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Abstract

If a set Ω is a spectral set for an operator T , is it necessarily a complete spectral

set? That is, if the spectrum of T is contained in Ω, and von Neumann’s inequality

holds for T and rational functions with poles off of Ω, does it still hold for all such

matrix valued rational functions? Equivalently, if Ω is a spectral set for T , does T

have a dilation to a normal operator with spectrum in the boundary of Ω? This is

true if Ω is the disk or the annulus, but has been shown to fail in many other cases.

There are also multivariable versions of this problem. For example, it is known that

rational dilation holds for the bidisk, though it has been recently shown to fail for

a distinguished variety in the bidisk called the Neil parabola. The Neil parabola is

naturally associated to a constrained subalgebra of the disk algebra, as are many

other distinguished varieties.

We show that the rational dilation fails on certain distinguished varieties of the

polydisk DN
associated to the constrained subalgebra AB := C + B(z)A(D). Here

A(D) is the algebra of functions that are analytic on the open unit disk D and

continuous on the closure of D, and B(z) is a finite Blaschke product of degree

N ≥ 2. To this end we identify and study the set of test functions ΨB for H∞B :=

C+B(z)H∞(D). Among others, we show that ΨB is minimal (in a sense that there

is no proper closed subset of ΨB is suffices).
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Chapter 1

Introduction and known results

1.1 Introduction

The purpose of this thesis is to study the rational dilation problem on certain dis-

tinguished varieties of DN
for N ≥ 2 (that is, the intersection of a variety with

the closed polydisk DN which intersects the boundary of DN in its distinguished

boundary TN) associated to some constrained subalgebras of the disk algebra.

Let Ω be a compact subset of Cd and suppose that T = (T1, . . . , Td) is a d−tuple

of commuting operators on a Hilbert space H with spectrum contained in Ω. Fur-

thermore, let R(Ω) be the algebra of rational functions with poles off Ω and assume

that for every r in R(Ω), the von Neumann inequality holds; that is,

‖r(T )‖ ≤ ‖r‖Ω, (1.1)

where ‖·‖Ω is the supremum norm over Ω. When the von Neumann inequality (1.1)

holds for an operator (or tuple of operators) T , we say that Ω is a spectral set for

T . More about the von Neumann inequality and its generalizations can be found in

[39]. Also, more recent improvements can be found in [9], [8], [6], [32]).

The rational dilation problem asks: If Ω is spectral set for a commuting d-

tuple T operators on a Hilbert spaceH, then does T dilate to a d-tuple of commuting

normal operators N = (N1, . . . ,Nd) with the joint spectrum in ∂Ω, the Shilov (or

distinguished) boundary of Ω? More precisely, does there exits a Hilbert space

K ⊃ H and a tuple of commuting normal operators N on Ω such that σA(N ) ⊂ ∂Ω

and

r(T ) = PHr(N )|H (1.2)
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Chapter 1. Introduction and known results

for all r ∈ R(Ω)? Here PH denotes the orthogonal projection from K to H, |H is

the restriction to H and σA(N ) is the joint spectrum of N (see the definition 3.3.1).

If such a commuting normal d-tuple N exists, we say that rational dilation holds,

and otherwise, that it fails.

The rational dilation problem is not yet fully solved, but operator theorists have

discovered a great deal about this problem; see the next subsection. In this thesis,

we give a negative answer for this question when Ω comes form a certain class of

distinguished varieties.

This thesis consists of the following two main parts.

In the first part, we study the test functions of certain weak-∗ closed, unital

subalgebras of H∞. Namely we find a set of test functions ΨB for H∞B := C +

BH∞(D), where B is a finite Blaschke product of degree 2 or more. We also show

that ΨB is minimal, in the sense that no proper closed subset of ΨB is a set of

test functions for H∞B . The interpolation problem of the algebras H∞B was already

studied in [22, 43]. The first application of test functions appeared in the solution

of the Pick interpolation problem on the bidisk in the unpublished work by Jim

Agler [2], also stated in [4]. Subsequent work has expanded its use to other types

of interpolation problem and rational dilation problems; see [7], [25], [33], [27], [42],

[28]. Finding a set of test functions for H∞B is our starting point in dealing with the

rational dilation problem.

In the second part, by using the set ΨB and applying a method from [24] we show

that the constrained algebra AB = C+BA(D) has a contractive representation which

is not completely contractive. Here A(D) is the disk algebra, that is, the algebra of

the analytic functions on the open unit disk D which are continuous on the closure

of D. Consequently, we show that the rational dilation problem fails on certain

distinguished varieties associated to AB.

Our main tool for dealing with the rational dilation problem on a distinguished

variety associated to AB is a remarkable result of William Arveson [14]. It says

that the n-tuple T dilates to a normal n-tuple N with spectrum in the (Shilov)

boundary of Ω (relative to R(Ω)) if and only if πT is completely contractive, where

πT is unital representation of R(Ω) on H via πT = r(T ) . Note that the condition

Ω is a spectral set for T is equivalent to the condition that the representation πT is

contractive.

2



Chapter 1. Introduction and known results

1.2 Some known positive and negative cases

The first dilation theorem was proved by Sz.-Nagy [45] in the 1953.

Theorem (Sz.-Nagy’s dilation theorem ). Every contraction T (i.e, an operator of

norm less than or equal to 1 on a Hilbert space H) dilates to a unitary operator.

That is, there exist a Hilbert space K ⊃ H and a unitary operator U on K such

that

f(T ) = PHf(U)|H

for all f ∈ R(D), the rational functions poles off of D, where PH is the orthogonal

projection of K onto H and |H is the restriction on H .

One of the most important application of Sz.-Nagy’s dilation theorem is the

von Neumann inequality [50], though von Neumann’s inequality appeared two years

before the Sz.-Nagy’s dilation theorem.

Theorem (von Neumann’s inequality). An operator T is a contraction if and only

if ‖f(T )‖ ≤ ‖f‖ for all f ∈ R(D), where ‖f‖ = supλ∈D |f(λ)| and the left hand

norm is the usual operator norm.

Observe that there is the common condition that appears in both the Sz.-Nagy

dilation theorem and von Neumann inequality: ‖T‖ ≤ 1. The above theorems

immediately implies that the rational dilation holds when Ω = D. Berger (1963),

Foias (1959) and Lebow (1963) extended the Sz.-Nagy dilation theorem to more

general simply connected planar domains. Hence the rational dilation holds for any

simply connected domain in the complex plane; see [39]. A deep result of J.Agler

[3] shows that rational dilation holds when Ω is an annulus. A simplified proof can

be found in [24]. In 1992, P.Chu [39] showed that if T is a tuple of commuting 2× 2

matrices, then rational dilation holds-so no matter how badly behaved Ω is.

However, for (many) planar domains of higher connectivity rational dilation

fails. For example, Agler, Harland and Raphael [5] have showed this by machine

computation, in an example of a two holed domain in the complex plane. More

generally, Dritschel and McCullough [26] showed that rational dilation fails when

Ω is any triply connected domain with analytic boundaries in C. Furthermore,

Pickering [42] showed that rational dilation fails whenever Ω is a domain in C with

n holes, satisfying a symmetry condition for 3 ≤ n ≤ ∞. The approaches of [26]

and [42] was to find a set of test functions Ψ so that H∞(KΨ ) = H∞(Ω). Then they

3



Chapter 1. Introduction and known results

show that test functions can be used to characterize the contractive and completely

contractive representation of H∞(Ω). Using these characterizations they showed

that certain contractive representations of H∞(Ω) are not completely contractive.

The first multivariable positive answer to the rational dilation problem is given

by Tsuyoshi Andô [13] in the 1963.

Theorem (Andô’s dilation theorem). Let H be a Hilbert space and assume that

T = (T1, T2) is a commuting pair of operators acting on H. If ‖Ti‖ ≤ 1, i = 1, 2,

then T has a unitary dilation, i.e., there exist a Hilbert space K ⊃ H and a pair of

commuting unitary operators U = (U1, U2) acting on K such that

f(T1, T2) = PHf(U1, U2)|H

for all f ∈ R(D2), where PH is the orthogonal projection of K onto H and |H is the

restriction on H .

Theorem (von Neumann inequality for the bidisk). Let H be a Hilbert space and

assume that T = (T1, T2) is a commuting pair of contractions acting on H, then

‖f(T1, T2)‖ ≤ ‖f‖

for all f ∈ R(D2), where ‖f‖ = sup(λ1,λ2)∈D2 |f(λ1, λ2)|.

Andô’s result implies that rational dilation holds for the closed bidisk. Another

positive answer for the 2-variable case of the rational dilation problem is obtained

when Ω is the closed symmetrized bidisk Γ [10, 17, 36], a domain in C2 defined by

Γ = {(z1 + z2, z1z2) : |z1| ≤ 1, |z2| ≤ 1}. (1.3)

However, Parrot showed by a counterexample [38, 39] that rational dilation fails on

the closed tridisk D3. Very recently, S. Pal [37] showed that rational dilation fails

also when Ω is the closure of the tetrablock E, a polynomially convex, non-convex

and inhomogeneous domain in C3, defined as

E = {(x1, x2, x3) ∈ C3 : 1−zx1−wx2+zwx3 6= 0 whenever |z| ≤ 1, |w| ≤ 1}. (1.4)

Note that there is a way of mapping an annulus to a distinguished variety of the

closed bidisk, so rational dilation holding for annuli is equivalent to it holding for

4



Chapter 1. Introduction and known results

a certain family of distinguished varieties in D2
, see [24]. It has been shown in [24]

that rational dilation holds for the distinguished variety {(z, w) ∈ D2
: z2 = w2}.

It is natural therefore to wonder if this is in some sense a legacy of what we know

about rational dilation for D2, and so perhaps rational dilation also holds for other

distinguished varieties in D2?

But this is too much to hope for. In [24], it was also proved that rational dilation

fails for the Neil parabola Nz2 = {(z, w) ∈ D2 : z3 = w2}. The method of proof is

somewhat indirect. In this case, there is a complete isometry mapping R(Nz2) onto

Az2 = C + z2A(D). It is shown that this algebra has a contractive representation

which is not 2-contractive, and so not completely contractive.

1.3 Definitions and notation

Our approach to solving the rational dilation problem for a distinguished variety

associated to AB requires finding a family of so-called “test functions” for the algebra

H∞B . For other purposes (such as solving interpolation problems), it is useful for

this family to be in some sense minimal. This is technically the most challenging

aspect of the problem, and once accomplished the method used in [24] can be readily

modified to yield the desired examples on rational dilation.The minimality of the set

of test functions also allows us to construct a representation which is not contractive,

despite sending the generators of AB to contractions. This is in the spirit of the

example due to Kaijser and Varopolous [48]. We give a brief synopsis of the notion

of test functions and their use in the solution of interpolation problems. We refer to

[27] for further details.

Definition 1.3.1. A set Ψ of complex-valued functions on a set X is called a

set of test functions if:

1. For any x ∈ X, supψ∈Ψ |ψ(x)| < 1; and

2. The elements of Ψ separates the points of X.

Definition 1.3.2. An n× n matrix A = (aij) is positive semidefinite (A ≥ 0) if

n∑
i,j=1

aijcicj ≥ 0

for all c1, . . . , cn ∈ C.

5



Chapter 1. Introduction and known results

For further properties of positive semidefinite matrices, see [16].

Definition 1.3.3. Let X be a set and A be a C∗-algebra. A function k : X×X → A

is called a kernel. It is a positive kernel if for every finite set {x1, . . . , xn} of

distinct points in X, the matrix (k(xi, xj)) ∈Mn(A) is positive semidefinite.

Every set of test functions defines a Banach algebra in the following sense.

Definition 1.3.4. Let X be a set. For a set of test functions Ψ , we define a set of

positive semidefinite kernels, called the admissible kernels, by

KΨ :=
{
k : X ×X → C :

(
(1− ψ(x)ψ(y))k(x, y)

)
≥ 0 ∀ψ ∈ Ψ

}
.

Here ≥ indicates that the left-hand side is a positive semi-definite kernel. We

use the admissible kernels to define a Banach algebra.

Definition 1.3.5. Let X be a set. Also let KΨ be the set of admissible kernels for

a set of test functions Ψ on X. We define the Banach algebra H∞(KΨ ) consisting

of those functions ϕ : X → C for which there is a finite constant C ≥ 0 such that

for all k ∈ KΨ , the kernel

(
(C2 − ϕ(x)ϕ(y)∗)k(x, y)

)
(1.5)

is positive semidefinite.

We set

Cϕ = inf{C :
(
(C2 − ϕ(x)ϕ(y)∗)k(x, y)

)
≥ 0 for all k ∈ KΨ}.

Then the norm is given by

‖ϕ‖H∞(KΨ ) = Cϕ

on H∞(KΨ ). One can check that (H∞(KΨ ), ‖ · ‖H∞(KΨ )) is a Banach algebra, with

pointwise addition and multiplication (see the Appendix A.1). Obviously, the test

functions are in the unit ball of H∞(KΨ ). Because the kernel k(x, x) = 1 for all x

and k(x, y) = 0 if x 6= y is an admissible kernel, the norm of H∞(KΨ ) will always

be greater than or equal to the supremum norm, and so H∞(KΨ ) is weakly closed

(that is, closed under pointwise convergence).

The algebra of all bounded continuous functions on Ψ with pointwise algebra

operations, is denoted by Cb(Ψ). If Ψ is compact, then the set C(Ψ) of continuous

6



Chapter 1. Introduction and known results

functions from Ψ to C is equal to Cb(Ψ) (see page 2, [35]). Let Cb(Ψ)∗ be the dual

space of Cb(Ψ). If Ψ is compact, then Cb(Ψ)∗ is the Borel measures on Ψ , see [31].

We assume that Ψ is endowed with a suitable topology so that for all x ∈ X, the

functions E(x) : ψ ∈ Ψ 7→ ψ(x) are in Cb(Ψ). In this case E(x)∗ : ψ ∈ Ψ 7→ ψ(x)∗ is

also in Cb(Ψ).

A key result in the study of algebras generated through test functions is the real-

ization theorem [27], which gives several equivalent characterizations of membership

in the closed unit ball of the algebra H∞(KΨ ). We state the portion relevant to us

here.

Theorem 1.3.6 (Realization theorem). Let Ψ be a collection of test functions on a

set X and H∞(KΨ ) the associated function algebra. For ϕ : X → C, the following

are equivalent:

1. ϕ ∈ H∞(KΨ ) and ‖ϕ‖H∞(KΨ ) ≤ 1.

2. (a) For each finite set F ⊂ X there exists a positive kernel Γ : F × F →
Cb(Ψ)∗ such that for all x, y ∈ F ,

1− ϕ(x)ϕ(y)∗ = Γ (x, y) (1− E(x)E(y)∗) .

(b) There exists a positive kernel Γ : X × X → Cb(Ψ)∗ such that for all

x, y ∈ X,

1− ϕ(x)ϕ(y)∗ = Γ (x, y) (1− E(x)E(y)∗) .

3. If π is any unital representation of H∞(KΨ ) such that ‖π(ψ)‖ < 1 for all

ψ ∈ Ψ , then π is contractive.

The proof of the realization theorem is the basis for the following interpolation

theorem of [27].

Theorem 1.3.7 (Agler-Pick interpolation theorem). Let Ψ be a collection of test

functions on a set X and H∞(KΨ ) the associated function algebra. Fix a finite

subset F ⊂ X. For f : F → D, the following are equivalent:

1. There is a function ϕ ∈ H∞(KΨ ) with ‖ϕ‖H∞(KΨ ) ≤ 1 such that ϕ|F = f .

2. For each k ∈ KΨ , the kernel

F × F 3 (x, y)→ ((1− f(x)f(y)∗) k(x, y))

7



Chapter 1. Introduction and known results

is positive.

3. There is a positive kernel Γ : F × F → Cb(Ψ)∗ so that for all x, y ∈ F

1− f(x)f(y)∗ = Γ (x, y) (1− E(x)E(y)∗) .

To sum up, given a set of test functions Ψ , we can construct a normed function

algebra H∞(KΨ ) via a set of admissible kernels KΨ . But, for example, if we want

to study interpolation problems or completely contractive representations of a given

normed function algebra A on a domain Ω, then finding a set of test functions Ψ

such that the function algebra H∞(KΨ ) is isometrically isomorphic to A is more

useful tool. A trivial solution to this problem is to take the set of test functions Ψ

to be the open unit ball of A. However, if we want Ψ be minimal, in the sense that

there is no proper closed subset of Ψ such that H∞(KΨ ) is isometrically isomorphic

to A, then this problem becomes harder. Because, if Ψ is not closed, then we may

possibly remove a finite or a countable number of test functions from Ψ and still get

a set of test functions Ψ̂ such that H∞(KΨ̂ ) is isometrically isomorphic to A. So we

need an additional constraint on Ψ to be a norm closed (and hence compact) subset

of A. The minimal set of test functions will only be defined up to an automorphism

(for example, see Lemma 2.1.1).

1.4 Main results

Let B be a finite Blaschke product. Write

B(z) =

(
z − α0

1− α0z

)t0 ( z − α1

1− α1z

)t1
. . .

(
z − αn
1− αnz

)tn
, (1.6)

where α0, . . . , αn are distinct complex numbers in the open unit disk D, and t0, . . . , tn

and n are non-negative positive integers with t0 + · · ·+ tn = N ≥ 2.

Let

H∞B := C +B(z)H∞(D),

where H∞(D) is the algebra of bounded holomorphic functions in the open unit disk.

Note that a function f ∈ H∞(D) is in H∞B if and only if it satisfies the following two

constraints

1. f(αi) = f(αj) for 0 ≤ i, j ≤ n;

8



Chapter 1. Introduction and known results

2. f (k)(αi) = 0 for k = 1, . . . , ti − 1 whenever ti ≥ 2.

For the proof of above statement see the introduction of the Chapter 3.

Let ΨB be a set consisting of functions of the form ψ(z) = cB(z)R(z), where R is

a Blaschke product with number of zeros between 0 and N − 1, and c =
∏k

j=1
1−αj
1−αj ,

where the αj ’s are the zeros of ψ and N ≤ k ≤ 2N − 1. These form the set of test

functions for H∞B in the following sense.

Theorem. 2.3.10 The Banach algebras H∞(KΨB) and H∞B are isometrically iso-

morphic.

Obviously there could be other choices for the set of test functions for H∞B , for

example we can simply take the unit ball of H∞B . We want the set of test functions

to be minimal. There is a dual version of this for the set of kernel functions for this

algebra; see [43]. The next theorem shows that the set ΨB is a minimal set of test

functions for the algebra H∞B , in the sense that there is no proper closed subset of

ΨB such that the realization theorem holds for all functions in the unit ball of H∞B
( or H∞(KΨ ).)

Theorem. 2.4.4 The set ΨB is a minimal set of test functions for the algebra H∞B .

This theorem covers the special case when B(z) = z2, a result of Dritschel and

Pickering [28]. As an application of Theorem 2.3.10 and with the reformulation of

rational dilation problem by Arveson (see [39, Cor. 7.8] and [14] ), we show that

rational dilation does not hold on certain distinguished varieties of DN
associated

to the algebra AB = C +BA(D), where A(D) is the disk algebra.

Theorem. 3.4.1 The algebra AB has a contractive representation which is not

completely contractive.

Outline of the proof of Theorem 3.4.1. First, let S be a finite subset of D and form

the closed convex cone

C2,S =

(∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ)

)
x,y∈S

, (1.7)

where µ = (µx,y) ∈ M+
2 (S) is a kernel taking its values µx,y in the 2 × 2 matrix

valued such that for all Borel subset Ω of ΨB, the measure

µ(Ω) = (µx,y(Ω))x,y∈S ∈Ms(M2(C)) (1.8)

9



Chapter 1. Introduction and known results

takes positive semidefinite values in Ms(M2(C)), where s is the cardinality of the

set S. Second, we define the kernel

∆F,S = (I2 − F (x)F (y)∗)x,y∈S

for F = (Fi,j)
2
i,j=1 ∈M2(AB).

If ∆F,S 6∈ C2,S for some F ∈ M2(AB), then by using a Hahn-Banach separation

argument we can separate ∆F,S from C2,S with a positive functional, and apply a

GNS construction to get a contractive representation of AB that is not completely

contractive.

We fix an analytic function F ∈ M2(AB), which is unitary valued on T and

non-diagonalizable. However, if we assume that ∆F,S ∈ C2,S for this fixed F , then

there exists an M2(C)-valued positive semidefinite measure µ such that

I2 − F (x)F (y)∗ =

∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ) for x, y ∈ S. (1.9)

Relying on the concreteness of set of test functions ΨB we show that F must then

be diagonalizable, giving a contradiction.

Let A 0
B be the subalgebra of AB generated by B(z) and zB(z). Then the dis-

tinguished variety associated to A 0
B is given by

NB =

{
(x, y) ∈ D2

: x
N∏
k=1

(x− αky) =
N∏
k=1

(y − αkx)

}
.

See section 3.2 for further details.

Theorem. 3.3.12 Let A(NB) be the algebra of analytic functions on NB which

extends continuously to the boundary with the supremum norm. The algebra A(NB)

is completely isometrically isomorphic to the algebra A 0
B , which consists of those

functions in AB which do not have terms of the form ziBj(z), j = 1, . . . , N − 2 and

i = j + 1, . . . , N − 1. This algebra contains BN−1(z)A(D), so in particular, when

N = 2,A 0
B = AB.

In Lemma 3.1.1 we show that the algebra AB is generated by B(z), zB(z), . . . ,

zN−1B(z). Then in section 3.2 we show that the associated distinguished variety

10



Chapter 1. Introduction and known results

associated to AB is given by

VB =

{
x31 − SN(α)x21 +

N−1∑
k=0

(SN−k(α)x1 − Sk(α))xN−kx2 = 0 : (x1, . . . , xN) ∈ DN

}
.

Theorem. 3.3.13 The algebra R(VB) is completely isometrically isomorphic to the

algebra AB.

As a consequence of Theorem 3.3.13 an Theorem 3.3.12 we have the following

main result:

Theorem. 3.4.2 Rational dilation fails on the distinguished variety VB.

In particular, when N = 2 we have that VB = NB = {(x, y) ∈ D2
: x(x −

αy)(x−βy) = (y−αx)(y−βx)}, where α, β two zeros of B. This covers the special

case when B(z) = z2, which was been previously considered by Dritschel, Jury and

McCullough [24].

11



Chapter 2

Test functions for constrained

algebras

2.1 Test functions for H∞B

Let us turn our attention to the constrained algebra AB. We wish to construct a set

of test functions ΨB for AB, or rather, for its weak-∗ closure H∞B = C+B ·H∞(D).

To simplify the work, we assume that α0 = 0.

This assumption imposes no real restriction. For suppose that B is a Blaschke

product with zeros {α0, . . . , αn} such that α0 6= 0. Composing B with the Möbius

map m−α0 = (z + α0)/(1 + α0z), we get a Blaschke product B̃ with zeros {α̃j =

mα0(αj)}nj=0, hence α̃0 = 0. Obviously composing with mα0 maps B̃ back to B.

Since m±α0 is an automorphism of D, we find that f ∈ H∞B if and only if f̃ =

f ◦m−α0 ∈ H∞B̃ , and furthermore, ‖f‖ = ‖f̃‖.

Lemma 2.1.1. If Ψ and Ψ̃ are the set of complex valued functions such that Ψ =

{ψ̃ ◦mα0 : ψ̃ ∈ Ψ̃}, then

a) Ψ̃ is a set of test functions for H∞
B̃

if and only if Ψ is a set of test functions

for H∞B .That is, the algebras H∞(KΨ̃ ) and H∞
B̃

are isometrically isomorphic

if and only if the algebras H∞(KΨ ) and H∞B are isometrically isomorphic.

b) The set Ψ̃ is minimal for H∞
B̃

if and only if Ψ is minimal for H∞B .

Proof. a) Suppose that Ψ̃ is a family of test functions for H∞
B̃

. Since mα0 is an

automorphism of the unit disk and |ψ(z)| < 1 for z ∈ D, the map Mα0(ψ̃) = ψ̃◦
mα0 maps Ψ̃ injectively onto Ψ . This map has the inverse M−1

α0
(ψ) = ψ◦m−α0 .

