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Abstract 

Diabetic kidney disease remains the single most common cause of renal failure in UK, 

accounting for 26.9% of patients needing renal replacement therapy (UK renal registry, 2016). 

Mortality rates on RRT are worse for the diabetes population compared to the non-diabetic 

population. Diabetic patients on maintenance haemodialysis experience huge variation in their 

glycaemia, which is not well understood to guide appropriate therapy. ESRD patients are at 

higher risk of sudden cardiac death and arrhythmia is suspected to be a major cause. However 

there is no established guideline in detecting at risk patients for preventative therapy.  

We aimed to study the glycaemic variation in patients with ESRD on maintenance HD using 

continuous glucose monitoring for longer periods in order to help understand the variation in 

relation to dialysis and associated change in cardiac electrical conductivity simultaneously to 

explore any relation with glycaemia. 

In a pilot study we studied glucose variation and cardiac electrical activity using CGM and 

Holter monitor respectively during 37 weeks in 15 diabetic patients and 5 weeks in 5 non-

diabetic subjects.  

Diabetic subjects had a significant variation in their glycaemia through the week. There was a 

significant drop in the interstitial glucose level during HD, followed by a rise in the post-HD 

period (preHD vs HD vs postHD: 11.4±5.1 vs 8.4±3.6 vs 11.5 ± 4.6mmol/l). There was a 

significant change in QTc interval from start to end of HD in this population (468 ± 42 vs 481 

± 36 vs 495 ± 49). Short but frequent episodes of arrhythmia were noted throughout the week. 

All diabetic patients who were prone for arrhythmias had abnormal QTc. Non-diabetic 

patients also experienced significant variation in IG levels and were noted to have IG in both 

the hypo and hyperglycaemic range.  

CGM helps in understanding the glycaemic variation in this population and real time 

recording would help in reducing the episodes of hypoglycaemia and hyperglycaemia. There 

is no relation between glycaemic variation or hypoglycaemia and change in QTc interval or 

cardiac dysrhythmias, which remain common in this population. Asymptomatic dysrhythmic 

episodes put these patients at risk of sudden cardiac death. The data suggest that baseline 

ECG and/or periodic Holter monitoring should be used in clinical care. 
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Chapter 1: Diabetes and Chronic Kidney Disease 

Diabetes is the most common single cause of kidney disease worldwide. The risk of 

chronic kidney disease (CKD) is increased by about seven fold, in diabetic individuals. It 

accounts for more than 50% of prevalent cases of end stage kidney disease (ESRD) in the 

United States of America (USRDS 2015 Annual Data Report).  

Diabetic kidney disease (DKD) remains the single most common cause of renal failure in 

UK, accounting for 26.9% of patients needing renal replacement therapy (RRT) (UK renal 

registry 18
th

 annual report- Gilg, Caskey and Fogarty, 2016). Mortality rates in patients on 

RRT are higher for the diabetes population compared to the non-diabetic population. In the 

age group 18-44 years, 5-year survival was 71% for the diabetic population compared to 

89% for the non-diabetic population. Similarly in the age group 45-64 years, 5-year 

survival was 51% against 68% for the non-diabetic population (UK renal registry 18
th

 

annual report- Steenkamp, Rao & Fraser, 2016).  

The risk of cardiovascular mortality and morbidity is higher in patients with CKD, with 

presence of CKD altering the pathology and manifestation of cardiovascular disease and 

worsening outcomes (Herzog et al., 2011). Cardiovascular disease (CVD) represents the 

major cause of diabetes-related death. However the presence of CKD (estimated 

glomerular filtration rate eGFR <60/ml/min/1.73m
2
) and albuminuria both independently 

predict mortality strongly in both type 1 and type 2 diabetes (Russell and Cooper, 2015). 

1.1 Development of Diabetic Nephropathy (DN) 

1.1.1 Pathophysiology 

Nephropathy is a complication of diabetes mellitus. It is well known that long-term poor 

glycaemic control increases the risk of development of nephropathy leading to CKD and 

ESRD.   

Development of nephropathy is characterised by proteinuria, decline in glomerular 

filtration and increase in systolic blood pressure (Mogensen, 1989). The structural changes 

correlate with the functional changes in kidneys in both type 1 and type 2 diabetes (White 

and Bilous, 2000).  Increased glomerular basement membrane width and fractional volume 

of mesangium and mesangial matrix are the principle abnormalities seen on serial renal 

biopsies in type 1 diabetes subjects (Drummond & Mauer, 2002).  
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Multiple pathways are involved in the development of microvascular complications of 

diabetes including DN. These are shown in figure 1.1 below as reported by Russell and 

Cooper. 

 

Figure 1.1: Diagram depicting possible factors in development of diabetic nephropathy. Diagram taken 

from Russell and Cooper, Diabetologia (2015) 58:1708-1714 

 

Chronic kidney disease as measured by a fall in glomerular filtration rate (GFR) without 

proteinuria is not uncommonly seen in the diabetes population (Robles, Villa & Gallego, 

2015). The reported prevalence of normoalbuminuric CKD is 36 to 39% in the diabetes 

population (MacIsaac et al. 2004; Garg et al, 2002). More advanced glomerular lesions are 

seen in type 1 diabetes patients with normoalbuminuric CKD than in their GFR matched 

counterparts with albuminuria (Caramori, Fioretto & Mauer, 2003). The Diabetic 

normoalbuminuric CKD is not closely  associated with the presence of retinopathy or 

hypertension, however it is associated with a significant increase in major CVD events 

(Bash et al, 2008; Garg et al, 2002).  

A progressive decline in renal function is seen in diabetes patients even in the absence of 

albuminuria but at a slower rate. The decline in eGFR as seen on longitudinal 

measurement of serum creatinine and cystatin C (eGFR-cys) over 4 – 10 years follow up 

showed prevalence of decliners, defined as loss of eGFR ≥ 3.3%, at 10% in 
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normoalbuminuric type 1 diabetes patients compared to 32% in those with 

microalbuminuria (Krolewski, 2015). The observed increase in the prevalence of non-

proteinuric diabetic nephropathy in type 2 diabetes could be due to an increase in 

macroangiopathic rather than microangiopathic lesions, which may reflect changes in 

treatment improving glycaemic control, reduced lipid levels and blood pressure (Robles, 

Villa & Gallego, 2015).  

Glucose dependent processes are known to be the cause of diabetes complications 

including nephropathy. Hyperglycaemia leads to increased oxidative stress, which causes 

DNA damage and contributes to accelerated apoptosis (Giacco & Brownlee, 2010).  

Accumulation of advanced glycosylation end-products (AGEs) occurs in the diabetic 

kidney. This is time dependent (Soulis et al., 1996). Subjects with ESRD secondary to 

DKD have twice the amount of AGEs in serum compared to diabetic subjects without 

kidney disease. This is age dependent and strongly correlates with HbA1c and serum 

triglyceride and cholesterol levels (Galler et al., 2003). AGEs contribute to progressive 

alteration of renal architecture and loss of renal function. AGE formation on matrix 

proteins impairs degradation by matrix metalloproteinases, contributing to basement 

membrane thickening and mesangial expansion (Mott et al., 1997).  

Oxidative stress is linked to hyperglycaemia. High glucose induces intracellular reactive 

oxidative species (ROS) through glucose metabolism and auto-oxidation, and also 

indirectly through the formation of AGEs (Sano et al., 1998). ROS up regulates 

transforming growth factor-beta1 (TGF-β1), plasminogen activator inhibitor-1 (PAI-1) and 

extracellular matrix (ECM) proteins, which can lead to mesangial expansion (Ha and Lee, 

2001). 

Protein kinase C (PKC) has a central role in hyperglycaemia-induced vascular injury 

(Wolf, 2004). Several pathways activate PKC, leading to endothelial dysfunction with 

increased nitric oxide production, increased expression of endothelin-1 and vascular 

endothelial growth factor (Kanwar et al., 2008). Increased expression of nuclear factor 

kappa-beta (NF-kB) and PAI-1 induces local tissue inflammatory responses and 

thrombotic microangiopathy, causing vascular damage (Wolf, 2004). This is further 

augmented by ROS.  
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Expression of TGF-beta in the glomerular cells and mesangial matrix is increased by 

hyperglycaemia, which might contribute to cellular hypertrophy and enhanced collagen 

synthesis (Lee et al., 2007). 

Chronic inflammation has a significant role in the development of diabetes and its 

complications. Increase in macrophage infiltration and overproduction of leukocyte 

adhesion molecules occurs in kidneys from diabetic subjects and also in experimental 

animal models (Galkina, 2006; Nguyen et al., 2006). Pro-inflammatory cytokines such as 

Interleukin-1 (IL-1) increase vascular permeability and proliferation of mesangial cells and 

matrix deposition (Rivero et al., 2009). Tumour necrosis factor-α (TNF-α) can impair the 

balance between vasodilator and vasoconstrictor mediators and up regulate production of 

ROS, contributing to altered glomerular capillary permeability (McCarthy et al., 1998). 

Familial clustering of diabetic nephropathy suggests a genetic influence in the 

development of nephropathy (Seaquist et al., 1989). This was suspected with the finding of 

increased risk in developing DN in diabetic siblings of subjects with DN compared to 

diabetic siblings of diabetic subjects without proteinuria. Varying prevalence of DN in 

ethnic groups also suggests a genetic influence. Several genetic markers have been 

reported to predict the development of DN in different ethnic groups. Loci on chromosome 

18 have been shown in multiple studies to predict susceptibility to DN. The locus for the 

‘Carnosine dipeptidase-1’ (CNDP1) gene on chromosome 18 has been identified as a 

marker of susceptibility (Conserva, Gesualdo and Papale, 2016). A recent meta-analysis of 

34 studies on the genetic basis of DN involving inflammatory and angiogenesis pathways, 

has noted significant positive associations of 11 genetic variants in DN (Nazir et al., 2014). 

Available studies suggest that the genetic influence on the development of DN is polygenic 

with no one gene having a major influence and with some genetic variations having a 

protective effect. However, the Genomics England (GENEI) consortium examined the 

previously reported genetic associations with DN in type 1 diabetes in the largest case-

control study yet reported, but was unable to replicate most of the reported genetic variants 

in DN (Williams et al., 2012). 

1.1.2 Markers of diabetic nephropathy 

1.1.2.a Biomarkers 

A Biomarker is defined as an objective indication of medical state observed from outside 

the patient that can be measured accurately and reproducibly (Strimbu and Tavel, 2010). 
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Biomarkers of DN are the metabolites present in urine and/or blood in excess with the 

onset of DN. These help in early identification of onset of DN and enable early risk 

stratification. However these should be distinguished from risk markers. A risk marker is 

an attribute or exposure that is associated with increased probability of disease, but is not 

necessarily a causal factor (Burt, 2001). 

Biomarkers detected in the early stages of DN might help institute preventative and 

therapeutic measures. 

Multiple biomarkers have been evaluated and shown to have clinical importance. They 

have diverse origin with some being elements of the nephron, some derived from the 

circulation and some of mixed origin. 

One classification groups them under markers of renal dysfunction, inflammatory 

biomarkers and oxidative stress biomarkers, according to their origin and the pathologic 

processes (Matheson et al., 2010). They can also be classified as glomerular, tubular and 

other proteins (Hong and Chia, 1998). 

Existing markers 

The best known marker used clinically is albuminuria. Presence of albumin in urine 

beyond normal limits is the basis of a diagnosis of nephropathy. Though the classification 

based on the level of albuminuria is somewhat arbitrary, it is of practical use and allows 

staging the progression of DN as normoalbuminuric (A1), microalbuminuric (A2) 

(moderate) and macroalbuminuric (A3) (severe) (table 1). Albuminuria is thought to be a 

marker of generalised endothelial dysfunction, which relates the renal complication of 

diabetes to cardiovascular and cerebrovascular complications. However albuminuria can 

also occur in other kidney diseases.  

Category AER 

(mg/24hrs) 

ACR (approximate equivalent) Terms 

(mg/mmol) (mg/g) 

A1 <30 <3 <30 Normal to mildly increased 

A2 30-300 3-30 30-300 Moderately increased 

A3 >300 >30 >300 Severely increased 
Table 1.1: Albuminuria categories in CKD (from KDIGO 2012 Clinical Practice guideline for the evaluation 

and management of chronic kidney disease); AER- albumin excretion rate; ACR- albumin-creatinine ratio 

 

The presence of microalbuminuria should be confirmed with a repeat test within 3-4 

months as per NICE guidelines (Bilous, 2016). This is because transient albuminuria can 
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occur in the presence of urinary tract infection, vigorous exercise, and contamination by 

blood in the urine sample and also with concentrated urine. 

About half of patients with diabetes have microalbuminuria at some stage (Marshall and 

Flyvbjerg, 2006). In type 2 diabetes, the prevalence of microalbuminuria varies 26 to 43%, 

with prevalence being higher in Asian population and also in presence of Hypertension 

(Newman et al., 2005; Parving et al., 2006; Lu et al., 2007; Ismail et al., 1999; De Cosmo 

et al., 2016). Microalbuminuria can either progress to severe albuminuria or reverse to 

normoalbuminuria or remain in microalbuminuric stage (Figure 1.2).  

Urinary biomarkers can also be classified as being of glomerular or tubular origin. The 

various markers studied are shown in the table No.1.2. 

Figure 1.2: Progression of microalbuminuria in DN. (Diagram obtained from Marshall and Flyvbjerg BMJ 

2006) 

 

Biomarker References 

Glomerular 

Urinary Transferrin Kanauchi et al. Eur P Int Med.2002;13(3):190-193 

Narita et al. Diab Care.2004;27(5):1176-1181 

Currie  et al. World J Diab.2014;5(6):763-776 

Urinary Ceruloplasmin Yamazaki M et al.Eur J Endocrinol.1995;132(6):681-

687 

Narita et al. Diab Care. 2004;27(5):1176-1181 

Wang et al. Biomarker Res.2013;1:article 9 

Immunoglobulin C Narita et al Diab Care.2004;27(5):1176-1181Cohen-

Bucay Int J Nephrol.2012(2012):1-11 web 

Type IV collagen Nelson et al.NEJM.1996;335(22):1636-1642 
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Ming et al. Chinese Med J.2002;115(3):389-394 

Fiseha T. Biomarker Res.2015;3:article 16  

Laminin Banu et al. Diab Res Clin Pract. 1995;29(1):57-67 

Glycosaminoglycans Torffit O. J Urol Nephrol.1999;33(5):328-332  

Fibronectin Kuboki et al. Diab Res Clin Pract.1993;21(1):61-66 

Podocyte markers-

Podocalyxin 

Shoji et al. Biomarkers. 2015;21(2):164-167 

Hara et al. Diabetologia. 2012;55(11):2913-2919 

Zheng et al. PLoS ONE.2011;6(5) 

Vascular Endothelial 

growth factor (VEGF) 

Kim et al. Diab Med.2004;21(6):545-551 

Petrica et al. PLoS ONE.2014;9(11) 

Inflammatory biomarkers  

Orosomucoid Jiang et al. Nephrology.2009;14(3):332-337 

El-Beblawy et al. Clin App 

Thromb/Hemo.2016;22:718-726 

Tubular 

Neutrophil gelatinase-

associated lipocalin 

(NGAL) 

Bolignano et al. Kidney Blood Pr Res.2009;32(2):91-98 

Yildirim et al. J Clin Res Ped Endo.2015;7(4):274-279 

Lacquaniti et al. Acta Diab.2013;50(6):935-942 

Alpha-1-microglobulin Weber & Verwiebe. Eur J Clin Chem Clin Bio.1992; 

30(10):683-691 

Hong et al. Diab Care.2003;26(2):338-342 

Wainai  et al. J DIab Compl.1991;5(1)160-161 

Shore et al. J Ayub Med Coll. 2010;22(4):53-55 

Kidney injury molecule-1 

(KIM-1) 

Petrica et al. Nephr Clin Pract.2011;118(2):c155-164  

De Carvalho et al. Clin Biochem.2016;49(3):232-236 

Bonventre JV. Trans Am Clin Climatol Asso. 2014; 

125:293-299 

N-acetyl-β-D 

glucosaminidase  

Bazzi et al. NDT.2002;17(11):1890-1896 

Jones et al. Ann Clin Biochem.1995;32(1):58-62 

Patel & Kalia. Int J Diab Devel Coun.2015;35(s3):449-

457 

Ambade et al. Ind J Clin Biochem.2006;21(2):142-148 

Assal et al. Clin Med Insigh:Endo Diab.2013;6(7):7 -13 

Angiotensinogen Kamiyama et al. J Pharma Sci.2012;119(4):314-323 

Saito et al. Am J Med Sci.2009;338(6):478-480 

Zhuang et al. Int J Clin Exp Path.2015;8(9):1464-1469 

Cystatin C Jeon et al. J Kor Med Sci.2011;26(2):258-263 

Garg et al. Clin Exp Nephrol.2015;19(5):885-890 

Kim et al. Diab Care.2013;;36(3):656-661 

Liver-type fatty acid 

binding protein 

Nielsen et al. Diab Care.2010;33(6):1320-1324 

Viswanathan et al. Ind J Nephrol.2015;25(5):269-273 

Kamijo-Ikemori et al. Diab Care.2011;34(3):691-696 

Nephrin Patari et al. Diabetes. 2003;52(12):2969-2974 

Kandasamy et al. Biomark Res.2014;2(1):21 

Heart fatty binding protein Nauta et al. Diab Care.2011;34(4):975-981 

Advanced glycation end 

products 

Petrica et al. Int J Clin Exp Med.2015;8(2):2516-2525 

Turk et al. Diab Met. 2004:30(2):187-192 

Oxidative stress biomarkers Ha & Lee. Curr Diab Repor.2001;1(3):282-287 

8 Oxo 7,8 dihydro-2’-

deoxyguanosine 

Wu et al. Clin Chem Acta. 2004;339(1-2):1-9 

Hinokia et al. Diabetologia.2002;45(6):877-882 
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Broadbaek et al. Free Rad Bio Med. 2011;51(8):1473-

1479 

Other newer markers 

Retinol binding protein 4 Salem et al. Ped Diab.2002;3(1):37-41 

Vitamin D binding protein Shoukry et al. Molecul Cellu Bio.2015;408(1):25-35 

Heme Oxygenase-1 Li et al. Nephrology.2016 

Periostin Satiropoj. PLoS ONE.2015;10(4) 

Alpha klotho Lee et al. PLoS ONE.2014;9(8) 

Microvesicle-bound 

dipeptidyl peptidase IV 

Sun et al. Diab Vasc Dis Res.2012;9(4):301-308 

Micro RNA Yang et al. Med Hypothe.2013;81(2):274-278 

Argyropoulos et al. J Clin Med.2015;4(7):1495-1517 

Adipokinesine alpha-2 

glycoprotein 

Wang et al. J Int Med Res.2016;44(2):278-286 

Lim et al. Diab Med.2012;29(7):945-949 

Neutrophil to lymphocyte 

ratio 

Huang et al. Clin Endo.2015;82:229-233  

Urinary Adiponectin Panduru et al. Diab Care.2015;38:883-890 

sTNFR1 & sTNFR2 Carlsson et al. Cardiovasc Diabetol.2016;15(40):1-8 
Table 1.2: Urinary biomarkers studied as representative of diabetic nephropathy (Gluhovschi et al. 2016) 

 

Despite the many biomarkers that have been put forward as potential markers for 

improving the detection of DN at early stages, none to date have shown any better 

sensitivity than the established marker, albuminuria. 

Urinary proteomics is the study of multiple polypeptides excreted in urine. Study of 

urinary proteomics comparing the polypeptides in nondiabetic and diabetic groups with 

normo, moderate or severe albuminuria demonstrated that the urinary proteomics were 

distinct for diabetes, DN and nondiabetic proteinuric renal diseases (Zurbig et al., 2012). 

Urinary proteomics in patients with moderate albuminuria in this study indicated that 

proteome analysis could identify the patients at risk of progression to overt nephropathy.  

A urinary proteomic based classifier, CKD273 shows more promise in predicting the 

progression of CKD and death. CKD273 of less than 0.55 predicted a better prognosis with 

patients not needing dialysis or death during follow up, compared to all patients with 

CKD273 of more than 0.55 needing dialysis or dying (Argilés et al., 2013). This is the first 

proteomics based classifier tested to predict the progression of CKD. 

However, urinary albumin levels remain the best marker for clinical use in detecting the 

onset and progression of DN. 
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1.1.3 Prevention of Diabetic nephropathy 

Hyperglycaemia and high blood pressure are major contributing factors for the 

development of DN. Good glycaemic control and blood pressure control has direct effects 

on the prevention and stabilisation or even reversal of early stages of DN.  

The Diabetes Control and Complications Trial (DCCT) in type 1 diabetes showed 

significant reduction in the risk of moderate albuminuria for both primary (by 34%) and 

secondary (by 43%) prevention cohorts with intensive glycaemic control for 9 years. The 

risk of progression to severe albuminuria was reduced by 56% in the secondary prevention 

cohort (The Diabetes Control and Complications Trials Research group, 1993). Further 

follow up of subjects from DCCT and its follow up study EDIC, showed continued 

benefits at 22 years of follow up. The risk reduction of 50% was seen in the intensively 

treated cohort for the decline in GFR and development of ESRD (The DCCT/EDIC 

Research Group, 2011) 

The UK Prospective Diabetes Study (UKPDS) group in newly diagnosed patients with 

type 2 diabetes, showed a 25% risk reduction in the microvascular endpoints in the 

intensively treated group, maintaining an average HbA1c of 7.0% (6.2-8.2) over 10 years. 

The development of microalbuminuria over the 15 years follow up period was 

significantly reduced in the intensively treated group (UK Prospective Diabetes Study 

(UKPDS) Group, 1998).  

Hypertension is one of the most common comorbidities in diabetic kidney disease. The 

UKPDS trial showed a 37% reduction in microvascular events with tight control of blood 

pressure (BP 144/82 vs 154/87 mmHg). A 13% risk reduction was seen in microvascular 

events for every 10mmHg reduction in systolic blood pressure (Marshall & Flyvbjerg, 

2006). KDIGO guidelines suggest a reduction of blood pressure to <130/80mmHg in 

diabetic kidney disease. Control of diastolic blood pressure has a stabilizing effect on 

normo- and microalbuminuria (Estacio et al., 2000). 

In type 1 diabetes, loss of nocturnal blood pressure dip in normoalbuminuric patients 

possibly predicts the onset of microalbuminuria (Lurbe, Redon & Kesani, 2002). 

1.1.4 Management 

A structured and protocol driven multifactorial approach is important in preventing and 

managing the complications of type 2 diabetes. A 39% risk reduction in the development 
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of DN was seen in the Steno-2 trial with an intensive multifactorial approach compared 

with conventional therapy, including dietary advice to reduce total daily intake of fat 

including saturated fat, smoking cessation, treatment with angiotensin converting enzyme 

inhibitors (ACEi) or angiotensin II receptor blockers (ARB’s), light to moderate physical 

activity of 30 minutes 3 to 5 times a week, intensive glucose control and lipid lowering 

therapy, in specialist secondary care clinics (Gæde et al., 2003). 21 years follow up of this 

cohort has shown clear benefits in the early intensive therapy group. Progression to severe 

albuminuria was reduced by 48% in the previous intensive therapy group, despite everyone 

in the study being offered intensive therapy at the end of initial follow up period of 8 years 

(Gæde et al., 2016). There was significant cardiovascular benefit in the intensively treated 

group adding years to life. Continued intensive therapy for the longer term has benefits in 

reducing the risk of progression of nephropathy. 

Good glycaemic control achieved by either oral agents and/or insulin therapy seems to 

have an equal effect in prevention and stabilization of nephropathy.  

ACEi and ARB’s have beneficial effect in reducing albuminuria outside their effect on 

blood pressure. These drugs should be started early and dose titrated as tolerated. These 

are recommended as first line therapy in patients with hypertension and diabetic 

nephropathy.  

1.2 Other causes of CKD 

CKD is defined as abnormalities of kidney structure or function, present for > 3months, 

with implications for health (KDIGO 2012 Clinical practice guideline). CKD in the 

diabetic population can occur as a result of other pathological processes similar to the non-

diabetic population.  

After diabetes, hypertension is the next most common cause for CKD. With the high 

prevalence of hypertension in the diabetic population, it can be difficult to distinguish 

CKD due to hypertension and diabetes from CKD due to other causes. Histological 

changes in the kidneys in the diabetic population with microalbuminuria and coexisting 

hypertension are variable (Fioretto et al., 1996). This has been classified into three patterns 

based on light microscopy findings as: C I) suggesting normal or near normal renal 

structure, C II) with changes typical of DN in type 1 diabetes, and C III) showing atypical 

patterns of injury sub classified as C III(a) with near normal glomerular structure and 

tubular basement thickening, tubular atrophy and severe interstitial fibrosis, C III(b)  with 
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mild mesangial thickening and severe arteriolar hyalinosis affecting both afferent and 

efferent arterioles and C III(c) with some glomeruli showing near normal structure and 

others severe global sclerosis.  

The other causes of CKD can be classified as systemic diseases affecting the kidney and 

primary kidney diseases (table 1.3). However the occurrence of these pathologies in people 

with diabetes and CKD is no different from the non-diabetic population. 

Classification of CKD is based on presence or absence of systemic disease and location 

within the kidney of pathologic anatomic findings (KDIGO 2012 Clinical practice 

guideline). 

 Systemic diseases affecting 

kidneys 

Primary kidney diseases 

Glomerular 

diseases 

Diabetes, autoimmune diseases, 

systemic infections, neoplasia 

(including amyloidosis) 

Diffuse, focal or crescentic 

proliferative GN; focal and segmental 

glomerulosclerosis, membranous 

nephropathy, minimal change disease 

Tubulo 

interstitial 

diseases 

Systemic infections, autoimmune, 

sarcoidosis, drugs, urate, 

environmental toxins (lead, 

aristolochic acid), neoplasia 

(myeloma) 

Urinary-tract infections, stones, 

obstruction  

Vascular 

diseases 

Atherosclerosis, hypertension, 

ischemia, cholesterol emboli, 

systemic vasculitis, thrombotic 

microangiopathy, systemic 

sclerosis 

ANCA-associated renal limited 

vasculitis, fibromuscular dysplasia 

Cystic and 

congenital 

diseases  

Polycystic kidney disease, Alport 

syndrome, Fabry’s disease 

Renal dysplasia, medullary cystic 

disease, podocytopathies 

Table 1.3: classification of CKD based on causes and location of pathologic findings 

1.3 Progression of CKD 

30-50% of patients with microalbuminuria progress to severe albuminuria and 30-50% can 

revert to normoalbuminuria (Marshall & Flyvbjerg, 2006). With progression of DN, 

kidney function declines gradually toward ESRD. CKD is currently classified based upon 

cause, estimated glomerular filtration rate (eGFR) and albuminuria category. 

Reducing eGFR and increasing albuminuria worsens the prognosis of CKD with 

increasing risk of developing end stage renal disease. The prognosis of CKD progressing 

to ESRD based upon eGFR and albumin levels is shown in table 1.3. 
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 Persistent albuminuria categories 

A1 A2 A3 

Normal to 

mildly increased 

Moderately 

increased 

Severely  

increased 

<3 mg/mmol 3-30 mg/mmol >30 mg/mmol 

G
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G1 Normal to 

high 

≥ 90 Low risk Moderately 

increased risk 

High risk 

G2 Mildly 

decreased 

60-89 

G3a Mildly to 

moderately 

decreased 

45-59 Moderately 

increased risk 

High risk Very high risk 

G3b Moderately 

to severely 

decreased 

30-44 High risk  

G4 Severely 

decreased 

15-29 Very high risk 

G5 Kidney 

failure 

<15 

Table 1.4: Prognosis of CKD by GFR and Albuminuria categories (KDIGO 2012) 

CKD in diabetes or diabetic kidney disease (DKD) progresses more rapidly with poor or 

suboptimal glycaemic control, usually assessed by HbA1c measurement. However DKD 

can also progress due to other modifiable coexisting risk factors such as hypertension, 

dyslipidaemia, history of cardiovascular disease, smoking, concomitant nephrotoxic 

therapies, as well as unmodifiable ones such as age, gender, and ethnicity. 

KDIGO recommends regular monitoring of kidney function including eGFR and 

albuminuria in CKD with increasing frequency depending on the risk category, which 

varies from 1 to 4+ times a year. This helps in instituting or modifying therapy to manage 

risk factors and stabilize or reduce the speed of progression towards ESRD. 

1.4 End stage renal disease 

1.4.1 Definition 

Progression of CKD to stage 5 when estimated GFR falls below 15ml/min/1.73m
2
 is 

classified as ESRD or kidney failure. This stage of CKD has huge implications for a 

patient’s health and prognosis, and is the time when renal replacement should be planned.  
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1.4.2 Management 

Patients in ESRD need more frequent monitoring of their renal function in order to initiate 

RRT at the right time. This is based on inability to control volume status or blood pressure, 

symptoms and signs secondary to kidney failure (including electrolyte & acid-base 

abnormalities), and deterioration of nutritional status refractory to intervention or cognitive 

impairment. 

Patients with CKD stage 4 & 5 should therefore be referred to specialist renal services  

ESRD patients should be monitored for CKD related complications such as anaemia, 

metabolic bone disease, and acidosis. 

Anaemia in patients with CKD is defined as haemoglobin (Hb) concentration <130g/l in 

men and <120g/l in women. In patients with CKD stage 4 & 5 (ESRD), Hb should be 

measured at least twice yearly (KDIGO 2012 guidelines). Patients with anaemia may need 

treatment with Iron replacement and erythropoietin. 

In adult patients with CKD stage 3b to 5, serum calcium, phosphate, PTH & alkaline 

phosphatase levels should be monitored at least once to establish the baseline values and 

predict progression. Serum phosphate levels should be maintained in the normal reference 

range. Patients with intact PTH above the upper limit of the reference range should be 

initially tested for hypocalcaemia, hyperphosphatemia, and vitamin D deficiency. Vitamin 

D supplementation should be started only when there is documented evidence of 

deficiency. 

In patient with serum bicarbonate levels of <22mmol/L, oral bicarbonate replacement 

should be started to maintain the level in normal reference range.  

1.4.3 Effects of ESRD on glucose metabolism  

Uraemia is associated with impaired glucose metabolism. However glucose handling is 

impaired in CKD/ESRD in several ways.  

Insulin resistance (IR) is largely responsible for the abnormal glucose metabolism in 

patients with ESRD. The mechanisms of IR in CKD are multifactorial, including chronic 

inflammation, oxidative stress, vitamin D deficiency, adipokine derangement and altered 

gut microbiome. The other mechanisms that may contribute to IR include increased 

hepatic gluconeogenesis that does not suppress following insulin administration, reduced 
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hepatic and/or skeletal muscle glucose uptake and impaired intracellular glucose 

metabolism due to decreased oxidation or diminished synthesis of glycogen. These 

changes would lead to significant hyperglycaemia in patients with ESRD and diabetes. IR 

occurs early in CKD patients, which can be seen even with normal GFR (Kobayashi et al., 

2005). It is universally present in all patients with ESRD, which is seen as a complication 

of ESRD based on data from studies using the hyperinsulinaemic euglycaemic clamp. 

