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Abstract 

Research into highly prevalent prostate diseases is limited by lack of a relevant 

human model for prostate development and disease. The finding that stem cells can 

be generated from somatic cells, termed induced pluripotent stem cells (iPSCs), has 

revolutionised the field of human developmental and disease modelling. However, 

iPSCs retain an epigenetic signature from their parental tissue of origin which can 

result in a skewed differentiation potential. In this study, we have generated 

integration-free iPSCs from patient derived prostatic fibroblasts. These ProiPSCs 

show typical pluripotent stem cell characteristics including ESC-like morphology, 

expression of pluripotency markers and the ability to differentiate to cells from the 

three embryonic germ layers both in vitro, by formation of embryoid bodies, and in 

vivo, by teratoma formation.  

Using inductive rodent urogenital sinus mesenchyme (UGM), we have successfully 

generated prostatic tissue from the ProiPSCs using a tissue recombination approach. 

The generated tissue shows a normal spatial organisation with a basal and luminal 

layer characterised by expression of p63 and cytokeratins (CK) 8 and 18 

respectively. Furthermore, the epithelial glands generated express the prostate 

markers androgen receptor (AR) and prostate specific antigen (PSA), confirming full 

functional differentiation. By harnessing the inductive nature of UGM, we 

subsequently developed a novel 3D co-culture system which allowed formation of 

prostatic organoids from both ProiPSCs and urinary tract derived iPSCs (UTiPSCs). 

The organoids were multi-layered with a basal layer expressing p63 and 34e12 and 

a luminal layer which expressed CK8/18. Prostatic differentiation was confirmed by 

positive staining for AR and PSA. In conclusion, we have demonstrated successful 

reprogramming of human prostate fibroblasts into iPSCs and subsequent 

differentiation of these cells to prostate epithelial cells in vitro and in vivo. This model 

provides a novel opportunity for studying prostate development as well as a potential 

system for disease modelling and drug testing.  
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Chapter 1. Introduction 

1.1 Prostate anatomy 

The prostate is a walnut-shaped accessory gland of the male reproductive system 

situated directly below the urinary bladder, surrounding the urethra and anterior to 

the rectum in the subperitoneal compartment (Bhavsar and Verma, 2014). Together 

with the seminal vesicle, the prostate is responsible for secretion of proteins and ions 

which form part of the seminal fluid (Hayward and Cunha, 2000; Timms, 2008). The 

most well-known prostatic secretion is prostate specific antigen (PSA), a serine 

protease belonging to the kallikrein family which is involved in proteolysis of seminal 

fluid proteins such as semenogelin 1, resulting in liquefaction of the seminal 

coagulum formed after ejaculation (Lilja, 1985). Prostatic luminal cells also express 

prostatic acid phosphatase (PAP), a glycoprotein which is also secreted from the 

prostate into the seminal fluid (Lilja and Abrahamsson, 1988).  

The adult human prostate is a compact structure weighing approximately 20g and 

measuring 4x2.5cm (Marker et al., 2003). It consists of three distinct zones; the 

central, transition and peripheral zones (Figure 1-1)(McNeal, 1978). The largest of 

the three zones is the peripheral zone which covers the posterior and lateral prostate 

gland, accounting for 70% of the prostate gland. The central zone forms 20-25% of 

the glandular tissue of the prostate and surrounds the ejaculatory ducts, whilst the 

transitional zone comprises 5-10% of the prostate gland and is separated from the 

other glands by fibromuscular stroma (Verze et al., 2016).  

 

 
Figure 1-1. Schematic representation of the prostatic zones (De Marzo et al., 2007) 
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At a cellular level the organ comprises tubuloalveolar glandular tissue surrounded by 

fibromuscular stroma in a ratio of approximately 2:1 (Prajapati et al., 2013), forming a 

highly branched structure. In the adult prostate, the complex network of ducts consist 

of luminal and basal epithelial cells along with rare neuroendocrine (NE) cells (Figure 

1-2) (Wang et al., 2001). Luminal cells are the major cell type in normal prostate 

epithelium (Lang et al., 2009). They express CK8/18 (Wang et al., 2001) Nkx3.1 

(Bhatia-Gaur et al., 1999) and high levels of androgen receptor (AR) (Sar et al., 

1990), a steroid dependent transcription factor which binds to androgen response 

elements resulting in enhanced gene expression (Brinkmann et al., 1999). These 

luminal cells are also responsible for secretion of PSA and prostatic acid 

phosphatase (PAP) (Lang et al., 2009). Basal cells form a layer between the luminal 

cells and the basement membrane (Marker et al., 2003). In contrast to luminal cells, 

basal cells express low or no AR (Shen and Abate-Shen, 2010) and possess no 

secretory activity. These cells are characterised by expression of CK5/14 (Wang et 

al., 2001) and the classical basal epithelial cell marker p63 (Signoretti et al., 2000). 

Recent evidence has also suggested that a subset of basal prostate cells express 

Nkx3.1 (Chen et al., 2005). The third type of cell present in the prostatic ducts are the 

NE cells, which are AR negative but express endocrine markers including 

chromogranin A and synaptophysin (Shen and Abate-Shen, 2010).  

 

 

Figure 1-2 Schematic cross-section of a human prostate acinus illustrating the 
presence of several cell types; luminal, basal, neuroendocrine (NE) and stromal cells. 
Adapted from (Marker et al., 2003). 
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1.2 Embryogenesis of the prostate 

Following fertilisation, the human embryo undergoes cell division and by about the 4th 

day following fertilisation has formed a blastocyst consisting of an inner cell mass 

(ICM) surrounded by an epithelial layer known as the trophoblast.  The ICM goes on 

to form the embryo whilst the trophoblast forms the extraembryonic structures 

including part of the placenta. Prior to implantation, the ICM divides into two layers of 

cells known as the epiblast and hypoblast. The epiblast undergoes gastrulation 

during the 3rd week of embryogenesis to form the three embryonic germ layers; the 

ectoderm, which arises from embryonic ectoderm, and the endoderm and mesoderm 

which arise from the mesoblastic cells of the primitive streak (Carlson, 2009).  

The prostate epithelium is formed from the endodermal germ layer during 

embryogenesis, whilst the prostate stroma is derived from the mesodermal layer. 

Following gastrulation, the endoderm undergoes embryonic folding to generate the 

primitive gut. During weeks 4-5 of embryogenesis, this primitive gut develops into the 

foregut, midgut and hindgut which form the gastrointestinal tract, along with the 

cloaca which develops at around the 6th week to form the urogenital sinus and 

anorectal canal. The urogenital sinus (UGS) further develops to form the urinary 

bladder at week 10 and in the male, the urethra, prostate gland and bulbourethral 

glands during weeks 9-12 (DeCherney, 2013).  

The UGS sits just below the developing bladder and consists of an epithelial layer, 

the urogenital sinus epithelium (UGE) surrounded by the mesodermal urogenital 

sinus mesenchyme (UGM) (Marker et al., 2003). Mesenchymal-epithelial interactions 

are critical during organogenesis, whereby specialised mesenchyme acts to induce 

epithelial differentiation of several tissues including the prostate, lung and mammary 

glands (Vanpoucke et al., 2007). During prostate development, the urogenital sinus 

mesenchyme specifies prostate differentiation, induces formation of prostate buds 

and drives branching morphogenesis to form the branched structure of the prostate 

(Vanpoucke et al., 2007).  

The prostate gland is induced to form from the UGE at around the 10th week of 

gestation in response to the production of 5-dihydrotestosterone (DHT) by the foetal 

testis, which begins at gestational week 8 (Timms, 2008). DHT binds to the AR in the 

UGM resulting in establishment of a prostatic epithelial identity. This prostatic identity 

is characterised by expression of the earliest prostate marker Nkx3.1, which is 
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identified in the UGE prior to the onset of budding (Marker et al., 2003). The 

androgenic action results in formation of prostatic buds from the UGE which grow 

into the surrounding UGM (Hamilton, 1959; Shannon and Cunha, 1983). These buds 

are initially solid epithelial cords which co-express CK5, 8, 14, 18, p63 (Xue et al., 

2001). Prior to and during budding, AR can be identified only in the stromal 

compartment and is not present within the prostatic epithelium, providing further 

evidence for the critical role of UGM in prostate development (Takeda et al., 1985). 

Androgen signalling is essential for prostate development, as evidenced by lack of 

prostate formation in tfm mutant mice who lack functional AR (Cunha and Lung, 

1978).  

The solid buds subsequently elongate and undergo branching morphogenesis to 

generate distinct lumina and clear basal and luminal cells with individual expression 

profiles. Luminal cells express CK8 and CK18 whilst the basal cells express CK5, 

CK14 and p63. CK19 and glutathione S-transferase pi (GSTpi) are expressed in both 

the luminal and basal layers; in the basal layer expression is global whilst only a 

proportion of luminal cells express CK19 and GSTpi. This subset of luminal cells is 

thought to be a population of immature luminal cells which have not yet fully 

differentiated. Canalization occurs starting at the proximal ducts closest to the urethra 

and continuing into the branches of the prostatic ducts(Wang et al., 2001).  

By the 15th week of gestation, the prostate epithelial cells are functional as 

determined by their ability to secrete PSA (Wang et al., 2001). The final cell type 

identified within prostate glands, NE cells, can be identified by week 12 and are seen 

in 100% of prostates by week 20 (Xue et al., 2001). These cells are rare and can be 

characterised due to expression of chromogranin A and absence of AR and PSA 

(Wang et al., 2001). The precise origin of these cells is controversial. One model 

suggests that NE cells are a result of differentiation of basal prostate stem cells due 

to the expression of basal cell markers in NE cells (Bonkhoff and Remberger, 1996). 

An alternative explanation is that the NE cells have migrated from the neural crest. A 

recent publication using three-dimensional (3D) reconstruction of serial sections of 

human foetal prostates stained for chromogranin found a pattern of positive cells 

which suggest migration of cells from the neural crest to the prostatic epithelium 

(Szczyrba et al., 2017).  
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The UGM concurrently differentiates under influence of the developing prostate 

epithelium to form the layer of fibromuscular stroma which surrounds the epithelial 

ducts (Hayward and Cunha, 2000). This reciprocal interaction is evidenced by tissue 

recombination experiments whereby UGM grafted alone forms small amounts of 

smooth muscle, whilst UGM grafted in combination with UGE generates prostatic 

ducts surrounded by smooth muscle sheaths (Cunha et al., 1983). 

Proliferation in the developing human prostate is highest during the first half of 

gestation, particularly in the budding tips where the proliferative rate is at least twice 

that of cells in the acini and collecting ducts. Initially both basal and luminal cells 

proliferate, but over time proliferation decreases in luminal cells. Stromal cells are 

also highly proliferative during this time. Postnatally, the prostate gland is quiescent 

until puberty when an increase in testosterone level stimulates proliferation of the 

prostatic epithelial cells and formation of the complex adult prostate gland (Wang et 

al., 2001).  

1.3 Factors important for prostate development  

Although the precise mechanisms of human prostate development are not known, 

several growth factors, proteins and receptors have been implicated in prostate 

morphogenesis. Whilst these may control prostate development in part, they do not 

explain the interactions required for prostatic development. In particular, the complete 

spectrum of mesenchymal factors which act to drive differentiation of prostatic 

epithelium via androgenic action remain unknown (Marker et al., 2003).  

1.3.1 Nkx3.1  

Nk3 homebox 1 (Nkx3.1) is critical for prostate development and is one of the earliest 

prostate markers, expressed in areas where prostatic buds will emerge and 

subsequently throughout the prostatic epithelium. Nkx3.1 mutant mice can form 

prostate glands however these have a significant reduction in the number of ducts 

and secretory proteins (Bhatia-Gaur et al., 1999). Further evidence for the 

importance of Nkx3.1 comes from a recent study which found that viral expression of 

Nkx3.1 in seminal vesicle epithelium results in formation of prostatic tissue when 

combined with wild type UGM in vivo. In contrast, normal seminal vesicle epithelium 

in combination with UGM forms seminal vesicle. In further support for the role of 

Nkx3.1 in prostate specification, the RWPE1 cell line, which has a basal phenotype 

and low levels of prostate markers, could form prostate-like tissue in a tissue 
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recombination assay when Nkx3.1 was overexpressed, whilst control RWPE1 cells 

failed to grow. Nkx3.1 was shown to interact with the histone methyltransferase G9a, 

and depletion of G9a with a short hairpin ribonucleic acid (RNA) (shRNA) impaired 

Nkx3.1 induced prostate differentiation. Depletion of the Nkx3.1 target gene UTY also 

impaired prostate differentiation, suggesting that Nkx3.1 is regulated by both G9a 

and UTY, and that this interaction is required for prostate differentiation (Dutta et al., 

2016). A separate study has also implicated Nkx3.1 as a master regulator of prostate 

differentiation. Reprogramming omouse embryonic fibroblasts (MEFs) to pluripotency 

using the Yamanaka factors octamer-binding transcription factor 4 (OCT4), SRY (Sex 

determining region)-related HMG-box gene 2 (SOX2), kruppel-like factor 4 (KLF4) 

and c-MYC was followed by lentiviral expression of NKX3.1, AR and FOXA1. These 

“induced epithelial cells” were then recombined with UGM and engrafted under the 

renal capsule of mice. The generated tissue contained CK8/18 positive luminal cells 

and p63/CK5 positive basal cells, and showed expression of AR, Nkx3.1 and the 

mouse prostate secretory protein probasin (Talos et al., 2017). 

1.3.2 FOXA1 and FOXA2 

Forkhead box A1 (FOXA1) is a regulator of AR-mediated transcriptional activity (Gao 

et al., 2003). It is present in all cells of the mouse UGE from embryonic day 18 (E18) 

and this expression persists in the adult prostate epithelium. Prostate rudiments from 

Foxa1-/- mice are identical to wild type rudiments, confirming that FOXA1 is not 

required for prostate formation. However, when grafted under the renal capsule of 

male mice, Foxa1-/- tissues showed altered luminal differentiation with co-expression 

of the luminal marker CK8 and the basal marker p63. Rather than formation of clear 

lumens, these cells formed solid epithelial cords. In comparison with wild type 

prostate there was an expansion in both basal and smooth muscle cells. Overall this 

suggests that FOXA1 is important for normal prostate ductal morphogenesis and 

differentiation (Gao et al., 2005).  

In contrast, Forkhead box A2 (Foxa2) expression is restricted to early prostatic 

development where it localizes to areas of epithelial budding (Mirosevich et al., 

2005). In Foxa1-/- prostate epithelium, Foxa2 expression persists although it is unable 

to rescue prostatic morphogenesis, suggesting that the two proteins have important 

but different roles in prostate development (Gao et al., 2005).   
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1.3.3 Homeobox containing transcription factors 

The homeobox (HOX) containing transcription factors HOXA13 and HOXD13 both 

play a role in prostate morphogenesis (Marker et al., 2003). Mutation or deletion of 

either factor in mice results in reduced prostatic size and branching morphogenesis 

(Podlasek et al., 1997; Podlasek et al., 1999a). In the rodent, a specific Hox “code” 

seems to characterise each accessory gland. Whilst all prostate glands showed high 

expression of all Hox13 genes, they could each be distinguished by specific Hox 

expression (Huang et al., 2007). In addition, Hoxa-10 knockout mice show reduced 

size and branching of the anterior prostate (Podlasek et al., 1999b).  

1.3.4 Fibroblast growth factors 

Fibroblast growth factors (FGF) have key roles in the developmental of several 

organs (Meeks and Schaeffer, 2011). FGF7 is expressed in the rat ventral prostate 

mesenchyme whilst its receptor FGFR2b is localised to the ventral prostate 

epithelium, suggesting secretion of FGF7 from the mesenchyme acts in a paracrine 

manner on the prostate epithelium. Whilst branching morphogenesis of the neonatal 

rat ventral prostate is dependent on testosterone, in the absence of testosterone, 

FGF7 can stimulate ventral prostate growth and branching morphogenesis at a 

similar level to that of testosterone. Blocking of FGF7 with a monoclonal anti-FGF7 

antibody or through use of peptide 412 which binds FGF7 and competes with 

FGFR2b results in an overall inhibition of ventral prostate growth and branching 

morphogenesis (Sugimura et al., 1996). These observations indicate that FGF7 has 

a critical role in the normal development of the prostate, at least in rodents.  

Another FGF family member, FGF10, is a known regulator of lung and limb 

development (Min et al., 1998). It is expressed in both the prostate and seminal 

vesicle mesenchyme, with its highest expression occurring during early 

organogenesis and neonatal growth. In the absence of testosterone, FGF10 can 

stimulate development of both prostate and seminal vesicle in organ culture 

experiments, and these effects are not altered by the presence of anti-androgens, 

suggesting that FGF10 is not regulated by androgens (Thomson and Cunha, 1999). 

In vivo, absence of Fgf10 results in lack of prostatic budding from the UGS in mice 

which is partially reversed by supplementation with FGF10 and testosterone 

(Donjacour et al., 2003).    
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1.3.5 Conserved developmental signalling pathways 

Sonic hedgehog (Shh) is part of the hedgehog signalling pathway which results in 

upregulation of Shh genes via Gli transcription factors. Shh is expressed in the UGE 

whilst its receptor patched and the downstream transcription factors Gli1 and Gli2 are 

expressed in the UGM surrounding areas of prostatic buds (Lamm et al., 2002). 

Whilst Shh mutant embryos are unable to generate prostates, they can form prostatic 

tissue positive for Nkx3.1 when combined with wild-type UGM in tissue 

recombination experiments. Furthermore, supplementation with androgens in both 

pregnant mice and organ culture experiments rescued the prostatic defect, 

suggesting that Shh plays a role in prostatic patterning but not initial organ 

development (Berman et al., 2004).  

Another conserved signalling pathway which has been implicated in prostate 

development is the Wnt pathway. Wnt5a is expressed in the UGM prior to and during 

bud formation, and is specifically localised around areas of emerging buds. In 

addition, Wnt5a null foetuses either do not form a UGS or have prostatic budding 

defects. However, testosterone in Wnt5a null foetuses was also greatly reduced, and 

when wild-type UGS were grown in organ culture with DHT and a WNT5A inhibitory 

antibody, budding was not affected, confirming that it is testosterone and not WNT5A 

which is required for prostate bud formation. Addition of WNT5A to wild-type UGS 

organ cultures resulted in a decrease in prostatic budding and was shown to impair 

ventral prostate development in in vivo grafts.  Overall, this suggests that Wnt5a is 

secreted from the UGM and acts as a negative regulator of the UGE (Allgeier et al., 

2008).  

1.3.6 Bone morphogenetic proteins 

The UGS mesenchyme also expresses the bone morphogenetic proteins (BMP) 

BMP4 and BMP7. BMP4 is highly expressed in mouse UGS from E14 until birth. 

When UGS in organ culture were supplemented with BMP4, prostate epithelial 

growth was significantly reduced whilst mesenchymal growth did not change, 

suggesting that BMP4 specifically inhibits epithelial cell proliferation. Quantification of 

prostatic buds in organ culture of mouse prostate rudiments showed that BMP4 

inhibits budding in a dose dependent manner (Lamm et al., 2001). Interestingly, the 

BMP inhibitor Noggin is also expressed in the mouse UGM and is required for ventral 

prostate development and budding by opposing BMP4 inhibition of epithelial cell 

proliferation (Cook et al., 2007).   
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BMP7 is also expressed in the UGM before bud formation, and then appears in the 

UGE around the budding tips. As with BMP4, BMP7 inhibits prostate morphogenesis 

in organ culture experiments, and in BMP7 null mouse prostates, branching is 

increased. BMP7 was shown to interfere with Notch signalling in the prostate 

epithelium, which is usually concentrated around areas of bud formation. However, 

addition of FGF10 could neutralise BMP7 mediated inhibition of Notch signalling, 

suggesting that FGF10 and BMP7 act to regulate Notch signalling in prostatic 

development (Grishina et al., 2005). Removal of Notch1 expressing cells in mice 

inhibits branching morphogenesis, growth and differentiation in organ culture of 

postnatal prostates (Wang et al., 2004).  

1.4 Diseases of the prostate 

1.4.1 Benign prostatic hyperplasia 

The prostate is associated with several conditions resulting in morbidity and mortality. 

The most highly prevalent prostatic disease is benign prostatic hyperplasia (BPH), 

defined as a non-malignant growth of the prostate (Roehrborn, 2005) which occurs 

as a result of epithelial and stromal cell proliferation in the transitional and 

periurethral zones of the prostate (Untergasser et al., 2005). BPH is strongly 

correlated with advancing age, with autopsy studies showing histological evidence of 

the condition in only 10% of men in their 30’s, rising sharply to 80-90% of men aged 

70-80 (Roehrborn, 2002). BPH itself may not be problematic, but it can be associated 

with lower urinary tract symptoms (LUTS), particularly in elderly men where up to 

50% develop LUTS due to BPH or benign prostatic enlargement (BPE) (Untergasser 

et al., 2005). LUTS may be divided into two categories; obstructive and irritative 

symptoms. Obstructive symptoms include straining, urinary retention, hesitancy and 

weak flow. Irritative symptoms are often more troublesome to the patient and consist 

of increased frequency and urgency, nocturia and pain. BPH is also associated with 

bladder outlet obstruction, defined as a pressure gradient at the bladder neck or 

prostatic urethra  (Roehrborn, 2005). BPH represents a serious medical issue due to 

its association with serious complications including urinary tract infections, 

haematuria and urinary retention. In particular urinary retention is painful and when 

chronic can result in renal failure (Thorpe and Neal, 2003). 

The precise cause of BPH is debated, with several potential contributors. One of the 

earliest suggested causes was the theory of “embryonic reawakening” proposed by 

McNeal, whereby the inductive ability of the prostatic stroma results in renewed 
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growth of the epithelium (McNeal, 1978). This is supported by studies showing the 

ability of embryonic UGM to induce formation of prostate epithelial glands from adult 

rodent urothelium (Cunha et al., 1983). An alternative explanation has also been 

proposed by Lin et al., who found that stromal cells in BPH patients express 

mesenchymal stem cell markers and are able to differentiate into a number of cell 

lineages, suggesting a role of stem cells in the development of BPH (Lin et al., 2007).  

Treatment for BPH generally consists of drug treatment with  antagonists and/or 5-

reductase inhibitors or surgical intervention which can range from minimally invasive 

options such as thermotherapy to transurethral resection of the prostate (TURP) (Wilt 

and N'Dow, 2008). TURP is the standard method of surgical BPH management 

however it is associated with several risks including urinary tract infection (3.6% of 

patients) and severe blood loss requiring transfusion (2.9% of patients) (Reich et al., 

2008). 

1.4.2 Prostate cancer 

Prostate cancer is the second most common malignancy in the UK accounting for 

46,700 new cases in 2014 alone. In males, prostate cancer is the most common 

cancer and rates of incidence have increased 6% in the last decade. Prostate cancer 

is strongly age-associated, with 54% of prostate cancer cases identified in men aged 

70 or over, and is predicted to rise in incidence by 12% between 2014 and 2035 

(Cancer Research UK).  

Currently, treatment for localised tumours consists of surgery, radiotherapy or active 

surveillance. In advanced or metastatic disease, androgen deprivation therapy (ADT) 

is the mainstay and may be carried out using either surgical or chemical castration to 

reduce androgen synthesis and circulating androgens (Harris et al., 2009). This is 

based on the dependence of the prostate gland on androgenic signalling. Androgens 

are critical for both normal prostate development and prostate cancer, and elicit their 

action through activation of the nuclear transcription factor AR. Testosterone, 

produced by the Leydig cells of the testes and adrenal glands is present in the 

circulation whilst in the prostatic tissue itself, the major androgen is DHT. Generation 

of DHT is mostly due to conversion of testosterone by 5-reductase enzymes within 

tissues including the prostate and skin, although 25% of circulating DHT is secreted 

by the testes (Imamoto et al., 2008).  
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Despite the initial success of ADT, many patients go on to develop androgen-

independent disease, termed castrate resistant prostate cancer (CRPC) within 12-18 

months (Marques et al., 2010). CRPC is associated with a poor prognosis particularly 

due to the presence of metastases in over 84% of patients at the time of diagnosis 

with CRPC (Kirby et al., 2011). At this stage, treatment is predominantly palliative 

(Berruti et al., 2005), and median survival is 9-13 months (Kirby et al., 2011). As a 

result, further research into the development of prostate cancer is necessary to 

facilitate new treatment strategies for this disease. However, current models 

available for research limit this progress.  

Interestingly, embryogenesis has been implicated in both BPH and cancer. In BPH, 

the embryonic reawakening theory of McNeal suggests that the stromal epithelial 

interactions which occur during normal prostate development are reactivated later in 

life with the prostatic stroma inducing new epithelial growth (McNeal, 1978). In 

several cancers, embryonic stem cell-like gene expression signatures are associated 

with poorly differentiated tumours (Ben-Porath et al., 2008). Gene expression 

analysis of mouse UGS from day E16-17 found that androgen exposure during this 

time results in expression of genes which have been implicated in prostate 

carcinogenesis including Wnt and FGFs as well as components of the phosphatase 

and tensin homologue (PTEN)/phosphoinositide 3-kinase (PI3K)/mechanistic target 

of rapamycin (mTOR) signalling pathway. Cancer hallmarks including angiogenesis 

and migration were also upregulated in response to androgen exposure. 

Furthermore, invasive cancers showed increased expression of developmental 

genes, providing further evidence for a role of developmental processes in prostate 

carcinogenesis (Schaeffer et al., 2008). An embryonic stem cell (ESC) gene predictor 

signature could also estimate survival in a cohort of prostate cancer patients (Peng et 

al., 2014). In further support of the role of developmental genes in prostate 

carcinogenesis, overexpression of the ESC marker NANOG results in tumour 

regeneration and castration-resistant tumour formation in the DU145 and LNCaP 

prostate cancer cell lines respectively (Jeter et al., 2011).  
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1.5 Current models for prostate development and disease  

1.5.1 Cell lines 

Essentially there is a lack of relevant human prostate models to study development 

and disease. Historically, two-dimensional (2D) in vitro cell line cultures have been 

widely used to study prostate cancer. Despite the high prevalence of prostate cancer, 

a very limited number of cell lines are available in public repositories, primarily due to 

the difficulty in growing prostate cancer cells in vitro (Gao et al., 2014). Such cell 

lines are derived from individual cases of prostate cancer, which is known to be 

highly heterogeneous, and therefore the major commonly used lines (DU145, PC3 

and LNCaP) are not representative of the complex heterogeneity of the disease as a 

whole (van Bokhoven et al., 2003). Prostate cancer cell lines also show a wide range 

of characteristics and androgen responsiveness. For example, the LNCaP cell line is 

androgen-dependent, luminal-like and expresses mutant AR whilst PC3 does not 

express AR, is androgen-independent and has a basal/intermediate cell phenotype 

(van Bokhoven et al., 2003). In each cell line, AR has a different role, and this can 

also depend on the specific cell culture method used, therefore use of single cell 

lines for AR research is disadvantageous (Yu et al., 2009b). Furthermore, analysis of 

commonly used human prostate cancer cell lines identified heterogeneity within cell 

lines resulting from genetic and phenotypic drift (van Bokhoven et al., 2003). A 

significant number of AR binding sites identified in CRPC are not present in prostate 

cancer cell lines, further demonstrating their lack of suitability for studies of this 

disease (Sharma et al., 2013). Finally, cell line cultures lack both the complex 

environment and surrounding cells which are important in tumour biology (Kamb, 

2005). 

In addition to prostate cancer cell lines, benign prostate epithelial cell lines are also 

available. The majority of these were generated from primary prostate cells which 

were immortalised using simian virus 40 (SV40). Such cell lines are easy to grow and 

can be maintained for many passages. However, immortalisation of cells using 

methods such as SV40 results in interference with normal cellular processes (May et 

al., 2004). In addition, several of these cell lines do not show expression of AR or 

PSA, and do not respond to androgen (summarised in Table 1-1).  
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Cell line Characteristics Reference 

PNT1A 
AR+ 
PSA- after passage 10 
No response to DHT 

(Cussenot et al., 1991) 

BPH-1 
CK8/18/19+ 
AR/PSA- 
No response to DHT 

(Hayward et al., 1995) 

PWR-1E 
AR/PSA+ (after synthetic androgen 
stimulation) 
DHT responsive  

(Webber et al., 1996) 

PNT2-C2 
CK8+ (strong), weakly CK1/5/10/14 
PSA/PSMA+ 

(Cussenot et al., 1991; 
Berthon et al., 1995; 
Lang et al., 2001a) 

RWPE-1 

CK8/18+, weakly CK5/14+ 
AR, PSA+ (after synthetic androgen 
stimulation) 
Growth stimulation in response to 
androgen 

(Bello et al., 1997) 

Table 1-1. Benign prostate cell lines and their characteristics. PSMA= prostate 
specific membrane antigen.  
 

1.5.2 Primary culture 

The limitations of cell lines for studying prostatic development and disease can be 

circumvented with the use of primary prostate cells collected from patients, typically 

from those undergoing bladder or prostate surgery. Primary cultures of epithelial and 

stromal cells from normal and malignant tissue as well as from BPH have been 

established (Lee and Peehl, 2004). In contrast with cell lines, primary culture more 

accurately represents the in vivo tissue, making them an attractive option for in vitro 

research (Rhim et al., 2011).   

However, cultured human cells in vitro have a limited capacity for division (Shay and 

Wright, 2000). As with cell lines, when cultured in vitro primary cells are deprived of 

their normal microenvironment and interactions with other cell types which may 

influence their growth and behaviour. Despite the importance of AR signalling in the 

prostate, most normal prostate epithelial cultures show no or low expression of AR 

and PSA although AR messenger RNA (mRNA) is expressed. This is consistent with 

the notion that the majority of primary prostate epithelial cells in culture display a 

basal phenotype with expression of CK5/14 and proliferative ability (Peehl, 2005). As 



14 
 

the luminal cells represent the major epithelial cell in the prostate, attempts have 

been made to grow primary luminal prostate epithelial cells in culture. Whilst some 

improvements have been made, for example addition of retinoic acid to culture 

medium which can increase the expression of luminal cytokeratins (Peehl et al., 

1994), growth of these cells in primary culture remains difficult, particularly due to the 

low replicative rate in luminal cells, as the vast majority (70%) of proliferating cells 

within normal and hyperplastic prostate acini are of a basal phenotype (Bonkhoff et 

al., 1994). Furthermore, acquisition of primary human cells is complex and their 

expansion is difficult.  