12



Chapter 2. Test functions for constrained algebras

So Mα0 is an isomorphism of Ψ̃ and Ψ . Thus we can identify Cb(Ψ̃) and Cb(Ψ).

So we may identify the spaces Cb(Ψ̃)∗ and Cb(Ψ)∗.

For x ∈ D, set x̃ = mα0(x). Then

E(x)(ψ) = ψ(x) = ψ̃(mα0(x)) = ψ̃(x̃) = E(x̃)(ψ̃).

Let ϕ ∈ H∞B and set ϕ̃ = ϕ ◦ m−α0 . Assume ‖ϕ̃‖(= ‖ϕ‖) = 1. By the

realization theorem and the assumption that Ψ̃ is a family of test functions for

H∞
B̃

, there is a positive kernel Γ̃ : D× D→ Cb(Ψ̃)∗ such that for all x, y ∈ D,

and x̃ = mα0(x), ỹ = mα0(y) we have

1− ϕ(x)ϕ(y)∗ = 1− ϕ̃(x̃)ϕ̃(ỹ)∗

= Γ̃ (x̃, ỹ)(1− E(x̃)E(ỹ)∗)

= Γ (x, y)(1− E(x)E(y)∗),

(2.1)

where Γ (x, y) = Γ̃ (mα0(x),mα0(y)) is a positive kernel from D×D to Cb(Ψ)∗.

We conclude that H∞B is in the algebra H∞(KΨ ) induced by the test functions

Ψ and ϕ is in the unit ball of H∞(KΨ ). Since the norm of ϕ in H∞(KΨ ) is

greater than or equal to the supremum norm (the norm in H∞B ), the norms

must be equal. On the other hand, if ϕ is in the unit ball of H∞(KΨ ), then by

realization theorem there exist a positive kernel Γ : D×D→ Cb(Ψ) such that

1− ϕ(x)ϕ(y)∗ = Γ (x, y)(1− E(x)E(y)∗).

Then the same computation as in (2.1) , for ϕ̃ = ϕ ◦m−α0 yields that

1− ϕ̃(x̃)ϕ̃(ỹ)∗ = Γ̃ (x̃, ỹ)(1− Ẽ(x̃)Ẽ(ỹ)∗),

where Γ̃ (x̃, ỹ) = Γ (x, y). Hence ϕ̃ ∈ H∞(KΨ̃ ). By assumption H∞(KΨ̃ ) is

isometrically isomorphic to H∞
B̃

. So ϕ̃ ∈ H∞
B̃

. This implies that ϕ ∈ H∞B .

Thus H∞(KΨ ) is isometrically isomorphic to H∞B , and we conclude that Ψ is

a family of test functions for H∞B .

b) It is suffices to show one direction. Suppose Ψ̃ is minimal for H∞
B̃

and let C be

closed subset of Ψ , which is a set of test functions for H∞B . Let C̃ = M−1
α0

(C) =

13



Chapter 2. Test functions for constrained algebras

{ψ ◦ m−α0 : ψ ∈ C}. Let {ψj}∞j=1 be a sequence in C̃ which converges to a

function ψ̃. Then {Mα0(ψ̃j)}∞j=1 = {ψ̃j ◦ mα0}∞j=1 is a sequence in C, which

has the the limit ψ̃ ◦mα0 ∈ Ψ . Since C is a closed set in Ψ , we must have that

ψ̃ ◦mα0 ∈ C. Since mα0 is an automorphism of the unit disk and |ψ(z)| < 1

for z ∈ D, we have M−1
α0

(ψ̃ ◦mα0) = ψ̃ ◦mα0 ◦m−α0 = ψ̃ ∈ C̃. It follows that

C̃ is a closed subset of Ψ̃ . Since C is a set of test functions for H∞B , by part

a) we see that C̃ is a set of test functions for H∞(KΨ̃ ). By minimality of Ψ̃ ,

C̃ = Ψ̃ . Hence C = C̃ ◦mα0 = Ψ̃ ◦mα0 = Ψ .

2.2 The Herglotz representation and finite mea-

sures

Recall that we are assuming that B̃ is Blaschke product of degree bigger than 1 with

a zero at α0 = 0 of multiplicity at least 1. Write tj for the multiplicity of the zero

αj of B̃.

Assume that ϕ ∈ H∞
B̃

which is non-constant. By subtracting ϕ(0) we may

assume ϕ(0) = 0. And considering ϕ/‖ϕ‖∞, we also may assume that ‖ϕ‖∞ ≤ 1.

Define f = M ◦ ϕ, where M(z) = 1+z
1−z maps the unit disk to the right half plane H.

Then Ref ≥ 0 and f(0) = 1. The map M has the inverse M−1(z) = z−1
z+1

, and so we

get a one to one correspondence between the set of functions in H∞
B̃

which are zero

at 0 and the set of holomorphic functions mapping the disk to the right half plane

with non-negative real part and value 1 at 0.

By the Herglotz representation theorem, for any holomorphic function f : D→ H
with Ref ≥ 0 and f(0) = 1, there is a unique probability measure µ on T such that

f(z) =

∫
T

w + z

w − z
dµ(w),

and conversely, if µ is a probability measure on T, then

f(z) :=

∫
T

w + z

w − z
dµ(w)

defines a holomorphic function on D to H with Ref ≥ 0 and f(0) = 1.

Lemma 2.2.1. Let ϕ be a non-constant function in H∞
B̃

. Then there is a unique

14



Chapter 2. Test functions for constrained algebras

probability measure µϕ on T such that∫
T

1

(w − αj)k
dµϕ(w) = 0, j > 0 and k = 1, . . . , tj. (2.2)

and ∫
T
wk dµϕ(w) = 0, k = 1, . . . , t0 − 1, (2.3)

whenever t0 > 1. Furthermore, let f be an analytic function on D with positive real

part and has the property that

f(αj) = 1 for j = 0, . . . , n and f (k)(αj) = 0 for j = 0, 1, . . . , n; 1 ≤ k ≤ tj − 1.

(2.4)

If f has the Herglotz representation with a probability measure µ, then this measure

has the properties (2.2) and (2.3).

Proof. As noted above we may assume that ‖ϕ‖∞ ≤ 1 and ϕ(0) = 0. It follows that

we can define the map f = M ◦ ϕ from D to H. Then the assumption ϕ(0) = 0

imply that Re f ≥ 0 and f(0) = 1. By the Herglotz representation theorem, there

is a unique probability measure µϕ on T such that

f(z) =

∫
T

w + z

w − z
dµϕ(w). (2.5)

Recall that tj is the multiplicity of zero of αj of B̃, and we are assuming that

α0 = 0. Then for j > 0 we have

1 = f(αj) =

∫
T

w + αj
w − αj

dµϕ(w) =

∫
T

[
1 +

2αj
w − αj

]
dµϕ(w) = 1+2αj

∫
T

1

w − αj
dµϕ(w),

and thus ∫
T

1

w − αj
dµϕ(w) = 0, j > 0.

Inductively we get

f (k)(z) = 2k!

∫
T

w

(w − z)k+1
dµϕ(w)

= 2k!

[∫
T

1

(w − z)k
dµϕ(w) +

∫
T

z

(w − z)k+1
dµϕ(w)

]
.

If tj > 1, then as neither M nor its derivatives have any zeros in D, the Faà di Bruno

15
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formula implies that

f (k)(αj) = 0, j > 0 and k = 1, . . . , tj − 1.

Thus ∫
T

1

(w − αj)k
dµϕ(w) = 0, j > 0 and k = 1, . . . , tj.

On the other hand, if z = α0 = 0 and t0 > 1, then∫
T

1

wk
dµϕ(w) = 0, k = 1, . . . , t0 − 1.

Finally, suppose that f(z) =
∫
T
w+z
w−z dµ(w) and that it has the property (2.4).

First note that 1 =
∫
T dµ(w) = f(0) = f(α0).

Next for j = 1, . . . , n,

1 = f(αj) =

∫
T

w + αj
w − αj

dµ(w)

=

∫
T

w − αj
w − αj

dµ(w) + 2αj

∫
T

1

w − αj
dµ(w)

= 1 + 2αj

∫
T

1

w − αj
dµ(w).

Since αj 6= 0 for j = 1, . . . , n we have

0 =

∫
T

1

w − αj
dµ(w). (2.6)

Thus by induction for k = 1, . . . , tj − 1, we get

0 = f (k)(αj) = 2k!

∫
T

w

(w − αj)k+1
dµ(w)

= 2k!

[∫
T

1

(w − αj)k
dµ(w) +

∫
T

αj
(w − αj)k+1

dµ(w)

]
= 2k!

∫
T

αj
(w − αj)k+1

dµ(w).

Since αj 6= 0 for j = 1, . . . , n we have

0 =

∫
T

1

(w − αj)k
dµ(w) for k = 2, . . . , tj. (2.7)
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Together with (2.6) and (2.7) gives (2.2).

If t0 > 1, then by the assumption (2.4) we have

0 = f (k)(α0) = 2k!

∫
T

w

(w − α0)k+1
dµ(w) =

∫
T

1

wk
dµ(w) =

∫
T
wk dµ(w)

for k = 1, . . . , t0 − 1. Taking conjugation in later equation gives (2.3).

Remark 2.2.2. Note that (2.2) and (2.3) impose a variety of constraints on the

probability measure µ. For example, if t0 > 1, then the first t0 − 1 moments of µ

are zero.

Lemma 2.2.3. Let µ be a positive finite atomic measure on T, µ = {(λj,mj)}nj=1 ⊂
T×R>0, with f the function having Herglotz representation with this measure. Then

ϕ = M−1 ◦ f is a unimodular constant muliple of a Blaschke product with n zeros,

counting multiplicities, and ϕ(0) ∈ R.

Conversely, given a Blaschke product ϕ with n zeros {αj} counting multiplicities

such that ϕ(0) ∈ R, there is a positive finite atomic measure µ on T such that

f(z) = M ◦ ϕ(z) has a Herglotz representation with this measure. Furthermore, µ

is probability measure if and only if ϕ(0) = 0.

Proof. We begin by introducing some notation. For x = (x1, . . . , xn) ∈ Cn, define

S0(x) = 1 and

Sk(x) = (−1)k
∑

1≤i1<···<ik≤n

xi1 · · ·xik , k = 1, . . . , n,

the k-th (signed) symmetric sum of the elements of x. Then

n∏
j=1

(z − xj) =
n∑
k=0

Sk(x)zn−k and
n∏
j=1

(1− xjz) =
n∑
k=0

Sk(x)zk, (2.8)

where x = (x1, . . . , xN). We also define S−i0 (x) = 1 and

S−ik (x) = Sk(x1, . . . , xi−1,−xi, xi+1, . . . , xn), k = 1, . . . , n.

Then S−in (x) = −Sn(x). For λ ⊂ Tn, it is straightforward (see the remark at end of

the proof) that

Sk(λ) = Sn(λ)Sn−k(λ) and S−ik (λ) = −S−in (λ)S−in−k(λ). (2.9)
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Let

f(z) =

∫
T

w + z

w − z
dµ(w) = −

n∑
i=1

mi
z + λi
z − λi

,

a holomorphic function from D to H. Set m =
∑
mi. Then

f(z)∓ 1 =
−
∑

imi(z + λi)
∏

j 6=i(z − λj)∓
∏n

i=1(z − λi)∏
j(z − λj)

=

∑n
k=0[−

∑n
i=1miS

−i
k (λ)∓ Sk(λ)]zn−k∏

j(z − λj)
,

and

ϕ(z) := (M−1 ◦ f)(z) =
f(z)− 1

f(z) + 1

=

∑n
k=0

[∑n
i=1miS

−i
k (λ) + Sk(λ)

]
zn−k∑n

k=0

[∑n
i=1miS

−i
k (λ)− Sk(λ)

]
zn−k

is a holomorphic map of the disk to itself.

Since the coefficient of zn in the numerator of ϕ is 1 + m > 0, the numerator is

a polynomial of degree n with complex roots α1, . . . , αn. Express the numerator as

(1 +m)
∏

j(z − αj). Then

(1 +m)Sk(α) =
n∑
i=1

miS
−i
k (λ) + Sk(λ),

and so the denominator can be expressed as

n∑
k=0

[
n∑
i=1

miS
−i
k (λ)− Sk(λ)

]
zn−k = −Sn(λ)

n∑
k=0

[
n∑
i=1

miS
−i
n−k(λ) + Sn−k(λ)

]
zn−k

= −Sn(λ)(1 +m)
n∑
k=0

Sk(α)zk

= −Sn(λ)(1 +m)
n∏
j=1

(1− αjz).

Hence

ϕ(z) = −Sn(λ)
n∏
j=1

z − αj
1− αjz

.
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Since f(0) =
∑n

i=1mi ∈ R, the same is obviously true for ϕ.

Conversely, assume that ϕ = cB, where c is a unimodular constant and B is a

Blaschke product with n zeros α1, . . . , αn, counting multiplicity and ϕ(0) ∈ R. Then

f(z) =
1 + ϕ(z)

1− ϕ(z)
=

∏
j(1− αjz) + c

∏
j(z − αj)∏

j(1− αjz)− c
∏

j(z − αj)
(2.10)

is a holomorphic map from D to H. In the denominator, the leading coefficient is

C = Sn(α) − c = c(cSn(α) − 1), which is non-zero since |cSn(α)| < 1. Thus the

denominator has n zeros in C\D, which we write as λ1, . . . , λn, and we write the

denominator as C
∏

j(z − λj).
If the numerator and denominator have a common root w, then

∏
j(w−αj) = 0,

implying λk = αj ∈ D for some k and j, which is a contradiction. The constant

coefficient of the denominator equals (1−cSn(α))/C = −c, which has absolute value

1. Hence each λj ∈ T.

Suppose that the denominator of f has a repeated root at some λi ∈ T. Then

the logarithmic derivative of ϕ,

ϕ′(z)

ϕ(z)
=

n∑
k=1

1− |αk|2

(1− αkz)(z − αk)
=

2f ′(z)

f(z)2 − 1
,

is zero at λi. On the other hand, since λi ∈ T,

ϕ′(λi)

λiϕ(λi)
=
∑
k

1− |αk|2

|λi − αk|2
> 0, (2.11)

giving a contradiction. Hence we conclude that λi are all distinct for i = 1, . . . , n.

In the numerator of f , the leading coefficient is Sn(α) + c = c(cSn(α) + 1), which

is non-zero. Thus the numerator of f has degree equal to n. Consequently, since

the denominator of f has n simple roots, f has a partial fraction decomposition

f(z) = −

(
m+

n∑
k=1

mk
2λk
z − λk

)
. (2.12)

It remains to verify that each mk > 0 and m =
∑

kmk. This will then imply

f(z) = −
n∑
i=1

mi
z + λi
z − λi

,
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and so f has a Herglotz representation with positive finite atomic measure µ =

{(λj,mj)}nj=1 on T as claimed. Now, by (2.12)

lim
z→λj

(z − λj)f(z) = −2mjλj. (2.13)

Also since ϕ(λj) = 1 for all j = 1, . . . , n.,

lim
z→λj

(z − λj)f(z) = lim
z→λj

(z − λj)
1 + ϕ(z)

1− ϕ(z)

= lim
z→λj

z − λj
ϕ(λj)− ϕ(z)

(1 + ϕ(z))

= −1 + ϕ(λj)

ϕ′(λj)

= −2ϕ(λj)

ϕ′(λj)
.

Hence by 2.12 and 2.13 we see that

mj =
λjϕ(λj)

ϕ′(λj)
> 0.

The assumptions that c ∈ T and ϕ(0) = cSn(α) ∈ R, along with (2.10) and

(2.12), imply that

−m = lim
z→∞

f(z) =
Sn(α) + c

Sn(α)− c
= −1 + cSn(α)

1− cSn(α)
= −f(0) = m− 2

n∑
k=1

mk.

Hence m =
∑n

k=1mk. We see from this that if αj = 0 for some j, then m = 1,

and so µ is a probability measure, and conversely, if µ is probability measure, then

cSn(α) = 0, and so αj = 0 for some j. This completes the proof.

Remark 2.2.4. Just for completeness we give a proof for the following: For λ =

(λ1, . . . , λn) ∈ Tn,

Sk(λ) = Sn(λ)Sn−k(λ) and S−ik (λ) = −S−in (λ)S−in−k(λ).

Proof. The first identity is clear. So we only need to prove the second identity.
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Without loss of generality we may assume i = 1. Observe the following identity

S−1k (λ) = Sk(−λ1, λ2, . . . , λn) = −λ1(−1)Sk−1(λ2, . . . , λn) + Sk(λ2, . . . , λn)

= λ1Sk−1(λ2, . . . , λn) + Sk(λ2, . . . , λn),
(2.14)

for 1 ≤ k ≤ n− 1.

Next using the first identity for the points λ2, . . . , λn in (2.14) gives

S−1k (λ) = λ1(−1)n−1λ2 · · ·λn · Sn−1−(k−1)(λ2, . . . , λn)

+ (−1)n−1λ2 · · ·λnSn−1−k(λ2, . . . , λn)

= (−1)n−1λ1λ2 · · ·λn
(
Sn−k(λ2, . . . , λn) + λ1Sn−1−k(λ2, . . . , λn)

)
.

Finally, applying the identity (2.14) for the points λ1, . . . , λn in the last expression

yields

S−1k (λ) = −Sn(λ)S−1n−k(λ).

2.3 The Agler-Herglotz representation

In this section we give a concrete description of the set of test functions for the

algebra H∞
B̃

, and so for H∞B .

We recall some definitions from the theory of the convex analysis.

Definition 2.3.1. A subset C of a real vector space X is said to be convex if, given

any collection of vectors u1, . . . , ur in C and a collection of nonnegative real numbers

c1, . . . , cr with c1 + · · · + cr = 1, then one has that the convex linear combination∑r
k=1 ckuk ∈ C.

Definition 2.3.2. If X is a real vector space and W ⊆ X, we say W is a wedge

if a + b ∈ W and ta ∈ W whenever a, b ∈ W and t ≥ 0. A wedge W is a cone if

W ∩−W = {0}, where 0 is the zero vector of X.

Note that by definition a wedge is a convex set.

Definition 2.3.3. A point x ∈ W called an extreme point for W if x = (1 −
t)x1 + tx2, with x1, x2 ∈ W and 0 < t < 1, then x1 = x = x2.
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In practice the following result is more useful than the definition of extreme

points of the convex sets.

Lemma 2.3.4 ([15, Lemma 1.1]). Let C be convex set in a real vector space X.

The point x ∈ C is an extreme point of the convex set C if and only if the follwoing

condition holds: whenever y ∈ X is such that x± y ∈ C, then y = 0.

Definition 2.3.5. A nonzero vector x inW is an extreme ray inW if x = x1+x2,

with x1, x2 ∈ W , then x1 = tx and x2 = sx for some t, s ≥ 0. Extreme rays are also

called extreme directions in [5].

Definition 2.3.6. A X topological space X is called locally compact, if every

point of X has a compact neighborhood.

Let X be a compact Hausdorff space. We let denote MR(X) the space of finite

regular Borel measures on X and CR(X) denote the space of real valued continu-

ous functions on X with the norm topology. Let M+
R (X) be the space of positive

measures in MR(X).

Define the following continuous (in fact holomorphic) functions on T given by

Lj(w) := wj for j = 1, . . . , t0 − 1 whenever t0 > 1

and

Li,k(w) :=
1

(w − αi)k
for i = 1, . . . , n; k = 1, . . . , ti.

(2.15)

Clearly, ReLj, ImLj,ReLi,k, ImLi,k ∈ CR(T). This will give us in total 2N − 2

continuous real valued functions on T, and for notational complexity we write them

{hj}2N−2j=1 ∈ CR(T). Then taking the real and imaginary parts in the constraints in

(2.2) and (2.3) we have∫
T
hj(w) dµ(w) = 0 for j = 1, . . . , 2N − 2, (2.16)

for the measures in Lemma 2.2.1. Also we define the sets

M1
B̃,R(T) :=

{
µ ∈M+

R (T) : µ(T) = 1 and (2.16) holds for µ
}

(2.17)

and

M+

B̃,R(T) :=
{
µ ∈M+

R (T) : (2.16) holds for µ
}
. (2.18)
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In other words, the set M+

B̃,R(T) is the set of positive measures satisfying the con-

straints in (2.16). This is a weak-∗ closed, convex, locally compact set in the Banach

space of finite Borel measuresMB̃,R(T) =
∨
M+

B̃,R(T), and additionally is a cone since

it is closed under sums, positive scalar multiples, and M+

B̃,R(T) ∩ −M+

B̃,R(T) = {0}.
The set M1

B̃,R(T) is weak∗-closed, convex and forms a base for M+

B̃,R(T), because

any µ̃ ∈M+

B̃,R(T) is of the form tµ for some µ ∈M1
B̃,R(T) and t ≥ 0. Hence M1

B̃,R(T)

is in the closed unit ball of MB̃,R(T), the dual space of normed vector space CB̃,R(T).

So by the Banach-Alaoglu theorem M1
B̃,R(T) is compact. Thus by the Krein-Milman

Theorem [41], M1
B̃,R(T) is the closed convex hull of ext

(
M1

B̃,R(T)
)

, which is the set

of extreme points of M1
B̃,R(T). Henceforth, we fix the notation

Θ̂B̃ = ext
(
M1

B̃,R(T)
)
.

It is an elementary observation that µ ∈M1
B̃,R(T) is an extreme point if and only if

{tµ : t ∈ R+} is an extreme ray in M+

B̃,R(T) (see [5, Lemma 1.3.4]).

Note that the local compactness of M+

B̃,R(T) is equivalent to compactness of

M1
B̃,R(T) (see [31, 13.C , Lemma 1] and [41, Proposition 11.6]).

We need the following general result from [15], we just state here scalar-valued

case. To state this theorem we need to introduce some notations from this paper.

Let X be a compact Hausdorff space. Given a collection φ = {φ1, . . . , φr} of m real

valued continuous functions on X, we define a subset of M+
R (X) given by

C(X, 1, φ) =
{
µ ∈M+

R (X) : µ(X) = 1, and

µ(φr) :=

∫
X

φr(x) dµ(x) = 0 for r = 1, . . . ,m

}
.

(2.19)

The space C(X, 1, φ) is a convex subset of the real Banach space MR(X) which

is compact in the weak-* topology on MR(X) induced by its duality with respect to

the real Banach space CR(X). Note that the space C(X, 1, φ) can be empty, see for

example [15, page 538]. But in our case it is always case that C(X, 1, φ) 6= ∅.

Theorem 2.3.7 ([15, Theorem 2.2]). Let X be a compact Hausdorff space. Suppose

that µ ∈ M+
R (X) is an extreme point of the set C(X, 1, φ). Then there is a natural

number k with 1 ≤ k ≤ (m + 1), k distinct points x1, . . . , xk ∈ X, and k positive
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real numbers m1, . . . ,mk such that

k∑
i=1

mi = 1,
k∑
i=1

φr(xi)mi = 1 for r = 1, . . .m (2.20)

and µ is a positive finite atomic measure,i.e.

µ =
k∑
i=1

miδxi ,

where δxi is the scalar-valued measure equal to the unit point-mass at the point xi.

Next we turn to concretely characterizing elements of Θ̂B̃ = ext(M1
B̃,R(T)).

Theorem 2.3.8. Let N be the number of zeros of B̃, counting multiplicities. Then

the extreme points of M1
B̃,R(T) are probability measures on T supported at ` points

in T, where N ≤ ` ≤ 2N − 1.

Proof. Let µ be an extreme point of M1
B̃,R(T). If we choose X = T, φ = {hj}2N−2j=1 in

(2.19), then we have C(T, 1, φ) = M1
B̃,R(T), which is non-empty. Then by Theorem

2.3.7 we see that the support of µ is at most 2N − 1 and this measure is a finite

atomic measure.

Now consider the lower bound. Then first part of this proof implies that µ is a

finite atomic measure on T. Write

µ =
∑̀
i=1

miδλi ,

where for all i,mi > 0 and δλi is the point measure on T supported at λi. Consider

the function

r(x) =
∑̀
i=1

mi

λi − x
,

with its derivatives

r(k)(x) = k!
∑̀
i=1

mi

(λi − x)k+1
k ∈ N.

