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Abstract 

 

Nitrogen is one of the macronutrients which is essentially required by plants. To support the 

precision farming, it is important to analyse nitrogen status in plants in order to prevent 

excessive fertilisation as well as to reduce production costs. Image-based analysis has been 

widely utilised to estimate nitrogen content in plants. Such research, however, is commonly 

conducted in a controlled environment with artificial lighting systems. This thesis proposes 

three novel computational intelligence systems to evaluate nitrogen status in wheat plants by 

analysing plant images captured on field and are subject to variation in lighting conditions. In 

the first proposed method, a fusion of regularised neural networks (NN) has been employed to 

normalise plant images based on the RGB colour of the 24-patch Macbeth colour checker. 

The colour normalisation results are then optimised using genetic algorithm (GA). The 

regularised neural network has also been effectively utilised to distinguish wheat leaves from 

other unwanted parts. This method gives improved results compared to the Otsu algorithm. 

Furthermore, several neural networks with different number of hidden layer nodes are 

combined using committee machines and optimised by GA to estimate nitrogen content. In 

the second proposed method, the utilisation of regularised NN has been replaced by deep 

sparse extreme learning machine (DSELM). In general the utilisation of DSELM in the three 

research steps is as effective as that of the developed regularised NN as proposed in the first 

method. However, the learning speed of DSELM is extremely faster than the regularised NN 

and the standard backpropagation multilayer perceptron (MLP). In the third proposed method, 

a novel approach has been developed to fine tune the colour normalisation based on the 

nutrient estimation errors and analyse the effect of genetic algorithm based global 

optimisation on the nitrogen estimation results. In this method, an ensemble of deep learning 

MLP (DL-MLP) has been employed in the three research steps, i.e. colour normalisation, 

image segmentation and nitrogen estimation. The performance of the three proposed methods 

has been compared with the intrusive SPAD meter and the results show that all the proposed 

methods are superior to the SPAD based estimation. The nutrient estimation errors of the 

proposed methods are less than 3%, while the error using the renowned SPAD meter method 

is 8.48%. As a comparison, nitrogen prediction using other methods, i.e. Kawashima 

greenness index (𝐺𝐼𝑘𝑎𝑤) and PCA-based greenness index (𝐺𝐼𝑃𝐶𝐴) are also calculated. The 

prediction errors by means of 𝐼𝑘𝑎𝑤 and 𝐼𝑃𝐶𝐴 methods are 9.84% and 9.20%, respectively. 
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Chapter 1 

Introduction 

 

1.1. Background 

Along with the increase of number of people in the world, the need of food also increases. 

According to Food and Agriculture Organisation (FAO) of the United Nations (UN), by the 

year 2030 the world population is projected to grow to around 8.3 billion [1]. In 1988 

extensification in agriculture was firstly introduced. In the extensive agriculture system, large 

areas of farm field is utilised, but with less inputs as well as capital and labour expenses. The 

intensive agriculture system, in contrast, can be defined as a process of farming which aims to 

enhance productivity on a given area of farm field by increasing the use of inputs, such as 

water, chemicals, and fertilisers, including capital and labour. Both extensification and 

intensification have raised issues about preservation of environment. 

In the traditional agriculture, farmers usually apply very large amounts of fertilisers and 

chemicals in order to yield sufficient crops. This traditional technique, indeed, can boost the 

farm production yet it can cause several damages to the environment, such as killing of life in 

the topsoil and subsoil, and leaking of nitrogen to the groundwater and soil as a consequence 

of excessive fertilisation. Moreover, excessive fertilisation and chemicals application may 

poison the plant itself and harm its life. 

As staple food sources, cereals (wheat, rice, maize, sorghum) and tubers (potato, cassava), are 

needed by most of people in the world. Rice is the most common food for people in 

Indonesia. According to [2], in 2014 Indonesia has about 13.8 million hectares of rice field 

with 70.8 million tons paddy production. The paddy yield, thus, is up to 5.13 tons/ha. In 

general agricultural practices in Indonesia are still conducted traditionally. For instance, 

farmers usually spread fertiliser over the ground without considering the nutrient amount in 

plants and its availability in the soil. In fact, the nutrient content in some crops may relatively 

differ from other crops even they are in the same field. Additionally, this condition may also 

happen to the soil where the plants grow. The nutrient availability in the soil of a particular 

area can be different from that of other specific area even in the same farming field. Such 

fertilisation practice, therefore, can lead to some environmental problems as previously 
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mentioned, such as leaking of nitrogen to the groundwater and soil due to excessive 

fertilisation. 

In order to tackle the disadvantages of the traditional agricultural practices, a new concept of 

farming has been developed. This new farming technique has been known as precision 

farming. For the last few years, precision farming has become a topical agricultural issue. 

According to [3], precision farming or precision agriculture can be defined as information and 

technology based system in agricultural practices which aims to identify, analyse and manage 

variability within fields, including farm inputs, crops and soil, to obtain optimum profitability 

and sustainability as well as preservation of the environment and land resources. This concept 

utilises site-specific information to enhance crop management. The idea of precision farming 

comes from two principal concerns: economic and environmental issues. With regard to the 

economic issue, the purpose of precision farming technology is to increase crop productivity 

as well as to reduce production costs [4]. In the meantime, this concept also aims to minimise 

the negative impact of agricultural practices on the surrounding environment [5], [6]. The 

precision farming model, therefore, will lead to a more efficient application of farm resources, 

such as water, seeds, chemicals and fertilisers. Rather than applying the same amount of 

fertilisers over an entire farm field, precision agriculture will measure variations in conditions 

within a field and determine its fertilising strategy accordingly [7]. In order to support this 

idea, it is important to estimate the nutrient status of plants to improve the efficiency of the 

fertiliser application. 

Nitrogen (N) is one of the macronutrients which are required in substantial amounts by plants 

to ensure growth given that this element is a component of chlorophyll, which has a 

significant role in photosynthesis. According to [8], there are four common methods utilised 

to assess nitrogen content in plants, i.e. chemical and combustion tests, vegetation index (VI), 

SPAD (soil plant analysis development) meter and leaf colour chart.  

Due to the most recent developments in vision sensing and computational systems with 

rapidity and ease of image data collection, extensive research estimating the nitrogen status in 

crops has been conducted by means of image-based analysis [9]. Nevertheless, most of these 

nutrient estimation approaches are not practical, time-consuming and require some additional 

equipment in view of the fact that they are typically performed in a controlled environment, 

such as in a closed chamber, with artificial lighting systems, as seen in Figure 1.1 [10], [11]. 

Such methods cannot be applied in fields seeing as the intensity of sunlight is always 

changing and this will lead to inconsistent and unreliable image acquisition in addition to 



  

3 | P a g e  
 

incorrect nutrient estimation. There are a number of challenges in estimating the nutrient 

content of plants based on images captured of fields, including the effect of sunlight intensity 

that is varied, besides how the images are normalised, in order to reduce the colour variability 

of all the images captured under sunlight with an extensive range of light intensity. 

 

 

Figure 1.1. Common image acquisition in a controlled environment with artificial lighting 

systems. 

 

1.2. Motivation and Challenges 

Estimating nitrogen content based on plant images acquired from a field is a challenging task. 

Some of the challenges which need to be resolved according to this work are how to minimise 

the effect of sunlight of various intensities, as well as how to normalise images with the 

purpose of making sure that all the images obtained under a variety of light intensities 

comprise colour deviations that are relatively small.  

The colour of images will change dynamically in conjunction with the change of light 

intensity. As seen in Figure 1.2, wheat plants from the same field with the same fertilising 

levels will appear different if the light intensity of the light source is different. Such images 

could not be used directly in nutrient estimation given that they are acquired under different 

illuminations. The images, therefore, need to be normalised prior to the advanced steps of 

image processing, in order to make a more reliable comparison of the images. After image 

normalisation, it can be assumed that the differences in colour of the wheat leaves are solely 

1 2 3 

4 5 

1. Closed chamber 

2. Artificial lighting 

systems 

3. Camera 

4. Personal computer 

5. Object 
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caused by different fertilising levels. In general, if a smaller amount of nitrogen fertiliser is 

applied to the plants, subsequently the leaves will reveal a lighter green colour. 

 

         

 (a)  (b)  (c) 

Figure 1.2. Examples of wheat plant images captured under different sunlight intensities: (a) 

low light intensity (8 Klux), (b) medium light intensity (50 Klux), and (c) high light intensity 

(80 Klux). 

 

1.3. Aim and Objectives of the Thesis 

The primary aim of this thesis is to develop new, low-cost, simple and accurate approaches to 

estimate nitrogen content in wheat leaves based on leaf images that are captured in fields 

under sunlight by using a digital still camera to support the precision farming. Three novel 

methods have been proposed regarding on-field nitrogen content estimation in wheat leaves. 

These encompass three types of neural network expert systems, i.e. regularised multilayer 

perceptron, deep sparse extreme learning machine (DSELM) and deep learning multilayer 

perceptron (DL-MLP). The proposed methods have also employed committee machines as 

expert system combiners and genetic algorithms (GA) as a tool for optimisation. 

The objectives of this thesis are as follows: 

a) To investigate the feasibility of using computational intelligence image processing in 

relation to on-farm nitrogen estimation in wheat leaves. 

b) To develop colour normalisation algorithms by using fusions of the aforementioned three 

types of neural network systems based on the Macbeth colour checker as the image 

reference to normalise wheat plant images. 

c) To generate image segmentation and features extraction algorithms to distinguish wheat 

leaves from other surrounding parts using the three neural network systems. 
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d) To develop neural network systems based nutrient estimation algorithms by means of a 

committee machine to combine several networks based on statistical moment features of 

wheat plant images. 

e) To produce generic algorithms based global optimisation, so as to enhance the colour 

normalisation and nutrient estimation results. 

f) To compare the results of the proposed methods with that of the common and renowned 

method using chlorophyll meter (SPAD meter) readings. 

To analyse the colour normalisation results, Euclidean distance is measured to figure out the 

accuracy level of the proposed methods. Furthermore, several colour normalisation 

techniques, i.e. grey world, scale-by-max, linear model and single neural network, are also 

employed to normalise images as comparison. In addition, to determine the effectiveness of 

the proposed colour normalisation method, colour variability of the wheat plant images is 

measured by calculating standard deviation of RGB values of the plant images. 

In order to analyse the nitrogen estimation results, several statistical features of RGB colours 

with various order from the plant images, i.e. mean, variance, skewness and kurtosis, are 

extracted and then utilised as neural network inputs to estimate nutrient content. The accuracy 

level of this prediction is determined by mean absolute percentage error (MAPE). In this 

thesis, a number of existing estimation methods are also employed as a comparison. The 

existing methods are green index using Kawashima and principal component analysis (PCA) 

method and also the most well-known technique using chlorophyll meter (Minolta SPAD-

502). 

  

1.4. Thesis Contributions 

This thesis considers the problem of computational intelligence image processing for on-field 

nitrogen status analysis in wheat plants. The novel contributions of the thesis are concluded 

below: 

a) As an entire system, nutrient estimation based on plant images captured on field using a 

digital still camera is a new technique given that up until now, it has only been conducted 

in a controlled environment. The utilisation of a common digital camera can reduce 

analysis costs compared to that of other devices, such as satellite remote sensing and 

thermal camera. This contribution is described in Chapter 3, 4 and 5. 
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b) The proposed method involves colour normalisation to reduce the colour variability due to 

the variation in light intensities. The problem related to high colour variability can be 

handled by developing fusions of three types of neural network systems, i.e. regularised 

MLP, DSELM and deep learning MLP, which is based on the colour of the 24-patch 

Macbeth colour checker. The technique to tackle colour normalisation problem using the 

three aforementioned methods can be found in Chapter 3, 4 and 5, respectively. 

c) Four types of statistical moment features (mean, variance, skewness and kurtosis) of each 

RGB colour channel, which represent the distribution of the colour of the wheat leaves are 

introduced as the inputs of the developed neural networks using regularised MLP, DSELM 

and deep learning MLP, as explained in Chapter 3, 4 and 5, respectively. 

d) The last contribution with regards to this thesis is to build globally optimised 

computational intelligence image processing to modify the colour normalisation and 

improve the nitrogen estimation results. This contribution can be found in Chapter 5. 

 

1.5. Thesis Outline 

This thesis focuses on the development of computational intelligent image processing for on-

field nitrogen estimation in wheat leaves based on plant image analysis. The thesis comprises 

introductory sections, the main chapters and a conclusion. Three novel methods for nutrient 

estimation establish the principal part of the thesis. The outline of the thesis is organised as 

follows: 

Chapter 2 describes extensively the concept and application of precision farming and explains 

a number of existing nitrogen estimation techniques comprehensively. In this chapter, several 

image processing applications employed in agricultural systems are also explained. 

Chapter 3 proposes a novel method pertaining to nitrogen estimation using regularised MLP 

fusion. The regularised MLP fusion is utilised to normalise wheat plant images and reduce 

colour variability due to various light intensities. Genetic algorithm is applied to optimise the 

colour normalisation results. Moreover, the regularised MLP is also used in image 

segmentation to distinguish wheat leaves from other surrounding parts. The results of this 

image segmentation method are compared with the conventional Otsu algorithm. Four 

statistical moments features are subsequently extracted from the segmented images and 

employed as nutrient predictors. Furthermore, several regularised MLPs are combined using a 
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committee machine to estimate nitrogen content. The results are subsequently compared with 

the existing SPAD meter readings based estimation. 

Chapter 4 proposes a new approach for nitrogen analysis using DSELM fusion. Basically, the 

algorithms developed in this chapter are similar to those in Chapter 3. The difference is with 

regards to the utilisation of DSELM in the colour normalisation, image segmentation and 

nutrient estimation steps. 

In Chapter 5, an advanced method using deep learning MLP fusion for nutrient estimation is 

proposed. Besides that, this method introduces a global optimisation to modify the colour 

normalisation results and increase the accuracy of the nutrient estimation results. 

This thesis is concluded with Chapter 6. The chapter presents the closing remarks and several 

points in connection with future works. 
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Chapter 2 

Literature Review 

 

2.1. Introduction 

This chapter presents a review of several techniques regarding nitrogen status analysis in 

plants to support precision farming. The review initially provides a description in relation to 

precision farming, the idea behind it and the technology adopted to bolster the concept of 

precision farming. A number of applications in support of image processing in agriculture are 

also presented, so as to deliver several examples of computational intelligence image 

processing techniques, such as image segmentation, features extraction and artificial neural 

network. This chapter also discusses different techniques concerning existing nitrogen 

measurement, either destructive or non-destructive. Lastly, a number of image-based nitrogen 

estimation techniques are presented. 

 

2.2. Precision Farming 

Intensive agricultural practices which have resulted in an enormous increase in fertiliser 

inputs have been conducted increasingly since 1950. Despite the escalation in crop 

production, such methods have become a serious threat to the environment. Excessive 

fertilisation has led to deterioration in the quality of soil and water and recently, nitrogen (N) 

emissions have been considered a major environmental problem in many countries [12]. 

According to the European Environment Agency, more than 20% of the groundwater in 

European countries has been polluted by nitrates, which is generated by livestock breeding 

and application of fertiliser [13]. An environmental-friendly technique, therefore, should be 

introduced to reduce the negative effects of excessive fertilisation. 

In conventional agricultural practices, farm resources, for instance fertiliser, pesticide and 

water are applied uniformly without deliberate spatial variability. Such practices will cause 

inaccurate treatments as each soil plot and plant has different conditions and input needs. In 

addition, according to [14], soil and crop properties may vary within fields depending on: 
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a) Texture (composition of sand, silt, loam or clay) 

b) pH (acidity) of topsoil and subsoil 

c) Soil content (organic matter, water and minerals) 

d) Slope and orbital orientation of the soil 

e) Density and morphology of crops 

f) Water and minerals content of crops  

g) Infestation of crops by different weeds and by various pests. 

To alleviate these problems, the innovative concept of precision farming has been introduced. 

This concept delivers site-specific crop management to spatial variability in relation to farms, 

in order to optimise crop production that has a negligible negative impact on the environment. 

Precision farming, also known as precision agriculture, is an information-and-technology 

based advanced technique in agricultural production, which boosts efficiency and reduces 

damage to the environment, and helps to achieve agricultural sustainability [15]. 

Furthermore, as reported by [16], there are four important issues related to precision farming. 

The first issue is economics, such as production costs and revenues, cash flow and risk. The 

second issue is pertaining to management, which includes data acquisition and analysis, 

decision support systems and increased attention to management. Subsequent issues are 

related to technologies and the environment. The technologies required for precision farming 

are accurate global positioning system (GPS), variable rate technology, site specific 

management service and financing. Furthermore, reducing input losses, increasing the 

efficiency of water and nutrient (fertilisers) use is a significant aspect related to environmental 

issues. According to [17], the idea of precision farming is supported by the development of 

information and computer technology, remote sensing, ecophysiology, geostatistics and geo-

spatial data management. 

In a study reported by [18], information and computer technologies utilised in precision 

farming comprise three aspects regarding production: 

a) Data collection or information input 

Data collection can be done both before and during crop production. This aspect may 

include soil sampling, yield monitoring and crop scouting. Some advanced technologies 

can also be employed for data collection, for instance GPS to collect precise location 

coordinates, soil probes to monitor electrical conductivity, soil moisture, and other soil 
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variables, and optical scanners to detect soil organic matter and distinguish weeds from 

plants. 

b) Analysis or processing of the precision information 

A number of decision technologies, such as computer process models, artificial 

intelligence systems, and expert systems, can be used to analyse or process the precise 

data. 

c) Recommendations or application of the information 

The aim of data collection and analysis is to manage each part of the field appropriately. 

The final decision of recommendations and applications of production inputs for each plant 

can be adjusted to optimize output according to the producer’s agronomic, economic, and 

environmental goals. 

In addition, the study tabulated the suite of technologies implemented in precision agriculture, 

as presented in Table 2.1. 

Table 2.1. The technologies adopted in precision farming 

Production aspect Technology 

Data collection Prior to production: 

Soil sampling, crop monitoring, 

remote sensing, plant inspection 

Locations/coordinates: 

GPS 

During production: 

Field assessment of 

nutrients, pH, weeds 

Data analysis/processing Geographic information systems (GIS), process models, 

artificial intelligence systems, expert systems, human 

decision makers 

Recommendation/application Variable-rate application: 

Fertiliser, micronutrients, 

pesticides, seeds, seed variety, 

irrigation 

Selective harvest: 

Harvest timing 

determination 

 

2.3. Application of Image Processing in Agriculture 

Digital image processing has been extensively used in agricultural systems. A plethora of 

studies have been reported regarding the application of image processing techniques either in 

pre-harvest (crops cultivation) or post-harvest (agricultural product handlings) activities. In 

pre-harvest activities, image processing techniques have been applied in many subject areas, 

for instance the detection of weeds in crop fields, the detection and classification of plant 

diseases, measurement of the leaf area, and locating fruits on trees. Furthermore, a number of 
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researchers have investigated and estimated the nutrient deficiency and nutrient status of 

various plants. The next section will describe various estimation methods in more detail. 

With regards to the detection of weeds, Tellaeche et al. [19] proposed computer vision based 

approaches regarding the detection and differential spraying of weeds in corn plants. The 

developed technique involves two stages: image segmentation and decision making. A basic 

image processing technique is utilised to extract cells from field images as low level units. 

Each extracted cell describes two segments which represent crop and weeds. In the decision 

making stage, a computational algorithm based on a Bayesian framework determines whether 

or not the analysed cells need to be sprayed. The results demonstrate that the combination of 

relative weed coverage and weed pressure, as the features used in decision making enhance 

the system’s performance. 

Research conducted by [20] has successfully distinguished weeds from maize crops under 

uncontrolled lighting in real-time conditions. The system combines two different techniques, a 

fast image processing delivering results in real-time (Fast Image Processing, FIP), and a 

slower and more accurate processing (Robust Crop Row Detection, RCRD) that is used to 

revise the mistakes produced by the first technique. The combination of these two algorithms 

produces extremely good results under various conditions. Additionally, the key factor 

regarding this study is the proposed image segmentation which it is claimed is robust to 

illumination changes. In the research, RGB colour indices (𝑟 = −0.884, 𝑔 = 1.262, 𝑏 =

−0.311) have been used to discriminate vegetation pixels by creating grey images that can be 

processed easily into binary images using a threshold adjustment based on average intensity 

value. These colour indices were achieved by using a genetic algorithm based optimization 

and has been proved to give better results than Excess Green coefficients with 𝑟 = −1, 𝑔 =

2, 𝑏 = −1. 