1.5.3 Animal models 

The use of animal experiments provides an in vivo setting to study prostate 

development and disease. In prostate biology, rodents are commonly used. 

However, there are several inherent differences between rodent and human prostate 

anatomy, including the presence of distinct lobes in rodent prostate which are lacking 

in the adult human prostate as well as the difference in cellular composition, as the 

human prostate epithelium consists of two defined cell layers whilst the mouse 

prostate epithelium consists of a single mixed layer of cells (Packer and Maitland, 

2016). In addition the thick fibromuscular stroma present in the human prostate is 

absent in rodents (Shappell et al., 2004). This is critical as the stroma is known to be 

important in both normal development and carcinogenesis of the prostate (Cunha et 

al., 2002). Furthermore, rodents have an extremely low incidence of both neoplastic 

and non-neoplastic disorders in the prostate, putting their suitability as a model for 

such diseases under scrutiny (Shappell et al., 2004). The high telomerase activity 

within the mouse is also problematic when attempting to model human cancers. 

Telomerase activity results in immortalization of cells and so malignant 

transformation occurs with less genetic changes than would be required in the 

human. Furthermore, the presence of high telomerase activity means that genetic 

instability cannot be studied (Cheon and Orsulic, 2011).  

An alternative is the use of xenograft models such as that performed by Saffarini et 

al using human foetal prostate tissue implanted beneath the renal capsule of 

immunodeficient mice. By day 7 proximal to distal growth was evident with the 

appearance of secondary buds and the differentiation of initial buds to secretory 

acinar epithelium formed from basal and luminal cells surrounded by connective 

tissue. By day 200, the xenografts showed a 16-fold increase in weight along with 
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further vascularisation and the formation of canalized acini and ducts from solid 

buds. Ki67, a marker of proliferation was highly expressed at days 7 and 30 but 

decreased by day 200 in both epithelia and stroma, consistent with the enhanced 

growth rate of the prostate during early foetal growth (Saffarini et al., 2013). Whilst 

this model provided knowledge of human foetal prostate development, studies using 

foetal human tissue are ethically controversial and not readily accessible.  

1.5.4 Spheroid and organoid based models  

Several studies have used primary prostate epithelial cells to generate 3D spheroids 

which more closely mimic the in vivo environment through the use of extracellular 

matrices (ECM). Human prostate epithelial cell lines grown in Matrigel, a commercial 

ECM, along with the presence of serum, testosterone, oestrogen and stromal cells 

generated spheroids with evidence of both functional and morphological 

differentiation specific to prostate. Whilst prostate epithelial cells grown in serum free 

media in Matrigel form solid spheres, the addition of serum, testosterone, oestrogen 

and stromal cells resulted in lumen formation, epithelial cell polarisation and 

expression of AR (Lang et al., 2001b).  

Recent advances in cell culture have led to the development of organoid based 

culture methods. Organoids are defined as 3D structures containing multiple cell 

types which are representative of the organ of origin in terms of both structure and 

function (Wang et al., 2017). The first major organoid paper was based upon the 

culture model developed by Sato et al., which allowed generation of mouse intestinal 

organoids from single Lgr5-positive intestinal stem cells using defined media 

containing the factors R-spondin 1, Noggin and epidermal growth factor (EGF). The 

organoids resembled intestinal crypts and contained stem cells, Paneth cells, transit 

amplifying (TA) cells, enterocytes, goblet cells and enteroendocrine cells. 

Furthermore, the organoids could be passaged for more than 8 months, allowing 

expansion of the original cells (Sato et al., 2009).  

This protocol was modified to allow growth of human colonic organoids by addition of 

several factors to the murine organoid medium including nicotinamide, A83-01 (an 

Alk inhibitor) and SB202190 (a p38 inhibitor) (Sato et al., 2011). Subsequently, this 

method has been used to generate human organoids from adult cells of several 

tissues including, liver (Huch et al., 2015), pancreas (Boj et al., 2015) and prostate 

(Karthaus et al., 2014). Human organoids from pluripotent stem cells have also been 
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generated for a number of organs including lung (Chen et al., 2017), intestine 

(Spence et al., 2011) and kidney (Takasato et al., 2015).  

Several groups have further investigated the use of organoid culture for propagation 

of primary prostate cells. Single human primary prostate epithelial cells seeded into 

Matrigel in the organoid medium described above with the addition of FGF2, FGF10, 

prostaglandin E2, A83-01, nicotinamide, the p38 inhibitor SB202190 and DHT 

formed solid multi-layered spheres which further differentiated to form organoids with 

a visible lumen consisting of mostly CK8 positive luminal cells with some basal cells 

as evidenced by p63 and CK5 expression. However, no NE cells were identified. 

These organoids expressed Nkx3.1 and AR and were hormonally responsive as 

evidenced by PSA secretion in response to stimulation by DHT. The organoids could 

be successfully passaged for over 12 months (Karthaus et al., 2014). This method 

was also used to generate organoids from patients with metastatic prostate cancer. 

The organoids are representative of the histology of the original patient sample and 

retained these histological features following in vivo engraftment. However, the 

efficiency of organoid generation was only 15-20%, due to overtaking of the tumour 

samples by normal prostate epithelium or tumour-associated spindle cells (Gao et 

al., 2014). Additionally, attempts to recreate such organoid formation from non-

metastatic prostate cancer has been unsuccessful (Karthaus et al., 2014).  

Similarly, a method for organoid formation from a luminal epithelial progenitor 

population of castration-resistant NKX3.1 expressing cells (CARNs) using growth of 

cells in 3D Matrigel culture with hepatocyte medium and EGF was also used for 

primary prostate epithelial cells. Epithelial cells from radical prostatectomy samples 

could generate spheroids with an outer layer of double positive intermediate cells 

expressing the basal and luminal markers p63 and CK8, and an inner layer of 

luminal cells expressing CK8 alone.  The organoids showed evidence of cystic 

morphology but no lumen formation was seen (Chua et al., 2014).  

1.6 Stem cells for developmental and disease modelling 

Stem cells are undifferentiated cells defined by their ability for self-renewal and 

differentiation into both progenitor and terminally differentiated cells (Wagers and 

Weissman, 2004). Stem cells are classified based on their developmental potential: 

totipotent cells, found in the zygote and early blastomeres are able to generate both 

embryonic and extra-embryonic cell types; pluripotent cells can develop into all cell 
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lineages of the embryo; multipotent cells can generate a range of cell types within a 

specific lineage; and unipotent cells can generate a single cell type (Wagers and 

Weissman, 2004; Jaenisch and Young, 2008). There are three major categories of 

human stem cells; human embryonic stem cells (hESCs), adult stem cells and 

induced pluripotent stem cells (iPSCs).  

1.6.1 Human embryonic stem cells  

hESCs were first isolated in the Thomson laboratory from donated human embryos 

which were cultured to the blastocyst stage. The derived cell lines showed typical 

stem cell characteristics including a large nucleus, high telomerase activity and grew 

in colonies. The cells expressed stage-specific embryonic antigen (SSEA)-3, SSEA-

4, TRA-1-60, TRA-1-81 and alkaline phosphatase, which are characteristic of 

undifferentiated nonhuman primate ESCs and embryonal carcinoma cells. The 

hESCs could from teratomas consisting of the three embryonic germ layers; 

mesoderm, endoderm and ectoderm, upon injection into severe combined 

immunodeficient (SCID) mice, confirming their identity as pluripotent stem cells 

(Thomson et al., 1998). Although the generation of these cells provided a new human 

model for human development and disease, they are associated with significant 

ethical issues due to their isolation from human embryos, primarily from those which 

are surplus to in vitro fertilisation (IVF) requirements. As a result, stringent restrictions 

are in place for use of hESCs.  

1.6.2 Adult stem cells 

In somatic tissue, adult stem cells exist to replace and regenerate mature cell types. 

Adult stem cells are known to exist in several tissues including intestine, skin, blood, 

and muscle. However, markers defining these populations are largely unknown, 

making isolation of stem cells difficult (Wagers and Weissman, 2004).  

Traditionally, adult stem cells were believed to differentiate only to cells from their 

tissue of origin; however recent studies have shown that some adult stem cells can 

transdifferentiate to other lineages (Wagers and Weissman, 2004). For example, 

haematopoietic stem cells (HSCs), which usually differentiate to a range of 

haematopoietic cell lineages (Kondo et al., 2003), have been shown to contribute at 

low frequencies to a range of other tissues. Following irradiation and bone marrow 

replacement with male bone marrow cells in female recipients, Y chromosome 
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positive cells could be identified in the bronchus, oesophagus, stomach and hair 

follicles, confirming the plasticity of HSCs (Krause et al., 2001).  

1.6.3 Stem cells in the prostate 

Upon castration, the prostate regresses, but if supplied with testosterone it can 

regenerate, providing evidence for the presence of stem cells within the prostate 

(Isaacs, 1985). In the mouse prostate, 5′-bromo-2′-deoxyuridine (BrdU) incorporation 

experiments identified a population of epithelial cells within the proximal prostatic 

ducts which were slow cycling and showed an enhanced proliferative potential in 

vitro. These proximal cells could also generate glandular structures consisting of 

basal and luminal cells, and which were capable of prostatic secretions when seeded 

into collagen gels (Tsujimura et al., 2002). This is in accordance with the notion of 

prostate stem cells being localised to the proximal ducts.  To isolate and study adult 

stem cells, markers of these cells must be identified. In the prostate, several stem 

and progenitor cell markers have been described.  

21 

As stem cells are known to associate with the basement membrane, study of specific 

integrins can be used to identify stem cells in a range of tissues (Jones et al., 1995; 

Li et al., 1998; Shinohara et al., 1999). Using this strategy, Collins et al., found a rare 

subpopulation of human prostatic basal cells (1% of all basal cells) with increased 2 

integrin expression (termed 21
hi cells). These cells could be directly selected by 

rapid adhesion to collagen I and showed evidence of stem cell characteristics 

including a fourfold greater colony forming ability compared to the total basal cell 

population in vitro. Furthermore, unlike slow adherent cells, the rapidly adherent 

population could form differentiated prostate epithelium when engrafted into nude 

mice with human stroma (Collins et al., 2001).  

CD133 

CD133, a known cell surface marker of human HSCs (Yin et al., 1997), has also 

been identified as a marker of human prostate stem cells. Approximately 1% of basal 

cells in the human prostate express CD133, and these cells are limited to the 21
hi 

population previously described by Collins et al. Ki67 staining indicated that this 

CD133+ population represents a group of quiescent basal cells. CD133+ selection of 

the  21
hi population found that this subpopulation has the highest proliferative 
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capacity, generating over twice the number of cells as the CD133- population. As for 

the 21
hi cells, CD133+ cells were capable of forming fully differentiated prostate 

epithelium in vivo (Richardson et al., 2004). However, a subsequent study 

investigating CD133 expression in the human prostate found that its expression is 

not specific to stem cells in the basal compartment, but is also present in a 

subpopulation of luminal cells (Missol-Kolka, 2011). Therefore, the murine model of 

CD133 as a prostate stem cell marker does not fully mirror the human prostate.  

p63 

p63, a homologue of the tumour suppressor protein p53, is a marker of basal 

prostate epithelial cells and has also been implicated in prostate development, with 

no ductal or epithelial budding structures identified in newborn p63-/- male mice 

(Signoretti et al., 2000). More recently, using lineage tracing of knock-in mice 

expressing Cre recombinase under the control of the ∆Np63 promoter, Pignon et al., 

were able to show that ∆Np63-positive cells generated all epithelial lineages of the 

prostate, implicating p63 as a marker of prostate epithelial stem cells (Pignon et al., 

2013).  

CARNs 

Despite considerable evidence for the presence of basal stem cells in the prostate, it 

has been shown that UGS from p63 null mice are able to form prostatic tissue when 

grafted into male adult mice, suggesting the presence of a luminal prostate stem cell, 

although the generated tissue lacked basal cells (Kurita et al., 2004). However, other 

studies have shown that p63 null mice do not develop prostates (Signoretti et al., 

2000). Nkx3.1, which is critical in prostate development, is lost after castration and 

subsequently restored after addition of androgens. However, a rare population of 

cells (corresponding to 0.7% of the anterior prostate in androgen-deprived male 

mice) retain expression of Nkx3.1 after castration. These cells are termed castration-

resistant Nkx3.1-expressing cells (CARNs). CARNs express CK18 and AR but lack 

basal markers, and are growth quiescent as determined by lack of Ki67 expression. 

Interestingly, CARNs can generate both luminal and basal epithelial cells, and can 

self-renew in vivo. Furthermore, single CARNs can generate prostatic ducts which 

express basal, luminal and NE markers and are secretory in function (Wang et al., 

2009). Overall, this suggests CARNs represent a rare luminal stem cell population in 

the prostate. 
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DLK1 

Delta-like homolog 1(Dlk-1), a member of the epidermal growth factor-like family was 

initially implicated as putative prostate stem cell marker due to its expression in 

candidate prostate epithelial stem cells and its suppression following culture of 

primary cells (Ceder et al., 2008). Subsequently, Moad et al., used in situ lineage 

tracing and 3D reconstruction of adult human prostates and identified discrete stem 

cell niches located at the junction between the proximal ducts and the urethra (Moad 

et al., 2017). Using laser capture microdissection of these areas and mRNA 

sequencing, DLK1 was identified as being highly upregulated in the niche area. This 

finding was validated by immunofluorescence, which showed that DLK1 is co-

localised with the basal cell marker 6-integrin. By sorting primary prostate basal 

cells into DLK1+ve and DLK1-ve populations and subsequent 3D spheroid culture, 

clear differences could be identified. Whilst DLK1-ve cells could form spheroids, these 

could not be serially passaged and became exhausted by 6-8 weeks of culture. In 

addition, the spheroids expressed only luminal markers CK8, AR and PSA. In 

contrast, DLK1+ve cells could be successfully serially passaged beyond 8 weeks and 

formed acinar and ductal structures consisting of both basal and luminal cells. These 

findings suggested that DLK1 enriches for basal prostate stem cells.  

Although a number of putative prostate stem cell markers have been suggested, lack 

of a definitive marker profile (Takao and Tsujimura, 2008) and the limited ability for 

long term culture limits the application of such cells for research. 

1.7 Pluripotent stem cell culture 

Human pluripotent stem cells have a characteristic morphology, growing in flat 

colonies with distinct borders consisting of compact, round cells with a high nuclear 

to cytoplasmic ratio and prominent nucleoli. Changes from this typical morphology 

usually represent differentiation of the cells, which typically occurs around the edges 

of the colonies (Amit, 2012).  

Early hESC culture was dependent on the use of feeder cells, predominantly 

mitotically inactivated MEFs, for maintenance of the pluripotent state. MEFs provide 

both an ECM and secrete growth factors which play a role in stem cell proliferation 

and maintenance (Celiz et al., 2014). Traditionally, this feeder-dependent culture 

system was used in combination with Dulbeccos’ modified Eagle medium (DMEM) 

containing 20% foetal calf serum (FCS) (Thomson et al., 1998; Reubinoff et al., 
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2000). As technology has progressed, a move away from undefined and animal-

based components has occurred. This is particularly important for therapeutic use of 

pluripotent stem cell, as animal-derived products can contain pathogens (Celiz et al., 

2014). 

To address part of this issue, a serum free media specifically developed for culture of 

mESCs; KnockOut DMEM (KO DMEM) with 20% KnockOut Serum Replacement 

(KOSR), was used in combination with 4ng/ml bFGF to culture hESC lines (Amit et 

al., 2000). The same group went on to show that use of human foreskin fibroblasts in 

combination with KO DMEM, KOSR and bFGF could maintain the growth and 

characteristics of hESCs after prolonged culturing (Amit et al., 2003).  

The first feeder-free hESC culture system tested MEF conditioned medium with a 

range of ECM and found that MEF conditioned medium (CM) used with Matrigel or 

laminin allowed successful culture of hESCs (Xu et al., 2001). Matrigel is an 

extracellular matrix isolated from Engelbreth-Holm-Swarm murine sarcoma tumour, 

consisting of several components including laminin, collagen and heparin sulphate 

proteoglycan which is now widely used for stem cell culture (Kleinman et al., 1986; 

Mallon et al., 2006).  

A major improvement in pluripotent stem cell culture was the development of a 

completely defined stem cell culture medium, TeSR1 which contains bFGF, 

transforming growth factor beta (TGF), pipecolic acid, -aminobutyric acid (GABA), 

lithium chloride and human serum albumin (Ludwig et al., 2006). mTeSR1, a 

modified version of TeSR1 which contains bovine serum albumin and bFGF was later 

developed to reduce costs where a xeno-free medium is not required (Celiz et al., 

2014). Further optimisation resulted in development of Essential 8 (E8) medium, 

which contains only 8 components; insulin, selenium, transferrin, L-absorbic acid, 

bFGF, TGF and sodium bicarbonate (NaHCO3) in a DMEM/F12 base medium. In 

combination with vitronectin, this provided a completely xeno-free culture system for 

hESCs and iPSCs (Chen et al., 2011). 

Inclusion of a Rho-associated kinase (ROCK) inhibitor Y-27632 into pluripotent stem 

cell culture systems reduces apoptosis in hESCs following dissociation resulting in 

improved survival and increased cloning efficiency, even in serum-free media 

(Watanabe et al., 2007). This finding was critical for improving viability of single cell 

hESCs and iPSCs and thus their downstream applications.  



22 
 

1.8 Characterisation of pluripotent stem cells 

To confirm cells as true pluripotent stem cells, several tests are required as 

recommended by the International Stem Cell Banking Initiative (ISCBI). This includes 

analysis of ESC markers, pluripotency testing to confirm differentiation capacity both 

in vitro and in vivo, karyotype analysis to confirm genetic stability, deoxyribonucleic 

acid (DNA) fingerprinting to confirm identity of the cells and microbiological testing 

(International Stem Cell Banking Initiative, 2009).  

1.8.1 ESC expression markers 

Pluripotent stem cells express several markers which are used for characterisation. 

The first test which is generally performed on pluripotent stem cells is detection of 

alkaline phosphatase (AP), a membrane enzyme (Marti et al., 2013). AP expression 

is a simple assay which can quantify undifferentiated stem cells colonies (O'Connor 

et al., 2008) and allows for rapid indication of successful reprogramming (Singh et al., 

2012).   

Following confirmation of AP positivity, complete immunostaining of pluripotent stem 

cells is required to confirm their pluripotency. A panel of markers including Oct4, 

Sox2, Nanog, Tra-1-60, Tra-1-81, stage specific embryonic antigen (SSEA) 3 and 

SSEA4 are used in human pluripotent stem cells (Marti et al., 2013). Several other 

pluripotency markers are established for undifferentiated pluripotent stem cells 

including DNA Methyltransferase 3 Beta (DNMT3B), Growth Differentiation Factor 3 

(GDF3), Teratocarcinoma-Derived Growth Factor 1 (TDGF1), Aminobutyric Acid 

Type A Receptor Beta3 (GABRB3) and Reduced Expression Protein 1 (REX1). In an 

analysis of 59 hESC lines, DNMT3B, GDF3, TDGF1 and GABRB3 showed strong 

correlation with NANOG expression (International Stem Cell Initiative et al., 2007). 

REX1, a zinc-finger protein, is a known marker of pluripotency which is expressed in 

ESCs (Rogers et al., 1991). 

1.8.2 In vitro differentiation 

To confirm their pluripotency, putative stem cells must also demonstrate the ability to 

form cells from the three embryonic germ layers; endoderm, mesoderm and 

ectoderm. In vitro, ESCs aggregate in suspension culture to form structures known 

as embryoid bodies (EBs) which express a range of germ layer-specific genes 

(Itskovitz-Eldor et al., 2000). There are several techniques to generate EBs, although 

the most commonly used is to culture the ESCs in an environment which lacks the 
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factors required for maintenance of the undifferentiated state, such as removal of 

feeder cells or leukaemia inhibitory factor (LIF), and use of petri dishes rather than 

standard tissue culture ware to prevent adherence to the surface. As a result, ESCs 

will clump together to form EBs. Other methods for EB formation include hanging 

drop culture, where ESCs are cultured in small drops of media to encourage 

aggregation, or growth of the ESCs on stromal cells which promote differentiation. 

Following EB formation, EBs may be analysed for germ layer markers or subjected to 

further adhesion culture to allow outgrowth of adhesive cells (Keller, 1995). EBs can 

generate a wide range of differentiated cell types including hepatocytes, muscle, 

neuronal, endothelial and haematopoietic cells (Drab et al., 1997; Itskovitz-Eldor et 

al., 2000; Hamazaki et al., 2001; Levenberg et al., 2002).  

1.8.3 In vivo differentiation 

The most stringent test for pluripotency is the ability of cells to form a chimera, 

defined as an organism whose cells are derived from more than one fertilised egg 

(McLaren, 1976). Whilst this method may be used for characterisation of non-human 

stem cells such as mouse ESCs and iPSCs (Nagy et al., 1993; Okita et al., 2007), 

use of chimera formation assays or other methods involving creation of living 

organisms with human ECSs or iPSCs is not ethical (Smith et al., 2009).  

After chimeric contribution, teratoma formation is the most rigorous assay for 

pluripotency. This involves injection of the pluripotent cells into immunocompromised 

mice by subcuntaneous, intramuscular, intratesticular or kidney capsule injection. 

True pluripotent cells will form teratomas containing of benign cells of endodermal, 

ectodermal and mesodermal origin (Smith et al., 2009). As a result, the ISCBI 

recommends that every banked pluripotent stem cells must be tested for teratoma 

formation in immunocompromised mice (International Stem Cell Banking Initiative, 

2009). 

1.9 Methods for cellular reprogramming  

Due to the ethical and practical considerations of embryonic and adult stem cells for 

use in modelling development and disease, alternative models are required. One 

potential solution is the use of pluripotent stem cells (PSCs) generated by 

reprogramming somatic cells. As well as providing a limitless supply of cells for 

research, reprogramming somatic cells would allow generation of patient and disease 

specific models.  



24 
 

1.9.1 Somatic cell nuclear transfer 

Reprogramming of somatic cells has been studied for decades with a variety of 

methods. The first method for reprogramming somatic cells was somatic cell nuclear 

transfer (SCNT), based on the original nuclear transplantation experiments 

established by Briggs and King (1952). In 1962, John Gurdon demonstrated that 

transplantation of adult frog intestinal epithelial cell nuclei into enucleated donor eggs 

generated normal feeding tadpoles, which subsequently matured into adult frogs 

(Gurdon, 1962; Gurdon and Uehlinger, 1966). This was the first evidence for the 

ability of somatic cells to be reprogrammed. 

The ability of mammalian cells to replicate Gurdon’s findings was investigated using 

adult mammary epithelium induced into quiescence and transplanted into a donor 

egg. This generated the first mammal cloned from an adult cell: Dolly the sheep 

(Wilmut et al., 1997). This study confirmed that differentiated mammalian cells could 

also be reverted to an embryonic state, opening up a new avenue for developmental 

research and the potential for patient-specific transplantation (Jaenisch and Young, 

2008). However, cloning via SCNT is very inefficient, ranging from 0-10% live births, 

and is associated with developmental defects, miscarriage and neonatal death (Tian 

et al., 2003). It is also possible to generate ESCs from blastocysts produced by 

SCNT (Wakayama et al., 2001). Termed nuclear transfer ESCs (ntESCs), these cells 

are generated with a much higher efficiency of ~20% (Yamanaka and Blau, 2010).  

1.9.2 Cell fusion 

A second method for reprogramming cells is by cell fusion of a somatic cell with an 

embryonic cell. Male mouse ESCs fused with female mouse thymocytes harbouring 

an Oct4 promoter driven green fluorescent protein (GFP) reporter generated hybrid 

cells which showed activation of the previously inactivated X chromosome as well as 

the Oct4 gene, and were confirmed as pluripotent cells by their ability to contribute to 

all 3 germ layers in chimeric embryos (Tada et al., 2001). Similarly, hESCs can be 

fused with human fibroblasts to form hybrids with characteristics typical of hESCs 

including enhanced growth rate and marker expression. The hybrid cells were also 

capable of differentiation into the 3 embryonic germ layers both in vitro and in vivo 

(Cowan et al., 2005). However, the cell fusion method for cellular reprogramming has 

several limitations. Despite the higher efficiency of reprogramming using this method 

(~95%), use of this technique is limited due to the tetraploidy of the resultant cell 

hybrids. As the cells still contain antigens from the ESCs, their use for cellular 
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therapies is problematic due to the risk of rejection (Kim et al., 2011). Furthermore, 

this method still requires the use of ESCs and therefore is associated with ethical 

issues.  

1.9.3 Induced pluripotent stem cells 

In a seminal paper, Takahashi and Yamanaka reported the derivation of pluripotent 

stem cells from mouse embryonic and adult fibroblast cells. A screen of 24 candidate 

genes was performed by introduction of each gene into mouse embryonic fibroblasts 

(MEFs) and selection of cells with activation of the Oct4 target gene Fbx15. Whilst no 

single factor in isolation was capable of generating colonies, all 24 factors together 

could generate pluripotent cell colonies similar to ESCs in both morphology, 

phenotype and expression analysis. By removing individual factors, it was revealed 

that iPSCs could be generated using four key factors; Oct3/4, Klf4, Sox2 and c-Myc, 

termed the ‘Yamanaka factors’.  The iPSCs were similar to ESCs morphologically 

and were capable of forming teratomas consisting of all three embryonic germ layers 

when injected into nude mice. The Yamanaka factors could also reprogram adult 

mouse tail-tip fibroblasts to iPSCs, showing that somatic cells could gain pluripotency 

(Takahashi and Yamanaka, 2006).  

However, these iPSCs were unable to contribute to chimera formation and did not 

express endogenous Oct4 and Nanog, suggesting a partially reprogrammed cell 

type. By selecting colonies based on Oct4 or Nanog expression, a later study 

showed that iPSCs could also form chimeras and contribute to the germline- the gold 

standard in stem cell characterisation (Okita et al., 2007).  

Subsequently, retroviral transduction of the same four factors was used to generate 

iPSCs from adult human dermal fibroblasts. The iPSCs displayed typical hESC 

morphology and expressed the hESC markers SSEA-3, SSEA-4, TRA-1-60, TRA-1-

81 and NANOG. At transcript level, iPSCs expressed hESC markers including 

OCT3/4, SOX2, NANOG, GDF3 and REX1 at equivalent or higher levels than H9 

hESCs. As expected for stem cells, the iPSCs possessed high levels of telomerase 

and underwent rapid proliferation. The pluripotency of the cells was confirmed by 

formation of EBs in vitro and formation of teratomas in vivo upon subcutaneous 

injection into SCID mice (Takahashi et al., 2007). The landmark finding that iPSCs 

could be generated from adult human somatic cells has revolutionised the fields of 

developmental biology, disease modelling and drug screening. Since Takahashi and 
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Yamanaka’s seminal papers, iPSCs have been generated from several other somatic 

cell types including blood cells, keratinocytes and renal cells obtained from urine (Loh 

et al., 2009; Aasen and Izpisua Belmonte, 2010; Zhou et al., 2011).  

1.10 Methods for reprogramming using defined factors 

Since the first reports of iPSC generation using defined factors, a range of 

reprogramming methods have been developed which vary in efficiency, intensity of 

labour and quality of the generated cells.  

1.10.1 Integrative methods 

Retroviral based reprogramming vectors 

Traditionally, moloney murine leukaemia virus (MMLV)-derived retroviral 

reprogramming vectors were used for iPSC generation. The vector containing the 

cloned reprogramming factor complementary DNA (cDNA) is transfected into a 

packaging cell line to generate replication deficient viruses. MMLV-derived vectors 

have a high infection efficiency with up to 90% of cells infected, and a reprogramming 

efficiency of ~0.1% for MEFS and 0.01% for human fibroblasts when each 

reprogramming gene is expressed separately. These vectors do however integrate 

into the host genome resulting in multiple random integration sites (Takahashi and 

Yamanaka, 2006) and a risk of neoplasia, gene inactivation and dysregulation. Some 

studies have shown that the viral transgenes are highly methylated in immature cells 

so their expression is supressed (Jahner et al., 1982; Stewart et al., 1982). However, 

re-activation of the retroviral transgenes has also been shown, resulting in tumour 

formation in 20% of mice derived from the iPSC line tested (Okita et al., 2007).   

Lentiviral vectors 

Following from the use of retroviral vectors, several studies used lentiviral delivery 

vectors. Lentiviral vectors have several advantages over retroviral vectors, including 

a higher infection efficiency and their ability to infect non-dividing and proliferative 

cells. Several modifications to traditional lentiviral vectors have improved their 

properties further, for example development of single cassette vectors which avoid 

multiple integration sites and a variation in the number of factors infecting each cell 

(Carey et al., 2009; Chang et al., 2009; Sommer et al., 2009). However, the viral 

transgenes do still integrate into the host genome and are not as well supressed as 

retroviral genes. This issue can be partially circumvented with the use of loxP sites 
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created in the vector to allow excision by Cre-recombinase overexpression (Chang et 

al., 2009; Sommer et al., 2010) or use of inducible vector constructs which allow 

controlled expression of the viral transgenes (Brambrink et al., 2008).  

piggyBac 

An alternative non-viral method for iPSC generation is the use of transposons, 

naturally occurring mobile genetic elements. The piggyBac transposon consists of 

the PiggyBac transposase and transposon containing the sequence of interest within 

5’- and 3’- repeats (Cary et al., 1989). Whilst this original piggyBac system consisted 

of a single element, it may also be divided into two vectors; one containing the 

transposase and the other containing the transposon: the sequence of interest 

flanked by the inverted repeat elements  (Wilson et al., 2007). The piggyBac system 

is also advantageous as it can carry multiple genes, allowing for packaging of all 

desired reprogramming factors into a single vector (Ding et al., 2005). Unlike other 

transposons, the piggyBac system does not usually leave a footprint following 

excision (Wilson et al., 2007).  

The inserted transgenes can also be removed by re-expressing the transposase. In 

this way, a polycistronic vector containing the reprogramming factors Oct4, Sox2, 

klf4, cMyc and Lin28 was used to generate integration free iPSCs from MEFs with 

the same reprogramming efficiency as retrovirus (~1%) (Yusa et al., 2009). 