We conclude from equations (2.2) and (2.3) that r has roots at α0 of at least multi-

plicity t0 − 1 and at αj of at least multiplicity tj, j = 1, . . . , n. Hence r has at least
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(
∑n

i=0 ti)− 1 = N − 1 roots. The same is then true for the polynomial

p(x) = r(x) ·
∏̀
i=1

(λi − x) =
∑̀
j=1

∏
j 6=i

(λi − x)mj,

which has degree `− 1. We conclude that ` ≥ N .

For θ̂ ∈ Θ̂B̃, define

hθ̂(z) :=

∫
T

w + z

w − z
dθ̂(w), (2.21)

an analytic function on D with positive real part and value 1 when z = 0. We then

have, as in [28, Theorem 6], the so called Agler- Herglotz representation.

Theorem 2.3.9 (Agler-Herglotz representation). Let f be an analytic function on

D with positive real part. Suppose further that

f(αj) = 1, j = 0, 1, . . . , n and f (k)(αj) = 0, j = 0, 1, . . . , n, 1 ≤ k ≤ tj − 1.

(2.22)

Then there exists a probability measure ν on Θ̂B̃ such that

f(z) =

∫
Θ̂B̃

hθ̂(z) dν(θ̂). (2.23)

Proof. Since Re f ≥ 0 and f(α0) = f(0) = 1, by the Herglotz representation theorem

there is a unique probability measure µ such that

f(z) =

∫
T

w + z

w − z
dµ(w).

By assumption f has property (2.22), and hence by Lemma 2.2.1, µ has the proper-

ties (2.2) and (2.3). Thus µ ∈M1
B̃,R(T). On the other hand, by the Choquet-Bishop-

de Leeuw theorem [41], given any µ ∈ M1
B̃,R(T), there is a probability measure νµ

on Θ̂B̃ such that

µ =

∫
Θ̂B̃

θ̂ dνµ(θ̂).

25



Chapter 2. Test functions for constrained algebras

Then we have

f(z) =

∫
T

w + z

w − z
dµ(w)

=

∫
T

w + z

w − z

[∫
Θ̂B̃

( dθ̂(w)) dνµ(θ̂)

]

=

∫
Θ̂B̃

[∫
T

w + z

w − z
dθ̂(w)

]
dνµ(θ̂)

=

∫
Θ̂B̃

hθ̂(z) dνµ(θ̂).

This completes the proof.

We now translate our results on measures to statements about functions in the

unit ball of H∞
B̃

. Using a Cayley transform from the right half plane to the unit

disk, for each µ ∈M+,1

B̃,R(T), define a map

ψµ :=
hµ − 1

hµ + 1
. (2.24)

We have that

1− ψµ(z)ψµ(w)∗

= 1− hµ(z)− 1

hµ(z) + 1

hµ(w)∗ − 1

hµ(w)∗ + 1

=
hµ(z)hµ(w)∗ + hµ(z) + hµ(w)∗ + 1− hµ(z)hµ(w)∗ + hµ(z) + hµ(w)∗ − 1

(hµ(z) + 1)(hµ(w)∗ + 1)

= 2
hµ(z) + hµ(w)∗

(hµ(z) + 1)(hµ(w)∗ + 1)

(2.25)

and so in particular, ψµ is a map of the unit disk to itself.

If θ̂ is an extremal measure in M+,1

B̃,R(T), then by Theorem 2.3.8, it is a finitely

supported atomic probability measure on T. It then follows from Lemma 2.2.3 that

in this case there is a corresponding finite Blaschke product ψθ̂ = cθ̂B̃Rθ̂, where

cθ̂ is a unimodular constant and Rθ̂ is a Blaschke product with number of zeros

between 0 and N − 1. We write Ψ̂B̃ for the collection {ψθ̂ : θ̂ ∈ Θ̂B̃}. The support

of the measure θ̂ corresponds to the set ψ−1
θ̂

(1) (see the proof of Lemma 2.2.3).

Ultimately, we will use a subset of Ψ̂B̃ as test functions. It is apparent from the

realization theorem (Theorem 1.3.6) and equation (2.27), that we can replace any
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test function by a unimodular constant times the test function. So for convenience,

we identify ψθ̂(z) with ψθ̂(1)ψθ̂(z). This amounts then to having the point 1 as a

support point for the measure θ̂. Let ΘB̃ be the subset of measures in Θ̂B̃ having 1

as a support point, and write ΨB̃ for the collection set {ψθ : θ ∈ ΘB̃}. Thus, clearly

ΨB̃ ⊆ Ψ̂B̃.

Next theorem shows that ΨB̃ is a set of test functions for H∞
B̃

.

Theorem 2.3.10. The algebras H∞(KΨB̃) and H∞
B̃

are isometrically isomorphic.

Proof. It is enough to show that the unit ball H∞1 (KΨB̃) of the algebra H∞(KΨB̃) is

same as the unit ball H∞
1,B̃

of the algebra H∞
B̃

. Since any test function maps the open

unit disk to itself, the Szegő kernel ks is an admissible kernel for H∞(KΨB̃). Hence for

any function ϕ in the unit ball H∞1 (KΨB̃), we conclude that ((1−ϕ(x)ϕ(y)∗)ks(x, y))

is positive kernel, and so ϕ ∈ H∞
1,B̃

.

For the reverse containment, if ϕ ∈ H∞
1,B̃

with ϕ(0) = 0, and f = M ◦ ϕ, then f

is a function on the disk with positive real part and (2.22) holds, where M(z) = 1+z
1−z .

Also,

ϕ =
f − 1

f + 1
,

and so

1− ϕ(z)ϕ(w)∗ = 2
f(z) + f(w)∗

(f(z) + 1)(f(w)∗ + 1)
.

Applying the Agler-Herglotz representation (Theorem 2.3.9), there is a probability

measure ν on Θ̂B̃ such that (2.23) holds. Thus, by (2.25) we have

1− ϕ(z)ϕ(w)∗ =
2

(f(z) + 1)(f(w)∗ + 1)

∫
Θ̂B̃

(hθ̂(z) + hθ̂(w)∗) dν(θ̂)

=

∫
Θ̂B̃

Hθ̂(z)(1− ψθ̂(z)ψθ̂(w)∗)Hθ̂(w)∗ dν(θ̂),

(2.26)

where Hθ̂(z) = 2
(f(z)+1)(1−ψθ̂(z))

=
1+hθ̂(z)

1+f(z)
. Recall that we identify the test function

ψθ := ψθ̂(1)ψθ̂ with ψθ̂ in Ψ̂B̃. Thus ψθ(1) = 1, and as noted above the corresponding

measure θ is supported at 1. Thus θ ∈ ΘB̃ and ψθ ∈ ΨB̃. By (2.26) we have

1− ϕ(z)ϕ(w)∗ =

∫
Θ̂B̃

Hθ̂(z)
(

1− ψθ̂(1)ψθ̂(z)
(
ψθ̂(1)ψθ̂(w)

)∗)
Hθ̂(w)∗ dν(θ̂)

=

∫
ΘB̃

Hθ(z) (1− ψθ(z)ψθ(w)∗)Hθ(w)∗ dν(θ),

(2.27)
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where Hθ(z) = 2
(f(z)+1)(1−ψθ(z))

. It follows that

1− ϕ(z)ϕ(w)∗ = Γ (z, w)(1− E(z)E(w)∗),

with Γ : D× D→ Cb(ΨB̃)∗ the positive kernel given by

Γ (z, w)g =

∫
ΘB̃

Hθ(z)g(ψ)Hθ(w)∗ dν(θ),

where g ∈ Cb(ΨB̃).

If ϕ ∈ H∞
1,B̃

with ϕ(0) = c 6= 0, then we consider the function

ϕ0(z) =
ϕ(z)− c
1− cϕ(z)

.

Thus we have

1− ϕ0(z)ϕ0(w)∗

= 1− ϕ(z)− c
1− cϕ(z)

ϕ(w)∗ − c
1− cϕ(w)∗

=
1− cϕ(z)− cϕ(w)∗ + ccϕ(z)ϕ(w)∗ − ϕ(z)ϕ(w)∗ + cϕ(w)∗ + cϕ(z)− cc

(1− cϕ(z))(1− cϕ(w)∗)

=
(1− cc)(1− ϕ(z)ϕ(w)∗)

(1− cϕ(z))(1− cϕ(w)∗)
.

(2.28)

On the other hand, since ϕ0(0) = 0 as in previous case we get the following

1− ϕ0(z)ϕ0(w)∗ =

∫
ΘB̃

H0
θ (z) (1− ψθ(z)ψθ(w)∗)H0

θ (w)∗ dν0(θ),

where H0
θ (z) = 2

(f0(z)+1)(1−ψθ(z))
with f0 = M ◦ϕ0, and ν0 is chosen as the probability

measure associated to f0 in the Agler-Herglotz representation. Then by (2.28) we

get

1− ϕ(z)ϕ(w)∗ =

∫
ΘB̃

Gθ(z) (1− ψθ(z)ψθ(w)∗)Gθ(w)∗ dν0(θ), (2.29)

where Gθ(z) =
(1−cϕ(z))H0

θ (z)√
1−cc . Hence we get the following realization

1− ϕ(z)ϕ(w)∗ = Γ0(z, w) (1− E(z)E(w)∗) ,
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with Γ0 : D× D→ Cb(ΨB̃)∗ the positive kernel given by

Γ0(z, w)g =

∫
ΘB̃

Gθ(z)g(ψ)Gθ(w)∗ dν0(θ),

where g ∈ Cb(ΨB̃). Finally, by the realization theorem (Theorem 1.3.6) we conclude

that ϕ ∈ H∞1 (KΨB̃).

Combining Theorem 2.3.8 with Lemma 2.2.3 and Theorem 2.3.10, we have shown

the following.

Corollary 2.3.11. Let ΘB̃ be the set of extreme measures in M1
B̃,R(T) with 1 as

a support point. Then ΘB̃ consists of all such probability measures supported at

N ≤ k ≤ 2N −1 points, where N is the number of zeros of B̃, counting multiplicity.

Furthermore, the set ΨB̃ is a collection of test functions for H∞
B̃

, and consists of

functions of the form ψθ = cB̃Rθ, where Rθ is a Blaschke product with number of

zeros between 0 and N − 1, and c =
∏ 1−αj

1−αj ∈ T.

Let ΨB =
{
ψ̃ ◦mα0 : ψ̃ ∈ ΨB̃

}
. The next result relates the algebra H∞(KΨB) to

the constrained algebra H∞B .

Corollary 2.3.12. The two algebras H∞(KΨB) and H∞B are isometrically isomor-

phic.

Proof. Applying Lemma 2.1.1 to Theorem 2.3.10 gives the result.

Finally we close this section with the following natural question: Is the set of

test functions that we found minimal, in the sense that no proper closed subset of

ΨB is a set of test functions for H∞B ? In other words, if we take a closed subset

of ΨB, does Theorem 2.3.10 still hold, or more generally, is the realization theorem

true? The next section is devoted to dealing with this question.

2.4 Minimality of the set of test functions

In this section we prove that there is no closed subset of ΨB̃ which is a set of test

functions for H∞
B̃

. At this point Corollary 2.3.11 gives a fairly concrete description of

the set of test functions. However, it is more useful for what follows to describe them

in terms of the placement of the zeros rather than the support points for the measure

in the Herglotz representation. Obviously, in writing any test function as a Blaschke
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product, changing the order of the zeros does not change the function. There is also

the small problem that the number of zeros of a test function is between N and

2N − 1, where N is the number of zeros of B̃, so not all test functions necessarily

have the same number of zeros. For this reason, we introduce the following order

on elements of the one point compactification of the disk, (D∞ for D ∪∞).

We order the points of D∞ as follows: ζ1 � ζ2 in D∞ if either |ζ1| < |ζ2| or

|ζ1| = |ζ2| and arg ζ1 ≤ arg ζ2. The point ∞ is the maximal element of D∞ with

respect to this order, and 0 the minimal element.

We can use this order to describe the set of test functions.

Let Z(B̃) = {α′0, . . . , α′N−1} be the (ordered) zeros of B̃, so B̃ = mα′0 · · ·mα′N−1
,

mα′j the Möbius map with zero α′j. If as an abuse of notation we let m∞(z) = 1,

then any Blaschke product Bα = B̃R with a number of zeros between N and 2N−1

can be written as

Bα(z) =
2N−2∏
j=0

mαj ,

where Z(Bα) = {0 = α0 � · · · � α2N−2}, the ordered zeros of Bα in D∞, contains

the elements of Z(B̃).

Define the set

Ψ� := {cBα : Z(Bα) an ordered 2N − 1 tuple ,Z(Bα) ⊇ Z(B̃) and c = Bα(1)}.

Then obviously, ΨB̃ ⊆ Ψ�. Conversely, let ϕ ∈ Ψ�. Since Z(Bα) ⊇ Z(B̃), we have

ϕ(0) = 0. By Lemma 2.2.3 there is a unique probability finite atomic measure µϕ

supported at N ≤ k ≤ 2N − 1 points on T, write it µϕ =
∑k

i=1miδλi . Again the

constraint Z(Bα) ⊇ Z(B̃) implies that the measure µϕ has to satisfy the constraint

(2.16) (or the constraints (2.2) and (2.3)). Hence µϕ ∈ M1
B̃,R(T). On the other

hand, we have that ϕ(1) = Bα(1)Bα(1) = 1. Thus support of µϕ contains the point

1 i.e. 1 ∈ {λ1, . . . , λk}. Also the proof of Lemma 2.2.3 implies that mi > 0 for

all i = 1, . . . , k. Hence we see that the measure µϕ satisfies the condition of [15,

Theorem 2.3]. This implies that µϕ ∈ ΘB̃. So ϕ ∈ ΨB̃. Hence we have the opposite

containment. In summary, we have that Ψ� = ΨB̃.

With this identification, we view the measure in (2.27) as being on the set ΨB̃ in

place of the set of extremal measures ΘB̃, so that

1− ϕ(z)ϕ(w)∗ =

∫
ΨB̃

Hψ(z)(1− ψ(z)ψ(w)∗)Hψ(w)∗ dν(ψ). (2.30)
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To prove the minimality we need some results from [28].

Lemma 2.4.1 ([28]). Let µ be a measure on a space C, H a separable Hilbert space,

and f ∈ B(H) ⊗ L1(µ) with f(x) ≥ 0 µ-almost everywhere. If M ≥
∫
C
f(x) dµ(x)

for some M ∈ B(H), then for all δ > 0 there exists some subset Cδ ⊆ C and a

constant cδ > 0, such that µ(C\Cδ) < δ and M ≥ cδf(x) for all x ∈ Cδ.

We also need the notion of differentiating kernels from [28]. Let k(x, y) = 1
1−xy

be the Szegő kernel on H2(D), then its differential is defined by

k(x(n), y) := n!
yn

(1− xy)n+1
=

∂n

∂xn
k(x, y). (2.31)

For brevity, we write k
(i)
x (·) for the function k(x(i), ·). If Mf is the multiplication

operator of f on H∞, then the differentiating kernels satisfy an analog of the repro-

ducing property

M∗
f k

(n)
x (·) =

n∑
j=0

(
n

j

)
f (j)(x)k(n−j)x (·). (2.32)

For more details the reader is addressed to [28].

For k the Szegő kernel and for all function f in the unit ball of H∞
B̃

, we define

the positive kernel

Φf (z, w) = (1− f(z)f(w)∗)k(z, w).

The following is a generalization of some part of the proof of [28, Theorem 9].

Lemma 2.4.2. Let CB̃ be some proper closed subset of ΨB̃, which is a set of test

functions for H∞
B̃

. Then the following hold:

i) If ψ ∈ ΨB̃, then the kernel Φψ(z, w) has rank at most 2N − 1.

ii) If ψ0 ∈ ΨB̃\CB̃, then there exists a measure µ on CB̃ and functions hψ,` ∈ L2(µ)

for ` = 1, . . . 2N such that

1− ψ0(z)ψ0(w)∗ =

∫
CB̃

2N∑
`=1

hψ,`(z)(1− ψ(z)ψ(w)∗)hψ,`(w)∗ dµ(ψ). (2.33)

Moreover the following inequality holds,

Φψ0(z, w) ≥
∫
CB̃
hψ,`(z)Φψ(z, w)hψ,`(w)∗ dµ(ψ) (2.34)
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for all hψ,`(z) ∈ L2(µ), ` = 1, . . . , 2N .

Proof.

i) First note that any test function ψ ∈ ΨB̃ has at most 2N − 1 zeros. Suppose that

Z(ψ) = {β1, . . . , β1︸ ︷︷ ︸
d1

, . . . , βm, . . . , βm︸ ︷︷ ︸
dm

}. Then, clearly
∑m

j=1 dj ≤ 2N −1. By Theorem

A.2.1 the multiplication operator Mψ is an isometry on H2(D), since ψ is a Blaschke

product. Furthermore, by identity (2.32) we can see that PMψ
:= 1−MψM

∗
ψ is the

projection onto

Mψ := kerM∗
ψ = span{kβ1 , . . . , k

(d1−1)
β1

, . . . , kβm , . . . , k
(dm−1)
βm

}.

Since Φψ(z, w) = 〈PMψ
kw, kz〉 and kerM∗

ψ = PMψ
H2 (see [51, p.100]) we conclude

that Φψ has rank at most 2N − 1.

ii) Since PMψ
is the projection from H2 onto Mψ we have

Φψ(z, w) = 〈PMψ
kw, kz〉 = 〈PMψ

kw, PMψ
kz〉.

Hence we can think Φψ(z, w) as a holomorphic function in z and anti-holomorphic

function in w. If we think of the anti-holomorphic function as being in the dual of

H2, then

Φψ ∈ H2 ⊗ (H2)∗ ∼= B(H2).

More explicitly, Φψ defines an operator on H2 as

Φψf(z) :=

∫
T
Φψ(z, w)f(w) dγ(w),
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where γ is the arc-length measure on T. Let us calculate the following inner product

〈Φψf, g〉 =

∫
T

∫
T
g(z)Φψ(z, w)f(w) dγ(w) dγ(z)

=

∫
T

∫
T
g(z)〈PMψ

kw, PMψ
kz〉f(w) dγ(w) dγ(z)

=

∫
T

∫
T
〈f(w)PMψ

kw, g(z)PMψ
kz〉 dγ(w) dγ(z)

= 〈
∫
T
f(w)PMψ

kw dγ(w),

∫
T
g(z)PMψ

kz dγ(z)〉

= 〈
∫
T
f(w)PMψ

kw dγ(w),

∫
T
g(z)PMψ

kz dγ(z)〉Mψ

= 〈Aψf, Aψg〉

= 〈A∗ψAψf, g〉,

where Aψ : H2 →Mψ is given by

Aψf :=

∫
T
f(w)PMψ

kw dγ(w).

This gives the factorization

Φψ(z, w) = A∗ψ(z)Aψ(w). (2.35)

Let IMψ
be the embedding map of Mψ into H2. We also consider the following inner

product

〈Aψf, g〉 = 〈
∫
T
f(w)PMψ

kw dγ(w), g〉Mψ

=

∫
T
f(w)〈PMψ

kw, g〉Mψ
dγ(w)

=

∫
T
f(w)〈PMψ

kw, IMψ
g〉 dγ(w)

=

∫
T
f(w)〈kw, IMψ

g〉 dγ(w)

=

∫
T
f(w)(IMψ

g)(w) dγ(w)

= 〈f, IMψ
g〉.
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From this calculations we conclude that

A∗ψ = IMψ
. (2.36)

Let F = {z1, . . . , z2N} be an arbitrary finite subset of D. Then we consider the

classical Nevanlinna-Pick interpolation problem of finding a function ϕ in the closed

unit ball of H∞(D) such that ϕ(zi) = ψ0(zi) for i = 1, . . . , 2N .

Since the operator Φψ0(z, w) has rank at most 2N − 1 the 2N × 2N matrix([
1− ψ0(zi)ψ0(zj)

]
k(zj, zi)

)2N
i,j=1

must be singular, so the problem has a unique solution, namely ϕ = ψ0.

Recall the assumption that CB̃ is a set of test functions for H∞
B̃

. Hence by

Theorem 1.3.7, there is a positive kernel Γ : F × F → Cb(CB̃)∗ such that

1− ψ0(zi)ψ0(zj) = Γ (zi, zj) (1− E(zi)E(zj)
∗) , (2.37)

where zi, zj ∈ F with i, j = 1, . . . , 2N .

Moreover, by Theorem 1.3.6, the equation (2.37) must holds for all over D2. That

is,

1− ψ0(z)ψ0(w) = Γ (z, w) (1− E(z)E(w)∗) , (2.38)

for all (z, w) ∈ D2. We can rewrite this, in our case, by saying that there exists a

measure µ on CB̃, and functions hψ,`(z) ∈ L2(µ) (by Kolmogorov decomposition, see

[7, Theorem 2.62]), for ` = 1, . . . , 2N such that

1− ψ0(z)ψ0(w)∗ =

∫
CB̃

2N∑
`=1

hψ,`(z)hψ,`(w)∗ (1− ψ(z)ψ(w)∗) dµ(ψ). (2.39)

Multiplying this equation by k(z, w) gives

Φψ0(z, w) =

∫
CB̃

2N∑
`=1

hψ,`(z)Φψ(z, w)hψ,`(w)∗ dµ(ψ).

Since Φψ is positive kernel and a positive operator, when seen as an operator on H2,

as above we have that for all ` = 1, ..., 2N ,
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Φψ0(z, w) ≥
∫
CB̃
hψ,`(z)Φψ(z, w)hψ,`(w)∗ dµ(ψ).

This completes the proof.

Remark 2.4.3. Let CB̃ be a proper closed subset of ΨB̃. Then there exists a function

ψ0 = c0B̃
∏N−1

j=1 mβj in ΨB̃ \ CB̃ such that βj 6∈ Z(B̃) and βi 6= βj for 1 ≤ i < j ≤
N − 1, where we write Z(B̃) for the zero set of B̃, including all the multiplicities

i.e. Z(B̃) = {0 = βi0 , . . . , βiN−1
}. To see this, note that the set ΨB̃ \ CB̃ is relatively

open, so we can perturb the zeros of ψ0 small enough which are not roots of B̃, so

that without increasing the norm of ψ0. This is because of the following argument.

Let ψ0,ε = c0B̃
∏N−1

j=1 mβj+εj . Then

|ψ0 − ψ0,ε| = |c0B̃| ·

∣∣∣∣∣
N−1∏
j=0

mβj −
N−1∏
j=0

mβj+εj

∣∣∣∣∣
=
∣∣∣B̃∣∣∣ · ∣∣∣∣∣(mβ1 −mβ1+ε1)

N−2∏
j=2

mβj +
N−1∑
k=2

k−1∏
i=1

mβi+εi (mβk −mβk+εk)
N−1∏
j=k+1

mβj

+
N−1∏
i=1

mβi+εi

(
mβN−1

−mβN−1+εN−1

)∣∣∣∣∣
≤
∣∣∣B̃∣∣∣(∣∣∣∣∣(mβ1 −mβ1+ε1)

N−2∏
j=2

mβj

∣∣∣∣∣+
N−1∑
k=2

∣∣∣∣∣
k−1∏
i=1

mβi+εi (mβk −mβk+εk)
N−1∏
j=k+1

mβj

∣∣∣∣∣
+

∣∣∣∣∣
N−1∏
i=1

mβi+εi

(
mβN−1

−mβN−1+εN−1

)∣∣∣∣∣
)
,

which tends to 0 when ε1 → 0, . . . , εN−1 → 0. Additionally, to prove the minimality

of ΨB̃ we can assume also that βj 6=∞ for all j = 1, . . . ,∞. Since ψ0 ∈ ΨB̃ we must

have the ordering on the numbers β1, . . . , βN−1, so we can assume without loss of

generality that β1 � · · · � βN−1. Hence if βk = ∞, then β` = ∞ for all ` ≥ k.

Consider the following closed subsets of ΨB̃ given by

Ψ 1 = {ψ ∈ ΨB̃ : β1 =∞} = {cB̃}, Ψk = {ψ ∈ ΨB̃ : βk =∞} for 2 ≤ k ≤ N − 1.

