a balanced network. 

 

In a connected environment, Bluetooth could help improve the accuracy and the 

reliability of the monitoring sensors through data fusion and augmentation in a 

smart way. In fact, the dividends are all encompassing. Hence, this discussion 

is by no means exhaustive; meaning a need for future research on this subject. 

Over time, new applications such as automatic vehicle identification, toll 
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collection, and distress alert, etc., will almost certainly continue to appear due to 

the novelty of the technology in the domain of ITS. The deductions made on the 

research findings in the wider context of applicability present a broad knowledge 

of the potential applications of Bluetooth technology in traffic management. The 

conclusion is that the Bluetooth approach, irrespective of any limitations, 

presents an innovative means that changes the way traffic information can be 

collected. The next chapter presents the conclusions and the thesis summary 

as well as recommendations for further research on the use of Bluetooth in ITS 

and related transport applications. 
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Chapter 9. Conclusions and Recommendations for Future 

Research 

9.1  Introduction 

This research has explored the concept of Bluetooth-based traffic monitoring 

and metrics estimation as an effective, smart and low-cost means to enhance 

traffic management systems to mitigate road congestion. The study found within 

the UK study sites, the nature, limitations and characteristics of Bluetooth-

derived traffic metrics; the correlation with other independently measured traffic 

data (IMTD); the variability in the estimated metrics, and the usability of the 

traffic metrics in traffic management. This research has assessed the potential 

applications of the Bluetooth approach to traffic management in a wider context 

of traffic sensing and metrics estimation as well as whether the technology can 

enhance the traditional systems as a low-cost sensor. The need for low-cost 

consideration is to establish a balance in the road networks through innovative 

thinking – such as the use of novel and emerging technologies as viable 

alternatives or to complement the existing systems. This enormous potential 

makes research into the use of Bluetooth in ITS of high relevance, particularly 

with the UK being one of the leaders in ITS with a focus on ‘better transport 

through technology’. This research sought an answer to the question: is 

Bluetooth data reliable and of sufficient accuracy to estimate traffic metrics for 

traffic management applications to reduce congestion? It found within the UK 

study sites that Bluetooth data is reliable, sufficiently accurate and low-cost for 

traffic management applications. 

 

In the remaining three sections of this chapter, Section 9.2 presents the findings 

from the key chapters. Section 9.3 presents the recommendations for future 

research before the overall conclusion in Section 9.4.  
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9.2  Findings from the Key Chapters based on the Objectives of the Thesis 

A number of research objectives were outlined at the outset of this research; 

this section summarises how each of these objectives were addressed. 

Research Objective i: To carry out a comprehensive and critical review of the 

literature on the application of Bluetooth technology in traffic management, and 

to consider other technological options in road traffic monitoring. Chapter 2 

critically addressed Research Objective i. The literature review showed that the 

knowledge of the reliability and validity of Bluetooth traffic sensing and metrics 

estimation for traffic management remains largely unknown due to the novelty 

of the technology in the area of ITS. The early research was conducted on 

journey time management and O-D estimation both on arterials and motorways. 

The positive outcome of the early research regarding the applicability of the 

technology provided the motivation for continued research towards the 

realisation of the ITS objective of a safe and efficient road network. This chapter 

of the thesis explored the gaps in methodology, usability and limitations in the 

Bluetooth approach to traffic sensing and metrics estimation with a focus on the 

reliability and validity of the solution for various road transportation applications. 

Exploring Bluetooth in this way will contribute to knowledge in realising the 

potential of the technology in ITS and related applications. 

 

Research Objective ii: To design and develop a Bluetooth-based data 

processing procedure (a model) to derive origin-destination matrix, link-flow, 

journey time and speed in the chosen study areas. Chapter 3 addressed 

Research Objective ii and presented the description of the research design, 

methods of Bluetooth data cleansing, estimation and the validation methods of 

the traffic metrics. A Bluetooth-based traffic detection and estimation model 

termed TRAFOST (Traffic Flow Origin-destination Speed and Travel-time) was 

developed to accomplish the data processing. The model was developed based 

on R-programing language to estimate traffic metrics following the earlier Excel 

and Fortran models. Relevant assumptions were made such as in establishing 

the boundaries for the outlying values in the development of the model. The 

model’s significance is in the acceleration of the data processing and the 
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reproducibility of the estimated traffic metrics (link-flow, origin-destination 

matrix, journey times and vehicle speeds). The final research design 

incorporating diverse independent measures of traffic for results validation 

ensured that a sound and robust investigation was carried out. This design 

involving the use of diverse IMTD provided an unbiased interpretation of the 

results and consequently increased reliability. The robust procedure thus 

removed any bias that might surround the analysis if it were only Bluetooth-

validated (i.e., using the base data for validation). The processing and the 

analysis procedures, as well as the TRAFOST described in this thesis, 

contributed to knowledge of the methodology on the use of Bluetooth data. The 

procedure described here can be used in the future research on Bluetooth by 

other researchers with an interest in Bluetooth study. The validity of the model 

outputs given a 95% confidence level means the research assumptions are 

valid. However, the results should be applied within a limited range of validity 

given the prevailing conditions. 

 

Research Objective iii: To apply the model in targeted pilot studies in selected 

study sites consisting of Liverpool, Birtley and Manchester, for an overview of 

the potential of Bluetooth-derived traffic metrics. Chapter 4 addressed Research 

Objective iii by exploring the potential of Bluetooth data to support the delivery 

of a smarter and more efficient transport network. The preliminary data quality 

assessment in the Liverpool study provided the motivation for continual 

investigation on the use of Bluetooth data to estimate traffic metrics. The Birtley 

study, on the other hand, served as an evaluation platform to test the research 

methodology for both limitations and strengths. The Manchester study 

implemented the research methods in an area-wide context to demonstrate the 

transferability of the methods, taking into account the limitations discovered in 

the earlier study. The demonstration of the credibility of Bluetooth data was in 

the form of consistency of the repeated measurements with the correlation 

coefficient (𝑟 > 0.80) between weekdays’ observations. The time series plots of 

the preliminary results showed similarity in the periodic trend signifying 

consistency over time. The time series plots also showed clear evidence of 
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typical traffic patterns associated with temporal variations, having morning peak 

hours (7-9 am) and evening peak hours (4-6 pm). The outcome of the data 

collection over the study site provided the platform and the justification for the 

long-term study and validation of the estimated metrics using diverse methods. 

The key findings are:  

▪ Each Bluetooth sensor provides the records of all the detected devices 

passing through the location (site) irrespective of direction. This shows 

the possibility of understanding the level of service each way at a given 

period without the need to install additional Bluetooth sensors to monitor 

the opposing link, thereby saving cost. 

▪ Analysis of two weeks’ worth of data collected in the study area of 

Liverpool and Birtley showed that Bluetooth has the potential to provide 

traffic flows and journey time, and can be used to understand journey 

patterns. 

▪ Correlation analyses showed a very strong positive correlation (𝑟 ≥ 0.90) 

between weekdays and weekend observations. While the descriptive 

statistics also showed a high level of consistency in terms of both spread 

and distribution of the data which suggests reliability in the data. 

▪ This reliability can also be observed in the form of spatial variability 

reflecting the volume of traffic across the networks. 

▪ The high-resolution data (one-second) provided by Bluetooth presents 

the opportunity to estimate traffic metrics to support up-to-date traffic 

information without reliance on archive data. 

 

Research Objective iv: To examine the performance of the model (TRAFOST) 

developed in Objective ii and the consistency of Bluetooth-derived traffic metrics 

for accuracy and reliability through validation against diverse independent 

measures of traffic and modelling. Chapter 5 addressed Research Objective iv 

using diverse IMTD (Independently Measured Traffic Data). The use of 

TRAFOST in this research facilitated the data processing and analysis by 

combining automation, repeatability and efficiency. delivery This advantage, in 

turn, culminated into an in-depth knowledge of the traffic flow patterns and 
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spatio-temporal variations within the study sites. The development of TRAFOST 

proved to be of significant advantage in terms of both the credibility and 

reliability of the estimated metrics, as well as in speed and reproducibility. The 

comparisons of Bluetooth data against the IMTD as well as the modelling of the 

data showed a strong relationship and an accuracy level up to 95% given the 

MAPE values (0.822 – 4.917). In addition, Kullback-Leibler divergence analysis 

with values 0.004 – 0.044, showed a very good match between the data sets. 

Bluetooth/SCOOT presented a better correlation than Bluetooth/ATC. However, 

the difference cannot be attributed to technological differences but to their 

spatial positioning. SCOOT links are positioned upstream and downstream of 

the link while ATCs are in-between the link. The data from ANPR and TM are 

not co-located; therefore, were not compared against each other. Individually, 

the two data sets showed a strong relationship with Bluetooth-derived journey 

time and speed (𝑅2 > 0.70). Detection rates required to calibrate the estimated 

flows were computed (from the ratio of the flows or slope of the regression 

equation) between 7-15% for ATC, 13-16% for SCOOT and 12% for ANPR. 

Scaling up this rate over the network showed that estimations are best at the 

validation link and degrade further away with changes in the network 

characteristics, thus informing the knowledge of usability. That is, the range 

(8%) of the detection rate obtained in GMN means that spatial variation must be 

taken into consideration when generalising the results. Combining the results 

from ATC, SCOOT, TM and ANPR with Bluetooth has led to an increased 

understanding and conviction of the potential of Bluetooth data for traffic metrics 

estimation. Generally, the accuracy statistics from the ARIMA models all 

portend a high level of reliability and validity of the estimation. 

 

Research Objective v: To analyse the variability in Bluetooth-derived traffic 

metrics to enable concrete deductions and sound inference based on the 

analysis of year 2013 data from the Greater Manchester Network (GMN). 

Chapter 6 addressed Research Objective v as a way of further validation. 

Overall, the results showed that Bluetooth can capture the temporal and spatial 

dynamics in the traffic network. The aggregation on a weekday basis presented 
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the best consistency and accuracy while the monthly average presented the 

highest variability. This type of information is very significant to the practical 

applications of Bluetooth data to avoid unpredictability. The knowledge of the 

data distribution informed the statistical method applied. Generally, and 

consistent with SCOOT and ATC flows, the Bluetooth flows are not normally 

distributed while journey time and speed are best represented with a normal 

distribution. Higher variability was observed in the directional flows (coefficient 

of variation = 6.74 and 8.63 for NE and SW flows respectively) compared to the 

total directional flows (coefficient of variation = 5.02), signifying a better result 

and a higher reliance level in the total directional flows compared to the 

directional flows. Using Bluetooth, particularly in a network of similar traffic 

characteristics, total directional flow estimation may be preferred to directional-

based estimation according to this information. Similarly, variability was more 

pronounced over the congested period than in free-flow, thus informing the 

knowledge of the period of better reliability. Higher variability was observed in 

ATC-derived detection rates than in the SCOOT-derived. An 𝑚𝑝𝑣 (most 

probable value) of 13% for ATC-derived penetration rate was obtained in 

Trafford, based on monthly and daily directional flows. The day-to-day analysis 

of the detection rates on a long-term basis showed a high level of precision with 

a standard deviation of 0.01. This value is considered the representative 

proportion of the total vehicles detected by Bluetooth sensors in the Trafford 

network. Spatially, Stockport presented the highest variability with a 𝑐𝑣 

(coefficient of variation) of 0.14 – 0.20. Post-analysis tests showed that hourly 

and periodic metrics can be grouped into different homogenous subsets to 

enhance traffic prediction. The variability study in general, provided the 

knowledge of essential factors that must be considered in the application of 

Bluetooth-derived metrics that include the averaging of the data and time of 

observation. It is noted that harnessing this information is critical to arriving at 

valid and sound conclusions from the results, and thus contributing to the 

reliability of the solution. The importance of variability can be seen in reliable 

journey time prediction and thus a removal of uncertainty in the mind of road 

users. That is, road users can effectively plan their routes and journeys without 

having to worry about unpredictability in journey time.  
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Research Objective vi: To interpret the results and make deductions on the 

research findings in a wider context of applicability and viability and make 

recommendations for traffic management. Chapter 7 partly addressed the 

interpretation element of Research Objective vi, while Chapter 8 summed up 

the applicability of the results. This chapter serves as the basis for informing the 

knowledge of the applicability and viability of the results. That is, the reliability of 

the Bluetooth approach to traffic monitoring as well as how the results obtained 

provided knowledge of the overarching research question. Generally, and 

consistent with the validation results, when the opposing links are of differing 

traffic characteristics, the link-based estimation presents a better reconstruction 

of the actual traffic compared to the total link-flow. However, if the level of 

service is similar, the total link-flow is preferable. The Bluetooth approach 

showed the possibility of answering questions relating to problem or incident 

identification in a network such as recurrent patterns and where a delay 

happens in a section of a road; this can be seen in the form of an unusual spike 

in a trend that calls for attention. The understanding of turning points and origin-

destination (O-D) matrix of the network flows; and travel time and traffic regimes 

characterised by peak and off-peak periods are very important metrics to 

characterise and manage traffic for an optimised road network. From the results 

obtained, it is obvious that the requirement to provide accurate and reliable 

traffic information to support the delivery of enhanced traffic management can 

be met using Bluetooth data. The analysis of the Bluetooth-estimated metrics in 

this chapter enabled a deeper knowledge of the characteristics of Bluetooth 

data. This knowledge includes the various applicability and limitations of the 

metrics, the spatio-temporal variations, station and link-based estimation of 

traffic metrics, and reliability in different time averages (hourly, monthly, 

seasonal, etc.). In particular, it enabled the knowledge of a typical network 

within GMN (Greater Manchester Network) than is possible using any of the 

traditional systems. 

 

Chapter 8 partly addressed the applicability and viability element of Research 

Objective vi to complement Chapter 7. This chapter presented the summary of 
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the wider context of the applicability and viability of the results as well as the 

knowledge of what applications might emerge to sum up the aim of the 

research. Analysis of the Bluetooth economic 4-way test to understand 

Bluetooth scope in terms of cost and accuracy showed that the technology 

presents a means of collecting accurate traffic data at a low-cost. This is a 

major advantage considering the need for a sustainable transport network using 

low-cost technological options without investing heavily in a new infrastructure. 

The adoption of Bluetooth data for transportation applications means smart or 

innovative thinking (based on safety, economic and environmental benefits). 

The overriding benefits are accruable to both the road users, traffic engineers 

and other stakeholders. Overall, the Bluetooth approach presents an innovative 

means that changes the way traffic information can be collected. Bluetooth is 

considered a potential candidate in automated vehicle and the provision of big 

data for transport application. Overall, twelve different applications such as data 

fusion and augmentation, journey time management, and network planning and 

optimisation were presented with reference made to other possibilities. The 

conclusion drawn does not in any way assume a generalisation for the whole 

public, but a personal judgement based on the research outcomes and 

evidence provided. 

 

9.3  Recommendations for Future Research 

Bluetooth-based traffic monitoring is an emerging solution to congestion 

problems, and it is almost certain that different applications will continue to 

emerge. The scope of this research is within the study sites considered in the 

UK (Birtley, Liverpool and Manchester) using Bluetooth sensors developed by 

TDC Systems. To obtain a more generalisable result over different geographical 

locations and networks of differing traffic characteristics requires more study 

sites spread over the UK. This study has offered an assessment of the reliability 

and validity of Bluetooth traffic monitoring and metrics estimation as a 

contribution to a novel approach to traffic management. Overall, it is evident 

from this research that further investigation is needed to continue to exploit the 

potential of this near-ubiquitous technology. For example, the real-time 
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application of the technology as a decision support system to enhance traffic 

management is a welcome idea and is strongly recommended. 

 

The following are the recommendations for further research.    

i. Real time/autonomic application of Bluetooth technology in an ITS 

environment such as the UTMC. This area was not investigated and 

tested in real-time. Therefore, future work should consider the real-time 

application of this technology to fully explore the opportunities offered by 

Bluetooth. This application, of course, will involve the knowledge of 

artificial intelligence, artificial neural network, data mining, Kalman 

filtering and particle filtering. The implementation of this application will 

undoubtedly require collaboration for research and development between 

the Research University and relevant stakeholders such as the Transport 

for Greater Manchester (TfGM) and TDC-Systems. This collaboration will 

provide a balance in resources and technical know-how. 

 

ii. The model developed runs on a Windows platform that is limited in 

memory compared to platforms such as Linux. Consequently, a huge 

amount of data cannot be processed instantaneously. For a large scale 

and real-time deployment, parallel or cloud computing is recommended. 

Exploring the research in this way will enable an area-wide, timely and 

efficient solution. Also, exploring the current R applications such as 

“data.table” instead of “read.csv” and interactive online package such as 

“shiny” will be an advantage in the data processing and real-time 

analysis. In the future, these aspects of data import and analysis need to 

be explored to improve the efficiency of Bluetooth deployment in real-

time applications. 

 

iii. Using Bluetooth data to classify the network traffic based on the mode of 

transport is considered a research area for the future. This is another 

useful area to explore in the future to support a multi-modal transport 
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system. In this way, better policy relating to the use of roads can be 

designed to accommodate all modes to ensure the safety of all road 

users. 

 

iv. Vehicle and pedestrian tracking and monitoring: This area of research is 

recommended for future study given the need for security of lives and 

properties. Exploring Bluetooth in this context is considered paramount 

for the delivery of efficiency and safety in freight and allied services as 

well as pedestrian’s safety. 

 

9.4  Overall Conclusions on Bluetooth-Based Traffic Monitoring and 

Metrics Estimation 

Increased levels of population and car use mean that the problem of traffic 

congestion will remain within the road networks. The negative impacts of traffic 

congestion cuts across both economic and health spheres. Different 

approaches to congestion management have been considered in the past. 

These include the use of technological solutions such as the traffic 

management systems, road-user charging and road expansion. However, 

capital investment on new infrastructures such as road construction and/or 

expansion as well as continued reliance on the traditional systems for traffic 

data collection and management are not sufficient to achieve smarter solutions. 

