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ABSTRACT

Cloud computing is a service-oriented approach to distributed computing that has
many attractive features, including on-demand access to large compute resources. One
type of cloud applications are scientific workflows, which are playing an increasingly
important role in building applications from heterogeneous components. Workflows are
increasingly used in science as a means to capture, share, and publish computational
analysis. Clouds can offer a number of benefits to workflow systems, including the
dynamic provisioning of the resources needed for computation and storage, which has
the potential to dramatically increase the ability to quickly extract new results from

the huge amounts of data now being collected.

However, there are increasing number of Cloud computing platforms, each with dif-
ferent functionality and interfaces. It therefore becomes increasingly challenging to
define workflows in a portable way so that they can be run reliably on different clouds.
As a consequence, workflow developers face the problem of deciding which Cloud to

select and - more importantly for the long-term - how to avoid vendor lock-in.

A further issue that has arisen with workflows is that it is common for them to stop
being executable a relatively short time after they were created. This can be due to
the external resources required to execute a workflow - such as data and services -
becoming unavailable. It can also be caused by changes in the execution environment
on which the workflow depends, such as changes to a library causing an error when a
workflow service is executed. This "workflow decay” issue is recognised as an impedi-
ment to the reuse of workflows and the reproducibility of their results. It is becoming
a major problem, as the reproducibility of science is increasingly dependent on the

reproducibility of scientific workflows.

In this thesis we presented new solutions to address these challenges. We propose a new
approach to workflow modelling that offers a portable and re-usable description of the
workflow using the TOSCA specification language. Our approach addresses portability

by allowing workflow components to be systematically specified and automatically



deployed on a range of clouds, or in local computing environments, using container

virtualisation techniques.

To address the issues of reproducibility and workflow decay, our modelling and deploy-
ment approach has also been integrated with source control and container management
techniques to create a new framework that efficiently supports dynamic workflow de-

ployment, (re-)execution and reproducibility.

To improve deployment performance, we extend the framework with number of new
optimisation techniques, and evaluate their effect on a range of real and synthetic

workflows.

- Vi -



PUBLICATIONS

Parts of the work within this thesis have been published in the following papers:

CONFERENCE

1. R.Qasha, J.Cala and P.Watson, Dynamic Deployment of Scientific Workflows
in the Cloud using Container Virtualization, IEEE 8th International Conference

on Cloud Computing Technology and Science, CloudCom December 2016.

2. R.Qasha, J.Cala and P.Watson, A Framework for Scientific Workflow Repro-
ducibility in the Cloud, IEEE 12th International Conference on eScience, October

2016. The paper was selected as one of the four best papers of the conference.

3. R.Qasha, J.Cala and P.Watson, Towards Automated Workflow Deployment in
the Cloud Using TOSCA, IEEE 8th International Conference on Cloud Comput-
ing, June 2015.

WORKSHOP

A part of this thesis has also been presented at the following workshop:

e R.Qasha, Reproducibility of Scientific Workflow in the Cloud using Container
Virtualization, Docker Containers for Reproducible Research Workshop (C4RR),
University of Cambridge, Cambridge 2017.

- vii -



- viii -



CONTENTS

1 Introduction 1
1.1 Research Goals . . . . . . . . ... ... 6
1.2 Contributions . . . . . . . . ... 7
1.3 Thesis Structure. . . . . . . . ..o 9

2 Literature review 11
2.1 Cloud Computing . . . . . . . . . ... . 12
2.2 Container-Based Virtualization . . . . ... ... ... .. .. ..... 15
2.3 Scientific Workflow . . . . . . ... o oo 18

2.3.1 Workflow Modeling . . . . . ... ... ... . 20

2.4 Application Deployment . . . . . . .. ... 22
2.4.1 Deployment Specifications . . . . . .. ... ... ... ... .. 23
2.4.2 Deployment Tools . . . . . . . . ... ... 25

2.5 Workflow Deployment . . . . . . .. ... ... L. 27
2.5.1 Deployment of Cloud Workflow Systems . . . . ... ... ... 27
2.5.2  Workflow Deployment using Virtualization . . . . . . . .. . .. 30
2.5.2.1 Deployment with Container-based Virtualization . . . 31

2.6 Workflow Reproducibility . . . . ... ... ... ... ... 34
2.6.1 Reproducibility with Logical Preservation . . .. ... ... .. 35
2.6.2 Reproducibility with Physical Preservation . . . . . . . ... .. 36

2.7 Optimization of Workflow Provisioning . . . . . . .. ... ... . ... 39

3 TOSCA-based Modeling for Automated Workflow Deployment in the

Cloud 43
3.1 Imtroduction . . . . . . . . .. 44
3.2 TOSCA in Detail . . . . . . .. . ... 45
3.3 TOSCA-Based Modeling of Scientific Workflow . . . . . . ... .. .. 48
3.3.1 Modeling Workflow Building Blocks . . . . . .. ... ... ... 49
3.3.1.1  Workflow Components as Node Types . . . . . .. .. 49

3.3.1.2 Task Dependencies as Relationship Types . . . . . .. 50

3.3.2  Constructing a Workflow Topology Template . . . . . . . . . .. 50

- IX -



3.4 Use Case: TOSCA-Based mapping of a Real Scientific Workflow . . . . 51

3.4.1 Workflow components as Node Types . . . . . . ... ... ... 52
3.4.2 Block dependencies as Relationship Types . . . . . .. ... .. 54
3.4.3 Constructing the NJ Workflow Topology Template . . . . . .. 55
3.5 Conclusion . . . . . .. .. 58

Dynamic Deployment of Scientific Workflows in the Cloud using Con-

tainer Virtualization 59
4.1 Introduction . . . . . . .. . 60
4.2  Workflow Deployment Requirements . . . . . . .. ... ... ... .. 62
4.3 Dynamic Deployment of Scientific Workflow . . . . . .. ... ... .. 64
4.3.1 Building the Workflow Topology . . . . . . . . ... .. .. ... 65
4.3.2 Managing the Workflow Deployment Life-cycle . . . . . . . . .. 66
4.3.3 Task Deployment using Container Virtualization . . . . . . . . . 67
4.3.4 Data Transfer . . . . . . .. ... L 70
4.4 The Integration of TOSCA and Docker for Workflow Deployment . . . 71
4.4.1 On-demand deployment and Pre-built Docker Images . . . . . . 71
4.4.2 Single- and Multi-Container Deployment Scenarios . . . . . . . 72
4.5 Experiments and Evaluation . . . . .. .. ... ... .00 73
4.5.1 Experimental Setup . . . . . . . ... L 73
4.5.2 Experiment 1: Deployment and Enactment Time . . . .. . .. 75
4.5.3 Experiment 2: Single- and Multi-Container Deployments . . . . 76
4.5.4 Experiment 3: The Influence of On-demand Deployment . . . . 78
4.5.5 Experiment 4: Deployment with Different Docker Images . . . . 79
4.6 Conclusions . . . . . . . .. 83

A Framework for Scientific Workflow Reproducibility in the Cloud 85

5.1 Imtroduction . . . . . . ... 86
5.2 Requirements for Workflow Reproducibility . . . . .. .. ... ... .. 89
5.3 Improving Workflow Reproducibility . . . . ... ... ... ... ... 92
5.3.1 The Framework Architecture. . . . . . . .. .. ... ... ... 92
5.3.2 The Framework in Use . . . . . .. .. .. ... ... ...... 93
5.4 Workflow and Task Repositories . . . . . . . ... ... ... ... ... 94
5.4.1 Repository Structure . . . . . . . .. ... 95
5.4.2 Interface Control via Branches and Tags . . . . . . . ... ... 97



9.5

5.6

5.4.3 Automatic Workflow Deployment . . . . . . .. ... ... ... 99

5.4.4  Automatic Workflow/Task Image Capture (AIC) . .. ... .. 101
Evaluation and Discussion . . . . . . . . . ... ... L. 103
5.5.1 Repeatability on Different Clouds . . . . . .. .. ... .. ... 103
5.5.2 Automatic Image Capture for Improved Performance . . . . . . 106
5.5.3 Reproducibility in the Face of Development Changes . . . . .. 108
Conclusions . . . . . . .. . 111

New Techniques for the Optimization of Scientific Workflow Deploy-

ment in the Cloud 113
6.1 Introduction . . . . . . . . ... 114
6.2 Performance Optimization for Automatic Deployment . . . . . . . . .. 116
6.2.1 Dynamic Workflow Deployment . . . . . . .. ... .. ... .. 116
6.2.2 Optimization Techniques for Workflow Provisioning . . . . . . . 117
6.3 Transparent Workflow/Task Image Management . . . . . . . ... ... 119
6.3.1 Just-in-time Task Image Naming, Creation and Selection . . . . 119
6.3.2 Automatic Image Caching and Sharing . . . . . ... ... ... 123
6.3.3 Caching Workflow Component Artifacts . . . . .. .. ... .. 125
6.4 Experiments and Evaluation . . . . . . ... ... 00000 125
6.4.1 Experimental Setup . . . . . .. .. ... L. 126
6.4.2 The Influence of Task Changes on the Deployment Time . . . . 126
6.4.3 Task Image Caching for Deployment Optimization . . . . . . . . 128
6.4.4 Sharing Cached Images between Workflows . . . . . . . . . . .. 130
6.4.4.1 Concurrent Executions of the Same Workflow . . . . . 130
6.4.4.2 Concurrent Executions of Different Workflows . . . . . 133
6.4.5 Optimising Initial Deployment and Image Creation . . . . . .. 135
6.5 Conclusion . . . . . . . .. 137
Conclusion 139
7.1 Thesis Summary . . . . . . . ... 140
7.2 Contributions to the Automatic Deployment and Reproducibility of Sci-
entific Workflow . . . . . . . . ..o 142
7.3 Future Research Directions . . . . . . .. .. ... ... ... ... ... 144
7.3.1 Modeling and Invocation of Subworkflows . . . .. ... .. .. 144
7.3.2 Supporting the Parallel execution of workflow tasks . . . . . .. 144

-x] -



7.3.3 Modeling Various Types of Scientific Workflow . . . . . . . . .. 145

7.3.4 Capturing Provenance Data for Comprehensive Reproducibility 145

7.3.5 Distributed Workflow Enactment on Hybrid Cloud . . . . . .. 145

7.3.6 Fault-Tolerance and recovery Strategies . . . . . . . . ... ... 146

8 Appendix 147
81 Appendix A . . . ... 148
Bibliography 155

- xil -



LisT OF FIGURES

1.1

2.1

3.1
3.2
3.3
3.4

4.1

4.2

4.3

4.4

4.5

4.6
4.7
4.8

4.9

5.1
5.2
9.3

5.4

9.5

5.6

The results of workflow decay studies . . . . . . . ... ... ... ... 3
Hypervisor vs Container Virtualization. . . . . . . . . . ... ... ... 16
Type definitions and templates in TOSCA. . . . . . . ... .. .. ... 46
An e-SC modeling for Neighbour Joining NJ workflow. . . . . . . . .. 52
Node types hierarchy for modeling scientific workflow. . . . . . . . . .. 53
TOSCA Topology Template of the NJ Workflow. . . . ... ... ... 56
Steps from the definition to the enactment of a workflow. . . . . . . .. 64
The single container workflow deployment . . . . . . . .. . ... ... 68
Isolated deployment of a workflow task. . . . . . . ... ... ... ... 68

Execution time for workflows enacted in different environments; the
NJ workflow used the Basic and CentOS images, other three workflows

used the Basic image only. . . . . . . . .. ..o 76
Average execution time of single- and multi-container workflow
deployments; all workflows used the Basic image. . . . . ... .. ... 7
Execution time for the steps in deployment the NJ workflow. . . . . . . 78
Execution time for steps in deployment of the SC workflow. . . . . .. 79
Execution time of the NJ workflow using three possible workflow
deployment options. . . . . . . . ... 80
Execution time of the CSVExport task deployed using three task
deployment options. . . . . . . . .. ... 82
The architecture of our workflow reproducibility framework. . . . . .. 93
The artifacts of a workflow repository. . . . . .. .. .. ... .. ... 96

The human readable description of a workflow repository presented in
README.md file as shown in 5.2. . . . . . ... ... . ... ..... 98

Steps in automatic workflow deployment using the multi-container
configuration. . . . . . ..o 100

Steps in automatic workflow deployment using the task images created
by the AIC; cf. Fig. 5.4. . . . . . . . .. 102

The structure of the Sequence Cleaning workflow in multi-container
configuration described in TOSCA. . . . . .. .. ... ... ... ... 104

- xiii -



5.7

2.8

5.9

5.10
5.11

6.1

6.2

6.3
6.4
6.5
6.6

6.7

6.8
6.9
6.10
6.11

The structure of the Column Invert workflow in multi-container
configuration described in TOSCA. . . . . . . . . ... ... ... ... 104

The structure of the File Zip workflow in multi-container configuration
described in TOSCA. . . . . . . . . . .. . 105

The average execution time for the Sequence Cleaning workflow
executed in different environments. . . . . . .. ..o 106

The average execution time of test workflows using different task images.107

A hypothetical evolution of the Sequence Cleaning workflow. . . . . . 109

Deployment scenario of four workflows with Just-in-time Task Image

Selection algorithm. . . . . . . . . ... . oo 121
Provisioning steps for a workflow task with automatic selection and

caching. . . . . . . . . . 122
Three level caching for task/workflow images. . . . . .. ... ... .. 124
Influence of Task Changes on Workflow Execution Time . . .. . ... 128
Execution Time for NJ workflow with Tasks Images Caching. . . . . . 129

The Influence of Sharing Components between Two instances of the
NJ Workflow on a Single Machine. . . . . .. .. .. ... ... .... 131

The influence of Sharing Tasks Images between Two instances of NJ
Workflow on Different Clouds. . . . . . . .. ... ... ... ... ... 132

Casel: Execution Times for Different Workflows on Different Clouds. . 134
Case2: Execution Times for Different Workflows on Different Clouds. . 134
Case3: Execution Times for Different Workflows on Different Clouds. . 135

Execution Time for NJ Workflow with/without Tasks and
Dependencies Caching. . . . . . . . . . .. ... ... ... ... ... 136

- X1V -



LisT OF TABLES

4.1
4.2
4.3

5.1
5.2

6.1

Workflows selected to test our deployment approach. . . . .. ... .. 73
Docker images used in the experiments. . . . . . . . . .. ... ... .. 74
Execution environments. . . . . .. . ... Lo 75
Basic details about the execution environments. . . . . . . .. ... .. 105

The average execution time (in minutes) for different workflows
executed in different environments. . . . . .. ..o 000 L 106

The Influence of Task Image Creation on the Deployment Time. . . . . 128

_XV_



- XVi -



1

INTRODUCTION




Chapter 1: Introduction

Introduction

In recent years, Cloud computing has provided a new way to offer applications, software
platforms, and computer infrastructure as services. Because organisations can now
acquire virtualised computing resources on-demand, the adoption of Platform as a
Service (PaaS) has supported rapid application deployment. This also enables systems
to be scalable as the resources utilised by an application can rise and fall as needed to
meet changing demand [80]. Consequently, the use of Cloud has been steadily rising,

and an increasing number of enterprises are moving applications to the Cloud.

In parallel with the growth of clouds, scientific workflow has become an increasingly
popular paradigm for scientists to formalize and structure the complex analysis that
are now underpinning a growing proportion of scientific research. Here, scientific appli-
cations are structured as a directed graph of tasks that are executed to analyse input
data [149]. The main advantages of workflows are that they can easily be assembled
for a specific purpose from an existing set of available tasks [16] - even by novices -
and that tasks can be re-used in multiple different workflows. These advantages are
not limited just to the workflow’s original developers, nor they are only specific to the
research for which the workflow was generated; once created, a workflow can be shared,
re-used and adapted by other scientists. The reasons for this are that workflows ex-
pose the structure of the computation, making it more understandable and re-usable
by others. This can help other users: understand the experimental process, re-execute
the workflow to replicate the original experimental results, apply the workflow to dif-
ferent data, or use the workflow as a starting point to design a new workflow for a
different experiment. To realise this potential for sharing and re-usability, a number of
public repositories such as myExperiment [53] and CrowdLabs [85] have been created

to enable scientists to publish and discover workflows.

Unsurprisingly, as modern Cloud computing capabilities have emerged, workflow sys-
tems have been migrated to, or specially developed for, the Cloud. Clouds can offer
a number of benefits to workflow systems, including the dynamic provisioning of the
resources needed for computation and storage, which has the potential to dramati-

cally increase the ability to quickly extract new results from the huge amounts of data

9.



Chapter 1: Introduction

now being collected [66] [77]. Consequently, Cloud computing has become the main
computing infrastructure underpinning scientific workflows. However, some significant

problems remain. Tackling these challenges is the focus of this thesis.

The clouds provided by commercial entities and computing centres are offered to clients
through diverse cloud management platforms with different functionality and APIs [59]
[83]. It is therefore challenging to define workflows in a portable way so that they can
be run reliably on different clouds. As a consequence, workflow developers face the
problem of deciding which Cloud to select and - more importantly for the longer-
term - how to avoid vendor lock-in. Cloud computing would be more valuable as
an underpinning technology for science if workflow could be ported across different
cloud environments. Without this, there is the danger that the workflow may become
unusable if the supplier withdraws, or dramatically changes their offer. This would
destroy the ability to reproduce scientific analyses performed by workflows, something

that has become increasingly important to science in recent years.

Another major problem that affects sharing and reproducibility is workflow decay.
A number of investigations have found that, a relatively short time after they were
created, a large number of workflows either cannot be re-executed or do not produce
the same results - this is known as workflow decay. Figure 1.1 presents the results of
two studies, studyl [145] and study2 [87], that show the decay in two collections of

workflows over a period of 5 (studyl) and 8 years (study2).

1600

H total no. of workflows
1400

Waorkflows that can be re-excuted
1200

1000

800

600

400

Number of workflows
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200

G C%)
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Figure 1.1: The results of workflow decay studies

The main reasons for the decay are:
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e the resources (data and services) required to execute workflows are no longer
available. For example, a service called by the workflow may have been removed

by its owner.

e the resources (data and services) required to execute workflows are still available,
but have been modified. For example, a service called by the workflow may have
been upgraded by its owner so that it returns a different result. In the worst
case, the interface to a service may have been changed, so that it can no longer

handle the input(s) sent from its predecessor services in the workflow.

e changes in the execution environment on which the workflow (or one of its com-
ponents) is dependent [18] prevent its successful execution. For example a change
to a library, or the operating system, on which a task or the workflow manager

depends, might prevent it from being executed.

Many approaches, technologies and tools have been developed to support the deploy-
ment of multi-service systems such as workflow applications. They attempt to reduce
deployment complexity by providing descriptions of both the application components
and their deployment target environments, abstracting the dependencies and automat-
ing the deployment process [122]. The main causes of deployment complexity are the
heterogeneity of applications components and the target systems, the interactions be-
tween them and the constraints of execution policies. The heterogeneous services
employed in composite workflows can have different dependencies and require differ-
ent software stacks which may cause conflicts [23]. For example, different workflow’s
tasks may need the same library with different versions or each task might need to be

executed on a specific version of the operating system.

Traditional deployment tools and technologies do not provide a complete solution
for addressing these deployment complexities because of their limitation in resolving
dependencies among components, and also due to a lack of support for heterogeneous
application components and execution environments [130]. Moreover, most of these
mechanisms have been developed for a specific type of application component, or for

specific execution environments.
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Therefore, we believe that a new deployment infrastructure tailored for workflow-based

applications is required to tackle deployment complexities by:

(a) offering a way to comprehensively describe: application components and their

requirements, target systems and their dependencies,

(b) providing a way to exploit this description to automate the deployment of these
components onto a range of target systems (e.g. a range of different vendors’s

clouds),

(c) supporting the isolation of service execution to minimise disruption between
services, isolation is required to protect the execution of the components from

each other.

In this thesis we focus on addressing the problems of workflow portability and re-use
through the design, implementation and evaluation of a novel system that meets the
above design challenges. The approach significantly increases the ability to re-use and
reproduce workflows, so reducing workflow decay. It does this by combining software

modelling, automated deployment and virtualization.

Virtualization is at the heart of Cloud computing, as software encapsulated in VMs
is deployed on cloud nodes. Recently, container-based virtualization techniques, such
as Docker !, have simplified and accelerated the deployment of applications in the
Cloud [115]. When considering the case of a workflow application that consists of a
set of heterogeneous components, each potentially relying on different dependencies,
container-based virtualization offers the opportunity for rapidly creating efficient and
isolated execution environments to build and deploy workflow components [74]. In
this thesis we show how containers can be used to support the portability, dynamic

deployment and repeatability of scientific workflows in the Cloud.

Virtualization alone cannot solve all the problems. It makes it easy to repeat exactly
the same workflow execution, but we will show that it is often not enough to reproduce
the experiment, possibly modified by using different parameters or input data. To

achieve this, we also need to include Software Modelling, which enables the creation of

Thttps:/ /www.docker.com/
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a detailed description of the various levels of the workflow, so enabling the automated

deployment of virtualised components.

1.1 Research Goals

The overall aim of the thesis is to design, implement and evaluate a system for workflow
modelling that offers a portable and re-usable description, so enabling automatic de-
ployment on a range of clouds. The system should efficiently support the re-execution
and reproducibility of scientific workflows both in the Cloud and in local computing

environments.

To achieve this aim, in this thesis we investigate and address the following research

objectives:

Scientific workflow modeling How can a scientific workflow and its heterogeneous
components be modeled? Modeling should provide a comprehensive description of the
workflow, its services, all required dependencies and relationships between these com-
ponents. A workflow description should enable portability, re-usability and automatic

deployment in a range of clouds.

Automatic deployment of scientific workflow How can we automate the de-
ployment of workflows and their related services in the Cloud to achieve reusability,
reproducibility and execution isolation? The solution should support the portability
of workflow across a range of Clouds, and offer the flexibility to dynamically provision

workflow tasks.

Workflow re-usability, re-execution and reproducibility How can we design
a system to support the logical and physical preservation of scientific workflows so as

to facilitate repeatability, reusability and also improve reproducibility?

Effective deployment of scientific workflows How can we optimise the perfor-

mance of workflow deployment?
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1.2 Contributions

Considering these aims and objectives, the main contributions of this thesis concerns

four area: workflow modeling, deployment, reproducibility and performance optimiza-

tion.

(i)

(iii)

A survey of the state-of the-art in cloud application deployment, scientific work-
flow modeling, deployment and reproducibility in Cloud computing. Existing

methods and tools are described and critically examined.

A new approach to model scientific workflows, based on the TOSCA specifica-
tion language which combines simplicity and re-usability. The approach enables
the modelling of the workflow together with its components at a level that is
independent of the cloud(s) on which it is deployed. It also enables automatic

deployment on a range of clouds.

Development and evaluation of a new approach for the automatic deployment
of scientific workflow in the Cloud. Our TOSCA-based modelling approach is
integrated with container virtualization to dynamically deploy a set of existing
workflows in a range of different scenarios, and includes support for the isolation

of heterogeneous workflow components.

A new framework is designed and implemented to support repeatability and
improve the reproducibility of scientific workflow. The framework covers both
logical and physical preservation of the workflows. The framework is unique
in incorporating software repositories to manage versioning of source code and
effectually tracking changes. It is fully integrated with the automatic deployment

system.

Designing, implementing and evaluating a number of optimization techniques
that significantly improve the performance of the deployment of scientific work-
flows, and consequently the performance of the reproducibility framework. These
techniques automate the sharing and re-use of ready-to-run workflows and tasks

packaged as images. A new algorithm is developed to automatically name and

-7
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select compatible task images, and is integrated with a version control system.

This allows the automation of image creation, caching and sharing.
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1.3 Thesis Structure

Chapter 1 describes the motivation behind the research, and highlights the research

problems and main contributions of the thesis.

Chapter 2 presents background material and a summary of work related to the re-

search described in this thesis.

Chapter 3 proposes our TOSCA-based modelling approach for the comprehensive
specification of scientific workflow. The approach enables the portable and easy

to reuse definition of the components and lifecycle management of workflows.

Chapter 4 describes a new automated approach for building, dynamically deploying
and enacting workflows. We demonstrate that our modelling approach using
TOSCA can be used effectively to facilitate automatic deployment of the work-
flow. In this approach, TOSCA-based modelling is integrated with container

virtualization to support dynamic deployment.

Chapter 5 explores a design and prototype implementation of our new framework
that supports repeatability and reproducibility of scientific workflows in the
Cloud. We demonstrate how to utilize our TOSCA-based modelling to sup-
port logical preservation of the workflows and leverage container management

techniques to physically preserve them.

Chapter 6 highlights a number of issues affecting the effectiveness of workflow de-
ployment and ultimately the performance of workflow reproducibility. In this
chapter, we propose new optimization techniques that significantly improve the
deployment of scientific workflows including automatic caching, sharing and re-

use of workflows and their components.

Chapter 7 summarises and presents the overall conclusions drawn from the work
presented in this thesis, and proposes a number of directions for further work in

the area.
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Chapter 2: Literature review

Summary

This chapter presents the related work that motivated and underpinned the work
presented in this thesis. It also provides an overview of the concepts and tools used
to create the solutions we present. It starts by describing some of the background
information concerning the overall topic, including a brief primer on Cloud computing,
container-based virtualization, scientific workflow and application deployment. Our
discussion spans different areas which are related to the main focus of this thesis
including: modeling, deployment and the reproducibility of scientific workflow as well
as the optimization of provisioning. At the same time, gaps in the state of the art

research are highlighted, and we describe briefly how this thesis tackles these gaps.

2.1 Cloud Computing

Cloud computing is a novel computing paradigm that offers computing facilities as a
service. It provides resources to store data and host services on a massive scale [47].
A specific feature of Cloud computing is that it allows the provision of on-demand re-
sources and customized computing environments with a pay-as-you-go charging model.
Therefore, applications are increasingly being moved to the Cloud to exploit the rich
set of resources available there [147]. As a result, Cloud computing has emerged as
a distributed computing platform that has attracted the interests of researchers and

practitioners in various areas.

