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Abstract

This thesis presents a new approach to obtaining optimal and complete solutions to

Multi Agent Path Finding (MAPF) problems called Collaborative Iterative Search (CIS).

CIS employs a conflict based scheme inspired by the Conflict Based Search (CBS)

algorithm and extends this to include a linear order lower level search. The structure of

Planar Graphs is leveraged, permitting further optimization of the algorithm. This takes

the form of reasoning-based culling of the search space, while maintaining optimality

and completeness. Benchmarks provided demonstrate significant performance gains

over the existing state of the art, particularly in the case of sparsely populated maps.

The thesis draws to a conclusion with a summary of proposed future work.
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Chapter 1. Introduction

1.1 Introduction

This thesis presents Collaborative Iterative Search (CIS) a solution to the Multi-Agent

Path Finding (MAPF) problem. Inspired by the unique Conflict-Based approach of

Conflict Based Search (CBS) we employ a two layered scheme implementing a new

algorithm (CIS) with a linear lower level search. We prove the completeness and opti-

mality of CIS. Using the Planar property we extend the CIS algorithm to allow culling of

paths which converge on the same collision. We call this extension CISR.

1.2 Concept of MAPF

Path finding is a widely applicable area of computer science. The area of path finding is

concerned with the construction of paths from a start location to a goal location. In path

finding we abstract the nature of the problem by constructing a mathematical structure

called a graph. A graph G is a collection of points called vertices V and a set of edges

E between the vertices in V . The purpose of the path finding algorithm is to construct

a path s, e1,v1, e2, . . . , en−1,vn−1, en,g from the start node s to the goal node g.

Associated with each edge of the graph is a cost. The sum of costs along a path

determine the fitness or quality of a path. An optimal path finding algorithm will return

a path of minimal cost.

The path planning problem can be extended by the inclusion of multiple agents.

The Multi Agent Path Finding (MAPF) problem is concerned with finding paths for all

the agents in a scenario without any two agents colliding. Agents can pause on a vertex

of the graph and also travel backwards in order to avoid collision. A collision may occur

on a vertex or along an edge if two agents travel along the same edge in opposite

directions at the same time. When optimality is a concern the cost of the solution is

generally computed as the Sum of Costs (SOC) where the cost of each agent’s path is

summed to give a total solution cost.

1.3 Approaches to solving MAPF

There are many different approaches to MAPF. The approaches to MAPF are generally

divided into Optimal and Non-Optimal.

When the goal of a problem does not specifically exclude collisions between entities

then the problem need not be fully abstracted to graphs. Algorithmic techniques such

as flocking[SW02] and crowd simulation[MBCT98] allow for the realistic movement of

entities in open 3D environments.

The focus of our research is the graph based MAPF problem where collisions need

to be avoided. It has been shown that completeness, the property that a particular

problem has if a solution exists, is NP-Hard. This is proven using the 15-puzzle[JS79,

1



2 CHAPTER 1. INTRODUCTION

RW90, RW86, Gol11] as the 15-puzzle can be represented as a MAPF problem.

When a problem is known to have a solution and optimality is sacrificed solutions

can be found in a tractable time. There are several techniques to solving non-optimal

MAPF, some techniques specialize in solving specific sub-problems or are only appli-

cable in special scenarios.

Decentralized MAPF[GMF06] uses distributed computation to share the computa-

tional load of the algorithm, however messages need to be passed between the compu-

tational units and solutions are often non-optimal. Rule based[LB11a, KHS11, RH12]

solvers use sets of rules to swap and arrange the agents until a path to the solution

is available at the cost of optimality. The HCA[Sil05] algorithm implemented a reser-

vation based system. The algorithm was designed to achieve results near real-time.

The HCA algorithm can however in certain circumstances introduce collisions between

agents and does not always lead to a solution.

Optimal MAPF problems are a subset of the complete solutions with minimal cost.

MAPF can be solved optimally by generalizing the A* algorithm to encompass the

states of all agents[Sta10, SK11]. Each node in the search space represents a config-

uration of all agents and a time step associated with it. Early versions of this algorithm

had large branching factors for each node as the branching factor depended on the

combination of moves available to the agents. Later work[YMI00, GFS+14] reduced the

branching factor by segregating search space or deferring the computation of branches

until later.

Our inspiration comes from an algorithm called Conflict Based Search (CBS) which

approaches the MAPF problem by focusing on collisions as a means of reducing the

search space [SSFS12b]. The CBS algorithm is a two layer algorithm where the lower

layer computes the path of individual agent. The paths of each agent are combined to

construct a possible solution. If the possibility is collision free it is considered a solution.

If however there exists a collision restrictions are placed on the relevant agents and the

process begins again.

Collaborative Iterative Search (CIS), the solution presented in this paper, extends

the concept of A*-focused collision-based path planning but takes a greedy approach

more directly focused on sparse environments. Our new approach is more akin to the

Dijkstra Algorithm than A*, as new paths are constructed from old using a predefined

ordering. This makes our approach methodical, but informed.

Taking advantage of map geometry and a pre-calculated distances via Reverse

Resumable A*[Sil05], CIS permits an additional level of reasoning which further culls

the search space of the problem without sacrificing optimality or correctness. When the

underlying search graph is planar, i.e. can be drawn onto a 2D surface without overlap,

we can apply the extension to the algorithm which we call Backtracking. We call this

extended algorithm CISR.

Furthermore, CIS and CISR can demonstrate significant performance gains over
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existing solutions when employed to solve multi-agent navigation of grids of sizes 8x8,

16x16, 32x32 and of maps drawn from existing game titles [Stu12]. In addition to the

gaming maps we also test CIS/CISR against a set of bespoke maps of our own creation

which are shown in appendix A.

1.4 Research Contributions

In this thesis we present a new approach to the MAPF problem, which is both optimal

and complete. We present two versions of our algorithm:

• First we construct CIS as a Conflict Based approach to MAPF. CIS has a linear

lower layer and forms a basis for extension.

• Second we construct a culling algorithm for CIS called backtracking. The back-

tracking algorithm can be applied to planar graphs to remove equivalent solutions

in a region. The CIS algorithm with the backtracking algorithm is called CISR.

The contributions these algorithms bring can be summarized as:

• A graph theory re-visitation of the underlying theories of optimal MAPF.

• New algorithms which provide answers faster than the existing state of the art.

• A more statistically predictable compute time.

Benchmarks demonstrate the performance improvements over our primary com-

parator CBS. We show that there are significant improvements in performance when

CIS and CISR are applied in sparse environments.

1.5 Publications

There has been one publication linked too this work:

• Callum Rhodes, William Blewitt, Craig Sharp, Gary Ushaw and Graham Morgan

“Smart Routing: A Novel Application of Collaborative Path-finding to Smart Park-

ing Systems." in the Proceedings of the 2014 IEEE 16th Conference on Business

Informatics.

This paper modified CIS and applies it to the problem of smart parking. The prob-

lem is generalized to accommodate capacities on nodes and edges and only detects a

collision if an edge contains more agents than the indicated capacity. The implemen-

tation selects only a portion of the available paths to reduce the search space. This

makes the algorithm sub-optimal however the solution times become tractable.

1.6 Thesis Structure

• Chapter 2: We begin this thesis by exploring the subject area in general. The

subject area is broken into categories with common properties or techniques.

We discuss the difference in representation of the environment and highlight that
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the abstract graph representation allows us to reason about optimality and com-

pleteness. Non-optimal algorithms are discussed ranging from rule-based solvers

such as Push and Swap[LB11a] to the tractable HCA[Sil05]. Moving onto opti-

mal solvers we highlight the progression from generalized A* methods of solving

MAPF to the Conflict-Based approach of CBS. We then discuss our main com-

petitor Conflict Based Search (CBS).

• Chapter 3: The underlying mathematical notions are then rigorously defined and

then explored. We begin this exploration with the basis for CIS. We define an

ordering on the set of connections from each node. This allows us to extend the

ordering to the entire path. We use this structure to build a incremental version

of the conflict based scheme of CBS. We then reason about the algorithm and

prove its completeness and optimality.

• Chapter 4: In this chapter we move onto the concepts needed to understand the

extension CISR. We reason about the structure of a planar graph and its simplest

paths in terms of path finding which we call the Non-Complex paths. We build a

theory based on these paths and construct the basis for the Backtracking Algo-

rithm. We define the Backtracking Algorithm in the terms of these mathematical

concepts and prove its optimality and completeness as an extension to CIS.

• Chapter 5: After the mathematical construction of the Algorithm we discuss the

structure of the implementation supplying pseudo code for the most prominent

portions of code. We discuss the data structures involved in the construction of

the algorithm which is used later to reason about the complexity of the algorithm.

• Chapter 6: We then test our implementation with a range of grids; 8x8, 16x16,

32x32, varying the number of agents navigating the environment and randomizing

their start and goal nodes. We also test against a set of gaming maps used in

benchmarking [Stu12] and a subset of bespoke maps that we used to test the

implementations as illustrated in appendix A. Comparing the results of CIS, CISR

and our primary comparator CBS we show in what circumstances each algorithm

will experience a higher rate of success, and highlight our algorithm’s strengths

in sparse environments.

• Chapter 7: We revisit work we did previously in a case study chapter where we

describe a modified version of the CIS algorithm. Removing the restriction of

optimality from CIS and generalising the approach we extend our algorithm to the

problem of smart parking. Nodes and edges of the graphs are allowed up to a

fixed capacity until a conflict is registered and resolved.

• Chapter 8: Reviewing the work up to this point we discuss some of the limitations

and advantages of our approach.
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• Chapter 9: Finally we bring the thesis to a conclusion. We discuss possible

extensions to the applicability of the algorithm, improvements to optimality that

could be made and extensions of the algorithm to wider contexts.
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Chapter 2. Background And Related Work

2.1 Path Finding

Path finding is a fundamental field of AI. Many areas of AI can be abstracted to a

Graph G(V,E) of nodes V and edges E. Some problems in these areas of AI require

a minimal path from a start node s to a goal node g. There are many variants of

algorithms which explore this problem[CGR96].

The Dijkstra Algorithm[Dij59] was a seminal work in this area. The Dijkstra Algo-

rithm works by assigning nodes to three separate sets; nodes yet to be analysed, nodes

currently under contention and nodes which have a defined minimal distance. Labels

would be assigned to each node indicating the minimal distance to that node. One

of the advantages of Dijkstra is its simplicity, it requires no information other than the

distance between nodes.

After Dijkstra one of the most prominent path finding Algorithms is A* as explored by

Hart et al[HNR68a]. The A* algorithm uses a function h(x) called the heuristic function.

The heuristic function is an approximating guess as to the distance to the Goal. The

heuristic function is never allowed to be an overestimation of the distance to the Goal.

If the heuristic function satisfies this property then it can be used to influence which

nodes to expand and explore next without compromising the optimality of the path.

2.2 Collaborative Path Finding

Collaborative path finding is an extension of path finding concerned with multiple enti-

ties travelling to their own destinations. This subject has many applications from traffic

simulation, crowd simulation, virtual environments, robotics and abstract problem solv-

ing such as the 15-puzzle and Goal Orientated Action Planning.

Collaborative path finding is a problem which can be framed in a number of ways.

The problem can be framed in 2D or 3D space with entities which avoid or attract each

other. The problem can also be framed in a more abstract manner by defining a node

graph where the travelling entities avoid occupying the same node while traversing the

edges.

2.2.1 Motion Planning

When solving navigation problems for several agents we need a representation of the

environment which they occupy. As discussed earlier the environment can be repre-

sented as an abstract node graph; G(V,E). As we will discuss later navigation through

a graph is NP-Hard .

Some of the original research into the area of multi agent path finding where collision

was disallowed originated from robotics and the need for multiple agents (robots) to

navigate a physical environment without colliding. The original complexity of motion

7
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planning [HSS84] by Hopcroft et al represented the problem as 3 dimensional shapes

sliding in a 3 dimensional space and was able to prove that the general problem was

P-SPACE Hard.

Work by Hopcroft et al on the motion of pivoting arms [HJW84] shows that the similar

problem of the 2 dimensional linkages of robotic arms. The problem is similar in nature

and it is also proven that moving a joint to a given position from initial configuration is

P-SPACE Hard.

Erdmann et al on sliding objects within the plane[ELP87] builds an algorithm to solve

the sliding shapes and the two dimensional linkage problem. The algorithm works by

prioritising each individual agent/linkage, analysing the space available for the entity to

move and then planning a path for the said entity.

2.2.2 Boids and Flocking

An alternative approach which avoids the NP-Hard nature of MAPF is to represent the

environment as a 3D space and solve the agent direction by alternative methods. One

such method is flocking which originates from Reynolds Boids[Rey87]. With the use of

Boids groups of agents can navigate from one area to another, however the exclusivity

of a node based graph navigation scheme does not apply in the same form. A balance

of forces dictate the motion of the agents forcing them to maintain an even distance.

The balance of forces keep the flock together, spread apart in an even distribution and

travelling towards their joint goal.

Algorithms of this nature however do not restrict their agents from colliding, colli-

sions can occur. If these collisions are to be resolved an algorithm will be needed to

detect the interface of two of the agents (intersection of the the two shapes represent-

ing the agents). An interface resolution algorithm would then be needed to correct the

intersection.

Flocking is a technique which finds application in virtual environments due to its

real-time nature allowing for fast answers to complex behavioural problems; Sweetser

et al [SW02] review a few of the current AI techniques in computer games. A re-

lated topic to flocking is crowd simulation [MBCT98, PGT08] which simulates a realistic

group behaviour, where the collective behaviour of agents is more important than the

goal of individual agents. Algorithms such as flocking do not provide an optimal path

planning solution, however, as there is no consideration of intelligently navigating the

environment.

When a 3D environment needs the rigorous nature of graph based navigation the

environment can be split into nodes representing regions or geographical locations. For

a 2D surface within a 3D environment a closer approximation of the open nature can

be attained by the use of Navigation Meshes[vTCG11, vTCG12]. Navigation meshes

allow for path planning algorithms to be applied to 2D polygonal surfaces, however the

notion of collision does not apply in the same manner as in an abstract graph based

path planning algorithm. This is due to a lack of normalisation in node distribution.
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Navigation meshes allow agents to pass around each other within the space of a single

node of the path. This leads to similar needs for interface detection and interface

resolution as in the flocking algorithms.

2.2.3 Ant Colony Optimisation

Taking inspiration from ant behaviour Ant Colony Optimisation(ACO)[DMC96, SH00,

DG97] is a form of swarm intelligence which isan abstract approach which can be used

to solve certain combinatorial problems. Ants use a set of pheromones to mark territory

that can lead to useful resources. The path traced by these pheromones leads to the

relevant resources however the diffusion of the pheromone naturally balances which

paths are more suitable.

By breaking a general combinatorial problem into a set of finite decision variables

Xi, i ∈ [1, n] then ACO can be applied to the problem by constructing a graph which

encodes these decisions. Suppose that each Xi can take a value from the set Di =

{v1i , . . . , v
|Di|
i } then we define a set C called the components of the problem where each

element cij ∈ C represents the assignment Xi = vji . Each of the cij can either be used

as an edge or node of the graph we use to construct the solution. A path along this

graph represents a set of decisions and a possible solution.

Particular edges or vertices can be removed to represent constraints on the decision

variables. Solutions are explored by simulated traversal of this graph with agents rep-

resenting the ants of the ant colony. As these agents traverse the graph in a stochastic

manner they lay pheromones along the edges of the graph. As the algorithm steps for-

wards in time the pheromone decays leaving the most efficient paths with the highest

concentration of pheromone. The probabilities with which the ants travel along each

edge is dependent on the levels of pheromone present however a non marked edge

will still have a finite probability of being visited.

ACO has a number of advantages such as a generalized approach applicable to a

number of problems. Several version of the approach have been described in literature

each having their own advantages and disadvantages. The ACO approach has an

intuitive implementation inspired by a system found in nature and like most optimisation

techniques the solution is found iteratively therefore can be stopped at any time giving

a partial optimisation.

However ACO has disadvantages towards the problem we wish to solve (MAPF).

The most optimal solution may never be found as the algorithm may find itself stalled

in a blind alley of optimisation. The true optimal may also not be known meaning that

when it is found the algorithm shows no indication that that point has been reached.

In the case of MAPF the generalized solution means that a bespoke approach is not

used and many facets of the original problem are not taken advantage of. MAPF has a

large state expansion and can potentially explore an infinite number of decisions (which

direction does an agent choose at each time step).
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2.2.4 Multi-Agent Path Finding

The focus of this thesis is on the more abstract approach based on graphs. A graph

is a mathematical construct consisting of a set of points V called vertices and a set of

edges E ⊂ V × V between vertices. This version of collaborative path finding is called

Mulit-Agent Path Finding (MAPF).

There is no universal definition of a MAPF scenario, though prior literature has

favoured a formal definition which this work employs [GFS+12]. Following the example

of Goldenberg et al, this work defines the inputs to a MAPF problem as:

1. A graph G(V,E) with V vertices (nodes) and E edges

2. A set K of agents i ∈ K, each with a unique start node and goal node.

Graph G is normalised such that a single incrementation of time maps to the cost of

traversing a single edge. Thus at every increment of time, each agent may move to a

neighbouring node, or wait at its current node. Constraints placed upon the system, in

terms of mutual exclusivity, define the properties of an incomplete solution. A solution

shall be considered incomplete if:

1. A node is concurrently occupied by more than one agent in any given time-step.

2. An edge has been traversed by more than one agent in-between any two con-

secutive time-steps.

For the purposes of this work, the detection of either condition shall be considered

a collision. A solution shall be considered complete if no collisions are detected; it shall

be considered both complete and optimal if no collision is detected and the sum total

of time agents spend away from their goal node is a minimum possible value. Figure

2.1 shows an example of swap collisions and collisions on a specific node on a square

3x3 grid.

A B

A

B

Figure 2.1: Example of the two types of collisions.

2.2.5 Complexity

The problem of MAPF is in general NP-Hard. The first work on the complexity of

such problems comes from robotics. As discussed earlier Hopcroft et al prove that the

motion planning of sliding objects[HSS84] and the motion planning of two dimensional

linked arms[HJW84] is PSPACE-hard.
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Later work into mathematical puzzles of the nature of the 15-puzzle are NP-Hard[JS79,

RW90, RW86, Gol11]. The 15-puzzle is an example of a problem relating closer to our

current work as can be seen if we consider the sliding pieces to be our agents. The

Goal of the 15-puzzle is to slide the tiles in a square 4x4 grid until they reach the con-

figuration shown in Figure 2.2. There is only ever one square free for agents to move

to however the puzzle only allows certain configuration to return to the initial configu-

ration shown in the Figure. The computing whether a solution is possible is where the

NP-Hard nature of MAPF occurs.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 2.2: Example of a 15-puzzle.

2.3 Non-Optimal MAPF

The approaches taken to solve MAPF be categorized into a number of groups. De-

pending on the focus of the solver one of several approaches can be taken to solve

the problem. We will now focus on Graph based solutions to MAPF and give a brief

summary of each of the main approaches to MAPF.

2.3.1 Decentralized

The MAPF problem naturally lends itself to a distributed processing approach. In a de-

centralized approach each agent of the MAPF problem is self interested and processes

its own route. Collisions are avoided by communication between these agents. The de-

centralized approach mirrors the original focus of the research area of robotics. Each

agent would have its own dedicated processing and would be inherently self interested.

In the work by Gilboa et al [GMF06] an algorithm was described which would work

to uncover a hidden environment. As agents traversed the graph new nodes would

be uncovered and the graph updated. Agents would communicate new nodes, their

current location and future plans and then use a distributed algorithm to calculate their

next move.

Work by Bhattacharya et al [BKL10] use optimization methods to calculate the result

of MAPF problems. While agents are optimized individually information is shared so

that the global problem can be optimized. By applying pairwise distance constraints

between agents collisions are avoided.

DEC-A* by Falou et al [FBM12] uses a decentralized method based on spacial lo-

cality. The map is split into separate graphs, and the paths are solved in a decentralized

approach by separating the computation among the sub-graphs.

The focus of this work is centralized techniques which consider the problem in its
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entirety, meaning that agents are considered together such that an overall solution can

be calculated.

2.3.2 Rule Based Solvers

One technique which is prevalent in congested environments is the restriction of agent

movement defined by a set of rules. This allows for faster compute times at the cost of

optimality.

In the work of Luna et al an algorithm called Push and Swap [LB11a, LB11b] is

described. Push and Swap has two primitives, push will move an agent towards their

goal until the agent can go no further, swap will interchange two agents if one of them

was blocked from reaching their goal.

Push and Swap was extended by Wilde et al in an algorithm called Push and Rotate

[dWtMW14]. Push and Rotate adds a new operation rotate that allows more freedom

to the algorithm. The rotate sequence of movements allows two agents to swap in a

congested cycle of agents.

The algorithm Tree based Agent Swapping Strategy (TASS) by Korshid et al [KHS11]

specializes in the solving of tree based MAPF problems. Using a previous work by

Masehian and Nejad [MN09] which shows a linear algorithm capable of checking the

solubility of a tree based MAPF problem, TASS builds on the work by constructing an

algorithm for solving such problems.

These algorithms described run in polynomial time however as they reduce the

number of available options for movement they are not always applicable too all config-

urations, for instance the original Push and Swap was restricted to graphs which had

two spaces for agents to move into.

As highlighted in work by Röger and Helmert[RH12] earlier work by Wilson [Wil74]

which is further extended by Kornhauser[KMS84] fully solves non-optimal MAPF prob-

lems in polynomial time. This work comes under the name of Pebble motion on graphs

and originates from a pure mathematics Graph theory perspective. Our own work is

inspired by this philosophy.

2.3.3 Reduction Approaches

Other areas of computer science and the well known problems studied in those ar-

eas can be leveraged to compute sub-optimal solutions to MAPF problems. Work

by Surynek[Sur12c] uses the boolean satisfiability problem (SAT) to optimise the sub-

problem generated by existing sub-optimal solutions. The solutions used as a template

for the optimization are generated by solvers such as their earlier work [Sur09] and

Push and Swap [LB11b]. This work was later revisited [Sur12b, Sur12a] with a revised

version of the SAT encoding employing a constraint called ALL-DIFFERENT to model

the requirement that all agents must not collide.

Similarly work by Yu et al[YL13] utilizes Integer Linear Programming to compute

optimal and complete solutions to congested environments. The graph which repre-
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sents the MAPF problem is transformed into a network flow problem where the edges

are directed and have capacities and costs associated with them. The network flow

problem is then treated as a series of linear equations that need solving.

Work by Erdem et al [EKÖS13] explores the application of Answer Set Programming

to the MAPF problem. A formalism is devised to solve the MAPF problem, rules are

defined which must be satisfied. Heuristics are introduced to improve the efficiency

of the algorithm and the quality of the solutions, but provides no explicit benefit in the

computation of optimal solutions.

2.3.4 MAPP

By combining multiple techniques Wang et al [Wan11, WB11] design a sub-optimal

algorithm MAPP which first pre-computes individual paths for each agent. When a

collision occurs sliding techniques similar to that of rule based solvers such as Push

and Swap[LB11a] are used.

2.3.5 HCA

In 2005 Silver[Sil05] contributed one of the first works (HCA) on MAPF restricted to the

abstract set-up of agents occupying nodes on a graph. Silver describes a non-optimal

solver with the main focus on real time answers to a given number of steps into the

future. The algorithm works by maintaining a reservation table of points in space and

time. As agents plan their path nodes will be reserved in the table restricting other

agents from landing on those squares at the specified time. Silver also describes the

use of reverse resumable A* a method that uses the g-value of A* to given an accurate

gauge of distance from the goal.

HCA is not a complete algorithm. The algorithm is designed to compute solutions as

close to real-time as possible. However the reservation policy can stall agents stopping

themselves from ever reaching a goal and force agents to collide if there is no viable

escape for them.

2.4 Optimal MAPF

2.4.1 Costing Function

All solvers need a method to evaluate the efficiency of the resulting solution. The

costing function for MAPF problems is generally split into two concerns. First is the

cost of individual paths. This can take a number of forms, for example the cost can be

calculated to be the last time step that an agent moves, or the Fuel heuristic[FSBY+04]

which uses the number of steps travelled and ignores any pauses during the journey

to the goal.

The second part of the cost calculation is the method with which the individual costs

are combined. This is generally handled by the Summation of Costs[Sta10] (SOC).

With the summation of costs all the costs of the paths which combined to make the

solution are summed to give a total cost.
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2.4.2 Optimal vs Non-Optimal

The algorithms we have discussed so far have been non-optimal. An optimal solver

minimizes the cost of a solution. Optimal MAPF solvers bring a number of guarantees

and advantages over non-optimal solvers. While being generally more computationally

expensive they guarantee completeness of the solution and minimum cost. Certain

non-optimal solvers can have behavioural anomalies due to the method in which the

problem is solved. This is not the case when optimal algorithms are applied as the

minimality of the solutions constrains the behaviour of the agents.

Optimal solutions also give a better understanding of the nature of the problem.

Optimal solutions serve as a bound for all solutions of a specific problem.

2.4.3 Fundamental Approach to Optimal MAPF

A

B

A B

A

B

A

B

Figure 2.3: Example of the states of a generalized A* MAPF solver.

The original approach to optimal solutions to MAPF use a generalized A*[Sta10,

SK11]. Each node in the generalized version of A* is a state of the map, i.e. the

position of every agent on the map and the time associated with this configuration.

Each neighbouring state is a new configuration of agents on the map and each

branch from that node represents one time step. The overall number of branches in

this simple generalization of A* is exponential in the number of agents, i.e. roughly

O(kn) where k is the number of connections to each node and n is the number of

agents. This however does not take into account invalid moves; a branch can only be

traversed if no two agents collide.

2.4.4 Refinements to the A* approach

This general approach to MAPF can be refined by a number of techniques. Stand-

ley defines an ’operator’ as a possible connection between consecutive joint states of
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agents. For a single agent he gives nine possibilities (eight compass directions, plus

wait). He reduces this through Operator Decomposition: by splitting each operator into

n intermediary states, each agent can be moved individually, reducing the order of the

algorithm to O (9nt).

Standley also provided the concept of the Collision Avoidance Table (CAT). This is a

mechanism whereby unnecessary collisions are avoided between independent groups.

All moves of other agents are added to the CAT table, which is then used to resolve

tie-breaks between equal-cost choices.

The overall complexity of the problem can be reduced by splitting groups of agents

into independent groups. This is called Independence Detection (ID) and can be

achieved by running the solver on test groups and merging groups when conflicts oc-

cur between them. This strategy generally only incurs a constant multiple to the overall

computation time because of the NP-Hard nature of MAPF.

Work by Yoshizumi et al [YMI00] on Partial Expansion A* of nodes which is later

extended into Enhanced Partial Expansion A* [GFS+14] by Goldenburg et al focuses

on the problem of nodes which branch a large number of times. When processing

nodes with a large branching factor the branches expanded can be restricted by cost

reducing the amount of processing and deferring the computation of further branches to

later. Our own work utilizes a similar technique under the name of Stems which reduce

the search through possible alternative routes when redirecting after a collision.

2.4.5 Conflict Based Approaches

The joint approach of these previous methods allows us to apply A* directly to the

MAPF problem, however each node of the process incurs a large branching factor

even when most agents have a least cost move towards the solution. Rather than

applying A* to the whole problem we can split the problem into multiple processes. By

solving each agent individually and then combining the agents afterwards we shift the

perspective of the problem.

Sharon et al. extended Standley’s work with an approach called ICTS (the Increas-

ing Cost Tree Search) [SSGF11]. Taking a two-layer approach, ICTS implements a top

layer which searches over potential cost distributions. The root node assigns the min-

imal cost to each agent such that it can reach its destination (ignoring all collisions).

Each branch from a node in the top layer increments the intended cost of a single

agent. Each node in the top layer is searched in increasing total cost until an overall

solution is found.

The lower layer of ICTS creates a data structure for each agent called a multi-value

decision diagram (MDD), representing all possible paths of the allotted cost for that

agent. The MDD is an acyclic, directed graph from the start to the goal, with each node

representing a coordinate in space-time within the graph. MDDs of increased cost can

be constructed relatively easily from the MDDs of lower costs.

The lower layer search is completed by merging the MDD representations for each
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(x0, 0) (x1, 1) (x2, 2)

(x0, 1) (x1, 2) (x2, 3) (g, 4)

Figure 2.4: An Example MDD with a pause. The agent arrives at g at time step 4.

agent, removing conflicting pairs as it traverses. There exists a solution to the problem

if the joint goal is reached by the merged MDDs; if the lower layer cannot find a solution

the top layer creates new nodes where each agent has its allotted cost incremented.

Figure 2.4 shows a simple example of an MDD where a pause is introduced to a line

of nodes x0,x1,x2,g.

2.4.6 CBS

Sharon et al. extend ICTS into a new approach called conflict based search (CBS)

[SSFS12a]. CBS can be seen as an evolution of ICTS, where a constraint is applied

to the system rather than a distribution of costs. The nodes form a tree structure

(Constraint Tree Nodes, or CT nodes). The constraints disallow specific actions based

on an agent’s situation relative to the rest of the system. For example, when a collision

between two agents is detected two branches will be formed; each disallowing one of

the agents from performing the action which triggered the collision. CBS is our main

comparator in this thesis.

Like ICTS the CBS algorithm is a two-layer approach; the top layer assessing the

cost and correctness of the global solution, while the bottom layer constructs individual

paths following a decoupled schema, informed by a CAT. This provides performance

benefits relative to ICTS [SSFS12a], but requires a full low-level re-computation of

individual paths informed by the constraints, whenever a collision is detected.

Sharon et al further extends CBS into Meta Agent CBS[SSFS12b] or MA-CBS. In

MA-CBS agents can be combined together to yield a meta agent. The meta agent

then uses another MAPF solver such as the techniques from Standley and Korf. The

advantage to this technique is that after a large number of collisions between two or

more agents consistently the collision based scheme is less efficient as their paths

are constantly being recomputed. However the more tradition A* approaches are not

affected as much as CBS in these scenarios. We focus our comparison on the main al-

gorithm CBS itself as MA-CBS needed an optimizing variable B for each case, making

the comparison indirect. Future work may consider a comparison with MA-CBS and

any analogies to our own work.

Boyarski et al[BFS+15] introduce incremental improvements to MA-CBS with an

algorithm called Improved Conflict Based Search (ICBS). The ICBS algorithm is an

incremental improvement over the MA-CBS algorithm. Three modifications are made

to the algorithm. First is a clean restart of the algorithm on the merging of agents
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in MA-CBS, which improves the efficient integration of the new meta agent into the

computation. The second improvement prioritizes which collisions to expand upon

depending on the rise in cost due to the conflict. Conflicts which raise the cost are

given priority as the conflict will eventually raise the cost of the solution later in the

computation. The third improvement stops the low level solver from splitting paths

unnecessarily by redirecting the agent when possible. This means that if possible the

CT node does not need to split if the collision can be solved by recalculating the original

node’s path.

Barer et al[BSSF14a] take the CBS algorithm and relax the optimality condition pro-

ducing 3 new algorithms with suboptimal solutions but much faster compute times. The

first algorithm Greedy Collision Based Search (GCBS) relaxes the optimality condition

of the upper layer search and lower layer search expanding nodes which are more

likely to produce valid solutions. By applying an additional heuristic to the solution of

the whole problem they GCBS takes a greedy approach which prioritizes nodes nearer

the solution at the cost of overall solution value. The second algorithm Bounded Con-

flict Based Search (BCBS) splits the open list of the high level and low level search into

different sets. The Focal set is a subset of the open list and allows the sub-optimality

to be bounded by the selection of the Focal set. The last algorithm Enhanced Con-

flict Based Search (ECBS) improves upon BCBS by calculating appropriate bounding

conditions during the course of computation.

2.5 Properties of the Graph

In this thesis we have taken the approach of analysing the underlying graph. We show

that an understanding of the nature of the graph which structures the MAPF problem

allows us to leverage its properties to cull equivalent solutions while improving our

understanding of the area. The use of A* in MAPF is an application of the algorithm,

however this application of A* does not improve our understanding of the structure of

the solutions inherent in the MAPF problem.

