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Abstract: 

 The capture and storage of atmospheric CO2 as mineral carbonates, is one 

of the safest ways to combat global warming. The slow CO2 hydration rate is one 

limitation of the mineralization process. The current study presents the discovery of 

nickel nanoparticles (NiNPs) as a catalyst for enhancing the rate of CO2 hydration 

for mineralization carbon capture and storage. The NiNPs at an optimum 

concentration of 30 ppm, increased the saturation concentration by three folds as 

compared with deionized water alone. The mechanism of the reaction on NiNPs 

surface is also proposed. The kinetics of catalysis of CO2 hydration was 

additionally studied using stopped flow spectrophotometery and pH changes in 

buffer solution upon addition of saturated CO2 solution. To distinguish between 

physical gas-liquid transfer and catalysis, other inorganic nanoparticles (NiO and 

Fe2O3) have been studied. The effect of CO2 partial pressure on NiNPs catalysis 

was studied. Nickel nanowires (NiNWs) were synthesised and tested for catalysis 

of CO2 hydration. The photocatalytic activity of NiNPs was evaluated under artificial 

solar irradiation compared with that in the dark. The results suggest that the 

surface plasmonic resonance (SPR) of NiNPs enhances the rate of water 

dissociation on the NiNPs surface leading to higher rate of CO2 hydration under 

solar irradiation. The effect of temperature on the catalytic activity of NiNPs is 

evaluated. Optimum activity was observed at room temperature (20-30 °C). 

Application of NiNPs catalysis was investigated for CaCO3 precipitation and the 

rate of CO2 absorption in 50 wt% carbonate solutions. Vapour-liquid equilibrium 

studies of CO2-H2O in presence of nanoparticles (Ni, Fe2O3 and NiO) found that 
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the presence of nanoparticles decreases the surface tension of DI water, 

responsible for the increase in CO2 saturation concentration. Additionally a novel 

method for mineralization of CO2 using gypsum and sodium chloride was 

developed including design of a customized reactor. 
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Chapter 1: 

Introduction 

 

 

 

 

The current scenario of global climate change has been widely 

recognised as an event of high concern, with the threat of melting of the polar 

ice caps followed by the rise of oceanic levels [1, 2]. This concern has resulted 

due to the increase of the greenhouse gases (GHGs) emitted by the 

anthropogenic human activity, accelerated by the industrial revolution in the 

1800’s, followed by rapid industrialization and commercial growth [2]. The 

release of carbon trapped in the lithosphere (as fossil fuels) into the atmosphere 

due to industrial activities (including power generation, transportation, 

deforestation, etc) outside the bio-geo-chemical cycle, has led to the increase of 

the GHG concentration in the atmosphere [3]. This has been illustrated 

schematically in figure 1.1. Figure 1.1 shows that the CO2 flux from the 

lithosphere to the atmosphere has increased after the industrial revolution. The 

accumulation of the GHG, increases the amount of heat trapped in the 
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atmosphere thereby increasing the global atmospheric temperatures, this is 

known as Greenhouse effect. There has been an international consensus on 

the reduction of the GHG emissions in the current decade in order to mitigate 

the global climate change [4]. The development and implementation of 

technology for reduction of GHG emission and its safe long-term storage away 

from the atmosphere is termed as Carbon Capture and Storage (CCS) (or 

Carbon Capture and Sequestration). 

 

Figure 1.1: Schematic of the Earth’s carbon-based bio-geo-chemical cycle pre industrial era and 

post-industrial era [3]. 

1.1 Greenhouse gases: types and sources 

There are a number of GHGs identified by the United Nations Framework 

Convention on Climate Change (UNFCCC), [4-6] these include carbon dioxide 

(CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), 

perfluorocarbons (PFCs), sulphur hexafluoride (SF6) and nitrogen triflouride 

(NF3). The percentage distribution of these emitted GHGs can be seen in figure 

1.2 as presented by the recent report by the Intergovernmental Panel on 
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Climate Change (IPCC) [7]. CO2 is the primary product emitted in large quantity 

as compared to other GHGs due to anthropogenic emission. Therefore majority 

of the research and governmental policies are concentrated in the reduction of 

CO2 emissions. 

 

 

Figure 1.2: Percentage distribution of the various GHGs emitted by burning of fossil fuels [7] 

 

The emission of the CO2 from various sectors (in 2008) can be seen in 

figure 1.3 [8]. Electricity and heat generation are one of the major sectors which 

depend heavily on the fossil fuel reserves. In 2008 it was the largest emitter of 

CO2 and thus is the first priority to be addressed in the CCS strategy for 

emission reduction. 41% of the global emission of CO2 was solely from the 

electricity and heat generation and many countries like Australia, China, India, 

Poland and South Africa largely depend on coal as fuel for electricity generation 

[8]. It has been reported by International Energy Agency (IEA) that in 2010 the 

GHG emission from the energy sector accounted for two-third of the global 

GHG emissions [1]. The large dependence on coal for energy production has 

made it a priority sector for implementation of CCS. Great deal of strategy 
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planning and policies have been associated with the implementation of CCS to 

current and proposed coal based power plants [9]. 

 

 

Figure 1.3: CO2 emission in 2008 from various sectors [8] 

 

1.2 Governmental framework and policies: 

  The United Nations Intergovernmental Panel on Climate Change (IPCC) 

has given recommendations that there needs to be a reduction in the GHG 

emissions globally resulting into the Kyoto protocol being passed in 2006 [4, 5]. 

The first stage of the protocol stated in 2008 and ended in 2012, which 

requested the participating countries to reduce their emission by 5% to the end 

of 2012, as compared to the benchmark emissions of 1990 and the second 

phase began in 2013 that implies that the emissions be further reduced by 18% 

by 2020 [6]. The implementation of the protocol specially focuses on the 

developed countries but dismisses the countries in the southern hemisphere 

and the United States of America [10]. The figure 1.4 shows the 5 major 

contributors of global CO2 emission, followed by Germany, Canada, United 

Kingdom, Iran and South Korea [8]. 
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Figure 1.4: Top five CO2 emitting countries of 2008 (published in 2010) [8]. 

  

 The deployment and demonstration of CCS is an important aspect of the 

Kyoto Protocol. Governmental policies need to address this by proper 

demonstration of CCS projects [11]. The UK government passed the Climate 

Change Act in 2008 to become the first to set a long range target for CO2 

reduction by 80% in 2050, compared to the CO2 emissions of 1990 in its 

domestic market [12, 13]. This law followed the post combustion capture 

competition of 2007, which would support to develop capture facility for coal-

fired power plant [12, 14]. The 2010 Energy Act narrowed the competition down 

to only two competitors, owing to the new economic reforms in the electrical 

market in 2011. The two competitors were E.ON power and Scottish power, the 

former of which withdrew their bid due to the reduction in the CCS leverage by 

the UK government, leaving the later as the only contender in the post 

combustion capture competition [12].  

 In the European Union, twelve projects (table 1.1) have been identified 

aspiring for CCS demonstration [15] but the only three to four of which seem to 

be feasible to have a start up by 2020 [16]. There still exist a major uncertainty 
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in the development, demonstration and deployment of CCS technology 

provided by government support in the developed world [12].  

Table 1.1: List of proposed CCS equipped power plants in Europe and their progress [15] 

Country Project Capture Storage Status comments 

UK Peterhead 

(gas) 

Post Offshore Storage site front end 

engineering and design 

completed 

 Drax (coal) Oxy Offshore  

 Don valley 

(coal) 

Pre Offshore Cancelled following withdrawal 

of UK govt. support (Oct, 2012) 

 Teeside 

(coal) 

Pre Offshore  

 Captain 

(coal) 

Pre Offshore Not an applicant for new 

entrants reserve 300 round 1 

funding 

Netherlands ROAD (coal) Post Offshore All front end engineering and 

design completed and permitting 

near completion (2012) 

 Green 

Hydrogen 

(hydrogen) 

cryogenic Offshore  

France Floranges 

(steel) 

Top gas 

recycle 

Onshore Host facility currently idled and 

facing an uncertain future (Oct, 

2012) 

Italy Porto Tolle 

(coal) 

Post Offshore Subject to permitting challenge 

(overuled 2011) 

Spain Compostilla 

(coal) 

Oxy Onshore Not an applicant for new 

entrants reserve 300 round 1 

funding 

Poland Bechatow 

(coal) 

Post Onshore  

Romania Getica (coal) Post Onshore  

Germany Jaeschwalde 

(coal) 

Oxy Onshore Project cancelled Dec, 2011 

 

 China and India are taken to be emerging economies that could become 

large potential emitters over the years, but the Kyoto Protocol does not explicitly 
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require the developing countries to obey reduction in CO2 emissions [10]. 

Figure 1.5 shows the emissions of CO2 in the year 2011-2012 of six of the top 

ten global emitters form the IEA World Energy Outlook, 2013 [1]. There is a 

need for international cooperation on CCS demonstration to bridge the 

knowledge gap between the CCS rhetoric and technical progress that is 

essential for climate change mitigation efforts [17, 18]. Also developing 

economies like China and India need emphasis on the CCS regulation policies 

[17, 19, 20].  The urgency of the problem of CCS implementation can be 

estimated by the fact that, at a global level, each year delay in taking 

appropriate policy decision would lead to an additional cost of 300 billion GB 

pounds in terms of mitigation costs between now and 2030 [21]. 

 

 

Figure 1.5: Changes in CO2 emissions in the year 2011-2012 [1]. 

1.3 Technological developments in CCS 

 CCS is not a developed technology but an emerging market and thus full 

scale demonstration of CCS is an important factor for policy regulations [7, 11]. 
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The stages that are part of CCS include capture, transportation and storage [7, 

16]. A detailed overview of the CCS phases is provided in chapter 2.  

 There have been various technologies that have been suggested for the 

optimal use of fossil fuel resources (including coal) for power-plant usage in 

electricity generation. These include technologies for combustion of the fuel, the 

various techniques used for separation/purification of the CO2 generated during 

combustion, followed by transportation and safe storage of CO2 [18, 22-25].  

The technologies need to be developed keeping the current power plant 

structure in mind and policies need to be developed to avoid carbon lock-in [26, 

27]. Carbon lock in is defined as "creating persistent market and policy failures 

that can inhibit the diffusion of carbon-saving technologies despite their 

apparent environmental and economic advantages" [26]. The emphasis on the 

research and development on the CCS is recommended on an urgency basis 

[21]. 

The storage of CO2 becomes an important aspect to be covered in CCS 

[28]. The conversion of CO2 to biomass provides short term storage of CO2 

leading to a later emission of the carbon into the atmosphere [29, 30].  Another 

prospect of storage is geological storage, (underground in depleted oil 

wells/coal seams) or as mineral salts [28]. The motivation for geological storage 

of CO2 is based on the Enhanced Oil Recovery (EOR) that is used in the oil and 

gas industry, which is a mature technology. In EOR, the CO2 generated in the 

oil and gas processing is used to extract crude out of the depleting oil wells [15]. 

This is an effective method for a long-term storage but it is still covered by 

limitations of leakages [31]. The conversion of CO2 to mineral carbonates, even 

though considered safest method of CO2 storage [7, 16, 28], however is limited 
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by slow kinetics rates in the conversion process from CO2 to carbonates [29] 

(discussed in detail in chapter 2). 

1.4 Aims of this work 

 The kinetic limitations observed during mineralization of CO2 include the 

slow hydration of CO2 (see section 2.3.3, chapter 2) and low dissolution rates of 

natural mineral rocks (see section 2.3.2, chapter 2). Therefore, the motivation of 

this work was to develop a novel method for wet-chemical carbonation of CO2. 

In particular, the use of nickel nanoparticles to catalyse the hydration of CO2 

and the use of gypsum as a calcium source for mineralization was investigated 

and found to be successful, as reported in chapter 4 and 9, respectively.  

 The inspiration for the use of nickel nanoparticles (NiNPs) to catalyse 

CO2 mineralisation originated from the observation of nickel metal in sea urchin 

exoskeletons [32,33], and the role that it was suspected to have in bio-

mineralisation. Given the success of other bio-inspired/bio-mimectic approaches 

to problems as diverse as ultra-strong materials [34-36] to camouflage and 

colouring [37] nickel nanoparticles were considered to be a worthwhile starting 

point to explore methods for improvement in CO2 mineralisation.  

 The fact that sea water contains SO4
2+ ions as the second most 

abundant ions after Cl- and the observation that some natural springs which 

have high sulphate content in the aquatic environment [38, 39] also precipitate 

CaCO3 naturally led to intuitively select a sulphate based calcium source for the 

mineralization process. Gypsum (CaSO4·H2O) is a natural source of calcium 

sulphate, available in plentiful and relatively cheap, is explored as a calcium 

source for the mineralization process.  
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 Based on the above approach, the specific aims addressed in the work 

presented in this thesis are: 

 The investigation and proof of concept of NiNP catalysed hydration of 

CO2. 

 To understand the steps involved in the catalytic process of CO2 

hydration using NiNPs. 

 To validate catalytic activity of NiNPs using different methods for reaction 

kinetic evaluation common in the literature. 

 To compare the activity of NiNPs with other nanoparticles (i.e. Al2O3, 

Fe2O3 and NiO) that are suggested to have similar catalytic activity for 

hydration of CO2. 

 To understand influence of sunlight and temperature on NiNP catalysed 

hydration of CO2.  

 Application of NiNPs to enhance CO2 mineralization and the rate of CO2 

absorption (in carbonate solutions). 

 Development of a novel process for mineralization of CO2 using gypsum, 

sodium carbonate and sodium chloride.  

 Construction of a novel reactor for the above mentioned mineralization 

process.  

 To study the transfer of ions through a salt bridge under the influence of 

a concentration gradient. 

1.5 Summary of the chapters  

 The thesis has the following structure. Chapter 2 reviews the technical 

literature of carbon capture and storage with emphasis on mineralization 
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storage of CO2. The experimental procedures for all the experiments and 

analytical techniques used are presented in chapter 3.  

 Chapter 4 presents the results of a study on the catalytic activity of 

NiNPs for hydration of CO2. The process based upon the study reported in this 

chapter has been patented [40] and published [41, 42]. The study of the 

catalytic hydration of CO2 using NiNPs was qualitatively evaluated and verified 

against methods used in the literature, the results of which are presented and 

discussed in chapter 5. Different nanoparticles (Fe2O3 and NiO) were also 

examined to determine any similar activity or mass transfer enhancement on 

the hydration of CO2. These results are also presented in chapter 5.  

 In chapter 6 it is demonstrated that the NiNPs are photoactive and their 

photo-activity was investigated in detail. The results show that NiNPs absorb 

light in the visible range leading to enhancement in its catalytic activity. The 

dependence of the catalytic activity of the NiNPs on temperature is also 

presented in chapter 6. It was observed that NiNPs had optimum activity 

between 20-30°C. NiNPs were also used to enhance precipitation of CaCO3 

and absorption in carbonate solutions. The results of enhancement processes 

are described and discussed in chapter 7. 

 The presence of the nanoparticles (Ni, Fe2O3 and NiO) in de-ionised 

water was observed to have affected the CO2-H2O vapour liquid equilibrium by 

increasing the equilibrium concentration of CO2 in de-ionised water. Comments 

on the effect of nanoparticles on CO2-H2O equilibrium are presented in chapter 

8. Change in surface tension of nanoparticle suspension is suggest as one of 

the reasons for the change in CO2-H2O equilibrium. 
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 The last part of the thesis introduces a novel method for mineralization of 

CO2 using gypsum and sodium chloride and results have been presented in 

chapter 9 in the thesis. A novel reactor was designed for the mineralization 

process consisting of a salt bridge. The results demonstrate that CO2 can be 

mineralized using this novel process and reactor. The concept of transfer of 

ions through a salt bridge under a concentration gradient is examined and 

discussed in chapter 9. It was observed that ions can be transferred though the 

salt bridge under a concentration gradient. Chapter 10 comprises concluding 

remarks and future work. 
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Chapter 2  

Carbon capture and CO
2
 

Mineralization: Review 

 

 

 

 Carbon capture and storage (CCS) is a term used to collectively describe 

the process of separation, transportation and safe storage of CO2 away from 

the atmosphere. Chapter 2 will introduce and discuss the various technological 

and research aspects of CCS with focus on the mineralization carbon capture 

and storage. The chapter begins with the various methods used and proposed 

for the combustion of fossil fuels (that include, post combustion capture, pre 

combustion capture, oxy-fuel process and combustion looping), followed by the 

methods used for the separation of CO2 used in post combustion capture. The 

chapter then reviews the various storage possibilities of CO2, out of which 

mineralization storage has been discussed in detail.    
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2.1 Carbon cycle, CO2 emissions and global warming. 

 

 The carbon cycle is the movement of carbon (in all its forms i.e. organic 

and inorganic) within the bio-geo-chemical cycle. Figure 1.1 shows the 

movement of carbon in the bio-geo-chemical cycle and the intervention of the 

human anthropogenic activities to unbalance and increase the CO2 flux into the 

atmosphere [1]. The increase of CO2 in the atmosphere, leads to greenhouse 

effect which increases the global temperatures resulting in melting of the polar 

ice caps and increase in the oceanic levels around the globe [2]. This increase 

in CO2 concentration in the atmosphere also leads to an increase in oceanic 

acidification, as the oceans try to maintain the equilibrium of CO2 with the 

atmosphere [3].  

 

Figure 2.1 CO2 increase in the atmosphere since industrial revolution (Reconstructed from 
Boden et al. [4]). 

 

 Figure 2.1a shows the global CO2 emissions during the last 210 years 

and figure 2.1b shows an expanded view of emissions in the last 60 years [4]. 

Since industrialization, in the 1900, there has been an exponential increase in 

the CO2 emissions (figure 2.1a) that has increased by 5.5 times in the last 60 

years (figure 2.1b). In order to mitigate the increase in the amount of CO2 in the 

atmosphere efforts are taken to reduce CO2 emissions (section 1.2, Chapter 1). 
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These efforts include efficient power utilization by the means of process 

intensification, the use of renewable power sources and CCS. Even though 

there is an increasing impetus to use renewable resources for power 

generation, the transition to renewables is slow as these are developing 

technologies [5, 6] and our dependence of fossil fuels and coal for power 

generation is still intact [7]. Hence CCS plays an important role to reduce the 

CO2 from entering the atmosphere [8].  

2.2 Carbon Capture and Storage: An Overview 

 CCS has developed a lot of interest over the last decade. It expands into 

various topics related to CO2 emissions that are under scientific investigation 

[8]. It encompasses the development and application of the various methods of 

separation (or capture) of CO2
 [9-11] along with the various fuel combustion 

technologies [12, 13]. It includes the method of transportation of the purified 

CO2 and its safe long term storage [14]. There are various propositions that 

have been offered for the storage and utilization of CO2, these include storage 

in natural sinks (terrestrial and oceanic) [3], conversion into useful chemicals 

[15-19], storage in geological formations such as depleted oil well or saline 

aquifers (terrestrial or oceanic) [2, 20] and conversion into mineral salts [21, 22]. 

Recently there has been an emphasis on life cycle analysis studies of the new 

CCS projects to ensure sustainability of the process [23].  

2.2.1 CO2 capture technology 

 Carbon capture from the power generation process is an important field 

in CCS [14, 24, 25]. The capture of CO2 done after the combustion process is 

known as post-combustion capture, before the combustion process is called as 

pre-combustion capture and the capture of CO2 done when fuel is combusted in 
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presence of pure oxygen is the so-called oxy-fuel process [24]. Another novel 

method of combustion is to carry the oxygen from the air in an oxygen carrier 

and then react it with the fuel separately, known as chemical looping 

combustion (CLC) [26, 27]. These are the four different modifications that are 

made to the combustion process, in order to accommodate CCS in power 

generation process and are summarised in figure 2.2. 

 

Figure 2.2: Various fuel combustion and capture mechanisms for CCS. 

 Post-combustion process is the most traditional process that is widely 

used for power generation or industrial processes. In this method the fuel, such 

as coal or fossil fuel is burnt in the boiler and the flue gas is then treated [28]. 

Currently the purification process consist of removal of  SOx, NOx and CO as an 

integral part of power generation (due to governmental regulations [2]) and 

removal of CO2 is desired to be added into the process (see figure 2.2). Post-

combustion capture is a mature technology that has been utilized by the Oil and 

Gas (O&G) industry [8]. The purified CO2 in the O&G sector is then compressed 

and pumped in the oil well for enhanced oil recovery (EOR) [29].  
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 In this method there fossil fuel (natural gas, coal or biomass) is converted 

to synthesis gas (syngas) and then fed to the boiler. Syngas is a mixture of CO2 

and H2 that is produced by steam reforming of natural gas or liquid hydrocarbon 

[30, 31], gasification of coal [32-34] and biomass [34-36]. In this process the 

CO2 is generated and removed before the fuel (i.e. hydrogen) enters the boiler. 

Therefore the process is called as pre-combustion capture technology [37, 38]. 

A block diagram of the process is presented in figure 2.2. The gasification 

process generates a mixture of CO2 and H2 with some traces of CO [39]. The 

capture of CO2 is less intensive and is more cost effective than the post-

combustion process.  