Currently, there is no single agreed definition of Cloud computing among the scientific
communities [142]. However, it is commonly agreed that the term Cloud computing
basically refers to data centres delivering applications, platforms and infrastructure
(hardware and systems software) as services over the Internet [10]. The major advan-
tages and characteristics of cloud services that drive its widespread adoption can be
summarised as [131]: (1) resources offered as services that can be accessed over the
Internet, (2) on-demand scalability - provisioning of resources as needed to support the
scalability of applications, (3) better resource utilization - cloud platforms efficiently
managing resource utilization so as to meet demand from sets of applications; and (4)

cost saving - cloud users only pay for the resources they use.
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Typically cloud services has been categorised in three models: [89]: (1) Software as
a Service (SaaS)- in this model, end users access providers’ applications running on
a cloud infrastructure. The applications are accessible from various client devices
through a web browser (e.g., web-based email), an "app” or an application program-
ming interface (API). Examples of SaaS include Microsoft Office 365 and Dropbox.
(2) Platform as a Service (PaaS)— the services provided in this model are a com-
puting platform for provisioning and hosting user applications. The services include:
operating systems, programming language execution environments, web servers and
databases. The users do not manage or control the underlying cloud infrastructure
but have control over the provisioned applications. Examples of PaaS include Google
App Engine (GAE) [2] and Salesforce’s Force.com [3]. (3) Infrastructure as a Service
(IaaS), in this model, cloud providers offer fundamental computing resources such as
virtual machines, storage, networks, and others. Therefore, users can deploy and run
software, which can include operating systems and applications, using the provided
resources. Example of laaS are Amazon EC2 [1] and Microsoft Azure [76]. In this
way, Cloud computing provides a new way to access and utilise I'T resources including

computing, storage, applications and networks.

When a Cloud is made available for open, public use, it is referred to as a "Public
Cloud”. In contrast, a "Private Cloud” refers to internal data centres used by a single
organization or a third party, but not made publicly available; several open source
cloud platforms, such as OpenNebula [93], Eucalyptus [97], and OpenStack [117],
have become available to support accessing and using cloud resources and services on
private clouds. The third model is "Hybrid cloud” (Federated Cloud) which is where
an application uses a combination of private and public clouds, for example restricting

confidential (e.g. medical) data to the private cloud [9)].

Various challenges and obstacles have arisen with the growth of Cloud computing
including vendor lock-in, service availability, data confidentiality /auditability, perfor-

mance unpredictability and data transfer bottlenecks [10].

This thesis focusses on addressing one of these challenges - how to avoid vendor lock-in
caused by a lack of common standards in the tools and APIs used by public clouds.

We present a new system that allows workflows to be portable across a range of clouds.
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This integrates the TOSCA specification language and container-based virtualization
to build a reusable and portable description of a workflow which can be automatically
deployed and enacted on different cloud environments. Therefore, this literature re-
view focusses on work in the relevant areas: container-based virtualization, workflow

modeling, deployment and reproducibility.
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2.2 Container-Based Virtualization

Virtualization is considered one of the key enablers for Cloud computing - different
kinds of computing resources such as storage, servers, and networks are virtualized to
provide access to, and improve utilization of, the underlying physical resources [2§]
[74]. Virtualization has brought several benefits, such as reducing the number of
physical machines by server consolidation and isolating the execution environments of
applications. Using virtualization as a base, cloud technologies introduce the concept
of computing as a utility, where on-demand computational resources are provided with

the illusion of unlimited supply [32].

A Virtual Machine (VM) based infrastructure has been adopted widely in Cloud com-
puting environments for elastic resource provisioning. It allows the resources of a
single physical machine to be shared by multiple VMs for maximum efficiency, and
gives benefits in terms of reliability and scalability. Each virtual machine (VM) [56]
runs a separate operating system, independent of the operating system on the hosted
machine. A hypervisor, running on each hosted machine provides virtualized com-
puting resources (CPU, memory, disk, etc.) to each virtual machine. The VM-based
approach supports the building of customised application stacks (including the operat-
ing system, middleware, and application components) as well as moving them between
physical machines. The mobility of VMs is achieved by packaging them as VM im-
ages files that are portable because a hypervisor on the other host can instantiate a
running VM from such an image. VM image files can also be stored in a repository
for later usage. Popular examples of hypervisor-based virtualization are Xen [15] and
VMware [135]. Today, hypervisor-based virtualization is used by cloud providers’ to
offer virtual machines for a wide variety of operating systems. It also achieves work-
load isolation as the components of different applications can be hosted on different

VMs, so ensuring secure execution and minimal interference between them.

VM-based virtualization is not the only way of providing virtualized environments. In
recent years, container-based virtualization techniques have emerged as a lightweight
alternative [118]. As shown in fig 2.1, with hypervisors based systems, all required

hardware components are virtualized, so as to allow the VM to run a fully independent
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Figure 2.1: Hypervisor vs Container Virtualization.

guest operating system, whereas in container virtualization the virtualized resources

share the kernel of the same operating system .

Container-based virtualization is not new [132], but recently there has been great
uptake of Docker[33], an open-source implementation of operating system-level virtu-
alization. Docker is based on open standards and runs on all major Linux distributions
and on Microsoft Windows. As a result, it has established a strong and open ecosystem

that several cloud providers now support.

Each Docker container is a running instance of a Docker image, where the image is a
lightweight, executable package of the software stack that includes everything needed
to run it: code, runtime, system tools and libraries as well as their configuration.
Most Docker images are distributed via the Docker Hub , which is maintained by the
Docker team. These containers share the kernel of the host system, but they each
run in an isolated user space, and have their own file system and virtual network
interfaces. Consequently, one container is unable to access others in an uncontrolled
way. Further, techniques for insuring performance isolation prevent a single container

from consuming all available computing resources [115].

The conceptual differences between hypervisor-based and container-based virtualiza-

tion have an impact on the performance [74]. In general, the overhead of container-
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based virtualization is lower because there is no separate guest operating system for
each container this consequently produces a lightweight virtual environment. In ad-
dition, there is no need for hardware virtualization because the OS kernel is shared
among the containers [116]. This, along with the portability of images across, leads
to better utilization of available resources when compared with VM-based system. A
comparative study [112] showed that a Docker container consumes only 6% and 16%
of CPU and memory respectively compared with a corresponding VM. Test also show
that processes running in Docler containers have almost a similar performance when
running on physical machine. Docker image size is typically in the MBs range, whereas
VM images are in the range of GBs - the reason is that the VM Image contains a full
operating system whereas Docker images do not. This is a factor in why Docker images
require only 60% of the corresponding VM time for booting and 2% for rebooting. This
combination of advantages mean that overall, container-based virtualization tends to
perform better than VM based virtualization, both when container is running, and in

terms of the time needed to create and destroy containers [45].

For these reasons, cloud providers such as AWS Beanstalkb, Microsoft Azure7 and
Google App Engine6 have started supporting Docker and encouraging this type of
virtualization, as well as providing an ecosystem of services for deploying containerized

components and applications [91].

In summary, Docker makes it fast and easy to build containers and to deploy them
just about anywhere: including in private or public clouds.This makes them a suitable
building block for the deployment of service-based architectures [46]. Therefore, one
of the main goals of our work was to device an efficient way to dynamically deploy a

distributed workflow application using Docker’s container-technology.
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2.3 Scientific Workflow

The workflow can be defined as a collection of distributed services and/tasks organ-
ised to accomplish a specific function or process [51]. Workflow technology facilitates
the process automation and coordination of these distributed services and tasks by
providing methodologies and software to model, configure and execute the workflow.
Workflows have been used to capture information about the services/tasks at a level
that describes their requirements, functionality and coordination. Originally, workflow
was first adopted by the business community, known as business workflow, to provide
glue for the distributed services and applied to automate repetitive tasks in business.
During recent decade, the concept of workflow has been applied to capture and auto-

mate large-scale of science experiments, emerging the notion scientific workflow [39].

Scientific workflow is a well-defined, and possibly repeatable, pattern activities de-
signed to capture a series of analytical processes which describe the design steps of
computational experiments and to achieve a certain transformation of data between
those steps [16]. The design and execution of many scientific applications require tools
and high-level mechanisms. Therefore, many efforts have been devoted towards the
development of management systems for scientific workflow that provide an environ-
ment to automate the scientific discovery process through the combination of scientific

data management, analysis, simulation, and visualisation [123].

Scientific workflow can be considered as a model defining the structure of computa-
tional and data processing tasks. It should provide a declarative way to specify the
high-level logic of the scientific experiment, be able to integrate existing tasks; ser-
vices and data sets in different compositions that implement the architecture design
of the experiment processes. The specification of workflow should be able to model
the stream of data from one processing unit to another. In addition, an important
characteristic of scientific workflow is the reusability: the ability to share for poten-
tial modifications and re-execution. The work presented in this thesis concentrates
on addressing the challenges for scientific workflow management including: modeling,

deployment and reproducibility [16].

Workflow has the advantage of making visible the dependencies necessary for the
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management of a scientific process. As well as enabling software pipelines that perform
multiple complex computaions. They can facilitate access to remote services, databases

and distributed computers [123].

Over the years, scientific workflows have proved their effectiveness as an effective
paradigm for programming complex scientific computations run on supercomputers or
distributed computing infrastructures such as Grids, peer-to-peer systems and Clouds.
Therefore, researchers in different disciplines have used them to orchestrate large-scale
computations in a wide variety of scientific domains, including astronomy, bioinfor-

matics, earthquake science, and physics [146] [63].

A workflow is composed of a set of tasks/services that are connected together to ex-
press data and/or control dependencies. Hence, each task/service represents a piece
of work that forms one logical step in the overall process. There are a number of pro-
gramming structures that have been adopted to represent the workflows. The most
common pattern is the direct acyclic graph(DAG) which consists of set of nodes and
edges [125]. The nodes represent tasks/services to be executed while the edges repre-
sent dependencies between the tasks. Two types of dependencies can be defined: 1)
data dependencies, where the output data generated by a task is the input to another,
and 2) control dependencies, where a task can only be started after the completion of

other task(s)[40].

The usage of workflow technologies offers a number of important benefits over tradi-
tional approaches to structuring scientific computaions from a set of services (such as
shell scripting) [40][43] including: (1) Simplifying the description of a computation:
workflows provide a declarative way for specifying the high-level logic of the scientific
process, hiding the low-level details that are not fundamental for application design (
such as how data travles from one service to another). (2) Re-usability: the declarative
nature of the workflow specification increases the ability of others to reuse portions of
an existing workflow, or to modify it to meet new requirements. Therefore, scientific
workflows can play an important role in the sharing, interchange, and reuse of scien-
tific methods. (3) Failure management: each step in a workflow can be automatically
rerun if a failure occurs (providing that it is idempotent). (4) Parallel and distributed

processing: workflows expose the opportunity to run computations in parallel on dis-
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tributed resources. (5) Provenance tracking: throughout the enactment stage of a
workflow, information about the processed data, the executed computations, and the
utilised resources can be captured and used later for validation of the method, and to

increase re-usability.

The life-cycle phases of workflows including modeling, deployment and enactment are
supported by a Workflow Management System (WFMS). We will now discuss these in

turn.

2.3.1 Workflow Modeling

A large number of specifications, standards and frameworks have been created to model

and manage workflows.

Most of the existing workflow models can be categorized into two classes [96]:

e Text-based systems: the workflow is specified in a textual programming language
that can be composed by using a plain text editor or a script in a high-level
language such as Python, Ruby or Java is used to generate the workflow spec-
ification. Business Process Execution Language (BPEL) is the most commonly
used script-based approach to describe business workflows, and has also been

used for science [127].

e Graphically-based systems: the workflow is specified using a number of simple
graphical elements that correspond to workflow components such as nodes and

edges. Most of the WFMSs provide a graphical tool for composing workflows [40].

There are number of formalisms and specifications used to describe general work-
flows, including the Unified Modeling Language UML [104], XML-based languages [11],
DAGMan [61], Petri nets [129], DAX [41] and JSON. For specialised workflow appli-
carions, BPEL is a business focused standard, while a number of scientific workflow
systems have been developed. Three of the main ones are Pegasus, Taverna and Hy-

perflow.

Pegasus WFMS [42] uses DAX for workflow description while Taverna [102] uses an
XML-based language - the Simple Conceptual Unified Flow Language SCUFL. SCUFL
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is a high-level language in which a workflow is defined as a set of local or remote services
interconnected using data links [16]. HyperFlow [12] uses a JSON-based format to
specify workflow structure including complex patterns such as parallel processing and

control flow patterns.

Recently, an effort to design a common language for scientific workflows (CWL) [7]
has been started, yet it is at the early stage and not mature enough for practical
applications. CWL is a specification for describing analysis workflows and tools in a
portable way across a variety of software and hardware environments that support the
CWL standard. In addition, tools and workflows described using CWL can leverage
Docker technologies. Despite its intention to provide a generic description for workflow
processes and their dependencies, CWL does not include the ability to describe the
execution environment, nor the dependencies required to execute tasks. Instead, it
relies on Docker as a mechanism to capture the installation and execution of tasks and

dependencies.
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2.4 Application Deployment

Software (application) deployment is a process consisting of a number of inter-related
activities including the release of software at the end of the development cycle; the
configuration of the software, the installation of software into the execution environ-
ment, the activation of the software, and the configuration of the infrastructure for

communication, isolation, and security [38][122].

Most of today’s systems are distributed applications composed of multiple, diverse and
related components. Therefore, different technologies and tools have been developed to
address the deployment of a set of interrelated software components into heterogeneous
environments by offering a description of the environments, an abstraction of the

dependencies, and by automating the deployment process [64].

A number of studies have classified deployment approaches based on different criteria.
Talwar et al [124] classified deployment approaches as script-based, language-based,
and model-driven. Scripts were the first attempt to automate deployment and are
a very good solution when there are small number of components. A better level of
reuse can be achieved using object-oriented languages, because they can benefit from
mechanisms such as inheritance and composition. Model-driven deployment brings
new possibilities, as resources, systems, and applications can be separately modelled
and hence more specific and intelligent tools can be developed. Moreover, models

provide an abstraction layer over the heterogeneity of the managed system [111][138].

In contrast, in [139] the authors classified the deployment approaches as Application-
oritented or Middleware-oriented deployment. In application-oriented approaches, the
deployment process is specific to a particular application including its own compo-
nents and any required middleware. The middleware oriented approach supports the
deployment of middleware components that are not specific to a particular application.
The later approach is more general and enables deployment re-usability for different

applications using the same middleware.

The exploitation of cloud technology has enabled the full automation of application
deployment so as to enhance the efficiency of applications management. The DevOps

community provides various tools and approaches to automate deployment, with a
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focus on on the deployment of a predefined application stack.

There are many deployment approaches, and they cover different aspects of the de-
ployment process in various ways ranging from standards, tools, and systems targeting
different infrastructures (domains). Each of them has its own features, advantages and

disadvantages which are now considered.

2.4.1 Deployment Specifications

Various specifications attempt to standardize the mechanisms by which applications
can be deployed on diverse target systems. These include: W3C-IUDD [134], UML,
CIM [44], OMG DnC [103] and OASIS SDD [98] and TOSCA [100].

The OMG DnC specification is one of the most complete approaches. It provides
comprehensive frameworks for development, packaging, and deployment of a range of

component middleware [106].

The specification provides standard interchange formats for metadata used throughout
the development lifecycle of component-based application, as well as runtime interfaces
that are used for packaging and planning. These runtime interfaces use a component
deployment plan to deliver deployment instructions to the middleware deployment in-
frastructure, which contains the complete set of information for the deployment and
configuration processes for component instances and their related connection informa-

tion [95].

However, there are number of drawbacks regarding specification size and complexities
in the processing of deployment metadata in XML format. The DnC specification
contains a big data model to describe the applications components and a deployment
plan that grows substantially with increases in the number of component instances.
Moreover, the deployment plan metadata defined by the DnC specification is not
appropriate for fully capturing deployment ordering or dependencies [38][105].

OASIS offers two different specification. The first, aimed at lifecycle management in
multi-platform environment, defines an XML-based schema called Solution Deploy-
ment Descriptors (SDD) for describing the installation characteristics of software [98].

SDD defines schema for two XML documents: Package Descriptors and Deployment
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Descriptors. The Package Descriptors define the characteristics of the package that
used for deploying the software. Deployment Descriptors define the characteristics of

the software package, including creation requirements, configuration, and maintenance.

There are number of limitations on SDDs. In particular, it does not provide sufficient
information to support deployment of the software it describes. In addition, it does
not address how the artifact and their associated information are offered to the target

environment in order to be managed [92].

A recent specification from OASIS is the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [75]. This offers a new approach to enable automatic
deployment of multiple (cloud) applications and improve the portability of these ap-
plications in the face of the growing diversity in cloud environments. TOSCA provides
two versions based on the XML [120] and YAML [101] modeling languages to de-
fine, build, and package the application building blocks in a completely self-contained

manner. This allows their reuse by different applications in a standardized way [20].

The specification aims to improve the portability of multi-cloud applications by en-
abling an interoperable description of: application and infrastructure cloud services,
the relationships between service parts, and the services operational behaviour, inde-
pendently of the service creating supplier and any particular cloud provider or hosting

technology [24].

The application of TOSCA is still in its early stages. Wettinger et al. [140] presented
an integrated, standards-based modeling and runtime framework by using TOSCA as
a uniform metamodel to combine a variety of DevOps artifacts (e.g. Chef cookbook?,

Juju Charm ?) and enable them to interoperate seamlessly.

In [75], the authors propose to use TOSCA to specify the components and config-
uration of Internet of Things (IoT) applications. Kostoska et al. [72] presented an
implementation of TOSCA to enable a custom University Management System to be
deployed in a flexible and portable manner. A proof of concept (PoC) project to
investigate the current state of the art in the portability of cloud applications is de-

scribed in [67]: a multi-tier web application was modeled according to TOSCA and

Thttps://www.chef.io
2https://juju.ubuntu.com/docs
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TOSCA2Chef execution environment was developed to allow he deployment of the
application in a Cloud. None of these previous efforts have, however, tried to use

TOSCA for scientific workflow enactment.

Therefore, in this thesis we explore the use of TOSCA to define scientific workflows
in a comprehensive and portable way, and also design and build a system for their

automatic deployment.

2.4.2 Deployment Tools

In addition to the above specifications, a wide set of other approaches and tools have
been proposed and developed to achieve automatic deployment with various capabili-
ties and support. These provide either a stand-alone software, command-line interface,

or a GUI web application such as HTCondor [126], Wrangler [65], Juju and Docker.

HTCondor is an open-source High Throughput Computing (HTC) management soft-
ware framework for enormous group of distributed environments. It comprises a set of
software tools which implement and deploy high throughput computing on distributed
computers. When the users submit their serial or parallel jobs, HTCondor performs
the following tasks: places the jobs in a queue, selects when and where these jobs can
be run based upon a policy, controls their progress, and finally informs the user upon
completion [126]. Although HTCondor can find environments for the execution of
programs, however it unable to schedule the running programs based on their required

dependencies [123].

Juve and Deelman [65] presented Wrangler, a system that can be used to deploy dis-
tributed applications automatically on cloud infrastructure by provisioning, configur-
ing, and managing virtual machine. In Wrangler users describe the desired deployment
to a coordinator which is a web service responsible for virtual machine provisioning.
The co-ordinator uses an agent in each machine to install and configure the software
and services. The system can deploy applications across a range of clouds using VM
images, enables users to define custom behaviour of their applications using plugins,
and allows the specification of dependencies between provisioned VMs. But all the
VM images used in the provisioning process required to be prepared manually in a

prior step.

- 95 -



Chapter 2: Literature review

Ubuntu presents an open source project called Juju that offers a service orchestra-
tion framework to deploy and manage applications independently of the underlying
hardware using components called ’Charms’ on public, private or hybrid cloud. Juju
charms define the applications as services, each charm is a structured packages of files
containing metadata, configuration data, and some extra support files. Charms encap-
sulate information on how the services can be deployed and configured properly on a
Cloud. They can be fetched from an external charm store, stored in a local repository,
or written by the user. Juju supports the deployment of applications using Charms to
AWS EC2, OpenStack, Azure, and even user own Ubuntu based laptop. It provides
a command-line interface and web application which can be used for designing, build-
ing, configuring, deploying and managing the infrastructure [17]. However, Charms

are Linux oriented, therefore the portability of Juju applications is limiting .

As described in section 2.2, one of the latest tools for application deployment is Docker.
Docker provides mechanisms that enables packaging of applications in a way that fa-
cilitates their deployment and execution [74] by wrapping an application in a container
with all the above-kernel software required for execution. The containers can be created
either manually or automatically. It has rapidly achieved widespread use for deploying
multi-service applications, because of its lightweight software stack packaging, and its
support for execution isolation. In addition, the portability and self-sufficiency of con-
tainers provides the ability to run them on a variety of different hosts. Docker is now
used as a building block for deploying web apps, database services and service-based

architectures [46].

However, all these existing deployment mechanisms have some constraints and are
not fully able to remove the complexity of deploying a distributed system. Traditional
mechanisms for deployment including tools and technologies, do not have the capability
to manage the complexities of service deployment because of the restrictions they place
in resolving dependencies among components, and a lack of support for heterogeneous

environments.
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2.5 Workflow Deployment

As described earlier, scientific workflows are considered a key mechanism for repre-
senting and managing distributed and complex scientific applications. Therefore, to
manage and deploy a workflow as a type of distributed application, a software plat-
form needs to provide integration and coordination of its components, services and

tools [81].

The management of workflows are supported by Workflow Management Systems (WFMS)
which are software platforms that provide functionality such as workflow modeling,
execution and monitoring [148]. The key function of a WFMS during the workflow
execution (or termed enactment) is coordinating the operations of the individual activ-
ities that constitute the workflow. Different scientific workflow management systems
have been developed that allow scientists to combine services, tools and infrastruc-
ture for their research. Examples of well-established systems are Pegasus, Galaxy [54],

e-Science Central(e-SC) [58], Taverna, Kepler [82] and HyperFlwo [12].

Most of the scientific Workflow Management Systems (WIMS) focus on workflow ex-
pressiveness and ease of modeling. Only a few solutions such as e-SC, Pegasus, Galaxy
and, more recently, HyperFlow tackle the problem of deployment of scientific workflows

in a distributed environment.

Scientific workflow systems have formerly been applied over a number of execution en-
vironments such as workstations, clusters/grids, and supercomputers. Cloud comput-
ing with its huge, on-demand resources has great potential for deploying and running

scientific workflows [80] and this is discussed in the next section.

2.5.1 Deployment of Cloud Workflow Systems

With the emerging of Cloud computing, the trend is for distributed WFMS to migrate
to the Cloud [64]. Migrating and running scientific workflows on the Cloud has the
potential to provide multiple benefits [80]: 1) Scalability, as cloud platforms can offer
a huge amount of computing resources and storage space to enable the flexible scaling

of the scientific problem addressed by the workflow. 2) Deployment flexibility through
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exploiting virtualization technology on a cloud platform, where different workflow en-
vironments can be either preloaded using VM images, or dynamically deployed in VM
instances. 3) Improving Resource utilization with the on-demand resource allocation
mechanisms offered by the cloud. 4) Flexibility in the trade-off between performance

and cost by using different clouds (private, public or hybrid).

However, workflow developers face the problem of which Cloud to choose and, more
importantly, how to avoid vendor lock-in. This is because there are a range of cloud
platforms, each with different functionality and interfaces. Therefore, potential advan-

tage 4 above is difficult to realize.

Today there are number of WFMS that were based on Grid computing such as Taverna,
Gridbus [26], Triana [31], Kepler, and others. There are however few WFMS on the

Cloud, we now discuss those that do exist.

e-ScienceCentral (e-SC) 3 is a cloud-based workflow management system that provides
the capability to store, analyse and share data among scientists. It includes a workflow
enactment engine to which users can submit their workflows via a web browser or an
external application (via an API). The system implements a simple dataflow model
in which a workflow comprises a set of interconnected blocks. Links between blocks
denote data dependencies, while data between blocks are passed as files in the engine’s

local file system.

e-SCworkflow blocks can be of different types (Java, R, Octave, etc.) and the definition
of a block also contains software dependencies that must be met. Before running a
block, any currently unavailable libraries are downloaded from the server on demand.
Only once all software dependencies are met, can the engine start executing the block.
This gives the e-SCworkflow engine a way to deploy blocks and libraries, and thus

makes the engine generic and independent of the workflows it is to enact.

Pegasus is a well-established WIMS [43]. Pegasus users define workflows as abstract
and resource-independent and they are then mapped by the system into concrete,
platform-specific execution plans. The plans are enacted by HTCondor DAGMan

which tracks dependencies and releases tasks as they become ready to run, whilst

3http:/ /esciencecentral.co.uk
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HTCondor Schedd runs them on available resources. Importantly, Pegasus uses a
Transformation Catalog to find user executable files that implement workflow tasks.
The catalog maps tasks into executables specific to the underlying execution environ-
ment whether it is HT Condor pool, HPC or Cloud. However, automatic installation or
deployment of executable files is limited, whilst the Transformation Catalog supports

only discovery of user executables.

One of the widely used scientific WFMS is Galaxy. Galaxy is an open source, web-
portal platform designed to address the problems of scientific tools accessibility, re-
producibility and transparency. It is capable of connecting bioinformatics tools in
pipelines. Galaxy offers the ability to: share workflows and data, and to extend re-
searcher tools with the help of system deployers. Liu et al [77] extended the existing
Galaxy workflow system using a number of tools to add data management capabilities,
domain-specific analysis tools, automatic deployment on the Cloud, a cloud provision-
ing tool, and support for validating the correctness of workflows. The automation
of Galaxy deployment on the Cloud is achieved using the Globus Provision-based
method [78] which is a tool for deploying a distributed computing system automati-
cally. Globus Provision requires a topology description file to deploy a Galaxy instance
on Amazon EC2. HtCondor is used to run specified Galaxy jobs on remote clusters.
Much like most other WFMS, Galaxy relies on external tools and datasets, and Galaxy
ToolShed and Data Managers are solutions that facilitate the installation of the desired

tools and datasets in a specific Galaxy instance [6][5].

Crucially however, the execution of workflows is considered separately from the in-
stallation of dependencies, making workflows usable only if all the dependencies are
available prior to execution. The Galaxy team have made an effort to alleviate these
problems by offering a dedicated cloud data and VM images which are preconfigured

with a suite of the most common tools and reference data.

Recently, HyperFlow [12] WEMS has been developed to provide a programming model
and enactment system for scientific workflow. To support workflow programming, the
system combines a declarative description of the structure of a workflow and a low-level
implementation of workflow tasks using a scripting language. The system uses VM

images with prepackaged user application tools. At run-time, the HyperFlow executor
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is able to instantiate the images according to the configuration description submitted
alongside the workflow definition. However, to create an executable workflow, a VM

images containing the required software packages must be pre-prepared by the user [13].