2.5.1 Path Ordering

We have used two properties in the construction of our algorithm. First of all we

have utilized an arbitrary preference for the connections of a node to construct an

ordering[DP02a] of said connections. We can use this to construct an ordering on the

paths themselves through a lexicographic ordering scheme[DP02b]. This ordering al-

lows us to construct a conflict based algorithm which we call CIS with two layers where

the lower layer has a linear order of complexity.

2.5.2 Planar Condition

We employ CIS as a basis to construct an algorithm CISR capable of culling regions

of possibilities on a planar graph. A planar graph [Bol98] is a graph which can be

projected onto a flat plane without its edges crossing. Figure 2.5 shows examples of
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planar and non-planar graphs. As can be seen with the transformation µ certain graphs

need to be transformed before they meet the planar condition if the planar condition can

be met. The planar condition is present in all sub-graphs of square grids in which we

test our results.

The planar condition allows us to contain a set of equivalent paths between two

boundary paths. This allows us to search the boundary for potential routes which avoid

collisions. This naturally leads to the exploration of a type of path we call Non-Complex

paths. These Non-Complex paths form a structures which we reason about in order to

construct the Backtracking Algorithm at the centre of our technique.

Planar Non-Planar

µ

Planar Non-Planar

Figure 2.5: Examples of Planar Graphs.

2.6 Collaborative Iterative Search (CIS)

Collaborative Iterative Search (CIS), the solution presented in this thesis, extends the

concept of A*-focused, collision-based path planning, but takes a greedy approach

more directly focused on sparse environments. CIS is both optimal and complete.

An earlier work describes a modified version of the CIS algorithm for non-optimal

solutions of a parking simulation[RBS+14]. The definition of a collision is generalized

to include a capacity along a connection and on grid cells. Not all possibilities are

explored leaving the algorithm to take a more holistic approach.

Taking advantage of map geometry and a perfect heuristic, CIS permits an addi-

tional level of reasoning which further culls the search space of the problem without

sacrificing optimality or correctness. We call the extension presented in this thesis

CISR.



Chapter 3. Theory of CIS

3.1 CIS Theory

In this chapter we aim to build the mathematical foundation of the CIS algorithm. We

leave the pruning additions of the CISR algorithm to the next chapter. We will construct

a definition of the search spaces through which we search for both the solutions of

the overall MAPF problem and the search spaces used by individual agents as they

navigate towards their individual goals.

We provide a purely mathematical approach as the problem is fundamentally based

in graph theory as was the approach of the original Dijkstra paper[Dij59] and Coordinat-

ing pebble motion papers[Wil74], [KMS84]. In this chapter and the next we construct

the notions which we need to describe the problem and build our solution. We show

that a fundamental understanding of the underlying structures of a graph allow us to

tailor the solution to the circumstances and improve performance.

On this basis this chapter will construct a definition of order which we apply to the

paths on which agents navigate toward their goals. This is an important concept of CIS

as it allows us to select an appropriate alternative for a path which collides with another

agent while maintaining cost and being computationally efficient.

3.1.1 The Problem Definition

The MAPF problem is an abstract approach to the general problem of collaborative

path planning. MAPF is defined on a graph structure G = (V,E) where V is a set of

vertices and E is a set of edges between the vertices in V . For our algorithm we restrict

ourselves to the undirected simple graphs. This set is large and general but does not

contain one-way edges, i.e. edges can always be traversed in both directions, no two

nodes have more than one edge connecting them and no node has an edge looping to

connect to itself. The MAPF problem is defined as a set of agents K navigating on the

graph G simultaneously. With each agent i ∈ K we associate a start node si ∈ V and

a goal node gi ∈ V .

Definition 3.1.1 (MAPF, G = (V,E), K). We define the graph G = (V,E) where V =

{x1,x2, . . . ,x|V |} is a set of vertices and E ⊂ V × V is a set of edges. We also restrict

the set E such that if (xi,xj) ∈ E for i, j ∈ [1, |V |] then (xj,xi) ∈ E, also we restrict E

such that (xi,xi) /∈ E for i ∈ [1, |V |].
We define a MAPF problem on G using a set of agents K. For each agent i ∈ K

there exists a start node and a goal node si,gi ∈ V .

We can also define a distance metric based on path length. This metric is our

primary concept of distance and can be calculated using reverse A*.

19
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Definition 3.1.2 (Distance, Dy(x)). We define a distance functions given a location y

on the graph G the value Dy(x) represents the minimum path distance from the node

x to y.

Our CIS approach is a centralized scheme which solves the MAPF problem as one

process however the technique shares commonality to the decentralized techniques

as each agent is considered separately and then combined into one potential solution.

This process is analogous to the two layer approach of algorithms such as CBS The

upper layer of our algorithm works with collections of paths of the form v = (v1, . . . , v|K|)

which may or may not contain collisions. These collections of paths are tuples; each

indices of the tuple representing a path associated with a particular agent. We call a

collection of paths of this form a Multiverse. We will fully define solutions and Multi-

verse’s after we have discussed the components which constitute the Multiverses, the

individual paths associated with each agent.

A path on G is a trace through the graph in time and space. The distinction between

a location on the graph and a location in space-time is important for MAPF unlike

other path finding algorithms. Since collisions between agents and unusual movement

patterns such as pausing on a node or reversing direction are dependent on time we

define our paths in terms of space-time points.

Definition 3.1.3 (Space Time Point, p̃ = (p̃x, p̃t) ∈ Ṽ). Given a graph G = (V,E) we

define a tuple of the form (x, t) to be a space time point where x ∈ V and t ∈ [0,∞).

We use Ṽ to represent the set of all space time points. We also use a special index p̃x

to represent the positional component of the space time point and p̃t to represent the

time component, i.e. p̃ = (p̃x, p̃t).

Using these space time points we can define a path as a set of space time points.

We restrict the set representing a path so that it can only describe a path along a graph

G.

The first restriction we place on the paths is that they can only pass through a single

point in space at any one time and must exist for every time step. This stops the agent

from being in multiple locations at once and from disappearing from the graph when

a time step is missing from the path. The resulting paths will also exist after the goal

is reached which is important in MAPF as an agent can still collide with a stationary

agent which has reached its goal.

We restrict paths so that each transition in a path must either be a pause or traverse

an edge in G. This restriction is equivalent to the fact that the graphs that concern us

are normalized as each edge takes a single time step to traverse. This together with

the first restriction defines what we would consider the normal behaviour of an agent

on the graph G.

However this agent could still traverse the graph G only resting on a single node

for a finite number of time steps until the agent moves again. No solution can contain
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a path which does not rest on its goal therefore our final restriction is that these paths

have a finite number of transitions along the edges of the graph G and stop on a single

node after a finite number of time steps.

Definition 3.1.4 (Path, v ∈ A). We define v = {p̃0, p̃1, p̃2, . . .} ⊂ Ṽ a set of space time

points to be a path on G if it satisfies the following properties:

1. The path v has a position at every time step from 0 to ∞. This position is also

unique, i.e. ∀t ∈ [0,∞),∃!x ∈ V, s.t. (x, t) ∈ v.

2. For every step in time from t to t + 1 the path v either traverses an edge in G or

pauses on a node, i.e. ∀t ∈ [0,∞), (x, t), (y, t+ 1) ∈ v =⇒ (x,y) ∈ E or x = y.

3. The path v eventually comes to rest, i.e. ∃t ∈ [0,∞),∃x ∈ V, s.t. ∀t′ ≥ t, (x, t′) ∈
v.

We define the set of all such paths as A.

Each agent in i ∈ K has a set of paths associated with it which starts at si and rest

on gi. We define a subset Ai ⊂ A to be the paths associated with agent i ∈ K and call

each of the paths in Ai the Agentverses of i. Each Agentverse is a potential solution

for the agent i which excludes all other agents from consideration. This means that a

Multiverse is a collection of Agentverses for each agent.

Definition 3.1.5 (Agentverse, v ∈ Ai). The path v ∈ A is an Agentverse of i ∈ K iff:

1. The path v begins at si, i.e. (si, 0) ∈ v.

2. The path v eventually rests at gi, i.e. ∃t ∈ [0,∞), ∀t′ ≥ t, (gi, t
′) ∈ v.

We define the set Ai to be the collection of all such paths associated with agent i.

For convenience we define a function Pt(v) and P̃t(v) which allows us to access the

position and space time co-ordinate of v at time t. We will then extend this definition to

encompass all points traversed by the path. This will in essence be a projection of v

onto the graph G as the positions returned will not have a time associated with them.

We also define a function P (v) called the projection of v. The projection will later

allow us to define subsets of similar paths based on the sets of points on the graph

they form. Their projection will form partitions of paths which can be reasoned about

together reducing the amount of work needed to dismiss unsuitable paths. This forms

the basis of our culling algorithm in CISR.

Definition 3.1.6 (Position, Pt(v), P̃t(v)). We define the function Pt(v) to be the position

of the agent on path v at time t, i.e. Pt(v) = x =⇒ (x, t) ∈ v. For convenience we also

define the function P̃t(v) as the space time point at time t, i.e. P̃t(v) = (Pt(v), t) ∈ v.
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Definition 3.1.7 (Projection, P (v)). We define a function called the projection P (v).

The function P (v) is defined as the set of locations traversed by the path v, i.e. P (v) =

{x : x ∈ V, ∃t ∈ [0,∞), (x, t) ∈ v}.

We can now fully define the concept of a potential solution, i.e. a Multiverse, with

respect to our definition of a path. Each Multiverse is a node on the wider search space

of potential solutions to the MAPF problem but is made from the cross-product of the

reduced problem search space for individual agents Ai.

Definition 3.1.8 (Multiverse, v ∈ S). We define a tuple v = (v1, . . . , v|K|) where vi ∈ Ai
to be a Multiverse. We represent the set of all such Multiverses by the set S, i.e.

S = A1 × . . .× A|K|

In order to assess the correctness of a solution we need to detect the collisions

which may be present in the tuple. We define the collision function χ(v, u) to be the

earliest time step that a collision occurs or a half time step if the collision occurs be-

tween time steps.

Definition 3.1.9 (Collision function, χ(v, u)). Given two paths v, u ∈ A we define the

collision function χ(v, u) as the smallest time step or half time step at which a collision

occurs:

χ(u, v) = min{t : Pt(v) = Pt(u) or (Pt−1/2(v) = Pt+1/2(u) and Pt+1/2(v) = Pt−1/2(u))}

When no collision occurs we define χ(u, v) = ∞. We also define χ(v) over tuples of

paths for convenience as the minimum collision over all pairs, i.e. χ(v) = min{χ(vi, vj) : i, j ∈
K, i 6= j}.

Using this definition of collision we can define the solution space as the set of all

Multiverses without a collision.

Definition 3.1.10 (Solution space, S ′). We define the subset S ′ ⊂ S to be the solution

space of the MAPF problem, i.e. S ′ = {v : v ∈ S, χ(v) =∞}.

One last concept we need to fully describe our solution to the MAPF problem is

our idea of cost. We use the Sum Of all Costs (SOC) metric to define the cost of a

solution. This metric takes the individual paths and sums the costs together. However

this leaves room for an arbitrary choice of how individual paths are assessed. We use

a particular metric in this paper which simplifies the implementation which we call the

time spent off goal, which counts the number of time steps the agent is away from its

associated goal node. This has the property that any change in a path has a finite set

of possible cost changes, i.e. each branch can add up to 2 units to the overall cost by

moving away from the goal.
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Definition 3.1.11 (Agentverse Cost Functions, F (v)). We define the function F (v) to

give the cost of an agentverse v. We use a metric where each time step spent away

from the goal adds a single unit of cost to the path, i.e. F (v) =
∑∞

t=0[Pt(v) = gi] where

the [·] notation equals 1 when the condition inside is true and 0 when false. We define

the cost of a Multiverse as the Sum Of all Costs, i.e. F (v) =
∑|K|

i=1 F (vi).

Other costing functions are possible however they require slight modification when

dealing with larger cost changes.

3.1.2 The Structure of Ai

The set Ai of agentverses associated with an agent i ∈ K has a complex structure.

In order to highlight some of the structure inherit in these sets we can introduce a

relation between the agentverses in Ai. Our approach uses the concept of an ordering

on the paths in Ai. This ordering also allows us to compute the paths involved using

simple greedy algorithms and search for alternatives along the ordering using linear

time complexity searches.

The method by which we order these paths has several arbitrary options however

we would like to include several desirable properties:

• Similar paths are close together in the ordering.

• Paths which branch from each other later in time are close together in the order-

ing.

• Paths with the same cost form a contiguous block together in the ordering.

We can construct an ordering which include these properties by using a lexico-

graphic ordering scheme. We use the transitions between nodes as an implicit alpha-

bet. We can illustrate the ordering that we implement by considering decimal numbers.

Given a path v we will construct a decimal number associated with it. We set the in-

teger part of this representative to the cost of the path. We then consider each choice

the agent makes numbering choices that lead towards the goal lower in value than

choices which increase the distance to the goal. We assign an index called dt to each

choice. The index dt ranges from 0 to the maximum number of choices for that time

step, including the possibility of a pause. The form the representative then takes is

F.d0d1d2 . . . which is unique for each path. However by assigning a particular order to

the choices linked to given indices this number satisfies each of the conditions we set

for the path ordering. The number representation however is not needed in the appli-

cation of our algorithm as it is only illustrative of the properties of the incrementation

algorithm.

We implement this strategy by applying a fixed priority mapping to each edge on

the graph. For instance for a square grid we can apply a number from 0 - 4 on each of

the cardinal directions.
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Definition 3.1.12 (Preference, Pref(x,y)). For any valid edge (x,y) we define a pref-

erence to the edge using the function Pref(x,y). The preference can be dependent on

the direction of the tuple (x,y), i.e. the direction along which the agent travels along

the edge. The preference function assigns values in a range from 0 to the maximum

number of connections from the first argument. The values of the preference function

do not repeat given a particular first argument.

When we then consider an agent on a node we then convert this priority system into

an index. Each node is assigned an index from 0 to the maximum number of choices.

The first indices indicate the edges which lead towards the goal in order of priority, then

comes the index of the pause and any edges which lead to nodes which are of equal

distance to the goal, then the nodes which lead away from the goal are indexed.

Definition 3.1.13 (Indexing Function, It(v)). Suppose v ∈ Ai, we define a function It(v)

called the indexing function which indicates the index of the direction between time step

t and t+1 with respect to preferential ordering at location Pt(v), i.e. Pref(Pt(v), Pt+1(v)).

We define a number of helper functions before we define the index function. The

three functions D,R,P will be used to help define the index function. The Di(x,y)
function calculates the relative distance to the goal from each end of the edge x,y.

Edges which are closer to the goal are prioritised over edges leading further away. The

Rx(r) function calculates the set of edges which have a relative distance of r from the

goal and the P(x,y) function calculates the set of edges with a lower global preference

via the Pref function.

Using these functions we define the index ordering the edges first with those leading

to the goal, then the pause movement, followed by edges where each end is equidistant

from the goal and finally edges leading away from the goal.

Di(x,y) = Dgi
(x)−Dgi

(y)

Rx(r) = {e : ∀e = (x,y) ∈ Ex,Di(x,y) = r}

P(x,y) = {e : ∀e ∈ Ex,Pref(e) < Pref(x,y)}

I(x,y) =



|Rx(1) ∩ P(x,y)| If Di(x,y) = 1

|Rx(1)| If x = y

|Rx(1)|+ |Rx(0) ∩ P(x,y)|+ 1 If Di(x,y) = 0

|Rx(1)|+ |Rx(0)|+ |Rx(−1) ∩ P(x,y)|+ 1 If Di(x,y) = −1

For convenience we define the special notation of It(v) = I(Pt(v), Pt+1(v)) for indices

along a path v. We also define a partial inverse I(x, i) which takes an index i and

returns the node y which holds that index with respect to x, i.e. I(x, i) = y⇔ I(x,y) =

i.

The use of this index function allows for the greedy nature of the CIS algorithm. For

each time step there are a range of values such that any choice of index in that range
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constructs an optimal path to the goal from that point in space time. Each time step can

be seen as a potential branch to an alternative path with a predictable cost. Therefore

when given a path v which has a collision, if the path is represented in an index form

we can search backwards in time from the collision for alternative routes.

We define a number of equivalence relations on the set of agentverses Ai. The

equivalence relation ∼t relates all paths which agree up to time step t. When we

consider a collision on the path v at time t the collision criteria would hold for any path

from the equivalence class [v]t.

Definition 3.1.14 (Equivalence, ∼t). We define an equivalence relation u ∼t v up to

time step t, i.e. ∀t′ < t, Pt′(u) = Pt′(v). We represent the equivalence class generated

by this relation by [v]t, for some representative v. We then define equivalence classes

restricted to a particular f-value; [v]ft = {u : F (u) = f, u ∼t v, u ∈ Ai}. The set of all

equivalence classes, associated with that f-value and time step, is defined as Ef
t =

{[v]ft : v ∈ Ai}.

The preferential ordering of paths can now be defined with respect to the index

function and the equivalence relation. The structure of the ordering reflects the nature

of our search algorithm. When we search backwards in time for an alternative branch

an index would never need to be decremented in order to search for the solution of the

same cost as each step along the ordering has ruled out portions of the order due to

earlier collisions.

Definition 3.1.15 (Preferential Ordering, <i). We define <i to be a total ordering on the

set of agentverses Ai. We define u <i v if and only if either:

1. F (u) < F (v), or

2. F (u) = F (v), and ∃t, s.t. u ∼t v, It(u) < It(v).

The structure of the preferential ordering can be extended to the equivalence classes.

We will use this similarity between paths and equivalence classes to show that steps

along the ordering which we call incrementations are mapped to the ordering in the

same manner and in most cases the concept of a path and equivalence class can be

swapped without consequence.

Lemma 3.1.16 (Preferential Relation Extension). The preferential relation can be ex-

tended to the equivalence classes. i.e. we define [u]ft <i [v]
f
t iff [u]ft 6= [v]ft and u <i v.

This relationship is well formed.

Proof. For this relationship to be well formed we need to show that this relationship

holds for any representative of the class. Suppose u′ ∈ [u]ft and v′ ∈ [v]ft . Since

[u]ft 6= [v]ft there exists t′ < t such that Pt′(u) 6= Pt′(v), let t′ be the minimum such value,

i.e. ∀t′′ < t′, Pt′′(u) = Pt′′(v). This implies u ∼t′ v and by the definition of the relation

since Pt′+1(u) 6= Pt′+1(v) we must have It′(u) < It′(v) for the relationship u <i v to hold.
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However since t′ < t′ + 1 ≤ t and u′ ∈ [u]ft we must have Pt′+1(u
′) = Pt′+1(u), similarly

for v′, which implies It′(u′) = It′(u) < It′(v) = It′(v
′). Which proves that this relation

holds for any representative.

3.1.3 Path Incrementation

The CIS algorithm is based upon the concept of incrementation. Whenever a collision

occurs we find the next path in the ordering which avoids the collision. To achieve

this we use an incrementation algorithm. Each incrementation is capped at the time

of the collision with the other agent. We find the last index which can be incremented

to achieve a path of the same cost. We define the top branch to be the last time step

before the collision which can branch by incrementing an index creating an alternative

path. We define a helper function Qt(v, i) which defines the additional cost the path v

gains from taking index i. This means indices which describe the most efficient route

return 0 while movement equivalent to a pause result in the value 1 while movement

which backtracks away from the goal return 2.

Definition 3.1.17 (Relative Priority, Q(x, i)). Suppose v ∈ Ai, we define a function

Q(x, i) which evaluates to the relative priority change from taking the direction indexed

by i, at position x, i.e. Q(x, i) = Dgi
(I(x, i))−Dgi

(x)+1. We also define a convenience

function Qt(v) = Q(Pt(v), It(v)). Using the helper function D from the definition of the

index function we can define Qt(v) = 1−D(Pt(v), Pt+1(v)).

We also define idea of a truncated cost Ft(v) as the cost of the path v up until time

step t but the remainder of the cost being the time taken to reach the goal. This function

is used to define the cost of a branch in the path v as the cost of the branching path

will agree with v up until the time of the divergence between the two paths.

Definition 3.1.18 (Truncated cost, Ft(v)). We define the truncated cost function Ft(v)

as the cost of a path v up to the time t such that any deviations from moving towards

the goal after time step t are ignored, i.e. Ft(v) = Dgi
(si) +

∑t
t′=0Qt′(v)

Definition 3.1.19 (Top Branch, βft (v)). The function βft (v) represents the last time step

from which agentverse v can branch to an agentverse of cost f , before time step t. i.e:

βft (v) = max{t′ : t′ < t,Q(Pt′(v), It′(v) + 1) + Ft′(v) = f}.

Using the above ideas we now define the incrementation algorithm which we call

Next. We have restricted ourselves to incrementing an index by one since subsequent

incrementations will find all indices with the correct cost. We do however skip indices

which would raise the cost. This will be corrected later by the inclusion of the concept

which we call the stem.

Definition 3.1.20 (Next, N f
t (v)). N

f
t (v) = u is a partial function and defines a new

agentverse u with the following properties:

1. v ∼βf
t (v)

u.
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2. Iβf
t (v)

(v) + 1 = Iβf
t (v)

(u).

3. ∀t′ > t, It′(u) = 0.

The Next algorithm has the important property that it serves as a strict incremen-

tation on the equivalence classes themselves. Using Next N f
t on an element v of an

equivalence class [v]ft of the correspondence time cap t will increment the result to a

new equivalence class [u]ft . However the result will be the least element of the new

equivalence class and no equivalence class will have been skipped over to reach this

value. These properties are important as this shows that no potential solutions are

skipped over when we increment.

Lemma 3.1.21 (Equivalence Incrementation). When the value of N f
t (v) exists, there

does not exist an equivalence class [u]ft with the following properties, [v]ft <i [u]
f
t <i

[N f
t (v)]

f
t .

Proof. For such an equivalence class to exist we need to find an agentverse u which

satisfies v <i u <i N
f
t (v). Let β = βft (v), by the definition of N f

t we have v ∼β N f
t (v).

Let t′ be the maximum time for which v ∼t′ u holds. Suppose t′ < β, then It′(u) >

It′(v) = It′(N
f
t (v)) since v ∼β N f

t (v). However this contradicts u <i N
f
t (v), therefore

t′ ≥ β.

The fact that t′ ≥ β implies that u ∼β N f
t (v) since u ∼t′ v ∼β N f

t (v). However by

the definition of βft , β is the last time step at which the correct cost f can be achieved.

Otherwise if t′ > β this implies F (u) > F (N f
t (v)) which in turn implies u >i N

f
t (v),

therefore t′ = β.

From v <i u <i N
f
t (v) we have Iβ(v) < Iβ(u) < Iβ(N

f
t (v)) = Iβ(v) + 1. But since Ift

is always an integer, we have a contradiction, therefore there is no equivalence class

between [v]ft and [N f
t (v)]

f
t .

Lemma 3.1.22 (Equivalence Minimum). When N f
t (v) exists, N f

t (v) is the minimum,

w.r.t the <i relation, of the set [N f
t (v)]

f
t . i.e. ∀u ∈ [N f

t (v)]
f
t , N

f
t (v) <i u or N f

t (v) = u.

Proof. Given the agentverse v the top branch βft (v) is defined to be less than t. For all

time steps t′ more than βft (v) we have It′(N
f
t (v)) = 0. All elements of [N f

t (v)]
f
t share

the same initial t time steps; i.e. ∀u ∈ [N f
t (v)]

f
t , u ∼t N

f
t (v). So if u differs from [N f

t (v)]
f
t

it must do so after time step t. Supposing t′ ≥ t, It′(u) 6= 0 = It′(N
f
t (v)) then since Ift is

always positive we must have It′(u) > It′(N
f
t (v)) which implies v <i u, as needed.

We can also show a property mirroring the previous two, that every incrementation

is the minimum of some equivalence class. This also shows that all paths that result

from Next are finite and still satisfy the conditions required to be a path in definition

3.1.4.

Lemma 3.1.23 (The Resting Equivalence Class). If agentverse v is reaches its goal

and stops, then there exists a time t such that v is the minimal element of [v]F (v)
t .
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Proof. Since the agentverse v eventually rests there must be a time t beyond which

Is(v) = 0 for s > t. Let t′ be the maximal time at which It′(v) 6= 0. Now construct an

agentverse u such that u ∼t′ v, and It′(u) = It′(v) − 1. But by the definition of the top

branch β
F (v)
t′+1 (v), t

′ is a branch which gives an agentverse of the correct cost (F (v)),

but t′ is also the maximum time step we consider. Therefore we have NF (v)
t′+1 (u) and by

Lemma 3.1.22, this means v is a minimum of [v]F (v)
t′+1 .

We highlight a special path called the α path. This path is defined to be the path

of minimal preference in a given Verse set Ai. We will show that this agentverse is the

root of all agentverses and that all agentverses can be generated by a sequence of

Next invocations. We also introduce the idea that a path v covers a path u when there

exists a sequence of Next invocations which transform v into u. The result showing

that the α path is the ancestor of all paths shows that it also covers all of these paths.

Definition 3.1.24 (α path, αi). The αi path is the unique minimum of the preferential

ordering <i, i.e. ∀v ∈ Ai, αi <i v, or equivalently ∀t, It(αi) ≡ 0.

Corollary 3.1.25 (Ancestor). Every agentverse v other than αi has an ancestor u such

that for some t, NF (v)
t (u) = v.

Proof. If an agentverse v contains a time t such that It(v) 6= 0 then we can construct

an agentverse u as we did in the last lemma. Otherwise the index function is identically

0, which is the definition of the αi agentverse.

Definition 3.1.26 (Cover, C(v)). The agentverse u covers agentverse v iff there exists

a sequence of agentverses, u0, u1, . . . , un with the following properties:

1. u0 = u and un = v.

2. ui+1 = N fi
ti (ui) where fi+1 ≥ fi.

Note that v covers v when n = 0. We define the set of all agentverses covered by

v by the function C(v) = {u : v covers u}. We say that a set of agentverses covers

an agentverse v if any of its elements covers v. We also extend the definition to tuples

piece wise. i.e. (ui, uj) covers (vi, vj) iff ui covers vi and uj covers vj. Similarly a subset

W ⊂ Ai × Aj covers v = (vi, vj) if one of its elements covers v.

Lemma 3.1.27. The αi agentverse covers every element of Ai.

Proof. Given an agentverse v ∈ Ai. Consider the sum of index values;
∑n

t=0 It(v) (call

this sum S(v)), where n is the max non-zero time step for v (via Lemma 3.1.23). By

Lemma 3.1.25 there exists an agentverse u such that NF (v)
t (u) = v. By construction

the only difference between these two agentverses is at time step t′, It′(u) = It′(v)− 1,

which implies S(u) = S(v)− 1.

If we continue in this manner creating ancestors uk = N
F (uk)
tk

(uk+1), and so forth,

we will eventually reach a point where the sum is zero; S(un) = 0. Since all indices

are positive this implies that the index function of un must be identically 0, which is the

definition of αi. Therefore, via the sequence uk, αi covers v.
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3.1.4 Completeness and Optimality

We can now work towards a proof that our algorithm is complete and optimal. Each

iteration of the top layer of our algorithm brings the process closer to the solution.

This initial multiverse covers all multiverses and as such covers all solutions. As the

algorithm progresses we create a chain of sets of multiverses we call working sets.

Each working set in the chain removes multiverses which have collisions with a set

of alternatives which cover all solutions the original multiverse did. Each set in the

sequence is related by a single multiverse being replaced by a set called a branching

set.

Definition 3.1.28 (Working set, W ). The working set W is a finite subset of the search

space S = A1 × · · · ×A|K|. The working set represents the currently considered possi-

bilities for solutions. Each element v ∈ W is a Multiverse. During the main loop of the

algorithm we remove the lowest element (sum of individual costs) and replace it with a

branching set; defined next.

Definition 3.1.29 (Branching set, B). Given a tuple of agentverses v, we call B a

branching set of v if it satisfies the following properties:

1. v is excluded from B, i.e. v /∈ B.

2. v covers B, i.e. B ⊂ C(v).

3. B covers all solutions that v covers, i.e. C(v) ∩ S ′ ⊂ C(B) ∩ S ′.

We now use the idea of a Branching set to prove completeness and optimality.

Using a cap on the length of paths we consider we can prove that the working set

sequence is finite since the set of possiblities is reduced by each branching set re-

placement. Because of the properties of branching sets no solution will be skipped

over therefore an optimal solution will eventually be found.

Theorem 3.1.30 (Incremental Limit). Suppose we have a sequence of working sets Wk

defined as follows:

1. W0 = {(α0, . . . , αn)}.

2. Given Wk we select the minimal element v. If v is a solution we stop. If this

element was not a solution we calculate a branching set B and produce Wk+1 =

(Wk − {v}) ∪B.

If a solution exists this process will end in a finite number of steps and produce a

minimal solution.

Proof. Suppose u is an arbitrary minimal solution with cost C. Take the maximum time

step t where It(ui) 6= 0 of all agents i ∈ K. Since G is finite there exists a node with
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the maximum number of edges, call this number of edges c. This means It(ui) ∈ [0, c]

which implies there are only a finite number of combinations of unique agentverses

which have non-zero indices below t ((c+ 1)t combinations, or (c+ 1)tn for all agents).

We will call this set the restricted cover.

The restricted cover contains at least one minimal solution, i.e. u. Given a mul-

tiverse v if B is the branching set of v then B covers less elements of the restricted

cover, since at least v /∈ B and B ⊂ C(v). This implies that the sequence of working

sets must end, since at some point at most one element would be left; the unselected

solution u which would end the process returning u as the solution.

We now need to prove this solution’s optimality. Suppose a non optimal solution

v were selected. This suggests that a non optimal solution was part of the working

set and was considered the minimal element. However by the definition and use of

the branching set, the working set must always cover all solutions. This implies an

element of the working set covers the true minimal solution u, call this element v′.

Since v′ covers u we must have ∀i, v′i ≤i ui which implies the corresponding cost

satisfies F (v′i) ≤ F (ui). Summing these costs to get the cost of the element v′ we get;

F (v′) =
∑

i F (v
′
i) ≤

∑
i F (ui) = F (u) < F (v), contradicting the fact that v was minimal

in the working set.

This proves the theorem that an optimal solution will be selected in a finite number

of steps.

We have proven the process can work if a suitable Branching set exists. We con-

struct our branching set using our incrementation algorithm Next. However the cost

targeted nature of Next requires us to take account of higher cost solutions which may

have been skipped over if we do not include them in the search. We define a Stem

to be a set of incrementations of a given path at higher and higher costs. When im-

plemented the Stem does not need to be fully computed, although it is hypothetically

infinite in size, only the lowest cost possibility needs consideration at any given time.

Using the stem we define an appropriate branching set and complete the proof that CIS

is optimal and complete.

Definition 3.1.31 (Stem, Sft (v)). We define the stem Sft (v) = {N
f
t (v), N

f+1
t (v), . . .}.

Using a Stem we can define an appropriate branching set which removes the colli-

sion from consideration. We first show what form the cover of the stem takes and then

define a branching using the stem as a basis using a substitution function Subi(v, B)

which replaces the agentverse representing i by the elements of B.

Lemma 3.1.32. The stem set of agentverses SF (v)
t (v) covers all agentverses that v

covers except for a subset of [v]t. i.e. C(v)− [v]t ⊂ C(S
F (v)
t (v)).

Proof. Given u ∈ C(v), suppose no element of the cover sequence has βfktk (vk) < t,

then the index set of u is the same as that of v until at least time step t. This implies u ∈
[v]t which contradicts our assertion. Therefore there must exist k such that βfktk (vk) < t.
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Select the first k which satisfies this property. All elements before k have a top

branch greater than t and therefore only differ from v after time step t. However N fk
tk
(vk)

only depends on the first βfktk (vk) time steps, which excludes all the changes from the

first k − 1 iterations. Therefore we can redefine the sequence starting from step k,

erasing the first k − 1 steps. Conversely we can insert N f1
t (v) as step one if βf1t1 (v) <

βf1t (v) since by the same logic this will only change indices which are above βf1t1 (v).

This proves that Sft (v) covers u since N f1
t (v) ∈ Sft (v).

Theorem 3.1.33 (General Universal Branching). If we define the general branching set

B = Subi(v,SF (vi)
t (vi)) ∪ Subj(v,S

F (vj)
t (vj)), where:

Subi(v, B) = {(v0, . . . , vi−1, b, vi+1, . . . , vn) : b ∈ B}

Then B forms a proper branching set when χ(vi, vj) = t.