IR in turn can accentuate kidney injury by worsening renal haemodynamics by activating 

the sympathetic nervous system, increasing sodium retention and Na
+
-K

+
 ATPase activity 

and increasing GFR (Gluba et al., 2013; Rowe et al., 1981).  

IR along with oxidative stress and inflammation is shown to have a role in development of 

albuminuria and reduced renal function (Gluba et al. 2013).  

Glucose disposal rate (GDR) also changes in patients with CKD/ESRD. The GDR is 

negatively correlated to serum creatinine level and positively with creatinine clearance 

(Kobayashi et al., 2005). This could lead to worsening hyperglycaemia with progression of 

CKD and in ESRD patients.  

Diabetic subjects with ESRD are also at risk of hypoglycaemia due to the prolonged action 

of insulin as a result of reduced renal clearance in ESRD (Betônico et al., 2016). As a 

result of these changes, the risk of both hyperglycaemia and hypoglycaemia is increased in 

patients with ESRD, leading to a significant variability in blood glucose levels. This makes 

the management of glycaemia in the diabetic population with ESRD much more complex. 

The kidneys play an important role in maintaining plasma glucose levels in the fasting 

state. Animal studies have repeatedly shown that the kidneys release glucose in the fasting 

state in order to maintain plasma glucose levels in hepatectomised animals, and 

simultaneous nephrectomy in these animals leads to increased requirement of glucose 

infusion to maintain euglycaemia (Bergman & Drury, 1938; Reinecke R, 1943; Drury, 

Wick & Mackay, 1950). The kidneys can compensate between 50 to 100% for loss of 

hepatic glucose release (Joseph et al, 2000).  Release of glucose from the kidneys is 

through gluconeogenesis in the renal cortex (Gerich et al, 2001). Increased glucose release 

from the kidneys occurs during hypoglycaemia (Meyer, Dosto & Gerich, 1999; Cersosimo, 

Garlick, Ferretti, 1999). Loss of this gluconeogenesis in CKD/ESRD patients makes them 

more prone to hypoglycaemia (Arem R., 1989).  
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1.4.4 Effects of ESRD on insulin action and its levels. 

The kidneys play a central role in Insulin metabolism, although a much smaller role 

compared to the liver for endogenously secreted insulin. In non-diabetic subjects, 6 to 8 

units of insulin equivalent is degraded by the kidneys each day, which amounts to around 

25% of endogenously secreted insulin. Metabolism of exogenously administered insulin is 

mainly by the kidneys, as injected insulin enters the systemic circulation directly, 

bypassing first pass metabolism in the liver (Duckworth and Kitabchi, 1981; Duckworth, 

1988). Insulin action can thus be prolonged due to reduced renal metabolism, thus 

increasing the risk of hypoglycaemia in insulin treated diabetic patients. Insulin 

requirement is reduced in diabetic subjects with CKD/ESRD (Biesenbach et al., 2003; 

Kulozik and Hasslacher, 2013). 

Apart from the prolonged action, tissue resistance to insulin is seen in ESRD patients who 

have diabetes as mentioned above (DeFronzo et al., 1981).  

IR is also seen in non-diabetic patients with traits of the metabolic syndrome (Kurella, Lo 

& Chertow, 2005). IR is suspected to be one of the causative factors of CKD in this cohort.  

Due to reduced metabolism, circulating insulin levels can be elevated in patients with 

ESRD and renal failure. Reduced GFR will decrease the renal insulin clearance rate 

significantly, which is normally at 190ml/min, higher than a normal GFR of 120ml/min 

(Chamberlain and Stimmler, 1967). As a result, serum insulin levels can be much higher 

for both endogenous and exogenous insulin. This necessitates closer monitoring of insulin 

therapy and blood glucose levels to prevent hypoglycaemia in people with ESRD. There is 

no established method to assess the variable requirements of insulin in subjects with 

insulin treated diabetes with ESRD.  

1.4.5 Reliability of C-peptide levels in CKD/ESRD 

Measuring serum Insulin and C-peptide in the fasting state, along with plasma glucose, is 

normally a validated indicator of endogenous insulin secretion. However due to the 

possibility of raised serum insulin and C peptide levels in subjects with ESRD due to 

reduced renal clearance, the measured concentrations may not truly reflect endogenous 

secretion. There are limited data to understand the effect of ESRD on C-peptide levels in 

insulin deficient subjects.  
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The kidneys play an important role in regulation of circulating plasma C-peptide and also 

its metabolic clearance. A study in non-diabetic, non-obese individuals showed that renal 

uptake of C-peptide increased 7 fold more than urinary excretion following a rise in C-

peptide secretion, and more than 85% of extracted C-peptide was metabolised in the 

kidneys (Zavaroni et al., 1987). Renal C-peptide clearance is very high, whereas the 

urinary excretion is only 14%, suggesting a significant role of the kidneys in the 

metabolism of C-peptide.  

C-peptide levels must therefore be interpreted with caution in renal failure. ESRD with 

reduced metabolic activity of the kidneys could lead to falsely elevated serum C-peptide 

levels. This might pose a challenge in assessing endogenous insulin secretion in type 1 and 

2 diabetes if there is established CKD/ESRD. One study in ESRD subjects with and 

without diabetes, including both type 1 & type 2 classified on clinical criteria, found only 

70% concordance between clinical categorization into type 1 & 2, and that based upon C-

peptide levels (Covic et al., 2000). The mean C-peptide levels were not different between 

diabetic and non-diabetic populations with ESRD. C-peptide levels were 2.5 fold higher in 

diabetic subjects with ESRD compared to diabetic subjects without ESRD. These data 

suggest that C-peptide remains elevated even in the type 1 diabetic ESRD population for 

prolonged periods making it unreliable to differentiate between the types of diabetes. 

1.4.6 Effects of Dialysis on glycaemia 

Glucose is an essential part of dialysate fluids for its osmotic effect. However dialysate 

glucose can diffuse into the circulation and cause hyperglycaemia especially in subjects 

with diabetes. Dialysate fluids available in the UK may contain 0, 5 or 10mmol/l glucose. 

The concentration of glucose in the dialysate has varied effect on a subject’s blood glucose 

level.  

1.4.6.a Effect in subjects with diabetes 

With glucose free dialysates, hypoglycaemia was seen commonly in diabetic subjects. The 

hypoglycaemic episodes can occur recurrently and are largely asymptomatic. 

Hypoglycaemia defined as plasma glucose <4mmol/l occurs in approximately 40% of 

subjects on HD with or without diabetes (Jackson et al., 2000). The increased risk of 

hypoglycaemia in subjects with diabetes could be due to decreased gluconeogenesis in the 

remnant kidneys, deranged metabolic pathways, inadequate nutrition due to uraemia, 

decreased insulin clearance, glucose loss to the dialysate and diffusion of glucose into 
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erythrocytes during haemodialysis (Abe & Kalantar-Zadeh, 2015). Hypoglycaemia is also 

seen with dialysates containing 5.5mmol/l glucose compared to dialysate with 11mmol/l 

(Simic-Ogrizovic et al, 2001).  

Frequent hypoglycaemia in diabetic patients on HD could lead to reduction or even 

cessation of glucose lowering medication either transiently or permanently. Sometimes 

these patients have an HbA1c lower than 48mmol/mol. This has led to the erroneous 

concept of ‘burnt out diabetes’ in the dialysis population (Park et al, 2012).  

HD can also cause hyperglycaemia. Dialysate containing a higher glucose concentration 

(11mmol/l) causes hyperglycaemia due to diffusion of glucose from the dialysate. Higher 

mean plasma glucose levels are seen with dialysate containing 5.5mmol/l compared to 

glucose free dialysate in the diabetic patients (Burmeister, Campos and Miltersteiner, 

2012). However other factors such as lack of ability to excrete excess glucose by kidneys, 

increased insulin clearance by HD and secretion of counter-regulatory hormones may also 

contribute to hyperglycaemia (Abe & Kalantar-Zadeh, 2015).   

Paradoxical hyperglycaemia may occur after the completion of HD due to a mechanism 

similar to the Somogyi effect, along with insulin resistance and insulin removal by 

dialyzer. HD extracts both plasma glucose and insulin significantly throughout the dialysis 

period (Abe, Kaizu and Matsumoto, 2007). Insulin extraction by HD could lead to 

hyperglycaemia depending on the extent of removal, which could vary depending on the 

dialyzer. For their proven benefits on lipid profile high flux dialyzers are preferred in 

maintenance HD (Wanner et al., 2004). The dialyzer membrane could vary depending on 

the dialyzer used. In a well-designed randomized cross over trial using 5 different high 

flux dialyzers with different membranes, a significant difference was seen in the clearance 

of immunoreactive insulin between the membranes, except for two which had similar 

clearance (Abe, Okada and Matsumoto. 2008). This in turn could cause a variation in the 

plasma glucose levels in patients on HD on the dialysis days compared to non-dialysis 

days.  

Increased glucose variability in diabetic subjects undergoing HD, is associated with excess 

morbidity and mortality. HbA1c levels of ≥69mmol/mol (8.5%) and ≤36mmol/mol (5.4%) 

in haemodialysed patients are associated with increased mortality in diabetic patients on 

HD in a meta-analysis (Hill et al., 2014). An HbA1c target of <69mmol/mol was 

recommended for this population in this study. However HbA1c as a measure of 
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glycaemia does not represent blood glucose variation or average blood glucose due to 

several reasons associated with ESRD and HD. Sudden cardiac deaths (SCD) account for 

majority of the cardiac deaths in diabetic HD patients. Poor glycaemic control defined as 

HbA1c >8.0%, which often represents significant glycaemic variation, has a strong 

association with increased risk of SCD (Dreschler et al., 2009). In this study, every 1.0% 

increase in HbA1c was shown to increase the risk of SCD by 18%, along with an increase 

in cardiovascular events and overall mortality. Acute hypoglycaemia with its associated 

physiological changes (Wright and Frier. 2008) could increase the risk of cardiovascular 

events and SCD. In the absence of data to understand the effect of glycaemic variation on 

the mortality in this particular cohort, it can be hypothesised that reduction in the 

fluctuation in plasma glucose levels would be beneficial in reducing the mortality and 

morbidity in the dialysis population. 

1.4.6.b Effect in subjects without diabetes 

Glucose free dialysates cause hypoglycaemia in nondiabetic subjects undergoing HD to the 

same extent as in diabetic subjects (Burmeister et al., 2007). Dialysates with 5.5mmol/l 

does not cause hypoglycaemia in this cohort compared to the diabetic group. The mean 

plasma glucose level in the nondiabetic group was not significantly different between HD 

with a glucose free dialysate and HD with a 5.5mmol/l glucose dialysate (Burmeister et al., 

2007). However the plasma glucose levels can fall in this group using a dialysate with 

5.5mmol/l by an average of 1.1mmol/l (Takahashi et al., 2004). Diffusion of glucose from 

plasma into erythrocytes due to glucose consumption from accelerated anaerobic 

metabolism could be one of the reasons. 

High glucose dialysate (11.1 mmol/l) causes significantly higher intradialytic plasma 

glucose levels in the nondiabetic group, compared to dialysate with 5.5mmol/l (Raimann et 

al., 2012). This crossover trial also showed a significant increase in intradialytic serum 

insulin levels in the nondiabetic group during dialysis with 11.1mmol/l glucose dialysate 

compared to 5.5mmol/l. 

The above literature suggests that there are several reasons for variation in glycaemic 

control in subjects on HD and maintaining optimum glucose level can be challenging. To 

understand this glycaemic variation better we need studies that observe the glycaemic 

pattern in this cohort for longer duration. This would be essential before we can make 

possible suggestions to insulin regimens in these subjects to reduce the variability. 
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Currently available studies of continuous glucose monitoring during HD, discussed in 

further chapters are all of shorted duration and inconclusive.  
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Chapter 2: Monitoring glycaemic control in CKD and ESRD 

Glycaemia is generally measured by capillary blood glucose testing using the ISO certified 

glucometers available on the market. Depending on the need and a subject’s willingness to 

test, one to 4 tests a day are recommended, going up to 7 tests in certain circumstances. 

However these readings may not accurately depict the variation in glucose levels occurring 

throughout the day. Hence continuous glucose monitoring (CGM) would be beneficial in 

determining the glycaemic variation throughout the day more accurately. 

2.1 Role of continuous glucose monitoring  

2.1.1 How does CGM work? 

CGMS measures glucose in the interstitial fluid (ISF) by glucose oxidase coated sensors or 

“wired enzyme” sensors, depending on the device. Capillary wall permeability allows 

glucose to diffuse from the blood into the interstitial space. The glucose level in ISF 

correlates with blood glucose levels.  

Continuous glucose monitoring systems (CGMS) have been in clinical use since late 1999.  

The first retrospective CGM from Minimed Technologies, ‘CGMS Gold’ (Medtronic 

Diabetes, Northridge, CA), was used to measure ISF glucose levels for three days (Hirsch, 

2009). This system did not display the glucose level immediately to the patient; results 

were analysed retrospectively (Liebl et al., 2013). A few years later real-time continuous 

glucose monitor (rt-CGM) was developed. The Food and Drug Administration have 

approved these systems for clinical use since 2005. In the last decade, there has been 

significant improvement both in the technology and in clinicians’ understanding of 

appropriateness of using the rt-CGM for improving glycaemic control.  

Currently only a few approved glucose monitoring devices are available in the UK (Table 

2.1). 

The enzyme embedded in the sensor converts glucose and water in the interstitial fluid to 

gluconic acid and hydrogen peroxide. The hydrogen peroxide produces a modified charge, 

which is directly proportional to the concentration of the glucose (Hirsch, 2009).  

C6H12O6 + H2O + O2                 C6H12O7 +H2O2   (Tao et al., 2009) 
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Manufacturer Device System Mechanism Sensor life Sensor 

site 

Medtronic 

Diabetes 

Guardian 

Real Time 

Stand alone Glucose 

oxidase 

embedded 

sensors 

3 to 6 days Over 

abdomen 

Paradigm 

veo 

In Minimed 

530G and 

640G 

Insulin 

pumps 

iPro2 Blinded 

CGM 

Dexcom Dexcom G4 

Platinum 

On their 

own or in 

Animas 

Vibe insulin 

pump 

Glucose 

oxidase 

embedded 

sensors 

Up to 7 

days 

Over 

abdomen 

Dexcom G5 

Mobile 

Abbott 

Diabetes Care 

Navigator II  Glucose 

Oxidase 

coupled with 

Osmium-based 

mediator 

molecule 

Up to 5 

days 

Over 

abdomen 

Freestyle 

Libre 

Up to 14 

days 

Over 

upper arm 

Table 2.1: List of currently available continuous glucose monitor, mechanism and their sensor life 

 

The devices available from Abbott, Freestyle Navigator and recently Freestyle Libre 

(FSL), use ‘wired enzyme’ technology. The sensors in these CGM systems have glucose 

oxidase coupled with osmium-based mediator molecules anchored on a polymeric 

backbone film (Feldman et al., 2003). These are ‘Flash Glucose Monitoring’ (FGM) 

systems, providing actual ISF glucose concentration on patients scanning the sensor with 

the handset. The FSL displays the glucose profile over the last 8h.  

To measure glucose levels in the interstitial fluid (ISF), a sensor is inserted in the 

subcutaneous space either on the abdomen or upper arm, depending on the device used. A 

transmitter attached to the sensor transmits the data to the recorder, which stores 7 to 14 

days of readings. Each CGM sensor is devised to last 7 days and that of FGM up to 14 

days. 

rt-CGM usage allows glucose monitoring and simultaneous insulin dose adjustment by the 

patient or only glucose monitoring in an individual for later analysis. The CGM readings 

can be blinded from the patient so they do not act on the glucose readings by modifying 

their insulin therapy.  In this study, the purpose of using CGMS was to understand the 
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glycaemic variation in individuals on maintenance HD. Hence a CGM with blinding 

facility was required. To understand the difference in glycaemic variation on dialysis days 

compared to non-dialysis days, it was essential to study the glycaemic pattern for a whole 

week. Hence a CGM with sensor lasting up to minimum of 7 days was required. 

The Dexcom G4 Platinum CGMS used in my study is a real time monitor with a blinding 

feature, reading ISF glucose levels every 5 minutes up to maximum of 7 days with each 

sensor, fulfilling the study requirements.  

2.1.2 Use of CGM in Chronic Kidney disease and dialysed population 

The availability of rt-CGMS has paved the way to understanding glycaemic variation in 

individuals with diabetes through any 24 hour period.  

Glucose variability (GV) occurs in individuals without diabetes, and is much greater in 

those with type 1 or type 2. Longer-term measures of glycaemic control such as HbA1c do 

not provide any information about GV, whilst self-monitored blood glucose levels give 

limited data as there are only a limited number of estimates. CGMS allows much more 

precise measurement of GV. A number of parameters are used to describe glucose 

variability, including ‘mean blood glucose’, ‘standard deviation’ (SD), and ‘mean 

amplitude of glycaemic excursions’ (MAGE).   

Available data and clinical experience suggests extreme variations in blood glucose levels 

in individuals with end stage renal failure. There are limited data on the use of continuous 

glucose monitoring in the dialysed population.  

It is possible that the glycaemic variation in patients on haemodialysis is significantly 

different compared to patients not on HD. Also, the inter-day variation between dialysis 

days and non-dialysis days is not well understood. There are several factors that could 

increase GV in these subjects, such as variable food intake, higher risk of gastroparesis, 

and reduced gluconeogenesis from the kidney. Also the glucose concentration of the 

dialysate can influence GV. Haemodialysate fluids are available at glucose concentration 

of 0, 5 or 10 mmol/l. Blood glucose levels rise with dialysate containing glucose, being 

higher with high glucose (HG) dialysate (10mM) compared to low glucose (LG) (0 or 5 

mM) dialysate fluid. The risk of hypoglycaemia is higher with dialysate with 0 and 5 mM 

glucose concentration (Burmeister, Campos and Miltersteiner, 2012.). Asymptomatic 

hypoglycaemia occurs in people with diabetes on haemodialysis, which may be due to 
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blunted hormonal responses (Akmal, 2001). The awareness to hypoglycaemia is often 

reduced with duration of diabetes. People with ESRD secondary to diabetes would 

generally have had diabetes for long duration which could increase the risk of developing 

impaired hypoglycaemia awareness.  

Significant variation in blood glucose level has been demonstrated in patients with insulin 

treated type 2 diabetes on haemodialysis. There are data available from few studies on 

glycaemic variation in haemodialysed population using CGMS, to understand the effect of 

the HD on blood glucose level. The studies and their key findings are summarised in the 

table 2.2. 

CGMS has been validated to be reliable in patients with ESRD and also accurate and 

precise in patients on peritoneal dialysis. A significant correlation has been demonstrated 

between ISF glucose and venous glucose in CAPD patients (Marshall et al., 2003) and also 

in HD patients (Riveline et al., 2009). Glycaemia can be influenced by the type of glucose 

concentration in PD dialysate used as well as by peritoneal transport status (Skubala et al., 

2010). 

In one of the earliest reports of CGMS in diabetic patients on maintenance HD, the large 

excursions in day to day glucose levels observed were difficult to be managed by adjusting 

insulin doses (Pitkänen & Koivula, 1979). Blood glucose variation during haemodialysis is 

not solely due to the pre-existing diabetic state as it occurs even in non-diabetic subjects 

(Sobngwi et al., 2010). 

All of the studies undertaken until now using CGMS on HD patients are of short duration. 

Though they have shown some significant changes in glucose levels between dialysis days 

and dialysis free days, they have failed to demonstrate a predictable pattern that could 

guide an appropriate insulin regimen or dose titration. 
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Study group 

& year (Ref) 

Cohort & No. 

of subjects 

Duration of 

CGMS & 

design 

Key findings 

Mirani et al. 

2010 

Diabetes 

patients on HD 

N= 12 

48 hr 

HD vs 

Interdialytic 

day 

Mean 24hr glycaemic value, MAGE, & 

SD of mean glucose- all significantly 

higher on HD day  

Pitkänen & 

Koivula. 

2010 

Diabetes 

patients on HD 

N= 4 

 BG level accurately determined during 

whole dialysis period. 

Large day to day variation in pre-HD 

BG. 

Frequent hypoglycaemia. 

Sobngwi et 

al.  

2010 

Non diabetes 

patients on HD 

N= 14 

 Lower BG during HD (5.8± 0.9 

mmol/L to a 3-h nadir 4.6± 0.8 

mmol/L) 

ISF glucose mirrored cBG. 

Mean cBG; Day before HD- 7.1 ± 1.1, 

during HD 5.2 ± 0.4, post HD 5.8 ± 0.7  

Jung et al. 

2010 

Diabetes 

patients on HD 

N= 9 

144hr 

HD vs 

interdialytic 

day 

MAGE- no significant difference 

Hypoglycaemia predominantly on HD 

day 

Significant drop in glucose on initiation 

of HD in subjects on treatment for DM 

despite glucose containing dialysate 

Riveline et 

al. 

2009 

Diabetes 

patients on HD 

vs not on HD 

N= 19 vs 39 

4 days 

 

cBG and ISF glucose- correlated in 

both HD and non HD groups (p 

<0.0001) 

HbA1c & mean ISF glucose- correlated 

in nonHD (p<0.0001) and HD group 

(p=0.042) 

Kazempour-

Ardebili et al. 

2009 

Diabetes 

patients 

N=17 

48hr 24h AUC & 24h mean glucose- higher 

on nonHD day (p=0.02 & p=0.013 

respectively) 

Hypoglycaemia within 24h post-HD  

Nadir glucose level within 24hr post-

HD 

Table 2.2: Summary of available studies on glycaemic variation in HD population. (cBG- capillary blood 

glucose, ISF- Interstitial glucose, HD- Haemodialysis, AUC- Area Under Curve, MAGE- Mean Amplitude of 

Glycaemic Excursion) 
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With significant change in insulin levels and action in ESRD and haemodialysis, it is 

difficult to formulate an optimum insulin regimen. In patients with residual endogenous 

insulin secretion, who are on insulin therapy, it is highly likely that mismatch happens 

between glucose requirements and insulin doses. There are no data specifically in C-

peptide negative or minimally positive patients, who are entirely dependent on exogenous 

insulin therapy. Hypoglycaemia remains a major risk for this population after HD and the 

glucose concentration in dialysate is not standardised, however FDA approves the use of 

dialysate with 100mg/dl (5.5mmol/l) (Locatelli et al., 2015).  

Use of CGM can lead potentially to more adaptations to treatment and improved 

glycaemic control in patients on HD. However given the limitations of the available 

studies, it is not possible to set standard guidance for insulin dose adjustment for people on 

HD, in order to reduce glucose variability.  

2.1.3 Limitations of CGM 

2.1.3.a Technical limitations 

Real time-CGM needs calibration usually at 12h intervals to determine the in vivo 

sensitivity of each sensor and to adjust to the changes in sensor sensitivity over the time it 

is worn. Calibration is by measuring capillary blood glucose using commercially available 

blood glucose meters, and the result must be entered onto the CGM receiver within 5 

minutes of the test.  The analytical measuring accuracy of reliable blood glucose meters is 

around 3-5%, which can rise to 20% in everyday use. Therefore the calibration of CGM 

systems can in itself be a significant source of error. Individuals using CGM need to be 

trained carefully in calibration (Liebl et al., 2013). 

Insertion of and changing sensors are complex tasks for which users require detailed 

training. The Dexcom CGM sensor has a 2h start up period before any ISF glucose levels 

are recorded. At the end of this period, 2 capillary blood glucose level checks must be 

performed and entered on to the receiver within 5 minutes before CGM commences. This 

could lead to a lack of data for the first two hours of dialysis, when CGM is initiated at the 

start of HD. This can be overcome by inserting the sensor 2h prior to start of HD, but 

would not be feasible in all patients, especially those having their HD session in the 

mornings. 
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The distance between the receiver and the transmitter is an important factor in obtaining 

continuous recordings. The recommended distance varies between 3 to 6m, depending on 

the CGM used. Leaving the receiver behind while patients are mobile causes loss of data. 

The transmitter battery generally has a one year lifespan, with replacement adding 

additional costs for long term use.  

2.1.4.b Range of measurable glucose levels 

There is a restriction in the range of glucose level each CGMS can measure (Table 2.3). 

Thus patients must monitor their capillary blood glucose if the CGMS reading is out of 

range.  

Device Lower limit of ISF glucose Upper limit of ISF glucose 

Guardian rt 2.2mmol/l 22.2mmol/l 

Dexcom G4 Platinum 2.2 mmol/l 22.2 mmol/l 

Navigator II 1.1 mmol/l 27.8 mmol/l 
Table 2.3: shows the currently available CGMS and their measurable limits 

At blood glucose levels in the hypoglycaemia range, the sensitivity of the CGM is reduced. 

Hence it becomes less reliable when blood glucose levels are low.  

The change in interstitial glucose levels lags behind changes in blood glucose levels. This 

time lag can vary from 7 to 15 minutes. This renders CGM readings inaccurate when there 

is a rapid change in blood glucose (Hirsch, 2009).  

2.2 Relationship between interstitial glucose level and blood glucose level 

The glucose level in the ISF and the blood or plasma is bound to be different due to 

physiological reasons. Even the plasma glucose is significantly higher than the whole 

blood glucose level (Holtkamp, Verhoef and Leijnse, 1975). Holtkamp has previously 

shown the relation between plasma and whole blood glucose as ‘Glu(P) = 1.07 Glu(WB) + 

0.11’. It is important to understand this relation while interpreting the glucose variation 

data recorded on CGM. 

The ISF glucose level is based on different fluxes (Aussedat et al., 2000). There is a 

significant delay in the change in glucose level in subcutaneous tissue and muscle 

compared to plasma (Moberg et al., 1997). There are physiological variations in the 

glucose uptake, utilization and elimination in the blood and ISF (Kulcu et al., 2003), which 
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could lead to difference in the glucose level in these compartments, which are 

correspondent in time.  

Different groups using various ISF glucose monitoring systems have examined ISF 

glucose levels in relation to blood glucose. ISF levels measured using subcutaneous sensor 

in non-diabetic rats was at 70% of plasma glucose (Aussedat et al., 2000). The difference 

in level and the time lag could vary depending on the method or system used.  

2.3 HbA1c as a marker of glycaemic control 

Glycated haemoglobin A1c is produced by non-enzymatic glycation, on exposure of 

haemoglobin to plasma glucose, through the life span of red cells. Hence measurement of 

glycated haemoglobin A1c gives an average level of plasma glucose concentration over a 

period of 3 to 4 months (the average life span of RBCs). HbA1c measurement is a well-

established marker for long-term glycaemic control in diabetic patients and it has been 

shown to have predictive value for microvascular complications (UKPDS 33, 1998). 

2.3.1 Role of HbA1c in managing glycaemic control 

HbA1c monitored every 3 to 6 months is clinically used as a guide to modify diabetes 

therapy. NICE recommends a target level for HbA1c for people with diabetes based on the 

treatment they require. The cut off values to define good glycaemic control are based on 

the findings from the hallmark studies like DCCT and UKPDS. 

The DCCT study compared intensive blood glucose control to achieve near normal blood 

glucose levels in patients with type 1 diabetes with conventional control. The target 

HbA1c of 6.05% (42mmol/mol) or less was set for the intensive therapy group. Although 

this level was achieved by only 44% of the cohort at least once during the 6.5yr follow up 

and <5% maintained the target value long term, the benefits gained in terms of significant 

reduction in diabetes related complications, like retinopathy, nephropathy and onset of 

neuropathy made clear the value of using HbA1c in managing glycaemic control (The 

Diabetes Control and Complications Trials Research group, 1993).  

The UK Prospective Diabetes Study in subjects with newly diagnosed type 2 diabetes, 

comparing the effect of intensive therapy achieving an average HbA1c of 7.0% 

(53mmol/mol) over 10yr compared to 7.9% (63mmol/mol) in the conventionally managed 

group, showed a significant reduction in the combined diabetes related endpoint. This 
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study also showed a reduction in diabetes related death and all-cause mortality (UK 

Prospective Diabetes Study (UKPDS) group, 1998).  

The significant reduction in microvascular events in intensively controlled type 2 diabetes 

has been reproduced in recent trials (The ADVANCE collaborative group, 2008; 

ACCORD trial group, 2008) 

NICE guidelines have set a target HbA1c of 48mmol/mol for good control for subjects on 

lifestyle and diet only therapy or needing only one oral agent that does not cause 

hypoglycaemia in type 2 diabetes (NICE guideline NG28, Dec 2015). A level of 

53mmol/mol is set as target for individuals on hypoglycaemia causing agents. HbA1c 

rising to 58mmol/mol is set as a cut off to intensify therapy.  

NICE recommends targeting HbA1c of 48mmol/mol or lower for subjects with type 1 

diabetes (NICE guideline NG57, Aug 2015). 

Tight glycaemic control is associated with an increased risk of hypoglycaemia. Targeting a 

mean HbA1c of 48mmol/mol or lower caused an increased number of severe 

hypoglycaemic episodes compared to a mean HbA1c of 56mmol/mol (The ADVANCE 

collaborative group, 2008). Another trial studying the effect of intensive glycaemic control 

similarly showed increased risk of severe hypoglycaemia with an average HbA1c of 

55mmol/mol or lower (The Action to Control Cardiovascular Risk in Diabetes (ACCORD) 

study group, 2008)). This study also showed an increased number of cardiovascular deaths, 

as well as death due to any cause in the intensively treated group. 

It is important to set a target HbA1c level to reduce the risk of long term diabetes 

complications for an individual patient considering all related factors such as, general 

health, comorbidities, age, amount of diabetes therapy required, risk of hypoglycaemia and 

also the existence of impaired hypoglycaemia awareness. 

2.3.2 Effect of CKD/ESRD on HbA1c 

HbA1c levels are affected by various factors that alter red cell survival, e.g. increased 

turnover or destruction of RBCs, thus making them unreliable as a marker of glycaemic 

control in such conditions. The landmark trials like DCCT and UKPDS excluded patients 

with CKD/ESRD. Hence HbA1c is not fully validated in patients with CKD.  
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Anaemia associated with CKD/ ESRD could potentially cause falsely low HbA1c levels in 

this population. Haemolysis secondary to HD could lower the HbA1c by reducing the red 

cell life span (Sam et al., 2015).  

Treatment of anaemia either with Iron infusion or erythropoietin lowered the HbA1c 

values significantly despite no change in mean blood glucose levels measured by 7-point 

capillary BG levels and CGM (Ng et al., 2010). Despite the improvement in haemoglobin 

and haematocrit levels with these treatments, the HbA1c level does not change in a linear 

fashion. 

Extremely low or high HbA1c levels should be avoided in patients with CKD/ESRD 

(Williams et al., 2006; Nakao et al., 1998). A meta-analysis of 10 studies including over 

83,000 patients with DKD on HD, showed increased mortality in patients with HbA1c of 

≥69mmol/mol (≥8.5%) compared to a group of patients with HbA1c levels of 48 – 

57mmol/mol (6.5%- 7.4%) (Hill et al., 2014). There was also an increase in mortality, 

though not significant, in the group of patients with HbA1c of ≤38mmol/mol (≤5.4%).  