Most of the existing WFMSs use a very specific workflow definition language which
limits their portability and only few of them tackle the problem of scientific workflow
deployment in a distributed environment that enables workflow components provi-
sioning over different environments. Instead, in this thesis we present a method to
define scientific workflows in a comprehensive and portable way using TOSCA which
we integrated with Docker technology for achieving dynamic and automatic workflow

deployment.

2.5.2 Workflow Deployment using Virtualization

As described above, virtualization technology has brought number of valuable advan-
tages for Cloud computing. One way in which virtualization can be used to improve
automatic deployment is where the application and its associated components are pre-
installed with all of their dependencies as a "virtual appliance” in a virtual machine
image. A virtual appliance provides a simple, unified tool for service deployment by
encapsulating a complete custom environment. Components are deployed by instan-
tiating virtual machines with their virtual appliances on different Infrastructure as a

Service (IaaS) cloud systems or on physical machines [69].

There exist a number of works in the literature and software tools that address the
deployment of different applications using virtual machines [122][68]. In [143] the
Typical Virtual Appliances (TVAs), a template to generate virtual appliance for the
frequently used services, is proposed for a Cloud computing data centre in order to

address the problems of service management.

Zhang at el [144] exploit user-level virtualization technology to propose a framework
for improving the deployment flexibility for Cloud computing by decoupling the ap-
plication software from the VM. The proposed method is an enhancement to virtual

appliances in order to achieve further application isolation from the OS.

The service oriented multiple-VM deployment system (SO-MVDS) [49] provides a
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model for template management to create and configure virtual appliances containing
on-demand services. Furthermore, the system includes a mechanism for deploying

multiple services automatically and dynamically within virtual appliances.

More recent work in [27] presented a platform that offers the ability to provision
on-demand virtual machines and automatically install software representing scientific

activities and data dependencies.

Moreover, a number of WFMSs have adopted virtual machines for various deployment
scenarios. Galaxy WFMS uses virtual machine images to deploy a personal Galaxy
server locally or on a cloud infrastructure with particular tool sets in order to ease
the burden of installing and administering tool dependencies. In addition, the Cloud-
Man [4] application has been adopted by Galaxy to support execution on multiple
clouds and offers an automatically and dynamically scalable virtual cluster with a pre-
configured Galaxy application and data. The virtual cluster is used to execute the

jobs in workflows [5].

In Pegasus, workflows can be deployed in the Cloud by configuring cloud VM instances
as an HTCondor pool. A number of VM images are prebuilt and configured to contain
HTCondor, the Pegasus client tools, and the application. Workflow jobs are distributed

across virtual machine instances coordinated by HTCondor and then executed [43].

Unfortunately, solutions based on VM images demand additional effort by users be-
cause, over time, users will need to add new, or update existing, application tools.
That requires effort to maintain and rebuild the images, which is rarely supported by

the WFMS itself. Without this effort, workflow decay will occur.

2.5.2.1 Deployment with Container-based Virtualization

Although many current cloud platforms and deployment techniques are based on vir-
tual machines, virtualization techniques based on containers have emerged recently
as an alternative to hypervisor-based virtualization for addressing the deployment of
various applications [118]. Further, the evolution of container-based virtualization
techniques has a significant impact on simplifying and enhancing the development and

deployment of distributed applications on the cloud. The key reasons for the adop-
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tion of this technology in application deployment [45] and also in the Cloud [115] are:
they are more lightweight than VMs, faster start up times, faster processing and lower

storage overhead [128].

Recently, these techniques have been used to deploy different type of applications.
Santiago et al. [115] proposed a dynamic tailoring and deployment process of service
middleware components geared towards the cloud environment. Their work leveraged
a container-based virtualization environment for enabling the assembly, provisioning,
and execution of dynamically built instances to satisfy the service middleware com-

munication requirements of specific applications.

The authors of [71] presented Yard, a Docker-based deployment system which can
deploy web applications to different platforms using a number of isolated containers.
In addition, the paper includes a comparison between the deployment of the same
application using Docker and VMs, which shows that VM-based deployment requires

more effort by the user.

In [52] the authors presented Skyport, an extension to their data analysis platform
that adopted Docker containers for automated deployment of scientific software appli-
cations. They manually created a separate Docker image for each task that executes

a tool and then used that image to deploy the workflow.

The work presented in [70] demonstrates the using of Docker technology as a part of a
framework to deploy microservices on the Amazon EC2 Cloud and identifies important

elements relevant to the performance of microservice platforms.

In [79] a container-based platform is presented to run scientific workflow using num-
ber of cluster systems to build the execution environments required to run Galaxy
workflow. In this work, the containers used to host the workflow execution engine and
scientific tools required to run the workflow must be created manually before work-
flow runs. In addition, all the required software and tools must be per-installed in
order to run workflow tasks. In contrast, our deployment approach dynamically cre-
ates the containers during the deployment time and installs all the required tools and

dependencies on-demand.

Most of the above approaches are not developed for workflow deployment and they need
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manual creation of the Docker images required for the deployment of an application.
In contrast, our approach is different to these approaches. It dynamically injects into
a Docker container the full software stack required to execute a workflow task; this
includes all dependency libraries, tools, and the task’s code. In addition, workflow and

task images are created automatically and dynamically during workflow execution.
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2.6 Workflow Reproducibility

One of the potential advantages of WFMS is their ability to allow workflows to be
shared and re-used, and to become a building blocks for new experiments [36]. The
ability to re-use the workflow is explained by two related terms that have often been
used interchangeably although they are distinct: 1) repeatability refers to the ability
to repeat exactly the same workflow execution in the same computational setting and
produce the same result, 2) reproducibility refers to the re-usability of the experiment
with different parameters or input data, the major goal being to validate the same
scientific conclusions [87]. However, scientists and users find that it is difficult if not
impossible to repeat or reproduce workflows over time, due to the serious problem of

workflow decay as discussed in chapter 1 [57].

In the recent years, a number of different methods have been devised to support re-
usability and facilitate the building of new workflows. Galaxy WFMS enables sharing
and publishing of workflows and related objects, such as datasets and tools via the
web [5]. Taverna and Kepler workflows can be shared via myExperiment [53] which is
a public repository allowing the sharing of workflows including computational descrip-
tions and visualisations of their components. However, workflow sharing provided by
WFMSs and public repositories is limited to offering workflow structure and descrip-

tion as artifacts that need manual preparation of the system for workflow re-execution.

A number of analyses and research efforts have already been conducted to determine
the salient issues and challenges in workflow reproducibility and the main causes of
workflow decay [145][8][14][48]. These issues can be summarized as: 1) insufficient
documentation and non-portable description of a workflow including missing details
of the intermediate processing tools, inputs, outputs and execution environment. 2)
unavailable execution environments when the execution of workflow requires a spe-
cific operating system type or version with some particular configuration that may no
longer available or has been changed. 3) missing third party resources: most of the
workflows could not be re-executed because of missing or modified software on which
dependencies required for their executions such as external web services. 4) missing

data required to repeat the workflow execution.
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The authors in [145] conducted an empirical study on a collection of Taverna workflows
and presented an analysis showing that approximately 80% of the workflows used in
the test either could not executed or produced different results (if testable). A more
recent study [87] has been conducted on a set of 1500 workflows obtained from the
myExperiment platform to quantify how many of workflows can be easily re-executed.
The study shows that only 341 (about 24%) of workflows out of 1500 could be re-

executed.

There have been various attempts proposed in the literature or software tools to address
repeatability and reproducibility of scientific workflows, most of them follow one of
the two directions: (1) describing a workflow and all its components, called logical
preservation/conservation, or (2) packaging the components of a workflow, known as

physical preservation/conservation.

2.6.1 Reproducibility with Logical Preservation

Logical preservation techniques (also referred to as specification-based) focus on sup-
porting a detailed description of the workflow and its components with enough infor-

mation for others to enable the reproducibility of a similar workflow in the future.

There have been various efforts and attempts proposed in the literature to capture the
details required to reproduce scientific workflows. In addition, to promote workflow re-
usability and support its reproducibility, a number of scientific workflow repositories, as
described earlier, have been built and launched such as myExperiment, CrowdLabs [85]

and the repositories offered by some of the WFMSs.

In the past decades, one of the most common approaches for addressing the repro-
ducibility of scientific workflow is by capturing the provenance information about
the workflow results which can be considered another technique of logical preserva-
tion [110][88]. The provenance-based approaches address the conservation of data
(input, intermediate and final results), processing units descriptions and data flow
dependencies such as in the works presented in [141][14][94]. In addition, a number
of WEFMS provide provenance capturing as a means to support their workflow repro-

ducibility such as eScienceCentral [94] [141] and Galaxy, while in [113], the authors
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presented an approach to capture and share detailed information about the execution
environment in which the computational experiments have been conducted. They use
a set of semantic vocabularies to specify the resources involved in the execution of a
workflow. However, other studies have shown that sharing only the specifications of
a workflow is not enough to ensure successful reproducibility [18] when the necessary

tools, dependencies and execution environments are no more available.

More recently, Hasham et al. [55] presented a framework that captures information
about the cloud infrastructure used for workflow execution and interlinks it with the
data provenance of the workflow. They propose to offer workflow reproducibility by
re-provisioning a similar execution infrastructure using the cloud provenance and then
re-execution of the workflow. Although the approach enables re-execution, it is unable

to track and address changes to the original workflow.

Another approach that can be considered as logical preservation is presented in [18]
which proposed Research Objects for the preservation of scientific workflows. Research
Objects can aggregate various types of data to enhance workflow reproducibility in-
cluding: workflow specifications, description of workflow components and provenance
traces. However, they do not include enough technical details about dependencies and

the workflow execution environment to easily allow re-enactment.

Provenance capturing enables the encapsulation of an exact trace of a past workflow
execution, which can then help in its re-execution. Nevertheless, provenance usually
describes only the abstract layer of a workflow because detailed traces of the use of
execution environment (e.g. at the OS level) quickly become overwhelming. Further,
the specification-based mechanisms provide various details that can help in under-
standing the workflow and its components. Yet, they are still insufficient when some
of the required dependencies change or become unavailable, in which case the ability

to reconstruct the same execution environment is lost.

2.6.2 Reproducibility with Physical Preservation

In the physical preservation approaches, the workflow is conserved by packaging all

of its components to create an identical replica that can be reused later. Therefore,
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a packaging tool is required to aggregate all workflow components as well as some
essential resources such as tools and the software stack [113]. However, such packaging
approaches demand considerable maintenance efforts, and there is no guarantee that it
will not change [50]. Importantly, a fundamental problem with packaging approaches
is that they are limited to workflow repeatability.

To implement the packaging of workflows, virtualization mechanisms have been used
and number of packing tools have been developed. Chirigati et al. proposed Re-
proZip [35]. It tracks system calls during the execution of a workflow to capture the
dependencies, data and configuration used at runtime, and to package them all to-

gether. Then the package can be used to re-execute the archived workflow invocation.

Other researchers have used either hypervisor-based or container-based virtualization
mechanisms to achieve physical preservation of a workflow. Hypervisor-based has
emerged as a promising mechanism for reproducing the results of scientific compu-
tation. In one such an approach, the entire experiment represented be a scientific
workflow is conducted within a virtual machine and the state of a virtual machine is
saved as an image (VMI) image so that the resulting image can be shared. Several
papers have proposed utilizing these concepts and mechanisms to support workflow

repeatability and improve its reproducibility [121}[60].

The work presented in [62] introduces an approach that builds on the concept of virtual
appliances to enable workflow repeatability. In this work a new resource abstraction is
defined, called a workflow virtual appliance (WVA). The WVA is a virtual appliance
that encapsulate all components required to deploy a workflow, including the software,

data and its execution environment.

The main advantage in using VMIs is that they allow the complete experimental work-
flow and environment to be easily captured and shared with other scientists [119].
However, the resulting images are large in size and so costly for public distribu-
tion [22]. And despite the fact that the packaging mechanisms allowing workflows
to be re-executed (i.e. allow repeatability), they usually do not convey a detailed and
structured description of the entire computation, relevant dependencies and execution
environments, which would help in understanding the package contents. Therefore,

their ability to reproduce or even reuse a packaged workflow in other contexts (e.g.
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using different input data, parameters or execution environments) is often limited.

Similarly to Virtual Machine hypervisors, Docker allows workflow applications along
with all necessary dependencies to be encapsulated in a container image [34][21].
Docker provides many attractive features that can be exploited to support workflow
repeatability: 1) it is easy to build Docker containers using simple scripts so they
can be shared and re-used using Dockerfile. 2) there is minimal overhead in running
a Docker container, and creating a Docker image. 3) the containers and images are

lightweight compared with VMs and VM images.

However, even if these approaches can offer a convenient mechanism to preserve work-
flows, they still lack a structured description of the aggregated components. In addi-
tion, they are limited to packaged resources and dependencies, and lack the flexibility
to change the components or dependencies in an already packaged workflow - this is

necessary for tracking and handling changes so as to avoid workflow decay.
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2.7 Optimization of Workflow Provisioning

As mentioned in the previous section, scientific workflows are not only useful for mod-
eling and managing the computation, but also as a means of sharing experimental
methods. Once shared, they can help scientists to understand the overall experiment,
and may be used as an essential building block to build new experiments or to repeat
the experiment and replicate the original results. If they are re-used repeatedly then

deployment performance becomes important.

In general, deployment optimization might be defined as the process of finding the
optimal placement of application components over the computational resources and
effectively provisioning all components to minimize the total deployment time [25].
Most of the efforts carried out in the field of deployment optimization are related to
making decisions concerning the best models for application deployment and deploy-
ment planning [73], i.e. finding the optimal placement of components over compu-
tational nodes from the performance perspective prior to the process of deployment.
For example, the work presented in [25] concentrates on the optimization of compo-
nents’ distribution over the computational node to lower the deployment overall time
using an analytic model to search and evaluate possible deployment scenarios at design
time. In contrast, our approach focuses on the automatic optimizing of component

provisioning at deployment time.

There are a few efforts addressing the challenges of optimizing the provisioning process

of workflows and other distributed applications using different mechanisms.

Some of the WEFMS support optimization for the workflow provisioning process using
a caching technique. In the e-SC workflow management system, all the required blocks
for workflow execution are downloaded during execution time and all unavailable li-
braries required for running the block are downloaded on demand from the server and
cached in the execution environment [30]. Therefore, all downloaded blocks and de-
pendencies are available for subsequent use to re-execute the same or new workflow.
Similarly, in this thesis we propose to implement caching essential workflow compo-
nents such as tasks artifacts and dependency packages in the execution environment.

Moreover, we also provide multi-level caching of a deployable components (workflows
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and tasks) to support provisioning optimization and facilitate the sharing and re-use

of these components.

The authors in [133] introduced an optimization approach that can be integrated with
their existing approach for automatic provisioning of services. They proposed a number
of optimization strategies for reducing the cost and time for services that were used
repeatedly. This approach tried to achieve optimization of service-based application
deployment by provisioning the services once and keep them running for subsequent
use. In the work presented in this thesis, we tried to apply an optimization strategy
that is similar in some aspect, for the full provisioning of workflow tasks, including the
execution environment and the required software dependencies and re-use them for
many. We achieved this by packaging the task with full software stack using a Docker

image which can be utilized by subsequent usages.

In [37], Czarnul presented a model and an integrated system for the definition, run-
time optimization, and execution of workflows. The system addresses the optimization
of workflow execution when service availability is limited and might change over time.
Their solution is limited to workflow services; however, they applied a similar strategy
to our approach. Prior to the running of a workflow, services are chosen statically based
on the information available and during the execution time services are reselected if
some selected services become unavailable or new ones appear. In contrast, in our
approach, the Docker image used for provisioning a task is specified at the workflow
modeling stage and during deployment time. Meanwhile, a compatible task image may
be created by other users, and if so this can be selected and used to reduce provisioning

time

Beside the performance criteria, number of researches have considered best resources
utilization and cost optimization for the workflow management in the Cloud [137] [150]
[84]. The authors in [137] presented a new algorithm to deploy workflow applications
on federated clouds that addresses application security requirements and optimises
the deployment in terms of its entropy and monetary cost, taking into account the
cost of computing power, data storage and inter-cloud communication. In [84], the
authors developed a new algorithms for efficient management of workflow ensembles

concerning budget and deadline constrains on the IaaS clouds. While in our work
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we only concern about performance optimization of workflow deployment in term of
minimizing the deployment time. We may consider other optimization criteria for the

future work direction.

Our work presented in this thesis varies from the available approaches in the literature
for workflow sharing in that we provide sharing ready-to-execute workflows/tasks.
Further, our approach supports optimization of workflow provisioning by implementing
multi-level caching for various workflow components and automates the process of

selecting an appropriate image for provisioning workflow /task.
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Summary

This chapter presents a new approach to modeling scientific workflows in a portable
and reusable way. We show how TOSCA, a new standard for cloud service manage-
ment, can be used to systematically specify the components and life-cycle management
of scientific workflows by mapping all the elements of a workflow onto entities speci-
fied by TOSCA. Later in this thesis we demonstrate how this enables the definition of
workflows that are portable across clouds, resulting in greater reusability and repro-

ducibility.

3.1 Introduction

Scientific workflows are typically composed of many diverse components, each with
specific dependencies against the software platform and libraries. They require mul-
tiple components to be deployed and configured before and during runtime. For a
scientific method to be effectively reused over a period of time, and for experiments
to reproduced, the repeatability of these deployment and configuration steps is cru-
cial. Otherwise, the value of building workflows is quickly lost to "workflow decay”
(see Chapter 1) as shown in the analysis presented in [145] that approximately 80%
of the workflows used in the test cannot be either executed or produced the same
results (if testable), and the earlier produced workflow had more than 80% failure
proportion. Unfortunately, it is impractical to expect most scientists to perform these
complex deployment steps manually as well as to deal with changes in components

and dependencies.

In order to improve the reusability and portability of workflow applications and to
automate their deployment we propose to base our work on an emerging OASIS stan-
dard: TOSCA, which aims to enable the automated deployment and management of
cloud applications. It is designed to be sufficiently generic to cover a variety of scenar-
ios, and enables the modeling of applications in a way that allow them to be portable

between different cloud management environments [20] [67].
In this chapter we present our proposed approach for using TOSCA as a language to
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describe workflows, workflow components and the execution environments. We want
to offer them as reusable entities that capture not only the workflow itself but also all

details needed to deploy and execute it.

In addition, we demonstrate our approach in practice by modeling an existing real
workflow (we have modelled many workflows in developing and evaluating our ap-
proach, but focus on one as a running example in this chapter). The example involves
a typical scientific workflow, i.e. a set of tasks with data dependencies expressed as a
directed acyclic graph. We show how this approach can not only be used to represent
workflow components and the workflow itself but also to capture the configuration
of the whole application and the execution environment. The components of this
scientific workflow will be modelled, along with the relationships that represent the
connections between components. This results in a workflow template that enables
automatic deployment on the Cloud, and so can dynamically improve the reusability

and reproducibility of workflows.

The remainder of this chapter is structured as follows. Section 3.2 gives a detailed
description of TOSCA and its components. Section 3.3 presents our approach to
model the nodes and relationships in a scientific workflow. The description of a use
case and details of mapping using TOSCA are presented in Section 3.4. Finally, we

draw conclusions on what we have learnt in Section 3.5.

3.2 TOSCA in Detail

TOSCA is a new specification for modeling a complete application stack, and automat-
ing its deployment and management in the Cloud [20]. The main goals of the TOSCA
specification are to: 1) facilitate the description of applications, including both the
structure and management aspects of the application life-cycle, 2) improve the porta-
bility of cloud applications in the face of growing diversity in cloud environments and

3) support the interoperability and reusability of application components.

The specification defines a meta-model for describing both the structure and manage-
ment of cloud applications. The core of TOSCA modeling is the Service Template,
depicted in Figure 3.1, which consists of three logical parts :Node and Relationship
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Figure 3.1: Type definitions and templates in TOSCA.

Types, Topology Template and Management Plans.

The Topology Template defines the structure of an application. It consists of Node
Templates and Relationship Templates. The Node Template describes the required
components and their properties, interface operations and input/output. The com-
ponent’s properties includes name, description, features and parameters required to
configure the components. Each Node Template is an instance of Node Type, and de-
fines the structure of application components including properties and operations for
life-cycle management of a component. Whereas the Node Template provides exact
values for the properties and implementations of the operations based on these types
definitions. Node Types and Templates are defined separately to support reusability;
the same Type can be instantiated multiple times to create different Node Templates

in the same topology and also can be referenced by others [20].

Relationship Templates specify the relationship between nodes in the Topology Tem-
plate. Similarly, a Relationship Template is an instance of Relationship Type which
defines the properties and potential status during runtime and is used to specify a type
of one or more Relationship Template. Together they are able to describe the logical

relationships and other dependencies between the application’s node templates [99].
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The deployment process, i.e. creation, configuration, activation and termination of
a service, is defined by Plans. The purpose of Plans is to interpret the templates
and execute appropriate actions. Plans encode a sequence of operations required to
instantiate TOSCA services and thus they follow an "imperative” approach. The use
of plans is not however mandatory: often, a TOSCA runtime environment is able to
infer a correct deployment plan and management procedure by interpreting the service
topology and tracking the relationships between the Node Templates. This is known

as the “declarative” approach [20].

The main advantage of the declarative approach is that it hides low-level deployment
activities from the user. Scientists can focus on the definition of the high-level struc-
ture of their experiment, which the TOSCA runtime can translate into a detailed
deployment procedure. In this work we therefore adopt the declarative approach and

use the Topology Template to define workflows.

TOSCA is still an emerging standard. Originally it used an XML-based modeling
language for application specifications but the TOSCA technical committee has more
recently approved the TOSCA Simple Profile in YAML Working version 01. This
specifies a rendering of TOSCA DSL in more accessible and concise way in order to

minimize the user learning curve and speed up the adoption of the standard [101].

Once the Service Template has been prepared for an application, a TOSCA-compliant
runtime environment is required to deploy and manage the application. Currently,

there are number of such runtime environment available including OpenTOSCA [19],

Cloudify ! and Alien4Cloud 2.

In this thesis we used vendor-specific flavour of TOSCA YAML provided by Cloudify.
Cloudify is a free and open-source orchestrator platform that intends to use TOSCA to
automate the deployment and scaling of applications over number of cloud technology.
In addition, it provides a vendor specific flavour of TOSCA YAML - Cloudify DSL
(e.g. in the DSL the Service Template is called blueprint) - a command-line interface to
execute blueprints, and can use different [aaS APIs to launch applications. It supports

the declarative processing of TOSCA application. Cloudify’s DSL specification allows

thttp://getcloudify.org)
http://aliendcloud.org
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creating and using custom types to produce a particular blueprint that defines cloud
applications capturing all components and execution environments. Currently, it is
being actively developed and has a vibrant community, which makes it a promising

research platform.

3.3 TOSCA-Based Modeling of Scientific Workflow

TOSCA’s primary use is to model the structure of a cloud application, which may
include both a horizontal and vertical stack of software components. In the horizon-
tal dimension, components rely on each other when they need to communicate and
exchange data. In the vertical dimension, they are dependent through a host-hosted
relationship, where the host component provides an execution environment for the

hosted component.

For workflows, horizontally means describing the tasks” dependencies which depict the
order of tasks’ execution and data transformation. Vertically provides a full software
stack description of each task including the host environment (VM and/or container),
required software libraries to execute the task (Wine, Java, and other special tools),
the task itself and all the dependency relation among them. Usually, scientific workflow
modeling merely focuses on the dependencies between tasks in the horizontal dimen-
sion, whilst the aspects related to the vertical dimension, such as creating a task’s

runtime environment are ignored.

In this thesis, we have addressed this gap to generate a reusable and deployable work-
flow description. We have devised a way in which it is possible to use TOSCA to define
a workflow’s structure, components together with their requirements, relationship and

life-cycle management.

Our approach to workflow modeling: 1) allows the description of workflow with all
required components horizontally and vertically. 2) improves workflow portability by
using TOSCA to provide a new way to enable the creation of portable description of
cloud applications and to automate their deployment and management. 3) supports the
reproducibility of workflows by providing a reusable definition for their components as

well as the whole workflow. 4) utilizes the life-cycle management operations of the node
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templates such as (create, configure, start etc.) to manage a dataflow implementation

of the workflow.

In this section we show how TOSCA can be used to model a scientific workflow, includ-

ing discussion of the different stages followed to create a complete Service Template.

3.3.1 Modeling Workflow Building Blocks

In principle, to define a structure of any application using TOSCA one needs to model
a set of Node and Relationship Types, Node and Relationship Templates, and include
them in the topology part of the Service Template. XML-based TOSCA and TOSCA-
based Cloudify DSL (Domain Specific Language) offers a number of base types (node
types and relationship types) supported by a range of run-time environments. There-
fore, Topology Templates can be either constructed using existing base types or new
types can be created by customizing the existing ones. The new types are derived from
the base types in support of the inheritance functionality (DerivedFrom tag) offered by
TOSCA, which allows us to design application components and define several software

stack layers and types (tasks, libraries and execution environments) [20].

Following this, we define a TOSCA-based description of a workflow as follow:

e defining a series of Node Types, Relationship Types for representing all workflow
components and their dependencies. These definitions help to capture all entities

of the workflow.

e building a Topology Template of the workflow, in which workflow tasks and task

dependencies are modeled as Node and Relationship Templates, respectively.

Node and Relationship Types also include the declaration of Interfaces. An Interface

defines the life-cycle management operations that can be applied to a component.

3.3.1.1 Workflow Components as Node Types

The first step to model a workflow using TOSCA is to identify all its constituent parts.

These include workflow tasks and all their software dependencies such as the specific
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packages and libraries required by the tasks to run. Each of these basic components
and dependencies, including their interfaces and properties are described as TOSCA
Node Types. Node types are usually derived from the basic node types provided by
TOSCA and Cloudify DSL, like ApplicationModule, Compute, SoftwareComponent etc.
The basic types define the set of basic components required for applications to function
properly. All of these basic types are directly derived from a generic TOSCA node
type called Root. The basic node types are then customised with specific property
and interface definitions to create new node types. Furthermore, a node type can
own interfaces to manage the life-cycle operations of workflow components. Central
to this is the Cloudify-specific life-cycle interface with operations to create, start and
terminate a service. When defining workflow components, each of them will need an

implementation of the life-cycle interface.
3.3.1.2 Task Dependencies as Relationship Types

To capture dependencies between nodes, TOSCA offers a number of generic Relation-
ship Types such as depends_on and connected_to. These types define an interface with

operations to configure the source and target nodes joined by the relationship.