Proof. If vi, vj clash at time step t, then so do all combinations of agentverses from [vi]t

and [vj]t, since they all share the position at time t. By Lemma 3.1.32 our branching

set either uses elements which exclude a subset of Subi(v, [vi]t) or elements which

exclude a subset of Subj(v, [vj]t). These elements all contain clashes at time step t

and therefore do not contain solutions. Therefore B covers all solutions. B also does

not contain v, and is covered by v. Therefore B is a branching set and Theorem 3.1.30

applies.
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Chapter 4. Theory of CISR

4.1 Introduction

In the previous chapter we built a theory containing all the paths available to an agent

called CIS. We will use this algorithm as a basis for further work. The CIS algorithm

considers each path equally by placing all paths in an ordering. The minimal increment

through the ordering is used to attempt to avoid collisions. However this strategy does

not always succeed in removing the collision.

CIS and several of the competing algorithms may have a number of recurrent be-

haviours. In these recurrent behaviours a collision or deadlock is considered more

times than necessary. These behaviours may occur in a number of ways from choos-

ing/computing equivalent paths with a pause shifted through time to enclosed regions

of equivalent paths being explored when all paths in the region fail.

The CIS algorithm is a good basis for extension as the base computation of the

paths is linear in nature. This is the minimal cost that a multi agent path finding algo-

rithm can search for a new candidate path once the amortized calculation of distances

through reverse A* is taken into account. The CIS algorithm also serves as a uni-

form basis for constructing culling algorithms based on these recurrent behaviours for

improving performance because of its uniform treatment of paths.

4.1.1 Recurrent Behaviour

We define a recurrent behaviour as an aspect of a MAPF algorithm which repeats the

work of solving a sub-problem of the current overall MAPF scenario. This repeated

work may come in the form of a single search node which is equivalent to another

attempted search or a number of complete path searches which repeatedly encounter

conflicts from the same set of sources.

We use the idea of recurrent behaviour as an informal measure of the strengths of

various MAPF algorithms. Different algorithms may remove or mitigate the recurrent

behaviour by identifying the behaviour or computing results from previous ones. For

instance the CBS removes collision space time points by adding a constraint, however

this requires the re-computation of paths via the A* algorithm.

In this section we identify a number of recurrent behaviours that CIS encounters

and compare this to how ICTS and CBS are effected by these behaviours. Then we

describe the backtracking algorithm and explain why it is an effective strategy against

certain types of recurrent behaviour and mitigates other kinds.

Collision

The simplest form of recurrent behaviour is a collision. An algorithm may attempt to

remove a particular collision in space and time from a pair of paths by recalculating

33
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one of the paths. This does not however guarantee that the recomputed path does not

collide in the same location in space time. Depending on the strategy used to avoid

collision several configurations of time complexity verses recurrent collision mitigation

is possible.

Consider the CIS algorithm, when a collision occurs the algorithm performs a linear

search for an alternative path. This alternative path is the first path of appropriate cost

nearest the time of collision, however this does not guarantee that the new path does

not collide at the same point in space and time. In a sparse system where a variety

of alternatives occur the CIS algorithm is effective as only slight deviations from the

collision are likely to solve the collision.

If we consider the ICTS algorithm each collision cannot be taken in isolation as all

possibilities of a particular cost are considered at the same time. The ICTS algorithm

builds a data structure called the multi-value decision diagram (MDD). The MDD will

not reach the goal node of the problem when collisions occur on every path to the goal.

Therefore ICTS avoids collisions at the cost of exploring all paths of a given cost. Even

if the agent does not encounter a collision all paths are considered, this is a recurrent

behaviour although it is spread over one computation.

Pause Migration

There are many patterns that can form in the sets of paths used to explore a graph

for a solution. Many of these patterns can lead to the same collisions and conflicts

between agents repeatedly causing the conflict to propagate through the search. One

such example of a continual state of collision is what we call Pause Migration.

Pause Migration occurs when a search algorithm attempts to find an alternative to a

route which contains a pause. If the only alteration that happens to the path is such that

the pause is shifted backwards in time this process is called pause migration. When

the CIS Algorithm attempts to find an alternative to such a path the algorithm will first

search for paths which have the same cost but avoid the collision. This will force the

algorithm to consider a set of paths which pause at earlier and earlier time steps until

the start of the path is met.

Figure 4.1 shows an example of this behaviour using a space time graph. The x-

axis represents each of the nodes visited by the path v and the y-axis represents the

time step at which the path visits that node.The highlighted path is the original path v:

v = {(x0, 0), (x1, 1), (x2, 2), (x3, 3), (x4, 4), (x5, 5), (x5, 6), (x6, 7)}

The pause can be seen to be the vertical section of the graph as the path maintains

its position for a single time step. However as the algorithm explores alternatives to

the path v because of a collision after time step 6 the pause moves backwards in time.

This behaviour is indicated by the grey arrow: .

Consider a collision which occurs before the pause in v. To resolve the collision
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x0 x1 x2 x3 x4 x5 x6
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Figure 4.1: A graph illustrating Pause Migration. The x-axis represents a location on
the Graph G and the y-axis represents the time an individual path visits that location.
The x at (x6, 6) marks the original point of collision.

the original pause can be moved backwards in time to the point before the collision as

this will have an effect on the state of the path at the time of collision. However if a

collision occurs after the pause in time then moving the time at which the pause occurs

backwards in time whilst keeping the original positions of the path v will not have an

effect on the collision which we are trying to resolve.

Bypasses and Backtracking

In a planar graph where the connections between nodes cannot cross another form of

recurrent behaviour can occur. If we consider a region bounded by two paths which

meet at a point of collision then all paths that lie between these two paths also lead

to that collision. Figure 4.2 shows an example of recurrent selection of paths of this

nature. If the graph is planar all paths which escape this fate must cross one of the

bounding paths and leave the region in question. We call a region of this form a bypass.

Figure 4.2: Bypass
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The Backtracking Algorithm we introduce in this chapter takes advantage of the form

that a bypass takes. Using the bounded form of the bypass we can search this bound-

ary for possible alternatives to the paths which lie in the bypass. The outer boundaries

can be traced by selecting a cyclic direction, either clockwise or anti-clockwise, and

searching for the first connection towards the start node. Every step towards the start

node the backtracking algorithm searches for a connection which leads out of the by-

pass region and heads towards the goal. If such a connection is found it is considered

a potential solution.

From this point onwards the backtracking algorithm tries to connect this potential

solution to the original path. This is done by reversing the cyclic direction of the back-

tracking selection of nodes, i.e. from clockwise to anti-clockwise or visa versa. The

algorithm will eventually meet the original path creating a new path which leads away

from the collision.

This process works because the planar condition ensures that all other paths lead-

ing out of this region must cross the boundary at a node meaning that the backtracking

search will detect it. The algorithm also removes pause migration as it can be seen as

a sub-case of the same process although with the boundary paths being the same as

the original path itself.

Comparisons with Backtracking

Backtracking targets the most frequent recurrent behaviour of CIS and is the focus of

our approach to improving the performance of the CIS algorithm. In this section we

compare the backtracking algorithm to two approaches to MAPF. The generalized A*

approach and the collision based approach of CBS.

Generalized A*

s

ba c

s

A

B

GA

GB

a

A

B

GA

GB

b

A B GA

GB

c

A
B
GA

GB

Figure 4.3: Comparison of methods: Generalized A*.

The most basic approach to optimal MAPF comes from generalizing A* to multiple

agents. Each node of the graph which A* explores contains a configuration of agents.

Each branch is a step forwards in time for the whole system moving each agent to a

new position. As the Generalized A* algorithm explores the graph of configurations it
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will ignore branches which lead to invalid configurations or transitions such as agents

colliding on a node or between nodes during transition.

Figure 4.3 shows a simplified example of this approach. Each node on the left

representing the positions of several agents. The node s tries to transition to a number

of possibilities a, b, c but finds that c has a collision and therefore is ignored (indicated

by the dotted line).

This generalized approach can be extended and modified however at its core it

explores a multitude of branches at each time step. The branching cost for each node

can grow exponentially with the number of interacting agents.

CBS
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r
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II
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GA
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III
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Figure 4.4: Comparison of methods: CBS.

The CBS algorithm takes a retroactive approach of reconciling collisions after they

occur rather than the proactive approach of planning every time step. Figure 4.4 shows

an example of CBS in action. Each of the diagrams (I-IV) represent one pass of the

main algorithm and shall be used to illustrate the CBS algorithm. The CBS algorithm

first computes trial paths for each agent using the standard A* algorithm ignoring inter-

action between the agents. The CBS algorithm then searches for a collision between

the paths it has generated.

Figure 4.4(I) shows the initial state of a single agent A. A collision occurs between

time steps 2 and 3 due to a swapping action with another agent. The CBS algorithm

builds a tree representing constraining factors as shown on the left of the figure. The

initial tree only contains the root which adds no constraints to the graph.

Once the collision has been detected constraints are added to the tree. One branch

for each agent involved in the collision. The branches represent mutually exclusive

possible solutions to the collision. Figure 4.4(II) shows the constraint labelled as a and

how it applies to the agent A. The constraint stops the agent from making the same

choice which caused the collision forcing the agent to take a different route. The A*
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algorithm is rerun for agent A resulting in another path.

The process repeats and another collision is detected at timestep 3. Additional

constraints are added as leaves to the node a and represent additional constraints on

top of the constraint given by a. Figure 4.4(III) shows the addition of constraint b and

how it affects the computation of the path for A. When considering a constraint in the

constraint tree all constraints below must be taken into consideration.

These constraints in essence modify the underlying graph, meaning that the A* path

finding algorithm has to be run again from the beginning taking into account the new

graph which has been pruned of edges or nodes. The constraint tree is searched for

a constraint set which will erase all collisions from the graph. Each node gains two

children when a collision occurs to add constraints to either agent restricting them from

colliding on that location at that time from that node onwards. Figure 4.4(IV) shows the

finished configuration leading to the solution given.

The CBS algorithm has the advantage over Generalized A* that it only needs to

recompute the path of an agent when a collision occurs. The less collisions a system of

agents has the more efficient the algorithm is. Conversely in a congested environment

with many collisions the algorithm will need to recompute paths numerous times, also

the longer the distance the further the A* algorithm has to compute the agent meaning

large environments can also have a detrimental effect.

CISR

A

GA

XB

N

A

XB

GA

Figure 4.5: Comparison of methods: CISR.

The CISR algorithm works in a similar manner to CBS, modifying paths which col-

lide with other agents in order to avoid the collisions. Whereas the CBS algorithm

essentially modifies the graph in order to remove collisions, the CISR algorithm modi-

fies the given path. By searching for an optimal side step around the collision the work

done to avoid the collision is minimal negating the need to use A* altogether. The CISR

algorithm steps back from the point of collision looking for connections to nodes which

guarantee a path around the point of collision.
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SA

GA

Figure 4.6: Planned path for agent A.

A

B

X

GA

Figure 4.7: Collision between agents A and B along the path of A. Collision happens in
the next time step at X.

Figure 4.5 illustrates the CISR algorithm in action. The diagram on the left shows

an abstraction of the process without nodes. The agent A travels towards goal GA and

collides at point XB with agent B. From this collision point XB the CISR algorithm steps

backwards in time searching for a connection to a node which bypasses the collision.

There is a region of nodes indicated by the grey area which may still reach the point of

collision. By tracing the edge of this region the CISR algorithm can guarantee a path

which avoids the collision by selecting a node which escapes this grey region. The new

node is then connected to the old path indicated by the dotted line. The right side of

the figure shows a simplified version on a square grid.

Using the next few diagrams we shall illustrate the process of backtracking for a

solution in detail. Figure 4.6 shows an arbitrary path for agent A. Agent A starts at the

start node indicated by SA and travels until the goal node marked GA. Agent A travels

along the path in Figure 4.7 colliding with agent B on the node marked as X.

Once the collision has occurred if the path is suitable then backtracking can oc-

cur. The algorithm attempts to find alternative routes around the point of collision. An

alternative path of the same cost is needed by the algorithm to proceed or proof that

no such path exists. Both the left side of the collision and the right side need to be

searched for a viable sidestep around the collision. The backtracking algorithm does

not search backwards along the original path. The area searched encloses all nodes
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Figure 4.8: Indication of the left side and right side of a agent A.
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Figure 4.9: Left: Region of nodes which have a collidable path with the collision at
X. Right: Abstract illustration of backtracking along the left side of the grey region by
selecting the left most option Ln−1 and checking for escape nodes such as E.

which could reach the collision point X.

Figure 4.8 labels these directions with respect to the agent A. The nodes indicated

by L and R indicated the first steps backward from the collision node X. The node

labelled by R is not one from the original path traced by A, however can still reach

the point of collision X and is therefore included in the search for an escape route.

These directions can be calculated using the distance to the start node and goal node

as indicators. Nodes which travel towards the start are backwards nodes and nodes

which travel towards the goal are forwards nodes.

Figure 4.9 shows a shaded grey region. These are all the nodes which are con-

tained within paths which can reach the collision point with minimal cost. If a path can

escape this region without increasing the cost over the original path then the collision

can be avoided. The white square in the middle of this region is not included as it can-

not be reached from the forwards direction from any other node in the grey region. The

left side of this region can be traced by taking the most extreme left option backwards

in time one step at a time. Similarly for the right side by tracing consecutive right most

backwards options. The numbers in Figure 4.9 indicate the time step at which agent

A can visit that square. By taking the most extreme option left or right respectively we

guarantee that we have selected the most extreme node which can enter our current
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Figure 4.10: The nodes traced on the left side indicated by Ln and the right side Rn.
Escape nodes are indicated by Ek.

SA

X

GA

Figure 4.11: Connecting the escape nodes to the original path for agent A.

node from the earlier time step.

The right side of Figure 4.9 is an abstract illustration of this process. If the node Ln

indicates the left most option at time n which can reach X at the time of collision then

in order to explore the grey area we must select the left most option Ln−1 as indicated.

Any other option would enter the inside of the grey region and potentially miss options

which escape the grey region. Given this configuration of nodes if an option such as

E occurs to the left of Ln+1 which travels towards the goal then this option escapes

the collision and cannot possibly revisit the collision in minimal cost (otherwise it would

be contained within the grey region and would either be visited by the algorithm or

bypassed altogether).

Figure 4.10 marks the left nodes Ln and the right nodes Rn which follow this back-

tracking process. Possible escape nodes are indicated by E1,E2,E3 with grey arrows

indicating the direction of escape from the grey region. Only E1 and E2 are needed

for the current collision as they indicate escape paths on the left and right however the

algorithm is continued to illustrate the complete process. Figure 4.11 shows how the

escape paths are minimally connected to the original path to reduce the disturbance to

earlier computation.

In this manner the CISR has the advantage of minimal cost for computing an alter-

native route. The algorithm does not compute the new path using A* as only a slight
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change to the existing path using a linear search for the minimal sidestep around the

point of collision.

Conclusion

In conclusion Generalized A* searches the largest search space and is the most ver-

bose in its search for a solution. However this method does not suffer in a congested

search space where many collisions may happen.

The CBS algorithm is collision based and its complexity rises with the number of

collisions. When there are few collisions the CBS algorithm shows an improvement

over the Generalized A* method because it does not branch at every time step and

has no exponential rise in complexity with the number of agents. The CBS algorithm

recalculates A* each time an agent needs avoid a collision.

The CISR algorithm works in a similar manner to a CBS algorithm by recomputing

paths which collide. However the CISR algorithm reroutes paths rather than recom-

putes with A*. The rerouting algorithm is minimal in cost since it only requires a linear

search backwards in time for an alternative node which leads on a route which avoids

the collision. The CISR algorithm has the advantage over the CBS algorithm in sparse

environments where either the number of collisions are low or the size of the envi-

ronment is relatively large. The sparse environment means that the recomputation of

A* that CBS needs is relatively expensive compared to the small deviation that CISR

computes by backtracking through time.

4.2 Properties of Backtracking

In this section we will prove the correctness of the complete algorithm. This includes

the properties of backtracking and its combination with the Next algorithm. To facilitate

this proof we first describe the foundation behind the algorithm using mathematical

definitions and terminology.

The main properties which serve as the basis for the backtracking technique is the

planar condition and the equivalence of paths which converge to a common point in

space and time. The planar condition is the property that allows for a region of points

to be contained in a boundary formed by two paths.

In this section we will describe the properties which we use for a basis of the proofs

which use this property. We restrict our analysis to a particular useful subtype of path

and describe the structures which are formed from them. Using the structure of the

faces of the planar graph we can describe the algorithm and prove correctness and

completeness.

4.2.1 General Properties

First we need to build a basis for the constructions needed to make our backtracking

algorithm. The Backtracking algorithm applies to planar graphs taking advantage of

enclosed regions to bypass large regions of nodes which lead to the same points of
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collision. A planar graph is defined as a graph which can be drawn without edges

intersecting on a plane. Planar graphs generally have more than one configuration

they can be drawn in to satisfy this condition. As such we will keep all planar graphs

fixed in one planar configuration and call the planar projection function µ which fixes

the position of a node to the 2D plane.

Planar Properties

The Backtracking algorithm relies on the fact that the graph can be drawn without any

edges which intersect. We also require a number of similar ideas to help describe

the backtracking algorithm later so we describe the graph with the perspective that the

goal node is considered ‘forwards’ and the start node considered ‘behind’. As such we

describe nodes to the left or right in relation to this assumption.

Definition 4.2.1 (Planar projection, µ). A planar graph is a graph which has a projection

onto a plane such that no edges cross. Call an arbitrary such projection µ. µ will be

held constant for each map we are given.

Definition 4.2.2 (Connection Side, {Left, Right}). Given a path v through a slice we

divide the connections leading to the node into two subsets (excluding connections

involved in the path). We split these paths based on cyclic order; by traversing the

connections starting from the incoming connection and travelling clockwise.

We represent the incoming connection by i, the outgoing connection by o and an

arbitrary connection by c. A connection which gives the cyclic order (i c o) we define

the connection c as a Left connection. A connection which gives the cyclic order (i o c)

we define the connection c as a Right connection.

Layers

In order to describe the pruning method of bypassing collisions we need a new defini-

tion of equivalence. We can define two paths as equivalent if they reach the same point

in time and space. This is called space time equivalence and is the basis of describing

paths which collide at the same point in time and space. It is these same solutions

we wish to avoid when we are looking for alternative solutions. The extreme paths of

these cases which travel furthest left and right form a boundary on which we will be

searching for alternative solutions. This is the essence of the backtracking algorithm.

To describe our new search space we define a number of concepts building to the

definition the new equivalence relation on space time points. We first define a Layer as

all the paths of one agent belonging to a single F-value.

Definition 4.2.3 (Layer, Lfi ). Define a layer Lfi as all paths of cost f for agent i. i.e.

v ∈ Ai, F (v) = f ⇔ v ∈ Lfi .
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At each stage of the algorithm an exhaustive search is performed in order to find

a solution or prove that no solution exists at that level of cost. We introduce a no-

tation to specify the context in which a Layer is considered, we call this notation the

Configuration:

Definition 4.2.4 (Configuration, v−i). Given a tuple v of agentverses let v−i be the

tuple of agentverses excluding agent i, i.e. if v = (v1, v2, . . . , v|K|) then:

v−i = (v1, . . . , vi−1, vi+1, . . . , v|K|)

When performing an exhaustive search of the solution space each point in space

and time will coincide with a number of paths. Considering all paths which reach a

given space time point before the goal, all subsequent choices will only depend upon

the reachability of that point in space and time.

When specifying a Configuration in the context of a Layer we restrict the Layer to

all paths which make their non-zero choices before the first collision point. We call the

combination of a Layer and a Configuration a Layer Configuration:

Definition 4.2.5 (Layer configuration, Lfi (v−i)). We define the layer configuration Lfi (v−i)

as a subset of Lfi , where each agentverse v ∈ Lfi (v−i) has the property that ∀s ≥
minj 6=i χ(v, vj), Is(v) = 0.

We can restrict our perspective to paths which pass through a single point. This

becomes important as it allows us to reason about paths which share a common point

but ignore how the path got to that point if that is unimportant. We define an equivalence

class over these points and prove its correctness:

Definition 4.2.6 (Layer Equivalence). Given a layer configuration Lfi (v−i) we define

the equivalence class of agentverses with respect to one space time point Lfi (v−i)[p̃].

i.e. v ∈ Lfi (v−i)[p̃] implies v ∈ Lfi and Pp̃t(v) = p̃x. Equivalence classes with the

same associated time form a disjoint union of all agentverses of the given Layer, i.e.

∪xLfi (v−i)[(x, t)] = Lfi (v−i).

Lemma 4.2.7. Definition 4.2.6 is well defined. i.e. the sets ∪xLfi (v−i)[(x, t)] = Lfi (v−i),

form a disjoint union.

Proof. Given the fact that an agent cannot occupy two locations at any one time each

of the sets Lfi (v−i)[(x, t)] must be distinct and therefore disjoint. We can also prove that

every agentverse belongs to at least one of these sets by observing ∀v ∈ Lfi (v−i), v ∈
Lfi (v−i)[(Pt(v), t)].

Space-Time Point Equivalence

When reasoning about the events which occur after a point which is shared by a num-

ber of paths in our search we would like to apply the same logic to all of these paths.

For this reason we define the idea of space time point equivalence:
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Definition 4.2.8 (Space Time Point Equivalence). We call two agentverses u, v ∈ Lfi
in configuration v−i equivalent at p̃ and write u ∼p̃ v iff Pp̃t(u) = Pp̃t(v) = p̃x and

p̃t < Cf
i (v), p̃t < Cf

i (u).

However we need to prove that this equivalence is well defined with respect to the

wider picture. For this purpose we need to check what properties a space time point

equivalence has upon a branching set.

Lemma 4.2.9 (Space Time Point Equivalence). Point equivalence is a well defined

property. Given a point p̃ all paths which reach point p̃ can be considered equivalent,

if no collision is introduced on or before p̃t.

Proof. We will prove this lemma by constructing a bound for a new branching set. If the

new branching set still satisfies the conditions of a branching set we will have proven

that the equivalence of paths given a shared space time point is well defined.

Suppose we are constructing a branching set for v given that all paths which reach

p̃ are equivalent for agent i. We can take a branching set B of v and construct a bound

for our equivalence condition.

Construct a path m which is the minimum representative of the equivalence for

space time point p̃ which is covered by B:

m = min{ui : u ∈ C(B), Pp̃t(ui) = p̃x}

We next define three sets which bound the results of the target Branching set. The

first set represents paths which agree with the minimal representative up to the space

time point p̃. This version only uses the m path to represent the given space time point,

removing the other extraneous possibilities:

De = {u : u ∈ C(B), C(ui,u−i) ≥ p̃t, ui ∼p̃t m}

Next we preserve possibilities which conflict with the given minimal path m. These

paths will need to avoid the collision before the equivalence can be maintained:

Dx = {u : u ∈ C(B), C(m,u−i) < p̃t}

Lastly we account for all paths which are a part of the cover but break the equiva-

lence by going through another point at time p̃t.

Dc = {u : u ∈ C(B), Pp̃t(ui) 6= p̃x}

Together these sets form a bound on a new branching set B′ which takes account

of the equivalence, call the joint set D = De ∪Dc ∪Dx. i.e. if the cover of B′ contains

the elements of the set D ⊂ C(B′), and maintains the properties of a branching set

then space time point equivalence is a well defined property.
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It can be noted that v /∈ C(B) which implies that v /∈ D ⊂ C(B). Which implies that

we will not be forced to make v an element of B′.

We also have to prove the second condition that v covers B′ is possible. We need

to prove that the set D ⊂ C(v). This can be seen from the fact that B ⊂ C(v) and

De, Dx, Dc ⊂ C(B), which implies that C(v) ⊃ C(B) ⊃ De ∪Dx ∪Dc = D.

For the third condition we need B′ to cover all solutions that v does. However the

bound does not effect this property therefore meaning if a set with the above conditions

can be found the equivalence property is well formed.

We would also like to define a representative of these points freely. Considering

the fact that all paths which lead to these points have an equal cost it does not matter

which order we use each representative.

Lemma 4.2.10 (Point Representative). We can select any representative of a space

time point, as long as that path is removed from future computation.

Proof. This lemma follows from lemma 4.2.9 and the fact that all representatives have

equal cost. By rearranging the order of the equivalent paths the new representative

can be utilized and then removed from later computation.

4.2.2 Complex Paths

To reduce the complexity of the problem to be solved we split the paths that we anal-

yse into two categories; Complex and Non-Complex. These two categories form an

almost arbitrary boundary between the Complex cases of paths which can need to be

redirected around collisions from the Simpler cases to be redirected. This categorisa-

tion allows us to build a theory of backtracking which covers most cases but allows for

a general solution when the path structure becomes more complex. The choice we

make for the division is chosen because it is simple to describe but serves the purpose

of dividing the two categories of paths simply and still covers a broad number of paths.

The simplest case of path is a path which travels the most efficient path towards

the goal, i.e. at every step the path moves towards the goal. We call these paths a

Rudimentary path and form the basis for complexity from them. We consider a path v

Non-Complex if there exists a rudimentary path r which shares its positions with v, i.e.

P (v) = P (r) where P (v) = {Pt(v) : ∀t ∈ [0,∞)}. This can be intuitively thought of as

the path v sharing the same projection onto the underlying graph as r.

This definition of Non-Complex paths allow the rudimentary path to form the back-

bone of the backtracking algorithm. Steps along the graph can be thought of in several

directions either towards the goal or away from it and clockwise or anticlockwise around

the goal. The definition of Complex/Non-Complex depends on what the agents start

and goal nodes are however as they dictate the set of Rudimentary paths which ex-

ist. All nodes and edges which can be traced by these paths are called Non-Complex.

Paths which do not project onto a Rudimentary path are called Complex and points
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and edges which can’t be reached from one of the rudimentary paths. Several Non-

Complex paths can project onto a single Rudimentary path as this encompasses all

paths which pause and reverse direction along the Rudimentary path at any time.

Definition 4.2.11 (Rudimentary Path). We define a path r to be a rudimentary path

if each step has minimal relative cost, i.e. r is rudimentary iff ∀t ≥ 0, Qt(r) = 0.

An alternative definition is that the set of Rudimentary paths R is defined as Ri =

{r : F (r) = Dsi(gi)}.

Definition 4.2.12 (Non Complex Agentverse). We define a path v to be Non-Complex

iff there exists a rudimentary path r ∈ Ri which shares the same position set P (r) =

P (v).

We define points that can be reached by a rudimentary path Non-Complex points

(NC points), and branches that can be made by rudimentary paths Non-Complex

branches (NC branches). We call points and branches which cannot be reached by

a rudimentary path Complex points and branches, similarly paths u which do not share

their point set P (u) with a rudimentary path are known as Complex paths.

We use the notation x ∈ Cx to indicate a complex point and Cxt(v) to indicate that

the path v makes a complex branch at time t.

The backtracking algorithm finds alternative routes to avoid collisions. We use the

concept of a bypass to find the earliest route around the collision. A bypass is repre-

sented by two rudimentary paths which encompass the maximum area which colliding

paths can pass through in order to meet the collision point. By searching the boundary

of the bypass we can find the alternative routes which ‘bypass’ the collision.

To reduce the search space we aim to remove portions of the search space. We

construct paths which bound areas which will cause redundant calculations. We call a

pair of paths which contain a region a bypass and define it as such:

Definition 4.2.13 (Bypass). Given a planar graph and two Non-Complex paths u, v ∈
Lfi , If u and v coincide at two individual space time points p̃, q̃ after the last change in

cost but remain separate in between these two paths, we call the region contained a

bypass. i.e. suppose p̃t > q̃t then u, v ∈ Lfi (v−i)[q̃], u, v ∈ L
f
i (v−i)[p̃],∀s, s.t. q̃t < s <

p̃t, Ps(u) 6= Ps(v), ∀s ∈ (q̃t, p̃t), Qs(u) = Qs(v) = 0.

Figure 4.12 shows an example of a bypass and labels relevant details. We cate-

gorize points with respect to the bypass. Points inside the bypass are called interior

points. Points outside the bypass are called exterior points, this includes the Goal node.

Points which lie along the bypass on u or v are called boundary points.

We use the property of a planar graph to show that any path through the centre of

a bypass will have to pass through the boundary of the region:

Lemma 4.2.14. All paths which coincide with the first space time point p̃ of a bypass

and remain on or inside the boundary will coincide with the second space time point q̃

or they will pass through a point on the boundary.
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Figure 4.12: Example of a bypass u, v.

Proof. The segments of the paths u, v form a single loop between the points p̃, q̃. As

the loop segregates the space into two portions, the interior and exterior, any path which

begins in the interior must cross the loop to reach the goal. However the graph is planar

by assumption and therefore the path must pass through a point on this loop.

4.2.3 Properties of the Non-Complex Subgraph

Restricting the graph to the Non-complex nodes and edges of a specific agent we get

the Non-Complex Subgraph of that agent. The Non-Complex Subgraph is all that is re-

quired in order to calculate the Backtracking algorithm and because of its construction

it has a regular structure with certain features. These features dictate the shape and

properties of the faces included in this subgraph and the subsets of nodes at a fixed

distance which we call Slices.

Definition 4.2.15 (Non-Complex Sub-graph). A Non Complex sub-graph is a sub-

graph which contains only Non-Complex points and branches with respect to a par-

ticular agent. The graph will have a single Start node and a single Goal node.

Figure 4.13 shows an example of a Non Complex sub-graph. The grey highlighted

path from the Start to the Goal is an example of a rudimentary path on this Non Com-

plex sub-graph. Each dotted line connects nodes of equal distance to the Goal. Non

of the nodes within a slice are interconnected within the subgraph as the connection

would be Complex. Lines which connect equidistant nodes of this form are called Face

Loops and will be discussed later.

The Face Loops in the figure highlight the fact that there is no particular prominent

node to a Slice, as paths may wind around the Start or Goal node a number of times

depending on the structure of the graph. We will analyse the structure of these slices

by assigning an index to each node allowing the construction of intervals of indices to

reason about contiguous arcs of nodes around the Face Loops.

Definition 4.2.16 (Slice, Sdi ). Given a particular Non Complex sub-graph G ⊂ M we

define a subset of nodes from G called a Slice; a Slice is the subset of NC nodes at a
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S G

Figure 4.13: An example of a Non Complex Subgraph. (S=Start, G=Goal)

specified distance. i.e. Sdi = {x : x ∈ M,Dgi
(x) = d}. Given a node x ∈ Sdi we define

Sd
′
i (x) as the set of nodes in Sd

′
i which connect to x.

We now study the structure of the sub-graph. Since we deal with a planar graph,

as the original was planar, we can define a face as an undivided region contained by a

set of edges. Each of the faces of the Non-Complex Subgraph follow the same pattern.

They have a single node nearest the start node and a single node nearest the goal

node. Each side of the face between these two start and end points have an equal

number of nodes. This regular pattern is important in establishing the structure of each

Slice as a single loop through neighbouring faces in the Face Loop. Together with the

idea of a Face Loop we have a complete picture of the structure of the Non-Complex

Subgraph. The following lemmas work towards proving the structure of each face is as

described.

Lemma 4.2.17 (Neighbour Property). Given any bidirectional map the distances be-

tween the Goal and two neighbouring points can only differ by 1.

Proof. To see this consider two neighbouring nodes x,x′. If g,x1, . . . ,xd−1,x is a mini-

mal path from the Goal to x of length d then g,x1, . . . ,xd−1,x,x
′ is a path from the Goal

to x′ of length d+ 1. This means that the distance from the Goal to x′ is at most d+ 1.

The same logic can be applied in with a minimal path from the Goal to x proving that

the respective distances can differ by at most 1.

Definition 4.2.18. Three consecutive nodes x0,x1,x2 on the boundary of a face are

defined to be a local minimum if the distances to the Goal from the nodes are of the

form Dgi
(x0) = Dgi

(x2) = Dgi
(x1) + 1, and are defined to be a local maximum if they

are of the form Dgi
(x0) = Dgi

(x2) = Dgi
(x1)− 1. Nodes not of either of these forms are

known as ‘side’ nodes.