Bluetooth is a novel technology that can be integrated into ITS to achieve 

smarter solutions through the provision of accurate and real-time traffic data. 

Bluetooth is in a state of evolution in ITS. In this research, the understanding of 

the reliability and validity as well as the underlying factors that could affect the 

application of Bluetooth technology in traffic management is improved upon to 

demonstrate practicality. This research has demonstrated that Bluetooth traffic 

sensing and metrics estimation for the enhancement of traffic management 

systems to reduce road congestion is a viable proposition and is recommended. 
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Appendix 1 

 

 

Appendix 1: A typical Bluetooth sensor mounted on a lamp post 
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Appendix 2 

 

Appendix 2: An example Bluetooth sensor data (encrypted) captured at station MAC1001 in Trafford 

 

 

Site ID Date Lane Lane Name Direction Direction Name Class Scheme Class Class Name Length (ft) Headway (s) Gap (s) Speed (mph) Weight (lb) Vehicle Id Flags Flag Text Num Axles

'MAC090001001 01/09/2012 00:00:13 1 MAC 2 South 0 Class 0 9.7093E+11 0 0

'MAC090001001 01/09/2012 00:00:22 1 MAC 2 South 0 Class 0 521E0E0051C7 0 0

'MAC090001001 01/09/2012 00:00:33 1 MAC 2 South 0 Class 0 DD22550541DC 0 0

'MAC090001001 01/09/2012 00:06:27 1 MAC 2 South 0 Class 0 180F720072EC 0 0

'MAC090001001 01/09/2012 00:09:47 1 MAC 2 South 0 Class 0 3473BE41D113 0 0

'MAC090001001 01/09/2012 00:10:49 1 MAC 2 South 0 Class 0 4E0A6E0029FC 0 0

'MAC090001001 01/09/2012 00:12:42 1 MAC 2 South 0 Class 0 D5E2408E4D69 0 0

'MAC090001001 01/09/2012 00:16:56 1 MAC 2 South 0 Class 0 87555FC55C87 0 0

'MAC090001001 01/09/2012 00:18:42 1 MAC 2 South 0 Class 0 56D5D102A073 0 0

'MAC090001001 01/09/2012 00:19:44 1 MAC 2 South 0 Class 0 1E36FA8E4B61 0 0

'MAC090001001 01/09/2012 00:19:53 1 MAC 2 South 0 Class 0 B12ECC001FB3 0 0

'MAC090001001 01/09/2012 00:21:20 1 MAC 2 South 0 Class 0 A3194E00A6C9 0 0

'MAC090001001 01/09/2012 00:21:22 1 MAC 2 South 0 Class 0 D4DD36073F26 0 0

'MAC090001001 01/09/2012 00:21:36 1 MAC 2 South 0 Class 0 D315D700D6CF 0 0

'MAC090001001 01/09/2012 00:21:36 1 MAC 2 South 0 Class 0 FE13F800AA4E 0 0

'MAC090001001 01/09/2012 00:21:57 1 MAC 2 South 0 Class 0 6B9448CE35BB 0 0

'MAC090001001 01/09/2012 00:22:07 1 MAC 2 South 0 Class 0 E52AF5005CF7 0 0

'MAC090001001 01/09/2012 00:25:42 1 MAC 2 South 0 Class 0 E08065007982 0 0

'MAC090001001 01/09/2012 00:25:51 1 MAC 2 South 0 Class 0 C123FD004FE9 0 0

'MAC090001001 01/09/2012 00:28:03 1 MAC 2 South 0 Class 0 3E77EC8C1759 0 0
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Appendix 3 

Appendix 3A: Description of TRAFOST  

The development of TRAFOST has very significant advantages such as in 

processing time, the volume of data processed, reproducibility and reliability. 

The TRAFOST and outputs enabled a well-structured analysis and presentation 

of the data unlike the output from the Excel/manual computation. In line with 

Sebesta (1999), TRAFOST is considered reliable since it is reproducible and 

time-saving as well as performing to specification. Another advantage derivable 

from the use of the TRAFOST is in organisation. Programming languages 

provide ways of organising computations (Sethi, 1996). However, its choice 

depends partly on the programming to be done, and partly on other external 

factors that include availability, support, and training (Sethi, 1996). Another 

factor that calls for consideration is the semantics of a programming language 

that concerns how programs behave when executed (Watt, 1990). Several 

factors such as cost, accessibility and speed of processing were given 

consideration before arriving at the choice of R. For example, Matlab 

programming language was considered suitable, but it does require the 

purchase of a licence, unlike R that is open source. That is, R is available for 

free download and works on multiple computing platforms (Dalgaard, 2002). Not 

only that, for many years, R is a leading software in terms of data and results 

visualisation (Chang, 2014). The basic four stages of the model (TRAFOST) 

developed in this research as well as the input sources and the formats of the 

data used are presented. The stages are: i) data capture and storage; ii) data 

manipulation; iii) analysis; and iv) display of results. 

 

Stage 1: Data Capture and Storage 

Data upload and storage 

As discussed in Section 3.2.2, following the on-site data capture and online data 

storage, the encrypted data (for privacy reasons) were downloaded and 

assessed for physical quality such as in resolution, structure and format before 
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the final storage in the processing environment. The storage format is comma 

separated variables (csv). The downloaded files were stored accordingly in a 

directory with unique names for easy manipulation and retrieval. At the same 

time, the original data remains unaltered for future use. 

Input sources and data types 

The input sources and the data types used in the implementation of the model 

are as previously described in Section 3.2.1. As a reminder, TRAFOST was 

implemented using Bluetooth, SCOOT, ATC, ANPR and TM data consisting of 

varying resolutions and formats. 

Stage 2: Data Manipulation 

According to Andrienko and Andrienko (2006), data manipulation is chiefly to 

derive new data from existing data for more convenient or comprehensive 

analysis. The TRAFOST deployed was used to massage the data into a useful 

form. The process of the data manipulation was automated and executed in 

turn, over different phases. These stages include recoding and renaming, 

sorting and merging datasets, aggregating, reshaping, sub-setting using some 

specified criteria through the use of arithmetic and logical operators as well as 

statistical functions. The operations include data merging, file reduction and 

ordering, data filtering and the creation of time series objects as well as merging 

data from different stations to create O-D patterns of the network. 

 

It is a known fact that data size is a key factor requiring adequate consideration 

in any data processing for the purpose of software efficiency. Therefore, file 

reduction is paramount to conserve memory and gain computational speed. 

Each originally downloaded data file used in this study contains 15, and in some 

cases 20 variables. The initial set of the data collected contains 15 variables 

while the subsequent data collected contains 20 variables following the 

modification of the software of the sensors. Some of the variables include lane, 

lane name, direction and direction name. However, only three of the variables 

(Station Id, Timestamp, and Vehicle Id) are required in this research. Hence, 
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each file was reduced to the required three variables with the original data file 

unaltered. Data ordering, on the other hand, was performed to organise the 

data appropriately to enable easy and efficient manipulation. The captured 

Bluetooth data contain MAC addresses of different devices such as mobile 

phones (on pedestrians or in vehicles) and vehicles (cars, buses, HGVs). 

However, since the research focuses on vehicle detection to estimate traffic 

metrics rather than tracking pedestrians or other road users, high-level data 

filtering is required to separate the devices reasonably. Hence, filtering is 

considered one of the intricate aspects of Bluetooth data processing. The 

filtering involved different phases to carry out the data mining process. Section 

3.3 discusses the methods of Bluetooth data cleansing. 

  

The timestamp of the Bluetooth data was used to create time series records of 

different resolutions such as 5-min, 10-min, 15-min etc. This is necessary to 

examine Bluetooth profiles at different temporal dimensions to come to a logical 

conclusion on the usability of the data. That is to understand at what levels of 

resolution the data could be of best use. It is also to determine whether 

fluctuations in hourly/daily/monthly traffic flows provide any evidence of some 

underlying change in traffic that must be taken into account. The understanding 

of such variations, as well as travel patterns and movement across a network, is 

fundamental to effective traffic flow modelling, and was considered in the 

algorithm design.  

Link distance computation 

Table A1 presents the summary of the sources of the road (link) length used, 

the formats and the input mode at the execution stage. TRAFOST takes 

distance information (input) from either an existing file or onscreen. Distances 

are also computed from station coordinates either in the form of a grid or 

geographic coordinates where possible according to the road configuration. 

Other sources of distance information include TfGM database and Google 

Earth/Maps. 
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Table A1: Summary of the distance functional component of the TRAFOST 

Traffic metrics estimation components 

Table A2 presents the summary of the estimated metrics using TRAFOST. 

Source defines the primary variables such as MAC address, timestamp and 

distance used to derive the metrics. Input type defines the nature of the data 

used such as raw, summary, date/time and link length. The format gives the 

form of the data such as character/string, factor, hour, minute, second, metre or 

kilometre and the like. The output type defines the form of the processed data 

that include integer and real variables while extension presents an appendage 

to the primary function of the module. For example, the chief role of the matrix 

module is to compute matrices of traffic flow data but it can also compute O-Ds 

for journey times and speed. 

 

Table A2: Table showing the traffic metrics estimation components 

 

 

Metric Source Input type Input mode Purpose

Length

Station 

coordinates, 

TfGM database 

and Google 

maps

Real number (Grid 

or geographic 

coordinates) and 

grid length

File import 

or onscreen Distance computation

Estimated 

Traffic Metrics Source Input type Format Output type Extension

Traffic Count MAC address

Encrypted raw 

data Character/string Integer number

Flow MAC address

Encrypted raw 

data Character/string Integer number

SCOOT and 

ATC link-by-link 

flows

Journey Time Time stamp Date and time

dd/mm/yyyy hh:mm:ss; 

or                                

dd-mm-yyyy hh:mm:ss Real number

Journey Speed

Time stamp and 

link-distance

DateTime and 

real number

dd/mm/yyyy hh:mm:ss; 

m or km Integer number

O-D Matrix

MAC address, 

link-distance and 

time stamp

Encrypted raw 

data, DateTime, 

length

Character/string, m or 

km and                       

dd/mm/yyyy hh:mm:ss

Real and 

integer number

Journey time 

and speed
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Data aggregation and integration 

Table A3 presents the summary of the types of data aggregation and integration 

performed by TRAFOST. The aggregation types range from 5-min to monthly 

averages. “Yes” or “No” defines whether such averages were performed on a 

specified data or not. They also define whether the validation data sets were 

analysed against Bluetooth at the specified temporal dimension or not. The 

column of “Integrated metrics” on the other hand presents the types of metrics 

integrated with the IMTD for accuracy and validity assessments. 

 

Table A3: Summary of the types of data aggregation and integration  

 

Stage 3: Data Analysis 

Data analysis helps in the understanding of the phenomena in data (Andrienko 

and Andrienko, 2006). TRAFOST was used in this research to characterise 

Bluetooth data through data analysis to understand its underlying behaviour. 

TRAFOST incorporates both exploratory and quantitative methods of data 

analysis to obtain a richer understanding of the Bluetooth data than could be 

obtained using any manual method. The implementation of the model is 

dependent upon R statistical packages. 

Detection of outliers and data cleaning 

Cleaning of the data to remove outliers to obtain an accurate estimate of the 

traffic stream is essential. The error sources include the possibility of redundant 

observations (occurring due to repeated measurements or multiple matches of 

5-min 10-min 15-min Hourly Weekday Daily Monthly

Bluetooth Yes Yes Yes Yes Yes Yes Yes

Flow, journey times 

and speed

SCOOT No No Yes Yes Yes Yes Yes Flow

ATC No No Yes Yes Yes Yes Yes Flow

ANPR No No Yes Yes No No No

Flow, journey times 

and speed

TM No No No Yes No No No

Journey times and 

Speed

Data class Integrated metrics

Types of Aggregation and Integration
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a device at a location); conflicting MAC address (arising from WiFi devices or 

encryption error); unknown mode or carrier that may lead to inclusion of other 

modes during classification, particularly at peak periods; unknown exact time of 

detection of a device leading to error in the estimation; missed detection – not 

all the devices can be detected leading to small sample or low detection rate; 

and loss of information outside the detection zone, unlike the GPS method that 

could provide continous information throughout the journey. TRAFOST 

incorporates the Mahalanobis distance method of outliers’ detection and data 

cleaning due to its versatility to handle multivariate normal data as well as the 

possibility to handle markedly non-normal traffic data as demonstrated by 

Warren et al. (2011). Boxplots were used to visualise the data for exploratory 

assessment.  

Integration of diverse data sources for validation of results 

The availability of diverse sources of independently measured traffic data 

enabled both rigorous and sound validation of the model outputs. The 

integration of the other sets of data with Bluetooth data for the validation 

exercise is essential as Bluetooth estimates present only a sample of the total 

population that is lower than the actual traffic flow. The model design 

accommodated validation, refinement and re-validation using these set of data 

for the purpose of establishing a generalisable relationship between them. The 

comprehensive results of the validation and testing are presented in Chapter 5. 

In accordance with Edwards and Hamson (2001) the model and the 

methodology developed in this research is not thought of as the only right and 

proper solution for Bluetooth traffic metrics estimation.  

Stage 4: Display of Output 

Good data visualisation provides for a balance between scepticism and 

discovery, which helps in the general understanding of the data (Cook, 2014). 

Therefore, offline and web data display techniques and technologies were used 

for presentation of results to discover and characterise salient features in 

Bluetooth data. The outputs of the data processing were primarily two-fold: 

quantitative and graphical outputs. The quantitative output comprises 
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information such as the network summary, daily and hourly flow. These were 

stored as a csv file. The graphical outputs were either displayed on R graphical 

console or customised where possible to be viewed on Google maps or Google 

Earth. Results were also explored using statistical data graphics covering static 

data visualisations as well as interactive and dynamic graphics. Table A4 

presents the summary of the capabilities of TRAFOST both in terms of display 

and output of results. The “Yes” or “No” in the table is according to whether the 

indicated functionality is available or not. 

 

Table A4: Summary of the TRAFOST display and output capabilities 

Typical time taken for the processing of sample data  

TRAFOST was implemented on Windows-based computing systems. Table A5 

presents the summary of the typical time taken to process data using 

TRAFOST. For example, a data size of 1.01GB processed with the Laptop 

described above over four O-D nodes and for 7 days worth of data took 1 hr 33 

mins from upload to subsetting of the data and to the final processing of the 

hourly O-D matrix. Using the Desktop, it took 2 hrs 10 mins to complete the 

same process. This shows a significant change in the time spent. Another trial 

based on an increase in the number of days and nodes also showed a 

significant increase in time spent using the Desktop. It took 5 hrs 22 mins to 

complete the processing of 30 days of five nodes of O-D extracted from 660MB 

of data. Similarly, a significant decrease in time was observed with a decrease 

in the volume of the uploaded data (35MB) and the number of days processed 

at a time (8 days) despite an increase in the number of O-D nodes (9). In this 

Map Count Flow JT Speed O-D Matrix

Static Yes Yes Yes Yes Yes Yes

Interactive Yes Yes Yes Yes Yes No

Google Earth Yes No No No No No

Line Graph No Yes Yes Yes Yes No

Bar Graph No Yes Yes Yes Yes No

Bubble Graph No Yes Yes Yes Yes No

Colour Yes Yes Yes Yes Yes No

Metrics

Display option
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case, the Desktop processing time was 8 mins. This shows an improvement in 

productivity, therefore, informing the knowledge of the management of 

TRAFOST for speed and efficiency. However, with cloud computing and the 

recent developments in R packages such as the introduction of ‘data.table’ 

DataCamp (2014), greater speed and efficiency can be achieved in real-time 

application. 