Among the basic relationship types one of the most common is contained_in. It al-
lows a vertical software stack to be created as in the case of a virtual machine that
hosts an operating system, which in turn hosts one or more workflow services. The
relationship definition is used to specify the semantics of a link between nodes and
also methods which realize such a link. For example, the connected_to relationship
needs implementation of methods which can bind two end nodes, as in a client-server

connection.

When connecting new, non-standard node types, a new Relationship Type should be
defined that specify the connection between specific Node Types and extended one of

the basic Relationship Type characterized by a source type and a target type.

3.3.2 Constructing a Workflow Topology Template

The TOSCA metamodel uses the concept of a Topology Template to describe a cloud

application. We use it to model the high-level structure of scientific workflows. As
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mentioned before, Topology Template is a graph of Node Templates which represent
specific instances of application components and Relationship Templates that model
links between these instances. Clearly, it fits the notion of scientific workflow very

well.

In TOSCA-based modeling of a workflow, Node Templates in the Topology represent
all workflow components while Relationship Templates defines different links between

the components both vertically and horizontally.

These templates will provide the comprehensive structure of a workflow and the values
for the properties and implement interface operations. Moreover, templates describe
the actual instances (of components or links between components) to be created and
managed in a certain workflow deployment. Again, this corresponds very well to the
workflow domain where a workflow task (single type) can be included in a workflow

definition multiple times (multiple templates).

Importantly, the entire Topology Template may be treated as another Node Type,

which greatly improves reusability.

3.4 Use Case: TOSCA-Based mapping of a Real
Scientific Workflow

To demonstrate the feasibility of using TOSCA to model scientific workflow applica-
tions we selected an existing workflow (Neighbour Joining NJ) that performs phyloge-
netic analysis of the Leishmania parasite. The workflow is used in the EUBrazil Cloud
Connect project 3 to perform identification of Leishmania species using the neighbour
joining method. Originally, it was designed in the e-Science Central system (e-SC),
and we now present its specification as a TOSCA service template. The result is a
self-contained and portable service model that can be used to deploy and manage

workflow instances in the cloud.

Figure 3.2 depicts the selected workflow as designed in e-SC. It consists of 11 blocks of
which 9 are Java-based and 2 others (ClustralW and MEGA-NJ) wrap executable tools

to perform sequence alignment and the neighbour-joining analysis. In addition, the

3http://www.eubrazilcloudconnect.eu
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blocks required different software dependencies such as Java Runtime Environment
(JRE), some specific libraries for experiment processing. The MEGA-NJ task is a

Windows executable - to be executed in Linux it requires the Wine library.
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Figure 3.2: An e-SC modeling for Neighbour Joining NJ workflow.

Following the concepts of the TOSCA specification, the topology description and com-

ponents definitions for the NJ workflow can be modeled as follows.

3.4.1 Workflow components as Node Types

There are two types of components in e-SC workflows — blocks and shared libraries
needed by the blocks. To describe them we defined two node types. From these two
types we derive node types corresponding to all e-SC workflow blocks and libraries in

the example; this two level hierarchy is depicted in Figure 3.3:

e Specific Node Types: Nodes at this level represent the most fundamental part
of any e-SC workflow. They are derived from the Cloudify basic node types
and define: (1) a generic workflow block that offers common properties to all
types of blocks, and (2) a generic library that forms the basic type for all shared
libraries in a workflow. We derived them from the ApplicationModule node type
defined in Cloudify, which is a base type for any software module or artifact to be
deployed. Listing 8.1 presents the complete node type definition for a workflow
block.
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Figure 3.3: Node types hierarchy for modeling scientific workflow.

Listing 3.1: Node Type definition of a workflow block.

workflow_task:
derived_from: cloudify.nodes.ApplicationModule
properties:
block_description:
description: Description of task function
type: string
block_name:
type: string
block_category:
type: string
service_type:
type: string

e Custom Node Types: This node type is used to represent particular types of
workflow blocks and includes information about their specific properties, config-
uration, and block inputs and outputs. In addition, node types for any required
library are defined such as run-time environments required to run a specific ser-
vice (e.g: java run-time, R run-time, and etc.) and special libraries (e.g: Core
e-Sc and MegaCC). Custom node types will be instantiated by node templates
to represent the actual blocks and libraries that compose a specific workflow.

Listing 3.2 presents an example of the node type for a selected e-SC block.

In TOSCA, Node Type definitions are reusable and may be referenced in other
workflows and by other developers. Thus, to facilitate reuse we store them in

our Node Type Repository to make them available for future use.
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Listing 3.2: Node Type of custom workflow block FilterDuplicate.

FilterDuplicates:
derived_from: workflow_service
properties:
arg-Normalize_Sequence_Names:
type: boolean
default: false
arg-Normalize_Duplicates_0Only:
type: boolean
default: false
# input ports
input-fasta-files:
type: string
default: file-list
# outputs ports
output-filtered-fasta-files:
type: string
default: file-list
output ~-removed -sequences:
type: string
default: csv-data
output -sequence —map:
type: string
default: csv-data

3.4.2 Block dependencies as Relationship Types

Most of the relationships used in an e-SC workflow are common to any cloud appli-
cation. For example, the contained_in relationship may denote that a block is hosted
on a VM or container. The exceptions, however, are data dependency links that con-
nect block input and output ports. We derived them from the generic depends_on
relationship type to implement the preconfigure operation that will pass data between

connected blocks.

The exact semantics of the task link depends on a specific workflow management sys-
tem and for this reason we defined the new relationship type task_link. It is derived
from the generic depends_on type and specifies the implementation of the life-cycle
operation related to the task link. The operation is responsible for the actual data
transfer between connected tasks. For the task_link relationship, we defined the pre-
configure operation that will perform the actual data passing between connected tasks.
This type will be used to create relationship templates between specific connected tasks

in a workflow, while the life-cycle operation will be used to transfer data between tasks.

_ 54 -



Chapter 3: TOSCA-based Modeling for Automated Workflow Deployment in the
Cloud

Listing 3.3 shows one of the new relationship types.

Listing 3.3: The definition of the task_link Relationship Type.

task_link:
derived_from: cloudify.relationships.depends_on
source_interfaces:
cloudify.interfaces.relationship_lifecycle:
preconfigure:
implementation: scripts/preconfigure.sh

3.4.3 Constructing the NJ Workflow Topology Template

The TOSCA metamodel uses Topology Template to describe a cloud application.
While it is intended to describe service-based systems in which services execute for
undetermined periods, we can impose the sequential execution of tasks by adding the
task_link relationship between components. This forces the runtime environment to

deploy and execute components in the order implied by the dependencies.

As mentioned earlier, the Topology Template is a graph of Node and Relationship Tem-
plates. The former represents specific instances of application components, whereas
the latter models links between these instances. Clearly, it fits the notion of scientific
workflow very well — Node and Relationship Templates are instances of Node and Rela-
tionship Types much like workflow tasks included in the workflow are instances of one
or more tasks available in the task repository. Moreover, if types declare properties
and interfaces, templates provide values for the properties and implement interface
operations. Again, this corresponds very well to workflow modeling where a workflow
task from the repository (Node Type) to be included in a workflow has to be properly
configured (become a Node Template). Further, the entire Topology Template may be
treated as another Node Type, which improves reusability and flexibility in workflow

composition.

Following the TOSCA topology template rules, we present in Fig. 3.4 the topology of
the Service Template which represents the NJ workflow given earlier. This includes
not only the high-level structure of the workflow (i.e. task dependencies) but also
all library dependencies and the deployment of components in containers and virtual
machines. Thus, we can capture the complete software stack required to deploy and

enact the workflow:
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Figure 3.4: TOSCA Topology Template of the NJ Workflow.

e The task execution environment is described by means of the VM and container
Node Templates. This allows the definition of the properties of the VM and

Docker image required to run a task or group of tasks.

e The dependency libraries are described as Node Templates and include details
about the type, version and URL of the library artifacts. All libraries are linked to
the underlying execution environments by instantiating a Relationship Template

from contained_in type.

e Workflow tasks and their data dependencies are represented as Node and Rela-
tionship Templates. They include specific property values together with input
and output ports and life-cycle operations. Each task instantiates a number of
Relationship Templates implementing its links with other tasks, dependency li-
braries and the host environment using task_link, using depends_on and using
contained_in Relationship Types respectively. Listing 3.4 shows the Node Tem-
plate for one of the workflow tasks. For the complete Topology Template of a

workflow consisting of three tasks, please see Appendix A.

Listing 3.4: Node Template definition of a selected workflow task.

FilterDupl:
type: filterDupl
# tasks properties required to execute the task
properties:
block_description: "Filter duplicated sequence reads in
the FASTA format."
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block_name: filterduplicates.jar
block_category: File Management
service_type: block
# Relationship Templates instantiated from the defined
Relationship Types
relationships:
# Relationship to connect the task with the host
container
- type: cloudify.relationships.contained_in
target: container4
# Relationship to connect the task with the a required
library
- type: cloudify.relationships.depends_on
target: Java3
# Relationship to connect the task with a predecessor
task "FileJoin"
- type: block_link
target: FileJoin
# The relationship lifecycle operation to obtain data
from the previous task
source_interfaces:
cloudify.interfaces.relationship_lifecycle:
preconfigure:
implementation: Core-LifecycleScripts/datacopy.sh
inputs:
process:
args: [FileJoin/file-3, FilterDupl/fasta-files
, NJ, container4]
# The lifecycle operations for task management
interfaces:
cloudify.interfaces.lifecycle:
# downloading the task to the hosted container using the
provided URL and creating a corresponding task image
create:
implementation: Core-LifecycleScripts/task-download-
multi.sh
inputs:
process:
args: [{ get_input: create_image }, container4d, °’
https://github.com/rawaqasha/eScBlocks-host/raw/
master/filterduplicatesl. jar’]
# delete the previous task after obtaining the required
data
configure:
implementation: Core-LifecycleScripts/containers-clean
.sh
inputs:
process:
args: [container3]
# start the execution of the task on the host container
start:
implementation: Core-LifecycleScripts/task-deploy.sh
inputs:
process:
args: [NJ, container4]
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3.5 Conclusion

The ability to package cloud applications in a way that enables their reusability and
portability is an important precondition to truly realizing the benefits of Cloud com-
puting for scientific and other applications. It does, however, require the existence of
a well-defined specification that allows us to capture complex deployment and config-

uration requirements.

We have therefore presented a new approach that uses TOSCA to describe formally
the internal topology of a scientific workflow in a comprehensive and portable way,

together with its deployment processes.

By defining reusable Node Types for workflow tasks and Topology Templates (blueprints)
for complete workflows, we enable the description of workflow. Additionally, TOSCA
supports composition, and so we can nest complete workflows one in another, which
not only gives flexibility at design time but also improves reuse. Overall, building
scientific workflows using this approach has a beneficial impact on the reusability and
portability of workflow applications as we will demonstrate in the next chapters. In

particular, we will show how this can enable automatic deployment and scalability.

As a potential benefit, employing TOSCA in description of workflow enables valuable
use cases such as portable services and workflow to achieve automatic deployment and

scalability.

In the next chapter, our approach is integrated with Docker technology to build a new

framework for the dynamic deployment of scientific workflows.
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Summary

Scientific workflows are increasingly being migrated to the Cloud. However, workflow
developers face the problem of which Cloud to choose and, more importantly, how
to avoid vendor lock-in. This is because there are a range of cloud platforms, each
with different functionality and interfaces. In this chapter we describe a solution - a
system that allows workflows to be portable across a range of clouds. This portability
is achieved through a new approach for building, dynamically deploying and enact-
ing workflows. It combines the TOSCA-based specification method described in the
previous chapter with container-based virtualization. We describe a working imple-
mentation of our approach and evaluate it using a set of existing scientific workflows

- this illustrates the flexibility of the proposed approach.

4.1 Introduction

The scalability and ability to acquire resources on-demand offered by Cloud computing
makes it attractive for workflow management [149]. In addition, cloud offers the oppor-
tunity to share, exchange and reuse services and experimental methods [53]. However,
efficiently meeting workflow requirements in the cloud requires addressing key issues
in the provisioning of the execution environments, and subsequent workflow execu-
tion [136]. Due to the rapid evolution of existing cloud platforms, and the emergence
of new providers, one very important challenge is in making workflows portable and

reusable across different cloud platforms.

This is important for several reasons: it avoids cloud vendor lock-in, mitigates the risk
of a cloud vendor failing and enables users to switch to a cheaper cloud. Also, for
a scientific method to be effectively reused over time, and for experiments to be re-
produced, the repeatability of workflow deployment and configuration steps is crucial.
Experience has shown that if workflow deployment and configuration steps cannot
be easily repeated, then the value of the workflow as a way to share and reproduce

scientific results is quickly lost [145].
A major advantage of scientific workflows is the abstract way in which they can combine
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together a set of different tasks to encode a single analysis. Often, however, these
tasks are heterogeneous components each with their own set of dependencies. For
example, different workflow’s tasks may need the same library with different versions
of each task to be executed on a specific version of the operating system. This poses a
serious challenge in the description and deployment of workflows. Thus, the workflow
descriptor needs to include not only the abstract graph of interconnected tasks but also,
so often ignored, details of component implementation and deployment. Moreover, a
robust deployment facility should support the isolation of component execution to

ensure minimal interference between them.

To address these challenges, this chapter presents a new approach to describe, build,
dynamically deploy and enact workflows on the Cloud. We extend our modeling ap-
proach proposed in Chapter 3 and presented in [107] and implemented the provision

and deployment of workflows in a way that significantly increases their portability.

The approach integrates the TOSCA standard with container-based virtualization.
TOSCA supports the description of cloud applications in a portable way [20], which we
exploit to allow heterogeneous workflows to be deployed in the Cloud. Container-based
virtualization offers the opportunity for rapid and efficient building and deployment
of lightweight workflow components [45], and we also use it to isolate task execution.
In this work, we use Docker containers to dynamically provision the execution envi-
ronment and construct the full software stack required by a workflow component or
group of components. This allows us to improve the reusability and reproducibility of

workflow-based applications.

To demonstrate our approach in practice we model a set of scientific workflows us-
ing TOSCA, automate their deployment and dynamically provision their execution
environment using containers implemented in Docker. Our examples involve typical
scientific workflows with data dependencies between tasks creating a directed acyclic
graph. We use TOSCA to represent not just the workflow itself but also its compo-
nents, library dependencies and the configuration of the whole workflow-based applica-
tion, including its hosting environment. Our new approach is generic enough to cover

a variety of scenarios which we use for evaluation in the following sections.

In this chapter we present a significant development of our TOSCA-based modeling
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approach, we introduce the following capabilities:

e using the proposed modeling approach to describe and implement the provision-
ing and deployment of workflows across different cloud infrastructures, thereby

ensuring application portability.

e using our approach to construct and dynamically deploy the full software stack

required by a workflow component or group of components.

e exploiting container-based virtualization to improve deployment portability and

isolate the execution of heterogeneous workflow components.

e automating the deployment and dynamically provisioning a selection of scientific

workflows using containers.

e supporting a range of deployment options for efficiency and security isolation.

The rest of this chapter is structured as follows: Section 4.2 presents the requirements
necessary for workflow deployment. Next, the details of our new approach are pre-
sented in section 4.3. The features supported by the integration of TOSCA and Docker
are discussed in section 4.4. In section 4.5, the evaluation of our solution is presented.

Finally, Section 4.6 closes the chapter with conclusions.

4.2 Workflow Deployment Requirements

A number of requirements need to be considered in the development of an automatic

deployment system for scientific workflow.

Describing Workflow/tasks: The first requirement is offering a description of
the workflow tasks and the detailed specifications of its requirements, dependencies,
input/output parameters and properties; including the ability to describe components

developed in various technologies.

Since a workflow is an aggregation of a set of diverse, connected tasks, its description

will be the combination of tasks requirements and how they are connected together
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to form a functioning system. Also the dependencies between workflow tasks must be

described to determine the order in which tasks are started and executed.

Preserving the description along with the workflow and its associated tasks can improve
the ability to rerun the workflow and reproduce the same results. Achieving this was

the subject of the previous Chapter.

Describing the Environment and Infrastructure: To allow the adaptation of
deployment to the target platform, descriptions are required for the target topology,
capabilities, and available resources. Since each workflow task has its own specific
requirements, it is essential to provide a full description of the deployment environment
by including execution domain resources with their relevant properties and capabilities
- workflow and task requirements must be satisfied by the capabilities of the target

domain.

Execution Isolation: The heterogeneity of workflow services implies that they re-
quire different dependencies and various collections of software stack which may cause
conflicts. For example, a task might require to be executed in a Linux system while
the other needs Windows, or two tasks might demand different versions of R libraries.
In such cases there must be an ability to support isolation for service execution to
insure minimal disruption of the other services in the service based system. The level
of isolation may depend on various criteria depending on the isolation level required
between workflow services. For example, isolation is required to protect the execution
of two workflows from each other. It may also be needed if two workflow services need

different versions of the same shared library.

Deployment dependencies: An efficient means is required to deploy and configure
all tasks dependencies, such as software packages and libraries required to execute
the tasks. Without access to the required libraries, task execution will fail. One
possible approach to preserve software dependencies is to record sufficient information
about each software and library and then provide an automatic means for on-demand

installation and configuration during workflow deployment.

Wiring of workflow components: In order to deploy a workflow two types of

wiring - the links between workflow components - are required: 1) vertical wiring which
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is used to link each task to its dependencies such as the software required to run the
task and the execution environment, and 2) horizontal wiring, which refers to the data

links required between tasks to enable the flow of data during workflow task execution.

4.3 Dynamic Deployment of Scientific Workflow

This section presents our system for scientific workflow deployment, focusing on the
features that make it simple and efficient for workflow management developers. Fur-
thermore, it describes how TOSCA-based modeling can be integrated with Docker
technology to achieve dynamic and automatic deployment for scientific workflows and
details about the necessary scripts required to manage the life-cycle of workflow com-

ponents. Finally, the details about the full deployment process will be described.

Our approach for the deployment and enactment of workflows is depicted in Fig. 4.1.
It has been implemented as a set of the reusable components and packages that reside
in software repositories, so they can be downloaded to the workflow execution node,

and also shared between users.

TOSCA Workflow
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% [Constructing Node]_’a 8
Scripts Repo. ypes Repo] [ Task code
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Build Service Template for
Workflow

*Vla Cloudlfv
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Figure 4.1: Steps from the definition to the enactment of a workflow.

Firstly, to build a workflow, we follow the TOSCA-based approach described in the
previous chapter and presented in our published paper [107], and prepare basic work-

flow components: Node and Relationship Types, and then a Topology Template which
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includes Node and Relationship Templates. Types are used to describe workflow com-
ponents (tasks and their dependencies), whereas the Topology Template describes the
overall structure of the workflow. It contains Node and Relationship Templates to
denote all instances of workflow tasks, library dependencies and the execution envi-

ronment together with the container and VM.

Further, in the template we also include life-cycle management scripts and references
to software artifacts. The scripts implement the deployment actions of workflow tasks
and are available in our life-cycle Scripts Repository. The software artifacts include
the actual code that implements workflow tasks; these can be task-specific files and
executables or Docker images that encapsulate one or more tasks and their dependen-
cies. The artifacts are stored in our Task Repository to be reused across different tasks

and workflows.

Finally, to deploy and enact a workflow we submit the Service Template together with
the scripts and artifacts to a TOSCA runtime environment. Although we assume
that before the submission users have Cloudify and Docker installed, we have also
developed a one-click deployment script so that they can easily enact a workflow on a
clean, pure-OS VM in the Cloud. The script starts a multi-step process that installs
and configures basic prerequisites, such as Docker and Cloudify, and then initiates the

execution of the workflow.

The following sections present details of the three main steps and discuss the data

exchange mechanism implemented by the approach.

4.3.1 Building the Workflow Topology

Usually, the modeling of scientific workflows focuses merely on the horizontal dimen-
sion — the data dependencies between tasks — while important aspects related to the
vertical dimension, such as creating tasks’ runtime environment are ignored. These are
however crucial for improving workflow portability and reproducibility. Therefore, we
use TOSCA, as described in Chapter 3, to model the structure of a workflow in both
dimensions - the horizontal space and the vertical stack of software components. In the

horizontal dimension, components rely on each other when they need to communicate
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and exchange data. In the vertical dimension, they are dependent as in the host-
hosted relationship, where the host component provides an execution environment for

the hosted component.

Although TOSCA was intended to describe service-based systems, we impose data
dependencies and the sequential enactment of tasks using the dependency relationship
between components. These relationships inform the runtime environment of the ap-
propriate order of execution. The runtime cannot initiate the deployment of a task

unless all tasks that it depends_on have already been completed.

4.3.2 Managing the Workflow Deployment Life-cycle

Both node and relationship types define life-cycle operations to implement their activ-
ities. These are invoked by the run-time environment when deploying the workflow.
For example, a node type for a task might provide a ’create’ operation to handle the
creation of an instance of the task at runtime, or a ’start’ or ’stop’ operation to handle a
start or stop activity. These life-cycle operations are supported by implementation ar-
tifacts such as scripts attached to nodes and relationships. The run-time environment
processing a TOSCA service template uses these life-cycle operations to instantiate
components at runtime and also to pre- and postconfigure relationships and derive the

order of component instantiation.

We implemented them as a set of generic scripts that can:

e initialize a shared space to exchange data between tasks deployed in different

containers,
e fetch the input data files required to run a task,

e provision the host environment (a container) using an image specified in the

workflow Topology Template,
e install and configure the required library dependencies,
e download, configure and start a workflow task,

e transfer data between tasks running either in a single or multiple VMs,
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e destroy a task container and remove any redundant intermediate data.

As these scripts are reusable across a range of workflows and tasks, we store them in
our Life-cycle Script Repository,! so they can be easily included in any newly designed
workflows. We refer repository URL in all the example workflows that we use to

evaluate our approach.

4.3.83 Task Deployment using Container Virtualization

Once the workflow Service Template, life-cycle management scripts and all task arti-
facts are prepared, we can submit our workflow to a TOSCA runtime environment for
deployment and enactment. Given the Service Template, a TOSCA runtime environ-
ment can deploy and execute tasks one by one in the order implied by the relationships

between nodes.

Our deployment approach supports two scenarios for workflow deployment: a sin-
gle container for deploying the whole workflow and multiple containers for isolated

deployment of workflow tasks.

In the single container scenario, all tasks, and their dependencies are provisioned in a
single container and a single image is used to create the container hosting the whole
workflow. Figure 4.2 depicts the details of deploying a workflow. The process starts
by creating a Docker container as a workflow execution environment, which requires
pulling the specified image from Docker Hub. The user may use a generic image
- available from the Docker Hub? or pre-built image generated by the user which
includes libraries and software required by all workflow tasks. The next step is the
installation and configuration of the dependencies required by all tasks which demands
package downloading or on-line installation. Then, each task artifact is downloaded
from a repository (in our case, Git Hub). This is followed by retrieving the data to
be processed by the task, then task execution. The operations of task downloading,
data retrieving and task execution are repeated for all tasks in the order specified in

the Topology Template and finally, the hosted container is destroyed.

Thttps://github.com/WorkflowCenter-Repositories /Core-LifecycleScripts
Zhttps://hub.docker.com
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Figure 4.3: Isolated deployment of a workflow task.

In the second scenario, the isolated deployment of the tasks requires the provisioning of
each task in a separate container. The tasks, dependencies and the hosted containers
are provisioned in an order specified in the Topology Template of the workflow. In

this scenario, each workflow task follows the deployment process shown in Fig. 4.3.

First, a Docker container is created using a task image indicated in the Topology
Template. As in the first scenario, the image may be generic or it may be generated

by the user and includes libraries and software required by the task.

Once the task container is running, the installation of dependency libraries takes place
according to their order in the Topology Template. Depending on the initial contents of
the selected Docker image, this may involve the installation of some software required
to run the task. In the next step, any input data required to run the task is copied
to the container and that is followed by downloading task artifacts into the container.
Similar to the previous step, this downloading step may be avoided if the selected

Docker image already includes the required files.
Note that if the image already includes all required dependencies and artifacts, no

- 08 -




Chapter 4: Dynamic Deployment of Scientific Workflows in the Cloud using
Container Virtualization

installation or copy operation is needed. Usually, however, the task artifacts will need
to be downloaded from our Task Repository. This allows us to freely update tasks and

to minimize the number of specific Docker images held in the repository.

Finally, with all prerequisites in place, task execution is initiated, and upon its com-
pletion the output data is transferred out of the container. Currently, to pass data
between containers we use a mounted shared folder that is accessible by all containers
running in the host VM. Thus, when data is generated by a task in one container, it is
immediately available to other containers and so can be used as input for subsequent
tasks. If the completed task is the last task to be executed in that container, the

container is also terminated and deleted.

Our deployment approach supports the isolation execution for each task, however it
does not offer parallel provisioning for unrelated tasks that have no relationship to
each other. The reason behind this limitation is that our deployment approach uses
Cloudify as a run-time environment for TOSCA-based workflow modelling, and it
does not offer parallel execution. While, as shown in figure 3.4, our TOSCA-based
approach could be used to model number of unrelated tasks, e.g. the two ImportFile,
the three ExportFile or the two CSVExport, in an independent way so they can be
run in parallel if the run-time environment supports this capability. For example, the
two ImportFile tasks have no relationship to connect them together and they have
been modeled as independent tasks but Cloudify unable to manage them in parallel
instead it sequentially executes the tasks lifecycle operations, starts from the first
task, completes all of its management operations and then starts the second instance

of ImportFile task.

In addition, our approach can support another optional scenario which is hybrid of
the above two scenarios. In this scenario, multiple containers can each host multiple
tasks; this is possible regardless of the task order. For example, a sequence of workflow
tasks: T7 — Ty — T3 can be deployed such that T} and T3 are hosted in one container,
whereas T is hosted in another one as specified in the Service Template according
to tasks’ dependencies and isolation requirements. Then, the approach will maintain
the appropriate order of execution while reusing the first container to run task T5.

This gives the workflow designer freedom in planning how tasks are distributed across
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containers without affecting runtime effectiveness.