Lemma 4.2.19 (Maximum Number of Local Maxima/Minima). On a Non-Complex sub-

graph there exists one and only one local minimum and local maximum per face.
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Figure 4.14: An illustration of the contradiction formed by having multiple max-
ima/minima.

Proof. To prove this lemma we aim to show a contradiction in the assumption that there

can be multiple maxima/minima. We will show that if there could be multiple maxima

there would be an equal number of minima and vice versa. However each minima must

have a direct path to the Goal and each maxima must have a direct path to the Start.

When these paths are considered in the plane they must cross in at least one case

leading to a point which must be closer to the Goal than the local minima and closer to

the Start than the local maxima. This is a contradiction disproving the fact that there

can be multiple local maxima/minima. Figure 4.14 shows a illustration of the process

described in the proof.

First suppose that there are two local minima on a single face. There must be a local

maximum since there are only a finite number of nodes between two minima there must

be a node which achieves the maximum distance from the Goal. To show that a node

x which achieves the maximum distance is a local maximum consider the nodes either

side y,y′. Since an edge between two nodes of the same slice would be a Complex

branch we know that x can not be the same distance from the Goal as y,y′. From

lemma 4.2.17 we see that the difference between Dgi
(x) and Dgi

(y), Dgi
(y′) can be at

most 1, also by assumption of x being a maximum we have Dgi
(x) > Dgi

(y), Dgi
(x) >

Dgi
(y′). This implies that Dgi

(x) − 1 = Dgi
(y) = Dgi

(y′) and is therefore a local

maximum. Similarly between two local maxima there must be a local minimum.

Let x0,x1, . . . ,xn−1 represent the nodes of the face; traversing them in an order

such that xj,xj+1 are neighbours and xn−1,x0 are neighbours, where n is the number

of nodes around the face and j ∈ [0, n − 1). Now suppose that xk and xk′ are two

local minima, without loss of generality we assume k < k′. Using these two nodes

the loop can be split into two sections: the segment xk+1, . . . ,xk′−1 and the segment

xk′+1, . . . ,xn−1,x0, . . . ,xk−1. Using the properties of local minimum there must exist a

local maximum in each segment of value at least m = max(Dgi
(xk), Dgi

(xk′)) + 1 since

each of these has neighbours at a distance at least one higher than the local minimum.

Suppose xl,xl′ are two such maxima, one in each segment.

The two minima xk,xk′ must have an unbroken path to the Goal, where each node

on the path takes a step towards the Goal. Connecting these two paths together there is
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Figure 4.15: Example face from a Non Complex sub-graph.

an unbroken path from xk to xk′ where each of the nodes takes a distance from the set

[0,m) (where m = max(Dgi
(xk), Dgi

(xk′))+1 as before). Since the graph is constructed

from Non-Complex paths there must be a path from the Start to each node in the graph

where each step along the path decreases the distance to the node. Connecting a path

from each of xl,xl′ to the Start we can then construct a path from xl to xl′ via the start

where each of the nodes takes a distance from the set [m,Dgi
(xStart)].

The path from xk to xk′ must intersect the path from xl to xl′, since the paths cannot

travel through the face (as this would split the face into multiple faces) and the local

maxima are interleaved between the local minima around the face. However since the

graph is planar this must occur on a node, and since each node from the first path

takes a distance from the set [0,m) and the second path takes a distance from the set

[m,Dgi
(xStart)] we show the contradiction as these two sets are disjoint. This means

the original assumption that there were two local minima is false meaning there is only

one local minimum, similarly there can only be one local maximum.

Lemma 4.2.20 (Face Structure). The faces of a Non Complex sub-graph have the

following properties:

1. Each face has a minimum and maximum node. These nodes have the nearest

and farthest distances to the Goal respectively.

2. Each face has a symmetrical property. Given a node other than the local maxi-

mum and local minimum a corresponding node the same distance from the Goal

will be present on the other side of the face.

3. Following from 2. There exists the same number of nodes on both sides. Starting

from the local maximum the nodes incrementally get closer to the Goal until they

reach the local minimum on the face.

Figure 4.15 gives an example of a face from a Non Complex sub-graph.

Proof. We have proven via lemma 4.2.19 that there exists only one local minimum and

one local maximum per face. We also know via lemma 4.2.17 that the distance from
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the Goal can only differ by 1 between neighbouring nodes on the face. Now suppose

x0,x1, . . . ,xn−1,xn is a path along the face such that x0 is the local maximum and xn

is the local minimum. From lemma 4.2.17 we have |Dgi
(xj)−Dgi

(xj+1)| ≤ 1, however

this difference cannot be 0 as this would make the branch from xj to xj+1 a Complex

branch. We also cannot have Dgi
(xj) < Dgi

(xj+1) before j = n since this would

make xj a second local minimum. Therefore we have n = Dgi
(x0)−Dgi

(xn) since the

distance is decremented each step along the path. This logic also applies to the path

which leads from the local maximum to the local minimum from the other side making

the face symmetrical.

Since we now know the structure of a face, we wish to study the relationship be-

tween nodes within a single slice. In order to describe the structure of the face loop

and the relationship of the nodes between slices we define an index for each node on

the loop. We call this the Slice Index. A unique Slice Indexing can be found by applying

an indexing scheme. We index the node on the slice which is a part of the α path from

the start to the goal as 0. We then follow the faces that are a embedded in the Slice

around the goal indexing them from left to right incrementally. This scheme is always

well defined and leads to a unique indexing.

Definition 4.2.21 (Slice Index, J(x)). We identify an index Jd(x) with each of the nodes

x ∈ Sdi . When the Slice is implicit we may remove the index and refer to the index by

writing J(x). Each index is unique and ranges from [0, |Sdi |). The indices are assigned

using the following rules:

1. If the location x ∈ Sdi lies on the α path from the Start to the Goal then J(x) = 0.

2. If the two locations x,x′ ∈ Sdi lie within the same face then their indices are

consecutive (mod |Sdi |): J(x′) ≡ J(x)± 1 (mod |Sdi |).

3. By extending a temporary edge from the point which lies on the α path, the node

x which lies on the Right side of the α path is assigned index 1. i.e. J(x) = 1.

We define for convenience a function Jd(v) as shorthand for the index of the node

at distance d from the Goal on path v:

Jd(v) = J(PDgi (si)−d(rv))

Figure 4.16 shows an example of the process starting from x0 on the alpha path we

assign the index 0. To the right of x0 at the same distance from the Goal and contained

within the same face we assign the value 1. This process continues until we reach the

node to the left of x0 where we assign the index n− 1 where n is the number of nodes

in the Slice Sdi 3 x0.

Lemma 4.2.22. Apart from the Start node and the Goal node, all nodes are contained

on the ‘side’ of at least one face.
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Figure 4.16: An example of index assignment.

Proof. Consider a single node x in the Non-Complex sub-graph. Suppose that the

node x is a local minimum of all the faces in which it is contained, this implies that it is

the nearest node to the Goal in all the faces of which it is part. The only node which can

satisfy this condition is the Goal node, otherwise there would not be a path available

to the Goal. Similarly if the node x were a local maximum in all the faces in which it is

contained this would imply that it was the Start node, otherwise there would be no path

to the node from the Start.

Suppose there exists a face where x is a local minimum and a face where x is a

local maximum. Now consider the order in which these faces occur when each face

is visited in a cycle around the node x. When traversing this cycle there must be a

point at which x is a local maximum and in one face but x is a local minimum in the

next face. Let y denote the node which adjoins x along the edge which separates the

faces in which x is a local maximum and local minimum. Given the face x was a local

maximum in one face that implies Dgi
(x)−1 = Dgi

(y), however in the other face it was

a local minimum implyingDgi
(x)+1 = Dgi

(y) which contradicts the previous statement.

This means that there cannot exist a face in which it is only a local maximum and a

local minimum, meaning that other than the Goal and the Start it must be a part of a

side.

We have also proven the following corollary:

Corollary 4.2.23. Given a node x, a face in which the node x is a local maximum

cannot share an edge with a face in which x is a local minimum.

Lemma 4.2.24 (The Slice Index Function is Well-Defined). The definition of the Slice

Index function J(x) is well defined and unique.

Proof. In lemma 4.2.22 we have proven that other than the Start node and the Goal

node all nodes exist as a side node to at least one face. We will show that if we exclude

the last condition for the index function J(x) then there are two possible ways to assign

the indices to a slice. We first proceed by constructing a loop of faces. Starting from the

initial node x0 indexed as 0, we select a face in which x0 is a side node. On the other
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Figure 4.17: Illustration of the contradiction generated when xj and xk share a face.

side of the given face another node x1 exists which is the same distance from the Goal

as x0. By the definition of the index function there are two options J(x1) = 1, |Sdi | − 1.

From corollary 4.2.23 even if x1 exists as a local maximum and a local minimum

traversing the faces in cyclic order there would be two transitions from minimum to

maximum and from maximum to minimum. By corollary 4.2.23 in-between these tran-

sitions the node x1 must be a side node.

Next we need to prove that there exists two faces where x1 is considered a side

node of the face. Consider that there must be edges which lead to the Goal and from

the Start which passes through x1. Suppose the node is not a local maximum; let w

represent the node connected to x1 on the path to the Goal. The edge from x1 to w is

contained in two faces (if we exclude the possibility that the slices with x1 and w only

contain one element), if we continue around the two faces with y and y′. The arcs

w,x1,y and w,x1,y
′ cannot form local maximum by assumption, therefore making x1

a side node of two faces.

Using this property we can find x2 which now only has one index it can take by

construction: J(x2) = 2 if J(x1) = 1 or J(x2) = |Sdi | − 2 if J(x1) = |Sdi | − 1. We can

continue this construction, however this process will eventually run out of nodes in the

slice Sdi and must connect to a node earlier in the sequence. Let xk be the last node

assigned an index by this sequence of indices before we connect to an earlier node

which we represent by xj. Figure 4.17 shows the sequence of nodes from x0 to xk and

how it loops back to xj.

We now need to show that this loop contains all nodes in the slice Sdi . The nodes

xj to xk now form a loop as shown in Figure 4.17. By constructing a curve through the

faces which connect the nodes in this loop we have split the Goal node from the Start

node. Now consider any node z ∈ Sdi not on this curve. There must exist a rudimen-

tary path from the Start node to the Goal node which passes through z, however by

construction it must also pass through one of the nodes from the sequence xj, . . . ,xk,

since the graph is non-planar and we constructed the curve through faces or nodes.

This leads to a contradiction as the node that is passed through on the curve is at

distance d, however so is the node z which conflicts with the original assumption that

this path was rudimentary. Therefore the curve must contain all nodes at distance d

meaning one of two indexing functions can be constructed.
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Figure 4.18: An illustration of the disjoint Face Loops of lemma 4.2.26.

Using the the last property we can decide between the two versions as it uniquely

defines the direction of the sequence of indices. This proves the indexing function is

well defined and unique.

Now that we have proven that Indexing the nodes of a Slice is possible and well

defined we can now define a Face Loop.

Definition 4.2.25 (Face Loop). Given a slice Sdi a face loop is a set of additional edges

added between each of the nodes in Sdi embedded in the faces between the nodes.

i.e. an edge is defined between nodes x,y ∈ Sdi where J(x) ≡ J(y)± 1 (mod |Sdi |).

This definition is well defined as proven in Lemma 4.2.24. We can also prove that

no two Face Loops will cross:

Lemma 4.2.26 (Disjoint Face Loops). Two Face Loops of different slices do not cross.

Proof. Each Face Loop contains the Goal node on one side and the Start node on the

other. This can be seen as the nodes present on the Face Loop are of a fixed distance.

All rudimentary paths pass through these Face Loops, at said fixed distance. Given

two face loops through slices Sd1i , S
d2
i and supposing d1 < d2 then all nodes of Sd1i lie

closer to the Goal node and therefore lie on the same side of the Face Loop of the Sd2i
slice. This implies the two face loops cannot intersect. Figure 4.18 illustrates these two

Face Loops.

4.2.4 Cyclic Intervals

Before we can discuss the Backtracking algorithm we need a new definition to facilitate

the description of neighbouring nodes. We have shown that the nodes on a slice all lie

on one loop around the goal node. Depending on the structure of the Non-Complex

Subgraph Rudimentary paths may loop around the goal in one or more turns before

they reach the goal. This leads to parts of our theorem where the indexing function

loops round to zero as we describe the path through the graph. This cannot however

be fixed by renumbering the nodes such that this never occurs as the geometry of the

graph may still allow the path to loop all the way around the graph.



56 CHAPTER 4. THEORY OF CISR

We define a generalization of the concept of an interval of numbers i.e. [j, k], (j, k), [j, k)

by allowing a new type of interval called the Cyclic Interval; 〈j, k〉n. The cyclic interval

is defined within a range of values and allows the interval to loop around at the maxi-

mum value n given. This leads us to a natural definition of the set of nodes T ⊂ Sd−1i

neighbouring a given node x ∈ Sdi as a cyclic interval starting from 0 and going up to

and including |Sd−1i | − 1. In the following section we will define a number of important

relationships between neighbouring nodes using this these intervals.

Definition 4.2.27 (Cyclic Interval, 〈j, k〉n). We define the Cyclic Interval to be a set of

the form:

〈j, k〉n =


[j, k] if j, k ∈ [0, n), j ≤ k

[0, k] ∪ [j, n) if j, k ∈ [0, n), j > k

〈j mod n, k mod n〉n otherwise

All modulo of the form (a mod n) are assumed to result in a value in the range [0, n).

We also define two accessors functions:

Left(〈j, k〉n) = j

Right(〈j, k〉n) = k

The last cases allows for the notational convenience of writing expressions such as

〈j, k + a〉n without much concern for looping around. We may now use this definition to

describe a region of a slice contained within a bypass.

Lemma 4.2.28. The region of a slice contained within a bypass between u, v is an

cyclic interval of the indexing function. i.e. the region contained by u, v in Sdi is of the

form 〈j, k〉|Sd
i |.

Proof. The points in which the paths u, v intersect with Sdi can only happen at two loca-

tions Pt(u), Ps(v) for some t such that Dgi
(Pt(u)) = Dgi

(Ps(v)) = d from the definition of

a Non Complex path. Using a subset of the edges of the Face Loop for the Sdi slice we

construct a curve through the faces which connect the Pt(u) to Ps(v) the curve will not

meet the boundary while traversing the faces or nodes. However by construction the

indices between neighbouring nodes are consecutive, unless we loop to the beginning,

meaning the indices included will be of the form 〈j, k〉|Sd
i |.

We now show that the neighbours of a given node form a contiguous block of in-

dices.

Lemma 4.2.29. Given a node x ∈ Sdi and an adjacent slice S ′ = Sd±1i the neighbouring

nodes S ′(x) have indices of the form J(S ′(x)) = 〈j, k〉|S′|. (we take ± to mean one or

the other in this case).
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Figure 4.19: Regions between Sdi , S
′ split by x1,x,x2.

Proof. Consider a node x ∈ Sdi with a neighbouring slice S ′ = Sd±1i . Now suppose that

the neighbouring S ′(x) are not a Cyclic interval. Let the set T = J(S ′(x)) represent the

set of indices representing the neighbours of x. Let 〈j, k〉|S′| be the smallest set such

that T ⊂ 〈j, k〉|S′|. By assumption there exists y ∈ 〈j, k〉|S′|, J(y) 6∈ T . Also note that

there exists y′ ∈ S ′, J(y′) 6∈ 〈j, k〉|S′| otherwise the cyclic interval 〈J(y) + 1, J(y)− 1〉|S′|

could have been used to cover T .

Now consider the two face loops through Sdi and S ′. Lemma 4.2.26 shows that two

distinct face loops will not intersect. This implies that a region will be formed between

the two Face Loops. Consider the Face Loop through S ′. Depending on the side which

x lies on we select a representative of the centre of the loop. If S ′ = Sd+1
i we select

the Goal node as the representative, otherwise if S ′ = Sd−1i we select the Start node as

the representative. We have selected this representative so that the node x lies on the

same side of S ′ as the representative which we will label r. Note that all nodes on the

slice Sdi have an unbroken path to the representative.

Now consider the fact that the Cyclic Interval 〈j, k〉|S′| can be broken into two disjoint

Cyclic intervals at y, while still covering the neighbours of x: as such T ⊂ 〈j, J(y)− 1〉|S′|∪
〈J(y) + 1, k〉|S′|. Select a node which lies in each half: x1,x2 ∈ S ′, J(x1) ∈ 〈j, J(y)− 1〉|S′|,

J(x2) ∈ 〈J(y) + 1, k〉|S′|.

Now consider the path x1,x,x2 which splits the region contained between Sdi and S ′

into two regions. Figure 4.19 illustrates one of the two possible arrangements of nodes.

The representative must be contained within one of these two regions, however either y

or y′ will be within the region which does not contain the representative by the method of

construction. By assumption the nodes y,y′ are not connected to the node x, meaning

there is not a rudimentary path from one region to the other, disconnecting at least one

of y,y′ from the representative. This is a contradiction meaning our initial assumption

must be incorrect and the neighbours S ′(x) must satisfy J(S ′(x)) = 〈j, k〉|S′| for some

j, k ∈ [0, |S ′|).

The neighbours of neighbours also follow a strict pattern. The cyclic intervals for

neighbours are adjacent, however they may share a single node in between or be

separate. If the neighbours contain the entire slice this property may apply to both



58 CHAPTER 4. THEORY OF CISR

x1 x2

S ′

Sdi

j k k + 1 l

(a) The two cases for neighbouring in-
tervals of neighbouring nodes x1 and
x2.

x1 x2

y1 y2

(b) The counter example in case 1
when |J(S′(x1))| = 2.

j

k k + 1

l

a
〈j, k〉n

〈k + 1, l〉n

〈a, l〉n

(c) The relationship between the
two cyclic intervals J(S′(x1)) and
J(S′(x2)).

Figure 4.20: An illustration of the properties used in lemma 4.2.30.

ends.

Lemma 4.2.30 (Neighbour Interval Property). Suppose x1,x2 ∈ Sdi and S ′ = Sd±1i then:

If J(x1) ≡ J(x2)+1 (mod |Sdi |) then the neighbours are of the form J(S ′(x1)) = 〈j, k〉|S′|

and J(S ′(x2)) = 〈k′, l〉|S′| for some j, k, l ∈ [0, |S ′|), k′ = {k, k + 1}.

Proof. Figure 4.20a illustrates the two cases in which two neighbours can have joint or

separate neighbouring intervals. We aim to show that these intervals cannot overlap

and cannot have a gap between them. We will consider two cases separately. In Case

1 we consider the possibility that the intervals overlap. In Case 2 we consider that the

intervals have neighbours between them.

Case 1. Suppose x1,x2 ∈ Sdi and S ′ = Sd±1i . However J(S ′(x1)) = 〈j, k〉|S′| and

k−1 ∈ J(S ′(x2)), where |J(S ′(x1))| ≥ 3. Figure 4.20b illustrates why the interval needs

to have more than 2 indices as the condition can still be met by wrapping around the

Slice.

Now consider the region formed between the two face loops through Sdi and S ′. The

arcs to the neighbours of x1 which have indices k − 2, k split the region between the

two face loops into two segments. However the segment which contains the neighbour

with index k− 1 can only connect to x1. This contradicts the assumption that k− 1 was

an element of J(S ′(x2)) and therefore the two neighbours cannot overlap.

Case 2. Suppose x1,x2 ∈ Sdi and S ′ = Sd±1i . However J(S ′(x1)) = 〈j, k〉|S′| and

J(S ′(x2)) = 〈a, l〉|S′| where j, k ∈ [0, |S ′|), l ∈ 〈k + 1, j〉|S′|, a ∈ 〈k + 1, l〉|S′|. Figure 4.20c



4.2. PROPERTIES OF BACKTRACKING 59

illustrates how these Cyclic Intervals are related to one another. Now consider the

region between the two face loops Sdi and S ′.

Also consider the arcs from x1 ∈ Sdi to x′1 ∈ S ′ and from x2 ∈ Sdi to x′2 ∈ S ′

where J(x′1) = k and J(x′2) = a. These two arcs split the region between the face

loops similarly to the last case. However the nodes which have indices in the interval

〈k + 1, a− 1〉|S′| cannot connect to either of x1,x2 ∈ Sdi by construction. This leads

to a contradiction as there are no nodes between with which to connect to, from the

condition J(x1) ≡ J(x2) + 1 (mod |Sdi |). Therefore J(S ′(x2)) = 〈k′, l〉|S′| where k′ =

{k, k + 1}.

For convenience we augment an existing definition when applied to indices:

Definition 4.2.31. We augment the definition of the neighbour function Sdi (x) to take

indices as parameters, i.e. Sdi (j), and output the intervals of the next slice. We use a

positive index to indicate the neighbouring slice towards the Goal and a negative index,

i.e. Sdi (−j), to indicate the neighbouring slice towards the Start.

Sdi (j) = Jd(S
d
i (J

−1
d+1(j)))

Sdi (−j) = Jd(S
d
i (J

−1
d−1(j)))

We can now prove a generalized neighbourhood property for a contiguous block of

nodes. We can show that the neighbours of an interval are an interval, and that the

resulting interval is independent of the interior of the original interval.

Lemma 4.2.32. For a segment of nodes in Sdi , with cyclic interval 〈j, k〉|Sd
i |, the cyclic

interval of the neighbours in S ′ = Sd±1i is of the form 〈j′, k′〉|S′|. Specifically:

S ′(±〈j, k〉|Sd
i |) =


J(S ′) if Left(S ′(±j)) = Right(S ′(±k))

and |S ′(±〈j, k〉|Sd
i |)| 6= 1

〈Left(S ′(±j)),Right(S ′(±k))〉|S′| otherwise

Proof. Using lemma 4.2.30 we can see that any two neighbouring nodes will have

neighbouring intervals. Let S ′ = Sd−si where s = 1,−1 and as such can be used to

indicate the direction of the neighbouring Slice S ′. If x1,x2 ∈ Sdi are neighbouring

nodes then the two intervals are either of the form J(S ′(x1)) = 〈j, k〉|S′|, J(S
′(x2)) =

〈k, l〉|S′| or of the form J(S ′(x1)) = 〈j, k〉|S′|, J(S
′(x2)) = 〈k + 1, l〉|S′|. In either case

J(S ′(x1)) ∪ J(S ′(x2)) = 〈j, l〉|S′|. Continuing this process inductively, assuming the

whole face loop is not traversed in the process, we find that:⋃
l∈〈j,k〉|Sd

i
|

S ′(sl) = 〈Left(S ′(sj)),Right(S ′(sj))〉|S′|
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Eventually the entire face loop is traversed leaving the entire set as the cyclic interval

J(S ′).

4.2.5 Backtracking Algorithm

Now that we have a description of the underlying graph and properties of neighbouring

nodes we consider the Backtracking algorithm itself. To describe the algorithm we

define a data structure called a winding. A winding represents a Cyclic Interval bounded

by a path. We use the windings to define and calculate the path of the Backtracking

algorithm. However only the outer edge is ever needed for the calculation.

Definition 4.2.33 (Winding, 〈j, v]dn, dn[v, k〉). We define a left winding with the notation

〈j, v]dn and a right winding with the notation d
n[v, k〉. The right and left winding represent

the same set as an equivalent cyclic interval:

〈j, v]dn = 〈j,Jd(v)〉n
d
n[v, k〉 = 〈Jd(v), k〉n

We also define the function Edge(w) to access the outer index of the winding:

Edge(〈j, v]dn) = j

Edge(dn[v, k〉) = k

And the function Side(w) to determine the type of winding:

Side(〈j, v]dn) = Left

Side(dn[v, k〉) = Right

Note that we may use the Side(w) function to define the Edge(w) function as such

Edge(w) = Side(w)(w) if we treat the result as a function. For example, consider the

expression Side(〈j, v]dn)(〈j, v]dn):

Side(〈j, v]dn)(〈j, v]dn) = Left(〈j, v]dn) = Left(〈j,Jd(v)〉n) = j

For convenience we will write Sidec(w) to denote the complement, i.e. the reverse

direction:
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Start 〈j, v]dn = w

Left(Sd+1
i (−j))

j − 1 j j + 1

Inf(w)− w = {j − 1}
Inf(w)− w = ∅
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Figure 4.21: An illustration of the Influence function. Case 1 includes the dashed line
to the node indexed j − 1 in the result of Inf(w). Case 2 includes only up to the node
indexed j in the result of Inf(w).

Sidec(〈j, v]dn) = Right

Sidec(dn[v, k〉) = Left

The Backtracking algorithm is split into two portions, the first portion is a search

for a suitable diversion around the collision point. As such we need to detect when

a new option occurs. We achieve this by the use of the Influence Function Inf(w).

The Influence Function calculates when a winding can be extended by its neighbouring

nodes. If the winding cannot be extended in this way then the winding is self contained

and therefore all options lead to the collision.

Definition 4.2.34 (Influence function, Inf(w)). We define a function Inf(w) called the

influence function.

Inf(〈j, v]dn) = 〈Left(Sdi (Left(Sd+1
i (−j)))), v]dn

Inf(dn[v, k〉) = d
n[v,Right(S

d
i (Right(S

d+1
i (−k))))〉

Figure 4.21 illustrates how the influence function detects new options. Two possibil-

ities are shown, case 1 shows the case where the node indexed by Left(Sd+1
i (−j)) on

slice Sd+1
i has an additional option of j − 1. Case 2 the figure shows the case where

no additional options are available other than those given by w.

In the subsequent definitions label common variables to associate them with par-

ticular portions of the Backtracking Algorithm. Variables labelled with the letter o will

be associated with the First Option Algorithm, for example windings such as woa, and

nodes such as xoa. Variables labelled with a c are associated with the Minimal Con-

nection Algorithm, for example windings such as wca, and nodes such as xca. We also
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associate variables labelled with b with the boundary of the of the Backtracking Search,

variables such as wbd and xbd are indexed by their distance from the Goal.

Using the Influence Function and the idea of a winding we define the first portion of

the Backtracking Algorithm which we call the First Option Algorithm:

Definition 4.2.35 (First Option). We define the First Option algorithm as a recursive

application of the following function:

Out(〈j, v]dn) =

〈Jd+1(v) + 1, v]d+1
n′ if Jd+1(v) ∈ Sd+1

i (j)

〈j′, v]d+1
n′ otherwise Sd+1

i (j) = 〈j′, k′〉n′

Out(dn[v, k〉) =

d+1
n′ [v,Jd+1(v)− 1〉 if Jd+1(v) ∈ Sd+1

i (j)

d+1
n′ [v, k′〉 otherwise Sd+1

i (j) = 〈j′, k′〉n′

The algorithm proceeds in the following steps:

1. Given an initial winding wo1 = 〈Jd(v), v]dn, dn[v,Jd(v)〉.

2. If woa is of the form:

• If woa = [0, |Sdi |) then the algorithm exits. (The winding woa has travelled

around the entire graph, leaving no options available to avoid the collision).

• If Inf(woa)− woa = ∅ we continue. (No new options are available)

• Else if Inf(woa) − woa 6= ∅ we exit with the result w = Out(woa), and the index

I = Sidec(woa)(Inf(w
o
a)− woa). (Additional options have been discovered)

3. We replace woa with woa+1 = Out(woa) and repeat step 2.

When we refer to windings used in the First Option algorithm we denote them as

wo1, w
o
2, . . . , w

o
No, whereN o is the number of windings traversed in the calculation. We re-

fer to nodes on the outer edge of the windings as xoa = J−1d (Edge(woa)), w
o
a = 〈j, v]dn, dn[v, k〉.

We may also refer to each winding with respect to its distance from the goal; e.g.

wol = 〈j, v]dn = wbd.

After a suitable point has been discovered to avoid the collision a path has to be

constructed to connect the edge of the winding to the original path with the minimal

diversion. We define the the Minimal Connection Algorithm for this purpose.

Definition 4.2.36 (Minimal Connection). We define the Minimal Connection algorithm
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as a recursive application of the following function:

In(〈j, v]dn) =

〈Jd+1(v), v]
d+1
n′ if Jd+1(v) ∈ Sd+1

i (j)

〈k′, v]d+1
n′ otherwise Sd+1

i (j) = 〈j′, k′〉n′

In(dn[v, k〉) =

d+1
n′ [v,Jd+1(v)〉 if Jd+1(v) ∈ Sd+1

i (j)

d+1
n′ [v, j′〉 otherwise Sd+1

i (j) = 〈j′, k′〉n′

The algorithm proceeds in the following steps:

1. Given an initial winding wc1 = 〈j, v]dn, dn[v, k〉.

2. We label the edge of the winding wca = 〈j, v]dn, dn[v, k〉 as the node xca = J−1d (Edge(wca)).

3. If wca is of the form wca = 〈Jd(v), v]dn, dn[v,Jd(v)〉 then the algorithm exits with the

sequence x1, . . . ,x
c
a as the result.

4. We replace wca with wca+1 = In(wca) and repeat step 2.

When we refer to windings used in the Minimal Connection algorithm we denote them

as wc1, . . . , w
c
Nc, whereN c is the number of windings traversed in the calculation. W refer

to nodes on the outer edge of the windings as xca = J−1d (Edge(wca)), w
c
a = 〈j, v]dn, dn[v, k〉.

We may also refer to each winding with respect to its distance from the goal; e.g.

wcl = 〈j, v]dn = wbd

We apply the First Option and Minimal Connection Algorithms on both sides of the

path v. If the algorithm calculates at least one solution they can be used to continue

the search. The boundary of the search can be used as a bypass to avoid further

calculation within the searched area.

A collision can occur in two forms. One form of collision is where two agents occupy

a node at the same time step. With this first form of collision we must remove the

point of collision from consideration therefore we ignore branches from the node of

the collision. The second form of collision is a swap between nodes. With this form

of collision the agent can occupy the node before the collision if there exists another

connection which bypasses the connection on which the collision occurs.

Definition 4.2.37 (Backtracking Algorithm). We define the Backtracking Algorithm by

concatenating the First Option and Minimal Connection Algorithms.

The algorithm proceeds in the following steps for a path v at a distance d from the

Goal:

1. Define 2 windings w1 = 〈Jd(v), v]dn, w2 =
d
n[v,Jd(v)〉.

2. If the collision was of the form of a swap:
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(a) If Jd−1(v) − 1 ∈ Sd−1i (Jd(v)) then we assign w′1 = w1 and I1 = Jd−1(v) − 1.

We then skip Step 3 for the left side of the algorithm.

(b) If Jd−1(v) + 1 ∈ Sd−1i (Jd(v)) then we assign w′2 = w2 and I2 = Jd−1(v) + 1.

We then skip Step 3 for the right side of the algorithm.

3. Apply the First Option Algorithm to both w1, w2 giving the results w′1, w
′
2 and in-

dices I1, I2 for the connecting nodes. If either application of the algorithm was

successful continue. Otherwise the collision is unavoidable at this cost.

4. Apply the Minimal Connection Algorithm on w′1, w
′
2 resulting in the two sequences

x1
1, . . . ,x

1
N1

and x2
1, . . . ,x

2
N2

. If either application of the algorithm was successful

continue.

5. Concatenate the node indexed by I1 to sequence 1, and Concatenate the node

indexed by I2 to sequence 2. These two paths connect to the latest point in time

for which x1
N1

and x2
N2

lie on v respectively.

6. We define two types of results, the boundary formed from the windings used in

First Option and Minimal Connection; xbd = J−1d (Edge(wbd)), and the resulting path.

There are two important properties that we need to prove about this algorithm. The

first is that the algorithm calculates the minimal divergence from the original path which

avoids the target space time point. The second is that we still reach all possible permu-

tations of paths given the opportunity, this proves that we cover all possible solutions.

It may be noted that all permutations need not be computed if a collision does not force

the calculation. One property which we do not prove is that paths will not be duplicated

during computation. This is remedied in the implementation by detecting combinations

of paths which have been attempted before and pruning them, irrespective of this, this

property is not necessary for correctness.

Lemma 4.2.38 (Minimal Avoidance). Using the backtracking algorithm a path which

minimises p̃t − q̃t where p̃ is the point of collision and q̃ is the point of connection

selected by the Minimal Connection algorithm.

Proof. Suppose there existed a path u which diverged at q̃′ from path v as opposed

to q̃ (shown in figure 4.22a), where q̃′t > q̃t avoiding the space time point p̃. Note

that we can assume that this path will only intersect again with v after time p̃t since

we could otherwise cut out the earlier part of the diversion while still avoiding p̃. As

shown in figure 4.22b the upper portion of either example could be used ignoring the

earlier divergence from v. Without loss of generality we can assume that the first point

of divergences happens to the Left of the path v.