The linkage of HbA1c to glycaemic control and diabetic complications in ESRD has been 

challenged because of the analytical and clinical variability associated with laboratory 

testing (Ansari, Thomas and Goldsmith, 2003; Holt and Galen, 2004). The 

immunoturbidimetric assay is more reliable than High performance liquid chromatography 

(HPLC) in measuring HbA1c by reducing the influence from urea. It is likely that the 

HbA1c assay is less precise in the HD population because of the reduced red cell life span 

observed in this population (Holt and Galen, 2004). However HbA1c levels measured by 

immunoturbidimetric assay in a large cohort of HD patients are unexpectedly similar to 

those reported for general diabetic population (Williams et al, 2006).  

Kidney Disease Outcome Quality Initiative (K/DOQI) guidelines for diabetes and CKD 

suggests HbA1c targets of around 53mmol/mol to prevent or delay progression of 

microvascular complications and not to treat to a target of <53mmol/mol in patients at risk 

of hypoglycaemia (KDIGO 2012 Clinical Practice guidelines, 2013).  

HbA1c appears to lack consistent correlation to varying glucose levels unlike in the non-

CKD population, with correlation at higher mean glucose levels (>10 mmol/L) but not 

with glucose variability (Jung et al., 2010; Mirani et al., 2010). 
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Higher HbA1c in non-CKD population is a good predictor of adverse health outcomes 

secondary to diabetes related complications including cardiovascular morbidity and 

mortality. However available data suggests variable results in relation to higher HbA1c 

and all-cause mortality, as seen with follow up of large cohort of patients (Kalantar_Zadeh 

et al., 2007; Williams et al., 2010). 

2.3.3 Effect of dialysis on HbA1c 

The red cell survival is reduced significantly in dialysed patients leading to anaemia 

despite treatment with erythropoietin and Iron replacement (Vos et al., 2011).  Red cell 

survival in HD is altered partly due to eryptosis or stimulation of suicidal erythrocyte death 

(Abed et al., 2014; Bissinger et al., 2016). A number of factors like dialyzable plasma 

components, dialysis procedure, oxidative stress, increased cytosolic Ca
2+

 concentration 

and ceramide formation are probably responsible. 

Hence the reduced red cell survival in haemodialyzed patients could lower the HbA1c 

level thereby falsely suggesting better glycaemic control.  

2.3.4 Reliability of HbA1c as a glycaemic control marker in HD patients 

There are variable results in the studies correlating HbA1c to average glucose levels in 

ESRD/HD patients (Williams et al., 2006; Jung et al., 2010; Mirani et al., 2010). Similarly 

the results are variable in studies involving large cohort of patients in the relation of 

HbA1c to all-cause mortality (Kalanter-Zadeh et al., 2007; Williams et al., 2010). Thus 

HbA1c is less reliable as a measure of glycaemic control and as a predictor of 

complications in this group of patients.  

Glucose variability is an adjunctive risk factor for cardiovascular complications. However 

there is no proven association between glucose variability and HbA1c in ESRD (Mirani et 

al., 2010). Significant glucose variability is seen in patients on HD in both diabetic and 

non-diabetic patients with trough levels in glycaemia during HD (Mirani et al., 2010; 

Sobngwi et al., 2010).  
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Chapter 3: Alternative measures of glycaemic control 

Fructosamine, glycated albumin (GA) and 1,5-anhydroglucitol (1,5-AG) have been studied 

as alternative measures of glycaemic control in diabetes patients.  

3.1Fructosamine 

Fructosamine is formed by the binding of fructose to total serum protein, but mostly 

albumin and immunoglobulins, unaffected by labile fractions and its concentration 

correlates with glycation of serum proteins (Mosca et al., 1987). It reflects glycaemia over 

2 to 3 weeks preceding the test (Mosca et al., 1987).  

3.1.1 In comparison to HbA1c 

Glycaemia measured by fructosamine and HbA1c correlates significantly in both diabetic 

and non-diabetic populations (Pandya et al., 1987). It is possible to estimate HbA1c from 

the measured fructosamine level in diabetic patients with fair correlation between the two 

in diabetic population but not in non-diabetic population (r=0.88 for diabetes, r=0.01 for 

nondiabetics) (Narbonne et al., 2001).  

There are limitations to using fructosamine measurements in clinical care in comparison to 

HbA1c. Due to its higher within subject variability, fructosamine has to be measured 

frequently. In view of the effect of serum albumin levels, fructosamine values have to be 

adjusted if serum albumin level is abnormal (Lee, 2015). This could be overcome by using 

an albumin corrected fructosamine level. 

3.1.2 In ESRD and dialysis population 

Both HbA1c and albumin corrected fructosamine (AlbF) are well correlated and are 

significantly associated with glycaemia in patients on haemodialysis (Mittman et al., 

2010).  AlbF however, was highly correlated with mean glucose values when less than 

8.3mmol/l and a more useful predictor of hospitalization and morbidity. AlbF is thus as 

reliable a measure of glycaemia as HbA1c in diabetic patients on HD at lower glucose 

concentrations.   

Fructosamine may be less reliable in renal failure for similar reasons as HbA1c. AlbF is 

raised in non-diabetic HD patients undergoing HD and CAPD (Lamb et al., 1993). This 

could underestimate the glycaemic control in diabetic patients on HD. Presence of other 

comorbidities causing protein loss could affect the AlbF level making it less reliable. 
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There are no set reference levels for this population; moreover it is not routinely available 

in clinical laboratories (Rhee et al., 2014). There are limited data on the association of 

AlbF with long-term outcomes. Doubling of fructosamine was shown to have a twofold 

higher risk of all-cause mortality and was also associated with a higher risk of 

hospitalization with sepsis in one study (Shafi et al., 2013). 

3.2 Glycated Albumin 

Glycated albumin is formed by the non-enzymatic glycation of albumin (Kovesdy et al., 

2010). Like fructosamine, GA estimates glycaemia over the previous 1 to 2 week period 

(Koga and Kasayama, 2010). It is not affected by anaemia or reduced red cell survival 

(Rhee et al., 2014). It is expressed, as the serum albumin level, hence does not influence 

the proportion of serum GA to total albumin as GA%. 

3.2.1 In Comparison to HbA1c 

GA has a strong correlation with plasma glucose level and is a reliable indicator of 

glycaemic control over a short period (Tahara and Shima, 1995). Higher GA levels are 

linked to the presence and severity of cardiovascular disease and impaired renal function 

(Takahashi et al., 2007). GA has been thought to be a more reliable measure of glycaemic 

control and predictor of vascular complications in people with diabetes and nephropathy 

(Vos, Schollum and Walker, 2011). 

It has similar limitations like fructosamine with comorbidities acting as confounding 

factors and with regards to availability and reference values (Rhee et al., 2014). 

3.2.2 In ESRD and dialysis population 

Plasma glucose and GA are shown to be much higher than HbA1c in patients with diabetes 

on HD in comparison to patients with diabetes without renal dysfunction (Inaba et al., 

2007) suggesting lower HbA1c for the similar plasma glucose levels. GA% is shown to be 

higher in dialyzed patients in comparison to the non-nephropathy population, whereas 

HbA1c was paradoxically lower in dialysis patients (Freedman et al., 2010), suggesting 

underestimation of glucose levels in ESRD and dialysis patients with diabetes using 

HbA1c.  

However, a more recent study using CGM showed that average glucose levels correlated 

better with HbA1c than GA, though underestimating average glucose, in both HD and non-
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nephropathy groups  (Hayashi et al., 2016).  In this study GA value correlated better than 

HbA1c with glycaemic variability in the HD group. 

Further evaluation is required with larger studies to confirm the benefits of AlbF and GA 

over HbA1c for monitoring glycaemic control in dialysed patients and also with long term 

studies for the benefits on reducing complication rates and mortality in this group. 

3.3 1,5-anhydroglucitol (1,5-AG) 

1,5-AG is a naturally occurring dietary polyol (Dungan et al., 2006) that has been used to 

monitor short-term glycaemic control for well over two decades in Japan (Fukumura et al., 

1994). Blood glucose competitively inhibits renal reabsorption of 1,5-AG and hence even 

a transient rise in blood glucose level results in an immediate urinary loss of 1,5-AG. 

Hence it can be used to monitor the glycaemic control over a 24hr period (Buse et al., 

2003). Frequent monitoring either daily or weekly can be a substitute for capillary blood 

glucose monitoring. 

1,5-AG is a better reflector of postprandial glucose excursions compared to HbA1c and FA 

(Dungan et al., 2006), in moderately controlled diabetic patients. 

The plasma level of 1,5-AG is decreased in patients with ESRD without diabetes. Plasma 

levels are reduced in both diabetic and non-diabetic patients on HD with no correlation to 

plasma glucose, HbA1c or fructosamine levels (Emoto et al., 1992). Hence renal function 

might be a confounding factor in using 1,5-AG for monitoring glycaemic control. 

However 1,5-AG levels are not influenced by renal function in mild to moderate 

impairment, making it a reliable marker in CKD stages 1-3 (Kim et al., 2012). 

It appears that 1,5-AG would not a suitable alternative for HbA1c to measure glycaemic 

control in patients with ESRD and on HD. 

Due to limitations with fructosamine, glycated albumin and 1,5-AG in terms of non-

availability, need for frequent measurements and inconsistent evidence about their benefit 

over HbA1c, HbA1c has been continued to be used as the standard marker for glycaemic 

control in CKD/ESRD patients. 
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Chapter 4: Cardiovascular complications in CKD/DKD 

Diabetic patients are at increased risk of cardiovascular disease by two to four fold. 

Diabetes is an independent risk factor for CVD, in men and women (Grundy et al., 1999). 

Development of diabetic nephropathy and CKD increases the risk of CVD further. 

4.1 Cardiovascular morbidity and mortality 

Cardiovascular morbidity and mortality are significantly increased in the diabetic 

population with CKD as seen on NHANES III survey (Afkarian et al., 2013).  

Patients with diabetes have a higher comorbidity and poorer outcome compared to non-

diabetic patients on dialysis. European data shows a 5 year survival probability of only 

40.2% unadjusted rate for ESRD patients with diabetes as the cause compared to 48.3% 

for all patients on dialysis in the 2004-8 period. The 2 year survival probability available 

for the 2007-11 period cohort shows improvement in the survival probability for diabetes 

patients on dialysis at 71.1% in comparison to 68.8% for the previous cohort. However 

this is still lower than survival probability of 73.1% for all patients for the 2007-11 period 

(ERA-EDTA Registry 2013 annual report- Krammer et al., 2016). 

Higher difference is seen in the mortality rates among UK population for patients with 

diabetes and without diabetes on renal replacement therapy. In the age group 18-44 years, 

5-year survival was 71% for the diabetic population compared to 89% for the non-diabetic 

population. Similarly in the age group 45-64 years, 5-year survival was 51% against 68% 

for the non-diabetic population (UK renal registry 18
th

 annual report- Steenkamp, Rao & 

Fraser, 2016). 

Similarly, increased mortality and morbidity in diabetes patients with ESRD is seen in US 

as well. The all-cause hospitalization rate for patients aged 66 or older with CKD stage 4/5 

is higher at 1156 per 1000 patient years in the presence of diabetes and CVD, compared to 

398 per 1000 patient years for the same group without diabetes and CVD (USRDS annual 

data report 2016). CV deaths accounts for the majority of mortality in the ESRD diabetes 

population. Mortality rate for CKD patients with diabetes and CVD is 156 deaths per 1000 

patient years compared to around 53 for patients without diabetes and CVD (USRDS 

annual data report 2016). The death rates increased with progression of CKD stages, with 

bigger differences between CKD patients with diabetes and CVD and those without 

diabetes and CVD.  
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Cardiac deaths including sudden death, myocardial infarction, cardiac arrest, and 

malignant arrhythmias, are the major causes of death accounting for 43% of all-cause 

mortality among all HD patients (Kanbay et al., 2010).  

4.1.1 Risk factors for CVD in ESRD 

Diabetes is a major independent risk factor for CVD in both men and women, including 

both type 1 and type 2. All major cardiovascular risk factors like hypertension, smoking, 

and high plasma cholesterol continue to be independent contributors to CVD in people 

with diabetes (Grundy et al., 1999).  Prevalence of hypertension in people with diabetes is 

higher compared to the nondiabetic population. 50 to 80% of people with type 2 diabetes 

and 30% of people with type 1 diabetes are reported to have high blood pressure 

(Landsberg and Molitch, 2004). Other predisposing risk factors like obesity, smoking, 

reduced physical activity, heredity, advancing age and sex also exacerbate the risks. 

Apart from the above, factors like left ventricular hypertrophy (LVH), coronary artery 

disease (CAD), rapid electrolyte shifts, QT dispersion, sympathetic nervous system over 

activity and CKD related bone mineral disorders are some of the factors associated with 

the high cardiovascular mortality in this group of patients (Kanbay et al., 2010). 

4.1.2 Cardiac arrhythmias 

Cardiac arrhythmias are suspected to be very common in people with ESRD (Redaelli et 

al., 1988). The USRDS database revealed that the single largest cause of death was 

attributed to arrhythmias. 61% of all cardiac deaths and 27% of all-cause mortality among 

HD patients were reported to be due to cardiac arrest/ unknown cause or arrhythmia. 

Cardiac arrhythmias may often be undiagnosed as they may be paroxysmal and 

asymptomatic.  

There is a higher incidence of cardiac arrhythmias in HD population. Sudden shifts in 

serum electrolytes, especially potassium, have been thought to be one of the reasons 

(Kanbay et al., 2010). Dialysing with low potassium dialysate of 0 or 1 mmol/l is 

associated with higher rates of cardiac arrest (Karnik et al., 2001). However there is no 

consistent association of sudden death rates with dialysates of different potassium 

concentration.   Low potassium dialysate is found to be protective from SCD in patients 

with pre-HD hyperkalaemia  
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(Huang et al., 2015). No difference is found in the incidence of death and arrhythmia in all 

HD between patients dialysed with dialysate of 3 or 2 mmol/l, despite varying pre-HD 

serum potassium levels (Karaboyas et al., 2016) 

4.1.2.a In nonESRD/ nonDialysis population 

The presence of hypertension, LVH and myocardial dysfunction are known risk factors for 

cardiac dysrhythmias. Asymptomatic complex and frequent cardiac arrhythmias increase 

the risk of all-cause mortality in people without ESRD in the presence of LVH (Bikkina, 

Larsen and Levy, 1993).  

4.1.2.b In the dialysis population 

A recent study reported the incidence of arrhythmia events including death to be 7% in all 

HD patients (Karaboyas et al., 2016). The incidence of asymptomatic supraventricular 

tachycardia which was self-limiting during HD was found to be 49.3% in one study of 

patients on HD with or without diabetes (Verde et al., 2016). This study revealed a higher 

risk of all-cause death, non-fatal CV events and symptomatic atrial fibrillation in patients 

who had asymptomatic SVT. 

4.1.3 Burden of Ventricular premature beats (VPBs) 

VPB’s detected on routine ECG in people without cardiovascular disease do not predict 

adverse cardiovascular events or deaths as seen in the NHANES III study (Qureshi et al. 

2014). However a more recent study suggested frequent ventricular premature beats (VPB) 

can be a predictor of the risk for ventricular tachycardia and mortality (Lin et al., 2017), 

especially when they come in pairs (couplets) or threes (triplets).   

The frequency of VPBs is high in the haemodialysed population. A multicentre study 

reported the frequency of 2 or more VPBs at 29%, with 6% of patients having ventricular 

triplets on 48hr Holter monitoring (Redaelli et al., 1988). The frequency of arrhythmia was 

higher in the latter half of HD and for few hours after HD had completed. However there 

are no consistent data about the relation between HD and frequency of VPBs in patients 

without coronary artery disease (Quereda et al., 1986; Wizemann et al., 1985). It is likely 

that patients with DN and ESRD have a higher prevalence of CAD. Together the HD and 

pre-existing CAD might increase the risk of developing frequent VPBs including couplets 

and triplets.  
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4.2 Sudden cardiac death 

Sudden cardiac death (SCD) accounts for the majority of cardiac deaths in dialysis 

patients, particularly those with diabetes. The relative risk of SCD is increased for all 

patients with chronic kidney disease, but the risk is increased 20- to 30-fold in 

haemodialysis patients compared to other populations without significant kidney disease. 

The USRDS report suggests that SCD accounts for about 22-27% of all deaths in 

haemodialysis patients. Genovesi and his team reported a cumulative incidence of 6.9% 

for sudden death, representing 19.2% of all deaths in patients on maintenance 

haemodialysis. The presence of atrial fibrillation, diabetes mellitus, pre-dialytic 

hyperkalemia, haemodialysis mode and high C-reactive protein are potential risk factors 

(Genovesi et al., 2009). Sudden death occurs more frequently during the first 24 h of the 

first short interdialytic interval and during the last 24 h of the long interval, i.e. 

immediately before and immediately after the first weekly haemodialysis session, 

suggesting a possible causative role of HD in SCD.  

Glycaemic control in diabetic patients on chronic haemodialysis also plays a significant 

role in the mortality rate. An HbA1c >64mmol/mol (>8%) is said to increase the risk by >2 

fold compared with HbA1c ≤43mmol/mol (6%) (Drechsler et al.,2009). Increasing HbA1c 

is associated with an incremental rise in the risk of sudden death, the SCD risk increases 

18% for every 11 mmol/mol rise in HbA1c, suggesting a strong association between poor 

glycaemic control and sudden cardiac death (Dreschler et al., 2009).  

Acute hypoglycaemia causes pronounced physiological responses as a consequence of 

autonomic nervous system activation, principally of the sympatho-adrenal system, with 

release of epinephrine. The haemodynamic changes associated with hypoglycaemia 

include an increase in heart rate and peripheral systolic blood pressure, a fall in central 

blood pressure, reduced peripheral arterial resistance and increased myocardial 

contractility, stroke volume and cardiac output (Wright and Frier, 2008). The workload of 

the heart is therefore temporarily but markedly increased, which may have serious 

consequences in patients, especially the elderly and those with diabetes. (Frier, 

Schenthaner and Heller, 2011). Hypoglycaemia is known to cause ECG changes e.g., ST 

segment changes with prolongation of the QT interval and cardiac repolarization (Judson 

and Hollander, 1956; Robinson et al., 2003, Koivikko et al., 2008). Hypoglycaemia leads 

to a reduction in the amplitude of T waves with flattening and lengthening of T waves, 

which can be quantified by measuring the QT interval (Graveling and Frier, 2010). 
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Patients on HD are prone for extreme glycaemic variation. Recurrent hypoglycaemia may 

increase the risk of arrhythmia and in turn to SCD. 

There are other potential factors that could lead to the increased risk of sudden cardiac 

death in diabetic HD patients. Apart from autonomic neuropathy as a consequence of 

diabetes and uraemia, left ventricular hypertrophy commonly observed in CKD patients 

and CKD-BMD are potential causes of arrhythmia in this patient group. Uraemic toxins 

are thought to cause uraemic cardiomyopathy with typical histologic findings of 

myocardial fibrosis and this could lead to slowing of conduction and increased dispersion 

of repolarization, which are in turn pro-arrhythmogenic (Mark et al., 2006; Tun et al., 

1999). Sudden electrolyte and fluid shifts during haemodialysis sessions can initiate life-

threatening arrhythmias in patients with a susceptible myocardium (Yetkin et al., 2000). 

Several ECG markers such as QRS duration, corrected QT (QTc) interval and QT 

dispersion, have been suggested as potential predictors of ventricular arrhythmia in 

dialysis patients. Increased dispersion of QT intervals is known to predispose to ventricular 

arrhythmias and sudden cardiac death. QTc and QTc interval dispersion can significantly 

increase following HD (Malhis et al., 2010). There is some evidence for role of routine 12 

lead ECG before HD in obtaining prognostic information to add onto standard 

cardiovascular risk assessment (Krane et al., 2009) 

However there is a lack of systematic evidence to support routine cardiac monitoring 

during haemodialysis sessions.  

Implantable cardioverter-defibrillator (ICD) insertion has been proposed as a preventative 

therapy for people on HD at risk for SCD. However the survival benefits in this population 

is much lower (Alpert M, 2011; Green et al., 2011). 

Risk for SCD has not been well evaluated in this population. Continuous 

electrocardiographic monitoring to detect changes in QTc intervals and rhythm and 

echocardiographic evidence of associated risk factors may help in identifying individuals 

at high risk. Correlation with blood glucose variation and electrolyte levels can hopefully 

improve our understanding of the underlying mechanisms for the high cardiac mortality in 

this population. 
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4.3 Changes in serum electrolyte levels and their effect on cardiac function  

During HD electrolytes including calcium, potassium and magnesium are extracted along 

with urea apart from maintaining acid-base balance. The Change in the levels of 

electrolytes could depend on their concentration in the dialysate used and the dialyser 

membrane.   

Serum calcium and potassium play an important role in cardiac repolarization. Variation in 

the electrolyte levels in dialysate used can impact on their serum concentration which can 

potentially influence the cardiac electrical activity.  

4.3.1 Effect on QTc interval 

QTc interval is prolonged in patients undergoing HD compared to healthy volunteers 

(Suzuki et al., 1998). Though pre-existing cardiac defect is a risk factor, prolongation of 

QTc is seen in nondiabetic individuals with no cardiac dysfunction (Covic et al., 2002). 

However the prolongation of QTc post-HD is not consistent with some subjects having 

reduced QTc.  

Dialysates with low potassium (2mmol/l) and calcium (1.25mmol/l) levels can 

significantly increase the QTc interval post-dialysis (Genovesi et al., 2008). Mean QTc is 

prolonged in 4hours period post HD compared to HD periods and other times of the day or 

night. 

QTc dispersion, which is the maximum QTc minus minimum QTc, is an approximate 

measure of the abnormality of repolarization (Malik and Batchvarov, 2000). This has been 

studied often in the HD patients along with QTc to test the effect of HD on cardiac 

activity. Studies on patients with diabetes and/or hypertension have shown that mean QTc 

along with QTc interval dispersion are significantly raised after HD compared to before 

HD based on 12 lead ECG (Malhis et al., 2010; Niaki et al., 2013). However one study 

showed no effect on QT dispersion by HD in non-diabetic subjects without any cardiac 

disease (Covic et al., 2002).  

4.3.2 Heart Rate Variability (HRV) 

Beat to beat variability in the R-R intervals is physiological and is indicative of autonomic 

nervous system control over heart rate. This has been used as a tool to detect autonomic 

neuropathy in patients with diabetes in the past (Ewing et al., 1985). Reduced HRV is 
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associated with increased mortality after myocardial infarction (Wolf et al., 1978) and it is 

considered as a strong and independent predictor of death following acute myocardial 

infarction (Kleiger et al., 1987; Bigger et al., 1992). HRV is measured with different 

variables classified under ‘Time domain’ measures and ‘Frequency domain’ measures. 

Simplest variable is the standard deviation of normal to normal intervals (SDNN). 

HRV is shown to be reduced in ESRD patients (Rubinger et al., 2004; Ranpuria et al., 

2008). Frequency domain variables can be significantly suppressed in nondiabetic patients 

on HD (Yang et al., 2010). Higher frequency of HD through the week could increase the 

HRV suggesting effect of HD on cardiac structure and autonomic function (Chan et al., 

2014).  

Patients with ESRD are prone for autonomic neuropathy due to uraemia. Diabetes alone is 

a risk factor for autonomic neuropathy. Diabetic patients with ESRD on maintenance HD 

could be at higher risk for reduction in HRV, increasing their risk for SCD further. Fasting 

plasma glucose level appears to impact the HRV significantly in patients on HD compared 

to other variables in patients with metabolic syndrome, suggesting the role of diabetes 

(Chang et al., 2016). Measuring the HRV using continuous holter monitoring could help 

identify patients at higher risk which could be reduced by modulation with available drugs 

(Nolan et al., 2008). 

4.4 Co-existing autonomic neuropathy 

Autonomic dysfunction is a common complication of CKD (Vita et al., 1999). This 

increases the risk of arrhythmia and sudden cardiac death in patients with ESRD on HD 

(Jassal et al., 1997). Reduced HRV is a consequence of autonomic dysfunction which 

increases the risk in this population. Autonomic neuropathy in ESRD is largely due to 

effect of uraemia on parasympathetic system. HD and transplantation are shown to reverse 

this significantly (Heidbreder, Schafferhans and Heidland, 1985). Poor glycaemic control 

in diabetes is a known risk factor for autonomic neuropathy. Hence patients with diabetes 

and CKD have higher risk of autonomic neuropathy, which increases the risk of SCD. 

4.5 Blood pressure variability (BPV) 

BPV is a risk factor for progression of CKD, stroke and death (Manios et al., 2009; Pringle 

et al., 2003). It continues to be an existing risk factor for patients on HD due to fluid 

overload and change in osmolality due to intermittent HD in presence of vascular disease 
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(Flythe and Brunelli, 2014). Intradialytic BPV is associated with increased risk of all cause 

and cardiovascular mortality in patients on maintenance HD (Flythe et al., 2013). Older 

age, shorter dialysis vintage and greater ultrafiltration could cause greater intradialytic 

BPV.  
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Chapter 5: Haemodialysis 

5.1 Dialysates- difference in electrolyte concentrations 

Dialysate fluids are available in various concentrations of potassium, calcium, magnesium, 

bicarbonate and also glucose. Sodium concentration in the dialysate influences the blood 

pressure control. Potassium concentration is important to ensure that hyperkalaemia is 

reduced due to its arrhythmogenic potential. Calcium levels could influence myocardial 

contractility and repolarization. An adequate bicarbonate level is important to reverse 

acidosis (Locatelli et al., 2004).  

5.1.1 Potassium  

Dialysis is considered adequate if predialytic hyperkalaemia is avoided (Locatelli et al., 

2004). Due to its arrhythmogenic potential, both hypokalaemia and hyperkalaemia 

(>6mmol/L) should be avoided. Potassium removal during dialysis occurs by diffusion 

according to the concentration gradient between plasma and the dialysate (Radaelli, 2001).  

Post-dialysis serum potassium level depends not only on the pre-dialysis serum potassium 

and dialysate potassium concentration but also on plasma tonicity and its change following 

HD (Locatelli et al., 2004).  

Low pre-HD serum potassium could be associated with increased QTc dispersion (Covic 

et al., 2002). QTc prolongation during HD can occur when using dialysate with a K
+
 of 

2mmol/l, especially in combination with a Ca
2+

 of 1.25mmol/l. This prolongation is seen 

within the first hour of HD, with continued prolongation throughout and in the post-HD 

period (Genovesi et al., 2008). In this study by Genovesi et al, reduction in pre-HD QTc 

was seen when using dialysate with a K
+
 of 3mmol/l in combination with a Ca

2+
 of 

1.75mmol/l. 

Dialysate baths could have 2mmol/l or 3mmol/l of potassium. Current HD practice does 

not take pre-dialysis serum potassium level into consideration. In the UK, dialysate with 

2mmol/l of potassium is used as standard.  

5.1.2 Calcium 

Calcium is important for myocardial contractility. Patients with CKD are often treated with 

oral calcium salts as phosphate binders. Hence it is advised to use low calcium dialysate 

for maintenance HD (Sherman, 1988; Argiles et al., 1993). Dialysate fluids are available 
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with either 1.25mmol/l or 1.75mmol/l of calcium. It is advised to use dialysate with 

1.25mmol/l of calcium (Locatelli et al., 2004).  

Changes in serum ionized calcium levels during HD have a significant effect on the blood 

pressure, which could be due to effect on myocardial contractility (Maynard J, 1986; 

Fellner et al., 1989; Henrich, Hunt & Nixon, 1984). Low calcium dialysate causes larger 

reduction in BP compared to high calcium dialysate in patients with no cardiac 

abnormality (Van Kuijk et al., 1997). Significant reduction in systolic BP is also seen in 

ESRD patients with cardiac abnormality with low calcium dialysate while high calcium 

dialysate maintained the mean arterial BP (Van der Sande et al., 1998).  

5.2 Glucose concentration of dialysate 

Dialysate with 0, 5 and 10mmol/l of glucose have been used for HD. HD affects glycaemic 

control by altering glucose and insulin levels and increasing insulin sensitivity. Glucose 

homeostasis in patients on haemodialysis will vary depending on the concentration of 

glucose in the dialysate.  

5.2.1 Effect on blood glucose levels 

5.2.1.a Risk of hypoglycaemia and hyperglycaemia 

HD with dialysate containing 0mmol/l glucose is associated with significant reduction of 

plasma glucose levels in diabetic as well as in some non-diabetic patients (Jackson et al., 

2000; Akmal, 2001; Jasmin, Mueen and Aljubawii, 2015). Patients on HD may be 

asymptomatic to hypoglycaemia occurring during HD. Hence glucose free dialysates are 

no longer used routinely. Dialysate with 3mmol/l of glucose also causes hypoglycaemia 

compared to dialysate with 5mmol/l (Burmeister, Campos and Miltersteiner, 2012).  

Haemodialysis increases the clearance of immunoreactive insulin levels which in turn 

contributes to hyperglycaemic episodes observed in the post-dialysis period in some poorly 

controlled diabetic patients (Abe, Kaizu and Matsumoto, 2007). A paradoxical rebound 

hyperglycaemia may be seen several hours post haemodialysis due to the combined effect 

of counter regulatory hormones (Somogyi effect) and insulin resistance (Abe and Kalanter- 

Zadeh, 2015). 
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Chapter 6: Methodology 
 

6.1 Ethics Approval 

This study was approved by ‘Newcastle and North Tyneside NRES Committee 2’ and 

South Tees Hospitals Research and Development department. 

6.2 Patient Selection 

This was a single site study based at James Cook University Hospital, Middlesbrough, 

where the Department of Nephrology treats patients with ESRD at four haemodialysis 

centres across the region. These centres include the central dialysis unit at James Cook 

University Hospital and peripheral dialysis units at North Ormesby health village, 

Middlesbrough, North Tees University Hospital, Stockton on Tees and Darlington 

Memorial Hospital, Darlington. 

A list of all the patients with diabetes undergoing maintenance haemodialysis was obtained 

from the Department of Renal Medicine’s patient database ‘Proton’ system. Individual 

patient’s medication list was accessed from the clinic letters stored on the proton system. 

Patients with diet controlled or managed with oral glucose lowering agents or on 

combination of oral agents and insulin were excluded. 

Eligible patients on insulin therapy only were listed according to the unit for dialysis. 

Dialysis unit staff were met and appraised about the study design and purpose. Patients 

were then approached at their respective dialysis units when they arrived for their dialysis.  