In a case of any kind of failure occurs during the deployment time, e.g.: a failure to
create a container, network disconnection during the download of dependency library
or task execution failure, scientists/users will have number of artifacts and some in-
formation that can be used to diagnose the cause of the failure and help redeploying
the workflow. Firstly, during the deployment process, our system keeps all the in-
termediate data produced by each task under a folder with task name and created
during task provisioning. Therefore, when the provisioning of a task fail, it is possible
to identify the broken task from the last folder of task data been created. Secondly,
after the completion of task execution and transforming its output to the next task,
the task container is automatically destroyed and only the container of the current
running task exits. When a failure occurs, only the container of the failed task will
exist in the system which indicates the failure step and should be manually deleted
in order to start a new workflow deployment. Thirdly, Couldify provides an adequate
log for the deployment process capturing the execution information of each lifecycle
operation for both Node and Relationship Templates which can be used to diagnose

and identify when and where the error occurred.

4.3.4 Data Transfer

Before the submission of the Service Template, the user needs to identify the input
data that the workflow is going to process. Input data could be fetched from external
repositories if needed but, in this work, if all containers are deployed in the same
VM, we use that host VM’s disk to store input/output data. We also use this disk
as a shared space to exchange data files between tasks. In this way we can minimise
overheads related to transferring input/output files and data between tasks deployed
on the same machine and avoid the overheads of downloading input data and uploading

outputs to/from an external repository.

If tasks are deployed over multiple VMs then we use a direct network connection to
transfer data between tasks. Finally, the system can use cloud-based data repositories
such as Amazon S3 and Azure Blob Store, for the case of multi-VM deployments across

different clouds.
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Importantly, the process of transferring data between tasks is performed automatically
by the life-cycle script that implements inter-task dependency relationship, and it

remains hidden from the workflow designer.

4.4 The Integration of TOSCA and Docker for Work-
flow Deployment

The integration of the TOSCA-based modeling approach presented in the previous
chapter and Docker technology for addressing the automatic deployment of scientific

workflow brings number of valuable deployment features as presented below.

4.4.1 On-demand deployment and Pre-built Docker Images

Our system provides the flexibility to provision a particular task in a number of differ-
ent deployment scenarios, yet all using the same high level workflow definition. The
task description is sufficient to support the following two scenarios: 1) the on-demand
(dynamic) scenario using an image containing merely a basic OS. In this case, the
TOSCA-based task description provides all the information required to build the soft-
ware stack needed to execute the task following the steps shown in figure 4.3. 2)
pre-built image scenario, where a Docker image packages all dependencies needed for
task execution and is ready to be used for running the task immediately. In this sce-
nario, the task description is still useful: it provides the means to check the availability

of task dependencies and artifacts.

Moreover, our TOSCA-based description is flexible enough to adopt different scenarios
for provisioning tasks within the same workflow. For example, some of the tasks can
be dynamically provisioned on-demand while the others are provisioned using pre-
built images as demonstrated in experiment in section 4.5.5. This flexibility in the
deployment of tasks is efficient and appropriate to address the challenge of irregular
changes in tasks and their dependency libraries. Therefore, tasks that are frequently
changed can be provisioned using the on-demand scenario while for unchanged tasks
an image can be created once and used subsequently to avoid re-installation of the

required libraries and unnecessary downloading of task’s artifacts.
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A Docker image can also be used to package any number of tasks and their dependen-
cies if there is no conflict among these requirements. As a consequence, provisioning
scenarios using the pre-built images support 1) the flexibility of task provisioning where
different images can be used to provision the same task with different levels of settings,
2) reducing the total deployment time when the same image can be used to package
N tasks sharing the same requirements, where only one image is downloaded, rather
than N images for N tasks and 3) performance efficiency in the automatic adoption of

different deployment scenarios for a task using the same description.

Similar scenarios (on-demand and pre-built image) can be adopted for the deployment
of the whole workflow using the above-mentioned workflow topology. In the case of
on-demand deployment, a base image is used and TOSCA description provides the
details for provisioning tasks with their dependencies during the deployment time.
While in the other scenario, a pre-built image packaging all workflow components and

dependencies is used so that workflow tasks are already ready for execution.

4.4.2 Single- and Multi-Container Deployment Scenarios

In the rest of this thesis, we explore and compare the two main scenarios described
in 4.3.3: a single container for deploying the whole workflow and one container per
workflow task. The first scenario offers the shortest time for workflow deployment
when the tasks share dependency libraries and software, and when there is no conflict
between requirements. In addition, all tasks have to share the same execution environ-
ment, i.e. the operating system that hosted the tasks. The tasks provisioned in this
scenario are not isolated, and there might therefore be security problems. However,
this deployment scenario usually demands fewer resources such as disk storage and
memory because only one image is required to create a single container to host the
deployment of the workflow. In addition, the common libraries and software required

by number of tasks are only installed once and shared by all the tasks.

On the other hand, the multi containers scenario provides an isolated secure environ-
ment to provision each task separately, which enables the use of different execution
environments for the tasks (e.g.: different Linux distributions, Windows, etc.). In

addition, it enables the deployment of different and even conflicting software depen-
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dencies. We now conduct experiments to understand how big are the extra computing

resources this scenario consumes due to the use of multiple tasks.

4.5 Experiments and Evaluation

To validate our deployment system, we conducted a set of experiments in which we
deployed selected workflows, originally created in eScienceCentral. The aim was to
investigate and analyze several aspects concerned with the performance of the proposed
design and deployment method. First, we wanted to measure the time required to
deploy workflows in local and public cloud environments. We also wanted to see the
overheads related to the deployment of workflows using single- and multi-container
strategies. Additionally, we compared the impact of the use of generic and pre-build

Docker images on the overall workflow execution time.

All the experiments presented here are based on workflows and tasks that are publicly
available in our GitHub repositories.® Although in this work we focus our discussion
on a single VM host with multiple containers, our approach can be also used to deploy

workflow tasks on different VMs.

4.5.1 Ezxperimental Setup

To illustrate that the approach is generic, the workflows we used for the performance
evaluation vary in terms of structure, the number of tasks and their dependency li-

braries. Table 4.1 summarizes the basic properties of the workflows.

Table 4.1: Workflows selected to test our deployment approach.

Workflow Name No. of tasks Dependency libraries
Neighbor Joining (NJ) 11 ClustalW, MegaCC, Wine, Java, Core-lib
Sequence Cleaning (SC) 8 SAMTools, Java, Core-lib
Column Invert (CI) 7 Java, Core-lib
File Zip (FZ) 3 Java, Core-lib

The Neighbor Joining workflow (NJ), as presented in the previous chapter, is a pipeline

3https://github.com/WorkflowCenter-Repositories
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used in the EUBrazil Cloud Connect project to perform species identification of Leish-

mania parasite and sandflies using the neighbor-joining method.

The Sequence Cleaning workflow (SC) (see figure 5.6) is one of the steps in the Next
Generation Sequencing pipeline implemented in the Cloud-e-Genome project [29]. It
consists of eight tasks of which seven are Java-based and one is a wrapper around
the SAMTools executable. Finally, Column Invert (CI) and File Zip (FZ) are simple
workflows that consist of only Java tasks to invert a matrix and to compress and

decompress files.

To provision the execution environment for workflow tasks we used different Docker
images to run the containers (Table 4.2). The Ubuntu:14.04 and CentOS images
are pure OS images pulled from the Docker Hub and do not contain any tools used
by the workflows. The Basic image contains a set of common tools used by our
solution, such as Java and wget. For two selected workflows: NJ and SC we also
prepared two specialized images: CompleteNJ and CompleteSC, respectively. These
images extended the Basic image with all additional tools, libraries and task artifacts

required to run each task in the workflow.

Table 4.2: Docker images used in the experiments.

Image name Contents Image size [MB]
Ubuntu:14.04 as in the Docker Hub 188
CentOS as in the Docker Hub 178
Basic Ubuntu:14.04 + Java 4 wget 561
CompleteNJ Basic + all NJ deps. + blocks 1536
CompleteSC Basic + all SC deps. + blocks 850

Although our approach allows us to provision containers on different VMs, all contain-
ers used throughout the experiments were deployed in a single virtual machine. And
prior to workflow deployment all Docker images required by tasks were cached in this
host VM, so that results were not impacted by image transfer times from the Docker
Hub. We used Cloudify version 3.1 and its CLI to run the workflow blueprint file (the

Service Template). To manage containers we used Docker version 1.5.0.
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4.5.2 Experiment 1: Deployment and Enactment Time

In the first experiment we compared the deployment and enactment time of the test
workflows on different execution environments. Each workflow task was running in a
separate container with the ability to use a different image. We used the Basic and
CentOS images for Neighbor Joining and the Basic image for the other three workflows.
We also used a local VM and two public cloud providers to host the Cloudify runtime,
as presented in Table 5.1.

Table 4.3: Execution environments.

VM Environment CPU Cores RAM [GB] Disk space [GB]| OS

Local VM 1 3 12 Ubuntu 12.04
Amazon EC2 1 1 8 Ubuntu 14.04
Google Cloud 1 3.5 10 Ubuntu 14.04

In the experiment, each of the four test workflows was deployed ten times and we
used exactly the same four blueprints in each platform. Figure 4.4 shows the average
Execution Time (ET) needed to deploy and enact workflows, and the Standard Error
of the Mean (SEM) as the error bars. The time includes provision of Docker containers,
installation of the required dependency libraries, and deployment and execution of the
tasks. ET was calculated as the average time starting from the submission of the

blueprint until the completion of workflow execution.

This experiment shows that our proposed approach is able to successfully support
workflow deployment on several cloud platforms. We used the same Topology Template
in each environment and the same scripts for all workflows. ET was significantly
impacted by the structure, dependency libraries, and number of tasks in the workflow.
In addition, the differences in the execution time for the same workflow deployed on
different platforms was purely because of the variation in the time required to download

the tasks and install different dependency libraries such as Java.
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Figure 4.4: Execution time for workflows enacted in different environments; the NJ
workflow used the Basic and CentOS images, other three workflows used the Basic
image only.

4.5.3 Ezxperiment 2: Single- and Multi-Container Deploy-
ments

With the ability to rapidly provision containers using Docker we wanted to investigate
the overheads related to single- and multi-container workflow deployments scenarios.
By using a separate container for each workflow task we can improve security and
provide very good isolation properties for tasks. Therefore, understanding the related

performance costs of such deployment strategies is important.

In this experiment we ran tests in two scenarios: (i) multi-container — each workflow
task running in a separate container; (ii) single-container — one container used to run
all tasks in the workflow. For both scenarios we used our local VM to deploy all four

test workflows, and repeated each test 10 times.

This time, however, we used only the Basic image to run tasks that included tools and
libraries common to most of the tasks (java and wget). Therefore, ET included the
provisioning of Docker container(s), installation of task specific dependency libraries

and the actual execution time of all workflow tasks.

Fig. 4.5 presents the average execution time for the four workflows. As shown, there
is little difference between the two deployment scenarios for the four workflows: 14.9,

33.4, 13.9 and 3.2 seconds; or only about 2 seconds overhead per task. It reveals that
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Figure 4.5: Average execution time of single- and multi-container workflow deploy-
ments; all workflows used the Basic image.

the overhead of provisioning one container per task, which also involves the installation
of dependency libraries, is not significant when compared to the deployment of the
entire workflow in a single container where all tasks share the same container and

most of the required libraries.

Again, the experiment shows variation in the execution time due to variation in the
network throughput. This time the execution of the SC, CI and FZ workflows was
faster than in previous experiment and the difference stems from the faster download

time for task and library artifacts because they were conducted on different day time.

Running each task in a separate container not only improves the execution isolation
properties but it can also improve resource usage. If a single task in a workflow requires
many libraries and artifacts to be installed, with the single-container approach they

would consume disk space and memory of the container until the end of the workflow.

Instead, when using the multi-container strategy, each container includes only a subset
of libraries and artifacts required by the task it is hosting. And, once the task has

completed, the container may be destroyed which frees the resources allocated.
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4.5.4 Ezxzpertment 3: The Influence of On-demand Deploy-
ment

In the previous experiment we showed the impact of the use of multiple Docker con-
tainers on the runtime of a workflow. Although the impact was relatively low, for all
workflows we noticed that the runtime was much higher than what we would expect
running only workflow tasks. Therefore, we conducted an experiment to observe the
influence of the on-demand installation and configuration of dependency libraries on

the overall workflow runtime.

For this experiment we prepared two specialized images: CompleteNJ and Com-
pleteSC, and used them to run the NJ and SC workflows in the multi-container mode.
Having the images prepared, we used them to run the workflows in the multiple-
container mode and compared the execution time with multiple-container executions
using the Ubuntu:14.04 image. By using these specialized images we avoided the down-
load and installation of any libraries and task dependencies during workflow execution.
Fig. 4.6 shows that this part consumed over 280 seconds, the majority of the runtime
of the NJ workflow if using only the Basic and CentOS images. Instead, when the
task dependencies where preloaded in the CompleteNJ image, the installation time

became negligible.
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Figure 4.6: Execution time for the steps in deployment the NJ workflow.

In Fig. 4.7 we show similar comparison for the SC workflow. In this case we used only

the Basic image but none of the workflow tasks needed the time-consuming installation
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of the Wine library. The figure shows that the dominating part of the execution was
the blueprint processing step (calculated by subtracting from the total execution time

the time taken by all tasks implemented by our life-cycle management scripts).
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Figure 4.7: Execution time for steps in deployment of the SC workflow.

For the SC' workflow (8 tasks) the ‘blueprint processing’ time was about 38 seconds,
and about 10 seconds shorter than for the other NJ workflow (11 tasks). It shows the

impact of the size of the workflow on the time required by Cloudify to process it.

It is important to note, however, that in our experiments the task execution times
were relatively low. For longer-running tasks, the overheads introduced by our solution
would play only a marginal role even if we use a generic image from the Docker Hub
and decide to use the on-demand installation of the libraries. Although the on-demand
deployment increases runtime of workflow execution, it reduces the burden related to
image maintenance and is a valuable scenario for deploying tasks subject to frequent

changes.

4.5.5 Ezxperiment 4: Deployment with Different Docker Im-
ages

In most of the previous experiments we used the same image to deploy all tasks in a
workflow. However, our approach is flexible enough to adopt other options to task and
workflow deployment. The flexibility can help to address common challenges faced by

the designers during the workflow development phase — frequent and irregular changes
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Figure 4.8: Execution time of the NJ workflow using three possible workflow deploy-
ment options.

in the implementations of tasks, for example, when a new interface parameter is added

to the task or performance optimization made.

Therefore, in this experiment we investigate how various deployment options that are
enabled by our approach can support workflow development. We look at them from

two perspectives: the workflow level and task level.

First, at the workflow level the designer can choose one of the three ways in which
they may develop and deploy their workflow: using a pure-OS image, using a specific
image for each task or using a workflow-specific image that encapsulates all workflow
components and dependencies. We ran the Neighbour Joining workflow following
these three ways: the first used the pure-OS Ubuntu:14.04 image from DockerHub,
the second used seven task-specific images (note that the NJ workflow includes 11
tasks but some of them were instances of the same task type and so used the same
image), while the third used the Complete NJ image with all dependencies and artifacts

preinstalled. Fig. 4.8 shows the execution time in all three cases.

Clearly, the fastest execution was observed in the case that used a single, workflow-
specific image. It was the fastest for most of the deployment steps and only the image
download step ran noticeably longer than for the pure-OS case. That is because the
CompleteNJ image is much bigger than the pure-OS Ubuntu:14.04 (c.f. Table 4.2).
On the other hand, it is smaller than the total size of the seven images required in the

second case. The main drawback of the workflow-specific option is, however, increased
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effort needed for image maintenance. Every time a designer wants to update the
code of any single workflow task they need to prepare a new workflow-specific image.
Additionally, that option sacrifice isolation properties and is not possible if any two

workflow tasks have a conflicting set of dependencies.

At the other end of the execution performance range was the slowest option which used
the pure-OS image. It saved some runtime in the image download step as it needs only
one relatively small image for all the tasks but that was completely wiped out by very
long time required to install on-demand all dependency libraries including Wine and
Java (c.f. ‘tools & libs inst.” in the figure, which took over half of hour). Despite
having the longest execution time, this option may still be very useful during early
stages of workflow development as it does not require any image maintenance. It is also
particularly suitable for workflows built from scratch, in which case the designer may

not yet realise whether there are any major costs related to dependency installation.

In between the two extremes is the option in which workflow tasks used specialized
task images. This offers a good balance as the execution time is close to the fastest,
workflow-specific case, yet it offers a good level of isolation and flexibility. The designer
can combine tasks with conflicting dependencies and a change in one task requires

update of only one, usually small image.

Looking at the same deployment options from the task level, the workflow designer
has also a few options to choose from. First, they can decide to use the on-demand
installation and embed a task that uses a pure-OS image. Second, they can prepare
a Docker image that comprises the entire software stack needed by the task. Finally,
they can decide to mix these two options and prepare an image with the software stack
that includes all the dependencies, yet use on-demand installation for the task artifacts
only. The last approach may be useful during the intensive task development phase
when the developer frequently updates the task code while the core set of dependencies

remains the same.

We prepared an experiment in which a workflow was configured with three tasks, each
using a different task deployment option. Fig. 4.9 depicts the task execution time for
each deployment step. Again, there is clear trade-off between using a rigid approach

with a specialized task image that gives the best performance, and the least efficient
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Figure 4.9: Execution time of the CSVExport task deployed using three task deploy-
ment options.

but most flexible approach which used the pure-OS image and relied on the on-demand
installation of task and dependency artifacts. Yet, using the image with preinstalled
dependencies only is an option that proves the flexibility required when task code
changes frequently, and it ran almost as fast as the option that used a specific task

image.

Importantly, the deployment options presented here can be mixed within a single
workflow and can change over time as the workflow and tasks undergo changes in
their development phases. We expect that for a newly created workflow the designer
would use specialized task images for the common, mature tasks such as I/O transfer
because they rarely change. In contrast, they would use on-demand installation for
tasks specific to the workflow application. Then, once the iterative development of
these tasks becomes less intense, the natural step is to build task specific images
and focus on workflow design. Finally, at the point when the development phase
of the workflow application becomes less intensive and/or the workflow is ready for
production use, the designer can capture a workflow-specific Docker image with all
tasks and dependencies preinstalled, which would then offer the best performance for

the users.
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4.6 Conclusions

In this chapter we presented a new system to build, deploy and enact scientific work-
flows. It integrates our TOSCA-based workflow definition presented in the previous
chapter with container-based virtualization. The most important benefits of this ap-
proach is to improve the portability of the workflow, and the opportunity it creates for
reuse. We used a small set of common life-cycle management scripts to deploy work-
flows and tasks irrespective of the workflow and cloud platform they were running on.
And, by defining reusable Node Types for tasks, and Service Templates for workflows,

we enable new workflows to be built.

Using container-based virtualization, our approach can support execution isolation for
heterogeneous workflow components and allows the underlying execution environment
to be dynamically built and provisioned. Importantly, the combination of TOSCA and
Docker adds greatly to the design-time flexibility and provides a number of different
deployment options. Given the low performance overheads related to container pro-
visioning, designers can decide to run each task in complete isolation or in a shared
container. Our approach allows task deployment to be easily split and merged across
containers. Similarly, it enables image creation to be customised to best fit the actual

implementation needs of task and workflow developers.

Overall, the proposed approach facilitates the reuse of task and workflow descriptions,
and their artifacts, both at the level of the TOSCA definition and at the level of
code distribution (using Docker images). Importantly, this approach is one of the
key foundations of our approach to improve the reproducibility of scientific workflows,

which is presented in the next chapter.
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Summary

In the previous chapters, we showed how to describe the entire structure of a scientific
workflow, together with all its components and a specification of the host environment.
In this chapter, we can go further and turn workflows into reusable entities that include
not only the description of a scientific experiment but also all details needed to deploy

and execute them automatically.

We describe an approach that integrates our TOSCA-based workflow description,
source control, container management and the automatic deployment approach pre-
sented in the previous chapter to facilitate workflow reproducibility. We have developed
a framework that leverages this integration to support workflow execution, re-execution

and reproducibility in the cloud, as well as in a personal computing environment.

We demonstrate the effectiveness of our approach by examining various aspects of
repeatability and reproducibility for real scientific workflows. The framework allows
workflow and task images to be captured automatically, which improves not only
repeatability but also runtime performance. It also gives workflows portability across

different cloud environments.

Finally, the framework can also track changes in the development of tasks and work-

flows to protect them from unintentional failures.

5.1 Introduction

Researchers in different disciplines have embraced workflows to conduct a wide range of
analyses and scientific pipelines [40], mainly because a workflow can be considered as a
model defining the structure of the computational tasks necessary for the management

of a scientific process [78].

However, workflows are not only useful for representing and managing the computation
but also as a way of sharing knowledge and experimental methods. When shared, they
can help users to understand the overall experiment, or they can become an essential
building block in new experiments. Lastly, workflows can also be used to repeat or

reproduce the experiment and replicate the original results [63].
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One of the major challenges in achieving workflow reproducibility, is the heterogeneity
of workflow components which demand different, sometimes conflicting sets of depen-
dencies. Ensuring successful reproducibility of workflows requires more than simply
sharing their specifications. It also depends on the ability to isolate necessary and suf-
ficient computational artifacts and preserve them with adequate description enabling

future re-use [90].

A number of analyses and research efforts have already been conducted to deter-
mine the salient issues and challenges in workflow reproducibility [14, 48, 54, 145]. In
short the issues can be summarized as: insufficient and non-portable description of a
workflow including missing details of the processing tools and execution environment,
unavailable execution environments, missing third party resources and data, and re-
liance on external dependencies, such as external web services, which add difficulty to

reproducibility at a later time.

Currently, most of the approaches that address the reproducibility of scientific work-
flows have focused either on their physical preservation, in which a workflow is con-
served by packaging all of its components, so an identical replica is created and can
be reused; or on logical preservation, in which the workflow and its components are
described with enough information for others to reproduce a similar workflow in the

future [113].

Although both packaging and description, play a vital role in supporting workflow
re-use, alone they are not sufficient to effectively maintain reproducibility. On the
one hand physical preservation is limited to recreating the packaged components and
resources but it lacks a structured description of the workflow. Therefore, it makes it
easy to repeat exactly the same execution, yet it often does not enable the important
ability to reproduce the experiment with different parameters or input data. On the
other hand logical preservation can provide a detailed description of various levels of
the workflow. However, this is still not enough if there is an absence of the necessary
tools and dependencies required to execute workflow tasks. The need to integrate these

two forms of preservation is therefore apparent.

In this chapter we present a new framework designed to address these challenges. The

framework integrates features of both the logical and physical preservation approaches.
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Firstly, we use our TOSCA-based approach that allows a workflow description to in-
clude the top-level structure of the abstract workflow, together with details about its
execution environment. The description can offer portability in automated deploy-
ment across different execution environments including the Cloud and a local VM as

presented in Chapter 4.

Secondly, using Docker virtualization our framework offers portable packaging of whole
workflows and also their sub-parts. By integration with TOSCA, the packaging is auto-
mated, hence users are free from creating and managing Docker images. Additionally,
our framework is built upon code repositories that natively support version control —

crucial in tracking the evolution of workflows and their components over time.

We argue that combining these three elements: portable and comprehensive descrip-
tion, portable packaging and widely applied version control, play a fundamental role in
maintaining reproducibility of scientific workflows over longer periods of time. They
allowed us to build the framework which we present in this chapter. We evaluate
the framework using real scientific workflows developed in our previous projects to

demonstrate that it can effectively realise its goal.

The remainder of this chapter is organised as follows: Section 5.2 presents in details
the requirements to improve the reproducibility of scientific workflows. Section 5.3
provides the description for the core and details of our framework for workflow repro-
ducibility. In section 5.4, the structure and comprehensive description for repositories
of workflows and tasks are presented. Then the evaluation of our solution is presented

in section 5.5. Finally, Section 5.6 closes the chapter with conclusions.
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5.2 Requirements for Workflow Reproducibility

A review of the literature shows that there is no standard approach to address the
reproducibility of scientific workflows. However, there are several requirements and
guidelines for achieving reproducibility that need to be addressed. In this section, we
highlighted a set of these requirements, which are covered by the work presented in

this chapter:

Workflows should be well described and annotated: Sufficiently detailed de-
scription and annotation of a workflow helps to define all tasks, properties and de-
pendencies. Workflow description can play an important role into re-executing and

reproducing the workflow, increase the comprehensibility of its purpose and functions.

A workflow’s documentation should provide: 1) a structured description of the pro-
cessing steps carried out in a workflow. 2) annotations for the functional aspect of the
workflows providing the design and purpose of the workflow as well as the structure of
the tasks involved in the workflow. 3) detailed descriptions of the tasks in a workflow
to facilitate an understanding of what each task aims to achieve as well as their inputs

and outputs.

Preservation and sufficient description of the execution environment: The
execution environment is composed of the set of computational resources (software
and hardware) that are involved in the execution of scientific workflow. The authors
in [114] advised enriching the workflow description with information about the required
execution environment. The execution environment can be preserved by adopting
a physical approach, where actual resources including the operating system and its
configuration are captured. However, this approach is not always viable due to frequent
changes in the underlying computing systems (e.g.: changes in the operating system or
its libraries). Therefore, it is important to collect appropriate details for the execution
environment in such a way that will assist in the re-provisioning of an environment

that can support the task, though not identical, and enables workflow re-execution.

Preserving and tracking changes of the external dependencies: many work-
flow tasks require specific software packages or libraries. Without these, a task exe-

cution will fail. For example, a task, relying on an R library, will fail if it is missing
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or an incompatible version is used. Therefore, it is necessary to collect information
about the software and library dependencies used to execute workflow tasks in order

to maintain the ability to re-execute the workflow.

According to [145] and [87], volatility of these software and resources results in the
decay of 50% of the tested workflows. Although changes in dependencies are not
always controllable, providing sufficient documentation and regular change tracking
enables the identification of the required version and different changes made to these
resources. This will also help for selecting a specific library version compatible with
workflow/task version as well as facilitating the process of choosing alternative library.
Task dependencies can also be preserved by packaging them using available tools and

techniques such as VMs or other containers.

Packaging sample data and auxiliary information: The analysis conducted
in [145] reported that of the 92 workflows, 15% of them could not be re-executed

because of the absence of sample data.

Missing input data might produce different results even when the inputs were described
in detail, it might be difficult to create proper values for the input data to be used for
workflow execution. Without input data, the ability to re-execute the workflow and
understand its function is constrained. Therefore, providing sample data is helpful for

the re-execution of the workflow.