Subsequently, the piggyBac system was used to deliver doxycycline-inducible 

transcription factors, generating iPSCs from human embryonic fibroblasts (Woltjen et 

al., 2009). However, reprogramming efficiency in other human cell types is 

significantly lower. In human mesenchymal stem cells (MSCs), the rate of 

reprogramming is 50-fold less than retroviral based methods (Mali et al., 2010).  

1.10.2 Non-integrative methods 

Episomal plasmids 

Another footprint free method for iPSC generation is the use of episomal plasmids to 

transiently express reprogramming factors. In human foreskin fibroblasts, 

oriP/EBNA1 based plasmids expressing a combination of factors including OCT4, 

SOX2, NANOG, LIN28, c-Myc, KLF4 and the SV40 large T gene (SV40LT) could 

produce iPSC colonies. However, the efficiency of generation was low at 0.0003-

0.0006%, and only one third of the iPSC subclones were cleared of episomal vectors 
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(Yu et al., 2009a). The same episomal plasmids were also used to generate iPSCs 

from bone marrow mononuclear cells. In this cell type, the efficiency was greatly 

increased at 100 times that of fibroblasts (~0.035%), and all clones were cleared of 

plasmids by passage 15 (Hu et al., 2011).  

Subsequently an EBNA1/OriP plasmid expressing 5 reprogramming factors; OCT4, 

SOX2, KLF4, c-MYC and LIN28 was used to reprogram cord blood mononuclear 

cells generating up to 1000 iPSCs per 2x106 cord blood cells (~0.05%) after 14 days 

of culture. Reprogramming of adult peripheral blood mononuclear cells was less 

efficient but with addition of a pEB-Tg vector expressing the SV40LT could be 

increased to generate 14 iPSCs per 2x106 mononuclear cells (~0.0007%) (Chou et 

al., 2011). Episomal plasmid based reprogramming may represent a viable choice in 

blood cells. The improved efficiency in haematopoietic cells versus fibroblast may be 

due to endogenous expression of genes such as KLF4 and c-MYC, which are much 

more highly expressed in cultured bone marrow CD34+ cells compared to 

mesenchymal stem cells (Chou et al., 2011). A recent study has used oriB episomal 

plasmids in combination with EBNA mRNA and defined culture in E8 medium to 

generate iPSCs from several fibroblast cell lines with efficiencies between 0.0004-

0.02% depending on the cell line used. This method could also reprogram fibroblasts 

obtained from skin biopsies with an efficiency of 0.006-0.1% (Chen et al., 2011).  

mRNA  

mRNA containing the gene of interest flanked by a 5’ UTR containing transition 

initiation signal and a 3’UTR with polyA tail modified to include modified 

ribonucleoside bases. Using a 4-factor cocktail of the reprogramming factors KLF4, 

c-MYC, OCT4 and SOX2, iPSCs could be generated from dH1f fibroblasts using 

modified RNA with an efficiency of 1.4%. dH1f fibroblasts transduced in parallel with 

the same four factors using a retroviral approach generated iPSCs with an efficiency 

of 0.04% (Warren et al., 2010). Unfortunately, the use of mRNA based 

reprogramming is limited by the requirement for daily additions of mRNA, making the 

process significantly more labour intensive than other reprogramming methods. 

Sendai virus 

Sendai virus (SeV) is a negative single-stranded RNA virus from the 

Paramyxoviridae family. The SeV consists of six genes; the nucleoprotein (NP), 
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phosphoprotein (P) and large protein (L) which form a ribonucleoprotein complex; a 

matrix protein (M) which allows assembly of the viral particles; and haemagglutinin-

neuraminidase (HN) and fusion (F) proteins which mediate viral attachment and 

fusion. The virus replicates solely in the host cell cytoplasm and does not have a 

DNA phase, so cannot integrate into the host genome (Lamb, 1996). An F-deficient 

SeV vector which contains the F protein but not the F gene (SeV/F) is able to infect 

cells, including non-dividing cells, with high efficiency but is unable to transmit viral 

particles (Li et al., 2000). Further modification of SeV/F introduced amino acid 

substitutions found in temperature-sensitive SeV mutants into the M and HN proteins 

(M: G69E, T116A, A183S, HN: A262T, G264R, K461G) to from a temperature-

sensitive SeV (SeV/TSF) (Inoue et al., 2003).  

Using a GFP tagged SeV/TSF vector, Fusaki et al. could demonstrate efficient 

infection of human neonatal foreskin (BJ) and dermal fibroblasts (HDFs), with the 

majority of cells GFP positive at an MOI of 3. To investigate the ability of the modified 

virus to reprogram fibroblasts, cDNAs for Oct3/4, Sox2, Klf4 and c-Myc were cloned 

into SeV/TSF vectors. 1x106 BJ or HDSs were seeded out and infected with SeV 

vectors containing Oct3/4, Sox2, Klf4 and c-Myc at an MOI of 3. After 1 week, cells 

were harvested and re-seeded onto MEF feeder cells, and the following day media 

was changed to primate ESC medium supplemented with bFGF. ESC like colonies 

emerged and were confirmed as iPSCs by hESC marker expression, EB generation 

and teratoma formation. Interestingly, RT-PCR using SeV-specific primers found that 

the SeV vector and transgenes decrease with each cell division resulting in gradual 

clearance from the iPSCs. Furthermore, persistent SeV positive cells could be 

removed using an antibody against the HN protein. This provided the first evidence 

that transgene-free iPSCs could be generated from human fibroblasts at a high 

efficiency (up to 1%) using SeV vectors (Fusaki et al., 2009).  

Further improvement to the SeV reprogramming vectors was obtained by use of new 

TS vectors. The TS15 (HNL/TS15 c-MYC) vector (carrying mutations in P (D433A, 

R434A, and K437A) and L (L1361C, and L1558I)) showed high temperature 

sensitivity and was negative by RT-PCR in 80% of transduced cells at passage 4. 

Any residual SeV could be removed using a temperature shift to 38C for 3-5 days 

(Ban et al., 2011). Subsequently, another SeV vector, TS12KOS, was developed 

which contains KLF4, OCT3/4 and SOX2 as well as the 3 P gene mutations (D433A, 
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R343A, K437A) present in the TS15 vector. Using a combination of the TS12KOS 

and HNL/TS15 c-MYC vectors generated iPSCs from skin fibroblasts and peripheral 

blood cells with an efficiency of ~4% and ~2% respectively. Temperature shifting of 

TS12KOS infected cells confirmed loss of the viral genome in 84% of cells at 

passage 1 (Fujie et al., 2014).  

Overall, SeV vectors have a higher efficiency in reprogramming human fibroblasts 

than lentiviral, adenoviral, piggyBac and plasmid based methods (Malik and Rao, 

2013). Additionally SeV is non-pathogenic to humans, representing an important 

safety feature, particularly for therapeutic use of iPSCs (Nakanishi and Otsu, 2012). 

The features of SeV described here make SeV vector based reprogramming an 

attractive method for iPSC generation, and as such it has been used to generate 

iPSCs from several cell types.  

Protein based reprogramming 

The direct delivery of reprogramming proteins is an appealing option for cell 

reprogramming as it abolishes the need for a viral delivery system and its associated 

safety concerns. This method has been used to generate iPSCs from both MEFs 

(Zhou et al., 2009) and human newborn fibroblasts (Kim et al., 2009). Whilst the 

ability of proteins to cross the cell membrane is limited, fusion of protein transduction 

domains can allow delivery of proteins into host cells (Tammam et al., 2016). In 

particular, peptides composed of 6 or more L- or D-arginine amino acids have been 

shown to give more efficient cellular uptake than other homopolymers (Mitchell et al., 

2000). 

Kim et al. generate stable HEK293 cell lines expressing a 9 arginine (9R) peptide 

fused to each of the reprogramming proteins Oct4, Sox2, Klf4 and c-Myc. Following 

incubation of HNFs with cell extracts from these HEK293 cell lines, efficient 

translocation of all 4 reprogramming proteins was confirmed. Originally the extracts 

were used for a 16-hour treatment of HNFs followed by 6 days of culturing in an ESC 

media, at which point the cells were transferred onto MEFs and cultured for a further 

4 weeks. However, this did not result in formation of any iPSC colonies, and the 

protocol was modified with the addition of several protein treatment cycles. 

Repeating the 16-hour protein treatment and subsequent ESC media culture at least 

6 times was required for generation of iPSC colonies. Due to this, generation of 

iPSCs took 8 weeks and was very inefficient with only 0.001% of cells generating 



31 
 

iPSCs (Kim et al., 2009). This is a significantly longer protocol and a 10-fold 

reduction in efficiency compared to viral based reprogramming methods. 

A later paper showed generation of iPSCs from human foreskin fibroblasts using a 

cationic bolaamphiphile complexed to each of the reprogramming factors Sox2, 

Nanog, Klf4 and NR5A2 (an upstream regulator of OCT3/4) in combination with 

valproic acid, a histone deacetylase inhibitor. Following a 3-hour incubation with the 

protein-bolaamphiphile complexes cells were cultured in MEF conditioned medium. 

Colonies were identified at 14 days of culture and were transferred to MEF feeder 

cells. Reprogramming efficiency was higher using this method at 0.05% (Khan et al., 

2013), however use of chemicals such as valproic acid could result in chemically 

induced mutations in the iPSCs (Yamanaka, 2009). Protein based reprogramming is 

an attractive choice for iPSC generation, but its use is currently limited by low 

efficiency in the absence of chemicals. Further optimisation of protein based systems 

may allow generation of footprint-free iPSCs with acceptable efficiency in the future.  

1.11 Stages of reprogramming 

Reprogramming of somatic cells can be divided into 3 distinct phases; initiation, 

maturation and stabilisation (Samavarchi-Tehrani et al., 2010) (Figure 1-3). The 

initiation phase is the earliest phase in reprogramming, covering the first 5 days. 

During this stage, there is an induction of epithelial genes including E-cadherin and 

Epithelial cell adhesion molecule (Epcam) and a repression of mesenchymal 

regulators such as Snail, Slug, Zeb1 and Zeb2. This is represented in culture by 

morphological change from fibroblasts to epithelial-like colonies, termed 

mesenchymal-epithelial transition (MET). MET occurs before the upregulation of any 

pluripotency markers, making it the first indication of reprogramming. This phase is 

promoted by BMP signalling which stimulates expression of Sall4, Nanog and Oct4. 

During the initiation phase cell fate is elastic, and removal of Oct4, Sox2, Klf4 and c-

Myc (OSKM) can result in a reversion of cells to a differentiated state (Samavarchi-

Tehrani et al., 2010).  

At around day 8 the maturation phase begins with expression of Nanog, Sall4, Esrrb, 

Rex1, Tcl1, Cripto and Nodal. A later study sorted cells on the basis of Tra-1-60 

positivity, a known ESC marker. At day 7, expression of some ESC marker genes 

including NANOG and endogenous OCT3/4 is increased in the Tra-1-60 positive 

cells whilst other markers such as LIN28 and SOX2 do not show any change. 
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However, only a small percentage of these Tra-1-60 positive cells formed iPSC 

colonies, with the majority reverting back to a Tra-1-60 negative phenotype and 

showing a change in gene expression (Tanabe et al., 2013). This demonstrated that 

whilst the initiation stage occurs in most cells, the reprogramming process 

subsequently stalls in the majority resulting in a “bottleneck”  between initiation and 

maturation (David and Polo, 2014). 

Following maturation, a transition to the stabilisation phase is achieved with 

expression of the full panel of pluripotency genes including Gdf3 and Sox2. Gdf3 is 

present in reprogrammed and partially reprogrammed cells, whilst Sox2 expression is 

restricted to fully reprogrammed cells and thus acts as a late phase marker of 

reprogramming. This activation of endogenous Sox2 is thought to represent the first 

step in a sequence which allows the cell to become pluripotent (Buganim et al., 2012; 

Golipour et al., 2012).   

The stabilisation phase represents the changes occurring after iPSCs have acquired 

pluripotency.  Transition to this phase depends on the silencing of OSKM transgenes 

which otherwise suppress the genes associated with stabilisation. These genes, 

including Lin28, Pecam, endogenous Sox2 and Utf1 are expressed in the maturation 

phase but fail to be activated until transgenes are removed (Golipour et al., 2012).  
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Figure 1-3. Schematic showing the phases of reprogramming and their associated 
hallmarks (Buganim et al., 2013).  

1.12 Limitations of iPSCs 

A potential issue associated with iPSCs is how closely they resemble hESCs. Whilst 

gene expression in iPSCs and ESCs is similar, some studies have shown that 

several embryonic, pluripotency and tissue specific genes are differentially expressed 

in iPSCs and hESCS (Chin et al., 2009; Marchetto et al., 2009). However, other 

factors including reprogramming method, genetic background of the cells and even 

the laboratory the iPSCs were generated in can also affect gene expression 

(Newman and Cooper, 2010; Liu et al., 2012; Rouhani et al., 2014). A more recent 

study which compared genetically matched iPSCs and ESCs found that they are 

molecularly and functionally equivalent (Choi et al., 2015).  

iPSCs are also associated with safety concerns due to the integrative nature of 

reprogramming vectors including retroviruses and lentiviruses.  Integration of viral 

DNA into the host genome can result in disruption of genes (Seki and Fukuda, 2015). 

To address this issue, research into non-integrative methods for iPSC generation has 

been greatly expanded and several safer alternatives are now available.  
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The reprogramming factors used for iPSC generation also raise concerns as they are 

associated with tumour development (Ben-Porath et al., 2008). 20% of offspring from 

iPSC derived chimaeric mice due to reactivation of the c-Myc transgene. More 

recently, long-term follow up of iPSC-derived neurospheres engrafted into a mouse 

model of spinal cord injury found tumour formation as a result of reactivation of the 

Oct4 transgene (Nori et al., 2015). iPSCs can be generated from somatic cells 

without the use of c-Myc and/or Klf4, but the efficiency of this is very low (Nakagawa 

et al., 2008; Mukherjee and Thrasher, 2011). The exception to this is cells with high 

endogenous expression of one or more of the Yamanka factors such as CD133+ 

cord blood stem cells which express high levels of KLF4 and c-MYC and therefore 

can be successfully reprogrammed with only OCT4 and SOX2 (Giorgetti et al., 2009). 

Whilst these limitations have hindered the ability of iPSCs for therapeutic use, in the 

short term they can be successfully used for in vitro studies including drug testing 

and modelling development and disease.   

1.13 Epigenetic memory in iPSCs 

Hierarchical gene expression analysis of iPSCs from several tissue sources along 

with hESCs found that iPSCs cluster more closely to their donor cell of origin (Ghosh 

et al., 2010). This has been shown to influence the differentiation capacity of iPSCs, 

as blood-derived iPSCs are able to differentiate into haematopoietic cells more 

readily than fibroblast-derived cells, whilst in turn fibroblast-derived iPSCs show 

osteogenic differentiation more readily than blood-derived iPSCs. Further analysis 

found that residual methylation retains an epigenetic memory of the tissue of origin in 

iPSCs (Kim et al., 2010a).  

This evidence suggests that derivation of iPSCs from the specific tissue of interest is 

important. In support of this hypothesis, generation of iPSCs from prostate and 

bladder tissue showed an enhanced ability of prostate-derived iPSCs (Pro-iPSCs) 

and urinary tract iPSCs (UT-iPSCs) to differentiate to prostate and bladder cells in 

comparison to skin derived iPSCs. This study used conditioned medium from 

prostate stromal cells to differentiate ProiPSCs into cells expressing the prostate 

markers AR and PSA at levels comparable to primary prostate epithelial cells (Moad 

et al., 2013). Of note, skin iPSCs were unable to differentiate to prostate specific cells 

when cultured under the same conditions, suggesting further evidence for the 

importance of cell type of origin during iPSC generation. However, the efficiency of 
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this approach both in terms of reprogramming prostatic cells and differentiation of the 

derived ProiPSCs to prostate epithelial cells was very low.  

1.14 Methods for differentiation of pluripotent stem cells 

1.14.1 Embryoid bodies 

Use of iPSCs for disease modelling, drug testing or clinical use requires 

differentiation to the cell type of interest. There are several approaches which vary in 

complexity, efficiency and timing. Early attempts at iPSC differentiation used the 

intrinsic ability of iPSCs to form EBs in culture. As EBs contain the three embryonic 

germ layers, similar to the developing embryo, they may be used to form specific 

tissues. Culturing EBs in medium containing specific factors can also direct their 

differentiation.  For example, neurons have been differentiated from iPSCs using EB 

formation followed by culture with the FGF/ERK inhibitor PD0325901, TGF/SMAD2 

inhibitor SB431542 and the BMP/SMAD1 inhibitor dorsomorphin, which induce 

neuroectoderm formation (Greber et al., 2011). After seeding out the hPSCs as 

single cells, a density of 8000 cells was found to give the best neuronal differentiation 

with an efficiency of approximately 70% (Zhang et al., 2013). However, endodermal 

tissues are formed as a minority in embryoid bodies, with the majority of 

differentiated cells from mesoderm and ectoderm (Kim et al., 2010b). In addition, the 

spontaneous nature of EB differentiation makes gaining a specific cell type difficult. 

1.14.2 Co-culture  

Differentiation of pluripotent stem cells can also be induced using co-culture with 

other cell types. Co-culture of hESCs with mouse visceral-endoderm like cells 

resulted in formation of cardiomyocytes (Mummery et al., 2003), providing the first 

evidence of specific induction signals for cardiomyocyte formation. Co-culture with 

hepatocytes can generate definitive endoderm-like cells which differentiate to 

endocrine cells after inhibition of Shh and addition of retionoids. Further co-culture of 

these endocrine cells with endothelial cells resulted in differentiation to insulin 

secreting cells at a high efficiency of 60% (Banerjee et al., 2011).  

1.14.3 Defined differentiation 

The ideal method for PSC differentiation is the use of defined factors which 

specifically drive differentiation to the lineage of interest, in a manner which 

recapitulates embryonic development. Protocols for differentiation of hESCs and 

iPSCs to a specific germ layer are often used as the first step in such protocols. To 
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generate endodermal-derived tissues, definitive endoderm (DE) specification using 

Activin A and increasing concentrations of foetal calf serum generates cultures with 

around 80% of cells expressing SOX17/FOXA2 (D'Amour et al., 2005). The DE cells 

can be further differentiated to more mature cell types by monolayer differentiation. 

Spence et al., cultured DE cells with Wnt3a and FGF4 to direct hindgut formation 

(Spence et al., 2011) followed by an intestinal organoid system (Sato et al., 2009). 

Using this method, the authors were able to generate intestinal organoids containing 

enterocytes, goblet, Paneth and enteroendocrine cells (Spence et al., 2011). The 

limitation of this method is that the precise factors which govern differentiation into 

the cell of interest must be known.  

1.14.4 In vivo differentiation 

Alternatively, PSC differentiation can also be achieved in vivo. For PSCs which have 

already been partially differentiated to an immature tissue type, implantation in vivo 

can allow further differentiation and maturation of the cells. Takebe et al., used 

hepatic specification of iPSCs and co-culture with human mesenchymal stem cells 

and umbilical vein endothelial cells to generate liver buds in vitro. These buds were 

subsequently engrafted into immunocompromised mice where they formed functional 

liver tissue (Takebe et al., 2013). 

1.15 Prostate specific differentiation from pluripotent stem cells  

To use iPSCs for modelling of prostate development and disease, a reproducible 

means of prostate differentiation is required. Despite the well-known role of the UGM 

in prostate differentiation, the breadth of precise factors which are secreted and act 

upon the UGE remain unknown. Development of a normal human model for prostate 

development would allow interrogation of these factors and enhance our knowledge 

which to date is based mainly upon animal studies.  

 

1.15.1 Prostate from hESCs 

The first report of prostate tissue generation using pluripotent stem cells used hESC 

lines in an in vivo tissue recombination model. Taylor et al., generated tissue 

recombinants consisting of approximately 1x103 hESCs with either 5x104 UGM cells 

or 1x105 seminal vesicle mesenchyme (SVM) cells. After 24 hours of growth, the 

recombinants were grafted under the kidney capsule of adult male SCID mice who 

were supplemented with subcutaneous testosterone pellets. Grafts were grown for 2, 

4, 8 or 12 weeks. By weeks 2-4, immature prostatic glands could be identified by 
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expression of CK8/18, p63, Nkx3.1 and AR. These were confirmed as human derived 

by positivity for anti-human laminin B1, and were surrounded by -actin positive 

smooth muscle. In the grafts harvested between 8-12 weeks, more mature prostatic 

tissue was evident with 12% of hESC+UGM and 82% of hESC+SVM glandular tissue 

expressing PSA. These glands also showed a more mature organisation with a clear 

basal layer expressing p63 and high molecular weight cytokeratin. NE cells 

expressing chromogranin A were also seen. Grafts consisting of hESCs alone 

formed teratomas which showed no PSA positivity, confirming the role of the UGM 

and SVM in driving prostatic differentiation of the hESCs, whilst UGM/SVM alone did 

not form any glandular tissue (Taylor et al., 2006). This study provided a new model 

for the study of prostate development from pluripotent stem cells.  

A second study on prostate differentiation from hESCs used previously described 

conditions for intestinal organoid formation (Spence et al., 2011) modified to direct 

prostate differentiation in vitro. As the prostate epithelium is an endodermal 

derivative, hESCs were first specified to form endoderm using an established 

protocol (D'Amour et al., 2005). Endoderm cells were then cultured in media 

containing human WNT10B and FGF10 for 4 days to drive prostate specification. 

During this specification phase, 3D structures formed and at day 4 these were 

transferred to Matrigel culture in prostate medium containing both organoid- and 

prostate-specific factors including R-Spondin 1, Noggin, EGF and testosterone. By 

day 8, areas of budding could be seen and epithelial-like ducts were visible by day 

28. Immunostaining showed expression of AR, CK8/18, NKX3.1, PSA and TMPRSS2 

in the organoids and presence of surrounding vimentin positive stromal cells 

(Calderon-Gierszal and Prins, 2015). However, the organisation of the organoids was 

not mature with CK8/18 positivity seen throughout the structure rather than restricted 

to the luminal layer. A clear lumen was not identifiable in all immunostained 

structures shown. Furthermore, AR and NKX3.1 staining was very faint.  

 

1.15.2 Differentiating iPSCs to prostate 

Differentiation of iPSCs to prostate has also been attempted. Zhao et al., used 

lentiviral vectors in an attempt to generate iPSCs from prostate epithelial cells. The 

resultant cells were not fully reprogrammed as shown by incomplete demethylation of 

the Oct4 and Nanog promoters, and failure to form teratomas, and were termed E-

PZ-iPS-like cells. Growth of these cells as spheres in PFMR-4A medium resulted in 
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expression of p63, CK18 and low level AR in the presence of androgens. By co-

culturing the cells with rat UGS, some spheres also expressed PSA. In vivo growth of 

E-PZ-iPS-like cells in combination with rat UGM formed tissue containing cell 

structures with an outer p63 positive layer and some nuclear AR expression (Zhao et 

al., 2013). However, the panel of markers is not convincing for complete prostate 

differentiation due to lack of PSA positivity. Furthermore, as the cells were not 

completely reprogrammed, differentiation back to prostate is likely easier in 

comparison to differentiation of true iPSCs to prostate. 

Our group has previously generated iPSCs from human prostate fibroblasts using a 

lentiviral vector expressing OCT4, SOX2, KLF4 and c-MYC. Culture of these Pro-

iPSCs in prostate stromal cell conditioned medium for 3 weeks resulted in expression 

of the epithelial marker CD24 as well as focal AR and PSA (Moad et al., 2013). 

Unfortunately, the efficiency of this process was very low with only a subset of cells 

expressing prostate markers, histology was not confirmed with this method and in 

vivo differentiation was not shown.   

Based on the current literature, no successful methods for prostate specific 

differentiation of iPSCs have been identified either in vitro or in vivo. As iPSCs are 

known to retain epigenetic memory from their parental cell of origin, and this has 

been shown to result in skewed differentiation towards that lineage, we aimed to 

derive iPSCs from human prostate tissue and then re-differentiate these cells to form 

prostatic tissue both in vitro and in vivo. To generate integration-free iPSCs, the 

Cytotune 2.0 vectors expressing KOS, Klf4 and c-Myc were used to reprogram 

patient prostate fibroblasts, generating a total of 49 iPSC clones. The generated 

iPSCs are free of transgenes, express pluripotency markers at the transcript and 

protein level and can differentiate to cells of the 3 embryonic germ layers both in vitro 

and in vivo. Subsequently, using rat UGM we have generated prostate organoids 

which show correct organisation with a p63 positive basal cell layer and a CK8/18 

luminal layer, and express AR and PSA. Furthermore, in vivo engraftment of the 

iPSCs with UGM generated human prostatic tissue in a parallel manner.  
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1.16 Project aims 

The aims of this PhD project were to: 

1. Generate iPSCs from human primary prostate cells 

2. To investigate the ability of the iPSCs to generate prostatic tissue in vitro and 

in vivo 
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Chapter 2. Materials and Methods 

 2.1 Cell culture 

2.1.1 Primary culture  

Human primary prostate samples were obtained from the Freeman Hospital, 

Newcastle upon Tyne. All samples were collected according to ethical and legal 

regulations, with informed patient consent under HTA licence 12534. To obtain 

fibroblasts and epithelial cells, prostate tissue was first washed with PBS and 

chopped finely with scissors before incubation at 37°C with gentle agitation in 

Roswell Park Memorial Institute medium (RPMI) 1640 (Gibco) containing 6mg/ml 

Type 1 collagenase (Worthington Biochemical Corporation) for at least 20 hours. The 

digested tissue was sequentially pipetted and subjected to centrifugation at 1500rpm 

for 5 minutes. The supernatant was aspirated and the pellet resuspended in 

phosphate buffered saline (PBS) and centrifuged at 1500rpm for 5 minutes. The 

pellet was resuspended in 10ml RPMI and centrifuged for 1 minute at 800rpm, 

allowing epithelial cells to deposit at the bottom of the tube whilst fibroblasts 

remained in the supernatant.  

The supernatant containing fibroblasts was centrifuged at 2000rpm for 15 minutes, 

and the pellet resuspended in 10ml RPMI with HEPES modification supplemented 

with 10% FCS (Sigma), 2mM L-Glutamine (Sigma), 100U/ml penicillin (Sigma) and 

100μg/ml streptomycin (Sigma), transferred to a T75 flask (Corning) and incubated at 

37°C. After 5 days, the cells were washed with PBS and new RPMI medium added. 

Following this, medium was changed every 2-3 days. The epithelial fraction was 

collected with a pipette, resuspended in 1x trypsin and incubated at 37°C for 30 

minutes. Trypsin was neutralised by the addition of RPMI, and cells were then 

centrifuged at 1500rpm for 5 minutes and serum removed. A PBS wash was 

performed to ensure removal of all serum before cells were resuspended in 5ml of 

Keratinocyte Serum Free Media (KSFM) (Gibco) and added to a BioCoat collagen 

coated 25cm2 flask (Corning) with approximately 33,000 irradiated STO feeder cells 

which are established from mouse SIM embryonic fibroblasts (Murakami et al., 

2013). Medium was changed every 2-3 days and fresh STO cells added as 

appropriate.  

Primary fibroblasts were maintained in RPMI medium with HEPES modification 

supplemented with 10% FCS (Sigma), 2mM L-Glutamine (Sigma), 100U/ml penicillin 
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(Sigma) and 100μg/ml streptomycin (Sigma). Primary epithelial cells were maintained 

on irradiated STO feeder cells in flasks coated with Collagen I in keratinocyte serum 

free medium (KSFM) consisting of keratinocyte growth medium (Invitrogen) supplied 

with Epidermal Growth Factor (EGF) and Bovine Pituitary Extract (BPE), 2mM L-

Glutamine (Sigma), 0.2ng/ml Leukaemia Inhibitory Factor (LIF) (Sigma), 0.1ng/ml 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) (Sigma), 0.2 ng/ml 

stem cell factor (SCF) (Sigma), 100ng/ml Cholera Toxin (Sigma), 100U/ml penicillin 

(Sigma) and 100µg/ml streptomycin (Sigma). All cells were grown at 37°C with 5% 

CO₂.  

2.1.2 iPSC culture 

Newly generated iPSCs were originally grown in Essential 8 Medium (Gibco) on 

Vitronectin (Gibco) coated plates. Once established, iPSCs were cultured on hESC-

qualified Matrigel (Corning) coated plates in mTESR1 medium (Stem Cell 

Technologies). Cells were grown at 37°C with 5% CO2 and medium was changed 

every 48 hours. Essential 8 Medium was prepared by thawing the Essential 8 

supplement overnight at 4C. 10ml of basal medium was removed from the bottle 

and the entire volume of Essential 8 supplement added. The medium was mixed by 

swirling and stored at 4C for up to 2 weeks or aliquoted and stored at -20C. 

mTESR1 medium was prepared by thawing of the mTESR1 5X supplement at room 

temperature or at 4C overnight and addition of the whole bottle (100ml) to 400ml of 

mTESR1 basal medium. The complete medium was swirled to mix, aliquoted and 

stored at -20C. Thawed aliquots were stored at 4C and used within 2 weeks.  

Vitronectin plates 

Stock vitronectin was thawed and divided into 60l aliquots before storage at -80C. 

Plates were coated with vitronectin at a concentration of 0.5g/cm2. To coat 1 6-well 

plate, 1 aliquot of vitronectin was thawed and added to a 15ml tube containing 6ml of 

Dulbecco’s phosphate buffered saline (DPBS) without Calcium and Magnesium 

(Gibco) and gently pipetted to mix. 1ml of diluted vitronectin was added to each well 

and plates incubated at room temperature for 1 hour. Plates could then be used 

immediately or sealed with Parafilm and stored at 4C for up to 1 week. Before use, 

stored plates were pre-warmed for 1 hour at room temperature, and vitronectin 

solution aspirated immediately before addition of iPSCs. 

Passaging iPSCs from vitronectin-coated plates 
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To passage cells from vitronectin-coated plates, medium was aspirated and cells 

rinsed twice with 2ml DPBS without Calcium or Magnesium. 1ml of 0.5mM 

Ethylenediaminetetraacetic acid (EDTA) (Gibco) was added per well and swirled to 

cover the surface. Plates were incubated at 37C for 5 minutes until the edges of 

colonies began to round up and holes were visible. EDTA was then removed and 2ml 

warm Essential 8 Medium added per well. Cells were removed by gently pipetting the 

medium over the surface of the well, and colonies collected in a 15ml conical tube. 

Fresh Essential 8 medium was added to the tube and the cell suspension added to 

the appropriate number of wells giving a total of 2ml medium per well. The plate was 

then incubated at 37C and media was changed every 48 hours.  