 

Table A5: Typical time taken to process Bluetooth data on a Windows platform 

based system and data configuration 

 

Appendix 3B: R-codes for Bluetooth processing  

See codes at the end of the appendices 

 

 

 

 

 

 

 

 

Computer Specification Type Data size

No of 

stations

No of 

days 

processed

Hourly O-D 

processing 

time

Intel ® Core ™ i5-3230M 

CPU @2.60 GHz 2.60, 

6GB RAM, 64-bit Laptop 1.01GB (13 months) 4 7 1hr 33mins

Intel ® Core ™ i5 CPU 

650 @ 3.20 GHz 3.19, 

4GB RAM, 64-bit Desktop 1.01GB (13 months) 4 7 2hrs 10mins

Intel ® Core ™ i5 CPU 

650 @ 3.20 GHz 3.19, 

4GB RAM, 64-bit Desktop 660MB (7 months) 5 30 5hrs 22mins

Intel ® Core ™ i5 CPU 

650 @ 3.20 GHz 3.19, 

4GB RAM, 64-bit Desktop 35MB (8 days) 9 8 8mins
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Appendix 4 

 

Appendix 4A: An example data (encrypted) for the Liverpool study area 

 

 

Appendix 4B-1: Profile of count of detected devices at Station 1 over weekdays 

SiteId  "MAC000000001"

SiteName  "1"

SiteDescription  "Bath Street"

SiteLatitude 53.41139

SiteLongitude -2.99908

RecTime  VehicleId

13/06/2011 16:43:43  "8914E600163E"

13/06/2011 16:43:43  "8914E600163E"

13/06/2011 16:43:43  "83FD3507895A"

13/06/2011 16:43:43  "83FD3507895A"

13/06/2011 16:43:43  "8914E600163E"

13/06/2011 16:43:44  "8914E600163E"

13/06/2011 16:43:44  "3E19C600D3AA"

13/06/2011 16:43:45  "D31E740086C7"

13/06/2011 16:43:45  "D31E740086C7"

13/06/2011 16:43:45  "83FD3507895A"

13/06/2011 16:43:45  "D31E740086C7"

13/06/2011 16:43:45  "83FD3507895A"

13/06/2011 16:43:46  "83FD3507895A"
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Appendix 4B-2: Profile of count of detected devices at Station 2 over weekdays 

 

 

Appendix 4B-3: Profile of count of detected devices at Station 3 over weekdays 
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Appendix 4B-4: Profile of count of detected devices at Station 4 over weekdays 

 

 

Appendix 4B-5: Profile of count of detected devices at Station 5 over weekdays 
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Appendix 4B-6: Profile of count of detected devices at Station 6 over weekdays 

 

 

Appendix 4B-7: Profile of count of detected devices at Station 7 over weekdays 
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Appendix 4C-1: Plot of time estimate parameters to station 14 

 

 

Appendix 4C-2: Plot of time estimate parameters from station 14 
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Appendix 4D: One-many origin-destination matrix in the Wigan network 
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Appendix 4E: Journey times, speeds and O-D matrix in Stockport network  
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Appendix 4F: Speed distribution over hours of the day from Station 1 to Station 

2 in Trafford 
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Appendix 5 

 

Appendix 5A: Validation of journey speed with live traffic information on the A56 

Washway Road, Trafford 
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Appendix 5B: Scatter plot of speed against time grouped by hour on link3435 in 

Stockport 

 

Appendix 5C-1: Histogram plots of normalised flows of ATC and Bluetooth 

overlaid with normal curve 
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Appendix 5C-2: Descriptive statistics of normalised flows of ATC and Bluetooth 

 

Appendix 5C-3: Diagnostics plots of Bluetooth flows for all Mondays in 

November (N=378) 

Variable Total Count Mean SE Mean StDev CoefVar Minimum Q1 Median Q3 Maximum

norm_BT 24 1.5 0.204 1 66.67 0.19 0.389 1.709 2.496 2.811

norm_ATC 24 1.5 0.204 1 66.67 0.119 0.336 2.014 2.267 2.804

Descriptive Statistics: norm_BT, norm_ATC 
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Appendix 5C-4: Histogram plots of normalised flows of SCOOT and Bluetooth 

overlaid with a density curve 

 

Appendix 5C-5: Descriptive statistics of normalised flows of SCOOT and 

Bluetooth 

 

Variable Total Count Mean SE Mean StDev CoefVar Minimum Q1 Median Q3 Maximum

norm_BT 24 1.023 0.161 0.789 77.1 0 0.147 0.947 1.783 2

norm_SCOOT 24 1.121 0.17 0.833 74.35 0 0.187 1.216 1.962 2

Descriptive Statistics: norm_BT, norm_SCOOT 



302 

 

Appendix 5D-1: Flow profiles of Bluetooth and ATC on Link0506 in Trafford 

(N=33,646) 

 

Appendix 5D-2: SE-directional flow profiles on link3435 in Stockport (N=18,761) 
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Appendix 5D-3: Table of correlation coefficients between the measured flows in 

both directions 

 

Appendix 5D-4: Profiles of Bluetooth monthly-weekday flows on Link0506 

 

BT_NW ATC_NW BT_SE ATC_SE SCT_NW SCT_SE

BT_NW 1

ATC_NW 0.84 1

BT_SE 0.84 0.78 1

ATC_SE 0.85 0.94 0.85 1

SCT_NW 0.95 0.88 0.92 0.90 1

SCT_SE 0.96 0.87 0.92 0.90 0.98 1

cor(julBAST2[,2:7])
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Appendix 5D-5: Weekday scatter plot of Bluetooth against SCOOT flow (NW-

bound) 
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Appendix 5D-6: Monthly scatter plot of Bluetooth against SCOOT flow (NW-

bound) 

 

 

Appendix 5E: Table of descriptive statistics for flow, journey times and vehicle 

speeds 

Variable Total Count Mean SE Mean StDev CoefVar Minimum Q1 Median Q3 Maximum

BT_Flow 48 24.521 0.859 5.95 24.27 10 20.25 25 28 38

ANPR_Flow 48 70.44 3.34 23.14 32.84 40 55.25 64 83.75 143

BT_jtime 48 123.54 3.51 24.34 19.7 77 106 119 137.5 200

ANPR_jtime 48 108.75 3.07 21.24 19.53 66 94.25 105.5 118.5 171

BT_speed 48 18.208 0.528 3.661 20.11 10 16 18 20 28

ANPR_speed 48 19.813 0.532 3.682 18.59 12 18 19.5 22 31

Descriptive Statistics: BT_Flow, ANPR_Flow, BT_jtime, ANPR_jtime, BT_speed, ANPR_speed 
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Appendix 5F-1: Boxplot of TM journey times over four routes in GMN 

 

 

Appendix 5F-2: Boxplot of Bluetooth journey times over four routes in GMN 
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Appendix 5F-3: Profiles of Bluetooth and TM journey times over six months by 

Routes in Trafford (N=96) 

 

 

Appendix 5F-4: Profiles of Bluetooth and TM journey times over six months by 

Routes in Trafford (N=96) 
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Appendix 5G: Scatter plot of Bluetooth against ANPR journey times (overlaid 

with regression line) of 3rd April 2014 on Link7170 in Stockport  

 

 

Appendix 5H: Plot of Autocorrelation and Partial Autocorrelation Function of 

journey times before transformation 
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Appendix 5I-1: ACF and PACF from monthly journey times modelling 

 

 

Appendix 5I-2: ACF, PACF, and Residuals plots after transformation of journey 

times 
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Appendix 5I-3: Plot of Autocorrelation Function of flow for different ARIMA 

models 

 

 

Appendix 5I-4: Plot of Partial Autocorrelation Function of flow for different 

ARIMA models 
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Appendix 5I-5: Histogram plots of the forecast and validation data over 24 days 

 

 

Appendix 5I-6: Box and Whisker plot of Northbound Bluetooth flow for July 2013 

on Link3637, Buxton Road 
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Appendix 6 

 

Appendix 6A-1: Density plot of squared of Mahalanobis distances 

 

Appendix 6A-2: Q-Q plot of Squared of Mahalanobis distance against quantiles 

of Chi-square of degree of freedom 3 
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Appendix 6A-3: Histogram plots of Unfiltered (left) and Filtered (right) 

Mahalanobis distances 

 

 

Appendix 6B-1: Plot of flow against Mahalanobis distances 
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Appendix 6B-2: Histogram plots of Unfiltered (left) and Filtered (right) 

Mahalanobis distances 

 

 

Appendix 6B-3: Density plot of squared of Mahalanobis distances 
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Appendix 6B-4: Q-Q plot of Squared of Mahalanobis distance against quantiles 

of Chi-square of degree of freedom 3 

 

 

Appendix 6C-1: Time series plots of SW-flows on Link0506 in Trafford in 2013 
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Appendix 6C-2: Time series plots of NE-flows on Link0506 in Trafford in 2013 

 

 

Appendix 6C-3: Table showing the monthly adjusted R-square for directional 

and combined flows on Link0506T in Trafford in 2013 

 

Southbound Northbound

Combined 

Direction

BT/ATC Jan 0.745 0.721 0.883

BT/ATC Feb 0.737 0.761 0.884

BT/ATC Mar 0.736 0.788 0.891

BT/ATC Apr 0.769 0.757 0.879

BT/ATC May 0.776 0.751 0.886

BT/ATC Jun 0.765 0.796 0.887

BT/ATC Jul 0.756 0.816 0.904

BT/ATC Aug 0.775 0.817 0.901

BT/ATC Sep 0.736 0.767 0.890

BT/ATC Oct 0.724 0.767 0.879

BT/ATC Nov 0.720 0.746 0.870

BT/ATC Dec 0.733 0.768 0.887

Variables

Year 

Month

Adjusted R-Square
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Appendix 6C-4: Day-by-day SW-directional flow over a year 

 

Appendix 6C-5: Standard deviation of SW-directional flow 
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Appendix 6C-6: Hour-by-hour SW-directional flow over a year 

 

 

Appendix 6C-7: Scatter plots of Link0506 total flow between Bluetooth and ATC 

by season in Trafford 
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Appendix 6C-8: Typical daily flow profiles for each day in the week showing 

variation (%) in traffic proportions 

 

Appendix 6D-1: Plot of mean journey times against Mahalanobis distances 
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Appendix 6D-2: Plot of median journey times against Mahalanobis distances 

 

 

Appendix 6D-3: Plot of squared of Mahalanobis distances against Chi-square of 

degree of freedom 2 
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Appendix 6D-4: Histogram plots of Unfiltered (left) and Filtered (right) 

Mahalanobis distances 

 

 

Appendix 6D-5: Standard deviation of journey time before cleansing 
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Appendix 6D-6: Histogram plots of weekday journey times on Link0605 (SW) 

 

 

Appendix 6D-7: Diagnostic plots of linear modelling of ANPR and Bluetooth 

journey times 
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Appendix 6D-8: Histogram of ANPR journey times overlaid with Normal and 

Density Curves 

 

 

Appendix 6E-1: Plot of mean speed against the Mahalanobis distances 
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Appendix 6E-2: Plot of median speed against the Mahalanobis distances 

 

 

Appendix 6E-3: Histogram plots of Unfiltered (left) and Filtered (right) 

Mahalanobis distances 
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Appendix 6E-4: Standard Deviation of vehicle speeds before filtering 

 

 

Appendix 6E-5: Histogram of vehicle speeds before (left) and after (right) 

filtering 
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Appendix 6E-6: Boxplot of speed after filtering on Link3435 

 

 

Appendix 6E-7: Histogram plots of weekday journey speeds on Link0605 (SW) 

in Trafford 
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Appendix 6E-8: Summary of journey times and speed after the application MD 

filtering  

 

 

Appendix 6F-1: Standard deviation of NE ratio (detection rate) before cleansing 

on Link0506 

Median Mean Median Mean 

Min. 27 28 62 62

1st Qu. 44 43 78 85

Median 48 46 84 98

Mean 47.51 47.07 85.66 102.3

3rd Qu. 51 51 91 115

Max. 65 64 163 207

N 8760 8760 8760 8760
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Appendix 6F-2: Standard deviation of ratio (SW) before cleansing on Link0506 

 

 

Appendix 6F-3: Mean of ratio (NE) before cleansing on Link0506 
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Appendix 6F-4: Histogram plots of ratio in both directions on Link0506 

 

 

Appendix 6F-5: Interval plot of standard deviations of ratios at 95% confidence 

level 
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Appendix 6F-6: Plot of ratios on four temporal dimensions on Link0506 (NE) 

 

 

Appendix 6F-7: Plot of ratios on four temporal dimensions on Link0506 (SW) 
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Appendix 6F-8: Bluetooth-ATC flow ratio profiles on Link3534 (Northbound) 

 

 

Appendix 6F-9: Bluetooth-ATC flow ratio profiles on Link3435 (Southbound) 
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Appendix 6F-10: Bluetooth-SCOOT flow ratio profiles on Link3534 (Northbound) 

 

 

Appendix 6G-1: Day-to-day SW-bound ratio on Link0506 

 

Index of Time

R
a

ti
o

0 100 200 300

0
.1

0
0

.1
2

0
.1

4
0

.1
6

RatioSW



333 

 

 

Appendix 6G-2: Day-to-day SW-bound standard deviations of ratio on Link0506 

 

 

Appendix 6G-3: Summary of directional flow ratios 
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NE SW Total Flow

Min. 0.00 0.00 0.00 0.09

1st Qu. 0.11 0.09 0.11 0.45

Median 0.14 0.12 0.13 0.69

Mean 0.15 0.13 0.13 0.83

3rd Qu. 0.18 0.16 0.16 1.04

Max.  0.50 0.44 0.29 2.79

N 27740 27740 27740 27740
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Ratio Statistics for Ratio_NE / Ratio_SW 

Std. Deviation 

Price Related 

Differential 

Coefficient of 

Dispersion 

Coefficient of 

Variation 

Median 

Centered 

.137 1.008 .093 11.7% 

Appendix 6G-4: Statistics of NE-ratio to SW-ratio 

 

 

Appendix 6H: Histogram plots of day-to-day NE and SW detection rates 
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Appendix 3B: R Codes for Bluetooth Processing 

## Bluetooth script 
## Program lines starting with # are for comments 
## This program is used to load, process, analyse and display 
#Bluetooth data and the estimated traffic metrics. ## 
## The model termed TRAFOST computes traffic metrics such as: Flow,  
# O-D Matrix, vehicle speeds and travel times from Bluetooth data.  
## Analysis performed using TRAFOST includes daily, hourly, 15-minutes  
## etc. summary, geospatial analysis and data sets comparison for  
## validation and computation of penetration or detection rates. 
## The program also performs graphical presentation of results on the  
## plot window. It also has a function with the capability to produce  
## motion charts on Google map as well as plotting locations on Google  
## Earth/Google map. TRAFOST makes use of the different functions of  
# the computational model to accomplish the four stages of the 
#analysis procedures developed in this research. TRAFOST is developed 
#in R language and is dependent upon R packages for effective running.   
# The Key packages used in plotting are ‘openair’ by Carslaw, 2006 and 
# Rcommander (‘Rcmdr’) by Fox, 2005. 
## Program written by E. G. Ayodele, PhD Civil Engineering and 
#Geosciences 
## Newcastle University, United Kingdom. 2013 Edition. Last modified  
## December 2016. 
## For further information, please contact: 
#e.g.ayodele@newcastle.ac.uk 
paste("Start date/time is", date()) # to write the start time and date 
#of operation 
## loading some pre-installed packages to be used 
library(plyr)  
library(lubridate)  
library(reshape)  
library(ggplot) 
library(cluster) 
library(latticeExtra) 
library(grid) 
## specify the files directory and load the data files 
path.files <- "H:\\R\\stockport\\" 
bt.data <- lapply(list.files(path = path.files, pattern = ".csv"), 
function(.file) read.csv(paste(path.files, .file, 
sep = ""), header = TRUE)) 
## Examine part of the data to access structure 
head(bt.data[[1]]) 
###################################################################### 
## Function to reduce the data size to 3 columns. Columns 1, 2 and 15  
## “Site ID”, “Date” and “Vehicle Id” are required. 
btr.data <- lapply(bt.data, function(bt.data) bt.data[c(1:2,15)]) 
## Examine part of the data to ensure that the output is correct 
head(btr.data[[1]]) 
###################################################################### 
## Function to order the data by vehicleId. All the columns are kept 
bt.order<-lapply(btr.data, function(btr.data) 
btr.data[order(btr.data[,3]),1:3]) 
###################################################################### 
## Apply time format to the list and remove duplicates from data using 
## function fdup 
btr.data <- bt.order # assign a new name to the ordered data list 
fdup <- function(btr.data){ 
for(i in btr.data){ 
tm <- dmy_hms(btr.data$Date) 
btr.data$day <- day(tm) # retrieve date value from the data 
btr.data$hour <- hour(tm) # extract hour component and add to df 
# Extract the minute component of dateTime and add to the df 
btr.data$min <- minute(tm) 
btr.data$second <- second(tm) #This extracts the seconds part of the  
## data 
# Compute time in seconds and add to station data 
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btr.data$tsec <- as.numeric(btr.data$hour*3600 + btr.data$min*60 
+ btr.data$sec) 
# Convert data to vectors to apply unique() 
hour <- btr.data$hour 
min <- btr.data$min 
# compute the 15-minute interval summary 
min15 <- floor(as.numeric(min)/15) 
# multiply by 15 to obtain the 15-minute format 
btr.data$min15 <- min15*15 +0 # addition of 0 makes the 1st 0-15mins 0  
# compute the 10-minute interval summary 
min10 <- floor(as.numeric(min)/10) 
# multiply by 10 to obtain the 10-minute format 
btr.data$min10 <- min10*10 +0 # add 0 to make the 1st 0-10mins 0 
# compute the 5-minute interval summary 
min5 <- floor(as.numeric(min)/5) 
# multiply by 5 to give the minutes a proper format 
btr.data$min5 <- min5*5 +0 # add 0 so that the first 0-5mins will be 0 
## assign new variables to tsec and VehicleId 
x <- btr.data[,8] 
y <- btr.data[,3] 
n <- length(x) 
## Compute time difference in seconds between successive points 
btr.data$secdif <- c(0,as.numeric(abs(diff(x))))  
## Remove the duplicate records from the data to obtain a subset 
y1<-y[2:n] 
y2<-y[1:(n-1)] 
yc<-as.character(y1)!=as.character(y2) 
btr.data$yc <-c("TRUE",yc)#add "TRUE" to the 1st point for completion 
ndup <-
btr.data[(btr.data$yc=="FALSE"&btr.data$secdif>=300)|(btr.data$yc=="TR
UE"),] 
return(ndup) 
 } 
} 
bt.rdup <- lapply(btr.data,fdup) 
#################################################################### 
# Function to reduce the file size to 8 columns before merging 
bt.rdup2 <- lapply(bt.rdup,function(bt.rdup) bt.rdup[c(1:5,9:11)]) 
################################################################### 
# Duplicates are removed before files are merged to avoid creating 
# unwanted large files 
################################################################### 
# Merging more than 2 data files (one-many mapping) or (many -many) 
# Create 2 lists of the reduced data to enable the merging process 
mdata <- bt.rdup2 # 1st list 
mdata1 <- bt.rdup2 # 2nd list 
# enter 0 or 1 for “mgopt” according to merging option (1-many or  
# many-many) 
mgopt <- 0 
# data merging starts here 
if(mgopt==0){ 
mgr <- function(mdata){ 
mdat <- mdata1[[1]] 
mdat <- merge(mdat, mdata, by = "VehicleId", sort=T,all = FALSE) 
return(mdat) 
} 
mg <- lapply(mdata,mgr) # The list of the merged files is created here 
}else{ 
############################################################## 
mgr <- function(mdata){ 
mdat<-list() 
for(j in 1:length(mdata1)){ 
mdat1 <- mdata1[[j]] 
# names(mdata) <- names(mdat) 
mdat[[j]] <- merge(mdata, mdat1, by = "VehicleId", sort=T,all = FALSE) 
} 
return(mdat) 
} 
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system.time(mg <- lapply(mdata,mgr))# list of the merged files is 
#created 
} 
# many- many produces a list of lists 
###################################################################### 
# Select the desired list file if many to many mapping 
if(mgopt==1){ 
mga <- mg # save the large file with a different name for preservation 
mg1 <- mga[[1]] # the first list n the bigger list (change the index 
## accordingly) 
mg1 <- mg1[-1] # drops the first file in the first list 
mg <- mg1 # assign a new mg to the created list 
} else {mg <- mg[-1] }# to remove the unwanted file 
###################################################################### 
# The next step is to compute distance from station coordinates and  
# subsequently the vehicle speed 
coords=read.csv("H:\\R\\bt_st_details.csv",header=T) 
## Function to compute distance,time and speed 
fsvt=function(mg){ 
st1 <- substring(as.character(mg[1,2]),2,13) 
st2 <- substring(as.character(mg[1,9]),2,13) 
lat1 <- coords[as.character(coords[,1])==as.character(st1),c(8)] 
lat2 <-coords[as.character(coords[,1])==as.character(st2),c(8)] 
lon1 <-coords[as.character(coords[,1])==as.character(st1),c(7)] 
lon2 <-coords[as.character(coords[,1])==as.character(st2),c(7)] 
# computation of time differences between two data ponits. And  
# addition of the computed differences to the merged dataframe 
t1<-strptime(mg$Date.x,"%d/%m/%Y %H:%M:%S") 
t2<-strptime(mg$Date.y,"%d/%m/%Y %H:%M:%S") 
jtime<- difftime(t2,t1,units="secs") 
# jtime<- difftime(t2,t1,units="auto") 
## Distance computation using spherical coordinates. Distance in km 
R=6378137 # WGS84 radius of the earth 
sn=sin(lat1)*sin(lat2) 
cs=cos(lat1)*cos(lat2)*cos(lon2-lon1) 
dist=(acos(sn+cs)*pi/180)*R/1000 
dst <- as.numeric(sprintf("%.2f",dist))  
# or use "dst <- print(dst,digits=3)" 
## computation of vehicle speed begins here 
tme <- as.numeric(jtime/3600) 
# thr <- as.numeric(sprintf("%.2f",tme)) 
tmin <- as.numeric(tme*60) 
tmin <- as.numeric(sprintf("%.2f",tmin)) 
spd <- ceiling(as.numeric(abs(dst/tme))) 
mg2 <- data.frame(mg, jtime,tmin,spd) 
# remove point data with different days merged together 
tf1 <- dmy_hms(mg2$Date.x) 
tf2 <- dmy_hms(mg2$Date.y) 
day1 <- day(tf1) 
day2 <- day(tf2) 
mg2<-subset(mg2,day1==day2) # Subset for same day merged records  
# remove vehicles travelling at very low speed and at very high speed 
mg2 <- subset(mg2,spd>5&spd<=120) 
# mg2 <- subset(mg2,spd>=0&spd<=120)# all the tracked devices 
#mg2 <- subset(mg2,spd>=0&spd<=5)# assumes to be pedestrians and  
# cyclists 
# mg2$wf <- cut(mg2$hour.y,5) 
return(mg2) 
} 
svt <- lapply(mg,fsvt) 
svt1<-svt[[1]] # to obtain the first element of the list 
head(svt1) # to examine the data (the first link) 
######################################################################  
## Normality test using quantile plots 
# spd.ntp <- 
lapply(svt,function(svt){qqnorm(svt$spd);qqline(svt1$spd)}) 
## remove outliers to obtain 95% of the remaining data if normally  
## distributed 