Since all Ψk, 1 ≤ k ≤ N−1 are closed, the finite union C := ∪N−1k=1 Ψ
k∪CB̃ is a proper

closed subset in ΨB̃. Now if we prove that C is not a minimal set of test functions

for H∞
B̃

, then this automatically implies that CB̃ is also not minimal.
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Theorem 2.4.4. The set ΨB̃ is a minimal set of test functions for the algebra H∞
B̃

.

Proof. The set ΨB̃ is norm closed in H∞(D), and we endow it with the relative

topology. Suppose that some proper closed subset CB̃ of ΨB̃ is a set of test functions

for H∞
B̃

. Then ΨB̃\CB̃ is relatively open, and there exists ψ0 = c0
∏2N−2

j=0 mα̃j in this

set, where Z(B̃) = {0 = α̃j0 , α̃j1 . . . , α̃jN−1
} = {α̃1 . . . , α̃N} are the zeros of B̃. Since

ΨB̃\CB̃ is relatively open, by Remark 2.4.3 we can assume without loss of generality

that no α̃j = ∞ and that any root which is not a root for B̃ is distinct from the

roots of B̃ and all such roots are distinct from each other.

Let ψ = c
∏2N−2

k=0 mαj be in CB̃, and Z(B̃) = {0 = α0, αk1 . . . , αkN−1
} be the zeros

of B̃. For any αk in α which occurs only once, set kαj(z) = 1/(1− αjz), the Szegő

kernel, where k∞ := 0. More generally, if a root other than ∞ is repeated, it is

understood that we use the kernels k
(i)
α (z) = i!zi/(1 − αz)i+1 instead, where i runs

from 0 to one less than the multiplicity of the root, though we do not write this

explicitly to avoid notational complexity. We define kα̃j in an identical manner. By

assumption the inequality (2.34) holds, hence by Lemma 2.4.1 for any δ > 0, there

is a set Cδ ⊆ CB̃ and a constant cδ such that µ(CB̃\Cδ) < δ and

∆ψ0(z, w) ≥ cδhψ,`(z)∆ψ(z, w)hψ,`(w)

for all ψ ∈ Cδ. Then from the factorization (2.35) we have

Aψ0(z)∗Aψ0(w) ≥ cδhψ,`(z)Aψ(z)∗Aψ(w)hψ,`(w)

for all ψ ∈ Cδ. It follows that by Douglas’ lemma, the range of hψ,`(·)A∗ψ is contained

in the range of A∗ψ0
. Hence by (2.36) there exists constants cjk such that

hψ,`kαn =
2N−2∑
j=0

cnj kα̃j . (2.40)

for n = 0, . . . , 2N − 2. Taking the limit for δ → 0 we see that above equations hold

for µ−almost all ψ ∈ CB̃. In particular, taking n = 0 gives

hψ,` =
2N−2∑
j=0

c0j kα̃j ,
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and so plugging this back into (2.40), we have

kαn

2N−2∑
j=0

c0j kα̃j =
2N−2∑
j=0

cnj kα̃j . (2.41)

The kernels extend to meromorphic functions on the Riemann sphere, as then does

hψ,`.

We use (2.41) to eliminate some of the terms and to eventually solve for hψ,`.

Consider 0 6= αn ∈ Z(B̃). Then αn = α̃j for some j. If this is a zero of order 1 for

ψ0, then the right side of (2.41) has a pole of at most order 1 at 1/α̃j, while the left

side has a pole of order 2 at this point if c0j 6= 0. Hence we must have c0j = 0.

More generally, suppose that ψ0 has a zero of order m > 1 at αn ∈ Z(B̃) (where

now αn may be 0). Let α̃j = · · · = α̃j+m−1 be the m repeated zeros. If αn 6= 0,

kα̃j+i , 0 ≤ i ≤ m − 1, have poles of order between 1 and m, and so no term on the

right side of (2.41) has a pole of order more than m at 1/α̃j. On the left side, if

we choose kαn to have a pole of order m, and if any of c0j to c0,j+m−1 are nonzero,

the corresponding term has a pole of order bigger than m. Hence each of these

coefficients must be zero.

Things are slightly different when αn = 0. In this case, j = 0 and kα̃i , 1 ≤ i ≤
m−1, have poles of order between 1 and m−1 at∞ (we take kα̃0 = 1). So reasoning

as before, no term on the right of (2.41) has a pole of order bigger than m−1 at∞,

while if we choose kαn to have a pole of order m− 1 there, the left side has a pole of

order at least m at ∞ if any of c01 to c0,m−1 are nonzero. So all of these coefficients

must also be zero.

Combining these observations, we conclude that with the possible exception of

c00, all coefficients c0,j corresponding to α̃j ∈ Z(B̃) are zero. Hence we have

hψ,` = c00 +
∑

α̃j∈Z(ψ0)\Z(B̃)

c0jkα̃j = r
∏

α̃j∈Z(ψ0)\Z(B̃)

kα̃j .

Recall that we were able to choose the elements of Z(ψ0)\Z(B̃) so that they are

distinct and none are repeats of elements of Z(B̃). Consequently,

r(z) = c00
∏

α̃j∈Z(ψ0)\Z(B̃)

(1− α̃jz) +
∑

α̃j∈Z(ψ0)\Z(B̃)

c0j
∏

α̃n∈Z(ψ0)\Z(B̃), n 6=j

(1− α̃nz)
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is a polynomial of degree at most N − 1. So (2.41) becomes

rkαn
∏

α̃j∈Z(ψ0)\Z(B̃)

kα̃j =
2N−2∑
j=0

cnj kα̃j . (2.42)

Now we turn to αn ∈ Z(ψ)\Z(B̃), where we write Z(ψ) for the zero set of ψ,

but including all the multiplicities. Let m′ be the multiplicity of αn as a root of B̃

(which may be 0) and m the multiplicity of αn as a root of ψ. The right side of

(2.42) has a pole of order m′ at 1/αn, so r must have a zero of order m−m′ at 1/αn.

Running over all αn ∈ Z(ψ)\Z(B̃), we conclude that

hψ,` = gψ,`

∏
α̃j∈Z(ψ0)\Z(B̃) kα̃j∏
αn∈Z(ψ)\Z(B̃) kαn

, (2.43)

where, since the poles of
∏

αn∈Z(ψ)\Z(B̃) kαn are roots of r,

gψ,` = r
∏

αn∈Z(ψ)\Z(B̃)

kαn

is a polynomial of degree at most 2N − 1 − degψ, where rψ is the cardinality of

Z(ψ)\Z(B̃).

Substitute the formula for hψ,` into (2.33) and multiply by
∏

α̃j∈Z(ψ0)\Z(B̃)(1 −
α̃jz)(1− α̃jw)∗ we get

N−1∏
i=1

(1− α̃iz)(1− α̃iw)∗ − B̃(z)B̃(w)∗
N−1∏
i=1

(z − α̃i)(w − α̃i)∗

=

∫
CB̃

2N∑
`=1

gψ,`(z)gψ,`(w)∗

(
rψ∏
i=1

(1− αψ,iz)(1− αψ,iw)∗

−B̃(z)B̃(w)∗
rψ∏
i=1

(z − αψ,i)(w − αψ,i)∗
)
dν(ψ),

(2.44)

where αi ∈ Z(ψ0) \ Z(B̃) and αψ,i ∈ Z(ψ) \ Z(B̃). We can expand this more
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precisely,

N−1∑
m,n=0

[
zmwnSm(α̃)Sn(α̃)∗ − B̃(z)B̃(w)∗zN−1−mwN−1−nSm(α̃)Sn(α̃)∗

]

=

∫
CB̃

2N∑
`=1

N−1∑
m,n=0

zmwn min{m,N−1−rψ}∑
s=max{0,m−rψ}

min{n,N−1−rψ}∑
t=max{0,n−rψ}

gψ,`,sg
∗
ψ,`,tSm−s(αψ)Sn−t(αψ)∗

− B̃(z)B̃(w)∗zN−1−mwN−1−n
min{N−1−m,N−1−rψ}∑
s=max{0,N−1−m−rψ}

min{N−1−n,N−1−rψ}∑
t=max{0,N−1−n−rψ}

gψ,`,sg
∗
ψ,`,tSrψ−N+1+m+s(αψ)Srψ−N+1+n+t(αψ)∗

)
dν(ψ).

(2.45)

Here we use the symmetric sum notation from the proof of Lemma 2.2.3 and as a

shorthand notation, write α̃ for Z(ψ0)\Z(B̃) and αψ for Z(ψ)\Z(B̃). Observe that

the coefficients of zmwn and B̃(z)B̃(w)∗zN−1−mwN−1−n are complex conjugates of

each other, and so in particular are equal when m = n.

For n,m = 0, . . . , N − 1, define vectors in L2(ν)⊗ C2N by

v1m =

min{m,N−rψ−1}∑
s=max{0,m−rψ}

gψ,`,sSm−s(αψ)

 ,

v2n =

min{N−1−n,N−1−rψ}∑
t=max{0,N−1−n−rψ}

gψ,`,tSrψ−N+1+n+t(αψ)

 .

(2.46)

Hence (2.45) becomes

N−1∑
m,n=0

[
zmwnSm(α̃)Sn(α̃)∗ − B̃(z)B̃(w)∗zN−1−mwN−1−nSm(α̃)Sn(α̃)∗

]
=

N−1∑
m,n=0

(
zmwn

〈
v1m, v

1
n

〉
− B̃(z)B̃(w)∗zN−1−mwN−1−n

〈
v2m, v

2
n

〉)
.

(2.47)

Looking at the coefficients of zmwm, znwn and zmwn in (2.47), we get

‖v1m‖
2‖v1n‖

2
= |Sm(α̃)|2|Sn(α̃)∗|2 = |Sm(α̃)Sn(α̃)∗|2 =

∣∣〈v1m, v1n〉∣∣2. (2.48)

It then follows from the Cauchy-Schwarz inequality that the vectors v1m and v1n are
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collinear. Identical reasoning shows that v2m and v2n are collinear as well.

Looking at the terms z0w0 and B̃(z)B̃(w)∗zN−1wN−1 in (2.47), we see that the

vectors v10 = (gψ,`,0) and v20 = (gψ,`,N−1−rψ) both have norm equal to |S0(α̃)| = 1, so

are non-zero. Furthermore, it follows from (2.47) that 〈v1n, v10〉 = 〈v20, v2n〉 = Sn(α̃),

and so

v1n = Sn(α̃)v10 and v2n = Sn(α̃)v20, n = 1, . . . , N − 1. (2.49)

This implies that ν-a.e. ψ ∈ CB̃,

min{n,N−rψ−1}∑
s=max{0,n−rψ}

gψ,`,sSn−s(αψ) = Sn(α̃)gψ,`,0 and

min{N−1−n,N−1−rψ}∑
t=max{0,N−1−n−rψ}

gψ,`,tSrψ−N+1+n+t(αψ) = Sn(α̃)gψ,`,N−1−rψ

. (2.50)

When rψ = N − 1, gψ,` = gψ,`,0 = gψ,`,N−1−rψ is constant. From the first equation

of (2.50) we have gψ,`,0Sn(αψ) = Sn(α̃)gψ,`,0. Thus by considering the coefficients of

zj · w0 in (2.45), we see that

|gψ,`,0|2
∏

αj∈Z(ψ)\Z(B̃)

(1− αjz) = |gψ,`,0|2
N−1∑
n=0

Sn(αψ)zn = |gψ,`,0|2
N−1∑
n=0

Sn(α̃)zn

= |gψ,`,0|2
∏

α̃j∈Z(ψ0)\Z(B̃)

(1− α̃jz).

Since CB̃ is a closed set not containing ψ0, this gives a contradiction unless gψ,`,0,

and hence gψ,` is zero.

For rψ < N − 1, gψ,` is a non-constant polynomial. Factor it as

gψ,`(z) = gψ,`,0

N−1−rψ∏
i=1

(z − βi) = gψ,`,0

N−1−rψ∑
s=0

Ss(β)zs.
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So gψ,`,s = gψ,`,0Ss(β) for s = 0, . . . , N − 1− rψ. Then (2.44) becomes∏
α̃j∈Z(ψ0)\Z(B̃)

(1− α̃jz)(1− α̃jw)∗ − B̃(z)B̃(w)∗
∏

α̃j∈Z(ψ0)\Z(B̃)

(z − α̃j)(w − α̃j)∗

=

N−1−rψ∏
i=1

(z − βi)(w − βi)∗
 ∏
αψ,j∈Z(ψ)\Z(B̃)

(1− αψ,jz)(1− αψ,jw)∗
〈
v10, v

1
0

〉

−B̃(z)B̃(w)∗
∏

αψ,j∈Z(ψ)\Z(B̃)

(z − αψ,j)(w − αψ,j)∗
〈
v20, v

2
0

〉 .

.

Since 〈v10, v10〉 = 1, 〈v20, v20〉 = 1, the later equation becomes∏
α̃j∈Z(ψ0)\Z(B̃)

(1− α̃jz)(1− α̃jw)∗ − B̃(z)B̃(w)∗
∏

α̃j∈Z(ψ0)\Z(B̃)

(z − α̃j)(w − α̃j)∗

=

N−1−rψ∏
i=1

(z − βi)(w − βi)∗
 ∏
αψ,j∈Z(ψ)\Z(B̃)

(1− αψ,jz)(1− αψ,jw)∗

−B̃(z)B̃(w)∗
∏

αψ,j∈Z(ψ)\Z(B̃)

(z − αψ,j)(w − αψ,j)∗
 .

(2.51)

Considering the coefficients of zj · w0 in (2.51), we have that

SN−1−rψ(β)

N−1−rψ∏
i=1

(z − βi)
∏

αψ,j∈Z(ψ)\Z(B̃)

(1− αψ,jz) =
∏

α̃j∈Z(ψ0)\Z(B̃)

(1− α̃jz),

and so the union of β−1 := (1/β1, . . . , 1/βN−1−rψ) andZ(ψ)\Z(B̃) equals Z(ψ0)\Z(B̃).

In particular, 1/βi ∈ D for all i.

In a similar manner, but now using the coefficients of znB̃(z)B̃(w)∗ in (2.51), we

find that

SN−1−rψ(β)

N−1−rψ∏
i=1

(z − βi)
∏

αψ,j∈Z(ψ)\Z(B̃)

(z − αψ,j)
∏

αψ,j∈Z(ψ)\Z(B̃)

(−αψ,j)

=
∏

α̃j∈Z(ψ0)\Z(B̃)

(z − α̃j)(−α̃j).
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Hence the union of β = (β1, . . . , βN−1−rψ) and Z(ψ)\Z(B̃) equals Z(ψ0)\Z(B̃),

implying that βi ∈ D for all i. Thus we again have a contradiction unless gψ,` = 0.

We conclude therefore that gψ,` = 0 ν-a.e. This then implies that∏
α̃j∈Z(ψ0)\Z(B̃)

(z − α̃j) = 0,

which since Z(ψ0)\Z(B̃) 6= ∅, is an absurdity. We conclude that CB̃ cannot have

been a set of test functions for the algebra H∞
B̃

, and so it follows that ΨB̃ is a minimal

set of test functions.

As a consequence of Theorem 2.4.4 and Lemma 2.1.1 we have the following

general result:

Theorem 2.4.5. The set ΨB is a minimal set of test functions for the algebra H∞B .

Remark 2.4.6. At least in some simple cases, it is possible to describe the geometry

of the set of test functions. First, if degB = 2, then the minimal set of test functions

is given by

ΨB =

{
B(z)

z − ζ
1− ζz

: ζ ∈ D∞
}
.

Then it is clear that ΨB is homeomorphic to the Riemann sphere. This covers the

special case in [28].

Figure 2.1: ΨB when N = 2

Next we consider when B(z) is a Blaschke product degree 3, so

ΨB =

{
B(z)

z − ζ1
1− ζ1z

z − ζ2
1− ζ2z

: (ζ1, ζ2) ∈ D∞ × D∞ with ζ1 � ζ2

}
. (2.52)

It is interesting to note that the set ΨB is homeormorphic to a closed ball in R3

with a smaller open ball tangent to the boundary removed from the interior. To see

this, we have chosen the arguments to lie in the interval (0, 2π]. By rotating, we can

always assume that one of the points (ζ1 or ζ2) has argument 2π. For this reason,
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we assume that ζ2 is either ∞ or in the interval [0, 1). With ζ1 � ζ2 in our order for

ζ2 > 0, the set of ζ1 � ζ2 is a closed disk of radius |ζ2|. The resulting set of points

(ζ1, ζ2) with ζ2 in the interval [0, 1) is thus homeomorphic to a solid truncated cone

which contains the boundary along the side of the cone, but not the boundary at

the top. To the top we attach the points of the form (ζ1,∞), when ζ1 in the open

unit disk. The resulting object then looks like a closed truncated cone, except that

the rim of the cone is not included. To finish things off, the rim is identified with

the point (∞,∞), and then the parametrizing set is closed. It is homeomorphic to

a closed ball in R3 with a smaller open ball tangent to the boundary removed from

the interior.

Figure 2.2: ΨB when N = 3
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Rational dilation on distinguished

varieties

3.1 Rational dilation on the distinguished vari-

eties associated to AB and A 0
B

Let D denote the open unit disk in the complex plane and its closure. The disk

algebra, A(D), consists of the functions that are analytic on D and continuous on D
its closure. One should note that by the maximum modulus principle the supremum

of such a function over D is attained on T, the boundary of D. Thus, we may regard

A(D) as a closed subalgebra of C(T), the space of continuous function on T with

the supremum norm.

The goal of this section is to study rational dilation problem on the distinguished

varieties associated to AB (see (3.1)) and A 0
B , where A 0

B is the subalgebra of AB,

generated by B(z), zB(z).

For N = t0 + · · ·+ tn ≥ 2, let

B(z) =
n∏
i=0

(
z − αi
1− αiz

)ti
be a Blaschke products at the distinct points α0, . . . , αn in the open unit disk D and

t0, . . . , tn, n are non-negative integers.

Let us consider the following subalgebra of the disk algebra,

AB = C +B(z)A(D). (3.1)
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We write α1, . . . , αN for the zeros of B, including any repeated roots, i.e., the com-

plex numbers α0, . . . , α0︸ ︷︷ ︸
t0

, . . . , αn, . . . , αn︸ ︷︷ ︸
tn

. Hence

B(z) =
N∏
j=1

z − αj
1− αjz

.

A function f ∈ AB if and only if it satisfies the following two constraints

1. f(αi) = f(αj) for 0 ≤ i, j ≤ n;

2. f (k)(αi) = 0 for k = 1, . . . , ti − 1 whenever ti ≥ 2.

Since A(D) ⊂ H∞(D), we show the above statement for H∞(D). Hence If f ∈
H∞(D) and f(αi) = f(αj) for distinct points αi, αj ∈ D, then the function f−f(αi)

vanishes at both αi and αj. Hence, f−f(αi) = Bg, where B is the Blaschke product

with zeros at αi, αj and g ∈ H∞(D). On the other hand, if f (`)(αk) = 0 for some

αk ∈ D and ` = 0, . . . , t − 1, then f = Bg, where g ∈ H∞(D) (if f(αk) is not zero,

then we consider f − f(αk)) and B is the Blaschke product with zero at αk with

multiplicity at least t. Thus, this algebra is of the form C + BH∞(D). (see also

[43].) In the following lemma we prove that the algebra AB is finitely generated.

Lemma 3.1.1. Let N ≥ 2. The functions f0 := B(z), f1 := zB(z), . . . , fN−1 :=

zN−1B(z) generate the algebra AB.

Proof. Since the polynomials on D are dense in A(D), we can see that A(D) is the

closure of analytic polynomials in C(D). Let P (D) be the set of all polynomials on

D. We claim that AB = C +B(z)P (D). It is straightforward to see that AB ⊇
C +B(z)P (D). For the other containment, let c + B(z)f(z) be in AB. Then f ∈
A(D). Hence by Runge’s theorem there exists a sequence of polynomials {pj}j≥1 on

D such that pj → f , and so c+Bpj → c+Bf . It follows that c+Bf ∈ C +B(z)P (D).

This completes the proof of the claim. Consequently, to complete the proof, for any

p ∈ P (D) it is enough to show that

c+Bp = q(f0, f1, . . . , fN−1),

where q is a polynomial over DN . To prove this, observe that

fk = zkf0 for 1 ≤ k ≤ N − 1, (3.2)
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and

fk = zk−1f1 for 1 ≤ k ≤ N − 1. (3.3)

Since f0(z) = B(z) we see that

(1− α1z) · · · (1− αNz)f0 = (z − α1) · · · (z − αN)

Using the identities (2.8) in the proof of Lemma 2.2.3, we have

N∑
k=0

Sk(α)zkf0 =
N∑
k=0

Sk(α)zN−k, (3.4)

where α = (α1, . . . , αN) ∈ DN . Multiplying both sides of equation (3.4) by f0 and

using (3.2) and (3.3) we get

f 2
0 +

N∑
k=1

Sk(α)fk−1(z)f1(z) = fN(z) +
N∑
k=1

Sk(α)fN−k(z), (3.5)

where fN(z) = zNf0(z). From (3.5) we find that

fN(z) = f 2
0 +

N∑
k=1

(
Sk(α)fk−1(z)− Sk(α)fN−k(z)

)
. (3.6)

Based on the (3.6), since all f0, . . . , fN−1 are finite Blaschke products on D, we have

fN(z) = P (f0(z), . . . , fN−1(z)) , (3.7)

where P is a multi-variable polynomial over the polydisk DN . Thus inductively

we see that zkf0(z) can be expressed as a polynomial of f0(z), . . . , fN−1(z) for k ≥
N . Hence we conclude that f0(z)Q(z) ∈ AB can be expressed as a polynomial of

f0, . . . , fN−1, where Q(z) is arbitrary polynomial with degQ ≥ N . This completes

the proof.
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3.2 The distinguished varieties associated to the

algebras AB and A 0
B

We begin this section with the following definition first given by Jim Agler and John

McCarthy [9] and later reformulated by Greg Knese [32]. Note that distinguished

varieties go back at least to Rudin’s paper [44].

Definition 3.2.1. A non-empty set V in D2
is a distinguished variety if there

exists a polynomial p in C[x, y] such that

V =
{

(x, y) ∈ D2
: p(x, y) = 0

}
(3.8)

and such that V exits the bidisk through the distinguished boundary:

V ∩ ∂(D2
) = V ∩ T2. (3.9)

Here V is the closure of V in D2.

The following theorem was proved in [9], with an easier proof given in [32].

Theorem 3.2.2. Let V be a distinguished variety, defined as the zero set of a

polynomial p ∈ C[x, y] of minimal degree (n,m). Then, there is an (m+n)×(m+n)

unitary matrix U which we write in block form as

U =

(
A B

C D

)
: Cm ⊕ Cn →: Cm ⊕ Cn ,

such that

i) D has no unimodular eigenvalues

ii) p(x, y) is a constant multiple of

det

(
A− yIm zB

C xD − In

)
,

and

iii) defining the following rational matrix-valued inner functions:

Ψ(x) = A+ xB (In − xD)−1C,
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we have

V = {(x, y) ∈ D2
: det(yIm − Ψ(x)) = 0}.

Conversely, if Ψ is a matrix-valued rational inner function on D, then

{(x, y) ∈ D2
: det(yIm − Ψ(x)) = 0}

is a distinguished variety.

Note that the roles of x and y can be reversed in the above theorem.

Let us recall the functions f0(z) = B(z), f1(z) = zB(z) generate the algebra A 0
B .

Observe the following identity,

(1− α0z)t0 · · · (1− αnz)tnf0 = (z − α0)
t0 · · · (z − αn)tn . (3.10)

Multiplying both sides of the above equation by fN0 we get

(f0 − α0f1)
t0 · · · (f0 − αnf1)tnf0 = (f1 − α1f0)

t0 · · · (f1 − αnf0)tn . (3.11)

Since f0, f1 are Blaschke products, when we run z over D, the ranges of f0(z), f1(z)

are in D. Thus we can make the substitution x = f0(z), y = f1(z) for (x, y) ∈ D2.