Making Matrigel plates 

hESC-qualified Matrigel (Corning) was thawed on ice overnight at 4C and aliquoted 

into working volumes (2x6 well plates per aliquot) dependant on the dilution factor for 

each individual lot. Aliquots were prepared using chilled pipette tips and Eppendorf’s 

to prevent solidification of Matrigel and were stored at -80C. To make Matrigel 

coated plates, one aliquot of hESC-qualified Matrigel was thawed on ice and added 

to 13ml of cold DMEM/F12 (Sigma). 1ml of the diluted Matrigel was added to each 

well of a 6 well plate and plates were left to set for 1 hour at room temperature. 

Plates could then be used immediately or sealed with parafilm and stored at 4C for 

up to 1 week. Stored plates were pre-warmed to room temperature for 30 minutes 

before use. Prior to addition of iPSCs, Matrigel was removed and mTESR1 medium 

added.  

Passaging iPSCs from Matrigel coated plates 

iPSCs were passaged once they reached approximately 80% confluency. To 

passage cells, media was removed and the cells washed with 2ml DPBS before the 

addition of 1mg/ml dispase (Stem Cell Technologies). Cells were incubated at 37°C 

for 5 minutes until the edges of the colonies began to lift off the plate. Dispase was 

then gently removed and the wells washed with 2ml of DMEM/F12 to remove any 

residual dispase. 2ml of mTESR1 was added before manual selection of colonies 

under a dissection microscope (Nikon SMZ1000) using a 200l pipette. Colonies 

were transferred directly to new Matrigel plates with 2ml mTESR1 per well and 
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incubated at 37°C for 24 hours to allow the colonies to settle. Cultures were carefully 

monitored and media changed every 48 hours.  

 

Freezing and thawing of iPSCs 

iPSCs were frozen using StemCell Banker (AMSBIO). Cells were harvested once 

they reached an appropriate confluency of 80% and harvested in the same way as 

passaging. Colonies were transferred to a 15ml falcon tube and centrifuged at 200g 

for 4 minutes to pellet the cells. The supernatant was removed and 1ml of StemCell 

Banker was added to resuspend the pellet. The cell suspension was transferred to a 

labelled cryovial and frozen using a Mr. Frosty freezing container (Nalgene) in a -

80C freezer to allow a gradual, controlled rate of freezing. After 24 hours, cryovials 

were removed from the Mr Frosty and stored at -80C.  

To thaw iPSCs, cryovials were placed in a 37C water bath to rapidly thaw the cells. 

The thawed cells were added to 9ml of DMEM/F12 and subjected to centrifugation at 

200g for 4 minutes. The supernatant was removed and the pellet gently resuspended 

in mTESR1 medium containing 1g/ml ROCK inhibitor Y-27632 (STEMCELL 

Technologies) and plated onto Matrigel coated plates. Cultures were carefully 

monitored and media changed to fresh mTESR1 every 48 hours. ROCK inhibitor was 

used for up to 1 week post-thaw. Use of the Mr Frosty when cryopreserving the 

iPSCs allowed us to greatly enhance recovery of the iPSC following freezing.  

Generating a single cell suspension of iPSCs 

To generate a single cell suspension of iPSCs, media was aspirated and the cells 

washed with 2ml/well DPBS. 1ml of Gentle Cell Dissociation Reagent (StemCell 

Technologies) was added to each well and the plates incubated for 8-10 minutes at 

37C. After incubation, the solution was gently pipetted over the surface of the well 2-

3 times to dislodge the iPSCs, and transferred to a tube containing an equal volume 

of DMEM/F12. Wells were washed twice with 1ml DMEM/F12 and the complete 

volume centrifuged for 5 minutes at 300g. Cells were resuspended in 250l to 1ml of 

media dependent on the size of the cell pellet. Cells were counted on a 

haemocytometer using trypan blue to exclude dead cells.  
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2.2 Optimising viral transduction efficiency 

For optimisation of transduction parameters, primary prostate fibroblasts were 

seeded at a density of 30,000 cells per well in 12 well plates. Cells were transduced 

using the Cytotune-EmGFP Sendai reporter (Life Technologies) at a range of MOI 

(multiplicity of infection) in their respective media for 48 hours at 37°C. Images of the 

cells were taken at 24 and 48 hours post transduction. Cells were harvested after 48 

hours by trypsinisation and analysed by flow cytometry to determine the percentage 

of GFP positive cells. The MOI, defined as the number of infectious particles per cell, 

was calculated using the following equation.  

MOI = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠/𝑤𝑒𝑙𝑙

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑤𝑒𝑙𝑙
 

 

2.3 Reprogramming primary prostate cells to iPSCs 

2.3.1 Fibroblasts 

To generate iPSCs, primary patient fibroblasts were seeded in fibroblast medium 

(high glucose DMEM (Gibco), 10% ESC-qualified FBS (Gibco), 1% MEM non-

essential amino acids (Gibco), 100µl 55mM β-mercaptoethanol (Sigma), 100U/ml 

penicillin (Sigma) and 100μg/ml streptomycin (Sigma)) at a density of 100,000 cells 

per well in 12 well plates. After 24 hours, cells were transduced with the Cytotune 2.0 

Sendai Virus reprogramming vectors (KOS, Klf4 and c-Myc, Life Technologies) at an 

MOI of 5-5-3 (KOS MOI=5, hc-Myc MOI=5, hKlf4 MOI=3) as recommended by the 

manufacturer’s instructions. After 24 hours of incubation with the viral vectors, the 

medium was replaced with fresh fibroblast medium, and was subsequently changed 

every 48 hours. At day 7 cells were transferred to vitronectin-coated plates at a 

concentration of 1.5x104 cells per well of 12 well plate. To do this, medium was 

removed from the wells and the cells washed once with PBS. 0.5ml of 0.05% trypsin-

EDTA (Gibco) was added to the wells and left for 1-3 minutes at room temperature 

until the cells began to round up. 2ml of fibroblast medium was added and the cell 

suspension was transferred to a 15ml conical tube and centrifuged for 4 minutes at 

200g. Supernatant was removed and the cell pellet gently resuspended in 2ml of 

fresh fibroblast medium. Cells were counted using a haemocytometer and trypan 

blue to exclude dead cells. Cells were then seeded out at 1.5x104 cells per well of a 6 

well plate and incubated at 37C. After 24 hours on vitronectin (day 8 of the 
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experiment) the medium was changed to Essential 8 medium (Gibco) and media 

changes occurred every other day. Plates were carefully monitored for the 

emergence of colonies. From day 21 onwards colonies had reached a suitable size 

and were manually picked using a p200 pipette and transferred to individual 

vitronectin-coated wells for clonal expansion. Once a suitable confluency of around 

70% was reached, colonies were transferred to Matrigel coated plates for 

characterisation and expansion. 

2.3.2 Epithelial cells 

Two methods were used for transducing prostate epithelial cells using Cytotune 2.0 

viral vectors; transducing within the original flask or after seeding the epithelial cells 

onto gelatin-coated plates.  

Transducing in the original flask 

Before transducing the epithelial cells, media was aspirated and the cells washed 

with PBS. Cytotune 2.0 vectors were added at the determined MOI in KSFM and 

incubated for 24 hours at 37C. Media containing the virus was removed after 24 

hours and replaced with fresh epithelial cell medium. Cultures were monitored daily 

and the media changed every 48 hours. For the first transduction, cells were 

transferred on day 7 to a hESC environment consisting of a MEF feeder layer and 

hESC medium. Cells were monitored daily by microscopy (Olympus CK40 

microscope).  For the second transduction, the protocol was modified and cells were 

transferred to vitronectin coated plates in E8 medium or MEFs in hESC medium on 

day 15 after colonies were visible. Again, cultures were monitored by phase contrast 

microscopy and harvested at day 28 for RNA extraction.  

Seeding cells onto gelatin 

The second method used for epithelial reprogramming was to seed the epithelial 

cells into 3 individual wells on gelatin coated plates. Cells were transduced with the 

Cytotune 2.0 vectors in epithelial cell medium at the designated MOI and incubated 

at 37C for 24 hours. The media containing the virus was then removed and fresh 

medium added. Cells were monitored by microscopy and the media changed every 

48 hours. At day 7, the medium was changed to E8 medium and on day 8 and 11 

one well of each sample was transferred to vitronectin coated plates whilst the 

remaining well was kept on gelatin for further culture. As in the previous method, the 
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media was changed every 48 hours, cells were closely monitored by microscopy and 

all wells were harvested at day 28 for RNA extraction.  

2.4 Alkaline phosphatase detection 

Alkaline phosphatase staining was carried out using the ESC characterisation kit 

(Millipore). Media was aspirated from iPSCs before fixation with 4% 

paraformaldehyde in PBS for 2 minutes. Fixative was aspirated and cells washed 

with 1X rinse buffer. 0.5ml stain solution (Fast Red Violet solution and Napthol AS-BI 

phosphate solution diluted with water in a ratio of 2:1:1 (Fast Red 

Violet:Napthol:water)) was added to cells and incubated in the dark for 15 minutes at 

room temperature. The solution was aspirated and cells rinsed with 1X rinse buffer. 

Cells were covered with PBS and imaged using an Olympus CK40 microscope and 

Visicam 5.0 software.  

2.5 Embryoid body formation 

For formation of embryoid bodies (EBs), iPSCs were harvested by manually picking 

colony pieces with a p200 pipette and transferred to a 15ml conical tube. Colonies 

were left for 5 minutes at room temperature to settle to the bottom of the tube. 

Medium was removed and fresh medium added at a ratio of 1:1 mTESR1 and EB 

medium (80% Knock-out DMEM, 20% FCS, 1% Glutamax, 1% MEM and 1% 

penicillin-streptomycin). Colonies were then transferred into low-adhesion dishes and 

incubated at 37C for 48 hours. At this point, media was changed to EB medium 

alone and cultures monitored by microscopy. Medium was changed every 48 hours 

until EBs of a suitable size were formed. EBs were then seeded onto gelatin coated 6 

well plates for explant culture for a further 2 weeks. Cells were analysed by 

immunofluorescence or harvested for RNA extraction.  

2.6 Teratoma formation assay 

To determine the pluripotency of the generated cells in vivo, a teratoma formation 

assay was performed. iPSCs were dissociated using gentle cell dissociation reagent 

to generate a single cell suspension, counted with trypan blue to exclude dead cells, 

and aliquoted into tubes at a density of 1x106 live cells per tube. The cells were 

mixed 1:1 with Matrigel and injected subcutaneously into NOD scid gamma (NSG) 

mice. NSG mice were chosen as they are the most immunodeficient strain of mice 

due to deficiencies in T, B, and NKC cells and macrophages (Ito et al., 2012), and 

therefore should not be able to reject the transplanted cells. Mice were weighed and 
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checked for general health and emergence of palpable tumours at least once weekly. 

Once tumour formation was apparent, tumour size was regularly monitored using 

callipers. The mice were culled by cervical dislocation if tumours reached the 

maximum size allowable under the license or alternatively at 90 days which 

constituted the end of the experiment.  

Tumours were isolated by making an incision into the skin of the mouse and opening 

this to reveal the tumour. Tumours were cut away from the mouse skin, weighed, 

measured and photographed. Each tumour was cut in half. One half was fixed in 

Bouins solution for 24 hours at room temperature, processed using the conditions 

outlined below, and embedded in paraffin wax. The second half was frozen in 

isopentane and stored at -80C. Paraffin blocks were sectioned at 4m (Anna Long, 

Pathology, RVI) and sections stained with haematoxylin and eosin. Multiple sections 

from each tumour were kindly analysed by Amira El Sharif (Pathologist, RVI).  

2.7 DNA fingerprinting 

DNA fingerprinting was performed to confirm the iPSCs were generated from the 

parental stroma and were not a result of contamination from another pluripotent cell 

source. Cells were harvested to a single cell suspension and pelleted by 

centrifugation at 200g for 4 minutes. The pellets for iPSCs and parental fibroblasts 

were sent to the Northern Molecular Genetics Service (Centre for Life, Newcastle 

Upon Tyne) for DNA extraction and detection of microsatellite markers. Using the 

PowerPlex 16 HS System, 16 loci were amplified from each sample; D18S51, 

D21S11, TH01, D3S1358, Penta E (labelled with fluorescein); FGA, TPOX, 

D8S1179, vWA, Amelogenin (labelled with carboxy-tetramethylrhodamine); CSF1PO, 

D16S539, D7S820, D13S317, D5S818 and Penta D (labelled with 6-carboxy-4 ́,5 ́-

dichloro-2 ́,7 ́- dimethoxy- fluorescsein). Analysis was performed using an ABI 377 

sequence detector (Applied Biosystems).   

2.8 Karyotyping 

iPSCs were subjected to G-banding to allow identification, pairing and analysis of 

chromosomes and to confirm a normal male karyotype. This was performed by the 

Northern Genetics Service (Centre for Life, Newcastle upon Tyne).  
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2.9 Flow cytometry 

For analysis of GFP positivity by flow cytometry cells were trypsinized at 37C for 5 

minutes, resuspended in RPMI medium and subjected to centrifugation at 1500rpm 

for 5 minutes. The supernatant was removed and pellets resuspended in 10ml MACS 

buffer (PBS with 2mM EDTA and 0.5% FCS) and centrifuged again. Cell pellets were 

resuspended in 0.5ml MACS buffer and transferred to FACS tubes (BD) before 

analysis of up to 10,000 cells per sample by FACSCalibur™ (BD Biosciences). The 

cell population was gated according to forward and side scatter. Further gates were 

applied based on GFP expression to determine the percentage of transduced cells. 

Data was tested for statistical significance using a two-way ANOVA. 

2.10 RNA extraction, reverse transcription and RT-PCR 

2.10.1 RNA extraction using Qiagen® RNeasy Micro kit  

For samples containing 5 x 105 cells, RNA was extracted using the Qiagen RNeasy 

Micro kit according to manufacturers’ instructions. Cells were resuspended in 350l 

buffer RLT and mixed by pipetting. 350l of 70% ethanol was added and mixed well 

before transferring the sample to an RNeasy MinElute spin column in a 2ml collection 

tube and centrifuging for 15 seconds at 10,000rpm. After discarding the flow-through, 

350l of Buffer RW1 was added and the samples were centrifuged for 15 seconds at 

10,000rpm. The flow-through was discarded and DNase I incubation mix (10l 

DNase I stock solution + 70l Buffer RDD) was added to the column for 15 minutes 

at room temperature. The column was washed with 350l Buffer RW1 and 

centrifuged for 15 seconds at 10,000rpm. The flow-through and collection tube were 

discarded and the column placed into a new collection tube. 500l Buffer RPE was 

added and the sample centrifuged for 15 seconds at 10,000rpm. The flow-through 

was discarded and 500l of 80% ethanol added to the column before centrifugation 

for 2 minutes at 10,000rpm. The flow-through and tube were discarded and the 

column placed into a new collection tube and centrifuged for 5 minutes at full speed. 

Finally, the column was placed into a 1.5ml collection tube and 14l of RNase-free 

water added to the centre of the column membrane. RNA was eluted by 

centrifugation for 1 minute at full speed and stored at -80C.  

2.10.2 Quantification of RNA 

RNA was quantified using the NanoDrop 1000 spectrophotometer (Thermo 

Scientific). Before use, RNase free water (Qiagen) was added to the sample 
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retention platform and wiped with a clean tissue. A water sample was then added to 

initialise the spectrometer. 2l of RNase free water was used to blank the 

spectrophotometer. To quantify samples, 1.2l of RNA was pipetted onto the lower 

measurement pedestal and the sampling arm lowered.  This allows the sample to be 

drawn between the upper and lower pedestals for a measurement to be made. The 

RNA concentration in ng/l was noted and the 260/280 and 260/230 ratios checked 

to ensure purity of the RNA. A 260/280 value of 2 is expected for pure RNA, whilst 

the 260/230 ratio should be 1.8-2.2. Between each sample, the pedestals were wiped 

using a laboratory tissue to prevent carryover. RNA was kept on ice during the 

process.  

2.10.3 cDNA generation 

cDNA was generated from RNA using SuperScript™ III Reverse Transcriptase 

(Invitrogen). Up to 5g of RNA was combined with 1l of random primers and 1l of 

10mM dNTP mix in an Eppendorf tube and made up to 13l with Diethyl 

pyrocarbonate (DEPC) water. Tubes were incubated at 65C for 5 minutes and then 

placed on ice for at least 1 minute. cDNA synthesis mix containing; 4l 5X First-

Strand Buffer, 1l 0.1M DTT, 1l RNaseOUT Recombinant RNase Inhibitor and 1l 

SuperScript III RT was added to each tube and mixed gently. Tubes were centrifuged 

before incubation for 10 minutes at 25C followed by 50 minutes at 50C. The 

reaction was stopped by incubation at 85C for 5 minutes and tubes were chilled on 

ice before storage at -20C.  

2.10.4 Real-time PCR 

To analyse transcript levels of genes, real-time PCR (RT-PCR) was performed in 384 

well plates using the primers described in Table 2-1. Each well contained 9l of 

mastermix (containing 5l of SYBR Green, 0.4l forward primer, 0.4l reverse primer 

and 3.2l of sterile distilled water). Plates were run on an Applied Biosystems 

7900HT using SYBR green (Invitrogen) detection. SYBR green is a double-stranded 

DNA binding dye which detects double-stranded DNA produced during PCR, 

producing a fluorescent signal proportional to the amount of PCR product. This signal 

is normalised to the ROX passive reference dye included in the SYBR Green 

mastermix to control for fluctuations in fluorescence.  
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Plates were run at 50C for 2 minutes, 95C for 2 minutes and then for 40 cycles of 

95C for 15 seconds followed by 60C for 1 minute. Analysis was performed using 

Applied Biosystems SDS 2.3. The amount of cDNA in the samples was quantified by 

interpolating values from a standard curve of known expression and expression of 

each gene was normalised to the housekeeping genes glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) or hypoxanthine phospho ribosyl transferase (HPRT1). 

Each sample was run in triplicate and water only wells containing no cDNA were 

used as a control in all experiments. Dissociation curves were checked for all 

samples to ensure they contained only a single specific peak. 
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Gene Forward primer Reverse primer 

GAPDH CGACCACTTTGTCAAGCTCA GGGTCTTACTCCTTGGAGGC 

HPRT1 TTGCTTTCCTTGGTCAGGCA AGCTTGCGACCTTGACCATC
T 

OCT4 GCAAGCCCTCATTTCACCAGG
CC 

AGGATCAACCCAGCCCGGCT 

SOX2 TCACATGTCCCAGCACTACC CCCATTTCCCTCGTTTTTCT 

NANOG CCAAATTCTCCTGCCAGTGAC CACGTGGTTTCCAAACAAGA
AA 

DNMT3B TGCTGCTCACAGGGCCCGAT
ACTTC 

TCCTTTCGAGCTCAGTGCAC
CACAAAAC 

REX1 CGTACGCAAATTAAAGTCCAG
A 

CAGCATCCTAAACAGCTCGC
AGAAT 

SeV GGATCACTAGGTGATATCGAG
C 

ACCAGACAAGAGTTTAAGAG
ATATGTATC 

SeV-KOS ATGCACCGCTACGACGTGAG
CGC 

ACCTTGACAATCCTGATGTG
G 

SeV-Klf4 TTCCTGCATGCCAGAGGAGC
CC 

AATGTATCGAAGGTGCTCAA 

SeV-c-Myc TAACTGACTAGCAGGCTTGTC
G 

TCCACATACAGTCCTGGATG
ATGATG 

CD24 TGAAGAACATGTGAGAGGTTT
G 

GAAAACTGAATCTCCATTCCA
C 

CD45 GAAATTGTTCCTCGTCTGAT CTTTGCCCTGTCACAAATAC 

a-SMA CTCACGGAGGCACCCCT GAAAGTCTCAAACATAATTTG 

CD90 CACACATACCGCTCCCGAACC GCTGATGCCCTCACACTTGA
C 

AFP AGCTTGGTGGTGGATGAAA TCTGCAATGACAGCCTCAAG 

PAX6 TGTCCAACGGATGTGTGAGT TTTCCCAAGCAAAGATGGAC 

FOXA2 TCCGACTGGAGCAGCTACTAT
G 

CCACGTACGACGACATGTTC 

NKX3.1 AGCCAGAAAGGCACTTGGG GGCGCCTGAAGTGTTTTCA 

AR GCAAAGCCTAAAGCCAGAT GAGTTCATGGGTGGCAAAG 

PSA TCGGCACAGCCTGTTTCAT TGGCTGACCTGAAATACCTG
G 

Table 2-1. Primer sequences used for RT-PCR. 
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2.11 Haematoxylin and Eosin (H&E) staining 

Formalin fixed paraffin embedded (FFPE) sections were placed into xylene for 5 

minutes to allow deparaffinisation before rehydration of the sections through 

decreasing concentrations of alcohol at 100%, 95%, 70% and 50%. Slides were 

washed in running water before addition of Gills II Haematoxylin (Fisher) for 5 

minutes to stain the nuclei of cells. Slides were washed in running water and dipped 

twice into acid alcohol (1.4L absolute ethanol (Fisher), 580ml distilled water, 20ml 

concentrated hydrochloric acid (Fisher). to remove excess haematoxylin before 

blueing of the haematoxylin stain by incubation in Scott’s water (2L of distilled water, 

7g sodium hydrogen carbonate (VWR), 40mg magnesium sulphate (Fisher) and 

thymol (VWR)) for 30 seconds. Slides were rinsed in water and placed into Eosin 

(500ml Eosin (Fisher), 250ml absolute ethanol (Fisher), 250ml distilled water)) for 2 

minutes. Slides were rinsed to remove excess eosin and dehydrated through ethanol 

from 50%-100%. Alcohol was cleared from the sections by 3 incubations in xylene, 

and slides were coverslipped using DPX Mountant (Sigma).  

2.12 Immunofluorescence 

2.12.1 Standard immunofluorescence for cells 

Specific markers were detected using immunofluorescence. Medium was removed 

and the cells washed twice with PBS. Cells were fixed with 4% paraformaldehyde for 

15 minutes at room temperature before washing twice with 1X rinse buffer (TBST: 

20mM Tris-HCl, pH 7.4, 0.15 NaCl, 0.05% Tween-20) for 5 minutes each. 0.1% 

Triton X-100 was added for 10 minutes at room temperature to permeabilise the cells 

before 2 further washes with rinse buffer. Cells were blocked in 4% goat serum 

(Dako) or bovine serum albumin (BSA) (depending on the species of the secondary 

antibody) for 30 minutes at room temperature to prevent non-specific binding. 

Primary antibodies were diluted in 4% goat serum or BSA at concentrations specified 

in Table 2. Cells were incubated with the primary antibody overnight at 4°C before 

washing 3 times with rinse buffer. Secondary antibodies were diluted 1:400 in PBS 

and added to cells for 1 hour at room temperature in the dark. Cells were washed 

three times with PBS and VECTASHIELD® hard set mounting medium with 4’, 6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories) was spotted onto each well. 

Plates were left to dry before the addition of PBS whilst slides were coverslipped. 

Immunofluorescent staining was visualised by fluorescent microscopy (Leica DMR). 
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2.12.2 Immunofluorescence on FFPE tissue 

For immunofluorescence with FFPE tissue, slides were first placed into xylene for 5 

minutes to deparaffinise before rehydration through an ethanol gradient of 100-50%. 

Slides were rinsed in running water and antigen retrieval was performed using citrate 

buffer pH6 in a decloaking chamber (A. Menarini Diagnostics). Following retrieval, 

slides were rinsed with water and blocked with 3% hydrogen peroxide to remove 

endogenous peroxidase activity. After rinsing, slides were placed briefly into TBST 

and sections lined using a PAP pen (Dako). Non-specific binding was blocked by 

incubation in 4% serum or BSA for 1 hour at room temperature before addition of the 

primary antibody/ antibodies (listed in Table 2-2) for 1 hour at room temperature. 

Slides were washed twice with PBS for 5 minutes and the appropriate fluorescent 

secondary antibody (diluted 1:400) applied for 30 minutes at room temperature in the 

dark. Slides were then washed a further 2 times for 5 minutes with PBS before 

VECTASHIELD® hard set mounting medium with DAPI (Vector Laboratories) was 

spotted onto each slide and coverslips added. Immunofluorescence was visualised 

using confocal microscopy (Zeiss).  
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Table 2-2. Antibodies used for immunofluorescence 
  

Antibody Company Species Concentration 

SSEA1  
MC-480 

EMD Millipore Mouse 1:100 

SSEA4 
MC-813-70 

EMD Millipore Mouse 1:100 

Tra-1-60 
TRA-1-60 

EMD Millipore Mouse 1:100 

Tra-1-81 
TRA-1-81 

EMD Millipore Mouse 1:100 

Oct4 
MAB4401A4 

EMD Millipore Mouse 1:200 

-fetoprotein 
(AFP) A8452, 
clone C3 

Sigma Mouse 1:100 

III tubulin 
MMS-435P 

Covance Mouse 1:100 

Vimentin 
Ab8978 [RV202] 

Abcam Mouse 1:100 

FOXA2 
AF2400 

R&D Rabbit 1:10 

SOX17  
AF1924 

R&D Goat 1:20 

CK8/18 
Ab17139 [5D3] 

Abcam Mouse 1:50 

34BE12 
M0630 

Dako Mouse 1:100 

P63 
NCL-L-p63 

Leica Biosystems Mouse 1:50 

Nkx3.1 
0314 

AthenaES Rabbit 1:50 

AR (N20) 
Sc-816 

Santa Cruz Rabbit 1:50 

AR (441) 
Sc-7305 

Santa Cruz Mouse 1:50 

PSA  
A0562 

DAKO A Rabbit 1:100 

PSA  
BIOG.AR014-
10RE 

Biogenex Rabbit 1:50 
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2.13 Immunohistochemistry 

Cells or organoids were collected and fixed in 10% normal buffered formalin 

overnight at room temperature before processing and embedding in paraffin blocks. 

For IHC, slides were dewaxed by placing in xylene for 5 minutes followed by 

subsequent dips into fresh xylene. Slides were hydrated by passing through an 

ethanol gradient from 100% to 50% ethanol and then rinsed in water. A decloaking 

chamber was used for antigen retrieval using citrate buffer pH 6 (trypsin retrieval 

used for PSA antibody).  Following antigen retrieval, slides were washed and 

endogenous peroxidase activity was blocked using 3% hydrogen peroxide solution 

for 10 minutes. Nonspecific binding of the primary antibody was blocked for 20 

minutes using 2.5% horse serum for mouse and rabbit antibodies, or BSA for all 

other species. Primary antibodies (listed in Table 2-3) were made up in 4% BSA and 

incubated for 1 hour at room temperature. Slides were then rinsed with TBST and 

incubated with anti-rabbit or anti-mouse IgG for 30 minutes, or the appropriate 

secondary antibody for 1 hour.  3, 3 -diaminobenzidine (DAB) solution (Vector 

Laboratories) was added to the sections and incubated for 5 minutes followed by 

washing in water and counterstaining with haematoxylin. Slides were dehydrated 

using a reverse ethanol gradient from 50% to 100% ethanol and then placed into 

xylene. Slides were mounted onto coverslips using DPX Mountant (Sigma). Images 

were obtained using the Aperio system (Leica).  
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Antibody Company Species Dilution 

Anti-human 

mitochondria 

Ab92824 [113-1] 

Abcam Mouse 1:200 (xenografts) 

1:500 (growth factor 

differentiation) 

Pan CK 

Ab7753 [C-11] 

Abcam Mouse 1:500 

CK8/18 

Ab17139 [5D3] 

Abcam Mouse 1:50 

34BE12 

M0630 

Dako Mouse 1:500 

P63 

NCL-L-p63 

Leica Biosystems Mouse 1:50 

AR 

554225 

Clone G122-434 

BD Pharmigen Mouse 1:50 

PSA 

BIOG.AR014-

10RE 

Biogenex Rabbit 1:25 

Vimentin 

Ab8978 [RV202] 

Abcam Mouse 1:1000 

III tubulin 

MMS-435P 

Covance Mouse 5000 

Table 2-3. Antibodies used in immunohistochemistry. 

2.14 Colony counts: 

To determine the number of cells per mm2, colonies were photographed using the 

EVOS system and colony area measured using ImageJ software. Colonies were 

individually picked, digested to a single cell suspension using gentle cell dissociation 

reagent (StemCell Technologies), diluted 1:1 with trypan blue and counted using the 

BioRad TC20 automated cell counted.  

2.15 Urogenital sinus mesenchyme dissection and xenografting 

Urogenital sinus mesenchyme dissection was carried out in collaboration with and 

under the supervision of the Hayward laboratory, North Shore University 

HealthSystem Research Institute, Evanston, Chicago. Xenografting was kindly 

performed by Dr Takeshi Sasaki and Dr Omar Franco. UGM was dissected from 

Sprague-Dawley E18 pregnant female rats. After culling, foetuses were removed and 

complete urogenital systems were dissected. To remove the urogenital system, an 

incision was made in the foetal abdomen to expose the intestinal and urogenital 
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systems (Figure 2-1). To remove the urogenital system, forceps were used to pull 

gently on the bladder and the urethra was cut. The bladder, urethra, Wolffian and 

Müllerian ducts and testes or ovaries were removed leaving the UGS (Figure 2-2). 

UGS were incubated in 10mg/ml trypsin at 4C for 90 minutes. Trypsin was 

neutralised by serial washes with RPMI containing FCS. DNase was added to 

prevent stickiness of the UGS during dissection. To separate the UGM from the 

UGE, the UGS was gently opened to reveal the epithelial tubes. Using needles, 

these were removed along with any fat surrounding the UGM (Figure 2-3). To 

generate tissue recombinants, UGM was combined with pieces of iPSC colony and 

resuspended in collagen isolated from rat tails. This was incubated at 37C for 30 

minutes to solidify before addition of RPMI containing 10% FCS. Tissue 

recombinants were further incubated overnight.  

 

Figure 2-1. Locating and removing the urogenital system from E18 rats. A) 
Photograph showing the umbilical cord (arrowhead). B) After opening the abdomen, 
the liver and intestinal system can be clearly identified. C) The urogenital system is 
removed by pulling gently up on the bladder and making a cut at the base of the 
urethra. Scale bar 10mm.  