Furthermore, an expert system has been developed to identify weeds automatically from 

maize fields [21]. The expert system can be used to detect weeds and crops contaminated with 

substances from soils when the farm is irrigated or after rain. This condition will cause 

traditional segmentation approaches based on image greenness to misidentify plant pixels 

given that they have lost their natural greenness. In the image segmentation step, the research 

applies a combination of vegetation indices and applies the Otsu threshold algorithm. Three 

indices are used in this combination, specifically excess green (𝐸𝑥𝐺), colour index of 

vegetation extraction (𝐶𝐼𝑉𝐸) and vegetative (𝑉𝐸𝐺), which can be expressed as follows: 
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 Excess green (𝐸𝑥𝐺) 

𝐸𝑥𝐺 = 2𝑔 − 𝑟 − 𝑏                                                          (2.1) 

 Colour index of vegetation extraction (𝐶𝐼𝑉𝐸) 

𝐶𝐼𝑉𝐸 = 0.441𝑟 − 0.811𝑔 + 0.385𝑏 + 18.78745                               (2.2) 

 Vegetative (𝑉𝐸𝐺) 

𝑉𝐸𝐺 =
𝑔

√𝑟2𝑏
3

 
                                                                   (2.3) 

where 𝑟, 𝑔 and 𝑏 are colour index of red, green and blue, respectively, which can be obtained 

as follows: 

𝑟 =
𝑅𝑛

𝑅𝑛 + 𝐺𝑛 + 𝐵𝑛
 ,    𝑔 =

𝐺𝑛

𝑅𝑛 + 𝐺𝑛 + 𝐵𝑛
 ,     𝑏 =

𝐵𝑛

𝑅𝑛 + 𝐺𝑛 + 𝐵𝑛
 

𝑅𝑛, 𝐺𝑛 and 𝐵𝑛 are the normalised red, green and blue colour, respectively, ranging from 0 to 1 

and are achieved using the following formulae: 

𝑅𝑛 =
𝑅

𝑅𝑚𝑎𝑥
 ,    𝐺𝑛 =

𝐺

𝐺𝑚𝑎𝑥
 ,    𝐵𝑛 =

𝐵

𝐵𝑚𝑎𝑥
 

where 𝑅𝑚𝑎𝑥 = 𝐺𝑚𝑎𝑥 = 𝐵𝑚𝑎𝑥 = 255 for 24-bit colour images. 

The three indices mentioned above are subsequently combined to obtain the combination 

value (𝐶𝑂𝑀) as follows: 

𝐶𝑂𝑀 = 𝑤1𝐸𝑥𝐺 + 𝑤2𝐶𝐼𝑉𝐸 + 𝑤3𝑉𝐸𝐺                                      (2.4) 

where 𝑤1, 𝑤2, and 𝑤3 are the weights for each index, representing their relative contribution 

in the combination. 

Further research with regards to weed and crop detection was conducted by [22]. In the 

research, a multi spectral camera was utilised to capture images of soybean crops and weeds 

in fields. The camera recorded images with three channels, namely green, red and infrared 

waveband. Three images from the all channels can be composed into one image, which 

contains more information than images captured by common digital cameras. The crop 

images are segmented from soil background using infrared channel distribution as the infrared 
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channel image is very clear and with high resolution. Morphological operations, i.e. dilation 

and erosion are then performed to remove small sized weeds and extract images of the 

soybean crop. A radial basis neural network is used to identify weeds based on five input 

parameters, principally area size, long and short axis length, eccentricity, and Euler number. 

The results reveal that the proposed technique can even detect and identify weeds of a similar 

size and colour. 

Musthafa et al. [23] investigated the utilisation of an intelligent real-time automatic weed 

control system to identify and distinguish weeds. They used two techniques related to image 

processing, i.e. grey level co-occurrence matrix (GLCM) and fast Fourier transform (FFT), to 

achieve the best solution in connection with weed classification. Basically, GLCM is a matrix 

that defines how often different combinations of grey level pixels occur in a greyscale image 

at a given offset. In the research, two features are employed to distinguish weeds from crops, 

i.e. contrast and regularity. Contrast (𝐶𝑜𝑛) and regularity (𝑅𝑒𝑔) can be expressed as a 

function of co-occurrence matrix as follows: 

𝐶𝑜𝑛 = ∑∑(𝑖 − 𝑗)2𝑝𝑖,𝑗

𝑗𝑖

                                              (2.5)  

𝑅𝑒𝑔 = ∑∑
𝑝𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑗𝑖

                                              (2.6) 

where 𝑖 and 𝑗 are coordinates in the developed co-occurrence matrix (𝑝𝑖,𝑗). The values of 𝑖 

and 𝑗 depend on the grey level used in the image. Typically, an image has 256 grey level. The 

values of 𝑖 and 𝑗, thus, range from 0 to 255.  

An investigation regarding the detection of weeds was also undertaken by [24] in an oil palm 

plantation. In this research, a low-high pass filtering technique is applied to process crop-

weed images, especially for edge detection, while continuity measure (CM) based feature 

extraction is proposed to extract and minimise the pixels size of output filter. Low-pass 

filtering, also known as blurring or smoothing, averages out rapid changes in pixel intensity. 

A two dimensional low pass filter can be expressed as follows: 

𝐿𝑃(𝑢, 𝑣) = {
1   𝑖𝑓   𝐷(𝑢, 𝑣) ≤ 𝐷0

0   𝑖𝑓   𝐷(𝑢, 𝑣) > 𝐷0
                                           (2.7) 

where 𝐷0 is a specified non-negative quantity and 𝐷(𝑢, 𝑣) is the distance from the coordinates 

(𝑢, 𝑣). In the in the meantime, a high-pass filter can be applied to make an image appear 
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sharper. The mathematical expression related to a high-pass filter can be written as the 

opposite of a low-pass filter, as shown below: 

𝐻𝑃(𝑢, 𝑣) = {
0   𝑖𝑓   𝐷(𝑢, 𝑣) ≤ 𝐷0

1   𝑖𝑓   𝐷(𝑢, 𝑣) > 𝐷0
                                            (2.8) 

Image processing can also be used to detect diseases in plants. As reported in a literature 

survey by [25], a common practice conducted by plant scientists to identify plant disease 

symptoms, either in leaves or stems, is by a visual inspection regarding the scale of the 

affected area. Nevertheless, such practice results in subjectivity and low throughput. The 

literature study summarises 11 different methods regarding the detection of plant diseases and 

analysis, as follows: 

1) Backpropagation neural network 

2) Airborne hyperspectral imagery and red edge techniques 

3) Image analysis integrated with the Central Lab. of Agricultural Expert System (CLASE ) 

diagnostic model  

4) Combination of morphological features of leaves, image processing, feed forward neural 

network based classifier and fuzzy surface selection techniques for feature selection 

5) Support vector machines for developing weather based prediction models of plant 

diseases 

6) Wavelet based image processing techniques and neural network 

7) Image processing with PCA & Probabilistic Neural Network (PNN) 

8) Combination of image growing, image segmentation, Zooming algorithm and Self 

Organising Map (SOM) neural network for classifying diseased rice images 

9) Self-organising maps and back propagation neural networks with genetic algorithms for 

optimisation and support vector machines related to classification 

10) Image clipping, filtering and thresholding 

11) Otsu segmentation, K-means clustering and back propagation feed forward neural 

network 

Research related to the application of a neural network for detecting diseases in a variety of 

orchid plants was conducted by [26]. This study employed image processing techniques, 

adjustable exponential transform (AET), grey level co-occurrence matrix (GLCM) and the 

backpropagation neural network (BPNN) classifier for the classification system. The 

developed AET and image processing technique can be applied to detect and segment the 

lesion areas. Three colour features (𝑅mean, 𝐺mean, and 𝐵mean) and 18 texture features (i.e. 
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contrast, uniformity, maximum probability, homogeneity, inverse difference, difference 

variance, diagonal variance, entropy and difference entropy of the green and blue colour 

regarding the lesion area) are utilised as the inputs for the BPNN classifier. The results 

confirm that the developed detection method can classify lesions in orchid plants effectively, 

with an accuracy level up to 89.6%. 

An investigation into the detection of citrus canker from leaf images captured in a field was 

undertaken by [27]. In that research, a new approach based on global features and zone-based 

local features is presented to detect citrus canker on leaf images. In the image segmentation 

and features extraction, a hierarchical detection strategy is used to segment lesion leaf images 

from the background, while an improved AdaBoost technique is utilised to select the most 

significant features. A canker lesion descriptor is subsequently proposed by combining leaf 

image colour and texture features to classify citrus canker lesions. The experimental results 

explain that the proposed method offers classification accuracy, which is as satisfactory as 

identification by human experts. 

Additional research with regards to disease detection in citrus plants was also undertaken by 

[28]. The colour co-occurrence method (CCM) textural features using hue, saturation and the 

intensity (HSI) colour model and statistical classification algorithm are used to identify 

diseased and normal citrus leaves in controlled laboratory conditions. Four different classes of 

citrus leaf are examined: melanose, greasy spot, scab and normal. In this research, 13 texture 

features for each HSI component (39 features for all) were developed to represent the colour 

distribution of the examined citrus leaves. The 13 texture features are uniformity, mean 

intensity, variance, correlation, product moment, inverse difference, entropy, sum entropy, 

difference entropy, information correlation 1, information correlation 2, contrast and modus. 

SAS statistical analyses are performed to reduce redundancy in the texture feature set. The 

research develops two sets of four data models, one set from leaf backs and one set for leaf 

fronts. Four data models of each set consist of different texture features. Model 1 comprises 

hue and saturation texture features, while model 2 includes intensity features. Model 3 

contains hue, saturation and intensity features, whereas model 4 involves all 39 developed 

features. The experiments provide classification accuracy up to 81% on all data models using 

intensity features. When using hue and saturation features, the accuracy increases up to 

95.8%. The highest accuracy achieved 100% when using all the HSI features. 

Image processing can also be utilised to measure leaf areas in various plants. Leaf area is a 

key factor in crop growth and has significant influence on crop production. A study of leaf 
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area measurement using image processing techniques was conducted by [29]. In this study, 

image geometric distortions are firstly corrected using mapping function by applying Hough 

transformation, while threshold-based segmentation method is utilised to distinguish leaves 

from the background. Furthermore, to remove the noises in the segmented images, contour 

extraction and region filling are applied. The leaf area is subsequently measured by 

calculating pixel numbers. 

Mora et al. [30] developed an image processing algorithm to measure leaf area index of fruit 

trees canopy. Two levels of image segmentation are applied to eliminate non-leaf material. 

The first level is automatic segmentation of blue colour channel based on the conventional 

Otsu algorithm. The second level is automatic detection of image pixel which are 

corresponded to trunks, branches, fruit and any other non-leaf materials. In the second level 

segmentation, the colour of plant images are transformed from RGB to CIE Lab colour 

model. The algorithm of the second segmentation is as follows: 

𝐼𝑥𝑦
(2)

= {
1    if 𝐴𝑥𝑦 > 0

0   otherwise
                                                         (2.9) 

𝑛𝑛𝑜𝑛−𝑙𝑒𝑎𝑓 = ∑∑𝐼𝑥𝑦
(2)

𝑦𝑥

− ∑∑𝐼𝑥𝑦
(1)

𝑦𝑥

                                     (2.10) 

𝑓𝑐 = 1 −
𝑔𝐿

𝑝𝑇 − 𝑛𝑛𝑜𝑛𝑙𝑒𝑎𝑓
                                                    (2.11) 

𝑓𝑓 = 1 −
𝑔𝑇

𝑝𝑇 − 𝑛𝑛𝑜𝑛𝑙𝑒𝑎𝑓
                                                   (2.12) 

𝜙 =
𝑓𝑓
𝑓𝑐

                                                                (2.13) 

Ω =
(1 − 𝜙) ∙ 𝑙𝑛(1 − 𝑓𝑓)

𝑙𝑛(𝜙) ∙ 𝑓𝑓
                                               (2.14) 

𝐿𝐴𝐼𝑒 = 𝐿𝐴𝐼𝐴 ∙ Ω                                                        (2.15) 

where 𝐼𝑥𝑦
(1)

 and 𝐼𝑥𝑦
(2)

 are pixel values at coordinates (𝑥, 𝑦) of binary images with dimension of 

𝑛 × 𝑚 from the first and second level segmentation, respectively; 𝐴𝑥𝑦 is chromaticity-a 

component from CIE Lab of a pixel at coordinate (𝑥, 𝑦), 𝑛𝑛𝑜𝑛𝑙𝑒𝑎𝑓 is number of pixels 

corresponding to non-leaf materials; 𝑓𝑐 and 𝑓𝑓 are the cover and crown cover fractions, 
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respectively; 𝑝𝑇 is the total pixels in the images; 𝜙 and Ω are the crown porosity and 

clumping index, respectively; 𝐿𝐴𝐼𝑒 and 𝐿𝐴𝐼𝐴 are effective leaf area index and leaf area index 

measured by allometry, respectively. 

In the harvesting process, image processing has also been used to provide assistance to human 

vision to locate fruits for robotic harvesting. As reported by [31], an image guided citrus fruit 

picker has been developed for recognizing and locating fruit, as well as detaching it according 

to prescribed criteria without causing damage to the fruit or the tree. A six-camera array is 

used to detect fruit in citrus trees. In the image segmentation step, the Naïve Bayesian method 

is applied to discriminate citrus fruit from the background. This process requires a supervised 

pixel classification from an image database collected prior to field trials. By applying a value 

𝜋 which represents priori probabilities, each image pixel is segmented using the following 

rules: 

pixel = {
1, fruit                 if   (𝑓𝑔 × 𝜋) > (𝑏𝑔 × (1 − 𝜋))

0, background  if   (𝑓𝑔 × 𝜋) ≤ (𝑏𝑔 × (1 − 𝜋))
                          (2.16) 

where 𝑓𝑔 and 𝑏𝑔 are fruit (foreground) and background colour, respectively. The validation 

results confirm that at least 98% of the fruits on the tree are visible using the attached cameras 

and moreover, that the picker mechanisms can detach over 98% of the fruits observed. 

Image-based detection of pomegranates on trees was investigated by [32]. In the research, a 

combination of colour and shape analyses is applied to detect pomegranate fruits on trees, 

which are red in colour and round in shape. Four common indices, i.e. difference index, hue-

saturation index, ratio index, and normalisation index, in addition to a new index, specifically 

modified difference index, are used for fruit detection. The results reveal that the modified 

difference index has the highest classification rate. The modified index can be expressed as 

follows: 

𝑅𝑅𝑔 =
3∆𝑅𝑔

(𝑅 + 𝐺 + 𝐵)
                                                 (2.17) 

𝑅𝑅𝑏 =
3∆𝑅𝑏

(𝑅 + 𝐺 + 𝐵)
                                                 (2.18) 

with  

∆𝑅𝑔 = 𝑅 − 𝐺   and   ∆𝑅𝑏 = 𝑅 − 𝐵 
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where 𝑅, 𝐺, and 𝐵 are mean values of 𝑅, 𝐺, and 𝐵, respectively. 

Arivazhagan et al. [33] investigated the use of computer vision for fruit recognition based on 

colour and texture features. HSV (hue, saturation and value/intensity) colour space is used in 

contrast to the RGB colour model for its invariant properties. Four statistical colour features, 

principally mean, standard deviation, skewness, and kurtosis, are derived from H and S 

components. Thus, there are eight colour features extracted from each fruit image. Moreover, 

the V component is subjected to one level of decomposition Discrete Wavelet Transform and 

the co-occurrence matrix is constructed using the intensity value. Five texture features are 

subsequently extracted from the constructed co-occurrence matrix, i.e. contrast, energy, local 

homogeneity, cluster shade and cluster prominence. Therefore, 13 colour-texture features are 

used with regards to the recognition of various fruits. Fifteen different fruits were used in the 

experiment and the results prove that the recognition rates using only colour features and 

texture features are 45.5% and 70.8%, respectively. The recognition accuracy is improved by 

up to 86% using both colour and texture features simultaneously. 

The applications of image processing can also be established in post-harvest activities, for 

instance in fruit sorting and grading. Research related to the detection of apple size and a 

grading system based on image processing was performed by [34] in controlled lighting 

conditions. In this case, the fruit area is firstly segmented from the image with an Ohta-

colour-model based thresholding algorithm. Ohta colour space can be obtained by converting 

RGB colour as follows: 

𝐼1 =
(𝑅 + 𝐺 + 𝐵)

3
   ;   𝐼2 =

(𝑅 − 𝐵)

2
   ;    𝐼3 =

(2𝐺 − 𝑅 − 𝐵)

4
                  (2.19) 

𝐼2
′ = 𝑅 − 𝐵   ;    𝐼3

′ =
(2𝐺 − 𝑅 − 𝐵)

2
                                    (2.20) 

Blob algorithm is then used to remove image noises and a spline-interpolation based 

technique is applied to detect fruit contours. In the sorting process, the colour ratio of an apple 

is calculated by dividing the red colour value with the area of the apple image. The apples are 

subsequently sorted by Bayes classifier. The accuracy level of the classification is up to 90%. 

A colour-based grading system was also conducted by [35] in connection with tomatoes and 

dates. In the study, a new colour mapping concept is presented. The colour mapping converts 

3-D colour spaces to 1-D colour indices for automated grading. This technique has made the 

selection and adjustment of colour preferences more straightforward. 



  

19 | P a g e  
 

Mizushima et al. [36] developed an image segmentation method using support vector machine 

(SVM) and Otsu algorithm for apple sorting and grading. The developed image segmentation 

method can automatically adjust the classification hyperplane obtained from linear SVM with 

minimum training time. To achieve the best segmentation results, the minimum threshold 

(𝑇𝑚𝑖𝑛) value around the fruit boundary is estimated and then applied to the SVM grayscale 

image. A classification hyperplane in the 3-D RGB space can be calculated as a linear 

combination of red, green and blue as follows: 

𝑍(𝑥, 𝑦) = 𝑤𝑅𝑅(𝑥, 𝑦) + 𝑤𝐺𝐺(𝑥, 𝑦) + 𝑤𝐵𝐵(𝑥, 𝑦) + 𝑏                        (2.21) 

with 

𝑤𝑅 = ∑𝜆𝑖𝑡𝑖𝑅𝑖

𝑛𝑠𝑣

𝑖=1

 ,   𝑤𝐺 = ∑𝜆𝑖𝑡𝑖𝐺𝑖

𝑛𝑠𝑣

𝑖=1

 ,   𝑤𝐵 = ∑𝜆𝑖𝑡𝑖𝐵𝑖

𝑛𝑠𝑣

𝑖=1

 

𝑏 = 𝑡𝑘 − (𝑤𝑅𝑅𝐾 + 𝑤𝐺𝐺𝐾 + 𝑤𝐵𝐵𝐾) ,   1 ≤ 𝑘 ≤ 𝑁𝑠 

where 𝑅(𝑥, 𝑦), 𝐺(𝑥, 𝑦) and 𝐵(𝑥, 𝑦) are the red, green and blue values at pixel position (𝑥, 𝑦), 

respectively; 𝑅𝑖, 𝐺𝑖 and 𝐵𝑖 are support vectors of red, green and blue obtained by training, 

respectively; 𝑅𝐾, 𝐺𝐾 and 𝐵𝐾 are the red, green and blue of any given support vector, 

respectively; 𝜆𝑖 and 𝑡𝑖 are the positive Lagrange  multipliers and the class label, respectively; 

and 𝑛𝑠𝑣 is the number of support vectors. 

 

2.4. Nitrogen Content Measurement in Plants 

In general, there are four different methods employed to assess nitrogen content in plants, i.e. 

(i) chemical and combustion test, (ii) vegetation index, (iii) leaf colour chart, and (iv) 

chlorophyll meter based measurement. Each method will be described in detail as follows: 

a) Chemical analysis using the Kjeldahl method 

As described by [37], the Kjeldahl method is commonly used for nitrogen analysis of leaf 

tissue and several fruit crops. The procedure of this method can be explained as follows:  

A ground sample weighing 0.25g is digested with 5 mL of sulphuric acid (H2SO4) and the 

mixture is heated at a temperature of 380 oC until the sample solution is clear. Distilled water 

is then added to the digested sample until the solution volume reaches 50 mL. After adding 
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roughly 1 mL of 40% sodium hydroxide (NaOH) solution, a 10 mL volume of the sample is 

distilled. The distilled sample is then titrated with a standard solution of 0.02 N H2SO4 until 

the end point. The nitrogen concentration of the leaf sample can be calculated using the 

following equation: 

𝑁𝑡𝑜𝑡𝑎𝑙(%) =
(𝑉𝑠 − 𝑉𝑏) × 𝐶𝐻2𝑆𝑂4

× 0.014 × 𝑉𝑑 × 100

𝑊 × 𝑉𝑎
                        (2.22) 

where 𝑉𝑠 is the volume of the standard H2SO4 (mL) used for titration to reach the end point, 𝑉𝑏 

is the volume of the standard H2SO4 (mL) used for titration of the blank, 𝐶𝐻2𝑆𝑂4
 is the 

concentration of H2SO4, 𝑉𝑑 is the volume of the digested sample solution, 𝑊 is the weight of 

the sample (g) and 𝑉𝑎 is the volume of the sample solution for the analysis. 