 The oxy fuel process comprises of the combustion of fuel in the complete 

oxygen atmosphere as compared to air in conventional combustion process. Air 

consists mainly of N2 and O2 and in conventional air combustion process some 

of the heat generated is lost as sensible heat to N2. This limitation is overcome 

by oxy-fuel combustion. Combustion of carbon based fuels under complete 

oxygen environment enhances combustion efficiency and provides a cost 

effective downstream sequestration of CO2 [12, 40-42]. 

 In CLC the oxygen required for the combustion of fuel is provided by an 

oxygen carrier such as metal oxides (Fe3O4, Cu2O, CaO etc [43, 44]. In CLC 

firstly the metal (or metal oxide) (3𝐹𝑒 + 4𝐻2𝑂 → 𝐹𝑒3𝑂4 +  4𝐻2, [44]) is oxidized 

in presence of air in one fluidized bed reactor (FBR), then transferred and 

reduced in another FBR in presence of a fuel (2𝐶 + 𝐹𝑒3𝑂4 →  3𝐹𝑒 + 𝐶𝑂2, [44]). 

The fuel and air do not mix and streams of CO2 and water can be generated. 

After condensation of steam, pure stream of CO2 suitable for sequestration is 

available, reducing downstream processing [45-48]. 
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2.2.2 Capture process 

 The separation of CO2 from exhaust stream is another field of active 

study in CCS [14, 49, 50]. The traditional methods of CO2 separation includes 

amine and carbonate absorption for CCS projects has been recently reviewed 

[51, 52]. Even though these technologies are used for decades in the oil and 

gas sector, the cost of its utilization for separation of CO2 from power plants is 

high [53]. Therefore optimization of these processes to lower operating costs, 

for example by using different catalysts for enhancing  CO2 absorption rates are 

still an active area of research (further discussed in section 2.3.3). New 

absorption materials such as ionic liquids are also been studied [50, 54-56]. 

Ionic liquids have higher CO2 loading capacities and enhanced CO2 absorption 

rates as compared to amine and carbonate solutions [50, 54-56]. Addition of 

solid particles in absorbers can also increase their absorption capacity [57, 58]. 

 Adsorption separation of CO2 is another industrially used technique [59]. 

The most commonly used adsorbents are zeolites, activated carbon and amine 

treaded adsorbers (like silica or alumina) [25]. The adsorption process can be 

physical or chemical [60]. One of the physical adsorbents that show high CO2 

separation potential are metallorganic frameworks (MOF) [61-64]. The MOF's 

are highly porous and crystalline in the structure and can hold high 

concentrations of CO2 within their structures (i.e. 2400 mg of CO2/g of MOF at 

room temperature and ~50 atm pressure) [63]. Chemically modifying the 

surface with amine groups leads to chemical adsorption systems [60], alkaline 

earth metal oxides (like CaO or MgO) are also affective chemical adsorbers that 

can capture hydrated CO2 and can be regenerated by simple heat treatment 
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[65]. Grassin and co-workers [66-69] that aqueous layers on adsorbent 

materials can increase their adsorption capacity. 

 Another method of CO2 separation is the use of membranes [70]. 

Membranes can be solid membranes [71-73], polymeric membranes [74-76] or 

liquid membranes [77-79]. Solid membranes find applications in high 

temperature separation i.e. above 200 °C (especially ceramic membranes [72]) 

while polymeric and liquid membranes are used for lower temperature 

separations i.e. below 150 °C [55, 76]. Cryogenic distillation is another method 

that is suggested for separation of CO2 [9, 11, 49]. In this method the CO2 is 

distilled at cryogenic temperatures (i.e. -150 °C) which is a physical process. 

The process of cryogenic distillation is used for separation of air constituents, 

but application to CCS is novel [25]. This process is limited with the cost of the 

refrigerant required to reach such low temperatures [25]. 

2.2.3 Storage of CO2. 

 The storage of CO2 for long term away from the atmosphere is the main 

priority of CCS. Various storage or sequestration methods have been proposed 

and each one of them have a limited capacity (both in terms of time and 

quantity) to store CO2. These traditional storage options include conversion to 

biomass, reused as fine chemicals or fuels, underground storage in saline 

aquifers, depleted oil wells or un-mineable coal mines and conversion to 

mineral carbonates [2]. The figure 2.3 shows the distribution of the CO2 storage 

capacity of the various proposed options. Recently there have been a few new 

suggestions for the oceanic storage of CO2 these as bicarbonate solutions [80] 

or as solid H2CO3 [81] both of which have been recently proposed. Hamelers et 

al. [82] proposed a novel method of generating energy from CO2 emissions by 
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using the difference in concentrations of CO2 from emissions and air to 

generate electricity. Xie et al. [83] demonstrated that electricity can be 

generated along with CO2 capture and mineralization using a novel CO2-

mineralization fuel cell. 

 

Figure 2.3: Estimation of storage capacity for CO2 in terms of time and quantity for various 
sequestration methods [21]. 

 

 One of the easiest method for the storage of CO2 is conversion to 

carbohydrates or proteins by plants and stored as biomass [84]. The capacity of 

CO2 storage as biomass is about 1.4+0.7 Gt/yr in terrestrial biomass and about 

5-10 Gt/yr in oceanic environment biomass [9]. Even though biomass traps CO2 

the longevity of such storage is very short because CO2 is released back into 

the atmosphere during biomass degradation (seen from figure 2.3). Baral and 

Guha [85] promoted afforestation as low economic remedy for CO2 

sequestration and Freedmen et al. [3] suggest providing carbon credits for 

conservation of natural areas increases urban encroachment into forest lands. 

Further option is the use of biofuels (such as biodiesel) [86, 87], so CO2 

emissions from the transport sector is recycled [88, 89].  
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 There has been a great effort of research that has been dedicated to the 

conversion of CO2 to utility chemicals. Most of the process are commercially 

viable, the major limitation is that the demand of these chemicals is far less than 

the CO2 production. These include various alkanes, alcohols, aldehydes, formic 

acid and other organic compounds [17-19]. New catalysts are developed for the 

reduction of CO2 [16] and formation of C-C carbon chains for generation of 

these utility chemicals [15]. There also exist various electrochemical and 

electrocatalytic methods that have been used for the conversion of CO2 to utility 

chemicals [90].Using this methodology of recycling CO2 into the value chain 

would lead to utilization of the waste CO2 and help develop carbon neutral 

technologies [18].  

 Geological storage is the most efficient and easiest technique for the 

safe storage of CO2 [2]. Used extensively in the oil and gas industry, it leads to 

storage of liquefied CO2 in depleted oil wells (i.e. EOR) or saline aquifers or 

unmineable coal seams. Underground geological storage is an option that has 

attracted governmental interest in many countries [2]. Even though this is the 

most cost effective option of CO2 storage (figure 2.3) there are also some 

limitations. A constant monitoring of the CO2 injection wells and the entire 

injected area is needed all the time in order to detect any possible leaks [91, 

92]. In the case of saline aquifers, the pH of the aquifer alters in the presence of 

the CO2 (pH becomes more acidic) leading to the concern of the integrity of the 

cap rock [93-95].  

 Mineral storage is one of the safest ways to remove the CO2 from the 

atmosphere and lock it into the lithosphere [2, 21, 96, 97]. The process of CO2 

capture is envisioned by the natural weathering of rocks [22], because the 
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products of mineralization are thermodynamically more stable than other forms 

of carbon. The earth's crust comprises of about 1.5x1017 tonnes of CO2 

equivalent trapped in the form of calcium carbonate [98, 99]. The carbonate 

minerals have high capacity and high longevity for storage of CO2 as compared 

to other methods (see figure 2.3). The major limitation that is slow reaction 

kinetics of the mineralization process [97, 100]. 

 There are various steps in the mineralization process. Figure 2.4 shows 

the classification of the mineralization process of CO2 to carbonate minerals 

[101]. 

 

Figure 2.4: Classification of the mineralization process (modified from Wang [101]) 

 The reaction type for the mineralization process depends on the reacting 

materials such as gas-solid or aqueous reaction. In the gas-solid process the 

mineral source (mainly solid) is reacted directly with CO2 either from 

atmosphere (like in natural weathering of rocks [100, 102]) or indirectly by 

treating the mineral with chemical treatment (for example conversion of olivine 

to serpentinite using high temperature and pressure hydrolysis) to enhance its 

activity and then reacting it with CO2 [103-105]. Direct mineralization process 
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using CO2 and minerals is a slow process and it can be accelerated by reducing 

the grain size of the mineral rock [100].  

 Direct carbonation reaction involves chemical treatment of the parent 

mineral to make it chemically active for reaction with CO2. This can be achieved 

by either a two-step process consisting of activation of the initial mineral (mainly 

serpentine) by heat treatment into an oxide (i.e. MgO) followed by carbonation 

with CO2 [106, 107]. Otherwise following a three step procedure comprising of 

the initial heat treatment to mineral oxide, as above, followed by hydration into a 

hydroxide (i.e. Mg(OH)2). The hydroxide is then reacted with CO2 to form 

mineral carbonate. The three step process is more energy efficient than the two 

step method [106]. The three step process is optimised using ammonium salts 

to enhance the reaction rates and conversion to carbonates [103, 104, 108-

111]. After optimization the mineralization process still requires high 

temperatures >300 °C and high pressures >20 bar. 

 The aqueous mineralization is less energy consuming when compared to 

gas-solid mineralization, but is limited by the dissolution rate of the alkaline 

earth metals from the source mineral [112]. The aqueous mineralization is 

classified as direct or indirect (figure 2.4) [101, 112]. The direct aqueous 

mineralization involves high pressure and temperature carbonation of the 

mineral rock (like olivine or waste slags)  in acidic , basic or neutral medium  

where dissolution and carbonation takes place simultaneously [105, 113, 114]. 

The indirect aqueous mineralization consists of the treatment with acid or base 

followed by carbonation. A special method developed for this is pH swing 

method [115] where the alkali earth metals (Ca or Mg) are leached by an acid 

and then exposed to a base to be mineralised, for example use of mineral acid-
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base (like HCl and NaOH) [115, 116] or using ammonium salts (like NH4HSO4 

and NH4OH) [101, 117-120]). Bodor et al. [121] used nickel nanoparticles 

(NiNPs) to enhance the mineralization of CO2 in steel slags and found that solid 

to liquid ratio is an important factor in aqueous mineralization.  

 In summary, the mineralization process depends on selection of mineral 

sources (source of the alkaline earth metal), removal/activation of the alkaline 

earth metal from the mineral source, reaction of the alkaline earth metal with 

CO2 to form a carbonate and precipitation of the carbonate mineral. Each of 

these factors influences the speed and energy efficiency of mineralization of 

CO2 and these factors will be discussed below.  

2.2.3.1 Selection of Mineral Source: 

 Alkaline earth metals like Mg and Ca are the most promising candidates 

for mineralization of CO2. Carbonate salts (of Ca and Mg) are 

thermodynamically stable and occur due to natural weathering of rocks. 

Depending on the source, of Ca and Mg; it can be classified into two categories 

natural mineral rocks and industrial wastes. Naturally occurring rocks include 

silicates, sulphates and phosphates. Many industries, like iron and steel, 

cement, etc., produce wastes that are rich in alkaline metals and can be used 

as a source for CO2 mineralization [122]. Table 1 lists the various sources of 

alkaline earth metals used for the carbonation reaction with reference found in 

literature. The use of industrial wastes are identified as excellent sources of Ca 

and Mg for point source emitters like iron and steel or cement industries [112, 

122]. The industrial process could also economically and technically benefit 

from the reuse of the obtained CaCO3 in the process becoming CO2 and 
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calcium neutral. The reutilization of industrial wastes within the existing process 

would lead to better and sustainable production. 

Table 2.1: Various sources of alkaline earth metals used for carbon mineralization. 

Type of 
sources 

Name Formula References 

Natural  Olivine (Mg,Fe)2SiO4 [21, 22, 96, 97, 102, 105, 
113, 114, 117, 123-142] 

 Serpentinite Mg3Si2O5(OH)4 [101, 103, 104, 106, 108-
111, 115-117, 119, 120, 
127, 132, 143-164] 

 Chrysotile Mg3(Si2O5)(OH)4 [165] 

 Phlogopite  KMg3AlSi3O10(OH)2 [128] 

 Albite NaAlSi3O8 [166, 167] 

 Wollastonite CaSiO3 [128, 132, 168-176] 

 Anorthite CaAl2Si2O8 [167] 

 Phlogopite KMg3AlSi3O10(OH)2 [128] 

 Harzburgite CaMgSiO2O6+(Fe, Al) [177] 

 Portlandite Ca(OH)2 [65, 178-180] 

 Brucite  Mg(OH)2 [107, 133, 181-184] 

 Gypsum CaSO4·2H2O This study 

 Natural brines  [1, 185] 

Industrial Steel slag  [121, 173, 174, 186-207] 

 Flue gas desulfurization 
gypsum 

 [208-212] 

 Cement wastes  [196, 213-218] 

 Paper Mill Waste  [217, 219] 

 Coal fly ash  [185, 220-224] 

 Red mud  [212, 217, 225-227] 

 Mining wastes  [133, 190, 196, 214, 228-
235] 

 Municipal waste fly ash  [217, 236-240] 

 Air pollution control system 
residue 

 [241] 

 Industrial brines  [192, 193, 242-249] 

 Magnesium chloride MgCl2 [250-254] 
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2.2.3.2 Dissolution/activation of metal ions in mineral sources 

 Table 2.1 gives a summary of the minerals and commercial alkali metal 

sources used for carbonation. The research involving natural sources have 

been focused on serpentine [101, 103, 104, 106, 108-111, 115-117, 119, 120, 

127, 132, 143-164] due to the ease of extraction of Mg ions from it and its 

abundance in nature. The researches on the industrial sources have been 

focussed on steel slag waste [121, 173, 174, 186-207] due to its abundance 

(see table 1). The carbonation of mineral wastes has been demonstrated prior 

to the climate change paradigm [234]. Since the suggestion of silicates to be 

one of the major contenders for carbon capture [22] there has been extensive 

research on it (table 1). Natural minerals are thermodynamically more stable 

than the industrial waste material, therefore a lot of effort has been on the 

leaching/extraction of alkaline earth metals from them [112, 173, 197]. 

 For gas-solid capture there are methods suggested for activation of the 

surface on the natural mineral by chemical modification [103, 104, 169, 255]. 

These include, conversion of the Mg rich serpentine to brucite for mineralization 

with CO2 [103, 106, 108, 109, 146-150, 228] or treating (serpentine or olivine) 

via physical treatment (i.e. high temperature) or chemical treatment (use of 

acids and bases) to increase surface activity [255]. The research carried out at 

Åbo Akademi University (Finland) on the activation of Mg rich mineral 

(serpentine) have made direct carbonation in the gas-solid reaction regime 

more cost effective than before and have been simulated for pilot scale systems 

using Aspen Plus [106, 149, 186, 256]. Figure 2.5 shows the schematic of their 

process intensification [149, 186]. Fe2+ oxidation to hematite (Fe2O3) before the 

dehydroxylation process increases resistance to mass transfer and thermal 
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treatment during the dehydroxylation process of silicate rocks [156]. Steel slag 

wastes have shown better carbonation with minimal treatment compared to 

mineral rocks because of their low thermodynamic stability [187].  

 

Figure 2.5 Schematic illustration of the mineral carbonation process (solid-gas) developed by 

Åbo Akademi University for 12 vol% CO2 gas content [149, 186], AS- ammonium sulphate. 

 In aqueous method for mineralization leaching of the mineral salt is one 

of the major rate limiting step in the mineralization of CO2. Various mineral acids 

(i.e. H2SO4, HCl, HNO3, HF) [144, 152, 153, 155, 257], organic acids (i.e. fomic 

acid, glutamic acid, etc.) [116, 129, 143, 144, 188, 189] and their combinations 

[116, 143] have been tested to leach alkaline earth metals from the mineral 

rocks (table 2.2). Of all the acids listed in table 2, NH4HSO4 is found to be the 

most efficient of H2SO4 > HCl > HNO3 in leaching of Mg2+
 from serpentine [144, 

151]. Basic salts (mainly ammonium salts) have also been suggested for 

leaching of M2+ ions from natural minerals [115, 166, 211, 248]. Matoro-Valer's 

group used ammonium sulphate NH4HSO4 to dissolve minerals [101, 118-120, 

151]. Serpentine showed better Mg leaching than Olivine under similar process 

conditions [117, 127]. It was suggested that the silica formed during the reaction 
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of serpentine or olivine with leaching agents caused diffusion mass transfer 

limitation (i.e. diffusion of Mg2+ within the solid matrix in to the solution) for Mg 

dissolution in silicate rocks [115]. 

 Industrial wastes (blast furnace slag) along with industrial brines (cold-

rolling waste water) prove more energy effective method for metal ion leaching 

and CO2 mineralization [192, 193, 258, 259]. Pan et al. [192, 193, 258, 259] 

demonstrated using a rotating packed bed (RPB) reactor intensified 

mineralization process. The RPB increased the mass transfer coefficient of the 

gas, increasing the efficiency of the process [192, 193, 258, 259].  

Table 2.2: List of additives added for accelerated dissolution of alkaline earth metals from 
mineral rocks and industrial wastes. 

Nature Additive Formula Reference 

Acidic Acetic acid CH3COOH [110, 116, 144, 169, 
170, 176, 189, 191, 201] 

 Aluminium nitrate Al(NO3)3 [207] 

 Aluminium sulphate Al2(SO4)3 [207] 

 Ammonium chloride NH4Cl [151, 194, 195, 201, 
222, 230] 

 Ammonium di-hydrogen 
phosphate 

NH4H2PO4 [207] 

 Ammonium nitrate NH4NO3 [194, 195, 207, 222] 

 Ammonium hydrogen 
sulphate 

NH4HSO4 [117, 119, 127, 151, 
260] 

 Ammonium sulphate (NH4)2SO4 [110, 148, 151, 207] 

 Ascorbic acid C6H8O6 [176] 

 Carbonic acid H2CO3 [128] 

 Citric acid C6H8O7 [176, 216] 

 Ethylene-diamine-tetraacetic-
acid (EDTA) 

C10H16N2O8 [115, 116, 176] 

 Formic acid HCOOH [110, 144] 

 Gluconic acid HOCH2(CHOH)4COOH [176] 

 Glutamic acid C5H9NO4 [176] 
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Nature Additive Formula Reference 

 Hydroflouric acid HF [257] 

 Hydrochloric acid HCl [110, 115, 125, 136, 
144, 145, 155, 160, 171, 
255] 

 Iminodiacetic acid HN(CH2CO2H)2 [176] 

 Nitric acid HNO3 [144, 145, 172, 188, 
192, 198, 207, 235] 

 Nitrilotriacetic acid (C6H9NO6) [176] 

 Orthophosphoric acid H3PO4 [115, 116] 

 Oxalic acid C2H2O4 [115, 116, 176] 

 Phosphoric acid H3PO4 [255] 

 Picolinic acid C6H5NO2 [176] 

 Potassium hydrogen 
phthalate 

C8H5O4K [116] 

 Propionic acid CH3CH2COOH [207] 

 Phthalic acid C8H6O4 [176] 

 Sodium citrate NaH2C6H5O7 [216] 

 Sodium nitrate NaNO3 [132] 

 Succinic acid C4H6O4 [170] 

 Sulphuric acid H2SO4 [110, 144, 151, 152, 
162-164, 207, 255] 

Basic Ammonia NH3 [254, 261] 

 Ammonium hydroxide NH4OH [109, 115] 

 Diammonium hydrogen 
phosphate 

(NH4)2HPO4 [207] 

 Diethanol Amine C2H7NO2 [262] 

 Dipotassium Phosphate K2HPO4 [116] 

 Lithium hydroxide LiOH [130, 132, 136] 

 Mono ethanol amine C2H7NO [262, 263] 

 Methyl diethanol amine CH3N (C2H4OH)2 [262] 

 Potassium hydroxide KOH [242] 

 Potassium bicarbonate KHCO3 [137] 

 Rubidium bicarbonate RbHCO3 [137] 
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Nature Additive Formula Reference 

 Sodium bicarbonate NaHCO3 [105, 113, 114, 123, 
134, 135, 137, 138, 140, 
264] 

 Sodium hydroxide NaOH [165, 172, 175, 198, 
207, 255] 

 Tributyl phosphate C12H27O4P [206, 207] 

 Urea (NH2)2CO [207] 

Neutral Ammonium acetate CH3COONH4 [194, 207, 222] 

 Calcium chloride CaCl2·2H2O [116] 

 Magnesium chloride MgCl2 [167, 264] 

 Sodium acetate CH3COONa [154] 

 Sodium chloride NaCl [105, 113, 114, 123, 
124, 132, 134, 138, 140, 
142, 167, 187, 213, 264] 

 Sodium nitrate NaNO3 [130] 

 Sodium oxalate Na2(COO)2 [129, 154] 

Biological Acidithiobacillus sp  [159] 

 Dunaliella sp  [265] 

 Sporosarcina pasteurii  [266] 

 Carbonic Anhydrase  Discussed in next 
section 2.3.3 

 

2.2.3.3 Hydration of CO2: non-catalytic and catalytic 

 CO2 is one of the major components of the atmosphere and it has an 

important role in the bio-geo-chemical cycle of the globe. The oceans use 

carbonate equilibrium as an important mechanism to maintain the sustainability 

of life within the oceanic environment. Carbon dioxide in the solution 

environment exists in four forms: CO2(aq), carbonic acid (H2CO3), bicarbonate 

ion (HCO3
-) or as carbonate ion (CO3

2-). Their interaction with water, in aqueous 

solutions results in displacement of the H3O
+ and OH- equilibrium, which is 

represented by the pH of the solution [267, 268].  
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 In the aqueous route for mineralization of CO2 the reaction of water 

molecules with CO2 is another rate limiting parameter. In order for aqueous 

carbonation to proceed the CO2 must react with water to form carbonic acid. 