 



58 
 

 

Figure 2-2. A) Complete male urogenital system from E18 rat. The testes, bladder 
and urethra are visible along with the urogenital sinus (UGS). B) The urethra, 
bladder, Müllerian and Wolffian ducts and testes or ovaries are removed leaving 
behind the UGS. Scale bar 5mm. 

Nude mice (Hsd:Athymic Nude-Foxn1nu) were used for the sub renal capsule 

xenografts as these have been identified as generating better prostate glandular 

structures and are also immune deficient as they lack mature T cells. Mice were 

sedated with isofluorane and castrated by surgical removal of the testis. To expose 

the kidney, a small incision was made in the skin of the mouse followed by a small 

incision in the peritoneum. The kidney could then be exposed and a small incision 

made in the outer layer of the kidney capsule. One graft was inserted into each side 

of the kidney and stitched before repeating on the other kidney. A testosterone pellet 

was inserted into the scruff of the neck before the wound was stapled. Mice were 

carefully monitored until they were culled and the grafts harvested for further 

analysis. Upon harvesting, grafts were imaged and measured before formalin 

fixation, processing and embedding in paraffin.  

 

Figure 2-3. A) High magnification image of the UGS. The dense area is the 
mesenchyme which surrounds the epithelial tubes. B) The mesenchyme (UGM) is 
removed from the epithelial tubes (UGE). Scale bar 1mm. 
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2.16 Definitive endoderm generation from iPSCs 

To generate definitive endoderm (DE) from iPSCs, cells were harvested to a single 

cell suspension and seeded out at a density of 2x106 cells per well of a Matrigel 

coated 6 well plate in mTESR1 medium containing 1g/ml ROCK inhibitor Y-27632. 

Cells were incubated at 37C for 24 hours before removal of medium and washing 

with PBS. DMEM/F12 medium containing 100ng/ml Activin A (R&D) was added and 

cells incubated for a further 24 hours. Media was replaced after 24 hours with fresh 

DMEM/F12 containing 100ng/ml Activin A and 0.02% FCS and cells incubated for a 

further 24 hours. Finally, media was again replaced after 24 hours with DMEM/F12 

containing 100ng/ml Activin A and 0.2% FCS. Following a final 24-hour incubation, 

cells were fixed and stained for the definitive endoderm markers SOX17 and FOXA2 

by immunofluorescence, or harvested using gentle cell dissociation reagent for RNA 

extraction.  

2.17 3D co-culture of iPSC-derived endoderm and rat urogenital sinus 

mesenchyme cells  

For co-culture of UGM and DE cells, chamber slides were coated with 40l of neat 

GFR-Matrigel (Corning) and left to set at 37C for 20 minutes. UGM and DE cells 

were counted using trypan blue to exclude any dead cells. Cells were resuspended 

at the desired concentration in GFP Matrigel diluted 1:1 with DMEM/F12 Ham and 

pipetted into the chamber slide wells. This layer was left to set at 37C for 30 minutes 

as above before addition of DMEM/F12 Ham containing 2% ITS (insulin, transferrin, 

selenium) (Gibco) and 10nm DHT (Sigma). Cultures were monitored and 

photographed daily. After 7 days of culture, media was changed to UGM conditioned 

media which was collected from whole pieces of UGM incubated in DMEM/F12 Ham 

containing 2% ITS and 10nm DHT. From this point media was changed 3 times per 

week. For the first experiment, wells were harvested after 3 weeks of 3D culture by 

removal of the entire Matrigel plug, fixed in 10% neutral buffered formalin (Sigma) 

overnight and processed before embedding into paraffin.  

For the second UGM co-culture, cells were set up as described above. Again, UGM 

CM was used from day 7 onwards. After 6 weeks of 3D culture, the media was 

changed to prostate organoid medium (Karthaus et al., 2014). Wells were harvested 

after 6 or 8 weeks for histology or RNA extraction. Wells for histology were removed 

as a Matrigel plug, fixed in 10% formalin overnight and processed before embedding 
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into paraffin. For RNA extraction, the Matrigel was digested by incubation with 

dispase at 37C until the gel was completely dissolved. The mixture was pipetted up 

and down to further break up the Matrigel, and transferred to an Eppendorf for 

centrifugation at 2000rpm for 5 minutes. The supernatant was removed and the pellet 

snap frozen in isopentane and stored at -80C.  

2.18 Growth factor differentiation 

For directed differentiation using growth factors, a published protocol was used 

(Calderon-Gierszal and Prins, 2015). Definitive endoderm was primed to prostatic 

differentiation using RPMI 1640 containing 2mM L-Glutamine, 100U/ml penicillin-

100l streptomycin and 2% FCS with 500ng/ml FGF10 (R&D systems) and 500ng/ml 

human WNT10B (R&D systems). This media was changed daily for a total of 4 days 

at which point any 3D structures which had formed were transferred to 3D culture. To 

do this, structures were harvested under a sterile dissecting scope using a p1000 

pipette, transferred to a 15ml conical tube and centrifuged at 400g for 3 minutes. 

Media was aspirated and 25l of medium added. The 25l of cell suspension was 

mixed with 50l GFR Matrigel (Corning) containing 1X B27 supplement (Invitrogen), 

100ng/ml Noggin (R&D systems) and 100ng/ml EGF (R&D systems). Each 

cell/Matrigel mixture was pipetted into one well of a 24 well plate and incubated at 

37C for 20 minutes to set. Medium was then added which consisted of 1:2 prostate 

epithelial growth medium (PrEGM) (Lonza) and stromal cell basal medium (SCBM) 

(Lonza) containing 2mM L-glutamine, penicillin-streptomycin, 15mM HEPES (Gibco), 

500ng/ml R-Spondin1 (R&D systems), 100ng/ml Noggin 100ng/ml EGF, 1X B27 

supplement, 10nM ATRA and 1.7M DHT.   

Growth was monitored daily by microscopy and media changes occurred every 48 

hours. After 28 days, the 3D structures were harvested for either histology or RNA 

extraction. For histology, spheroids were extracted using a P1000 pipette with the 

end of the tip cut off. Structures were fixed for 1 hour in 10% neutral buffered formalin 

then placed into low melt agarose to form a small plug. This was subsequently 

processed and embedded into paraffin for sectioning.  To obtain cells for RNA 

extraction, the Matrigel was dissolved by addition of dispase for 15 minutes at 37C. 

The mixture was pipetted up and down to further break up the Matrigel, and 

transferred to an Eppendorf for centrifugation at 2000rpm for 5 minutes. The 
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supernatant was removed and the pellet resuspended in buffer RLT before beginning 

RNA extraction.   
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Chapter 3. Generation and characterisation of integration-free 

iPSCs from human prostate fibroblasts using Sendai virus 

vectors 

3.1 Introduction 

This chapter will describe the methods for reprogramming human primary prostate 

cells to iPSCs and subsequent characterisation of the generated cells. 

Reprogramming somatic cells using overexpression of the Yamanaka factors Oct4, 

Sox2, Klf4 and c-Myc has most commonly been achieved using lentiviral expression 

vectors, however these are associated with low reprogramming efficiency and viral 

integration into the host genome.  

In this study, three Sendai virus vectors (Cytotune 2.0 kit) were used to introduce the 

Yamanaka reprogramming factors Oct4, Sox2, Klf4 and c-Myc into patient cells. 

Sendai virus replication is restricted to the cell cytoplasm therefore abrogating the 

potential for genomic integration (Fusaki et al., 2009), and following reprogramming 

the virus is gradually cleared from the transduced cells during subsequent cell 

divisions. Furthermore the Cytotune 2.0 Sendai viral vectors have a higher iPSC 

generation efficiency from human fibroblasts in comparison to both traditional 

lentiviral based reprogramming as well as other non-integrative methods including 

adenovirus, PiggyBac and plasmid-based methods (Malik and Rao, 2013). The 

vectors used in this study were F-deficient Sendai virus vectors containing 

temperature sensitive mutations in viral genes (Figure 3-1)(Inoue et al., 2003) to 

enhance safety and ensure clearance of any persistent virus could be achieved by 

temperature shifting.  

  



63 
 

 

Figure 3-1. Schematic representation of the Cytotune 2.0 viral vectors. The kit 
consists of 3 vectors; Klf4-Oct4-Sox2, Klf4 alone and c-Myc alone. The wild-type SeV 
genome consists of nucleoprotein (NP), phosphoprotein (P), large protein (L), matrix 
(M), fusion (F) and hemagglutinin-neuraminidase (HN) proteins (Bernal, 2013). The 
Cytotune 2.0 vectors have deletion of the F gene to prevent budding from the 
infected target cells.  

 

3.2 Aims 

 To culture primary prostate stromal and epithelial cells 

 To generate integration-free iPSCs from primary human prostate tissue 

 To undertake full characterisation of the generated iPSCs 
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3.3 Results 

3.3.1 Primary culture of prostate specimens 

Primary prostate fibroblasts and epithelial cells were isolated from patient biopsies 

from Transurethral Resection of the Prostate (TURP) or Holmium Laser Enucleation 

of the Prostate (HoLEP) with appropriate consent and ethics review. Stromal 

fractions were grown in 75cm2 flasks in RPMI medium with a success rate of 

approximately 90%. From day 7 of culture, areas of spindle-shaped cells could be 

observed (Figure 3-2) which expanded to form a monolayer typical of stromal cells 

(Figure 3-3). Cells could be easily passaged using trypsin and expanded up to at 

least passage 8 without any evident alterations in cell morphology or growth.  

 

Figure 3-2. Phase contrast micrographs showing growth of prostate fibroblasts after 
7, 11 and 15 days in culture. Small clusters of cells expand over time to form cell 

monolayers. Scale bars 25m. 

 

Figure 3-3. Phase contrast micrographs demonstrating morphology of typical 

prostate fibroblast cultures. Cells are elongated and spindle shaped. Scale bar 25m. 
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Culture of primary prostate epithelial cells was significantly more challenging in 

comparison to fibroblasts. Epithelial fractions were plated out on collagen coated 

25cm2 flasks in KSFM medium with the addition of STO feeder cells (inactivated by 

irradiation) at a confluency of approximately 65%. The STO feeder cells provide 

stromal support for the epithelial cells without promoting the epithelial differentiation 

which occurs when prostate epithelial cells are cultured with prostate stroma 

(Niranjan et al., 2013). Unfortunately, initial cultures did not grow well despite the 

monitoring of STO cells and addition of fresh STOs when appropriate. An alternative 

method was trialled by adding the epithelial fraction to the flasks alone and leaving 

these cells to settle for 1 hour at 37°C. At this time, the cells which had not adhered 

were removed and fresh medium added along with 33,000 STO cells per 25cm2 

flask. This method had more success with generating primary prostate epithelial cell 

cultures. By day 4, emerging colonies could be identified which proliferated to form 

tightly packed colonies with a typical epithelial cobblestone morphology (Figure 3-4). 

STO cells were added until the colonies began to proliferate and increase in 

confluency, at which point the surrounding epithelia were able to support themselves. 

Passage of primary prostate epithelial cell cultures was also challenging. Cells could 

be successfully passaged using trypsin-EDTA but did not grow well following 

passage. This protocol therefore requires further optimisation to allow stable 

passaging of prostate epithelial cell cultures.  
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Figure 3-4. Phase contrast micrographs showing morphology of primary prostate 
epithelial cells following culture with STO feeder layer for 4 (A, B) and 6 (C, D) days. 
Small cell clusters (A, arrowhead) can be identified by day 4 of culture. These 
expand to form tightly packed colonies with a cobblestone appearance typical of 
epithelial cultures by day 6 (C, arrowhead). Scale bar 25µm.  

 

3.3.2 Confirming purity of stromal culture  

Before using the Cytotune 2.0 reprogramming vectors it was necessary to check the 

purity of the stromal cultures. This was performed using RT-PCR for primers against 

epithelial (CD24), haematopoietic (CD45) and fibroblastic (ɑ-SMA, CD90) cells. 

Standard curves and obtained ct values for each gene confirmed the suitability of 

each primer set. The results (Figure 3-5) confirm the expression of fibroblast markers 

and absence of other cell lineage markers in a patient sample at passage 3. Previous 

work in the group has also confirmed the purity of stromal cultures by passage 2 (Pal, 

2014).  
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Figure 3-5. RT-PCR analysis showing expression of CD24 (epithelial cell marker), 
CD45 (haematopoietic marker), and a-SMA and CD90 (stromal markers) in a primary 
prostate fibroblast culture at passage 3.  

 

3.3.3 Efficiency of Sendai viral vector entry to prostate fibroblasts 

Before transducing cells with the Cytotune 2.0 Sendai reprogramming vectors, it was 

necessary to investigate the efficiency of Sendai virus entry to the target cells. To do 

this, 30,000 prostate fibroblasts, urinary tract fibroblasts or human dermal fibroblasts 

(as a known control) were seeded into each well of a 12 well plate and allowed to 

settle for 24 hours. At this point, the Cytotune Sendai EmGFP control virus was 

added to wells at multiplicity of infection (MOI) of 0, 1, 5, 10, and 20. After 24 hours of 

incubation with the virus, the medium containing the EmGFP vector was removed 

and standard medium was added. Cells were checked and imaged using a 

fluorescent microscope to check for the presence of GFP positive cells. At 48 hours 

post transduction, cells were imaged again and then analysed using flow cytometry 

to quantify the percentage of GFP positive cells.  

As expected, there was an increase in the percentage of GFP positive cells in all 

three cell types as the MOI increased from 0 to 20 (Figure 3-7,Figure 3-6) In primary 

prostate fibroblasts (n=3) there was a significant increase in the percentage of GFP 

positive cells between MOI 0 and 1 (p ≤ 0.01), and MOI 1 and 5 (p ≤ 0.0001). At 

higher MOI, the percentage of GFP positive cells did not increase significantly. As a 

result, we decided to continue with the suggested MOI of 5-5-3 (KOS MOI=5, hc-Myc 

MOI=5, hKlf4 MOI=3) for the Cyotune 2.0 reprogramming vectors. 
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Figure 3-6. Merged phase contrast and fluorescent micrographs showing increase in 
GFP positive cells at higher MOI after 24 hours of transduction. Scale bar 5µm.  

 

Figure 3-7. FACS analysis showing the percentage of GFP positive prostate stroma, 
UT stroma or HDFs following a 48 hour transduction with EmGFP Sendai control 
virus at a range of MOI. 
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3.3.4 Reprogramming primary human prostate fibroblasts into iPSCs using 

Sendai virus vectors 

To generate iPSCs, benign primary prostate fibroblasts from an 82 year old patient 

were seeded out in fibroblast medium at a density of 1 x105 cells per well in two 12 

well plates. After 24 hours (designated as day 0), cells in the experimental plate were 

transduced with Cytotune 2.0 Sendai virus vectors containing the reprograming 

factors Klf4, Oct4, Sox2 and c-Myc at an MOI of 5-5-3 (KOS-Myc-Klf4), whilst the 

control plate received fresh medium without the addition of viral vectors. At 24 hours 

post-transduction the reprogramming medium was removed and fresh fibroblast 

medium added. Media was then changed every 48 hours and the cultures closely 

monitored by phase contrast microscopy to identify any changes in morphology and 

potential colony formation. By day 5, small areas of MET could be seen which were 

not apparent in the control plate, which retained a purely stromal phenotype (Figure 

3-8). MET involves a shift from the typical fibroblast phenotype of elongated, spindle-

shaped cells to tightly packed, small, cuboidal cells with evident intercellular 

junctions. This morphological change is accompanied by an increase in epithelial 

markers and down regulation of mesenchymal markers, and marks the initiation of 

cellular reprogramming (Li et al., 2010b).  

 

Figure 3-8. Phase contrast micrographs showing a clear change in morphology 
following transduction of cells with Cytotune 2.0 viral vectors. Cell death could be 
seen from 24 hours post transduction. At day 5, areas of MET could be identified. 

Scale bars 25m. Inset shows high magnification of this area. Scale bar 10m.    
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On day 7, cells were transferred to vitronectin coated 6 well plates at a density of 

1.5x104 cells per well. Vitronectin is a defined ECM protein which can be used for 

growth of stem cells, which bind to the matrix through the αVβ5 integrin (Braam et al., 

2008). After 24 hours on vitronectin, the medium was changed to Essential 8 

medium, a defined, serum-free DMEM/F12 based medium developed by James 

Thompson’s laboratory (Chen et al., 2011). From this point the medium was changed 

every 48 hours and cells were carefully monitored for the presence of emerging 

colonies (Figure 3-9). Between week 2 and 3 colonies which resembled ESCs began 

to emerge. These colonies proliferated rapidly and contained small, tightly-packed 

cells with a high nuclear to cytoplasmic ratio. Two types of colony were identifiable; 

the first had typical ESC morphology and very well defined borders, whilst the second 

showed less defined borders (Figure 3-10). Colonies were picked manually under a 

dissecting microscope within a sterile laminar flow hood and transferred to individual 

wells for clonal expansion. An average of 49 colonies were identified per 1.5x104 

cells plated giving a reprogramming efficiency of 0.33%.  
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To determine the optimum conditions for subsequent culture, the growth of colonies 

was compared in the major feeder-free stem cell culture environments; mTESR1 or 

E8 medium on Matrigel or vitronectin plates. mTESR1 is a DMEM/F12 based 

medium supplemented with a range of growth factors, vitamins, minerals and lipids 

including bFGF, TRGF beta 1, insulin, transferrin and human serum albumin, which 

was specifically developed as a defined medium for hESCs (Ludwig et al., 2006). 

Matrigel is an extracellular matrix isolated from Engelbreth-Holm-Swarm murine 

sarcoma tumour, consisting of a number of components including laminin, collagen 

and heparin sulphate proteoglycan which is widely used for stem cell culture 

(Kleinman et al., 1986; Mallon et al., 2006). When cultured in E8 or mTESR1 medium 

on vitronectin-coated plates, colony morphology was that of a typical iPSC colony, 

but spontaneous differentiation occurred at a significant rate and passaging of cells 

proved challenging. In contrast, colonies grown on Matrigel in mTESR1 medium 

showed characteristic iPSC morphology and growth, and passaging with dispase 

was simpler and produced less differentiation (Figure 3-11) . Therefore, once 

colonies were established they were transferred to Matrigel culture in mTESR1 

medium and clonally expanded before characterisation. This culture method is the 

most widely used within the stem cell field and has previously been used for 

successful feeder-free iPSC culture in our lab. The morphological appearance of the 

clones was very similar to that of hESCs; the colonies showed defined borders and 

cells were tightly packed together (Figure 3-12). Cells had obvious, large nucleoli and 

were roughly oval in shape. During culture, spontaneous differentiation was observed 

in the cultures, with numerous cell types identified. The differentiation occurred either 

at the centre of colonies or arising from the periphery of the colony (Figure 3-13). 

This is a known phenomenon in hESCs (Sathananthan and Trounson, 2005) and 

demonstrated evidence of the pluripotency of the generated cells. During iPSC 

culture, these areas of spontaneous differentiation were manually removed with a 

pipette under a dissecting microscope to maintain clean cultures.  
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Figure 3-10. Phase contrast micrographs showing morphology of colonies generated 
from reprogramming of primary prostate fibroblasts. Cells within the control plate 
remain spindle-shaped whilst compact colonies with defined borders and small cells 
are evident within the transduced cells. Scale bar 25µm.  

 

 

Figure 3-11. Phase contrast micrographs showing iPSCs cultured on vitronectin with 
E8 medium (A), on Matrigel with E8 medium (B) or on Matrigel in mTESR1 medium 
(C). Culturing the iPSCs on Matrigel in mTESR1 medium reduced levels of 
spontaneous differentiation (marked by arrowheads) occurring after passage. Scale 

bar 25m.  
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Figure 3-12. Phase contrast micrographs showing typical morphology of iPSCs 
following picking of individual clones and transfer to Matrigel. Cells grew as round, 
tightly-packed colonies with defined borders. Cells were compact with a large 
nucleus. Magnification shown A) 40x, B) 100x, C) 200x, D) 400x. Scale bar A-C 

25m, D 10m.  

 

 

Figure 3-13. Spontaneous differentiation arising from the centre (A) or periphery (B) 

of colonies. Scale bar 25m.  
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3.3.5 Characterisation of iPSCs 

To confirm the identity of the generated cells as iPSCs a range of characterisation 

steps are required as set out by the International Stem Cell Banking Initiative 

including antigen and gene expression analysis, confirmation of pluripotency both in 

vitro and in vivo, karyotype analysis, cell identity and microbiological testing 

(International Stem Cell Banking Initiative, 2009).   

One of the initial tests for iPSC characterisation is alkaline phosphatase expression, 

which is a known marker of undifferentiated hESCs (O'Connor et al., 2008). All 

colonies tested stained positive for alkaline phosphatase expression with no staining 

found in the parental fibroblasts which were used as a negative control (Figure 3-14). 

Areas of differentiation at the centre of colonies were also negative for alkaline 

phosphatase acting as an internal negative control. 

 

 

Figure 3-14. Alkaline phosphatase staining of iPSC colony (A) shows strong 
expression. Areas of differentiation within colonies are negative for alkaline 
phosphatase (B) acting as an internal negative control. Parental fibroblasts are 

negative for alkaline phosphatase expression (C). Scale bar 25m.  
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Sendai virus is cleared from cells after approximately 10 passages by a dilution effect 

during cell division (Malik and Rao, 2013). The Cytotune 2.0 vectors also contain 

temperature sensitive mutations in key viral genes which allow for clearance of 

vectors by incubation at the non-permissive temperatures of 38-39°C for 5 days if 

necessary (Ban et al., 2011). To check for clearance of the viral vector genes from 

the generated cells, RT-PCR was performed using primers specific to the Sendai 

virus genome and each of the three viral vectors. The results confirmed no 

detectable expression of viral genome or vectors in iPSC clones after 35 PCR cycles 

(Figure 3-15). Parental stroma was used as a negative control whilst transduced cells 

at day 7 were used as a positive control. 

 

Figure 3-15. Expression of Sendai viral vectors in parental stroma, transduced 
stroma and iPSC clones. iPSC clones show no expression of the viral backbone or 
vectors confirming viral clearance. Error bars show SD, n=3.  

A number of markers specific to hESCs were measured in the generated cells at both 

protein and mRNA level using immunofluorescence and RT-PCR respectively. 

hESCs express Oct4, Sox2, Nanog, Tra-1-60, Tra-1-81 and SSEA4, which are all 

crucial for maintenance of the pluripotent state (Marti et al., 2013). SSEA1 is present 

in murine ESCs but absent in hESCs and was used as a negative control. Parental 

stroma was also tested alongside the iSPC as a control. The generated cells showed 

expression of all markers tested with the exception of SSEA1 which was expected as 

the negative control (Figure 3-16). Furthermore, no expression of hESC markers was 

evident in the parental fibroblast control. All markers showed correct localisation with 

SSEA4, Tra-1-60 and Tra-1-81 present on the cell surface and Oct4 co-localised with 

DAPI in the cell nucleus.  
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Figure 3-16. Immunofluorescence showing expression of the stem cell markers 
SSEA1, SSEA4, Tra-1-60, Tra-1-81 and Oct4 in the iPSCs. Central panel shows high 
magnification images for each stem cell marker. Parental stroma is used as a 
negative control. Scale bars; left and right hand columns 100µm. Middle column; 
10µm (SSEA1, Tra-1-60, Oct4), 50µm SSEA4, Tra-1-81, Sox2.  
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Additional analysis of the stem cell markers OCT4, SOX2, NANOG, DNMT3B and 

REX1 was carried out by RT-PCR using the primers detailed in Table 1. Figure 3-17 

shows that the iPSCs (n=3) showed expression of these markers at levels 

comparable to the hESC line H9 which was used as a positive control. The parental 

fibroblast cells were again included as a negative control.  

 

Figure 3-17. Expression of the stem cell markers OCT4, SOX2, NANOG, DNMT3B 
and REX1 in parental stroma, iPSCs and the H9 hESC line. Error bars represent SD, 
n=3 

 

To confirm that the iPSCs were generated from the parental fibroblasts which were 

reprogrammed rather than resulting from contamination from another cell source, 

DNA fingerprinting was performed. To do this, 16 short tandem repeat (STR) 

sequences including the sex locus Amelogenin were analysed in both the iPSCs and 

parental fibroblasts. STRs are sequences 2-7 nucleotides long which are highly 

polymorphic between individuals and can therefore be used to determine identity of 

samples (Thompson et al., 2012). Analysis revealed identical expression of all 16 

markers confirming that the iPSCs originated from the parental fibroblasts (Table 

3-1).  
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Table 3-1. DNA fingerprinting results showing identical STR sequences in the iPSCs 
and fibroblasts. 

 

 

 

Marker iPSCs Fibroblasts 

Amelogenin X-Y X-Y 

D3S1358 16-16 16-16 

THO1 6-9.3 6-9.3 

D21S11 30-30 30-30 

D18S51 12-13 12-13 

PentaE 13-14 13-14 

D5S818 11-13 11-13 

D13S317 10-12 10-12 

D7S820 11-12 11-12 

D16S539 10-13 10-13 

CSF1PO 10-10 10-10 

PentaD 9-10 9-10 

vWA 16-17 16-17 

D8S1179 14-16 14-16 

TPOX 8-8 8-8 

FGA 23-25 23-25 



80 
 

Genomic alterations can occur in pluripotent stem cells as a result of the 

reprogramming process or after prolonged in vitro culture, and may impact on the 

developmental potential of such cells (Lund et al., 2012). To confirm the genetic 

stability of the generated cells, the iPSC karyotype was analysed at passage 24 

using G-band karyotyping (Centre for Life, Newcastle upon Tyne). Analysis of 30 

metaphases showed a normal 46 XY karyotype (Figure 3-18).  

 

Figure 3-18. G-banding of the iPSCs shows a normal 46 XY karyotype. 

 

3.3.6 In vitro pluripotency testing by formation of embryoid bodies 

Suspension culture of embryonic stem cells generates three-dimensional aggregates 

termed embryoid bodies, which contain cells derived from all three embryonic germ 

layers (Itskovitz-Eldor et al., 2000). To determine the pluripotency of the putative 

iPSCs in vitro, colony pieces were suspended into differentiation medium in low 

adherence dishes. Cell aggregates formed which increased in size over a period of 2 

weeks (Figure 3-19). The embryoid bodies were then seeded onto gelatin coated 

plates or chamber slides to allow for explant culture. Cells grew out from the 

embryoid bodies and were monitored by microscopy. A variety of cellular 

morphologies were visible including neuronal-like, epithelioid-like and stromal-like 

cells. Cells in the chamber slides were fixed in 4% paraformaldehyde and stained 
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using antibodies against markers of the embryonic germ layers. Cells within plates 

were harvested for RNA extraction and RT-PCR analysis.  

 

Figure 3-19. Phase contrast micrographs showing formation of embryoid bodies from 
iPSCs (A). A range of cell morphologies can be seen when the embryoid bodies are 
explanted (B-D) including stromal-like (B), endothelial-like (C), and neuronal-like (D) 
cells. Scale bar 25µm. 

 

Immunofluorescence showed the embryoid bodies had generated cells which 

expressed the mesodermal marker vimentin, the endodermal marker -fetoprotein 
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(AFP) and the ectodermal marker III tubulin at protein level (

 

Figure 3-20). RT-PCR analysis was also conducted, showing an increase in 

transcript level expression of the mesodermal marker -smooth muscle actin 

(SMA), the endodermal marker AFP and the ectodermal marker PAX6 in 

comparison to undifferentiated iPSCs, along with a concurrent decrease in the stem 
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cell markers OCT4, SOX2 and NANOG (Figure 3-21, Figure 3-22). Together these 

results confirm the pluripotency of the putative iPSCs in vitro. 
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Figure 3-20. Immunofluorescence showing cells of all three embryonic germ layer 
origins formed by embryoid body explants. AFP; endoderm; BIII tubulin; ectoderm; 
Vimentin, Mesoderm. Scale bar 25µm. 

 

 

 

 

Figure 3-21. Expression of PAX6 (ectoderm), aSMA (mesooderm) and AFP 
(endoderm) in iPSCs and embryoid bodies. All 3 markers are upregulated in the 
embryoid bodies. Error bars represent SD, results show average of n=3 experiments. 
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Figure 3-22. RT-PCR analysis of the stem cell markers OCT4, SOX2 and NANOG in 
EBs compared to iPSCs. EBs show decreased expression of all three stem cell 
markers. Error bars represent SD, n=3.   
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3.3.7 In vivo pluripotency testing using teratoma assays 

Despite the ability to differentiate to cells from the three embryonic germ layers in 

vitro, the in vivo differentiation capacity of the putative iPSCs also needed to be 

tested. The current gold standard for measuring pluripotency of human cells is 

teratoma formation upon injection of cells into immune compromised mice 

(International Stem Cell Banking Initiative, 2009) . A teratoma is a benign tumour 

containing a mixture of tissues from the three embryonic germ layers including hair, 

teeth, organs and cartilage, showing true pluripotential ability (Zhang et al., 2008). 

The teratoma assay was therefore performed to test the in vivo pluripotency of the 

generated cells.   

1 x 106 iPSCs were mixed 1:1 with Matrigel and injected subcutaneously into NSG 

mice (n=3 per clone). Measurable tumour formation occurred from day 32 onwards 

with a rapid increase in size (Figure 3-23). Teratomas were harvested and divided 

into two parts, with one part fixed in Bouin’s solution and paraffin embedded for 

histology and the second part snap frozen in isopentane. The tissue sections were 

analysed histologically to check for presence of cells from the three embryonic germ 

layers. Teratoma formation, defined as the presence of tissue from all three germ 

layers, was seen in 5 out of 6 mice tested (n=3 per clone). The teratomas formed 

varied widely in gross appearance and contained mesodermal, ectodermal and 

endodermal tissue. Representative low and high magnification images of a teratoma 

formed in this experiment are shown, containing fat, cartilage, ciliated respiratory 

epithelium, squamous epithelium and hair follicle (Figure 3-24, Figure 3-25). This 

confirmed that the generated clones were true iPSCs.  
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Figure 3-23. Tumour growth monitored by calliper measurements in 6 mice (EC1-
EC6). Tumours formed from the iPSCs from day 32 and grew rapidly. Late growing 
tumour EC5 showed a range of more complex tissues including hair follicle formation.  

 

Figure 3-24. Low magnification image showing a representative H&E stained 
teratoma section. The teratoma contains tissues from all three embryonic germ 
layers. Scale bar 2mm.  
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Figure 3-25. High magnification images from the above H&E stained teratoma 
section showing formation of cartilage, squamous epithelium, ciliated respiratory 
epithelium, hair follicle and fat. 
 