From the definition of In(w) and Out(w) the xbd form a connected path and the path

formed by the xbd and v form a bypass. Any solution u which starts at q̃′ will start inside
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q̃̃

q′

p̃

(a)

u v u v

p̃ p̃

(b)

Figure 4.22: An illustration of the space time points related to the Minimal Avoidance
proof and an illustration of the simplifications that can be made to a solution with multi-
ple intersections with v.

q̃

p̃

v

no connections

single edge

Figure 4.23: An illustration of the Backtracking Algorithm, showing the properties that
the First Option and Minimal Connection Algorithms have to neighbouring nodes.

this bypass, and will at some point exit the region. Since the path u does not pass

back through v before the end of the bypass it must intersect during the First Option or

Minimal Connection phase of the algorithm.

The First Option phase happens during the sequence of windings wo1, . . . , w
o
No. By

Lemma 4.2.32 we know that the neighbours of a cyclic interval 〈j, k〉n form a cyclic

interval 〈j′, k′〉n′ where the neighbours of the edges j, k match the edges of the cyclic

interval j′, k′. This shows that the Influence Function computes the additional options

which can be reached from a winding, i.e. the Influence of wol is defined to be the extent

to which the earlier winding wol+1 can extend the scope of wol . During the processing

of the First Option phase of the algorithm we continue while Inf(wol ) − wol = ∅; which

implies that wol+1 cannot reach any nodes which are not already contained within wol
without crossing v. Therefore there is one node in woNo which can avoid the collision,

the node indexed by Edge(woNo).

The Minimal Connection phase occurs during the windings wc1, . . . , w
c
Nc. During

the Minimal Connection phase each of the windings is constructed from the nearest

neighbour of the edge Edge(wcl ) to the path v by using In(wcl ). This implies that Edge(wcl )

has only one connection to wcl+1. Figure 4.23 illustrates the properties of the First Option
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and Minimal Connection Algorithms as discussed above.

Now consider the hypothetical path from q̃′ which avoids p̃. We have proven that

there can be no exit for u from within the first windings, wo1, . . . , w
o
No−1, and that the

edge of the windings wc1, . . . , w
c
Nc−1 has only one connection to the next winding in the

sequence, meaning that there is only one path into the edge of woNo from within the

bypass. This contradicts the fact that there existed a path u parting from v at a later

time than q̃t.

Lemma 4.2.39. The application of the backtracking algorithm is a permutation of the

equivalent paths of a space time point.

Proof. To prove this lemma we need to show that any path which can represent a point

can be generated by application of the Backtracking Algorithm with an appropriate

sequence of collision points. Given a path v, supposing that a collision occurs at p̃c

and that a path u is a solution which avoids p̃c, we will show that backtracking will find a

path identical to u or one that diverges from v sooner than u. We will also assume that

u does not rejoin v after it separates as this could be reduced into multiple applications

of the Backtracking Algorithm.

Without loss of generality we will assume the solution u exits on the Left side of

the path v. From lemma 4.2.38 we know that the difference between the point at which

the collision occurs p̃c and the point at which the result of backtracking diverges q̃c is

minimized. From this we can see that the point of divergence q̃′ of u from v satisfies

q̃′t ≤ q̃ct . The Minimal connection algorithm always picks the inner-most neighbour in

wcNc−1 that not on v.

Suppose q̃′ = q̃c and the algorithm is iterated to find a solution. Consider the

constructed path to the Goal. The path will be constantly travelling towards the Goal

each branch travelling from one slice to the next. There are a finite number of slices

towards the Goal and a finite number of nodes within each slice. This implies that only

a finite number of paths to the Goal can be generated. As the algorithm proceeds

collisions will be detected at every point not on the solution path u.

We must show that all paths will eventually be considered. First consider the slice Sdi
which contains the output node from the Minimal Connection Algorithm. From Lemma

4.2.38 we know that if there were a collision on this node and other neighbours were

available at this step in the algorithm then they would have a time step difference of 1

between p̃, q̃. Since the inner most node will always be considered first, the algorithm

will increment through each of these potential neighbours.

When an earlier branching point q̃ is selected we know from Lemma 4.2.30 and

iterative application of Lemma 4.2.32 that the next set of nodes passed through in slice

Sdi will be disjoint and continue from the previous set. In this manner all nodes of a

given slice will be considered eventually, starting from the latest slice. Once all the

nodes up to a given time t pass along a solution they need not be considered again.
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Nodes after time step t will be searched until at least the node at t+1 becomes part of a

solution. This will continue until the Goal is reached or all points after q̃′ are exhausted.

If on the other hand q̃′t < q̃ct then the iteration process will first saturate all possible

branches at q̃c forcing the algorithm to proceed to the next available point at which it

can branch from v. The potential solutions of the new branch point will be explored until

they are saturated and the process will continue until q̃′ = q̃c; in which case as before

a solution will eventually be found.

To apply the algorithms which we have described so far, the Backtracking Algorithm

and the Next Algorithm, we need to split potential solutions into a number of cases.

The Backtracking Algorithm is designed to be applied to Non Complex paths. This

results in a redirection of a path around a collision, however this cannot solve collisions

which occur on the Goal node as the Goal node cannot be avoided. To solve collisions

after the Goal has been reached we apply the Next Algorithm.

Another split in the solution search space is Complex solutions. We analyse com-

plex paths by splitting the path into a Complex Segment and a Non Complex Segment.

The Non Complex Segment is defined by the steps before the first Complex Branch.

We will show that we need only analyse the Complex paths which branch from the

boundary the bypasses computed in the Backtracking Algorithm. We show that there

will always be an equivalent path to a solution which branches within a bypass, or the

centre of the bypass will eventually be considered.

Once a path has made a complex branch we apply the Next algorithm to the com-

plex portion. The point at which the algorithm selects a complex branch can be con-

sidered a new start node allowing the application of the Next algorithm.

Definition 4.2.40 (Journey and Stationary Segments). We define a function Journey(v)

to equal the time the path v takes to initially reach the Goal:

Journey(v) = min{t : Dg(Pt(v)) = 0}

We define the segment of the path v before the time Journey(v) to be the Journey

Segment of the path v and the segment after the time Journey(v) to be the Stationary

Segment of the path v.

Lemma 4.2.41. Suppose a solution u of cost c exists, along with an algorithm Sol which

can solve for u′ where u′ ∼Journey(u) u. A minimal multi-agent solution u can be solved

in two Segments split by the time Journey(ui) for each path ui in u.

Proof. To prove this lemma we will split the process of solving for a complete solution

v into two steps. The first step will remove from consideration any collision for agent i

in configuration v−i after Journey(v). These are the initial segments of the full solution

v. By assumption the Sol Algorithm can solve for these initial segments, therefore the

first step is to apply Sol.
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The second step is achieved by applying the Next Algorithm to an initial segment v

after the time Journey(v) without ignoring any collisions from v−i. From theorem 3.1.33

we know that a minimal solution will be calculated from v to include the collisions af-

ter Journey(v). Complete multi agent solutions v produced by step two will be sorted

by the overall cost including any diversions after the Journey Segments. Eventually

by assumption the Sol algorithm will produce the required initial segment of a mini-

mal solution which will then be solved by the Next algorithm giving an overall minimal

solution.

Definition 4.2.42 (Complex Branch, CB(v)). We define the function CB(v) to indicate

the first complex branch of a path v:

CB(v) = min{t : Cxt(v)}

We will now define the Path Selection Algorithm which serves the purpose of the

Sol Algorithm in the previous lemma. A path v is processed searching for a solution

up to the time Journey(v). The Path Selection Algorithm works in passes. Each pass

of the Path Selection Algorithm takes a tuple of data. Each tuple can either be a path

from a potential solution v or a variation on a Stem. Three Stems are considered, the

Next Stem, the Non Complex Stem and the Complex Stem. Each Stem explores the

solution search space by extending the cost of certain portions of the given path v,

which we will show in a later Theorem.

Definition 4.2.43 (Path Selection Algorithm). Here we define the algorithm used to se-

lect a set of options for the next path for the algorithm to consider, for both the same

cost and higher cost solutions. Any path produced is combined with the given con-

figuration v−i which is the context of the collision. Per application of this algorithm a

single number is selected based on the which condition is met (Complex/Non Com-

plex/Next Stem/etc...), subsequently each letter is processed producing new possibili-

ties to be considered. During the processing of this algorithm we ignore collisions after

Journey(v) as they are handled by the technique given in Lemma 4.2.41.

The input of this algorithm is a tuple of data, giving the path v to be operated on, a

point p̃ or collision time t, the label given to the tuples selects which part of the algorithm

is used to process the tuple. There may also be a target cost c for the solution when

the tuple is in the form of a Stem. The algorithm proceeds in the following steps:

1. v Non-Complex or p̃t ≤ CB(v):

(a) Apply the Backtracking Algorithm producing two paths u, u′ which avoid the

collision at p̃.

(b) We construct a Complex Stem from the two boundary paths of each Back-

tracking application before p̃t.

(c) We construct a Non-Complex stem before p̃t on v at cost c = F (v) + 1.
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q̃

u

p̃

u′

v′ v

Figure 4.24: An illustration of a Complex solution which makes its Complex branch
within the bypass v, v′.

2. v Complex and p̃t > CB(v)

(a) We apply the Next algorithm along the path defined after CB(v) on the path

v.

(b) We construct a regular Next Stem after p̃t on v at cost c = F (v) + 1.

(c) We construct a Non-Complex Stem before CB(v) on v′ at cost c = FCB(v)(v)+

1. Where v′ is a non-complex path which satisfies v ∼CB(v) v
′ and ∀t >

CB(v), It(v
′) = 0.

3. Next Stem v, t, c:

(a) We apply the Next algorithm along the path defined after CB(v) before the

collision at time t targeting the cost c.

(b) We construct a regular Next Stem before time t on v at cost c′ = c+ 1.

4. Non-Complex Stem v, t, c:

(a) We apply the Next algorithm along the path v restricted to the subgraph

defined by the set P (v) before the collision at time t targeting cost c.

5. Complex Stem v, t:

(a) We construct a complex path u for each time such that u ∼CB(u) v,CB(u) < t

and F (u) = Ft(v), Ft(v) + 1, Ft(v) + 2.

Lemma 4.2.44. Given a path u which makes a Complex Branch within a bypass v, v′,

the path u must coincide with a Non-Complex point on the boundary of the bypass v, v′.

Proof. We are given two paths v, v′ which form a bypass. Suppose there exists a solu-

tion u which makes its complex branch within the region enclosed by v, v′. The paths

v, v′ both lie on the non-complex subgraph however complex paths are also restricted
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by the planar condition of the entire graph, therefore there exists a spacetime point p̃

on u which crosses over either v or v′ at a node which lies on either path.

Lemma 4.2.45. Given a solution u which makes a Complex Branch within the bypass

v, v′, the Path Selection Algorithm will eventually compute a path u′ which makes a

Complex Branch that coincides with u. The path u′ will not have any collisions before

CB(u′).

Proof. To prove that the Path Selection Algorithm will select an appropriate path we

will analyse a series of events. Either a path will be found along the boundary of the

bypass or a collision will occur along said boundary. If a collision has occurred this

will allow the application of the Backtracking Algorithm, which will give a new set of

boundary paths v1, v′1. Continuing this process we either construct a new path along

one of the boundary paths or we eventually converge along u allowing the construction

of a Complex Stem which branches along the same initial complex branch. Figure 4.24

illustrates the configuration of paths u, u′, v, v′ and several important space time points.

A collision is also illustrated by a cross along the dotted line representing u′.

By lemma 4.2.44 there exists a space time point p̃ on the path u which crosses

the boundary of the bypass v, v′. Consider the boundary path v or v′ which contains

this point, i.e. the path bv = v, v′ such that p̃x ∈ P (bv). Suppose the current path

under consideration is called u′ then there exists a time at which u′ reaches p̃x, i.e.

∃t ≤ p̃t, Pt(u
′) = p̃x.

If there is no collision along u′ before t then the Path Selection Algorithm can se-

lect the appropriate branch which coincides with u. If the branch is Non Complex the

Backtracking Algorithm will select the appropriate branch otherwise if the branch was

Complex then a Complex Stem will select the appropriate branch. This path u′ will

satisfy the conditions of the lemma and therefore prove the result.

However if there is a collision before t along u′ then either another application of a

Non Complex stem will occur raising the cost of the path until t = p̃t or there will be an

application of the Backtracking Algorithm which leads to an appropriate solution.

Consider the point q̃ where the path u makes a complex branch. The space time

point q̃ is a non-complex point which belongs to the bypass v, v′. Points on u before

q̃t have no collisions as u is a solution. By application of lemma 4.2.39 if a solution

isn’t found a path to q̃ will be found in a finite number of steps. Therefore either an

appropriate solution will be found along a boundary before q̃ is reached or the path up

to q̃ will be reached and a Complex Stem will discover the complex branch along u.

Theorem 4.2.46. The application of the Path Selection Algorithm as the Sol algorithm

of Lemma 4.2.41 will find an optimal solution if one exists from the set of equivalent

solutions.

Proof. To prove this theorem we assume a minimal solution u exists. We will split

the solution u into possible cases, proving u or an equivalent solution will be found.
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We make the assumption that no collision occurs after Journey(v) by applying lemma

4.2.41. The following list gives the structure of the individual cases so that they can be

discussed with reference to their case letter:

• u is Non-Complex: Case (a).

• u is Complex:

– u not on a boundary: Case (b) continue using the new u′, v.

– u on a boundary v:

* u satisfies the condition FCB(u)(u) = F (u)− 2, F (u)− 1, F (u):

· u and v satisfy FCB(u)(v) = FCB(u)(u): Case (c).

· Otherwise FCB(u)(v) < FCB(u)(u): Case (d).

* u satisfies FCB(u)(u) < F (u)− 2: Case (e).

Case (a). u is non-complex. By lemma 4.2.39 eventually a representative of the

Goal Node, which traces the same rudimentary path as a solution, will be selected by

the Backtracking Algorithm. Supposing that the solution u is picked as a representative

for the Goal node when it is reached, we can assume the solution has a rudimentary

form ru. Following the Path Selection Algorithm as it proceeds the Next algorithm

will be applied repeatedly on the paths which can be reduced to ru as the potential

solutions increase in cost. However if we restrict the graph to the nodes which ru

traverses Theorem 3.1.33 shows that an optimum solution will be found.

Case (b). Lemma 4.2.45 shows that either a new solution u′ will be found on a

boundary v, or a boundary v covering u will be constructed. If a boundary is constructed

containing the Non Complex Segment of u a Complex Stem will discover the complex

branch along u. The algorithm will continue, cases (c), (d) and (e) cover the further

possibilities after the correct complex branch is found.

Case (c). Each complex branch which does not extend from the Goal adds an

additional cost of 0, 1 or 2 to the overall cost of a path. When the complex solution u

satisfies one of the equalities FCB(u)(u) = F (u) − 2, F (u) − 1, F (u) then u has a single

Complex branch before the rest of the path travels directly towards the Goal.

For this case we assume that the boundary v is considered and satisfies FCB(u)(v) =

FCB(u)(u) in relation to the solution u. When the Complex Stem is considered which

covers v then FCB(u)(v) = FCB(u)(u) = F (u)− 2 which implies that u will be selected up

to time CB(u)+1 from part 5 of the Path Selection Algorithm. After repeated application

of part 2 of the Path Selection Algorithm sdf(specifically part 2a) the solution u or an

equivalent solution will be constructed as proven by Theorem 3.1.33.

Case (d). For this case we retain the condition that FCB(u)(u) = F (u) − 2, how-

ever the boundary v does not meet the solution u at the correct time, i.e. FCB(u)(v) <

FCB(u)(u). Since the first condition is met, FCB(u)(u) = F (u) − 2, there will be a path
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u′ considered which follows the complex branch of u at time CB(u) however since

FCB(u)(v) < FCB(u)(u) this will occur at an earlier time, i.e. CB(u′) < CB(u).

As the Path Selection Algorithm proceeds the path u′ will be replaced by higher cost

paths. When part 2c of the Path Selection Algorithm is applied it increases the cost of

the earlier Non Complex portion of the boundary v. Another application of the Complex

Stem will produce the same Complex Branch and the process can repeat. Eventually

we will attain CB(u′) = CB(u) and case (c) will apply.

Case (e). Through the earlier cases we have shown that the correct boundary path

v will be computed and that the correct Complex Branch will be selected at the right

time. For this case we need to show that the correct Complex Segment of the path u

can be constructed. This can be seen as an application of part 2a of the Path Selection

Algorithm and follows from Theorem 3.1.33 applied after the Complex Branch at time

CB(u).



Chapter 5. Implementation

5.1 Algorithm

In this section we discuss the implementation of the original and extended version of

the Algorithm. First we discuss data-structures we need during the execution of the

algorithm. Then we describe the structure of the Next and Backtracking Algorithms;

outlining the details which were ambiguous during the Methodology (Chapters 3 & 4)

sections. The pseudo code for the algorithms in this chapter can be found in appendix

B.

5.1.1 Distance & Order Preference

As described in Chapter 3 the idea of distance is important to the correct and fast

calculation of minimal paths. We use a modified version of the Dijkstra’s Algorithm

to calculate the minimal distance for any node x to any target node y (this includes

any Start and Goal node for any agent). This algorithm is analogous to the Reverse

Resumable A* [Sil05] used in other papers on the MAPF problem. We use the term

Reverse Resumable Dijkstra to describe this Algorithm (RRD). The RRD Algorithm

works by applying the Dijkstra Algorithm in reverse from the target node y until the

referenced node x is encountered, at which time the computation is frozen for later

use. In this manner any subsequent distance lookups x′ which involve y can use

already discovered distances or resume calculating the Dijkstra’s Algorithm until x′ is

encountered.

5.1.2 Agentverses, Path Representation

In Chapter 3 we discussed the existence of the most preferred paths called α paths.

To represent arbitrary paths in our algorithm we construct a data-structure called an

Agentverse based on these α paths. Every path can be described in terms of α paths.

We can construct an arbitrary path inductively on the number of non-preferred options

on the path, i.e. induction on:
∞∑
t=0

[It(v) 6= 0] = n

when we have n = 0 we have an α path and the Agentverse stores the entire α path.

Otherwise suppose s represents the last non-preferred time step we store the α path

after time step s in our Agentverse. We then reference the Agentverse with n − 1

non-preferred steps as our parent by removing the non-preferred option at time step s.

This makes the basis of the Agentverse data-structure which represents v the parent

v.parent, the start time v.startT ime and the remaining α path representing the final

steps of v.

To facilitate the Next Algorithm we store additional information in the header of

73
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the Agentverse data-structure and along side each times step within the α path. The

Agentverse data-structure without Backtracking is as follows:

struct TimeUnit:
Agentverse * next;
location pos;
unsigned short relCost: 2;
unsigned short priority[2];

end
struct Agentverse:

Agentverse * next;
Agentverse * parent;
unsigned char ind: 7;
unsigned char complex: 1; // Used with Backtracking

unsigned int id;
unsigned int startT ime;
unsigned short length;
unsigned short cost;
unsigned short ext; // Used with Backtracking

unsigned short cb; // Used with Backtracking

unsigned short pq[3];
TimeUnit * steps; // Steps of the alpha path

end
Algorithm 1: Agentverse Data-structure.

Within the Agentverse v we store more than the basis of the path (v.startT ime,

v.parent and v.steps). Certain values are stored to avoid re-computation of their value,

i.e. v.cost, v.length. Given an arbitrary step s at time step t the variable s.next is used

to avoid the re-computation of paths which branch from time step t. The v.next variable

of an Agentverse allows for linked list of all Agentverses which branch from time step

t. The v.ind variable identifies what index the Agentverse v branches from time step t.

The v.id variable allows for a unique identification of this Agentverse which is needed

for construction of a closed set for collections of Agentverses. The variables v.pq from

the Agentverse v and s.relCost, s.priority for the time step s are used in the next al-

gorithm and will be discussed next. The variables v.complex, v.ext, v.cb are used in

backtracking and will be discussed later.

Figure 5.1 shows an illustration of an example Agentverse with one non-trivial

branch. The close-up section highlights the TimeUnit data structure used to store the

path and meta data for the Agentverse.

5.1.3 The Next Algorithm

From the proof in Chapter 3 we know that all paths can be placed in an ordering. The

basis of our algorithm is to increment along this order trying permutations of possible

path configurations. The Next Algorithm operates on paths incrementing them along

to the next available path in the ordering of the required cost. The pseudo code in
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Figure 5.1: Agentverse structure and time step data.

Algorithm 3 shows the basis for the Next algorithm, and the pseudo code in Algorithm

4 shows how we search for an appropriate branch:

The Next Algorithm works by selecting a branch nearest the point of conflict which

changes the cost of the current path by the desired amount. This new branch is se-

lected by a search facilitated by a set of linked list embedded into the Agentverse.

Suppose s is the TimeUnit before the collision. The TimeUnit s contains a variable

s.relCost which contains the relative cost of the branch indexed by 1. When the Next

Algorithm searches for a path of the same relative cost as s.relCost then it can return

the time step equivalent to s. Otherwise a time step is required at one of the other

two possible relative costs. The 2 element array s.priority contains the latest times of

two alternative branches at the two alternative costs. An exception to this is the case

where the correct branch occurs from the same time step at which a child Agentverse

v branches from its parent v.parent. In this case the priority of the next branch after

v.ind is considered.

This process skips alternatives which may occur later in the indices of the a single

TimeUnit, however these possibilities will eventually be uncovered if needed as proven

in Section 3.

5.1.4 Stem

From each Agentverse there are a large number of possible branches. In general a

search algorithm such as A-star or Dijkstra’s search algorithm will process each node

sequentially and then store each of its neighbours for later processing. When a node

has a large number of neighbours the processing required to manage the neighbours

could become prohibitive. Work on the Partial Expansion A* Algorithm [YMI00] and its

enhanced version [GFS+14] works around this problem by splitting a node based on
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the increase in cost.

To mitigate this problem we also consolidate a set of nodes with a common property

into a single meta node called the Stem. We leverage these meta nodes to separate

groupings of paths which can safely be deferred for calculation later in the Algorithm.

Stem nodes can then be inserted into the priority queue with priority equal to the min-

imum of the group of nodes it represents. When the Stem is popped off of the queue

it can be expanded into a subset of the nodes it represents together with another Stem

of the remaining nodes. Figure 5.2 illustrates this idea.

•••
Stem

Stem

Figure 5.2: Reducing branching by using Stems.

The Next Algorithm can be iterated at a particular target cost and in doing so all

paths at that cost and later in the ordering will be traversed. However by using this

approach we skip branches of higher cost closer to the point of collision. We include

these potential solutions by combining paths of a higher cost into stems. The property

of target cost then becomes the property by which we define the stem and in doing so

reduce the amount of Multiverses created in each loop of the Algorithm.

5.1.5 Multiverse

The Multiverse is the data structure we use to store collections of Agentverses. A Mul-

tiverse can either be a potential solution or a stem representing a set of branches not

yet computed. We use the v.id which uniquely identifies each Agentverse to compute

a hash code for each Multiverse. This allows us to use a closed set (a hash set) to

determine when a Multiverse has been computed before and dismiss the possibility

before it has entered the priority queue. This can be extended to stems if we include

the additional data associated with stems. Algorithm 2 shows the data structure used

to store Multiverses and stems.

The main loop of our search is described in Algorithms 5 and 6. The main loop forms

a search over Multiverses in a similar fashion to Dijkstra’s Search Algorithm and the A-

star Algorithm. Each Multiverse is pushed onto a priority queue with priority associated

with its overall cost. Multiverses are then popped off of the queue and processed. If

the Multiverse represents a stem it is expanded and the loop continues. However if the

Multiverse is not a stem a search is performed to detect any collisions.

The collision search is performed in temporal order. All Agentverses are considered

at each time step incrementally until all agents have reached their Goal. The search is

conducted in this manner so that earlier collisions are not reintroduced.
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struct VerseUnit:
Agentverse * verse;
unsigned int stem;

end
struct Multiverse:

unsigned int hash;
unsigned int cost;
unsigned int stemType;
unsigned int stemAgent;
unsigned int stemTime;
unsigned int stemSide;
VerseUnit * verses;

end
Algorithm 2: Multiverse Data-structure.

5.1.6 Backtracking

The Backtracking Algorithm is an additional culling step which we use to remove per-

mutations of paths which share a common conflicting point in spacetime. As was de-

scribed in Section 4 the Backtracking Algorithm is applied on planar graphs and works

by removing paths which remain in an enclosed region. The Backtracking Algorithm

traces an outer boundary to the left and right of the original path searching for options

which leave the region enclosed.

The implementation of the Backtracking Algorithm can be divided into two concur-

rent parts. We define the Solver which traces the outer boundary of the region we are

removing from consideration. We define the Scanner which traces the original path

such that every iteration of the Scanner produces a point x on the path which matches

the distance from the Goal of the current position y of the Solver, i.e. DG(x) = DG(y).

The Scanner

We restrict the Backtracking Algorithm to Non-Complex paths. This implies that any

point x returned by the Scanner will be the unique point on the path with distance

DG(x). The Scanner always return the most recent occurrence of the location x on

v prior to the collision. This reduces the amount of re-computation required, due to

the fact that earlier costs have already been explored. Algorithm 8 illustrates how we

determine the next time step the Scanner considers.

The Solver

The Solver has the task of analysing the outer boundary of possible paths reaching the

point of conflict. The Solver begins by determining a forwards direction from the point

of conflict. We are attempting to find potential options on the left or right side of the

path. In order to achieve this we cycle clockwise or anticlockwise from the forwards

direction until we cycle to a connection which leads towards the start. If at any point
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while cycling the connection an edge leading to the Goal is discovered we have found

a diversion around the conflict. After this option is discovered the cyclic direction is

reversed and the nodes are stored along the path backwards towards the initial path.

Once a path from the discovered option is calculated we use this data to construct

Agentverses which lead to that option.

Non-Complex Paths & Preprocessing

When the Backtracking Algorithm has produced a potential path the result may not

initially be a Non-Complex path. This can occur when a path v retraces its own steps.

A Non-Complex path has a unique node on each slice between the Start and the Goal.

When a path retraces its steps and then branches in a different direction one or more

slices may have multiple intersections with the new path. This makes the path Complex

breaking assumptions that were used in the proof in Section 4.

This Complexity can be removed by stripping additional nodes from the end result u

creating a simpler path u′ which may have a lower cost. The lower cost however can be

recuperated later when the Next algorithm is applied but restricted to the nodes given

by u′.

During the creation of an Agentverse two key values can aid future calculations.

The complex branch v.cb is the time step at which an Agentverse first takes a complex

option. The complex branch is used to determine which algorithm to apply to a partic-

ular conflict. A conflict before a complex branch can use the Backtracking Algorithm

to avoid the conflict. We also define a value called the extent v.ext of an Agentverse.

The extent determines the closest point an Agentverses parent comes to the Goal be-

fore the start of the given child Agentverse v. The extent can be used to aid in the

reconstruction of Non-Complex Agentverses as discussed in the previous section by

curtailing the computation when the extent matches the current Agentverse in the cal-

culation.

Both calculations can be done at once. By stepping from child to parent we can

keep track of the distance to the Goal. In this manner once the extent of the parent is

larger than the extent of the starting position of the original Agentverse v we can exit

the algorithm since all nodes nearer the start are already accounted for. In this same

process we can also determine the initial complex branch by comparing the successive

starting locations of the parents as we iterate through them.

Main Loop with Backtracking

The main search is extended to uses the Backtracking Algorithm by using a number

of cases as discussed in the definition 4.2.43 the Path Selection Algorithm. Algorithm

12 shows the modification to the search algorithm to accommodate the cases used for

the Backtracking Algorithm. Algorithms 13, 14, 15, 16 show the cases used to search

for solutions using the Backtracking Algorithm, Complex branches from Non-Complex
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paths, Non-Complex solutions and Complex solutions after a branch point. While some

of these Algorithms 15, 16 are a slight modification to the makeBranch Algorithm 5,

the Complex branch Algorithm 14 is a brute force search for Complex branches and

Algorithm 13 is a direct application of the Backtracking Algorithm 4.2.37.
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Chapter 6. Analysis/Results

6.1 Experimental Setup

To best assess the performance of CIS against CBS, our comparator of choice for

reasons outlined earlier, an implementation of both was written in C++. We include

implementations of CIS both with and without reasoning to show the improvement that

the reasoning additions make to the Algorithm. CIS with reasoning will be labelled CISR

and CIS without reasoning will remain labelled CIS from this point onwards. Some

slight amendments were required to the CBS algorithm as published [SSFS12b] to

avoid the cross-over of agents (a situation where two agents swap occupied squares,

physically passing through one another). Neither implementation benefited from any

machine-level or multi-threading optimisations.

(a) hrt201d (b) lak303d (c) oth000d (d) rmtst

Figure 6.1: A selection of maps used in testing.

In defining our experiments, we borrow from Sharon et al. [SSFS12b]. We defined

three different sets of test batches. The first set is constructed as 3 sets of square grids

of sizes 8x8, 16x16 and 32x32. For each grid size we range the number of agents; for

the 8x8 grids we range between 4 to 16 agents, for the 16x16 grids we range between

4 to 25 agents and for the 32x32 grids we range between 4 to 35 agents. Each grid

size and agent combination has 2000 different seeds tested and timed.

In the second case we consider maps drawn from Sturtevant’s [Stu12] work on grid-

based navigation benchmarking. Fifteen maps were selected from Sturtevant’s Dragon

Age: Origins map set, of a variety of sizes; a sample of these is shown in figure 6.1.

Table 6.1 lists the maps employed in ascending order of open (passable) grid squares,

along with their maximum dimensions along both axes.

It is obvious from the ordering of the table, relative to the dimensions of the maps,

that the complexity of a given map was not directly related to its maximum dimensions;

several larger maps have smaller numbers of navigable nodes, which is appropriate to

the context of our work. A broad range of map sizes was selected in order to explore

system performance over a variety of path lengths.

We varied the number of agents as follows: 4, 6, 8 and 16. Each map was tested

using 2000 random seeds (per agent count) determining start and goal nodes for each

agent, with both CIS and CBS.
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Map Dimensions (WxH) Open Squares

ost102d 28x22 249
lak103d 49x49 861
rmtst 182x50 5589
lak202d 159x182 6240
ost003d 194x194 13214
lak303d 194x194 14784
oth000d 384x384 17601
den012d 310x350 22682
hrt201d 297x272 23572
den520d 256x257 28178
brc202d 530x481 43151
lak401d 401x593 43567
orz999d 632x698 43893
brc501d 225x288 57719
orz900d 1491x656 96603

Table 6.1: Details of testing maps

Finally in the third batch of tests we include selection from a set of bespoke maps

which were used in initial testing of the algorithms. These maps are shown in appendix

A. Each map is a square grid in nature certain squares made impassible. Agents

can only travel to adjacent squares in one of the four cardinal directions. Figure A.1

shows the key for the maps. The maps in this set of tests have predefined start and

end points for each of the agents. The start points are marked by circles and goals by

rings so that a square used as both a start and end point can be distinguished. A total

of 30 runs was done for each map and algorithm pair, however this is sufficient as the

configuration of the map and agents does not change between runs.

A cap was applied to limit the amount of time permitted for each test; this reflected

our interest in systems moving towards real-time computable solutions, and a similar

approach was taken by Sharon et al. [SSFS12b]. The employed cap was 5 seconds

for the first two tests and 100 seconds for the bespoke maps; if a solution had not been

found within that time, the testing system was deemed to have failed (timed-out).

Experiments were performed using a desktop computer equipped with an Intel i7-

2600K CPU at stock speeds, and 16GB of DDR3 RAM @ 1600MHz. Solution costs

were compared for validity, and results were recorded in terms of compute time.

6.2 Results

We have used two methods to organise the data for our results. The first method is that

which the our competitor CBS uses [SSFS12a]. We run the algorithm until a fixed time

cap of 5 seconds and then compare the number of Wins vs Losses, i.e. the number of

times CBS has a computation time than CIS and visa versa. Our second approach is

to use The Inter Quartile Mean (IQM) to analyse the results, i.e. the mean of the mid

50% of results.
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Our logic behind the use of the IQM is that the complexity of the task is not solely

linked to the size of the Graph. The complexity can change based on the arrangement

of agents and how they interact with each other. The IQM allows us to reduce the num-

ber of apparent outliers and compare a range of scenarios with a similar complexity.