The study was described to individual patients and a copy of the ‘Participant information 

sheet V3.1’ (appendix 1) was given. They were encouraged to speak to their family 

members, their family doctors, their Nephrologist and staff at dialysis units regarding the 

study.  They were re-approached in one to two weeks’ time to answer any questions or 

clear doubts. Patients who agreed to participate were consented using an approved 

‘Informed consent form V2’ (appendix 3). A date was fixed at the same time for a 

screening sample for C-peptide and plasma glucose levels. Samples were taken either after 

overnight fasting along with fasting plasma glucose levels or a random pre-dialysis sample 

for some of the subjects dialysing in the afternoon or twilight session. Samples for C-

peptide were collected in a plain vacutainer. Samples were transported to the laboratory 
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immediately or within 30 minutes for separation of serum and freezing at -20
0
c. Blood 

sample for glucose levels were collected in fluoride-oxalate tubes.  

A list of non-diabetic patients on maintenance HD was obtained from the departmental 

data base. Their past medical history, medication and any previous plasma glucose levels 

and HbA1c available on the region-wide results system ‘Webice’ were reviewed. 15 

patients were randomly selected from among those who did not have any evidence of 

diabetes or impaired glucose regulation. These patients were approached in a similar way. 

Informed consent was obtained from 5 patients who agreed to take part after providing 

‘Participant information sheet- controls V3.2’ (appendix 2) and allowing one to two 

weeks’ consideration time. Fasting blood samples were obtained for plasma glucose and 

HbA1c levels.  

6.3 Patient Characteristics 

34 patients with diabetes were consented. All patients had fasting or random glucose level 

checked along with C-peptide after consenting. 5 patients withdrew their consent before 

their study week. One patient underwent bariatric surgery and became insulin independent 

before the start of the study. One patient received simultaneous pancreas-kidney transplant 

and became insulin independent. One patient died before the study was started following 

voluntary withdrawal from dialysis therapy.  

In view of the possibility of C-peptide being falsely positive in this group of patients, C-

peptide to glucose ratio was calculated based on the formula shown below in section 

6.4.1.c. With the absence of any existing data on the reliability of measured C-peptide 

levels in defining an absence of endogenous insulin secretion in diabetes patients with 

ESRD, we selected an arbitrary level of 5ng/mg for C-peptide/glucose ratio as the cut off 

value. A level of 5ng/mg or over was considered as C-peptide positive for exclusion. 

Patients with C-peptide/glucose ratio level less than 2ng/mg were grouped as c-peptide 

negative and those with level between 2 and <5ng/mg were grouped as ‘minimally 

positive. Patients without diabetes were screened following consent with fasting plasma 

glucose and HbA1c. All five patients consented met the criteria with fasting glucose and 

HbA1c in the normal range. 

Characteristics of patients included in the study are shown in the tables 6.1 and 6.2. 
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Sub. 

study 

No. 

Gender Age 

(yrs) 

Type of 

Diabetes 

Duration 

of 

diabetes 

(years) 

Screening 

glucose 

level 

mmol/l 

(nonfasting-

PreHD) 

C-pep 

level 

nmol/l 

(non-

fasting-

PreHD) 

C-pep/ 

glucose 

No. of 

weeks 

Participa

ted 

1 F 45 MODY 3 34 18.8 1.84 1.63 2 

3 F 62 2 10 8.8 1.39 2.63 3 

4 M 50 1 48 2.4 <0.0 0.0 3 

9 M 66 2 19 8.5 1.78 3.5 3 

10 F 71 2 13 7.7 0.41 0.89 3 

11 M 40 1 18 12.8 0.01 0.01 3 

15 F 47 2 25 26.5 1.88 1.84 2 

19 F 57 1 35 6.3 0.0 0.0 3 

21 M 64 2 25 7.2 0.71 1.64 3 

22 M 43 1 29 5.5 0.0 0.0 3 

24 F 49 1 36 14.4 0.01 0.01 1 

25 F 43 1 23 8.6 <0.03 0.0 3 

31 M 58 2 27 13.8 0.57 0.69 2 

38 M 51 2 30 5.7 1.28 3.75 1 

41 M 72 2 10 7.7 2.3 4.98 2 
Table 6.1: Characteristics of subjects studied with diabetes. 

 

 

Sub. study No. Gender Age 

(years) 

Screening fasting  

Plasma  

Glucose (mmol/l) 

Screening HbA1c 

(mmol/mol) 

No. of weeks  

participated 

32 F 75 4.3 31 1 

35 F 74 4.0 30 1 

36 F 46 4.4 23 1 

37 M 46 5.2 32 1 

39 F 57 4.1 31 1 
Table 6.2: Characteristics of the subjects studied without diabetes 

 

6.4 Laboratory methods 

6.4.1 C-peptide 

C-peptide was measured using Roche E411 analyser in South Tees NHS Hospitals 

laboratory. 

6.4.1.a Assay 

The C-peptide assay on the Roche E411 analyser employs a Sandwich principle 

immunometric assay. Procedure involves: 
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• 1st incubation: 20 μL of sample, a biotinylated monoclonal C-peptide-specific antibody, 

and a monoclonal C-peptide-specific antibody labelled with a ruthenium complex react to 

form a sandwich complex. 

• 2nd incubation: After addition of streptavidin-coated microparticles, the complex 

becomes bound to the solid phase via interaction of biotin and streptavidin. 

• The reaction mixture is aspirated into the measuring cell where the microparticles are 

magnetically captured onto the surface of the electrode. Unbound substances are then 

removed with ProCell. Application of a voltage to the electrode then induces 

chemiluminescent emission which is measured by a photomultiplier. 

• Results are determined via a calibration curve which is instrument-specifically generated 

by 2-point calibration and master curve. 

C-peptide levels were interpreted in relation to plasma glucose levels when detectable.  

6.4.1.b Laboratory reference range:   

0.11 to 0.61 nmol/L, for normal population.  

There was no separate reference range for patients with end stage renal disease. 

6.4.1.c C-peptide to glucose ratio 

C-pep/Gluc = C-peptide(ng/ml) x 100  (Fardaji et al., 2007) 

Glucose(mg/dl) 

Levels from SI units to metric units (Glucose: 1mmol/l =18.016mg/dl and C-peptide: 

1nmol/l = 0.333ng/ml) 

6.4.1.d Establishing cut off values for screening 

In the absence of any available criteria to suggest normal or insufficient C-peptide levels in 

this population, an arbitrary cut off level was selected. Patients with C-peptide/glucose 

level of 5.0ng/mg or over were excluded from the study, as at this level we felt 

endogenous insulin production was ongoing at a reasonable level.  

6.4.2 HbA1c 

HbA1c was measured using High Performance Liquid Chromatography.   
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A combination of reverse-phased partition and ion-exchange chromatography was used to 

elute different haemoglobin fractions.  Specimen is first haemolysed and haemolysate is 

passed through an analytical column.  Reversed-phased chromatography first eluted foetal 

Hb, labile HbA1c and stable HbA1c.  HPLC method then switched to ion-exchange which 

eluted HbA0, HbA2 and any variant of Hb present.  The Hb fractions were detected by 

measuring the absorbance at both 415 and 500nm. 

6.5 Study Design 

Subjects with diabetes were studied for one to three weeks and subjects without diabetes 

were studied for one week.  Study pathway for diabetes group is shown in the flowcharts 1 

& 2. 
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Flow chart 1: Study pathway for the diabetes group. 

 

 

 

 

 

 

            

            

            

            

            

            

            

            

            

       

 

 

 

 

 

 

 

 

 

 

After overnight fasting (or at start of HD), a blood sample was taken to assess eligibility 

to take part in the study. Blood was tested for C-peptide level and corresponding 

glucose level.  

C-peptide level- positive C-peptide level- negative or minimally positive 

Not eligible for the study Patient invited to take part in the study 

Subjects were asked to answer a simple questionnaire (appendix 4) about their 

diabetes care, including foot and eye care; preparation on the dialysis days 

including any change to diet and/or insulin doses; and any exercise they undertook. 

If they have not had an echocardiogram in the previous 6 months, it was 

arranged to be done at James Cook University Hospital. 

A week was selected to start the study depending on patient’s convenience. 

We were able to study two patients at a time, in any given week. 

Study week 1 
Day 1: Monday for patients dialyzing on Monday/Wednesday/Friday 

Tuesday for patients dialyzing on Tuesday/Thursday/Saturday 

On arrival for dialysis, blood samples were taken for HbA1c, Troponin I, Sodium, 
Potassium, Calcium, and Magnesium, renal & liver tests and total cholesterol levels. 
Patient was weighed. First ECG was recorded.  
A continuous glucose monitor was attached by inserting the sensor subcutaneously on 
abdomen. The Holter monitor was attached using 3 chest leads I, II and III. 

Dialysis started as usual 

BP monitored every 30 minutes. Midway through the dialysis, blood sample was taken 

for electrolytes and second ECG was recorded. At 2hr start up prompt by CGM, capillary 

BG was checked twice and entered onto receiver for first calibration. CGM recording 

started from this time point. 
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At the end of dialysis, a further blood sample was taken for electrolytes and a third 

ECG was recorded. Patient weighed again. 

Patient allowed home, with the CGM and the Holter monitor. These stayed with patients for 7 

days, Patients were advised to call the emergency mobile number provided at the end of the 

leaflet if they had any problem with the monitors. Similar blood samples and ECG recordings 

were taken at their next two dialysis sessions. 

Receiver was set to blind mode and patients were not able to see the IG readings in realtime. 

Patients advised to check capillary blood glucose levels as usual do and record them and also 

enter on to the receiver every 12hours for calibration. They were advised to maintain a dairy of 

your insulin doses, any symptoms of low or high glucose and diet intake.  

Study week 2 
On arrival for the first dialysis of the week, patients had blood sample taken for glucose control 
HbA1c, Fructosamine & Glycated albumin, & Troponin I. The CGM & Holter monitors were 
withdrawn. Food dairy and Holter dairy were collected. Next study week was scheduled to start 
3 weeks later.  

Study week 5 
If patients were happy to proceed, on arrival for the first HD of the week, weight was checked, 

the CGM and the Holter monitor were attached as before.  Dialysis started as usual. CGM and 

Holter monitors were left in place for 7 days. Patients were advised to continue to monitor 

capillary blood glucose levels and maintain food and insulin doses dairy. Monitors were 

withdrawn on arrival for 1st HD the following week and 3rd study week scheduled for 3 weeks 

later. 

Study week 9 
If Patients were happy to proceed, on arrival for first HD of the week, Weigh was checked, the 

CGM and Holter monitor were attached as above.  Dialysis started as usual. CGM and Holter 

monitors were left in place for 7 days. Patients were advised to continue to monitor capillary 

blood glucose levels and maintain food and insulin doses dairy. Monitors were withdrawn on 

arrival for 1st HD the following week. 

Study week 10 
On arrival for first the HD of the week, blood sample was taken for glucose control measures 

and Troponin I. Both monitors were withdrawn. This completed the active participation of 

diabetic patient in the study.        
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Flow chart 2: Study pathway for the control group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If they have not had an echocardiogram in the previous 6 months, it was 

arranged to be done at James Cook University Hospital. 

A week was selected to start the study depending on their convenience. We 

were be able to study two patients at a time, in any given week. 

Study week 1 
Day 1: Monday for patients dialyzing on Monday/Wednesday/Friday 

Tuesday for patients dialyzing on Tuesday/Thursday/Saturday 

On arrival for first HD, blood samples will be taken for, Troponin I, Sodium, Potassium, 
Calcium, and Magnesium,  and renal & liver tests and total cholesterol levels. Patient was 
weighed. First ECG was recorded. The CGM was attached by inserting a sensor 
subcutaneously over the abdomen. CGM was set to blind mode. A Holter monitor was 
attached to 3 chest leads I, II, and III. HD started as usual. 

Midway through the dialysis, a blood sample was taken for electrolytes and second ECG 

was recorded. At 2 hour prompt, 2 capillary blood glucose levels were entered onto CGM 

receiver. CGM recording started at this point. 

At the end of dialysis, a further blood sample was taken for electrolytes and a third ECG 

was recorded. Patient weighed again. 

Patients were provided a glucometer to check capillary glucose level and enter onto receiver 

every 12 hours for calibration. CGM and Holter left in place for 7 days. Patients were advised to 

call the emergency mobile number provided at the end of the leaflet if they had any problem 

with the monitors. Similar blood samples and ECG recordings were taken at next two dialysis 

sessions.  

Study week 2 
On arrival for their first HD of the week, blood sample taken for Troponin I. The CGM & Holter 
monitors were withdrawn. Capillary glucose levels were noted. This completed their active 
participation in the study.  

Consented patients had fasting plasma glucose and HbA1c checked. Once 

normal levels were confirmed, patients were invited to take part in the study 
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6.6 CGM 

Continuous glucose monitoring system was used to record the glucose levels for one week 

at a time. Diabetes patients underwent up to three weeks of study with minimum three 

weeks gap in between.  

6.6.1 Device 

Dexcom G4 CGMS was used for the study. This device was selected as it was the only 

available CGM with a blinding option. Patients were blinded from checking the ISF 

glucose levels in real time, to prevent any alterations to insulin doses as training them in 

insulin titration was not incorporated in to the study. Dexcom G4 CGMS was designed to 

record and store data for up to one week.  

6.6.2 Calibration 

Dexcom CGM required calibration at 12 hourly intervals. At the start of the study, this 

would need a two hour start up period once the sensor was inserted and the transmitter was 

linked to the recorder. After the start up period, CGM prompted entry of two capillary 

blood glucose levels obtained using a commercially available glucometer. These were 

entered into the CGM receiver immediately and within five minutes gap. CGMS would 

start ISF glucose monitoring from this time point and recorded ISF glucose levels every 5 

minutes. Patients were trained in entering capillary glucose levels every 12 hours for the 

whole study period and were given a written information guide to follow.  

6.7 Assessing measures of glycaemic variation 

CGM data were downloaded at the end of the study week and all results from individual 

patients were imported on to an excel spreadsheet. CGM was then formatted to be ready 

for the next study. 

6.7.1 Glycaemic variation 

Variation in glucose levels in relation to dialysis was studied. Average glucose levels for 4 

hours before dialysis, during dialysis and 4 hours after dialysis were calculated and 

compared. Data are shown as mean ± 1SD in mmol/l. 

Variation in glucose levels on dialysis days was compared to non-dialysis days. Average 

glucose levels and amplitude of excursion were calculated for dialysis days and non-
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dialysis days. A 24 hour period beginning at the start of HD was taken as the dialysis day 

and the ensuing 24 hour period ending with start of next HD session was taken as the non-

dialysis day. Data were shown as mean ± 1SD in mmol/l. 

Amplitude of glycaemic excursion was examined in relation to insulin regimen in patients 

with diabetes and shown as difference in the mean excursion between different insulin 

regimens. 

6.7.2 Hypoglycaemia 

Hypoglycaemia was defined as ISF glucose level ≤3.5mmol/l. The complete glucose data 

were screened and all episodes with ISF glucose level of ≤3.5mmol/l lasting 20mins or 

more were selected and recorded separately. The duration of these episodes, their 

occurrence on dialysis days and non-dialysis days and occurrence during day and night 

were recorded. The data were examined for frequency of these episodes on dialysis and 

non-dialysis days and during day time and night time. Day time was defined as 7AM until 

11PM and night time was defined as 11PM until 7AM. 

6.7.3 Hyperglycaemia 

Hyperglycaemia was defined as ISF glucose level ≥13.0mmol/l. The complete glucose 

data were screened and all episodes with ISF glucose level of ≥13.0mmol/l lasting 20mins 

or more were selected and recorded separately. The duration of these episodes, their 

occurrence on dialysis days and non-dialysis days and occurrence during day and night 

were recorded. The data were examined for frequency of these episodes on dialysis and 

non-dialysis days and during day time and night time. Day time was defined as 7AM until 

11PM and night time was defined as 11PM until 7AM. 

6.8 Cardiac Monitoring 

Cardiac monitoring was undertaken by both 12 lead ECG and 7 days of Holter monitoring 

in all study patients. 

6.8.1 ECG  

6.8.1.a Device 

12 lead ECGs were recorded using 1200 CE GM Medical systems.  
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6.8.1.b Recording  

12 lead ECGs were recorded three times during each HD session in the first study week for 

patients with diabetes and in their one study week for patients without diabetes. They were 

recorded at the beginning, midway and at the end of the HD session. 

6.8.1.c QTc measurement 

QTc intervals were calculated manually from each ECG by using the tangent method. 

Three consecutive normal QRS complexes on lead II were selected. R-R interval for each 

beat was measured manually and averaged. QT interval was measured using Tangent 

method (Postema and Wilde, 2014), by drawing a horizontal line along the baseline, 

vertical line at the upstroke of Q/q/R wave and a tangential line along the down slope of 

the T wave. Measurement was taken as the distance between the junction of the vertical 

line with the horizontal line and junction of the tangential line and the horizontal line 

(diagram 1). Average of three measures was calculated. QTc interval was then calculated 

using Bezett’s formula (QTc = QT/√R-R). 

 

Figure 6.1: Tangent method for measuring QT interval (obtained from ‘The Measurement of the QT inteval’. 

Curr Cardiol Rev. 2014 Aug;10(3):287-294) 

 

6.8.1.d Intra and Inter individual variation 

Intra-individual variation in QT measurement was reduced by taking QT measurements 

from three consecutive QRS complexes and obtaining an average.  

Inter-individual variation was examined by having a second observer unrelated to the 

study to measure QTc using similar methods on 10 randomly selected ECGs from the 
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study. The second observer was blinded from the initial measurement results to reduce the 

bias.  

6.8.2 Holter monitor 

Cardiac rhythm was monitored during the study week in all patients using a Lifecard CS 

recorder. Patients with diabetes wore the holter monitor for one to three weeks along with 

CGM and patients without diabetes wore it for one week along with CGM.  

Holter monitoring was initiated at the start of the first HD of the week along with CGM 

and left in place for a full week, until the arrival of the patient for their first HD session in 

the following week. 

Patients were given spare electrodes to change during the week along with an information 

leaflet to guide them in correct lead placement.  

Patients were provided with an event dairy to record any symptoms during the week such 

as palpitations, near syncope or syncope, black outs, chest pain and shortness of breath, 

along with date and time. Any recorded symptoms were later correlated with the holter 

recording. 

Holter data were downloaded on to ‘Spacelab healthcare’ software and was examined by 

two electrophysiologists, who were blinded to the patient’s diabetes status.  

Data captured were examined for any arrhythmic episodes and premature complexes and 

were reported in the standard way. Data were then examined for QTc interval and HRV for 

the set times, to match with average glucose level before, during and after dialysis 

sessions.  

Arrhythmic episodes are shown as the frequency of different arrhythmia occurring on 

dialysis and non-dialysis days.  

QTc measures are shown as the difference in the mean QTc in relation to dialysis, mean 

QTc in relation to hypoglycaemia and hyperglycaemia. 

6.9 Blood pressure 

Blood pressure was recorded in all patients at the beginning, midway and at the end of 

each HD session. The change in BP from start to end of HD was calculated. 
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6.10 Electrolytes 

Serum electrolytes were measured at set points in all the patients. 

Blood samples were obtained at the beginning, midway and at the end of the HD session 

during all HD sessions in one to three weeks of participation of patients with diabetes. 

Similar samples were obtained for all three HD sessions in one week of study from 

patients without diabetes.  

Samples were analysed for potassium, corrected calcium, and magnesium levels in the 

central laboratory at James Cook University Hospital. 

The average level for each time point was calculated and shown as a difference in mean ± 

1SD. The difference in electrolyte levels between each time point in a HD session was 

calculated and shown as average drop in the first and second halves of the HD session. 

Change in electrolyte levels during 1
st
, 2

nd
 and 3

rd
 HD sessions were examined. 

6.11 Data analysis 

Data were analysed using SPSS 21 software. The tests used are specified in the results 

section. 

Glycaemic variation indices were calculated using EasyGV software V8.8.2.R2 obtained 

from University of Oxford. 
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Aims of the study 

1. To study the glycaemic variation during haemodialysis in subjects with insulin 

treated diabetes with nil or minimal endogenous insulin secretion using continuous 

glucose monitoring and in control subjects without diabetes. 

 

2. To study the variation in cardiac electrical activity in relation to dialysis using 

Holter monitoring. 

 

3. To explore the relation between glycaemia and cardiac electrical activity. 

Objectives of the study 

1. To understand the variation in glucose levels in diabetic patients in relation to 

haemodialysis with levels before, during and after dialysis. 

 

2. To understand the variation in glucose levels on dialysis days in comparison to 

non-dialysis days. 

 

3. To examine the frequency, duration and symptoms of hypoglycaemia. 

 

4. To examine the frequency and duration of hyperglycaemia. 

 

5. To examine the relationship between average glucose level and HbA1c in 

haemodialysis patients. 

 

6. To explore changes in cardiac rhythm in relation to dialysis. 

 

7. To explore changes in cardiac rhythm in relation to hypoglycaemia. 

 

8. To explore changes in QTc interval in relation to dialysis. 

 

9. To explore changes in QTc interval in relation to hypoglycaemia. 

 

10. To explore changes in QTc interval in relation to hyperglycaemia. 
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Chapter 7: Glycaemic variation 

7.1 Interstitial glucose level recordings in subjects with and without diabetes. 

7.1.1 Subjects with Diabetes 

Glucose levels in relation to haemodialysis were studied to understand the variation during 

and after dialysis, in relation to before dialysis. The periods for pre-dialysis and post-

dialysis were fixed at 4 hours in view of most dialysis sessions lasting 4 hours. However 

the dialysis sessions varied in their duration both within individuals and between 

individuals. The majority (57.3%) of sessions were of 4 hours. All patients had a minimum 

3 HD sessions in the week; with only subject ‘number 11’ having 4 cycles a week 

regularly. Subjects 21 and 25 had 5 and 4 HD sessions in their 3
rd

 week respectively. Table 

below shows the duration of all HD sessions for every subject in the diabetes group in each 

study week (table 7.1).  

Subject 

Number 

(cycles/week) 

Study Week 1 Study week 2 Study week 3 

01 (3, 3) 4hr, 4hr, 4hr 4hr, 4hr, 4 hr Not applicable 

03 (3, 3, 3) 4hr, 4hr, 4 hr 4hr, 4hr, 4 hr 4hr, 3hr 30min, 3 hr 

04 (3, 3, 3) 3hr, 3hr, 3 hr 4hr, 4hr, 4 hr 3hr 40min, 4hr, 4 hr 

09 (3, 3, 3) 4hr, 3hr 50, 3hr 

35min 

4hr, 4hr, 4 hr 4hr, 4hr, 4 hr 

10 (3, 3, 3) 3hr, 3hr, 3 hr 3hr, 3hr, 3 hr 3hr, 3hr, 3 hr 

11 (4, 4, 4) 3 hr 10, 3hr 10, 3hr 

10, 3hr 30 min 

3hr, 3hr 10, 3hr 10, 

3hr 

3hr, 3hr 5, 3hr 20, 3hr 

10min 

15 (3, 3) 4hr, 4hr, 4 hr 3hr 30min, 4hr, 4 hr Not applicable 

19 (3, 3, 3) 4hr, 4hr, 4hr 4hr, 4hr, 4hr 4hr, 4hr, 4hr 

21 (3, 3, 5) 3hr 45, 4hr, 3hr 3hr 30, 4hr, 4hr 2hr 45, 2hr, 2hr 35, 3hr 

45min 

22 (3, 3, 3) 4hr, 4hr, 4hr 4hr, 4hr, 4hr 4hr, 4hr, 3hr 15 

24 (3) 3hr, 3hr, 3hr Not applicable Not applicable 

25 (3, 3, 4) 4hr, 4hr, 4hr 4hr, 4hr, 3hr 30min 2hr 30, 2hr, 2hr 30, 

3hr, 2hr 30 

31 (3, 3) 4hr, 4hr, 4hr 7hr, 7hr, 7hr Not applicable 

38 (3) 4hr, 4hr 10, 4hr Not applicable Not applicable 

41 (3, 3) 4hr, 4hr, 4hr 4hr, 4hr, 4hr Not applicable 
Table 7.1: HD duration for individual subjects in each study week 

The CGM was initiated only on arrival of the patients for their first HD session of the 

week. The start-up capillary glucose levels were checked at 2 hours from the time the 

transmitter and the recorder had established a link and when prompted by the recorder. 
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Standard glucose meters available on the ward were used for all patients. Two glucose 

levels were obtained within 5 minutes and entered onto the CGM receiver. The recording 

of interstitial glucose (IG) levels started from this point. The recording was ended on the 

arrival of the subjects to the 1
st
 HD session in the following week. The total duration of 

recording for individual subjects in all the study weeks in which they participated is shown 

in table 7.2. The complete recording of IG every 5 minutes should provide 288 readings a 

day and 1992 readings for the week, taking into account the lack of recording for the first 2 

hours of the start-up period. 

The glycaemic pattern throughout the recording period of the study week showed a lot of 

variation with multiple peaks and troughs in all patients with diabetes. The recording of IG 

levels for one of the study patients with diabetes in all three weeks is shown in the figure 

below to illustrate this fluctuation. 
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Subject Number 

 

Study Week 1 Study week 2 Study week 3 

01 Days; hours 5 d;  

948 

6 d; 

1505 

DNP
#
 

No. of readings 

03 Days; hours 8 d; 

1528 

8 d; 

1546 

8 d 

1681 No. of readings 

04 Days; hours 6 d; 

1069 

6 d; 

1224 

6 d; 

1086 No. of readings 

09 Days; hours 8 d; 

1555 

7 d; 

1584 

8 d; 

1943 No. of readings 

10 Days; hours 8 d; 

1974 

8 d; 

1980 

6 d; 

1216 No. of readings 

11 Days; hours 8 d; 

1933 

8 d; 

1988 

8 d; 

1983 No. of readings 

15 Days; hours 8 d; 

1791 

8 d; 

1551 

DNP 

No. of readings 

19 Days; hours 8 d; 

1822 

8 d; 

1971 

7 d; 

1656 No. of readings 

21 Days; hours 8 d; 

1674 

8 d; 

1839 

8 d; 

1940 No. of readings 

22 Days; hours 8 d; 

1691 

8 d; 

1981 

8 d; 

1829 No. of readings 

24 Days; hours 8 d; 

1983 

DNP DNP 

No. of readings 

25 Days; hours 8 d; 

1167 

8 d: 

1683 

7 d; 

1248 No. of readings 

31 Days; hours 6 d; 

1374 

7 d; 

1984 

DNP 

No. of readings 

38 Days; hours 8 d; 

1926 

DNP 

 

DNP 

No. of readings 

41 Days; hours 8 d; 

1414 

8 d; 

1715 

DNP 

No. of readings 
Table 7.2: shows the duration of CGM recording in individual study subjects with diabetes in all the study 

weeks they participated. Days represent calendar days with a maximum of 8 days including starting and 

ending days. #DNP- Did Not Participate. 
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Figure 7.1: Shows the recording of IG levels in subject number 19 during 3 study weeks. This is a 

representative graph to depict the variation in glucose levels through the week. The start time for the HD 

sessions in each study week varied, as shown with an arrow matching the colour of the graph in the 

respective week. 

 

7.1.2 Control group 

Each control subject without diabetes on maintenance HD underwent 1 week of study as 

per the protocol. Four subjects underwent 3 HD sessions a week and one subject 

underwent 4 HD sessions a week. They were all on standard 4 hourly HD sessions, with 

one of the dialysis units adding an extra 10 to 15 minutes to ensure a full 4 hours of 

dialysis. Subject number 39 had the 4
th

 HD session duration shortened due to problems 

with venous access.  The number of HD sessions per week and their duration is shown in 

table 7.3 and the CGM recording for these weeks is shown in table 7.4. 

 

Subject Number 

(cycles/week) 

Study Week 1 

32 (3) 4hr 10min, 4hr 10min, 4hr 10min 

35 (3) 4hr 10min, 4hr 10min, 4hr 10min 

36 (3) 4hr 15min, 4hr 10min, 4hr 10min 

37 (3) 4hr, 4hr, 4hr 

39 (4) 4hr, 4hr, 4hr, 2hr 15min 
Table 7.3: number and duration of HD sessions in individual control group subjects 
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Subject No CGM duration 

32 Days; hours 8 d; 

1684 No. of recordings 

35 Days & hours 8 d; 

1969 No. of recordings 

36 Days; hours 8 d; 

1915 No. of recordings 

37 Days; hours 8 d; 

1834 No. of recordings 

39 Days; hours 8 d; 

1688 No. of recordings 
Table 7.4: shows the duration of CGM recording available for subjects in control group.     Days represent 

calendar days which could be up to 8 days including starting and end days. 

 

Fluctuations in IG levels were seen in the non-diabetic group during the study period. The 

recording of IG levels during the whole of the study week in subject numbered 35 without 

diabetes is shown in figure 7.2. Subject 35 is chosen as the maximum number of IG levels 

were recorded (98.8% of expected). 

Figure 7.2: Shows the recording of IG levels in subject number 35 during the study week as a representative 

graph of variation in IG levels in subjects without diabetes. HD periods are shown with arrows pointing to 

start and end of session. Only 1hr 45min of 1
st
 HD is captured.  

 

7.2 Glycaemic variation in relation to haemodialysis 

The variation of IG levels during pre-dialysis, dialysis and post-dialysis periods in 

individual subjects with and without diabetes were analysed individually and for the 
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groups as a whole. The IG levels were erratic without any obvious consistent pattern in 

individual subjects with diabetes or in the group as a whole.  

The pattern of IG levels during the pre-dialysis period of 4 hours, dialysis period with 

varying duration and post-dialysis period of 4 hours were analysed separately for the 

diabetes group. There was a trend towards a reduction in IG level as haemodialysis 

progressed. 

The variation in IG levels in subjects with and without diabetes during HD for individual 

sessions in all study weeks where IG levels were available are shown in figures 3a and 3b. 

In the diabetes group data were available for 105 HD sessions. In 75 sessions the data were 

available for more than 75% of HD time. Only these data were selected to represent the 

changes during HD in the below graph. One subject with diabetes had persistent ‘high’ 

recordings throughout the HD session, appearing as a flat line in figure 7.3a. One subject 

was switched onto overnight HD in the second study week. 

  

Figures 7.3a: Shows the IG levels during HD sessions of all subjects with diabetes (n=75) 

 

There is no consistent pattern, though there is trend towards a drop in IG level in the initial 

part of the HD session. 
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Figure 7.3b: Shows the variation in IG levels during HD sessions in all subjects in control group (n=15) 

 

There was a trend of gradual reduction in IG levels during the first half of the HD in 

subjects without diabetes, with variable trends in the second half. One subject had 

persistently low IG during one of the HD sessions. 

Data were analysed to examine the variation in average IG levels from the pre-HD to post-

HD periods. Paired samples where average IG level was available for all three periods 

were selected. In the diabetes group paired data were available for 70 out of 117 HD 

cycles. 