3.3.8 Reprogramming prostate epithelial cells using Cytotune 2.0 Sendai viral 

vectors  

As previously discussed, the parental cell of origin can impact on the differentiation 

potential of iPSCs due to an epigenetic memory which remains present after 

reprogramming (Kim et al., 2007). Whilst prostate fibroblasts are generated from 

mesoderm, prostate epithelium is endodermal in origin. Therefore, generation of 

iPSCs from both prostate fibroblasts and epithelial cells would allow comparison of 

their differentiation capacity and determine if their differential germ layer origin would 

impact upon this. 

Due to their sensitivity to passaging, for the initial epithelial cell transduction, cell 

number was estimated by counts performed in the flask rather than harvesting, 

counting and replating the cells. The Cytotune 2.0 vectors were added to the culture 

at the same MOI of 5-5-3 (KOS, Myc, Klf4) used for reprogramming the prostate 

fibroblasts, and were left for 24 hours at which point the media was removed and 

fresh media added. Visible cell death was evident by 24 hours. Media was changed 

every 48 hours and cultures were monitored for any morphological changes. On day 

7, cells were transferred to a hESC environment consisting of a MEF feeder layers 

and hESC medium. This was chosen rather than the feeder-free based E8 and 

vitronectin method used during fibroblast reprogramming to provide support to the 

epithelial cells following passage. After transfer to feeder-dependent ESC culture 

however, the cells continued to die and no colony formation occurred.  

Due to the high levels of cell death experienced, MOI for subsequent epithelial 

transductions was reduced. 3 patient samples were transduced using 2 different 

methods. The first sample was reprogrammed in the original flask whilst the 

remaining 2 samples were seeded onto gelatin coated 12 well plates (3 wells per 

patient sample) to give a more accurate calculation of MOI. Again, the cells were 

transduced with virus for 24 hours. Following this, fresh media was added and 

changed every 48 hours. For the sample transduced in its original flask, cell death 

was visible by 48 hours post transduction. By day 13, potential colonies could be 

identified which showed a typical ESC morphology of small cells with large nuclei, 
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similar to those identified during reprogramming of prostate fibroblasts. These areas 

were transferred to either MEFs or vitronectin on day 15 for further culture however, 

regardless of the surface the cells were transferred to, no growth occurred and the 

cells were lost (Figure 3-26).  

For the 2 samples transduced on gelatin-coated plates, media was changed on day 7 

to E8 medium and by day 8 colonies were visible in both samples. As before, these 

colonies consisted of small cells with large nuclei similar to ESCs. These were either 

kept on gelatin, transferred to vitronectin on day 8, or transferred to vitronectin on day 

11. The cells kept on gelatin showed increased proliferation and cell death, but no 

growth of colonies was identified. The cells transferred to vitronectin on day 8 

showed an initial increase in proliferation but from day 15 onwards significant cell 

death occurred and again no colonies were identified. Finally, the cells transferred to 

vitronectin on day 11 showed no proliferation but high levels of cell death occurred as 

with the other samples (Figure 3-26). At day 26, remaining cells were harvested for 

RNA extraction to analyse transcript expression of the Sendai virus backbone and 

reprogramming vectors. Unfortunately, the quality and yield of RNA generated from 

these samples was very poor and primer dimers were present in several samples 

and genes. Overall, transduction of primary prostate epithelial cells with the Cytotune 

2.0 reprogramming vectors resulted in initial proliferation and appearance of colonies 

followed by cell death, regardless of whether the cells were transferred to vitronectin 

or kept in their original wells. This suggested that the epithelial cells were stalled 

during the initiation phase of reprogramming, whereby they lose somatic cell 

characteristics and show enhanced proliferation and morphologic changes, but failed 

to enter the maturation phase, a well-known phenomenon during cellular 

reprogramming (David and Polo, 2014).  
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Figure 3-26. Phase contrast micrographs of epithelial cultures following transduction. 
High levels of cell death were evident following viral transduction (A) before the 
appearance of colonies (B). Following transfer to vitronectin or MEFS, high levels of 

cell death occurred and colonies were lost (C). Scale bars 25m. 
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The failure of the Cytotune vectors to generate iPSCs from prostate epithelia also 

suggested that the efficiency of the viral vectors may vary between prostate stromal 

and epithelial cells. To investigate this hypothesis, the ability of Sendai viral vectors 

to enter the cells was determined using an EmGFP Sendai vector for matched 

patient stromal and epithelial cells. As previously, cells were seeded out and allowed 

to settle for 24 hours before addition of the EmGFP vector at MOI 0, 1, 10, 20 or 40. 

After 48 hours, cells were imaged and harvested for FACS sorting. It was clear there 

was a visual difference in efficiency of Sendai virus entry between prostate epithelial 

and stromal cell (Figure 3-27). This was confirmed by FACS data which showed an 

MOI of 10 giving 100% GFP positivity in the stromal cells but less than 50% positivity 

in the epithelial cells (Figure 3-28). To reprogram epithelial cells using the Cytotune 

2.0 vectors, a much higher MOI would be required which would be toxic to the cells. 

This was not further investigated.  

 

Figure 3-27. Fluorescent images showing expression of GFP in prostate fibroblasts 
and epithelial cells at MOI 0, 1, 10, 20 and 40 after 48 hours of incubation with the 
EmGFP Sendai control virus. A clear difference in GFP positivity can be seen with 
much lower expression in epithelia versus fibroblasts for all MOI tested. Scale bar 
25µm. 
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Figure 3-28. Percentage of GFP positive cells at MOI 0, 1, 10, 20 and 40 in matched 
prostate stroma and epithelial cells after 48 hours of incubation with the EmGFP 
control Sendai virus. Prostate epithelial cells show significantly lower GFP positivity 
versus prostate stroma.  
 

3.4 Discussion 

iPSCs provide a limitless supply of patient-derived cells which can be used for drug 

testing, disease modelling and studying development. It has been shown that iPSCs 

retain an epigenetic memory from their parental cell of origin which results in a 

skewed differentiation potential, therefore generation of iPSCs from the tissue of 

interest is important for downstream differentiation capacity. In this study, primary 

prostate fibroblasts were reprogrammed to iPSCs, termed ProiPSCs, for the first time 

using non-integrating Cytotune Sendai viral vectors.  

In this chapter, the successful generation of integration-free iPSCs from primary 

prostate fibroblasts has been shown. In total 49 colonies were generated giving a 

reprogramming efficiency of 0.33%, 10-fold higher than previously shown for iPSC 

generation from prostate fibroblasts using a lentiviral approach (Moad et al., 2013). 

As well as the improved efficiency, the Sendai viral vectors are also advantageous 

due to their enhanced safety profile, non-integrating life cycle and gradual clearance 

from the transduced cells.  The Cytotune vectors also allowed generation of iPSCs in 

a feeder- and xeno-free environment.  

The generated iPSCs show characteristics of pluripotency including expression of 

stem cell markers such as OCT4, SOX2, NANOG, SSEA4 and alkaline phosphatase. 
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The cells are karyotypically normal and show 100% identity to the parental fibroblasts 

as measured by DNA fingerprinting. Furthermore, the iPSCs are able to differentiate 

into cells from the three embryonic germ layers both in vitro, by formation of EBs, and 

in vivo by teratoma formation after subcutaneous injection into NSG mice, therefore 

reaching the gold standard for iPSC characterisation and confirming their identity as 

true iPSCs.  

Attempts to generate iPSCs from primary prostate epithelia were also made, 

however no colonies were generated as cells were lost due to toxicity of the virus. 

Transduction of prostate fibroblasts and epithelial cells with a EmGFP vector 

identified that a significantly higher MOI is required to obtain a sufficient level of viral 

entry into prostate epithelial cells in comparison to prostate fibroblasts. This contrasts 

with Ono et al.,(Ono et al., 2012) who were able to generate iPSCs from human 

nasal epithelial cells. However, for human nasal epithelial cells transduction with the 

GFP control Sendai vector at an MOI of 3-4 was high enough to show a significant 

percentage of GFP positive cells, whilst in our hands prostate epithelial cells required 

an MOI 20 or above to achieve 50% GFP positive cells. Therefore, alternative 

methods of reprogramming may be required for use with prostate epithelial cells. 

Zhao et al., published attempts to generate iPSCs from prostate epithelial cells using 

lentiviral vectors, low oxygen environment and addition of chemical factors (Zhao et 

al., 2013). However, the cells produced were only partially reprogrammed and were 

unable to form teratomas or to differentiate into prostatic epithelium either in vitro or 

in vivo. The lack of iPSC generation from prostate epithelial cells using either method 

suggests that these cells require optimised protocols to achieve full reprogramming 

to a truly pluripotent state.  
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Chapter 4: Generation of prostatic tissue from patient-derived 

prostate iPSCs in vivo using tissue recombination with rodent 

UGM 

4.1 Introduction 

This chapter will describe the generation of prostate tissue from ProiPSCs using a 

tissue recombination approach utilising inductive rat UGM. The UGM drives 

differentiation of the prostate epithelium during normal prostate morphogenesis. 

Tissue recombinants generated from rodent UGM and adult endodermally-derived 

epithelium can also generate prostatic tissue when engrafted into mice. 

Subsequently, it was shown that UGM and SVM can direct the differentiation of 

hESCs into prostate, generating a novel model for prostate development from 

pluripotent stem cells (Taylor et al., 2006; Cai et al., 2013). The prostatic tissue 

formed from the hESCs showed expression of prostate specific genes including 

Nkx3.1, AR and PSA, as well as correct localisation of basal and luminal cells as 

indicated by CK expression. However, the viability of this method for further study of 

prostate development is limited due to its use of hESCs and the ethical issues with 

which they are associated. As hESCs and iPSCs are functionally equivalent, we 

hypothesised that tissue recombinants of rat UGM and iPSCs should also form 

prostatic tissue when grafted under the renal capsule of mice.  

As the generation of prostatic tissue has not been shown for iPSCs using this 

method, we decided to trial a range of ratios of UGM to iPSCs to determine the 

optimum cell concentrations for prostate differentiation. Taylor et al., used ~1000 

hESCs with 5x104 UGM (a ratio of 1:50) to successfully generate prostatic tissue in 

vivo, whilst a subsequent study used 4x104 hESCs with 1x105 UGM (a ratio of 1:2.5) 

(Taylor et al., 2006; Cai et al., 2013). We decided to use ratios of approximately 

1:2.5, 1:25, 1:125 and 1:250 (iPSCs to UGM). As iPSCs engrafted alone in vivo form 

teratomas, we postulated that when the ratio of iPSCs to UGM was low, more 

nonspecific differentiation was likely to occur. In contrast, we expected tissue 

recombinants with low iPSC and high UGM number to form tissues consisting of less 

spontaneous differentiation and increased prostate specific differentiation.  
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4.2 Aims 

 To trial a range of cell ratios to generate prostatic tissue from iPSCs under the 

influence of UGM  

 To characterise the generated tissue in comparison to normal human primary 

prostate tissue 
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4.3 Results 

4.3.1 Determining cell numbers in iPSC colonies 

Generation of tissue recombinants can use either single cell suspensions, cell 

clumps or pieces of cells or tissue. In the original study using hESCs with UGM, 

pieces of hESC colonies were used to maintain viability of the cells which are 

vulnerable as a single cell suspension (Taylor et al., 2006), whilst a subsequent study 

used single cell suspensions of hESCs and UGM (Cai et al., 2013). To preserve the 

viability of the iPSCs, we used pieces of colonies rather than a single cell suspension 

approach. To generate tissue recombinants from the ProiPSCs, the number of cells 

per iPSC colony needed to be determined. To do this, individual colonies were 

marked and measured using ImageJ software to determine colony area. Colonies 

were then manually picked, digested to a single cell suspension and counted on a 

BioRad TC20 automated cell counter with trypan blue to distinguish live cells. The 

total number of live cells for each colony was then plotted against the colony area in 

mm2 to generate a standard curve as shown in (Figure 4-1). This was used to 

estimate cell numbers when picking colonies for generation of the tissue 

recombinants. 

 

 

 

Figure 4-1. Standard curve showing total live cell number vs colony area in mm2 for 
ProiPSCs.  
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4.3.2 Morphology of tissue recombinants 

iPSC colony pieces were combined in collagen with a complete urogenital 

mesenchyme containing approximately 250,000 cells. Recombinants were left 

overnight in RPMI media at 37C before being grafted under the renal capsule of 

nude mice which had been castrated and then implanted with a testosterone pellet to 

control for any variances in testosterone secretion. Grafts were harvested from 6 

weeks onwards, fixed in formalin and embedded into paraffin for sectioning and 

histological analysis. Grafts from each ratio tested were morphologically very 

different. The highest ratio of iPSC to UGM (1:250) generated a small graft whilst the 

smallest ratio (1:2.5) resulted in formation of a very large structure which appeared to 

be a teratoma and had completely taken over the kidney (Figure 4-2). Ratios in 

between these generated grafts similar in size to the BPH1 control grafts.  

H&E staining was performed on the harvested grafts to see the overall morphology of 

the tissue generated. As suspected, the lowest ratio of iPSCs to UGM had generated 

a large teratoma (Figure 4-3). In contrast, the highest ratio which should provide 

more specific differentiation had formed a very small graft with no evidence of 

teratoma formation. The intermediate ratios formed grafts of a similar size and 

appearance to the BPH1 control. These grafts also contained cystic structures which 

are apparent in teratomas.  
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Figure 4-3. H&E staining showing entire grafts from the ratios tested. As the ratio of 
iPSCs to UGM becomes lower, grafts become larger in size and more reminiscent of 
teratomas. Arrow heads mark areas of epithelial like glands. Scale bar 2mm.  
 

H&E staining showed that the 1:250 ratio graft consisted mostly of epithelial tissue 

surrounded by smooth muscle and fibroblasts. Several epithelial glands could be 

seen, some of which appeared to be secretory (Figure 4-4A). The presence of these 

glands and evidence of secretions were promising, but some of the nuclei had a 

speckled appearance due to the presence of small intranuclear bodies which are 

characteristic of mouse nuclei (Figure 4-4B)(Cunha and Vanderslice, 1984). Staining 

of tissue sections with Hoescht 33258 allowed identification of mouse and human 

nuclei. Mouse-derived glands showed intense speckled staining whilst human cells 

lack the presence of intranuclear bodies and show a diffuse staining pattern (Figure 

4-5).  
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Figure 4-4. H&E staining of 1:250 ratio graft. A) The majority of tissue formed was 
glandular epithelium, some of which appeared secretory (arrowheads). This was 

surrounded by smooth muscle and fibroblasts. Scale bar 100m. B) High 
magnification image of glands containing nuclei with a speckled appearance, scale 

bar 50m.  
 

 

 

Figure 4-5. Sections of generated grafts stained with Hoescht 33258. A) Glands 
formed from mouse cells can be identified by presence of brightly stained speckles. 
B) In contrast, human-derived glandular structures showed a diffuse staining pattern 
with lack of intranuclear bodies. Insets show higher magnification images of nuclei. 
Scale bars 50µm.  
 

 

 

 

 

 



101 
 

 

The 1:125 ratio produced a graft with several tissue types, including epithelium, 

smooth muscle, cartilage and cystic structures (Figure 4-6). The presence of a 

variety of tissue types provides further evidence for the pluripotency of the ProiPSCs 

and suggests that the differentiation is becoming less specific as we expected with a 

decreasing influence of UGM. At this ratio, the major tissue present in the graft was 

still epithelium. Two types of epithelial tissue were identified; small clusters of 

epithelial cells with no lumen, and more glandular-like structures with dual layers of 

cells surrounding clear lumens (Figure 4-7).  

 

Figure 4-6. A) Cartilage (scale bar 100m). B) Large cystic structure (scale bar 

400m). 
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Figure 4-7. H&E staining showing epithelial cells within the graft. A) Small epithelial 
cell clusters with no lumen. B) A more glandular-like structure with multi-layered 

epithelium and a clear lumen. Scale bars 100m. 
 

A ratio of 1:25 formed a wider spectrum of tissues including the presence of 

ectodermal derivatives such as neuroepithelial rosettes and pigmented epithelium 

(Figure 4-8). Some areas of epithelium were present but these were usually located 

very near to the kidney and in some cases glandular tissue could be seen in the 

kidney itself, suggesting a potential mouse origin (Figure 4-9). The graft also 

contained cartilage, fat and smooth muscle. In general, this ratio appears to produce 

a more teratoma-like graft characterised by the presence of tissue from all three 

embryonic germ layers.  

 

Figure 4-8. A ratio of 1:25 produced large amounts of neuroepithelium and large 

cysts as shown in (A), scale bar 500m. B) Neuroepithelial rosettes and pigmented 
tissue at a higher magnification confirming ectodermal differentiation. Scale bar 

100m. 

 

Figure 4-9. Epithelium in this graft was always found close to the kidney suggesting 

potential mouse origin (A, scale bar 500m). In some areas, the kidney was clearly 
altered with changes in cell morphology and presence of glandular-like structures 

emerging (B, scale bar 250m).  
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At the lowest ratio of 1:2.5, a teratoma-like structure was generated as expected. 

This mostly consisted of large cysts and ectodermal tissue including large volumes of 

neuroepithelial rosettes (Figure 4-10). At this ratio, the pluripotency of the iPSCs 

appears to completely take over and the resultant graft consumes the kidney. Some 

epithelial areas were still visible, generally around the outer edges of the graft (Figure 

4-10C).  

 

Figure 4-10. A) Teratoma formation taking over the kidney with presence of large 

cysts, scale bar 2mm. B) An area of neuroepithelium in the graft, scale bar 250m. 

C) Some areas of glandular epithelium remained present, scale bar 100m. 
 

The ratio of iPSCs to UGM appears to greatly impact the overall morphology and 

tissues of the resultant graft (summarised in Table 4-1). As expected, a large ratio 

with significantly more UGM than iPSCs results in a very small graft containing 

mostly epithelial tissue, whilst a small ratio of iPSCs to UGM generates a teratoma 

consisting of multiple tissue types, as there is not enough inductive mesenchyme to 

control the iPSC differentiation. From H&E staining, it was clear that the grafts from a 

ratio of 1:250 and 1:125 iPSCs to UGM form the most epithelial tissue and thus initial 

staining concentrated on these grafts. 

 Table 4-1. Summary of findings from H&E staining of tissue recombinants 

iPSC number UGM number Ratio Result 

1000 250,000 1:250 Small graft, mostly epithelial 

2000 250,000 1:125 Medium graft with epithelial areas, some 

cysts 

10,000 250,000 1:25 Large graft, epithelial areas, large cysts 

and ectodermal tissue 

100,000 250,000 1:2.5 Very large teratoma, mostly ectodermal 

tissue and cysts 
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4.3.3 Confirmation of iPSC-derived tissue using human specific mitochondrial 

staining 

Due to the nature of the tissue recombination method and subsequent xenografting, 

any potential epithelium could have formed from the iPSCs, mouse cells, rat UGM or 

contaminating UGE. As this study was interested only in formation of prostatic 

epithelium from the ProiPSCs which are human in origin, sections were stained with 

an anti-human mitochondrial antibody. Human specific mitochondrial antibodies are 

often used for detection of human tissue or cells in xenograft models (Hylander et al., 

2013; Thibaudeau et al., 2014). In our experiment, use of the mitochondrial marker is 

advantageous as it recognises cells from all lineages. Any positive staining would 

indicate which glands were human in origin and therefore were generated from the 

ProiPSCs. An alternative method for distinguishing human, mouse and rat cells 

described by Vander Griend at al., could also have been utilised. This method takes 

advantage of the increased telomere length in rodents versus humans, and uses a 

pair of centromere-specific DNA probes which will recognise only human and mouse, 

but not rat centromeres. Performing dual centromere and telomere FISH allows 

determination of the origin of tissues present in tissue recombinants at single cell 

resolution (Vander Griend et al., 2009).  

 

The epithelial areas in the smallest graft (ratio ~1:250) did not stain positively for the 

human specific marker, so further investigation of their marker profile was not 

pursued (Figure 4-11A). The source of the non-human epithelial cells may be mouse, 

due to the UGM inducing the mouse kidney or circulating pluripotent cells to form 

epithelium or rat, due to transdifferentiation of the UGM or the presence of 

contaminating UGE which would form prostatic epithelium under the influence of the 

UGM (Vander Griend et al., 2009). The lack of any human cells at this ratio suggests 

that 1000 ProiPSCs is too small a number to be viable and therefore an increased 

cell number may improve survival and growth. This observation was based on a 

single graft and therefore analysis of further grafts will be required to confirm this 

finding. However, the entirety of the 1:125 ratio graft stained positive for human 

mitochondria, confirming that all tissue within the graft originated from the ProiPSCs 

(Figure 4-11B,C). All epithelial glands showed strong expression of human 

mitochondria (Figure 4-12) whilst the mouse kidney was negative acting as an 

internal negative control. At a higher magnification, a clear pattern of mitochondrial 

staining was evident in the cytoplasm of cells in epithelial glands and also in some 
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but not all areas of surrounding mesenchyme (Figure 4-13). We could therefore be 

confident that these epithelial areas of interest were derived from the ProiPSCs, and 

were able to take them forward for further analysis. 

 

Figure 4-11. IHC for anti-human mitochondria. A) The entire 1:250 ratio graft was 
negative for the human specific mitochondrial marker suggesting the tissue 

originated from contaminating rat or mouse tissue (scale bar 200m). B, C) In 
contrast the 1:125 ratio graft consisted of human tissue as confirmed by positive 

staining for human mitochondria  (scale bar 1250m). 
 

Figure 4-12. IHC for anti-human mitochondria in epithelial-like glands identified 
within the graft. Strong expression is seen in all areas confirming human origin. 
Scale bar 200µm.  
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Figure 4-13. Higher magnification images of positive human mitochondrial staining in 
epithelial-like glands. Staining shows a speckled cytoplasmic distribution 
characteristic of mitochondria. Scale bar 100µm. 
 

4.3.4 Marker expression in glandular tissue generated from iPSCs 

Normal prostatic epithelial glands consist of a basal cell layer positive for p63 and a 

luminal cell layer positive for CK8/18. To confirm the epithelial identity of the areas of 

interest and determine their spatial organisation, IHC was performed for these 

markers. CK8/18 expression was widespread in the prospective epithelial glands with 

strong cell surface expression (Figure 4-14). In multi-layered glands, CK8/18 was 

restricted to the luminal cell layer confirming correct spatial organisation of the 

luminal compartment. The basal marker p63 was not as widely expressed, and was 

present in only a subset of epithelial glands. Expression of p63 was always nuclear 

and present purely in the basal cell layer (Figure 4-15A,B), confirming the presence 

of basal epithelial cells within the glands. Some areas of basal cell hyperplasia were 

also identified with expression of p63 in multiple basal cell layers (Figure 4-15C).  

 

Figure 4-14. IHC for the luminal cell surface marker CK8/18. A) Clear CK8/18 

expression in a glandular structure (scale bar 100m). B) High magnification image 
showing CK8/18 expression localised at the cell surface of cells in the luminal layers 

whilst the basal layer remains negative (scale bar 50m). 
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Figure 4-15. IHC for the basal cell marker p63. A,B) p63 is expressed in the basal 
cell layer of glandular structures alone. C) An area of basal cell hyperplasia. Scale 

bar 100m.  
 

The transcription factor FOXA1 has roles in the development of both the mammary 

and prostate glands (Bernardo and Keri, 2012). It is expressed throughout prostate 

organogenesis and this expression is maintained in the adult prostate gland due to 

the requirement of FOXA1 for AR-mediated activation of prostate genes (Mirosevich 

et al., 2005; Bernardo and Keri, 2012). As FOXA1 is expressed at all stages of 

prostate development we decided to investigate its expression within the grafts. 

FOXA1 was strongly expressed in the majority of epithelial glands (Figure 4-16). As 

expected, expression was localised to the nucleus and no expression was identified 

in non-epithelial tissue. Some small cell clusters which appeared epithelial expressed 

no or very low FOXA1. These cell clusters also expressed low levels of CK8/18 and 

no p63, and did not have lumens (Figure 4-17). Foxa1-/- mouse prostates show 

formation of solid epithelial cords which lack a lumen (Gao et al., 2005), suggesting 
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that the FOXA1 negative areas may have resulted from lack of FOXA1 induction in 

these epithelial cells, or alternatively could be very early epithelial structures which 

do not yet express FOXA1. 

 

Figure 4-16. IHC for FOXA1. Epithelial glands showed strong positive staining. 

Expression was restricted to the nucleus as expected. Scale bar 100m. 

 

Figure 4-17 Area of epithelial cells which did not express FOXA1, CK8/18 or p63. 

Scale bar 100m. 
 

FOXA1, CK8/18 and p63 expression confirmed the epithelial origin of the glandular 

structures within the graft. Although FOXA1 is expressed in prostate organogenesis it 

is also expressed in several other endodermal derivatives including the liver and lung 

(Lee et al., 2005; Wan et al., 2005). To confirm prostate differentiation, the most 

critical markers are AR and PSA. AR is essential for prostate development, as tfm 

mice who lack functional AR do not develop prostates (Cunha and Lung, 1978). It is 

expressed in the nuclei of both prostate stroma and epithelium. Activation of AR 

leads to transcription of a multitude of AR-mediated genes including PSA. Secretion 

of PSA from luminal prostate epithelial cells confirms the functionality of these cells 

(Wang et al., 2001). As PSA is both human and prostate specific, expression in the 

grafts would confirm full prostatic differentiation.  
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IHC confirmed the expression of AR in both the epithelial glands and surrounding 

stroma (Figure 4-18). Expression was strongly nuclear and was present 

predominantly in the luminal cell layer. In smaller glands, some cells were not AR 

positive, consistent with studies on foetal prostate tissue showing that solid epithelial 

buds do not express AR and throughout foetal development AR is only expressed 

focally (Letellier et al., 2007).  

 

 

Figure 4-18. AR expression in tissue recombinants formed from ProiPSCs and UGM. 
AR is expressed in the nucleus of glandular epithelial cells and the surrounding 

stroma. Scale bar 50m.  
 

IHC for PSA confirmed PSA expression on the surface of the luminal epithelial cells 

within glands (Figure 4-19), although this was not present in all glands. As some 

glands appeared to still be developing, it may be that a longer timescale of in vivo 

growth is required for all glandular epithelium to express PSA. This is congruent with 

the focal AR expression, again suggesting that these areas may represent less 

mature prostatic tissue. 

 

A ratio of 1:125 iPSCs to UGM generated grafts containing mostly epithelial glands 

which displayed normal basal and luminal layers and expressed AR, suggesting that 

of the ratios tested this was the optimum for generation of human prostatic tissue. 

Interestingly, a ratio of 1:25 did not generate any AR positive epithelium whilst the 

teratoma-like graft generated from a ratio of 1:2.5 iPSCs to UGM expressed AR in a 

subset of epithelial glands (Figure 4-20). This suggests that prostatic differentiation 

due to UGM influence still occurs at a much lower ratio but in much smaller volumes 

and is accompanied by non-specific differentiation. However, as only single grafts 

were analysed, investigation of multiple grafts per ratio will be required to determine if 

this is a consistent observation.  
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Prostatic glands also contain rare NE cells which express the neuroendocrine 

markers chromogranin A and synaptophysin but lack AR and PSA (Wang et al., 

2001; Shen and Abate-Shen, 2010). Immunofluorescence on the tissue 

recombinants showed presence of rare chromogranin A positive cells within the 

epithelial ducts (Figure 4-21), suggesting that neuroendocrine differentiation had 

occurred in the tissue recombinants, as chromogranin A is the major protein 

produced by prostatic neuroendocrine cells (Sciarra et al., 2003). To confirm this, 

additional staining for synaptophysin as well as confirmation of lack of AR and PSA in 

these cells by triple IF will be required.  

 

Figure 4-19. IHC showing expression of PSA in luminal cells and secreted into the 

lumen. Insert shows high magnification image. Scale bar 50m.  

 

Figure 4-20. AR expressing epithelial cells within the 1:2.5 ratio graft. Some of the 

surrounding stromal cells are also AR positive. Scale bar 200m, inset scale bar 

100m.  
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Figure 4-21. Chromogranin A expression (green) within epithelial glands of the tissue 
recombinants. Nuclei are counterstained with DAPI (blue). Scale bars 25µm.  

 

4.3.5 Comparison to primary prostate tissue  

To confirm that the tissue generated from iPSCs represented normal human tissue, 

sections from both the xenograft and primary prostate tissue were compared by IHC 

for the markers AR, PSA, CK8/18 and p63. As shown in Figure 4-22, the epithelial 

glands generated from ProiPSCs were representative of normal human prostate with 

expression of all markers present and correctly localised in both the iPSC-derived 

xenografts and primary prostate tissue. This confirms that tissue recombinants of 

ProiPSCs and rat UGM can generate fully differentiated human prostatic tissue.  
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Figure 4-22. IHC for AR, PSA, CK8/18 and p63 in iPSC-derived xenografts and 
primary benign prostate tissue. iPSC-derived xenografts show full prostatic 
differentiation and expression of all markers expected in normal prostatic epithelium. 

Scale bar 50m.  
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4.4 Conclusions 

In this chapter, successful generation of terminally differentiated prostatic tissue from 

patient derived ProiPSCs has been shown. Using tissue recombination with inductive 

UGM, prostate epithelium has been generated in vivo which shows formation of 

basal and luminal cells, expresses the endodermal transcription factor FOXA1, AR 

and the prostate specific marker PSA as well as containing rare chromogranin A 

positive cells. By IHC, the expression of these markers recapitulates human benign 

prostate tissue samples. This confirms the suitability of this model to generate normal 

human prostate tissue for research. As iPSCs are an unlimited cell source which can 

rapidly proliferate, this method will allow a theoretically unlimited volume of prostate 

tissue to be generated without the ethical issues associated with prostatic tissue 

generated from hESCs.  