338 

 

#attach(svt1) 
#ulim <-mean(spd) +1.96*sd(spd) 
#llim <-mean(spd) -1.96*sd(spd) 
#spdf95<-subset(mg2,spd>=llim) # to obtain all the values greater than 
llim 
#spdf95<-subset(spdf95,spd<=ulim) # to remove values greater than ulim 
#spdf95<-subset(mg2,(spd>=llim)&(spd<=ulim)) 
#detach(svt) 
###################################################################### 
## The following is to separate the merged files into two based on the 
## travel direction 
# par(mfrow=c(3,3)) 
drn_pos <- lapply(svt,function(svt) svt[svt$jtime>0,]) 
drn_pos1 <-drn_pos[[1]] 
###################################################################### 
## Rule of thumb to remove outliers Crawley, 2005 
attach(drn_pos1 ) 
lmtquant <-subset(drn_pos1 , spd<=upquant&spd>=lwquant) 
outquan <- subset(drn_pos1,spd<lwquant|spd>upquant) # outliers 
###################################################################### 
## Station Summary 
# convert list to a dataframe using ldply function and do a summary of 
# daily count per station 
dfbt.rdup <- ldply(bt.rdup) 
## reduce the file size to the desired variables 
#(site.id,date,vehicleid,day,hour,min15,min10, min5, secdif) 
dfbt.rdup_red <- dfbt.rdup[c(1,4:5,9:11)] 
dfbt.rdup_red <- dfbt.rdup_red[dfbt.rdup_red$day==3,] #to subset day 3 
## summarise the data for daily count per station 
#stn <- t(stn) 
stn_sum <- as.data.frame(ftable(dfbt.rdup_red, row.vars=c(1), 
col.vars=c(2))) #long format of above 
## plot the bar chart of the daily count data 
barplot(stn_sum[,3], main="Sept 3 bar plot", ylab="Daily count", 
col=c(1:8,"purple"), xlab= "Stations 33-41",las=2, 
cex.main=1.0,cex.lab=0.8,cex.axis=0.8) 
#legend("topleft","Stockport") 
dfbt.rdup_red <- dfbt.rdup[c(1,4:5,9:11)] 
stn <- ftable(dfbt.rdup_red, row.vars=c(2), col.vars=c(1)) 
ftable(dfbt.rdup_red, row.vars=c(2), col.vars=c(1)) 
## Bar plot stations. Plot the stations side-by-side 
#barplot(stn[,2:9], main="Sept 3-10 bar plot", ylab="Daily count", 
# col=c(1:9,"purple"), xlab= "Stations 33-41",las=2,beside=TRUE) 
## Line plot station 
plot(stn[,2], xlab=c("Weekdays from Mon-Mon"),ylab="Daily count", 
ylim=c(3500,12000), main="Stockport Bluetooth daily profile at nine 
stations", 
xaxt="n",cex.main=1.0) 
mtext(side=1,at=1:8,text=c("Mon3","Tue4","Wed5","Thu6","Fri7","Sat8", 
"Sun9","Mon10")) 
for(k in 1:9){ 
lines(stn[,k],col=k,lty=k)} 
legend("topright",lty=c(1:9),col=c(1:9),legend=paste("Stn",33:41,sep="
"),cex=0.6) 
###################################################################### 
print("Begin inbound processing and analysis from here") 
# Section to analyse the vehicles travelling from origin to  
# destination (pos direction)  
###################################################################### 
## Data summary, statistical analysis and plotting. Each link is  
# processed in turn and stacked over one another 
drn_pos <- lapply(svt,function(svt) svt[svt$jtime>0,]) 
# reduce the file size. drn.posr is a list containing reduced data 
drn.posr <- lapply(drn_pos,function(drn_pos)drn_pos[c(1:2,9:16,18)]) 
#drn.posr <- lapply(drn_pos,function(drn_pos)drn_pos[c(1,10:14,16)]) 
# summarise the data using package plyr 
ld_drn.posr <- ldply(drn.posr) # convert list to a dataframe 
# order the data file by datetime 
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ld_drn.posr.order <- function(ld_drn.posr){ 
posr.order <- ld_drn.posr[order(ld_drn.posr[,4]),1:11] 
return(posr.order) 
} 
ldposr <- ld_drn.posr.order(ld_drn.posr) 
# write the data to file 
write.csv(ldposr, "H:\\R\\stockport2\\ldposr.csv") 
#ldposri <-ldposr[1] 
stn.num <- as.numeric(substring(as.character(ldposr[,3]),10,13)) 
link.num <- as.numeric(substring(as.character(ldposr[,3]),10,13)) 
# Extract a specific link by day based 
link3334.3 <- ldposr[ldposr$day.y==3&stn.num==1034,] 
write.csv(link3334.3, "H:\\R\\stockport2\\link3334.3.csv") 
#day.num <- ldposr$day.y 
## Extract a specific link by day and create a list for all the days 
## Function to run the days in turn 
# lnk <- function(ldposr){ 
#for(ldy in 3:10){ 
# link3334.5 <- subset(ldposr,day.num==ldy&link.num==1034) 
# return(link3334.5) 
# } 
# write.csv(link3334.5, "H:\\R\\stockport2\\link3334.5.csv") 
# } 
#link <-lnk(ldposr) 
# Get the count of VehicleIds 
#id.count <- ddply(ldposr, .(Site.ID.y,day.y,VehicleId), "nrow") 
#write.csv(id.count,file="idcount.csv") 
# This takes some time to run 
# create a summary of the data based on the specified variable 
#avgtsec <- ddply(ldposr, .(Site.ID.y, day.y), 
summarise,Vcount=length(VehicleId), 
# min_jtime= min(jtime), max_jtime= max(jtime), mean_jtime= 
mean(jtime)) 
#speed <- ldposr$spd 
#Date.y <- ldposr$Date.y 
# 5-minute speed flow summary based on repeated flow within an 
interval 
#sum_link3334.5.3 <- ddply(link3334.5.3, .(Site.ID.y, 
day.y,hour.y,min5.y), 
summarise,Vcount=rep(length(VehicleId), length(VehicleId))) 
speed <- link3334.3$spd 
Date.y <- link3334.3$Date.y 
Site.ID.y <- link3334.3$Site.ID.y 
vq_link3334.5.3 <- ddply(link3334.3, .(hour.y,min5.y), 
summarise,Vcount=rep(length(VehicleId), length(VehicleId))) 
#scatterplot3d(link3334.5plot) 
summary(link3334.5plot) 
#plot(link3334.5plot[,2],link3334.5plot[,3]) 
tsplot <- ts(link3334.5plot) 
plot(tsplot[,3]) 
boxplot(tsplot[,3]) 
hist(tsplot[,3],col="light blue",border="dark blue", freq=FALSE, 
###################################################################### 
## 10-minute summary 
vq_link3334.10.3 <- ddply(link3334.3, .(hour.y,min10.y), 
summarise,Vcount=rep(length(VehicleId), length(VehicleId))) 
vq_link3334.10.3 <- 
data.frame(Site.ID.y,Date.y,vq_link3334.10.3,speed) 
write.csv(vq_link3334.10.3, "H:\\R\\stockport2\\vq_link3334.10.3.csv") 
###################################################################### 
## 15-minute summary 
vq_link3334.15.3 <- ddply(link3334.3, .(hour.y,min15.y), 
summarise,Vcount=rep(length(VehicleId), length(VehicleId))) 
vq_link3334.15.3 <- 
data.frame(Site.ID.y,Date.y,vq_link3334.15.3,speed) 
write.csv(vq_link3334.15.3, "H:\\R\\stockport2\\vq_link3334.15.3.csv") 
###################################################################### 
## Summary per link for all days. Change the index in turn to compute 
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## the entire network on link basis 
drn.posri <- drn.posr[[1]] 
#spd.count <- ddply(drn.posri, .(day.y,min5.y,spd,todp.class), "nrow") 
var.count5 <- ddply(drn.posri, .(day.y,hour.y,min5.y), "nrow") 
write.csv(var.count5, "H:\\R\\stockport2\\var.count5.csv") 
#attach(spd.count5) 
#coplot(hour.y~nrow|day.y) # for conditioning plots 
#coplot(spd~nrow|todp.class) 
#detach(spd.count5) 
# Summarise the daily traffic flow at different links by mean and  
# median of journey time and speed 
var.sum15 <- ddply(drn.posri, .(day.y,hour.y,min15.y), 
summarise,Vcount=length(VehicleId), 
med_spd = ceiling(median(spd)),mean_spd = ceiling(mean(spd)), 
med_jt = ceiling(median(jtime)),mean_jt = ceiling(mean(jtime))) 
write.csv(var.sum15, "H:\\R\\stockport2\\var.sum15.csv") 
#var.sum15 <- var.sum15[order(var.sum15$todp.class),1:8] 
var.sum15.d3 <- var.sum15[var.sum15$day.y==3,] # change this 
#accordingly 
## compute percentage count 
var.sum15.d3$Vcount.pct <- 
round((var.sum15.d3$Vcount/sum(var.sum15.d3$Vcount))*100,2) 
palette <- c("red","yellow","blue","green","orange") 
# map.class <- avgspd15.d3$todp.class 
# plot of average speed grouped by time of the day 
#plot(avgspd15.d3$mean_spd,avgspd15.d3$Vcount.pct, 
# xlab="15-minute average speed (km/h)",ylab="Time of the day class", 
# main="Daily Speed Classification",pch=21) 
###################################################################### 
drn.posri<-drn.posr[[1]] # change the index in turn according to the 
list #length 
# Classify the Bluetooth count according to peak and off-peak  
# periods 
todp.class <- rep("0 - 07hrs", times=nrow(drn.posri)) 
todp.class[drn.posri$hour.y>=7&drn.posri$hour.y<10] <- "07 - 10hrs" 
todp.class[drn.posri$hour.y>=10&drn.posri$hour.y<16] <- "10 - 16hrs" 
todp.class[drn.posri$hour.y>=16&drn.posri$hour.y<20] <- "16 - 20hrs" 
todp.class[drn.posri$hour.y>=20] <- "20 - 24hrs" 
drn.posri$todp.class <- factor(todp.class) 
boxplot(drn.posri$spd ~ todp.class, horizontal=T, xlab="5-minute 
average speed 
(km/h)", 
las=1, cex.axis=0.8, cex.main=1.0,main="Box Plot of Journey Speed", 
col="orange") 
abline(v=mean(drn.posri$spd), lty="dashed") 
# Adds the mean value to the plot  
legend("topright", legend="Grand Mean", lty="dashed",cex=0.8) 
#todp_sum <- tapply(drn.posri$spd,drn.posri$todp.class,summary) 
tapply(drn.posri$spd,drn.posri$todp.class,summary) 
tod.count5 <- ddply(drn.posri, .(day.y,min5.y,spd,todp.class), "nrow") 
write.csv(tod.count5, "H:\\R\\stockport2\\tod.count5.csv") 
#attach(spd.count) 
#coplot(spd~nrow|day.y) # for conditioning plots 
#coplot(spd~nrow|todp.class) 
#detach(spd.count) 
tod.sum15 <- ddply(drn.posri, .(day.y,min15.y,todp.class), 
summarise,Vcount=length(VehicleId), 
min_spd = min(spd),med_spd = median(spd), 
mean_spd = ceiling(mean(spd)), 
mean_journey times = ceiling(mean(jtime))) 
write.csv(tod.sum15, "H:\\R\\stockport2\\tod.sum15 .csv") 
tod.sum15 <- tod.sum15[order(tod.sum15 $todp.class),1:8] 
tod.sum15.d3 <- tod.sum15[tod.sum15 $day.y==3,] # change this 
accordingly 
tod.sum15.d3$Vcount.pct <- 
ceiling((tod.sum15.d3$Vcount/sum(tod.sum15.d3$Vcount))*100) 
palette <- c("red","yellow","blue","green","orange") 
map.class <- tod.sum15.d3$todp.class 
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# plot of percentage count by maximum speed (vmax) classification 
#plot(avgspd15.d3$mean_spd,avgspd15.d3$Vcount.pct, ylim=c(0,12), 
# xlab="15-minute average speed (km/h)",ylab="15-minute daily  
# Bluetooth ## function palette adapted from Harris, 2013 
count (%)", main="Speed Profile",pch=21,bg=palette[map.class]) 
#legend("topright", 
legend=paste("<",tapply(as.numeric(avgspd15.d3$mean_spd), 
legvals <- c(0,7,10,16,20) # cf Harris, 2013  
# plot of percentage count by daytime classification 
plot(tod.sum15.d3$mean_spd,tod.sum15.d3$Vcount.pct,ylim=c(0,12), 
xlab="15-minute average speed (km/h)", ylab="15-minute daily Bluetooth 
count(%)",main="Percentage Daily Speed 
Distribution",pch=21,bg=palette[map.class]) 
legend("topright", legend=paste(">=",legvals),pch=21, 
pt.bg=palette, pt.cex=1.5, bg="white,title="DayTime classification", 
cex=0.8) # code adapted from Harris 2013 
legend("right", 
legend=paste("<",tapply(as.numeric(tod.sum15.d3$mean_spd), 
map.class, max)),pch=21, pt.bg=palette, 
pt.cex=1.5, bg="white", 
title="DayTime class by Vmax",cex=0.8) 
#################################################################### 
#ftable(drn.posr, row.vars = c(5,7), col.vars = c(11))# count based on 
#specified r&c 
drn.posri$todp.class <- NULL # to remove the column from the dataframe 
###################################################################### 
drn.posr.m <- melt(drn.posri, id.vars = 1:9) # to obtain link summary 
# drn.posr.m <- melt(drn.posr, id.vars = 1:5) # ditto the above but 
with 
reduced vars 
cst_hrly <- cast(drn.posr.m, day.y ~ hour.y, length) # gives hourly  
# daily summary 
write.csv(cst_hrly, "H:\\R\\stockport2\\hrly.count.csv",row.names=F) 
write.csv(cst_hrly, 
"H:\\R\\stockport2\\daily.counthrly.csv",row.names=F) 
#write.csv(cst_daily, file="cstp_daily.csv") 
avghrly <- cast(drn.posr.m, day.y + hour.y ~ variable, mean)# gives 
the mean of 
Jtime& speed 
write.csv(avghrly, "H:\\R\\stockport2\\avghrly.csv",row.names=F) 
daily.counthrly <- cst_hrly 
daily.counthrly <- t(daily.counthrly) 
colnames(daily.counthrly) <- 
c("Mon3","Tue4","Wed5","Thu6","Fri7","Sat8","Sun9","Mon10") 
#hist(daily.counthrly[,2], ylab="Frequency", 
# xlab="Hourly count per day", main="Histogram plot of 3 Sept 2012") 
pr <- pairs(daily.counthrly,main="Scatter plot of hourly count for 3-
10 Sept 2012" 
,panel=panel.smooth,col.smooth="red",cex.main=1.0) 
#pmt <- plot(daily.counthrly[,2],daily.counthrly[,3],main="Scatter 
plot of 15-minutes count", xlab="Monday", ylab="Tuesday",cex.main=1.0) 
# To obtain the sum total of row and column based on the total daily 
#count. 
#daily.count <- cast(drn.posr.m, day.y ~ variable, length, 
# margins=c("grand_col", "grand_row")) 
#write.csv(daily.count, 
"H:\\R\\stockport2\\daily.count.csv",row.names=F) 
# To obtain the summary based on 15-minute daily count. 
daily.count15 <- cast(drn.posr.m, day.y ~ hour.y + min15.y, length) 
write.csv(daily.count15, 
"H:\\R\\stockport2\\daily.count15.csv",row.names=F) 
daily.count15 <- t(daily.count15) 
colnames(daily.count15) <- 
c("Mon3","Tue4","Wed5","Thu6","Fri7","Sat8", 
"Sun9","Mon10") 
#hist(daily.count15[,2], ylab="Frequency", 
# xlab="Daily count (15-minute average)", main="Histogram plot of 3 
Sept 2012") 
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pr <- pairs(daily.count15, main ="Scatter plot of 15-min count for 3-
10 Sept 2012", panel= panel.smooth, col.smooth="red",cex.main=1.0) 
pmt <- plot(daily.count15[,2],daily.count15[,3],main="Scatter plot of 
15-minutes count", 
xlab="Monday", ylab="Tuesday") 
pmt.lm <- lm(daily.count15[,3]~daily.count15[,2]) 
abline(pmt.lm,col="red") 
summary(pmt.lm) 
legend("topleft", legend="Adjusted R-sq=0.84", cex=0.6) 
legend("left", legend="Sept 3", cex=0.6) 
# To obtain the summary based on 10-minute daily count. 
daily.count10 <- cast(drn.posr.m, day.y ~ hour.y + min10.y, length) 
write.csv(daily.count10, 
"H:\\R\\stockport2\\daily.count10.csv",row.names=F) 
daily.count10 <- t(daily.count10) 
colnames(daily.count10) <- 
c("Mon3","Tue4","Wed5","Thu6","Fri7","Sat8", 
"Sun9","Mon10") 
#hist(daily.count10[,2], ylab="Frequency", 
# xlab="Daily count (10-minute average)", main="Histogram plot of 3 
Sept 
2012") 
pr <- pairs(daily.count10,main="Scatter plot of 10-min count for 3-10 
Sept 2012" 
,panel=panel.smooth,col.smooth="red",cex.main=1.0) 
pmt <- plot(daily.count10[,2],daily.count10[,3], main="Scatter plot of 
10-minutes count", 
xlab="Monday", ylab="Tuesday") 
# To obtain the summary based on 5-minute daily count. 
daily.count5 <- cast(drn.posr.m, day.y ~ hour.y + min5.y, length) 
write.csv(daily.count5, 
"H:\\R\\stockport2\\daily.count5.csv",row.names=F) 
daily.count5 <- t(daily.count5) 
colnames(daily.count5) <- c("Mon3","Tue4","Wed5","Thu6","Fri7","Sat8", 
"Sun9","Mon10") 
hist(daily.count5[,2], ylab="Frequency", 
xlab="Daily count (5-minute average)", main="Histogram plot of 3 Sept 
2012") 
pr <- pairs(daily.count5,main="Scatter plot of 5-min count for 3-10 
Sept 2012" 
,panel=panel.smooth,col.smooth="red",cex.main=1.0) 
pmt <- plot(daily.count5[,2],daily.count5[,3],main="Scatter plot of 5-
minutes 
count", 
xlab="Monday", ylab="Tuesday") 
#abline(pmt,col="red") 
# computes the vehicle count as well as the mean of time and speed 
#cast(drn.posr.m, day.y + hour.y ~ variable, c(length, mean), 
# subset = variable %in% c("jtime", "spd")) 
###################################################################### 
# Summarise based on a particular day on a chosen link 
drn.posrid <- drn.posri[drn.posri$day.y==3,]# change the index 
#accordingly 
 