It should be noted that in some cases shown in figures D.1-D.7 there were enough

failed seeds to require the third quartile to include those failed results; those cases,

indicated on the figures with a hat, should be seen as lowest possible values for the

mean and third quartile as failed results are assumed to have taken 5 seconds for the

purposes of calculation. Similarly in this figure, cases where there were no success-

ful results for a given system are omitted from the graph, as they provide no useful

information.

6.2.1 Broad Analysis

Taking the results of the three grids 8x8, 16x16 and 32x32 together we get the picture

that CIS and CISR improve as the sparsity of the system increases. Each jump in

grid size reduces the density of the map by a factor of 1
4
. Each step in density is

accompanied by a reduction in the number of successes for CBS of approximately 1
4

while the results for CISR increase by an equivalent portion. This supports the idea that

CISR benefits from the sparser scenario. Although for the 8x8 grid we are overtaken in

successes by 14 agents the results show that CISR is a competing algorithm in these

cases.

Table C.1 shows the results for the 8x8 square grid. When the number of agents

are low, i.e. 4-8 agents, the success rate for CISR is above the 90% range. Starting

from a 99.1% success for CISR rate at 4 agents the number of wins slowly decreases

with respect to CBS as the number of agents increase. Similar trends can be seen

for the 16x16 grid and the 32x32 grid case, however for the larger grids the results for

CBS tend to peak and then reduce again. This is due to the artificial cap of 5 seconds.

As the complexity of the scenario increases the solution time approaches the 5 second

cut off, when the majority of solutions are above 5 seconds the number of results start

to curtail.

MAPF is a NP-Hard problem and therefore is restricted by the properties of NP-

Hard problems. In particular the unpredictable nature of NP-Hard problems preclude

the possibility of knowing the true complexity of a scenario beforehand. This is our

reasoning behind using the IQM within our results. When we originally run a scenario

we do not know the true complexity, making statistics like the average of a set of seeds

an unreliable indicator of success. However we can view the resulting time as an

indicator of the complexity post run. By restricting the average to the mid 50%, as

is done for the IQM, we restrict the range of complexity to a subset of the overall

complexity and remove some of the more extreme outliers.

Figures D.1-D.7 show Lower Quartile, IQM’s and Upper Quartiles in a simplified

set of box and whisker plots. The figures are displayed with a logarithmic scaling
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to expose the relationship of the three algorithms. The 3 algorithms tend to trace a

shallow ‘s’ shape. The shallowness of the curve show that the agent-time relationship

of the algorithms is close to exponential however the results peter out at the 5 second

cap.

The times of the gaming maps show similar results. The results have been ordered

in order of open blocks as shown in table 6.1. The tables C.4 and C.5 show the relative

success ratios for CISR and CBS. The graphs D.4-D.7 show the Inter Quartile data of

the maps with 4 agents, 6 agents, 8 agents and 16 agents.

The vast majority of the maps tested have a great many more squares than the

3 test grids. The results show that CISR outstrips CBS in all cases shown up to 16

agents. The closest CBS comes to CISR is in the map names lak103d at 16 agents

where CBS has 278 success and CISR 519 successes, there were however a large

number of time outs for both algorithms (1252 time outs for CBS and 1422 time outs

for CISR).

We also include a selection of maps which were used for testing. These are the

bespoke maps and are displayed in appendix A. The time cap was extended to 100

seconds as the sample size did not need to be as large since an average time over 30

runs was taken, in the form of another IQM. However each of the 30 runs are identical

in setup as the map is identical and the agent positions/goals are fixed. The averaged

run times can be seen in table C.8 and a graphs of the data can be seen in graphs

D.8-D.11 sorted by the run time for CISR for ease of reading.

The aim of the Permute maps, A.2-A.5, is to reverse the order of a set of agents.

Each map has a line of n agents to the left side of a n × 3 grid. The goals for each

agent is placed in a mirror position in the x-axis. Agents have to navigate past each

other to reach their respective goal however this setup does not give much opportunity

for CISR to apply the backtracking algorithm as most agents need to move off of the

only non-complex path available to them. However the results shows little proportional

difference between CIS and CISR. Both CIS and CISR outperform CBS in these cases

by a large margin. This margin grows larger as the number of agents in this scenario

increases.

This shows the power of the underlying algorithm CIS and how it contributes to

the gain in performance in both versions of the algorithm. CISR outperforms CIS on

the Permute 4 map, perhaps due to the gain in performance given by the removal of

pause migration. The other permute maps suffer a small loss of performance from the

overhead of the backtracking algorithm although small.

The Outline set of maps, A.6-A.9, were made to test the behaviour of agents which

have coinciding but generally non conflicting routes. A set of agents may travel as a

group from one location to another with little interference. However one wrong move-

ment may leave an agent with little room to manoeuvre.

The CISR algorithm does the best out of the three algorithms especially as the
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number of agents grow. The Backtracking algorithm allows for quick resolution of con-

gestion due to agents running one another into an obstacle. The CIS algorithm suffers

on large grids due to recurrent behaviour such as pause migration and alternate routes

however CISR negates these problems successfully and out performs CBS in all but

the simplest outline map A.6, in which CIS outperforms CBS.

Our third group of maps contain geometry in the form of obstacles to manoeuvre

around. The Crossroad maps, A.10-A.12, contain a crossroad at the centre which

agents have to contend with. An agent which starts at the centre of this crossroad also

has its goal in the centre meaning that it will always return to the centre. Other agents

negotiate with this agent in order to reach their own goals. Another map belonging to

this set is the Geometry 2 map A.13 which consists of a set of corridors with agents at

the ends of them. Agents need to wait at intersections for congested intersections to

clear before moving on.

Both of CIS and CISR outperform CBS on the crossroad maps. The most complex

version of the crossroads maps A.10 the CISR algorithm outperforms CIS showing that

the improvements to CIS in CISR apply to pause migration in this case. The other two

crossroad maps however do not have enough complexity for CISR to outperform CIS.

Similarly for the Geometry 2 map A.13 both CIS and CISR are outperformed by CBS.

This could be interpreted as the success of the constraint based technique at quickly

proving that the f-value needs to be raised to allow agents to pass one another by

waiting for congestion to clear.

The last set of maps have no additional geometry to navigate around however these

maps are similar in nature to the permute maps. Each agent starts at one end of the

map and navigates to the other end in some permutation of he order it started as

in its start locations. Multiple groups attempt this swapping action from either end

simultaneously from either end. These maps come in several forms from the bypass

map A.14, the swaptest maps A.15-A.20 and the pass maps A.21-A.23.

Most of the swaptest maps are confined to a small area and CBS tends to out-

perform CIS/CISR, the only success for CIS/CISR is when CIS outperforms CBS on

swaptest4. For the bypass and pass maps the CIS algorithm outperforms CBS how-

ever CISR is slightly behind CBS and CIS. The pass maps are considerable in number

of agents however the solutions need little in terms of intervention by simply nudging

agents out of the paths of each other and hence are well suited for CIS. CISR seems

to hamper itself with the additional overhead of computing the backtracking algorithm

when a simpler approach of CIS gets to the answer quicker.

Overall the bespoke maps surprisingly show that the CIS algorithm has its own

niches where it can outperform CISR and CBS depending on the complexity of the

situation. CIS performs well when just about any choice will resolve a collision or

progress the search, it also performs well when the solution does not increase the

overall f-value by much. The other area where CIS performs well is the Permute maps
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A.2-A.5 and congested geometry maps A.10-A.13 where the backtracking algorithm

has little leeway to improve performance. However non of these cases are a large

detriment to the CISR algorithm where only a constant improvement can be made to

CISR by using the CIS algorithm. This shows that CISR has greater stability than the

CIS algorithm.

This does not however undermine the effectiveness of CISR as the larger grids and

gaming maps show the performance gain when graphs increase in size or sparseness.

Certain bespoke maps also show this improved performance when the complexity in-

crease such as the last Permute map A.5 and the larger Outline maps A.7-A.9.

6.2.2 Analysis of Time Complexity

The CBS algorithm uses A* as its low level solver. A* is known to be of order O(n log n)

in computational complexity. CIS is linear in the lower level search. The getBranch and

getNext Algorithms are of order O(n) and O(p) respectively where n is the time step of

the collision and p is the number of parent Agentverses.

Many properties of an Agentverse can be calculated with a time complexity de-

pending on p. One notable example is finding the last location at distance d from the

goal along the path v (which we will henceforth refer too as Pd(v) = PDG(Start)−d(v)).

When the distance d occurs after the start of an Agentverse v we can use the expres-

sion v.startT ime+DG(Pv.startT ime(v))− d to calculate the correct time step to query for

the required position. When the distance d occurs before the start of the Agentverse

we traverse up the parent link and try again until successful. This makes the function

Pd(v) of order O(p). An algorithm dependent on Pd(v), or other such properties, on

every step of a linear process dependent on n would have at most order O(np). The

preprocessing Algorithm 10 has order O(p2) as the value Pd(v) is calculated for each

parent with differing values of d.

The quantity p is bounded by the length quantity n, i.e. p ≤ n. The quantity p is

dependent on two processes; 1) every new branch from an existing Agentverse, from

the execution of the Next algorithm, has the possibility to increment the value of p, 2)

the execution of the Backtracking algorithm has the possibility of adding a value up

to the number of steps taken by the Minimal Connection Sub-algorithm. According

to the Minimal Avoidance Lemma 4.2.38 the Backtracking Algorithm is proven to take

the smallest deviation possible, minimizing the addition to p. This means that p is

related to the number of collisions encountered in the past iterations of the path v being

processed or in other terms as a function of depth of the upper level of the solver.

The value of p may rise and fall depending on where branches are taken from, as

all future branches are erased in favour of the new branch. Also the value of p can only

be at most incremented on complex as the Next algorithm is the only algorithm applied

to them. The value of p has a complex behaviour as the Algorithm proceeds making p

an unpredictable other than its dependence on depth.

As the depth increases in a complex or congested environment a number of factors



6.2. RESULTS 87

that change the balance of the algorithm introducing a larger portion of complex paths

requiring the use of the Next algorithm. The Next algorithm can be prone to a process

which we call Pause Migration.

Consider a path which includes a pause in-order to avoid a location at a specific

time t. When Next is applied to resolve a collision after t we run the risk of replacing

the pause with an earlier pause which has no bearing on any events after time t. The

old path and the new path may trace the same rudimentary path and may even share

an identical segment after the two paths meet again before time t. This becomes

solution redundant and has no value in solving the later collision while also increasing

the branching factor. The Backtracking Algorithm eliminates this behaviour when it can

be applied.

The behaviour of p together with the change in algorithm, from Backtracking to

Next, as complexity increases dues to congestion means that the algorithm shifts in

nature. We begin with a near linear lower level search with a low branching factor due

to Backtracking. Then over the iterations we consider more complex solutions which

require Next with a higher branching factor and the value of p also increases with the

depth of the computation.

6.2.3 Conclusion

This shows that CISR has a duality. The results show that in sparse environments the

linear low branching behaviour dominates and CISR has substantially lower times than

CBS. The lower quartile also demonstrates that less complex scenarios in a congested

environment share this trend, as it remains much lower than the lower bound of CBS

for longer. The 16x16 and 32x32 grid results in figures D.2 and D.3 exemplify this fact.

The interquartile range, i.e. the difference between the Upper Quartile and the Lower

Quartile, demonstrate that when CISR excels the range of solution computation times

also remain small. This shows that CISR is predictable and has a more statistically

predictable range of results.

We can also see that when the results are sparse enough CIS outperforms CISR.

This is due to the additional cost of the Backtracking Algorithm. However the results

of CIS quickly grow above that of CISR and then CBS. Results in tables C.6 and C.7

show comparative results for CIS and CISR showing that CIS out performs CISR in the

most sparse of cases. CIS excels in the game map examples frequently beating both

CISR and CBS due to the large and sparse nature of the maps.

In conclusion both CIS and CISR show best performance in sparse environments.

CIS can be more sensitive to the conditions of the map and fall short of CISR when con-

gestion occurs. However CIS can outstrip CISR when the environment and conditions

allow. CISR shows more stable results overall by removing the recurrent behaviour

of CIS. The CBS algorithm shows improvement over CIS and CISR in the more con-

gested environments as shown in the later square grids especially in the smaller grids

such as the 8x8.
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Chapter 7. Case Study

7.1 Case Study: Smart Parking

In this chapter we show the derivative work based on CIS called Smart Parking. Using

a relaxed suboptimal version of CIS we produce an algorithm which attempts to plan

paths for agents to find suitable parking spaces within a map.

Several aspects of the algorithm have been modified to cater for the change in

context. By allowing for a capacity on individual squares and a modified definition

of collision between agents a flow of traffic can be simulated at a larger scale than

individual nodes representing the space of a single agent. The selection of branches

is also modified to reduce the computation time of the algorithm allowing a smaller

selection of alternative routes to be explored speeding up the computation of earlier

cost configurations in favour of later less congested solutions.

7.2 Introduction

Drivers searching for a vacant car-parking space can account for more than 30% of

traffic in a metropolitan area at any particular time [ARS+05]. Clearly a smart parking

system which can efficiently guide motorists to available parking spaces could alleviate

this problem. Traffic authorities in many cities have instigated parking guidance and

information (PGI) systems, providing drivers with up-to-date information on the avail-

ability and location of parking spaces [TL06]. The information may be presented to

drivers via dynamic street signage, or over the internet.

Many smart parking schemes exist based on resource allocation and reservation

[YYRO11, WH11, GC11], whereby the PGI system knows how many spaces are cur-

rently available at each site and drivers are directed accordingly. The systems are

typically based on locating the car-park or street with available spaces which is nearest

to either the driver’s entry point into the controlled area, or the driver’s intended destina-

tion within that area. Many systems also identify the most suitable space by including a

pricing factor, sometimes based on auction or electricity trading (in the case of electric

or hybrid vehicles) [HKI13]. When the target parking space has been identified and

reserved, a Global Positioning System (GPS) can be used to plot the driver’s route to

the parking destination. This can result in multiple vehicles being directed toward the

same parking garage at the same time, or along routes which cross over one another,

which can lead to further traffic congestion along those routes.

In this paper we introduce the concept of collaborative path-finding to the field of

smart parking. We adapt a standard A-star path-finding algorithm to incorporate multi-

ple agents plotting paths concurrently, while taking into account one another’s progress

along their assigned routes. In our simulation, the agents represent drivers being

assigned a parking space, the destinations are the locations of the parking spaces

89
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themselves, and the nodes of the path-finding grid are the streets and junctions of the

metropolitan area. Our approach considers multiple scenarios wherein agents have

taken different decisions in order to avoid over-occupying the same node on the path-

finding grid. A selection technique is employed to identify the scenario which provides

the most efficient solution for all agents at any particular time.

We show that employing this "smart routing"scheme within a PGI system can be

beneficial in a number of ways. Congestion is reduced, as drivers are sent along

routes which do not interfere with one another. A dynamic approach ensures that, as

new drivers enter the controlled area, they are not only assigned an available space,

but are assigned a route which causes minimal further congestion. Journey times for

drivers are therefore reduced. The approach also leads to greater efficiency for the

parking garages themselves, as spaces are vacant for smaller amounts of time, so

revenue is earned over a greater proportion of the day.

7.3 Background and Related Work

In this section we present a brief background to the fields of smart parking in order to

arrive at our contribution of smart routing.

7.3.1 Smart Parking

Parking guidance and information systems play an increasingly vital role in most major

metropolitan areas worldwide [YYRO11]. Car parking is a revenue generator, rather

than a cost centre, in most cities. Utilising a smart parking system can have a posi-

tive effect on that revenue due to improved occupancy rates, market-sensitive pricing

and more efficient revenue collection. Further to this, the benefits to both commerce

and the environment of reducing traffic congestion make smart parking an attractive

proposition.

Earlier implementations of PGI schemes involved informing drivers on the availabil-

ity of spaces and guiding them toward parking garages or streets identified as having

free spaces [TL06]. This could often result in many drivers being directed toward the

same place while car-parks with only a few spaces were being ignored, even if they

presented a better solution. More recently, schemes have introduced the concept of

reservations, whereby a a driver is allocated a specific space which is then marked as

unavailable until the specific driver arrives [WH11]. The reserved space may be pass-

word protected until the assigned driver arrives (passwords are communicated through

SMS) [HBD10]. The reservation approach has been augmented by the introduction of,

for example, auctioning, price factoring, and trading of electricity, in the case of hybrid

and electrical car schemes [HKI13].

Technology for detecting whether a parking space is occupied (including inductive

loops, weight sensors, pneumatic road tubes, etc.) is beyond the scope of this pa-

per; for our purposes it is assumed that information on the occupancy and location of

spaces is available and correct.
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Little or no work has been carried out on planning how drivers reach their allocated

parking space. Existing systems typically rely on GPS navigation for individual drivers,

or dynamic roadside signage for directing many vehicles along a shared route [GC11].

These approaches take no account of the congestion, and therefore time delays, intro-

duced by sending multiple vehicles along shared routes toward reserved smart parking

spaces. Further congestion can be introduced at streets or traffic junctions where di-

rected routes intersect. In this paper we address for the first time the issue of planning

route information for multiple vehicles approaching allocated parking spaces, by the

application of a novel collaborative path-finding approach.

7.4 Protocol

In this section, we present our smart routing protocol for multi-agent path finding. Our

algorithm is a variant on multi-agent path finding using A-star. Utilising a square grid

we represent a portion of a city, each square containing data concerning the capacity

of the corresponding area of the road network. Using the idea of reversing the direction

of A-star we determine the exact distance to a goal. Decisions can be precomputed for

every configuration of neighbors and their relative distances to the goal. We compile

these decisions into a ’specification’ which allows us to reference a lookup table during

the processing stage of the algorithm.

We apply an ordering to each cardinal direction, enabling us to remove arbitrary

decisions from the system. This implies an ordering on paths from their respective

starts to their goals. Using specific paths relating to this ordering we can construct any

possible route on the grid. We call routes constructed in this manner vehicle routes or

agentverses. We select groups of vehicle routes together to represent all the vehicles

in the system. We call these groups collective routes or multiverses.

The goal of our algorithm is to select a collective route which minimizes the to-

tal congestion within the system. We achieve this by applying A-star to the collective

routes. We run a set number of iterations of A-star over the collective routes, storing

results with low congestion while the algorithm maintains lower total path length. When

congestion is detected within a collective route, the algorithm redirects random por-

tions of the traffic to create a new collective route which is reintroduced back into the

algorithm.

In our experiments the path finding algorithm is applied once every time step of the

system. This simulates an evolving system, allowing us to introduce new vehicles into

the system to test the adaptability of the protocol. Key elements of the algorithm are

discussed below.

7.4.1 Path finding

Our approach to optimised car-park routing requires the definition of several algorith-

mic terms that are used throughout this work. In this section we outline the concepts

underpinning the algorithm.
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Grid Square: In this context, grid squares of the map (or graph) can be considered

to represent likely points of intersection between flows of traffic rather than a truly rep-

resentative route-map of a city. The grid square structure contains several important

variables in our algorithm. Specifically, the structure permits us to determine the po-

sition of a grid square, its implicit neighbours, and a capacity value for each direction

(including ’pausing’, which is an increment through time rather than space). These

capacities represent sustainable throughflow of traffic.

Node: One approach to solving multiagent path planning is to represent the state of

every agent at every timestep as a node. In our simulation, the term node represents

a collection of potential, complete routes - one for each vehicle within the system.

Reverse A-star : Reverse A-star is a useful technique to calculate a perfect heuristic

[Sil06]. The principles of generic A-star [HNR68b] are applied to every square on

the graph, from the agent’s goal. The heuristic cost is therefore not a ’best guess’,

but an accurate cost from a given square n to the goal assuming no changes to the

environment occur during the journey. Given that an A-star system is always aware

of the absolute cost taken to reach the square under consideration, Reverse A-star

provides an exact and absolute cost for any given route. For our purposes, this should

be considered the exact cost (in terms of time to travel the route) between a given

carpark and any point at which a given car might be located in the map, assuming the

car does not need to avoid traffic choke points.

Node Possibilities and Costs: Assuming a normalised graph, the application of

Reverse A-star facilitates a valuable algorithmic optimisation. Specifically, it permits us

to reason that if we consider a given square n, that the neighbouring squares to n can

only have one of three heuristic pathing costs associated with them: h, h + 1 or h − 1,

where h is the cost of the considered square n.

In the special case of a square grid the possibilities are reduced to h + 1 and h −
1. In our applied protocol, when combined with the perfect heuristic outlined above,

this permits us to employ our path-planning in a step-by-step fashion. In terms of

engineering optimisation, this enables us to assign a specification to each square and

reference a look-up table for swift decision-making when rerouting.

Path Ordering: A consequence of the normalised graph in conjunction with Reverse

A-star is that the system will often be required to decide between squares of equal

heuristic cost (if re-pathing, h+1). In order to assist that decision-making, we introduce

a new property to the pathing algorithm which favours (prioritises) one direction over

another of equal cost.

For our purposes when plotting routes for multiple agents through time, pausing is

considered a direction in its own right, and indicates not only consequences of traffic

flow but, additionally, opportunities which careful traffic flow management can encour-

age. The inclusion of a direction priority implicitly defines an ordering on the paths from

a square to a goal; from each square on the graph we can select a preferred, unique
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path to the goal, which we call the α path. A path with a higher f value would be higher

on the list, but within the same f value set ordering is decided lexically with respect to

the ordering of directions. We call this process ’preferential ordering’.

7.4.2 Vehicle Route or Agentverse

We employ the term vehicle route, or agentverse, as a means of differentiating between

the path proposed by a single vehicle to reach its destination, and the overall collective

route or multiverse. A vehicle route is the path proposed for a given vehicle to reach its

destination carpark, with no consideration of the other cars moving through the map.

A key assumption in our approach is that vehicle routes will be largely similar to their

most optimal paths, meaning they rank lower (better) in terms of preferential ordering.

The collective route, functionally, is a collection of suitable vehicle routes which reduce

congestion.

We represent vehicle routes in our algorithm as segments of optimal paths. As

such, we can use segments of α paths to represent all paths. Vehicle routes are

represented using a start time, an α path, and a past. The past is a reference to another

vehicle route from which the currently considered route branched. In this fashion, the

solution’s memory footprint and computational complexity is lowered. The beginning of

a particular vehicle route segment connects to a point along another route segment for

the same vehicle.

These connections are the only way a vehicle route can transition in a manner out

of the preferred order. They are triggered generally in a case where an α path is found

to be potentially non-viable due to square occupancy (too many vehicles being advised

to pass through a given intersection, potentially leading to unmanageable congestion).

Let us consider the following example, at time step t. The directions South and West

are toward the goal. South is favoured by preferential ordering, but we can construct

a vehicle route with start time t + 1 starting directly to the West of the current square.

This vehicle route, with the original as its past, would have the same f value as the

current vehicle route but would represent a path which took West as its next direction

at time t.

The same can be done with the North and East directions but this will yield a vehicle

route with an increased cost of f + 2. A pause can also be represented. This is done

by repeating the current square as the start of the α path, with the same start time of

t+ 1 and past, as the other examples.

The only vehicle route segments without a past are the initial vehicle routes com-

puted at the beginning of the planning algorithm. This initial vehicle route stores the

complete α path from the vehicle’s start square to the goal, with a start time of 0. All

vehicle route segments will ultimately form a chain that leads back to this initial vehicle

route, forming a traceable tree from which the final vehicle route is assembled.

One potential issue with regards process efficiency and memory management is

the recreation of vehicle route segments which already exist. We circumvent this issue
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by storing forward pointers alongside the α path step data. Each step along the path

can store a pointer to a single vehicle route. If the time of that step is t then the vehicle

route would have start time t + 1, meaning that that step would be the corresponding

vehicle route’s immediate past. There can be up to at most 4 vehicle routes that would

share that timestep as its immediate past, (other directions and pause at time step t +

1). The other vehicle routes are stored in a linked list; each vehicle route stores a next

pointer to facilitate the linked list.

7.4.3 Path Progression "Next"

As highlighted in the previous section, multi-agent path-planning is a PSPACE-hard

problem, with computation time exponentially connected to the number of agents being

considered. In order to mitigate this issue, some form of pruning of the state space

is required, based upon domain-specific assumptions. Our main assumption is that

vehicles will pursue routes which mostly progress towards the goal. Hence we use

combinations of fully formed vehicle routes as our nodes, which we term a collective

route, which shall be outlined later in this section. The branches of these collective

routes are made by replacing individual vehicle routes with like routes ranked higher

(worse) in terms of preferential ordering. The algorithm we use to do this we call ’next’.

When a vehicle route is constructed the decision of which step to take is made im-

mediately, comparing this to the traditional A-star approach (in which nodes represent

a single timestep of the system), this results in branching decisions being made out

of order. In situations where the traditional A-star approach would have selected from

equivalent nodes on the priority queue to resolve a conflict, our algorithm has made the

default decision of moving forwards, creating congestion which we need to resolve.

We can resolve these conflicts by adding in some of these decisions afterwards.

In order to resolve these conflicts the full A-star algorithm would have picked a node

representing an earlier timestep which could potentially avoid the conflict. Representing

this in our algorithm we need to select a branch from a current conflicting vehicle route

or one of its past vehicle routes. This branch must happen before the timestep of

the conflict. We also prefer to branch later in time, as this avoids adding conflicts at

timesteps we have already solved. The resulting vehicle route is of the same f value or

higher, or equivalently higher on the preferential ordering list.

Given these facts our next algorithm needs to select the highest timestep before the

conflict with a branch at a preferred f value. The algorithm can be split into two cases,

1) the current timestep we branch from is part of an α path of the vehicle route, 2) the

timestep is a branch of the current vehicle route chain (i.e. the current timestep is t and

the vehicle routes have start time t+ 1).

In case 1) there is no need to consider directions past the second in our preferential

ordering of directions (this includes Pause if no other direction moves forwards). If there

is a need to consider these cases, they will eventually be reached as a subset of case

2), a branch of an vehicle route. This means the ’second priority’ of a timestep becomes
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important in our algorithm. The second priority can be looked up using the specification

of the current square, calculated from our augmented reverse A-star algorithm.

In order to speed up the process of finding the needed timestep each vehicle route

stores an array of three indices (pq), and each timestep stores a single index (pq_next).

The pq array stores the maximum time that a timestep has a second priority branch

with a corresponding f value offset. This means that pq(0) would store the maximum

time step at which a branch can be made that would not effect the f value. The index

of pq(1), and pq(2) correspond to vehicle routes with f value + 1, and + 2 respectively.

The pq_next index creates a linked list of timesteps with the same second priority.

Using this extra data we can skip ahead to a known priority offset, then we can follow

the linked list until we are below the conflict time. This can be interleaved with another

technique; by starting at the timestep before the conflict and incrementally testing for

the correct second priority value. Together one or the other process will eventually

terminate, either with a result, or by proving there is no branch at that priority.

7.4.4 Branch Compression "Stem"

To reduce the number of branches we compress a set of nodes (each being a collective

route) with a common property into a single meta node called the stem. This node can

be inserted into the priority queue with priority equal to the minimum of the group of

nodes it represents. When the stem is popped off the queue it can be expanded into a

subset of the nodes it represents together with another stem of the remaining nodes.

This technique has the advantage of postponing the processing of a large number of

nodes until they are needed. Stems work most efficiently if the stem can be constructed

to have a higher f value than the remaining nodes, which will be processed before the

stem.

In the case of the next incrementing algorithm, the stem is used to correctly split

the higher f value branches from the lower ones. Given a vehicle route, repeatedly

calling next with its result will give vehicle routes with successively lower branches, as

these branches are always available to the algorithm. In this manner all branches at

a particular f value can be represented by one node. However if a higher f value is

needed those solutions may be cut off before they can be considered as possibilities.

If a clash happens at timestep t and the first branch available is at timestep s < t − 1,

then if the solution lies at a higher f value, branches made between s and t will not be

considered (since the new branch replaces this time period).

Using a stem we can use next with the same vehicle route but using successively

higher f values. This solves the issue of missing higher f value solutions.

7.4.5 Collective Route or Multiverse

The collective route, or multiverse, is a collection of vehicle routes, and represents

a potential solution. These data structures make up the nodes of the main A-star

algorithm. Each node has a cost associated with the sum length of the individual
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vehicle routes, and each vehicle route within the collective route has a corresponding

integer value representing its current stem (i.e. the current f value next should look for).

When a collective route is popped off the priority queue it is checked for congestion

(starting from time 0 until all agents have reached their goal). Points of contention are

placed onto a priority queue, with priority proportional to the amount of congestion.

After a congestion is detected and the point of highest congestion is popped off the

priority queue, a number of random combinations of vehicle routes are incremented

via next. These combinations form individual collective routes, and a corresponding

collective route has its vehicle route’s stems incremented. We maintain these stem

nodes to preserve the structure of branches within our algorithm. As discussed earlier,

if we did not maintain the stem, certain possibilities would be unreachable.

For each vehicle in a collective route we store the corresponding goal node. In this

manner we can mix collective routes which use different goal nodes allowing a vehicle

to choose between viable goals. However we restrict the number of possibilities, since

if all combinations of vehicles and goals were considered the system would become

unmanageable (this could be rectified with another stem system).

7.4.6 Traffic Planner

We define a data structure called the traffic planner. Its job is to simulate a use case of

the algorithm. Every timestep a full path plan is completed for all vehicles currently in

the system. Depending on the result we move each vehicle one step along the planned

path. During each round of the full path planning we cap the maximum number of

iterations, i.e. maximum number of collective routes considered. This ensures the

algorithm takes a reasonable time to complete.

As vehicles get added to the system we randomly pick one goal in the simulation

and free one space. This ensures the simulation can never reach deadlock, where

a vehicle does not have a goal to reach. This does not change the semantics of the

problem since if there wasn’t a goal for a vehicle to use it would not have been entered

into the system. As vehicles enter the system we do a full path plan with all goals

available. The resulting goal from this solution becomes that vehicle’s permanent goal.

A priority queue is maintained using a fitness criterion to decide priority. All the

collective routes we iterate get pushed onto this results priority queue, such that if

we reach the maximum number of iterations we do not select a collective route which

introduces more congestion.

7.5 Simulation

We model a portion of a city with a 9x9 grid map, each grid square representing a

collection of intersecting roads. Each square corresponds to the same journey time

segment (i.e. each square takes the same time to traverse), as opposed to a geometric

correspondence. In practice these may correspond to geometric locations, but for our

purposes a normalized cost applies.
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Each cardinal direction of each square was assigned a random capacity between 1

and 3. These capacities simulate the different road throughputs. A capacity of 1 might

represent a slow road, a multi-lane road subject to roadworks, or a road with arbitrarily

low traffic throughput; similarly, a capacity of 3 might correspond to a high speed limit

or a multi-lane road operating at full capacity. All non-goal pauses were left at capacity

1. This defines the maximum capacity of our simulated segment of city to be roughly

730 (the number of capacity slots a vehicle can occupy across the entire map). We

assigned 9 goals to the map, representing car parks, and randomly distributed 125

available parking spaces among them.

We designed two scenarios for simulation; each scenario was run several times,

generating two sets of results. Each set varied the number of agents in increments

of 20 vehicles, starting from 20 and continuing up to 500 vehicles. Our proportional

occupancy of the road network across its length equated to between approximately 3%

and over 68%, giving us a broad spectrum of occupancy proportions for analysis.

The first scenario deals with a constant flow of traffic. Half the vehicles are ini-

tialised at the beginning of the simulation; these vehicles are positioned on the map

using a pseudo-random algorithm which avoids goal squares (parking spaces). The

remainder are introduced over the next 9 time steps. We call this scenario the ’stan-

dard traffic scenario’. This represents a situation where a large initial spread of agents

are navigating towards parking spaces, and a lower, but still proportionally significant,

number of vehicles enters our portion of the city over subsequent time-steps, during

which all are cooperatively and reactively navigating. This ensures an approximate

constant flow since the maximum distance a vehicle will travel is 18 on a 9x9 grid, on

average a vehicle will travel less than half this distance. Extending the start time any

higher than 9 means that we are no longer testing this vehicle in conjunction with the

majority of the original vehicles (equivalent to the same results with less vehicles but

higher throughput).