There was a trend to drop in average IG from pre-HD period to HD period followed by rise 

in the average IG level in the post-HD period. The results are shown as change in average 

IG level expressed as percentage of change from pre-HD to HD period and HD to post-HD 

period (figure 7.4a). In large majority of HD cycles there is negative change from pre-HD 

to HD period, whereas a positive change was seen from HD to post-HD period.  
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Figure 7.4a: shows the change in average IG levels between pre-HD to HD period and HD to post-HD 

period, as percentage of change in diabetes subjects (n=70) 

 

Type 1 DM vs Type 2 DM 

Data was examined for any difference in the average IG levels around HD between type 1 

and type 2 diabetes patients, using the paired samples, where the levels were available for 

all 3 periods. Mean, SD and 2 tailed significance were obtained using ‘Independent-

Samples T test’.  

There was no difference in mean IG levels between type 1 and type 2 diabetes groups 

during pre-HD, HD or post-HD periods (Table 7.5). 

 

 Type 1 

(n=30) 

Type 2 

(n=37) 

p= 

PreHD IG  

(mmol/l) 

11.5±4.6 11.6±5.2 0.943 

HD IG 

(mmol/l) 

8.8±4.0 8.7±3.8 0.931 

PostHD IG 

(mmol/l) 

11.9±4.7 10.7±3.7 0.244 

Table 7.5: shows the comparison of mean IG levels (mean ± SD) during pre-HD, HD and post-HD periods 

in type 1 and type 2 diabetes  

 

Paired data were available for 10 HD cycles in the control group. There was variation in 

the pattern of change in average IG from pre-HD to HD and to post-HD periods. Some 

cycles showed a similar trend to the diabetes group, whereas other cycles showed a 

continued reduction in IG levels in the post HD period. Few cycles showed an elevation in 

IG level through the HD and into the post-HD period (figure 7.4b).  
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Figure 7.4b: shows the trend in the average IG level from pre-HD period to HD period and post-HD period 

in non-diabetes subjects (n=10) 

 

7.3 Variation in glycaemic indices on dialysis days vs non-dialysis days 

Data were analysed to examine differences in the indices of glycaemic variation on 

dialysis days in comparison to non-dialysis days. Dialysis days were defined as 24 hours 

from the start of the haemodialysis session. Non-dialysis days were defined as 24 hours 

before the start of haemodialysis and with a gap of 24 hours from the start of the previous 

dialysis session.  

Interstitial Glucose (IG) readings for each day were extracted after identifying the start 

time and 24 hour period from that point for the dialysis days. For the non-dialysis days, 

they were identified from the end point of the dialysis day for a 24 hour period from that 

point, or to the start of the next dialysis session, whichever was earlier.  

All glycaemic variation indices were obtained using ‘EasyGV excel spreadsheet version 

8.8.2.R2’ obtained with permission from Nathan R Hill, Oxford University.  

The following table shows the number of days when the data were available for both 

subjects with diabetes and control subjects. 

Group Dialysis day Non-dialysis day Total 

Diabetes 117 126 243 

Control 16 19 35 

Total 133 145 278 
Table 7.6: shows the number of dialysis and non-dialysis days where data were available 
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The IG data for each day were examined in detail to look for any missing data. IG levels 

were recorded every 5 minutes as programmed on CGM. Missing values for any expected 

time or length of time were identified and space was added in the data column equivalent 

to the length of missing data i.e. 1 row for one missing value. This was to enable 

interpolation of the data where possible using the software program, in order to calculate 

the indices of glycaemic variation.  

288 readings of IG were expected for each day of complete recording. On the first day of 

the study week for each subject, a maximum of 264 readings were expected due to the 2 

hour start up time from the initiation of CGM.  

The table below shows the number of dialysis days and non-dialysis days that subjects 

experienced in each group during the whole of study period.  

Group Dialysis days Non-dialysis days Total 

Diabetes  118 141 259 

Control 16 19 35 

Total 134 160 294 
Table 7.7: shows the number of dialysis and non-dialysis days in each group during study 

 

There were no available recordings or very minimal data for one dialysis day and 15 non-

dialysis days in the diabetes group.  

The IG recordings available in terms of number of readings and their percentage of 

expected numbers are shown below. 

Group Expected 

number/day 

Minimum 

recordings/day  

Maximum 

recordings/day  

Mean (Range) 

percentage of expected 

readings 

Diabetes 288 24 289 88.0% (8.3 to 100) 

Control 288 116 292 92.3% (40.0 to 100) 
Table 7.8: shows the expected IG recordings and the available recordings 

 

In the combined cohort, 261 days of recordings out of 278 days in total had 50% or more 

readings available. This was higher in the control group with 34 out of 35 days having 

50% or more compared to 227 out of 243 days in the diabetes group.  

Data were modified where the recording read ‘Low’ or ‘High’ for analysis purpose. ‘Low’ 

readings were replaced by 2.1 and ‘High’ readings were replaced by 22.3 mmol/l. This 
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would have affected the estimation of average glucose levels by reducing the average in 

the episodes where ISF glucose was above the measurable limit and increasing the average 

in the episodes where ISF glucose was below the limit. 

7.3.1 Variation in subjects with diabetes 

7.3.1.a Mean glucose levels  

The mean glucose levels for an individual day of recording was obtained using ‘EasyGV’ 

excel spreadsheet. The mean of these levels on dialysis days was compared to mean of 

mean glucose levels on non-dialysis days.  

The mean glucose levels varied from 3.6 to 22.3 mmol/l for all days (n=243). The overall 

mean was 11.6±3.7 with no difference between dialysis days (11.5±3.8, n=117) and non-

dialysis (11.7±3.6, n=126) days.   

7.3.1.b Standard deviation  

The SD of glucose levels were obtained similarly using ‘EasyGV’ spreadsheet. The SDs 

on the dialysis days were compared to non-dialysis days. 

The SD of glucose levels for the dialysis days was significantly higher (3.9±1.6) compared 

to the non-dialysis days (3.5±1.5) (p<0.05), suggesting greater IG variation on dialysis 

days (figure 7.5). 

 

 
Figure 7.5: shows the range and median of SD of glucose levels on dialysis and non-dialysis days in 

diabetes subjects calculated using ‘EasyGV’ excel spreadsheet. 

 

 

p <0.05 
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7.3.1.c Mean amplitude of glycaemic excursion (MAGE) 

MAGE was calculated using ‘EasyGV’ excel spreadsheet and variation on dialysis days 

were compared to non-dialysis days.  

 

 

 
Figure 7.6: shows the median and range of MAGE for dialysis and non-dialysis days in diabetes subjects 

using EasyGV excel spreadsheet 

 

 

The mean amplitude of glycaemic excursion was higher on dialysis days (8.1±4.6, n=105) 

compared to that on non-dialysis days but was not statistically significant (7.0±3.9, n=116) 

(p=0.056). 

Type 1 DM vs Type 2 DM 

Data were examined for any differences in mean IG, SD and MAGE on dialysis and non-

dialysis days between type 1 and type 2 diabetes groups. Glycaemic excursion (MAGE) is 

significantly higher in type 1 diabetes group compared to type 2 group on dialysis days but 

not on non-dialysis days (Table 7.9). However the mean IG level and SD of mean IG 

levels are significantly higher in type 1 diabetes group, on both dialysis and non-dialysis 

day. 

 

 

 

p=0.056 
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 Glycaemic 

variation 

indices 

Type 1 Type 2 p= 

 

HD days 

Mean 12.3±3.7(n=52) 10.7±3.7 (n=60) 0.028 

SD 4.3±1.7 (n=52) 3.5±1.3 (n=60) 0.010 

MAGE 9.2±5.1 (n=44) 7.3±4.1 (n=56) 0.044 

 

Non-HD days 

Mean 13.0±3.9(n=53) 10.8±3.2 (n=67) 0.001 

SD 3.8±1.5 (n=53) 3.2±1.4 (n=67) 0.024 

MAGE 7.5±4.4 (n=47) 6.6±3.6 (n=64) 0.216 

Table 7.9: shows the difference in Mean IG, SD and MAGE on HD and nonHD days between type 1 and type 

2 diabetes groups. Statistical significance was tested for using ‘Summary Independent-Samples T test’. 

 

 

C-Peptide negative vs minimally positive 

Data were examined to for any difference in the indices of glycaemic variation between C-

peptide negative and minimally positive groups as defined for study purpose. Mean and 

SD levels were significantly higher in C-Peptide negative groups on HD as well as nonHD 

days. However the glycaemic excursion (MAGE) was not significantly higher in C-Peptide 

negative group on both HD and nonHD days compared to C-Peptide minimally positive 

group (Table 7.10). 

 

 Glycaemic 

variation indices 

C-peptide 

negative 

C-peptide 

Minimally positive 

p= 

HD days Mean 12.2±3.8 (90) 9.0±2.2(27) 0.000 

SD 4.1±1.6 (90) 3.1±1.3 (27) 0.003 

MAGE 8.5±4.6 (80) 6.7±4.1 (25) 0.076 

Non-HD days Mean 12.5±3.7(91) 9.5±2.3 (35) 0.000 

SD 3.7±1.5 (91) 2.8±1.3 (35) 0.003 

MAGE 7.3±4.1 (81) 6.2±3.2  (35) 0.142 

Table 7.10: shows the difference in the Mean IG, SD and MAGE, on HD and nonHD days between C-

Peptide negative and C-Peptide minimally positive diabetes groups. P values were derived using ‘Summary 

Independent-Samples T test’. 

 

 

7.3.1.d Hypoglycaemia and Hyperglycaemia  

Data were examined for the duration of time spent in hypoglycaemia and hyperglycaemia 

on dialysis days compared to non-dialysis days. 
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The following table shows the percentage of time spent in hypoglycaemia, euglycaemia 

and hyperglycaemia on dialysis days and non-dialysis days.  

Glycaemic state Dialysis (n=92) Non-Dialysis (n=114) P= 

Hypoglycaemia 5.9±15.4 (0.0 – 96.9) 3.3±12.4 (0.0 – 98.9) 0.187 

Euglycaemia 2.7±2.8 (0.0 – 15.3) 3.8±4.1 (0.0 – 19.4) <0.05 

Hyperglycaemia 91.4±15.9 (0.0 – 100) 92.9±12.8 (0.0 – 100) 0.464 
Table 7.11: Shows the difference in time spent in hypoglycaemia, euglycaemia and hyperglycaemia on 

dialysis and non-dialysis days, as percentage of time recorded in the 24hr period. Results expressed as 

mean±SD (range) 

 

 

The durations of hypoglycaemia, euglycaemia and hyperglycaemia in minutes were 

converted to the percentage of the time duration for which IG levels were available. The 

time duration in minutes of hypoglycaemia and hyperglycaemia varied on individual days 

depending on the duration of recording available.  

There was no significant difference in the mean duration spent in hypoglycaemia or 

hyperglycaemia on dialysis days compared to non-dialysis days. However more episodes 

of hypoglycaemia were noted on dialysis days (35.9% vs 25.4%, p<0.001) and more 

episodes of hyperglycaemia were noted on non-dialysis days. Time spent in euglycaemia, 

however, was significantly less on non-dialysis days compared to dialysis days, although 

the overall duration was very small.   

Mean duration was not available for the three variables on 25 dialysis days and 12 non-

dialysis days. 

Out of 92 dialysis days where mean duration was calculated, 59 (64.1%) days had no 

hypoglycaemic episodes. Out of 114 non-dialysis days where mean duration was available, 

85 (74.6%) had no hypoglycaemic episodes. Prolonged episodes of hypoglycaemia lasting 

more than 50% of recorded duration occurred on 3 of 92 dialysis days compared to 2 out 

of 114 non-dialysis days.  

13 out of 92 (14.1%) dialysis days showed persistent hyperglycaemia, compared to 16 

(14.0%) out of 114 non-dialysis days.  
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7.3.2 Variation in subjects without diabetes 

7.3.2.a Mean IG levels 

Mean IG levels were obtained for dialysis and non-dialysis days using the same software 

in control group subjects. 

Data were available for 16 dialysis days and 19 non-dialysis days. The mean of the 

individual day means on dialysis days was compared to non-dialysis days. 

 

 
Figure 7.7: shows the median and the range of mean IG levels for dialysis and non-dialysis days in control 

subjects 

 

The overall mean of mean IG levels on dialysis days (5.9±0.7 mmol/l) was significantly 

lower than mean of mean IG levels on non-dialysis days (7.1±1.3 mmol/l) (p<0.005) 

 

7.3.2.b SD of IG levels 

Standard deviation for each day was calculated using the EasyGV software. Mean SD on 

dialysis days was compared to non-dialysis days.  

 

n=16 

n=19 

p<0.005 
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Figure 7.8: shows the median and range of SD of IG levels on dialysis and non-dialysis days in control 

subjects. 

 

The mean of SD of IG levels on dialysis days (1.76±0.68) was not significantly different 

from that of non-dialysis days (1.95±0.73) (p=0.431) 

7.3.2.c Mean Amplitude of Glycaemic Excursion 

MAGE for individual dialysis days (n=15) and non-dialysis days (n=19) was calculated 

using EasyGV excel spreadsheet. 

 

 

 
Figure 7.9: shows the median and the range of MAGE for dialysis and non-dialysis days in control subjects 

calculated using EasyGV excel spreadsheet 

 

 

The overall mean of MAGE on dialysis days (3.8±1.1) was not significantly different from 

that on non-dialysis days (3.7±1.7).  

p=0.431 
n=16 

n=19 

n=15 

n=19 
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7.3.2.d Hypoglycaemia and Hyperglycaemia 

Out of 16 dialysis days, both hypoglycaemic and hyperglycaemic episodes were recorded 

on only one day. This showed 54.1% of time being spent in hypoglycaemia and 38.0% of 

time spent in hyperglycaemia, with a euglycaemic period of 8.0%.  

Out of 19 non-dialysis days, 3 days had documented hyperglycaemia. There was no 

hypoglycaemia on these days. The time in hyperglycaemia ranged between 89.8% and 

97.5%. 

Hypoglycaemia and hyperglycaemia are discussed in more detail in the following chapters.  

7.3.3 Comparison of glycaemic variation between subjects with diabetes and the control 

group 

The individual glycaemic variation indices were compared between the two groups for 

dialysis and non-dialysis days separately.  

7.3.3.a Difference on dialysis days  

As expected, the difference in the glycaemic variation indices including mean IG level, 

MAGE and SD on both the dialysis days and non-dialysis days were significantly higher in 

the diabetes group compared to the control group. These are shown in the table below. 

 Diabetes group  Control group  P= 

Overall 

Mean IG 

(mmol/l) 

Dialysis day 11.5±3.8 (n=117) 5.9±0.7 (n=16) p<0.0001 

Non-dialysis day  11.7±3.6 (n=126) 7.1±1.3 (n=19) p<0.0001 

Mean SD Dialysis day 3.9±1.5 (n=117) 1.8±0.7 (n=16) p<0.0001 

Non-dialysis day 3.4±1.4 1.9±0.7 p<0.0001 

Mean  

MAGE 

Dialysis day 8.1±4.6 n=105) 3.8±1.1 (n=15) p<0.0001 

Non-dialysis day 7.0±3.9 (n= 116) 3.7±1.7 (n=19) p<0.0001 
Table 7.12: Shows three indices of glycaemic variation in the diabetes and control groups. Data are 

expressed as the mean ± SD for each value.   

 

As expected, all three indices of glycaemic variation were significantly higher in the 

diabetes compared to the control group. 
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Chapter 8: Hypoglycaemia 
 

Hypoglycaemia was defined as an IG level ≤ 3.5mmol/L for this study. All periods of 

hypoglycaemia lasting more than 20 minutes occurring during the study periods were 

noted. Hypoglycaemia occurring in relation to dialysis was defined as episodes occurring 

during the 4 hour Pre-HD period, during HD and the 4 hour Post-HD period. Persistent 

hypoglycaemia was defined as IG levels  ≤3.5mmol/l without any reading above 

3.5mmol/l for the whole length of the pre-HD, HD or post-HD periods. 

Hypoglycaemia in relation to dialysis was calculated as percentage of time recorded, i.e. 

duration of hypoglycaemia / duration of recording for the given period x100. This was in 

view of the absence of recording for part of the time period analysed on some dialysis 

days.  

8.1 Hypoglycaemia in diabetes subjects 

8.1.1 Hypoglycaemia in relation to dialysis 

The 15 subjects with diabetes underwent 117 cycles of HD during the study period. The 

selected pre-HD and post-HD duration was fixed at 4 hours (240 minutes). HD duration 

was dependent upon the length of dialysis of individual cycles which varied. Over half 

(55.6%) of HD cycles were of 4 hours duration. However 44 (37.6%) HD sessions were 

shorter than 240 minutes ranging from 120 to 230 minutes. 5 cycles were slightly longer at 

245 to 250 minutes and 3 cycles were of 420 minutes in one subject who was changed 

from usual daytime dialysis to overnight dialysis by his 2
nd

 study week. Hence data were 

noted for the given HD periods based upon the length of the dialysis session. The total 

duration of CGM recording available for every session (PreHD/HD/PostHD) was noted. 

The percentage of available recording to expected recording was calculated.  
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Period Expected 

number of 

recordings 

Actual 

Number of 

recordings 

Percentage (Mean 

(SD)) of expected 

period recorded 

Minimum 

length of 

recording 

(minutes) 

Maximum 

length of 

recording 

(minutes) 

Pre-HD 83 82 87.1 (26.2) 10 240 

HD 117 107 84.0 (26.4)  40 420 

Post-HD 117 114 92.2 (17.9) 10 240 
Table 8.1: Shows the number of periods of pre-HD, HD and post-HD expected to be recorded based upon 

time of initiation of CGM and number of HD cycles in the study period. 1
st
 column shows the different 

periods on dialysis days, 2
nd

 column shows the number of periods expected to be recorded, column 3 shows 

the number of periods where any recording was available, column 4 shows the percentage of period 

recorded in relation to expected length, column 5 shows the minimum length of recording available and 

column 6 shows the maximum length of recording available.  

 

There was a wide variation in the length of available recordings of IG on CGM. Hence the 

periods of hypoglycaemia were analysed for duration in relation to recorded duration 

rather than expected duration. There were 7 episodes of hypoglycaemia occurring during 

pre-HD, 11 episodes during HD and 9 episodes during the post-HD period. The length of 

hypoglycaemia during these episodes is shown in table 2. 

Period No. of 

episodes 

Time length (minutes) Median 

Time 

(mins) 

Median time (Min-Max) 

Hypo duration  in % of 

time recorded  

Minimum Maximum 

Pre-HD 7 5 155 45 19.0 (2.1 – 92.8) 

HD 11 10 205 40 37.5 (8.3-72.7) 

Post-HD 9 15 210 65 27.1 (6.4 – 87.5) 
Table 8.2: Shows the frequency of hypoglycaemia on dialysis days at pre-HD, HD and post-HD periods. 

 

The length of hypoglycaemia recorded during the Pre-HD, HD and Post-HD periods varied 

widely. The mean and median duration was longer during the Post-HD period compared to 

the HD and Pre-HD periods when the absolute duration in minutes was considered. 

However when the data were analysed in percentage of the duration recorded, 

hypoglycaemic episodes appeared to be longer during HD compared to the pre-HD and 

post-HD periods as seen in table 2. However, given the small number of events statistical 

tests for significance in the difference in duration of hypoglycaemia in these periods were 

not undertaken. 
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8.1.2 Hypoglycaemia on dialysis and non-dialysis days 

Occurrence of hypoglycaemic episodes on dialysis days (24hrs from starting of HD), and 

on non-dialysis days (24hours from start of previous HD or to the start of next HD) were 

examined for the difference in frequency and patterns of hypoglycaemia.  

71 episodes of hypoglycaemia were recorded in 13 of 15 diabetic subjects, with 2 subjects 

having no episodes during the study period. The frequency between subjects varied from 1 

to 12 episodes. 

The hypoglycaemic episodes were nearly twice as common on dialysis days compared to 

non-dialysis days (p<0.001) (figure 8.1).   

 

 Figure 8.1: Shows the frequency of occurrence of hypoglycaemia on dialysis vs non-dialysis days 

 

There was no difference in the mean duration of episodes between dialysis days and non-

dialysis days (p=0.982) (figure 8.2).   Median duration was 75minutes (20 to 420) on HD 

days compared to 67.5 minutes (20 to 320) minutes on non-HD days.  
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Figure 8.2: Mean duration of hypoglycaemic episodes on dialysis and non-dialysis days.  

 

The longest period of hypoglycaemia was recorded on an HD day lasting 420 minutes 

compared to 320 minutes on a non-dialysis day. There were 4 episodes of persistent 

hypoglycaemia lasting from 325 to 420 minutes on dialysis days. However excluding these 

outliers, the duration of hypoglycaemia appeared longer on non-HD day (figure 8.3). 

 

 

 
 
Figure 8.3: Shows the range, inter-quartile range and median of hypoglycaemic episodes in minutes 

occurring on dialysis and non-dialysis days. There are 4 outlier episodes on dialysis days lasting 325, 330, 

350 and 420 minutes.  
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8.1.3 Diurnal variation in occurrence of hypoglycaemia 

The episodes of hypoglycaemia were studied for the time of occurrence for daytime and 

nocturnal frequency. Day time was defined as 7AM to 11PM and night time as 11PM to 

7AM. Episodes continuing from day to night or vice versa were considered as either 

daytime episodes or nocturnal episodes based upon the maximum duration of that episode 

occurring in day or night time respectively. 

The frequency of hypoglycaemia was higher during daytime than night time (p<0.001) 

(figure 8.4). 

 

Figure 8.4: Frequency of episodes of hypoglycaemia occurring during daytime (7AM till 11PM) and night 

time (11PM till 7AM). 

 

The duration of hypoglycaemia was examined for differences between day time and 

nocturnal episodes. Though the mean duration of hypoglycaemia was longer during night 

time compared to day time episodes (mean ± SD: 119.84 ± 100.92 vs 102.82 ± 82.25), it 

was not statistically significant (p=0.436). The longest duration recorded during day time 

was 420 minutes compared to 350 minutes at night (figure 8.5). 
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Figure 8.5: Shows the range, interquartile range and median of hypoglycaemic episodes occurring during 

day time (7AM to 11PM) and night time (11PM to 7AM). 

 

The duration of hypoglycaemic episodes was examined for any difference in diurnal 

occurrence between dialysis and non-dialysis days.  

The data were further analysed to look at the difference in frequency and duration of 

hypoglycaemia during day and night on HD and non-HD days. There were only few more 

episodes of hypoglycaemia during the day compared to night time on both dialysis and 

non-dialysis days (Table 8.3)  

 

Dialysis Day HD day Non-HD day Total 

Time of the Day 

Day time 25 14 39 

Night 22 10 32 

Total 47 24  
Table 8.3: shows the frequency of occurrence of these episodes in relation to time and dialysis. 

 

The difference in mean duration of the episodes in relation to time and dialysis was 

analysed. This was longest during the night time on non-dialysis days, though with a fewer 

number of episodes  (Table 8.4). 

 

 HD day Non-HD day 

Day time 103.0 ± 86.6 (20 - 420) 102.5 ± 76.9 (20 – 230) 

Night time 118.6 ± 103.1 (20 – 350) 122.5 ± 101.1 (25 – 320) 
Table 8.4: shows the difference in duration [mean ± SD (range) in minutes] of hypoglycaemia in relation to 

time and dialysis. 
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8.2 Hypoglycaemia in the control group 

IG ≤3.5mmol/l was used as a definition of hypoglycaemia in the control group as in the 

diabetes group. All episodes of hypoglycaemia lasting 15minutes or more were recorded. 

18 episodes of hypoglycaemia were noted in total occurring in all 5 participants in the 

control group. All recordings reading ‘low’ were converted to 2.1 for analysis purposes. 

This could have affected the mean IG level for that episode and the overall mean. ‘Low’ 

readings were recorded in one subject persistently for 3hrs 20 minutes during one episode 

and for 2hrs 25 minutes during another episode. In another subject, ‘low’ readings were 

recorded only for 10 and 20 minutes separately as part of a prolonged episode.   

The duration of these episodes varied between 20 to 390 minutes with a mean duration of 

103.6 minutes. Overall mean IG was 3.1±0.3 mmol/l (range: 2.4 to 3.4 mmol/l).  

14 of these 18 episodes occurred on HD days, including HD and in the 24 hours from the 

start of HD. One of these episodes started in the pre-HD period and continued through the 

HD and in the post-HD periods. Hence this was counted as occurring on the HD day. Only 

4 episodes occurred in the non-HD days. One episode on a HD day continued into the non-

HD day. Due to a small number of events on overall and specifically on non-HD days, 

statistical significance was not calculated. 

Hypoglycaemic episodes occurring on HD days were prolonged with a mean duration of 

126±132 minutes (range 20 to 390). 5 of these episodes lasted 190, 200, 290, 345 and 390 

minutes. Hypoglycaemic episodes on non-HD days were of shorter duration with an 

average duration of 25 mins (range 15 to 35 minutes). 

Data were examined to analyse the time of occurrence of these episodes with day and night 

defined in the same way as for the diabetes group. 12 episodes occurred in the day and 6 

episodes occurred in the night. Two of the prolonged episodes of 200 and 390 minutes 

occurred during the night and the rest occurred during the day. The average duration of 

these was not different between day and night (day vs night: 114±118 vs 116±151 

minutes). However the average length in both periods is skewed due to fewer episodes of 

very prolonged hypoglycaemia. 
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Chapter 9: Hyperglycaemia 
 

Hyperglycaemia was defined as an interstitial glucose level ≥ 13.0mmol/l on the CGM 

readings for the study purpose.  

Occurrence of hyperglycaemia in relation to dialysis was looked at by examining the time 

spent with hyperglycaemia during a pre-HD period of 4 hours, the HD period and a post-

HD period of 4 hours.  

Duration of recording available for analysis for the above periods varied. Hence the 

percentage of recording available out of the expected duration was calculated. 

Hyperglycaemic duration was then calculated as percentage of available duration of 

recording.  

9.1 Hyperglycaemia in diabetes subjects 

There were 117 cycles of HD in the 15 diabetic subjects during the study period. Only 83 

HD cycles were expected to have any recording for the Pre-HD period given that the 

initiation of the CGM recording was at the beginning of the first dialysis session. All 117 

HD cycles were expected to have some recording for that period. However only 116 cycles 

were expected to have post-HD periods recorded (Table 1).  

The time period examined for pre-HD and post-HD remained constant at 240 minutes (4 

hours). However, the duration of HD varied between 120 to 420 minutes with a mean ± 

SD duration of 222.95 ± 44.93 minutes. One patient had 3 cycles of 420 minutes (7 hours) 

during his second study week after changing over from 4 hourly daytime cycles to 7 hourly 

overnight cycles.  

Period Expected number 

of cycles 

Number of cycles 

with available 

recording 

Ratio of available 

recording to expected 

length (mean ± SD) 

Pre-HD 83 82 87.02 ± 26.2 

HD 117 107 83.97 ± 26.4 

Post-HD 116 114 92.15 ± 17.9 
Table 9.1: Shows the number of cycles expected to be recorded, number of cycles where any length of 

recording of IG is available and percentage of the available recording in relation to expected duration 

 

306 episodes of hyperglycaemia were noted. The average IG during these episodes was 

16.2±2.3 mmol/l (range 13.0 to 22.1). 
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9.1.1 Hyperglycaemia in relation to dialysis 

The frequency of hyperglycaemia was much higher during the post-HD period compared 

to the pre-HD and HD periods. The median duration of hyperglycaemia was also longer 

during the post-HD period. However compared to the HD period the median duration was 

much longer during the pre-HD and post-HD periods (Table 9.2). 

Period Frequency  Median duration 

(minutes) 

Minimum duration 

(minutes) 

Maximum 

duration(minutes) 

Pre-HD 41 125 5 240 

HD 29 50 5 240 

Post-HD 65 140 10 240 
Table 9.2: Shows the frequency, median, minimum and maximum duration of hyperglycaemia in relation to 

HD 

 

Given the variation in the length of the available recording for these periods, the duration 

of hyperglycaemia was analysed as a proportion of the available recording.  The 

proportion of the available recording in the hyperglycaemic range was similar during the 

pre and post-HD periods. This was much longer compared to the proportion of the 

hyperglycaemic periods during HD (Table 9.3). 

Period  Median 

duration (in %) 

Minimum 

duration (in %) 

Maximum 

duration (in %) 

Pre-HD 64.8 2.1 100 

HD 29.2 2.8 100 

Post-HD 64.6 4.2 100 

Table 9.3: Shows the median and the range of proportion of the available recording during 

pre-HD, HD and post-HD periods spent in hyperglycaemia. 

 

There were periods where IG persisted in the hyperglycaemic range in all three periods. 

The duration of hyperglycaemia was significantly longer in the pre HD compared to the 

HD period (p= 0.002). Similarly, the duration of hyperglycaemia was significantly longer 

in the post-HD compared to HD period (p=<0.001). 

9.1.2 Hyperglycaemia in comparison between dialysis and non-dialysis days 

306 episodes of hyperglycaemia lasting 20minutes or more were noted in all subjects.  

A greater number of episodes of hyperglycaemia occurred on the non-HD day (n=158) 

compared to the HD day (n=126) (51.6% vs 41.2%). 7.2% (n=22) of these episodes 

overlapped into both periods.   
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However the duration of the hyperglycaemic episodes in minutes on non-HD days was not 

statistically significant compared to the duration of episodes on HD days (257.9±277.3 vs 

266.7±263.3, p=0.786). 

The mean duration of hyperglycaemia as percentage of recording was longer on HD days 

compared to non-HD days (21±18.5 vs 19.6±20.6), but this difference was not significant 

(p=0.560).  

9.1.3 Occurrence of hyperglycaemia in relation to time of the day 

The majority of these episodes occurred in the day time with 188 recorded in the day 

compared to 50 episodes at night. 68 episodes were spread through both periods, either 

starting in the day time and continuing into night, or vice versa.  

The percentages of recorded time spent in hyperglycaemia during day, night and combined 

periods are shown in the table below. 

Time of occurrence N= Mean duration (in %) SD (in %) 

Day (7AM to 11PM) 187 14.1 14.9 

Night (11PM to 7AM) 50 17.3 14.1 

Combined  67 43.0 20.2 
Table 9.4: shows the duration of hyperglycaemia as the percentage of time recorded in relation to time of 

occurrence. 

 

The duration of hyperglycaemic episodes in minutes were longer during the night than day 

(mean±SD: 203.9±154.3 vs 169.2±146.0). However this was not significant (p=0.141). 

The difference in the proportion of recording in hyperglycaemic range during night and 

day was also not significant (p=0.193). 

9.2 Hyperglycaemia in control group 

IG ≥13.0mmol/l was set as a definition of hyperglycaemia in the control group in order to 

match the criteria set for the diabetes group. All episodes with IG ≥13.0mmo/l lasting 20 

minutes or more were analysed. 

9 episodes of hyperglycaemia were recorded in the control group occurring in 4 of 5 

subjects. The frequency of episodes was 1 - 5 episodes/patient in one week.  

The average of mean IG during these episodes was 14.8±1.1 mmol/l (range of means: 13.8 

to 17.0). The mean duration was 76.6±51.1 minutes (range: 20 to 195). 7 out of 9 episodes 
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lasted 60 minutes or more, ranging from 60 to 195 minutes.  There was no ‘High’ reading 

recorded in any control patient.  