# Order the data by datetime 
drn.posrid <- drn.posrid[order(drn.posrid[,4]),1:11] 
# change file in order not to overwrite the previous one 
write.csv(drn.posrid, 
"H:\\R\\stockport2\\drn.posrid3.csv",row.names=F) 
attach(drn.posrid) 
drn.posrid$journey times.cut <- cut(as.numeric(jtime),10) 
plot(jtime, spd, main="Plot of Journey Time against Speed", 
xlab="Time (sec)", ylab="Speed (km/h)", pch="+") 
# The follwing demonstrates k-means clustering with R. 
tsec <- jtime 
#Apply kmeans to the data, and store the clustering result in kc. 
#The cluster number is set to 3. 
(kc <- kmeans(tsec, 10)) 
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# Compare the class labels with the clustering result 
table(drn.posrid$journey times.cut, kc$cluster) 
plot(tsec, col = kc$cluster,main="Clustering of Journey Time") 
#points(kc$centers[,c("spd", "jtime")], col = 1:10, pch = 8, cex=2) 
# The follwing demonstrates k-means clustering with R. 
speed.kmph <- spd 
# Apply kmeans to the data and store the clustering result in kc. 
# The cluster number is set to 10. 
(kc <- kmeans(speed.kmph, 10)) 
# Compare the class labels with the clustering result 
table(drn.posrid$journey times.cut, kc$cluster) 
plot(speed.kmph, col = kc$cluster) 
boxplot(spd, ylab="Speed (km/h)", las=1, cex.axis=0.8, 
main="Box Plot of Journey Speed") 
legend("bottomright",legend=c("mean=",round(mean(spd)), 
"sd =",round(sd(spd))),cex=0.8) 
legend("topright",legend=c("Sept 3, 2012"),cex=0.6) 
## savePlot(filename = "Rplot", type = c("pdf"),device=postscript, 
# restoreConsole = TRUE) 
# dev.copy2pdf(device=postscript, out.type = "pdf") 
#summary(spd) 
detach(drn.posrid) 
###################################################################### 
## The following performs data summary by first converting a list to a 
dataframe 
# This section helps to carry out the entire network summary at a go 
# reduce the file size 
# drn.posr <- lapply(drn_pos,function(drn_pos)drn_pos[c(1:2,8:14,16)]) 
# drn.posr <- lapply(drn_pos,function(drn_pos)drn_pos[c(1,10:14,16)]) 
drn.posrd <-ldply(drn.posr) 
## To obtain sum (mean or....) use the following 
drn.posrd.m <- melt(drn.posrd, id.vars = 1:9) 
# drn.posrd.m <- melt(drn.posrd, id.vars = 1:5) 
count_daily <- cast(drn.posrd.m, Site.ID.y + day.y ~ hour.y, length) # 
#gives daily summary per each station 
write.csv(count_daily, "H:\\R\\stockport2\\count_dly.hrly.csv") 
#write.csv(cst_daily, file="cst_daily.csv") 
mean_daily <- cast(drn.posrd.m, Site.ID.y + day.y + hour.y ~ variable, 
mean)# gives the mean of time & speed 
write.csv(mean_daily, "H:\\R\\stockport2\\mean_dly.hrly.csv") 
# to obtain the sum total of row and column based on the total daily #                      
#count. 
dlymean <- cast(drn.posrd.m, Site.ID.y + day.y ~ variable, mean) 
write.csv(dlymean, "H:\\R\\stockport2\\dlymean.csv") 
#,margins=c("grand_col", "grand_row")) 
attach(avghrly) 
bxt <- split(jtime, day.y) 
boxplot(bxt, col = "lavender", notch = FALSE, varwidth = TRUE, 
main="Boxplot of hourly journey time", ylab="Time(secs)", 
xlab="Weekdays (Mon - Mon)",xaxt="n") 
mtext(side=1,at=1:8,text=c("Mon3","Tue4","Wed5","Thu6","Fri7","Sat8", 
"Sun9","Mon10")) 
sapply(bxt, sd) 
sapply(bxt, mean) 
# plot journey speed 
bxv <- split(spd, day.y) 
boxplot(bxv, col = "grey", notch = FALSE, varwidth = TRUE, 
main="Boxplot of hourly speed",xlab="Weekdays (Mon - Mon)", 
ylab="Speed (km/h)",xaxt="n") 
mtext(side=1,at=1:8,text=c("Mon3","Tue4","Wed5","Thu6","Fri7","Sat8", 
"Sun9","Mon10")) 
sapply(bxv, sd) 
sapply(bxv, mean) 
detach(avghrly) 
# computes the vehicle summary such as mean time and speed etc 
## 15-minute average 
sum_dm15 <- cast(drn.posrd.m, Site.ID.y + day.y + hour.y + min15.y ~ 
variable, 
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c(sd, mean), subset = variable %in% c("jtime", "spd")) 
write.csv(sum_dm15, "H:\\R\\stockport2\\sum_avg.sd15.csv") 
###################################################################### 
# Models to test if there is any difference between the days 
# transpose the data 
hrly <-t(cst_hrly) # open and close cst_hrly before running the next 
line 
hrly <-data.frame(hrly) 
colnames(hrly) <-c("Mon", "Tue","Wed", "Thu", "Fri", "Sat", "Sun", 
"Mon") 
# analysis of variance and model testing 
mod1 <- lm(Mon ~ Tue, data=hrly) 
summary(mod1) 
# Model 2 
mod2 <- update(mod1, . ~ . + Wed, data=hrly) 
summary(mod2) 
# Model 3 
mod3 <- update(mod2, . ~ . + Thu, data=hrly) 
summary(mod3) 
#Model 4 
mod4 <- update(mod3, . ~ . + Fri, data=hrly) 
summary(mod4) 
# Model 5 
mod5 <- update(mod4, . ~ . + Sat, data=hrly) 
summary(mod5) 
# Model 6 
mod6 <- update(mod5, . ~ . + Sun, data=hrly) 
summary(mod6) 
# Model 7 
mod7 <- update(mod4, . ~ .- Fri, data=hrly) 
summary(mod7) 
# An ANOVA to judge if we are supposed to drop Sat and Sun 
anova(mod7, mod4) 
# Model for the Mon -Thu 
mod.4 <- lm(Mon ~ Tue + Wed +Thu, data=hrly) 
summary(mod.4) 
# Model for the Sat-Sun 
mod.2 <- lm(Sat ~ Sun , data=hrly) 
summary(mod.2) 
##################################################################### 
## Perform analysis of variance (AOV) 
daytest5 <- read.csv("~/R/daytest5.csv") 
head(daytest5) 
attach(daytest5) 
plot(aov(count~weekdays)) 
summary(aov(count~weekdays)) 
#rmv<-weekdays!="Fri7" 
summary(aov(count~weekdays,subset=weekdays!="Fri7")) 
# remove Friday to Sunday from the data 
Page 14 
Bluetooth_script 
rmv <-(weekdays!="Fri7"&weekdays!="Sat8"&weekdays!="Sun9") 
summary(aov(count~weekdays,subset=rmv)) 
## Remove only Sunday and Saturday to test the significance 
rmv<-(weekdays!="Sat8"&weekdays!="Sun9") 
summary(aov(count~weekdays,subset=rmv)) 
summary.lm(aov(count~weekdays)) ##summary based on 5-minute count 
aj <- lm(count~weekdays) 
## Note that aov summary appears in alphabetical order 
summary.lm(aov(count~weekdays,subset=rmv)) 
## post analysis 
an <- aov(count~weekdays) 
postan<- TukeyHSD(x=an, 'weekdays', conf.level=0.95) 
postan 
library(agricolae) # a simplified version of the above 
HSD.test(aj, 'weekdays') 
# HSD.test(an, 'weekdays') # aliter 
##################################################################### 
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# Time series analysis, decomposition and classification 
# A time series of hourly vehicle count over some days 
################################################################### 
#daily <- cst_daily # Daily contains the hourly count per day 
#daily$Site.ID.y <- NULL 
daily <- cst_hrly 
#daily=read.csv("H:\\R\\stockport2\\daily.csv",header=T) 
daily <- t(daily) 
daily <- ts(daily) 
#plot(daily[,1],type="b", xaxt="n",ylab="Daily count",xlab="Time 
(Hr)", 
# xlim=c(1,24), ylim=c(0,450)) 
plot(daily[,1], xaxt="n",ylab="Hourly count per day",xlab="Time (Hr)", 
ylim=c(0,450), main="Plot of hourly count") 
for(l in 1:4){ 
lines(daily[,l],col=l,lty=l)} 
xaxislab <- seq(1:25) 
axis(1, at=1:25, labels=xaxislab, las=1,cex=0.2) 
legend("topleft",lty=c(1:4),col=c(1:4),c("Mon","Tue","Wed","Thu")) 
###################################################################### 
# Time series analysis using a linear filtering 
bt <-read.csv("H:\\R\\bt.altrincham.csv",header=T) 
plot(bt[,5],type="l", ylab="Trend", 
main="Time series analysis using linear filtering") 
bt.1 <- filter(bt[,5],filter=rep(1/5,5)) 
bt.2 <- filter(bt[,5],filter=rep(1/25,25)) 
bt.3 <- filter(bt[,5],filter=rep(1/81,81)) 
lines(bt.1,col="red") 
lines(bt.2,col="purple") 
lines(bt.3,col="blue") 
rm(bt) 
###################################################################### 
# Daily count 
daily5 <-read.csv("H:\\R\\stockport2\\daily.count5.csv",header=T) 
daily5 <- t(daily5) 
bt <- daily5 
plot(bt[,1],type="l", ylab="Trend", 
main="Time series analysis using linear filtering") 
bt.1 <- filter(bt[,5],filter=rep(1/5,5)) 
bt.2 <- filter(bt[,5],filter=rep(1/25,25)) 
bt.3 <- filter(bt[,5],filter=rep(1/81,81)) 
lines(bt.1,col="red") 
lines(bt.2,col="purple") 
lines(bt.3,col="blue") 
###################################################################### 
# Times series analysis 
bt.ts <- t(bt) 
#bt.ts <- ts(bt,frequency=12,start= c(2011, 10),end=c(2012, 03)) 
bt.ts <- ts(bt,frequency=12,start= c(2011)) 
plot(bt.ts[,5], ylab="Trend",main="Time series analysis" 
,xaxt="n") 
for(m in 1:8){ 
lines(bt.ts[,m],col=m,lty=m) 
} 
# plot each profile on a different pan 
plot(daily,main="Time series analysis (Mon-Mon)",col=2, cex.main=1.0) 
###################################################################### 
# exploring the relationships between two (or more) quantitative 
#variables.Some ideas from #Stackoverflow 
# Interactively choose file bt.altrincham 
# bluetooth <- read.csv(file.choose()) 
#par(mfrow=c(1,1)) 
#bluetooth <- bt 
bluetooth <- data.frame(daily5) # daily5 contains 5-minute count/day 
colnames(bluetooth) <- c("Mon", "Tue", "Wed", "Thu","Fri","Sat", 
"Sun","Mon") 
attach(bluetooth) 
# names(bluetooth) 
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boxplot(bluetooth[,1:8],col="grey", 
notch=T, varwidth=T, las=1, tcl=.5, 
xlab=expression("Weekdays"), 
ylab=expression("5-minute Bluetooth count"), 
main=")  
###################################################################### 
# analysis btw station pair . This section will be executed if many-
many 
# merging is done 
# mg2 is a list containing the computed time and speed and other 
variables 
# within the dataframes 
mg1 <- svt[[1]] 
pos <-mg1[mg1$jtime>0,] 
neg <-mg1[mg1$jtime<0,] 
pos <-pos[c(4,12)] 
neg <-neg[c(4:5)] 
p1 <- as.data.frame(table(pos)) 
n1 <- as.data.frame(table(pos)) 
p1 <-p1[p1$day.x==4,] 
n1 <-p1[p1$day.x==4,] 
# order the data by hour 
p1 <- p1[order(p1$hour.y),c(1:3)] 
n1 <- n1[order(n1$hour.y),c(1:3)] 
# Covariance of two variables 
# import link3839 
cov(p1$Freq, link3839) 
# Correlation of two variables 
cor(p1$Freq, link3839) 
cor(n1$Freq, link3938) 
num <- as.numeric(p1$hour.y) 
map.class <- cut(num, 24) #Division into 24 classes (1-24hrs) 
pplot <-plot(link3839, p1$Freq, col=c(2:25)) 
abline(lm(p1$Freq ~ link3839)) 
nplot <-plot(link3938, p1$Freq) 
abline(lm(n1$Freq ~ link3938)) 
###################################################################### 
# The file size is reduced before performing O-D summary. Note that 
#duplicates have been removed from the data 
# The O-D result is a symmetric matrix. However, if the direction 
# of travel is to be considered, then we have to reverse the operation 
bt.count <- lapply(bt.rdup,function(bt.rdup) bt.rdup[c(1:4)]) #station 
#data 
bt.countl <- lapply(drn_pos,function(drn_pos) drn_pos[c(1:4)]) # link 
#data 
# bt.count1 <- bt.count[[1]] # first element of the list bt.count 
ct <- 1 # ct =1 for daily O-D summary else the total summary 
n=1:8 
if(ct<1){ 
bt.countx <- bt.count 
stn.count <- function(bt.count){ 
countx <- bt.countx[[n]] 
int <- length(intersect(countx$VehicleId,bt.count$VehicleId)) 
return(int) 
} 
count <- lapply(bt.count,stn.count) 
ddcount <- ldply(count) 
for(n in 1:length(bt.count)){ 
stn.count <- function(bt.count){ 
countx <- bt.countx[[n]] 
int <- length(intersect(countx$VehicleId,bt.count$VehicleId)) 
return(int) 
} 
count <- lapply(bt.count,stn.count) 
ddcount[n] <- ldply(count) 
} 
colnames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
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"stn8","stn9") 
rownames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
"stn8","stn9") 
ddcount 
write.csv(ddcount, "H:\\R\\stockport2\\ddcount.csv") 
} else{ 
# O-D summary on daily basis 
# bt.count <- subset(bt.count, bt.count$day==3) 
bt.count <- lapply(bt.count,function(bt.count) 
bt.count[bt.count$day==3,]) 
bt.countx <- bt.count 
stn.count <- function(bt.count){ 
countx <- bt.countx[[n]] 
int <- length(intersect(countx$VehicleId,bt.count$VehicleId)) 
return(int) 
} 
count <- lapply(bt.count,stn.count) 
ddcount <- ldply(count) 
for(n in 1:length(bt.count)){ 
stn.count <- function(bt.count){ 
countx <- bt.countx[[n]] 
int <- length(intersect(countx$VehicleId,bt.count$VehicleId)) 
return(int) 
} 
count <- lapply(bt.count,stn.count) 
ddcount[n] <- ldply(count) 
} 
colnames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
"stn8","stn9") 
rownames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
"stn8","stn9") 
write.csv(ddcount, "H:\\R\\stockport2\\ddcount3.csv") 
} 
ddcount 
#paste("Today is", date()) 
###################################################################### 
# Determine the number of Ids tracked in both directions 
# This gives the number of unique Ids tracked i.e it lists all 
# the intersection points. This helps to understand the ids that made 
# return journey. x and y are the 2 stations under consideration 
#int.xy<-intersect(drn.xy$VehicleId,drn.yx$VehicleId) 
###################################################################### 
# This function lists all the ids that make a return journey 
attach(svt1) 
int <- function(svt1){ 
int.xy <- list() 
for(i in 3:10){ 
svtx <- svt1[svt1$jtime<0&svt1$day.x==i,] # opposite direction 
svty <- svt1[svt1$jtime>0&svt1$day.y==i,] # forward direction 
int.xy <-intersect(svty$VehicleId,svtx$VehicleId) 
} 
return(int.xy) 
} 
int.res <- int(svt1) 
detach(svt1) 
###################################################################### 
## summary per link for all days. change the index in turn to compute 
## the entire network on link basis 
#id.count <- ddply(ldnegr, .(Site.ID.x,day.x,VehicleId), "nrow")# get 
#the countof variable VehicleId 
#write.csv(id.count,file="idcount.csv") 
# lines 225-226 take time to run 
# create a summary of the data based on the specified variable 
#avgtsec <- ddply(ldnegr, .(Site.ID.x, day.x), 
summarise,Vcount=length(VehicleId), 
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# min_jtime= min(jtime), max_jtime= max(jtime), mean_jtime= 
mean(jtime)) 
var.sum15n <- ddply(ldnegr, .(Site.ID.x, day.x, min15.x), 
summarise,Vcount=length(VehicleId), 
min_spd = min(spd), mean_spd = ceiling(mean(spd)), med_spd = 
median(spd), 
max_spd = max(spd), med_journey times = median(jtime),mean_journey 
times = 
ceiling(mean(jtime))) 
write.csv(var.sum15n, "H:\\R\\stockport.neg\\var.sum15n.csv") 
#write.csv(var.sum15n, "H:\\R\\wigan.neg\\var.sum15n.csv") 
#var.sum15n <- var.sum15n[order(var.sum15n$todp.class),1:8] 
var.sum15n.d3 <- var.sum15n[var.sum15n$day.x==3,] # change this 
#accordingly 
var.sum15n.d3$Vcount.pct <- 
round((var.sum15n.d3$Vcount/sum(var.sum15n.d3$Vcount))*100,2) 
palette <- c("red","yellow","blue","green","orange") 
# map.class <- var.sum15n.d3$todp.class 
#library(reshape) 
# summarise based on link 
drn.negri<-drn.negr[[1]] # change the index in turn according to the 
list length 
#drn.negri$jtime<- abs(drn.negri$jtime) # to obtain absolute value of 
JOURNEY TIMES 
# classify the Bluetooth count according to the peak and off-peak 
periods 
todp.class <- rep("0 - 07hrs", times=nrow(drn.negri)) 
todp.class[drn.negri$hour.x>=7&drn.negri$hour.x<10] <- "07 - 10hrs" 
todp.class[drn.negri$hour.x>=10&drn.negri$hour.x<16] <- "10 - 16hrs" 
todp.class[drn.negri$hour.x>=16&drn.negri$hour.x<20] <- "16 - 20hrs" 
todp.class[drn.negri$hour.x>=20] <- "20 - 24hrs" 
drn.negri$todp.class <- factor(todp.class) 
boxplot(drn.negri$spd ~ todp.class, horizontal=T, xlab="Speed (km/h)", 
las=1, cex.axis=0.8, main="Box Plot of Journey Speed2") 
# Includes options to draw the boxes and labels horizontally 
abline(v=mean(drn.negri$spd), lty="dashed") 
# Adds the mean value to the plot 
legend("topleft", legend="Grand Mean", lty="dashed") 
#todp_sum <- tapply(drn.negri$spd,drn.negri$todp.class,summary) 
tapply(drn.negri$spd,drn.negri$todp.class,summary) 
tod.count5n <- ddply(drn.negri, .(day.x,min5.x,spd,todp.class), 
"nrow") 
write.csv(tod.count5n, "H:\\R\\stockport.neg\\tod.count5n.csv") 
#write.csv(tod.count5n, "H:\\R\\wigan.neg\\tod.count5n.csv") 
plot(tod.sum15n.d3$mean_spd,tod.sum15n.d3$todp.class,ylim=c(0,6), 
xlab="15-minute average speed (km/h)",ylab="Time of the day class", 
main="Daily Speed Classification2",pch=21,bg=palette[map.class]) 
legvals <- c(0,7,10,16,20) 
legend("right", legend=paste(">=",legvals),pch=21, 
pt.bg=palette, pt.cex=1.5, bg="white", 
title="DayTime classification") 
# plot of percentage count by maximum spped (vmax) classification 
#plot(tod.sum15n.d3$mean_spd,tod.sum15n.d3$Vcount.pct, ylim=c(0,12), 
# xlab="15-minute average speed (km/h)",ylab="15-minute daily 
Bluetooth 
count (%)", 
# main="Speed Profile2",pch=21,bg=palette[map.class]) 
#legend("topright", 
legend=paste("<",tapply(as.numeric(tod.sum15n.d3$mean_spd), 
# map.class, max)),pch=21, 
pt.bg=palette, pt.cex=1.5, bg="white", 
# title="DayTime class by Vmax") 
# plot of percentage count by daytime classification 
plot(tod.sum15n.d3$mean_spd,tod.sum15n.d3$Vcount.pct,ylim=c(0,12), 
xlab="15-minute average speed (km/h)",ylab="15-minute daily Bluetooth 
count 
(%)", 
main="Speed2 distribution over the day",pch=21,bg=palette[map.class]) 
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legend("topright", legend=paste(">=",legvals),pch=21) 
###################################################################### 
# The file size is reduced before performing O-D summary. Note that 
duplicates have been removed from the data 
# The O-D result is a symmetric matrix. However, if the direction 
# of travel is to be considered, then we have to reverse the operation 
bt.count <- lapply(bt.rdup,function(bt.rdup) bt.rdup[c(1:4)]) #station 
#data 
bt.countp <- lapply(drn_neg,function(drn_neg) drn_neg[c(1:4)]) # link 
#data 
# bt.count1 <- bt.count[[1]] # first element of the list bt.count 
ct <- 1 # ct =1 for daily O-D summary else the total summary 
n=1:8 
if(ct<1){ 
#bt.countp <- bt.count ## for station summary 
bt.county <- bt.countp 
stn.countn <- function(bt.countp){ 
county <- bt.county[[n]] 
intn <- length(intersect(county$VehicleId,bt.countp$VehicleId)) 
return(intn) 
} 
countn <- lapply(bt.countp,stn.count) 
ddcountn <- ldply(countn) 
for(n in 1:length(bt.countp)){ 
stn.countn <- function(bt.countp){ 
county <- bt.county[[n]] 
intn <- length(intersect(county$VehicleId,bt.countp$VehicleId)) 
return(intn) 
} 
countn <- lapply(bt.countp,stn.countn) 
ddcountn[n] <- ldply(countn) 
} 
colnames(ddcountn) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
rownames(ddcountn) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
# colnames(ddcountn) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
# rownames(ddcountn) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
ddcountn 
write.csv(ddcountn, "H:\\R\\stockport.neg\\ddcountn.csv") 
} else{ 
# O-D summary on daily basis 
# bt.count <- subset(bt.count, bt.count$day==3) 
bt.countn <- lapply(bt.countp,function(bt.countp) 
bt.countp[bt.countp$day==3,]) 
bt.county <- bt.countn 
stn.countn <- function(bt.countn){ 
county <- bt.county[[n]] 
intn <- length(intersect(county$VehicleId,bt.countn$VehicleId)) 
return(intn) 
} 
countn <- lapply(bt.countn,stn.countn) 
ddcountn <- ldply(countn) 
for(n in 1:length(bt.countn)){ 
stn.countn <- function(bt.countn){ 
county <- bt.county[[n]] 
intn <- length(intersect(county$VehicleId,bt.countn$VehicleId)) 
return(intn) 
} 
countn <- lapply(bt.countn,stn.countn) 
ddcountn[n] <- ldply(countn) 
} 
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colnames(ddcountn) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
rownames(ddcountn) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
Page 26 
Bluetooth_script 
# colnames(ddcountn) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
# rownames(ddcountn) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
write.csv(ddcountn, "H:\\R\\stockport.neg\\ddcountn.csv") 
} 
ddcountn 
#paste("Today is", date()) 
###################################################################### 
## Link summary for the forward direction 
if(ct<1){ 
bt.countx <- bt.countl 
stn.count <- function(bt.countl){ 
countx <- bt.countx[[n]] 
int <- length(intersect(countx$VehicleId,bt.countl$VehicleId)) 
return(int) 
} 
count <- lapply(bt.countl,stn.count) 
ddcount <- ldply(count) 
for(n in 1:length(bt.countl)){ 
stn.count <- function(bt.countl){ 
countx <- bt.countx[[n]] 
int <- length(intersect(countx$VehicleId,bt.countl$VehicleId)) 
return(int) 
} 
count <- lapply(bt.countl,stn.count) 
ddcount[n] <- ldply(count) 
} 
colnames(ddcount) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
rownames(ddcount) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
# colnames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
# rownames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
ddcount 
write.csv(ddcount, "H:\\R\\stockport2\\ddcount.csv") 
} else{ 
# O-D summary on daily basis 
# bt.count <- subset(bt.count, bt.count$day==3) 
bt.countd <- lapply(bt.countl,function(bt.countl) 
bt.countl[bt.countl$day==3,]) 
bt.countx <- bt.countd 
stn.count <- function(bt.count){ 
countx <- bt.countx[[n]] 
int <- length(intersect(countx$VehicleId,bt.countd$VehicleId)) 
return(int) 
} 
count <- lapply(bt.countd,stn.count) 
ddcount <- ldply(count) 
for(n in 1:length(bt.countd)){ 
stn.count <- function(bt.countd){ 
countx <- bt.countx[[n]] 
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int <- length(intersect(countx$VehicleId,bt.countd$VehicleId)) 
return(int) 
} 
count <- lapply(bt.countd,stn.count) 
ddcount[n] <- ldply(count) 
} 
colnames(ddcount) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
rownames(ddcount) <- 
c("lk12","lk13","lk14","lk15","lk16","lk17","lk18", 
"lk19") 
Page 27 
Bluetooth_script 
# colnames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
# rownames(ddcount) <- 
c("stn1","stn2","stn3","stn4","stn5","stn6","stn7", 
# "stn8","stn9") 
write.csv(ddcount, "H:\\R\\stockport2\\ddcountd.csv") 
} 
ddcount 
###################################################################### 
# Determine the number of Ids tracked in both directions 
# This gives the number of unique Ids tracked i.e it lists all 
# the intersection points. This helps to understand the ids that made 
# return journey. x and y are the 2 stations under consideration 
#int.xy<-intersect(drn.xy$VehicleId,drn.yx$VehicleId) 
###################################################################### 
# count of vehicles making a return journey 
for(lk in 1:8){ 
for(di in 3:10){ 
svtx <- subset(svt[[lk]],svt[[lk]]$jtime<0) 
svty <- subset(svt[[lk]],svt[[lk]]$jtime>0) 
svtx <- svtx[svtx$day.x==di,] # opposite direction 
svty <- svty[svty$day.y==di,] # forward direction 
int.xy <- length(intersect(svty$VehicleId,svtx$VehicleId)) 
print(int.xy) 
} 
} 
## End of the analyis on the opposite direction 
###################################################################### 
## Plot of speed distribution 
###################################################################### 
# Histogram plot of average journey speed 
#attach(avghrly) 
# import avghrly 
#hs <- subset(avghrly,avghrly$day.y<7) 
# hs <- hs$spd 
hs <- avghrly$spd 
#hist(hs,freq=TRUE) # for frequency plot 
hist(hs,col="light blue",border="dark blue", freq=FALSE, xlab="Speed 
km/h)", 
main="Histogram of hourly speed") 
legend("right",legend="Hourly average for 8 days", cex=0.6) 
hist(hs,col="grey",border="dark blue",main="Histogram of hourly speed" 
,cex=0.6, xlab="Speed km/h)", freq=FALSE) 
legend("right",legend="Hourly average for 8 days", cex=0.6) 
# Add a density curve 
lines(density(sort(hs)),col="blue") 
# Add a Normal curve 
xhs = seq(from=0, to=70, by=0.1) 
yhs = dnorm(xhs, mean(hs), sd(hs)) 
lines(xhs, yhs, lty="dotted",col="red") 
rm(xhs, yhs) 
legend("topleft", legend=c("density curve","Normal curve"), 
lty=c("solid","dotted"),col=c("blue","red"),cex=0.6) 
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###################################################################### 
## Plotting of points on Google map 
###################################################################### 
#coords$Easting <- as.numeric(substring(coords[,5],1,6)) 
#coords$Northing <- as.numeric(substring(coords[,5],7,12)) 
#write.csv(coords,file="coords2.csv") 
coords <- read.csv("H:\\R\\coords2.csv",header=T) 
attach(coords) 
# A simple plot of point data 
###################################################################### 
## Plotting X, Y data on Google map 
## Load required packages 
library(maptools) 
library(rgdal) 
## Load the data for Bluetooth locations. 
#bt.stns<- read.csv(file.choose()) # choose file coords2 interactively 
## Inspect column headings 
#bt.stns <- coords 
#bt.stns <- read.csv(file="Bluetooth_stations.csv",header=TRUE) 
BT_ATC_stations <- read.csv("~/R/BT_ATC_stations.csv") 
## Inspect column headings 
bt.stns <- BT_ATC_stations[,1:5] 
head(bt.stns) 
 