The second scenario starts all vehicles at time step 0. This scenario simulates ini-

tially high throughput, which tapers off as vehicles find their destination; this will give

a higher peak in activity but will not introduce unexpected factors such as vehicles ar-

riving to our portion of the city later in the simulation. The scenario can be considered

representative of a traffic stress point, where the road network begins with proportion-

ally high occupancy, relative to the number of vehicles on it.

Whenever vehicles are positioned in the system, they are done so using this pseudo-

random method. An additional constraint, aside from the limitation regarding goal

squares, is that the maximum number of vehicles which can begin in a square is equal

to the sum of all its capacities (four cardinal directions, and a single pause). Agents are

always added to the simulation in the same ordering. As agents are added a pseudo

random goal is picked and its capacity is incremented. The sequence of goals which

are picked is always the same ensuring comparisons between methods are meaningful.
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Each scenario places strain on different aspects of our algorithm. The first shows

how our protocol handles unexpected input into the system. Vehicles can be added to

the area leading to congestion where there would not have been before. Our system

tends to spread vehicles out among the grid squares, which may introduce congestion

when we add new vehicles, but the system should be better adapted to handle this

change.

The traffic stress point scenario has the advantage that vehicles are not introduced

after the first time step, meaning that the original simulation results can be built upon.

Successive time steps will pass the point in time at which a particular congested square

was a problem and redistribute iterations onto the later time steps. However the be-

ginning of the simulation will start with a high number of vehicles in arbitrary clumps,

which will be spread out through the network in later time steps; in this fashion, occu-

pancy is disproportionately higher than in the former scenario. The fitness of later time

steps should almost never exceed that of earlier time steps because there are fewer

points of contention to consider (locations at points in time), however since branching

is randomized this is not guaranteed to be the case.

We use two existing (non-collaborative) traffic routing protocols as our comparisons.

The first simulates a road network without smart parking and therefore no parking

reservation. Each vehicle uses an in-car route planner to find their route to the nearest

car park (regardless of whether that car park has spaces available). In our simulation

once these vehicles have reached their destination they are removed whether or not

spaces are available. This is a best case for this simulation: vehicles which reach their

goal are allotted spaces unknown to the original system. These vehicles would usually

re-enter the system in search of another car park with an available space.

Our second test run simulates a smart parking system where parking spaces can

be booked beforehand. This simulation is run as a single iteration of our algorithm,

in which case each agent selects the nearest goal and deducts a space from it. This

guarantees each vehicle a space at the end of its route. This test is representative

of current smart parking solutions, which to date have not taken account of collabo-

rative path finding. This smart parking approach would reduce congestion of traffic

searching for a space among several car parks, which is not factored into the previous

comparison.

The third test run represents our own system, combining smart-parking with cen-

tralised smart-routing. We selected between optimal computation time and result qual-

ity to decide the maximum number of iterations and chose a branching factor slightly

higher than 1 to determine the number of vehicles redirected per congested square.

We compare the overall congestion as our measure of success. However we also

compare total path length to ensure we haven’t mitigated congestion at the cost of path

length. Our first test run will always have the minimal total path length. A good result

would indicate that the additional cost of path length would be comparable to that of
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smart parking with no smart routing.

7.6 Results and Evaluation

The experimental results from our scenarios are presented as data sets comparing the

congestion of the system with the summation of the total vehicle path lengths. Before

informed conclusions can be drawn regarding these factors, they should be explicitly

defined.

Total Path Length: Total path length represents the summation of each vehicle’s

route time from their entry into the simulation until they reach their respective goal.

We use total path length as an indicator of the extra distance vehicles will have to

travel as a consequence of avoiding congestion. We require the total path length to be

comparable to that of our second comparison, smart parking.

Extension: We define extension of capacity as the difference between the activity of

a capacity slot and the maximum capacity of that slot. The extension represents how

much a particular slot is over capacity. In the case of a slot which is under capacity this

value is 0.

Congestion: Total congestion is the summation of extension over the entire map

during the entire simulation. This gives us a measure of fitness for our algorithm: the

lower the resulting congestion, the better the algorithm has performed. This must be

offset against any cost increase in total path length.

Point of Maximum Congestion: The point of maximum congestion is equivalent to

the maximum extension, assessed throughout the entirety of the simulation, highlight-

ing the location most vulnerable to congestion. The higher this value, the more likely

a given route plan is to exacerbate congestion on a wider scale throughout the road

network. This could be considered analogous to choke points causing traffic jams, or

grid lock, in particularly busy areas of the road network.

7.6.1 Standard Traffic Scenario

The standard traffic scenario models a situation where a large amount of traffic begins

within the system, and the traffic linearly increases over the course of the simulation.

Figures 7.1.1 and 7.1.2 illustrate the results obtained from the three test runs of

this scenario. It should be noted that the number of vehicles along the x-axis indicates

the total number of vehicles present within that iteration of the scenario, and does not

represent an incremental increase on vehicle count for a single test. To illustrate, a

vehicle count of 20 indicates an test where 10 vehicles were present in the simulation

at time step 0, and 10 more were added over the course of the next 9 time steps; a

vehicle count of 500 indicates a test where 250 vehicles were present in the simulation

at time step 0, and 250 more were added over the course of the next 9 time steps.

In Figure 7.1.1 we note that the total pathing cost of our algorithm is marginally

higher than the total pathing cost of both the non-collaborative smart parking and

generic car routing solutions for vehicle counts above 100. We recall that the generic
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Figure 7.1: Comparison of journey times and congestion level for standard traffic sce-
nario (half of traffic introduced at start of simulation, half introduced linearly as simula-
tion progresses).
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car routing solution shall always provide the lowest possible total path cost, as each

vehicle plots a route to its destination without consideration to other vehicles, and our

percentage comparisons are based upon this.

Taken on average across all vehicle counts, when compared to the car routing ap-

proach, the non-collaborative smart parking simulation is 5.55% more expensive. In

comparison, our smart routing algorithm is 12.49% more expensive. This means that

the minimum possible time for a vehicle to reach its goal is some 12.5% higher under

our system than under a system with no smart parking or smart routing, but it assumes

that congestion plays no role in the time taken to reach a destination.

We know that busy road networks are particularly vulnerable to congestion; the

corollary to this is that the more congested a road, the higher the actual time taken

to reach a destination, whatever the ideal shortest time might be. The reduction of

congestion is a key goal in our ongoing research, and Figure 7.1.2 illustrates the per-

formance of our smart routing algorithm in that context.

Statistically, we compare congestion against smart parking, rather than generic car

routing. This is a more meaningful and challenging comparison for our algorithm, as

smart parking has uniformly lower congestion values than generic car routing. Taking

the average across all vehicle counts, the congestion level obtained through the ap-

plication of smart routing is 42.00% that of the congestion observed when simulating

smart parking without collaborative path finding.

At best, observed with 200 vehicles (road network occupancy of approximately

25%), the congestion value obtained through smart routing is 23.08% of that observed

through smart parking alone. Considering our points of maximum congestion, smart

routing reduces the congestion of these ’gridlock’ areas by 25%, on average, and oc-

casionally by as much as 58% (with 420 vehicles in the network).

Taking Figures 7.1.1 and 7.1.2 together, we can also compare the trends in relative

performance. As vehicle count increases, there is a very visible performance benefit in

terms of congestion level, while a far shallower performance hit in terms of total pathing

cost. This invites significant financial benefits to the city as a whole: the road network

is able to ferry more vehicles, consistently; the reduction in congestion means that time

spent idling in heavy traffic is reduced, beneficial to both the local environment and

consumer; commercial districts within a city can encourage a greater throughflow of

high street consumers.

7.6.2 Traffic Stress Point Scenario

The traffic stress point scenario is designed to present a worst-case environment for our

smart routing algorithm, where all vehicles accessing our portion of the road network

arrive simultaneously and require collaborate routing en masse. Figures 7.2.1 and

7.2.2 illustrate this scenario’s experimental results.

Comparing average total pathing cost increase once again with the best-case,

minimum-cost paths provided by generic car routing, non-collaborative smart parking
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Figure 7.2: Comparison of journey times and congestion level for traffic stress point
scenario (high volume of traffic all introduced at start of simulation).
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increases total path cost by 5.88%, while smart routing increases total path cost by

16.85%.

In the case of congestion, however, which we again compare to the smart parking

case in order to illustrate how collaborative route planning and smart parking can be

employed in tandem to greater effect, there are significant performance gains. Taken

across all vehicle counts, smart routing reduces congestion caused by traffic using the

system to 58.92%, relative to smart parking alone. At the best case, which occurs with

road network occupancy of approximately 10%, congestion is reduced by 70%.

The points of maximum congestion across all vehicle counts are lowered by an av-

erage of 13.32%, with the best case occurring at network occupancy of approximately

28%, where the worst ’gridlock’ point’s congestion was reduced by over 46%.

While these figures are not as impressive as those observed in the standard traffic

scenario, this is to be expected as the stress point reflects a worst-case situation for

our algorithm. The standard traffic scenario, where traffic is added and removed from

the system over the course of time, is a better representation of true traffic flow.

Even in this worst case, congestion caused by traffic utilising smart routing is re-

duced by over 40% relative to smart parking alone. This, combined with the com-

paratively lower increase in total pathing cost, invites statistically significant financial

benefits, both to the commercial districts of cities which might employ smart routing,

and to enterprises whose performance hinges upon flowing road networks.

7.7 Conclusions and Future Work

In this work we have introduced the concept of smart routing to the increasingly vital

field of smart car parking. We have presented a novel algorithm addressing multi-agent

path planning, and applied it to the problem of congestion within major cities. The algo-

rithm has been described in detail, with domain-specific terminology employed where

it eases understanding of the underpinning mathematics. Two scenarios have been

presented, and the algorithm has been applied to them. Results of those experiments

have been provided and discussed in some depth, and shown to be very encouraging.

The results outlined in Section 7.6 make a strong case for the adoption of collab-

orative route planning, in conjunction with existing smart parking technologies. The

computational complexity of the operation is reduced through the algorithmic approach

outlined; the relatively small increases in total route length are not indicative of an

overall increase in journey time, as reduced congestion on the road network would

benefit traffic flow throughout. The reduced congestion caused by drivers searching

for spaces has clear implications for city governance, both in terms of increased rev-

enue from parking charges and increased commercial and environmental benefits from

better traffic flow in metropolitan areas.

With the advent of GPS systems which communicate through mobile telecommu-

nications networks as a means of relaying real-time traffic data, and the inclusion on

many internet-capable smartphones of GPS-based navigation software, much of the
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required infrastructure to pursue this technology is already in place. Such systems

already have the capability to provide post-hoc assessments of traffic choke points.

Smart routing, if employed in conjunction with existing traffic-flow modelling techniques,

can provide a deeper insight into road network intersections which are exceptionally

vulnerable to congestion, while its commercial implementation would help offset that

very vulnerability.

This research aims to encourage the commercial exploration of this potentially ben-

eficial area of information technology. Future work in this area shall explore the ap-

plication of the prototype engineering solution to large road network segments, drawn

from cities noted for their traffic flow issues.



Chapter 8. Critical Review

In this thesis we have constructed an algorithm which solves the Optimal MAPF prob-

lem. There are advantages and disadvantages to using this approach over other more

general approaches in the area. Also contrasting our specific approach (CIS/CISR) to

the state of the art (CBS) we discuss the relative advantages and disadvantages of our

techniques.

8.1 Optimal MAPF vs General Multi Agent Approaches

Optimal solvers fully solve the problem that is given to them. Their end goal is a

solution which is the most optimal solution of all solutions. This is opposed to optimizing

solvers which either start with an unoptimized solution which they continually improve

or construct solutions which improve over iteration of the algorithm. Often an optimal

solver will have no intermediary stopping point where it can return a suboptimal solution

which may meet the requirements of the task.

Optimal solvers also tend to take considerably more time to reach their solution than

the suboptimal equivalent. If the only requirement of the task which needs solving is a

solution which does not need full optimization then suboptimal solvers would be suffi-

cient. MAPF however is an NP-Hard problem when only considering the completeness

of the solution. This can be seen by the relation to the 15-puzzle. This means that even

suboptimal solvers can take an inordinate amount of time depending on the complexity

of the given configuration of agents on the map.

In contrast to suboptimal and optimizing solvers optimal solvers can guarantee that

the solution they return is the most optimal solution. Whereas suboptimal solvers and

optimizing solvers may not know the true cost of the most optimal solution. Therefore

not knowing when to stop processing the problem. In this manner optimal solutions

can be used in critical systems where the cost being optimized is of greater importance

than the computational time needed to compute the solution.

Behavioural irregularities can also be avoided when optimal solutions are used.

Suboptimal solutions without restrictions on the agents involved can have undesirable

effects on the paths computed. Algorithms such as Silvers HCA use reservation tables

and partial solving of individual agents to mitigate the time spent computing a solution.

However behavioural irregularities can occur due to the partial solving of the problem

leading to undesirable results such as oscillating states which make no progress to-

wards the overall solution.

8.2 CIS/CISR vs State of the Art (CBS)

The CIS and CISR algorithms have a similar approach to solving the MAPF problem.

Using a two layered approach which branches on collisions between agents the work
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done by the algorithms is mitigated to a level related to the number of collisions rather

than the branching factor of choices. This restriction of search space however varies

between the two algorithms. The search through solution space can introduce more or

less collisions depending on how previous collisions had been removed.

The base of our algorithm CIS removes collisions by searching for the first available

alternative path before the point of collision. This has the advantage of being a linear

operation as opposed to the O(n log(n)) A* operation that CBS uses. However this

can reintroduce the collision at a later point if the branch that has been chosen repeats

the collision. This can happen in a number of ways, one such process is called pause

migration where the point at which the algorithm pauses the agent before a collision is

shifted back in time but retaining the same path towards collision and hence re-colliding

with the other agent.

This problem and other similar problems are solved with the extension to our algo-

rithm called CISR. By analysing simpler paths called Non-Complex paths we remove

the recurrent behaviour from the common cases. This approach however can only be

used in a planar graph as the algorithm takes advantage of the boundary that is formed

by a closed loop of nodes.

The linear nature of CIS and CISR allow for the algorithms to out perform CBS when

the problem is sparse in nature. Large maps and few collisions proportionally lead to

the linear part of CIS/CISR outperforming the O(n log(n)) lower layer A* search. This

can be seen from our results as grids grow larger results are skewed in our favour.

Our approach to proving the validity of our algorithm also has its own advantages.

We construct a firm mathematical underpinning deriving base properties of planar

graphs and the paths on it. This constructive method of proving our algorithms’ va-

lidity allows for a greater understanding of the problem and a forms a basis for further

extension to our algorithms.



Chapter 9. Conclusion

9.1 Introduction

Computation of optimal and complete solutions to MAPF scenarios is a NP-Hard prob-

lem. As such any effort to further the capabilities of the state of the art must focus

on a specific domain, and thoroughly explore that domain. This thesis brings forwards

a new approach to obtaining such solutions, and improves both the predictability of

compute time and its absolute value, in the domain towards which our algorithm is tar-

geted. Our approaches are rooted in the principals of graph theory, and improve our

understanding of the nature of the problem.

In this thesis we have constructed two algorithms CIS and CISR. An ordering was

constructed and leveraged in order to prove and implement the basis of our technique

CIS. Using CIS as a basis and using the Planar condition we were able to reason

about the structure of a set of paths contained in a region enclosed by two paths.

This region was used to construct a culling algorithm which we called Backtracking.

The CIS algorithm was extended into a new algorithm called CISR which included the

use of Backtracking. The results of our testing show that CIS and CISR significantly

outperform CBS in sparse environments.

9.2 Contributions of the Thesis

The contributions of this thesis can be summarized as:

• A graph theory re-visitation of the underlying theories of optimal MAPF.

– We have gone back to the first principals of MAPF and focused specifically

on problems where collisions are most likely to be an issue, e.g. normalized

node graphs. We first approach this from the area of ordering by applying an

ordering to the paths of an agent. We then use the planar condition to rea-

son about the motion of Complex and Non-Complex paths. This approach

affords us the possibility of a linear lower layer to our algorithm and then

allows us to cull regions of paths which coincide at the same collision point.

• An algorithm (CIS) based on the ordering of paths which uses a linear lower layer.

– Inspired by the Conflict Based approach CIS implements a two layer algo-

rithm. The lower layer is a greedy linear search which allows for fast com-

putation of alternative routes. This allows for significant improvement over

state of the art, CBS, in sparse environments.

• An algorithm (CISR) which allows the culling of a region paths which coincide at

a collision point, through a tracing operation which is itself linear.
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– CIS is extended to CISR by including a culling algorithm called Backtracking.

The Backtracking algorithm contains all paths which reach a shared point of

collision and searches for the first alternative to the collision. The inclusion

of the Backtracking algorithm in CISR allows the algorithm to out perform

CBS in all cases originally published in their paper.

• New algorithms which provide answers faster than the existing state of the art.

– Our benchmarks demonstrate the performance improvements over our pri-

mary comparator CBS. We show that there are significant improvements in

performance when CIS and CISR are applied in sparse environments.

• A more statistically predictable compute time.

– The predictability of compute time is shown to be a tighter bound as the Inter

Quartile Range of compute times is smaller in a significant majority of tested

cases.

9.3 Future Work

The CIS algorithm allows for various avenues for development. This thesis has outlined

the base algorithm CIS and the extension CISR based on the Backtracking Algorithm.

Here we will identify several improvements and extensions for later work:

9.3.1 Generalized Cost Functions

Firstly we plan on modifying the Agentverse Data-Structure and Branch search algo-

rithm in order to accommodate more complex cost functions for paths. The current

cost function is calculated as the number of time steps and agent spends away from its

goal node. The cost function is simple to calculate and also simple to implement within

our framework. Small changes would be required to implement similar cost function

into the implementation. However cost functions such as the Fuel cost function may

require more work. The Fuel cost function eliminates the cost of pause moves allowing

the agents to stay on any given square along its solution path for any given time. This

will cause the priority driven technique of CIS to never breach the initial cost of the

path. Further work can be done to reason about cost functions with zero cost moves.

9.3.2 MA-CBS and other improvements to CBS

In future work we plan to investigate the possibility of extending CIS and CISR in the

same fashion as MA-CBS extends CBS. Since CBS and CIS/CISR have a similar struc-

ture due to the fact that they are both conflict based approaches the possibility of an

extension similar to MA-CBS is worth exploring.

Further refinements to the MA-CBS approach are discussed by Boyarski et al[BFSS15,

BFS+15], and non-optimal versions of CBS are explored by Barer et al[BSSF14b]. Our

current work is compared against the original algorithm[SSFS12a]. In future work we

will compare against the refinements[BFSS15] and extensions[SSFS12b].
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9.3.3 Explore the Definition of Non-Complex

We intend to explore the structure of Non-Complex sub-graphs and the accompany-

ing definition of Non-Complex paths to discover the extent to which the Backtracking

Algorithm can be improved and extended. The current definition may have room for im-

provement and allow the Backtracking algorithm or modifications thereof to be applied

more often. For instance removing the restriction that Non-Complex paths must lie on

a rudimentary path. This would allow paths to travel laterally by a significant amount

outside of the usual Non-Complex sub-graphs. By merging multiple Non-Complex sub-

graphs starting from different positions on the map but all ending on the same goal we

would be able to reason about the extended definition of Non-Complex paths.

9.3.4 Explore the Possibility of Graphs Close to Planar

An exploration of the use of the planar condition in our algorithm may allow us to relax

the condition in certain circumstances. First we may consider cases where there is

a projection which minimizes the number of intersecting edges or large regions which

overlap but do not have complex interconnections. We wish to explore the possibility of

several layers of Non-Complex sub-graphs representing the possibilities (over or under

the bridge of nodes, etc).

Another possibility to consider is square grids with diagonal movement. This brings

edges which cannot be resolved into planar form. However a version of the backtrack-

ing algorithm with a dual layer which encompasses a wider channel of nodes may cover

the possibilities which would have escaped from the original Backtracking algorithm.

9.3.5 Profile-Based Preferential Ordering

It may be possible, by profiling the properties and likely initial directions of agents, to

customise the ordering function such that paths of equivalent cost favour those which

lead away from other agents. In many ways, this is analogous to the CAT table of

CBS. This optimisation would, potentially, reduce the possibility of clashes between

agents which theoretically never need meet for any given minimum cost solution, but

who might meet under the current schema. If such a profile is consistent throughout a

given solution computation, the optimality and correctness of CIS (and, thence, CISR)

would be unaffected.
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Symbols List

A The set of all paths on G.

Ai The set of all paths on G which are associated with agent i ∈ K.

αi The least path v ∈ Ai with respect to the relation <t.

B The branching set B. A set which can be used as a suitable replacement for a

multiverse v in a working set W . The branching set covers all the solutions that

v does however the multiverse itself is removed.

βft (v) The top branch time step. This value represents the latest time step before t that

a branch from the path v can be made and that the new path can achieve the cost

of f .

χ(v, u) The collision function. Given two paths u, v ∈ A then if the two paths collide

at any one point in time, including swaps, then the collision function returns that

time, otherwise the function returns∞. The collision function is extended to mul-

tiverses χ(v) by taking the minimum value between all pairwise paths from the

multiverse v.

Cx The set of all complex vertices. An agent for context will be assumed.

CB(v) The time until the complex path v makes its first complex branch.

Cxt(v) Indicates that v makes a complex branch at time t.

[.] A conditional value. If the expression in the brackets is false 0 is returned, otherwise

if the expression is true then 1 is returned.

v−i The multiverse v with the path associated with agent i removed.

C(v) All paths which can be reached using successive iterations of the next algorithm

originating from the path v.

〈j, k〉n Represents an interval of integers which can wrap around from a maximum

value. When j ≤ k then 〈j, k〉n = [j, k] but when j > k then 〈j, k〉n = [0, k] ∪ [j, n).

Dy(x) The shortest distance in nodes from x ∈ V to y ∈ V .

Edge(〈j, v]dn) Returns the index furthest away from the path that is an element of the

winding, i.e. Edge(〈j, v]dn) = j and Edge(dn[v, k〉) = k.
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E The set of edges associated with a graph G.

[v]ft The set of all paths which are equivalent under the equivalence relation ∼t and

have.

F (v) The cost of a path v. In this thesis cost is calculated as the number of time steps

an agent spends away from its goal node.

Ft(v) The truncated cost. An indication of the accumulated additional cost incurred

up to time step t. This adds up successive relative costs which indicate whether

the agent has been moving towards its goal and making progress or otherwise

adding additional distance which will need to be traversed later.

gi The goal node/vertex of an agent i ∈ K.

G An abstract construction of vertices V connected by edges from the set E.

In(〈j, v]dn) The In function calculates the next inwards winding that can be reached

from the given winding. The winding travels backwards towards the start node

and contracts as far in towards the path v as the neighbours of 〈j, v]dn allow.

Journey(v) The time until path v first reaches its goal node.

∼t A set of equivalence relations. Two paths are said to equivalent with respect to the

relation ∼t if they are identical up to the time step t.

I(x,y) The index of a movement made from x to y. The index indicates the order in

which edges are taken with respect to preference and distance to the goal.

Inf(〈j, v]dn) The influence function calculates whether new options are available which

could not be reacedh backwards from the point of conflict.

Jd(x) The index function Jd(x) assigns an index to every node in slice Sdi . The assign-

ment is unique by assigning the node on the alpha path as 0 then starting off to

the right each vertex is assigned incrementally.

Jd(v) The slice index function specialized to paths. Returns the slice index of the

node at distance d from the goal which lies on the path v. This function is only

applicable for non-complex paths as the value is only uniquely defined in such

cases.

K The set of agents associated with a MAPF problem.

Lfi The set of all paths of cost f for agent i.
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Lfi (v−i) A set of representatives of paths from Lfi which are unique before the first

collision of agent i in configuration v−i.

Lfi (v−i)[p̃] The equivalence class of all paths from the layer configuration Lfi (v−i)

which pass through the space time point p̃.

Left An indication of relative positioning to the left assuming that the graph G is pro-

jected onto a plane with no edge crossings. The goal is assumed to be in front

and edges or nodes to the left side of the point of reference are indicated with this

value.

µ A map of the graph G onto the plane such that no edges cross.

N f
t (v) The next algorithm. Takes the existing path v and produces a path u of cost f

while branching before the time step t and minimizing with respect to the relation

<i.

Out(〈j, v]dn) The Out function calculates the next outwards winding that can be reached

from the given winding. The winding travels backwards towards the start node

and expands as far out from the path v as the neighbours of 〈j, v]dn allow.

Pt(v) The position of path v ∈ A at time t ∈ [0,∞).

P̃ The space time point of path v ∈ A at time t ∈ [0,∞). i.e. P̃t(v) = (Pt(v), t).

Pref(x,y) The preference function returns the preference priority for taking the edge

between x and y among all edges which travel away from x. These values can

be assigned arbitrarily.

<i An ordering relation on paths. Paths are ordered lexicographically based on the

index function It(v).

P (v) The projection of v ∈ A onto the set of vertices V . i.e. the subset of points from

V that the path v visits.

Qt(v) The relative priority of the movement made at time step t for the path v. This

indicates whether a path is moving towards the goal, pausing at equal distance

to the goal or moving away from the goal.

Right An indication of relative positioning to the right assuming that the graph G is

projected onto a plane with no edge crossings. The goal is assumed to be in

front and edges or nodes to the right side of the point of reference are indicated

with this value.

Ri The set of all rudimentary paths for agent i.
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S The set of all multiverses. Each multiverse v ∈ S being a tuple of paths, one for each

agent. Each element representing a potential solution of the MAPF problem.

S ′ The set of true solutions of the given MAPF problem. Each element v of S ′ contains

no collisions. i.e. ∀v ∈ S ′, χ(v) =∞.

Side(〈j, v]dn) Returns the side of the winding, i.e. a right winding returns Right and a

left winding returns Left.

Sidec(〈j, v]dn) Returns the complement or reverse of the side of a winding, i.e. a right

winding returns Left and a left winding returns Right..

Sdi The slice at distance d from the goal of agent i. This is the set of all non-complex

nodes at distance d from the goal.

Sdi (j) Suppose j ∈ [0, |Sd+1
i |) is an index from Sd+1

i then Sdi (j) is the subset of Sdi which

are neighbours to J−1d+1(j). And suppose j ∈ [0, |Sd−1i |) is an index from Sd−1i then

Sdi (−j) is the subset of Sdi which are neighbours to J−1d−1(j).

Sdi (x) Suppose x ∈ Sd±1i is a node from either side of Sdi then Sdi (x) is the subset of Sdi
which are neighbours to x.

p̃ An arbitrary point in space and time represented by the tuple of the form p̃ = (x, t),

where x ∈ V and t ∈ [0,∞). For convenience we represent the components as

p̃x = x and p̃t = t.

si The start node/vertex of an agent i ∈ K.

Sft (v) A collection of higher cost branches which are skipped over by the next algo-

rithm. These paths are marked for later exploration when the target cost of the

search increases appropriately.

Subi(v, B) The substitution of of the paths in B into the multiverse v for the path of

agent i ∈ K.

v A multiverse from the set of potential solutions S. Each multiverse v being a tuple of

paths vi, each path being associated with the corresponding agent i ∈ K.

V The set of vertices associated with a graph G.

W A set of paths which cover all solutions to a particular MAPF problem.

〈j, v]dn The right winding represents the interval of indices between the search for an

alternative option on the right side and the path v. The winding 〈j, v]dn is equal to

the interval 〈j,Jd(v)〉n.
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d
n[v, k〉 The right winding represents the interval of indices between the search for an

alternative option on the right side and the path v. The winding d
n[v, k〉 is equal to

the interval 〈Jd(v), k〉n.
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Acronyms

CAT Collision Avoidance Table.

CBS Collision Based Search.

CIS Collaborative Iterative Search.

CISR Collaborative Iterative Search Reasoning.

CT Constraint Tree.

HCA Hierarchical Cooperative A*.

ICTS Iterative Cost Tree Search.

ID Independence Detection.

IQM Inter Quartile Mean.

MA-CBS Meta Agent Conflict Based Search.

MAPF Multi-Agent Path Finding.

MAPP Multi Agent Path Planning.

MDD Mutli-value Decision Diagram.

NC Non-Complex.

OD Operator Decomposition.

RRA* Reverse Resumable A*.

SOC Summation Of Costs.

TASS Tree based Agent Swapping Strategy.
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Glossary

A* The A* algorithm is a path finding algorithm which uses a heuristic to improve the

search time of the algorithm. Using a guestimate of distance called the heuristic

the A* selects which nodes to expand next based upon the sum of the heuristic

and the distance travelled to that node.

Agent An Agent represents an entity which exists on the vertices and edges of a

graph. Each agent has a starting node and a goal node and aims to traverse

from one to the other using the edges to move from vertex to vertex.

Agentverse A path associated with a particular agent. Can also refer to the data

structure which describes the implementation of a path in our CIS algorithm.

Alpha Path The minimal path of a given agent with respect to the >i relation.

Ancestor Given a path v the an ancestor of v is a path which can be supplied to the

Next algorithm with particular parameters such that v is returned.

Backtracking The act of stepping backwards in time to search for an alternative choice

or route around a conflict. The nodes traversed during this process need not be

on the original path.

Backwards An edge which leads towards the start nodes.

Boids The term Boids refers to an AI abstraction of the act of flocking. The algorithm

developed by Craig Reynolds describes the movement of birds/fish in mathemat-

ical terms of Separation, Alignment and Cohesion.

Branching Set A set of multiverses which cover all solutions that a given multiverse v

does, is contained in the cover of v but does not contain v.

Bypass A region of nodes described between two paths. On a planar graph this region

is contained and any path leading out of the region has to pass through one of

the nodes on the boundary.

Centralized A Centralized approach is opposed to decentralized approaches. Cen-

tralized approaches compute a solution in a single computational unit rather than

computing parts of the problem separately and combining the solution later.

Collaborative Iterative Search An iterative approach to solving the MAPF problem.

The basis for our approach to MAPF.
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Collaborative Iterative Search Reasoning An extension of the CIS method using a

backtracking approach to discover alternative routes around collisions.

Collaborative Path Finding Collaborative Path Finding is the generalization of Path

Finding to multiple agents. The term Collaborative Path Finding is generally a

synonym for MAPF however is used in earlier works on real time Multi Agent

problems such as HCA where the completeness of the algorithm is less important

than timely results.

Collision An event where two agents try to occupy the same location at the same

time. This can happen on a time step on a single vertex or between time steps

on an edge between vertices.

Collision Avoidance Table The Collision Avoidance Table (CAT) is a table of loca-

tions which lowers the priority at which certain choices can be made helping

break tie breakers which could lead to unwanted collisions. The CAT is used in

both General A* approaches and the CBS algorithm and only effects arbitrary

choices which would lead to paths of equivalent value.

Collision Function The collision function χ(u, v) returns the first time step the two

paths u and v collide or a half time step if they collide between time steps.

Completeness A MAPF solver has completeness if it can always find a correct solu-

tion for a MAPF problem when one exists.

Complex Refers to elements of a graph of a complex nature, i.e. a complex edge/point/path.

Complex Branch Function The time step at which a complex path is forced to take

its first complex edge.

Complex Edge An edge which does not lie on any non-complex path.

Complex Path A path which does not share a projection set with a rudimentary path.

Complex Point A point which does not lie on any non-complex path.

Configuration Given a particular agent i, a configuraion is a mutiverse with the path

associated with agent i removed from the tuple. This structure gives the outer

context of a collision by removing the path which needs replacing.

Conflict Based Conflict Based refers to MAPF algorithms which branch search nodes

when a conflict is detected between two agents in a potential solution. Con-

flict based approaches split the computation into two layers to solve the MAPF

problem. The upper layer solves the overall problem, each node representing

a potential solution. The lower layer solves for paths of individual agents using

constraints or specialised search algorithms.
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Conflict Based Search A solver for MAPF which searches for conflicts and then adds

constraints to a lower layered solver such that the same conflicts does not happen

again.