7 out of 9 episodes were recorded on a non-HD day and 7 out of 9 episodes occurred 

during daytime. Out of 2 nocturnal episodes, one occurred on an HD day and another one 

on a non-HD day. 

Due to the small number of events, the relation between time of occurrence of 

hyperglycaemia and dialysis could not be correlated. Statistical significance could not be 

calculated for the same reason. 
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Chapter 10: Changes in serum electrolyte levels 

Blood samples were obtained at the start, midway and at the end of HD in all study 

patients during all of the HD sessions in a week. Blood samples were obtained from the 

diabetes patients in their first study week. 

Blood samples were analysed for potassium, calcium and magnesium. 

There were 46 HD cycles in the diabetes group in the first week of study and 16 cycles in 

the control group. Samples were obtained only during the three HD cycles in patients in 

both groups as planned. The number of available results for pre-HD, HD and post-HD 

samples in both groups is shown in the table below.  

 Diabetes group Control group 

No. of HD cycles Studied 46 16 

No. of pre-HD results available 43 15 

No. of mid-HD results available 44 15 

No. of post-HD results available 44 15 
Table 10.1: shows the number of samples obtained at different time points during HD sessions 

Changes in serum electrolyte levels from the start of HD to end of the HD were analysed. 

Data were examined for differences in serum levels in the first half and second half of the 

dialysis period. Paired-sample T test was used to examine the change in first half and 

second half of HD, in all subjects where paired samples were available for the respective 

periods. 

Data were examined for any difference in the level of electrolyte levels at each time point 

between the three HD cycles of the week using One-way ANOVA. Data were also 

examined for any difference between diabetes and control groups at each time point for all 

HD cycles together using One-way ANOVA.  

10.1 Changes in serum potassium 

The serum potassium level reduced during all HD sessions in all subjects (Fig 10.1). The 

majority of the drop in serum level happened in the first half of the dialysis session in all 

subjects together (table 10.2). A similar pattern of reduction was seen in both the groups 

(Fig 10.2 & 10.3). One subject in the diabetes group was hypokalaemic at the start of a 

session and remained so without any change throughout that session.  
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Figure 10.1: Box plot shows the median and inter-quartile range in the serum potassium levels in all 

subjects at three time points in 1
st
, 2

nd
 and 3

rd
 HD session separately.  

 

 

Figure 10.2: shows the change in serum potassium levels in individual HD sessions in the diabetes group. 

Each patient is represented by single colour.   
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Figure 10.3: shows the change in serum potassium levels in individual HD sessions in the control group. 

Each subject represented by single colour (Sub 32- brown, Sub 35- red, Sub 36- orange, Sub 37- green, Sub 

39- blue) 

 

Paired samples Mean ± SD (mmol/l) P= 

PreHD vs MidHD (n=57) 4.5 ± 0.7 vs 3.5 ± 0.4 <0.001 

MidHD vs PostHD (n=58) 3.5 ± 0.4 vs 3.4 ± 0.3 <0.001 

PreHD vs PostHD (n=58) 4.5 ± 0.7 vs 3.4 ± 0.3 <0.001 
Table 10.2: shows the difference in mean S Potassium levels in each half of HD and in total in all subjects 

derived using Paired –samples T test. 

 

The difference in serum levels at these three time points between the 1
st
, 2

nd
 and 3

rd
 HD 

sessions were not significant (start of HD p=0.814, midway p=0.941, end of HD p=0.634). 

Mean ± SD levels in the two groups are shown in the table 10.3. There was no significant 

difference in the levels at any time point between the groups. 

Time point Diabetes group 

(mmol/l) 

Control group 

(mmol/l) 

p= 

K
+
 at start of HD 4.4±0.7 (n=42) 4.7±0.9 (n=15) 0.288 

K
+
 at middle of HD 3.5±0.4 (n=43) 3.7±0.6 (n=15) 0.123 

K
+
 at end of HD 3.3±0.3 (n=43) 3.5±0.4 (n=15) 0.204 

Table 10.3: shows the serum potassium level in diabetes and control groups at three time points during HD 

derived using One-way ANOVA 

 

10.2 Changes in serum calcium  

The reduction in serum calcium level during HD sessions varied between subjects. The 

median level reduced from the start to the end of HD (Fig 10.4). However there was a rise 

in serum calcium levels in some individuals in the second half of HD (fig 10.5 & 10.6). 

The difference was similar in both groups. The mean level was reduced significantly from 
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the pre-HD to the post-HD period (table 10.4). The reduction happened in the first half of 

the dialysis session. Similar pattern of reduction were seen in both the groups (Fig 10.5 & 

10.6). 

 
Figure 10.4: Box plot shows the median and inter-quartile range in the serum calcium levels in all subjects 

at three time points in 1
st
, 2

nd
 and 3

rd
 HD session separately. 

 

 
Figure 10.5: shows the change in serum calcium levels in individual HD sessions in the diabetes group. 

Each patient is represented by single colour 
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Figure 10.6: shows the change in serum calcium levels in individual HD sessions in the control group. Each 

subject represented by single colour (Sub 32- brown, Sub 35- red, Sub 36- orange, Sub 37- green, Sub 39- 

blue) 

 

Paired samples Mean ± SD P= 

PreHD vs MidHD (n=57) 2.29 ± 0.13 vs 2.22 ± 0.08 <0.001 

MidHD vs PostHD (n=58) 2.22 ± 0.08 vs 2.22 ± 0.07 0.929 

PreHD vs postHD (n=57) 2.29 ± 0.13 vs 2.22 ± 0.07 <0.001 
Table 10.4: shows the difference in mean S calcium levels in each half of HD and in total in all subjects 

 

 

The difference in serum levels at these three time points between 1
st
, 2

nd
 and 3

rd
 HD 

sessions were not significant (start of HD p=0.533, midway p=0.328, end of HD p=0.571). 

The calcium levels at each time point were significantly different in the diabetes group 

compared to the control group (table 10.5) 

 Diabetes group (mmol/l) Control group (mmol/l) P= 

Ca
2+

 at start of HD 2.26 ± 0.13 2.35 ± 0.12 0.033 

Ca
2+

 at middle of HD 2.20 ± 0.08 2.27 ± 0.08 0.011 

Ca
2+

 at end of HD 2.21 ±0.07 2.25 ± 0.06 0.037 

Table 10.5: shows the serum calcium level in the diabetes and control groups at three time 

points during HD 

 

10.3 Changes in Magnesium  

Serum magnesium levels were reduced during HD significantly in all three HD sessions of 

the week (fig 10.7). The majority of the fall in the level occurred in the first half of the 

session (figures 10.8 & 10.9). However the reduction was significant in both halves of the 

session (table 10.6). 

2.1

2.2

2.3

2.4

2.5

2.6

PreHD Ca MidHD Ca PostHD Ca

S
 C

a
2

+
 in

 m
m

o
l/

l 

Change in S Calcium level through HD in control 

group 



94 
 

 
Figure 10.7: Box plot shows the median and inter-quartile range in the serum magnesium levels in all 

subjects at three time points in 1
st
, 2

nd
 and 3

rd
 HD session separately. 

 

 
Figure 10.8: shows the change in serum magnesium levels in individual HD sessions in the diabetes group. 

Each subject represented by single colour 
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Figure 10.9: shows the change in serum Magnesium levels in individual HD sessions in the control group. 

Each subject represented by single colour (Sub 32- brown, Sub 35- red, Sub 36- orange, Sub 37- green, Sub 

39- blue) 

 

 Mean ± SD (mmol/l) P= 

PreHD vs MidHD (n=57) 0.96 ± 0.19 vs 0.84 ± 0.11 <0.001 

MidHD vs PostHD (n=58) 0.84 ± 0.11 vs 0.81 ± 0.07 <0.001 

PreHD vs PostHD (n=59) 0.96 ± 0.19 vs 0.81 ± 0.07 <0.001 
Table 10.6: shows the difference in mean S Magnesium levels in each half of HD and in total in all subjects 

 

 

The mean serum magnesium levels were not significantly different at any time point 

between the 1
st
, 2

nd
 and the 3

rd
 HD sessions (start of HD p=0.973, mid HD p= 0.970, end 

of HD p= 0.780).  

However serum magnesium levels were significantly lower at the start and end of HD in 

the diabetes group compared to the control group (table 10.7) and non-significantly at 

middle of HD compared to the control group. 

Paired samples Diabetes group (mmol/l) Control group (mmol/l) P= 

Mg
2+

 at start of HD 0.93 ± 0.15 1.04 ± 0.26 0.039 

Mg
2+

 at middle of HD 0.83 ± 0.09 0.89 ± 0.14 0.051 

Mg
2+

 at end of HD 0.79 ± 0.07 0.84 ± 0.09 0.046 
Table 10.7: shows the serum magnesium level in diabetes and control groups at three time points during HD 
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Chapter 11: Cardiac rate, rhythm and conductivity 

 

11.1 Changes in Corrected QT (QTc) Interval. 

QTc interval and its change in relation to dialysis and glycaemic variation was studied in 

12 subjects with diabetes and all 5 subjects in the control group.  

Two subjects in the diabetes group had a permanent pacemaker in situ, and thus could not 

participate in the study of cardiac rate and rhythm with 12 lead ECG and Holter monitor. 

One other subject in the diabetes group developed an allergic reaction to 2 different types 

of Holter monitor leads, hence was studied using only 12 lead ECGs during dialysis.  

12 lead ECGs were recorded at the start of HD (1
st
), midway (2

nd
) and at the end of HD 

(3
rd

). The numbers of ECGs recorded in all subjects and in individual groups at these times 

are shown in the table below (table 11.1). 

HD Session 

of 
the week  

N=  Diabetes 
 group  

Control  
group  

1st

 
53 38 15 

2nd 54 39 15 

3rd 54 39 15 

Table 11.1: shows the numbers of ECGs recorded in the diabetes and control groups at different time points 

during HD, along with the number of HD sessions 

 

One ECG in Subject number 31 at the beginning of the 3
rd

 HD session was not recorded 

due to unplanned and un-informed early start to dialysis.  

11.1.1 Change in QTc during HD from 12 lead ECGs 

The QT interval was measured on 12 lead ECGs manually and corrected for heart rate 

using Bezett’s formula (QTc = QT/√𝑅𝑅). The Tangent method was used to measure QT 

interval.  

The normal QTc interval was considered as per defined standards for each gender. For 

men it is up to 440 msec and women it is up to 460 msec.  
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Mean QTc was significantly higher in the diabetes group compared to the control group at 

the start, midway and at the end of HD (table 11.2). Some individuals with diabetes had 

very prolonged QTc at all three time points compared to the control group.  

  

Time point 

during HD 

Diabetes Group Control group Diabetes 

vs control 

All Subjects 

Mean ± SD 

(Range) in msec 

Mean ± SD 

(Range) in msec 

P= Mean ± SD 

(Range) in msec 

Start of HD 465 ± 39 

(391 – 569) 

414 ± 30 

(367 – 457) 

<0.001 451 ± 43 

(367 – 569) 

Midway 478 ± 42 

(415 – 647) 

426 ± 37 

(384 – 505) 

<0.001 464 ± 47 

(384 – 647) 

End of HD 492 ± 46 

(414 – 604) 

451 ± 44 

(406 – 526) 

0.004 481 ± 49 

(406 – 604) 
Table 11.2: shows the mean, SD & range of QTc interval in all subjects and in two groups determined from 

12 lead ECGs. 

 

The change in QTc interval from start to midway, midway to end and from start to end of 

HD was significant in the whole cohort  together (table 11.3, figure 11.1). The changes 

were significant in the diabetes group alone between each time point. There was no 

significant change in QTc from start to midway of HD in the control group; however there 

was a greater change in QTc in the second half of the HD compared to the diabetes group 

(table 11.4).  

 

Paired samples All subjects 

Mean ± SD  Mean change p=  

Start to Midway 451 ± 43 vs 463 ± 47 12 ± 35 <0.05 

Midway to end 464 ± 46 vs 481 ± 49 17 ± 26 <0.001 

Start to end 451 ± 43 vs 480 ± 49 29 ± 36 <0.001 
Table 11.3: shows the change in the QTc (from 12 lead ECGs) between time points in all subjects. 
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Figure 11.1: shows the change in mean QTc duration in all subjects (from 12 lead ECGs) during all HD 

sessions from start to midway & to end of HD 

 

 

Paired 

samples 

Diabetes group Control group 

Mean ± 

SD 

Mean 

change 

p= Mean ± 

SD 

Mean 

change 

p= 

Start to 

midway 

465 ± 39 

vs  

478 ± 42 

-12.9 ± 37.7 <0.05 414 ± 30  

vs  

426 ± 36  

-11.5 ± 29.1 0.147 

Midway to 

End 

478 ± 41 

vs 

492 ± 46 

-13.9 ± 28.9 <0.01 426 ± 36  

vs  

451 ± 43  

-24.8 ± 17.7 <0.001 

Start to End  465 ± 39 

vs  

492 ± 47 

-26.8 ± 37.2 <0.001 414 ± 30  

vs  

451 ± 43 

-36.3 ± 33.0 <0.005 

Table 11.4: shows the change in QTc (from 12 lead ECGs) between each time point 

 

 
Figure 11.2: Shows the median and the range of difference in QTc interval (from 12 lead ECGs) from start 

to the end of HD in diabetes and control groups. 

 

The range of difference in QTc at the end of HD from the start was much wider in the 

diabetes group compared to controls. However in some subjects in the diabetes group, QTc 
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at the end of HD was shorter. In the control group, QTc at the end of HD was longer in all 

subjects and sessions (figure 11.2).  

11.1.2 Difference in QTc duration between HD sessions 

The data were examined for any difference in the QTc intervals at different time points of 

HD between 1
st
, 2

nd
 and 3

rd
 HD sessions in each group. The change in QTc in individual 

HD sessions between time points was analysed to look for any differences in the range of 

change in the 1
st
 HD compared to subsequent HD sessions. 

Diabetes group 

The mean QTc was prolonged from start to mid and to the end of the HD in each session. 

The mean QTc at the three time points in the 1
st
 HD session was not significantly different 

from the corresponding time points in the subsequent HD sessions (tables 11.15 & 11.6) 

 1
st
 HD 2

nd
 HD 3

rd
 HD 

Mean ± SD (range) Mean ± SD (range) Mean ± SD 

Start of HD 468 ± 42 (408 – 569) 470 ± 45 (391 – 552) 458 ± 29 (422 – 518) 

Midway 481 ± 36 (436 – 568) 476 ± 31 (424 – 584) 479 ± 56 (415 – 647) 

End of HD 495 ± 49 (414 – 591) 484 ± 47 (426 – 584) 498 ± 44 (437 – 604) 
Table 11.5: shows the comparison of Mean QTc (from 12 lead ECGs) at different time points in 3 HD 

sessions in the diabetes group. 

 

Time point 

during HD 

P= 

Diff 1
st
 to 2

nd 
HD Diff 1

st
 to 3

rd
 HD 

Start of HD 0.926 0.467 

Midway 0.723 0.922 

End of HD 0.576 0.881 
Table 11.6: shows the level of significance in the difference in mean QTc (on 12 lead ECGs) at different time 

points of HD between 1
st
 & 2

nd
 and between 1

st
 & 3

rd
 HD in the diabetes group. 

 

The median and range of QTc duration during individual HD sessions at the three time 

points is shown in figure 11.3. 
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Figure 11.3: The median and range of change in QTc from start to midway and to end of HD (on 12 lead 

ECGs) in the diabetes group. 

 

Control group 

There was prolongation of QTc from start to end of HD on 12 lead ECGs during all the 

three HD sessions in the control group (table 11.7), as in the diabetes group. The 

mean QTc at the three time points was not significantly different between the 3 HD 

sessions (table 11.8). 

 1
st
 HD 2

nd
 HD 3

rd
 HD 

Mean ± SD (range) Mean ± SD (range) Mean ± SD (range) 

Start of HD 419 ± 30 (378 – 457) 412 ± 33 (369 – 457) 412 ± 33 (367 – 456) 

Midway 422 ± 35 (387 – 473) 422 ± 35 (384 – 480)  433 ± 46 (399 – 505)  

End of HD 453 ± 46 (406 – 518) 450 ± 48 (411 – 518) 449 ± 46 (408 – 526) 
Table 11.7: Comparison of Mean QTc (from 12 lead ECGs) at different time points in 3 HD sessions in the 

control group 

 

Time point  

during HD 

P= 

Diff 1
st
 to 2

nd
 HD Diff 1

st
 to 3

rd
 HD 

Start of HD 0.721 0.718 

Midway 0.993 0.698 

End of HD 0.923 0.890 
Table 11.8: shows the level of significance in the difference in mean QTc (on 12 lead ECGs) at different 

time points of HD between 1
st
 & 2

nd
 and between 1

st
 & 3

rd
 HD in the control group. 
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The median and range of QTc in individual HD sessions at the three time points is shown 

in figure 4. 

 
Figure 11.4: Shows the median and range of change in QTc (on 12 lead ECGs) from start to midway and to 

end of HD in control group in individual HD sessions. 

 

11.1.3 Effect of change in electrolytes on QTc interval from 12 lead ECGs 

Data were examined for any effect of change in serum electrolyte levels on QTc interval. 

The change in individual electrolyte levels and change in QTc at the end of HD were 

correlated, individually and in combination. 

Serum K
+
, Mg

2+
 and Ca

2+ 
dropped significantly in both groups from start to end of HD. 

Serum K
+
 and Mg

2+ 
levels fell significantly in both halves of the dialysis, with the majority 

of the drop occurring in the 1
st
 half.  However Ca

2+
 levels dropped only in the first half. In 

the 2
nd

 half of HD, Ca
2+

 level changed in different ways in different HD sessions. The 

average levels for each time point were calculated for the whole cohort and the values at 

each time points at start, midpoint and end of HD were plotted (figures 11.5, 11.6 & 11.7). 
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Figure 11.5: shows the change in serum K

+
 levels during HD in all subjects, showing the drop in average 

level from start to midpoint and to end in 1
st
, 2

nd
 & 3rd HD cycles 

 

 
Figure 11.6: shows the change in serum Mg

2+
 levels during HD in all subjects, showing the drop in average 

level from start to midpoint and to end in 1
st
, 2

nd
 & 3rd HD cycles 

 

  

 

 

 

 

Figure 11.7: shows the change in serum Ca
2+

 levels during HD in all subjects, showing the drop in average 

level from start to midpoint and to end in 1
st
, 2

nd
 & 3rd HD cycles 
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Change in serum K
+
, Mg

2+
 and Ca

2+
 levels did not correlate with change in QTc interval 

from 12 lead ECGs when analysed for the whole cohort (table 11.9).  

 

Electrolyte Correlation with 

diffQTc R= 

p= 

diffK
+
 0.138 0.331 

diffMg
2+

 0.159 0.261 

diffCa
2+

 0.004 0.980 
Table 11.9: shows the Pearson correlation value and 2 tailed significance between change in electrolyte 

levels and change in QTc interval. (diffQTc- difference in QTc from start to end; diffK
+
 - difference in K

+
 

from start to end; diffMg
2+

 - difference in Mg
2+

 from start to end; diffCa
2+

 - difference in Ca
2+

 from start to 

end) 

 

 

Linear regression analysis with difference in QTc interval from start to end as a dependent 

variable did not show any significant correlations between change in electrolyte levels and 

change in QTc interval when tested for the whole cohort (table 11.10). 

 Mean square df F p= 

Regression 656.886 3 0.483 0.696 
Table 11.10: Linear regression with difference in QTc (from 12 lead ECGs) as a dependent factor with 

difference in K
+
, Mg

2+
 & Ca

2+
 as covariates. 

 

Diabetes group 

The correlation between difference in QTc from start to end of HD on 12 lead ECGs to 

difference in serum K
+
, Mg

2+
, Ca

2+
, change in glucose from start to end and glucose 

variation during HD i.e. maximum – minimum levels were analysed.  

The change in Mg
2+

 level, but not the change in K
+
 or Ca

2+,
 correlated significantly to 

change in QTc interval on univariate ANOVA (table 11.11) 

 

 Mean square df F p= 

diffK
+
 2162.174 1 1.549 0.222 

diffMg
2+

 7349.992 1 5.890 <0.05 

diffCa
2+

 79.201 1 0.054 0.817 

Gluc_change 3.518 1 0.002 0.963 

Gluc_variation 497.277 1 0.313 0.580 
Table 11.11: shows the results of univariate ANOVA in the diabetes group with change in QTc as a 

dependent factor. 

 

There was no significant correlation between change in glucose levels from start to 

midway or to end of HD, or in glucose variation taken as difference between maximum 
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and minimum glucose levels during HD, and change in the QTc interval on 12 lead ECGs 

in the diabetes group.  

Control group 

Change in electrolyte levels and glucose levels did not correlate with change in QTc 

interval on the 12 lead ECGs in the control group (table 11.12). 

 Mean square df F p= 

diffK
+
 109.014 1 0.094 0.764 

diffMg
2+

 549.707 1 0.488 0.497 

diffCa
2+

 832.289 1 0.753 0.401 

Gluc_change 494.739 1 0.437 0.520 

Gluc_variation 1697.488 1 1.634 0.223 
Table 11.12: shows the results of univariate ANOVA in control group with change in QTc as a dependent 

factor 

 

11.1.4 Holter derived QTc before and after dialysis in relation to glucose levels 

Average QTc intervals were obtained for 4 hours before the start of dialysis, for the 

duration of dialysis and for 4 hours after the end of dialysis from Holter monitoring. The 

exact time of HD was identified on the Holter recording for each HD session and QTc 

durations were obtained along with the mean for the pre, during and post dialysis periods 

in order to explore for continued change in QTc after the end of HD.  

Mean glucose levels were obtained for the same period from the CGM. For calculation 

purposes, ‘Low’ glucose reading was defined as ≤ 2.1 mmol/L and ‘High’ glucose reading 

was defined as ≥ 22.3 mmol/L. 

Diabetes group 

The average QTc interval was prolonged in the 4hour post-HD phase in the diabetes group 

compared to the Pre-HD and HD phases. Though the mean of average QTc was 

significantly prolonged during the post-HD period, the range was not significantly 

different compared to the pre-HD and HD period (table 11.13, figure 11.8). However the 

change in the average QTc interval did not follow the pattern as seen with average glucose 

levels which fell significantly during HD and recovered during the post-HD period (table 

11.13, figure11.9). The average QTc intervals obtained from the Holter monitor were 

notably lower than the QTc intervals obtained from 12 lead ECGs in all patients.  
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Time 

period 

QTc interval (msec) Glucose level (mmol/l) 

N= Mean ± SD Range N= Mean ± SD Range 

Pre-HD 57 421 ± 18 369 – 465 77 11.4  ± 5.1 2.3 – High 

HD 86 424 ± 19 382 – 466 104 8.4 ± 3.6 2.7 – High 

Post-HD 86 429 ± 17  384 – 470 112 11.5 ± 4.6 2.9 – High 
Table 11.13: Mean and range of average QTc (on Holter) and average glucose levels for pre-HD, HD and 

post-HD periods in the diabetes group 

 

 
Figure 11.8: Median and the range of average QTc interval (from Holter) during the pre-HD, HD and post-

HD periods in the diabetes group (n=55, for all 3 periods).  

 

 

 

 

 
Figure 11.9: Median and the range of average glucose levels for pre-HD, HD and post-HD time periods in 

the diabetes group (n=70, for all time periods). 

 

Paired samples were analysed for the significance of the observed prolongation of average 

QTc interval on Holter recording. Although this was not significant from the pre-HD to 



106 

 

HD period, it was significant from the HD to the post-HD period and from the pre-HD to 

the post-HD period (table 11.14). 

Paired samples N= Mean ± SD Differences p=  

Pre-HD vs HD 56 420 ± 18 vs 423 ± 19 2.7 ± 16.9 0.234 

HD vs Post-HD 84 424 ± 19 vs 429 ± 17  5.0 ± 12.5 <0.001 

Pre-HD vs post-

HD 

56 421 ± 18 vs 428 ± 17 7.6 ± 16.8  <0.005 

Table 11.14: Results of the paired samples test for average QTc interval (from Holter) between 3 time 

periods in the diabetes group. 

Control group 

The average QTc interval (from Holter) was reduced during the HD compared to the pre-

HD period in the control group. However it was prolonged in the post-HD period with the 

mean QTc being longer than during the pre-HD period (table 11.15, figure 11.10). Average 

glucose levels appeared to follow a different pattern compared to the diabetes group with a 

significant drop in levels during HD from the pre-HD period and a continued drop in the 

post-HD period (table 11.15, figure 11.11). 

Time 

period 

QTc interval (msec) Glucose level (mmol/L) 

N= Mean ± SD Range N= Mean ± SD Range 

Pre-HD 11 408 ± 13 383 - 426 10 6.9 ± 1.3 5.0 – 8.8 

HD 16 404 ± 19 367 - 428 15 5.8 ± 1.5 2.2 - 8.2 

Post-HD 16 411 ± 19  372 - 439 16 5.6 ± 1.3 3.4 – 8.3 
Table 11.15: Mean and range of average QTc (from Holter) and average glucose levels for pre-HD, HD and 

post-HD periods in the control group 

 

 
Figure 11.10: Median and the range of average QTc interval (from Holter) during pre-HD, HD and post-

HD periods in the control group (n=11 for all time periods). 
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Figure 11.11: Median and the range of average glucose levels for pre-HD, HD and post-HD time periods in 

the control group (n=10 for all time periods). 

 

 

In the controls, paired sample analysis showed significant prolongation of average QTc (on 

Holter recording) from HD to post-HD periods, as in the diabetes group. However in 

contrast to diabetes group, the prolongation from pre-HD period to post-HD period was 

not significant (table 11.16). 

Paired samples N= Mean ± SD Differences p=  

Pre-HD vs HD 11 408 ± 13 vs 407 ± 17 1.2 ± 14.9 0.798 

HD vs Post-HD 16 404 ± 19 vs 411 ± 19 -7.3 ± 8.2 <0.005 

Pre-HD vs post-

HD 

11 408 ± 13 vs 413 ± 18 -5.0 ± 17.7  0.370 

Table 11.16: Mean and the range of average QTc interval for pre-HD, HD and post-HD time periods in the 

control group.  

 

11.1.5 Effect of hypoglycaemia on QTc interval on Holter recording 

Data were examined to assess any effect of hypoglycaemia on the QTc interval recorded 

on Holter. 60 episodes of hypoglycaemia were studied. Time of hypoglycaemia in relation 

to day or night, duration in minutes and average IG level were recorded. Average QTc ± 

1SD matched in time for the duration of hypoglycaemia was obtained from the Holter 

recording. Periods on CGM with near euglycaemia (IG: 4.0 - 13.0 mmol/l) matching each 

hypoglycaemic period in time of the day and duration were selected from the same study 

week. Average QTc was obtained from Holter recordings for these episodes and compared 

to explore for any effect of hypoglycaemia on QTc interval. 
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Out of 60 episodes, 33 episodes of hypoglycaemia occurred in the day and 27 were 

nocturnal. Average duration of hypoglycaemia was 102±85 minutes (range 20 to 

420mins). Average duration of hypoglycaemia was not significantly different between day 

time episodes and nocturnal episodes (101±85 vs 103±86, p=0.928). Mean QTc on Holter 

was not prolonged during hypoglycaemia. Overall mean of QTc interval during these 

episodes was 426±19 msec. There was no significant difference in the overall mean 

duration between the episodes of hypoglycaemia occurring during day and night (427±15 

vs 425±22, p=0.694). The length of average QTc from Holter did not correlate to the 

duration of hypoglycaemia (p=0.781) (figure 11.12). There was no correlation between 

average IG level during the hypoglycaemic episodes and the length of average QTc on 

Holter (p=0.152) (figure 11.13). There was no difference in the average QTc on Holter 

between the hypoglycaemic episodes and the matched euglycaemic periods (427 ± 15 vs 

430 ± 13, p= 0.248). The median and range of mean QTc for the hypoglycaemic periods 

was not different in comparison to their matched euglycaemic period (figure 11.14 & 

11.15). 

 

 
Figure 11.12: shows lack of correlation between duration of hypoglycaemia and average QTc (from Holter) 

in diabetes subjects. 
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Figure 11.13: shows lack of correlation between mean IG level and mean QTc (from Holter) during 

hypoglycaemia. 

 

 
Figure 11.14: shows the median and range of average QTc intervals (from Holter) during hypoglycaemia 

and matched euglycaemic periods. 

 

 



110 

 

 

Figure 11.15: shows the average QTc (from Holter) for each episode of hypoglycaemia with it’s time 

matched euglycaemic period with a linear correlation trend line in black. 

 

 

11.2 Heart rate and rhythm on 12 lead ECGs 

Changes in heart rate and rhythm during dialysis were examined on serial 12 lead ECGs 

during HD. Heart rates in individual ECGs were noted and examined for changes at 

midway and at the end of HD compared to the start of HD. 

3 ECGs were available from each HD session of the week for 13 out of 15 subjects in the 

diabetes group except one subject who did not have an ECG at the start of the 3
rd

 HD 

session. 3 ECGs were available for all 5 subjects in the control group for all HD sessions. 

There was no change in mean heart rate from start to midway and to the end of HD in the 

whole cohort (77±11 vs 77±11 vs 78±10). There was no change to mean heart rate when 

examined for diabetes and control groups separately (Diabetes group: 76±10 vs 76±10 vs 

77±8; Control: 80±13 vs 80±12 vs 82±13).  

Rhythm change during HD was seen only in one patient in the diabetes group and two 

patients in the control group. Changes observed in these patients are shown in table 11.17 

individually. 
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Sub 

No. 

1
st
 HD 2

nd
 HD 3

rd
 HD 

Start  Mid End Start  Mid End Start Mid End 

DM 15 SR Bi/Tri 

geminy 

Couplets/ 

Triplets 

SR Bi/Tri 

geminy 

Couplets 

/Triplets 

VEs Couplets/ 

Triplets 

VEs 

Non 

DM 35 

SR SR Bi/Tri 

geminy 

SR SR SR SR SR SR 

Non 

DM 39 

VEs SR SR SR SR SR SR SR SVEs 

Table 11.17: shows the occurrence of arrhythmias on 12 lead ECGs during HD in individual subjects. VEs- 

Ventricular ectopics, SVEs- Supraventricular ectopics 

 

Changes in rhythm observed in one diabetic subject were seen consistently in all 3 HD 

sessions and occurred after starting HD in the first two sessions. However the changes 

observed in the non-diabetic subjects were not consistent.  

Diabetic subject 15 with changes in rhythm could not participate in Holter monitoring due 

to allergic reaction to the Holter leads. Hence no further observation could be undertaken. 

Changes noted in the non-diabetic subjects on Holter monitor are mentioned below in the 

relevant sections. 

11.3 Arrhythmias on Holter recording 

Holter recording was reported by cardiac physiologists, including all episodes of rhythm 

changes including any occurrence of ventricular premature beats (VPB), complex VPB 

such as couplets, triplets, bigeminy, trigeminy and ventricular salvos;  non-sustained 

ventricular tachycardias (NSVT) or broad complex tachycardia, sinus bradycardia, and 

junctional or idioventricular rhythm and any episodes of ST depression.    