 

Although it is beyond the scope of this current project, further staining of the 

generated tissue for other NE markers as well as for stromal markers including 

SMA is essential to fully characterise the generated tissue. As the results presented 

in this chapter focused on a single graft for each ratio, analysis of further grafts will 

be needed to confirm the observations and differences seen between ratios. From 

data gathered so far, a ratio of 1:125 seems most appropriate for generation of 

predominantly prostatic tissue without presence of large volumes of non-specific 

tissue differentiation. Confirmation of this by analysing the repeats will give an 

optimised ratio for prostatic tissue formation from iPSCs using this method. 
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 Chapter 5. Generation of an in vitro model of prostate development 
using human prostate derived iPSCs 
 

5.1 Introduction 

Current knowledge of prostate development and disease is hindered due to the lack 

of relevant human models of normal prostate development and their translation to 

study disease processes. iPSCs offer a limitless source of cells which could be used 

for developmental and disease modelling. To enable this, a reliable method for 

differentiation of iPSCs to prostate is required. In the previous chapter, generation of 

prostatic tissue from iPSCs using tissue recombination with UGM was discussed. 

This has built on previous studies showing the ability of UGM to direct prostate 

differentiation from hESCs (Taylor et al., 2006), and confirms the importance of 

epithelial-mesenchymal interactions during this process. 

Ideally, in vitro differentiation of iPSCs is an attractive approach due to the reduced 

need and cost for host mice as well as the availability of in vitro cell cultures to 

subsequent manipulation and expansion. However, there is very limited literature on 

prostate differentiation in vitro. To date only one published study has shown the 

generation of prostate organoids in vitro from hESCs (Calderon-Gierszal and Prins, 

2015). We therefore sought to replicate this using iPSCs. Due to the importance of 

the UGM in prostate development, as well as its proven ability to differentiate 

ProiPSCs to prostatic tissue in vivo as shown in the previous chapter, we 

hypothesised that UGM may also be able to direct differentiation of iPSCs to prostate 

in vitro. We therefore also used a UGM co-culture based method to drive prostate 

differentiation from iPSCs. This chapter will describe the methods trialled for directing 

human prostate and UT derived iPSCs to prostate epithelial cells in vitro.  

5.2 Aims 

 To prime iPSCs to form definitive endoderm 

 To use a published growth factor based protocol to differentiate iPSCs to 

prostate organoids in vitro 

 To use inductive UGM to drive iPSC differentiation to prostate in a novel 3D 

co-culture model 
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5.3 Results 

5.3.1 Formation of definitive endoderm from prostate derived iPSCs 

During embryogenesis, the prostate gland is formed from the urogenital sinus 

epithelium, an endodermal derivative. Recent literature regarding iPSC and hESC 

differentiation into a range of endodermal tissues has used generation of definitive 

endoderm from the pluripotent cells as the first step in the differentiation process 

(Spence et al., 2011; Takebe et al., 2013; Calderon-Gierszal and Prins, 2015). As 

iPSCs are pluripotent by nature, directing their differentiation down an endoderm 

lineage is likely to increase the purity of the differentiated cells by preventing 

ectodermal and mesodermal differentiation.  

To generate definitive endoderm from the prostate derived iPSCs, an established 

method was used (D'Amour et al., 2005). iPSCs were harvested, digested to a single 

cell suspension and seeded at a density of 2x106 cells per well in a 6 well Matrigel-

coated plate. After 24 hours, fresh DMEM/F12 medium containing 100ng/ml Activin A 

was added and over the next 2 days this was continued with the addition of FCS at 

increasing concentrations (Day 1 0%, Day 2 0.2%, Day 3 2%). After 24 hours of 

incubation with Activin A, cell death was clearly visible in the cells. Following this, a 

clear change in cell morphology was seen, with an increase in cell size and a 

reduction in nuclear size along with increased confluency of the cells (Figure 5-23). 

 
Figure 5-23. Alterations in cell morphology following addition of Activin A and 
increasing concentrations of FCS to ProiPSCs and UTiPSCs. Cells became larger 
and lost the high nuclear to cytoplasmic ratio which is typical of iPSCs. Scale bar 

10m.  
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Definitive endoderm formation was confirmed at transcript and protein level using 

RT-PCR and immunofluorescence respectively. RT-PCR analysis showed a strong 

upregulation in the definitive endoderm marker FOXA2 after 3 days of induction with 

Activin A in comparison to undifferentiated iPSCs (Figure 5-24). Immunofluorescence 

was initially carried out as a single stain, showing that the majority of cells express 

the DE markers FOXA2 and SOX17 in the nucleus (Figure 5-25). To confirm co-

expression, dual immunofluorescence using both FOXA2 and SOX17 was 

performed. After DE induction, most cells expressed both markers, consistent with 

DE differentiation (Figure 5-26). Secondary antibody only controls imaged at the 

same gain and exposure confirmed the specificity of the staining.  

 

Figure 5-24. RT-PCR showed an increase in expression of the definitive endoderm 
marker FOXA2 in iPSCs treated with Activin A and increasing concentrations of FCS 
for 3 days.  

 
Figure 5-25. Immunofluorescence staining for the definitive endoderm markers 
FOXA2 (green) and SOX17 (red). Nuclei are stained with DAPI (blue). The majority 
of cells express FOXA2 and SOX17 confirming efficient induction of definitive 

endoderm. Scale bar 25m.  
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Figure 5-26. Dual immunofluorescence for the definitive endoderm markers FOXA2 
(green) and SOX17 (red) in iPSCs treated for 3 days with 100ng/ml Activin A and 
increasing concentrations of FCS (A). Panel (B) shows secondary antibody only 
control taken for the same cells taken at the same gain and exposure. Nuclei are 

stained with DAPI (blue). Scale bar 10m.  
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5.3.2 Growth factor driven prostate differentiation 

Attempts to generate prostate specific differentiation are sparse in the current 

literature. However, a recent publication showed the ability to differentiate hESCs into 

prostate organoids using an in vitro growth factor driven method (Calderon-Gierszal 

and Prins, 2015). Briefly, iPSCs were specified to definitive endoderm using the 

protocol detailed above. Following this, endoderm cells were cultured in RPMI 1640 

containing 500ng/ml FGF10 and 500ng/ml WNT10B for 4 days to specify a prostatic 

fate. 3D structures formed during this ‘prostate specification’ phase were 

subsequently transferred to Matrigel culture in prostate medium (prostate epithelial 

growth medium (PrEGM) and stromal cell medium (SCBM) supplemented with 2mM 

L-Glutamine, penicillin-streptomycin, 15mM HEPES, 500ng/ml R-Spondin1, 100ng/ml 

Noggin, 100ng/ml EGF, 1x B27 supplement, 10nM retinoic acid and 1.7M 

testosterone).  

Using this method, Calderon-Gierszal and Prins were able to generate epithelial 

organoids with lumens from hESCs which were surrounded by stromal cells. These 

epithelial organoids expressed CK8/18, AR, NKX3.1, PSA and TMPRSS2 whilst the 

surrounding stromal cells showed some expression of vimentin (Calderon-Gierszal 

and Prins, 2015). However, the basal-luminal organisation of the organoids was not 

complete, as CK8/18 expression was not restricted to the luminal layer and no basal 

cell markers were investigated with immunofluorescence. We aimed to use this same 

protocol to drive differentiation of our iPSCs to prostate organoids. 

Following definitive endoderm generation, ProiPSC-derived endodermal cells were 

specified to prostate by culture in the presence of 500ng/ml FGF10 and 500ng/ml 

WNT10B for 4 days.  After 72 hours, some 3D structures could be identified which 

varied in size and morphology as shown in Figure 5-27. However, the appearance of 

several structures was neuroepithelial-like with a rosette morphology (Figure 5-27C). 

These structures were morphologically different to the structures seen in the 

published paper, which showed a more spheroid-like or ductal appearance. 

After 4 days, any 3D structures were transferred to a Matrigel “bead” for further 

culture in prostate medium (Calderon-Gierszal and Prins, 2015). The 3D structures 

grew slowly at first and from around day 3 small cellular growths from the structures 

could be seen. Between day 4 and 8, the organoids grew rapidly in size and cellular 

protrusions could be more clearly seen (Figure 5-28). A neuronal like morphology 
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was seen with thin outgrowths of what appeared to be dendrites from the organoids 

(Figure 5-29). This was not described in the published protocol, but does fit in with 

literature suggesting that the default differentiation path for pluripotent stem cells is 

neuronal differentiation (Schwartz et al., 2008). The 3D structures continued to grow 

at a slower rate from this point although the neuronal-like outgrowths continued to 

expand. All organoids were harvested after 28 days of culture for RT-PCR and IHC.  

 

Figure 5-27. Phase contrast micrographs showing the variety of 3D structures visible 

after 96hr of culture with WNT10B and FGF10. A and C, scale bar 50m. C) 

Neuronal rosette like structure, scale bar 15m.  

 

Figure 5-28. Phase contrast micrographs following growth of an organoid from day 1 
to day 9 of culture. The organoids grew rapidly and by day 5 cellular protrusions 

could be clearly seen. These protrusions also show a rapid growth. Scale bar 50m.  

 

Figure 5-29. High magnification phase contrast micrograph showing the protrusions 
emerging from an organoid at day 9. The cells have a neuronal-like morphology. 

Scale bar 15m.  
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Prostate specific differentiation was assessed using the prostate markers AR and 

Nkx3.1, the definitive endoderm marker FOXA2 and prostate mesenchymal marker 

SMA. As expected, FOXA2 expression decreased following the prostate 

differentiation protocol and this was accompanied by a slight increase in AR 

expression (Figure 5-30). Unfortunately, the water control for Nkx3.1 was 

contaminated so this gene was discarded from the analysis. SMA remained the 

same throughout. 

Organoids were also sectioned for histological analysis; however, no visible 

structures were identified in the sections as most organoids were kept for PCR. 

Therefore, the growth factor differentiation protocol was repeated with an increased 

input of cells to increase the yield and allow histological analysis of the generated 

structures. Furthermore, we decided to include UTiPSCs in the repeated experiment 

in case of potential differences in differentiation capacity between the two iPSC lines.  

For the second experiment, ProiPSCs and UTiPSCs were differentiated to definitive 

endoderm as detailed above. The cells were either cultured in 500ng/ml FGF10 and 

500ng/ml WNT10B to specify prostatic fate, or in control medium (RPMI 1640 

containing 2% FCS, 2mM L-Glutamine and penicillin-streptomycin alone without the 

presence of the morphogens). From as early as 24 hours, 3D structures could be 

seen in the ProiPSC-derived DE cells in both control and FGF10/WNT10B treated 

wells (Figure 5-31A). After 72 hours, 3D structures were also identified in the 

UTiPSC-derived DE cells under treatment and control conditions (Figure 5-31B). As 

in the previous experiment, these varied in size and morphology, and expanded over 

the 4-day period to form large, dense structures. In the published protocol, presence 

of such structures in the control well was not discussed. As these structures were 

also identified in the control arm for both iPSC lines, they were taken forward in the 

experiment to determine if the prostate specification phase influenced the 

differentiation and final phenotype of the resultant organoids.  
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Figure 5-30. RT-PCR analysis of the endoderm marker FOXA2, prostate marker AR 

and stromal marker SMA. Cells cultured in prostate medium show a downregulation 

of FOXA2 expression and an increase in AR expression. SMA remains the same.  
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Figure 5-31. Phase contrast micrographs showing the emergence of 3D structures 
within both control and FGF10+WNT10B treated wells of ProiPSC (A) and UTiPSC 

(B) derived definitive endoderm. Scale bar 25m.  
 

All 3D structures which formed in either the prostate specification or control well were 

transferred to Matrigel culture in prostate medium (PrEGM 1:2 SCBM supplemented 

with R-Spondin 1, EGF, Noggin, B27, retinoic acid and DHT). Both the control (no 

specification) and “prostate specification” 3D structures continued to grow, 

generating mostly spheroid-like structures reminiscent of embryoid bodies (Figure 

5-32). No visual differences could be identified between those structures which had 

been specified to prostatic differentiation and those which had not.   
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At around day 6, neuronal-like cellular outgrowths were identified once again in both 

the control and growth factor treated structures (

Figure 5-33). The protrusions were long and thin, and expanded rapidly to form 

apparent networks of cells.  

 

Figure 5-32. Phase contrast micrographs of 3D structures growing in Matrigel at d1 
and d6. Structures from both “prostate specification” and control no specification 
wells grew at the same rate following transfer to floating Matrigel culture in prostate 

medium. Scale bar 50m.  

Figure 5-33. Phase contrast micrographs showing neuronal-like outgrowths in 3D 
structures emerging at day 6 (A) and 10 (B, C). 
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After 28 days of culture, all wells were harvested for either RT-PCR or histological 

analysis. H&E staining showed that both control and growth factor treated spheroids 

had a range of cell morphologies present within each organoid. The majority of cells 

appeared mesenchymal and neuronal-like with small potential epithelial areas as 

shown in Figure 5-34. This is consistent with the morphology of the structures which 

appeared similar to EBs.  

 

 

Figure 5-34. H&E staining for ProiPSC (A) and UTiPSC (B) derived spheroids. 

Arrowheads mark potential areas of epithelial differentiation. Scale bar = 250m. 
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IHC staining for mesodermal (vimentin), neuronal (III Tubulin) and epithelial 

(CK8/18 and p63) markers was undertaken to confirm the suspected cell types. As 

expected, most of the spheroid consisted of cells which expressed vimentin and/ or 

III tubulin in both control and prostate medium slides and for both ProiPSCs (Figure 

5-35) and UTiPSCs (Figure 5-36). Vimentin was always localised to the periphery of 

the organoid whilst III tubulin expression occurred in a more diffuse pattern across 

the organoid. The potential epithelial areas were all positive for the luminal epithelial 

marker CK8/18, but no expression of the basal marker p63 was identified.  

To interrogate prostate specific differentiation, AR and PSA expression was analysed 

in the spheroids using IHC. Some weak AR expression was identified in a subset of 

cells in all spheroids regardless of whether prostate specification was used (Figure 

5-37). No PSA could be identified in any of the structures (Figure 5-38). This 

suggests that some prostatic differentiation has occurred but the AR is not functional 

resulting in lack of PSA expression.  The presence of AR, albeit at low levels, 

regardless of prostate specification suggests that at least in our hands, priming DE 

cells from UT and ProiPSCs with FGF10 and WNT10B did not affect their 

differentiation.  

Calderon-Gierzsal and Prins demonstrated differentiation of hESCs to prostate 

organoids which expressed prostate specific genes and were functional as 

demonstrated by PSA secretion. In our hands, we were unable to fully recapitulate 

the results of their publication with either ProiPSCs or UTiPSCs. Some prostatic 

differentiation was achieved with weak expression of AR but absence of PSA 

expression showed that the AR was inactive. Furthermore, as well as expression of 

the epithelial marker CK8/18, the 3D structures generated with this method also 

contained cells from the other embryonic germ layers as confirmed by expression of 

III tubulin and vimentin. Therefore, this method generates EB-like spheroids from 
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the iPSC lines tested in this study, suggesting further refinement is required to 

generate purely prostatic differentiation.  

 

 

 

 

Figure 5-35. IHC analysis for the mesodermal marker vimentin, ectodermal marker 

III tubulin, luminal epithelial marker CK8/18 and basal marker p63 in spheroids 

derived from ProiPSCs. Scale bar 100m.  
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Figure 5-36. IHC analysis for the mesodermal marker vimentin, ectodermal marker 

III tubulin, luminal epithelial marker CK8/18 and basal marker p63 in spheroids 

derived from UTiPSCs. Scale bar 100m. 
 

 

Figure 5-37. IHC for AR expression in UTiPSCs and ProiPSCs with and without 

prostate specification and cultured in 3D with prostate medium. Scale bar 100m. 
Insets show high magnification image of areas with weak AR expression.  
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Figure 5-38.IHC for PSA expression in UTiPSCs and ProiPSCs with and without 

prostate specification. Scale bar 100m.  

5.3.3 3D co-culture of definitive endoderm and UGM cells to drive prostate 

differentiation 

The results obtained from the growth factor differentiation method above suggested 

that the protocol did not contain the entire repertoire of factors at the correct 

concentrations to direct prostate specific differentiation of iPSCs. During normal 

embryonic development, prostate epithelial cell differentiation is driven by the UGM 

which secretes a range of paracrine factors which promote epithelial growth and 

differentiation. However, the precise factors are not yet fully determined. In vivo 

experiments using rodent UGM combined with adult epithelium and hESCs have 

shown that prostatic tissue can be generated in this manner. In chapter 4 of this 

thesis, successful generation of prostatic tissue from tissue recombinants of 

ProiPSCs and rat UGM is discussed. However, to date no studies have explored 

whether UGM cells can be used to drive differentiation of pluripotent cells to prostate 

in vitro. We therefore aimed to use rat UGM in a 3D co-culture system to determine if 

this inductive potential can be replicated and sustained in vitro.  

To reduce non-specific differentiation, ProiPSCs and UTiPSCs were again 

differentiated to definitive endoderm using Activin A and increasing concentrations of 

FCS. Following this, endoderm cells were combined with rat UGM cells in Matrigel at 
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two ratios: 10,000 DE cells to 35:000 UGM cells (1:3.5) or 5,000 DE cells to 35,000 

UGM cells (1:7). After the Matrigel had set, DMEM/F12 supplemented with 2% 

insulin-transferrin-selenium (ITS) and 10nM DHT was added. This was also 

supplemented with ROCK inhibitor to promote the survival of single cell suspension 

of DE. This medium was chosen as it is serum-free and has been previously used for 

successful in vitro culture of UGS (Lipinski et al., 2005; Bryant et al., 2014). Cultures 

were monitored daily by microscopy and media was changed every 48 hours. After 7 

days of culture, the medium was changed to UGM conditioned medium (CM) to 

ensure the cells still received UGM secreted factors once the UGM lost its inductive 

ability. UGM CM was collected by culturing whole UGM pieces in DMEM/F12, 2% 

ITS and 10nM DHT. CM was collected at days 2, 4, 5, 6 and 7, filter sterilised and 

aliquoted to ensure each aliquot contained equal amounts of CM from each day of 

collection to mitigate the potential differences in factors secreted over time. Once the 

media was changed to UGM CM, media changes took place twice per week.  

 

In both ProiPSCs and UTiPSCs, a ratio of 5000 DE cells to 35,000 UGM proved non-

permissive for growth and the cultures were abortive. However, the 10,000 DE cells 

to 35,000 UGM appeared viable with apparent clusters of cells visible from day 6 

(Figure 5-39). After 10 days of culture, small round structures could be seen in the 

UTiPSC arm of the experiment. These showed rapid growth and by day 13 large 

spheroids were present. Morphologically, the spheroids appeared to consist of a 

single cell layer with a large lumen (Figure 5-40). Typically, they were closely 

associated with clumps of cells, which were mesenchymal in appearance. We 

hypothesised that these cells were the UGM providing structural support as well as 

paracrine signalling to the differentiating iPSCs. The culture also contained smaller, 

dense clumps of cells which did not show further proliferation. In contrast, the 

ProiPSCs formed aggregates which grew poorly and no spheroid formation was 

observed. After 3 weeks of 3D culture, the organoids were harvested for histological 

analysis. H&E staining showed the presence of two types of organoid; a single cell 

organoid with large lumen and smaller dense organoids which appeared less well 

organised (Figure 5-41).  
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Figure 5-40. Phase contrast micrograph showing the two types of spheroids present 

in the UT-DE wells. Scale bar 500m. Inset shows high magnification of a large 
spheroid showing presence of a thin outer layer of cells.  
 

 

Figure 5-41. H&E staining showing the two types of structure identified in UTiPSC-
derived DE cells co-cultured with UGM. (A) A large spheroid with a single layer of 
cells surrounding a large lumen, (B) A smaller, denser spheroid which lacks a lumen. 

These smaller spheroids appear quite disorganised. Scale bar 50m. 
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The structures were first stained for a human specific mitochondrial marker, which 

confirmed the spheroids were generated from human cells rather than the rat UGM 

or any contaminating rat cells present after tissue dissection (Figure 5-42). IHC 

staining for pan CK, CK8/18, 34e12 and vimentin confirmed that the structures were 

formed predominantly from epithelial cells with some areas of vimentin co-expression 

(Figure 5-43). In addition, the luminal marker CK8/18 and the basal marker 34e12 

were expressed in all cells suggesting that the structures were early epithelial 

organoids. During prostate development, early prostatic ducts are characterised by 

co-expression of these two markers (Wang et al., 2001). 

To interrogate prostate-specific differentiation, the spheroids were then stained for 

Nkx3.1, AR and PSA. Some low-level Nkx3.1 expression was seen but no AR or 

PSA expression was identified (Figure 5-44). We hypothesised that this was due to 

the short time of differentiation, and therefore decided to repeat the experiment with a 

larger number of cells to allow harvesting of the differentiated cells at multiple time-

points and allow interrogation of protein expression by IHC and transcript level 

expression using RNA sequencing. 

 

 

Figure 5-42. IHC for anti-human mitochondria confirms that both types of spheroid 

are human in origin. Scale bar 50m.  
 



133 
 

 

Figure 5-43. IHC for CK8/18, 34e12 and vimentin. Scale bar 50m.  
 

 

Figure 5-44. IHC for the prostate markers Nkx3.1, AR and PSA. Some weak Nkx3.1 

expression is seen but no AR or PSA expression is present. Scale bar 50m.  
 

For the second experiment, a different ProiPSC clone was used to determine if the 

lack of growth in the first experiment was clone-specific, as differences in the ability 

of iPSC clones from the same initial culture to differentiate are known to exist. A 

single ratio of 10,000 DE cells to 35,000 UGM was used in this experiment. As with 

the previous experiment, media was changed to UGM CM at day 7. At week 6, media 

was changed to prostate organoid medium which has previously been used for 

successful culture of human prostate organoids (Karthaus et al., 2014) as we 

hypothesised that this would support the maintenance of the organoids once they 

were established. Additionally, UGM alone and iPSC-derived DE alone control wells 

were also set up to confirm that the differentiation was a result of the UGM and not 

due to factors contained within the media.  
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After 24 hours, small clusters of cells could be identified in both the UT and ProiPSC 

cultures. There appeared to be two types of structures; small spheroids which 

appeared to have a single layer of cells surrounding a central lumen, and clusters of 

cells which appeared to be fibroblasts. Both structures grew well, with the spheres 

doubling in size over the first week of culture and the fibroblast-like cells forming cell 

aggregates (Figure 5-45 and Figure 5-46). Interestingly, as the cells continued to 

grow, the fibroblast-like clusters seemed to surround the spheroids, suggesting that 

the UGM grows around the developing spheres to direct their differentiation (Figure 

5-47).  

 

Figure 5-45. Phase contrast micrographs of UTiPSC-derived DE and UGM cells in 
3D co-culture at 24 hours (A,C), 6 days (D) and 8 days (B) of culture. Two types of 
structure can be identified; fibroblast-like cells which form clusters (A,B), and small 

spheroids (C,D). Scale bar 25m. 

 
Figure 5-46. Phase contrast micrographs of ProiPSC-derived DE and UGM cells in 
3D co-culture at 24 hours (A,C), 6 days (D) and 8 days (B) of culture. Two types of 
structure can be identified; fibroblast-like cells which form clusters (A,B), and small 

spheroids (C,D). Scale bar 25m.  
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Figure 5-47. Phase contrast micrograph showing fibroblast-like cells surrounding a 

small spheroid. Scale bar 25m. 
 

After 6 days, two different types of spheroid could be identified. The first type 

consisted of large spheroids which grew rapidly (Figure 5-48), which we 

hypothesised were the epithelial organoids identified in the first experiment. The 

second type, small spheres, were slow growing. At day 10, small dense “budding” 

structures could be seen in both UT and ProiPSC arms which appeared to have 

formed from the small slow growing spheres (Figure 5-49A). These appeared to 

cluster around the larger spheroids as shown in Figure 5-50B, and we hypothesised 

that these could potentially be UGM cells. In published organ culture experiments, 

similar budding structures emerge from the UGS (Rowley and Tindall, 1987).  

 

Figure 5-48. Phase contrast micrograph showing a typical spheroid with a single 

layer of cells surrounding a large lumen. Scale bar 25m. 
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Figure 5-49. Phase contrast micrographs showing (A) the appearance of dense 
spheres and (B) an area of dense spheres and fibroblast-like cells clustering around 

a spheroid. Scale bar 25m.   
 

The large spheroids continued to grow well, in both UT and ProiPSC arms, and as in 

the previous experiment appeared to be formed from a single layer of cells (Figure 

5-50B). Some spheroids expanded to form a dual layer of cells (Figure 5-50A). At 

high magnification, the spheroids had a clear defined outer border (Figure 5-51). The 

spheroids continued to grow rapidly until week 4 of culture, at which point their 

growth began to slow. Spheroid counts performed during the fourth week of culture 

confirm that the number of spheroids remained the same with no further spheroid 

formation ( 

Figure 5-52). Interestingly, the number of large spheroids formed was significantly 

higher in UTiPSCs versus ProiPSCs (p<0.0001). By week 6, spheroids had reached 

a diameter of up to 125m and could be seen with the naked eye. Cultures continued 

to be monitored by microscopy. Control wells consisting of UGM or DE cells alone 

failed to grow.  

 
Figure 5-50. Phase contrast micrographs showing two different spheroids. A) A 
spheroid which has expanded to form what appears to be a dual layer of cells. B) A 
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typical spheroid showing a thin single layer of cells and large lumen surrounded by 

fibroblast-like cells and dense spheres. Scale bar 25m. 

 

Figure 5-51. Phase contrast micrograph at high magnification showing the clear 

border of the spheroid. Scale bar 25m. 
 

 

Figure 5-52. Graph showing the average number of spheroids per well for UTiPSCs 

and ProiPSCs. UTiPSCs formed significantly more spheroids (p<0.0001). Error bars 

represent standard deviation (SD), n=10. 

 

Wells were harvested at 6 and 8 weeks of culture and cells extracted for RNA 

sequencing or whole wells fixed, embedded in paraffin and sectioned for histological 

analysis. H&E staining was performed to investigate the overall morphology of the 3D 

structures and identify differences between the two iPSC lines. The large spheroids 

identified in the UTiPSC wells were multi-layered with lumens, whilst the structures 

generated from ProiPSCs were generally denser, with lack of or very small lumens 

(Figure 5-53, Figure 5-54).  
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Figure 5-53. H&E staining of structures formed from UTiPSC-derived DE cells co-
culture with UGM for 6 weeks (A) and 8 weeks (B). The structures generally have 

large lumens surrounded by multi-layered cells. Scale bar 100m.  
 

 

Figure 5-54. H&E staining of structures formed from ProiPSC-derived DE cells co-
cultured with UGM for 8 weeks. In contrast to the UTiPSC derived structures, 

ProiPSC structures had no or very small lumens. Scale bar 100m.  
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IHC was performed to determine the nature of the structures. Staining for the human 

specific mitochondrial marker was first performed to confirm the origin of the 

spheroids. All spheroids showed staining for human specific mitochondria, confirming 

their origin from the iPSCs rather than the rat UGM cells (Figure 5-55). Interestingly, 

the dense “budding” structures which were seen within the culture and were 

associated with the formation of spheroids were negative for human mitochondria 

(Figure 5-56). This confirmed our hypothesis that these were in fact UGM cells 

surrounding the developing iPSC-derived structures.  

 

Figure 5-55. IHC for human specific mitochondrial marker to determine the origin of 
the spheroids. Brown staining confirms expression of human mitochondria and thus 
the human origin of the cells. A) UTiPSC derived spheroids, B) ProiPSC derived 

spheroids. Scale bar 200m.  

 

Figure 5-56. High magnification image of IHC staining for anti-human mitochondria. 
The cells stained brown are human in origin, whilst the blue-purple cells are not. As 
suspected, the cells and dense spheres clustering around the human spheroids 

appear to be UGM. Scale bar 50m. 
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Expression of the luminal marker CK8/18 and basal markers 34e12 and p63 was 

then investigated by IF to determine if the structures were epithelial. In UTiPSC-

derived structures at week 6, 34e12 was expressed in the basal and middle layers 

of the organoid but not the luminal side (Figure 5-57). p63 expression was restricted 

to the true basal layer, suggesting that the middle layers of the structure may be an 

intermediate cell population. 34e12 recognises CK 1, 5, 10 and 14, which are 

present in normal squamous epithelium (Sturm et al., 2003). Interestingly, squamous 

epithelium is known to be found in foetal and infant prostates (Goldman, 1940), and 

is thought to be a result of exposure to oestrogens during development (Sugimura et 

al., 1988). This suggests that the middle cell layer in the organoids may represent 

squamous epithelial cells which are a normal developmental phenomenon. CK8/18 

expression in contrast was restricted to the luminal layer only. The combination of 

expression of these markers confirms that the structures generated are epithelial 

organoids which show correct polarisation with formation of both basal and luminal 

cell layers, as well as a potential intermediate population of cells.  

To determine prostate specific differentiation, AR and PSA expression were also 

investigated using IF. At week 6, nuclear AR and cytoplasmic PSA expression was 

present but very weak suggesting that these UTiPSC-derived organoids are at an 

early stage of prostatic differentiation (Figure 5-57). By week 8, clear cytoplasmic 

PSA expression with a classical speckled appearance was evident in the luminal cell 

layer of the organoids confirming functional prostatic differentiation (Figure 5-59). 

Week 8 organoids continued to express high CK8/18 on the cell surface of the 

luminal cell layer (Figure 5-58) as well as nuclear p63 in the basal cell layer (Figure 

5-59).  
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Figure 5-57. IF showing presence of 34e12, CK8/18, p63 and AR expression in UT-
DE derived organoids after 6 weeks of co-culture with rat UGM. Nuclei are stained 
with DAPI (blue). Scale bars 50µm.  
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Figure 5-58. IF for the luminal cell marker Ck8/18 and AR in UTiPSC-derived 
organoids after 8 weeks of culture. CK8/18 is expressed on the surface of the luminal 
cells. AR is expressed in both the nuclei and cytoplasm. Nuclei are stained with DAPI 
(blue).  

 

Figure 5-59. Dual IF for PSA (green) and p63 (red) showing luminal cytoplasmic and 
basal nuclear expression respectively. Nuclei are stained with DAPI (blue). 
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ProiPSC-derived structures, in agreement with their morphology based on H&E 

staining, were mostly 34e12 positive at week 6 with CK8/18 expression restricted to 

the small luminal-like areas identified (Figure 5-60). No p63 expression was identified 

at this time-point. In contrast with UTiPSC-derived structures, nuclear AR was 

expressed earlier and at a higher level in the Pro-iPSCs derived cells, suggesting 

these cells are able to express prostate specific markers at an earlier stage of 

differentiation. This may be a result of an epigenetic memory from the parental cells 

which the iPSCs were derived from. This is a documented phenomenon in iPSCs 

and can affect the differentiation capacity of the cells (Kim et al., 2010a). By week 8, 

the iPSC-derived organoids also expressed PSA in the luminal cell layer which was 

restricted to the very luminal edge of the cells (Figure 5-61), again confirming 

prostatic differentiation and the functional ability of the organoid.  