Connection Side When referring to edges of a vertex we can categorize them with

respect to an existing path or from the perspective of an agent. Connection side

refers to the relative side an edge leads to when considering the goal to be for-

wards and the start to be behind. The left side would be nodes generally clock-

wise from the forwards direction, or anti clockwise from the backwards direction,

similarly for the right.

Constraint A restricting condition which is imposed on a solver. How a constraint

is used depends on the algorithm it is applied in however it generally stops a

particlar condition from occurring.

Constraint Tree A Constraint Tree (CT) is a concept used in the CBS algorithm. A

constraint tree is a tree which its nodes consist of individual constraints for par-

ticular agents. The leaves of the tree represent a list of constraints by tracing the

constraints from the leaf to the root.

Correctness Correctness refers to a MAPF solution which contains no collisions.

Cost A heuristic value attached to a path measuring its worth.

Cover The set of paths for which can be reach by successive applications of Next on

v.

Crowd Simulation Crowd Simulation is the process of simulating large crowds of en-

tities. The emphasis is moved from the joint behaviour of flocking to the dynamic

of large number of entities in a finite space.

Cyclic Interval A generalization of the concept of an interval by allowing for the inter-

val to wrap around in a cyclic manner.

Decentralized Decentralized approaches share computation among several process-

ing units which then communicate to combine the separate results into one solu-

tion.

Dijkstra’s Algorithm The Dijkstra algorithm is a path finding algorithm. It maintains a

list of distances associated with each node. When the algorithm can prove the

shortest distance to a given node, because the shortest distance to all nodes

leading to it have been calculated, it is labelled as such and can be used to

calculate the shortest distance to other nodes. Eventually a path to the goal node

is found when the shortest distance can be calculated.
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Distance An idea of distance on a graph. Two vertices are of distance n if there exists

a path of n edges between the two vertices and no shorter path can be found.

Edge A connection between Vertices on a graph. Edges can be considered lines in

N dimensional space between vertices if the graph has physical representation.

However the abstract notion of relation between two vertices is all that is needed

for an entity to be called an edge.

Equivalence A generalized concept of equality. In this thesis we define a number

of equivalence relations between elements which share certain properties. An

equivalence relation satisfies three properties: Transitivity, Reflexive and Sym-

metric. i.e. Transitivity: if A relates to B and B relates to C then A relates to C.

Reflexivity: A relates to A. Symmetry: if A relates to B then B relates to A.

Equivalence Class The set of all elements which are equivalent to a given represen-

tative.

f-value The f-value refers to the sum of the g-value and the h-value of a node giving an

estimate of overall fitness for a node during the computation of the A* algorithm.

Face A loop of vertices in the lane with an empty interior, i.e. for the side indicated as

the interior no edges cross the face and no vertices exist inside f it.

Face Loop A complete loop which travels through all the vertices in a particular slice.

The loop does not cross itself and contains all vertices in the slice. The loop does

not cross any edges of the non-complex sub graph as it passes only through the

faces of the graph.

First Option The first half of the Backtracking algorithm which searches for available

alternative routes.

Flocking Flocking is a general term for behaviour based on the collective movement

of a group of animals which travel in packs/schools/flocks.

Forwards An edge which leads towards the goal node.

g-value The g-value refers to the distance travelled to a node from the start during the

computation of the A* algorithm.

Goal The end location for a particular agent.

Goal Oriented Action Planning Goal Oriented Action Planning refers to the problem

of assigning tasks and resources such that a larger system can function correctly.

These resources may have interdependency and mutual exclusivity depending on

the nature of the problem. GOAP shares similarity to MAPF and in some cases

can be rewritten in terms of the navigation of multiple agents in a graph.
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Graph An abstract concept of connecting elements. A graph is made up of vertices

which are point entities. These Vertices are connected together by a line called

an Edge. The edge can be curved or straight. The configuration of connections

between vertices is the meaning of a graph and graphs are considered equivalent

depending on the configuration of edges and vertices irrespective of representa-

tion in space.

h-value The h-value refers to the heuristic value of a node during the computation of

the A* algorithm.

Heuristic A Heuristic is a guestimate of the distance from a node in a graph to the

goal node. For correctness in A* the heuristic must always be an underestimate

of the distance.

Hierarchical Cooperative A* Hierachical Cooperative A* is a MAPF solver aimed at

real time computation. Agents take turns to fill a reservation table of planned

moves which informs other agents where they can move to during which time

steps.

Independence Detection Independence Detection (ID) is a MAPF technique by which

the problem can be split into independent groups for separate computation to

reduce overhead. The MAPF solver is run independently for small groups of

known interacting agents and then collisions are searched for in the results. If

collisions are found the groups are merged and the process is begun again..

Index A value assigned to a choice made during the traversal of a path. 0 indicates

the most preferred option incrementally increasing through less preferred options.

Given a fixed set of preferences index depends on the context of the agent and

the direction of their goal node.

Indexing Function The function which assigns an index to each choice along a path.

Starting from 0 for the most preferred path and iterating through the choices in-

cluding the pause choice. Each choice takes acount of the relative cost of the

move with choices which have the smallest relative cost coming first.

Influence Function A function which indicates whether a winding has a valid option for

escaping a given conflict. The influence function calculates whether new options

are available which could not be reached backwards from the point of conflict.

Iterative Cost Tree Search Iterative Cost Tree Search is a MAPF solver which uses a

different approach than the general A* method. Agents are assigned target costs

and a data structure called a Multi-value Decision Diagram (MDD) is constructed

which represents all paths of the given cost. An upper layer to the algorithm
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constructs configurations of these target costs for each agent and searches for

the most optimal combination which has a solution as indicated by the MDD.

Journey The time until a given path reaches the goal for the first time.

Layer All paths of a given cost for a particular agent.

Layer Configuration The layer configuration is a restriction on the layer set such that

only one path exists to represent each unique path before the time of collision

with a given configuration.

Layer Equivalence Layer Equivalence is an equivalence class for each space time

point for each layer configuration. This equivalence represents the fact that all

paths which lead to the same point of collision need to be removed from consid-

eration and can be considered the same.

Left Given a connection leading forwards the next edge clockwise around the given

vertex is considered to the left. Given a connection leading backwards the next

edge anti-clockwise around the given vertex is also considered to the left.

Lexicographic Ordering Lexicographical Ordering is an ordering which applies to

compound structures. The ordering is applied to each element of the structure in

turn. The most common usage of this ordering is alphabetical ordering.

Local Maximum A vertex on a face which neighbours two nodes which are nearer the

goal.

Local Minimum A vertex on a face which neighbours two nodes which are nearer the

start.

Meta Agent Conflict Based Search Meta Agent Conflict Based Search (MA-CBS) is

an extension to the CBS algorithm. Agents can be combined into Meta Agents

which are solved separately using another technique such as Generalized A*.

The main algorithm treats these agents as singular agents in a manner similar

to CBS however if two Agents (including meta agents) collide too frequently then

they can be combined into a meta agent.

Minimal Connection The second half of the Backtracking algorithm which connects

the alternative route to the existing path in as small a distance as possible.

Multi-Agent Path Finding The extension of Path Finding to multiple agents. A num-

ber of agents occupy a given graph G. These agents attempt to traverse the

graph travelling from their start node to the goal node over a number of time

steps. If two agents occupy a given node at the same time or attempt to traverse

the same edge at the same time this is considered to be a collision. The aim of
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Multi-Agent Path Finding is to find a consistent set of paths through time for each

agent such that no two agents collide and each agent reaches its goal node.

Multi-Value Decision Diagram Mult-value Decision Diagram (MDD) is a directed graph

which represents all paths from a start node to the goal node of a given cost. Each

node is a space time point and connects to each possible choice that will lead to

a solution of the target cost..

Multiverse A collection of Agentverses. One for each agent. The Multiverse may

include colliding paths, however the Multiverse is considered a potential solution

during computation and will be modified to remove any collisions found.

Next The Next algorithm is an algorithm which increments a path along the ordering

given by the >t relation. The Next algorithm is the basis of the CIS algorithm.

Node Another name for a vertex on the graph G.

Non-Complex Refers to elements of a graph of a non-complex nature, i.e. a non-

complex edge/point/path.

Non-Complex Edge An edge which exists along some non-complex path.

Non-Complex Path A path which projects onto the same set of nodes as a rudimen-

tary path.

Non-Complex Point A point which exists along some non-complex path.

Non-Complex Sub-Graph A subgraph of the map of all the non-complex points and

non-complex edges with respect to a given agent.

Non-Optimal Non-Optimal solvers will find a solution but will not have any guarantees

on the cost of the solution.

NP-Hard NP-Hardness is a class of Computer Science problems which are provably

at least as hard as the hardest NP problem. This gives a lower bound on the time

complexity of the problem and generally shows that the problem can at least grow

exponentially in computation time given certain input.

Operator Decomposition Operator Decomposition is an optimisation technique for

the generalized approach to MAPF. Operator decomposition splits the processing

of each time step into a sub time step for each agent reducing the branching factor

of each time step.

Optimal Optimal solvers find solutions with a maximized or minimized cost out of all

possible solutions.
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Partial Expansion A* Partial Expansion A* reduces the problem of large branching

factors by splitting the groups of branches into groups and merging them into

nodes which can be explored later.

Path A set of space time points describing a journey on the graph. The path includes

one and only one point for each time step. Each two consecutive space time

points along the path either have neighbouring vertices (via an edge between the

two) or the share the same vertex.

Path Finding The act of finding a path of connected nodes through a graph from a

start node to a goal node.

Path Selection Algorithm The algorithm which combines the application of next for

the complex paths and backtracking for the non-complex paths in the CISR algo-

rithm. This is also where pause migration is removed.

Pause Migration Pause Migration is the recurrent behaviour of moving the time at

which an agent pauses further back in time but retaining the same path. If this is

attempted when trying to solve a collision in a later time step the process of pause

migration is wasteful and therefore a recurrent behaviour which needs removal.

Planar A graph which can be drawn in the 2D plane without two of its edges from

intersecting.

Planar Projection A mapping for a particular graph which draws it within the plane

without any of its edges intersecting.

Point Representative A single path which represents all paths which travel through

this point in space and time.

Preference An arbitrary value assigned to each edge leading away from a given node.

These values are used to order equivalent choices when choosing paths of the

same length or cost.

Preferential Ordering An arbitrary ordering we apply to all connections in a graph.

This ordering resolves conflicts in equivalent choices and allows us to order the

set of all paths.

Priority Priority is the value given to a connection given the context of a particular

agent. Edges which lead to the goal are given a higher priority and are chosen

first above edges which are preferred but have lower priority.

Projection The set of locations visited by a path. This set does not include the asso-

ciated time step and is solely a subset of the vertex set of G.

PSPACE-Hard PSPACE-Hard describes a set of problems which grow in memory stor-

age at a polynomial rate as the size of the problem increases.
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Recurrent Behaviour A recurrent behaviour is a repeating pattern of work done by

an algorithm which can be removed when the pattern is recognised. Recurrent

behaviour is an informal name for these patterns which we have identified.

Region A contiguous set of nodes on a graph or an enclosed area in the plane.

Relative Priority Relative priority is a measure of the gain in cost a particular edge

will add to a path. Edges which lead towards the goal are given relative priority

0, edges which lead to a node equidistant to the goal are given the value (along

with the pause action which leaves the agent in place), and the value 2 is given

to edges which lead away from the goal.

Reverse Resumable A* The A* algorithm searches for the shortest path from a start-

ing node to a goal node. While computing this path a value called the g-value is

maintained for each node representing the distance travelled from the start node.

Reversing the direction of this algorithm and processing the path from the goal

node to the start node this algorithm can be used to calculate the distance from

any node to the goal node as long as the algorithm is run long enough to process

the node.

Right Given a connection leading forwards the next edge anti-clockwise around the

given vertex is considered to the left. Given a connection leading backwards the

next edge clockwise around the given vertex is also considered to the left.

Rudimentary Path A path of minimal cost from the start node to the goal node.

Search Space The set of all potential solutions to a given MAPF problem. This will

include elements which have collisions between agents.

Slice The set of all vertices from a non-complex sub graph of a given distance from

the goal.

Slice Index An index assigned to each vertex in a face loop in order. The assignment

is unique by assigning the node on the alpha path as 0 then starting off to the

right each vertex is assigned incrementally.

Smart Parking Smart Parking is the use of navigation systems and AI processing to

optimise the use of parking in an urban environment.

Solution A set of paths for each agent which is included in the MAPF problem such

that no two paths collide and each agent reaches its destination from its start

node.

Solution Space The set of all solutions to a given MAPF problem.
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Space Time Point A Space Time Point is a location on the graph, i.e. a vertex, with

an associated time. This structure represents an intermediary point in time and

space along the path of an agent.

Space-Time Point Equivalence The equivalence relation which equates all paths which

travel through a given space time point as the same.

Start The starting location for a particular agent.

Stationary Segment The portion of a path after the journey segment. This portion

may or may not contain additional movement of the agent as other agents attempt

to pass through its goal square.

Stem The Stem is a set of alternative branches which have been skipped over by

the Next algorithm because their cost was too high to be the next considered

alternative.

Sub-Graph A selection of Vertices and Edges selected from an existing graph which

constructs a complete graph, i.e. each of the edges have ends which are a part

of the selected subset of vertices.

Summation Of Costs A heuristic for MAPF which sums all the costs of each individual

path of a composite solution, i.e. the sum of all paths included in an element of

the search space.

Swap A particular type of collision where two agents try to cross a single edge at the

same time from opposite directions.

Time Complexity Time Complexity refers to the asymptotic behaviour of the compu-

tation time of an algorithm. Time complexity is described by a single expression

which describes the general long term behaviour of the algorithm. Slower growing

terms of the expression are ignored and constant multiples are removed.

Time Step A Time Step represents an individual unit of time. Between two time steps

an agent can move across one edge from one vertex to an adjacent vertex. On a

time step each agent will occupy a single vertex.

Top Branch Top Branch is the latest alternative branch which can be taken along a

path that will given a path of a particular cost.

Truncated Cost Truncated cost is the cost accumulated up to a particular time step.

This is equivalent to the sum of the relative priorities up to the given time step.

Verse Set The set of all Agentverses for a particular agent.

Vertex A point representing a single entity of a graph.
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Winding A cyclic interval which is anchored to a path at one of its ends. The winding

can be to the left or the right and indicates itself as such.

Working Set A set of multiverses which cover all solutions of a given MAPF problem.
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Appendix A. Maps

A.1 Map Key

Occupied Square

SN Start Node for Agent N

GN

Goal Node for Agent N

Figure A.1: Map Key

A.2 Permute Maps
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Figure A.2: Permute 1
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Figure A.3: Permute 2
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Figure A.4: Permute 3
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Figure A.5: Permute 4

A.3 Outline Maps
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Figure A.6: Outline
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Figure A.7: Outline Grid
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Figure A.8: Outline Grid 2
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Figure A.9: Outline Grid 3

A.4 Maps with Geometry
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Figure A.10: Crossroad 1
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Figure A.11: Crossroad 2
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Figure A.12: Crossroad 3
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Figure A.13: Geometry 2
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A.5 Swapping Maps

S1

S2

S3

S4

G1

G2

G3

G4

Figure A.14: Bypass
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Figure A.15: Swap Test
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G1 G2

G3 G4

Figure A.16: Swap Test 2
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Figure A.17: Swap Test 2.5
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G1 G2 G3

G4 G5 G6

Figure A.18: Swap Test 2.7
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Figure A.19: Swap Test 3

S1 S2 S3

S4 S5S6

G1 G2

G3 G4 G5

G6

Figure A.20: Swap Test 4
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Figure A.21: Pass
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Figure A.22: Pass 1

S1

S2

S3

S4S5S6S7S8S9S10

G1

G2

G3

G4G5G6G7G8G9G10

Figure A.23: Pass 2



Appendix B. Pseudo Code

Agentverse getNext(i, v, t, s):
Data: Agent: i, Agentverse: v, Collision Time: t, Target Cost (Stem): s
Let r be the target relative cost s− v.cost;
if r > 2 then

return no solution
end
Let b be the result of getBranch(i, v, t, r);
if b is a valid branch then

return A new Agentverse at b;
else

return getNext(i, v, t, s+ 1);
end

end
Algorithm 3: The Next Algorithm.

unsigned int getBranch(i, v, t, r):
Data: Agent: i, Agentverse: v, Collision Time: t, Target Relative Cost: r
if Relative cost r > 2 then return no solution;
if Time of collision t < 0 then return no solution;
if Time of collision t ≤ v.startT ime then

if Branch from parent to child is a valid location to branch from and has
the correct change in priority then

return v.startT ime− 1;
else

return getBranch(i, v.parent, min(t, v.startT ime− 1),
r + v.cost− v.parent.cost);

end
end
if The available priority at t− 1 matches the target relative priority r then

return t− 1;
else

Let s be the step of time step t− 1, then use the time step given in
s.priorities which matches the target relative cost r;

return time of alternative given by s.priorities;
end

end
Algorithm 4: Calculate Branch Step.
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void makeBranch(i, m, t):
Data: Agent: i, Multiverse: m, Collision Time: t
Let vu be the VerseUnit m.verses[i];
Let next be the result of getNext(i, vu.verse, t, vu.stem);
if next is not valid then

return
end
Let curr be the Multiverse with next replacing the verse for agent i;
The stem for agent i is reset too next.cost;
if cs does not contain curr then

Insert curr into cs;
Push curr onto pq;
Create a stem stem from m by incrementing the vu.stem of agent i;
Push stem onto pq;

end
end

Algorithm 5: Make a single branch using Next.

Multiverse search():
Initialize priority queue pq;
Initialize closed set cs;
Push initial Multiverse curr onto pq;
Insert curr into cs;
while pq not empty do

Pop a Multiverse from pq and store in curr;
if curr.stemType = STEM then

makeBranch(curr.stemAgent, curr, curr.stemTime);
continue;

end
Search curr for a clash;
if No clash then

return curr
Let i, j be the agents invloved in the clash and t be the time of the clash;
makeBranch(i, curr, t);
makeBranch(j, curr, t);

end
return no solution;

end
Algorithm 6: Main Algorithm loop, without backtracking.
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void backtrack(i, curr, t, swap, side):
Data: Agent: i, Multiverse: curr, Collision Time: t, Swap: swap, Side: side
initialize scanner sc;
initialize solver sv;
if swap then

find next node just before swap collision;
do

step scanner;
step solver (including any initial corrections for swap collisions);
find potential solutions along solver;

while tracker not at start and tracker has no solutions;
if tracker has solution and solutions isn’t one explored before then

push new tracker solution onto priority queue;
end
create complex stem along boundary traced by the tracker;
create non-complex stem along original path before the time of the collision;

end
Algorithm 7: The Backtracking Algorithm.

unsigned int scanBack(i, v, t):
Data: Agent: i, Agentverse: v, Current Time: t
Let r initially be 0;
do

Add to r the value Qt(v)− 1;
decrement t;

while r 6= −1;
return t;

end
Algorithm 8: Scanner scanBack.

unsigned int nextStep(i, v, s):
Data:
if stick then

next← id;
else

call stepBackwards routine;
end
push current node onto boundary path;
if going inwards then

push current node onto solution path;
end
forwards← direction dictated by next, curr;
curr ← next;

end
Algorithm 9: Solver nextStep.
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void preprocess(i, v):
Data: Agent: i, Agentverse: v
if v.parent = null then

v.complex← false;
return;

if v.parent.complex And v.startT ime > v.parent.cb then
v.cb← v.parent.cb;
v.complex← true;
return;

if v.startT ime ≥ Journey(v) then
v.cb← v.startT ime;
v.complex← true;
return;

end
dist← DG(Pv.startT ime(v));
if dist > DG(Start) then

v.cb← v.startT ime;
v.complex← true;
return;

end
calcExtAndComplexity(i, v, dist);

end
Algorithm 10: Pre-process Extent and Complex Branch.
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void calcExtAndComplexity(i, v, dist):
Data: Agent: i, Agentverse: v, Staring Distance: dist
Let u initially be equal to v.parent;
Let b initially be the value invalidIndex;
foreach u such that the extent u.ext ≤ dist do

Let xu be the first position in Agentverse u;
Let xv be the last position along v at distance DG(xu) from the goal;
if xu 6= xv then

Let b be redefined as min(b, v.startT ime+ dist−DG(xu));
end

end
if u 6= null And F (u) 6= F (v) then

Let xv be the position Pv.startT ime(v);
Let xu be the last position along u at distance DG(xv) from the goal;
if xv 6= xu then

v.cb← v.startT ime;
v.complex← true;
return;

end
if b 6= invalidIndex then

v.cb← b;
v.complex← true;
return;

end
v.complex← false;

end
Algorithm 11: Calculate Extent and Complex Branch.
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void searchWithBacktracking():
Initialize priority queue pq;
Initialize closed set cs;
Push initial Multiverse curr onto pq;
Insert curr into cs;
while pq not empty do

Pop a Multiverse from pq and store in curr;
if curr.stemType = STEM_ONCOMPLEX then

makeOnComplexBranch(curr.stemAgent, curr, curr.stemTime);
makeNonComplexBranch(curr.stemAgent, curr, curr.stemTime);
continue;

if curr.stemType = STEM_BACKTRACKING then
makeNonComplexBranch(curr.stemAgent, curr, curr.stemTime);
continue;

if curr.stemType = STEM_COMPLEX then
makeComplexBranch(curr.stemAgent, curr, curr.stemTime);
continue;

end
Search curr for a clash;
if No clash then return curr;
Let i, j be the agents invloved in the clash, t be the time of the clash and
swap be a boolean indicating whether a swap occured;
makeReasoningBranch(i, curr, t, swap);
makeReasoningBranch(j, curr, t, swap);

end
return no solution;

end
Algorithm 12: Main Algorithm loop, with the Backtracking Algorithm.

void makeReasoningBranch(i, curr, t, swap):
Data: Agent: i, Multiverse: curr, Collision Time: t, Swap: swap
Let v be the agentverse curr.verses[i].verse;
if (v.complex And v.cb ≤ t) Or Journey(v) < t then

makeOnComplexBranch(curr.stemAgent, curr, curr.stemTime);
return;

end
backtrack(i, curr, t, swap, LEFT);
backtrack(i, curr, t, swap, RIGHT);

end
Algorithm 13: Case responsible for using the Backtracking Algoritm.
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void makeComplexBranch(i, curr, t):
Data: Agent: i, Multiverse: curr, Collision Time: t
Let vu be the verse unit curr.verses[i];
foreach Time step s < t And Fs(vu.verse) + 2 ≥ F (vu.verse) do

Let r be the maximum relative cost;
foreach Direction d from Ps(v) do

Create a path u diverging from v at time s in direction d. if If the
relative cost F (u)− F (v) = r then

Let m be the Multiverse with u replacing the verse for agent i in
Multiverse curr;

Insert m into cs;
Push m onto pq;

end
end
if The stem value vu.stem < vu.verse.cost+ 2 then

Let stem be the Complex stem of curr with the stem of agent i
incremented by 1;

Push stem onto pq;
end

Algorithm 14: Case responsible for constructing Complex branches.

void makeNonComplexBranch(i, m, t):
Data: Agent: i, Multiverse: m, Collision Time: t
Let vu be the VerseUnit m.verses[i];
Let next be the result of getNext(i, vu.verse, t, vu.stem) restricted too the
subgraph of the Non-Complex portion of vu.verse extrapolated to the goal;

if next is not valid then
return

end
Let curr be the Multiverse with next replacing the verse for agent i;
The stem for agent i is reset too next.cost;
if cs does not contain curr then

Insert curr into cs;
Push curr onto pq;
Create a stem stem from m by incrementing the vu.stem of agent i;
Push stem onto pq;

end
end

Algorithm 15: Case responsible for solutions along a Non-Complex path.
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void makeOnComplexBranch(i, m, t):
Data: Agent: i, Multiverse: m, Collision Time: t
Let vu be the VerseUnit m.verses[i];
Let next be the result of getNext(i, vu.verse, t, vu.stem) restricted too after
the complex branch point vu.cb;

if next is not valid then
return

end
Let curr be the Multiverse with next replacing the verse for agent i;
The stem for agent i is reset too next.cost;
if cs does not contain curr then

Insert curr into cs;
Push curr onto pq;
Create a stem stem from m by incrementing the vu.stem of agent i;
Push stem onto pq;

end
end

Algorithm 16: Case responsible for solutions after a Complex branch.
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Agents CBS CISR Draw

4 19 1981 0
5 38 1961 1
6 70 1928 2
7 102 1895 3
8 169 1824 7
9 282 1707 11

10 365 1619 16
11 523 1438 39
12 626 1305 69
13 711 1116 173
14 803 882 315
15 820 662 518
16 707 478 815

Table C.1: Comparison between CBS and CISR on 8x8 grids.
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Agents CBS CISR Draw

4 11 1985 4
5 13 1979 8
6 14 1975 11
7 22 1958 20
8 21 1957 22
9 42 1923 35

10 58 1885 57
11 79 1851 70
12 90 1834 76
13 107 1787 106
14 137 1708 155
15 134 1684 182
16 158 1606 236
17 186 1529 285
18 198 1457 345
19 210 1377 413
20 187 1285 528
21 185 1170 645
22 186 1070 744
23 103 1029 868
24 99 935 966
25 82 815 1103

Table C.2: Comparison between CBS and CISR on 16x16 grids.
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Agents CBS CISR Draw

4 22 1971 7
5 13 1976 11
6 17 1971 12
7 12 1961 27
8 8 1960 32
9 14 1957 29

10 13 1941 46
11 20 1912 68
12 24 1875 101
13 19 1868 113
14 21 1880 99
15 19 1837 144
16 43 1795 162
17 36 1788 176
18 32 1741 227
19 29 1689 282
20 44 1643 313
21 45 1607 348
22 43 1596 361
23 37 1558 405
24 43 1494 463
25 46 1440 514
26 43 1433 524
27 35 1323 642
28 38 1300 662
29 26 1279 695
30 22 1198 780
31 20 1151 829
32 22 1108 870
33 16 1065 919
34 7 971 1022
35 10 928 1062

Table C.3: Comparison between CBS and CISR on 32x32 grids.
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Map Agents CBS CISR Draw

brc202d 4 144 1813 43
brc202d 6 184 1592 224
brc202d 8 138 1359 503
brc202d 16 4 495 1501
brc501d 4 3 1980 17
brc501d 6 5 1930 65
brc501d 8 9 1872 119
brc501d 16 2 1226 772
den012d 4 41 1955 4
den012d 6 103 1882 15
den012d 8 115 1804 81
den012d 16 105 1033 862
den520d 4 2 1996 2
den520d 6 5 1987 8
den520d 8 5 1952 43
den520d 16 6 1729 265
hrt201d 4 8 1984 8
hrt201d 6 32 1954 14
hrt201d 8 48 1912 40
hrt201d 16 65 1596 339
lak103d 4 28 1968 4
lak103d 6 98 1877 25
lak103d 8 263 1669 68
lak103d 16 278 519 1203
lak202d 4 10 1976 14
lak202d 6 31 1936 33
lak202d 8 49 1890 61
lak202d 16 131 1427 442
lak303d 4 58 1928 14
lak303d 6 116 1817 67
lak303d 8 122 1625 253
lak303d 16 20 522 1458

Table C.4: Comparison between CBS and CISR on selected maps. (Part 1)
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Map Agents CBS CISR Draw

lak401d 4 117 1863 20
lak401d 6 197 1711 92
lak401d 8 170 1527 303
lak401d 16 18 499 1483
orz900d 4 17 1973 10
orz900d 6 19 1939 42
orz900d 8 16 1890 94
orz900d 16 3 1389 608
orz999d 4 5 1995 0
orz999d 6 9 1976 15
orz999d 8 14 1934 52
orz999d 16 3 1498 499
ost003d 4 15 1976 9
ost003d 6 30 1924 46
ost003d 8 46 1821 133
ost003d 16 10 1054 936
ost102d 4 18 1977 5
ost102d 6 56 1929 15
ost102d 8 120 1847 33
ost102d 16 394 981 625
oth000d 4 95 1890 15
oth000d 6 123 1780 97
oth000d 8 103 1675 222
oth000d 16 19 756 1225
rmtst 4 7 1981 12
rmtst 6 10 1966 24
rmtst 8 22 1944 34
rmtst 16 55 1741 204

Table C.5: Comparison between CBS and CISR on selected maps. (Part 2)
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Size Agents CIS CISR Draw

8x8 5 1408 550 42
8x8 6 1439 521 40
8x8 7 1321 664 15
8x8 8 1176 803 21
8x8 9 1008 948 44
8x8 10 778 1161 61
8x8 11 616 1224 160
8x8 12 458 1280 262
8x8 13 424 1165 411
8x8 14 280 1035 685
16x16 5 1247 722 31
16x16 6 1286 685 29
16x16 7 1224 746 30
16x16 8 1154 819 27
16x16 9 1022 933 45
16x16 10 846 1081 73
16x16 11 683 1222 95
16x16 12 553 1342 105
16x16 13 388 1464 148
16x16 14 324 1475 201
32x32 7 1176 789 35
32x32 8 1125 838 37
32x32 9 1109 856 35
32x32 10 985 966 49
32x32 11 967 962 71
32x32 12 816 1080 104
32x32 13 751 1133 116
32x32 14 645 1247 108
32x32 15 525 1325 150
32x32 16 401 1430 169

Table C.6: Comparison between CIS and CISR on selected agent counts and grids.
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Map Agents CIS CISR Draw

ost102d 4 1158 790 52
ost102d 6 1125 837 38
ost102d 8 870 1070 60
ost102d 16 26 1077 897
lak103d 4 1052 926 22
lak103d 6 837 1093 70
lak103d 8 541 1215 244
lak103d 16 13 565 1422
lak202d 4 1039 945 16
lak202d 6 994 968 38
lak202d 8 832 1090 78
lak202d 16 225 1243 532
lak303d 4 1257 705 38
lak303d 6 1274 608 118
lak303d 8 1069 609 322
lak303d 16 118 411 1471
den012d 4 1118 870 12
den012d 6 1092 858 50
den012d 8 1062 800 138
den012d 16 426 642 932
den520d 4 1202 795 3
den520d 6 1272 717 11
den520d 8 1269 686 45
den520d 16 1002 729 269
lak401d 4 1086 868 46
lak401d 6 1026 831 143
lak401d 8 920 708 372
lak401d 16 172 336 1492
brc501d 4 1153 828 19
brc501d 6 1270 662 68
brc501d 8 1289 584 127
brc501d 16 693 534 773

Table C.7: Comparison between CIS and CISR on selected maps.
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Map CIS CISR CBS

bypass 0.000257 0.000537 0.000410
crossroad1 0.070840 0.038931 0.072242
crossroad2 0.000777 0.000985 0.001837
crossroad3 0.003388 0.003674 0.012078
geometry2 0.049006 0.058314 0.016839
outline 0.001155 0.001377 0.001307
outlinegrid 0.003747 0.003621 0.021882
outlinegrid2 100.000000 0.041100 0.075587
outlinegrid3 0.057366 0.004901 0.042139
pass 0.002789 0.012415 0.012094
pass1 0.001182 0.005318 0.005070
pass2 0.002621 0.009488 0.008415
permute1 0.000511 0.000981 0.002367
permute2 0.005454 0.014725 0.035659
permute3 0.145791 0.273409 1.954335
permute4 1.275205 0.845847 11.363638
swaptest 0.000163 0.000517 0.000204
swaptest2 0.005527 0.007893 0.003968
swaptest25 0.083173 0.113126 0.018209
swaptest27 0.055442 0.067693 0.018347
swaptest3 1.756666 2.295569 0.175644
swaptest4 0.006844 0.009989 0.009977

Table C.8: IQM data for bespoke map selection.
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Figure D.1: Interquartile Mean for the 8x8 Grid.
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Figure D.2: Interquartile Mean for the 16x16 Grid.
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Figure D.3: Interquartile Mean for the 32x32 Grid.
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Figure D.4: Interquartile Mean for the 4 agents case.
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Figure D.5: Interquartile Mean for the 6 agents case.
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Figure D.6: Interquartile Mean for the 8 agents case.
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Figure D.7: Interquartile Mean for the 16 agents case.
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Figure D.8: Interquartile data for bespoke maps.
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Figure D.9: Interquartile data for bespoke maps.
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Figure D.10: Interquartile data for bespoke maps.
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Figure D.11: Interquartile data for bespoke maps.