Then we have

(x− α0y)t0 · · · (x− αny)tnx = (y − α0x)t0 · · · (y − αnx)tn (3.12)

From (3.12)

x =

(
y/x− α0

1− α0y/x

)t0
· · ·
(
y/x− αn
1− αny/x

)tn
. (3.13)

So if |x| = 1 then |y| = |y/x|. Taking the modulus at both sides of equation (3.13)

we get that

1 =

∣∣∣∣ y/x− α0

1− α0y/x

∣∣∣∣t0 · · · ∣∣∣∣ y/x− αn1− αny/x

∣∣∣∣tn . (3.14)

If |y| = |y/x| < 1, then the right hand side of (3.14) is strictly less than 1, giving a

contradiction. Hence we conclude that |y| = 1.

Likewise if |y| = 1, then |x| = |x/y|. From (3.12) we have(
x/y − α0

1− α0x/y

)t0
· · ·
(
x/y − αn
1− αnx/y

)tn
x = 1. (3.15)
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If |x| = |x/y| < 1, then the modulus of the left hand side of (3.15) is strictly less

than 1, which is a contradiction. Hence |x| = 1.

Consequently, |x| = 1 if and only if |y| = 1. Therefore the variety

NB =
{

(x, y) ∈ D2
: P (x, y) = 0

}
(3.16)

is a distinguished variety associated to A 0
B , where

P (x, y) = (x− α0y)t0 · · · (x− αny)tnx− (y − α0x)t0 · · · (y − αnx)tn .

Note that, when n = 0, t0 = 2 and α0 = 0 we have the well known Neil parabola

Nz2 =
{

(x, y) ∈ D2
: x3 − y2 = 0

}
.

Recall that we are writing α1, . . . , αN for the zeros of B, including any repeated

roots, i.e., the complex numbers α0, . . . , α0︸ ︷︷ ︸
t0

, . . . , αn, . . . , αn︸ ︷︷ ︸
tn

. Hence

NB =

{
(x, y) ∈ D2

: x
N∏
k=1

(x− αky) =
N∏
k=1

(y − αkx)

}
.

According to Theorem 3.2.2 we must have a determinantal representation NB.

By the direct calculation we see that

NB = det


x



1 −α1 0 . . . 0

0 1 −α2
...

...
. . . . . . . . .

...

0
. . . 0 1 −αN

0 . . . . . . 0 1


−



0 −y 0 . . . 0

0 α1y −y
...

...
. . . . . . . . .

...

0
. . . 0 αN−1y −y

(−1)N . . . . . . 0 αNy





= det


xIN+1 −



0 −y 0 . . . 0

0 α1y −y
...

...
. . . . . . . . .

...

0
. . . 0 αN−1y −y

(−1)N . . . . . . 0 αNy


S−1


det(S)
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= det


xIN+1 −



0 −y 0 . . . 0

0 α1y −y
...

...
. . . . . . . . .

...

0
. . . 0 αN−1y −y

(−1)N . . . . . . 0 αNy


S−1


,

where

S =



1 −α1 0 . . . 0 0

0 1 −α2
...

...

0 0 1
. . .

...
. . . . . . . . . 0

. . .
. . . . . . −αN

0 . . . . . . 0 1


and

S−1 =



1 α1 α1α2 . . . α1 · · ·αN−2 α1 · · ·αN−1 α1 · · ·αN
0 1 α2 α2α3 . . . α2 . . . αN−1 α2 . . . αN

0 0 1 α3 α3α4 . . . α3 . . . αN

. . .
. . . . . . . . .

...

. . .
. . . . . . . . .

...
...

. . . . . . . . . αN−1αN

. . .
. . . 0 1 αN

0 . . . . . . 0 0 1


with det(S) = det(S−1) = 1. Hence NB =

{
(x, y) ∈ D2

: det(xIN+1 − Ψ(y)) = 0
}

,

where

Ψ(y) =



0 −y 0 . . . 0

0 α1y −y
...

...
. . . . . . . . .

...

0
. . . 0 αN−1y −y

(−1)N . . . . . . 0 αNy


S−1.

The geometric characterization of distinguished varieties was studied by Vegulla

in [49]. He proved that every bounded planar domain with finitely many piecewise

analytic boundary curves is a distinguished variety. Note that by Theorem 3.2.2
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every distinguished variety of closed bidsik D2
has a determinantal representation,

but for the higher dimensional distinguished variety of the polydisk Dd not yet

known.

Now we turn to describe a variety associated to AB. Define xj = zj−1B(z), j =

1, . . . , N . Then (x1, . . . , xN) ∈ DN
and by Lemma 3.1.1 x1, . . . , xN generates the

algebra AB. Since

B(z)3
N∏
k=1

(1− αkz) = B(z)2
N∏
k=1

(z − αk),

we have

N∑
k=1

Sk(α)[zk−1B(z)][zB(z)]B(z) +B(z)3

=
N−1∑
k=0

Sk(α)[zN−k−1B(z)][zB(z)] + SN(α)B(z)2,

where α = Z(B). Hence the N -tuple (x1, . . . , xN) satisfies the multi-variable poly-

nomial Q(x1, . . . , xN) = 0, where

Q(x1, . . . , xN) =
N∑
k=1

Sk(α)xkx2x1 + x31 −

(
N−1∑
k=0

Sk(α)xN−kx2 + SN(α)x21

)

=
N−1∑
k=0

(SN−k(α)x1 − Sk(α))xN−kx2 + x31 − SN(α)x21.

The locus described by Q(x1, . . . , xN) = 0 defines a variety in CN . Fix j ∈
{1, . . . , N}. Since |xj| = |zj−1B(z)| = 1 if and only if |z| = 1. Hence |xj| = 1

if and only if |xk| = 1 for all k = 1, . . . , N . It follows that this variety intersects

the boundary of DN
in TN , which is the Shilov (or distinguished) boundary of DN

.

Thus, we conclude that the variety

VB =
{

(x1, . . . , xN) ∈ DN
: Q(x1, . . . , xN) = 0

}
(3.17)

is a distinguished variety in DN
, which is associated to AB.
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3.3 Rational dilation on the distinguished vari-

eties NB and VB

The following definitions are taken from Arveson [14].

Definition 3.3.1 ([14]). Let T = (T1, . . . , Td) be a d-tuple of commuting bounded

operators on a Hilbert space. Then the joint spectrum of T , denoted by σA(T ), is

the set of all complex d-tuples λ = (λ1, . . . , λd) ∈ Cd such that p(λ) belongs to the

spectrum of p(T ) for every multivariate polynomial p ∈ C[z1, . . . , zd].

A more general treatment of this spectrum can be found in [21]. In that paper

the joint spectrum σA(T ) is called algebraic joint spectrum (in fact, Curto defined

this joint spectrum for unital commutative Banach algebra), see in particular, [21,

Proposition 1.2] and [14, Corollary 2]. The algebraic spectrum σA of d-tuples T of

commuting operators on a Hilbert space is defined as the complement of the set

{λ ∈ Cd : ∃S = (S1, . . . , Sd) ∈ B(H)d such that (T1−λ1)S1+ · · ·+(Td−λd)Sd = I}.

There are other notions of the joint spectrum of d-tuples T = (T1, . . . , Td), for

example the Taylor joint spectrum, see for example [7, 21, 46] and [47]). But in

the rest of this thesis, we will only work with the joint spectrum σA(T ) of d-tuples

T = (T1, . . . , Td) of commuting operators on a Hilbert space.

Definition 3.3.2. Given a set X ⊂ Cd, a function f : X → C is holomorphic

on X if for every x ∈ X, there is an open neighborhood of x to which f extends

analytically.

Formally, a function f : X → C is holomorphic on a set X in Cd if, at every

point x in X , there is a non-empty ball B(x, ε) centered at x and an analytic

mapping of d variables defined on B(x, ε) that agrees with f on B(x, ε) ∩X.

Given a compact subset X of Cd, let R(X) denote the algebra of rational func-

tions with poles off of X with the norm

‖r‖X = sup
x∈X
|r(x)|.

Theorem 3.3.3 ([14]). Let T = (T1, . . . , Td) be a d-tuple of commuting bounded

operators on a Hilbert space and let X = σA(T ). Then
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i) The set X is non-empty;

ii) σA(r(T )) = r(σA(T )) for every r ∈ R(X).

Definition 3.3.4. A compact set X in Cd is a spectral set for a d-tuple of com-

muting bounded operators T = (T1, . . . , Td) defined on a Hilbert space H if σA(T )

lies in X and

‖r(T )‖ ≤ ‖r‖X for all r ∈ R(X),

where the left hand norm is the usual operator norm (that is, a version of the

von Neumann inequality holds).

Definition 3.3.5. A commuting d-tuple of operators T on a Hilbert space H having

X as a spectral set, is said to have a rational dilation or normal ∂X-dilation if

there exist a Hilbert space K, an isometry V : H → K and a d-tuple of commuting

normal operators N on K with σA(N ) ⊆ ∂X such that

r(T ) = V ∗r(N )V for all r ∈ R(X).

Here ∂X denotes the Shilov or distinguished boundary of X (see appendix A.3).

The d-tuple N is referred to as a normal boundary dilation .

Note that we can interpret the von Neumann inequality (or spectral set condi-

tion) as saying the T induces a contractive unital representation πT of R(NB) on H
via

πT (r) = r(T ). (3.18)

Theorem 3.3.6 (Arveson[14]). Let X be a compact subset of Cd which is a spectral

set for a commuting d-tuple of operators T on a Hilbert space H. Then T has a

normal boundary dilation if and only if the representation πr of R(X) is completely

contractive.

Assume that a normal boundary dilation N of a commuting d-tuple T exists.

Then since NiNj = NjNi the Putnam-Fuglede theorem implies that N ∗i Nj = NjN ∗i
and N ∗j Ni = NiN ∗j for 1 ≤ i, j ≤ d. It follows that p(N ) commutes with p(N )∗

for p ∈ C[z1, . . . , zd]. Hence p(N ) is a normal operator on K. Consequently, by the

spectral mapping theorem

‖p(N )‖ ≤ sup
λ∈σA(N )

|p(λ)| for p ∈ C[z1, . . . , zd].
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The assumption implies also that σA(N ) ⊂ ∂X. Hence

‖p(N )‖ ≤ sup
λ∈∂X

|p(λ)| = ‖p‖∂X = ‖p‖X for p ∈ C[z1, . . . , zd], (3.19)

where the last equality follows by the maximum modulus principle.

Definition 3.3.7 ([12, 21]). Let Ω be a compact subset of Cd. The polynomially

convex hull of Ω is

Ĥ(Ω) := {z ∈ Cd : |p(z)| ≤ sup
Ω
|p(z)| for all p ∈ C[z1, . . . , zd]}.

Note that the set Ĥ is compact and contains Ω by definition.

Definition 3.3.8 ([12, 21]). A compact subset Ω of Cd is polynomially convex

if Ĥ(Ω) = Ω.

Remark 3.3.9. Showing that a domain in Cd is polynomially convex is not an easy

task. We list here some well known polynomially domains:

• A compact simply connected domain in the complex plane is polynomially

convex [12, Lemma 7.2], [29, Lemma 13], [21, Example 1.5];

• The polydisk Dd
is polynomially convex [21, Example 1.5], more generally any

compact and convex subsets of Cd is polynomially convex [29, page 67];

• The symmetrized bidisk and tetrablock as defined in (1.3) and (1.4) are poly-

nomially convex [11, Theorem 2.3], [1, Theorem 2.9], respectively.

Theorem 3.3.10 (Oka-Weil [34, Theorem 24.12], [12, Theorem 7.3],[20]). Let X be

a compact, polynomially convex set in Cd. Then for every function f holomorphic

in some neighborhood of X, we can find a sequence pj of polynomials in C[z1, . . . , zd]

with pj → f uniformly on X.

Remark 3.3.11. Polynomial convexity might only play a role if we were trying to

prove a positive result on rational dilation. Hence we do not need have to concern

ourselves about the polynomial convexity of the domains we consider.

Under the assumption that existence of normal boundary dilation d-tuple N of

d-tuple T and X ⊂ Cd is a polynomially convex domain, the Oka-Weil theorem
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implies that there exists a sequence pj of polynomials in C[z1, . . . , zd] such that

pj → f uniformly on X.

‖r(N )‖ = ‖ lim
j→∞

pj(N )‖ ≤ lim
j→∞

sup
X
|pj(z)| = sup

X
|r(z)|,

where inequality by (3.19). Thus we conclude that X is spectral set for N . Then

by the maximum modulus principle we see that

‖
(
rij(N )

)k
i,j
‖ ≤ ‖

(
rij

)k
i,j
‖

for rij ∈ R(X) and for all k ∈ N. It follows that if T has a normal boundary dilation,

then

‖r(T )‖ = ‖V ∗r(N )V ‖ ≤ ‖r(N )‖ for all r ∈ R(X),

so it is also the case that ‖r(T )‖ ≤ ‖r‖ for r ∈ R(X)⊗Mk(C), k ∈ N. In other words,

when rational dilation holds, contractive representations of R(X) are completely

contractive. A theorem of Arveson’s shows the converse is also true [14]. Thus a

strategy for showing that rational dilation fails is to find a contractive representation

of R(X) which is not completely contractive.

Our goal in this section is to study the rational dilation problem on the distin-

guished variety VB in DN
for degB = N ≥ 2. In particular when N = 2 we show

that rational dilation fails for VB = NB = {(x, y) ∈ D2
: x(x − αy)(x − βy) =

(y − αx)(y − βx)}, where Z(B) = {α, β}.

Theorem 3.3.12. Let A(NB) be the algebra of analytic functions on NB which

extends continuously to the boundary with the supremum norm. The algebra A(NB)

is completely isometrically isomorphic to the algebra A 0
B , which consists of those

functions in AB, which do not have the terms of the form ziBj(z), j = 1, . . . , N − 2

and i = j+1, . . . , N−1. This algebra contains BN−1(z)A(D), so in particular, when

N = 2,A 0
B = AB.

Proof. Define a map ρ : R(NB)→ A 0
B by

ρ(p/q) =
p(B(z), zB(z))

q(B(z), zB(z))
where p, q polynomials

and extending linearly. If it were the case that q(B(ξ), ξB(ξ)) = 0 for some ξ ∈ D,

we would have for (x0, y0) = (B(ξ), ξB(ξ)) ∈ NB so that q(x0, y0) = 0, and so p/q
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cannot be in R(NB). So the image of ρ is in A(D). Hence, about any point in

NB ∩ D2
, 1/q(η, ζ) has a power series expansion

∑
i,j=0 cijη

iζj since it is analytic.

Thus 1/q(x, y) = 1/q(B(z), zB(z)) =
∑

i,j=0 ci,jB(z)i(zB(z))j. So the image of ρ is

generated byB(z), zB(z), which equals A 0
B . For f ∈ R(NB), the maximum modulus

principle holds for ρ(f(x, y)) = f(B(z), zB(z)). Since (x, y) ∈ NB ∩ T2 if and only

if the associated z is in T, f achieves its maximum modulus on (x, y) ∈ NB ∩ T2.

Hence the map is isometric. The same reasoning shows that the map is a complete

isometry. Since R(NB) is dense in A(NB) the complete isometry extends to a

complete isometric homomorphism from A(NB) to A 0
B .

Now we turn to the description of A 0
B . Suppose for the time being that B has

three or more zeros, and that there is some f ∈ A(NB) such that ρ(f) = z2B(z) ∈
A 0
B . Then ρ(xf) = z2B2(z) = ρ(y2). Since the map ρ is isometric, this implies

that xf = y2 in an open neighborhood U of (0, 0). Fix any non-zero complex

number t and let Ct = {(x, y) ∈ C2 : x = ty2}. For y0 small enough and non-zero,

(x0, y0) 6= (0, 0) is in Ct ∩ U . Evaluating at (x0, y0) gives f(x0, y0) = t−1. Hence f

cannot be analytic, and so z2B(z) is not in A 0
B . The same argument shows that any

term of the form ziB(z)j, j = 1, . . . , N − 2 and i = j + 1, . . . , N − 1 of AB is not in

A 0
B . Obviously anything of this form where j is arbitrary and i ≤ j can be written

as a product of powers of B(z) and zB(z).

Now suppose B has N ≥ 2 zeros and let j = N − 1. Then

zNB(z)N−1 =

(
N∏
j=1

(1− αjz)B(z)− g

)
B(z)N−1 =

(
N∑
j=0

Sj(α)zjB(z)− g

)
B(z)N−1,

where deg g ≤ N − 1. All terms have the form cziB(z)j, c a constant and i ≤ j, and

hence are in A 0
B . Also,

zN+kB(z)N−1 = zk

(
N∑
0

Sj(α)zjB(z)− g

)
B(z)N−1,

so by an induction argument, we find that all of these are in A 0
B as well. Hence,

A 0
B ⊃ B(z)N−1A(D). In particular, if B has only two zeros, B(z) and zB(z) generate

the algebra AB, and in this case ρ is onto.

Mimicking the proof part i) of Theorem 3.3.12 we have the following result.
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Theorem 3.3.13. The algebra R(VB) is completely isometrically isomorphic to the

algebra AB.

Proof. Define a map ρ : R(VB)→ AB by

ρ(p/q) =
p(B(z), zB(z), . . . , zN−1B(z))

q(B(z), zB(z), . . . , zN−1B(z))
where p, q polynomials

and extend linearly. If it were the case that q(B(ξ), ξB(ξ), . . . ξN−1B(ξ)) = 0 for

some ξ ∈ D, we would have for (x01, . . . , x
0
N) = (B(ξ), ξB(ξ), . . . , ξN−1B(ξ)) ∈ VB

so that q(x01, . . . , x
0
N) = 0, and so p/q cannot be in R(VB). So the image of ρ is

in A(D). Hence, about any point in VB ∩ DN
, 1/q(y1, . . . , yN) has a power series

expansion
∑

i1,...,iN
ci1,...,iNy

i1
1 . . . y

iN
N since it is analytic. Thus

1/q(x1, . . . , xN) =
∑

i1,...,iN

ci1,...,iN (B(z))i1 . . . (zN−1B(z))iN .

So the image of ρ is generated by B(z), zB(z), . . . , zN−1B(z). On the other hand,

by Lemma 3.1.1 the algebra AB is generated by B(z), zB(z), . . . , zN−1B(z), so the

map ρ is onto. For f ∈ R(VB), the maximum modulus principle holds for

ρ(f(x1, . . . , xN)) = f(B(z), zB(z), . . . , zN−1B(z)).

Since (x1, . . . , xN) ∈ VB ∩ TN if and only if the associated z is in T, f achieves its

maximum modulus on (x, y) ∈ VB ∩ TN . Hence the map is isometric. The same

reasoning shows that the map is a complete isometry. This completes the proof.

3.4 Completely contractive representations of AB

This section inherits much of its structure from section 1 and 2 of [24], and in

particular, almost all the results in this section are analogues of results from that

paper. Proofs are included for completeness.

A unital representation τ : AB → B(H) on H is contractive if ‖τ(f)‖ ≤ ‖f‖ for

all f ∈ AB, where ‖f‖ represents the norm of f as an element of C(D) and ‖τ(f)‖
is the operator norm of τ(f).

The norm ‖F‖ of an element F = (fj,`) in Mn(AB) is the supremum of the set

{‖F (z)‖ : z ∈ D}, where ‖F (z)‖ is the operator norm of the n × n matrix F (z).
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Applying τ to each entry of F ,

τ (n)(F ) = 1n ⊗ τ(F ) = (τ(fj,`))

produces an operator on the Hilbert space ⊕n1H and ‖τ (n)(F )‖ is then its operator

norm. The mapping τ is completely contractive if for each n and F ∈Mn(AB),

‖τ (n)(F )‖ ≤ ‖F‖.

The following theorem is the main result of this section.

Theorem 3.4.1. The algebra AB has a contractive representation which is not

completely contractive.

In fact, we show that there exists a finite dimensional Hilbert space H and a

unital contractive representation τ : AB → B(H) which is not 2 contractive. This

is done by showing that ‖τ (2)(F )‖ > 1 for some rational inner matrix function

F ∈M2(AB) with ‖F‖ ≤ 1.

Consequently, combining Theorem 3.3.13 and Theorem 3.4.1 we have the follow-

ing failure of rational dilation on VB when the Blaschke product has two or more

zeros.

Theorem 3.4.2. Rational dilation fails on the distinguished variety VB. In par-

ticular rational dilation fails for VB = NB = {(x, y) ∈ D2
: x(x − αy)(x − βy) =

(y − αx)(y − βx)}, where Z(B) = {α, β}.

The following theorem characterizes the completely contractive representations

of AB. The case B(z) = z2 has been proved in [19] and [24]. Mimicking the proof

of Theorem 2.1 in [24] we prove the general case.

Theorem 3.4.3. A unital representation π : AB → B(H), H a Hilbert space,

is completely contractive if and only if there is a unitary operator U acting on a

Hilbert space K ⊃ H such that for all k ∈ Z+,

π
(
zkB(z)

)
= PH

(
UkB(U)

)
|H, (3.20)

where Z+ := {0, 1, 2, . . . }.
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Proof. Let π : AB → B(H) be unital, completely contractive representation. Let

A ∗
B ⊆ C(T) denote the set of complex conjugates of functions in AB. Then AB+A ∗

B

is an operator system and ρ : AB + A ∗
B → B(H) given by

ρ(f + g∗) = π(f) + π(g)∗

is well defined (Proposition 2.12 in [39]). Since π is unital and AB ∩ A ∗
B = C1, ρ

is completely positive (Proposition 3.5 in [39]). By the Arveson extension theorem,

ρ extends to a unital, completely positive (ucp) map σ : C(T) → B(H). By the

Stinespring theorem there is a larger Hilbert space K ⊃ H, a unital ∗-homomorphism

σ̃ : C(T) → B(K), and a bounded operator V : H → K with ‖σ(1)‖ = ‖V ‖2 such

that

σ(a) = V ∗σ̃(a)V.

Now since σ is unital and V is isometry, we may identify VH with H. With this

identification, V ∗ becomes the orthogonal projection of K onto H, PH . Setting

σ̃(z) = U , where z is coordinate function, and since zz = zz = 1 we have that U is

unitary and that

σ(zk) = PHσ̃(zk)|H = PHU
k|H for all k ∈ Z+.

With this U ∈ B(K) for all k ∈ Z+ we have

σ
(
zkB(z)

)
= PH

(
UkB(U)

)
|H.

Since

π
(
zkB(z)

)
= σ

(
zkB(z)

)
,

for all nonnegative integer k, one direction follows.

Conversely, suppose that there is a unitary operator U ∈ B(K) such that for all

k ≥ 0,

π
(
zkB(z)

)
= PH

(
UkB(U)

)
|H,

Then π̃ defined as

π̃(z) = U

defines a completely contractive representation of C(T) (hence π̃
(
zkB(z)

)
= UkB(U), k ∈

Z+). So π̃ restricted to the operator system AB ∩A ∗
B is completely positive, as is ρ,
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its compression to H, by the Stinespring dilation theorem. Since unital completely

positive maps are completely contractive, π = ρ|AB is completely contractive.

By using Theorem 3.3.12, the same arguments work to give a dilation theorem

for the algebra A 0
B .

Theorem 3.4.4. A unital representation π : A 0
B → B(H), H a Hilbert space, is

completely contractive if and only if there is a unitary operator U acting on a Hilbert

space K ⊃ H such that for 1 ≤ j ≤ N − 2 and 1 ≤ i ≤ j, and for j = N − 1 and

i ∈ N,

π(ziBj) = PHU
iB(U)j|H.

As in [24], it happens that even though there is a contraction T := PHU |H, for

neither algebra is it necessarily the case that π(B) = B(T ) and π(zB) = TB(T ).

To see this, we find the complex annihilator of AB. Recall that a function f in AB

can be written as

f(z) = c+
N∏
j=1

(z − αj)g(z),

for some g ∈ A(D), where αj ∈ Z(B). By [31, Theorem 1H], the annihilator (AB)⊥

of AB is isometrically isomorphic to the dual of A(D)/AB. On the other hand, the

space A(D)/AB is spanned by zk+AB, k = 1, . . . , N−1 and so has dimension N−1.