The reaction of CO2 with water has been studied since 1900 because it is one 

of the most important steps in photosynthesis [269, 270]. In 1960 the review by 

Kern [271] explains different experimental procedures that have been used to 

determine the hydration rate of CO2. Of these procedures there have been 

various methods that have been modified [272] or no longer in use (i.e. 

differential manometric method, thermometric) and recently only stopped-flow 

method is used for measuring the hydration reaction kinetics [271, 273, 274]. A 

detailed explanation on theories underlying the different methodologies are 

presented in chapter 3, section 3.1. 

 The first report on the slow hydration rate of CO2 was reported by 

McBain in 1912 [275]. McBain [275] studied the change of the colour of 

phenolphthalein indicator while titrating CO2 saturated solution against NaOH 

solution and observed that the near neutral pH the solution turns to pink 

(reaches endpoint) and then returns back to being colourless. This is a slow 

phenomenon and can also be observed using thymol blue which is yellow at pH 

below 6, green at pH 7 and blue at pH 8, showing similar phenomena [267, 

271]. This slow change in colour is attributed to the slow hydration rate of CO2 

following reaction mechanism R1 (see below). The reason for this slow rate of  

to form carbonic acid is because in order to form one molecule of carbonic acid 

the CO2 molecule has to be associated with 4 molecules of water [276, 277]. 

This CO2 (H2O)4 is the mechanistic rate limiting step of the CO2 hydration 

reaction suggested by quantum chemical calculations [276-278].  
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 The hydration of CO2 is strongly influenced by pH of the solution. There 

are two reaction regimes for the hydration of CO2 depending on the pH of the 

solution [267, 268, 271, 279]. These include the H2O mechanism at pH < 8 and 

the OH- mechanism at pH >10 (Reactions R1 and R3, respectively) [271] 

𝐶𝑂2 + 𝐻2𝑂 ↔  𝐻2𝐶𝑂3        (R1) 

𝐻2𝐶𝑂3 + 𝑂𝐻
−   ↔  𝐻𝐶𝑂3

− + 𝐻2𝑂(𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠)     (R2) 

and  

𝐶𝑂2 + 𝑂𝐻
−  ↔  𝐻𝐶𝑂3

−        (R3) 

𝐻𝐶𝑂3
− + 𝑂𝐻−   ↔  𝐶𝑂3

2− + 𝐻2𝑂(𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠)      (R4) 

 Both the reaction mechanisms mentioned above have different reaction 

rates; the reaction in the presence of OH- ions (k = 8500 sec-1M-1) is faster than 

at lower pH values (pH < 8) (k = 0.03 sec-1) [271]. Therefore to control the initial 

pH of solutions there have been various kinetic rate studies done in buffer 

solutions. Dennard and Williams [280] found that presence of few buffer 

solutions (i.e. phosphate, arsenate, etc.) weakly catalyse the hydration reaction 

while others (the carbonate buffers in particular) are non-catalytic. Table 2.3 

lists the various rate constants for hydration reaction (reported so far in 

literature) for non-catalysed and catalysed system. It can be seen that there is a 

wide variation in the reported kinetic values observed during a century of 

research in this area, this may be due to the adaptation made in the 

experimental methodology due to novel chemical analysis technological 

development and/or further understanding [271]. 
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 It has been observed that the rate of reaction of carbonic acid with 

alkaline absorption solutions is faster than with CO2(aq) [288, 289]. Therefore 

when CO2 is separated using reacting absorption process, the rate of mass 

transfer (rate of CO2 absorption) is dependent on the rate of reaction of CO2 

with the solvent. There have also been various reports on the use of catalysts to 

enhance the mass transfer of CO2 in carbonate and amine solutions [279, 281-

296]. These are organic or inorganic molecules [286, 290] or nanostructures 

[297, 298] that enhance the hydration of CO2 increasing the rate of reaction 

therefore the rate of mass transfer rates of CO2 absorption. The CO2 hydration 

is an important part of CO2 absorption in amine or carbonate solutions, but the 

operating pH range is also important in the experimental procedure. Often 

studies of the absorption of CO2 into basic solutions do not calculate or 

measure the rate constant of reaction but use them from the literature (for 

example the values of rate constants given by Danckwerts and Sharma [299] or 

Dennard and Williams [280] or see Table 2.3). Also often it is assumed that the 

reaction takes place at a pH above 10 [279], where the OH based reaction 

mechanism (R3) dominates [271]. Since reaction rate constant values have not 

been calculated or measured in these studies [279, 281-296], they have not 

been discussed in detail.   

 All the catalysts in table 2.3 along with carbonic anhydrase (table 2.4) are 

molecular catalysts that are used for hydration of CO2 which are therefore 

described as a biphasic (gas-liquid) reaction. Bhaduri and Šiller [57] were the 

first to report the use of solid catalyst for the hydration of CO2. There are very 

limited studies that have been reported for gas-liquid-solid catalysis [300, 301] 

and to the best of the authors knowledge none for CO2 hydration reaction (see 

further discussed chapter 3, section 3.1).  
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Table 2.3: Reported kinetic constants of non-catalysed and catalysed hydration of CO2  

Additive/catalyst Solvent Formula Rate constant Reference 

Pure water (non-catalysed) 

 Water  0.035 s
-1

 [302] 

 Water  2.6 x 10
-2

 s
-1

M
-

1
 

[274] 

 Water  0.0375 s
-1 

[303] 

 Water  0.0257 s
-1 

[304] 

 Water  0.0132 s
-1

M
-1

 [305] 

 Water  6.64x10
-4

s
-1

M
-1

 [273] 

 Water  0.029 s
-1 

[274] 

 Water  0.037 s
-1 

[306] 

 Water  0.038 s
-1 

[307] 

 Water  0.044 s
-1 

[308] 

 Sea water  0.037 s
-1

 [309] 

Buffer solutions (non-catalysed) 

Phosphate Water HPO4
2- 

0.3 s
-1

M
-1 

[274] 

 Water HPO4
2- 

0.049 s
-1

 [308] 

 Water HPO4
2- 

0.0337 s
-1

M
-1

 [305] 

Imidazone Water (CH2)2N(NH)CH 6830 s
-1

M
-1

 [310] 

Catalysed reactions 

Acetaldehyde 
hydrate 

Carbonate CH3CH(OH)2 0.1253 s
-1

M
-1

 [299] 

Arginine Carbonate NH2C(NH)NHC3H6C(NH2)COOH 13045 s
-1 

[311] 

Arsenite Carbonate  AsO3
3- 

310 s
-1

M
-1 

[312] 

 Carbonate AsO3
3-

 126 s
-1

M
-1

 [313] 

 Water AsO2
- 

2000 s
-1

M
-1

 [280] 

 Water HAsO4
2- 

5 s
-1

M
-1

 [280] 

Arsenious acid Phosphate As(OH)3 0.345 s
-1

M
-1

 [299] 

 Veronal As(OH)3 5.2 s
-1

M
-1

 [299] 

 Carbonate As(OH)3 19 s
-1

M
-1

 [299] 

Boric acid Water B(OH)4
- 

1 s
-1

M
-1

 [280] 

 Imidazone B(OH)4
- 

35.3 s
-1

M
-1

 [310] 
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Additive/catalyst Solvent Formula Rate constant Reference 

Butyl chloral hydrate Carbonate CH3CHClCCl2CH(OH)2 12.2 s
-1

M
-1

 [299] 

Chloral hydrate Carbonate CCl3CH(OH)2 30 s
-1

M
-1

 [299] 

Chloral alcoholate Carbonate CCl3CH(OH)OC2H5 32 s
-1

M
-1

 [299] 

Diacetyl hyderate Carbonate CH3COC(OH)2CH3 0.515 s
-1

M
-1

 [299] 

Hypobromous acid Water BrO
- 

10000 s
-1

M
-1

 [280] 

Hypochlorous acid Water ClO
-
 50000 s

-1
M

-1
 [280] 

 Carbonate ClO
-
 3040 s

-1
M

-1
 [313] 

Copper sulphate Imidazone  CuSO4 2.5 s
-1

M
-1

 [274] 

Ethanol Carbonate  C2H5OH 2.16 s
-1

M
-1 

[314] 

Formaldehyde Carbonate  HCHO 28.20 s
-1

M
-1

 [312, 314] 

 Carbonate HCHO 28.4 s
-1

M
-1

 [313] 

Fructose Carbonate C6H12O6 20.21 s
-1

M
-1

 [314] 

Germanic acid Water Ge(OH)4
 

2000 s
-1

M
-1

 [280] 

 Phosphate Ge(OH)4 0.572 s
-1

M
-1

 [299] 

 Veronal Ge(OH)4 8.8 s
-1

M
-1

 [299] 

 Carbonate Ge(OH)4 25.5 s
-1

M
-1

 [299] 

Glucose Carbonate C6H12O6 19.59 s
-1

M
-1

 [314] 

Glycerin Carbonate (HO)CHCH(OH)CH(OH) 4.07 s
-1

M
-1

 [314] 

Glyoxal hydrate Carbonate CH(OH)2CH(OH)2 1.28 s
-1

M
-1

 [299] 

Methanol Carbonate CH3OH 0.97 s
-1

M
-1

 [314] 

 Water HPO4
2- 

10 s
-1

M
-1

 [280] 

 Water H2PO4
- 

2 s
-1

M
-1

 [280] 

Methylene glycol Carbonate CH2(OH)2 0.52 s
-1

M
-1

 [299] 

Saccharose Carbonate  C12H22O11 40.84 s
-1

M
-1 

[312] 

Selenic acid Water SeO4
2- 

6000 s
-1

M
-1

 [280, 314] 

Silicic acid Water H3SiO4
- 

1000 s
-1

M
-1

 [280] 

 Carbonate H4SiO4 0.9 s
-1

M
-1

 [299] 

 Water SiO3
2- 

1000 s
-1

M
-1

 [280] 

Telluric acid Water Te(OH)6
 

700 s
-1

M
-1

 [280] 

 Carbonate Te(OH)6 4.6 s
-1

M
-1

 [299] 

Telluric acid Water Te(OH4O2)
2- 

4000 s
-1

M
-1

 [280] 
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Additive/catalyst Solvent Formula Rate constant Reference 

Sodium acetate Sodium 
chloride 

C2H3NaO2 8.9 s
-1 

[315] 

Zinc sulphate
 

Imidazone  ZnSO4 6 s
-1

M
-1

 [274] 

 

                The most important and efficient catalyst that has been studied for the 

hydration of CO2 is cabonic anhydrase (CA) [316, 317]. CA is a bio catalyst that 

has a high conversion rate for reversible hydration of CO2, highest being for 

human CA II with a rate constant of 1.1X106 s-1 [318]. CA is a Zn metallo-

enzyme that exists in 5 different families (𝛼, 𝛽, 𝛾, 𝛿, and 𝜁) [319-324]. The 

various types of CA depend in the number of Zn ions and monomeric units on 

the enzyme [320]. There is no particular protein sequence between the various 

families of CA, but all of them have a Zn ion as an active site [319, 320] (except 

for 𝜁 family which has a Cd ion as an active site [321, 322]). 

 

Figure 2.6: Reaction mechanism of Carbonic anhydrase for hydration of CO2 (adapted from 
[317]). 

 Figure 2.5 shows the hydration mechanism of CA as adapted from Lee et 

al. [325]. The process of catalysis begins with the hydroxide ion on the Zn2+ ion 
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bound within the CA (step 1). This is then attacked by the CO2 molecule to form 

the bicarbonate ion (step 2-3). This bicarbonate ion then rearranges the H+ ion 

and followed by desorption of the bicarbonate ion (step 4 and step 5). A water 

molecule then replaces this bicarbonate ion, followed by H+ dissociation leading 

to the initial form of the CA (step 5 and step 1) [325]. The histidine (HIS) 

macromolecules help in the displacement and rearrangement of the H+ ion 

within the CA molecule [319]. It is important to note that the deprotonation step 

of the enzyme is the rate limiting step (in figure 2.5 step 5-1) in CA catalysis 

[319]. In the absence of a deprotonating media (i.e. a base or buffer) the CA 

catalysis is rendered ineffective [326].  

 CA extracted from various sources have been studied as candidates for 

CCS mineralization applications. These sources include various bacterial CA 

and fungal CA from Pseudomonas fragi [327-331], Micrococcus lylae [327-329, 

331], Micrococcus luteus [327-329], Bacillus pumilus [328, 331-338], Citrobacter 

freudii [339], Aeromonas sp [340], Entrobacter sp [340], Shigella sp [340], 

Klebsiella sp[340], Bacillus mucilaginosus [341], Bacillus sp. [342], 

Sulphurihydrogenibium sp[343, 344], Escherichia coli [345],  Bacillus cereus 

[346], while the others used bovine carbonic anhydrase purchased from Sigma 

Aldrich (see table 2.4).  

 The CA is a water soluble homogenous enzyme and it can be easily lost 

in the capture and sequestration process as it is difficult to recover [316]. To 

overcome this drawback it is necessary immobilise the enzyme for repeated 

use. Table 2.4 lists the various enzyme immobilization studies with the reported 

kinetic constants. From the table 2.4 it is clear that in the majority of the studies 

the free enzymes showed better activity than the immobilized enzymes. 
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Michealis-menten kinetics is the most widely used method for evaluation of 

biochemical reactions [347, 348]. The Michealies constant KM for the 

immobilized enzymes is higher than the free enzymes (in majority of the cases 

in table 2.4) indicating that the kinetics is mass transfer limited (i.e. the reaction 

rate is dependent on the diffusion of substrate from the solution to the active 

site and diffusion of products from the active sites to the solution). 

 Mirjafari et al. [349] calculated the activation energy required for carbonic 

anhydrase to hydrate the CO2 molecule to be 700.9115 cal/mol. There are 

technical limitations in interpreting this reported data as suggested by Mirjafari 

et al. [349] because the experiment was carried out in a buffer but the buffer 

activity has not been accounted for in data evaluation. In all other studies (table 

2.4), the pH change in buffer was used as a qualitative technique for evaluation 

of CO2 hydration activity of CA. The kinetic constant for the CO2 hydration 

reaction is determined by the hydrolysis of p-nitophenol which is also catalysed 

by CA having same rate as hydration of CO2 [328, 331-338].  pH and 

temperature are two parameters that affect the catalytic activity of CA [349, 

350]. It can be seen from the table 2.4 that the optimum pH value for best 

activity of CA is between 7-8 for both free and immobilized enzymes. The pH 

affects the reaction rate as the H+ ion concentration limits the regeneration of 

the enzyme [350]. The typical temperatures that have been used for the kinetic 

studies with CA (reported in table 2.4) are between 20-30 °C. 

 Along with the application for mineralization CA has been used as a 

catalyst for enhancement of absorption of CO2 and in separation systems. 

There have been recent reports on the use of CA in liquid membranes for 

separation of CO2 (Trachtenberg and colleagues, Carbozyme Inc) [325, 351-
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360], in hollow fibre membranes [361, 362] and in separation processes using 

amine and carbonate systems [98, 292, 293, 363-374].  
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Table 2.4: Activity of Carbonic anhydrase (free and immobilized) enzyme. 

CA Source Immobilization Medium Michealis 
constant 

Km (mM) 

Turnover 
number 

kcat (s
-1

) 

Catalytic 
Efficiency 

kcat/Km (M
-1

s
-1

) 

Vmax 

(mMmin
-1

) 

pH Comments References 

B. Pumilus Free enzyme 1.25 0.60093 486.66 0.02029 7 The single enzyme particle 
showed 3 times higher catalytic 
efficiency than free enzyme 

[332] 

 Single Enzyme particle 6.143 8.579 1396.5 0.02857 7 

B. Pumilus Free enzyme 1.211 0.01875  1.125*  (*units of Vmax are µMs
-1

mg
-1

) [328] 

 Surfactant modified 
silyated chitosan 

4.547 0.0169  1.018*  

B. Pumilus Free enzyme 0.87   0.00093 7  [335] 

 Chitosan beads 2.36   0.00054 7  

B. Pumilus Free enzyme 1.594 0.330  0.001307 7  [334] 

 Chitosan stabilized iron 
nanoparticles 

1.727 0.300  0.001189 7  

B. Pumilus Free enzyme 0.876 2.3  0.000936 7  [333] 

 Mezoporus 
aluminosilicates AlKIT-5 

0.158 1.9  0.002307 7  

B. Pumilus Free enzyme 1.89   0.00099 7 The Vmax values for free and 
immobilized enzymes were 
same 

[338] 

 Chitosan derived carbon 
composite 

10.35   0.00099 7 

Bovine CA Free enzyme   874  8  [375] 

 Fe3O4-SiO2-octa(amino-
phenyl)silsesquioxane 

  783  8  
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CA Source Immobilization Medium Michealis 
constant 

Km (mM) 

Turnover 
number 

kcat (s
-1

) 

Catalytic 
Efficiency 

kcat/Km (M
-1

s
-1

) 

Vmax 

(mMmin
-1

) 

pH Comments References 

Bovine CA Free enzyme 12.2 2.02 166.4  7.5 Immobilized enzymes showed 
better activity than the free 
enzymes 

[376] 

 Polyurethane foam 9.6 - -  7.5 

Bovine CA Free CA 0.000675   0.306* 8 (*units of Vmax are µMs
-1

mg
-

1
)The CaCO3 crystalline 

composite CA are magnetic due 
to presence of Fe3O4. 

[377] 

 CaCO3 crystalline 
composite 

0.000707   0.138* 8 

Bovine CA Free enzyme 9.54  453.2  8  [378] 

 Chitosan/SiO2/𝛾Fe2O3 
particles 

13.87  303.2  8 

Sulphuri-
hydrogeni-
bium sp 

Free enzyme 2.8   1414  The CA extracted from Sulphuri-
hydrogenibium sp has lower 

Vmax than the bacterial CA. 

[343, 344] 

Bovine CA Free enzyme 3.4   5155  

Bovine CA Free enzyme 56.67 49.51 873.76  8 Catalytic efficiency of crossed 
linked enzyme with silica beads 
was close to free enzyme 
followed by absorbed enzyme 
on silica beads and covalent 
attachment of enzyme on silica 
beads 

[379] 

 Adsorbed on silica beads 
SBA-15 

60.2 39.77 800.11  8 

 Covalent attachment on 
silica beads SBA-15 

59.6 40.53 690.50  8 

 Crossed linked enzyme 
aggregation on silica 
beadsSBA-15 

65.2 48.25 820.06  8 
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CA Source Immobilization Medium Michealis 
constant 

Km (mM) 

Turnover 
number 

kcat (s
-1

) 

Catalytic 
Efficiency 

kcat/Km (M
-1

s
-1

) 

Vmax 

(mMmin
-1

) 

pH Comments References 

E. Coli Free enzyme 18.26   0.43478 8-9  [345] 

 Chitosan-alginite poly-
electrolyte complex 

19.12   0.41666 8-9 

Bovine CA Free enzyme 6.1 0.79 129.51  7 As compared to the above 
results in this study the Crossed 
linked enzyme aggregation on 
silica beadsSBA-15 had better 
efficiency than the free enzyme 

[326] 

 Adsorbed on silica beads 
SBA-15 

5.8 0.36 62.07  7 

 Covalent attachment on 
silica beads SBA-15 

5.9 0.58 98.30  7 

 Crossed linked enzyme 
aggregation on silica 
beads SBA-15 

6.3 0.78 123.81  7 

Human CA Free enzyme 27.29  7768  8 The catalytic efficiency was 
similar to free enzyme all 
different immobilized enzymes 
on silica beads functionalized 
with amines the best being that 
of SBA-15 with octa(amino-
phenyl) silsesquioxane with high 
stablility. 

[380] 

 SBA-15 with 
tetraethylene-pentamine 

25.23  7182  8 

 SBA-15 with tris(2-amino-
ethyl) amine 

25.88  7368  8 

 SBA-15 with octa(amino-
phenyl) silsesquioxane 

26.59  7569  8 

Human CA II Nylon tubes  900000   8 Human CA II immobilised in 
microreactor for feasibility study 
retaining 90% of activity of HCA  

[381] 
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CA Source Immobilization Medium Michealis 
constant 

Km (mM) 

Turnover 
number 

kcat (s
-1

) 

Catalytic 
Efficiency 

kcat/Km (M
-1

s
-1

) 

Vmax 

(mMmin
-1

) 

pH Comments References 

Human CA II Free enzyme  1100000    4 different models have been 
used to predict the kinetic value 
all yielding same results 

[318] 

Human CA Free enzyme 13.07  1663.35  6.4 The catalytic efficiency of SBA-
15-AuNPs with 3-
mercaptopropyl-trioxy silicane 
and SBA-15-AuNPs with 3-
amino propyltrioxy silicane was 
better than just SBA-15. 