Samples were also collected from iPSCs, DE cells and differentiated cells at weeks 

6, 8 and 12 to harvest cells for RNA sequencing. Although the results from this are 

outside of the scope of this thesis due to time constraints, they will provide key 

information on gene expression patterns in developing human prostate organoids. In 

summary, we have demonstrated for the first time the ability of rat UGM to direct the 

differentiation of iPSCs to prostate organoids in vitro using a 3D co-culture approach 

combined with organoid specific medium. The organoids show basal and luminal 

differentiation by the correct localisation of CK8/18, p63 and 34e12. In addition, the 

organoids express AR and PSA, confirming functional prostatic differentiation. The 

difference in marker expression between week 6 and 8 of culture shows that the cells 

progress and differentiate further with time.   
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Figure 5-60. IF of ProiPSC-derived organoids after 6 weeks of co-culture with UGM. 
The organoids express the luminal cell marker CK8/18 in a subset of cells 
surrounding small lumen-like areas. Nuclear AR expression is also evident in the 

majority of cells. No p63 expression is seen but all cells are 34e12 positive.  
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Figure 5-61. IF on ProiPSC-derived organoids after 8 weeks of co-culture with UGM. 
CK8/18 expression is restricted to the luminal layer of cells in the organoid whilst p63 
is expressed only in the basal layer. Nuclear AR expression and cytoplasmic PSA in 
the luminal layer confirm prostatic differentiation.  
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5.4 Discussion 

iPSCs offer huge opportunities for use in modelling human development and disease 

as well as drug testing. Generation of organoids from iPSCs provides a more 

physiologically relevant in vitro model which consists of all cell types present within 

the organ of interest, can be maintained over a long period and does not require the 

use of large amounts of primary tissue (Fatehullah et al., 2016). However, to fulfil 

this, directed differentiation of the iPSCs to the cell types of interest is required. In 

this chapter, attempts have been made to differentiate patient derived ProiPSCs and 

UTiPSCs to prostate epithelial organoids using two approaches. The first approach, 

using a cocktail of growth factors to attempt to specify prostatic fate followed by 

organoid culture in prostate medium did not yield pure prostate organoids from either 

UTiPSCs or ProiPSCs, although this method has previously been used to generate 

prostate organoids from hESCs (Calderon-Gierszal and Prins, 2015). Using this 

method, iPSCs formed EB-like spheroids which consisted of cells from the 3 

embryonic germ layers, rather than prostatic organoids as shown in the published 

paper. Furthermore, we also saw formation of spheroids from control cells which did 

not undergo prostate specification. When cultured in prostate medium in 3D cultures, 

these spheroids were identical to those which had undergone prostate specification 

with WNT10B and FGF10, suggesting that, at least in our hands, the combination of 

these factors does not specify a prostatic fate. Although some areas of AR 

expression were identified, non-specific differentiation, particularly of neuronal cells, 

limits this method of differentiation.  

An alternative method for differentiation of iPSCs is the use of co-culture with other 

cell types. During prostate development, the UGM directs the formation and 

differentiation of prostate epithelium by release of a range of paracrine signals which 

are not fully known. In tissue recombination experiments, UGM can drive hESCs to 

form prostatic tissue in vivo, and in chapter 4 of this thesis we show ProiPSCs are 

also able to form prostate glands using this model. We hypothesised that under the 

correct culture conditions, UGM cells may also be able to direct differentiation of 

iPSCs to prostate. We used a 3D co-culture method to grow ProiPSCs and UGM 

cells in serum-free media permissive for UGM growth. Following growth of the cells 

and formation of organoids, medium was then changed to prostate organoid medium 

to support their growth and maintenance.  
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Using this method, we have generated epithelial organoids which show correct 

spatial organisation with basal and luminal cell layers. In addition, these organoids 

express nuclear AR and show functional ability by expression of PSA. This provides 

a novel in vitro model of human prostate development in 3D culture using patient 

derived iPSCs, a theoretically unlimited cell source which is not associated with the 

same ethical issues as hESCs. Although the time constraints of this PhD did not 

allow further investigation of the pathways underlying this differentiation model, RNA 

sequencing using the samples collected from each stage of differentiation will provide 

information on the differences in gene expression and will allow interrogation of 

pathways activated during human prostate development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 
 

Chapter 6. Discussion and conclusions 

Prostate diseases are highly prevalent, resulting in both morbidity and mortality. 

Despite the development of a range of therapies, diseases such as prostate cancer 

and BPH remain problematic. One potential reason for this is the lack of a normal 

human prostate model. Unlike many other organs, a relevant model for the normal 

development of the human prostate does not currently exist. Whilst the importance of 

the UGM in driving prostate epithelial cell differentiation is well established, only 

some of the many factors involved in this complex developmental process have been 

identified. In addition, much of the research in this area has been carried out in mice. 

Whilst these experiments have contributed greatly to our understanding of specific 

factors important in prostate development, they do not translate fully to the human 

setting due to fundamental differences in prostate size, architecture and disease 

susceptibility. Therefore, the generation of a model which can be used to research 

both prostate development and disease is critical to further our understanding in this 

area.  

6.1 iPSC generation from primary human prostate fibroblasts  

One attractive method to generate developmental and disease models is the use of 

stem cells. Due to their capacity for both self-renewal and differentiation, stem cells 

represent a virtually infinite supply of cells for use in research. Although several 

putative markers have been identified for prostate stem cells, a complete marker 

profile has not been described, therefore isolation of true prostate stem cells remains 

challenging (Takao and Tsujimura, 2008).  

Pluripotent stem cells such as ESCs and iPSCs represent an alternative to adult 

stem cells. In the current literature, hESCs have been used to generate prostate 

epithelial cells and tissue both in vitro and in vivo. Whilst these methods have shown 

that stem cells are able to successfully differentiate along a prostatic lineage, they 

are limited in their use as a widespread model due to the ethical issues associated 

with hESCs and subsequent stringent legislation surrounding their use. iPSCs 

represent a source of unlimited cells which possess the defining properties of hESCs 

including self-renewal and the ability to generate multiple cell types. As iPSCs can be 

generated from somatic cells, they also circumvent the requirement for embryos and 

therefore are not limited by ethical concerns. In recent years, the process of iPSC 

generation and culture has been greatly improved. The development of non-
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integrative reprogramming methods including RNA, protein and Sendai virus 

methods have allowed iPSCs to be generated without concerns of viral integration 

and disruption of the host cell genome. iPSC culture has also developed from initial 

feeder-dependent culture to more defined environments using ECMs and 

development of xeno-free media.  

In this project, fibroblasts isolated from human prostate specimens were successfully 

reprogrammed to generate integration-free iPSCs. The resulting cells were 

karyotypically normal and possessed typical hESC properties including rapid 

proliferation and expression of pluripotency markers. Their identity as iPSCs was 

confirmed by their ability to generate cells from the three embryonic germ layers by 

EB formation in vitro and teratoma formation in vivo. The iPSCs were generated at a 

higher efficiency than found with previous lentiviral-based approaches used in our 

lab, and are stable in culture after multiple passage and freeze-thawing. These cells 

therefore can be used as a renewable cell source for further research. Using this 

reprogramming method in prostate fibroblasts from a range of different patients 

would allow generation of a bank of ProiPSCs which should encompass the 

heterogeneity of prostate tissue.  

6.2 Generating iPSCs from primary human prostate epithelial cells 

As epigenetic memory can affect the differentiation capacity of iPSCs, we 

hypothesised that iPSCs derived from prostate epithelium may be more easily driven 

to prostatic epithelial differentiation in comparison to prostate fibroblast derived 

iPSCs. Therefore, we used the same Sendai vectors in an attempt to reprogram 

patient prostate epithelial cells. To support the epithelial cells, which are very 

sensitive to passaging, the Cytotune 2.0 vectors were added directly to the flask of 

cells and feeder dependent iPSC culture with MEFs was used. However, despite 

these modifications, significant cell death occurred and no colonies were formed. Cell 

death during reprogramming can occur by several mechanisms including apoptosis, 

which is well documented during the reprogramming process, with upregulation of 

the apoptotic proteases caspase 3 and 8 following transduction of reprogramming 

factors (Li et al., 2010a). However, cell death may also have occurred due to 

autophagy, which is induced by Sox2 mediated downregulation of mTOR (Wang et 

al., 2013), or interferon response to viral infection which can result in sensitisation of 

cultured cells to apoptosis (Barber, 2001).  
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To prevent the high levels of cell death, the MOI was reduced and different methods 

were employed including plating the cells on collagen prior to reprogramming, 

transferring the cells at different time points following viral infection, and use of both 

feeder-dependent and feeder-free culture. Unfortunately, despite initial increases in 

proliferation and colony formation, no iPSC colonies were identified in any of the 

conditions used. The presence of colonies early in the reprogramming process which 

failed to grow suggests that the cells became stalled. This is consistent with the 

literature which shows that in fibroblasts infected with the OSKM transgenes, 

approximately 20% of cells show early reprogramming with expression of Tra-1-60, 

however only ~1% of these partially reprogrammed cells progress to complete 

reprogramming (Tanabe et al., 2013).  

This common phenomenon of stalling at the maturation phase of reprogramming is 

the limiting step in iPSC generation (Tanabe et al., 2013) and as such has prompted 

research into improving this process. Nanog has been identified as a critical factor in 

the maturation phase of reprogramming. Whilst Nanog-/- cells can undergo early 

reprogramming, they are unable to reach a completely reprogrammed state (Wei et 

al., 2015). Furthermore, inhibition of MAP kinase (MEK) and glycogen synthase 

kinase (GSK3) with the addition of leukaemia inhibitory factor (LIF) to the 

reprogramming process has been shown to activate Nanog and promote complete 

reprogramming of the cells (Theunissen et al., 2011). Methylation has also been 

implicated in reprogramming, with DNA hypermethylation identified in pluripotency 

genes in partially reprogrammed cells. Inhibition of DNA methyltransferase with 5-

aza-cytidine induced cells to become fully reprogrammed, and this finding was 

replicated using small interfering RNAs or lentiviral short hairpin RNAs (shRNAs) 

against DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (Mikkelsen et al., 2008). 

Inclusion of histone deacetylase (HDAC) inhibitors has also been shown to enhance 

reprogramming, with valproic acid in particular resulting in a 100-fold increase in 

reprogramming efficiency and allowing efficient generation of iPSCs using only 3 

factors (Oct4, Sox2, and Klf4) (Huangfu et al., 2008). Critically, knockdown of HDAC2 

with shRNA also improves the reprogramming efficiency by specifically promoting the 

maturation phase with enhanced expression of genes including Nanog, Sall4, Esrrb, 

Rex, Tcl1 and Cripto (Wei et al., 2015). These methods may be useful in generating 

iPSCs from prostate epithelial cells by overcoming the block to maturation which 

appeared to occur during our attempts at reprogramming.  



151 
 

We also hypothesised that Sendai virus vectors may be less efficient at infecting 

prostate epithelial cells. Investigation of this using a control GFP Sendai virus 

confirmed that the efficiency of viral infection was significantly lower in prostate 

epithelial cells in comparison to prostate fibroblasts. As generation of iPSCs requires 

infection of the target cell with 3 separate vectors (KOS, Klf4 and c-Myc), this low 

efficiency is very problematic. Interestingly, human nasal epithelial cells have been 

successfully reprogrammed with Sendai virus vectors with a reprogramming 

efficiency of 0.07% for MOI 3 and 0.1% with MOI 4 (Ono et al., 2012). When a GFP 

control vector was used, high GFP expression was seen in nasal epithelial cells, 

which contrasts with very low expression in the prostate epithelial cells used in this 

project. As Sendai virus binds to cells through α2,3-linked sialic acids (Markwell and 

Paulson, 1980; Markwell et al., 1981; Suzuki et al., 1985), which are known to be 

expressed in the human airway (Kumlin et al., 2008), the ability for Sendai virus 

vectors to infect nasal epithelial cells with a much higher efficiency than for prostate 

epithelial cells may be explained at least in part by expression of α2,3-linked sialic 

acids in these cell types.  

In general, we found that prostate epithelial cells were more difficult to culture than 

prostate fibroblasts, and did not respond well to passaging. During iPSC generation 

with Sendai virus vectors, the cells must be passaged and transferred to an ESC 

environment before formation of iPSC colonies. Therefore, our methods of prostate 

epithelial cell culture and passaging require further refinement to allow a more stable 

starting population of cells for reprogramming. Due to the inefficiency of Sendai virus 

entry into the prostate epithelial cells, other reprogramming methods should be 

trialled. This may allow generation of iPSCs from human prostate epithelial cells in 

the future which could then be compared to prostate fibroblast-derived iPSCs to 

determine if the cellular and germ layer origin of the iPSCs impacts their ability to 

differentiate.  

For example, oriP/EBNA-1 episomal vectors have been used to generate iPSCs from 

urine-derived renal epithelial cells with a high efficiency of 1.5%. Using this method, 

efficiency of iPSC generation was 10 to 100-fold higher in epithelial cells versus 

fibroblasts. Addition of a microRNA302/367 cassette whose expression has been 

previously shown to facilitate iPSC generation resulted in a fourfold increased 

efficiency for iPSC generation from urinary epithelial cells. This enhanced 

reprogramming was attributed to the fact that the epithelial cells do not undergo MET 
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and therefore the reprogramming process is accelerated in these cells. However, 

subsequent characterisation of the urinary renal epithelial cells showed that they 

possessed endogenous Tra-1-60 and Tra-1-81 expression which is a hallmark of 

undifferentiated pluripotent stem cells. Although these methods may improve the 

reprogramming of prostate epithelial cells, it is possible that their success in 

reprogramming urine derived cells was due to the high endogenous pluripotency 

factor expression, which correlated with enhanced reprogramming efficiency in these 

cells (Drozd et al., 2015).  

6.3 Generation of prostatic tissue in vivo using tissue recombination with rat 

UGM 

This project also demonstrated for the first time the successful generation of prostate 

tissue from iPSCs, using a tissue recombination approach with inductive rat UGM to 

drive prostatic differentiation. Previously, this method has been used to generate 

prostatic tissue from both adult stem cells and hESCs. In human prostate cells from 

patient samples, Cd49hi Trop2hi basal cells can generate prostatic tissue when 

engrafted along with rat UGM under the renal capsule of host mice. This tissue 

contains basal, luminal and NE cells, although the NE cells were positive for 

synaptophysin but not chromogranin A, suggesting incomplete NE differentiation 

(Goldstein et al., 2008). Using hESCs, this method can generate the full breadth of 

prostatic differentiation (Taylor et al., 2006; Cai et al., 2013). As this approach had 

not been previously used with iPSCs, several ratios of iPSCs to UGM were trialled. 

From the initial analysis of grafts, a ratio of 1:125 appeared to give the most epithelial 

tissue formation with minimal non-specific differentiation. However, this observation 

was based upon only 1 sample per ratio and therefore analysis of the repeats is 

necessary to confirm the finding. Following such analysis, the ratio could be 

optimised further to reduce or possibly abrogate non-specific differentiation. 

The prostatic tissue formed from iPSCs using this method contained both basal and 

luminal epithelial cells and showed expression of the prostatic markers AR and PSA 

confirming functional prostatic differentiation. Rare cells expressing the NE marker 

chromogranin A were also identified, although further staining for synaptophysin as 

well as confirmation that these cells lack AR and PSA expression will be required to 

confirm their identity as NE cells. To complete the analysis, dual IF should be 

performed to confirm the same cells express both AR and PSA, and to confirm with 

increased clarity the division into basal and luminal cell layers as well as the 
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differences in marker expression between the two cell populations. Investigation into 

cell polarisation, through expression of integrins such as α2β1 and cell adhesion 

molecules such as E-cadherin will also be important to confirm that the cells are both 

fully differentiated and correctly polarised. Furthermore, analysis of markers 

expressed by the stromal tissue surrounding the epithelial glands should be 

undertaken to determine if these associated cells express normal prostatic stromal 

markers such as SMA.  

The ability of iPSCs generated from human prostate fibroblasts to generate prostatic 

epithelial glands in vivo using this method circumvents the need for hESCs and their 

associated ethical issues and limited tissue availability. This model could be used in 

the future to study human prostate development at different stages throughout 

growth of the grafts to determine differential gene expression and identify key 

pathways which regulate human prostatic differentiation. This method could also be 

used to generate normal prostatic tissue for research by using a bank of patient-

derived iPSCs rather than requiring large volumes of primary patient tissue.  

6.4 Growth factor based differentiation of iPSCs to prostate organoids in vitro 

Ideally, an in vitro method for prostate differentiation would be most useful. Animal 

experiments are strictly regulated and require significant hands-on time and specialist 

skills for surgical engraftment of cells. Furthermore, laboratory animals are expensive 

and experiments are limited in number by the practicality of caring for these animals. 

In addition, real-time monitoring and manipulation of cells grown in vivo is extremely 

difficult. To date, there is very limited literature on the differentiation of stem cells to 

prostate in vitro. The sole publication showing generation of prostatic cells from 

hESCs in vitro used a growth factor based differentiation method. This method is 

based largely upon a protocol for iPSC-derived intestinal organoids which used FGF4 

and WNT3A to pattern posterior endoderm and hindgut differentiation (Spence et al., 

2011). To specify prostate differentiation, FGF10 and WNT10B were used, based on 

the importance of FGF and WNT signalling in prostate development. FGF10 is a 

UGM-secreted factor (Thomson and Cunha, 1999), whilst WNT10B is secreted by 

the UGE prior to bud formation (Keil et al., 2012).  

In our hands, ProiPSCs and UTiPSCs which had been differentiated to endoderm 

went on to form 3D structures in both WNT10B and FGF10 treated and control wells 

which were cultured in the basal medium without addition of any growth factors. 
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Interestingly, in the original publication, substitution of WNT10B for WNT3A also 

resulted in formation of spheroids but these were small and did not grow (Calderon-

Gierszal and Prins, 2015). In addition, culture of both control and treated 3D 

structures in the prostate medium used by Calderon-Gierzsal and Prins resulted in 

formation of EB-like structures with areas of weak AR positivity. This suggests that, 

at least in our hands, this method can generate areas of early prostatic differentiation 

but this is accompanied by significant non-specific differentiation. As AR expression 

has not been identified in our pluripotency tests by embryoid bodies or teratoma 

formation, this protocol seems to provide some specific cues but is not sufficient to 

drive purely prostatic differentiation from ProiPSCs or UTiPSCs in our hands. 

Interestingly, AR has also been identified in other tissues including the brain, which 

shows strong AR expression (Dart et al., 2013). Therefore it is possible that the AR 

positive cells identified in our differentiated cells could be AR expressing neuronal 

cells.   

The difference in results obtained using this method with our iPSCs in comparison 

with the hESCs used by Calderon-Gierszal and Prins could be a result of differences 

in the iPSC clones which were used in our experiment. Both genetic and functional 

heterogeneity have been observed in iPSC clones from the same cell type from the 

same patient. Genetic heterogeneity between clones from the same patient and even 

the same clone at different passages are a known phenomenon in iPSCs (Winkler et 

al., 2013). Functional differences between iPSC clones have also been well 

documented in the literature. Using 24 iPSC clones derived from skin fibroblasts of a 

single mouse, differences in differentiation potential could be identified. Of the 24 

clones, 1 clone was completely unable to generate haematopoietic progenitor cells, 

despite passing tests to confirm an iPSC identity including teratoma formation (Li et 

al., 2015). Differences in osteogenic and chrondrogenic differentiation between iPSC 

clones from the same cell source have also been reported, providing further evidence 

for clonal variation (Nasu et al., 2013).  

In our hands, significant neuronal differentiation occurred in both UTiPSCs and 

ProiPSCs differentiated using this method. During development, the neural tube is 

one of the earliest tissues to form (Schwartz et al., 2008). A “default” neuronal 

differentiation program is known to occur in ESCs and iPSCs, with the presence of 

doublecortin-positive cells identified at the periphery of PSC colonies as well as 

within the surrounding MEFs, consistent with neuronal differentiation as doublecortin 
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is a neuronal marker associated with migrating neuroblasts (Schwartz et al., 2008). 

The default model is based upon the idea that neural induction is a result of BMP 

inhibition in the embryonic ectoderm, and that the ectodermal cells will differentiate 

into neural tissue in the absence of any specific signalling (Munoz-Sanjuan and 

Brivanlou, 2002). Evidence for this default model has been collected using ESCs. 

mESCs which were cultured without feeders, serum, growth factors or cell-cell 

contact showed predominantly neuronal differentiation, with 82% of viable cells 

expressing the neuroepithelial marker Nestin (Tropepe et al., 2001). Similarly, culture 

of hESCs in a defined system free from known neurogenic inducers resulted in an 

almost uniform culture of neuroepithelial cells which displayed a neuronal rosette 

morphology and expressed the early neural marker Pax6 (LaVaute et al., 2009). The 

results of our growth factor based experiments indicate that in our iPSCs, a neural 

fate does predominate, even in the presence of external signals which have induced 

a prostatic fate in hESCs. We hypothesise that the growth factors used in this 

protocol are not enough to drive a purely prostatic differentiation, and therefore 

neuronal differentiation persists in our cells.  

6.5 A novel 3D co-culture method for generation of prostate organoids from 

iPSCs in vitro 

In recent years, prostate organoids have been generated using patient derived 

prostatic tissue. Whilst Chua et al., generated prostate organoids consisting of an 

outer layer of intermediate cells and an inner luminal layer, Karthaus et al., were able 

to generate organoids with a more mature phenotype where cells in each layer 

expressed either basal or luminal markers alone (Chua et al., 2014; Karthaus et al., 

2014). Whilst these methods allow for generation of prostatic organoids from human 

cells, they require the use of cells from primary culture, which can be difficult. 

Furthermore, these organoids do not contain NE cells and therefore do not fully 

represent the organisation of the prostate gland in vivo (Karthaus et al., 2014). 

Finally, although these patient derived organoids may be used for modelling disease 

and therapeutic testing, they cannot be used to study the development of the human 

prostate as they are formed from bi-potent cells which already possess a prostatic 

identity.  

In chapter 4 of this thesis, the ability of rat UGM to direct the differentiation of 

ProiPSCs to prostatic tissue in vivo was shown.  By this method, ProiPSCs could 

form glandular epithelium which expressed the prostate markers AR and PSA, and 



156 
 

showed correct basal and luminal differentiation by expression of p63 and CK8/18. 

By IHC, the expression of these markers was comparable to benign adult prostate 

tissue, confirming full prostatic differentiation. This provides a model of normal 

prostate development and circumvents the requirement for hESCs, whose use is 

limited due to ethical concerns and stringent regulations. However, this method still 

has limitations including the need for host animals, the length of the experiment and 

the lack of information gained during the formation of the tissue. Ideally, an in vitro 

model of prostate development is required to allow gain of real-time information and 

easy visual monitoring of differentiation. Using a previously published protocol for 

generation of prostatic organoids from hESCs (Calderon-Gierszal and Prins, 2015), 

we were unable to form purely prostatic cells from UT and ProiPSCs, suggesting that 

the growth factors used in this method were not enough to drive pure prostatic 

differentiation from our iPSCs. As the UGM drives prostatic differentiation during 

normal development, and we have shown the ability of the UGM to generate prostatic 

tissue from ProiPSCs in vivo, we hypothesised that harnessing the inductive ability of 

UGM may allow us to differentiate iPSCs to prostatic organoids in vitro.  

Using Pro- and UTiPSCs with rat UGM in a 3D co-culture system, we generated 

epithelial organoids which have a p63 positive basal layer and CK8/18 positive 

luminal layer surrounding a clear lumen. The organoids express AR and PSA 

confirming terminal prostatic differentiation. This shows that iPSCs derived from 

urological tissues can form organoids in vitro which recapitulate the structure and 

expression markers which are typical of normal human prostate. As both Pro- and 

UT-derived iPSCs were capable of forming prostatic organoids, this suggests that the 

differentiation of these cells was truly induced by the method of 3D co-culture with 

inductive mesenchyme, rather than a consequence of residual epigenetic memory 

within the iPSCs. Furthermore, the iPSCs were used for differentiation at late 

passage, at which point epigenetic memory is unlikely to persist. To complete the 

analysis of the organoids, and to determine if NE cells are also formed during this 

process, investigation of chromogranin A and other NE markers is required. 

Quantification of AR and PSA expressing cells would confirm the purity of the cell 

population formed using this method. Investigation of cell polarisation by looking at 

expression of integrins and cadherins will also be important. In the organoids 

harvested at week 6, where expression of PSA is weak, analysis of PAP would also 

be useful to see if alternative prostatic proteins are produced at this early stage of 
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differentiation. Finally, Ki67 staining or use of a BrdU assay would be useful to 

investigate proliferation of the organoids. 

Interestingly, the differences seen between the UTiPSC and ProiPSC derived 

organoids are reminiscent of differences between organoids formed from prostate 

basal and luminal cells. Karthaus et al., demonstrated that whilst luminal cell-derived 

organoids possessed large lumens, similar to our UTiPSC derived organoids, basal 

cell-derived organoids consisted of multiple lumens within each organoid which were 

surrounded by CK8 positive cells (Karthaus et al., 2014). This phenomenon of 

multiple lumens surrounded by CK8 positive cells was also seen in ProiPSC derived 

organoids after 6 weeks of culture, although by 8 weeks more “luminal-like” 

structures with a single larger lumen were identified, suggesting that cells may 

progress from an initially basal-like organoid to a more luminal-like organoid over 

time.  

During differentiation of iPSCs using this model, samples were collected at a range of 

time points for RNA sequencing. Although at this time, samples of whole organoids 

were taken, the cells could have been sorted into their individual compartments to 

allow analysis of each cell type. By comparing samples from iPSCs, DE cells and the 

prostate organoids at different stages of differentiation, we hope to generate an 

expression signature associated with each stage of prostate development. Currently, 

such signatures have only been determined for mouse prostate organogenesis. By 

analysing gene expression in samples taken from a range of stages throughout 

murine prostate development, three phases of development were identified; prostate 

induction, branching morphogenesis and secretory differentiation, as well as several 

genes which had not previously been implicated in prostate development (Pritchard 

et al., 2009). Human specific prostate development is yet to be interrogated in this 

manner, primarily due to lack of a human model system. The culture technique 

developed in chapter 5 of this thesis provides a novel in vitro model of normal human 

prostate development which can be used to study prostate differentiation and the 

factors which play a role in this process. Determination of the factors secreted by the 

UGM in this system which act upon the iPSC derived DE cells to drive prostatic 

epithelial differentiation might allow a more defined approach in the future. This could 

be analysed using mass spectrometry of conditioned medium secreted by UGM cells 

in culture.  
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Determining the length of culture and the passage number which these organoids 

can reach will be important to their feasibility as an in vitro model, with adult prostate 

organoids able to grow in culture for over 12 months without phenotypic changes or 

altered karyotype (Karthaus et al., 2014). Generation of prostate organoids from a 

bank of patient-derived iPSCs would be useful to encompass the clinical 

heterogeneity of prostate tissue. Comparison of patient matched urological tissue 

derived iPSCs with iPSCs generated from more accessible tissue sources such as 

skin or urine would allow us to determine if the cellular origin of the iPSCs limits their 

differentiation. If cells from skin or urine-derived epithelial cells are also able to form 

prostatic organoids using our 3D co-culture system, this would enhance the ease of 

generating patient specific models using less invasive methods of tissue collection.  

6.6 Conclusions and future directions 

In summary, iPSCs represent a promising source of cells for research into human 

development and disease. We have shown successful generation of iPSCs from 

primary prostate fibroblasts using an integration-free method. These cells express 

typical pluripotent stem cell markers and are able to form cells from the three 

embryonic germ layers in vitro and in vivo. Attempts to reprogram primary prostate 

epithelial cells were significantly more challenging, and disappointingly no iPSC 

colonies were generated. Optimisation of prostate epithelial cell culture, passaging 

and the reprogramming method may enhance the viability of these cells following 

addition of the pluripotency factors.  

We have used a tissue recombination approach with inductive rat UGM to drive 

differentiation from our ProiPSCs in vivo resulting in formation of prostatic tissue. 

This has provided us with a simple method for iPSC differentiation along a prostatic 

lineage, although further analysis of repeats is required to draw complete conclusions 

on the optimum ratio for prostate specific differentiation. By harnessing this inductive 

potential of UGM, we subsequently generated a novel 3D co-culture model which 

allows formation of prostatic organoids from both ProiPSCs and UTiPSCs in vitro. 

These organoids are phenotypically similar to both normal prostate tissue and human 

prostatic organoids generated from adult prostate epithelial cells. Further 

interrogation of these organoids including quantification of AR expressing cells and 

expression of NE and stromal cell markers will be useful to determine the purity of 

the cells generated by this method and would also determine if the UGM is able to 
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drive complete NE differentiation. This would be particularly advantageous as current 

human prostate organoids described in the literature do not include NE cells.  

RNA sequencing from samples collected during this experiment will also provide 

further information on differential gene expression and the pathways which are 

involved in prostatic differentiation. This model can be used for interrogation of the 

breadth of factors secreted by the UGM which drive human prostate development, 

which to date are not fully understood. This could allow for a refinement of 

differentiation protocols and the ability to generate prostate organoids from our iPSCs 

without the requirement for UGM. This model may also be used for identification of 

stem cells within the developing prostate and the markers which define them, as 

current research is limited by lack of a definitive marker profile for these cells.  

Finally, the ProiPSC model also holds great potential for high-throughput organoid 

culture to interrogate prostate carcinogenesis. Organoids are amenable to epigenetic 

manipulation using a range of strategies including lentiviral expression of mutant 

genes and CRISPR/Cas9 gene editing which would allow introduction of common 

prostate cancer phenotypes such as deletion of PTENT, RB1, TP53 and TMPRSS2-

ERG (Taylor et al., 2010) and subsequent analysis of the impact this has (Dutta et 

al., 2016). This may be advantageous in addressing some of the limitations of current 

prostate cancer organoids including low efficiency of organoid establishment and 

overgrowth of normal epithelial cells or tumour-associated cells (Gao et al., 2014). In 

addition, investigating the effects of AR inhibitors such as bicalutamide and 

enzalutamide on the prostate organoids could provide a model of castration on a 

molecular level.  
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