So the dimension of (AB)⊥ is also N − 1. The kernel functions

k(i)α (z) = i!
zi

(1− αz)i+1
(3.21)

have the property that 〈f(z), k
(i)
α (z)〉 = f (i)(α), the i-th dervative of f evaluated

at α ∈ D (consider the Taylor series of the functions f(z) and k
(i)
α (z)). So for

0 ≤ j ≤ n, 1 ≤ i ≤ tj − 1 and f ∈ H∞
B̃

,

〈f(z), k(i)αj (z)〉 = f (i)(αj) = 0.

This accounts for
∑n

j=0(tj − 1) = N − (n + 1) linearly independent functions. Fix

α`. Then for j = 0, . . . , n and j 6= `,

〈f(z), k(0)α`
(z)− k(0)αj

(z)〉 = c− c.

These n functions along with the previous N− (n+1) functions then form a linearly
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independent set, and hence a basis for the complex annihilator of AB. We write

{gk}N−1k=1 for the list of these functions.

Proposition 3.4.5. For both AB and A 0
B , there is a completely contractive repre-

sentation π in B(H) for which there is no operator T ∈ B(H) such that π(B) = B(T )

and π(zB) = TB(T ).

Proof. Consider AB to begin with. Recall the functions g1, . . . , gN−1 defined in terms

of the kernel functions k
(i)
αj . By definition, k

(i)
αj is divisible by zi (and no higher power

of z) and a simple calculation shows that likewise, the functions k
(0)
α` (·) − k

(0)
αj (·),

j 6= ` are divisible by z but no higher power of z. Each gj is in H2(D), the functions

in L2(T) (with normalized Lebesgue measure) where the coefficients of zj are zero

when j < 0.

Define H ⊂ H2(D) to be the orthogonal complement of the span of gi, where

either gi = k
(1)
αj for some j or k

(0)
α` (·)− k(0)αj (·). Since B has degree at least 2, there is

always one such gi. Since ranB is orthogonal to the span of gi, H is invariant under

multiplication by both B and zB.

Let U be the bilateral shift on L2(T), which is unitary. Then H is invariant

under both B(U) and UB(U). Hence by Theorem 3.4.3, the representation π of AB

defined by π(zjB) = PHU
jB(U)|H, j ∈ N, is completely contractive.

Furthermore, U∗gj ∈ H2(D), and z does not divide U∗gj. Since each gj is divisible

by z, this implies that U∗gj is not in the annihilator of AB.

Suppose that there exists T ∈ B(H) such that π(B) = B(T ) = B(U)|H and

π(zB) = TB(T ) = UB(U)|H. Since B is inner, both π(B) and π(zB) are isometries.

The quotient space Ĥ = H2(D)/
∨
gi is isometrically isomorphic to H. Let q be the

quotient map. Since H is invariant under U , T passes to a contraction operator T̂ on

the quotient space and T̂ jB(T̂ ) are isometries, j = 0, 1. Also, there is an isometry

V : Ĥ → L2(T) such that T̂ jB(T̂ ) = V ∗U jB(U)V , and so this induces a completely

contractive representation π̂ of AB into B(Ĥ).

Since U(U∗gi) = gi, T̂ q(U
∗gi) = 0. As we saw, the map T̂ is isometric, and so

it follows that q(U∗gi) = 0. But as was noted, U∗gi is not in the annihilator of

AB ⊃
∨
gi, so q(U∗gi) cannot be 0, giving a contradiction.

The representation π̂ of AB constructed above restricts to a completely contrac-

tive representation of A 0
B . Since there is no operator T̂ such that T̂ jB(T̂ ), j = 0, 1,

and these latter are in A 0
B , the claim holds for A 0

B as well.
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3.5 The cone generated by the test functions

Recall that by Corollary 2.3.12 the set of test functions for H∞B ,

ΨB = {ψλ = B(z)Dλ(z) : λ = (λ1, . . . , λN−1) ∈ DN−1
∞ with λ1 � · · · � λN−1},

(3.22)

where Dλ is the finite Blaschke product with zeros λ1, . . . , λN−1. Note that ΨB

inherits the topology and the Borel structure from DN−1
∞ . Moreover, it is clear that

ΨB separates the points of D and supψλ∈ΨB |ψλ(z)| < 1 for all z ∈ D.

Definition 3.5.1 ([26]). Let X be a compact Hausdorff space. A k×k matrix-valued

measure

µ = (µi,j)
k
i,j=1

is a k × k matrix whose entries µi,j are complex valued Borel measures on X. The

measure µ is positive (µ ≥ 0) if for each function f : X → Ck,

f =


f1
...

fk

 ,

we have

0 ≤
∫
X

f ∗ dµf :=
k∑

i,j=1

∫
X

fjfi dµi,j.

The positive measure µ is bounded by C > 0 if

CIk − (µi,j(X)) ≥ 0

is positive semi-definite, where Ik is the k × k identity matrix.

Lemma 3.5.2 ([26, Lemma 5.3]). The k × k matrix valued measure µ is positive if

and only if for each Borel set Ω the k × k matrix

(µi,j(Ω))ki,j=1

is positive semi-definite.

Further, if there is a κ so that each diagonal entry µi,i(X) ≤ κ, then each entry

µi,j of µ has total mass at most κ. Particularly, if µ is bounded by C, then each

entry has total variation at most C.
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Lemma 3.5.3 ([26, Lemma 5.4]). If µn is a sequence of positive k×k matrix-valued

measures on X which are all bounded above by C, then µn has a weak-∗ convergent

sub-sequence. That is, there exists a positive k × k matrix-valued measure µ, such

that for each pair of continuous functions f, g : X → Ck,∫
X

g∗ dµn`f =
∑
i, j

∫
X

figjdµ
n`
ij →

∑
i, j

∫
X

figjdµij =

∫
X

g∗ dµf.

Lemma 3.5.4 ([26, Lemma 5.5]). If µ is a positive k× k matrix-valued measure on

X, then the diagonal entries, µjj are positive measures. Further, with ν =
∑k

j=1 µjj,

there exists a k× k matrix-valued function ∆ : X →Mk(C) so that ∆(x) is positive

semi-definite for each x ∈ X and dµ = ∆dν; that is, for each pair of continuous

functions f, g : X → Ck,

∑
i, j

∫
X

gifjdµij =
∑
i, j

∫
X

gi∆ijfjdν .

Let M(ΨB) be the space of finite Borel measures on ΨB. For every fixed subset

Y of D, we define the set

M+(Y ) = {µ : Y × Y →M(ΨB) : µ ≥ 0}.

We write µx,y for the value of µ at the pair (x, y). The kernel µ ∈M+(Y ) is positive

if for all finite sets Z ⊆ Y and all Borel sets Ω ⊆ ΨB, the matrix

µ(Ω) = (µx,y(Ω))x,y∈Z (3.23)

is positive semidefinite.

The following example illustrates what it means for µ to be a positive M+(Y )-

valued kernel.

Example 3.5.5. If µx,y is identically equal to a fixed positive measure ν, or more

generally is of the form µx,y = f(x)f(y)∗ν for a fixed positive measure ν and bounded

measurable function f : D→ C, or more generally still is a finite sum of such terms,

then µ = (µx,y) is positive.

Proposition 3.5.6. Let f be a function in A(D). Then f ∈ AB and ‖f‖∞ ≤ 1 if

63



Chapter 3. Rational dilation on distinguished varieties

and only if there is a positive kernel µ ∈M+(D) such that

1− f(x)f(y)∗ =

∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ) (3.24)

for all x, y ∈ D.

Proof. Suppose f ∈ AB and ‖f‖∞ ≤ 1. Then the function f̃ = f ◦m−α0 is in the

algebra AB̃ and ‖f̃‖∞ ≤ 1. Hence by (2.27) (or (2.29)), we have

1− f̃(x)f̃(y)∗ =

∫
ΘB̃

Hθ(x)
(

1− ψ̃θ(x)ψ̃θ(y)∗
)
Hθ(y)∗ dν̃(θ). (3.25)

Since ΨB̃ = {ψ̃θ : θ ∈ ΘB̃} we view the measure in (3.25) as being on the set ΨB̃ in

place of the set of extremal measures ΘB̃, so that

1− f̃(x)f̃(y)∗ =

∫
ΨB̃

Hψ̃(x)
(

1− ψ̃(x)ψ̃(y)∗
)
Hψ̃(y)∗ dν̃(ψ̃).

This is equivalent to

1−f(m−α0(x))f(m−α0(y))∗ =

∫
ΨB

Hψ(x) (1− ψ(m−α0(x))ψ(m−α0(y))∗)Hψ(y)∗ dν(ψ),

where ΨB =
{
ψ := ψ̃ ◦mα0 : ψ̃ ∈ ΨB̃

}
. Since m−α0 is the automorphism of D, we

have

1− f(x)f(y)∗ =

∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ), (3.26)

where µx,y(ψ) = Hψ(x)ν(ψ)Hψ(y)∗.

Conversely, suppose f ∈ A(D) and there is a positive kernel µ ∈ M+(D) such

that (3.24) holds. By the realization theorem (Theorem 1.3.6) we have that f ∈
H∞1 (KΨB). By Corollary 2.3.12 we conclude that f ∈ H∞1,B. Hence the assumption

f ∈ A(D) implies that f ∈ AB. This completes the proof.

3.6 A closed matrix cone and the separation ar-

gument

Let M2(C) denote the 2 × 2 matrices with entries from C. In order to study the

action of representations on M2(AB), we consider a finite subset S ⊆ D.
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Let K2,S denote the set of all kernels K : S×S →M2(C) and L2,S = {F ∈ K2,S :

F (x, y)∗ = F (y, x)} the set of all self-adjoint kernels in K2,S. Finally, write C2,S for

the cone in L2,S of elements of the form(∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ)

)
x,y∈S

, (3.27)

where µ = (µx,y) ∈ M+
2 (S) is a kernel taking its values µx,y in the 2 × 2 matrix

valued measure on ΨB such that for every Borel subset Ω of ΨB the measures

µ(Ω) = (µx,y(Ω))x,y∈S (3.28)

takes positive semidefinite values in Ms(M2(C)), where s is the cardinality of the

set S. Given f : S → C2, the kernel (f(x)f(y)∗)x,y∈S is called a square.

Lemma 3.6.1 ([24, Lemma 3.3]). The cone C2,S is closed and contains the squares.

Proof. By definition

sup
ψ∈ΨB

|ψ(x)| < 1 for x ∈ S.

Hence as S is finite, there exists a 0 < κ ≤ 1 such that for all x ∈ S and ψ ∈ ΨB

1− ψ(x)ψ(x)∗ ≥ κ.

Consequently, for the kernel

K(x, y) =

∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ) ∈ C2,S

we have
1

κ
K(x, x) � µx,x(ΨB),

where the inequality is in the sense of the positive semidefinite matrices in M2(C).

Let {Kn}n≥1 be a sequence in C2,S which converges to some K. So for each n

there is a positive measure µn such that

Kn(x, y) =

∫
ΨB

(1− ψ(x)ψ(y)∗) dµnx,y(ψ).

Hence there exists a κ̃ > 0 such that κ̃ ·I2 ≥ Γn(x, x) for all n and all x ∈ S (because
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S is finite), and so
κ̃

κ
· I2 ≥ µnx,x(ΨB)

for all n and all x ∈ S. By Lemma 3.5.2 we see that positivity of the µns implies

that the measures µnx,y are uniformly bounded. Hence by Lemma 3.5.3 there exists

a subsequence µnj and a measure µ such that µnj converges weak-∗ to µ, which

therefore is positive. Thus the positive kernel K is given by

K(x, y) =

∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ)

is in C2,S. We conclude that C2,S is a closed cone.

Fix a test function ψ0 in ΨB. Let f : S → C2 be given. Let δ0 denote the unit

scalar point mass at ψ0. Then

µx,y(Ω) = f(x)
1

1− ψ0(x)ψ0(y)∗
δ0(Ω)f(y)∗,

defines a positive Ms(C)-valued measure, where Ω is a Borel subset of ΨB. Thus

(
f(x)f(y)∗

)
=

(∫
ΨB

(1− ψ0(x)ψ0(y)∗) dµx,y(ψ)

)
∈ C2,S.

Proposition 3.6.2. If a ∈ AB is analytic in a neighborhood of the closure of the

open unit disk with ‖a‖∞ ≤ 1 and f : S → C2, then

(f(x) (1− a(x)a(y)∗) f(y)∗)x,y∈S ∈ C2,S.

Proof. By assumption and Proposition 3.5.6 there exist a positive kernel ν ∈M+(D)

such that

1− a(x)a(y)∗ =

∫
ΨB

(1− ψ(x)ψ(y)∗) dνx,y(ψ) (3.29)

for all x, y ∈ D. Since ν ∈M+(D), we have

ν(Ω) = (νx,y(Ω))x,y∈S

is positive semidefinite for every Borel subset Ω of ΨB, and each νx,y is a scalar
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valued measure. Then, since f : S → C2, for each Ω a Borel subset of ΨB,

µ(Ω) := (µx,y(Ω))x,y∈S = (f(x)νx,y(Ω)f(y)∗)x,y∈S

defines an Ms(M2(C)) -valued positive measure. Thus, by (3.29) we conclude that

(f(x) (1− a(x)a(y)∗) f(y)∗)x,y∈S =

(∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ)

)
x,y∈S

∈ C2,S.

Let IB denote the ideal of functions in AB which vanish on S; i.e.,

IB = {ϕ ∈ AB : ϕ(x) = 0 for all x ∈ S}.

Since S is finite set, the ideal IB is closed. The canonical quotient map q : AB →
AB/IB is completely contractive. We denote by F t the transpose of the matrix

function F ∈ M2(AB). Thus , F t(z) = F (z)t. Clearly, F t ∈ M2(AB) and ‖F‖∞ =

‖F t‖∞ whenever F ∈M2(AB). Given F ∈M2(AB), let ∆F,S denote the kernel

∆F,S = (I2 − F (x)F (y)∗)x,y∈S. (3.30)

Proposition 3.6.3 ([24, Proposition 3.5]). Let q : AB → AB/IB be the canonical

quotient map. If F ∈ M2(AB) and ‖F‖∞ ≤ 1, but ∆F,S 6∈ C2,S, then there exists a

Hilbert space H and representation τ : AB/IB → B(H) such that for all a ∈ AB,

(i) ‖τ(q(a))‖ ≤ 1 whenever ‖a‖ ≤ 1; but

(ii) ‖τ (2)(q(2)(F t))‖ > 1.

Therefore the representation τ ◦ q is contractive, but not completely contractive.

Proof.

(i) We use the Hahn-Banach cone separation with a GNS construction to get a linear

functional that separates ∆F,S from C2,S.

By Lemma 3.6.1 the cone C2,S is closed and by assumption ∆F,S 6∈ C2,S. Hence by

the separation theorem there exists a nonconstant R-linear functional Λ : L2,S → R
such that Λ(C2,S) ≥ 0, but Λ(∆F,S) < 0. By Lemma 3.6.1 for given f : S → C2 the

67



Chapter 3. Rational dilation on distinguished varieties

square ff ∗ := (f(x)f(y)∗)x,y∈S is in the cone C2,S. Thus Λ(ff ∗) ≥ 0. For any kernel

K in K2,S, there exist unique kernels UK , VK ∈ L2,S such that K = UK + iVK , where

UK =
1

2
(K +K∗), VK =

1

2i
(K −K∗)

So there exists a unique L : K2,S → C linearly extending Λ. Let H denote the

Hilbert space obtained by giving (C2)S the pre-inner product

〈f, g〉 = L(fg∗)

and passing to the quotient by the space of null vectors (those f for which L(ff ∗) =

0). Since S is finite, the quotient will be complete.

Define a representation ρ of AB on B(H) by

ρ(a)f(x) = f(x)a(x), (3.31)

where the scalar valued a multiplies the vector valued f entrywise.

Indeed ρ is unital homomorphism, since

ρ(1)f(x) = f(x) · 1 = f(x),

ρ(a+ b)f(x) = f(x)(a(x) + b(x)) = f(x)a(x) + f(x)b(x) = ρ(a)f(x) + ρ(b)f(x),

ρ(ab)f(x) = f(x)a(x)b(x) = ρ(a)f(x)b(x) = ρ(a)ρ(b)f(x).

We also have that ρ is ∗-homomorphism, because of finiteness of S implies that

〈ρ(a∗)f, g〉 = 〈f(x)a∗, g〉

= L(fa∗g∗) = L(f(ga)∗)

= 〈f, ga〉 = 〈f, ρ(a)g〉

= 〈ρ(a)∗f, g〉.

If a ∈ AB, is analytic in a neighborhood of closed unit disk and ‖a‖∞ ≤ 1, then

by Proposition 3.6.2, (f(x)(1− a(x)a(y)∗)f(y)∗)x,y∈S ∈ C2,S. Thus,

〈f, f〉 − 〈ρ(a)f, ρ(a)f〉 = L
(

(f(x)(1− a(x)a(y)∗)f(y)∗)x,y∈S

)
≥ 0. (3.32)

Hence, if ‖a‖∞ ≤ 1, then ‖ρ(a)‖ ≤ 1. That is, ρ is a contractive representation of
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AB. Since the definition of ρ depends only on the values of a on S, if a ∈ IB, then

ρ(a)f(x) = f(x)a(x) = f(x) · 0 = 0.

Thus, ρ(a) = 0 whenever a ∈ IB. Hence IB ⊆ ker ρ. By [18, Theorem 2.3.5] ρ

descends to a contractive representation τ : A/IB → B(H) given by

ρ = τ ◦ q.

This completes the proof of (i).

(ii) Let {e1, e2} denote the standard basis for C2 and let [ej] : S → C2 be the

constant function [ej](x) = ej. Note that {eie∗j}2i,j=1 are a system of 2 × 2 matrix

units. We find

ρ(2)(F t)([e1]⊕ [e2]) =

(
ρ(F1,1)e1 + ρ(F2,1)e2

ρ(F1,2)e1 + ρ(F2,2)e2

)
.

Since

(ρ(F1,1)e1 + ρ(F2,1)e2) (ρ(F1,1)e1 + ρ(F2,1)e2)
∗

= ρ(F1,1F
∗
1,1)e1e

∗
1 + ρ(F2,1F

∗
1,1)e2e

∗
1 + ρ(F1,1F

∗
2,1)e1e

∗
2 + ρ(F2,1F

∗
2,1)e2e

∗
2

=

(
ρ(F1,1F

∗
1,1) ρ(F1,1F

∗
2,1)

ρ(F2,1F
∗
1,1) ρ(F2,1F

∗
2,1)

)
.

and

(ρ(F1,2)e1 + ρ(F2,2)e2)(ρ(F1,2)e1 + ρ(F2,2)e2)
∗

= ρ(F1,2F
∗
1,2)e1e

∗
1 + ρ(F2,2F

∗
1,2)e2e

∗
1 + ρ(F1,2F

∗
2,2)e1e

∗
2 + ρ(F2,2F

∗
2,2)e2e

∗
2

=

(
ρ(F1,2F

∗
1,2) ρ(F1,2F

∗
2,2)

ρ(F2,2F
∗
1,2) ρ(F2,2F

∗
2,2)

)
,

it follows that

〈
ρ(2)(F t)([e1]⊕ [e2]), ρ

(2)(F t)([e1]⊕ [e2])
〉

= L

((
F1,1F

∗
1,1 + F1,2F

∗
1,2 F1,1F

∗
2,1 + F1,2F

∗
2,2

F2,1F
∗
1,1 + F2,2F

∗
1,2 F2,1F

∗
2,1 + F2,2F

∗
2,2

))
= L(FF ∗),
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Since L(∆F,S) < 0,

〈(
I2 − ρ(2)

(
F t
)
ρ(2)

(
F t
)∗)

[e1]⊕ [e2], [e1]⊕ [e2]
〉
< 0.

We conclude that ‖ρ(2)(F t)‖ > 1. Since ‖F‖∞ ≤ 1 and q is completely contractive

, the representation ρ is not 2-contractive. Thus ρ = τ ◦ q is contractive but not

completely contractive.

3.7 Preliminary results

Lemma 3.7.1 ([24, Lemma 4.2]). Let X be a set and Σ a σ-algebra over X. Suppose

µi,j are 2 × 2 matrix-valued measures on the measure space (X,Σ) for i, j = 0, 1.

If µi,j(X) = I2 for all i, j and if for each Ω ∈ Σ the 4 × 4 matrix-valued measure

(block 2× 2 matrix with 2× 2 matrix entries)

(µi,j(Ω))1i,j=0

is positive semidefinite, then µi,j = µ0,0 for each i, j = 0, 1.

Lemma 3.7.2. Let U ∈ M2(C) be a unitary matrix. Given distinct points p1, p2 ∈
D \ {0}, let B1, B2 be finite Blaschke products such that p1 ∈ Z(B1) \ Z(B2) and

p2 ∈ Z(B2) \ Z(B1). Let

G =

(
B1 0

0 1

)
U

(
1 0

0 B2

)
(3.33)

Then there exists unimodular constants s and t such that

G =

(
sB1 0

0 tB2

)
(3.34)

if and only if there exists unitaries V and W in M2(C) such that

G = V

(
B1 0

0 B2

)
W ∗. (3.35)
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Proof. Since (
sB1 0

0 tB2

)
=

(
1 0

0 t

)(
B1 0

0 B2

)(
s 0

0 1

)

choosing V =

(
1 0

0 t

)
, W ∗ =

(
s 0

0 1

)
yields the forward implication.

For the converse, evaluating at p2 gives

G(p2) = V

(
B1(p2) 0

0 0

)
W ∗ =

(
B1(p2) 0

0 1

)
U

(
1 0

0 0

)
.

Since V is unitary we have that(
B1(p2) 0

0 0

)
W ∗ = V ∗

(
B1(p2) 0

0 1

)
U

(
1 0

0 0

)
. (3.36)

Assume W =

(
w11 w21

w21 w22

)
, V =

(
v11 v21

v21 v22

)
, U =

(
u11 u21

u21 u22

)
∈ M2(C). Then

(3.36) becomes(
B1(p2) 0

0 0

)(
w11 w21

w12 w22

)
=

(
v11 v21

v12 v22

)(
B1(p2) 0

0 1

)(
u11 u21

u21 u22

)(
1 0

0 0

)
.

This simplifies to(
B1(p2)w11 B1(p2)w21

0 0

)
=

(
B1(p2)v11u11 + v21u21 0

B1(p2)v22u11 + v22u22 0

)
.

Since B1(p2) 6= 0, we have w21 = 0. It follows that

W ∗W =

(
|w11|2 w11w12

w12w11 |w12|2 + |w22|2.

)

On the other hand, W is unitary, so |w11|2 = 1. Hence w11 6= 0. This imply that

w12 = 0. So W is diagonal matrix with entries w11, w22 ∈ T. A similar argument

shows that V is diagonal matrix with entries v11, v22 ∈ T. Finally, with the choice

s = v11w11 and t = v22w22 gives the desired result.

Lemma 3.7.3 ([24, Lemma 4.3]). Let U ∈M2(C) be a unitary matrix with non-zero
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entries. Given distinct points p1, p2 ∈ D \ {0}, let kp1 and kp2 be the Szegő kernels.

If G is given as in (3.33) with Bj(z) = mpj(z) for j = 1, 2, the Möbius map at the

points p1, p2, then there exists linearly independent vectors v1, v2 ∈ C2 and, for any

finite subset S of D, functions a, b : S → C2 in the span of {kp1(x)v1, kp2(x)v2} such

that
I2 −G(x)G(y)∗

1− xy∗
= a(x)a(y)∗ + b(x)b(y)∗. (3.37)

Proof. Let e1, e2 denote the standard basis for C2 and let MG denote the operator

multiplication by G on H2
C2 , the Hardy space of C2-valued functions on the disk.

First, we claim that the operator MG is an isometry on T. To prove this, we need

to show 〈MGf,MGf〉 = 〈f, f〉 for f =

(
f1

f2

)
∈ H2

C2 . Since

‖MGf‖2 = lim
r→1

∫
T
‖G(rλ)f(rλ)‖2 dσ = lim

r→1

∫
T
‖f(rλ)‖2 dσ = ‖f‖2,

and so the claim is proved.