In addition, [38] depicts the Kjeldahl procedure for nitrogen estimation of plant tissue in a 

simple diagram, as seen in Figure 2.1. 

 

Figure 2.1. Kjeldahl method to determine nitrogen content in plant tissue. 

 

b) Combustion method 

The combustion method, also known as Dumas combustion procedure, is another destructive 

technique utilised to analyse nitrogen in plant leaves. Compared to the Kjeldahl method, 

Dumas combustion method is much quicker in application and less expensive in relation to 

disposing of hazardous waste [37]. In this method, dried leaf samples are burned completely 

in the induction furnace of the nitrogen analyser. Both organic and inorganic nitrogen are then 

transformed into NOx gases, which are subsequently reduced to N2 gas. Eventually, the 

amount of nitrogen is subsequently measured automatically by thermal conductivity. Munoz-

Huerta et al. [38] simplifies Dumas combustion procedure in a block diagram, as depicted in 

Figure 2.2. 
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Figure 2.2. Dumas combustion method to assess nitrogen content in plant tissue. 

Both the Kjeldahl and Dumas combustion methods are the most accurate techniques with 

respect to measuring nitrogen in leaves and the results are regularly utilised as the standard 

values for other techniques. Despite the accuracy of the analysis results, these methods are 

destructive and time-consuming and also require special expertise to operate special devices. 

According to Figure 2.1 and Figure 2.2, there are several differences between Kjeldahl and 

Dumas method. The differences are as following: 

1. There is a heating process in both methods, however, the heating temperature in Dumas 

method is considerably higher than that in Kjeldahl method. 

2. Both methods utilise chemical substances. Dumas method uses gases, such as oxygen, 

nitrogen and carbon dioxide, while Kjeldahl method utilises solution (liquid), such as 

sulphuric acid, ammonium sulphate and sodium hydroxide. 

3. The final substance, which is then used to estimate nitrogen content of the sample, 

obtained from the Kjeldahl method is ammonium, while that from the Dumas method is 

gaseous nitrogen. 

 

c) Vegetation index (VI) method 

As reported by [39], satellite remote sensing can be utilised to estimate nitrogen status with 

larger covered areas. Basically, this method is conducted by extracting the spectral digital 

number (DN) values of a remote sensing image (multispectral image) by means of 

commercial software, such as ENVI and ArcGIS, and subsequently calculating several 

vegetation indices. A multispectral image has four wavelength bands, i.e. 450-520 nm at blue 

light (B), 520-600 nm at green light (G), 630-690 nm at red light (R), and 760-900 nm at near-

infrared (NIR). The vegetation indices are subsequently correlated with a number of plant 
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growth parameters, such as biomass, leaf area index, nitrogen uptake, nitrogen concentration 

and nitrogen nutrition index. Several VIs have been studied in relation to estimating nutrient 

status in plants, i.e. normalised difference vegetation index (NDVI), green normalised 

difference vegetation index (GNDVI), ratio vegetation index (RVI), green ratio vegetation 

index (GRVI), green and red ratio vegetation index (GRRVI), enhanced vegetation index 

(EVI), visible atmospherically resistant index (VARI), chlorophyll index (CI), structure 

insensitive pigment index (SIPI) and plant senescence reflectance index (PSRI). 

Regardless of its large coverage area, this method is expensive pertaining to obtaining satellite 

images. In addition, it is not straightforward with regards to obtaining the images; thus, this 

technique is not appropriate for traditional farmers and agriculture practitioners. 

d) Leaf colour chart 

A leaf colour chart, as seen in Figure 2.3, is developed to measure the green colour intensity 

of crop leaves, such as rice [40]. The leaf colour chart was initially made for rice crops and it 

is still commonly used on rice plants. However, the symptoms of either excess or deficient 

nitrogen in leaves are similar to all other crops. The leaf colour chart, therefore, can be applied 

to most narrow leaf crop plants, for instance rice, wheat, sugarcane, millet and onion, as seen 

in Figure 2.4 [41]. The advantages of using this method are that it is straightforward to use, 

non-destructive and inexpensive. To use a leaf colour chart pertaining to nitrogen estimation, 

the observed leaf colour only has to be compared with a standard colour in the chart, as shown 

in Figure 2.5 [42]. In spite of its simplicity, the result is less accurate due to differences in 

people’s vision. 

 

 

Figure 2.3. A leaf colour chart. 
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Figure 2.4. Leaves of various crops with similar shapes and sizes. 

 

    

 

Figure 2.5. Application of leaf colour chart to determine nitrogen fertiliser dose. 

e) Chlorophyll meter 

It is recognised that greenness index in leaves has a strong relationship with chlorophyll 

content. Chlorophyll in a leaf absorbs all visible lights in various amounts. The absorbance 

peaks occur on absorption of blue light (400-500 nm) and red light (600-700 nm) and little 

absorbance in green light (550 nm) as seen in Figure 2.6. Most of the green lights are reflected 

from or transmitted through leaves. This is what gives chlorophyll-leaves their green colour. 

Furthermore, chlorophyll absorbs very little, even zero, radiation at wavelengths greater than 

700 nm, termed near-infrared (NIR), which is not used in photosynthesis. 

Furthermore, chlorophyll content in leaves also has a strong correlation with nitrogen amount, 

seeing as nitrogen is the principal component and develops chlorophyll in a leaf. Therefore, it 

can be claimed that nitrogen content can be detected and measured via the greenness index of 

the leaf. The most common and practical method applied to measure the greenness index is by 

Rice Wheat Sugarcane Millet Onion 
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using a chlorophyll meter. The most renowned one is the SPAD-502 (Soil-Plant Analysis 

Development, Minolta Camera Co., Osaka, Japan). A SPAD meter is a non-destructive handy 

device to determine chlorophyll content in a leaf by measuring the absorbance and 

transmittance of lights with two different wavelengths through the leaf [43]. 

 

Figure 2.6. Absorbance level of green leaf on various wavelengths [44]. 

This device utilises two LEDs which emit lights onto the upper surface of a leaf. The two 

LED sources emit a red light with a peak wavelength of 650 nm (𝐿650) and an infrared light 

with a peak wavelength of 940 nm (𝐿940). The light from the LEDs penetrates the leaf where 

a portion of the light is absorbed by chlorophyll and the rest is transmitted through the leaf 

(Figure 2.7). The transmittance lights (𝐿650
′  and 𝐿940

′ ) make contact with a photodiode 

detector and is converted into an electrical signal. The values produced by the chlorophyll 

meter are nontrivial ratios and are also known as chlorophyll content index (𝐶𝐶𝐼), which can 

be calculated as follows [45]: 

𝐶𝐶𝐼 = log
𝐿940
′ /𝐿940

𝐿650
′ /𝐿650

= log
𝐿940
′ ∙ 𝐿650

𝐿650
′ ∙ 𝐿940

                                        (2.33) 

If a light from a light source strikes an object, a number of things could happen. The light 

wave could be transmitted, absorbed, scattered, and/or reflected by the object. The transmitted 

radiant flux, thus, can be calculated as follows: 

𝐿′ = 𝐿 − 𝐿𝑎 − 𝐿𝑠 − 𝐿𝑟 = 𝐿 − (𝐿𝑎 + 𝐿𝑠 + 𝐿𝑟)                                    (2.34) 



  

25 | P a g e  
 

Based on the fact of the light proportion as expressed in Eq. (2.34), therefore, Eq. (2.33) can 

be rewritten as follows: 

𝐶𝐶𝐼 = log
𝐿650 ∙ [𝐿940 − (𝐿𝑎 + 𝐿𝑠 + 𝐿𝑟)940]

𝐿940 ∙ [𝐿650 − (𝐿𝑎 + 𝐿𝑠 + 𝐿𝑟)650]
                                  (2.35) 

 

 

Figure 2.7. How a chlorophyll meter works [46]. 

After the signal processing, the absorbance is displayed and shows units that range from -9.9 

to 199.9 and is known as the SPAD value. In spite of its simplicity, the result of this method is 

significantly influenced by leaf thickness, while the leaf area used for this measurement is 

exceedingly small (6 mm2). Hence, this measurement is not suitable to use in a large field. In 

addition, this device is very expensive. It costs around $2,200 [47]. 

 

2.5. Image-based Nutrient Status Analysis in Plants 

In general, studies on nutrient prediction can be categorised into two research groups. The 

first research group is with respect to nutrient deficiency prediction. Such researches are 

typically conducted to identify symptoms, as well as classify certain nutrient deficiency in 

various plants. The second research group is related to nutrient status or nutrient amount 

estimation. Commonly, researches in the second group aim to predict specific nutrient content 
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in several crops. Furthermore, Muñoz-Huerta et al. [38] summarised numerous methods to 

determine nitrogen status in plants, as seen in Figure 2.8. 

 

Figure 2.8. Various methods for nitrogen status determination. 

Xu et al. [10] conducted research to identify nitrogen and potassium deficiency in tomato 

plants using images related to the colour of leaves captured in a closed sampling box, as seen 

in Figure 2.9. In this research, they used colour and texture features of potato leaves extracted 

by means of various methods, such as percent intensity histogram, percent differential 

histogram, Fourier transform, and wavelet packet. Furthermore, genetic algorithm (GA) was 

employed to choose features to obtain the most appropriate information for classifying 

nutrient deficiency. The experiments prove that their method can predict nutrient deficiency in 

a potato, with an accuracy level of 82.5%, approximately 6-10 days before experts could 

make a diagnosis. 
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Figure 2.9. Image acquisition devices to identify nitrogen and potassium deficiency in tomato 

plants. 

Story et al. [48] observed calcium deficiency on lettuce crops in controlled environments 

using machine vision, as shown in Figure 2.10. The visual plant features used in this research 

are top projected canopy area (TPCA) as a morphological feature; red-green-blue (RGB) and 

hue-saturation-luminance (HSL) values as colour features; in addition to entropy, energy, 

contrast and homogeneity as textural features. Based on their research, calcium deficiency on 

lettuce crops could be identified one day prior to detection by human vision. Moreover, they 

established that TPCA, energy, entropy and homogeneity were the best features with regards 

to detecting calcium deficiency in lettuce. 

Ma et al. [49] analysed the colour of soybean leaves to diagnose nitrogen deficient and 

nitrogen excess soybean plants. This research applied the RGB and HSI colour model to six 

stages of soybean growth, which are fertilised using four levels of nitrogen fertiliser (0%, 

50%, 100% and 150%). According to this study, the nitrogen content in soybean leaves can be 

calculated whether it has a deficiency or an excess by combining the curve trends in each 

stage and the value of the RGB and HSI components. 

1 – CCD camera 

2 – Sampling box 

3 - Computer 
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Figure 2.10. Schematics of a machine vision for a lettuce crop monitoring system. 

In research conducted by [50], image processing based algorithm was developed to represent 

symptoms of nitrogen, potassium and magnesium deficient oil palm leaves (Figure 2.11). The 

developed algorithm includes image segmentation, colour features extraction and image 

classification. The result reveals that the algorithm is capable of classifying three types of 

nutrient deficient oil palm leaves. 

 

(a)  (b) 

 

(c) 

Figure 2.11. Examples of nutrient-deficient oil palm leaves: (a) nitrogen, (b) potassium and 

(c) magnesium. 

 

Wiwart et al. [51] analysed the colour changes of the first leaves from three legume species 

(faba bean, pea and yellow lupine) under nitrogen, phosphorous, potassium and magnesium 

deficiency conditions. Euclidean distance was applied to determine the similarity concerning 

1 

2 

3 

4 

1. Personal computer 

2. Stepper motor 

control box 

3. Lettuce crops 

4. CCD camera 
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leaf colour for L*a*b* and HSI colour values. This method presents a base to develop an 

automated system for early detection of nutrient deficiencies in legumes. 

Pagola et al. [52] developed a new technique to measure the nitrogen status of barley plants in 

a greenhouse using the RGB colour index analysis. In this research, a small leaf area of 1 cm2 

was captured by a digital camera, as seen in Figure 2.12. Fifteen images of barley leaves with 

different nutritional status from low to high level of nitrogen dose were captured. The average 

values of |R−B|, |G−R| and |G−B| were then calculated for all pixels in each image. Figure 

2.13 shows the corresponding points for each leaf. This technique utilises principal 

component analysis (PCA) to calculate a correlation matrix and to obtain the eigenvalues and 

eigenvectors. The eigenvector associated with the highest eigenvalue corresponds to the main 

direction of the leaves data, as shown by the red dashed arrow in Fig. 2.13. The predicted 

nutrient amounts using the PCA-based greenness index (𝐼𝑃𝐶𝐴) strongly correlated with the 

SPAD meter measurements, with a correlation coefficient of 95%. 

 

Figure 2.12. An example of a leaf image. 

 

Figure 2.13. Leaf points and principal direction in PCA based on RGB colour. 
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Yao et al. [11] have developed a new technique for nutrient status detection. Their research 

proposed several tables instead of explicit linear or non-linear mathematical models. These 

tables consist of the data regarding leaves image features and the macronutrient percentage of 

a standard colour block from a given leaf sample. Nutrient status detection is subsequently 

performed by comparing the observed leaf features with the standard colour blocks. 

Yuanfang et al. [53] studied image processing and spectral analysis based chlorophyll content 

monitoring maize leaves. They used colour features of RGB and HSI to establish a regression 

model. By using univariate regression analysis of component G, the verified regression model 

could be used to predict chlorophyll value with a precision level of 0.734. Furthermore, three 

component multiple regression statistics regarding G, I and 2G-R were also applied to 

estimate the amount of chlorophyll. The prediction accuracy related to this regression is up to 

0.744. 

Moghaddam et al. [54] investigated the use of colour image and neural network to assess 

nitrogen status in sugar beet leaf. The RGB colour of a leaf image is captured with a 

conventional digital camera and used as neural network inputs to estimate the SPAD value of 

sugar beet leaves. The results confirm that the developed neural network can be used to 

estimate SPAD value with greater accuracy compared to the linear regression model. 

Wang et al. [55] developed an algorithm to estimate nitrogen status of rice crops using the 

image segmentation based on the value of green minus red (GMR) threshold. Canopy images 

of rice crops are segmented by using GMR value, and then several image features are 

correlated with three plant indices, i.e. above-ground biomass, nitrogen content and leaf area 

index. The results show that the GMR value and canopy cover will be valid indicators to 

estimate nitrogen content in rice crops. 

A research conducted by [56] has found that dark green colour index (𝐷𝐺𝐶𝐼) can be utilised 

to assess nitrogen content in corn leaf. DGCI has a strong relationship with leaf nitrogen 

concentration with coefficient of determination (𝑅2) ranged from 0.80 to 0.89. Furthermore, 

𝐷𝐺𝐶𝐼 can be obtained by combining hue (𝐻), saturation (𝑆)and brightness (𝐵) into one 

composite number, as follows: 

𝐷𝐺𝐶𝐼 =

(𝐻 − 60)
60 + (1 − 𝑆) + (1 − 𝐵)

3
                                        (2.33) 

 



  

31 | P a g e  
 

2.6. Summary 

Nitrogen analysis in plants is required to provide a valuable assessment prior to the 

application of fertiliser, in order to provide an accurate fertilisation dose and to prevent 

environmental degradation. This is the concept of site-specific fertilising. This chapter 

presented numerous techniques pertaining to nitrogen status analysis, either destructive or 

non-destructive. Most of the image-based techniques were conducted in controlled conditions. 

In the coming chapters, three different methods that are employed to analyse nitrogen status 

based on crop images captured in fields will be presented.  
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Chapter 3 

Regularised Neural Networks Fusion and Genetic Algorithm Based On-

Field Nitrogen Status Estimation of Wheat Plants 

 

3.1. Introduction 

In this chapter, a novel approach of on-field nitrogen amount estimation in wheat plants is 

developed based on the characteristics of the plant images. The main focus of this chapter is 

on the utilisation of colour normalisation method using neural networks fusion and genetic 

algorithm to normalise wheat plant images captured under various sunlight intensities. 

Moreover, a Macbeth colour checker is used as colour reference to normalise the colour of the 

images. In the step of image segmentation and features extraction, neural network is utilised 

to distinguish wheat leaves as the object of interest from other images, such as soil, weeds, 

dried leaves, stems and stones. Twelve statistical features, i.e. first moment (mean), second 

moment (variance), third moment (skewness) and fourth moment (kurtosis) of each RGB 

colour channel, are extracted from the segmented images as the nutrient estimation predictors. 

These features are proposed as the nutrient predictors, instead of single colour channel from a 

certain colour model or combination of some colour channels, since they are more suitable to 

represent the colour distributions in wheat leaves. Finally, in the nutrient estimation step, a 

combination of committee machines and genetic algorithm from several neural networks with 

different hidden layer nodes is established to estimate nitrogen content. 

 

3.2. Experimental Setup 

This research work can be divided into three parts as depicted in Figure 3.1. Each part will be 

explained more detail in the following sections. 

3.2.1. Experimental materials and design 

In order to produce variations in nitrogen levels, an experiment in relation to wheat plants 

with various fertiliser amounts was established, as presented in Figure 3.2. This experiment 

was conducted at Nafferton experimental farm, Newcastle University, from April to June 

2013. The treatments were set to three different fertiliser amounts, i.e. 0 (N1), 85 (N2), 170 
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(N3) kg/ha of NH4NO3 with each treatment replicated four times. Hence, there are 12 plots 

with each plot being 20 m  20 m in dimension. The data collection was undertaken in three 

different sessions i.e. one week prior to fertilising, and two and four weeks after fertilising. 

Therefore, in total 36 samples were used in this research. 

 

Figure 3.1. Flowchart of the research. 

 

Figure 3.2. Experimental farm design to produce a variation of nitrogen levels. 
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3.2.2. Combustion method based nitrogen analysis 

The actual nitrogen content was measured using combustion method by means of Elementar 

Vario Macro Cube (Figure 3.3). This device has high temperature combustion unit which can 

burn organic matter samples up to 1200-1800 oC. It also has the largest weighing range which 

is optimised for macro sample weight up to 1.5 g soil and 200 mg organic matter. In addition, 

the device has the largest dynamic range of element concentrations and element ratio 

up to 150 mg carbon or 100 mg nitrogen (or 100%), from ppm to 100%. 

Prior to nutrient analysis, 50-60 leaves per plot were taken as samples. These samples were 

then dried in a cabinet oven dryer at a temperature of 80 oC for 2 days. Subsequently, the 

dried samples were ground in an electric grinder at 14,000 rpm to pulverise the samples into 

powder.  

For the nitrogen analysis, a sample weight of approximately 100 mg was required, which was 

weighed into a tin foil cup. The cup was then folded and squashed into a pellet to expel the 

air. This analysis involved the combustion method by burning the sample up to 1800 oC with 

a certain amount of oxygen. The nitrogen element was analysed and a percentage figure 

subsequently obtained. 

 

Figure 3.3. Elementar Vario Macro Cube for combustion method based nitrogen analysis. 

 

3.2.3. Chlorophyll meter readings 

The chlorophyll meter used in this thesis was Konica Minolta SPAD 502 Plus, which is 

known as SPAD meter. The SPAD meter has measurement area approximately 2 mm x 3 mm. 

This device measure optical density difference at two wavelengths, i.e. 650 nm and 940 nm 
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from 2 LEDs as the light source and silicon photodiode as the receptor. The SPAD value 

measured by this device represents index of relative chlorophyll content which ranging from -

9.9 to 199.9. 

The SPAD meter readings were conducted on 30 leaf samples in each plot. The value 

displayed on the SPAD meter screen signified the chlorophyll content in the leaf, which is 

strongly correlated with the nitrogen content.  

The SPAD values of the 30 leaves on one plot were then averaged, in order to obtain the 

SPAD value of the plot. Therefore, there were 12 SPAD values for 12 samples in one data 

collection time. In total, there were 36 SPAD values used for comparison. 

 

3.2.4. Image Acquisition 

In this research, images of two objects were acquired on field with variations of sunlight 

intensities, i.e. Macbeth colour checker and wheat plants images. Firstly, the images of the 

Macbeth colour checker were captured under sunlight using a common digital still camera. 

The camera used in this thesis was Sony Cyber-shot DSC-W55 which has maximum 

resolution 7.2 megapixels. This device uses CCD sensor with focal length of 38–114 mm and 

maximum aperture of F2.8–5.2.  

The sunlight intensity, which was measured by using a digital light meter, ranged between 7 

to 82 Klux. The light meter used in this research was ISO-TECH ILM 1335 with has 

measurement range from 0 to 400,000 lux, sensor lead length 150 cm and sensor dimensions 

100 mm × 60 mm × 27 mm. The 50 Klux was considered to be the standard (target) light 

intensity and the remainder as the input light intensity. In total there were 164 input images 

(range of 7 to 48 Klux and 52 to 82 Klux) and five target images (range of 49-51 Klux). Each 

image was consequently cropped twice on each patch with a cropping window of 95 × 72 

pixels. 