[382] 

 SBA-15 26.85  1480.07  6.4 

 SBA-15-AuNP with3-
amino propyltrioxy 
silicane 

22.35  1514.09  6.4 

 SBA-15-AuNP with 3-
mercaptopropyltrioxy 
silicane 

27.75  1612.25  6.4  [382] 

Human CA Free enzyme   1660  6.4 Similar to the previous results 
[380] the results in this study 
also show that SBA--AgNPs with 
octa(amino-phenyl) 
silsesquioxane has better 
catalytic activity than other 
amine functionalized SBA-15. 

[383] 

 SBA-15-AgNP with 
tetraethylene-pentamine 

  1590  6.4 

 SBA-15-AgNP with tris(2-
amino-ethyl) amine 

  1580  6.4 

 SBA-15-AgNP with 
octa(amino-phenyl) 
silsesquioxane 

  1640   
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2.2.3.4 Precipitation of mineral carbonate 

 

Figure 2.7: Carbonate equilibrium diagram [384]. 

 Figure 2.7 shows the relative distribution of the various ions in aqueous 

solutions under equilibrium conditions of CO2(aq), HCO3
- and CO3

2- at various pH 

values [384]. During aqueous mineralization of CO2 the pH of the solution 

decreases due to the addition of CO2. The solubility of carbonates increases as 

the pH decreases [349, 385] therefore in order to precipitate the carbonate salt 

out of solution the pH always needs to be in the carbonate zone in figure 2.7. 

This causes an addition of costs and requirement of a sacrificial alkaline 

material for the precipitation of the carbonate from solution during mineralization 

of CO2. The most commonly used alkaline material in the mineralization studies 

is ammonia or NaOH (section 2.3.1-2.3.2). Maroto-Valer's group used 

recyclable ammonium salts that are converted to basic ammonia which provides 

suitable pH for the precipitation of carbonate material [101, 118, 119, 151]. The 

use of buffer solutions in the CA analysis have been successful for 

mineralization studies [328, 331-338], but the feasibility of using such a system 
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for industrial process is low. Buffer solutions are the chemical compounds that 

limit a change in pH when an acid is added to them. 

 Other than pH, nucleation of the carbonate crystal (CaCO3 in particular) 

is also an important step in the precipitation process. This is specific to the use 

of brine solutions as medium of precipitation because various cations like Mg2+ 

inhibit the precipitation of Ca2+ salts [386].   
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Chapter 3: 

Experimental Methodology 

 

 

 

 

 

 

The current chapter explains the experimental methodology used in the 

identification of NiNPs as a catalyst for hydration of CO2. The nickel 

nanoparticles were commercially purchased and characterized before use. The 

proof of concept, kinetic study and the photo-catalytic activity of NiNPs in 

catalysing the hydration of CO2 was carried out in the laboratory. Catalytic 

activity of other nanoparticles (Fe2O3 and NiO) was also studied.  The 

mineralization experiments in the presence of NiNPs are demonstrated. The 

chemical analysis required for the development of reaction mechanism and 

determining material properties was carried out using X-ray photoelectron 

spectroscopy (XPS), X-ray diffraction spectroscopy (XRD) and Fourier 

Transform Infrared Spectroscopy (FTIR). Material characterization was carried 

out using transmission electron microscopy (TEM), scanning electron 

microscopy (SEM), selected area electron diffraction pattern (SAED), energy 

dispersive X-ray spectroscopy (EDX) , X-ray diffraction spectroscopy (XRD), 

Dynamic light scattering (DLS), UV-Vis spectroscopy and Zeta potential.  
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3.1 Chemicals and equipment used for experimentation 

The nickel nanoparticles (NiNPs) were purchased from NanoTechnology, 

Korea. 99% CO2 gas and 12% CO2-Air cylinders were purchased from BOC. 

Iron(II) oxide nanoparticles were purchased from NanoAmor, Europe. 

Hydrochloric acid (0.1M and 27% concentrated), boric acid, calcium chloride, 

calcium sulphate, Gallium-Indium (GaIn) paste, nickel sulphate, nickel chloride, 

nickel(II) oxide nanoparticles, nitric acid, phenolphthalein indicator (50% 

alcohol), potassium carbonate,  sodium carbonate, sodium chloride, and sodium 

hydroxide were purchased from Sigma Aldrich, UK and used as received. All 

the above chemicals were analytical grade. Buffer tablets to prepared standard 

pH 4, 7 and 10 solutions where purchased from RS components and were 

mixed with deionized (DI) water. All solutions and samples were prepared in DI 

water with low conductivity (~1-2 µS/cm).  

 The equipment used for CO2 bubbling experiments were 250 ml and 180 

ml glass jars were purchased from Wheaton Industries, UK. Custom made 

glass ware was purchased from Soham Scientific, UK (for CO2 uptake 

experiments). BS5, Fisher Scientific water bath was used for circulation or 

reservoir constant temperature water bath. The NiNPs suspensions were 

prepared using an ultrasonic water bath (Hilsonic, UK). The pH meters used for 

the experiments were pH 209 bench top and HI2550 pH meters (Hanna 

Instruments, UK). The HI2550 is a more advanced pH meter as compared to pH 

209 bench top with online pH logging using a computer. The HI2550 would 

have a better response to a pH change as compared to pH 209 bench top 

which is determined by the operational amplifier with in the pH meter. 
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Unfortunately, this information was not available from the manufacturers (Hanna 

Instruments, UK). The pH meter was calibrated before every experimental run 

using standard commercial buffers of pH 4, 7 and 10. A pIONneer30 

conductivity meter (Radiometer analytical, UK) was used for ionic conductivity 

measurements. 

3.2 Experimental procedure 

3.2.1 Preparation of nickel nanoparticle (NiNPs) suspension 

The NiNPs suspension was prepared by accurately measuring the NiNPs 

(depending on the concentration of the suspension) and adding them to the 

required amount of DI water. Upon addition of NiNPs the mixture was always 

sonicated for 5 minutes in an ultrasonic water bath at room temperature. 

Typically the NiNPs stayed in suspension for ~30 minutes. 

3.2.2 CO2 saturation in DI water and nanoparticle suspensions 

 The CO2 saturation experiments were carried out in a 20 ml jacked glass 

reactor (Soham Scientific). 10 ml of low conductivity DI water (or NiNPs 

suspension in DI water) was added into the reactor and CO2 gas was bubbled 

at a flow rate of 1.407 mmol/min (i.e. 122.577 ml/min of CO2 = 50 ml/min of air), 

0.1MPa gauge pressure. The gas was allowed to pass for 30 minutes to attain 

saturation of the solution. The gas was then switched off and the saturated 

solution of CO2 was titrated with 0.1M NaOH solution to estimate the total 

amount of CO2 in solution. Care was taken that the titration was carried out 

when there was a CO2 environment over the liquid sample and carried out 

within 10 minutes after the bubbling was stopped [1]. The time for saturation of 

CO2 in DI water was determined by initial titration of CO2 saturated solution after 

different CO2 bubbling time intervals of 15, 30 and 60 min. The concentration of 
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CO2 in DI water after 15, 30 and 60 min bubbling was 39 ± 2 mM, therefore the 

titration time was taken as 30 min. Each titration was repeated five times and 

average of the values are presented in section 4.2, chapter 4.  

 This procedure was repeated for NiNPs suspensions of different 

concentration i.e. 10 ppm, 20 ppm, 30 ppm, 40 ppm and 50 ppm respectively. 

The temperature of the reaction vessel during bubbling of CO2 and titration was 

kept constant at 20 °C using a circulating water bath (BS5, Fisher Scientific). 

Results on saturation experiments are discussed and presented in chapter 4, 

section 4.2 and chapter 8, section 8.2.   

 The same procedure was used to study the saturation of CO2 in 

suspension of Fe2O3NPs and NiONPs in DI water. Results of the CO2 saturation 

in Fe2O3NPs and NiONPs suspensions and DI water are discussed in chapter 

5, section 5.4.2 and in chapter 8, section 8.2. To study the effect of temperature 

on CO2 saturation in NiNPs suspension the same procedure was repeated for 

CO2 saturation in DI water and NiNPs suspension at temperatures of 10 °C, 20 

°C, 30 °C, 40 °C, 50 °C and 60 °C. Detailed results and discussion on this 

experiment are presented in chapter 6, section 6.2.1 and chapter 8, section 8.4. 

The same procedure was repeated for nickel nanowires, results are discussed 

in chapter 5, section 5.6. 

3.2.3 CO2 absorption in DI water and nanoparticle suspension (gas-liquid 

reactions) 

 One of the methods for measuring CO2 hydration kinetics is by bubbling 

CO2 in DI water or buffer or basic solutions [2, 3]. When a gas is bubbled in a 

quiescent liquid, the gas enters the liquid at the interface and in the absence of 

kinetic constant for the process the concentration is assumed on the basis of 
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the ideal gas equation (gas side) and Henry's Law (liquid side) [4]. According to 

Danckwerts [2], in gas absorption with chemical reaction (or gas-liquid reaction 

in general) the final saturated concentration of gas in the liquid will not obey 

Henry's Law and will be dependent on the equilibrium of the reaction (for 

reversible reactions) or extent of the reaction (for non-reversible reactions). In 

the case of CO2 and aqueous system the pH of the solvent changes due to 

generation of carbonic acid following the reaction sequence (considering the 

quiescent liquid to be DI water [5] or buffer solution of pH < 8 [6]) 

𝐶𝑂2(𝑔𝑎𝑠)   ↔   𝐶𝑂2(𝑎𝑞)       (1) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂  ↔   𝐻2𝐶𝑂3         (2) 

𝐻2𝐶𝑂3   +   𝐻2𝑂 ↔  𝐻3𝑂
+ + 𝐻𝐶𝑂3

−     (3)  

 The assumption made in this analysis is that the physical mass transfer 

rate (i.e. the rate at which CO2(gas) converts to CO2(aq)) is independent of the 

presence of the catalyst. The reaction 1 is a phase transfer process depending 

on the partial pressure of CO2 in the gas phase [2, 4]. Noyes et al. [7] reported 

the rate of inter phase transfer of CO2 in water at different pressures of CO2. 

The rate constant (or kinetic constant) for reaction 1 for aqueous solutions is 5.5 

x 10-6 m/s under 1 bar pressure of CO2 [7]. The reaction 3 is an acid 

dissociation reaction considered to be instantaneous [8]. As reaction 2 is 

dependent on the amount of CO2(aq) species present, is therefore is proportional 

the product of the partial pressure of CO2 and rate constant of reaction 1 which 

is constant during the reaction.  
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Figure 3.1: Concentration profiles for gas-liquid-solid (very fine particles): diffusion of solute A 

and the surface reaction are parallel (adapted from Doraiswami and Sharma [9]) 

 The kinetics of hydration of CO2 is represented by the rate of change in 

pH indicating the amount of acid formed per unit time. In the catalytic and 

uncatalysed reaction the gas phase partial pressure of CO2 and the flow rate of 

the gas is constant, implying that the phase transfer of CO2(gas) to CO2(aq) is 

constant.  The presence of the catalyst does not affect the phase transfer but 

depending on its catalytic rate, it accelerates the reaction rate within the 

hydrodynamic boundary layer in a bi-phasic (for CA experiments Kim et al. [6]) 

or tri-phasic (on in the case of NiNPs system [5]) reaction. Figure 3.1 shows the 

change in concentration of the gas phase reactant A in liquid under different 

reaction conditions [9].  
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Figure 3.2 pH change when CO2 is bubbled in 0.1 M Tris(hydroxymethyl)aminnomethane-HCl 

buffer in absence (o) and presence of human carbonic anhydrase (HCA)(▼), bovine carbonic 

anhydrase (BCA) (♦), hemocytes from diseased shell (HDS) (□) and extra pallial fluid (EPF) (∆)  

extracted from oysters (Crassostrea Gigas) by Kim et al. [6]. 

Kim et al. [6] measured pH chance when CO2 was bubbled in buffer 

solutions in absence and presence of bovine CA, human CA, hemocytes from 

diseased shell (HDS) and extra pallial fluid (EPF) extracted from oysters 

(Crassostrea Gigas) to test catalytic activity of theses biomolecules for 

hydration of CO2. They observed that the pH change was rapid in the presence 

of the CA and other biomolecules than in its absence (figure 3.2). This rapid 

change in pH they concluded was due to the catalytic hydration of CO2 of CA.  

  The catalytic activity of NiNPs for hydration of CO2 was evaluate using 

similar methodology as Kim et al. [6]. The CO2 absorption rate is carried out in a 

250 ml glass jar with a fixed volume (200 ml) of DI water (or 30 ppm NiNPs 

suspension). The CO2 gas was sparged into the solution at a flow rate of 1.407 

mM/min at 0.1MPa pressure using a glass sinter (Pyrex 1, Sigma Aldrich, UK). 

The pH changes of the solution were monitored during the bubbling 

experiments manually using a pH 209 bench top pH meter (Hanna Instruments) 
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and ionic conductivity are measured simultaneously using pIONneer30 

conductivity meter (Radiometer Analytical). The readings are taken in intervals 

of 20 seconds. The temperature of the sample was maintained at 20 °C by 

immersing the glass jar in a water bath (BS5, Fisher Scientific). To assess any 

leaching of the Ni2+ ions from the NiNPs, the following methodology was used. 

30 ppm of NiNPs were suspended in the DI water and sonicated for 5 min, 

followed with recording of the change in ionic conductivity of the suspension 

using pIONneer30 (Radiometer Analytical). Detailed results and discussion on 

this experiment are presented in chapter 4 section 4.3.  

 A similar procedure is used for studying the catalytic activity of Fe2O3NPs 

and NiONPs. The pH in these experiments were measured using HI2550 

(Hanna Instruments, UK) and recorded on a computer. The results of the pH 

change studies of Fe2O3NPs and NiONPs are discussed in chapter 5 section 

5.4. The same experiment was carried out in NiNPs suspensions using 12% 

CO2-Air mixture (BOC, UK) to test similar catalytic behaviour. The results of this 

are discussed in chapter 5 section 5.5. 

3.2.4 Leaching of Ni2+ ions in carbonic acid solution and influence on CO2 

hydration 

 Hernandez et al. [10] studied the influence of pH on the surface species 

and dissolution of Ni and NiO microparticles. It is known that Ni2+ ions do not 

leach in DI water but forms a passive Ni(OH)x layer on the surface of solid Ni 

[10, 11]. The formation of Ni(OH)x species leads to the pH of water [10] which is 

observed in the results in this study (chapter 4, section 4.3). Dissolution of Ni 

under acidic conditions depends on the nature of the acid and its concentration, 

for example dilute HNO3 dissolves Ni whereas concentrated HNO3 forms a 
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passive layer on the Ni surface [10]. The low dissolution of solid nickel in 

solutions because nickel has an electrochemical potential of -0.227V with 

reference to Standard Hydrogen Electrode (SHE) (see figure 3.3), suggesting 

that the Ni leaching rate is slow in acidic solutions in absence of an oxidizing 

agent stronger than H+ [12]. Hernandez et al. [10] reported that in presence of a 

mineral acid (like HCl) Ni leaching is high (>100 ppm) for pH <4 but is low (< 50 

ppm) between pH 4-12 for studied for 1000 ppm Ni microparticle suspension. 

 

Figure 3.3 Pourbaix diagram for nickel at 25 °C (a) concentration of [Ni(aq)]tot = 10
-6

 M and (b) 

concentration of [Ni(aq)]tot = 10
-8

 M [13] 

 Drodten [14] recently reported a review on corrosion of metallic nickel in 

carbonic acid. It was reported that corrosion rate of Ni DI water containing CO2 

at pressure of 13.8 bar and temperature of 54-55 °C is 0.002 mm/yr  after 7 

days and is less lower after 28 and 70 days implying formation of a passive 

layer. Drodten also reports that corrosion of Ni in presence of CO2 and O2 in DI 

water is 0.08 mm/yr after 20 hours, 0.01 mm/yr after 60 hours and 0 mm/yr after 

120 hours. Drodten also states that Ni is corrosion resistant in CO2-H2O system 

up to temperature of 464 °C. 



89 
 

 Therefore dialysis is used to determine the leaching of Ni2+ ions from 

NiNPs in carbonic acid (pH 4) by modifying the method described by 

Piticharoenphun [15]. 100 ml of 30 ppm NiNPs suspension was prepared using 

the method described in section 3.2.1 in a 180 ml glass jar (Wheaton Industries, 

UK). To the NiNPs suspension 2-3 pieces of dry ice (solid CO2, BOC, UK) is 

added for rapid saturate the NiNPs suspension. (Dry ice was used instead of 

bubbling CO2 (procedure in section 3.3.4 and 3.35)  to obtain saturated CO2-

NiNPs suspension because the CO2 gas bubbling process is long and the 

NiNPs would settle in solution and they could not be re-suspended in solution 

without disturbing the equilibrium concentration of saturated CO2). The pH of 

the saturated solution was 4 measured using pH meter HI2550 (Hanna 

Instruments). A PTFE lid was placed to maintain CO2 environment in the gas 

space above the suspension, to completely acidify the NiNPs suspension. The 

suspension was considered to have achieved equilibrium when the vapours of 

CO2 diffused as the pH reading was 4. During the CO2 saturation process, the 

glass jar was stirred occasionally to aid mixing of the gas.  

 10 ml of the CO2 saturated NiNPs suspension was added into dialysis 

membrane (MWCO = 3500 Da; diameter = 11.5 mm, pore size < 2nm) 

purchased from Spectrum Laboratories, Canada. The membrane was capped 

on both sides to exclude air. The membrane was placed in into a 2 litre beaker 

(VWR, UK) containing 1 litre of DI water. The experiment was performed at 

room temperature. The DI water in the beaker outside the membrane was 

stirred before collection of DI water for Ni2+ ion leaching analysis. 10 ml of DI 

water was collected from the beaker at 0 min, 30 min and 60 min and kept in 30 

ml sample vines (Wheaton Industries, UK) before inductive coupled plasma 

optical emission spectroscopy (ICP-OES) measurement. The ICP-OES was 
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carried out at School of Civil Engineering and Geosciences, Newcastle 

University (with minimum detection limit = 0.01 mg/lit). The results are 

discussed in chapter 4, section 4.3  

 To study the influence of Ni2+ ions on the hydration of CO2, CO2 bubbling 

experiment was carried out using procedure 2.3.3 using 0.005 ppm NiSO4 

solution. The concentration of NiSO2 solution was determined form the ICP-

OES results of leaching experiment described in the above paragraph. The 

results are discussed in chapter 4, section 4.3 using HI2550 pH meter to 

measure pH. 

3.2.5 CO2 hydration kinetic study using saturated CO2 solution in DI water 

(liquid-liquid reaction) 

 Another common method to measure the rate of CO2 hydration is to 

prepare a saturated solution of CO2 in DI water and mix it with a buffer or base 

while observing the pH change. The following two experimental methods use 

saturated CO2 solution to measure CO2 hydration kinetics. It is known that when 

CO2 is bubbled in DI water its pH drops to 4 [8] due to the formation of carbonic 

acid following the reaction [3]. 

𝐶𝑂2(𝑎𝑞) + 2𝐻2𝑂  ↔   𝐻3𝑂
+ + 𝐻𝐶𝑂3

−       (4) 

Depending on the pH of the solution the hydration of CO2 would follow reaction 

path 4 at pH 8 or below and the reaction path 5 at pH 10 or above [3] (also 

discussed in section 2.3.3, chapter 2).  

𝐶𝑂2(𝑎𝑞) + 𝑂𝐻
−   ↔  𝐻𝐶𝑂3

−       (5) 

In a pre-saturated CO2 solution the reaction 4 has reaches an equilibrium, 

where K1 is the equilibrium constant given by the equation  
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𝐾4 = 
[𝐻𝐶𝑂3

−][𝐻3𝑂
+]

[𝐶𝑂2(𝑎𝑞)]
= 1.6 X 10−3       (E.3.1) 

From the equilibrium equation it can be observed that concentration of CO2(aq) is 

625 times higher than the concentration of [H2CO3]. As the concentration of 

carbonic acid is very small as compared to CO2(aq), as a standard practice, CO2 

saturated solution is termed as CO2(aq)* or CO2(aq) or [H2CO3*] [8] . 

[H2CO3*] = CO2(aq)* = [H2CO3] + [CO2(aq)]     (E.3.2) 

Any change in the chemical environment of the per-saturated solution would 

lead to the change in the equilibrium constant value according to Le Chatelier's 

principle [3]. When the pre-saturated CO2 solution is added to a buffer or 

Na2CO3 solution the chemical environment changes and the reaction 1 or 2 

(depending on the pH of the solution) move towards the right to attain a new 

equilibrium state. The rate at which this equilibrium change takes place gives 

the rate of the forward reaction, which is formation of carbonic acid. 

3.2.5.1 CO2 hydration kinetics using stop flow spectrophotometer 

 Stopped flow spectrophotometric kinetic analysis was carried out at the 

Department of Chemistry, Newcastle University. The method is used for the 

measurement of fast kinetics (i.e. having reaction completion time of 1-5 min) 

and has been used to measure the kinetics of CO2 hydration [3, 16]. Figure 3.3 

shows the schematic representation of the stopped flow spectrophotometer.  
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Figure 3.3 Schematic of the operation of stopped flow spectrophotometer [28-32]. 