Tracking changes and the evolution of workflows and tasks: Another factor
that facilitates the reproducibility of workflow is versioning [141] [8]. By enabling
version control on a workflow and all related components, a user can track the evolution
of a workflow and its tasks, and retrieve a specific task version related to a workflow
version. This allows the exact version of a workflow and its tasks used in the production

of an experimental result to be used in the reproduction of that result.

To control changes that can affect a workflow and its components, we used a version
control systems. This gives the ability to track the complete history of developmental

changes of workflows and tasks.
Supporting workflow portability:
Having access to the detailed information about a workflow improves the ability to
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reproduce it. However, it is important for reproducibility and repeatability that this
description allows portability of the deployment across different execution environ-
ments [14]. This portability might be achieved by packaging a workflow using a

portable mechanism such as Docker containers and images.

Sharing workflow, tasks and data: To reproduce an experiment represented by
a scientific workflow, it is important that the data, code, and the workflow description
are available [86]. A number of public repositories are available to share workflow

specifications, task code, dependencies packages and tools and sample data [53] [5].

Offering a repository for the tasks in a deployable way provides the ability to store
different versions of the task with different implementations, and all the software stack
including operating system, libraries, and middleware. The ability to construct a
repository of workflows/tasks that can be accessed and deployed during or prior to

workflow deployment /enactment supports the following capabilities:

e Enabling developers to upload tasks/workflow to be stored in the repository so

that they can be fetched later and used by other users.

e Allow access to specific versions of tasks from multiple workflow enactments so

they can be reused in other workflows.

Automating workflow deployment: As stated in [71], another factor that con-
tributes for better understanding and facilitate the re-usability of a workflow is the
automation of workflow deployment. Therefore, providing workflow users with a mech-
anism for automatic workflow deployment has the potential to significantly improve

workflow reproducibility.
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5.3 Improving Workflow Reproducibility

The complete reproducibility of a workflow is hard to achieve due to possible changes
at various levels in the software and hardware platforms used to run it. We can, how-
ever, significantly increase the degree of reproducibility by addressing the challenges
discussed earlier: this was the goal behind the design of our workflow reproducibility

framework.

5.3.1 The Framework Architecture

The proposed workflow reproducibility framework consists of four main components:
the Core repository, a set of Workflow and Task repositories, the Image repository
supported by Automatic Image Creation (AIC) (described in 5.4.4), and the work-
flow enactment engine (Fig. 5.1). The Core repository includes a set of common and
reusable TOSCA elements such as Node- and RelationshipTypes, and life-cycle manage-
ment scripts. They are a foundation for building tasks and workflows. The Workflow
and Task repositories are used to store workflows and their components so they can
be accessed during enactment and also shared and reused in designing new workflows.
The Image repository contains workflow and task images that are used to improve
both reproducibility and also workflow enactment performance. Images are automati-
cally captured by the AIC. Finally, the workflow enactment engine is implemented by

a TOSCA-compliant runtime environment.

To implement logical preservation we rely on the TOSCA specification which we previ-
ously adopted as a method to model portable workflows [107], as described in Chapter
3. With TOSCA we can describe workflows not only at the abstract level but also
with the complete software stack required to deploy and enact them. This approach
is portable because we have designed a way to use a TOSCA-compliant runtime envi-
ronment to automatically deploy and enact our workflows on a range of different cloud

platforms or in a local VM.

To control changes that can affect a workflow and its components we use a version
control platform. This gives us the ability to track the complete history of develop-

mental changes of workflows and tasks. The version control platform also supports
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Figure 5.1: The architecture of our workflow reproducibility framework.

the Automatic Image Creation facility. The AIC uses Docker to implement physical
preservation of workflows and greatly helps in the building and management of image

libraries.

Instead of building yet another workflow repository and yet another workflow engine,
we have defined our framework on top of open platforms such as GitHub and Docker-
Hub. The former allows workflow and task source code to be stored and maintained
under version control, the latter can store workflows and tasks packaged as Docker
images. Importantly, both platforms offer mechanisms which promote sharing and

reuse.

5.3.2 The Framework in Use

To create a workflow the user needs to follow our TOSCA-based modeling approach
(described in Chapter 3) to implement and model its essential components including:
NodeTypes and task code. The NodeTypes are used to declare tasks and dependency
libraries, and they also refer to the task code — the actual software artifacts which will

be deployed and executed.
To facilitate building new tasks and workflows we implement a set of basic NodeTypes
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as shown in figure 3.3 along with tasks that others can reuse. Additionally, our Core
repository provides RelationshipTypes and life-cycle management scripts (described in
section 4.3.2) that are common to all workflows. They define and implement basic
workflow functionality like passing data between tasks, the configuration of library
dependencies, etc. Given all these components, the workflow can be encoded as a
TOSCA Topology Template. The template (described in section 3.3.2) includes Node-
and Relationship Templates that are instances of the types developed earlier; these

templates represent tasks and task links, respectively.

Once the workflow Topology Template has been prepared, it can be deployed by a
TOSCA-compliant runtime environment. The enactment of workflows follows the
structure embedded in the Topology Template that in a declarative way combines
components and dependencies. Using the Topology Template, the TOSCA runtime

environment (Cloudify) can infer the appropriate workflow execution plan.

5.4 Workflow and Task Repositories

Since we have been using publicly available platforms like GitHub to maintain the
Workflow and Task repositories, these repositories can remain under user control to
clone, use and modify the workflows and tasks. We provide our own example repos-
itories with a set of basic reusable workflow tasks and example workflows mainly to
illustrate how the framework can support reproducibility. But primarily, the ecosys-
tem of workflows and tasks will be grown by researchers and scientists who want to

develop their own workflow applications.

The choice of source version control platforms, such as GitHub, to host repositories of
workflows and tasks was not accidental. These platforms offer excellent tools to sup-
port sharing and communication. But more importantly, they allow code developers
and users to keep track of the changes as code is developed and this can directly help

to improve repeatability and reproducibility.

Our approach works on the principle that each single workflow and workflow task is
maintained in a separate code repository. That brings multiple benefits: repositories

mark clear boundaries between components, they offer independent version control,

- 04 -



Chapter 5: A Framework for Scientific Workflow Reproducibility in the Cloud

allow for easy referencing and sharing, and additionally, provide branches and tags to
implement strict control of workflow and task interface. With multiple repositories
it’s also easy to encapsulate auxiliary information, such as sample data and human
readable description specific to each workflow and task, which helps to maintain long-

term reproducibility.

5.4.1 Repository Structure

A repository aggregates various artifacts with information and resources related to
the workflow or task. These artifacts as shown in fig 5.2 include: TOSCA-based
descriptors, workflow /task-specific life-cycle scripts, sample data, human readable de-
scription, the one-click deployment script and deployment instructions, input.yaml file
for workflow deployment parameters. The mandatory - and most important artifacts
are TOSCA-based descriptors. In the case of a workflow, this is the Toplogy Template
descriptor described in Chapter 3 (see Appendix A for a sample template), that en-
codes the structure of a workflow and references all the workflow components and
life-cycle scripts required for enactment. In the case of a task, the descriptor includes
the TOSCA NodeType (described in section 3.4.1) that defines the task interface and
refers to the actual task implementation code in addition to a sample Topology Tem-
plate includes the NodeTemplate task. The input.yaml is a yaml-based file that provides
number of setup parameters for workflow deployment used during the deployment pro-
cess such as: user specified Docker image that will be used to create workflow/task
container, the location and name of the sample data file and a flag variable used to

indicate whether the user want to create Docker images or not.

Other artifacts, although optional, are helpful for maintaining reproducibility. For ex-
ample, when provided with sample data and the one-click deployment script (described
in section 4.3) users can easily test a workflow or task in their environment. The de-
ployment script starts a multi-step process which deploys the workflow together with
basic dependencies such as Docker and Cloudify and then enacts it. The human read-
able description, shown in figure 5.3, includes: description about workflow function,
inputs, outputs, information about tools required to deploy the workflow (Cloudify and

Docker) along with execution environment specifications. This description is stored
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Figure 5.2: The artifacts of a workflow repository.

in a repository and enables users to understand better the purpose of the component
and so use it more easily. This can also help users to recover from failures in the face

of changes in the workflow or any of its dependencies.

The structure of workflow and task repositories are very similar. This is because our
tasks also include a simple test workflow descriptor and sample data which allow users
to easily run a task and test whether it actually meets their requirements. Maintain-
ing a separate repository for each task of a workflow facilitates the understanding,

maintenance, re-use and separate testing of the workflow.

Usually, our repositories include two workflow descriptors that define the single- and

multi-container configurations to support different deployment scenarios. As discussed
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in the previous chapter, the single-container workflows are executed within one Docker
container, whereas in the multi-container configuration each task runs in its own con-
tainer. The use of the single- or multi-container configuration also has an impact on

the kind of images that will be generated by our Automatic Image Capture facility.

These two default configurations so however only describe two extremes out of the
range of possible workflow deployments. For more specific, advanced scenarios devel-
opers can create workflows that include containers which group together a subset of

tasks, for example for sharing the same dependencies.

5.4.2 Interface Control via Branches and Tags

One of the major sources of workflow decay is changes in the components that a
workflow is comprised of. In a living software system changes are inevitable because the
components — tasks, libraries and other workflows — undergo continuous development.
Yet to maintain reproducibility we cannot forbid all changes. Instead, we need to

control them, so they do not contribute to the decay.

The changes that occur naturally during workflow and task development can affect
two layers of the system: the interface and/or implementation of a component. By the
workflow/task interface we consider the contract between the developer and user of a
component. Specifically, it is the number and type of input data items and properties
that the workflow/task uses in processing and also the number and type of output

data items it produces.

Changes in the interface, such as adding a new input parameter, usually indicate some
important modification to a component and need to be followed by changes in its
implementation. Conversely, changes to the implementation only, if made carefully,
are often merely improvements in the code which have no implications for other parts

of the workflow.

Since, in our framework each component is maintained in a separate repository, we
can control these two types of changes effectively. Figure 5.11 depicts an example of
change tracking for the SC workflow. We use repository branches to denote changes

in the interface such as adding new input parameter to a task or changing the type of
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The Sequence Cleaning workflow (SC) is one of the steps in the Next Generation Sequencing pipeline.

WF-Title: The Sequence Cleaning workflow (SC)
version: 1.0
Description: The workflow is one of the steps in the Mext Generation Sequencing pipeline. It was designed

in the e-5Science Central system.
#HHWF-Tasks:

Mo-of-tasks: &
Tasks: {importDir: 1, Pick-File: 1, Picard-Clean: 1, Picard-Mark: 1, Picard-Add: 1, SAMTools-index: 1, ExportFiles: 2]
Dependency-Libs: {javal.?: all, SAMTools-lib: SAMTools-index)

###Blueprint:

blueprint-name: Picard.yaml
Docker-images: dtdwd/picardl
sizes: 268 MB (Virtual size 594.6 ME)
O5-types: ubuntuld 4

tools: Javal.?, SAMTools-lib

###nput:

input-Dir: {

Probe PFC_0030_MSt_GAGTGG.sorted.bam.bail, Probe PFC_0030_M5t_GAGTGG.sorted bam,
Probe PFC_0030_MS5t_GAGTGG_nodups.sorted.realigned.Recal.bai,
Probe.PFC_0030_MS5t_GAGTGG_nodupssorted.realigned.Recal bam,
Probe.PFC_0030_MS5t_GAGTGG_nodupssorted.realigned.Recal reducedReads.bai,
Probe.PFC_0030_M5t_GAGTGG_nodupssorted.realigned.Recal reducedReads.bam

1

description: input Dir including 3 input files

#HQutputs:

output-folder: '~/blueprint-name’
output-file(s): {index-BAl-files, cutput-5AM_BAM-files)
description:

types: { "}
#xEFExecution-Envircnment;

Cloudify-version: 3.2
Docker-version: 1.8+
O5-type: ubuntuld.04
Disk-space: 10 GB
RAM: 3 GE

Figure 5.3: The human readable description of a workflow repository presented in
README.md file as shown in 5.2.

- 08 -



Chapter 5: A Framework for Scientific Workflow Reproducibility in the Cloud

task output (represented by orange and green lines respectively), and tags to indicate
significant improvements in the implementation such as releasing a new version of a
workflow, task or dependency library (represented by red circles). Minor implementa-
tion changes are simple commit events in the repository which do not need any special
attention (represented by grey circles in the graph). This approach supported by the
effective way that GitHub allows references to a specific branch or tag is enough to

address the problem of changing components.

However, these mechanisms are not only important for allowing our framework to
maintain the reproducibility of existing workflows, they are also crucial for users cre-
ating new workflows. With repository branches, users can easily see different flavours
of a specific task or workflow and decide which one to use. On the other hand tags
help users to see major improvements of a component or workflow. Tags also indicate

to our framework when there is a need to create a new component image.

To illustrate the use of branching and tagging in practice we show later, in the Eval-

uation section, a development scenario for one of our test workflows.

5.4.3 Automatic Workflow Deployment

The model of describing workflows using TOSCA proposed in Chapter 3 is important
because it not only supports logical preservation but also offers the ability to auto-
matically deploy and enact our workflows. That facilitates repeatability and improves

workflow reproducibility.

To run a workflow using our framework, users need to clone its repository to a target
machine in which they are going to run it. The repository includes sample data and
the one-click deployment script. This is a simple script able to install the software
stack required to run the workflow (Cloudify, Docker and some auxiliary tools) and

then to submit the workflow to Cloudify with default configuration parameters.

The default configuration and sample data make it easy for users to test the workflow.
It also provides a way to repeat the execution as well as creating a starting point
for reproducing it. To repeat a workflow users can simply switch to a very specific

version of the workflow in the repository history and run the one-click deployment
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Figure 5.4: Steps in automatic workflow deployment using the multi-container config-
uration.

script. Then, they can modify the default configuration and provide their own data.
For example, the default configuration refer to the attached sample data folder and
files, but a user can change this to refer to their local data artifacts. They can also
switch to the latest version of the workflow - the last tag of workflow repository - to

validate the output or compare it with output generated by previous versions.

The TOSCA descriptor of a workflow is a declarative specification that includes all
tasks, dependency libraries and task links embedded in the workflow ServiceTemplate.
The template also includes dependencies against the task execution environment which
may be composed of one or more Docker containers and VMs. Apart from the declara-
tion of tasks and libraries, the workflow ServiceTemplate also encodes the topology of
the workflow. For scientific workflows, usually implemented as directed acyclic graphs,
there is sufficient information to allow a linear workflow execution plan to be automat-
ically inferred (Fig. 5.4). Cloudify follows the generated plan, and deploys and runs

one task at a time.

Crucial to workflow enactment are life-cycle management scripts. As described in
the previous chapter, they implement deployment operations that each workflow and

task needs to go through, such as: initialization of a shared space used to exchange
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data between tasks, provisioning of the host environment (a container), installation
and configuration of library dependencies. As the majority of tasks follow a very
similar pattern of deployment, we developed a set of common, reusable life-cycle scripts
(described in section 4.3.2) and included them in the Core repository. Developers can

refer to these scripts when building their own workflows and tasks.

5.4.4 Automatic Workflow/Task Image Capture (AIC)

TOSCA-based descriptors are the fundamental element of our framework, partly be-
cause they are used to implement logical preservation (described earlier), and partly
because they allow workflows to be automatically deployed and enacted. However,
running workflows based only on these descriptors would result in significant runtime
overheads. The framework would repeat the same, sometimes long running, steps to
deploy a task every time it was executed, both if re-used in the same workflow, or in

a range of workflows.

As mentioned in Chapter 4, our deployment approach is flexible enough to run the

workflow and task deployment process using a variety of Docker images:

1. starting from a pure OS image - typically one available from DockerHub

2. using a specific user-defined image which includes some workflow/task depen-

dencies

3. using a complete image that contains all of the required dependencies.

If the image referred to in the workflow ServiceTemplate does not contain all the de-
pendencies (as in 1 and 2 above), they will be installed by the framework on-demand
during workflow enactment. This automation simplifies the development cycle because
users are not forced to manually prepare and manage task or workflow images before

they can use a workflow.

Yet, to simplify the use of the framework even further we implemented an Automatic
Image Capture facility. As described in Chapter 4, a container is created during the
provisioning of each workflow task in order to host the task and all the required depen-

dencies. Following the provisioning process of all dependencies and downloading the
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Figure 5.5: Steps in automatic workflow deployment using the task images created by
the AIC; cf. Fig. 5.4.

task, the AIC facility automatically creates a Docker image using the task container.
The created image is given a unique name that includes the task name and the version

(represented by the branch and tag of the task repository).

The AIC automatically creates these images for both the workflow and its task, so that
they can be deposited in a private or public Image Repository. The next time a task
is executed, instead of going through the complete deployment cycle, the framework
will automatically use these images created earlier by the AIC (Fig. 5.5). As shown
in the Evaluation section 5.5.2 below, this automatic optimization to the deployment

process can have very significant impact on runtime performance.

The workflows we implemented are usually described with two configuration options:
single- and multi-container. These options influence the way in which deployment and
enactment of workflows is performed, but also determine what image the AIC will
create for the workflow. If the workflow uses the single-container configuration, the
AIC will capture a single image that encapulates the whole workflow including all its
components. Conversely, if the workflow uses the multi-container configuration, one
(smaller) image will be created for each task. Both options have their advantages: the

former imposes less overhead in terms of storage and performance, whereas the latter
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promotes better reuse of task images and gives more flexibility if the workflow requires
updates. Nonetheless, they support the repeatability and reproducibility of workflows
equally well.

However, to realise this goal, images must be properly versioned. The AIC uses iden-
tifiers from the Image Repository and tags from the Workflow and Task Repositories
to achieve this. The workflow/task image identifier is generated based on the base
Docker image identifier and the URL of a branch or tag of a workflow/task for which
the image is built. This simple and unique mapping between code and image versions
allows users to include only the code URL in their workflow ServiceTemplate. This is
enough for the framework to fetch and use the correct image for a task or workflow.
And in the case that the image does not yet exist, the workflow enactment will fol-
low the full deployment cycle during which the AIC will automatically generate and

deposit the relevant images for future use.

5.5 Evaluation and Discussion

We describe the evaluation of our framework from three different perspectives. First,
we present a set of experiments to show the portability of the workflow description - the
fact that it can be enacted in different environments. Second, we show the benefit of
using the AIC to reduce a workflow’s runtime. Thirdly, we describe a specific scenario
including both workflow and task development to illustrate how the framework can

maintain reproducibility in the face of changes in workflow components.

5.5.1 Repeatability on Different Clouds

The goal of this set of experiments was to re-enact a workflow, initially designed in
a local development environment, on three different Clouds as well as a local VM.
We ran the experiment for the four different workflows described in Chapter 4. The
workflows: Neighbor Joining (NJ) (figure 3.4), Sequence Cleaning (SC) which is used
in a NGS pipeline [29], Column Invert (CI) and File Zip (FZ) are different in terms of
structure, the dependency libraries they require and the number of tasks they include

(11, 8, 7 and 3 tasks, respectively). Figures 5.6, 5.7 and 5.8 depict the structure of
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the Sequence Cleaning, Column Invert and File Zip respectively according to their

TOSCA description.

4— Task-Link
Contained-in
+—— Depends-on

_____

_____

—J

_________ s

t
AAN

Container Container

Container

Container

Container

Container

Container

Container

Container

vMm

Figure 5.6: The structure of the Sequence Cleaning workflow in multi-container con-
figuration described in TOSCA.
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Figure 5.7: The structure of the Column Invert workflow in multi-container configu-
ration described in TOSCA.

To illustrate the potential of our framework in supporting repeatability and repro-

ducibility and the value of the proposed workflow representation, each of the selected

workflows was first developed, and then deployed and enacted in a local develop-

ment environment. We recorded the execution time for that initial enactment which

included automatically creating Docker images for the whole workflow or individual

tasks (depending on the desired deployment scenario).

To conduct the rest of the experiment, we cloned the workflow repositories in four
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Figure 5.8: The structure of the File Zip workflow in multi-container configuration

described in TOSCA.

Table 5.1: Basic details about the execution environments.

Environment CPU Cores RAM [GiB] Disk space [GB] Operating System

Local VM 1 3 13 Ubuntu 14.04

Amazon EC2 1 1 8 Ubuntu Srv 14.04
Google Cloud 1 3.75 10 Ubuntu Srv 14.04
Microsoft Azure 1 3.5 7 Ubuntu Srv 14.04

different environments: a local VM, and Amazon AWS, Google Engine and Microsoft
Azure Clouds. Finally, we re-executed workflows five times in each environment us-
ing the pre-built images and collected the results. The configuration of the VMs is
presented in Table 5.1.

Each workflow was used in two different configurations - single- and multi-container
- to show the overheads of running multiple task containers. The input and output
data for the workflows were the same in all executions and the average execution times
were similar. Fig. 5.9 shows a chart with the results for the SC workflow and Table 5.2

includes the results for the other workflows.

The experimental results show that our scientific workflows can be re-enacted, produc-
ing the same outputs with a similar runtime. They illustrate a common development
pattern in which developers build and test a workflow in their local environment and
once it is ready they can share it with others via Workflow, Task and Image Reposito-
ries. The integration of TOSCA representation and Docker packaging offers significant
support for this pattern.
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Table 5.2: The average execution time (in minutes) for different workflows executed
in different environments.

Neighbour Join. Column Invert File Zip
Single Multi Single Multi Single Multi
Development Env. 2.13 2.54 0.9 1.3 0.6 0.94
Amazon 1.74 2.27 0.66 1.18 0.5 0.84
Azure 2.52 3.86 1.35 2.1 1.23 1.38
Google 1.52 2.48 0.74 1.18 0.5 1.01
Local VM 1.65 2.5 1.03 1.37 0.53 1.03
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Figure 5.9: The average execution time for the Sequence Cleaning workflow executed
in different environments.

5.5.2 Automatic Image Capture for Improved Performance

As mentioned earlier, our framework is flexible enough to allow tasks and workflows
to use pure OS images available from DockerHub or custom, predefined task/workflow
images created by users or the AIC. By using a predefined image we can avoid the
installation of dependency libraries and task artifacts required during workflow execu-
tion. As shown previously in Fig. 5.5, this can reduce the number of deployment steps

required in workflow enactment.

The elimination of some of the deployment tasks can have very positive impact on the

runtime of workflows. To show this, we prepared a set of experiments in which we
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ran our workflows using different images: the base image available on DockerHub, the
base image with pre-installed dependency libraries and task images captured by the

AIC. Fig. 5.10 depicts the average workflow execution time for four workflows.

35
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Figure 5.10: The average execution time of test workflows using different task images.

Clearly, there was a significant overhead in using the base image from DockerHub
which included automatically creating Docker images for each individual tasks. The
main reason was the time required to install dependency libraries such as the Java

Runtime Environment or, in the case of the NJ workflow, the Wine library.

The second and third option show small differences with slightly shorter execution for
experiments which used images created by the AIC. That is because the AIC captures
everything the task needs to run (according to the task’s TOSCA descriptor), whereas
the second option included only dependency libraries while the task artifacts (task

code) were downloaded and installed on-demand during every execution.

The results show that from a performance perspective the use of pre-packaged images is
the most effective option. However, from the user perspective, the quickest and easiest
is the use of the base images already available on DockerHub instead of building images
manually. Our framework supports the flexibility of building the images automatically
to avoid the need for the users to build them manually for the cost of some overhead
incurred by the initial execution of a workflow. The first run will involve the complete
deployment cycle and creation of the images, whereas any subsequent executions will

benefit from those images and will run at full speed.
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5.5.3 Reproducibility in the Face of Development Changes

One of the key factors that can reduce the decay of our workflows is their ability to
embrace changes that occur naturally during workflow and task development. These
changes can mainly affect two layers: the input/output interface of a workflow or task,

and their implementation.

In Fig. 5.11 we illustrate a realistic evolution scenario of the Sequence Cleaning work-

flow shown earlier in Fig. 5.6.

The left side depicts the timeline of development events that occurred during the sce-
nario. It is accompanied by change trees from two repositories: the left tree represents
the evolution of the workflow, the one on the right shows the evolution of one of the

workflow tasks.

We start the analysis with the version of the SC workflow presented earlier and tagged
as vl in Fig. 5.11 (event 1). By tagging, we acknowledge that this version has been
published, advertised and so may be used by others.

Now, let us imagine that a new requirement for our workflow appeared (event 2) —
users of the workflow want to save storage space by compressing the workflow output
files. In response to that, the developers created a new Zip task (cf. the right version
tree) and wanted to add it to the workflow. Note however, that changing the type of
outputs generated by the workflow is a change of its interface. This would likely break
any external application that has used uncompressed outputs provided by version v1.
Thus, before we can add the Zip task to the workflow we need to create a new branch,

named zipped in the figure (event 3).

The zipped branch of the workflow refers to the Zip/master branch of the task.
By default such a reference means that the workflow depends on the latest tagged
version of the task coming from that branch. This is convenient because as the task
implementation is improved over time, the zipped workflow will use a task’s latest
tagged version (including v1.1). In this way workflows are updated automatically
without the need to change them when only implementation improvements are made
to the tasks. However, if strict workflow repeatability is required, the reference to the

Zip task would include a specific tag. That would prevent the automatic update of
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Main events
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Figure 5.11: A hypothetical evolution of the Sequence Cleaning workflow.
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such a workflow.

Next, event (4) denotes a new release of the Java library used by some tasks in the
workflow. In our hypothetical scenario the new version of the library has improved
performance, and several errors have been fixed. Thus, the event is a signal for us to
update the workflow as soon as possible. That change is compatible with the previous
version of the workflow and so we do not need to create a new branch. Instead, we
merge in the changes from master to the zipped branch, so that both branches can

benefit from the updated library.

After adding the Zip task and updating the Java library, we also tag and advertise
new, improved versions of our workflow (event 5). Specifically, SampleCleaning/v2

runs faster and produces smaller outputs, which is an advantage to users.

Event (6) marks the arrival of yet another requirement — users want the outputs of the
workflow to be encrypted to avoid leakage of patients’ raw genomic data. That however
requires some improvements in the Zip task, including changes to the underlying tool

used to compress the data.

After running some tests it was clear that the new zip tool had much better perfor-
mance, and so we quickly decided to swap the old implementation with the new tool
and tag the task v1.1. Note that this simple act of tagging a version causes an auto-
matic update of all workflows that rely on that branch. Therefore, from now on the
SampleCleaning.vl.1 and .v2 workflows will use the updated implementation of the

Zip task.