Secondly, wheat plants images were indiscriminately captured under sunlight at 30 points on 

each plot. Thus, related to image acquisition, there were 1,080 plants images for 12 plots 

during three specific times (days). The light intensity of the sun during this experiment ranged 

from around 8 to 80 Klux with the image data collection time being from 10 am until 2 pm. 

This means that the colour of the sunlight was relatively white, compared to its colour in the 

morning or in the evening, when it is quite reddish or yellowish. All images were captured 
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from the top of the plants in a distance of 10-20 cm using the digital camera. The images were 

recorded at a resolution of 1632  1224 pixels and subsequently down sampled to 448  336 

pixels to assist with the effectiveness of the image processing. 

 

3.3. Neural Networks Fusion and Genetic Algorithm Based Colour Normalisation 

The changes in sunlight intensity will lead to different appearances in the plant images. The 

images, therefore, need to be equalised as if they are acquired under the same light intensity, 

in order to perform a more reliable comparison of the images. In this research, a 24-patch 

Macbeth colour checker was utilised to normalise images by using neural networks fusion and 

genetic algorithm. Macbeth colour checker is a square card that consists of 24 patches of 

colour samples which represent natural objects, chromatic, primary and greyscale colours, 

which are arranged in four rows (Figure 3.6). Neural networks have been used widely in 

various industrial applications, such as wind power plants [57], transportation [58], robotics 

[59], and marine [60]. Neural networks are also used in digital signal processing [61], [62] 

and electronic applications [63]. 

 

 
 

Figure 3.4.  24-patch Macbeth colour checker. 

 

Colour normalisation, also known as colour constancy, is an ability to correct the colour 

deviations of an object due to differences in lighting conditions. According to [64], image 

colours are significantly affected by the direction and intensity of the light source, as well as 

illuminant colour. Furthermore, countless research has been conducted to overcome the 
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problem of colour normalisation [65], [66], [67]. The colour normalisation concept in this 

research differs from previous works given that the images are acquired under unconstrained 

daylight, as mentioned in the previous section. This poses a difficult challenge as plant images 

captured under various light intensities have to be corrected to a standard image that is 

captured under a standard light intensity. 

The proposed method of neural networks fusion and genetic algorithm for image 

normalisation is described below. As mentioned in the previous section, each input image of 

Macbeth colour checker was cropped twice on each patch with cropping size of 95 × 72 

pixels. The average RGB colour value of each patch of the cropped input images was then 

calculated. The average RGB value of each patch of the target images was obtained from five 

images. Thus, there were 24 datasets of input-target RGB colour from 24 patches and with 

each patch consisting of 328 (= 164 × 2) RGB colour samples. All the datasets were 

consequently combined to produce one large dataset for neural networks fusion. This new 

dataset, thus, consisted of 7872 (= 328  24) RGB colour samples.  

The single neural network for each colour patch developed in this research was a multilayer 

perceptron (MLP), which contains one hidden layer, three nodes of input and output layers of 

red, green and blue colour channels. MLP is a well-established neural network that can be 

used for classifier [68] as well as nonlinear model prediction [69]. The cost function of the 

developed MLP was based on minimising the mean square error (MSE) between the targets 

and the network’s outputs. The number of hidden layer nodes in each network was determined 

by applying the formula developed by [70] as follows: 

𝑛ℎ = (
𝑛𝑖 + 𝑛𝑜

2
) + √𝑛𝑝                                                           (3.1) 

      

where 𝑛𝑖, 𝑛ℎ and 𝑛𝑜 are the number of input, hidden and output layer nodes, respectively, and 

np is the number of input patterns in the training set (number of training samples). 

According to Eq. (3.1), the number of hidden layer nodes for each neural network was 92 

nodes (𝑛𝑖 = 3,𝑛𝑜 = 3, 𝑛𝑝 = 7872). However, this method serves only as a guide and does not 

always provide the optimal number of hidden nodes. In this research, a new method has been 

proposed to optimise the MSE and impose a smooth regularisation on the weights of the 

hidden nodes in addition to implementing (3.1) by applying smoothness function [62]: 

Ω =
1

2
∫𝛶(𝑿)‖𝜕𝑘𝐺(𝑿) 𝜕𝑿𝑘⁄ ‖𝑿 𝜕𝑿                                                  (3.2) 
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to develop the weighting function 𝛶(𝑿) that ensures the above integral in Eq. 3.2 converges 

and subsequently determines the region of the input space over which the MLP mapping 

𝐺(𝑿) is required to be smooth by making the thk  order derivative of 𝐺(𝑿) with respect to 

input  𝑿 small. The larger the value of 𝑘, the smoother the mapping 𝐺(𝑿) will become. In 

order to achieve the objectives, the following mixture of Gaussian functions has been 

proposed: 

𝛶(𝑿) =
1

𝑄
∑

1

(2𝜋)𝑁 2⁄ |𝑹|1/2

𝑄

𝑘=1

exp [−
1

2
(𝑿 − 𝑿𝑘)𝑇𝑹−1(𝑿 − 𝑿𝑘)]                    (3.3) 

  

so as to capture the local variation of the input space where {𝑿𝑘}𝑘=1
𝑄

 are a set of input data 

points and that using 𝑹 = 𝜎2𝐈, it is required that 𝜎 be selected small such that  

lim
𝜎→∞

∑
1

(2𝜋𝜎2)𝑁 2⁄

𝑄

𝑘=1

exp [−
1

2𝜎2
‖𝑿 − 𝑿𝑘‖2] = 𝛿(𝑿 − 𝑿𝑘)                              (3.4) 

 

where 𝛿(∙) is the delta function. The above integral in Eq. 3.2 can be approximated as 

Ω ≈
1

2
∑𝑤𝑗𝑘

2 ‖𝒗𝑘‖𝑝

𝑗,𝑘

                                                               (3.5) 

        

where 𝒗𝑘 = [𝑣𝑘1 𝑣𝑘2
⋯ 𝑣𝑘𝑛ℎ] is the 𝑘-th row of weight matrix 𝑽 connecting the input to 

the hidden nodes, ‖∙‖𝑝 is the p-norm. The simple algebraic form of Ω enables the direct 

enforcement of smoothness without the need for costly Monte-Carlo integrations. The 

derivatives of the weighting function Ω with respect to the parameters 𝑤𝑗𝑘 and 𝑣𝑖𝑗 have been 

derived as follows: 

𝜕Ω

𝜕𝑤𝑗𝑘
= 𝑤𝑗𝑘‖𝒗𝑘‖𝑝                                                                    (3.6) 

         

and 

𝜕Ω

𝜕𝒗𝑘
=

𝑝

2
(𝒗𝑘)𝑝−1 ∑𝑤𝑗𝑘

2

𝑗

                                                             (3.7) 
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The steps taken in the developed MLP neural network can be described as follows: 

1) Normalise inputs (𝑋𝑖) 

RGB input colours should be normalised by dividing their values with the maximum value 

255. Thus, 𝑋1 =
R

255
, 𝑋2 =

G

255
, 𝑋3 =

B

255
;  0 ≤ 𝑋𝑖 ≤ 1, 𝑖 =  1, 2, 3. 

2) Initialise all weights (𝑣𝑖𝑗 and 𝑤𝑗𝑘) 

Set weights related to hidden and output layers to small random values (between -1 to 1). 

Thus 𝑣𝑖𝑗, 𝑤𝑗𝑘 [−1, 1], 𝑖, 𝑘 = 1, 2, 3;  𝑗 = 1, 2, 3, … , 𝑛ℎ where 𝑛ℎ is the number of hidden 

unit. 

3) Calculate activation function (forward propagation) 

In the multilayer perceptron neural networks, outputs of one layer become inputs of the next 

layer.  

𝑍𝑗 = 𝑓(1) (𝜃𝑗
(1)

+ ∑𝑋𝑖𝑣𝑖𝑗

3

𝑖=1

)                                                  (3.8) 

     

𝑌𝑘 = 𝑓(2) (𝜃𝑘
(2)

+ ∑𝑍𝑗𝑤𝑗𝑘

𝑝

𝑗=1

)                                                   (3.9) 

 

where 𝜃𝑗
(1)

 is the bias on hidden unit j and 𝜃𝑘
(2)

is the bias on output unit 𝑘, 𝑍𝑗 is the output of 

hidden unit j, and 𝑌𝑘 is the output of output unit 𝑘. In this research, sigmoid activation 

function with regards to the hidden layer (𝑓(1)) and linear function for the output layer (𝑓(2)) 

were used to gain the output signal for each layer. 

4) Calculate the networks error (backward propagation) 

𝛿𝑘
(2)

= (𝑇𝑘 − 𝑌𝑘)𝑓′(2) (𝜃𝑘
(2)

+ ∑ 𝑍𝑗𝑤𝑗𝑘

𝑝

𝑗=1
)                                 (3.10) 
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𝛿𝑗
(1)

= (∑ 𝛿𝑘
(2)

𝑤𝑗𝑘

3

𝑘=1
) 𝑓′(1) (𝜃𝑗

(1)
+ ∑ 𝑋𝑖𝑣𝑖𝑗

3

𝑖=1
)                           (3.11) 

   

where 𝑓′(∙) is the first derivative, 𝑇𝑘 is the target of unit 𝑘, 𝛿𝑘
(2)

 is error correction for output 

layer weights and 𝛿𝑗
(1)

 is error correction for hidden layer weights. 

5) Update all weights and biases 

Compute weights and biases of 𝑛-th iteration using the following formulae: 

𝑤𝑗𝑘(𝑛) = 𝑤𝑗𝑘(𝑛 − 1) + 𝜂1(𝛿𝑘
(2)

𝑍𝑗 + 𝜂2𝑤𝑗𝑘‖𝒗𝑘‖
𝑝)                        (3.12) 

 

𝑣𝑖𝑗(𝑛) = 𝑣𝑖𝑗(𝑛 − 1) + 𝜂1 (𝛿𝑗
(1)

𝑋𝑖 + 𝜂2

𝑝

2
(𝒗𝑘)

𝑝−1 ∑𝑤𝑗𝑘
2

𝑗

)                (3.13) 

 

𝜃𝑘
(2)(𝑛) = 𝜃𝑘

(2)(𝑛 − 1) + 𝜂1(𝛿𝑘
(2)

+ 𝜂2𝑤𝑗𝑘‖𝒗𝑘‖
𝑝)                        (3.14) 

 

𝜃𝑗
(1)(𝑛) = 𝜃𝑗

(1)(𝑛 − 1) + 𝜂1 (𝛿𝑗
(1)

+ 𝜂2

𝑝

2
(𝒗𝑘)

𝑝−1 ∑𝑤𝑗𝑘
2

𝑗

)                (3.15) 

 

where 𝜂1 is a fixed learning rate while 𝜂2 = 1 𝑛 ⁄ is a adaptive learning rate that reduces 

exponentially. 

The step size 𝜂1 was set to be a small constant. When 𝜂1 is large, the convergence of the 

neural network parameters will be quicker than that when 𝜂1 is small. However, large 𝜂1 leads 

to larger fluctuation around the steady state mean square error. On the other hand, small 𝜂1 

leads to smaller fluctuation around the steady state mean square error but the convergence rate 

of the neural network parameters is low. Thus, there is a trade-off between accuracy and 

speed of convergence. In this case, an experiment with various settings of 𝜂1 was conducted 

and the best performance was found when 𝜂1 = 0.0025. As for 𝜂2, this was set according to 

the decay process i.e. 𝜂2 = 0.05 𝑛⁄  where 𝑛 is the iteration number. In this way, the 
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smoothness regularisation has more impact on the neural network parameters at the start of 

the learning process but slowly tapers off after some time to allow convergence to the desired 

solution. 

6) Repeating the cycle 

The above processes (no. 3–5) were repeated until one of the following conditions is reached: 

a) The maximum number of iteration is reached. 

b) The maximum amount of time has been exceeded. 

c) Performance error is less than the goal set. 

d) The performance gradient falls below the minimum performance gradient. 

The next step was combining all the single networks into one neural network system. The 

proposed neural networks fusion, as observed in Figure 3.7, was developed to generate new 

RGB outputs. The final output RGB values from the networks fusion was obtained as follows: 

𝐙 =  ∙ 𝐎 

 
= [∝1, ∝2, ∝3, ⋯ , ∝24] ∙ [𝑶1, 𝑶2, 𝑶3, ⋯ , 𝑶24]

𝑇                     (3.16) 
 

where  is the weight matrix of each network output, O is the output matrix of each neural 

network and Z is the final output matrix of the neural networks fusion. From the Eq. (3.16), it 

can be distinguished that matrix  consists of 24 diagonal ∝ matrices with dimension of 3 × 3. 

Similar to matrix , matrix 𝐎 also has 24 matrices with a dimension of 3 × N for each matrix 

𝑶𝑖, whilst N is the number of training samples. 

 

Figure 3.5.  The proposed neural networks fusion using Macbeth colour checker. 
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In this research, a genetic algorithm was utilised to find the optimum value for each of the 24 

 matrices. Genetic algorithm (GA) is an algorithm based on the Darwin principle of 

evolution, natural selection and biological systems. It has been extensively used for 

optimization in many fields, for instance, plug-in hybrid electric vehicles’ (PHEVs) 

integration [71], plastic film manufacturing process [72], automatic path planning of 

unmanned aerial vehicles [73], and design of photovoltaic systems [74]. Basically, genetic 

algorithm encompasses a population with a certain number of individuals. Each individual in 

a population has the possibility of being the solution to the optimisation problem. Hence, by 

applying crossing over and mutation among individuals, a new generation is produced. This 

process is repeated several times until a new individual provides the most appropriate solution 

for the problem. 

In this research, several methods have been conducted to determine the optimum matrix . 

Based on the experiments, the developed neural networks fusion can be optimised by using a 

genetic algorithm with the following conditions: 

1) Initial population size was 1,000 individuals 

The  = [∝1, ∝2, ∝3, ⋯ , ∝24] matrix has a dimension of 3 × 72 and every element of 

matrix ∝𝑘 is expressed by a 10-bit string of binary number (0s and 1s). 

2) Probability of mutation was 0.05.  

The probability of mutation or mutation rate normally ranges from 0.001 to 0.01 [75], as 

found in researches conducted by [76], [77] which applied mutation rate values of 0.003 

and 0.01, respectively. In addition, small mutation rate will be less disastrous than high one 

in most common problems [78]. Several experiments with various mutation rates have 

been conducted for the developed genetic algorithm in this step. According to the 

experiments, however, the mutation rate of 0.05 gave the best results. 

3) The boundary of each element with regards to each matrix ∝𝑘, i.e. 𝑎𝑘,𝑖𝑗 with 𝑖, 𝑗 = 1, 2, 3, 

was set as follows: 

if 𝑖 = 𝑗 then 0 < 𝑎𝑘,𝑖𝑗 ≤ 1 

else 𝑎𝑘,𝑖𝑗 = 0 

Thus, each matrix 𝛼𝑘 was constructed as follows: 

∝𝑘= [

𝑎𝑘,11 0 0

0 𝑎𝑘,22 0

0 0 𝑎𝑘,33

]       
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with 𝑘 = 1, 2, 3, … , 24. 

4) The fitness function was based on the mean square error between the target and the final 

output RGB values. 

 

Figure 3.6.  The flowchart of the developed genetic algorithm for colour normalisation. 

The steps of the developed genetic algorithm for training the matrix  (Figure 3.6) can be 

described as follows: 
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1. Generate the initial population, i.e. 1,000 individuals, with 2,160 (= 10 × 3 × 72) bits 

length for each individual. 

2. Produce the next generation by processing cross-over and mutation on each individual. 

3. Compute the fitness for each individual. 

4. Select the best individual with MSE lower than 0.001. The lesser the MSE, the better the 

prediction. However, it will be very time consuming. According to the experiments, MSE 

≤ 0.001 provided best prediction with optimum training time. 

Once the optimum matrix  was achieved, the next step was applying the developed neural 

networks fusion and matrix  to adjust the RGB colour of the wheat plants. In this research, a 

wheat plant image has a dimension of 448  336 pixels. Through the developed colour 

adjusting system, each pixel of a plant image acquired under various light intensities was 

transformed to the equivalent pixel of the image under the standard light intensity (50 Klux). 

 

3.4. Neural Network Based Image Segmentation and Statistical Colour Features 

Extraction 

Image segmentation plays an important role in classifying each pixel in an image either as a 

targeted object or a background part. Most of nutrient estimation researches are conducted in 

a controlled image capturing circumstance. Commonly an object, which is plant leaf, is laid 

down on a white paper background in a closed box with certain illumination from an artificial 

lighting system. In such method, the object in the captured image can easily be distinguished 

from its background by applying a simple threshold value. However, in this research the 

problem was more complicated. The images of the wheat leaves are captured directly on a 

field and contain leaves as the targeted object, in addition to other unwanted parts, such as 

soil, stones, weeds, and dried and semi-dried leaves in the background. 

A multilayer, feed forward, back-propagation error neural network was used for image 

segmentation to distinguish the wheat leaves, as the region of interest, from other unnecessary 

parts. The developed neural network for this step can be explained as follows: 

1. The network had three units of input layer, which indicated red, green and blue colour 

values (RGB) for each pixel related to the plant images with a range of 0 – 255. 
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2. The number of hidden units was 30. 

3. The output layer had only one unit, which signified whether each pixel was a part of a leaf 

or not. The output value of the network was equal to 1 if the corresponding pixel was a part 

of a leaf, otherwise the value is 0.  

4. The sigmoid activation function was used for both hidden and output layers. 

A dataset was developed to perform neural network based image segmentation. The dataset 

was comprised of 4,800 samples of RGB colour and binary values (0 or 1) as the input and 

target values, respectively. Furthermore, the developed dataset was achieved from 24 plant 

images. On each image, 100 pixels in the leaf region and 100 pixels in other parts of the 

region were selected manually. The RGB colour values of the selected pixels were then used 

as inputs of the network. 

In colour segmented images, noises should be removed prior to features extraction step. In the 

majority of images, weeds were also present which need to be eliminated from the segmented 

image, as they can influence the colour information of the wheat leaves. To resolve this 

problem, an algorithm to remove image noises by selecting the largest part of the leaves, 

which has the highest number of object pixels, was applied. This algorithm can be seen in 

Figure 3.8. An example of the results of image normalisation using neural networks fusion 

and image segmentation can be seen in Figure 3.9. As presented, the proposed colour 

normalisation and the neural networks based image segmentation can be used in an automated 

manner to normalise the images of the plants and to remove the unwanted parts from the 

image, as indicated by the black circles. 

 

 

 

 

 

 

Figure 3.7. Image segmentation algorithm to remove image noises. 

 

Noise removing 
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Figure 3.8. An example of the results of neural network based colour normalisation and image 

segmentation; (a) original image, (b) normalised image, (c) segmented image. 

 

In the features extraction step, a number of statistical colour features pertaining to the final 

colour segmented images were calculated. These features were utilised for nutrient estimation 

in the next step. Four types of statistical features were used in this research, namely, first raw 

moment (mean), second central moment (variance), third central moment (skewness) and 

fourth central moment (kurtosis). Thus, there are 12 statistical features for three colour 

channels (red, green and blue) which represent the colour distributions related to the 

segmented images. The mean value is considered to be the central tendency of the colour 

distribution, while the variance measures the spread of colour distribution from the mean. 

Skewness determines the symmetricity of colour distribution whereas kurtosis measures the 

ridge colour distribution. In addition, colour moments have been extensively and successfully 

used in colour-based image retrieval systems, especially for a segmented image which 

contains only the image of object [79]. The statistical colour features can be achieved by 

using the following formulae: 

𝑚𝑒𝑎𝑛 = �̅�(𝑐) =
1

𝑁𝑠
∑𝑦𝑖

(𝑐)

𝑁𝑠

𝑖=1

                                                 (3.17) 
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𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2(c) =
1

𝑁𝑠
∑(𝑦𝑖

(𝑐)
− �̅�(𝑐))

2
𝑁𝑠

𝑖=1

                                     (3.18) 

     

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑠𝑘𝑒𝑤(𝑐) =

1
𝑁𝑠

∑ (𝑦𝑖
(𝑐)

− �̅�(𝑐))
3

𝑁𝑠
𝑖=1

𝜎3(c)
                                 (3.19) 

      

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝑘𝑢𝑟𝑡(𝑐) =

1
𝑁𝑠

∑ (𝑦𝑖
(𝑐)

− �̅�(𝑐))
4

𝑁𝑠
𝑖=1

𝜎4(c)
                                (3.20) 

        

where 𝑦𝑖 refers to colour value of 𝑖-th pixel, 𝑐 is each colour channel (red, green and blue), 𝑁𝑠 

is the number of samples (object pixels) and 𝜎 is the standard deviation. 