 The stopped flow spectrometer consists of two syringes operated by a 

pneumatic syringe pump that is connected to a mixing chamber fitted with UV-

Vis optics and detector. During analysis, very small volume of the reactants are 

mixed in a small reaction chamber and the optical absorbance change with 

time, at a particular wavelength, is observed [17-21]. The wavelength is 

selected on the optical absorbance of the chemical, in this study a dye 

(Phenolphthalein) was used. The rate of optical absorbance change of the 

chemical compound during the reaction is recorded on the computer. The rate 

of change is absorbance can be fitted with an appropriate mathematical function 

to obtain the kinetic constant (or rate constant) of the reaction under 

observation [17-21]. In this study the change in absorption of phenolphthalein 

indicates the pH change which is monitored. Figure 3.4 shows an example of 

the change in the absorption of phenolphthalein data (empty circles) fitted with 

an exponential curve (solid line). 
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Figure 3.4 Example showing the fitting of the change in the absorbance of phenolphthalein (○) 

with an exponential function (solid line). 

 Wang et al. [16] recently reported a kinetic study on the hydration of CO2 

using the stopped flow spectophotometery. The procedure used in this study 

using the stop flow spectrophotometry followed similar methodology to that of 

Wang et al. with a minor modification. Wang et al. used bromothymol blue to 

monitor the kinetics of the hydration reaction of CO2. We observed that 

bromothymol blue was adsorbed on the NiNPs surface blocking the reaction 

active sites. Therefore phenolphthalein was used as a dye in this study. As the 

saturation concentration of CO2 increases in the presence of NiNPs, the NiNPs 

were added to the sodium carbonate solution. Various concentrations of sodium 

carbonate solutions were prepared (i.e. 8 mM, 16 mM, 24 mM, 32 mM and 36 

mM) with and without 60 ppm of NiNPs. A saturated solution of CO2 was 

prepared by bubbling CO2 in DI water at 15 °C (38 mM concentration). The 

kinetic study is performed using the Applied Photophysics SX18MV stopped-

flow spectrophotometer. The reaction kinetics is studied by rapid mixing of a 

given volume of CO2 saturated solution with that of Na2CO3 (with varying 
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concentration 8-36 mM) in a 1:1 v/v ratio. Phenolphthalein was used as an 

indicator to follow the reaction kinetics and was monitored by change in colour 

at the wavelength of 553 nm. The data obtained from the equipment was then 

processed using Origin 6.1, using an exponential fit. The results obtained in this 

experiment are discussed chapter 5, section 5.2. 

3.2.5.2 CO2 hydration kinetics using pH change method by saturated CO2 

solution. 

 The most commonly used method for evaluation of catalytic activity of 

CA for CO2 hydration is performed by mixing saturated CO2 solution with buffer 

solution and monitoring the pH change (all ref in section 2.2.3.3). This is a 

qualitative method used for evaluation of the catalytic activity of immobilized or 

free CA (ref in table 2.4). The role of a buffer is to maintain pH of a solution by 

absorbing the H+ ion from the solution [8]. Therefore by monitoring the pH 

change a distinct quantitative evaluation of concentration of protonated buffer 

generated from buffer molecules cannot be determined, as the pH change is not 

directly proportional to the pH change for buffer solutions [8]. Therefore no 

quantitative evaluation of kinetics can be done using this method.  

 The Bis-Tris-HCl buffer was prepared by first mixing the 2,2 

Bis(hydroxymethyl)-2,2’,2”-notrilotriethanol (Bis-Tris) buffer in DI water (0.1M), 

then the pH of the buffer was adjusted to 7 by adding (drop by drop) of 

concentrated HCl (11.6-12M) under continuous stirring. Bis-Tris-HCl buffer was 

chosen as the pH is regulated by the hydroxide terminal molecules of the buffer 

and the surface of NiNPs is also hydroxylated (section 4.4., chapter 4) limiting 

adsorption of buffer on NiNPs surface. 0.1M Na2CO3 solution was also prepared 

by mixing Na2CO3 in DI water. Saturated solution was made by bubbling CO2 in 
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DI water for 4 hours untill it saturates. The procedure for qualitative kinetic 

analysis was carried out by the procedure described by Mirjafari et al. [23]. 20 

ml of Bis-Tris-HCl buffer (or Na2CO3 solution 0.1M) was taken in a 50 ml 

beaker. The pH of the solution was monitored using HI2500 pH meter (Hanna 

Instruments) in Log mode with data logging after every 5 sec. When the pH log 

gave 5 stable readings 20 ml of saturated CO2 solution was added to the Bis-

Tris-HCl buffer (or Na2CO3 solution 0.1M). The pH was recorded until a stable 

reading was observed. For the NiNPs catalyst run, 30 ppm suspension of Bis-

Tris-HCl buffer (or Na2CO3 solution) was prepared and the above process was 

repeated for this solution. 

3.2.6 Carbonate absorption of CO2 

 Following the results obtained in the stop flow spectrophotometer 

experiment, absorption rate experiments were performed in potassium and 

sodium carbonate solutions. 0.1 M carbonate solutions were prepared by 

dissolving the required amount of carbonate salt in DI water. 30 ppm NiNPs-

carbonate suspension was prepared by adding NiNPs in the prepared 

carbonate solution (potassium and sodium) followed by sonication for 5 min 

using ultrasonic bath (Hilsonic) at a constant temperature. The carbonate 

solution (with and without NiNPs) were then placed in a water bath at 20 °C and 

the procedure described in section 3.3.3 (CO2 absorption in DI water and 

NiNPs) was followed. As the CO2 reacts with the carbonate solution, the pH of 

the solution changes. The pH meter used to measure the pH changes was 

HI2550 (Hanna Instruments) with a computer data logger. The pH changes are 

recorded in time intervals of 10 sec.  Results and discussion on this experiment 

are presented in chapter 5, section 5.4. 



96 
 

3.2.7 Synthesis of Nickel nanowires (NiNWs) 

 The NiNWs were prepared by the method demonstrated by Bentley et al. 

[24]. One side of the alumina membrane was painted with GaIn paint. This 

blocked the pores of the membrane from one side and also formed a conductive 

layer to from the cathode. The membrane was then mounted on a copper plate 

using electrical insulation tape. This cathode assembly was then placed in a 

beaker containing solution of nickel coating mixture (solution of NiSO4·6H2O 

(300 g/l), NiCl2·6H2O (45 g/l) and boric acid (45 g/l)) along with a Ni wire as an 

anode. The cathode and anode were connected to an AA battery. The circuit 

was connected for 15 min where reduction of Ni2+ to Ni0 takes place inside the 

pores and Ni form the wire leached into the solution as Ni2+. After this the 

membrane is removed from the copper plate and the GaIn paste is dissolved 

using concentrated nitric acid. The alumina membrane was then dissolved in 6 

M NaOH solution liberating the NiNWs which were then washed several times 

with water followed with acetone washing. 

3.2.8 Photocatalytic activity of nickel nanoparticles for hydration of CO2 

 The proof of concept study to test any enhancement in the photocatalytic 

activity of NiNPs for hydration of CO2 was performed in collaboration with Prof. 

W. Shangguan's group at Shanghai Jiao Tong University, P.R. China during my 

one month visit to the university to China. 
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Figure 3.5: Experimental setup for the photochemical enhancement of NiNPs hydration of CO2. 

 

 This experiment was repeated at Newcastle University. The solar 

simulator used for artificial sunlight was 150W (Xe Ozone Free) Xe arc lamp 

and an arc lamp power supply (Model 69907) from Oriel Instuments (Newport 

Corporation, UK). The power of the lamp was measured at the sample vile 

position (see figure 3.5) using a power meter (Thorlabs, Germany) measuring a 

band of wavelength between 535-1550 nm and had a power intensity of 47-50 

mW/cm2. An IR filter was brought form Oriel Instruments (Model 6117) to filter 

out the IR spectrum. The power of the lamp with the IR filter was measured at 

the sample vile position (see figure 3.5) and was 41-45 mW/cm2 between the 

wavelength band of 535-1550 nm. Silica clear glass jars of 250 ml were used as 

a photo-reactor. The pH meter (HI2550) used was with a computer data logger. 

The pH measurements are recorded for every 10 seconds interval.  

The experimental apparatus was setup as shown in figure 3.5. The 

distance between the light source and the sample was ~38 cm and was kept 

constant for all the experiments. The data log was started when the pH probe 

and thermocouple was introduced in DI water (or NiNPs suspension) and the 
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CO2 gas was only introduced when the data log had a stable value for over 1 

min. (For the ease of analysis the initial values have not been shown in the 

results.) The sample vile was cooled using a fan to reduce the effect of increase 

in temperature due to heat generated by the solar simulator. All the experiments 

were performed at a temperature of 20 +2 °C. All the experiments were 

conducted in a dark room. Same procedure was followed for dark and light 

influenced (with and without IR filter) experiments. 

It was found that the pH probe is extremely photosensitive due to the 

presence of Ag/AgCl reference electrode within the glass electrode. In several 

occurrences the pH would begin to rise in the experimental environment, the 

instance the lights inside the dark room were switched off for the dark 

environment prior to CO2 introduction. The problem was resolved by calibrating 

of the pH meter under relative darkness (using only minimal light, i.e. from the 

LED of the laptop facing away from the pH meter) for the experiments requiring 

complete darkness or in presence of the solar simulator for those requiring light. 

Once calibrated under either of the conditions, it was easy to maintain the pH 

for the duration of the experiment. 

After a steady pH value was observed (stable for 1 min) the CO2 gas was 

introduced and the pH profiles recorded on the computer. The procedure for the 

pH profiles was same as that followed in section 3.2.3. The experiment was 

repeated eight times for individual sample i.e. catalytic and non-catalytic in the 

presence and absence of light and the mean of the results are discussed in the 

chapter 6 section 6.1. The computational analysis of the recorded data was 

done using Origin 6.1 (OriginLab Corporation) software.  
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3.2.9 Role of temperature on CO2 hydration reaction 

 In order to study the influence of temperature on the CO2 absorption rate 

in DI water (with and without NiNPs) the following study was performed. The 

experimental methodology was the same as used previously (as in section 

3.2.3) with minor modifications. The CO2 gas flow rate and the volume of liquid 

sample was kept same as in section 3.2.3. The temperature of the water bath 

was varied from 10 (+1) °C, 20 °C, 40 °C and 60 °C. The maximum temperature 

was kept at 60 °C as it was below the allowable standards of 65 °C, which is the 

exit temperature of flue gas form the boiler exhaust [6, 25]. The pH changes 

were recorded using HI2550 pH meter. Detailed results and discussion on this 

experiment have been presented in chapter 6 section 6.2. 

3.2.10 Calcium Carbonate precipitation experiment 

 After the experiments on uptake and absorption of CO2 in DI water (with 

and without NiNPs) the effectiveness of the catalyst was examined by CaCO3 

precipitation. Similar experiment was tried by Favre et al. [1] for Carbonic 

Anhydrase. 200 ml of DI water (or 30 ppm NiNPs suspension) was taken in a 

250 ml glass jar and was bubbled with CO2 with a flow rate of 1.96 mM/min, at 

0.1MPa pressure for 30 min, 1 hour, 2 hours and 4 hours respectively. To the 

respective CO2 saturated samples were added 10 ml of 1 M NaOH solution and 

10 ml of 0.5 M CaCl2 solution. Gel formation was observed in the sample 

containing the NiNPs. The samples were filtered using a vacuum filer and air 

dried at room temperature for 24 hours. Both the obtained samples were then 

weighted after drying. Detailed results and discussion on this experiment have 

been presented in chapter 7 section 7.1 and chapter 8, section 8.3. 
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3.2.11 Absorption of CO2 in potassium carbonate solutions 

 Potassium carbonate are the most commonly used absorbers for CO2 

separation [2]. There have been various enhancers used to enhance the 

absorption rate of K2CO3 solutions as discussed in chapter 2, section 2.3.3. 

Thus in order to study the influence of NiNPs on the absorption rate of CO2 in 

K2CO3 solutions the following experiment was carried out. 50% (by weight) 

K2CO3 solution was prepared in 50 ml DI water. For the NiNPs suspension-

K2CO3 solution, 1.5 mg of NiNPs was added into 50% K2CO3 solution and 

sonicated in the ultrasonic bath at constant temperature. The CO2 absorption 

experiment was carried out in a 180 ml glass jar (Wheaton Industries, UK). The 

solution with the glass bubbler (Pyrex 1) was assembled and weighed before 

the introduction of CO2. An initial proof of concept was carried out by bubbling 

CO2 though the carbonate solution for 2 hours and then weighed. In another set 

of experiments the CO2 was bubbled in the reaction mixture and the total weight 

of the reaction vessel was measured after the interval of 30 minutes. The CO2 

gas was bubbled at a flow rate of 1.69 mM/min at varying pressure between 

0.1-0.2 MPa. The final weight was obtained when there was no further 

possibility of gas flow though the bubbler. The entire absorption experiment was 

carried out at 20 °C using a water bath (BS5, Fisher Scientific). This experiment 

was repeated with new bubbler i.e. an open end 6 mm ID floropolymer tubing 

(RS Components, UK). Detailed results and discussion on this experiment have 

been presented in chapter 7 section 7.2. 
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3.2.12 Heat treatment of Nickel Nanoparticles and effect on catalytic CO2 

hydration reaction 

 For the utilization of the carbonate solution for separation application it is 

the absorption is carried out at lower temperatures and desorption is carried out 

at higher temperatures [2]. Thus heat treatment of NiNPs was carried out. For 

the heat treatment, the NiNPs were placed in a silica crucible and heated in an 

oven at 150 °C for 8 hours. The NiNPs was kept in an air tight container with 

ample dessicator beads to absorb any moisture present until further use. Nickel 

does not oxidise at 150 °C [26] therefore not much changes in the properties of 

NiNPs would be observed. Similar procedure to that in section 3.2.3 was used 

to test the catalytic activity of heat treated NiNPs. Detailed results and 

discussion on this experiment have been presented in chapter 6 section 6.5. 

3.2.13 Mineralization of CO2 using gypsum and sodium chloride 

The final part of this study was to design a process for the mineralization 

of CO2 to CaCO3. As seen in chapter 2 section 2.2.3.1 various mineral 

processes for mineralization of CO2 are reported. The literature review indicated 

no reports on the use of natural gypsum as a alkali metal source for CO2 

mineralization, although flue-gas desulfurization (FGD) gypsum (i.e. an 

industrial waste) has been reported (table 2.1).  Therefore the mineralization of 

CO2 was performed by the conversion of gypsum (calcium sulphate, 

CaSO4·2H2O) to calcium carbonate. One of the major parameters that affect the 

precipitation of CaCO3 is the pH of the solution as discussed in chapter 2 

section 2.2.3.4. At a low pH, the dissociation of the HCO3
- to CO3

2- is low and 

thus no precipitation of calcium carbonate can be observed [23, 27]. Therefore 
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in order to avoid the lowering of pH to acidic values while precipitating CaCO3 

from CO2, a novel reactor has been designed (figure 3.6). 

 

Figure 3.6: The experimental setup and chemical reactions involved for mineralization of CO2 

using gypsum and sodium chloride. 

Figure 3.6 shows the schematic of the bridge reactor. The bridge reactor 

consists of two reservoirs, one acidic and the other basic. The names of the 

reservoirs are given with respect to the pH of the solution during the working of 

the reactor. On the side of the reactor where CO2 enters the NaCl solution and 

the pH of the solution is lowered due to the generation of carbonic acid, is called 

the acid side. On the other side of the reactor, the pH of the solution is high due 

to the presence of sodium carbonate and is thus called the basic side. A salt 

bridge mechanism is used to transfer the ions (CO3
2-/HCO3

- and Na+) which 

move from the acid side to the basic side due to the concentration gradient.  

The reactions associated with the process are follow: 

Na2CO3  +  CaSO4  → Na2SO4  +  CaCO3   (6) 

𝐶𝑂2 + 𝐻2𝑂  ↔  𝐻2𝐶𝑂3     (2) 
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The overall process utilizes the sodium ions from the sodium chloride act as the 

carriers of the bicarbonate ions from the acid side of the bridge to the base side 

of the bridge. The bridge consists of sodium carbonate solution. The role of the 

bridge is to facilitate the movement of ions from the acid side to the base side of 

the reactor. As reaction (6) proceeds, the concentration of the Na2CO3 

decreases in the basic side of the bridge. At the same time carbonic acid is 

generated in the acid side of the reactor. The acid side of the reactor consists of 

NaCl solution. Thus the ions thus present in the acid side after carbonic acid is 

formed area H3O
+, Na+, Cl- and HCO3

-. It is expected that the ions would 

transfer from one side of the reactor to the other side due to the CO3
2-/HCO3

- 

common ion effect. Thus as the concentration of the CO3
2- ions tends to 

decrease the bridge would provide the CO3
2- ions from the HCO3

- for further 

precipitation of CaCO3. 

 The experimental setup consisted of two 250 ml glass jars connected 

with an inverted glass U tube. The glassware used was 250 ml glass jars 

(Weaton Industries) and a custom U tube was made by making a 90° bend on 

ether ends of a Ø4 mm ID glass pipe of 25 mm distance between the bends. 

The total volume of the pipe is ~5 ml.   

 0.1 M sodium carbonate aqueous solution, 0.5 M sodium chloride 

aqueous solution and a 0.2 M calcium sulphate uniform aqueous suspension 

was prepared using deionised water. 100 ml of sodium carbonate solution and 

100 ml of sodium chloride solution was taken in two 250 mL glass jars. 100 μL 

of phenolphthalein indicator was added in the sodium carbonate solution to 

check the pH of solution in the bridge. A bridge was put between the two 

solutions with use of a rubber bubble.  Care was taken that the bridge contained 

only the sodium carbonate solution.  Both the solutions (sodium chloride and 
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sodium carbonate) were placed on magnetic stirrers having the same elevation 

to maintain the hydrodynamic head within both the solutions. A control sample 

(for the reaction) of carbonate solution (100 mL) was kept on separated 

magnetic stirrer for comparison.  

 A gas sparger (Pyrex© Grade 1, porosity 100-150 µM; Sigma Aldrich, 

UK) was added in the sodium chloride solution glass jar. The CO2 gas was 

bubbled through the solution at a rate of 1.96 mol/min. To avoid the CO2 

bubbles entering the glass bridge, a PTFE partition was added between the gas 

sparger and the glass bridge inlet. The calcium sulphate suspension was stirred 

continuously to until no clustering of calcium sulphate were observed, thus 

providing a suspension with a uniform concentration.  

 1 ml of the calcium sulphate suspension was added to the control 

sample and the sodium carbonate base end of the bridge reactor every 5 min 

for 5 hours (i.e. total 60 ml of CaSO4) and 1 ml of deionised water was added to 

the sodium chloride side of the bridge reactor using 2 ml plastic syringes. Care 

should be taken to inject/add the calcium sulphate and deionised water on the 

two sides of the bridge reactor at the same time to keep levels of liquid in the 

bridge the same at all times.  

 After the 5 hours the reaction was kept running with the CO2 bubbling 

for another one hour. After that the bridge was lifted off and all its contents 

emptied into the carbonate reservoir. The control and the bridge reactor 

samples were then filtered using a vacuum filter and No 52 Wattman filter 

paper. During filtration the precipitate samples were carefully washed with 

deionised water to remove any sodium sulphate and/or calcium sulphate. The 

filtered samples were then dried for an hour at 60 °C and weighed. The weight 
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of the precipitate was used to calculate the yield. Detailed results and 

discussion on this experiment have been presented in chapter 7 section 7.2. 

3.2.14 Validation of mass transport of ions in Bridge reactor: 

 Due to lack of experimental proof that mass transport of ions would 

occur in the bridge reactor (experimental methodology described in section 

3.2.12) the current study was carried out to validate the hypothesis.  In order to 

validate the mass transfer of material in the bridge reactor the following 

methodology was used. The similar experimental setup was used as mentioned 

in section 3.2.11. 0.1 M sodium carbonate solution was prepared and 100 ml of 

the solution was paced in both the glass jars. The bridge was set up with 

sodium carbonate solution in the bridge. 3 drops of phenolphthalein indicator 

was added on the right hand side glass jar and was stirred to give uniform pink 

colour. The movement of indicator dye would show how the mass transfer 

would proceed. A control sample was kept running simultaneously to compare 

the efficiency of the bridge reactor. 