The time and day of occurrence of these episodes were noted in terms of HD/non-HD to 

examine the frequency of arrhythmic episodes in relation to hypoglycaemia and HD. 

11.3.1 Diabetes group  

60 episodes of hypoglycaemia were recorded in 12 out of 15 subjects who underwent 

Holter monitoring. 27 weeks of (4206 hours) Holter recording were obtained. Occurrence 

of arrhythmia in this group was examined for any relation with hypoglycaemia by testing 

the frequency of arrhythmia during hypoglycaemic episodes and time matched near 

euglycaemic episodes in 10 of 12 subjects who underwent Holter monitoring. Periods of 

near euglycaemia (IG: 4.0 to 13.0 mmol/l) matched in duration, time of the day and HD or 

non-HD day were selected from the same study week.  
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Holter recordings were examined for the occurrence of arrhythmias during these periods. 

Mean duration (range) of hypoglycaemia was 102 minutes (20 to 420). Mean (range) IG 

level during hypoglycaemia was 2.9 mmol/l (<2.1 to 3.4) and during matched near 

euglycaemic period was 8.5 mmol/l (4.2 to 12.5).  

Out of 12 subjects who participated in Holter monitoring, 5 had previous history of 

myocardial infarction, ischaemic heart disease or heart failure and 6 had a history of 

hypertension and/or peripheral vascular disease. 8 subjects had echocardiographic 

abnormalities including mild abnormalities (table 11.18).  
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Sub 

No. 

Echocardiogram  

findings 

Risk factors/ 

previous 

intervention 

Arrhythmias 

noted 

Complex VPB 

count 

01 Normal ICD in situ,  

coronary stenting 

1 NCT  None 

03 Mild RVH PVD 19 Bg/Tg,  

7 BCT 

210 couplets 

41 triplets 

04 Mod to severe AS, Severe 

LVSD, widespread RWMA 

IHD, CABG & 

coronary stents,  

CVA, Severe PVD  

52 TG,  

10 NCT,  

6 BCT 

361 couplets 

10 triplets 

09 Mild LVH, mildly dilated 

LA 

 1 BCT 23 couplets 

10 Mild LVH IHD, Coronary 

stenting, 

Hypertension, PVD 

DNP 

(PPM in situ) 

DNP 

11 Mild septal LVH, Severe 

RV dilation,  

Bi-atrial dilation 

Hypertension 1 NCT 1 couplet 

15 Severe LVSD, Mildly 

impaired RV, Significant 

Pulmonary HT,  

Global hypokinesia 

Hypertension,  

Obesity 

DNP 

(allergic to Holter 

leads) 

DNP 

19 Moderate apical and septal 

hypertrophy, Mild LVSD 

IHD, Heart failure 2 NCT, 1BCT 3 couplets 

1 triplets 

21 Moderate global LVH, Mild 

to moderate dilated LA, 

Mild to moderate TR  

Hypertension, PVD DNP 

(PPM in situ) 

DNP 

22 Moderate LVSD, RWMA 

(DST) 

Mild to moderate TR, 

Pulmonary HT 

IHD 3 SB,  

9 Bg/Tg,  

2 JR,  

10 BCT 

306 couplets 

21 triplets 

24 Moderate LVH None 1 Bg, 1 NCT,  

1 JR 

1 couplet 

25 DNP Hypertension 1 SB, 4 JR 8 couplets 

31 Normal (DST) Hypertension 20 Tg None 

38 Mild LVSD, Septal 

hypokinesia (DST) 

IHD, CABG, 

Hypertension 

1 Tg  None 

41 None significant (mild MR 

and AR) 

Hypertension None None 

Table 11.18: shows the echocardiogram abnormalities, cardiovascular risk factors other than diabetes, 

different arrhythmic episodes and complex ventricular premature beats recorded in individual patients in 

diabetes group. (LVH- Left ventricular hypertrophy, RVH- Right ventricular hypertrophy, LVSD- Left 

ventricular systolic dysfunction, RWMA- regional wall motion abnormality, LA- left atrium, RV- right 

ventricle, AS- aortic stenosis, MR- mitral regurgitation, TR- tricuspid regurgitation, AR- aortic 

regurgitation, HT- Hypertension, DST- dobutamine stress echocardiogram, IHD- ischaemic heart disease, 

CABG- coronary artery bypass graft, ICD- implantable cardiac defibrillator, PVD- peripheral vascular 

disease, NCT- narrow complex tachycardia, Bg- bigeminy, Tg- trigeminy, SB- sinus bradycardia, BCT- 

broad complex tachycardia, JR- junctional rhythm, DNP- did not participate, PPM- permanent pacemaker, 

VPB- ventricular premature beat)  

 

153 short episodes of arrhythmia were noted on Holter in 11 of 12 subjects who took part 

in Holter monitoring. 3 episodes of nocturnal ST depression were recorded in one subject. 

4 subjects had a single episode of arrhythmia and the remaining 149 episodes were noted 

in 7 subjects. Types of arrhythmia recorded included: narrow complex tachycardia (atrial/ 

supraventricular tachycardia), junctional rhythm, sinus bradycardia (HR <40bpm), 
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bigeminy, trigeminy, triplets, and non-sustained or broad complex tachycardia 

(NSVT/BCT/salvos).  

Bigeminy/trigeminy and NSVT/BCT were the commonest rhythm abnormality noted 

(table 11.19). Corresponding IG level was available for 83 episodes of arrhythmia. The 

mean IG was 9.8 ± 4.1 mmo/l (2.3 to 20.2). Majority of arrhythmic episodes occurred 

when IG was in the defined euglycaemic range (table 11.20). Occurrence of arrhythmic 

episodes was not different between matched periods of hypoglycaemia and near 

euglycaemia (Mean: 1.97 vs 1.92, p=0.26).  

 

 

 

 

 

 

 

 
Table 11.19: shows the frequency of different types of arrhythmias and complex VPBs 

 

 

IG range Frequency of arrhythmia 

Hypoglycaemia (≤ 3.5mmol/l) 4 

Euglycaemia (4.0 to 13.0mmol/l) 61 

Hyperglycaemia (≥ 13.5mmol/l) 18 

IG not available 70 

Table 11.20: shows the frequency of arrhythmia in relation to IG range 

 

Time of occurrence of arrhythmia was noted in relation to the HD sessions of the week to 

examine the frequency on different days. The highest number of episodes were noted to 

occur before the 1
st
 HD session; the second most frequent period was following the 3

rd
 HD 

session of the week (figure 11.16). Combining the frequency of arrhythmia in post HD1 

(~20hrs) and pre HD2 (4hrs) periods shows an increased propensity for the occurrence of 

arrhythmia during this period. 

VPB and complex VPB counts during hypoglycaemia were examined for change in 

frequency between hypoglycaemia and matched euglycaemia.  No significant difference 

was found in average VPB count/hr (29 ± 44 vs 25 ± 35, p=0.227) (figure 11.17) or 

average complex VPB count/hour (0.74 ± 1.42 vs 0.81 ± 2.11, p= 0.832) between the 

matched periods. 

Type of arrhythmia & VPB Frequency 

Bigeminy/Trigeminy 102 

NSVT/BCT  25 

Narrow complex tachycardia 14 

Junctional rhythm  8 

Sinus bradycardia 4 

Triplets 103 

Couplets 913 
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Figure 11.16: shows the frequency of arrhythmic episodes on Holter on different days of the week in relation 

to 1
st
, 2

nd
 and 3

rd
 HD sessions. 

 

 

Figure 11.17: Box plot shows the median and range of mean VPB count/Hr during hypoglycaemic episodes 

and their time matched euglycaemic episodes. 
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11.3.2 Control group 

Occurrence of arrhythmias on Holter was examined in the control group separately. 36 

episodes of arrhythmia including triplets and 15 episodes of ST depression were recorded 

in 4 of 5 subjects in this group.  

The frequency varied between these subjects with 2 subjects having 2 episodes each and 

the rest occurred in the other 2 subjects. There was a difference in the types of arrhythmias 

between subjects. All 15 episodes of ST depression were recorded in one subject and all 11 

episodes of NSVT/BCT were recorded in one subject (table 11.20). Hence correlation with 

HD sessions was not undertaken. Table below shows the echocardiogram findings and 

existing cardiovascular risk factors in control group subjects.  

Sub 

No. 

Echocardiogram 

findings 

Risk factors/ previous 

interventions 

Arrhythmias 

noted 

Complex 

VPB & ST 

depression 

32 None IHD, Hypertension, 

Dyslipidaemia 

None None 

35 Decreased LV size, 

Mild LVH, Mild to 

moderate AR 

Hypertension 1 Bg/Tg 1 Triplets 

36 Mild to moderate 

LVH 

Hypertension None 2 Triplets 

37 Mild global LVH, 

moderate LA dilation 

Hypertension None 15 ST 

depression 

39 Low normal LV 

systolic function 

Dyslipidaemia 21 Bg/Tg 

11 NSVT 

None 

Table 11.21: shows the frequency and types of arrhythmia and ST depression in subjects   in the control 

group. (LV- left ventricle, LVH- left ventricular hypertrophy, AR- aortic regurgitation, LA- left atrium, IHD- 

ischaemic heart disease, Bg- bigeminy, Tg- trigeminy, NSVT- nonsustained ventricular tachycardia) 

 

11.4 Heart rate variability 

Heart rate variability which is a measure for variation in beat to beat interval was 

examined for any effect of hypoglycaemia by comparing to time and duration matched 

near euglycaemic periods.  

Time domain measures were obtained with the available software. Frequency domain 

measures could not be obtained due to lack of software. Time domain measures including 

SDNN (SD of Normal to Normal), SDANN (SD of average Normal to Normal), Total 

sNN50 (number of interval differences of successive NN intervals greater than 50msec), 

RMSSD (square root of the mean squared differences of successive NN intervals) and 
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SDNNi (the mean of the 5-minute standard deviations of NN intervals) were obtained for 

the selected time periods. 

SDNN and SDANN were significantly higher during hypoglycaemia compared to near 

euglycaemic periods (table 11.21). 

Measures Hypoglycaemia Near euglycaemia P= 

SDNN (msec) 40 ± 24 35 ± 20 <0.05 

SDANN (msec) 34 ± 22 30 ± 19 <0.05 

Total sNN50 454 ± 590 563 ± 1028 0.449 

SDNNi (msec) 15.9 ± 9.8 16.0 ± 9.6 0.993 

RMSSD 12.6 ±7.8 15.0 ± 13.5 0.13 

Table 11.22: shows the difference in measured time domain HRV measures during hypoglycaemia and 

matched near euglycaemia.  
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Discussion 
12.1 Glycaemic Variation 

Diabetic patients on maintenance HD experienced significant variation in their glycaemia 

throughout the week. The IG levels were in either the hypoglycaemic or hyperglycaemic 

range equally on both dialysis and non-dialysis days. Time spent with IG in 

hypoglycaemic, euglycaemic and hyperglycaemic range respectively were 5.9±15.4 vs 

2.7±2.8 vs 91.4±15.9 % of recorded times on dialysis days and 3.3±12.4 vs 3.8±4.1 vs 

92.9±12.8% of recorded times respectively on non-dialysis days. Significant variation in 

IG levels was observed on each day through the week, with mean IG levels varying 

between 3.6 mmol/l and ‘High’ (≥22.3 mmol/l) in diabetic subjects. The mean IG level 

was not different between dialysis and non-dialysis days, however the variation as 

calculated by SD of the mean was significantly higher on dialysis days than non-dialysis 

days (3.9±1.6 vs 3.5±1.5, p<0.05). Similarly the variation as calculated by ‘mean 

amplitude of glycaemic excursion’ was higher on dialysis days compared to non-dialysis 

days (8.1±4.6 vs 7.0±3.9, p=0.056) although this was not significant. This suggests that 

diabetic patients undergoing haemodialysis experience significantly greater glycaemic 

excursions on dialysis days compared to non-dialysis days.  

More episodes of hypoglycaemia were observed on dialysis days compared to non-dialysis 

days (35.9% vs 25.4%, p <0.001) in the diabetic subjects. However, the mean duration of 

hypoglycaemia was not different between dialysis and non-dialysis days due to episodes 

with longer duration being frequent on non-dialysis days. Hypoglycaemia occurred 

through the day and night following HD. Occurrence of hypoglycaemia during daytime 

(7AM to 11PM) and night time (11PM to 7AM) was not different during HD and non-HD 

days (64.1% vs 68.7% for day; 35.9% vs 31.3% for night).   None of the subjects in our 

cohort altered their insulin doses before or during dialysis. There was no restriction of food 

intake during dialysis. All subjects were dialysed with standard dialysate containing 

5.0mmol/l of glucose.  

A trend of fall in IG level during dialysis was noted in the majority of diabetic subjects 

with the mean IG of all HD sessions dropping significantly from pre-HD period (p<0.001) 

followed by significant rise in the post-HD period from HD period (p<0.001) (mean±SD: 

11.4±51 vs 8.4±3.6 vs 11.5±4.6 mmol/l during pre-HD, HD and post-HD period 

respectively). The post HD IG levels were not different to pre-HD levels. The reduction in 
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IG levels during dialysis occurred in the initial half of the dialysis in majority of the 

sessions.  

Patients with diabetes experienced frequent and longer duration of hyperglycaemia in the 

post-HD period comparatively (Pre-HD vs HD vs Post-HD = 41 vs 29 vs 65 episodes; 

mean duration 125 vs 50 vs 140 minutes). However when IG readings were examined as 

proportion of available recordings, the proportion of time spent in the hyperglycaemic 

range was the similar for the pre-HD and post-HD period (median: 64.8 vs 64.6%). Time 

spent in hyperglycaemia was much less during dialysis (median time of 29.2%) due to the 

significant drop in IG levels during HD. 

Out of 306 episodes of hyperglycaemia recorded in all diabetic subjects, 51.6% (n=158) 

occurred on the non-HD day compared to 41.2% on HD day. This is not explained by the 

lower frequency of hyperglycaemia during HD period on dialysis days as the mean IG for 

dialysis days and non-dialysis days was not different. It is possible that the effect of HD 

reduced the rise in IG in the ensuing hours. However the mean duration of hyperglycaemia 

in minutes was not different between dialysis and non-dialysis days (257.9±277.3 vs 

266.7±263.3) and the proportion of recorded IG spent in the hyperglycaemic range was 

higher on dialysis days compared to non-dialysis days (21±18.5 vs 19.6±20.6) suggesting 

higher fluctuation in IG levels on dialysis days than non-dialysis days. 7.2% of 

hyperglycaemic episodes were prolonged and overlapped between dialysis and non-

dialysis days. 

Hyperglycaemia occurred more frequently during the daytime compared to night (187 vs 

50 episodes). However the duration in minutes (203.9±154.3 vs 169.2±146.0, p=0.141) 

and as proportion of recorded time (17.3±14.1 vs 14.1±14.9) was not significantly longer 

at night.  

Glucose and insulin are extracted during dialysis (Abe, Kaizu and Matsumoto, 2007). 

Jackson et al showed that hypoglycaemia occurred in 40% of patients undergoing HD with 

or without diabetes (Jackson et al., 2000). Hypoglycaemia occurs more frequently with 

dialysate concentrations of 5.5mmo/l of glucose compared to 11mmol/l (Simic-Ogrizovic 

et al., 2001). With dialysate fluid used in our patients containing 5.5mmol/l, it is possible 

that a significant amount of extraction of glucose occurred during HD leading to a 

significant drop in IG level. Insulin extraction by dialysis combined with consumption of 
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food and counter-regulatory hormone response to a fall in glucose levels and blood 

pressure during HD could be contributing to a rise in IG levels in the post HD period.  

The increased frequency of hypoglycaemia seen in our study is similar to that previously 

reported. Jung et al (2010) found an increased occurrence of hypoglycaemia on HD days, 

and Kazempor-Ardebili et al (2009) reported a nadir IG level within 24 hours of HD in 14 

of their 17 patients. The study by Jung et al used CGM for 6 days in patients on 

maintenance HD. There was no difference in mean amplitude of glycaemic excursion 

between HD and non-HD days in their study, whereas in our study MAGE and SD of 

mean IG were higher on HD days. Kazempour-Ardebili used CGM for only 48 hours in 

type 2 diabetic patients. Both these studies were therefore of shorter duration compared to 

our study. The recently reported DIALDIAB study (Joubert et al., 2015) used CGM 

durations similar to our study i.e. 3 studies at 2 week intervals but with 5 days CGM; the 

intention was to assess the effectiveness of CGM in improving glycaemia compared with 

SMBG. This study also noted lower median and interquartile range (IQR) of IG during HD 

similar to the drop in mean IG during HD in our study. The median and IQR of IG on non-

dialysis days was higher than IG at similar times during HD in an example shown in this 

publication (Joubert et al., 2015). However comparison could not be made in relation to 

change in glycaemia between HD and non-HD days or between pre-HD, HD and post-HD 

periods as done in our study, due to a lack of information in the publication. This study 

was designed to examine the improvement in glycaemic control with iterative CGM in 

comparison to SMBG with CGM data being reviewed by an expert after every study week 

and treatment modification being advised, albeit remotely through a nephrologist.  

Though other studies have reported on glycaemic variation using CGM in diabetic patients 

on HD, no other study has specifically included C-peptide negative or minimally positive 

patients. Variation in IG seen in our study on dialysis and non-dialysis days suggest the 

need for closer monitoring of individual patients in order to assess glycaemic variation 

using CGM in this population, and managing insulin therapy accordingly. Though it was 

not possible to draw an exact pattern of change in glycaemia through the dialysis week 

even in our fully insulin dependent patients in clinical practice, there was a pattern of high 

IG level in the pre-HD period followed by significant drop in IG level during HD and a 

rebound high IG level in the post-HD period. Our study was conducted as a non-

interventional observational study where patients were blinded to real-time IG level and 



121 

 

hence no changes were made to their insulin doses.  It is a close reflection of glycaemic 

variation in these patients in clinical practice.  

Assessing the variation in IG level in relation to food intake and insulin regimen might 

help understand the glycaemic variation better in these patients and thereby help formulate 

more suitable insulin dose titration. A real time CGM study would need to be performed to 

test this assumption. 

There were limitations to the assessment of glycaemia with CGM in our cohort. Dexcom 

G4 CGM used in our study has limitations to the range of IG level it can record (2.2 to 

22.2 mmol/l). Our CGM data revealed a number of episodes with IG level persistently 

below 2.2mol/l read as ‘Low,’ or persistently above 22.2mmol/l read as ‘High’. These 

readings could either be a true reflection of patient’s glycaemic status or due to lack of 

calibration using capillary blood glucose level during these episodes. These levels might 

have had some effect on some of the mean IG levels calculated. Dexcom G4 CGM was 

chosen for this study, as this was the only CGM available with blinding facility which 

could also record ISF glucose data for 7 days, at the planning stage of the study. With the 

limitations of Dexcom G4 CGM, especially the need for patients to enter capillary glucose 

levels 12 hourly for calibration and paracetamol consumption potentially affecting the ISF 

glucose reading, Medtronic iPro2 CGM could be a better alternative. iPro2 CGM is 

designed to record ISF glucose for 7 days and is blinded from patients. Though it requires 

patients to check their capillary glucose levels at least twice a day for downloading the 

data at the end of the study week, patients do not need to enter the levels on to CGM 

unlike Dexcom CGM. 

Glycaemic variation in non-diabetic patients showed a variation in the pattern through the 

post-HD period compared to that in diabetic patients. IG levels dropped significantly 

during HD even in non-diabetic patients but continued to drop further in the post-HD 

period (6.9 ± 1.3 vs 5.8±1.5 vs 5.6 ± 1.3) in contrast to diabetic patients where it rose to 

pre-HD levels. The drop during HD in non-diabetic patients has been reported previously 

by Jackson et al (2000), but the further trend in post-HD period has not been described. 

Insulin clearance is increased by dialysis even in non-diabetic patients (Jorgensen et al., 

2015). This should in turn cause an elevation in glucose levels post-dialysis. Lack of renal 

gluconeogenesis along with loss of blood glucose during HD and poor appetite may 

potentially keep the glucose level low in the post-HD period in non-diabetic subjects. 
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However closer observation of the trend in IG levels on individual HD days in this group 

revealed a later rise in IG levels after a 4 hour post-HD period on most HD days. This 

again was variable between the subjects.   

Hypoglycaemia was also noted in non-diabetic subjects, with 18 episodes using the IG cut 

off ≤3.5mmol/l. The majority of these episodes (14 of 18) occurred on dialysis days as 

seen in the diabetes group. These episodes were often prolonged (mean 103.6, range 20 to 

390 minutes) with episodes on HD days being longer (126±132 minutes).  

Surprisingly our non-diabetic cohort experienced hyperglycaemia, despite setting a cut off 

value as IG of ≥ 13.5mmol/l to match the diabetes group. 9 episodes of hyperglycaemia 

lasting 20 minutes or more were recorded in this group with an overall mean IG of 

14.8±1.1 mmol/l (range of means: 13.8 to 17.0). Interestingly 7 episodes lasted 60 minutes 

or more (range 60 to 195minutes). The majority of these episodes occurred on the non-

dialysis days suggesting possible significant effects of glucose extraction by HD 

preventing a rise in IG levels in the immediate post-dialysis period. Our control group 

subjects all had normal fasting plasma glucose and normal HbA1c at recruitment. The rise 

in IG level could not be explained by post-prandial rise as they have remained elevated for 

longer periods than physiologically expected in the immediate post-meal period. This 

again cannot be explained by the glucose containing dialysate as the majority of these 

episodes occurred on non-dialysis days. This needs further investigation to understand the 

effect of ESRD and dialysis on glucose metabolism in non-diabetic subjects. This has not 

been reported in any other studies. 

12.2 Change in electrolytes  

Serial measurements of serum potassium, calcium and magnesium during HD revealed a 

significant drop in their levels through the dialysis. However there was a difference in the 

changes between these electrolytes through the HD. 

Serum potassium levels dropped in both halves of the dialysis session significantly (from 

start to midway; 4.5 ± 0.7 vs 3.5 ± 0.4 and midway to end: 3.5 ± 0.4 vs 3.4 ± 0.3; p<0.001 

for both halves). The majority of the drop in levels through HD occurred in the first half. 

Though mean serum potassium level was lower in the diabetes group, the difference was 

not significant. Closer examination of changes in individual patients in the diabetes group 

showed that the potassium level dropped in the majority of patients in both halves, whereas 
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one patient who was hypokalaemic at the start remained stable without a further drop. 

There was a slight rise by 0.1 to 0.4mmol/l in the second half in 7 out of 43 sessions in the 

diabetic group. There was no difference in serum levels at the start of the HD between 1
st
, 

2
nd

 and 3
rd

 HD sessions. In the control group, 3 sessions showed some rise in potassium 

level in the 2
nd

 half by 0.1 to 0.5 mmol/l. However at the end of HD serum potassium was 

always lower than at the start.  

Change in serum calcium levels differed in the pattern in comparison to potassium. There 

was a significant drop in the serum calcium level in the 1
st
 half (2.29 ± 0.13 vs 2.22 ± 0.08, 

p <0.001), but there was no change to mean level in the 2
nd

 half (2.22 ± 0.08 vs 2.22 ± 

0.07, p=0.929). The drop in the calcium level was not consistent in all patients in the 

diabetes group. Interestingly in all patients who had serum calcium <2.2mmol/l (ranging 

1.98 to 2.18mmol/l) at the start of HD, the serum calcium levels rose or remained stable 

through the dialysis (ranging from 2.1 to 2.18 mmol/l at the end). The drop in serum 

calcium levels in the control group was inconsistent and different from the diabetes group. 

The mean level was significantly lower in the diabetes group compared to the control 

group at the start (2.26±0.13 vs 2.35±0.12, p=0.033), midway (2.20±0.08 vs 2.27 ±0.08, 

p=0.011) and at the end of HD (2.21±0.07 vs 2.25±0.06, p=0.037). None of the control 

group subjects were hypocalcaemic at the start of any HD session (range 2.14 to 

2.55mmol/l) and the change in levels in the 1
st
 and 2

nd
 were inconsistent.  

The correction of low serum calcium levels could be influenced by the dialysate containing 

acetate or citrate enriched bicarbonate (Šafránek et al., 2015). In the study by Šafránek et 

al, use of traditional acetate enriched dialysate resulted in improvement in serum calcium 

levels in those patients with levels <2.33 mmol/l at the start of HD. KDOQI guidelines 

suggest using dialysate with a calcium concentration 1.25mmol/l for patients on calcium-

based phosphate binders and dialysate containing 1.25 - 3mmol/l of calcium for patients 

not on any calcium containing phosphate binders based on serum calcium levels. Our 

patients were dialysed using standard dialysate containing of 1.25mmol/l calcium. 

Similar to potassium, there was no significant difference in the serum calcium levels at the 

start or midway or end of HD between the 3 HD sessions. The difference in change in 

calcium levels through HD and also levels at set time points during HD between diabetic 

patients and non-diabetic patients has not been reported previously. However poor 

glycaemic control has been suspected to play a role in the development of 
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hypoparathyroidism seen in patients with diabetes and CRF (Martinez et al., 1998). In their 

study of 326 patients with various stages of CRF without previous parathyroidectomy or 

hyperparathyroidism, Martinez et al compared 58 patients with diabetes and 268 patients 

without diabetes. Diabetic patients had significantly lower PTH levels (p=0.0003). 

However total or ionized calcium levels were not different between the groups. None of 

their patients were mentioned to be on renal replacement therapy.  

Serum magnesium levels dropped significantly through HD similar to potassium. The drop 

in the serum level was significant in both 1
st
 (0.96 ± 0.19 vs 0.84 ± 0.11, p<0.001) and 2

nd
 

(0.84 ± 0.11 vs 0.81 ± 0.07, p<0.001) halves of HD in the whole cohort. The majority of 

the drop occurred in the 1
st
 half of HD as seen with potassium. The serum magnesium 

levels were not significantly different at any of corresponding time points between 3 HD 

points. However the mean calcium levels were lower at all time points in the diabetes 

group compared to control group (0.93±0.15 vs 1.04±0.26, p=0.039 at start; 0.83±0.09 vs 

0.89±0.14, p=0.051 at midway and 0.79±0.07 vs 0.84±0.09, p= 0.046 at the end). Martinez 

et al reported lower magnesium levels in diabetes patients with CRF (p=0.02) compared to 

nondiabetic patients with CRF.  

Similar to improvement in low calcium levels, serum Magnesium levels improved in 

diabetic subjects who had low serum calcium at start (ranging 0.67 to 0.73mmol/l at start 

and 0.69 to 0.77mmol/l at the end). None of the subjects in control group had serum 

calcium below 0.78mmol/l.  

Improvement in low serum magnesium in our study subjects was similar to study reported 

by Šafránek et al (2015). In their study, patients dialysed with acetate enriched bicarbonate 

solution showed improvement in serum magnesium levels in all patients with a pre-

dialysis magnesium of <0.76mmol/l.  

The results of our study show that diabetic patients tend to have lower serum calcium and 

magnesium levels compared to non-diabetic subjects. Our non-diabetic cohort was smaller 

compared to our diabetic cohort. The study was not powered to evaluate these differences 

and hence it is difficult to derive any conclusion with regards to differences in the 

electrolyte levels between the two groups. Changes in electrolytes were examined to 

explore any effect on cardiac electrical activity in both groups, which is discussed later.  
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12.3 Changes in cardiac electrical activity 

QTc interval measured by 12 lead ECGs at start, midway and at the end of HD showed 

significant prolongation from start to end of HD in both the diabetic and non-diabetic 

groups. The mean QTc for diabetes group at the three time points was 465±39 vs 478±42 

vs 492±46 msec. Mean QTc for the control group was 414±30 vs 426±37 vs 451±44msec. 

The QTc was significantly higher at each time point in the diabetes group compared to the 

control group. The baseline QTc was prolonged in 30 out of 38 ECGs at the start of HD in 

the diabetic patients, being above 440msec (range 391 – 569 msec) whereas in the control 

group they were mostly normal (range 367 – 457msec). EURODIAB IDDM complication 

study group has shown the higher prevalence of prolonged QTc in insulin treated type 1 

diabetic patients (Veglio et al., 1999). Abnormal QTc prolongation was seen in 16% of 

patients in the study of 3250 patients. They found the QTc being more prolonged in 

women then in men. In our sample, the baseline QTc in diabetic patients was not different 

between men and women (466.6±40.1 vs 464.3±39.0, p=0.898). 

The prolongation in QTc during HD was significant from the start to end of HD for the 

whole cohort together. The change was significant in both halves of the dialysis session 

with the change being more in the second half than in the first (mean change 12±35 vs 

17±26 msec). When examined in the individual groups, the change in QTc in the first half 

was not significant in the control group (p=0.147) compared to diabetes group (p=<0.05). 

The range of change of QTc from start to end of HD was much wider in the diabetes 

group, with QTc being shorter at the end of HD compared to the start in some subjects 

whereas all non-diabetic subjects showed longer QTc at the end of the HD compared to the 

start. The pattern of change in QTc in the control group does not match the change in 

electrolytes. A study in 68 non-diabetic HD patients with normal cardiac status ascertained 

by extensive testing showed a clear pattern between change in QTc and the electrolyte 

concentration of the dialysate (Covic et al., 2002). QT interval was calculated similarly to 

our study as the average of 3 consecutive complexes on 12 lead ECGs 10 minutes pre and 

post-HD and corrected using Bezett’s formula. This study also reported a significant 

increase in QTc between pre-HD to post-HD ECGs (421±26 vs 434±29 msec, p=0.005). 

Prolonged QTc above 440msec was found in 34% of subjects on pre-HD ECG and in 46% 

of subjects in the post-HD ECG. In our small cohort of non-diabetic subjects, one patient 

(20%) had abnormal QTc at baseline before all 3 HD sessions (456-457 msec). Abnormal 

QTc at the end of HD was seen in 7 out 15 HD sessions in 3 subjects in this cohort of 5 
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subjects. 2 subjects had consistently abnormal QTc at the end of all HD sessions including 

one subject with abnormal QTc at the start, and one subject had abnormal QTc only at the 

end of one HD session. However the subject with abnormal QTc at baseline showed 

further prolongation in only 2 post-HD ECGs, whereas QTc remained the same as in pre-

HD ECG though abnormal in one of the HD session. High pre-HD calcium and larger drop 

in calcium correlated with a higher increase in QTc interval in the study by Covic et al. 