 

3.5. Nitrogen Content Estimation Using Weighted Neural Networks 

An MLP with back propagation error was used to determine the nitrogen amount in wheat 

leaves. The developed neural network consisted of 12 nodes of input layer which corresponds 

to the statistical colour features and one node of output layer that corresponds to the 

percentage related to the nitrogen amount. In this step, the number of hidden layer nodes was 

also determined by using Eq. (3.1).  

A committee machine was employed to combine several neural networks with different 

hidden layer nodes, as seen in Figure 3.10. The numbers of hidden layer nodes with regards to 

these new neural networks were produced using the following formula: 

𝑛ℎ
′ = 𝑠 × 𝑛ℎ0                                                                    (3.21) 

     

where 𝑛ℎ
′  is the new number of hidden layer nodes, 𝑛ℎ0 is the initial number of hidden layer 

nodes (i.e. 12 nodes) and 𝑠 is the multiplication factor (𝑠 =  2, 3, … , 𝑄), whilst 𝑄 is the 

number of combined neural networks. 

In this case, the parameter 𝑠 is also the number of neural networks used for the combination. 

Thus, the networks combinations attempted in this step were as illustrated in Table 3.1. Each 

network was repeated 100 times to eliminate the effect of the random bias numbers and initial 
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weights. Subsequently, a number of neural networks which provided the minimum mean 

square error were chosen to achieve the final estimation. 

 

Figure 3.9.  Combination of neural networks for nitrogen estimation. 

 

 

Table 3.1. Neural networks combination 

Number of NNs (𝑄) Number of hidden layer nodes 

2 12 – 24  

3 12 – 24 – 36  

4 12 – 24 – 36 – 48  

5 12 – 24 – 36 – 48 – 60  

6 12 – 24 – 36 – 48 – 60 – 72  

7 12 – 24 – 36 – 48 – 60 – 72 – 84  

 

A committee machine can produce significant improvements in the prediction given that it 

can minimise the effect of a random component due to data noise in the generalization 

performance of a single network [80], [81]. Basically, the concept of a committee machine is 

to combine outputs of several expert systems with the same input data, with the aim of 

producing a new output. Suppose that there are 𝑄 expert systems to approximate a target 

vector T. Each expert has output vector 𝑂𝑞 and error 𝑒𝑞, 

𝑂𝑞 = 𝑇 + 𝑒𝑞 
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Thus, the sum of the squared error for the 𝑞-th expert 𝑦𝑞 is 

𝐸𝑞 =  [(𝑂𝑞 − 𝑇)
2
] = [𝑒𝑞

2] 

    

where [] denotes the statistical expectation. 

The average error of each expert system (𝐸𝑎𝑣𝑒) is then 

𝐸𝑎𝑣𝑒 =
1

𝑄
∑ 𝐸𝑞

𝑄

𝑞=1

=
1

𝑄
∑ [𝑒𝑞

2]

𝑄

𝑞=1

 

 

In other words, by using a committee machine, the output value 𝑌 can be achieved by simply 

averaging the output vector 𝑂𝑞, as follows: 

𝑌 =
1

𝑄
∑ 𝑂𝑞

𝑄

𝑞=1

 

          

Thus, the squared error of the committee machine (𝐸𝐶𝑂𝑀) is 

𝐸𝐶𝑂𝑀 = [(𝑌 − 𝑇)2] 
        

=  [(
1

𝑄
∑ 𝑂𝑞 − 𝑇

𝑄

𝑞=1

)

2

] =  [(
1

𝑄
∑ 𝑒𝑞

𝑄

𝑞=1

)

2

] 

 

But 

 [(
1

𝑄
∑ 𝑒𝑞

𝑄

𝑞=1

)

2

] ≤
1

𝑄
∑ [𝑒𝑞

2]

𝑄

𝑞=1

 

 

Thus, we have 

𝐸𝐶𝑂𝑀 ≤ 𝐸𝑎𝑣𝑒  
         



  

50 | P a g e  
 

The calculated error of the committee machine is always smaller than if not equal to that of 

the single expert. In this research, ensemble averaging was applied as the neural networks 

combiner to obtain improved generalization and performance. The estimated nitrogen amount 

of wheat leaves was calculated by using a committee machine with the simple averaging 

method as the combiner of 𝑄 neural networks, as follows: 

𝑁𝑒𝑎𝑣𝑒 =
1

𝑄
∑ 𝑂𝑞

𝑄

𝑞=1

                                                       (3.22) 

         

The simple averaging method as expressed in Eq. (3.22) indicates that each single neural 

network has the same weight to produce the new output. In this research, the possibility that 

each neural network has a different weight was also investigated. In this case, a weighted 

averaging method was applied, as expressed in the following: 

𝑁𝑒𝑤𝑒𝑖𝑔ℎ = ∑(𝑤𝑞 × 𝑂𝑞)

𝑄

𝑞=1

                                                   (3.23) 

 

and 

∑ 𝑤𝑞 = 1

𝑄

𝑞=1

 

    

where 𝑁𝑒𝑤𝑒𝑖𝑔ℎ is the estimated nitrogen content, 𝑤𝑞 and 𝑂𝑞 are the weight and the output of 

𝑞-th single network, respectively. 

A genetic algorithm was used to discover the optimum value of the weights in the developed 

committee machine. The genetic algorithm for the nitrogen estimation was developed with the 

following conditions: 

1) Initial population size was 1,000 

2) Each individual was expressed by 𝑄 × 8 bits length of binary numbers 

3) Probability of mutation was 0.05 
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4) Each weight had a range of 0–1; 0 ≤ 𝑤𝑖 ≤ 1 

5) The fitness function was to estimate the mean square error (MSE) between the actual and 

the estimated nitrogen content. 

The level of the prediction accuracy was measured by calculating the error value of the 

observed/actual and predicted nitrogen content. In this research, the mean absolute percentage 

error (MAPE) was used for the system’s performance assessment. For a comparison, several 

types of error were also measured, i.e. mean absolute error (MAE), mean of squared error 

(MSE), root mean of squared error (RMSE) and sum of squared error (SSE). The error types 

used in this research can be expressed as follows: 

𝑀𝐴𝑃𝐸 =
100%

𝑁𝑠
∑|

𝑁𝑎𝑖 − 𝑁𝑒𝑖

𝑁𝑎𝑖
|

𝑁𝑠

𝑖=1

                                            (3.24) 

       

𝑀𝐴𝐸 =
1

𝑁𝑠
∑|𝑁𝑎𝑖 − 𝑁𝑒𝑖|

𝑁𝑠

𝑖=1

                                               (3.25) 

       

𝑀𝑆𝐸 =
1

𝑁𝑠
∑(𝑁𝑎𝑖 − 𝑁𝑒𝑖)

2

𝑁𝑠

𝑖=1

                                            (3.26) 

       

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑠
∑(𝑁𝑎𝑖 − 𝑁𝑒𝑖)

2

𝑁𝑠

𝑖=1

                                         (3.27) 

       

𝑆𝑆𝐸 = ∑(𝑁𝑎𝑖 − 𝑁𝑒𝑖)
2

𝑁𝑠

𝑖=1

                                              (3.28) 

        

where 𝑛 is the number of samples, 𝑁𝑎 and 𝑁𝑒 are the actual and the estimated (using either 

simple (3.22) or weighted average (3.23)) nitrogen content, respectively. 
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3.6. Results and Discussions 

3.6.1. SPAD meter based nitrogen amount prediction  

The SPAD meter was widely used to determine the chlorophyll content in the leaves by 

measuring the absorbance of the leaf in two wavelength regions, i.e. red and infrared. After 

the signal processing steps, the absorbance was displayed in a units range from 0 to 199. 

Moreover, the chlorophyll amount was highly correlated with the nitrogen content. 

Furthermore, the chlorophyll content which is represented by the SPAD value, increased in 

proportion to the nitrogen amount. 

To figure out how strong the correlation between the independent variable and the dependent 

variable, a statistical value, namely coefficient of determination (𝑅2), is applied. The 

coefficient of determination is a statistical feature to represent how well the data points fit the 

regression line. This value, which is in the range of 0 to 1, is usually used to determine how 

certain the independent variable (𝑥) predicts the dependent variable (𝑦). The coefficient of 

determination is obtained by squaring the coefficient of correlation (𝑅), which is expressed as 

follows: 

𝑅 =
𝑁𝑠 ∑𝑥𝑦 − (∑𝑥)(∑𝑦)

√𝑁𝑠(∑ 𝑥2) − (∑ 𝑥)2 √𝑛(∑𝑦2) − (∑𝑦)2
                                 (3.29) 

 

where 𝑁𝑠 is the number of samples. 

Based on our experiments conducted with 36 samples of wheat leaves, the coefficient of 

determination (𝑅2) value of SPAD readings and nitrogen content is 0.7801, as seen in Figure 

3.11. It means that the relationship between the SPAD and nitrogen amount was reasonably 

strong. By using the trend line equation, the predicted nitrogen level was calculated. The 

MAPE of this prediction was 8.48%. Figure 3.12 demonstrates the fitting plot between the 

actual and predicted nitrogen content. Similar research with relatively strong relationships 

between the SPAD and nitrogen have been reported in sugarcane (𝑅2 = 0.706) [8] and oilseed 

rape (𝑅2 = 0.744) [43]. The correlation between the SPAD meter readings and nitrogen 

percentage in leaves was strongly affected by leaf thickness. The variation in leaf thickness 

can influence the accuracy of SPAD meter readings, as this device works based on the leaf’s 

capacity to absorb red and infrared lights. 
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Figure 3.10.  Relationship between the SPAD value and actual nitrogen content. 

 

Figure 3.11.  Fitting plot of the actual and predicted nitrogen content of SPAD meter based 

prediction. 

 

3.6.2. Image-based nitrogen amount prediction 

The proposed neural networks fusion based colour normalisation can be used to normalise 

plant images captured under various light intensities. After image normalisation, it can be 

assumed that all images are captured under the same light intensity and compared with each 

other.  

In the colour normalisation step, the results of the proposed method were then compared with 

other colour normalisation methods, i.e. grey world and scale-by-max algorithms, linear 



  

54 | P a g e  
 

model, and one single neural network (NN) [82]. The grey world (GW) and scale-by-max 

(SBM) approaches are the simplest colour normalisation algorithms due to their ease and 

simplicity of application. In the grey world algorithm, the average of all colours in an image is 

considered to be neutral grey. This algorithm yields illuminant estimation by calculating the 

mean value of each colour channel. Hence, to normalise an image, the colour value of each 

pixel is scaled by: 

𝐾𝐺𝑊
𝑖 =

𝐶

𝐶𝑎𝑣𝑔
𝑖

                                                           (3.30) 

 

with 

𝐶 = 𝑚𝑒𝑎𝑛(𝐶𝑎𝑣𝑔
1 , 𝐶𝑎𝑣𝑔

2 , 𝐶𝑎𝑣𝑔
3 ) 

 

where 𝑖 refers to each colour channel (red, green and blue).    

In the scale-by-max approach, the illuminant estimation is acquired by determining the 

maximum response of each colour channel. Hence, the colour value of each pixel can be 

normalised by multiplying it with the following constant: 

𝐾𝑆𝐵𝑀
𝑖 =

255

max(𝑖)
                                                     (3.31) 

          

In the linear model, the colour values of each pixel are corrected through a transformation 

matrix [83]. Suppose that under an unknown lighting condition, with the transformation 

matrix 𝑀𝑢𝑛, the colour values of an object 𝑞𝑢𝑛 is as follows: 

𝑞𝑢𝑛 = 𝑀𝑢𝑛𝑟                                                           (3.32) 
           

 

where 𝑟 is three basic functions related to surface reflectance.  

The colour values of the standard illumination 𝑞𝑠𝑡, which is in this research the light intensity 

of 50 Klux, can be calculated as 

𝑞𝑠𝑡 = 𝑀𝑠𝑡𝑟 = 𝑀𝑠𝑡𝑀𝑢𝑛
−1𝑞𝑢𝑛 = 𝑀𝑡𝑟𝑞𝑢𝑛                                   (3.34) 
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Thus 

𝑀𝑡𝑟 = 𝑞𝑢𝑛
−1𝑞𝑠𝑡                                                       (3.35) 

          

where  𝑀𝑡𝑟 is the 3  3 transformation matrix.  

Basically, the NN and the proposed methods discussed in the present chapter can be seen as a 

nonlinear extension of (3.34). The nonlinear model employed in this proposed method was 

determined by calculating the transformation matrix in (3.35) using the back-propagation 

neural network algorithm, consequently the 𝑀𝑡𝑟 was used to correct plant images.  

In this research, the results of our proposed method are better than the other methods that have 

previously been mentioned, as seen in Table 3.2. Colour differences by calculating the mean 

Euclidean distance of the target and the output (estimated) colour value of each method were 

measured as the basis of comparison. The formula of the Euclidean distance can be written as 

follows: 

∆𝐸𝑅𝐺𝐵 = √(𝑅𝑡 − 𝑅𝑒)
2 + (𝐺𝑡 − 𝐺𝑒)

2 + (𝐵𝑡 − 𝐵𝑒)
2                                 (3.36) 

   

 

Table 3.2. Comparison of colour normalisation results 

Methods ERGB 

Grey world 23.40 

Scale-by-max 14.86 

Linear model 11.06 

Single neural network (NN) 5.03 

The proposed method (NN fusion) 4.15 

 

In the proposed method, by using a 24-patch Macbeth colour checker as the reference, twenty 

four  values as output weights for each neural network were obtained. These  matrices 

were then applied to correct wheat plant images by using the developed neural networks 

fusion method. An example of the  matrices used to produce a new output is as follows: 

𝑍 = [
0.087 0 0

0 0.076 0
0 0 0.005

] ∙ 𝑂1 + [
0.087 0 0

0 0.027 0
0 0 0.090

] ∙ 𝑂2 + 
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[
0.033 0 0

0 0.071 0
0 0 0.099

] ∙ 𝑂3 + ⋯+ [
0.026 0 0

0 0.001 0
0 0 0.019

] ∙ 𝑂24. 

 

In this research, each wheat plant image has a dimension of 448  336 pixels. By applying 

this developed colour adjusting system, each pixel of a plant image captured under various 

light intensities will be transformed to the equivalent pixel of the image under the standard 

light intensity, i.e. 50 Klux. In order to demonstrate the effectiveness of the proposed method, 

30 wheat plant images which were subject to the same treatment of fertiliser dosage have been 

selected. Since the images were subject to the same treatment, they should have similar colour 

or, in other words, the colour variability should be small. As the focus of the research is on the 

colour of the leaves, the original and the corrected images were then segmented to obtain the 

leaves images as the region of interest. In the segmented images, our proposed colour 

normalisation can be used to reduce the variability of leaves colour which can be expressed in 

the standard deviation values. The standard deviations of the original leaves images are 24.76, 

16.45 and 30.39 for red, green and blue colour respectively, whilst the standard deviation 

RGB colour values of the corrected images are 6.38, 4.07 and 7.58, respectively. This shows 

that the proposed method has successfully reduced the colour variability in the images by 

approximately four times. 

After image correction using the developed neural networks fusion, the next step was image 

segmentation. The neural network based image segmentation method, as described in the 

previous section, can be applied to distinguish wheat leaves from other parts, such as weeds, 

soil, stones and dried leaves. This segmentation method is superior to the conventional Otsu 

algorithm (threshold-based segmentation). The database pertaining to the colour of leaves and 

non-leaves provides sufficient data to train the plant images. Therefore, the neural network 

can precisely classify whether a pixel belongs to the leaves or non-leaves region. A 

comparison of image segmentation results using Otsu algorithm and the developed neural 

network can be seen in Figure 3.13. 
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Figure 3.12.  Comparison of some threshold based and the developed neural network based 

image segmentations. 

 

Once all images have been segmented, twelve statistical colour features as described in 

previous section were subsequently extracted. These features were then utilised as predictors 

in the developed nitrogen estimation algorithm. In this step, several neural networks with 

different numbers of hidden layer nodes were combined, as tabulated previously in Table 3.1. 

These combinations of networks were subsequently trained to determine which offers the 

most appropriate results. After conducting Monte-Carlo testing of more than 100 independent 

trials, the combination of six neural networks resulted in the minimum generalization error of 

networks performance compared to other possible combinations. The first combination used 

in this step was simple averaging method. The estimated nitrogen amount was then calculated 

as follows: 

𝑁𝑒𝑎𝑣𝑒 =
1

6
∑ 𝑂𝑞

6

𝑞=1

                                                                (3.37) 

       

The best result relates to the first type of committee machine, i.e. simple average, was 

subsequently compared to that of the second type combiner, i.e. weighted average, which was 

optimized by the genetic algorithm (GA). By using this method, the weights of the output of 

the networks were 0.008, 0.091, 0.140, 0.219, 0.047 and 0.495 respectively for the first until 

the sixth neural network. The estimated nitrogen content can therefore be expressed as 

follows: 
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𝑁𝑒𝐺𝐴 = (0.008 × 𝑂1) + (0.091 × 𝑂2) + (0.140 × 𝑂3) + (0.219 × 𝑂4) 

 
+(0.047 × 𝑂5) + (0.495 × 𝑂6)                                                                        (3.38) 

      

Table 3.3 illustrates the comparison of various types of error values of the discussed NN and 

SPAD meter methods. From that table, we can perceive that by using simple average 

combiner, the combination of six neural networks provides the best results compared to other 

network combinations. In addition, the MAPE of this combination is less than 3%. However, 

the weighted average combiner with GA optimization offers enhanced results. As seen in the 

table, the MAPE of the GA-based committee machine with six neural networks is smaller 

than the simple average method, i.e. 2.73%. In other words, the deviation of the estimated 

nitrogen using this method is approximately 2.73% of the true nitrogen percentage. For 

instance, if the actual nitrogen content is 3%, then the estimated nitrogen is between 2.92% 

and 3.08%. Thus, the error noted is relatively small. 

Table 3.3. Comparison of nitrogen amount estimation errors 

Methods MAPE MAE MSE RMSE SSE 

SPAD meter 8.48% 0.2042 0.0578 0.2404 1.5704 

Simple averaged 2 NNs 3.68% 0.0907 0.0150 0.1224 0.5395 

Simple averaged 3 NNs 3.12% 0.0780 0.0106 0.1030 0.3821 

Simple averaged 4 NNs 3.04% 0.0761 0.0100 0.0999 0.3591 

Simple averaged 5 NNs 3.12% 0.0774 0.0102 0.1010 0.3675 

Simple averaged 6 NNs 2.93% 0.0731 0.0093 0.0967 0.3363 

Simple averaged 7 NNs 3.00% 0.0757 0.0096 0.0979 0.3451 

GA averaged 6 NNs 2.73% 0.0674 0.0078 0.0885 0.2819 

 

In this research, the relationship between nitrogen content and each colour channel in addition 

to a number of combinations of them was also investigated. A research has established that 

there are significant correlations between chlorophyll content in the maize leaf and the 

averages of the R and G components, as well as 2G-R-B of the linear transformation [53]. The 

nitrogen content was also estimated using the greenness index developed by [84] (𝐺𝐼𝑘𝑎𝑤). 

𝐺𝐼𝑘𝑎𝑤 is defined as follows: 
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𝐺𝐼𝑘𝑎𝑤 =
𝑅 − 𝐵

𝑅 + 𝐵
                                                                  (3.39) 

          

Based on the 𝐺𝐼𝑘𝑎𝑤 formula, [52] modified the greenness index to estimate nitrogen content 

in barley leaves and use the principal component analysis (PCA) to produce a new greenness 

index (𝐺𝐼𝑃𝐶𝐴), as follows: 

𝐺𝐼𝑃𝐶𝐴 = 0.7582|𝑅 − 𝐵| − 0.1168|𝑅 − 𝐺| + 0.6414|𝐺 − 𝐵|                      (3.40) 
  

According to the investigation, single colour features and their combinations, including 𝐼𝑃𝐶𝐴 

and 𝐼𝑘𝑎𝑤, are not suitable for nitrogen estimation. The estimation errors of those analyses are 

too high, compared to our proposed method, as seen in Table 3.4. The RGB values in those 

analyses are only obtained from the mean value of the observed leaves colour. This value is 

not sufficient to represent the colour distribution of leaves colour. In the proposed method, it 

was not only mean value that was utilised, but also variance, skewness and kurtosis of the 

observed leaves colour. The use of these statistical features is more effective to describe the 

colour distribution of leaves colour. As seen in the table, the proposed method is superior to 

all the discussed methods, as it provides an estimation error of 2.73%. 