It is well known that M∗
Gkλv = G∗(λ)kλv for v ∈ C2 (see section A.2 in the

Appendix). Hence the first and third factors in G∗(λ) have one dimensional ker-

nels. Since U∗ is unitary in M2(C), it has zero kernel. Thus we conclude that the

dimension of the kernel of M∗
G is at most two.

Observe that for v1 = e1,

M∗
Gkp1e1 = G∗(p1)kp1e1 =

(
1 0

0 mp2(p1)

)
U∗

(
0 0

0 1

)(
kp1

0

)

=

(
1 0

0 mp2(p1)

)
U∗

(
0

0

)
=

(
0

0

)
.

Thus kp1v1 is in the kernel of M∗
G.

Choose a unit vector v2 in C2 with entries α and β 6= 0 such that(
mp1(p2) 0

0 1

)
v2 =

(
mp1(p2) 0

0 1

)(
α

β

)
=

(
αmp1(p2)

β

)
= Ue2.

That such a choice of α and β 6= 0 is possible follows from the assumption that

p1 6= p2, which ensures that mp1(p2) 6= 0, and the assumption that U has no nonzero
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entries, giving β 6= 0. Further, with this choice of v2 we have that

M∗
Gkp2v2 =

(
1 0

0 0

)
U∗

(
mp1(p2) 0

0 1

)
v2 =

(
1 0

0 0

)
U∗Ue2 =

(
0

0

)
,

which shows that kp2v2 is in the kernel of M∗
G. Hence, the dimension of the kernel

of M∗
G is two. Since MG is isometry, I −MGM

∗
G is the projection onto the kernel of

M∗
G.

Choose an orthonormal basis {a, b} for the kernel of M∗
G so that

I −MGM
∗
G = aa∗ + bb∗.

It now follows that for vectors u,w ∈ C2,〈
I2 −G(x)G(y)∗

1− xy∗
u,w

〉
H2

C2

= 〈(I2 −G(x)G(y)∗)ky(x)u,w〉

= 〈ky(x)u,w〉 − 〈G(x)G(y)∗ky(x)u,w〉

= 〈kyu, kxw〉 − 〈G(x)G(y)∗kyu, kxw〉

= 〈kyu, kxw〉 − 〈G(y)∗kyu,G(x)∗kxw〉

= 〈kyu, kxw〉 − 〈M∗
Gkyu,M

∗
Gkxw〉

= 〈(I −MGM
∗
G)kyu, kxw〉H2

C2

= 〈(aa∗ + bb∗)kyu, kxw〉 .

On the other hand, we have

〈(aa∗ + bb∗)kyu, kxw〉 = 〈aa∗kyu, kxw〉+ 〈bb∗kyu, kxw〉

= 〈a〈kyu, a〉, kxw〉+ 〈b〈kyu, b〉, kxw〉

= 〈kyu, a〉 〈a, kxw〉+ 〈kyu, b〉 〈b, kxw〉 (3.38)

= 〈a, kyu〉 〈a, kxw〉+ 〈b, kyu〉 〈b, kxw〉

= 〈a(y), u〉 〈a(x), w〉+ 〈b(y), u〉 〈b(x), w〉 .
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Since a(x), a(y), b(x), b(y), u, w ∈ C2, we have

〈a(y), u〉 〈a(x), w〉 = (a1(y)u1 + a2(y)u2)(a1(x)w1 + a2(x)w2)

=

〈(
a1(x)a1(y) a1(x)a2(y)

a2(x)a1(y) a2(x)a2(y)

)(
u1

u2

)
,

(
w1

w2

)〉
(3.39)

= 〈a(x)a(y)∗u,w〉.

and likewise

〈b(y), u〉 〈b(x), w〉 = 〈b(x)b(y)∗u,w〉. (3.40)

Hence by (3.38), (3.39) and (3.40),〈
I2 −G(x)G(y)∗

1− xy∗
u,w

〉
H2

C2

= 〈(a(x)a(y)∗ + b(x)b∗(y))u,w〉.

This completes the proof.

3.8 Construction of the counterexample

Let mζ be the Möbius map on ζ ∈ D. Fix distinct points p1, p2 ∈ D \ Z(B), where

Z(B) = {α1, . . . , αN} the zero set of B(z). Fix a finite subset S of D containing

p1, p2,Z(B) and consisting of at least 2N + 4 distinct points. Recall that the set of

test functions ΨB is given by

ΨB = {ψλ(z) = B(z)Dλ(z) : λ = (λ1, . . . , λN−1) ∈ DN−1
∞ },

with the ordering λ1 � · · · � λN−1, where Dλ(z) =
∏N−1

j=1 mλj(z). Recall also that

we take m∞(z) = 1 in ΨB for all λj ∈ D∞. Fix j ∈ 1, . . . , N − 1. Then the above

ordering implies that if λj = ∞ , then λk = ∞ for all k = j + 1, . . . , N − 1. So in

the rest of this section we fix the following notation

ψ0(z) := ψ(∞,...,∞)(z) = B(z) (3.41)

and

ψiλ(z) := ψ(λ1,...,λi,∞,...,∞)(z), (3.42)

where λ1, . . . , λi ∈ D for i = 1, . . . , N−2. Also, we write∞N−1 for the (N−1)-tuple

(∞, . . . ,∞) in DN−1
∞ .
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Let

Π =

(
mp1 0

0 1

)
U

(
1 0

0 mp2

)
, (3.43)

where

U =
1√
2

(
1 1

1 −1

)
.

In particular Π is a 2 × 2 matrix inner function with detΠ(z) = 0 at the points

p1, p2 and degree at most 2.

Let

F (z) = B(z)Π(z), (3.44)

where F is a rational inner function in M2(AB) with ‖F‖∞ = 1.

Theorem 3.8.1. Let F = (Fi,j)
2
i,j=1 ∈ M2(AB) be defined as in (3.44). Then

∆F,S 6∈ C2,S.

Consequently this will establish the proofs of and Theorem 3.4.1 and Theorem

3.4.2.

The proof of Theorem 3.4.1. By Theorem 3.8.1, we have that ∆F,S 6∈ C2,S. Hence

by Proposition 3.6.3 there exists a contractive representation of AB, which is not

completely contractive.

The proof of Theorem 3.4.2. By Theorem 3.4.1, there exists a contractive represen-

tation of AB, which is not completely contractive. Then by Theorem 3.3.13 there ex-

ists a contractive representation of R(VB), which not completely contractive. Hence

by Theorem 3.3.6, rational dilation fails for the N - distinguished variety VB. This

completes the proof.

The proof of Theorem 3.8.1 goes by a contradiction. More precisely, we assume

that ∆F,S lies in the cone C2,S; that is, there exists an M2(C)-valued positive measure

µ such that

I2 − F (x)F (y)∗ =

∫
ΨB

(1− ψ(x)ψ(y)∗) dµx,y(ψ) for x, y ∈ S, (3.45)

for x, y ∈ S. We will restrict the measures µx,y in (3.45) by a sequence of lemmas.

75



Chapter 3. Rational dilation on distinguished varieties

Multiplying (3.45) by the Szegő kernel s(x, y) = (1− xy∗)−1 we get(
I2 − F (x)F (y)∗

1− xy∗

)
x,y∈S

=

(∫
ΨB

(
1− ψ(x)ψ(y)∗

1− xy∗

)
dµx,y(ψ)

)
x,y∈S

. (3.46)

Since F (x) = B(x)Π(x), then

I2 − F (x)F (y)∗

1− xy∗
=

1−B(x)B(y)∗

1− xy∗
I2 +B(x)B(y)∗

(
I2 −Π(x)Π(y)∗

1− xy∗

)
. (3.47)

Similarly, for the test functions ψλ(x) = B(x)Dλ(x) for λ ∈ DN−1
∞ , we have that

1− ψλ(x)ψλ(y)∗

1− xy∗
=

1−B(x)B(y)∗

1− xy∗
+B(x)B(y)∗

(
1−Dλ(x)Dλ(y)∗

1− xy∗

)
. (3.48)

Let

kζ(x) =

√
1− |ζ|2

1− ζx
(3.49)

denote the normalized Szegő kernel at ζ ∈ D∞. We take k∞ = 0 when ζ =∞ (this is

because we identify the infinity point with the boundary of D). A direct calculation

verifies that
1−mζ(x)mζ(y)∗

1− xy∗
= kζ(x)kζ(y)∗, (3.50)

for all ζ ∈ D∞. Let B be a Blaschke product with zeros ξ1, . . . , ξ` in D∞ such that

ξ1 � · · · � ξ`. Then

1−B(x)B(y)∗

1− xy∗
=

1−mξ1(x)mξ1(y)∗

1− xy∗
+
∑̀
k=2

k−1∏
i=1

mξi(x)
1−mξk(x)mξk(y)∗

1− xy∗
k−1∏
i=1

mξi(y)∗

Using 3.50 we get

1−B(x)B(y)∗

1− xy∗
= kξ1(x)kξ1(y)∗ +

∑̀
k=2

k−1∏
i=1

mξi(x)kξk(x)kξk(y)∗
k−1∏
i=1

mξi(y)∗ (3.51)

Define

Kξ(x) =
(
kξ1(x) mξ1(x)kξ2(x) . . .

∏`−1
i=1 mξi(x)kξ`(x)

)
∈M1×`(C). (3.52)
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Then identity (3.51) becomes

1−B(x)B(y)∗

1− xy∗
= Kξ(x)Kξ(y)∗. (3.53)

It follows also that the kernel
(

1−B(x)B(y)∗

1−xy∗

)
is positive semidefinite. Applying (3.53)

with the choice B = Dλ in equation (3.48), we obtain

1− ψλ(x)ψλ(y)∗

1− xy∗
=

1−B(x)B(y)∗

1− xy∗
+B(x)B(y)∗Kλ(x)Kλ(y)∗, (3.54)

where

Kλ(x) =
(
kλ1(x) mλ1(x)kλ2(x) . . .

∏N−2
i=1 mλi(x)kλN−1

(x)
)
∈M1×(N−1)(C).

(3.55)

Using (3.47) and (3.54), rewrite (3.46) as follows

1−B(x)B(y)∗

1− xy∗
I2 +B(x)B(y)∗

(
I2 −Π(x)Π(y)∗

1− xy∗

)
=

1−B(x)B(y)∗

1− xy∗

∫
ΨB

dµx,y(ψ) +B(x)B(y)∗
∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµx,y(ψ). (3.56)

As pointed out at the beginning of the section if λ1 = ∞, then we have λ2 =

∞, . . . , λN−1 = ∞, this implies that kλj = k∞ = 0 for all j = 1, . . . , N − 1. Hence

the second integral in (3.56) is restricted to Ψ 0
B = ΨB \ {ψ0}.

By Lemma 3.7.3, there exist linearly independent vectors v1, v2 in C2 and func-

tions f, g : S → C2 in the span of {kp1v1, kp2v2} such that

1−B(x)B(y)∗

1− xy∗
I2 +B(x)B(y)∗ (f(x)f(y)∗ + g(x)g(y)∗)

=
1−B(x)B(y)∗

1− xy∗

∫
ΨB

dµx,y(ψ) +B(x)B(y)∗
∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµx,y(ψ). (3.57)

Let

A(x, y) =

∫
ΨB

dµx,y(ψ);

R(x, y) = B(x)B(y)∗ (f(x)f(y)∗ + g(x)g(y)∗) ; and

R̃(x, y) = B(x)B(y)∗
∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµx,y(ψ),
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which are all positive kernels on S. Then (3.57) becomes

R(x, y)− R̃(x, y) =
1−B(x)B(y)∗

1− xy∗
(A(x, y)− I2) . (3.58)

We next show that µx,y is independent of x and y. To do this, we define

K := {B(x)kp1(x)v1, B(x)kp2(x)v2} , (3.59)

where the points p1, p2 are fixed as before.

Lemma 3.8.2. If ∆F,S ∈ C2,S and for x, y ∈ S, then the following hold

(i) The M2(C) valued kernel
(
A(x, y)− I2

)
is positive semidefinite ;

(ii) The M2(C) valued kernel
(
R(x, y)− R̃(x, y)

)
is positive semidefinite with rank

at most two;

(iii) The range of R̃ lies in the range of R, which is in the span of K; and

(iv) Let s be the cardinality of the set S and let [I2] denote the s × s block matrix

with all entries consisting of I2. Then either

(a) The kernel A− [I2] has rank at most one; i.e., there is a function u : S → C2

such that

A(x, y) = I2 + u(x)u(y)∗ (3.60)

or

(b) There exist functions u, v : S → C2 such that

A(x, y) = I2 + u(x)u(y)∗ + v(x)v(y)∗, (3.61)

and a point p ∈ S \ Z(B) such that u(p) = v(p) = 0.

Proof. (i) Recall that α = {αi} is the zero set of B, so ψ(αi) = 0 for all ψ ∈ ΨB and

1 ≤ i ≤ N . It follows from (3.45),

I2 = I2−F (αi)F (αj)
∗ =

∫
ΨB

(1−ψ(αi)ψ(αj)
∗) dµαi,αj(ψ) =

∫
ΨB

dµαi,αj(ψ) = A(αi, αj)

and

I2 = I2 − F (αi)F (y)∗ =

∫
ΨB

(1− ψ(αi)ψ(y)∗) dµαi,y(ψ) =

∫
ΨB

dµαi,y(ψ) = A(αi, y)
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for all y ∈ S. The square matrix (A(x, y))x,y∈S is positive semidefinite, so there

exists a matrix D such that (A(x, y))x,y∈S = D∗D. Fix αi ∈ Z(B), then

0 �


(
A(x, y)

)
x,y∈S

(
A(x, αi)

)
x 6=αi(

A(αi, y)
)
y 6=αi

(
A(αi, αj)

)  =


D∗D


I2
...

I2

(
I2 · · · I2

)
I2

 .

So there is a contraction Z such that


I2
...

I2

 = (D∗D)1/2Z (see [16, Proposition

1.3.2]). Hence,(
A(x, y)

)
x,y∈S

= D∗D = (D∗D)1/2(D∗D)1/2 � (D∗D)1/2ZZ∗(D∗D)1/2

= (D∗D)1/2ZZ∗(DD∗)1/2 =


I2
...

I2

(I2 · · · I2

)
= [I2].

This completes the proof of (i).

(ii) Applying (3.53) with the choice B = B in (3.58) gives

1−B(x)B(y)∗

1− xy∗
= Kα(x)Kα(y)∗,

where

Kα(x) =
(
kα1(x) mα1(x)kα2(x) . . .

∏N−1
i=1 mαi(x)kαN (x)

)
∈M1×N(C). (3.62)

It follows that the matrix
(

1−B(x)B(y)∗

1−xy∗

)
x,y∈S

is positive semidefinite. On the other

hand, the Schur product of positive semidefinite matrices is positive semidefinite, so

since (A− [I2])x,y∈S is positive semidefinite, we have that((
1−B(x)B(y)∗

1− xy∗

)
(A− [I2])

)
x,y∈S

is positive semidefinite. Hence by (3.58) we conclude that
(
R(x, y)− R̃(x, y)

)
x,y∈S
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is positive semidefinite.

Since ranR ⊂ K, R has rank at most 2. Hence, since R̃ is positive semidefinite,(
R(x, y)− R̃(x, y)

)
x,y∈S

has rank at most 2.

(iii) By item (ii) and Douglas’ lemma, the range of R̃ is contained in the range

of R. By Lemma 3.7.3, the range of R is spanned by the set K and (iii) follows.

(iv) First note that in any case equation (3.58) and item (ii) imply A−[I2] has at

most rank two, because the matrix
(

1−B(x)B(y)∗

1−xy∗

)
x,y∈S

is invertible. So there exists

u, v : S → C2 such that

A(x, y)− I2 = u(x)u(y)∗ + v(x)v(y)∗.

Hence by (3.58) and (3.62) we have

R(x, y)− R̃(x, y) = Kα(x)Kα(y)∗ (u(x)u(y)∗ + v(x)v(y)∗) .

Fix α1, α2 ∈ Z(B), the first zeros of B that appears as in (3.62). Thus, all the func-

tions u(x)kα1(x), v(x)kα1(x), u(x)kα2(x)mα1(x), v(x)kα2(x)mα1(x) lie in the range of

R, which equals the span of K. If u is nonzero at two points in S, then u(x)kα1(x) and

u(x)kα2(x)mα1(x) are linearly independent. Otherwise there exists distinct points

z1, z2 ∈ S such that u(z1) 6= 0, u(z2) 6= 0 so there exist complex numbers c1, c2 (at

least one is nonzero) such that

c1u(x)kα1(x) + c2u(x)kα2(x)mα1(x) = 0 for x = z1, z2.

Hence we get c1kα1(x)+c2kα2(x)mα1(x) = 0 for x = z1, z2. Multiplying the equation

for z1 by kα1(w) and the equation for z2 by kα1(z), and taking the difference gives

kα2(z1)kα1(z2)mα1(z1)− kα2(z2)kα1(z1)mα1(z2) = 0. (3.63)

Since 1−α1x 6= 0 and 1−α2x 6= 0 for x = z1, z2, clearing out denominator in (3.63)

gives

(z1 − α1)(1− α2z2)− (z2 − α1)(1− α2z1) = 0.

This simplifies to

(z1 − z2)(1− α1α2) = 0.

Since 1 − α1α2 6= 0, we have z1 = z2, which contradicts our assumption. Thus
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u(x)kα1(x) and u(x)kα2(x)mα1(x) span the range of R. In this case, as both v(x)kα1

and v(x)kα2(x)mα1(x) are in the range of R there exists γj and βj (for j = 1, 2) such

that

v(x)kα1(x) = γ1u(x)kα1(x) + γ2u(x)kα2(x)mα1(x)

v(x)kα2(x)mα1(x) = β1u(x)kα1(x) + β2u(x)kα2(x)mα1(x).

Multiplying the first equation by kα2(x)mα1(x) and the second by kα1(x), and taking

the difference, we get

0 = v(x)kα1(x)kα2(x)mα1(x)− v(x)kα1(x)kα2(x)mα1(x) = p(x)u(x), (3.64)

where p(x) = β1(kα1(x))2 + (β2 − γ1)kα1(x)kα2(x)mα1(x) − γ2(kα2(x))2(mα1(x))2.

If γ2 = 0, then v is a multiple of u and case (iv)(a) holds. Otherwise, in view

of (3.64), u is zero except at two points (the two roots of β1(kα1(x))2 + (β2 −
γ1)kα1(x)kα2(x)mα1(x) − γ2(kα2(x))2(mα1(x))2 = 0). Thus u is zero at two points

in S, one of which, say p, must be different from 0 (because all points in S are

distinct). Since v must be zero when u is, v(p) = 0 too, and so (iv)(b) holds. The

same argument works if v is nonzero at two points in S.

Finally, there is only one possibility left that we need to check. That is, both u

and v are nonzero at at most one point each and these may be distinct. In this case,

the intersection of zero sets of u and v has the cardinality at least 2N (excluding

p1, p2). Since all points in S are distinct points and 2N > |Z(B)| = N , there exists

a point p such that p ∈ S \ Z(B) and u(p) = v(p) = 0. This proves (iv)(b).

Lemma 3.8.3. If ∆F,S ∈ C2,S, then A(x, y) = I2 for all x, y ∈ S.

Proof. By Lemma 3.7.3, the range of R is spanned by the set K. According to

Lemma 3.8.2 (iv), the matrix
(
A(x, y)

)
x,y∈S

can be expressed in two ways. First we

assume that

A(x, y) = I2 + u(x)u(y)∗

as in (3.60). So in this case we need to show u = 0. Rewrite (3.58) in the following

way

R(x, y) = R̃(x, y) +Kα(x)Kα(y)∗u(x)u(y)∗. (3.65)

As in the proof of the previous lemma, u(x)kα1(x) and u(x)kα2(x)mα1(x) are in the

range of R; that is, both u(x)kα1(x) and u(x)kα2(x)mα1(x) are in the span of K. It
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follows that there exists γj and βj (j = 1, 2) such that

u(x)kα1(x) = B(x)
2∑
j=1

γjkpj(x)vj

u(x)kα2(x)mα1(x) = B(x)
2∑
j=1

βjkpj(x)vj.

Multiplying the first equation by kα2(x)mα1(x), the second by kα1(x), and taking

the difference gives

0 = B(x)
2∑
j=1

(βjkα1(x)− γjkα2(x)mα1(x))kpj(x)vj. (3.66)

Since the set {v1, v2} is a basis for C2 (see Lemma 3.7.3), it has a dual basis {w1, w2}.
Taking the inner product with w` (` = 1, 2) in equation (3.66) gives, for x ∈ S,

0 = B(x)(β`kα1(x)− γ`kα2(x)mα1(x))kp`(x). (3.67)

Evaluating at x = p` ∈ S \ Z(B) in (3.67), we get

β`kα1(p`)− γ`kα2(λ`)mα1(p`) = 0. (3.68)

and at x ∈ S \ {p1, p2,Z(B)} gives,

β`kα1(x)− γ`kα2(x)mα1(x) = 0, (3.69)

because kp`(p`) 6= 0, kpj(x) 6= 0, B(p`) 6= 0 and B(x) 6= 0. Multiplying (3.68) by

kα1(x) and (3.69) by kα1(λ`) and taking the difference, we get

γ` (kα2(p`)mα1(p`)kα1(x)− kα2(x)mα1(x)kα1(p`)) = 0.

Since all 1 − α1x, 1 − α1p`, 1 − α2x and 1 − α2p` in the denominator of the last

expression is non-zero, so the last equation simplifies to

γ`[(p` − α1)(1− α2x)− (x− α1)(1− α2p`)] = 0,
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which can be rewritten as

γ`(x− p`)(1− α1α2) = 0.

Since x 6= p` and 1 − α1α2 6= 0, we have γ` = 0, and so β` = 0. We conclude that

u(x) = 0 for all x ∈ S.

Now assume A(x, y) = I + u(x)u(y)∗ + v(x)v(y)∗ and there exists a point p ∈
S \ Z(B) such that r(p) = s(p) = 0. In this case, from (3.58) , we have

R = R̃ +Kα(x)Kα(y)∗ (u(x)u(y)∗ + v(x)v(y)∗) . (3.70)

Thus, u(x)kα1(x) and v(x)kα1(x) are in the range of R is spanned by K. Hence there

exists complex numbers γj and βj such that

u(x)kα1(x) = B(x)
2∑
j=1

γjkpj(x)vj

v(x)kα1(x) = B(x)
2∑
j=1

βjkpj(x)vj.

(3.71)

Choosing x = p and taking the inner product with w` in the first equation of (3.71)

gives

0 = γ`kp`(p).

Since kp`(p) 6= 0, we have γ` = 0 for ` = 1, 2. Similarly, from the second equation of

(3.71), we have β` = 0 for ` = 1, 2. Thus u = v = 0. This completes the proof.

Lemma 3.8.4 ([24, Lemma 5.5]). If ∆F,S ∈ C2,S, then there exists a 2 × 2 matrix

valued positive measure µ on ΨB such that µ(ΨB) = I2 and

I −Π(x)Π(y)∗

1− xy∗
=

∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµ(ψ). (3.72)

for all x, y ∈ S \ Z(B).

Proof. Applying Lemma 3.8.3 to equation (3.56) we have

B(x)B(y)∗
I2 −Π(x)Π(y)∗

1− xy∗
= B(x)B(y)∗

∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµx,y(ψ).
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Dividing both sides by B(x)B(y)∗ when x, y ∈ S \ Z(B) gives

I2 −Π(x)Π(y)∗

1− xy∗
=

∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµx,y(ψ).

Again by Lemma 3.8.3 we have
∫
ΨB

dµx,y(ψ) = I2 for x, y ∈ S \ Z(B). So by

Lemma 3.7.1, there exists a positive measure µ on ΨB such that µ = µx,y for all

x, y ∈ S \ Z(B). It follows that

I2 −Π(x)Π(y)∗

1− xy∗
=

∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµ(ψ)

and

I2 =

∫
ΨB

dµx,y(ψ) =

∫
ΨB

dµ(ψ) = µ(ΨB).

In a view of equation (3.72), we see that the entries of µ are independent of x, y.