 1 ml of 0.2 M calcium sulphate was added to the left hand glass jar and 

1 ml of DI water was added into the right hand jar simultaneously after every 5 

minutes for 5 hours. After every 1 hour photographic images of the experimental 

setup was taken (see chapter 10, section 10.3) in order to trace the movement 

of the indicator form right side of the bridge to the left side of the bridge. After 5 

hours the bridge was removed and the solid sample (from the bridge and 

control reactors) was filtered using a vacuum filter and No 52 Wattman filter 

paper. The filtered sample was dried at 60 °C for 1 hour and then weighed. The 

weight of the precipitate was used to calculate the yield of CaCO3. Detailed 

results and discussion on this experiment have been presented in chapter 7 

section 7.4. 
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 As the experiment mentioned above proceeded the concentration in the 

right hand side of the bridge reactor decreased due to the dilution with added DI 

water. Therefore the experiment was again repeated and the stock solution of 

the right hand side of the bridge was changed to 0.3 M sodium carbonate 

solution to keep the concentration of carbonate on the right hand side higher 

than the left hand side. Another change made in this repeat was that during the 

carbonation reaction 1 ml of 0.3 M carbonate solution was added into the right 

hand side of the bridge reactor (instead of DI water in the previous case) in 

order to maintain a constant concentration on the right hand side of the bridge 

reactor throughout the reaction. Detailed results and discussion on this 

experiment have been resented in chapter 10 section 10.3. 

 

3.3 Characterization Techniques 

  This section of the experimental methodology explains the various 

characterization techniques used during this study for chemical and physical 

characterization of the NiNPs, Fe2O3NPs, NiONPs and CaCO3 precipitate 

samples. Transmission electron microscopy (TEM) scanning electron 

microscopy (SEM) and Dynamic light scattering (DLS) were used to 

morphological identification, whereas the chemical analysis was done using of 

X-ray diffraction spectroscopy (XRD), selected area electron diffraction 

spectroscopy (SAED), energy dispersive X-ray spectroscopy (EDX), X-ray 

photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy 

(FTIR), UV-Vis spectroscopy and zeta potential will be discussed in this 

chapter. Equipment details and related brief theory of the experimental method 

are described below.  
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3.3.1 High-Resolution and Transmission Electron Microscopy 

 Electron microscopes are high resolution electron device used to 

observe submicron details of the object using a high energy beam of electrons 

(100-200 keV for TEM and 300 keV for HRTEM) [29]. There are three major 

types of electron microscopes that are classified into transmission, scanning 

and emission.  

 Transmission electron microscopy (TEM) is a common technique used 

to observe structures (or materials) in the nanometer range. TEM can be used 

to observe particles that are as small as 1 nm [29] where as an HRTEM can 

give resolution up to 0.5 Å (i.e. 0.05 nm). It works on a similar principle as that 

of an optical microscope but utilizes a high energy electron beam with 

wavelengths of the order 0.001 nm (300 keV pass energy) to 0.01nm (100 keV 

pass energy) [30]. The image in the TEM is formed by the electron beam 

passing though the sample, thus in the resultant beam the electrons that did not 

interact with the sample travel with same velocity and direction, but the ones 

that interact with the sample there is a change in either one or both (i.e. velocity 

and direction). Therefore TEM can be used to get information about internal 

structures of thin films. The general thickness of sample required for TEM is 100 

nm or lower [31]. In the case of HRTEM the atomic columns can be observed 

with sample of thickness between 5-20 nm [31]. As the electron are easily 

scattered than light by gases, thus high vacuum of 10-2 Pa is required.  

  The TEM or HRTEM is both a projection and a photomicroscope. As 

the image cannot be directly viewed by the eye being an electron image, it is 

projected on a fluorescent screen and then transferred to a photographic plate 

or paper, today it is recoded digitally using a computer using a charge-coupled 

device (CCD) camera. The beam of electrons are emitted by a pointed filament 
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in a vacuum chamber, which then passes through a series of condenser lenses 

then the sample followed by the objective lens and then is projected on the 

fluorescent screen enlarged by the projector lens [29]. Thus the principle of 

working of the TEM or HRTEM can be compared with an optical microscope. 

This can be seen in figure 3.7.  

 

Figure 3.7: Light projecting microscope (left) and electron microscope (right) compared 
schematically [29]  

  The lenses used in the TEM or HRTEM are all electro-magnetic lenses 

and the objective lens, which is the main lens for TEM or HRTEM, has an 

aperture that is used to generate high resolution images [29].  The electron 

beam of the TEM or HRTEM can be used to determine the crystal lattice plains 

of the sample (using dark field mode) and also the chemical elemental 

composition of the sample (using Energy dispersive X-ray spectroscopy (EDX)). 

In a TEM the crystallographic details are studied by using electron diffraction 

pattern (see section 3.3.4) due to the low resolution of the technique. In 

HRTEM, the resolution of the image shows lattice planes of the atoms and the 

spacing for the atoms is measured from the bright field images directly and can 

be confirmed by the electron diffraction obtained for the same particle.  
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  The HRTEM characterization for NiNPs is performed at Durham 

University, where as for Fe2O3NPs HR-TEM analysis is performed at University 

of Manchester and characterization of NiONPs carried out at Newcastle 

University using TEM. The particle size of the NiNPs was determined using a 

JEOL 2100F field emission gun transmission electron microscope (FEG TEM) 

instrument operating at 200 keV giving a 2.3 Å resolution, along with Gatan GIF 

tridiem with 4 megapixel Ultrascan
TM

 1000 CCD camera used for energy filtered 

imaging. The HR-TEM samples of NiNPs were prepared by drop and dry 

method, on a 300 mesh Cu grid with lacey carbon film. In the drop and dry 

method one drop of a dilute NiNPs suspension is dropped on the Cu grid and 

then air dried. Results of the NiNPs analysis is and discussed in chapter 4 

section 4.1, whereas for the Fe2O3NPs and NiONPs are discussed in chapter 5 

section 5.4.1. 

3.3.2 Scanning Electron Microscopy (SEM) 

 Scanning electron microscope is another electron microscopy technique 

that utilizes an electron gun for measuring the images of small dimensions (in 

the order of nanometers).  In the SEM the image is formed on a LED screen 

that is synchronized with the electron probe as the electron beam scans the 

specimen surface [29, 32]. As compared to the TEM, the SEM provides the 

surface morphology of the specimen rather than the bulk of the specimen [29]. 

The similarity between the SEM and the TEM is that both utilize an electron for 

analysis and thus have the similar electron beam generation assembly, vacuum 

chamber, condenser and objective lens assembly [30]. The energy of the 

accelerated electrons in the SEM is about 2-40 keV as compared with that of 

the TEM (~80-200 keV). 
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 When the electron beam is scattered from the surface of the specimen, 

various events will occur. Figure 3.8 shows the schematic of the event 

generated in the SEM. These events include secondary electron emission, 

backscattering of electrons, characteristic X-ray emission, Auger electron 

emission and emission of photons of various energies [29, 30, 32]. 

 

Figure 3.8: Signal type generated by electron-specimen interactions [29] 

 In a typical SEM instrument there is an electron gun to generate the 

electron beam that passes through multiple condenser lenses followed by the 

objective lens and then passing though the scan coil through an aperture of the 

final lens to the specimen [29]. Schematic diagram showing the main 

components of the SEM can be seen in figure 3.9 [29]. The secondary electrons 

emissions can be at various angles and are collectively used to generate the 

topographical image of the surface of the specimen [30]. The image of the 

specimen can be seen on the LED and the brightness of the spot can be 

modulated by amplifying the current of the detector [30]. The SEM images have 

many attributes contributing to visibility, resolution of a particularity, contrast, 

focus depth and morphology. Most striking feature of the SEM is that the 

secondary and backscattered electrons have a unique similarity and clarity with 

elevations and depressions as if the image has been produced by illuminating 
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the sample with an oblique stream of light [29]. At times, especially for biological 

samples where the electron beam may damage the sample it is coated with 

gold or carbon so that they are conductive and may emit electrons [33]. 

 

Figure 3.9: Schematic diagram showing the working of the SEM [30] 

 The SEM in this study is performed using an environmental scanning 

electron microscope (ESEM) at Newcastle University. The surface morphology 

of the calcium carbonate samples was carried out using Phillips XL30  ESEM-

FEG (30 keV) having an operating pressure of 1.65 x 10-5 torr equipped with a 

wide angle detector (Everhart-Thornley detector) and EDX detector 

(FP6892/21). The calcium carbonate samples were dry power and were put on 

the aluminium stubs using carbon tape. Detailed results and discussion on this 

experiment are presented in chapter 6 section 6.1. 

3.3.3 Energy Dispersive X-ray Spectroscopy 

  Energy dispersive X-ray spectroscopy (EDX) is an analytical technique 

that determines the elemental composition of a sample by exciting it with an 

electron beam and emission of characteristic X-rays [29, 30]. When the electron 
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beam strikes the solid surface it can penetrate the surface with both elastic and 

non-elastic scattering [34]. This electron beam can displace an electron from 

the core level creating an electron hole. An electron from the outer energy shell 

then fills this vacancy and the difference in energy of the shells is emitted as an 

X-ray. This X-ray is characteristic for relaxation between different shells of an 

element and is detected using an X-ray detector [32]. EDX can be carried out in 

both SEM and TEM using a Si(Li) solid-sate X-ray detector [32]. These X-rays 

are then converted into an electrical signal with the help of a Si(Li) 

semiconductor (p-i-n type (i.e. p-type, intrinsic, n-type)) for interpretation. This 

electrical signal is then interpreted by peak determination and identification 

using a computer processor [32]. In the current study EDX was used during the 

HRTEM analysis of the NiNPs performed at Durham University. Results are 

discussed in chapter 4 section 4.1. 

3.3.4 Selected Area Electron Diffraction 

 Selected area electron diffraction (SAED) is an analytical technique used 

to determine the crystal lattice planes of the sample [30]. SAED can be carried 

out in the TEM or HRTEM machine. The high energy electron beam is 

transmitted through the specimen (thin film) and the beam can either be 

projected on the fluorescent screen to show morphology (particle size) or can 

be diffracted by the specimen and projected in the form of a diffraction ring (for 

polycrystalline material) or spots (for single crystals). The SEAD pattern 

represents the data in reciprocal space.  
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Figure 3.10: Schematic of the diffraction pattern obtained in SAED adapted from Rochow and 
Turner [29] and Goodhew and Humphreys[30]. 

 The scattering of the electron beam from the specimen can be 

interpreted in a simplified form [30]. If the existence of the lenses is ignored then 

the ray diagram for the SAED can be simplified as shown in figure 3.10. 

Assuming that the sample is crystalline. Some of the electrons pass through the 

sample without interaction and are projected on the screen at point O. Some of 

the electrons are diffracted with an angle of θ by the crystal planes of the 

sample having an molecular spacing d. These electrons are projected on the 

screen at point A. The distance between point A and point O is r. Thus by 

simple geometric interpretation the angle of diffraction can be represented as 

𝑟

𝐿
= 𝑡𝑎𝑛2𝜃 = 2𝜃       E 3.3 

 In electron diffraction the wavelength of the electron beam in very small 

(1.97 pm for 300 keV) thus the angle 𝜃 is also small (< 3 °) [35]. Thus from 

Bragg’s law, it can be deduced that [30] 

𝜆 = 2𝑑𝜃 =  2𝑑 𝑠𝑖𝑛𝜃       E 3.4 
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Thus equating both these equations  

𝑟

𝐿
= 

𝜆

𝑑
   or 𝑟𝑑 = 𝐿𝜆       E3.5 

L the length between the screen and the sample and λ the wavelength of the 

electron beam are constant and independent of the specimen. This 𝐿𝜆 is called 

as camera constant. Therefore the r is inversely proportional to the d atomic 

plane spacing of the specimen material and is a characteristic for a given 

material. Based on the d atomic plane spacing value the Miller indices of the 

material can be assigned using a database. It should be noted that L is not a 

physical distance it is a notional distance and can be adjusted by the 

microscopist [30].  

 In the current study the SAED diffraction of the NiNPs was carried out. 

The images were interpreted using the ImageJ programme for calculation of the 

d spacing. After the calculation of the d spacing, the Miller indices were 

assigned using the chemical database service (CDS) at Daresbury [36]. The 

SAED analysis was carried out for the NiNPs using HRTEM microscope at 

Durham University. Results and discussion on this experiment have been 

presented in chapter 4 section 4.1. 
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3.3.5 X-ray Diffraction  

 X-ray diffraction (XRD) is a technique used the determination of the 

crystal lattice structure of a material. The principle working of this technique is 

based on Bragg’s law which is summarized as 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛 𝜃       E 3.6 

where 𝜆 is the wavelength of the monochromatic x-rays, 𝑑 is the distance 

between n layers of atoms in a crystal (n= 1, 2, 3...) and 𝜃 is Bragg’s angle. In x-

ray diffraction spectroscopy a beam of x-rays, of known wavelength, is 

diffracted form a crystal surface and the Bragg’s angle is measured. Based on 

this the d-spacing of the particular material can be calculated [37]. 

 

Figure 3.11 Schematic representation of θ/2θ diffraction in Bragg-Brentano geometry [38] 

When the monochromatic X-ray photons impinge on the crystal surface 

they are diffracted form the crystal and are detected in the detector. The crystal 

is placed at an angle of 𝜃 from the incident beam, and the detector is placed in 
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a particular angle of 2𝜃 so that it can be rotated across the point of contact 

between the incident beam and the crystal (figure 3.11). The X-ray beam and 

the detector are arranged positioned along the circumference of a goniometric 

circle. The sample is place at the centre of the goniometric circle. The XRD 

equipment used in Newcastle University (details below) works on the operation 

where the sample is fixed but the X-ray beam and the detector work in clock 

wise and anticlockwise manner along the goniometric circle (figure 3.11) with an 

angle 𝜃 with respect to the sample simultaneously. The rotation is done by a 

goniometer.  

 The X-ray beams cannot be easily be refracted due to the limitation of 

lack of focusing lenses as in the case with optics. Therefore apertures are used 

to condition the 𝜃/2𝜃 X-ray beams using slits and aperture (like divergence slit 

(DS) and anti-scatter (AS) in figure 3.11), which may be termed as shadow 

casting optics.  One of the other parameters that has to be considered in 

powder diffraction is the divergence of the X-ray beam emitted from the X-ray 

source. Therefore powered diffraction equipment work on the Bragg-Brentano 

or parafocusing mode. In this configuration the focusing circle is defined by 

placing the X-ray source and detector along a focusing circle that is tangent to 

the sample surface (figure 3.11). True focusing would only occur if the sample is 

bent at the radius of the focusing circle RFC, that is not possible; as the RFC is a 

variable dependent on the scattering angle 2𝜃. Therefore true focussing cannot 

be achieved in the 𝜃/2𝜃 scan and the arrangement is thus termed as 

parafocusing geometry.  

The diffracted rays may be in phase with the incident wave or out of 

phase. When the incident and the diffracted waves have a constructive 
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interference the interplanar distance can be calculated. This is due to the fact 

that the time required for the wave to travel to the detector and the path length 

travelled can be associated with the 𝑑 spacing by the equation ∆= 𝑑ℎ𝑙𝑘𝑠𝑖𝑛𝜃 

where ∆ is the path difference. In the case of constructive interference 2∆= 𝑛𝜆 

where 𝑛 is an integer and 𝜆 is the wavelength of the incident wave. Simple 

mathematical association of this leads to Braggs law 𝑛𝜆 = 2𝑑ℎ𝑙𝑘𝑠𝑖𝑛𝜃. The Miller 

indices of the lattice can be assigned to the respective 𝑑 spacing by using a 

database [37-39].  

 The XRD of the NiNPs and calcium carbonate precipitate is carried out at 

Newcastle University (Advanced Chemical and Materials Analysis Unit) . The 

instrument used for XRD is a PANalytical X'Pert Pro MPD, powered by a Philips 

PW3040/60 X-ray generator and fitted with an X'Celerator* detector. The 

X’Celerator is an ultra-fast X-ray detector that uses RTMS (Real Time Multiple 

Strip) technology.  It operates as an array of a hundred channels which can 

simultaneously count X-rays diffracted from a sample over the range of 2θ 

angles specified during a scan. The X’Celerator is therefore able to give 

produce high quality diffraction data in a significantly shorter time period than an 

older style diffractometer would require. The diffraction data is acquired by 

exposing powder samples to Cu-Kα X-ray radiation, which has a characteristic 

wavelength () of 1.5418 Å.  X-rays were generated from a Cu anode supplied 

with 40 kV and a current of 40 mA.   

 The data were collected over a range of 0-100 o2θ with a step size of 

0.0167 (for NiNPs) and 0.0334 (for CaCO3 samples) o2θ and nominal time per 

step of 200 sec, using the scanning X’Celerator detector (hence the counting 

time per step).  Fixed anti-scatter and divergence slits of 0.38 mm were used 



118 
 

together with a beam mask of 10mm and all scans were carried out in 

‘continuous’ mode.   

 Phase identification was carried out by means of the X'Pert 

accompanying software program PANalytical High Score Plus in conjunction 

with the ICDD Powder Diffraction File 2 Database (2001), ICDD Powder 

Diffraction File 4 - Minerals (2013), the American Mineralogist Crystal Structure 

Database (March 2011) and the Crystallography Open Database (February 

2013; www.crystallography.net) 

3.3.6 X-ray Photoelectron Spectroscopy 

 X-ray photoelectron spectroscopy (XPS) is a technique commonly used 

in surface science studies of solids and especially in heterogeneous catalysis 

[40, 41]. In heterogeneous catalysis it is used for identification of chemical 

species on the solid surface and prediction of reaction mechanism [41]. When 

high energy photons (i.e x-rays or UV) interact with the electrons of the atoms 

on the solid surface, electrons are emitted (photoemission). The binding energy 

of these ejected electron is related to the energy of the incident photon. The 

emitted electrons include core level, valance and secondary electrons [41]. 

Hofmann [42] suggest that the photoemission consists of a series of three steps 

(1) the X-rays interact with the electrons of the atoms and photoelectrons (and 

Auger electrons) are generated, (2) these electrons then travel through the bulk 

of the solid to the surface subjected to various scattering within the solid 

(inelastic scattering), (3) the electrons that reach the surface are then emitted to 

vacuum after surpassing the threshold work function. 
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Figure 3.12 Schematic explaining relevant energy terms in XPS of solid surfaces. An X-ray (of 

energy ℎ𝜗) generates a vacancy in the core electron in solid sample having a binding energy of 

EB. The emitted electron has to overcome the work function 𝜙𝑠 of the sample and the  energy is 
measured by the analyser with reference to the Fermi energy EF of the emitted electron 

diminished by the work function 𝜙𝑠and 𝜙𝑊 [42]. 

 Figure 3.12 shows a schematic derivation of the photoelectron kinetic 

energy from the energy levels. The kinetic energy of the emitted photoelectron 

can be determined using Einstein equation [41-43] 

𝐸𝐵 = ℎ𝜗 − 𝐸𝐾 − 𝜙𝑊      E 3.7 

where 𝐸𝐵 is the binding energy of the atom, 𝐸𝐾 is the kinetic energy of the 

emitted photoelectron, h𝜗 is the photon energy and 𝜙𝑊 is the work function of 

the analyzer. The characteristic X-ray transfers its energy ℎ𝜗 to the electrons in 

the atom with a binding energy 𝐸𝐵 (with reference to the Fermi level EF). This 

electron, upon gaining the energy, is emitted from the solid have a kinetic 

energy that is gives as  

𝐸𝐾 = ℎ𝜗 − 𝐸𝐵 − 𝜙𝑠      E 3.8 

 where 𝜙𝑠 is the work function of the sample. As 𝜙𝑊 is the work function of the 

detector and therefore the kinetic energy measured by the detector is given as  

𝐸𝐾 = ℎ𝜗 − 𝐸𝐵 − 𝜙𝑠 − (𝜙𝑊 − 𝜙𝑠)    E 3.9 
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that can be rearranged to equation E 3.8. After calibration the work function 

becomes zero and can thus be ignored from the equation [42] considering the 

sample and analyser have same Fermi level.  

 The photoemission of the electrons is an inelastic process as the 

photoelectron suffers energy loss from atom in the sample and detection by the 

analyser. The secondary electron emission due to inelastic photoemission leads 

to a generation of the background at the higher binding energy of the spectrum 

[44]. The electrons having kinetic energies in the range of 15-1000eV have a 

very short mean free electron path in matter (< 10Å) [45]. The binding energy of 

the electron is sensitive to the atomic identity of the element [45]. For example 

the binding energy of Ni 2p3/2 is different is different oxidation states: Ni3+ (856.1 

eV) > Ni2+ (854.6 eV) > Ni0 (852.6 eV) respectively [46]. The surface specific 

elemental information can thus be evaluated form kinetic energy of the 

electrons emitted from the solid after photo (or electron) irradiation. 

 The intensity of the measured electrons depends on the escape depth of 

the emitted photoelectron from within the solid surface. This intensity is given by 

the function [42]  

𝐼 = 𝐾 ∫ 𝜙(𝑧, 𝐸𝑖 , 𝐸𝑝, 𝛼)𝜓(𝑧, 𝐸𝑃, 𝜃)𝑑𝑧
∞

0
   E 3.10 

where 𝜙 is the excitation depth distribution function, dependent on the angle of 

incidence of photons (𝛼), the overall depth of emission (𝑧), ionization potential 

(𝐸𝑖), their primary incident energy (𝐸𝑝), and  𝜓 is the emission depth distribution 

function dependent on the overall depth of emission (𝑧), kinetic energy of the 

generated photoelectron (𝐸𝑃), and the emission angle (𝜃). The excitation depth 
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distribution function (𝜙) is strongly dependent on the depth of the photoelectron 

emission. This makes XPS a surface sensitive method [42].  