Table 3.4. Comparison of estimation errors using colour features and the proposed method 

Features MAPE (%) 

𝑅 10.49 

𝐺 13.72 

𝐵 15.87 

𝐺/𝑅 11.21 

𝐺/𝐵 12.15 

𝐺 − 𝑅 12.10 

2𝐺 − 𝑅 − 𝐵 16.56 

𝐺𝐼𝑘𝑎𝑤 9.84 

𝐺𝐼𝑃𝐶𝐴 9.20 

Proposed method 2.73 
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3.7. Summary 

A low cost, simple and accurate nitrogen estimation of wheat leaves was conducted using the 

proposed method. The proposed method focused on colour constancy to normalise plant 

images that were subject to variation in lighting conditions, besides the application of back-

propagation neural network for image segmentation and committee machines for nitrogen 

content estimation. The developed neural network based image segmentation could remove 

unnecessary components of plant images and retain the leaves as the region of interest. The 

genetic algorithm based committee machine to combine six neural networks with 12 statistical 

RGB colour features as predictors could be used to estimate nitrogen content in wheat leaves 

more accurately than by using simple averaged neural networks, as well as the SPAD meter 

and greenness index based methods from previous related works. 
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Chapter 4 

Deep Learning Machine Fusion Based Computational Intelligence for 

Nitrogen Content Estimation 

 

4.1. Introduction 

In this chapter, a different approach has been developed to estimate nitrogen content in wheat 

leaves. An advanced neural network model, namely deep sparse extreme learning machine 

(DSELM), is utilised in this research for colour normalisation as well as image segmentation 

and nutrient prediction. Unlike other learning algorithms such as backpropagation based 

multi-layer perceptron, DSELM is able to exploit more important information with much 

faster learning speed. 

Similar to the previous works explained in Chapter 3, DSELM fusion and genetic algorithm 

are developed to normalise wheat plant images and reduce colour variability due to different 

light intensities. In addition, a Macbeth colour checker is utilised as the colour reference. In 

the image segmentation step, DSELM is employed to differentiate wheat leaves from other 

unwanted surrounding parts. Four types of statistical moment features of each RGB colour 

channel is then extracted from segmented images. These statistical features are subsequently 

used as neural network’s inputs to estimate nitrogen content. In this step, several 

combinations of DSELM with different hidden layer number are applied. Furthermore, a 

genetic algorithm is also utilised to optimise the combination weight of each DSELM. 

 

4.2. Deep Sparse Extreme Learning Machine 

Neural networks have been extensively used for automation in many applications, such as 

iron and steel industry [85], financial service [86], plastic production [87], and coal 

gasification [88]. Neural networks are also used in digital signal processing [89] and non-

linear systems control [90], [91]. However, the training procedure of neural networks with 

backpropagation algorithm is easy to fall into local minima and the training speed is generally 

slow, especially for multi-layer perceptron. To address this problem, a deep sparse extreme 

learning machine algorithm was proposed to train the multi-layer perceptron. Compared with 
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other machine learning algorithms, DSELM is much faster in training stage and has better 

generalisation performance. 

To achieve a high generalisation performance for colour normalisation, especially for large 

scales, appropriate representations are crucial. Single-Layer Feedforward Neural Network 

(SLFN) learning with the backpropagation algorithm is an efficient method to learn compact 

features. However, the information learned from SLFN is not good enough to represent the 

input data, especially for large dataset. Thus, multiple layer architecture of neural network is 

needed as the features extracted by multiple layer networks represent more abstract and 

accurate information than those from shallow ones. One of the most popular approaches is 

Deep Belief Networks (DBNs) which can be done using stacked Restricted Boltzmann 

Machines (RBM). It has been shown to yield good performance in various areas, however, the 

training speed is generally very slow for the reason that all the parameters of the entire 

network need to be fine-tuned multiple times to achieve the criterions. Thus, the training of 

DBNs is too cumbersome and time consuming. To address this problem, the Deep Sparse 

Extreme Learning Machine (DSELM) was proposed. Compared with DBNs, DSELM has 

four notably attractive features, as follows: 

 The hidden nodes can be randomly generated according to any continuous probability 

distribution without any prior knowledge, e.g. the uniform distribution [92]. 

 The only parameter that needs to be determined is the output weight which can be 

established by searching the path back from a random space. 

 Once the feature of the previous hidden layer is learned, the parameters of current hidden 

layer will be fixed and need not be fine-tuned [93], this is the major difference between 

DSELM and DBNs. 

 More abstract and sparse hidden information is extracted using ℓ1-regularisation. 

The DSELM, as depicted in Figure 4.1, consists of two phases, i.e. 1) unsupervised feature 

mapping and 2) supervised feature regression. In the former phase, an ELM-based sparse 

autoencoder is used to extract sparse features of the input layer by layer with higher layers 

represent more abstract and accurate features than that of the previous layer. In the latter 

phase, an original ELM is stacked at the top of the learned deep structure to make the final 

decision. In the following, the overall architecture of DSELM will be introduced in details 

and the description of the training procedure of Sparse ELM (SELM) is also presented as the 

SELM is the building block which is used to construct the deep structure of DSELM. 
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Figure 4.1. Layer wise training of Deep Sparse ELM: (a) Two phases of DSELM, i.e. deep 

forward learning followed by the original ELM classification. (b) Implementation of first 

hidden layer sparse ELM auto-encoder. (c) Training procedure of 𝐿𝑡ℎ hidden layer sparse 

ELM auto-encoder. (d) Analytically calculate the output weights of original ELM with 

labelled target using randomly initialised parameters. 

 

In the initial ELM, given a set of N training data (X, T) = {xj, tj}j=1
N , where xj =

[xj1, xj2, … , xjP] ∈ ℝP and tj = [tj1, tj2, … , tjQ] ∈ ℝQ are the training data and the 

corresponding target respectively. The parameters P and Q are the dimension of input and 

target vector respectively. The output function f(X) of ELM with K hidden nodes fully 

connect the input data to the outputs is represented by 

𝑓(𝑥𝑗) =  ∑ ψ𝑘(𝑥𝑗𝑤𝑘)

𝐾

𝑘=1

∙ 𝛽𝑘 , 𝑗 = 1,2, …𝑁                                       (4.1) 

 

where ψ(∙) is the activation function which we used is the sigmoid function 

ψ(𝑥𝑗𝑤𝑘) =
1

1 + 𝑒−𝑥𝑗𝑤𝑘
                                                             (4.2) 
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where 𝑤𝑘 ∈ ℝ𝑃 is the randomly generated parameters connecting input layer and 𝑘𝑡ℎ hidden 

node, 𝛽𝑘 ∈ ℝ𝑄 is the output weight vector connecting the 𝑘𝑡ℎ hidden layer and the output 

layer. 

The 𝑁 equations in (4.1) can be written compactly as: 

𝐹(𝑋) = 𝛹𝛽                                                                            (4.3) 

 

where 𝛽 = {𝛽𝑘} ∈ ℝ𝐾×𝑄 is the output weight matrix, 𝛹 is the 𝑁 × 𝐾 hidden feature mapping 

matrix with respect to input 𝑋. The elements of 𝛹 can be described as follows: 

𝛹 = [ψ1(𝑋𝑤1), ψ2(𝑋𝑤2), … , ψ𝐾(𝑋𝑤𝐾)] 

  = [
[ψ1(𝑥1𝑤1) ⋯ ψ𝐾(𝑥1𝑤𝐾)

⋮ ⋱ ⋮
ψ1(𝑥𝑁𝑤1) ⋯ ψ𝐾(𝑥𝑁𝑤𝐾)

]

𝑁×𝐾

                                              (4.4) 

An ELM learns the parameters in two sequential stages: 1) random feature mapping and 2) 

linear parameter solving. In the first stage, with randomly initialised parameters, the input 

data are projected into an ELM feature space using the activation function ψ (∙). Huang et al. 

[94] have proved that ELM is able to approximate any continuous function with randomly 

initialised parameters. Therefore, the only parameter that needs to be calculated is output 

weight β. In the second stage, an ELM aims to reach the smallest training error and the 

smallest norm of output weights using the following equation to optimize the output weight β: 

argmin
β∈ℝK×Q

         
1

2
‖𝛽‖ℓ2

2 +
𝐶

2
∑‖𝑒𝑗‖

2
𝑁

𝑗=1

 

s. t.     𝛹(𝑥𝑗)𝛽 = 𝑡𝑗 − 𝑒𝑗 ,   𝑗 = 1,2, … ,𝑁                    (4.5) 

where the first term is ℓ2 optimization to avoid over-fitting and obtain compact hidden 

information, C is a tradeoff coefficient which is chosen experimentally, ej = (tj − f(xj)) ∈

ℝQ is the error vector with respect to jth input data. Eq.(4.5) can be rewritten as an 

unconstrained optimization problem: 

argmin
𝛽∈ℝK×Q

         
1

2
‖𝛽‖ℓ2

2 +
𝐶

2
‖𝛹𝛽 − 𝑇‖2                                        (4.6) 

where T = [t1, t2, … , tN] ∈ ℝN×Q is the target.  
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As ELM autoencoder is designed to encoded outputs to approximate the original inputs by 

minimising the reconstruction errors, therefore, the target T is set to original inputs X. In the 

meanwhile, due to the use of ℓ2 regularisation, the extracted features of ELM auto-encoder 

may have redundancy and not sparse enough to represent the input data, therefore, a more 

sparse solution is needed. Compared with ℓ2 norm, ℓ1 regularisation is able to induce more 

sparsity in the optimal solution of Eq.(6). Also, ℓ1 regularisation is less sensitive to output. 

Therefore, ℓ1 penalty is applied. Eq.(4.6) can be rewritten as 

argmin
𝛽∈ℝK×Q

        ‖𝛽‖ℓ1
+ ‖𝛹𝛽 − 𝑋‖2                                               (4.7) 

where ‖β‖ℓ1
 stands for the sum of the absolute values of the components of β. Eq.(4.7) can be 

solved by a gradient projection algorithm. Of which the most popular methods is the class of 

Iterative Shrinkage-Thresholding Algorithm (ISTA), where each iteration involves matrix-

vector multiplication involving Ψ and ΨT followed by a shrinkage/soft-threshold step [95], 

[96]. The general step of ISTA is: 

𝛽𝑖+1 = 𝛶𝑡(𝛽𝑖 − 2𝑡𝛹𝑇(𝛹𝛽𝑖 − 𝑋))                                              (4.8) 

where t is an appropriate step-size and Υα: ℝn ⟶ ℝn is the shrinkage operator defined by 

𝛶𝛼(𝛽𝑖) = (|𝛽𝑖| − 𝛼)+𝑠𝑔𝑛(𝛽𝑖)                                                 (4.9) 

One of the simplest methods for solving an unconstrained minimisation problem 

min{p(x): x ∈ ℝn, p: ℝn ⟶ ℝn} is the gradient algorithm which generates a sequence {xi} 

via: 

𝑥0 ∈ ℝ𝑛, 𝑥𝑖 = 𝑥𝑖−1 − 𝑡𝑖𝛻𝑝(𝑥𝑖−1)                                         (4.10) 

where  ti is an appropriate step-size. Eq.(4.10) can be viewed as a proximal regularisation of 

the linearized function p at xi−1, thus, Eq.(4.10) can be rewritten as 

𝑥𝑖 = argmin
𝑥

{𝑝(𝑥𝑖−1) + 〈𝑥 − 𝑥𝑖−1, 𝛻𝑝(𝑥𝑖−1)〉 +
1

2𝑡𝑖
‖𝑥 − 𝑥𝑖−1‖

2}          (4.11) 

Rewriting Eq.(4.7) as  

𝑚𝑖𝑛{𝑝(𝛽) + 𝑞(𝛽), 𝛽 ∈ ℝ𝐾×𝑄}                                              (4.12) 

where 𝑝(𝛽) = ‖𝑋 − 𝛹𝛽‖2 and 𝑞(𝛽) = ‖𝛽‖ℓ1
.  
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Therefore, 𝛽 can be calculated as 

𝛽𝑖 = argmin
𝛽

{𝑝(𝛽𝑖−1) + 〈𝛽 − 𝛽𝑖−1, 𝛻𝑝(𝛽𝑖−1)〉 +
1

2𝑡𝑖
‖𝛽 − 𝛽𝑖−1‖

2 + ‖𝛽‖ℓ1
}          (4.13) 

The constant terms can be ignored, thus Eq.(4.13) can be written as 

𝛽𝑖 = argmin
𝛽

{
1

2𝑡𝑖
‖𝛽 − (𝛽𝑖−1 − 𝑡𝑖𝛻𝑝(𝛽𝑖−1)‖

2 + ‖𝛽‖ℓ1
}              (4.14) 

Let 𝛻𝑝 = 2𝛹𝑇(𝛹𝛽 − 𝑋) denotes the gradient of p and 𝐿 ≔ 𝐿(𝑝) = 2(𝛹𝑇𝛹) is the Lipschitz 

constant of ∇p. Define operator 𝜑𝐿: ℝ
𝑛 ⟶ ℝ𝑛, 𝜑𝐿(𝛽) = 𝛶𝑡(𝛽𝑖 − 2𝑡𝛹𝑇(𝛹𝛽𝑖 − 𝑋)), 𝑡 =

1 𝐿(𝑝)⁄ . The computation of output weight β using ISTA algorithm with constant step-size 

can be represented as follows: 

𝛽𝑖 = 𝜑𝐿(𝛽𝑖−1)                                                           (4.15) 

However, ISTA algorithm shares a sublinear global rate of convergence O(1 z⁄ ), where z is 

the iteration times and it appears to be a slow method. To improve the complexity result, a 

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is used [95]. FISTA keeps the 

simplicity of ISTA but shares complexity of O(1 z2⁄ ) for minimising smooth convex 

problems. It computes βi using based on the following: 

                  𝛽𝑖 = 𝜑𝐿(𝑦𝑖)                                                         (4.16) 

where 𝑦𝑖 is a new point which is a specific linear combination of previous two points 

{𝛽𝑖−1, 𝛽𝑖−2}.  

As the Sparse ELM is the building block of DSELM, the learned output β with respect to the 

input data is the first-layer weight of DSELM. After the output of the first hidden layer sparse 

representations are obtained, a new SELM auto-encoder is stacked at the top to learn the 

second layer parameters with the same procedure. In this manner, all parameters of the 

DSELM can be computed sequentially and all parameters can be fixed without iteratively 

fine-tuning. At last, an original ELM classifier is stacked at the top of the deep network to 

make the final decision. 
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4.3. Experimental Setup 

This research, basically, is similar to that explained previously in Chapter 3. Research works 

established in the farm experimental design as well as in the combustion-based nitrogen 

analysis, the SPAD meter based nitrogen measurement and image data acquisition of this 

investigation were the same as that conducted in the previous research as described in Chapter 

3. 

 

4.4. DSELM Fusion Based Colour Normalisation 

The input dataset used in this research was the same as that used in the previous method as 

explained in Chapter 3. A large dataset was obtained from ensemble of 24 smaller datasets 

which were achieved from RGB colour of 24 patches of Macbeth colour checker. In this 

research, the structure of the DSELM of each patch was as follows: 

 three nodes of input and output layers, which represent RGB colour of input and output of 

the developed DSELM, 

 three hidden layers, consisted of two hidden layers of SELM and one hidden layer of 

original ELM. 

The steps taken in the DSELM fusion based colour normalisation can be described as follows: 

1) Normalise inputs (𝑋𝑖) 

RGB input colours should be normalised by dividing their values with the maximum value 

255. Thus, 𝑋1 =
𝑅

255
, 𝑋2 =

𝐺

255
, 𝑋3 =

𝐵

255
;  𝑋𝑖[0, 1], 𝑖 =  1, 2, 3. 

2) Randomly initialise the input weight 𝑤 

Set weight connecting input layers and hidden layer small random values (between -1 to 

1). 

3) Calculate the hidden output 𝐻 

With randomly initialised weights, the 𝑘𝑡ℎ hidden node output ℎ𝑘 can be calculated as: 
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ℎ𝑘 = 𝜓𝑘(𝑤𝑘
𝑇 ∙ 𝑋) 

where X is input data. The activation function that we use is sigmoid function. 

4) Calculate the Lipschitz constant 𝐿 of the gradient of smooth convex function 𝛻𝑝 

𝐿 ≔ 𝐿(𝑝) = 2(𝛹𝑇𝛹)   

5) Calculate the output weights 𝛽𝑖 using SELM 

a) Take the initial value  𝑦1 = 𝜷0 ∈ ℝ𝑛, 𝑡1 = 1 

b) for i ⩾ 1, compute 

  𝛽𝑖 = 𝜑𝐿(𝑦𝑖)  

= 𝛶𝑡(𝑦𝑖 − 𝑡𝛻𝑝(𝑦𝑖)) 

= argmin
𝛽

{
𝐿

2
‖𝛽 − (𝛽𝑖−1 −

1

𝐿
𝛻𝑝(𝛽𝑖−1))‖

2

+ ‖𝛽‖ℓ1
}  

𝑡𝑖+1 =
1 + √1 + 4𝑡𝑖

2

2
 

𝑦𝑖+1 = 𝛽𝑖 + (
𝑡𝑖 − 1

𝑡𝑖−1
) (𝛽𝑖 − 𝛽𝑖−1) 

6) Recompute the hidden output 𝐻 with the learned output weight 𝛽 instead of the randomly 

initialised weight w 

𝐻 = 𝜎(𝛽𝑇 ∙ 𝑋) 

7) Stack a new SELM at the top with the input is the previous hidden layer output H.  

8) Repeat the above processes (no. 2-7) until the desired deep structure is achieved. 

9) Stack an original ELM which is trained with labelled data at the top of the learned deep 

structure to make final decisions. 
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Figure 4.2. The flowchart of the developed DSELM for colour normalisation. 

The next step is combining all the DSELMs into one neural network system. The proposed 

DSELM fusion, as shown in Figure 4.2, is developed to generate new RGB outputs. The 

proposed approach differs from the previous method as explained in Chapter 3 by applying 
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DSELM, instead of the regularised neural network. The final output RGB values from the 

networks fusion is obtained as follows: 

𝐙 =  ∙ 𝐎 

= [∝1, ∝2, ∝3, ⋯ , ∝24] ∙ [O1, O2, O3, ⋯ , O24]
T              (4.17) 

where  is the weight matrix of each network output, 𝐎 is the output matrix of each network 

and 𝐙 is the final output matrix of the neural networks fusion. 

 

Figure 4.3. The proposed deep sparse extreme learning machines fusion using Macbeth colour 

checker as colour reference and genetic algorithm based optimisation for image colour 

normalisation. 

 

In this research, a genetic algorithm was also utilised to find the optimum value for each of 

the 24  matrices (see Figure 4.2). Based on the experiments, the proposed DSELMs fusion 

can be optimised by using genetic algorithm with the following conditions: 

1. Initial population size was 1,000 individuals. 

2. The probability of mutation was 0.05. 

3. The  = [∝1, ∝2, ∝3, ⋯ , ∝24] matrix has a dimension of 3 × 72 and every element of 
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matrix ∝k is expressed by a 10-bit string of binary number (0s and 1s). 

4. The constrain of each element in matrix ∝k, i.e. ak,ij with i, j = 1, 2, 3, was set as follows: 

if i = j then ak,ij ∈ [0,1] 

else ak,ij = 0 

Thus, each matrix αk was constructed as follows: 

αk = [

ak,11 0 0

0 ak,22 0

0 0 ak,33

]       

with k = 1, 2, 3, … , 24. 

5. The fitness function was based on the mean square error (MSE) between the target (T) and 

the final output (Z) RGB values. 

The steps of the developed genetic algorithm to optimise the matrix  can be explained as 

follows: 

1) Generate the initial population, i.e. 1,000 individuals, with 2,160 (= 10 × 3 × 72) bits 

length for each individual. 

2) Produce the next generation by processing cross-over and mutation on each individual. 

3) Compute the fitness for each individual by calculating the MSE value. 

4) Select the best individual with MSE lower than 0.001. 

Similar to the steps undertaken in the previous method as described in Chapter 3, the next step 

was applying the developed DSELMs fusion and the optimised matrix  to adjust the RGB 

colour of the wheat plants. In this research, a wheat plant image has also a dimension of 448  

336 pixels. The developed DSELM-based colour normalisation method was then applied to 

adjust each pixel of a plant image acquired under various light intensities to the equivalent 

pixel of the image under the standard light intensity, i.e. 50 Klux. 
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4.5. DSELM-based Image Segmentation and Statistical Colour Features Extraction 

In this research, a DSELM was used for image segmentation to remove the non-leaf images 

and keep the wheat leaves as the region of interest. Basically, the developed DSELM for this 

step is similar to that for the colour normalisation process as explained in the previous section. 

The structure of the DSELM used in this step was as follows: 

 Input layer has 3 nodes, which indicate red, green and blue colour values (RGB) for each 

pixel of plant images. 

 Output layer has 1 node, which signifies whether each pixel is a part of a leaf or not. The 

output value of the network is equal to 1 if the corresponding pixel is a part of a leaf, 

otherwise the value is 0. 