## Plot the XY coordinates 
attach(bt.stns) 
#attach(lonlat2) 
# X= Easting 
# Y= Northing 
plot(X, Y) 
#plot(Easting,Northing) 
coordinates(bt.stns)<- c("X", "Y") 
#coordinates(bt.stns)<- c("Easting", "Northing") 
BNG<- CRS("+init=epsg:27700") 
p4s <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84") 
bt_wgs84 <- spTransform(bt.stns, CRS= p4s) 
writeOGR(bt_wgs84, dsn="sensors.stn.kml", layer= "sites_wgs84", 
driver="KML", dataset_options=c("NameField=name")) 
 
detach(bt.stns)# create a simple colour palette which will be used to 
split the region 
palette <- c("yellow","green","red","purple") 
# divide the region into class according to the easting coordinates 
map.class <- cut(Easting, 4, labels=FALSE, include.lowest=TRUE) 
 
plot(Easting, Northing, asp=1, main="Map of Bluetooth stations in 
Greater Manchester", pch=21, bg=palette[map.class]) 
text(345000,410000,"Wigan Area") 
text(365000,390000,"Altrincham Area") 
text(395000,390000,"Stockport Area") 
################################################################### 
## Plotting Google Static Map 
library(RgoogleMaps) 
# Choose the coordinates file 
bt_stations <- read.csv(file.choose()) 
# Create a simple colour palette which will be used to split the 
region 
#palette <- c("yellow","green","red","purple") # All Bluetooth 
stations over UK 
palette <- c("green","purple","red") 
palette <- c("purple","red","green") # Manchester Bluetooth stations 
attach(bt_stations) 
# divide the region into class accordingly 
map.class <- Location 
# Plot the map 
#plot(Easting, Northing, asp=1, main="", pch=21, 
bg=palette[map.class]) 
#text(345000,410000,"Wigan Area") 
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#text(365000,390000,"Altrincham Area") 
#text(395000,390000,"Stockport Area") 
# Google Static Map plot 
MyMap <- MapBackground(lat=latitude, lon=longitude) 
PlotOnStaticMap(MyMap, latitude, longitude, pch=21, 
bg=palette[map.class]) 
#legend("bottomright", legend=paste("<",tapply(Easting, map.class, 
max)), pch=21, 
#       pt.bg=palette, pt.cex=1.5, bg="white", title="Easting coords") 
legend("bottomright", c("Birtley","Liverpool","Manchester"), pch=21, 
             pt.bg=palette, pt.cex=1.5, bg="white", title="Study 
Location")## simple geographical analysis 
# Converting the data into a spatial object in R 
detach(coords) 
coords.xy <- coords 
library(sp) 
attach(coords.xy) 
coordinates(coords.xy) <- c("Easting", "Northing") 
# Converts into a spatial object 
class(coords.xy) 
detach(coords.xy) 
# Demonstration of Google motion chart 
library(googleVis) 
ggmt <- read.csv("H:/R/avgspd.csv",header=T) 
# ggmt <- avgspd 
gm <- gvisMotionChart(ggmt, idvar="Site.ID.y", timevar="day.y") 
plot(gm) 
###################################################################### 
## Plotting data on Google map based on the ideas gained from 
##http//:spatialanalysis.co.uk 
## Load required packages 
library(maptools) 
library(rgdal) 
## Load the data for Bluetooth locations. 
#bt.stns<- read.csv(file.choose()) # choose file coords2 interactively 
## Inspect column headings 
#bt.stns <- coords 
bt.stns <- read.csv(file="Bluetooth_stations.csv",header=TRUE) 
## Inspect column headings 
head(bt.stns) 
## Plot the XY coordinates window. 
attach(bt.stns) 
# X= Easting 
# Y= Northing 
plot(X, Y) ## or use plot(Easting,Northing) depending on data format 
######################################################################
## Processing and analysis of ANPR data 
library(plyr) # advanced aggregation functions 
library(lubridate) # datetime function 
library(reshape) 
 