Continuing with the task update, we create a new password branch in the task repos-
itory (event 7). This new branch is needed due to the changes in the task’s input
interface — the new version has the extra password input property. But the use of
encryption is optional, so to limit the number of branches we decided to discontinue
the previous version of the Zip task and tag the branch master as deprecated (event
8). That indicates to users that they should use other branches of the task in their new
workflows. Nonetheless, the old version will need to remain in the repository because
others may still use workflow SampleCleaning.v2 which relies on the Zip/master

branch.
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As proactive workflow developers we noticed that the master branch of the Zip block
has been deprecated and so decided to update the reference in the zipped version of
the workflow to the active password branch. Note that this update does not require
a new branch because the use of encryption in the Zip task is optional. Thus, the

workflow’s input and output interface can remain the same (event 9).

The new branch is created later (event 10) when the password property is exposed
to end users as the workflow input property. We want the users to be able to set
a custom password for the output data and that requires a change in the workflow

interface which, in turn, requires a new branch.

The hypothetical evolution we have presented shows a very common patterns in the
development of workflows and their components, with changes occurring at different
layers of the workflow and its tasks. However, due to having separate task and workflow
repositories, combined with the tagging and branching of the code, we can maintain
all workflow versions in a working state and ensure that their evolution does not break

external applications that rely on them.

5.6 Conclusions

Reproducibility is a crucial requirement for scientific experiments, enabling them to
be verified, shared and further developed. Therefore, workflow reproducibility should
be an important requirement in e-Science. In this chapter we presented the design
and implementation of a framework that supports repeatability and reproducibility
of scientific workflows. It combines both logical and physical preservation. To imple-
ment logical preservation we use our TOSCA-based modeling approach as a means
to describe workflows in a standardised way. To realise physical preservation we use
lightweight virtualization which allows us to package workflows, tasks and all their

dependencies as Docker images.

Our framework is unique in combing software repositories to manage versioning of
source code, an automated workflow deployment tool that facilitates workflow enact-
ment and reuse, and automatic image creation to improve performance. They all

significantly increase the degree of workflow reproducibility. And although, our frame-
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work does not capture retrospective provenance traces, (this has been left for future
work), the proposed TOSCA-based workflow descriptors may be considered to be a
detailed prospective provenance document. They describe the high-level structure of
the workflow, and might also be encoded using, for example, the ProvONE specifica-
tion,! together with all details needed to recreate the complete software stack needed

for deployment and enactment.

!The latest draft of the ProvONE specification from May 2016 is available at: http://jenkins-
1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-
trunk/ws/provenance /ProvONE/v1/provone.html
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Summary

Previous chapters have focussed on supporting portable modeling for scientific work-
flows that can be utilized to automatically deploy the workflows. As a consequence,
our automatic deployment approach has been used to improve workflow reproducibil-
ity which is one of the significant benefits of our framework, which was presented in

Chapter 5.

In order to improve the effectiveness of our reproducibility framework, in this chapter
we describe and evaluate new optimization techniques that are shown to significantly
optimize the performance of our deployment approach. Our work concentrates on
the sharing and re-use of ready-to-run workflows and tasks that have been packaged
as images. We propose a new algorithm to name and select compatible task images,
which we integrated with a version control system. That allowed us to automate image
creation, caching and then sharing. The effectiveness of the proposed techniques is
evaluated via various scenarios in which we run real and synthetic scientific workflows

in local and cloud environments.

6.1 Introduction

Scientific workflows play a vital role in modern science as they enable scientists to
specify, share and reuse computational experiments [40]. Yet workflows need to be
reproducible in order to maximise the benefits they provide and facilitate the sharing
of knowledge about experimental methods.Workflow reproducibility enables effective
sharing as scientists can re-execute experiments developed by others and more quickly

create new and/or improved experiments [8].

A lot of work has been carried out to enable the sharing of workflows. Some rely on
packaging workflows (physical preservation) and/or their components and sharing the
packages so they can be re-used. Others focus on sharing the abstract description of
the workflow (logical preservation) and task coordination. Both approaches rely on
workflow creators publishing workflows and their components in addition to manually

selecting, installing and configuring all the shared tools required to enact a workflow.
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Much less attention has however been devoted to the automation of the deployment of
workflows, their components and dependencies. Yet, by addressing that issue we are
able to deliver highly reproducible workflows. Our approach, presented in Chapter 4,
provides the automated deployment of workflows by uniquely combining the TOSCA
specification and Docker technology. Our deployment approach is an effective part
of the reproducibility framework which offers ready-to-run workflows and tasks, and

addresses the majority of issues related to workflow decay and reproducibility.

However the delivery of highly reproducible workflows may come at the price of addi-
tional overheads. We observed some performance issues that impact the packaging of
workflow components, their provisioning and, ultimately, workflow enactment. Specif-
ically, the deployment of workflows may become slow if task images are pulled from
remote repositories too often or if the same task or dependency is repeatedly provi-
sioned. In this chapter we address these challenges by introducing image and cache
management mechanisms that are shown to greatly improve the performance of both
the provisioning and enactment of our reproducible workflows. As a result, not only do
workflows enact more quickly when run in isolation, but we observe additional speed-
up when they are executed concurrently on the same host or in parallel on different
hosts (including clouds). This occurs often in real situations when a workflow is run re-
peatedly on different input datasets (for example, datasets streaming in form of sensors
or applications). The proposed image and cache management is also integrated with
source version control of the workflows and tasks. This allows backward-compatible
changes to the task code to be transparently distributed on-demand across all workflow
enactment engines. Thus, the proposed solution can help developers to streamline the

process of building and distributing their workflows and tasks.

In this chapter, we present the following contributions: (1) a new algorithm to name,
create and select a compatible task image that improves the re-usability of ready-
to-run workflow components, (2) a multi-level cache of deployable components that
supports workflow sharing and optimizes the workflow deployment process, (3) caching
workflow components such as task artifacts and dependency packages to support the
process of image creation, and (4) a set of experiments that use real and synthetic

scientific workflows running on local and cloud environments to validate and evaluate
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the proposed mechanisms.

The rest of this chapter is structured as follows. In Section 6.2 we give an overview
of our proposed optimization techniques. Section 6.3 presents details of the image
and cache management and is followed by evaluation through experiments discussed

in section 6.4. We then draw conclusions in section 6.5.

6.2 Performance Optimization for Automatic De-
ployment

A scientific workflow typically consists of a set of components, each representing a

scientific task that are logically connected to define a specific data flow.

However, with the rising performance demands placed on workflow execution due to
the increase in "big data” analytics application, it becomes increasingly important to
optimize the provisioning of scientific workflows. To address this issue, we designed new
optimization techniques and added them into our scientific workflow reproducibility

framework.

6.2.1 Dynamic Workflow Deployment

One of the core functionalities of our reproducibility framework for scientific workflow
is the on-demand, automatic deployment approach [109] presented in Chapter 4, using

a TOSCA-based description and Docker technology.

In this approach, as described in section 4.3.3, the on-demand provisioning for each
workflow task includes a number of steps: Docker image selection, container creation,
dependency provisioning, task downloading and execution, image creation and finally
container destruction. All images used to create task containers must be specified in
the Service Template by the developer and all required artifacts must be downloaded

for each task involved in the workflow deployment.

These provisioning steps are repeated for each task in the workflow (if no task image
is created), even if the same task is used more than once or if a dependency package is

used repeatedly for similar tasks. Therefore, the deployment of a workflow component
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may impose two kinds of delays on the overall performance of the workflow: first, a
delay due to the remote downloading and on-line installation and second, the need to

repeatedly re-provision a component used in the workflow design.

Moreover, all task images are automatically created during the deployment process
whenever new versions of workflows and tasks become available as discussed in section
5.4.4. However, selecting the image for a specific version of workflow or task, to
deploying and executing a workflow or an individual task is not a straightforward
procedure. As discussed in Chapter 4, the Docker image used to create the container
for provisioning a task must be specified by the developer in the Topology Template
of the workflow. Further, the images created during the deployment process must
be publicly shared by the workflow developer, for example by pushing the images
to Docker Hub, yet there is no guarantee that the new tasks/workflows images will
be shared and can be reused whenever they are available because they need to be

published manually to the public repository by the creator.

Considering the above challenges, we designed new optimization techniques and inte-

grated them into our framework.

6.2.2 Optimization Techniques for Workflow Provisioning

The aim of adding the new optimization to our framework is to automate the sharing
and re-usability of workflows and tasks, in addition to supporting the optimization
of the workflow provisioning process. It tackles situations when the tasks or other
components are repeatedly used by the same workflow or by a different one. In order
to realise and explore the optimization, we have implemented these techniques such
that they are seamlessly integrated into the existing framework, while the essential
components remain unchanged. In other words, the proposed techniques do not require
any change to the structure of workflows and tasks. This is because they have been
implemented as features that add to the existing core part of the framework (i.e. the

lifecycle scripts that manage deployment operations).

One of the core functionalities of our framework is the capability to share workflows//-
tasks at various levels, either in the local environment or with public users. As men-

tioned earlier, Git Hub repositories are used to share source code and other workflow
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components with users, and by exploiting Docker users can share deployable compo-
nents. Furthermore, our framework utilises Git Hub as a version control system to
track changes of workflows and tasks so as to increase the degree of workflow repro-
ducibility, where versions for workflows and tasks correspond to the latest tag of the
workflow /task repositories in Git Hub (as described in section 5.4.2). In order to main-
tain workflows and task compatibility with the corresponding images, the name of the
image is constructed automatically, comprising a base image name used to provision
the container, as well as the workflow /task name and its version. When the image is
created, it can be published automatically either in a local repository or Docker Hub

for sharing and subsequent use by other users.

However, the need to manually select the correct image to provision a specific version
of the task is a challenge since a new image might be created at any time during
workflow deployment by other running workflows using the same task. For example,
two workflows may have some tasks in common. If they are deployed for the first time
nearly simultaneously, each workflow will use a base image to provision the tasks, and
in both cases new task images will be automatically created during the deployment
process by the AIC. Ideally, if one task was used by a workflow before the other
workflow needs it, it would be more efficient if the first task image created by the AIC
that could be used by the second workflow.

The first of our optimization extensions introduces a new technique to automate the
selection and re-use of a compatible image for task provisioning. The main goal is
that tasks are fully provisioned only once and re-used repeatedly. Provisioning a
specific version of a task for the first time requires the installation of dependencies
and the downloading of the task. During the provisioning process, an image is created
by the AIC and should be used for later provisioning of the same version of the task.
Therefore, for effective use of a compatible image to provision a task, we have designed
and implemented a system that achieves this. It automates the process of publishing
the images immediately after creation. In addition, selecting a compatible image is
automated by matching the task version with the image name. The same notion can
be applied to the deployment of the whole workflow, i.e. a workflow image can be

re-used instead of re-provisioning the workflow more than once.

- 118 -



Chapter 6: New Techniques for the Optimization of Scientific Workflow Deployment
in the Cloud

The second optimization focuses on the optimization of the workflow provisioning pro-
cess by implementing a multi-level cache holding the various workflow components, in-
cluding deployable entities, task artifacts and dependency packages. We implemented
two different types of caching:

1. tasks and workflow images are cached to optimize task and workflow provisioning.

2. essential workflow components such as task artifacts and dependency packages
are cached to optimize initial workflow provisioning and image creation, i.e. when
the workflow is deployed for the first time and no task or workflow images have

been created.

In the following sections we will describe the design and evaluation of these new opti-

mization techniques.

6.3 Transparent Workflow /Task Image Management

One of the main goals of our work is to share effectively not only workflows as a
whole but also workflow tasks, so that they are ready-to-use components that can be
automatically deployed and effectively used as building blocks in the rapid development
of new experiments. The basis for seamless deployment in our framework is effective

provisioning, and image management

6.3.1 Just-in-time Task Image Naming, Creation and Se-
lection

To facilitate the process of choosing an appropriate image to provision a workflow
task, we automated the process of naming, and the process of selecting compatible
images to create the task container. We decided to use a simple yet robust naming
convention that combines naming practices enabled by the version control mechanisms
of the repositories we use to manage source code and images: GitHub and Docker Hub,

respectively.

Workflow tasks in our framework are deployable components, and so the task developer

must specify the base image id (image name and version) which they want to use to
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execute the task. Usually, it is an id of a pure OS image taken directly from the
Docker Hub, but it may also be some specific image that the developer prefers to use
instead. The former is much easier to use and it also relieves the task developer from

the burden of image maintenance, one of the primary benefits of using our framework.

Given the task’s base image id we construct the task image id as base_tmage_id.task
_name.task_version. In this way we combine within a single, structured identifier
the three elements that impact task provisioning. First, the base image id is important
as it will be used to provision the task if no appropriate task image exists. Second, the
task name uniquely identifies the repository of a task that is included in the workflow.
Third, the task version refers to a specific tag in the task’s code repository. The
combination of these three elements makes the task image id unique. For example,
whenever a new task version is released (i.e. tagged), a new task image will be created,
with new id, but workflows that rely on the previous task id will keep using the previous

image for that task.

Importantly, when the workflow developer includes a task in their Service Template,
they can specify the task’s branch name rather than a specific tag. In that case,
the framework will automatically detect the latest tag of that branch and use it as
the task_version part of the task image id. That gives workflows the ability to
automatically track updates and improvements made by task developers. More details

about the benefits that this can bring are discussed in [108].

Our approach to just-in-time image naming and selection is outlined as Algorithm 1.
The algorithm iterates over each task in a workflow, identifies the image used to
provision the task and makes sure that the image is available in the host execution
environment. In line 5 the task_version is determined; as mentioned above, it is
the appropriate tag from the task repository. Then, following the discussed naming
pattern, in line 6 the task image id is set. Based on that identifier, the search process
takes place to find the image in the three-level cache (lines 7-14). The search process
starts by looking for the task image in the host environment. If that fails, it moves to
the second-level cache which is a local repository that can be accessed by authorised

users.

Again, if the target image is not found at that cache level, the search will proceed
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Figure 6.1: Deployment scenario of four workflows with Just-in-time Task Image Se-
lection algorithm.

to the third level — a public repository in Docker Hub. Finally, if no task specific
image is found, the task’s base image will be used (lines 16-17). The diagram in
figure 6.1 depicts how the three-level caching process works during the deployment
of four instances of the same workflow (WF1, WF2, WF3 and WF4). Where WF1
and WF2 are running on the same VM (VM1) and shared images through the host
environment (On-hostl). WF3 is running in VM2 hosted in the same cloud of VM1
therefore it shares images with WF1 and WF2 using a local repository (Local-cachel).
Whereas WF4 runs on a different cloud and shares images with the other workflows

through the public cache.

Unless the code of a task changes, the same task image is used to execute the task
in all workflows in which it is included. This greatly improves the effectiveness of
provisioning and performance of workflow enactment, especially if the same task is
executed multiple times in a single workflow. Special attention, is however, required
in the case when the task image is not yet available, and the task’s base image is used

in provisioning.
Figure 6.2 depicts the steps our framework follows during workflow task provisioning.
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Algorithm 1: Just-in-time Task Image Selection

1 t; — Node Template of i workflow task, where i € {1,...,n} and n is the
number of tasks in workflow W;

2 (; — container to deploy t;;

3 I; — image needed to create Cj;

4 for t; in W do

5 retrieve task_version of t; from git;

6 task_image < base_image_id.task_name.task_version;

7 if task_image available in the host environment then

8

9

I; < task_image;
else if task_image available in local cache then

10 copy task_image artifact to the host environment;
11 I; < the copied image;

12 else if task_image available in Docker Hub then

13 docker pull task_image;

14 I; < task_image;

15 else

16 docker pull base_image_id;

17 I; < base_image_id,

18 end

19 end

In the first step Algorithm 1 is run to determine which image is going to be used.
If the task image is available, the framework can create a container and immediately
proceed to task execution. Otherwise, if the task’s base image is used, the framework
creates a base container and then runs through the Service Template to deploy task
dependencies and artifacts. Importantly, just before task execution and for the benefit
of any future provisioning requests for that task, an image is created and cached under
the unique task image id. The task image is created immediately after downloading
task dependencies and artifacts, therefore, no task output data or intermediate data

are included, and so the image can safely be used to repeatedly re-execute the task.

Search for task
image in 3
levels cache 4

._( Task

execution

Container |
destroy

ge, | Container
creation

Search for user |Imag Createa Checking Depen Checking | Task | Task image ||
s = : dEpendenmes task in the -
specifiedimage | exist container exist exis creation ||

4 |n the cache cache P !
B \ Download
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5 depend.to =
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\ i

Download
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cache

Figure 6.2: Provisioning steps for a workflow task with automatic selection and
caching.
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Although the process of image creation has some influence on the workflow deployment
time, we can save significant amount of time by re-using these images to provision the
same task in future executions. In the evaluation section below we present in more

detail the benefits and overheads related that effect.

Note that we also use an approach very similar to that presented above for addressing
the deployment of single-containers, i.e. when the complete workflow is deployed
into one container. Then, instead of looking for a particular image to deploy a task
the naming and selection algorithm tries to locate a workflow image following the
pattern base_image.workflow_name.workflow_version. The steps to check the

availability of the workflow image at the various cache-levels remain the same.

6.3.2 Automatic Image Caching and Sharing

Once the enactment of a workflow ends, all the task images are available in the host
execution environment and can be shared with others. Sharing of workflows, and
sometimes their components, is supported by a few workflow management system such
as Pegasus, Taverna and Galaxy. Yet, we believe that our approach is novel in that it
not only allows the structure and description of workflows and tasks to be shared but
enables the sharing of ready-to-run components. Users of our workflows and tasks can
easily run them in their environment by means of the provided on-click deployment
script. Also workflow developers can combine our ready-to-run tasks free from the
burden of provisioning the software stack of each task. Additionally, we automate the
process of publishing the workflow and task images in order to ensure their immediate

availability. As a consequence we can achieve significant reduction in both:

e the effort required by a user to re-execute a workflow,

e the overall workflow deployment and enactment time.

The foundation of image sharing in our framework is the three-level cache, shown in
Fig. 6.3, which supports the following use cases. The first level cache in the host
environment enables the quickest workflow deployment. If all required images are

available in the host, there is no need to download, install and provision any workflows
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and workflow tasks. The second level, local repository enables a controlled way of
sharing private images within an organisation boundaries but also supports off-line
deployment with no access to the Internet/public repository. Lastly, the third level,
public repository supports sharing and re-use of images across organisations and also

facilitates workflow execution in different clouds platforms.

—

- On-host cache
Public

Figure 6.3: Three level caching for task/workflow images.

To implement the cache facility we built on top of the standard tools provided by the
Docker platform:

e The first level cache is implemented as the on-host Docker image repository, all

images are available in this level immediately when created by AIC.

e The second level cache is an instance of the Docker image repository running on
a dedicated machine within an organisation. When the caching option is setted
by the user, through input.yaml file, the created images will be transferred to

this level.

e The third level, public repository is realised as the Docker Hub public organisa-
tion. In parallel with transferring images to the second level, all created images

will be pushed to Docker Hub.

In our framework we provide various options for the user to create and share the
automatic created images. Using input.yaml file described in section 5.4.1, the user

can specify whether to create workflow/task images during the deployment time or
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not and the level of sharing either locally or publicly. The input.yaml file contains a
parameters for setting these options and used in the lifecycle operations to enable or

disable the options.

Unless the user disables this procedure, the images created during workflow deploy-
ment are published at the three levels immediately after creation. That ensures the
maximum benefits for other workflow executions (and possibly other users) as they
may pull ready-to-run images rather than rely on the framework to provision tasks

from scratch using the TOSCA descriptors.

6.3.3 Caching Workflow Component Artifacts

The techniques presented above support performance optimization for the provisioning
process when tasks and/or workflow images are available. However, when the workflow
is deployed for the first time, and to support development of the new tasks, we designed
and implemented an additional optimization mechanism. It is a cache of artifacts, such
as task code files, dependency tools and libraries; that are essential in building a task

and/or workflow image.

A common pattern in scientific workflows is that tasks within one workflow or a family
of workflows share common libraries and dependencies. However, following our pro-
posed image naming convention, each of these tasks is packaged in a separate image
and follows a separate image creation cycle. This means tasks can not share depen-

dencies.

Therefore, to minimise the time required to create similar images we cache also the
workflow component artifacts in the local environment. In this way we can reduce
time needed to create the images, which can positively influence workflow enactment.
The cache also plays a very useful role for developers as they usually test many more

task and workflow versions before they tag an official release to generate a task image.

6.4 Experiments and Evaluation

To evaluate our new optimization techniques, we conducted a set of experiments in

which a number of deployment cases have been considered, each with different opti-
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mization scenarios.

6.4.1 FExperimental Setup

The experiments presented in this section aim to empirically evaluate the effectiveness
of our automatic just-in-time selection algorithm, using real-scientific workflows, as well
as the influence of the automatic image caching approach on deployment performance,
and the impact of caching various workflow components for supporting the performance

optimization of the initial deployment process and task image creation.

We ran the experiments on a number of selected real workflows, differing in size, struc-
ture and functionality, yet some have tasks and dependencies in common: Neighbour
Joining NJ (used in Chapter 4 & 5), WF-1 and WF-2 with (11, 6, and 8 tasks, re-
spectively). Both WF-1 and WF-2 are simple workflows generated to be used in the

experiment.

Two environments with a similar configuration have been used to host the experiments:

e Local virtual machine: Ubuntu:14.04 system, 2 CPU Core, 3 GB RAM and 15
GB disk storage

e Google Cloud Platform instances: Debian system, 1 Core CPU, 3.75 GB RAM
and 10 GB disk storage

It is important to note that all of the experiments in this chapter are based on the multi-

container deployment scenario, i.e. each task is provisioned in a separate container.

6.4.2 The Influence of Task Changes on the Deployment
Time

One of the challenges for workflow management systems is the ability to apply changes
to part of the workflow without affecting the other unchanged parts. In our work, we
have addressed this challenge by (1) isolating the provisioning of each task in a separate
Docker container and (2) packaging a full stack of software for provisioning a task in

a Docker image.
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As described earlier, our deployment framework tracks task versions and uses version
numbers as a reference for naming a task image and for selecting the right image.
When a new version of a task is detected, the framework will search for the equivalent
task image and in the case where no compatible image is available, full provisioning of

the task will take place.

To show the validity of our approach for selecting task image and tracking changes, we
applied several changes to different tasks of the NJ workflow. In this experiment the
workflow is executed in different two cases: firstly an image for the changed task has
already been created, while in the second case no image exists for it. Therefore, in the
first case the task image is used to provision the task and there is no need to install
dependencies and download the task; these are however actions that are necessary to

execute the task in the second case.

The experiment, as shown in figure 6.4, starts with full deployment Full Depl of the
NJ workflow, i.e. full provisioning of each task and image creation. This is followed
by a few executions with task images available locally Cached-image. After several
executions, a new version of taskl was created, and no compatible task image was
found, which means that the new task version should be fully provisioned. Again,
after several executions with Cashed-image, a new version of taskl is discovered,
but with a task image available in the public repository. While continuing to re-deploy
the workflow, a new version of task2 is recognised, and a corresponding task image
was available and reused in this execution. Finally, a new version of task3 was found
with no related image, so full provisioning of the new task version has been carried

out.

The experiment shows that a change in any task does not affect the other parts of the
workflow when all tasks were re-provisioned using task images available in the local
execution environment (local VM). While there will be an increase in the deployment
time when the changed task was re-provisioned either by applying all provisioning
steps as depicted in fig 6.2 or a pre-created task image is available in the public
repository. Furthermore, the just-in-time selection algorithm has been used in the
experiments which show the effect of selecting and re-using the new compatible task

image whenever it becomes available. The figure shows that the full deployment of a
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Figure 6.4: Influence of Task Changes on Workflow Execution Time

task takes much longer then when compared with deployment using pre-created task
images. This is because of the time required to install task dependencies, especially if
they consume a considerable amount of time, such as the first case of provisioning the

new version of taskl.

6.4.3 Task Image Caching for Deployment Optimization

In this experiment, we aim to show the effectiveness of the automatic creation of
task images, publishing them in multi-level caches and re-use them. This experiment
consists of two parts: the first part shows the influence of creating task images on the
overall deployment time. While the second part presents the advantage of multi-level
caching and re-using of task images in different cases during the optimization of the

workflow provisioning.

Table 6.1: The Influence of Task Image Creation on the Deployment Time.

Deployment Case Total Deployment Time Image Creation Time
Cache-off/clear-cache 1883.6 355.5 (18.88%)
Cache-on/clear-cache 967 276.5 (28.6)
No-image-creation 505.2 -

Table 6.1 shows the relative costs for creating task images on the deployment time.

For this, the NJ workflow has been executed in three different cases: (1) deployment
with caching switched-off and no task image existing in the three-levels of the cache

Cache-off/clear-cache, (2) deployment with caching switch-on, automatic image
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creation and a clear cache, that there was nothing in the cache at the start, Cache-
on/clear-cache and (3) deployment with caching switched-on but no image creation

No-image-creation.

The results show that the process of creating task images takes a relatively long time,
and so significantly increase the total deployment time. However, this takes place only
once, when the workflow is deployed for the first time. In addition, image creation
time will be repaid during all subsequent deployments, as those deployment will use

the task images instead of re-provisioning the tasks.

The results of the second part of the experiment are shown in figure 6.5 which presents
four scenarios for NJ deployment. Cache-on/clear-cache refers to workflow deploy-
ment with a switch-on caching process and empty cache. While Cache-on/local-
cache, Cache-on/public-cache and Cache-on/full-cache are deployment scenar-
ios with caching switched-on and task images available in a local repository, public

cache, and local execution environment respectively.

As shown in the figure, there is a considerable reduction in the execution time when
task images are used instead of re-deploying all tasks. In particular, the optimal
minimisation of deployment time can be seen in the case where task images are cached
locally in the execution environment. As a result, the overall deployment time is
reduced from 1883.6 sec. in the first deployment scenario to 96 sec. for deployment

with task images available in the execution environment.

i Cache-on/clear-cache (total=967)
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Figure 6.5: Execution Time for NJ workflow with Tasks Images Caching.
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6.4.4 Sharing Cached I'mages between Workflows

The experiments presented in the previous section show the effectiveness of the au-
tomatic creation, sharing, and re-use of task images for individual deployments of a
workflow. In this experiment, we show the impact of using our optimization techniques
in the case of concurrent deployment of two instances of the same workflow. The con-
current deployments are run either in the same execution environment, or in different
ones. The aim of this part of the experiment is to demonstrate the impact of sharing
and re-using task images immediately after creation. Prior to workflow deployment

the cache is empty, i.e. no image has been created.