 The network has three hidden layers, in which the two first hidden layers are SELM and 

the last hidden layer is original ELM. 

In this image segmentation step, we develop a dataset from 7,200 samples of RGB colour and 

binary values (0 or 1) as the input and target values, respectively. The dataset was acquired 

from 24 normalised images. On each image, 150 pixels in the leaf region and 150 pixels in 

other parts of the region were selected manually. The RGB colour values of the selected 

pixels were then used as inputs of the developed DSELM. 

After image segmentation, there will be some noises in colour segmented images. These 

noises should be removed prior to features extraction. The algorithm of noise removing in this 

research was similar to that in the previous method as explained in Chapter 3. The parameters 

observed in this stage is not only the results of the image segmentation, but also the 

processing time compared to the previous method using MLP. 

As for the features extraction, the steps taken in this research were the same as the method 

conducted in the previous research as described in Chapter 3. Four types of statistical 

moments of each colour RGB channel, namely mean (first moment), variance (second 

moment), skewness (third moment) and kurtosis (fourth moment), were extracted. These 

features were then employed as the inputs of DSELM for nutrient estimation, which will be 

explained more detail in the next section. 
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4.6. Nitrogen Content Estimation Using Weighted DSELM 

In this section, several DSELMs were utilised to perform nutrient estimation by combining 

them with a committee machine, as seen in Figure 4.3. A genetic algorithm was also 

employed to optimize the estimation results. In this research, the experiments were limited up 

to 5 different DSELMs with 5 hidden layer numbers. Each network was repeated 100 times to 

eliminate the effect of the random bias numbers and initial weights. Subsequently, the best 

ensemble of DSELMs which provided the least mean square error was chosen to achieve the 

final estimation. 

 

Figure 4.4. Combination of several DSELM with committee machine and GA-based 

optimization for nitrogen content estimation. 

 

In this step, a committee machine with simple and weighted averaging method was employed 

to combine a number of DSELMs. As described in Chapter 3, a committee machine can 

produce more enhanced generalisation and system performance in the estimation than single 

neural network or expert system. Similar to the previous method in Chapter 3, the nitrogen 

amount of wheat leaves was estimated by using committee machines with simple averaging 

method and weighted averaging method, as expressed in the equation (4.18) and (4.19), 

respectively: 

𝑌𝑎𝑣𝑒 =
1

𝑄
∑ 𝑂𝑞

𝑄

𝑞=1

                                                        (4.18) 
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𝑌𝑤𝑒𝑖𝑔ℎ = ∑(𝑤𝑞 × 𝑂𝑞)

𝑄

𝑞=1

  with   ∑ 𝑤𝑞 = 1

𝑄

𝑞=1

                              (4.19) 

 

where 𝑌𝑤𝑒𝑖𝑔ℎ is the estimated nitrogen content, 𝑤𝑞 is the weight, and 𝑂𝑞 is the output of 𝑞-th 

single network. 

A genetic algorithm was utilised to discover the optimum value of the weights in the 

developed committee learning. The genetic algorithm for the nitrogen estimation was 

developed with the following conditions: 

1) Initial population size was 1,000. 

2) Each individual was expressed by 𝑄 × 8 bits length of binary numbers. 

3) Probability of mutation is 0.05. 

4) Each weight ranged between 0 and 1; 𝑤𝑖 ∈  [0, 1]. 

5) The fitness function was to estimate the mean square error (MSE) between the actual and 

the estimated nitrogen content. 

The final step of this research was measuring the accuracy level of the nutrient estimation. 

Similar to the previous research, this step was conducted by calculating the mean absolute 

percentage error (MAPE) to assess the system’s performance. Several error types, namely 

MAE, MSE, RMSE, and SSE, were also calculated as a comparison. 

 

4.7. Results and Discussion 

4.7.1. DSELMs fusion based colour normalisation 

Based on the established experiments, the proposed DSELMs fusion based colour 

normalisation can be used to normalise wheat plant images captured under various light 

intensities. In this step, the results of the developed DSELM approach were compared with 

other colour normalisation methods, as mentioned previously in Chapter 3, namely grey world 
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assumption, scale-by-max algorithm, linear regression model, and single multilayer 

perceptron. It was also compared to the previous proposed method as discussed in Chapter 3. 

The parameters used in this comparison includes accuracy level and processing speed. The 

accuracy level was measured by calculating average Euclidean distance of the target and the 

output RGB colour of all patches while the processing speed was measured by calculating the 

time (in seconds) required to process colour normalisation in each method. As seen in Table 

IV.1, our proposed method using DSELMs fusion is superior to the aforementioned methods 

in both accuracy and speed. The comparison of ∆𝐸𝑅𝐺𝐵 of each patch by using all methods is 

also presented in Figure 4.4. 

 

Figure 4.5. ΔERGB of each patch using all methods. 

 

Basically, in the grey world as well as white patch and linear model algorithms, the colour 

normalisation process is accomplished by scaling colour value of each pixel with a certain 

constant. It does not require training process as that in neural networks. This is why the 

processing times of colour normalisation using these methods are very quick. On the other 
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hand, the output colours are significantly different compared to the target. These algorithms, 

therefore, are not suitable to normalise plants images.  

In the previous proposed method, i.e. MLPs fusion, the colour normalisation processing time 

was considerably longer than that of single MLP since it needed to fuse the 24 MLPs. The 

results, however, was reasonably better, as indicated by the ∆𝐸𝑅𝐺𝐵 value. The challenge to 

produce better results and faster training process has been overcome by applying DSELMs 

fusion, as seen in Table IV.1. The colour normalisation error is less than that of MLPs fusion 

with processing speed 70 times faster. 

Table 4.1. Comparison of colour normalisation results 

Methods ERGB Time (s)* 

Grey world assumption 23.40 0.1156 

Scale-by-max algorithm 14.86 0.1251 

Linear regression  model 11.06 0.1468 

Single MLP 5.03 1455 

MLPs fusion 4.15 21861 

The proposed method (DSELMs fusion) 3.86 312 

* All algorithms were performed by using a desktop PC with 3.2 GHz Intel Core i5 processor and 8 

GB of RAM. 

In this second proposed method, a genetic algorithm was also utilised to optimise 24  values 

as the output weights of each DSELM. The optimised  matrices were then applied to adjust 

wheat plant images by using the developed DSELMs fusion method. Following is an example 

of the  matrices used to correct a wheat plant image: 

𝑍 = [
0.039 0 0

0 0.069 0
0 0 0.007

] ∙ 𝑂1 + [
0.053 0 0

0 0.025 0
0 0 0.005

] ∙ 𝑂2 + [
0.047 0 0

0 0.014 0
0 0 0.065

] ∙ 𝑂3

+ ⋯+ [
0.064 0 0

0 0.015 0
0 0 0.008

] ∙ 𝑂24. 

 

By applying the developed DSELMs fusion based colour adjusting system and the optimized 

 matrices, wheat crop images with a variation of light intensities were subsequently 

transformed to that with standard light intensity, i.e. 50 Klux. The parameter used for 
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measuring the effectiveness of colour normalisation was colour variability of the plant 

images, as established in the previous research. This parameter can be measured by 

calculating standard deviation of the original images and the corrected images. The smaller 

the standard deviation of image colours, the smaller the colour variability of the images. The 

colour normalisation results of this second proposed method were not significantly different 

to that of the first proposed method, however, it was significantly superior in the 

performance’s speed. 

 

4.7.2. DSELM-based image segmentation and features extraction 

After colour normalisation using the developed DSELMs fusion, the next step was image 

segmentation. The DSELM based image segmentation can be applied to distinguish wheat 

leaves from other parts, such as weeds, soil, stones and dried leaves (see examples in Figure 

4.5). The developed segmentation method was much better compared to the Otsu algorithm, 

as seen in Figure 4.6. The database pertaining to the colour of leaves and non-leaves provides 

sufficient data to train the plant images. Therefore, the DSELM can precisely classify whether 

a pixel belongs to the leaves or non-leaves region. 

 

Figure 4.6. Two examples of the proposed colour normalisation and image segmentation 

results; (a) original images with some spots of unwanted parts, (b) normalised images, (c) 

segmented images. 
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Furthermore, the developed DSELM method can accomplish image segmentation process 

much faster than the conventional backpropagation MLP and the original ELM, as seen in 

Table IV.2. The image segmentation results using three different neural network types are all 

good as indicated by the accuracy level. However, the developed DSELM can perform the 

image segmentation 6 times faster than the MLP and slightly faster than the original ELM. 

Once all images have been segmented, four moment statistical features of each colour channel 

were then extracted to be utilised as predictors in the developed DSELM-based nitrogen 

estimation. 

 

Figure 4.7. A comparison of some threshold based and the developed DSELM based image 

segmentations. 

 

Table 4.2. Comparison of image segmentation results 

 

Methods Accuracy (%) Time (s)* 

MLP 99.8 6.349 

Original ELM 100 1.154 

The proposed method (DSELM) 100 0.998 

* All algorithms were performed by using a desktop PC with 3.2 GHz Intel Core i5 processor and 8 

GB of RAM.   
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4.7.3. DSELM and committee machine based image nutrient estimation 

In this step, several DSELMs with various numbers of hidden layers were combined and 

subsequently trained to determine which gave the best results. After established several 

experiments, the best network’s performance was achieved from the combination of four 

DSELMs compared to other possible combinations. The first combination method used in this 

step was simple average. The estimated nitrogen amount was then calculated, as follows: 

𝑌𝑎𝑣𝑒 =
1

4
∑ 𝑂𝑞

4

𝑞=1

                                                         (4.20) 

 

The best result relates to the first type of committee machine, i.e. simple average, was then 

compared to that of the second type combiner, i.e. weighted average, which was optimised by 

the genetic algorithm (GA). By using this method, the optimum weights of the output of the 

networks system are 0.217, 0.375, 0.183, and 0.225, respectively for the first until the fourth 

DSELM. The estimated nitrogen content can therefore be expressed as follows: 

𝑌𝐺𝐴 = (0.217 × 𝑂1) + (0.375 × 𝑂2) + (0.183 × 𝑂3) + (0.225 × 𝑂4)         (4.21) 

 

Table IV.3 illustrates the comparison of various types of error values of the developed 

DSELM and SPAD meter methods. From the table, we can perceive that by using a simple 

average combiner, the combination of four DSELMs provides the best results compared to 

other combinations with simple averaging method. However, the weighted average combiner 

with GA optimisation offers enhanced results. As seen in the table, the MAPE of four 

DSELMs with weighted averaging method is smaller than that of four DSELMs with simple 

averaging combiner. 

Similar to the works conducted in the previous steps, the processing time of nitrogen 

estimation was also calculated. The results of this measurement can be seen in the Table IV.4. 

According to the table, the method using weighted averaged 4 DSELMs run slower than other 

methods using simple averaging combiner since it employs genetic algorithm to optimise the 

weights of each DSELM. This method, however, is faster than the first proposed method 

using combination of six MLPs. 
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Table 4.3. Comparison of nitrogen amount estimation errors 

 

Methods MAPE MAE MSE RMSE SSE 

SPAD meter 8.48% 0.2042 0.0578 0.2404 1.5704 

Weighted averaged 6 NNs 

(first proposed method) 

2.73% 0.0674 0.0078 0.0885 0.2819 

1 DSELM 3.42% 0.0877 0.0125 0.0956 0.4599 

Simple averaged 2 DSELMs 3.28% 0.0745 0.0277 0.0918 0.4205 

Simple averaged 3 DSELMs 3.26% 0.0744 0.0275 0.0905 0.4148 

Simple averaged 4 DSELMs 3.23% 0.0733 0.0273 0.0902 0.4091 

Simple averaged 5 DSELMs 3.28% 0.0744 0.0276 0.0903 0.4169 

Weighted averaged 4 DSELMs 

(second proposed method) 

2.76% 0.0679 0.0081 0.0890 0.2915 

 

Table 4.4. Comparison of nitrogen amount estimation processing speed 

 

Methods Time (s) 

Weighted averaged 6 NNs (first proposed method) 310.46 

1 DSELM 7.10 

Simple averaged 2 DSELMs 12.07 

Simple averaged 3 DSELMs 17.84 

Simple averaged 4 DSELMs 25.13 

Simple averaged 5 DSELMs 30.41 

Weighted averaged 4 DSELMs (second proposed method) 52.24 

  

4.8. Summary 

A novel computational intelligent vision sensing using deep sparse extreme learning machine 

was proposed to acquire plant images and to estimate nutrient content in wheat leaves based 

on colour features of plant images captured on field with significant variations of sunlight 

intensities. The developed algorithm focused on the development of deep sparse extreme 

learning machine and genetic algorithm to overcome the problems on wide colour variability 

due to different lighting conditions, image segmentation to distinguish crop leaves from 

complex background, and optimisation of the nutrient estimation. The proposed method was 
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successfully demonstrated to normalise images as well as to decrease the colour deviation and 

to perform image segmentation considerably faster than other neural network methods. 

Furthermore, the combination of DSELMs with committee machine and genetic algorithm 

showed very promising results in estimating nitrogen content in wheat leaves compared with 

existing methods. 
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Chapter 5 

Building A Globally Optimised Computational Intelligence Image 

Processing Algorithm for On-Site Nitrogen Status Analysis in Plants 

 

5.1. Introduction 

In this chapter, another more advance method for nitrogen status analysis based on 

characteristics of leaves colour has been developed. As discussed in Chapter 3 and Chapter 4, 

a fusion of regularised neural networks and of deep sparse extreme learning machine have 

been established to normalise wheat leaves images in order to reduce the colour variability 

due to different sunlight intensities. In those methods the colour normalisation results have 

been optimised locally based on the RGB vales of Macbeth colour checker as the reference. 

In this chapter, another type of expert systems, namely deep learning multilayer perceptron 

(DL-MLP), has been employed to normalise plant images and image segmentation. 

Furthermore, after the Macbeth colour checker based local optimisation, the colour 

normalisation of the wheat plant images has also been optimised globally according to the 

nitrogen estimation error to produce more robust results. This chapter also discusses how well 

the global optimisation can fine tune the colour normalisation and the nutrient estimation 

results by developing similar methods without global optimisation. 

 

5.2. Experimental Setup 

Basically, the experimental research designs in this chapter, including farm and laboratory 

works as well as image data acquisition, are similar to that described in Chapter 3.  

 

5.3. The proposed GA-based global optimisation for on-field nitrogen status analysis in 

plants 

In general, this proposed method can be split into five major works (see Figure 5.1), i.e. (i) 

image acquisition, (ii) colour normalisation training using an ensemble of deep learning 

multilayer perceptron (DL-MLP), (iii) image segmentation and features extraction, (iv) 
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nitrogen estimation, and (v) GA-based global optimisation. The details of each particular 

work will be described in the following sections. 

 

Figure 5.1. Genetically-enabled ensemble DL-MLP for on-field nitrogen status analysis in 

plants. 

 

5.3.1. Image acquisition 

In this research, two types of images were acquired on the field with variations of sunlight 

intensities, i.e. Macbeth colour checker and wheat plant images. The images of the Macbeth 

colour checker and wheat plant were captured under sunlight using a common digital still 

camera (Sony DSC-W55). Basically, the image acquisition method in this research was 

adopted from the method used in the previous research which is described in Chapter 3. In 

general, there were 7872 RGB colour samples from the Macbeth colour checker for colour 

normalisation and 360 wheat plant images for nutrient estimation. 

 

5.3.2. Colour normalisation training and its application to wheat plant images 

In this step, a colour normalisation was firstly performed using an ensemble deep learning 

multilayer perceptron (DL-MLP) and then locally optimised the results by genetic algorithm 

using the Macbeth colour checker datasets. The developed colour normalisation aims to 

reduce colour variability due to different light intensities. As shown in Figure 5.1, the RGB 
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information of the Macbeth colour checker was initially trained by using 24 DL-MLPs and 

combined by both simple and weighted averaging methods.  

In order to attain a better generalization performance, a deep learning MLP is required to 

extract more abstract and accurate information than those from shallow ones [97]. The 

developed DL-MLP used in this colour normalisation, as shown in Figure 5.2, can be 

explained as follows. Each DL-MLP consisted of three hidden layers and three units of both 

input and output layers, which represented red, green and blue colour channels from the 

Macbeth colour checker. 

 

Figure 5.2. The developed DL-MLP for colour normalisation. 

 

A DL-MLP utilizes a series of many layers (usually more than one hidden layer) of nonlinear 

processing units. Each consecutive layer uses the output from the previous one as input. 

Suppose that there is a DL-MLP with 𝐿 hidden layers, the layer input activation for 𝑘 > 0 

with 𝐡(0)(𝐱) = 𝐱 can be expressed as: 

𝐚(𝑘)(𝐱) = 𝐛(𝑘) + 𝐖(𝑘)𝐡(𝑘−1)(𝐱)                                                 (5.1) 
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The hidden layer activation (𝑘 from 1 to 𝐿) and output layer activation (𝑘 = 𝐿 + 1), thus, can 

be calculated as: 

𝐡(𝑘)(𝐱) = g (𝐚(𝑘)(𝐱))                                                           (5.2) 

and  

𝐡(𝐿+1)(𝐱) = o(𝐚(𝐿+1)(𝐱)) = 𝐟(𝐱)                                                   (5.3) 

respectively, with g(∙) and o(∙) are the sigmoid activation function. 

In the developed DL-MLP, each hidden layer was initially pre-trained in an unsupervised way 

using an autoencoder. Basically, an autoencoder is a feedforward neural network to transform 

the input into a more dense representation and rebuild the input with the learned 

representation [98]. An autoencoder consists of two sections, namely encoder and decoder, 

which can be expressed as transformations 𝜙 and 𝜓, respectively, as follows: 

𝜙:𝓧 ⟶ 𝓜     (encoder) 

𝜓:𝓜 ⟶ 𝓧     (decoder) 

An autoencoder, as seen in Figure 5.3, can be considered as an MLP with one hidden layer in 

which the output values are equal to the inputs. Furthermore, an autoencoder uses the input 

x ∈ ℝ𝑑 = 𝓧 and maps it onto 𝐦 ∈ ℝ𝑝 = 𝓜 such that: 

𝐦 = 𝜑1(𝐖𝐱 + 𝐛)                                                            (5.4) 

Subsequently, the matrix 𝐦 is mapped onto the reconstruction matrix 𝐱′ of the same values of 

𝐱, which can be expressed as: 

𝐱′ = 𝜑2(𝐖
′𝐦 + 𝐛′)                                                         (5.5) 

where 𝜑1(∙) and 𝜑2(∙) are element-wise activation function, i.e. sigmoid function. Each 

autoencoder is trained to minimise autoencoding errors: 

𝛅(𝐱, 𝐱′) = ∥ 𝐱 − 𝐱′ ∥2= ∥ 𝐱 − 𝜑2(𝐖
′(𝜑1(𝐖𝐱 + 𝐛)) + 𝐛′) ∥2           (5.6) 

After autoencoding of the first hidden layer, the pre-training process continues to the next 

hidden layer with the same method as previously described until the last hidden layer. Once 

all hidden layers are pre-trained, the next steps are then as follows: 
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 Add output layer 

 Initialise 𝐖(𝐿+1) and 𝐛(𝐿+1) randomly as usual 

 Train the whole network using supervised learning with backpropagation error algorithm, 

as shown in Figure 5.2. All networks’ weights are then adjusted for the supervised task. 

 

Figure 5.3. An autoencoder of the first hidden layer. 

 

After training each DL-MLP, the next step was combining all 24 DL-MLPs into one neural 

network system using committee machines. By using this combination, the output value 𝐙 

(see Figure 5.1) can be achieved by averaging the output 𝐘, as follows: 

𝐙 =  ∙ 𝐘 = [∝1, ∝2, ∝3, ⋯ , ∝24] ∙

[
 
 
 
 
𝑌1

𝑌2

𝑌3

…
𝑌24]

 
 
 
 

                                              (5.7) 

In this step, two types of combiner were used, i.e. simple and weighted averaging method. 

The simple averaging method indicates that each DL-MLP has the same weight, ∝𝑘, to 

produce the new output, 𝐙. In this paper, the possibility that each DL-MLP has a different 

weight was also investigated. This step was conducted by local optimisation using genetic 

algorithm, as expressed in the following: 

𝑍 = ∑(∝𝑘× 𝑌𝑘)

24

𝑘=1

  with   ∑ ∝𝑘= 1

24

𝑘=1

                                          (5.8) 

Once the colour normalisation accomplished, the next step was applying the developed neural 

network and the matrix  to normalise wheat plant images. In this research, a wheat plant 
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image have a dimension of 448  336 pixels. Through this developed colour adjusting system, 

each pixel of a plant image which was acquired under various light intensities was 

transformed to the equivalent pixel of the image under the standard light intensity, i.e. 50 

Klux. 