MAC1070_2014.03.04_v2 <- 
read.csv("V:/val_analysis/Disc_Graham_CeGComputing/Raw Bluetooth Data 
A6/MAC1070_2014-03-04_v2.csv") 
View(MAC1070_2014.03.04_v2) 
MAC1071_2014.03.04_v2 <- 
read.csv("V:/val_analysis/Disc_Graham_CeGComputing/Raw Bluetooth Data 
A6/MAC1071_2014-03-04_v2.csv") 
 
stn1070 <- MAC1070_2014.03.04_v2 
stn1071 <- MAC1071_2014.03.04_v2 
rm(MAC1070_2014.03.04_v2,MAC1071_2014.03.04_v2) # to conserve memory 
 
bt.data <- list(stn1070,stn1071) 
 
## function to reduce the file data size as desired  
bt.data <- lapply(bt.data,function(bt.data) bt.data[c(1:2,10)])  
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head(bt.data[[2]]) 
 
## function to order the data by vehicleId 
bt.data <-lapply(bt.data, function(bt.data) 
bt.data[order(bt.data[,3]),1:3]) 
head(bt.data[[1]])# to examine part of the data 
 
# apply time format to the list and remove duplicates from data using 
# function fdup 
#btr.data <- bt.order # assign a new name to the ordered data list 
 
fdup <- function(bt.data){ 
  for(i in bt.data){ 
    # tm <- dmy_hms(btr.data$Date) 
     tfx <-strptime(bt.data$Date,"%d/%m/%Y %H:%M:%S") 
    #tfx <-strptime(bt.data$Date,"%Y-%m-%d %H:%M:%S") 
     
    day <- day(tfx) # retrieve date value from the data 
     
    hour <- hour(tfx) # extract hour component and add to df 
     
    # Extract the minute component of dateTime and add to the df 
    min <- minute(tfx) 
     
    sec <- second(tfx) #This extract the seconds part of the data 
     
    # compute time in seconds and add to station data 
    tsec <- as.numeric(hour*3600 + min*60 + sec) 
    # convert data to vectors to apply unique() 
    #hour <- btr.data$hour 
    #min <- btr.data$min 
     
    # compute the 15-minute interval summary 
    min15 <- floor(as.numeric(min)/15) 
     
    # multiply by 15 for correct minutes format 
    min15 <- min15*15   # the 1st 0-15mins is 0 
     
    # compute the 10-minute interval summary 
    min10 <- floor(as.numeric(min)/10) 
     
    # multiply by 10 for correct minutes format 
    min10 <- min10*10   # the 1st 0-15mins 0 
     
    # compute the 5-minute interval summary 
    min5 <- floor(as.numeric(min)/5) 
     
    # multiply by 5 for correct minutes format 
 
    min5 <- min5*5 # the first 0-5mins will be 0 
     
    ## assign new variables to tsec and VehicleId 
    y <- bt.data[,3] 
    n <- length(y) 
     
    ## compute time difference in seconds between successive points 
    # secdif2 <- c(0,as.numeric(abs(tsec[-1]- tsec[-length(tsec)]))) 
    secdif <- c(0,as.numeric(abs(diff(tsec)))) #same result as above 
     
    ## make a dataframe of the vectors 
    bt.data <- data.frame(bt.data,day,hour, min15,min10, min5, secdif) 
     
    ## remove the duplicate records from the data to obtain a subset   
    y1<-y[2:n] 
    y2<-y[1:(n-1)] 
    yc<-as.character(y1)!=as.character(y2) 
    bt.data$yc <-c("TRUE",yc)#add "TRUE" to the 1st pt to add up to pt 
nos 
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    ndup <- 
bt.data[(bt.data$yc=="FALSE"&bt.data$secdif>=300)|(bt.data$yc=="TRUE")
,] 
    return(ndup) 
  } 
} 
bt.data <- lapply(bt.data,fdup) 
 
head(bt.data[[1]]) # to examine part of the data 
 
# Function to reduce the file size before merging 
bt.rdup <- lapply(bt.data,function(bt.data) bt.data[c(1:3)]) 
head(bt.rdup[[1]]) 
 
mg <- merge(bt.rdup[[1]], bt.rdup[[2]], by = "Vehicle.Id", sort=T,all 
= FALSE) 
head(mg) 
 
dst <- 0.532  # A6, Stockport (1070-1071) 
 
tfx <-strptime(mg$Date.x,"%d/%m/%Y %H:%M:%S") 
tfy <-strptime(mg$Date.y,"%d/%m/%Y %H:%M:%S") 
 
## Create time series from the data 
wday <- weekdays(tfy) 
day <- day(tfy) 
hour <- hour(tfy) 
min <- minute(tfy) 
# compute the 15-minute interval summary 
min15 <- floor(as.numeric(min)/15) 
# multiply by 15 to obtain the minutes'proper format 
min15 <- min15*15 
 
#jtime<- difftime(tfy,tfx,units="secs") 
 jtime<- difftime(tfy,tfx,units="auto") 
 jtime<- as.numeric(jtime) 
## Computation of vehicle speed begins here 
tmin <- as.numeric(abs(jtime/60)) 
tmin <- as.numeric(sprintf("%.2f",tmin)) 
 
spd <- ceiling(as.numeric(abs(dst/(as.numeric(jtime/3600))))) 
 
mg <- data.frame(mg,day,hour,min15,wday,jtime,tmin,spd)  
 
# remove point data with different days merged together 
mg <-subset(mg,day(tfx)==day(tfy)) 
 
# remove vehicles travelling at very low speed and at very high speed 
(1st condition) 
mg <- subset(mg,spd>5&spd<=120) 
 
###################################################################### 
Require(openair) 
scatterPlot(BTAN2, x = "ANPR_jtime", y = "jtime7170", group=NA,  
            type = "default", method="scatter",linear = TRUE, ci = 
FALSE, 
            xlab="ANPR Journey Time (sec)", ylab="Bluetooth Journey 
Time (sec)") 
            
 
scatterPlot(BTAN2, x = "ANPR_spd", y = "spd7170", group=NA,  
            type = "default", method="scatter",linear = TRUE, ci = 
FALSE, 
            xlab="ANPR Journey Speed (Km/h)", ylab="Bluetooth Journey 
Speed (Km/h)") 
 
scatterPlot(BTAN2, x = "ANPR7170N", y = "bt7170N", group=NA,  
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            type = "default", method="scatter",linear = TRUE, ci = 
FALSE, 
            xlab="ANPR flow (veh/15-min)", ylab="Bluetooth flow 
(veh/15-min)") 
 
timeVariation(BTAN2, pollutant = "flow_ratio", 
              local.time = FALSE, normalise = F,ci = 
TRUE,col="green2", 
              xlab = c("hour", "hour", "month", "weekday")) 
 
timeVariation(BTAN2, pollutant = "flow_ratio", 
              local.time = FALSE, normalise = F,ci = 
TRUE,col="green2", 
              xlab = c("hour", "hour", "month", "weekday")) 
 
timeVariation(BTAN2, pollutant = "flow_ratio", 
              local.time = FALSE, normalise = F,ci = 
TRUE,col="green2", 
              xlab = c("hour", "hour", "month", "weekday")) 
 
###################################################################### 
## O-D Analysis 
path.files <- "H:\\R\\wigan\\" 
path.files <-"C:\\Users\\Ayodele\\Documents\\R\\wigan\\" 
t.data <- lapply(list.files(path = path.files, pattern = ".csv"), 
                  function(.file) read.csv(paste(path.files, .file, 
                                                 sep = ""),header = 
TRUE)) 
#bt1<-bt.data[[1]] 
#head(bt1) # to examine part of the data 
###################################################################### 
## Function to reduce the file data size as desired  
bt.data <- lapply(bt.data,function(bt.data) bt.data[c(1:2,15)])  
#btr1<-btr.data[[1]]  
head(bt.data[[1]])# to examine part of the data 
###################################################################### 
## Function to order the data by vehicleId 
bt.data <-lapply(bt.data, function(bt.data) 
bt.data[order(bt.data[,3]),1:3]) 
head(bt.data[[1]]) 
###################################################################### 
# Apply time format to the list and remove duplicates from data using 
# function fdup 
fdup <- function(bt.data){ 
  for(i in bt.data){ 
    #   tme <- dmy_hms(btr.data$Date) 
      tme <- strptime(bt.data$Date,"%d/%m/%Y %H:%M:%S") 
    #tme <- strptime(bt.data$Date,"%Y-%m-%d %H:%M:%S") 
        day <- day(tme) # retrieve date value from the data 
     
    hour <- hour(tme) # extract hour component and add to df 
     
    # Extract the minute component of dateTime and add to the df 
    min <- minute(tme) 
        sec <- second(tme) #This extract the seconds part of the data 
        # compute time in seconds and add to station data 
    tsec <- as.numeric(hour*3600 + min*60 + sec) 
    # convert data to vectors to apply unique() 
    # hour <- bt.data$hour 
    # min <- bt.data$min 
    # compute the 15-minute interval summary 
    min15 <- floor(as.numeric(min)/15) 
     
    # multiply by 15 to obtain the minutes'proper format 
    min15 <- min15*15 +15   # add 15 to make the 1st 0-15mins 15 
     
    # compute the 10-minute interval summary 
    min10 <- floor(as.numeric(min)/10) 
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    # multiply by 10 to obtain the minutes'proper format 
    min10 <- min10*10 +10   # add 10 to make the 1st 0-15mins 15 
     
     
    # compute the 5-minute interval summary 
    min5 <- floor(as.numeric(min)/5) 
     
    # multiply by 5 to give the  minutes a proper format 
    min5 <- min5*5 +5 # add 5 so that the first 0-5mins will be 5 
     
    ## assign new variables to tsec and VehicleId 
    #x <- bt.data[,8] 
    y <- bt.data[,3] 
    n <- length(y) 
     
    ## compute time difference in seconds between successive points 
    # secdif2 <- c(0,as.numeric(abs(tsec[-1]- x[-length(tsec)]))) 
    secdif <- c(0,as.numeric(abs(diff(tsec)))) #same result as line 64 
     
    ## make a dataframe of the vectors 
    bt.data <- data.frame(bt.data, day, hour, secdif) 
       
    ## remove the duplicate records from the data to obtain a subset   
    y1<-y[2:n] 
    y2<-y[1:(n-1)] 
    yc<-as.character(y1)!=as.character(y2) 
    bt.data$yc <-c("TRUE",yc)#add "TRUE" to the 1st pt to add up to pt 
nos 
    ndup <- 
bt.data[(bt.data$yc=="FALSE"&bt.data$secdif>=300)|(bt.data$yc=="TRUE")
,] 
    return(ndup) 
  } 
} 
bt.rdup <- lapply(bt.data,fdup) 
 
head(bt.rdup[[1]]) 
## Function for computing OD using merge option as well as removing 
#outliers 
#bt.count <- lapply(btc.rdup,function(btc.rdup) btc.rdup[c(1:5)]) 
#station data 
 
bt.count <- lapply(bt.rdup,function(bt.rdup) bt.rdup[c(1:5)]) #station 
#data 
 
# bt.ctod <- lapply(bt.count,function(bt.count) 
bt.count[bt.count$day==4,]) # daily 
 
## Import the distance matrix 
distM <- read.csv("H:\\R\\wigan_distM2.csv",header=T) 
 
## Interactively choose the distance file 
#distM <- read.csv(file.choose()) 
## Opt 0 or 1 according to whether flow or journey time OD is required 
## flow = 0 and JOURNEY TIMES = 1 
opt <- 0 
 
if(opt == 0){ 
##Note: Number of days = 28, 29, 30, 31 depending on the month and 
#year 
#cycle through the selected hour and days 
for(day_selec in 3:10){ 
  for(hour_selec in 0:23){  
 
    bt.ctod <- lapply(bt.count,function(bt.count) 
bt.count[bt.count$day==day_selec & bt.count$hour==hour_selec,]) # 
hourly 
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    bt.count1 <- bt.ctod 
    # k=2 # single (needed to compute between two station pairs) 
     
    ddcount <-list() 
    for(k in 1:length(bt.ctod)){ 
     # kk <- 0 # Initialise kk 
       
      stn.count <- function(bt.ctod){         
           
        countx <- bt.count1[[k]] 
       # distM <- read.csv("H:\\R\\wigan_distM2.csv",header=T) 
         
        st1 <- substring(as.character(countx[1,1]),10,13) 
        st2 <- substring(as.character(bt.ctod[1,1]),10,13) 
         
        stf <- substring(as.character(distM[,1]),4,7) 
        stt <- substring(as.character(distM[,2]),4,7) 
         
        dst <- distM[(as.numeric(st1)==as.numeric(stf))& 
                        (as.numeric(st2)==as.numeric(stt)),c(3)] 
                 
        m.count <- merge(countx, bt.ctod, by = "VehicleId", sort=T, 
all = FALSE) 
        #m.count <- merge(countx, bt.ctod, by = "Vehicle.Id", sort=T, 
all = FALSE) 
        #m.count <- merge(countx, county, by = "VehicleId", sort=T, 
all = FALSE)# single 
         
        t.org <-strptime(m.count$Date.x,"%d/%m/%Y %H:%M:%S") 
        t.dst <-strptime(m.count$Date.y,"%d/%m/%Y %H:%M:%S") 
         
        #m.count$tdif.od <- difftime(t.dst,t.org,units="secs") # time 
diffences btw origins and destinations 
        tdif.od <- difftime(t.dst,t.org,units="secs")  
# time diffences btw origins and destinations 
         
        ## Computation of vehicle speed begins here 
        jt <- as.numeric(tdif.od/3600) 
        # thr <- as.numeric(sprintf("%.2f",journey timesme)) 
        tmin <- as.numeric(abs(journey timesme*60)) 
        tmin <- as.numeric(sprintf("%.2f",tmin)) 
         
        spd <- ceiling(as.numeric(abs(dst/journey timesme))) 
         
        m.count <- data.frame(m.count,tdif.od,tmin,spd) 
        #m.count <- data.frame(m.count,tdif.od,tmin) 
   
        # remove vehicles travelling at very low speed and at very 
high speed 
        m.count <- subset(m.count,spd>5&spd<=120) 
         
        ## remove the vehicles travelling in opposite direction  
        m.count <- m.count[m.count$tdif.od>0,] 
         
        # remove outliers from the data i.e. compute the outlier data 
points 
        ## Rule of thumb to remove outliers (Crawley,2005) 
         
        upquant <- quantile(m.count$tdif.od,0.75) + 
1.5*(quantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25)) 
        lwquant <- quantile(m.count$tdif.od,0.25) - 
1.5*(quantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25)) 
         
        # compute the data range free of outliers 
        m.count <-subset(m.count , 
m.count$tdif.od<=upquant&m.count$tdif.od>=lwquant) 
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        ## count the number of vehicles 
        c.org <- nrow(m.count) 
         
        return(c.org) 
      } 
      count <- lapply(bt.ctod,stn.count) 
      ddcount[k] <- ldply(count) 
    } 
    ddcount <- ldply(ddcount) 
     
    #Aliter 
    #this bit didn't work 
    #diag(as.matrix(ddcount))<-0 
     
    #this will make the diagonals zero though 
    for(c in 1:length(ddcount[1,])){ddcount[c,c]=0} 
     
    ## Assign column and row names to the variables 
    ## Stockport 
    #colnames(ddcount) <- 
c("stn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41") 
    #rownames(ddcount) <- 
c("stn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41") 
    ## Wigan 
    colnames(ddcount) <- 
c("stn12","stn16","stn18","stn21","stn24","stn26","stn29") 
    rownames(ddcount) <- 
c("stn12","stn16","stn18","stn21","stn24","stn26","stn29") 
    ## Trafford 
    #colnames(ddcount) <- c("stn1001","stn1002","stn1008","stn1011") 
    #rownames(ddcount) <- c("stn1001","stn1002","stn1008","stn1011") 
     
    ## write the results to the specified file 
    #res_path="c:/od/result/" 
    #res_path <-"C:\\Users\\Ayodele\\Documents\\R\\wigan2\\" 
    res_path <- "H:\\R\\wigan_utsg\\" 
    fname <- 
paste(res_path,"od_d",day_selec,"_h",hour_selec,".csv",sep='') 
    write.csv(ddcount,fname,quote=F )# This writes the result to a 
#folder 
     