However in our study there was no correlation between difference in calcium and 

difference in QTc from start to end of HD (r=0.004, p=0.980). Also there was no 

correlation between serum calcium level at the end of HD and difference in QTc (r= 0.112, 

p=0.428). There was no correlation between change in QTc at the end of HD and change 

in serum potassium level or magnesium level or change in IG level or glycaemic variation 

(max-min) in our whole cohort. In our diabetes cohort 34 out of 39 (82%) ECGs at the end 

of HD showed abnormal QTc (>440msec). With 30 out 39 (76.9%) ECGs recorded at the 

start of HD already having abnormal QTc, further prolongation at the end of HD was seen 

in 32 out of 34 ECGs which had abnormal QTc at the beginning of HD. Our results 

suggest that a very high proportion of diabetic patients have abnormal QTc at baseline, and 

an even higher proportion have further prolongation of QTc with HD. There was no 

correlation between change in QTc and glucose variation (max- min IG) during HD or 

with difference in IG level from start to end of HD. Further prolongation of QTc in our 

cohort is likely due to multifactorial reasons, which might include existing cardiac health 

status, baseline electrolyte levels and their change through dialysis. 

Average QTc obtained from Holter recordings showed a continued prolongation in the 4hr 

post-HD period compared to 4hr pre-HD period and HD period in the diabetes group. 

These QTc intervals were notably shorter compared to QTc calculated from the ECGs. It is 

well recognised that QTc interval from Holter does not correspond qualitatively to QTc 

obtained from 12 lead ECGs (Goldenberg, Moss and Zareba, 2006). This is due to various 

factors such as signal filtering, difference in the method of recording and some R-R 

intervals not taken into consideration for calculation on Holter (Lutfullin et al., 2013; 

Badilini and Maison-Blanche, n.d) 

The abnormal QTc puts these patients at higher risk of arrhythmia and SCD. Routine ECG 

or periodic Holter monitoring is not undertaken as a part of routine clinical care to detect at 

risk patients. Undertaking these measures might help in risk stratifying these patients and 

initiate any preventative therapy.  
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12.4 Cardiac arrhythmias 

Sudden cardiac death and arrhythmias are some of the major causes for cardiac deaths in 

patients on HD and cardiac arrhythmias are very common in people with ESRD (Kanbay 

et al., 2010; Redaelli et al., 1988). Sudden deaths were noted to be more frequent on the 

first day of the week around first HD session (Foley et al., 2011; Karnik et al., 2001).  

Rapid electrolyte shifts, left ventricular hypertrophy, dialysis with low potassium dialysate 

and QT dispersion have been reported often as some of the causes predisposing the 

patients on dialysis to SCD (Kanbay et al., 2010; Pun et al., 2011). Karnik et al showed 

that presence of diabetes was associated with an increased incidence of cardiac arrest in 

dialysis patients. However the factors associated with diabetes such as glycaemic variation 

or hypoglycaemia has not been specifically reported in relation to the incidence of 

arrhythmias or SCD. 

Incidence of arrhythmias including burden of ventricular premature beats has been 

reported. Kimura et al in their study of 100 patients on maintenance HD using 72hour 

Holter monitor, reported ventricular arrhythmias including VPBs in 18 patients (Kimura et 

al., 1989). High burden of VPBs were noted during and for 4 hours after HD in this study.  

Ramirez reported 40% incidence of cardiac arrhythmias in patients on haemodialysis 

(Ramirez, Brueggemeyear and Newton, 1984). Shapira and Bar-Khayim reported 

clinically significant arrhythmia in 12 of their 39 patients studied, which included 

supraventricular, ventricular and that of combined origin (Shapira and Bar-Khayam, 1992). 

These were recorded on 12 lead ECG and 24hour Holter recordings. Verde et al, in their 

study of 77 patients (29.9% with diabetes) reported supraventricular arrhythmias in 49.3%, 

which were short and asymptomatic (Verde et al., 2016).  

In our study, we recorded 153 episodes of short arrhythmias in 11 out of 12 (91.67%) 

subjects in the diabetes group including junctional or idioventricular rhythms, sinus 

bradycardia and episodes of ST depression apart from ventricular and supraventricular 

arrhythmias. The incidence in our study is much higher than that reported in the literature. 

Kimura et al reported 8 patients with supraventricular, 3 patients with combined 

supraventricular and ventricular, and 1 patient with ventricular arrhythmias among 18 

patients noted to have arrhythmia. In our study 5 patients (33.3%) had recurrent episodes 

of arrhythmias and ventricular arrhythmias formed the large majority. 127 episodes of 

recorded arrhythmias were of ventricular origin including ventricular bigeminy/trigeminy, 
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non-sustained ventricular tachycardia/broad complex tachycardia. Only 14 episodes were 

of atrial origin. All episodes were short and asymptomatic. In addition 913 episodes of 

couplets and 103 episodes of triplets were seen. There was no relation between 

hypoglycaemia and frequency of dysrrhythmic episodes, as large majority occurred with 

IG level in euglycaemic range. Where corresponding IG level was available matched in 

time for occurrence of arrhythmic episode, the mean IG was 9.8±4.1 mmol/l. The 

frequency of arrhythmia during hypoglycaemic episode was not different compared to time 

matched euglycaemic period. Our results suggest that there is no demonstrable relation 

between hypoglycaemia and arrhythmia in this dialysis cohort. The highest incidence of 

arrhythmias was found in the 24 hours prior to 1
st
 HD of the week (20.6%). The literature 

suggests that there is increased risk of SCD before and after 1
st
 HD of the week. Increased 

frequency of arrhythmia during these periods might be contributing to this increased risk 

of SCD. In our study, another 17.6% of episodes occurred in the immediate 20hours post 

1
st
 HD period. 18% of episodes were noted after the 3

rd
 HD. Interestingly all diabetic 

patients in our study with ventricular arrhythmias had QTc prolongation on baseline as 

well as on post-HD ECG. 14 of 15 diabetes patients who underwent echocardiography, 3 

had normal or only mild abnormalities. The findings showed presence of moderate or 

severe abnormalities in subjects who also had higher number of arrhythmic episodes. This 

could suggest presence of structural cardiac abnormality could increase the risk of 

arrhythmias in this population.   

Higher frequency of ventricular premature beats (VPB) and complex VPBs are considered 

to be risk factors for ventricular arrhythmias. VPB burden is noted to be higher in the post-

HD period. It has not been reported, if burden of VPB or complex VPB is associated with 

glycaemic variation or hypoglycaemia in diabetic patients on HD. We did not find any 

significant difference in the VPB or complex VPB burden during hypoglycaemic episodes 

in comparison to time matched euglycaemic periods.   
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Conclusions 

 

1. We observed a significant pattern in the variation in IG levels in relation to 

haemodialysis in diabetic patients who are insulin dependent. There was a 

significant drop in mean IG level during HD followed by rebound hyperglycaemia 

in the post-HD period. The pattern was different in non-diabetic patients. The mean 

IG level continued to drop in the immediate post-HD period. 

2. The glycaemic variation was higher on dialysis days compared to non-dialysis days 

as measured by the SD and MAGE, though the mean IG level for the two days was 

not significantly different.  

3. Hypoglycaemia was very common in our insulin dependent diabetic population, 

which occurred more commonly on dialysis days. These episodes were all 

asymptomatic and often prolonged. 

4. Hyperglycaemia was more frequent on non-dialysis days compared to dialysis 

days. Our patients spent the majority of time either being hypoglycaemic or 

hyperglycaemic on both dialysis and non-dialysis days.  

5. Changes in cardiac rhythm during dialysis were not frequent and occurred 

consistently only in one diabetic patient.  

6. Our study did not demonstrate any relationship between hypoglycaemia and 

occurrence of dysryhythmias. 

7. Our study did not demonstrate any relationship between hypoglycaemia or 

electrolyte changes on QTc interval during dialysis.  

8. There was a high frequency of ventricular dysrhythmias in patients with diabetes 

and end stage renal disease and all of these occurred in those with a prolonged QTc 

on their ECG recorded at the start of dialysis. Hence we conclude that routine 

baseline ECGs before dialysis should be part of regular clinical care. 

9. These results suggest that careful monitoring of cardiac rhythm may be justified in 

those with an abnormal QTc on their resting ECG. 
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Future Directions:  

A real time CGM study would be essential in larger number of patients on different insulin 

regimen to understand the relation between glycaemic variation and insulin therapy to guide us 

formulate an appropriate regimen/dose titration for HD. 
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The James Cook University Hospital 
Marton Road 

Middlesbrough 
TS4 3BW 

 
www.southtees.nhs.uk  

 

Participant information sheet for people with diabetes 

Study of glucose control during haemodialysis in C-peptide negative 

diabetic end stage renal disease population in Teesside 

Chief Investigator: Professor R Bilous 

We would like to invite you to take part in a research study in people with diabetes and 

end stage renal disease needing maintenance haemodialysis. Before you decide you need 

to understand why the research is being done and what it would involve for you. Please 

take time to read the following information carefully. Talk to others about the study if you 

wish. Please ask us if there is anything that is not clear or if you would like more 

information. Take time to decide whether you wish to take part. 

What is the purpose of the research? 

It is known that people with diabetes and kidney disease needing haemodialysis have 

difficulty in controlling their blood glucose level adequately. It is difficult to make very 

effective changes to Insulin doses during this period to help patients improve glucose 

control based on finger prick tests alone. We would like to use a ‘continuous glucose 

monitoring system’ to assess glucose levels, which records changes in glucose levels in a 

real time fashion at set intervals and find out if we can make helpful recommendations for 

Insulin dose change for people on dialysis.  

Patients undergoing haemodialysis have a higher risk of severe adverse consequences, 

more so in patients with diabetes. It is thought that there are possible sudden changes to 

heart rate and rhythm, which we can detect from small changes on heart tracings. Low 

blood glucose levels could be associated with these changes. We would like to use a 7 day 

heart trace monitor in order to examine any changes and link them with blood glucose 

levels. We will also check various salt levels in the blood to see if these are linked to heart 

rate and rhythm.  

Why have I been invited? 

We are inviting all patients in Teesside with diabetes treated with Insulin undergoing 

haemodialysis for kidney failure, who have evidence of having no insulin production of 

their own. We are looking to involve 15 to 20 patients with diabetes to give us adequate 

knowledge. We are inviting some patients in the region undergoing haemodialysis without 

diabetes to understand the variation in blood glucose levels without the effect of insulin 

treatment. We are looking to involve 4 to 5 patients in this group. 

http://www.southtees.nhs.uk/
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Do I have to take part? 

It is up to you to decide. We will describe the study and go through this information sheet, 

which we will then give to you. If you are happy to proceed, we will then ask you to sign a 

consent form to show that you agree to take part. You are free to withdraw at any time, 

without giving a reason. This would not affect the standard of care you receive. 

What will happen to me if I take part? 

The study is a pilot study to understand the changes in blood glucose levels before, during 

and after haemodialysis together with any variation in heart rate and rhythm. To improve 

blood glucose levels, it is important to understand their variation, so effective changes to 

insulin dose or regimen can be made. Also it is important to understand any changes to 

heart tracings during haemodialysis, which could potentially cause life threatening rhythm 

problems.  

There will be two groups of patients depending on whether they have diabetes or not. 

The study will be carried out over one to two years, but you will be involved up to 10 

weeks. 

 

This flow chart below explains what it involves for you as a study subject, if you have 

diabetes. 

 

 

 

 

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

       

After overnight fasting and before your morning dose of Insulin, a blood sample will be 

taken to assess your eligibility to take part in the study. Blood is tested for C-peptide 

level. (This measures whether you are making any of your own insulin) 

C-peptide level- positive C- peptide level- negative or minimally positive 

Not eligible for the study You will be invited to take part in the study 

You will be asked to answer a simple questionnaire about your diabetes care, 

including your foot and eye care; your preparation on the dialysis days including 

any change to diet and/or insulin doses; and any exercise you undertake. 

If you have not had a heart scan (echocardiogram) in the previous 6 months, 

we will arrange for one to be done at James Cook University Hospital. 

We will select a week to start the study depending on your convenience. We 

will be able to study two patients at a time, in any given week. 

Study week 1 
Day 1: Monday for patients dialyzing on Monday/Wednesday/Friday 

Tuesday for patients dialyzing on Tuesday/Thursday/Saturday 
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At the end of dialysis, a further blood sample will be taken for salt levels and a third heart tracing 

will be recorded. You will be weighed again. 

You will be allowed home or your place from where you arrived, with the glucose monitor and 

the heart monitor. These will stay with you for 7 days. If you have any problem with these 

monitors, you should call the emergency mobile number provided at the end of this leaflet. 

Similar blood samples and ECG recordings will be made at your next two dialysis sessions. 

You will not be able to see the glucose readings on the monitor. You are expected to check your 

glucose levels by finger prick tests as you do and record them. You are expected to maintain a 

dairy of your insulin doses, any symptoms of low or high glucose. We will copy these on to our 

notes when you come for dialysis the week after. 

Study week 2 
On arrival for your first dialysis of the week, you will have a blood sample taken for glucose 
control measures (HbA1c, Fructosamine & Glycated albumin) & heart enzyme (Troponin I). The 
glucose & heart monitors will be taken away. We will see you again after a 3 week gap. Your 
recordings on your blood glucose & insulin dairy will be noted. 

Study week 5 

If you are happy to proceed, on your arrival for the first dialysis of the week, the continuous 

glucose monitor and the heart monitor will be attached as above. You will be weighed.  Dialysis 

started as usual. Glucose and heart monitors will stay with you for 7 days. You are expected to 

continue to check your blood glucose levels and record your insulin doses as before. 

Study week 6 

On your arrival for the first dialysis of the week, you will have blood sample taken for glucose 

control measures and heart enzyme. Both monitors will be taken away. Your entries in your 

glucose dairy will be noted. 

On your arrival for dialysis, blood samples will be taken for average blood glucose (HbA1c), heart 
enzyme (Troponin I), salt levels (Sodium, Potassium, Calcium, and Magnesium), Kidney & liver 
tests and cholesterol levels. You will be weighed. A heart trace (ECG) will be recorded.  
A continuous glucose monitor will be attached by inserting a small needle under the skin on your 
tummy. There would not be any tubes between the monitor and the needle. A heart monitor 
(Holter) will be attached via 3 wires attached to 3 sticky pads on your chest. 

Dialysis started as usual 

Midway through the dialysis, a blood sample will be taken for salt levels and second heart trace 

will be recorded 
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Study week 9 

If you are happy to proceed, on your arrival for first dialysis of the week, the continuous glucose 

monitor and the heart monitor will be attached as above. You will be weighed.  Dialysis started as 

usual. Glucose and heart monitors will stay with you for 7 days. You are expected to continue to 

check your blood glucose levels and record your insulin doses as before. 

Study week 10 

On arrival for your first dialysis of the week, you will have a blood sample taken for glucose 

control measures and heart enzyme. Both monitors will be taken away. This finishes your active 

participation in the study. We will arrange to see you at a later date at the dialysis unit, to explain 

the results of the monitors.         

       

This picture shows the glucose 

monitor (black oval instrument). 

This links with a small transmitter  

(small grey instrument below) 

attached to you on top of the 

needle inserted under the skin. The 

monitor needs to stay in your 

pocket/bag/room. 

This picture shows the heart 

monitor, which can be kept in your 

pocket or tucked in to your belt. 

This will be attached via 3 wires to 

3 sticky pads on your chest 
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What will I have to do? 

During the study, 

1. You should fill in the questionnaire attached and return it to the doctor. 

2. You should continue to check your blood glucose levels with finger prick tests and 

document along with Insulin type and dose you take. 

3. You will be expected to keep the glucose monitoring system and heart monitor attached 

for the full period of study in that week. 

4. You should continue to attend your dialysis sessions as usual and any other 

appointments with your GP or hospital. 

5. You should carry on usual activity through this period. 

 

What are the possible disadvantages and risks of taking part? 

You will have the continuous glucose monitoring system attached to you with a tiny 

needle under your skin, on your tummy for full week and a Holter (heart trace) monitor 

attached via three cables to sticky pads on your chest and tummy for 7 days.  

The potential risks anticipated are; 

1. Mild pain or discomfort due to the needle (similar in size to your insulin pen needle), 

inserted under the skin.  

2. Minor inconvenience with some of the routine activities you undertake on a day to day 

basis.  

3. We will not be changing your Insulin dose or type during this study, unless done so by 

your doctor looking after your diabetes. You are free to adjust your dose as usual. 

4. This kind of monitoring system has been available for many years and used in different 

patient groups. The safety of these systems has been proven and there are no side effects 

other than minor discomfort. 

5. You will be provided with a contact telephone number to ring anytime of the day, if you 

happen to suffer any untoward adverse effect due to the monitoring system. 

 

What are the possible benefits of taking part? 

Understanding the changes in your blood glucose levels during and in between 

haemodialysis could help in suggesting changes to your Insulin type and doses. Your week 

long test results will be studied later and results discussed with you and passed on to your 

doctor in charge of your diabetes care. Depending on these results, your doctor may 

consider changing your Insulin type or dose to improve your control. 

Your heart tracings will be studied in detail later for any changes in rate or rhythm, 

specifically looking for changes during periods of low glucose levels. If any are found, 

results will be discussed with you and passed on to your doctor and a cardiologist (heart 

doctor) for further investigation or treatment.  

If this monitoring is found helpful, we aim to suggest similar monitoring to be taken up as 

regular care of similar patients. 

This will also help us to understand the possible glucose changes before, during and after 

haemodialysis in patients. We expect to use this knowledge to improve the care of patients 

with diabetes undergoing haemodialysis, in terms of reducing time they spend with both 

high and low blood glucose levels.  
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What happens when you finish your study period? 

When you finish your study period, you will continue with your dialysis and diabetes care 

as before. Your continuous glucose readings will be studied later and conveyed to you and 

your doctor in charge of diabetes care. As a result your Insulin type and dose may be 

changed by your doctor as deemed necessary. Your ECGs and 7 day long heart tracing will 

be studied especially in relation to your salt and glucose levels. The results will be 

discussed with you and passed on to your doctor and also a cardiologist if required. 

 

Will my taking part in the study be kept confidential? 

Yes. We will follow the ethical and legal practice and all information about you will be 

handled in confidence.  

All information which is collected about you during the course of the research will be kept 

strictly confidential. Any information about you which leaves the hospital will have your 

name and address removed so that you cannot be recognized from it, unless it is passed on 

to your family doctor with your consent. All information stored about you will be labelled 

anonymously, with a study number rather than your name. We will store all information 

gathered in the study for fifteen years in the archive unit of the hospital. The only people 

with access to the information will be the researchers and representatives from the Trust in 

order to make sure that the research in being carried out correctly. 

 

What if relevant new information becomes available? 

Sometimes we get new information from published research work carried out elsewhere 

regarding similar method of glucose monitoring. If this happens we will tell you and 

discuss any relevant findings. We do not foresee any possible reports about any 

disadvantages or untoward effects of this method of glucose monitoring.  

 

What will happen if I don’t want to carry on in the study? 

You can withdraw from the study at any time if you wish, without giving any reason. 

Your care will continue as usual, even if you withdraw from the study. 

 

What if there is problem? 

If you have a concern about any aspect of this study, you should ask to speak to the 

researchers who will do their best to answer your questions. If you remain unhappy and 

wish to complain formally, you can do this through NHS complaints procedure. Details 

can be obtained from the hospital; Patient Advice and Liaison Service, The James Cook 

University Hospital, Marton Road, Middlesbrough, TS4 3BW, Email pals@stees.nhs.uk or 

call 0800 0282451 at The James Cook University Hospital and 0800 0282462 at the 

Friarage Hospital 

In the event that something does go wrong and you are harmed during the research and this 

is due to someone’s negligence, then you may have grounds for legal action against South 

Tees Acute NHS Trust, but you have to pay legal costs. The normal National Health 

Service complaints mechanisms will still be available to you. 

There is no cover for harm (caused by unexpected event associated with taking part in the 

study), which is no one’s fault. If a no fault injury occurs the trial sponsors, South Tees 

Acute NHS Trust, will not be held responsible. It will not be possible to claim damages 

against the trust.  
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Will my GP (family doctor) know I am in the study? 

Yes. If you agree to take part in this study, we will write to your GP to let him/her know 

that you are taking part with your consent. 

 

What will happen to results of the research study? 

The results of the study will be published in the medical journals. At the end of the study 

we will send you information about the final results.  

 

Who is organizing and funding the research? 

The research has been organized by South Tees Acute NHS trust. Your doctor or nurse 

will not be paid other than his / her usual salary. 

 

Who has reviewed this study? 

All research in the NHS is looked at by an independent group of people called the, 

‘Research Ethics Committee’, to protect your safety, rights, wellbeing and dignity. This 

study has been reviewed and given a favourable opinion by ‘Newcastle and North 

Tyneside 2 Research Ethics Committee’. 

 

Further information 

Professor R Bilous 

Clinical Trials Unit 

Academic Centre 

The James Cook University Hospital 

Marton Road 

Middlesbrough 

TS4 3BW 

Tel: 01642854140 

 

Emergency Contact 

Dr Naveen Siddaramaiah 

Mobile: 07904468264          
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The James Cook University Hospital 
Marton Road 

Middlesbrough 
TS4 3BW 

 
www.southtees.nhs.uk  

 

Participant information sheet for non- diabetic control 

subjects 

Study of glucose control during haemodialysis in C-peptide negative 

diabetic end stage renal disease population in Teesside 

Chief Investigator: Professor R Bilous 

We would like to invite you to take part in a research study in people without diabetes but 

with end stage renal disease needing maintenance haemodialysis. Before you decide you 

need to understand why the research is being done and what it would involve for you. 

Please take time to read the following information carefully. Talk to others about the study 

if you wish. Please ask us if there is anything that is not clear or if you would like more 

information. Take time to decide whether you wish to take part. 

What is the purpose of the research? 

It is known that people with diabetes and kidney disease needing haemodialysis have 

difficulty in controlling their blood glucose level adequately. It is difficult to make very 

effective changes to Insulin doses during this period to help patients improve glucose 

control based on finger prick tests alone. We would like to use a ‘continuous glucose 

monitoring system’ to assess glucose levels, which records changes in glucose levels in a 

real time fashion at set intervals and find out if we can make helpful recommendations for 

Insulin dose change for people on dialysis. In order to make sense of this information we 

also need to test a small number of people who are on haemodialysis but who do not have 

diabetes. 

Patients undergoing haemodialysis have a higher risk of severe adverse consequences, 

more so in patients with diabetes. It is thought that there are possible sudden changes to 

heart rate and rhythm, which we can detect from minute changes on heart tracings. Low 

blood glucose level could be associated with these changes. We would like to use a 7 day 

heart trace monitor in order to examine any changes and link them with blood glucose 

levels. We will also check various salt levels in the blood to see if these are linked to heart 

rate and rhythm.  

 

 

http://www.southtees.nhs.uk/
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Why have I been invited? 

We are inviting patients in the region undergoing haemodialysis without diabetes to 

understand the changes in blood glucose levels without the effect of insulin treatment. We 

are looking to involve 4 to 5 patients in this group. 

Do I have to take part? 

It is up to you to decide. We will describe the study and go through this information sheet, 

which we will then give to you. If you are happy to proceed, we will then ask you to sign a 

consent form to show that you agree to take part. You are free to withdraw at any time, 

without giving a reason. This would not affect the standard of care you receive. 

What will happen to me if I take part? 

The study is a pilot study to understand changes in blood glucose levels before, during and 

after haemodialysis together with any variation in heart rate and rhythm. To improve blood 

glucose levels, it is important to understand their variation, so effective changes to insulin 

dose or regimen can be made. Also it is important to understand the changes to heart 

tracings during haemodialysis, which could potentially cause life threatening rhythm 

problems.  

There will be two groups of patients depending on whether they have diabetes or not. 

The study will be carried out over one to two years, but you will be involved up to 2 

weeks. 

This flow diagram below explains what it involves for you as a study subject, if you do not 

have diabetes. 

 

 

 

 

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

           

 

If you have not had a heart scan (echocardiogram) in the previous 6 months, 

we will arrange for one to be done at James Cook University Hospital. 

We will select a week to start the study depending on your convenience. We 

will be able to study two patients at a time, in any given week. 

Study week 1 
Day 1: Monday for patients dialyzing on Monday/Wednesday/Friday 

Tuesday for patients dialyzing on Tuesday/Thursday/Saturday 

On your arrival for dialysis, blood samples will be taken for average blood glucose (HbA1c), heart 
enzyme (Troponin I), salt levels (Sodium, Potassium, Calcium, and Magnesium), Kidney & liver 
tests and cholesterol levels. You will be weighed. A heart trace (ECG) will be recorded.  
A continuous glucose monitor will be attached by inserting a small needle under the skin on your 
tummy. There would not be any tubes between the monitor and the needle. A heart monitor 
(Holter) will be attached via 3 wires attached to 3 sticky pads on your chest. 

Dialysis started as usual 
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You will not be able to see the glucose readings on the monitor.  

Study week 2 
On arrival for your first dialysis of the week, you will have a blood sample taken for heart enzyme 
(Troponin I). The glucose & heart monitors will be taken away. We will note down your finger 
prick test results. This finishes your active participation in the study. We will see you at the 
dialysis centre at a later date to explain the results of the monitors. 

Midway through the dialysis, a blood sample will be taken for salt levels and second heart trace 

will be recorded 

This picture shows the glucose 

monitor (black oval instrument). 

The transmitter (small grey 

instrument shown below) will be 

attached to you on top of the 

needle inserted under the skin. The 

monitor needs to stay in your 

pocket/bag/room. 

At the end of dialysis, a further blood sample will be taken for salt levels and a third heart tracing 

will be recorded. You will be weighed again. 

You will be given a regular glucose meter to do finger prick tests at home for glucose. You will be 

allowed home or your place from where you arrived, with the glucose monitor and the heart 

monitor. These will stay with you for 7 days. If you have any problem with these monitors, you 

should call the emergency mobile number provided at the end of this leaflet. Similar blood 

samples and ECG recordings will be made at your next two dialysis sessions.  
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What will I have to do? 

 
During the study, 

1.  You will be expected to keep the glucose monitoring system and heart monitor attached 

for the full period of study in that week. 

2. You should continue to attend your dialysis sessions as usual and any other 

appointments with your GP or hospital. 

3. You should carry on usual activity through this period. 

4. You will need to take a finger prick blood sample for a glucose test once or twice a day 

in order to calibrate the sensor. 

 

What are the possible disadvantages and risks of taking part? 

 
You will have the continuous glucose monitoring system attached to you with a tiny 

needle under your skin, on your tummy for full week and a Holter (heart trace) monitor 

attached via three cables to sticky pads on your chest and tummy for 7 days.  

The potential risks anticipated are; 

1. Mild pain or discomfort due to the needle, inserted under the skin.  

2. Minor inconvenience with some of the routine activities you undertake on a day to day 

basis.  

3. This kind of monitoring system has been available for many years and used in different 

patient groups. The safety of these systems has been proven and there are no side effects 

other than minor discomfort. 

5. You will be provided with a contact telephone number to ring anytime of the day, if you 

happen to suffer any untoward adverse effect due to the monitoring system. 

 

What are the possible benefits of taking part? 

 
A fall in glucose level is known to occur during dialysis sessions even in people without 

diabetes. This may not be significant to give you any symptoms, but if significant, it could 

mean that the glucose concentration of your dialysis fluid needs adjustment.  

Your heart tracings will be studied in detail later for any changes in rate or rhythm, 

specifically looking for changes during periods of low glucose levels, as found on your 

week long glucose monitor readings. If any are found, results will be discussed with you 

and passed on to your doctor and a cardiologist (heart doctor) for further investigation or 

treatment.  

If this monitoring is found helpful, we might suggest similar monitoring to be taken up as 

regular care. 

This picture shows the heart 

monitor, which can be kept in your 

pocket or tucked into your belt. 

This will be attached via 3 wires to 

3 sticky pads on your chest 
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This will also help us to understand the possible glucose changes before, during and after 

haemodialysis in patients. We expect to use this knowledge to improve the care of patients 

with diabetes undergoing haemodialysis, in terms of reducing time they spend with both 

high and low blood glucose levels.  

 

What happens when you finish your study period? 

 
When you finish your study period, you will continue with your dialysis as before. Your 

continuous glucose readings will be studied later and conveyed to you. Your ECG’s and 7 

day long heart tracing will be studied especially in relation to your salt and glucose levels. 

The results will be discussed with you and passed on to your doctor and also a cardiologist 

if required. 

 

Will my taking part in the study be kept confidential? 

 
Yes. We will follow the ethical and legal practice and all information about you will be 

handled in confidence.  

All information which is collected about you during the course of the research will be kept 

strictly confidential. Any information about you which leaves the hospital will have your 

name and address removed so that you cannot be recognized from it, unless it is passed on 

to your doctor with your consent. All information stored about you will be labelled 

anonymously, with a study number rather than your name. We will store all information 

gathered in the study for fifteen years in the archive unit of the hospital. The only people 

with access to the information will be the researchers and representatives from the Trust in 

order to make sure that the research in being carried out correctly. 

 

What if relevant new information becomes available? 

 
Sometimes we get new information from published research work carried out elsewhere 

regarding similar method of glucose monitoring. If this happens we will tell you and 

discuss any relevant findings. We do not foresee any possible reports about any 

disadvantages or untoward effects of this method of glucose monitoring.  

 

What will happen if I don’t want to carry on in the study? 

 
You can withdraw from the study at any time if you wish, without giving any reason. 

Your care will continue as usual, even if you withdraw from the study. 

 

What if there is problem? 

 
If you have a concern about any aspect of this study, you should ask to speak to the 

researchers who will do their best to answer your questions. If you remain unhappy and 

wish to complain formally, you can do this through NHS complaints procedure. Details 

can be obtained from the hospital: Patient Advice and Liaison Service, The James Cook 

University Hospital, Marton Road, Middlesbrough, TS4 3BW, Email pals@stees.nhs.uk or 

call 0800 0282451 at The James Cook University Hospital and 0800 0282462 at the 

Friarage Hospital 
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In the event that something does go wrong and you are harmed during the research and this 

is due to someone’s negligence, then you may have grounds for legal action against South 

Tees Acute NHS Trust, but you have to pay legal costs. The normal National Health 

Service complaints mechanisms will still be available to you. 

There is no cover for harm (caused by unexpected event associated with taking part in the 

study), which is no one’s fault. If a no fault injury occurs the trial sponsors, South Tees 

Acute NHS Trust, will not be held responsible. It will not be possible to claim damages 

against the trust.  

 

Will my GP (family doctor) know I am in the study? 

 
Yes. If you agree to take part in this study, we will write to your GP to let him/her know 

that you are taking part with your consent. 

 

What will happen to results of the research study? 

 
The results of the study will be published in the medical journals. At the end of the study 

we will send you information about the final results.  

 

Who is organizing and funding the research? 
The research has been organized by South Tees Acute NHS trust. Your doctor or nurse 

will not be paid other than his / her usual salary. 

 

Who has reviewed this study? 
All research in the NHS is looked at by an independent group of people called the, 

‘Research Ethics Committee’, to protect your safety, rights, wellbeing and dignity. This 

study has been reviewed and given a favourable opinion by ‘Newcastle and North 

Tyneside 2 Research Ethics Committee’. 

 

Further information 

Professor R Bilous 

Clinical Trials Unit 

Academic Centre 

The James Cook University Hospital 

Marton Road 

Middlesbrough 

TS4 3BW 

Tel: 01642854140 

 

Emergency Contact 

Dr Naveen Siddaramaiah 

Mobile: 07904468264 
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