 

5.3.3. Image segmentation and features extraction 

In this step, image segmentation was conducted to remove any non-leaf images, such as soil, 

stones, weeds, dried and semi-dried leaves, and to keep the leaf images as the region of 

interest. A multilayer, feed forward, backpropagation error neural network was utilised for 

image segmentation to distinguish the wheat leaves from other undesired parts. In regard to 

the developed neural network, a dataset of 4,800 samples of RGB colour and binary values (0 

or 1) as the input and target values, respectively, was established. The dataset was achieved 

from 24 images, in which 100 pixels in the leaf region and 100 pixels in other parts of the 

region were selected manually from each image. 

In general, the structure of the neural network in this step is similar to the single DL-MLP 

used for colour normalisation as previously explained. The network had three units of input 

layer, which indicate red, green and blue colour values (RGB) for each pixel related to the 

plant images. The output layer had only one unit, which signifies whether each pixel is a part 

of a leaf or not. The output value of the network was equal to 1 if the corresponding pixel was 

a part of a leaf, otherwise, the value was 0. The developed DL-MLP utilized three hidden 

layers which were initially unsupervised pre-trained using autoencoder method. The sigmoid 

activation function was used for both hidden and output layers. 

In the colour segmented images, there were several noises which should be removed before 

extracting image features. Furthermore, weeds were also present in the most of plant images 

which need to be eliminated from the segmented images, as they can affect the colour 

information of the wheat leaves. To unravel this problem, an image segmentation algorithm 

was developed to remove unwanted images by selecting the largest part of the leaves which 

has the highest number of object pixels (see Figure 5.4). 

Once the image segmentation accomplished, several features of the segmented images were 

subsequently extracted. Four types of statistical colour moments of each RGB colour channel, 

namely mean, variance, skewness, and normalised kurtosis were extracted. These features can 
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represent colour distributions of an image. Additionally, the mathematical expressions of the 

features can be written as follows: 

mean = 𝜇(𝑐) = E(𝑥(𝑐)) =
1

𝑁𝑠
∑𝑥𝑖

(𝑐)

𝑁𝑠

𝑖=1

 

variance = var(𝑐) = E [(𝑥(𝑐) − 𝜇(𝑐))
2
] 

=
1

𝑁𝑠
∑(𝑥𝑖

(𝑐)
− 𝜇(𝑐))

2
𝑁𝑠

𝑖=1

 

skewness = skew(𝑐) =
E [(𝑥(𝑐) − 𝜇(𝑐))

3
]

(𝐸[(𝑥(𝑐) − 𝜇(𝑐))2])
3

2⁄
 

normalised kurtosis = normkurt(𝑐) =
E [(𝑥(𝑐) − 𝜇(𝑐))

4
]

(𝐸[(𝑥(𝑐) − 𝜇(𝑐))2])2
− 3 

where 𝑐 refers to each colour channel (red, green, and blue) and 𝑁𝑠 is the number of samples 

(object pixels). 

 

5.3.4. Nitrogen content estimation 

In this step, a combination of several neural networks with different hidden layer nodes using 

a committee machine was developed to estimate nitrogen content. Each neural network had 

twelve nodes of input layer which correspond to the statistical moment features of red, green, 

and blue colour and one node of output layer that represents the estimated nitrogen amount.  

The initial number of hidden layer units was set to 12 nodes. From this initial unit number, 

several new neural networks with various hidden layer nodes were generated. The numbers of 

hidden layer nodes with regards to these new neural networks were produced using the 

following formula: 

𝐿ℎ𝑛𝑒𝑤 = 𝑓 × 𝐿ℎ𝑖𝑛𝑖𝑡                                                       (5.9) 

where 𝐿ℎ𝑛𝑒𝑤 and 𝐿ℎ𝑖𝑛𝑖𝑡 are the number of hidden layer nodes of new and the initial neural 

network, respectively, and 𝑓 is the multiplication factor (𝑓 = 2, 3, …, 7) and is also the 
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number of combined neural networks (experiments were conducted up to 7 neural networks) 

(see Table 5.1). 

 

Figure 5.4. DL-MLP based image segmentation algorithm. 

 

Table 5.1. Neural networks combinations 

Number of NNs 

(𝑄) 
Number of hidden layer nodes 

2 12 – 24  

3 12 – 24 – 36  

4 12 – 24 – 36 – 48  

5 12 – 24 – 36 – 48 – 60  

6 12 – 24 – 36 – 48 – 60 – 72  

7 12 – 24 – 36 – 48 – 60 – 72 – 84  
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In this research, nitrogen amount was estimated by applying a committee machine with the 

simple and GA-based averaging methods as the combiner of 𝑄 neural networks, as seen in 

Figure 5.5 and 5.6, respectively. The nitrogen percentage, therefore, can be estimated using 

the following formula: 

𝑁′ = ∑(𝑞 × 𝑁𝑞)

𝑄

𝑞=1

   with  ∑ 𝑞 = 1

𝑄

𝑞=1

                                              (5.10) 

where 𝑁′ is the estimated nitrogen content,  is the network weight, and 𝑁 is the output of 

single network. 

 

Figure 5.5. The simple average combiner method for nitrogen estimation. 

 

 

Figure 5.6. The GA-based weighted combiner method for nitrogen estimation. 
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5.3.5. The proposed global optimisation 

The final step of this research was optimising globally the combiner weights, i.e. matrix  and 

matrix , in the colour normalisation and nitrogen estimation steps, respectively, based on the 

estimation error using a genetic algorithm (see Figure 5.1). Basically, a genetic algorithm 

encompasses a population with a certain number of individuals. Each individual in a 

population has a possibility of being the solution to the optimisation problem. Hence, by 

applying selection, crossover and mutation among individuals, a new generation is produced. 

This process is repeated several times until a new individual provides the most appropriate 

solution for the problem.  

Two sequential GAs have been developed to achieve the best estimation results. The first GA 

was to optimise the matrix  in the colour normalisation, while the second was a GA to 

optimise the matrix  in the nitrogen estimation step. Based on our experiments, the 

developed neural networks fusion can be optimised using genetic algorithms with the 

following steps: 

a) Define fitness function 

In this section, the fitness function of the developed genetic algorithm was to minimise the 

MSE between the actual (𝑁∗) and the estimated nitrogen content (𝑁′) of 𝑆 samples. 

argmin
∝

 
1

𝑆
∑(𝑁𝑠

∗ − 𝑁𝑠
′)2

𝑠

                    for colour normalisation step 

argmin


 
1

𝑆
∑(𝑁𝑠

∗ − 𝑁𝑠
′)2

𝑠

                    for nitrogen estimation step 

b) Determine initial population of chromosomes (Npop) 

The population size of this genetic algorithm was initially set to 1000 chromosomes 

(individuals) for both steps. These chromosomes performed as the first generation. 

𝑁𝑝𝑜𝑝 = 1000 

c) Encoding 

Encoding is expressing each chromosome in the population by the binary strings of 0s and 1s.  
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In the colour normalisation step, the  = [∝1, ∝2, ∝3, ⋯ , ∝24] matrix has a dimension of 3 × 

72 and every element of the matrix ∝𝑘 was expressed by a 10-bit string of binary numbers (0s 

and 1s). Likewise, in the nitrogen estimation step, each chromosome (individual) referred to 

𝑄 neural networks weights ( = 1, 2, … , 𝑄). Each chromosome, therefore, was represented 

by 𝑄 × 10 bit strings. 

d) Boundary conditions 

In the both steps, boundary conditions were defined so that each element in the matrix  and 

matrix  has a positive value. In particular, the boundary of each element of matrix ∝𝑘, i.e. 

𝑎𝑘,𝑖𝑗 with 𝑖, 𝑗 = 1, 2, 3, was set as follows: 

if 𝑖 = 𝑗 then 

𝑎𝑘,𝑖𝑗[0, 1] 

else 

𝑎𝑘,𝑖𝑗 = 0 

Thus, each matrix ∝𝑘 has a structure as follows: 

∝𝑘= [

𝑎𝑘,11 0 0

0 𝑎𝑘,22 0

0 0 𝑎𝑘,33

] 

with 𝑘 = 1, 2, 3, … , 24. 

e) Reproduce next generations by processing selection, cross-over and mutation operators 

In the beginning, each chromosome in the first generation was tested by the fitness function to 

figure out how well it solves the optimisation problem. 

According to [99], selection operator attempts to give “a pressure” to the population as the 

same as natural selection in the biological life. Chromosomes (individuals) with better 

performance, or fitter, will be kept to the next generations. Otherwise, they will be wiped out. 

In cross-over, two chromosomes exchange some bits of the same section one another to create 

two offspring, while mutation turns over bits in a chromosome (a 0 to a 1 and vice versa). 
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The existence of mutation depends on the probability of mutation () set in the algorithm as 

well as a random number given by the computer (𝜔). In this step, the  value was set to 0.05. 

The mutation operator was defined as follows: 

mutation = {
1 (occurs) if  ≥ 𝜔      

      
0 (not occur) if  < 𝜔

                                                                 (5.11) 

Repeat the selection, crossover, and mutation processes until the best chromosome achieved. 

 

5.4. Results and Discussion 

The objective of the developed colour normalisation was to normalise plant images captured 

under various light intensities and to reduce the colour variability of the images. After image 

normalisation, it can be assumed that all images are captured under the same light intensity. 

The colour difference between them was then solely affected by nutrient content in the leaves. 

This method, thus, can make the comparison among the plant images more reliable. 

In this study, three schemes of nitrogen status analysis have been established based on the 

combiner type and the application of global optimisation, as seen in Table 5.2. In the first 

scheme, simple average combiner was used to combine several neural networks in both colour 

normalisation and nitrogen estimation steps. In the second scheme, the combiner weights in 

the colour normalisation step were optimised locally using GA while the simple averaging 

method was used as the combiner in the nitrogen estimation step. In the last scheme, GA was 

utilised to globally optimise the combiner weights in both steps. 

Table 5.2. Scheme works of the nitrogen status analysis 

Scheme Colour normalisation 

combiner 

Nitrogen estimation 

combiner 

Global 

optimisation 

Scheme #1 Simple average Simple average No 

Scheme #2 GA-based weighted average 

(local-optimised ) 

Simple average No 

Scheme #3 GA-based weighted average 

(global-optimised ) 

GA-based weighted average 

(global-optimised ) 

Yes 

 



  

94 | P a g e  
 

The developed colour normalisation using 24-patch Macbeth colour checker can be applied to 

normalise plant images as well as to reduce colour variability due to different sunlight 

intensities. Figure 5.7 shows some examples of average RGB standard deviation which were 

taken from 30 images from three field plots. As seen in the figure, without colour 

normalisation, the colour variability of plant images is very high as indicated by the average 

standard deviation of RGB colour. It means that various sunlight intensities have considerable 

effects on the colour of wheat plant images. Such images cannot be used directly for nutrient 

estimation since they are not comparable. Theoretically, all plants from the same plot should 

have similar colour values since they are subject to the same fertilizer treatment. The colour 

of the wheat leaves is considerably influenced by the nutrient amounts in the leaves, 

especially nitrogen. 

 

Figure 5.7. Comparison of colour normalisation results with three different schemes. 

By applying the developed colour normalisation using scheme 1, i.e. simple average 

combiner, the standard deviation value can be decreased significantly. Furthermore, the 

developed GA-based weighted average combiner can reduce the colour variability more 

effective than the simple average method. This result indicates that each element in the matrix 

 has different influence factor to each MLP in the colour normalisation step. In addition, the 

effect of the local-optimised matrix  to reduce the colour variability of wheat plant images is 

not quite different compared to that of the global-optimised matrix . In general, the global 

optimisation (scheme #3), however, can reduce the average standard deviation of RGB colour 

values slightly more than the local optimisation (scheme #2). 
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The proposed global optimisation can be used to estimate nitrogen content in wheat leaves 

more precisely than the other two developed methods and the common SPAD meter based 

measurement. As seen in Figure 5.8, the nitrogen estimation error using SPAD meter is 

0.0578. The first developed research scheme with simple average combiner gave estimation 

results better than the SPAD meter based estimation. The best result based on this first 

scheme was obtained when using 7 MLPs in the nitrogen estimation step. On the other hand, 

in the second and third scheme, the best result was achieved from the combination of 6 MLPs. 

This finding indicates that GA-based colour normalisation gives some effects to the extracted 

statistical colour features which were used as the inputs in the nutrient estimation step. 

Furthermore, the estimation results using 6 MLPs in the third scheme was slightly better than 

that in the second scheme. This point denotes that each MLP in the nitrogen estimation step 

has different weights () as resulted by the developed GA. Based on our experiments, the best 

estimation results can be achieved by using the following formula: 

𝑁′ = ∑(𝑞 × 𝑁𝑞)

6

𝑞=1

 

𝑁′ = [0.427 0.055 0.114      0.094 0.023 0.287] ∙

[
 
 
 
 
 
𝑁1

𝑁2

𝑁3

𝑁4

𝑁5

𝑁6]
 
 
 
 
 

                          

 

Figure 5.8. Nitrogen estimation error using three different schemes. 
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5.5. Summary 

The variation of sunlight intensities will dominantly affect the colour of wheat plant images. 

Therefore, colour normalisation is required to tackle the effect of sunlight intensity by 

reducing the colour variability of the images. The proposed method focused on global 

optimisation using genetic algorithm to normalise plant images that were subject to a variation 

in lighting conditions and to estimate nitrogen content in wheat leaves. The global-optimised 

24 neural networks fusion in the colour normalisation step and six neural networks 

combination in the nutrient estimation step could give the best prediction results compared to 

the other developed methods without global optimisation and the common SPAD meter based 

estimation. 
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Chapter 6 

Conclusion and Future Works 

 

6.1. Conclusion of the Thesis 

Estimating nitrogen content of plants is commonly conducted in a controlled room with an 

artificial lighting system. A single leaf of a plant is usually laid down on a white paper and the 

image of the leaf is then analysed. Thus, it is very challenging to estimate nitrogen content of 

plants based on the image characteristics of the leaves which are captured on field due to the 

variation of sunlight intensities. It has been understood that light intensity can considerably 

affect the colour of an object. This fact, therefore, will influence the nitrogen estimation 

results. 

The problem of on-field nitrogen status analysis in plants was unravelled as discussed in this 

thesis. The combination of neural networks, committee machines and genetic algorithm were 

utilised in colour normalisation, image segmentation and nitrogen estimation. In addition, the 

colour normalisation was performed to reduce the colour variability of wheat plant images by 

means of a Macbeth colour checker as the colour reference. Three novel approaches were 

developed to analyse the nitrogen status in plants. 

In the first proposed method, as deeply described in Chapter 3, a fusion of regularised neural 

networks was employed to normalise plant images based on the RGB colour of the 24-patch 

Macbeth colour checker. Furthermore, the colour normalisation results were optimised using a 

genetic algorithm by revising the weights of each neural network, which were represented by 

the matrix 𝛂. The developed colour normalisation method was successfully used to normalise 

wheat plant images as indicated by small Euclidean distance and standard deviations of RGB 

colour of the images after applying the colour normalisation. This result made the plant 

images more comparable each other. Moreover, the results of the proposed colour 

normalisation were superior to that of other common methods, namely grey world, scale-by-

max, linear model and single neural network. In the next step, i.e. image segmentation and 

features extraction, the regularised neural network was also effectively utilised to distinguish 

wheat leaves from other unwanted parts. This method gave improved results compared to the 

conventional Otsu algorithm. Afterward, four types of statistical moment features, namely 

mean (first moment), variance (second moment), skewness (third moment) and kurtosis 
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(fourth moment), of each colour channel were extracted to be applied as input parameters in 

the nitrogen estimation step. In this step, several neural networks with different number of 

hidden layer units were combined using committee machines and optimised by genetic 

algorithm. The experiments showed that the combination of six neural networks with the 

number of hidden layer nodes of 12, 24, 36, 48, 60 and 72, and the genetic algorithm based 

optimisation of the networks output’s weights provided the best estimation results as indicated 

by the least mean absolute percentage error (MAPE) of the estimation, i.e. 2.73%. A 

significant improvement was made through the developed method compared to the common 

nitrogen estimation method using SPAD meter which produced MAPE of 8.48%. 

In the second proposed method, a deep sparse extreme learning machine (DSELM) was 

implemented to replace the regularised neural network in the colour normalisation as well as 

in the image segmentation and nitrogen estimation step. Generally, the utilisation of DSELM 

in the three research steps was as effective as that of the developed regularised neural network 

as proposed in the first method. However, the learning speed of DSELM was extremely faster 

than the common backpropagation multilayer perceptron (MLP) and the regularised neural 

networks. As explained comprehensively in Chapter 4, the proposed DSELM based colour 

normalisation could be used normalise wheat plant images by reducing the colour variability 

due to different sunlight intensities. Despite the longer processing time compared to the non-

learning based algorithms (grey world, scale-by-max and linear regression methods), the 

learning-based algorithms, i.e. single MLP, MLPs fusion and DSELMs fusion, provided 

better results in the colour normalisation. Furthermore, among the observed learning-based 

methods, the proposed DSELMs fusion showed the best performance in the term of colour 

normalisation error and processing speed. In the image segmentation step, DSELM showed its 

superiority to the other learning based algorithms. The accuracy level of the image 

segmentation results using DSELM was closely similar to that using backpropagation MLP 

and original ELM. However, the processing speed of the DSELM based technique was six 

time faster than that of the MLP method. As the same as the features extracted in the first 

proposed method, four types of statistical moment were also extracted as the inputs of neural 

network systems to estimate the nitrogen percentage. In the nitrogen estimation step, an 

ensemble of DSELM with different number of hidden layer was established and then 

optimised by genetic algorithm. The results showed that the combination of four DSELMs 

with 2, 3, 4, and 5 hidden layers with weighted coefficient optimised by genetic algorithm 

gave the best estimation with small error values and fast processing speed. 
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In the third proposed method, a more advanced algorithm was developed to produce a better 

optimisation in the nitrogen content prediction. A deep learning multilayer perceptron (DL-

MLP) was employed as the expert system, instead of regularised neural network and deep 

sparse extreme learning machine. Furthermore, a fusion of twenty four DL-MLPs from the 

Macbeth colour checker and genetic algorithm based local optimisation was established 

successfully to normalise wheat plant images by reducing their colour variability. A DL-MLP 

based image segmentation was applied effectively to extract wheat leaves from the 

normalised plant images. After extraction of statistical colour moment features, as similar as 

those conducted in the two previous proposed methods, these features were then delivered to 

an expert system as the predictors of nitrogen amount. The developed expert system 

comprised a number of standard MLPs which were combined by committee machines. The 

difference between this method and the previous proposed methods was the utilisation of 

genetic algorithm to optimise globally the coefficients (weights) of each DL-MLP and 

standard MLP in the colour normalisation and nitrogen estimation step, respectively. In fact, 

the developed genetic algorithm based global optimisation could be used to fine tune the 

colour normalisation and nitrogen estimation in a better way. Three schemes were 

investigated to figure out the effectiveness of global optimisation to enhance the nitrogen 

estimation results. This study found that the scheme #3, which employed global optimisation, 

produced more improved nitrogen estimation results compared to the other schemes without 

global optimisation. 

 

6.2. Recommendations for Future Works 

Based on the research presented in this thesis, a number of studies can be conducted to 

investigate and explore more advanced ideas related to the application of computational 

intelligence image processing to analyse the nitrogen status in plants. The advanced studies 

can be enumerated as follows: 

 By considering the processing speed of the deep sparse extreme learning machine 

(DSELM) and the effectiveness of the global optimisation, thus, a research to analyse 

nitrogen status by combining these two algorithms has a great potential to increase the 

accuracy of the estimation results as well as the time efficiency of the computational 

processing. The colour normalisation, image segmentation and nitrogen estimation steps 

can be conducted by applying DSELM as done in Chapter 4 and then optimised globally 



  

100 | P a g e  
 

using genetic algorithm to fine tune the colour normalisation and improve the nitrogen 

estimation results as done in Chapter 5. 

 In the nitrogen estimation step, several networks of the same expert systems, i.e. 

regularised neural network (in Chapter 3), deep sparse ELM (in Chapter 4), and standard 

MLP (in Chapter 5), have been combined. It will be another novel approach to fuse these 

expert systems, or others, into one combination using committee machines, as seen in 

Figure 6.1. 

 

Figure 6.1. A new combination using committee machines to estimate nitrogen content. 

 

A more advanced research that can be done is developing a smartphone based nitrogen 

estimation in real time. An application (app) based on smartphone operating systems, such as 

android, iOS, or other systems, can be built to assist people estimating nutrient content by 

capturing plant images using the smartphone camera. A larger database of leaves colour and 

nutrient amount will be required to make such research more reliable since different 

smartphone has different camera specifications. Due to the rapid development of information 

and computation technology, this advanced research will be possible to realise in the near 

future. This application can be very useful for farmers and agricultural practitioners. 
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