 Upon interaction with the sample the X-ray photons ejects photoelectrons 

from core or valence levels of the sample that have to escape without any 

inelastic collisions within the matrix lattice of the sample. The flux of the 

escaping  photoelectrons  from the depth (𝑧) of the sample matrix without 

inelastic collision decays as exp(𝑧/𝜆 𝑐𝑜𝑠𝜃) from the point of origin 𝑧 , and where 

𝜆 is the inelastic mean free path (IMFP) and 𝜃 is the angle of emission normal to 

the surface. IMFR is defined as "the mean distance an electron travels before 

engaging in an interaction in which it experiences an energy loss" [42]. The term 

𝜆 𝑐𝑜𝑠𝜃  is referred to as escape depth. The values of 𝜆 range form 2-10 atom 

layers  shown in the figure 3.13 [45, 47]. Although X-rays (or high energy 

electrons) can penetrate solid sample up to relatively large depths (~ 1-3 µm), 

but the generated photoelectrons can only escape from the depth of a few 

nanometers (~ <5 nm) [34, 42]. This makes XPS a surface sensitive analysis 

technique. 

 

Figure 3.13 Universal curve of electron inelastic mean free path (𝜆) dependence on electron 

energy for different elements [47] 
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 The XPS spectra are denoted as a plot of intensity (counts per second) 

as a function of binding energy. The peaks therefore observed in the XPS 

spectral plot consists of three different types of peaks that include peaks due to 

photoemission form the core and valence levels and peaks due to Auger 

emission excited by X-rays [44]. The binding energy values for some 

compounds are provided in handbooks and can be used for the determination 

of the particular compound [42]. There are chemical shifts observed in the 

spectra of the atoms due to different bonding environments, in particular, on the 

oxidation states of the atom [41]. XPS can also be used to observed solid state 

excitations (like interband transition, plasmons etc) [44]. These solid state 

excitations can be analysed analysing the shape of the spectral line. For 

example when the photoelectron is emitted from the solid sample there is an 

increase in the nuclear change. This leads to the rearrangement of the valance 

electrons, which may involve excitation of one or more of the valance electrons 

to higher unfilled levels. The primary photoelectron is void of this transition and 

the two electron process leads to the formation of a discrete peak on the low KE 

of the photoelectron spectrum. This is known as a satellite peak and is very 

strong in some transition metals and rare earth metal [44].  
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Figure 3.14: Schematic of a conventional XPS machine [42]. 

 Figure 3.14 shows the schematic of the conventional XPS machine [42]. 

The XPS machine consists of four major parts an X-ray source, an Ar ion gun, 

ultra-high vacuum (UHV) chamber and a concentric hemispherical electron 

analyser (CHA). The  monochromatic X-rays source is preferred for XPS 

analysis as it reduces satellite peaks and selects a natural emission [42]. UHV 

chamber a pressure upto 10-1 Pa (~ 10-3 Torr) is used so as to have negligible 

gas molecules in the chamber and its mean free path becomes equal to that of 

the chamber [42]. The CHA is used more commonly for detection of the kinetic 

energy of the electrons due to its superior energy resolution and areal 

transmission. The CHA consists of two concentric hemispheres where is a high 

potential applied between the two hemispheres. The emitted photoelectron from 

the sample travels along a semi-circular path before being detected by the 

detector. The potential between the two hemispheres helps determine the 

kinetic energy of the electron particles and the detector (Delay-line detector 

(DLD)) then sends the signal that can be taken as a graph on the computer [42, 

43]. 
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 In the current study XPS was used to determine the surface groups 

present on the surface of the NiNPs before and after bubbling of CO2. Also it 

was used to observe the changes on the surface after heat treatment on the 

NiNPs. The NiNPs for heat treatment were put on a carbon tape mounted on Si 

substrate. The other samples were prepared by dropping the NiNPs (from 

aqueous sedimentation) on Ta wafer and then air dried. Similar procedure was 

used for XPS analysis of Fe2O3NPs and NiONPs. The XPS analysis was carried 

out in an X-Ray Photoelectron Spectrophotometer (Kartos Axis Ultra 165) 

equipped with a monochromatic Al Kα X-ray source at Newcastle University in 

the Nanoscale Science and Nanotechnology group.  The pass energy used was 

20 eV for specific regions (i.e. C1s, O1s etc) and 80 eV for survey spectrum. 

  The XPS data was analysed using WinSpec© software. The spectrum 

was fitted with Shirley Background [48] and Gaussian-Lorentzian (mixed) singlet 

[49] peak lines. All the spectra were calibrated by assigning the first peak of the 

C 1s peak line to 284.8 eV corresponding to amorphous carbon [50]. For the 

NiNPs samples the background was subtracted and the fitting was done using 

mixed singlets. The Fe2p peaks were fit using mixed doublet. XPS results of the 

catalysis of NiNPs are discussed in chapter 4 section 4.4 and the XPS results of 

the heat treated NiNPs are discussed in chapter 7 section 7.5. The XPS 

analysis of Fe2O3NPs and NiONPs are discussed in chapter 5 section 5.4. 

3.3.7 Fourier Transform Infrared Spectroscopy 

  Fourier Transform Infrared spectroscopy (FTIR) is an experimental 

technique that measures the infrared absorption of a material. FTIR is based on 

the interaction of infrared light (IR) with material. FITR equipment operate on 

three energy ranges i.e. near IR (λ=0.8-2.5 µm), mid IR (λ=2.5-25 µm), far IR 
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(λ=25-1000 µm) [51]. The IR light does not have enough energy to split a 

molecule. When a compound absorbs infrared light its chemical bonds vibrate 

close to an equilibrium position (symmetric and asymmetric stretching) due to 

the increase in its energy. This is because of the change in dipole moment of 

the molecule. This is a selection rule for IR spectroscopy [52].  

 In FTIR a beam of light containing many frequencies is passed though 

the sample at once. The amount this light absorbed by the sample is then 

measured. The beam of light is then modified to contain a different range of 

frequencies and the process is repeated. The computer is then used to record 

and work out the absorbance at different wavelengths. An interferometer is 

used to obtain a light beam of variable frequency. Fourier transform 

(mathematical process) is used to convert the raw data obtained from the 

interferometer to generate the FTIR spectrum.  

 

Figure 3.15: Schematic of the working of the FTIR [52]. 

 Figure 3.9 shows the schematic of a typical FTIR interferometer [52]. The 

interferometer consists of an coherent IR light source (λ=2.5-25 µm), beam 
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splitter, a moving and fixed mirror assemble, sample holder and detector. The 

coherent beam of light is split into two beams by the beam splitter and the two 

rays of light are directed to the fixed mirror and moving mirror. Based on the 

position of the moving mirror there can be a constructive or destructive 

interference of the incident beam of light. This is then again recombined in the 

beam splitter and the recombined beam then passes through the sample to the 

detector (photoionic detector). The interferometer is used to record the spectra 

in length domain rather than in frequency domain. 

The intensity of the incoming wave to the detector is given by the equation [51] 

𝐼(𝛿) =  ∫ 𝐵(𝜔) 𝑐𝑜𝑠
∞

0
2𝜋𝜔𝛿 𝑑𝜔    E 3.11 

where 𝛿 is the wavelength of the incoming wave to the detector, 𝐼(𝛿) is intensity 

the length domain spectrum, 𝜔 is the wavenumber and 𝐵(𝜔) is the source 

intensity at that wavenumber. Fourier transform is used to convert the 

wavelength domain intensity (E3.11) recorded by the detector to the 

wavenumber domain (E3.12) [51].   

𝐵(𝜔) = 2∫ 𝐼(𝛿)
∞

0
cos 2𝜋𝜔𝛿 𝑑𝛿    E 3.12 

 A wide number of wavenumbers is emitted by the IR source for 

adsorption in the IR absorption experiment. The dedicated computer is used to 

convert the signal to the data point display. The equipment used to convert the 

signal to the data is called as an interferogram. The final data in then converted 

to a FTIR spectrum. Figure 3.16 shows an example of conversion of 

interferogram data to FTIR spectrum. 
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Figure 3.16 Example of Fourier transform used for conversion of interferogram date to FTIR 
spectrum [53]. 

 The vibrations observed in molecules excited by IR radiation are 

stretching or bending vibrations collectively called as modes of vibrations (figure 

3.17) [52]. The mode of vibration in which there is a change in the bond length 

is termed as stretching vibration and when there is a change is bond angle is 

termed as bending vibration. Based on the structure of the molecule in 

consideration the stretching vibration can be symmetric or asymmetric and 

depending on the angle of movement of the molecular rearrangement it bending 

vibration can be in-plane (scissoring and rocking) or out-of-plane (wagging and 

twisting) (seen in figure 3.17) [54].   
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Figure 3.17 Various vibrations observed in a molecule on absorbance of IR light. The carbon 

atom is bonded to other atoms in the molecule (to have four bonds)  not shown in figure. The 

figure also does not show the recoil of the C atom, which is necessary but is very small as 

compared to movement of the light H atoms [51, 52].  

The CaCO3 samples were characterised using a Varian 800 Scimitar 

Series FTIR over the range of 700–4000 cm−1 at the School of Chemistry, 

Newcastle University. The CaCO3 samples were prepared by washing the 

samples obtained in the mineralization experiments (section 3.2.11) and used 

as solid. The results are presented in chapter 7 section 7.3. 

3.3.8 Dynamic Light Scattering 

Dynamic light scattering is an analytic technique used to measure 

particle size of suspended solids in a solvent. It works on the principle of 

scattering of light from the surface of suspended particles [55]. The suspended 

material in solvent, its size and shape leads to fluctuations and changes in the 

frequency, angular distribution, polarization and intensity of the scattered light. 

This information can be used, in accordance with electrodynamic theory and 
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time dependent statistical mechanics to obtain structural and molecular 

information about the suspended solids.  

The two major theories used for the development of DLS are Rayleigh's 

theory and Mie theory. Rayleigh's theory is formulated to model the scattering of 

light from particles, smaller than the wavelength of the incident electromagnetic 

wave. Rayleigh's theory considered non-absorbing dielectric characteristic of 

the material, Mie extends the theory to the absorbing and non-absorbing 

dielectric material and had no size limitation for the particles, converging to the 

geometry of the optics [55]. The craterisation for Rayleigh's scattering is defined 

by considering a dimensionless parameter 𝛽 = 2𝜋𝑟 𝜆⁄  where 𝑟 is the radius of 

the particle and 𝜆 is the wavelength of the incident electromagnetic wave. The 

electric field associated with the wave is given as 

𝐸 =  𝐸0 𝑒
𝑖(𝓀.𝑟−𝜔𝑡)     E 3.13  

where 𝓀 is the wave vector with the magnitude of 𝓀 = 𝜔 𝑐⁄ = 2𝜋/𝜆 and 𝜔 is the 

frequency. The incident and scattered wave (i.e. 𝓀𝑖 and 𝓀𝑠) for practical 

applications are characterized as elastic scattering of light to the horizontal 

plane so the magnitude of the vector is unaffected (i.e. 𝓀𝑖 =  𝓀𝑠 =  2𝜋/𝜆). The 

polarization of the light is also considered in the analysis.  

This consideration can be used to derive the Rayleigh ratio 𝑅(𝜃) under 

two conditions of 𝛽. The first one is for particles smaller than the wavelength of 

light where 𝛽 = 2𝜋𝑟 𝜆⁄ ≪ 1 and 𝑛𝛽 ≪ 1. The second being where the particles 

are larger and  |𝑛 − 1| ≪ 1 and 2𝛽|𝑛 − 1| ≪ 1, assuming that the incident light 

beam that generates the dipole is unaffected (either in phase or in magnitude) 

by the presence of the particles. Where the refractive index ratio 𝑛 (=  𝑛𝑝 𝑛𝑚)⁄  is 
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defined as the refractive index of the particle material 𝑛𝑝 to that of the 

suspending medium 𝑛𝑚 [55].  

In the first case the Rayleigh ratio 𝑅(𝜃) is defined by the equation 

𝑅(𝜃) =  𝐶𝐾𝑀𝑃(𝜃)    E 3.14  where  𝐾 = 
4𝜋2𝑛𝑚

2

𝜆4 𝑁𝐴
 (
𝑑𝑛𝑠

𝑑𝐶
)  E 3.15 

𝐶 is mass concentration 𝐶 = 𝑁𝑝𝑀 𝑁𝐴⁄  and 𝑛𝑠 is the refractive index of the 

suspension of the particles (particles and medium combined), 𝑀 is the molar 

mass of the particle, 𝑁𝑝 is the number of suspended particles, 𝑃(𝜃) is a function 

dependent on the polarization of the incident and scattered light for scattering 

angle 𝜃 .  

In the second case the Rayleigh ratio 𝑅(𝜃) is defined as 𝑅(𝜃) =

 𝐶𝐾𝑀𝑃(𝜃) but for practical purpose is written as  

𝐶𝐾

𝑅(𝜃)
= [𝑀𝑃(𝜃)]−1 = 

1

𝑀
 [1 + 

16

3
 
𝜋2𝑛𝑚

2

𝜆0
2 𝑎𝐺

2𝑠𝑖𝑛2(𝜃 2⁄ ) + 𝒬4]  E 3.16  

where 𝑎𝐺 is radius of gyration of particle, 𝒬 is the scattering vector defined as 

𝒬 = 2 𝓀 sin(𝜃 2⁄ ) and 𝜆0 is the wavelength of light in vacuum.  

These equations used to describe the intensity 𝐼 of the scattered light 

having frequency 𝜔 is given by [55] 

𝐼 (𝜔) = 𝐴1
𝐷𝒬2

(𝜔−𝜔0)2+(𝐷𝒬2)2 
     E 3.17  

where 𝜔0 is the frequency of the incident radiation, 𝐴1 is a constant, 𝐷 is 

diffusion coefficient  and 𝒬 is the magnitude of the scattering vector given as 

[55] 

𝒬 = (4𝜋𝑛𝑚 𝜆0⁄ ) sin(𝜃 2⁄ )     E 3.18 



131 
 

The autocorrelation function used to characterize the time dependent 

intensity function of the scattered light at a particular angle 𝜃 [56] 

𝑐(𝒬, 𝜏) =  𝑙𝑖𝑚𝑡𝑘→∞
1
∫ 𝐼(𝒬, 𝑡). 𝐼(𝒬, 𝑡 + 𝜏)𝑑𝑡
𝑡𝑘
𝑡𝑘0

⁄   E3.19 

where 𝜏 = 𝑖 ∆𝑡 is the delay time, representing the time delay between two 

signals 𝐼(𝒬, 𝑖∆𝑡) and 𝐼(𝒬, (𝑖 + 𝑗)∆𝑡). The equation E3.19 shows how the 

autocorrelation function is calculated when the intensity of the scattered light is 

measured in discreet time intervals [56]. Figure 3.18 shows the autocorrelation 

decay graph, the scattering intensity of light with time and the particle size of 

dispersed particles. 

 

Figure 3.18 Autocorrelation function obtained from the varying intensity of light obtained in the 

dynamic light scattering experiment from Zetasizer Nano ZS (Malverin, UK). (autocorrelation 

function on top, time dependent intensity on bottom left and particle size distribution on bottom 

right.)  
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The particle size can be determined by using Stoke-Einstein equation 

[55] 

𝑟 =  𝑘𝑇 6𝜋𝜂𝐷⁄      E 3.19  

where 𝜂 is the viscosity of the suspending medium, 𝑇 is the temperature and 𝑘 

is Boltzmann's constant.  

The experiments for DLS measurements is performed at Newcastle 

University using Zetasizer Nano ZS (Malverin, UK). 1 ml of sample was used for 

analysis in plastic cuvettes. The suspension was prepared by suspending the 

nanoparticles in DI water (10 ml) with further dilution. The NiNPs were 

sonicated for 5 min just before the DLS measurements. The results of the DLS 

measurements are discussed in Chapter 4. 

3.3.9 Zeta potential measurement 

 When particles are in solution due to the interaction with the solvent the 

surface of the particles may store charge. If the particles are charged it 

develops an electric bilayer on its surface. Nanometer sized particles in solution 

are in random motion called as Brownian motion [55]. When the particles in 

suspension is subjected to a spatially uniform electric field, due to the presence 

of the electrochemical bilayer on the surface of the particles the charged particle 

would travel towards the oppositely charged electrode. This phenomenon is 

called as electrophoresis (i.e. the motion of dispersed particles relative to a fluid 

under the influence of a spatially uniform electric field). If the solid remains 

stationary and the charge at the adjoining solid-liquid interface moves under the 

influence of an electric field, this phenomenon is called as electro-osmosis.  
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 Using the electrophoresis approach it was shown that the velocity of 

particle 𝜐 in the applied electric field 𝐸 is given by the equation [55] 

𝜐 = [𝜖𝜁 𝜂⁄ ]𝐸       E 3.20 

where 𝜖 is the permittivity, 𝜂 is the viscosity of the suspending medium and 𝜁 is 

the zeta potential. The zeta potential is dependent on the thickness of the 

bilayer (𝜅𝑎) on the surface of the particles. When particles are suspended in a 

solvent they acquire a surface charge due to formation of bilayer, these charged 

particles are subjected to an external electric field then velocity of the particle is 

given by the equation [55] 

𝜐 =  𝜇𝑒𝐸       E 3.21  

where 𝜇𝑒 is the electrophoretic mobility. The electrophoretic mobility is related to 

zeta potential as [55] 

𝜇𝑒 = 𝜖𝜁 𝜂⁄        E 3.22  

This condition is only applicable to the particle when particle dimension is much 

larger than the thickness of the surface bilayer. This process can be applied to 

the DLS measurements by superimposing to the Brownian motion of the 

particles. If an electric field is applied to the particles in the DLS experiment, the 

particle would drift under the influence of the electric field causing the Doppler 

shift and broadening.  

  The intensity spectrum shifts along the frequency axis in this case and 

the shift is given by the equation [55] 

𝒬. 𝜐𝑒 =  𝒬. 𝜐𝑒 cos (
𝜃

2
) =   𝒬. 𝜇𝑒𝐸 cos (

𝜃

2
)   E 3.23 
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where 𝜃 is the scattering angle and 𝒬 is the scattering vector 

(𝒬 = (4𝜋𝑛𝑚 𝜆0⁄ ) sin(𝜃 2⁄ )) . This shows that as the shift becomes smaller as the 

scattering angle becomes larger. Therefore the resolution of the method is 

defined as a ratio of Doppler shift (𝒬. 𝜐𝑒) to the Doppler broadening (𝐷𝒬2) [55] 

𝑅 =  
𝒬.𝜐𝑒

𝐷𝒬2
= 

|𝜐𝑒|

𝐷𝒬
= 

𝜇𝑒𝜆0𝐸

2𝜋𝑛𝐷 𝑡𝑎𝑛𝜃
     E 3.24  

when 𝜃 is small 𝑡𝑎𝑛𝜃 ≈  𝜃. Therefore small colloidal particle move in phase 

when an electric field is applied at frequency values in the kilohertz range.  

 The zeta potential measurements were carried out at Newcastle 

University using Zetasizer Nano S (Malverin, UK). 1 ml of sample was used for 

analysis in plastic cuvettes. The suspension was prepared by suspending 30 

ppm NiNPs in DI water (10 ml) with and without CO2. The NiNPs suspension 

was saturated using dry ice (BOC, UK).  The results of the zeta potential 

measurements are discussed in Chapter 4. 

3.4.10 UV-Visible spectroscopy 

UV-Vis spectroscopy is an analytical technique used to study the 

absorption or transmission of light from a liquid sample. It works on the principle 

of Beer-Lamberts law given by the equation [57]  

𝑇 =  
𝐼

𝐼0
= 𝑒−𝜀𝑙𝑐           E 3.25  

where 𝐼 and 𝐼0 are intensity of transmitted and incident radiation respectively, 𝜀 

is the attenuation constant, 𝑙 is the path length of light or path travelled by light 

within the sample and 𝑐  is the concentration of the component. The 

absorbance of the sample can be calculate by the equation  

𝐴 = − ln(
𝐼

𝐼0
) =  −ln (

1

𝑇
)  =  𝜀𝑙𝑐    E 3.26 
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The absorbance of the UV-Vis light may be due to change in the 

electronic and vibrational states of molecules or the energy state of the 

electrons of solid particles. For the study in the thesis, the interaction of the free 

conduction electrons on the surface of metallic particles with electromagnetic 

radiation, known as surface plasmonic resonance (SPR), has been studied. 

Surface plasmonic resonance is characteristic of the particle size and the 

material of the particle. Noble metals like gold and silver have a strong SPR due 

to the interactive oscillation of the conduction electrons under the influence of 

the electromagnetic field of light (figure 3.19).  