  }} 
} else { 
  for(day_selec in 3:10){ 
    for(hour_selec in 0:23){  
       
      bt.ctod <- lapply(bt.count,function(bt.count) 
bt.count[bt.count$day==day_selec & bt.count$hour==hour_selec,]) # 
hourly 
       
      bt.count1 <- bt.ctod 
      # k=2 # single (needed to compute between two station pairs) 
       
      ddcount <-list() 
      for(k in 1:length(bt.ctod)){ 
        # kk <- 0 # Initialise kk 
         
        stn.count <- function(bt.ctod){         
           
          countx <- bt.count1[[k]] 
          # distM <- read.csv("H:\\R\\wigan_distM2.csv",header=T) 
           
          st1 <- substring(as.character(countx[1,1]),10,13) 
          st2 <- substring(as.character(bt.ctod[1,1]),10,13) 
           
          stf <- substring(as.character(distM[,1]),4,7) 
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          stt <- substring(as.character(distM[,2]),4,7) 
           
          dst <- distM[(as.numeric(st1)==as.numeric(stf))& 
                         (as.numeric(st2)==as.numeric(stt)),c(3)] 
           
          m.count <- merge(countx, bt.ctod, by = "VehicleId", 
sort=T,all = FALSE) 
          #m.count <- merge(countx, bt.ctod, by = "Vehicle.Id", 
sort=T,all = FALSE) 
          #m.count <- merge(countx, county, by = "VehicleId", 
sort=T,all = FALSE)# single 
           
          t.org <-strptime(m.count$Date.x,"%d/%m/%Y %H:%M:%S") 
          t.dst <-strptime(m.count$Date.y,"%d/%m/%Y %H:%M:%S") 
           
          #m.count$tdif.od <- difftime(t.dst,t.org,units="secs") # 
time diffences btw origins and destinations 
          tdif.od <- difftime(t.dst,t.org,units="secs") # time 
diffences btw origins and destinations 
           
          ## Computation of vehicle speed begins here 
          jt <- as.numeric(tdif.od/3600) 
          # thr <- as.numeric(sprintf("%.2f",journey timesme)) 
          tmin <- as.numeric(abs(journey timesme*60)) 
          tmin <- as.numeric(sprintf("%.2f",tmin)) 
           
          spd <- ceiling(as.numeric(abs(dst/jt))) 
           
          m.count <- data.frame(m.count,tdif.od,tmin,spd) 
          #m.count <- data.frame(m.count,tdif.od,tmin) 
           
          # remove vehicles travelling at very low speed and at very 
high speed 
          m.count <- subset(m.count,spd>5&spd<=120) 
           
          ## remove the vehicles travelling in opposite direction  
          m.count <- m.count[m.count$tdif.od>0,] 
           
          # remove outliers from the data i.e. compute the outlier 
data points 
          ## Rule of thumb to remove outliers (Crawley,2005) 
           
          upquant <- quantile(m.count$tdif.od,0.75) + 
1.5*(quantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25)) 
          lwquant <- quantile(m.count$tdif.od,0.25) - 
1.5*(quantile(m.count$tdif.od,.75)-quantile(m.count$tdif.od,0.25)) 
           
          # compute the data range free of outliers 
          m.count <-subset(m.count , 
m.count$tdif.od<=upquant&m.count$tdif.od>=lwquant) 
           
          ## compute the hourly average journey time in seconds for 
the vehicles 
          jt.org <- m.count$tdif.od 
          #c.org <- round(mean(jt.org),0) 
          c.org <- nrow(m.count) 
          c.org <- round(c.org*6.0606,0) # multiply the flow by the 
inverse of penetratiin rate 
          ## compute the hourly average speed for the vehicles 
          speed.org <- m.count$spd 
          x <- round(mean(speed.org),0) 
           
          c.org <- (602.8 + 50.25*x - 0.7237*x^2 + 0.009258*x^3 - 
0.00002583*x^4)*c.org 
           
          return(c.org) 
        } 
        count <- lapply(bt.ctod,stn.count) 
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        ddcount[k] <- ldply(count) 
      } 
      ddcount <- ldply(ddcount) 
       
      #Aliter 
             
      #This will make the diagonals zero though 
      for(c in 1:length(ddcount[1,])){ddcount[c,c]=0} 
       
      ## Assign column and row names to the variables 
      ## Stockport 
      #colnames(ddcount) <- 
c("stn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41") 
      #rownames(ddcount) <- 
c("stn33","stn34","stn35","stn36","stn37","stn38","stn39","stn40","stn
41") 
      ## Wigan 
      colnames(ddcount) <- 
c("stn12","stn16","stn18","stn21","stn24","stn26","stn29") 
      rownames(ddcount) <- 
c("stn12","stn16","stn18","stn21","stn24","stn26","stn29") 
      ## Trafford 
      #colnames(ddcount) <- c("stn1001","stn1002","stn1008","stn1011") 
      #rownames(ddcount) <- c("stn1001","stn1002","stn1008","stn1011") 
       
      ## write the results to the specified file 
      res_path <- "H:\\R\\wigan_utsg\\" 
      fname <- 
paste(res_path,"od_d",day_selec,"_h",hour_selec,".csv",sep='') 
      write.csv(ddcount,fname,quote=F )# This writes the result to a 
folder 
       
    }} 
} 
################################################################## 
#### Program to summarise SCOOT data based on 15-minute average flow 
 
## Read in the required SCOOT file(s) 
N12643T_3940 <- read.csv("~/R/scoot/N12643T_3940.csv") 
 
N12642F_4039 <- read.csv("~/R/scoot/N12642F_4039.csv") 
 
## Drop column 9 from the data 
 
N12642F_4039[9] <- NULL 
 
## Create the time format for the data 
tfx <- strptime(N12642F_4039$Time,"%H:%M:%S") 
 
## Create time series from the data 
hour <- hour(tfx) 
min <- minute(tfx) 
 
# compute the 15-minute interval summary 
min15 <- floor(as.numeric(min)/15) 
 
# multiply by 15 to obtain the minutes in proper format 
min15 <- min15*15 +15 
 
N12642F_4039 <- data.frame(hour,min15, N12642F_4039) 
 
## Subset for the complete days 
 
N12642F_4039 <- subset(N12642F_4039, Day!="Mo") 
 
# Create the summary of the data using doBy function 
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scoot_4039 <- summaryBy(FLOW+Norm_occ+OCC~Day+hour+min15, 
data=N12642F_4039, FUN=c(sum)) 
 
#write.csv(cst_hrly, "H:\\R\\stockport2\\hrly.count.csv",row.names=F) 
write.csv(scoot_4039, "H:\\R\\scoot\\scoot_4039.csv",row.names=F) 
################################################################# 
## Date Filter Function 
##fym <- function(bt.data){ 
  for(ym in bt.data){ 
    tfx <- strptime(bt.data$Date,"%Y-%m-%d %H:%M:%S") 
     
    bt.data$year <- year(tfx) # retrieve date value from the data 
     
    bt.data$month <- month(tfx) 
     
    bt.data$day <- day(tfx) 
    return(bt.data) 
  } 
} 
bt.data <- lapply(bt.data,fym) 
head(bt.data[[1]]) 
# subsetting for a specific year and month(s) 
bt.r <- lapply(bt.data, function(bt.data) 
  subset(bt.data,year==2013&month==4)) 
head(bt.r[[1]]) 
bt.r <- lapply(bt.r,function(bt.r) bt.r[c(1:3)]) 
head(bt.r[[1]]) 
##################################################################### 
## Function to generate series of date time 
# Generate 15-min time series for a 31-day month 
mnth <- rep("2013/07/",2976) 
dy <- rep(1:31,each=96) 
hr <- rep(rep(00:23,each=4),31) 
min <- rep(c(00,15,30,45),744) 
sec <- rep( 00,2976) 
date <- paste(mnth,dy," ",hr,":",min,":",sec,sep="") 
#################################################################### 
## R codes to compute Mahalanobis distance using Bluetooth data by 
#E.G. Ayodele, Newcastle University, United Kingdom.  
# e.g.ayodele@newcastle.ac.uk. 2016 Edition 
## Last modified on 7th December 2016. Codes adapted from: 1) Dr. Jon 
#Starkweather, Research and Statistical Support consultant, and 2) 
#https://stat.ethz.ch/R-manual/R-
#devel/library/stats/html/mahalanobis.html 
require(graphics) 
library(rgl) 
library(chemometrics) 
#Remove the date column and save as another name to preserve file 
link0506 <- read.csv("C:/B0925688/Other_Results/link0506.csv") 
#link0506 <- na.exclude(link0506) 
date <- link0506[,1] 
x <- link0506[,c(3:6)] # subsetting for only mean JT and speed 
#directional flows 
#x <- na.exclude(x) 
stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x)) 
 
#use the Moutlier function to compute MDs 
md.ratio <- Moutlier(x, quantile = 0.95, plot = FALSE) 
 
#Find the cut-off value 
cut.off <- round(md.ratio$cutoff,3) 
 
MD <- round(md.ratio$md,3) 
 
#Summarise result 
summary(MD) 
 
#Add the computed MDs to the dataframe 
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x <- data.frame(x,MD) 
#Add date to preserve time series 
x2 <- data.frame(date,x) 
#Plot the individual MDs if necessary to visualise 
qqplot(MD, x$mean_jt, plot.it = TRUE, xlab = "Mahalanobis' distance", 
       ylab = "Mean Journey Time (s)", main = "") 
 
##Remove the outlying data points based on the computed cut-off value 
x2.md <- subset(x2,MD <=cut.off ) 
#Plot the individual MDs if necessary to visualise 
qqplot(MD, x2.md$med_jt, plot.it = TRUE, xlab = "Mahalanobis' 
distance", 
       ylab = "Median Journey Time (s)", main = "") 
 
#summary(x2.md) 
## Plot the MDs against Chi Square distribution 
x2.md <- x2.md[,c(2:5)] 
summary(x2.md) 
stopifnot(mahalanobis(x2.md, 0, diag(ncol(x2.md))) == 
rowSums(x2.md*x2.md)) 
Sx <- cov(x2.md) 
D2 <- mahalanobis(x2.md, colMeans(x2.md), Sx) 
plot(density(D2, bw = 0.5), 
     main="Squared Mahalanobis distances, n=27740, p=3") ; rug(D2) 
qqplot(qchisq(ppoints(27740), df = 3), D2, 
       main = expression("Q-Q plot of Mahalanobis" * ~D^2 * 
                           " vs. quantiles of" * ~ chi[3]^2)) 
 
# Compare the Mahalanobis' distances of each data file with simple 
#histograms 
par(mfrow = c(1,2)) 
hist(x2$MD, main = "", xlab= "Unfiltered MD") 
hist(x2.md$MD, main = "", xlab="Filtered MD") 
 
#Average the filtered data (x2.md) preferrably on daily basis for 
#clarity 
library("openair", lib.loc="C:/Program Files/R/R-3.0.2/library") 
x2.md.plot <- subset(x2,MD <=cut.off ) 
x2.md.plot <- x2.md.plot[,c(1:5)] 
dly.sd <- timeAverage(x2.md.plot, avg.time = "day", statistic = "sd") 
dly.mean <- timeAverage(x2.md.plot, avg.time = "day", statistic = 
"mean") 
#Make a ts data 
dly.sd.plot <- ts(dly.sd) 
dly.mean.plot <- ts(dly.mean) 
#Plot the data 
plot(dly.sd.plot[,c(2:3)], plot.type="single",   
     #main="Plot of Standard Deviation of Flow",  
     ylab="Standard Deviation of Speed", xlab= "Index of Time", 
col=c("blue", "red"), lwd=1)  
legend(10,8, legend=c("sd_FlowNE","sd_FlowSW"),col=c("blue", 
"red"),lty=1, 
        cex=0.8, lwd=1, border ="lty", box.col="white") 
 
##NE Directional Ratio 
plot(dly.mean.plot[,3],ylab="Speed (km/h)", xlab= "Index of Time", 
col="red") 
legend(10,51, legend=c("Speed"),col=c( "red"),lty=1, 
       cex=0.8, lwd=1, border ="lty", box.col="white") 
 
plot(dly.sd.plot[,3],ylab="Standard Deviation of Speed", xlab= "Index 
of Time", col="blue") 
legend(220,3, legend=c("sd_Speed"),col=c( "blue"),lty=1, 
        cex=0.8, lwd=1, border ="lty", box.col="white") 
##SW Directional Ratio 
#par(mfrow=c(1,1)) 
plot(dly.mean.plot[,5],ylab="Journey Time (s)", xlab= "Index of Time", 
col="red") 
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legend(2,90, legend=c("Journey Time"),col=c( "red"),lty=1, 
        cex=0.8, lwd=1, border ="lty", box.col="white") 
 
plot(dly.sd.plot[,5],ylab="Standard Deviation of Flow", xlab= "Index 
of Time", col="blue") 
legend(220,33, legend=c("sd_Journey Time"),col=c( "blue"),lty=1, 
        cex=0.8, lwd=1, border ="lty", box.col="white") 
##Total Directional ratio 
plot(dly.mean.plot[,4],ylab="Ratio", xlab= "Index of Time", col="red") 
legend(20,0.115, legend=c("RatioTotal"),col=c( "red"),lty=1, 
        cex=0.8, lwd=1, border ="lty", box.col="white") 
 
plot(dly.sd.plot[,4],ylab="Standard Deviation of Ratio", xlab= "Index 
of Time", col="blue") 
legend(20,0.057, legend=c("sd_RatioTotal"),col=c( "blue"),lty=1, 
        cex=0.8, lwd=1, border ="lty", box.col="white") 
###################################################################### 
timeVariation(x2.md.plot, pollutant = c("Ratio_NE", "Ratio_SW", 
"Ratio_Total"), 
              local.time = FALSE, normalise = F,ci = 
TRUE,col=c("blue","red","orange"), 
              xlab = c("hour", "hour", "month", "weekday"), ylab="Flow 
Ratio") 
###################################################################### 
# ARIMA Modelling using Bluetooth data by E.G. Ayodele 
#(e.g.ayodele@ncl.ac.uk) 
## Reference: Data Splitting in R by Jason Brownlee, 2014 
## http://machinelearningmastery.com/how-to-estimate-model-accuracy-
#in-r-using-the-caret-package/ 
# Hyndman, R.J. and Athanasopoulos, G. (2013) Forecasting: principles 
#and practice. OTexts. Available at: http://otexts.org/fpp/ 
#R and Data Mining: Examples and Case Studies by Yanchang Zhao 
# http://www.RDataMining.com   
library(openair) 
library(caret) 
library(klaR) 
library(forecast) 
# read in the data 
ts0506 <- 
read.csv("C:/b0925688/VDriveCopy220116/trafford2013/ts0506.csv") 
##Remove the column containing day, hour and min15 to reduce the data 
#size 
ts0506 <- ts0506[c(1,5:6)] 
# Define an 80%/20% train/test split of the dataset. 
split=0.80 
trainIndex <- createDataPartition(ts0506$jtime, p=split, list=FALSE) 
data_train <- ts0506[ trainIndex,] 
data_test <- ts0506[-trainIndex,] 
# Convert test data to time series 
jt_test <- ts(data_test[,2], start=c(2013, 1), end=c(2013, 
12) ,frequency=12) 
seasonplot(jt_test, type="b", ylab="Journey Time 
(s)",xlab="Time",main="") 
# Make daily average from the training data set 
jt_train <- timeAverage(data_train, avg.time = "day") 
# Convert data to time series 
jt_train <- ts(jt_train[,2])#, start=c(2013, 1), end=c(2013, 12), 
frequency=12) 
#Plot data to explore series 
plot(jt_train, type="b", ylab="Journey Time (s)",xlab="Time",main="") 
par(mfrow=c(1,2)) 
Acf(jt_train,main="") 
Pacf(jt_train,main="") 
acf(log(jt_train),main="") 
pacf(log(jt_train),main="") 
# Difference and transform the data 
acf(diff(log(jt_train)),main="") 
pacf(diff(log(jt_train)),main="") 

mailto:e.g.ayodele@ncl.ac.uk
http://machinelearningmastery.com/how-to-estimate-model-accuracy-#in-r-using-the-caret-package/
http://machinelearningmastery.com/how-to-estimate-model-accuracy-#in-r-using-the-caret-package/
http://otexts.org/fpp/
http://www.rdatamining.com/
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tsdisplay(diff(jt_train),main="") 
# train an arima model 
(fit <- arima(log(jt_train), c(0, 1, 1),seasonal = list(order = c(0, 
1, 1), period = 12))) 
fita <- auto.arima(log(jt_train),seasonal=FALSE) 
fit0 <- Arima(log(jt_train),order=c(0,1,1)) 
fit1 <- Arima(log(jt_train),order=c(1,1,1)) 
fit2 <- Arima(log(jt_train),order=c(0,1,2)) 
(fits <- arima(log(jt_train), c(0, 1, 2),seasonal = list(order = c(0, 
1, 2), period = 12))) 
#par(mfrow=c(1,2)) 
summary(fit) 
summary(fita) 
summary(fit0) 
summary(fit1) 
summary(fit2) 
summary(fits) 
# Plot the residuals of the chosen model 
#plot(residuals(fit), type="b",ylab="Journey time residuals") 
plot(residuals(fit), ylab="Residuals of journey time") 
# make predictions 
pred <- predict(fits, n.ahead = 2*12) 
ts.plot(jt_train,2.718^pred$pred, log = "y", lty = c(1,3), col= 
c(2,4),ylab= "Journey time (s)") 
pred_corr <- 2.718^pred$pred 
pred_test <- ts(pred_corr, start=c(2013, 1), end=c(2013, 
12) ,frequency=12) 
## Aliter 
plot(forecast(fit), main="", ylab= "Log of journey time (s)", 
xlab="Time") 
#plot(fcast <- forecast(fit),main="") 
Box.test(residuals(fits), type="Ljung") 
#Plot the two series for comparison 
val <- cbind(pred_test,jt_test) 
write.csv(val,file="H:\\R\\val.csv") 
plot(val, plot.type="single",   
     main="Plot of training and test data",  
     ylab="Journey Time (s)",  
     col=c("blue", "red"), lty=1:2)  
legend("topleft", legend=c("Train","Test"), col=c("blue", 
"red"),lty=1:2)  
###################################################################### 

 
 