The next step is to restrict the support of µ via Lemma 3.7.3. To do this, we need

the following result.

Given a 2 × 2 matrix valued measure ν and a vector γ ∈ C2, let νγ denote the

scalar measure defined by νγ(Ω) = γ∗ν(Ω)γ for every Borel subset Ω of ΨB. Note

that if ν is a positive measure (that is, takes positive semidefinite values), then each

νγ is a positive measure.

Lemma 3.8.5 ([24, Lemma 4.5]). Suppose ν is a 2×2 positive matrix-valued measure

on Ψ 0
B = ΨB \ {ψ0}. For each γ ∈ C2 the measure νγ is a nonnegative linear

combination of at most k point masses if and only if there exist (possibly not distinct)

points η1, . . . , ηk ∈ DN−1
∞ \ {∞N−1} and positive semidefinite matrices P1, . . . , Pk in

M2(C) such that

ν =
k∑
j=1

δηjPj,

where δη1 , . . . , δηk are scalar unit point measures on Ψ 0
B supported at ψη1 , . . . , ψηk ,

respectively.

Proof. Assume that every νγ is a nonnegative linear combination of at most k point

masses. Let ν =

(
ν11 ν12

ν21 ν22

)
∈ M2(C) be a matrix valued measure on Ψ 0

B with
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respect to the standard orthonormal basis e1, e2 of C2, where each entry νij is a

scalar valued measure on Ψ 0
B.

By Lemma 3.5.4 the measures ν11 and ν22 are positive because ν(Ω) is positive

matrix for every Borel subset Ω of Ψ 0
B. Also the positivity of ν implies that ν21 = ν∗12.

By Lemma 3.5.2, if νii(Ω) = 0 for a Borel subset Ω of Ψ 0
B, then νij(Ω) = 0. Hence

the measures ν12 and ν21 are absolutely continuous with respect to both ν11 and ν22.

It follows that supp ν12 = supp ν21 ⊆ supp ν11 ∩ supp ν22, where supp νij is the

support of νij for i, j = 1, 2.

Choosing γ = e1 and γ = e2, we have

νγ = e∗1νe1 = ν11 and νγ = e∗2νe2 = ν22,

respectively. Then the assumption implies that supp νii is finite, and so supp νij is

finite. Let nij = |supp νij|. By assumption nij ≤ k and there exists nonnegative

real numbers c1,1`1 , c
2,2
`2

such that

ν11 =

n11∑
`1=1

c1,1`1 δτ11,`1 and ν22 =

n22∑
`2=1

c2,2`2 δτ22,`2 .

Thus, for γ =
(
γ1 γ2

)t
,

νγ = |γ1|2ν11 + γ1γ2ν21 + γ1γ2ν12 + |γ2|2ν22
= |γ1|2ν11 + |γ2|2ν22 + 2Re(γ1γ2ν21)

= |γ1|2
n11∑
`1=1

c1,1`1 δτ11,`1 + |γ2|2
n22∑
`2=1

c2,2`2 δτ22,`2 + 2Re(γ1γ2)

n21∑
`=1

c`δτ` ,

(3.73)

where supp ν12 = supp ν21 ⊆ supp ν11 ∩ supp ν22 and c` ∈ {c1,11 , . . . , c1,1n11
} ∩

{c2,21 , . . . , c2,2n22
} for all ` = 1, . . . , n21.

Assuming γ1, γ2 = |γ2|eiθ are nonzero, there are at most two values of θ ∈ [0, 2π)

such that 2Re(γ1γ2)c` = (γ1|γ2|eiθ + γ1|γ2|e−iθ)c` = −|γ1|2c1,1`1 − |γ2|
2c2,2`2 . Running

all over `, there are at most a finite number of such θ. Choosing θ avoiding these

points, it follows that supp νγ = supp ν11 ∪ supp ν22. By assumption, at most k of

these points can be distinct, and hence ν has the form claimed.

Conversely, if ν =
∑k

j=1 δηjPj with η1, . . . , ηk and P1, . . . , Pk as in the state-

ment of lemma, then the scalar valued measure νγ = γ∗νγ is a nonnegative linear
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combination of at most k point masses. This completes the proof.

Lemma 3.8.6 ([24, Lemma 5.6]). Let µ be the measure as in the statement of

Lemma 3.8.4. If ∆F,S ∈ C2,S, then the measure µ has the form

µ = δ1P1 + δ2P2 + δ12P12 + δ∞P∞,

where P1, P2, P12, P∞ are 2× 2 positive matrices such that P1 +P2 +P12 +P∞ = I2,

and δ1, δ2, δ12, and δ∞ are unit scalar point masses of measures on ΨB supported at

Bmp1 , Bmp2 , Bmp1mp2 , and ψ0 = B, respectively.

Proof. Let ν denote the restriction of µ to Ψ 0
B (or eqiuvalently to DN−1

∞ \ {∞N−1}).
For γ ∈ C2, define a scalar valued measure νγ on Ψ 0

B given by νγ(Ω) = γ∗ν(Ω)γ for

any Borel subset Ω ⊆ Ψ 0
B. An application of Lemma 3.7.3 to Π and Lemma 3.8.4

implies that

γ∗(f(x)f(y)∗ + g(x)g(y)∗)γ = γ∗

(∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµ(ψ)

)
γ (3.74)

=

∫
Ψ0
B

Kλ(x)Kλ(y)∗ dνγ(ψ),

where f, g are as in (3.57).

Fix a set of three non-zero points X = {z1, z2, z3} ⊂ S \Z(B). Let c : X → C be

a nonzero vector in the orthogonal complement of
∨
j=1,2

(
kpj(z1) kpj(z2) kpj(z3)

)
.

Suppose that one of the entries of c is zero, without loss of generality we may take

this to be c(z3). Then the vectors
(
kpj(z1) kpj(z2)

)
, j = 1, 2 are orthogonal to(

c(z1) c(z2)
)

. Since c is nonzero, this implies that the vectors
(
kp1(z1) kp1(z2)

)
and

(
kp2(z1) kp2(z2)

)
are collinear. Hence

(
kp1(z1) kp1(z2)

)
= C

(
kp2(z1) kp2(z2)

)
for some constant C. Let sj :=

√
1− |pj|2 6= 0, j = 1, 2. Then (p1s2 − s1Cp2)zj =

s2 − Cs1, j = 1, 2. Since z1 6= z2, we must have s2 − Cs1 = 0 and so p1 = p2, a

contradiction. Thus no entry of c is zero. For any γ ∈ C2 is in the span of the dual

basis {w1, w2} to {v1, v2} , which are vectors from (3.57), we have∑
x,y∈X

c(x)γ∗ (f(x)f(y)∗ + g(x)g(y)∗) γc(y)∗ = 0. (3.75)
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Thus by (3.74), we have

0 =

∫
Ψ0
B

(∑
x∈X

Kλ(x)c(x)

)(∑
x∈X

Kλ(x)c(x)

)∗
dνγ(ψ). (3.76)

Consequently, ∑
x∈X

Kλ(x)c(x) = 01×N−1 for νγ − a.e. on Ψ 0
B. (3.77)

Returning to the definition of Kλ in (3.55), the later equation implies that

∑
x∈X

c(x)
k−1∏
i=1

mλi(x)kλk(x) = 0, k = 1, . . . , N − 1, νγ − a.e. on Ψ 0
B. (3.78)

Here we take
∏k−1

i=1 mλi(x) = 1 when k = 1. For k = 1 this gives

c(z1)kλ1(z1) + c(z2)kλ1(z2) + c(z3)kλ1(z3) = 0. (3.79)

Hence we have kλ1(zj) = a1kp1(zj) + a2kp2(zj) for some constants a1, a2. Let c0 :=√
1− |λ1|2. Then we have

c0(1− (p1 + p2)zj + p1p2z
2
j )

= a1s1(1− (λ1 + p2)zj + λ1p2z
2
j ) + a2s2(1− (λ1 + p1)zj + λ1p1z

2
j ).

Equating coefficients, we find that

c0 = a1s1 + a2s2 (3.80)

c0(p1 + p2) = (a1s1 + a2s2)λ1 + a1s1p2 + a2s2p1 (3.81)

c0p1p2 = (a1s1p2 + a2s2p1)λ1. (3.82)

Using (3.82) and (3.80) into (3.81), we get

c0(p1 + p2) = λ1c0 + c0
p1p2

λ1
. (3.83)

Note that if λ1 = 0, then this contradicts with (3.81). There is an obvious solution

to (3.83), namely c0 = 0. Equivalently λ1 = ∞ (this is because we are identifying

∞ with T, the boundary of the disk). Then our ordering on the set of test functions

imply that λj =∞ for all j = 2, . . . , N − 1. So this solution corresponds to the test
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function ψ0 = B. Thus for c0 6= 0, from (3.83) we get λ1
2 − (p1 + p2)λ1 + p1p2 = 0.

Hence λ1 ∈ {p1, p2}. If N = 2, we stop at this point.

Otherwise, we take λ1 = p1. By (3.78) with k = 2, we likewise have that vector

(mp1(zj)kλ2(zj)) is orthogonal to c, and so there are constants a1, a2 such that

zj − p1
1− p1zj

√
1− |λ2|2

1− λ2zj
=
a1s1(1− p2zj) + a2s2(1− p1zj)

(1− p1zj)(1− p2zj)
.

So either λ2 =∞ or√
1− |λ2|2(zj − p1)(1− p2zj) = a1s1(1− p2zj)(z − λ2zj) + a2s2(1− p1zj)(1− λ2zj).

In the first case, the ordering implies that λj = ∞ for all j = 3, . . . ,∞. For the

second case, equating coefficients yields λ2 = p2 or 1/p1. Since 1/p1 6∈ D, we must

have λ2 = p2. In the same manner, if we had assumed that λ1 = p2, we could have

λ2 = p1 or ∞. If N = 3, we stop.

If N > 3, by (3.78) with k = 3 we now have the vector (mp1(zj)mp2(zj)kλ2(zj))

is orthogonal to c. Now, we have λ1 = p1, λ2 = p2 (or vice versa). Then a similar

calculation yields λ3 = 1/p1 or 1/p2. These are both outside of D, so are ruled out.

Then only other alternative is λ3 = ∞. It follows that νγ is supported at three

points in Ψ 0
B; namely Bmp1 , Bmp2 and Bmp1mp2 . Then by Lemma 3.8.5 there exists

positive semidefinite matrices P1, P2, P12 ∈M2(C) such that

ν = δ1P1 + δ2P2 + δ12P12,

where δ1, δ2, δ12 are the unit scalar point masses of measures supported atBmp1 , Bmp2 ,

Bmp1mp2 , respectively. Letting P∞ = µ({ψ0}), gives that

µ = δ1P1 + δ2P2 + δ12P12 + δ∞P∞.

Finally, by Lemma 3.8.4, we have

I2 = µ(ΨB) = P1 + P2 + P12 + P∞.

The proof of Theorem 3.8.1. Assume by the contradiction that ∆F,S ∈ C2,S. Then
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by Lemma 3.8.4 we have

I2 −Π(x)Π(y)∗

1− xy∗
=

∫
Ψ0
B

Kλ(x)Kλ(y)∗ dµ(ψ)

for all x, y ∈ S \ Z(B). Multiplying both sides by 1− xy∗ and using (3.50) we get

I2 −Π(x)Π(y)∗ =

∫
Ψ0
B

(1−Dλ(x)Dλ(y)∗) dµ(ψ).

for all x, y ∈ S \Z(B). By Lemma 3.8.6, the measure µ only supported at functions

Bmp1 , Bmp2 , Bmp1mp2 in Ψ 0
B, and there exists a positive semidefinite matrices

P1, P2, P12, P∞ ∈M2(C) such that P1 + P2 + P12 + P∞ = I2 and

I2 −Π(x)Π(y)∗ = (1−mp1(x)mp1(y)∗)P1 + (1−mp2(x)mp2(y)∗)P2

+ (1−mp1(x)mp2(x)mp1(y)∗mp2(y)∗)P12

(3.84)

for x, y ∈ S \ Z(B). This simplifies to

Π(x)Π(y)∗ = mp1(x)mp1(y)∗P1 +mp2(x)mp2(y)∗P2

+mp1(x)mp2(x)mp1(y)∗mp2(y)∗P12 + P∞
(3.85)

for x, y ∈ S \ Z(B). Decompose Px = T ∗xTx, x = 1, 2, 12,∞, where

Tx =

(
ax bx

0 cx

)
.

Let C1 = |mp2(p1)|2 and C2 = |mp1(p2)|2. From (3.85) we get

Π(p1)Π(p1)
∗ =

1

2

(
0 0

0 1 + C1

)

=

(
C1|a2|2 + |a∞|2 C1a2b2 + a∞b∞

C1a2b2 + a∞b∞ C1(|b2|2 + |c2|2) + |b∞|2 + |c∞|2

)
,

(3.86)
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Π(p2)Π(p2)
∗ =

1

2

(
1 + C2 0

0 0

)

=

(
C2|a1|2 + |a∞|2 C2a1b2 + a∞b∞

C2a1b2 + a∞b∞ C2(|b1|2 + |c1|2) + |b∞|2 + |c∞|2

)
,

(3.87)

Π(p1)Π(p2)
∗ =

1

2

(
0 0

mp1(p2) 1

)
= P∞ (3.88)

From the first of these equations, we have a∞ = 0, while the second gives b∞ = c∞ =

0, and so P∞ = 0. But this contradicts with the last equation. By the way, positivity

of P∞ would require that p1 = p2, which is also contradicts our assumptions. This

completes the proof.
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Future projects

4.1 Planar domains associated to the distinguished

variety NB

The annuli are homeomorphic to the distinguished varieties determined by

z2 =
w − a1
1− a1w

w − a2
1− a2w

for a1, a2 ∈ D and (z, w) ∈ D2
[44]. Also every bounded planar domain with finitely

many piecewise analytic boundary curves corresponds to a distinguished variety [49].

Conversely, we pose the following: Is there a planar domain which is homeomorphic

to the distinguished variety NB for some B?

4.2 The rational dilation problem on more gen-

eral distinguished varieties

An interesting example of distinguished varieties

It is interesting to know whether rational dilation holds on the distinguished varieties

of the form

B1(z) = B2(w) for (z, w) ∈ D2
, (4.1)
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where B1, B2 are finite Blaschke products. For instance, if all the zeros of B1, B2

are zero then we obtain varieties of the form

zm = wn for (z, w) ∈ D2
,

where m,n are the degrees of B1, B2, respectively. In [24], it has been shown that

rational dilation holds for the distinguished variety

z2 = w2 for (z, w) ∈ D2
.

We conjecture that rational dilation also holds on the distinguished variety

zk = wk for (z, w) ∈ D2
,

where k ∈ N.

4.3 Intersection of algebras of the form C+BH∞(D)

Let

H∞Bj := C +Bj(z)H∞(D)

for j = 1, . . . , n, where Bj are finite Blaschke products and n ∈ N. Then we can

consider the intersection

H∞∩Bj := ∩nj=1H
∞
Bj
.

The following list of questions are naturally posed:

1) What is a minimal set of test functions for H∞∩Bj?

2) What is the distinguished variety associated to the algebra A∩Bj := ∩nj=1ABj?,

where ABj = C +Bj(z)A(D) for j = 1, . . . , n.

4) Does rational dilation holds for the distinguished variety associated to A∩Bj?

4.3.1 Sum of algebras of the form C +B(z)H∞(D)

Another interesting algebras would be of the form

H∞∑Bj
:= C +B1(z)H∞(D) + · · ·+Bn(z)H∞(D),
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where Bj, j = 1, . . . , n are the finite Blaschke product and n ∈ N. So we could ask

the same questions as above.

4.3.2 Constrained subalgebras of A(Dn)

Other interesting algebras include C+z2A(D2) and C+z2w2A(D2) or more generally

A∏
Bj := C +

m∏
j=1

Bj(zj)A(Dn),

where each Bj(zj) is a finite Blaschke product. Again, the same questions can be

posed for these.
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A.1 The Banach algebra H∞(KΨ)

Recall that if have a set of test functions Ψ on a set X, then we form a set of

admissible kernel KΨ = {k : X × X → C : ((1− ψ(x)ψ(y)∗)k(x, y) ≥ 0)∀ψ ∈ Ψ}
associated to Ψ . Then we define a normed algebra H∞(KΨ ) consisting of those

functions f : X → C for which there is a finite constant C ≥ 0 such that for all

k ∈ KΨ , the kernel (
(C2 − f(x)f(y)∗)k(x, y)

)
is positive semi-definite, and the norm of f is given by

‖f‖H∞(KΨ ) = inf{C :
(
(C2 − f(x)f(y)∗)k(x, y)

)
≥ for all k ∈ KΨ}.

Let ϕ, φ ∈ H∞(KΨ ). For convenience set ‖ϕ‖H∞(KΨ ) = Cϕ and ‖φ‖H∞(KΨ ) = Cφ.

We prove the submultiplicativity :

‖ϕφ‖H∞(KΨ ) ≤ ‖ϕ‖H∞(KΨ )‖φ‖H∞(KΨ ).

Let F ⊂ X be a finite set with |F | = n. Then by definition we have

(
(C2

ϕ − ϕ(x)ϕ(y)∗)k(x, y)
)
x,y∈F ≥ 0

and (
(C2

φ − φ(x)φ(y)∗)k(x, y)
)
x,y∈F ≥ 0,
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for all k ∈ KΨ and all (x, y) ∈ F × F . Consequently,

((
(CϕCφ)2 − ϕ(x)φ(x) (ϕ(y)φ(y))∗

)
k(x, y)

)
x,y∈F

=
(
C2
φ

(
C2
ϕ − ϕ(x)ϕ(y)∗

)
k(x, y)

)
x,y∈F

+
(
ϕ(x)ϕ(y)∗

(
C2
φ − φ(x)φ(y)∗

)
k(x, y)

)
x,y∈F ≥ 0,

for all k ∈ KΨ and all (x, y) ∈ F × F . Then by definition ‖ϕφ‖H∞(KΨ ) ≤ CϕCφ. For

the further properties of this norm we refer to [27, 33, 23].

Remark A.1.1. The kernel

k(x, y) =

1 when x = y

0 when x 6= y
(A.1)

is an admissible kernel, since

((1− ψ(x)ψ(y)∗) k(x, y))x,y∈F =


1− ψ(z1)ψ(z1) 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 1− ψ(zn)ψ(zn)

 ≥ 0,

because supψ∈Ψ |ψ(z)| < 1 for all z ∈ D. We also claim that the Szegö kernel kS(x, y)

is an admissible kernel. To prove this, let a ∈ Cn. Then〈
((1− ψ(x)ψ(y)∗) kS(x, y))x,y∈F a, a

〉
=

n∑
i,j=1

aiaj(1− ψ(zi)ψ(wj))kS(zi, wj)

=
n∑

i,j=1

aiaj(1− ψ(zi)ψ(wj))〈kwj , kzi〉

=
n∑

i,j=1

aiaj〈kwj , kzi〉 −
n∑

i,j=1

aiaj〈ψ(wj)kwj , ψ(zi)kzi〉

=
n∑

i,j=1

〈ajkwj , aikzi〉 −
n∑

i,j=1

〈ajψ(wj)kwj , aiψ(zi)kzi〉

=
n∑
i=1

‖aikzi‖2 −
n∑
i=1

‖aiψ(zi)kzi‖.
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Let m = max1≤i≤n |ψ(zi)|. Then

〈
((1− ψ(x)ψ(y)∗) kS(x, y))x,y∈F a, a

〉
≥

n∑
i=1

‖aikzi‖2(1−m2) ≥ 0.

The next theorem shows that H∞(KΨ ) is a complete space.

Theorem A.1.2 ([23, Lemma 2.15]). The space H∞(KΨ ) is complete in the norm

topology. Furthermore, its norm closed unit ball H∞1 (KΨ ) is closed in both the topol-

ogy of pointwise convergence and the topology of uniformly convergence on compact

subsets of X.

A.2 Multiplication operators

It can be shown that the multipliers of the Hardy-Hilbert space H2
C2 , i.e. the func-

tions φ such that φf is in H2
C2 whenever f is in H2

C2 , are precisely H∞(D), the

bounded analytic functions on D ([7, Theorem 3.24]). Moreover, ‖Mφ‖ = ‖φ‖H∞(D).

Now we claim that evaluation at any point z in D is a continuous linear functional

on H2
C2 . Recall that for every z ∈ D, the linear evaluation functional Ez : H2

C2 → D
is defined by Ez(f) = f(z). Indeed we compute

|Ez(f)| = |
∞∑
n=0

anz
n| ≤

∞∑
n=0

|an||zn|

≤

(
∞∑
n=0

|an|2
)1/2( ∞∑

n=0

|z|2n
)1/2

= ‖f‖ · 1√
1− |z|2

.

This shows that every power series in H2
C2 converges to a function on the disk.

Moreover the map Ez is bounded with ‖Ez‖ ≤ 1√
1−|z|2

, and so claim is proved.

(This also shows that H2
C2 is a RKHS on D.)

For a point ζ ∈ D, note that

g(z) =
∞∑
n=0

ζ
n
zn ∈ H2

C2
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and for any f(z) =
∑∞

n=0 anz
n ∈ H2

C2 we have that

〈f, g〉 =
∞∑
n=0

anζ
n = f(ζ).

Thus, g is the reproducing kernel for ζ and so

K(z, ζ) = kζ(z) = g(z) =
∞∑
n=0

ζ
n
zn =

1

1− ζz
.

So we have that

〈f, kζ〉 = f(ζ)

for all ζ ∈ D for any H2
C2 .

The observation is that the kernel functions are eigenvectors for the adjoints of

multiplication operators :

〈f,M∗
φkζ〉 = 〈φf, kζ〉 = φ(ζ)f(ζ) = 〈f, φ(ζ)kζ〉 ∀f ∈ H2

C2 .

Hence M∗
φkζ = φ(ζ)kζ .

Theorem A.2.1 ([40]). Let f ∈ H∞(D) be an inner function, then the multipli-

cation operator Mf : H2(D) → H2(D) is an isometry and the range of Mf is a

reproducing kernel Hilbert space with the kernel f(z)f(w)
1−zw .

Proof. Since f is an inner function, for any ϕ ∈ H2(T), we have that

‖Mfϕ‖2 = ‖fϕ‖2 =
1

2π

∫ 2π

0

|f(eit)ϕ(eit)|2 dt =
1

2π

∫ 2π

0

|ϕ(eit)|2 dt = ‖ϕ‖2,

and so Mf is an isometry. By [40, Proposition 6.2] the kernel function f(z)f(w)
1−zw is

kernel for range of Mf .

A.3 The Shilov boundary

Let Ω be a domain in Cd and Ω be its closure. Let also C(Ω) be the space of all

continuous complex-valued functions on Ω, with supremum norm. Then a closed

subalgebra A(Ω) ⊆ C(Ω) is called a uniform algebra if 1 ∈ A(Ω) and A(Ω)

separates the points of Ω.
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The notion of Shilov or distinguished boundary is a useful boundary because of

being the smallest boundary in the following sense:

Definition A.3.1 ([30, 1]). LetA(Ω) be a uniform algebra onΩ ∈ Cd. A boundary

for Ω is a subset X of Ω such that every function in A(Ω) attains its maximum

modulus on the set X. By definitin 3.3.8 and [41, Proposition 6.4] if Ω is polyno-

mially convex, then there is a smallest closed boundary of Ω that is contained in

all closed boundaries of Ω. We call this boundary the Shilov or distinguished

boundary of Ω and denote it by ∂Ω.

Example A.3.2. Let Ω be the closed bidisk, i.e.

Ω = D× D = D2
= {(z, w) ∈ C2 : |z| ≤ 1, |w| ≤ 1}.

Its topological boundary is

T× D ∪ D× T = {(z, w) ∈ C2 : |z|, |w| ≤ 1, |z| = 1 or |w| = 1}

whereas its Shilov boundary is

∂Ω = T× T = {(z, w) ∈ C2 : |z| = |w| = 1}.

The last statement is obtained by applying twice the maximum modulus principle

with respect to each complex variable. Note that by exactly the same argument we

can see that

∂Dn
= Tn.
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