We have conducted this experiment on two scenarios: (1) concurrent executions for
two instances of the same workflow in the same VM and (2) concurrent executions of

different workflows on different clouds.

6.4.4.1 Concurrent Executions of the Same Workflow

The main reason for automating the process of image sharing and selection is to
make sure that an image is created once and can be immediately re-used by the same

workflow or by a different one.

To evaluate our approach in this situation, we deployed two instances of the NJ work-
flow concurrently with a time difference between the start of instance executions. The
experiments have been conducted with two different execution environments to show
how the images can be shared during deployment time and the impact of each indi-

vidual execution on the other.

In the first case, two instances of NJ workflow are executed a number of times on
a single machine. The two instances are executed concurrently with time differences
between execution initiation. As shown in figure 6.6, the two instances start with no
time difference, i.e. the two instances are running in parallel. For the subsequent
executions, we triggered the second instance execution after the first execution with

increments of one minute as the time interval.

As the two instances are running in the same machine, there is some extra delay

in the execution time since they share the same system resources. Apart from the
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Figure 6.6: The Influence of Sharing Components between Two instances of the NJ
Workflow on a Single Machine.

first execution, the figure shows an interesting result for both executions. Specifically,
there is a considerable decrease in the execution times, particularly for Fxecution?2.
The cause of this reduction is the sharing and re-use of workflow components (task
artifacts, dependency packages, and task images) between the two instances. The first
instance starts provisioning the tasks, which involves downloading and installing these
components, and therefore, the second workflow can take advantage of our optimization
techniques, which make the components available for utilisation by all subsequent uses.
As the difference in the start times for the two instances is increased, greater benefits
are gained in the overall execution time. The optimal time is reached when the second
execution starts after nine minutes of the first and the execution time is then sequential,
i.e. all tasks images have been created by the first workflow execution before the second

begins.

Another important result is the reduction of the time for execution of the first instance
in some infrequent cases. This happened when FEzxecution2 reuses some components
offered by Fxecutionl, and therefore there is no need to download these components
and this might speed up its execution because saving the time for downloading the
already available components. In addition, when one execution starts creating a task
image, the other execution skips the creation process and starts on the next steps.
As a consequence, Ezecution?2 goes ahead of Frecutionl and starts downloading new

components, caches them in the environment and offers them to Ezecutionl.
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Figure 6.7: The influence of Sharing Tasks Images between Two instances of NJ Work-
flow on Different Clouds.

In conclusion, these optimization techniques enable sharing of different components
between concurrently running workflows on the same environment. This has the effect
of reducing the deployment time. Moreover, it can improve the performance of running
multiple workflows at the same time on a single machine, for example with multi-core

systems.

In the previous experiment, the workflows running on the same machine could share
most of the workflow components during the deployment process. In the next experi-
ment we tested another case of running two instances of NJ concurrently on different
environments (local machine and Google Cloud). Since the workflows are running in
different environments, they can only share task images using the public repository (in
Docker Hub). This case is useful when two users run concurrently two instances of the
same workflow on two different clouds or with a small time difference. Consequently,
the tasks images created by one of them can be used by the other, which will save the
time of full task provisioning. Whereas with a large time difference between the two
instances execution, the workflow instance which starts first will create all task images

before the start of the second instance.

The instances were executed several times concurrently with time differences starting
from zero and then increasing by interval of one minutes until they ran sequentially.

To make the results comparable the cache was emptied prior to each execution.
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The results in Figure 6.7 show that the execution times are almost stable for the in-
stance running on Google cloud. This is because the instance is always started first
and requires full task provisioning with no task image available. Whereas, the execu-
tion times for the second instance running in the local machine decreases gradually
as the time difference with the first instance increases. Again, the reason for this is
the ability to re-use the task images created by the first instance. All created images
are pushed immediately to the public repository to be shared and re-used by others
whenever they become available. When the time difference reaches nine minutes, the
two instances are executing sequentially (with no overlap in their execution) and the

execution times become approximately stable for both instances.
6.4.4.2 Concurrent Executions of Different Workflows

In the previous part of this experiment, we showed the impact of our optimization
techniques on the execution time of workflow instances running concurrently. In this
part, we conducted a similar experiment, but with different workflows running on
different cloud environments. The aim of this experiment is to show how task images

can be shared by these workflows that have a number of tasks in common.

We selected three different workflows: NJ which has four and five tasks in common
with WFE-1 and WF-2 respectively while WF-1 and WF-2 has three tasks in common.
In addition, NJ and WF-1 were executed in two different Google VMs while WF-2

was executed in a local machine at Newcastle University.

The workflows have been executed in three cases differing in their execution order
as shown in figures 6.8, figure 6.9, and figure 6.10. In each case, the workflows were
executed concurrently with differences in the start time with intervals of one minute,
for example in Fig 6.8 WF-1 starts first then after one minute WF-2 starts and finally
NJ starts execution 1 minute after the second workflow. Then the interval increased
by 1, therefore, the start time difference becomes two, and so on. Again, it is important

to note that the cache was empty before the start of each set of executions.

The result presented in the three figures show stability in the execution time of the
first workflow, while there is a gradual decrease in the execution time for the others.

This is because the execution of the first workflow included full provisioning for each

- 133 -



Chapter 6: New Techniques for the Optimization of Scientific Workflow Deployment

in the Cloud

|l
s

M) starts at
13 —{E2Ay =&
T 12 A "“ A b WEistatsatt
E. 4 " &
[:¥]
E 10 4
5 ° =
= A
3 & A
E - = WE-2 starts atill
; O [t-:&t] _ - )
2]
5 T T T T . 1
2 4 6 8 10

Time Differences At[Min]

Figure 6.8: Casel: Execution Times for Different Workflows on Different Clouds.
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Figure 6.9: Case2: Execution Times for Different Workflows on Different Clouds.

task, creating task images and publishing them to the public repository so that others
can re-use them. Furthermore, the reduction in time depends on different factors such
as the number of common tasks between the workflows, the time differences between

the executions, and the order of the shared tasks in the workflows structure.

From the results shown in Fig 6.8, we can recognise that there is a considerable decrease
in the execution time of NJ and a slight reduction for WF-2. This is because NJ is
the third running workflow, which means it can reuse the task images created by the
first two (up to nine images). While there are fewer tasks shared between WF-2 and

WE-1.

In general, the third workflow in each case gains the most benefit from re-using the

images, with a reduction in the execution time due to the number of reused images

- 134 -




Chapter 6: New Techniques for the Optimization of Scientific Workflow Deployment
in the Cloud

14
13 M) starts at t =3 -+

E. 11
£ 10 WF-1starts at
E
S (t+2At)
]
5 &
d
= &
L WF-2 starts at

B

[t+AL) B
5 ] | B O B =
4‘ T T T T 1
o 2 4 B B 10

Time Differences At [Min]

Figure 6.10: Case3: Execution Times for Different Workflows on Different Clouds.

created earlier. The second workflow in the sequence gains some optimization in the

deployment-time, depending on which workflow started first.

6.4.5 Optimising Initial Deployment and Image Creation

The previous experiments present the effectiveness of caching task images for opti-
mizing the workflow provisioning and the validity of automatic selection and re-use
of these images. However, in the case of initial deployment, when the workflow is
deployed for the first time and no task has been created yet, we need to apply our

caching technique described in section 6.3.3.

Following this technique, two types of workflow components are cached: task artifacts
and dependency packages. Caching these components supports optimization for the
initial deployment process and task image creation. In addition, since our framework
offers the option to create task images for users, the caching workflow components in

this case contribute to the optimization of workflow provisioning.

In this experiment we run the NJ workflow in four different cases. The first case
is Cache-off-clear-cache/Image-on, in which the workflow is deployed with the
caching process switched off while creating the task images for the first time. Cache-
on-clear-cache/Image-off deployment case has caching switched on, with an empty
cache and a switched off image creation option, i.e. no task image is created. The

other case is Cache-on-clear-cache /Image-on deployment, which is the same as the
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aforementioned case, but with the image creation option switched on. Finally, Cache-
on-full-cache /Image-off deployment has all tasks and dependencies available in the

local cache and has the image creation option switched off.

The workflow was executed ten times in each of the four cases in the local machine
and the results show the average of workflow executions in Figure 6.11. It is important

to mention that base image is used for creating all containers.

This experiment shows that our approach is able to reduce the overall provisioning time
for the workflow in all different cases. This is because all tasks are cached locally so that
they are available for all subsequent uses, which eliminates the repeated downloading
of the same task. Similarly, all dependency packages required to execute the tasks are
cached locally. For example, all tasks in the NJ workflow require Java as a dependency
to execute the task; therefore, instead of the on-line installation of Java package 11
four times, the package is downloaded once, cached in the local machine and re-used
as many times as required. In this way, 10 instances of downloading are saved, whilst

also enabling the opportunity for off-line installation.
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6.5 Conclusion

The work presented in this chapter further enhances our framework for the repro-
ducibility of scientific workflows. We introduced a set of optimization techniques that
adapted our workflow deployment system - a key part of the reproducibility framework
- for better performance, in terms of reducing the deployment time and automating

the process of sharing, selecting and re-using various workflow components.

We developed a new algorithm for the automatic selection of compatible Docker im-
ages for provisioning workflow tasks to facilitate the re-use of these images and support
deployment optimization. Furthermore, we have implemented multi-level caching for
workflow deployable components, task and workflow images, for optimization purpose
and sharing support. In addition, another optimization procedure has been imple-
mented to cache essential workflow components such as task artifacts and dependency
packages in the local environments so as to optimize the initial deployment process

and image creation.

Our optimization techniques incorporate the tracking of changes in workflow tasks
to efficiently select the appropriate image for task provisioning. The new techniques
enable the sharing of ready-to-run workflows and tasks. This is not only useful for re-
provisioning the workflow but also for concurrent provisioning on the same or different
environments. In addition, our experiments showed that the automation of task image
selection and sharing speed-up workflow provisioning in a range of different scenarios.
These included cases when workflows were executed o the same host, and on different

clouds.
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Summary

In this chapter, we summarise the work presented in this thesis, discuss how well the
research aims and objectives have been met, and describe open research problems that

could motivate future work.

7.1 Thesis Summary

In this thesis, we have presented our new approach for the portable modeling and
automatic deployment of scientific workflows in the Cloud. We have also explored how
these approaches have been used to develop a new, effective framework to support
workflow re-execution and to improve reproducibility. A number of new performance

optimization techniques were then designed and evaluated.

Chapter 2 began by giving background information on the main topics related to
this thesis, including Cloud Computing, container-based virtualization, scien-
tific workflow and application deployment. Next, details were given on scientific
workflows and their management including: modeling, automatic deployment
and reproducibility. In addition, the state-of-the-art approaches related to the
main focus of this thesis were explored in detail. Many approaches, technolo-
gies and tools have been developed that support the modeling and automatic
deployment of scientific workflow in the Cloud, as well as improving their repro-
ducibility. We discussed these existing solutions, along with their strengths and
weaknesses. However, all the existing mechanisms have limitations and do not
fully manage the complexity of deployment and reproducibility of workflows. To
address these challenges, we proposed and developed new approaches to model,

deploy and effectively support workflow reproducibility.

Chapter 3 described our new approach for modeling scientific workflow using the
TOSCA specification. Utilizing TOSCA enables the comprehensive description
of scientific workflows, and allows us to capture deployment requirements. We
used TOSCA to generate a reusable and portable description of the workflow

and its different components, as well as the relationships connecting them. We

- 140 -



Chapter 7: Conclusion

showed that TOSCA can be used to model the structure of a workflow in two
dimensions spanning both the horizontal links and vertical stack of software com-
ponents. Further, TOSCA-based modeling formed the basis to achieve automatic
deployment for the workflow in the Cloud as described in Chapter 4.

Chapter 4 presented our new approach to the automatic deployment of scientific
workflow in the Cloud based on combining TOSCA modeling and container vir-
tualization. The new solution enables building, dynamically deploying and en-
acting of workflows. We showed that this approach allows workflow deployment
to be portable across a range of Cloud and local environments. This allows us
to support a number of scenarios for on-demand deployment and the re-usability
of different workflow components. In addition, using Docker containers provides

isolated execution environments for workflow tasks.

Chapter 5 demonstrated that the reproducibility of scientific workflows is a cru-
cial requirement for scientific experiments, enabling them to be verified, shared
and further developed. We presented our framework for improving workflow re-
usability and reproducibility that leverages our TOSCA-based workflow descrip-
tion, source control and container management, along with the automatic deploy-
ment approach presented in Chapter 4. The framework combines both logical
and physical preservation techniques: our modeling approach has been used to
support logical preservation as a means to describe workflows in a portable way,
while container virtualization techniques were used to realise physical preserva-
tion, so allowing us to package workflows, tasks and all their dependencies as
ready-to-use components. Moreover, our framework used software repositories
to manage versioning of workflows and their tasks to facilitate change track-
ing and to automate the creation of workflow/task images so as to improve the

performance of the framework.

Chapter 6 described our work to improve the performance of the reproducibility
framework. A number of new optimization techniques have been developed to
enhance the performance of our deployment system. We have implemented a

new algorithm to automate naming, sharing and selection of workflow/task im-

- 141 -



Chapter 7: Conclusion

ages. Further, the new techniques supported automatic caching for workflow
components, including the ready-to-use workflow/tasks images, task artifacts
and library packages. We proved that using our optimization techniques facil-
itates tracking changes in workflow tasks and efficiently selecting the correct
image for task provisioning. Moreover, the new techniques enabled concurrent
deployment and execution of workflows on the same or different environments,

which speeds-up workflow provisioning in a number of realistic scenarios.

7.2 Contributions to the Automatic Deployment
and Reproducibility of Scientific Workflow

In the introduction to this thesis we stated that the overall aim of this work was "to
design, implement and evaluate a system for workflow modeling that offers a portable
and re-usable description, so enabling automatic deployment on a range of clouds.
The system should efficiently support the re-execution and reproducibility of scientific
workflows both in the Cloud and in local computing environments”. We now reflect

on how we achieved this aim.

In order to enable portable and re-usable definitions of a scientific workflow, and to
automate its deployment, a well-defined standard is required. This must fulfil these
requirements and enable the capture of the complex deployment and configuration re-
quirements. We have shown that the TOSCA specification can be used to satisfy these
requirements by systematically specifying the components and life-cycle management
of scientific workflows. This has the advantage of enabling workflow definitions to be

portable across clouds, so avoiding the vendor lock-in problem.

Workflows are complex applications consisting of a set of different tasks. Usually,
these tasks are heterogeneous components each with their own set of dependencies.
This poses challenges for the description and deployment of workflows. Thus, the
workflow descriptor needs to include details of component implementation and de-
ployment. Moreover, a robust deployment facility should support the isolation of
component execution to ensure minimal interference between them. To support these

requirements, we integrated our TOSCA-based modeling with Docker virtualization to
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develop a new approach to automatically deploy the workflow over a range of different
Cloud. Using container-based virtualization enables an execution isolation for hetero-
geneous workflow components and allows the underlying execution environment to be
dynamically built and provisioned in accordance with our TOSCA description. We
also developed a set of common life-cycle management scripts to manage all required
processes to provision workflow tasks together with their dependencies and the hosted
execution environments "Docker containers” irrespective of the cloud platform they

were running on.

The potential benefits of our TOSCA-based modeling and deployment approach in-
clude the portability and re-usability of workflows and their components and ultimately
improving workflow reproducibility. Ensuring successful reproducibility of workflows
requires both logical and physical preservation. To achieve this, we integrated our
workflow description based on TOSCA with source control, container management
and the automatic deployment approach. We have designed and developed a new
framework to support repeatability and reproducibility of scientific workflow. It com-
bines both logical and physical preservation of the workflow by using the TOSCA-based
modeling approach to implement logical preservation and lightweight virtualization to
realise physical preservation (packaging workflows, tasks and all their dependencies as
Docker images). In addition, the new framework allows workflow and task images to
be captured automatically, which improves repeatability, runtime performance, and

workflow portability, as well as enabling change tracking.

There is danger that the dynamic provisioning of heterogeneous workflow components
may come at the price of additional performance overheads. For this reason, we de-
signed a set of new optimization techniques that facilitate and automate the sharing
and re-use of ready-to-run workflows and tasks that have been packaged as Docker
images by implementing multi-level caching during the deployment process. Finally,
to effectively select a compatible image for deploying a workflow or a task, we im-
plemented a new algorithm that automatically names and selects the images with

integration to a version control system.

In summary, to meet the aim of this thesis we explored, integrated and evaluated

work in a range of different areas including modelling, virtualization and performance
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optimization.

7.3 Future Research Directions

In this section, we described a number of possible directions for future research, which

have arisen from the work presented in this PhD research.

7.3.1 Modeling and Invocation of Subworkflows

In Chapter 3, we presented and discussed the capabilities provided by our approach
for TOSCA-based modeling of scientific workflow. TOSCA supports definition for
the cloud applications and their components using Types, Templates and Topology
Template that are re-usable. Moreover, to greatly improve the re-usability, the entire
Topology Template may be treated as another Node Type. This can then be utilized
to define a workflow that is composed of a number of subworkflows. A separate Topol-
ogy Template can be defined for each subworkflow and then treated as a Node Type
from which a Node Template can be instantiated in the Topology Template of the
main workflow. Although the work presented in this thesis can in theory support the
modeling of subworkflows, this has not fully explored and the invocation of such a

structure has not been implemented.

7.3.2 Supporting the Parallel execution of workflow tasks

Our deployment approach supports the ability to provision each task on an isolated
container to be executed separately from the other tasks. However, our approach does
not offer parallel provisioning for unrelated tasks which have no dependencies - either
direct or indirect - between them. The reason behind this limitation is that our deploy-
ment approach uses Cloudify as a run-time environment for TOSCA-based workflow
modelling, and it does not offer parallel execution. Supporting such a provisioning

scenario would enhance the performance of workflow execution.
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7.3.3 Modeling Various Types of Scientific Workflow

We evaluated the modelling and deployment approaches that are essential parts of our
reproducibility framework using a number of existing workflows previously designed
in e-Science Central. Future work might consider investigating to what extent our
approaches can be used to model and deploy legacy workflows designed in other sci-
entific workflow management systems like Pegasus and Taverna. This would allow
us to understand the generality of our approach. Differences between the workflow
management systems that might require further investigation including service-based
management, data-intensive processing and different execution environment targets,

such as a remote physical cluster or grid.

7.3.4 Capturing Provenance Data for Comprehensive Re-
producibility

Data provenance in workflows is captured as a set of dependencies between data ele-
ments [88]. It may be used for interpreting data and providing reproducible results, and
also for troubleshooting and optimizing workflow efficiency. Our TOSCA-based work-
flow descriptions may be considered as a detailed prospective provenance document,
and therefore one possibility of future research direction is to extend the reproducibility
framework presented in this thesis to improve the degree of reproducibility of scientific
workflows by collecting and exploiting provenance data. An extension could be de-
signed and added to capture retrospective provenance information for workflows and
tasks, including detailed information such as the execution environment and interme-
diate results, and this can then be combined with their development history, building

on the work presented in this thesis.

7.3.5 Distributed Workflow Enactment on Hybrid Cloud

Using our deployment approach, whole workflows can be deployed on different cloud
and local environments, i.e. all tasks can be deployed in the same cloud or in a local
VM. This approach can be extended to support large-scale, distributed workflows that

span clouds (i.e. tasks spread over both public and private clouds: Azure, Google,
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AWS etc.). Next an extension could be designed for automatically deploying the
workflow over those clouds and executing it. Criteria used in selecting the deployment
plan could include fulfilling the security requirements for processing the data by placing
some privacy-sensitive tasks and data on private clouds [137] and also co-locating tasks

on clouds that host the data they need to consume.

7.3.6 Fault-Tolerance and recovery Strategies

Only small number of the existing systems for scientific workflow management pro-
vide explicit mechanisms to handle different types of hardware and/or software fail-
ures [123]. However, fault tolerance is important when mission-critical workflows are
deployed on distributed environments. To address those issues a fault tolerance and
recovery techniques might be embodied in the deployment system to reduce the impact
of faults. For example, this might be achieved by detecting and re-provisioning failed

tasks.
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8.1 Appendix A

Topology Template of a workflow
Listing 8.1: Topology Template for a sample workflow.

tosca_definitions_version: cloudify_dsl_1_0

imports:
- http://www.getcloudify.org/spec/cloudify/3.1/types.yaml

- https://raw.githubusercontent.com/rawaqasha/e-sc-cloudify/master/
esc_nodetypes.yaml

inputs:

input -dir:
description: >
The dir path of the input files
default: ’~/input’

input-file:
description: >
input file for importFilel
default: file. jpg

docker -image:
description: >
Docker image to be used for container building
default: ’ubuntu:14.04°

create_image:
description: >
an option to create Docker images
default: ’False’

node_types:

docker_container:
derived_from: cloudify.nodes.Root
properties:
image_name:
type: string
default: { get_input: docker-image 1
container_ID:
type: string
default: containerl

node_templates:

host:
type: cloudify.nodes.Compute
properties:

ip: localhost
install_agent: false

starterBlock:
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type: cloudify.nodes.ApplicationModule
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: Core-LifecycleScripts/start-inhost.sh
inputs:
process:
args: [FileZip]
relationships:
- type: cloudify.relationships.contained_in
target: host

containerl:
type: docker_container
properties:
container_ID: containerl
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: Core-LifecycleScripts/container.sh
inputs:
process:
args: [FileZip]
relationships:
- type: cloudify.relationships.contained_in
target: host
- type: cloudify.relationships.depends_on
target: starterBlock

Java:
type: spec_library
properties:
lib_name: default-jdk
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: scripts/java-install2.sh
inputs:
process:
args: [containerl, FileZip]
relationships:
- type: cloudify.relationships.depends_on
target: containerl
- type: cloudify.relationships.contained_in
target: containerl

ImportFile:

type: importfile

properties:
block_description: import file
block_name: importfilel. jar
block_category: File Management
service_type: block
Source: { get_input: input-file }

interfaces:
cloudify.interfaces.lifecycle:
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create:
implementation: Core-LifecycleScripts/task-download-multi.
sh
inputs:
process:
args: [{ get_input: create_image }, containerl, ’https
://github.com/rawaqasha/eScBlocks-host/raw/master/
importfilel. jar’]
configure:
implementation: scripts/get-input.sh
inputs:
process:
args: [FileZip, containerl, { get_input: input-dir },
get_input: input-file }]
start:
implementation: Core-LifecycleScripts/task-deploy.sh
inputs:
process:
args: [FileZip, containerl, { get_input: input-file 1}]
relationships:
- type: cloudify.relationships.contained_in
target: containerl
- type: cloudify.relationships.depends_on
target: Java

container2:
type: docker_container
properties:
container_ID: container2
interfaces:
cloudify.interfaces.lifecycle:
start:
implementation: Core-LifecycleScripts/container.sh
inputs:
process:
args: [FileZip]
relationships:
- type: cloudify.relationships.contained_in
target: host
- type: cloudify.relationships.depends_on
target: ImportFile

Java2:
type: spec_library
properties:
lib_name: default-jdk
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: scripts/java-install2.sh
inputs:
process:
args: [container2, FileZip]
relationships:
- type: cloudify.relationships.contained_in
target: container2
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ZipFile:
type: zipFile
properties:
block_description: zip the input file
block_name: filezip2.jar
block_category: File Management
service_type: block
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: Core-LifecycleScripts/task-download-multi.
sh
inputs:
process:
args: [{ get_input: create_image }, container2, ’https
://github.com/rawagasha/eScBlocks-host/raw/master/
filezip2.jar’]
configure:
implementation: Core-LifecycleScripts/containers-clean.sh
inputs:
process:
args: [container1]
start:
implementation: Core-LifecycleScripts/task-deploy.sh
inputs:
process:
args: [FileZip, container2, rawal975]
relationships:
- type: cloudify.relationships.contained_in
target: container2
- type: cloudify.relationships.depends_on
target: Java2
- type: block_link
target: ImportFile
source_interfaces:
cloudify.interfaces.relationship_lifecycle:
preconfigure:
implementation: Core-LifecycleScripts/datacopy.sh
inputs:
process:
args: [ImportFile/output-1, ZipFile/input-1,
FileZip, container2]

container3:
type: docker_container
properties:
container_ID: container3
interfaces:
cloudify.interfaces.lifecycle:
start:
implementation: Core-LifecycleScripts/container.sh
inputs:
process:
args: [FileZip]
relationships:
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- type: cloudify.relationships.contained_in
target: host

- type: cloudify.relationships.depends_on
target: ZipFile

Java3:
type: spec_library
properties:
lib_name: default-jdk
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: scripts/java-install2.sh
inputs:
process:
args: [container3, FileZip]
relationships:
- type: cloudify.relationships.contained_in
target: container3

ExportFiles:
type: exportfiles
properties:
block_description: export files
block_name: exportfilesl. jar
block_category: File Management
service_type: block
relationships:
- type: cloudify.relationships.contained_in
target: container3
- type: block_link
target: ZipFile
source_interfaces:
cloudify.interfaces.relationship_lifecycle:
preconfigure:
implementation: Core-LifecycleScripts/datacopy.sh
inputs:
process:
args: [ZipFile/output-1, ExportFiles/file-1list,
FileZip, container3]
- type: cloudify.relationships.depends_on
target: Java3
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: Core-LifecycleScripts/task-download-multi.
sh
inputs:
process:
args: [{ get_input: create_image }, container3, ’https
://github.com/rawaqasha/eScBlocks-host/raw/master/
exportfilesl. jar’]
configure:
implementation: Core-LifecycleScripts/containers-clean.sh
inputs:
process:
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args: [container2]
start:
implementation: Core-LifecycleScripts/task-deploy.sh
inputs:
process:
args: [FileZip, container3]

finalBlock:
type: cloudify.nodes.ApplicationModule
interfaces:
cloudify.interfaces.lifecycle:
configure:
implementation: Core-LifecycleScripts/containers-clean.sh
inputs:
process:
args: [container3]
create:
implementation: Core-LifecycleScripts/final-inhost.sh
inputs:
process:
args: [FileZip]
relationships:
- type: cloudify.relationships.contained_in
target: host
- type: cloudify.relationships.depends_on
target: ExportFiles
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