 

Figure 3.19: Surface plasmonic resonance observed in silver nanoparticles and nanorods 

influenced by the incident electromagnetic field [58] 

The SPR can be described by Mie theory for the excitation on a spherical 

nanoparticle given by the equation [58, 59]   

𝐶𝑒𝑥𝑡 = 
24𝜋2𝑅3𝜀𝑚

3/2

𝜆
 [

𝜀𝑖

(𝜀𝑟+ 2𝜀𝑚)2+ 𝜀𝑖
2]    E 3.27  

where 𝐶𝑒𝑥𝑡 is the excitation cross section, 𝑅 is the radius, 𝜀𝑚 is the dielectric 

constant of the dispersing media and 𝜀𝑟 and 𝜀𝑖 are the real and imaginary part 

of the dielectric constant of the metallic nanoparticle that may vary with the 
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excitation wavelength 𝜆.  The SPR strength can be described using the quality 

function 𝑄 

 𝑄 =  
𝑤(𝑑𝜀𝑟 𝑑𝑤⁄ )

2 (𝜀𝑖)
2

       E 3.28  

The surface plasmonic strength is directly related to 𝑄; for the high 𝑄 values the 

SPR is high with high 𝐶𝑒𝑥𝑡 as in the case of silver and gold nanoparticles [58, 

59] whereas 𝑄  is low in the case of NiNPs [60].  

The UV-Vis spectroscopy was performed at Newcastle University using a 

Spectrostar Nano, BMG Labtech, UK. The analysis was carried out with 30 ppm 

NiNPs suspension, prepared by suspending 3 mg of NiNPs in 100 ml of DI 

water. The results of UV-Vis spectroscopy are discussed in Chapter 6. 

3.4.11 Surface area determination of nanoparticles 

The surface area of catalyst is an important factor in heterogeneous 

catalysis [61, 62]. It provides the active surface area where the surface reaction 

taking place. The most commonly used technique for surface area 

determination is Brunauer-Emmet-Teller (BET) method [63, 64]. This method 

allows comparison surface areas of various materials based on benchmarks of 

some standard materials like alumina or silica with a known surface area [65, 

66].  

The basic assumptions for the BET adsorption is that multi layers of the 

adsorbate can be adsorbed on the surface as compared to the rigid adsorption 

layer used in the Langmuir adsorption isotherm [67]. BET assumes that the net 

amount of surface that is empty or associated with the monolayer, bilayer and 

so on is constant at a particular equilibrium condition [67]. It is assumed that the 

rate of adsorption is proportional to the rate at which the gas molecule strikes 
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the adsorbent surface and the area of the adsorbent surface. The BET isotherm 

in its final form is given as [67] 

𝑉𝑠

𝑉𝑠
1 = 𝐵2

𝑃

𝑃0

[1−(𝑛+1)(𝑃 𝑃0)⁄ 𝑛
+𝑛(𝑃 𝑃0)⁄ 𝑛+1

]

(1−𝑃 𝑃0)⁄ [1+(𝐵2−1)(𝑃 𝑃0)⁄ −𝐵2(𝑃 𝑃0)⁄ 𝑛+1
]
   E3.29 

where 𝑉𝑠 is the total volume of the adsorbent and 𝑉𝑠
1 is the specific volume of 

the adsorbent contained in a single monolayer. (𝑃 𝑃0)⁄  is the relative pressure 

of the adsorbent gas and 𝑃0 is the saturated vapour pressure of the gas and 𝐵2 

is a constant. Nitrogen is a gas commonly used for physical adsorption and 

surface area determination [67]. 𝑛 is the number of atomic layers adsorbed on 

the surface. If 𝑛 = 1 then equation E3.29 reduces down to Langmuir adsorption 

isotherm, but when 𝑛 =  ∞ then (𝑃 𝑃0)⁄ 𝑛
 tends to approach zero and thus the 

equation E3.21 can be written in linear form as  

𝑃 𝑃0⁄

𝑉𝑠 (1−𝑃 𝑃0⁄ )
= 

1

𝑉𝑠
1𝐵2

+ 
𝐵2−1

𝑉𝑠
1𝐵2

 (
𝑃

𝑃0
)    E3.30 

The plot of (
𝑃

𝑃0
) and 

𝑃 𝑃0⁄

𝑉𝑠 (1−𝑃 𝑃0⁄ )
 if is a linear plot then the adsorption is said to be 

determined by nth order BET isotherm (or infinite form of BET). The plot of these 

two terms may lead to formation five different types of graphs seen in figure 

3.20 [68].  
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Figure 3.20: Different isotherms obtained from BET isotherm where there abscissa represents 

the relative partial pressure of the adsorbent (P/P0) and the ordinate represents the amount of 

adsorbent adsorbed on the surface (reproduced similar to that reported by Brunauer et al. [68]) 

The possibility of prediction of the shape of the isotherm for a given 

material is not possible, although some shapes of the isotherms are observed to 

be often associated with a particular adsorbent or adsorbate properties [67]. 

Type I and Type II are the most commonly observed isotherm and the type II 

isotherm is used for determination of the surface area of minute particles. Most 

non-porous solids tend to show the type II isotherm, whereas materials having 

minute porosity like charcoal [67] (where is porosity is a few molecules in 

diameter) type I isotherm is observed. When the cohesive forces of the between 

the adsorbent molecules is greater than the adhesive forces of the adsorbent 

surface and adsorbate molecules then type III (non-porous material) and type V 

(porous materials) isotherms are observed [67]. Type IV isotherm is a special 

case that is distinctive for a given adsorption system e.g. water adsorption on 
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alumina surface [67]. In this isotherm curve a concave region is observed at low 

gas concentration due to monolayer adsorption of gas on the surface followed 

by a convex region where the multilayer formation is observed and then 

followed again by a concave region where condensation of the adsorbent takes 

place in the pores of the adsorbate [67]. By plotting the linear form of the BET in 

infinite form the 𝑉𝑠 and the 𝑉𝑠
1 can be determined from the plot and resultant 

ratio of the two terms provides the surface area of the particles [67].  

The BET analysis was carried out at Newcastle University using 

SURFER (Thermo Fisher Scientific). The results of the BET analysis are 

summarised in table 3.1 

Nanoparticle material Surface area (m2/g) 

Nickel 10.25 

Iron(III) oxide 31.24 

Nickel oxide 26.55 

Nickel nanowires 4.66 

 



140 
 

References: 

[1] N. Favre, M.L. Christ, A.C. Pierre, Biocatalytic capture of CO2 with carbonic 
anhydrase and its transformation to solid carbonate, Journal of Molecular 
Catalysis B: Enzymatic, 60 (2009) 163-170. 
 
[2] P.V. Danckwerts, Gas Liquid Reactions, McGraw Hill Publishers, New York, 
1970. 
 
[3] D.M. Kern, The hydration of carbon dioxide, Journal of Chemical Education, 
37 (1960) 14. 
 
[4] J.M. Smith, H.C.A. Van Ness, M.M., Introduction to Chemical Engineering 
Thermodynamics, McGraw Hill Publishers (International Edition), 2005. 
 
[5] G.A. Bhaduri, L. Šiller, Nickel nanoparticles catalyse reversible hydration of 
carbon dioxide for mineralization carbon capture and storage, Catalysis Science 
& Technology, 3 (2013) 1234-1239. 
 
[6] D.-H. Kim, M. Vinoba, W.-S. Shin, K.-S. Lim, S.-K. Jeong, S.-H. Kim, 
Biomimetic sequestration of carbon dioxide using an enzyme extracted from 
oyster shell, Korean J. Chem. Eng., 28 (2011) 2081-2085. 
 
[7] R.M. Noyes, M.B. Rubin, P.G. Bowers, Transport of Carbon Dioxide 
between the Gas Phase and Water under Well-Stirred Conditions:  Rate 
Constants and Mass Accommodation Coefficients, The Journal of Physical 
Chemistry, 100 (1996) 4167-4172. 
 
[8] V.L.J. Snoeyink, David, Water Chemistry, John Wiley & Sons, New York, 
1980. 
 
[9] L.K. Doraiswami, M.M. Sharma, Heterogeneous reactions: Analysis, 
Examples and Reactor Design, Volume 2, John Wiley & Sons, New York, USA, 
1984. 
 
[10] N. Hernández, R. Moreno, A.J. Sánchez-Herencia, J.L.G. Fierro, Surface 
Behavior of Nickel Powders in Aqueous Suspensions, The Journal of Physical 
Chemistry B, 109 (2005) 4470-4474. 
 
[11] N. Kitakatsu, V. Maurice, C. Hinnen, P. Marcus, Surface hydroxylation and 
local structure of NiO thin films formed on Ni(111), Surface Science, 407 (1998) 
36-58. 
 
[12] L.L. Shreir, R.A. Jarman, G.T. Burstein, Corrosion Volume 1 
Metal/Environment Reactions, in, Butterworth Heinemann, London, 1994, pp. 
4:122-124:123. 
 
[13] B. Beverskog, I. Puigdomenech, Revised Pourbaix diagrams for nickel at 
25–300 °C, Corrosion Science, 39 (1997) 969-980. 
 



141 
 

[14] P. Drodten, Carbonic acid, in: M.R. Schutze, Raul B., R. Bender (Eds.) 
Corrosion resistance of nickel and nickel alloys agianst acids and lyes, Wiley-
VCH, Weinheim, 2014, pp. 31. 
 
[15] S. Piticharoenphun, Investigation into the availability of man-made 
nanoparticles and their interaction with exposed sea urchin (Paracentrotus 
lividus), PhD Thesis, Newcastle University, Newcastle upon tyne, 2013, pp. 
224. 
 
[16] X. Wang, W. Conway, R. Burns, N. McCann, M. Maeder, Comprehensive 
Study of the Hydration and Dehydration Reactions of Carbon Dioxide in 
Aqueous Solution, The Journal of Physical Chemistry A, 114 (2009) 1734-1740. 
 
[17] D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Micro Total Analysis 
Systems. 1. Introduction, Theory, and Technology, Analytical Chemistry, 74 
(2002) 2623-2636. 
 
[18] B. Chance, Rapid and Sensitive Spectrophotometry. III. A Double Beam 
Apparatus, Review of Scientific Instruments, 22 (1951) 634-638. 
 
[19] B. Chance, Rapid and Sensitive Spectrophotometry. I. The Accelerated and 

Stopped‐Flow Methods for the Measurement of the Reaction Kinetics and 
Spectra of Unstable Compounds in the Visible Region of the Spectrum, Review 
of Scientific Instruments, 22 (1951) 619-627. 
 
[20] B. Chance, V. Legallais, Rapid and Sensitive Spectrophotometry. II. A 
Stopped‐Flow Attachment for a Stabilized Quartz Spectrophotometer, Review of 
Scientific Instruments, 22 (1951) 627-634. 
 
[21] A. Gomez-Hens, D. Perez-Bendito, The stopped-flow technique in 
analytical chemistry, Analytica Chimica Acta, 242 (1991) 147-177. 
 
[22] G.A. Bhaduri, R.A. Henderson, L. Šiller, Reply to the 'Comment on "Nickel 
nanoparticles catalyse reversible hydration of carbon dioxide for mineralization 
carbon capture and storage"' by D. Britt, Catal. Sci. Technol., 2013, 3, DOI: 
10.1039/C3CY00142C, Catalysis Science & Technology, 3 (2013) 2197-2198. 
 
[23] P. Mirjafari, K. Asghari, N. Mahinpey, Investigating the Application of 
Enzyme Carbonic Anhydrase for CO2 Sequestration Purposes, Industrial & 
Engineering Chemistry Research, 46 (2007) 921-926. 
 
[24] A.K. Bentley, M. Farhoud, A.B. Ellis, A.-M.L. Nickel, G.C. Lisensky, W.C. 
Crone, Template Synthesis and Magnetic Manipulation of Nickel Nanowires, 
Journal of Chemical Education, 82 (2005) 765. 
 
[25] A.N. Alekhnovich, N.V. Artem’eva, V.V. Bogomolov, Allowable gas 
temperature at outlet from furnace subject to slagging, Power Technol Eng, 41 
(2007) 105-110. 
 
[26] R. Haugsrud, On the high-temperature oxidation of nickel, Corrosion 
Science, 45 (2003) 211-235. 
 



142 
 

[27] J.N. Butler, Carbon dioxide equilibria and their applications, Leewis 
Publishers, Chelsea, 1991. 
 
[28] L. Šiller, G.A. Bhaduri, Carbon Storage, World Patent WO2013/171480 
(A2), 2013. 
 
[29] T.G. Rochow, P.A. Tuncker, Introduction to Microscopy by means of Light, 
Electrons, X-rays or Acoustics, Plenum Press, New York, 1994. 
 
[30] P.J. Goodhew, F.J. Humphreys, Electron microscopy and analysis, Taylor 
& Francis Ltd, London, 1992. 
 
[31] J.G. Thomas, Thomas, Analytical Trasmission Electron Microscopy: An 
Introduction for operators, Springer Netherlands, Netherlands, 2014. 
 
[32] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig Jr, C.E. 
Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray 
Microanalysis: A text for Biologists, Material Scientist and Geologists, Plenum 
Press, New York, 1992. 
 
[33] J.B. Pawley, J.T. Norton, A chamber attached to the SEM for fracturing and 
coating frozen biological samples, Journal of Microscopy, 112 (1978) 169-182. 
 
[34] M.P. Seah, Quantification of AES and XPS, in: D.S. Briggs, M. P. (Ed.) 
Practical Surface Analysis, Volume 1 Auger and X-ray Photoelectron 
Spectroscopy, Chichester, 1990, pp. 201-251. 
 
[35] K.W.D. Andrews, D. J. , S.R. Keown, Interpretation of Electron Diffraction 
Patterns, Plenum Press, New York, 1967. 
 
[36] CDS, Chemial Database Service, Daresbury, https://cds.dl.ac.uk/ 
 
[37] B.D. Cullity, Elements of X-ray diffraction, Addison-Wesley Publishing 
Company, INC, Reading, 1978. 
 
[38] M. Birkholz, Thin flim analysis by X-ray scattering, WILEY-VCH Verlag 
GmbH and Co. KGaA, Weinheim, 2006. 
 
[39] V.K. Pecharsky, P.Y. Zavalij, Fundamentals of powder diffraction and 
structural charaterization of materials, Springer, New York, 2009. 
 
[40] T.L. Barr, Applications of Electron spectroscopy to Heterogeneous 
Catalysis, in: D. Briggs, M.P. Sean (Eds.) Practical Surface Analysis by Auger 
and X-ray Photoemission Spectroscopy, John Wiley & Sons, New York, 1983. 
 
[41] K.W. Kolasinski, Surface Science: Foundations of Catalysis and 
Nanoscience, John Wiley & Sons, Chinchester, 2008. 
 
[42] S. Hofmann, Aurger and X-Ray Photoelectron Spectroscopy in Material 
Science A user-oriented Guide, Springer, London, 2013. 
 



143 
 

[43] J.C. Riviere, Instrumentation, in: D. Briggs, M.P. Sean (Eds.) Practical 
Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, John Wiley 
& Sons, Chichester, 1983. 
 
[44] D. Briggs, J.C. Riviere, Spectral Interpretation, in: D. Briggs, M.P. Sean 
(Eds.) Auger and X-ray Photoemission Spectroscopy, John Wiley and Sons, 
1983, pp. 87-139. 
 
[45] A. Zangwill, Physics at surface, Cabridge University Press, Cambridge, 
1988. 
 
[46] A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New 
interpretations of XPS spectra of nickel metal and oxides, Surface Science, 600 
(2006) 1771-1779. 
 
[47] http://www.globalsino.com/micro/TEM/TEM9923.html(accessed,1/01/2014) 
 
[48] D.A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the 
Valence Bands of Gold, Physical Review B, 5 (1972) 4709-4714. 
 
[49] J. Yu, Q. Xiang, M. Zhou, Preparation, characterization and visible-light-
driven photocatalytic activity of Fe-doped titania nanorods and first-principles 
study for electronic structures, Applied Catalysis B: Environmental, 90 (2009) 
595-602. 
 
[50] B.P. Payne, M.C. Biesinger, N.S. McIntyre, The study of polycrystalline 
nickel metal oxidation by water vapour, Journal of Electron Spectroscopy and 
Related Phenomena, 175 (2009) 55-65. 
 
[51] J.M. Hollas, Modern Spectroscopy, John Wiley & Sons, Chichester, 1996. 
 
[52] B.C. Smith, Fundamentals of Fourier Transforn Infrared Spectroscopy, 
CRC Press, London, 1996. 
 
[53] 
http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Fundamentals/T
he_Power_of_the_Fourier_Transform_for_Spectroscopists.(accessed 
12/03/2015) 
 
[54] J.W. Robinson, E.M.S. Frame, G.M. Frame II, Undergraduate instrumental 
analysis, Marcel Dekker, New York, 2005. 
 
[55] R.J. Hunter, Foundations of Colloid Science, Oxford University Press, 
Oxford, 2001. 
 
[56] J. Lim, S. Yeap, H. Che, S. Low, Characterization of magnetic nanoparticle 
by dynamic light scattering, Nanoscale Research Letters, 8 (2013) 381. 
 
[57] D.A. Skoog, D.M.H. West, F James, Fundamentals of Analytical Chemistry, 
Harcourt College Publishers, Orlando, USA, 1997. 
 

http://www.globalsino.com/micro/TEM/TEM9923.html
http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Fundamentals/The_Power_of_the_Fourier_Transform_for_Spectroscopists
http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Fundamentals/The_Power_of_the_Fourier_Transform_for_Spectroscopists


144 
 

[58] M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. 
Xia, Controlling the Synthesis and Assembly of Silver Nanostructures for 
Plasmonic Applications, Chemical Reviews, 111 (2011) 3669-3712. 
 
[59] U.K. Ghosh, S.E. Kentish, G.W. Stevens, Absorption of carbon dioxide into 
aqueous potassium carbonate promoted by boric acid, Energy Procedia, 1 
(2009) 1075-1081. 
 
[60] X. Xiang, X.T. Zu, S. Zhu, L.M. Wang, Optical properties of metallic 
nanoparticles in Ni-ion-implanted α-Al2O3 single crystals, Applied Physics 
Letters, 84 (2004) 52-54. 
 
[61] L.M. Dormant, A.W. Adamson, Application of the BET equation to 
heterogeneous surfaces, Journal of Colloid and Interface Science, 38 (1972) 
285-289. 
 
[62] C.N. Satterfield, Heterogenous Catalysis, McGraw-Hill Book Company, 
New York, 1980. 
 
[63] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular 
Layers, Journal of the American Chemical Society, 60 (1938) 309-319. 
 
[64] P.H. Emmett, T. De Witt, Determination of Surface areas pigments, carbon 
blacks. cements and miscellaneos finely divided or porous materials, Industrial 
& Engineering Chemistry Analytical Edition, 13 (1941) 28-33. 
 
[65] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. 
Rouquerol, T. Siemienewska, Reporting physisorption data for gas/solid 
systems with special reference to determination of surface area and porosity, 
Pure and Applied Chemistry, 54 (1985) 603-619. 
 
[66] K.S. Walton, R.Q. Snurr, Applicability of the BET Method for Determining 
Surface Areas of Microporous Metal−Organic Frameworks, Journal of the 
American Chemical Society, 129 (2007) 8552-8556. 
 
[67] J.F. Richardson, J.H. Harker, J.R. Backhurst, Coulson and Richardson's 
Chemical Engineering Series, Volume 2 Particle Technology and Separation 
Processes, Butterworth Heinemann, London, 2002. 
 
[68] S. Brunauer, L.S.D. Demming, W. Edwards, E. Teller, On a theory of the 
van der Waals Adsorption of Gases, Journal of the American Chemical Society, 
62 (1940) 1723-1732. 

  



145 
 

Chapter 4: 

Catalytic activity of NiNPs for 

hydration of CO
2
 (Part I) 

 

 

 

 

 Chapter 4 reports the catalysis of the reversible hydration of CO2 using 

nickel nanoparticles (NiNPs) at room temperature and atmospheric pressure. 

The catalytic activity of the NiNPs is pH independent and as they are water 

insoluble and magnetic they can be magnetically separated for reuse. The 

reaction steps were characterized using X-ray photoemission spectroscopy and 

a possible reaction mechanism is described. 

4.1 HRTEM and XRD of the NiNPs 

 Commercially purchased NiNPs were characterized using high resolution 

transmission electron microscopy to determine their size distribution (figure 4.1). 

The particle size distribution measured from the HRTEM images is shown in 
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figure 4.1. The data was fitted using a Gaussian curve and the average particle 

size was about ~43 nm. The majority of the particles have characteristic lengths 

below 100 nm. The presence of nickel was confirmed using energy dispersive 

X-ray spectroscopy (EDX) (figure 4.2). The crystal planes of the nanoparticles 

can be seen in the Selected Area Electron Diffraction [SEAD] pattern [Fig. 4.3] 

and correspond to the [220], [222], [311], [400], [422] and [531] lattice planes 

respectively [1] The planes have been assigned by measuring the diameter of 

the rings obtained in reciprocal space and then assigned to a database entry 

[2]. 

 

   

Figure 4.1: High Resolution Transmission Electron Microscopy images of NiNPs as purchased 

and particle size distribution [3] 
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Figure 4.2: Energy dispersive x-ray spectroscopy of NiNPs [3]. 

 

Figure 4.3: Selected area electron diffraction of the NiNPs [3]. 

  

Figure 4.4 X-ray diffraction pattern of Nickel nanoparticles.  

Figure 4.4 shows the X-ray diffraction (XRD) pattern for NiNPs. The diffraction 

pattern of the NiNPs is cubic. The diffraction pattern corresponds to the crystal 
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plane [111], [200], [220], [311] and [222] respectively [4, 5]. Both the XRD and 

the SAED pattern show similar planes for NiNPs. 

4.2 CO2 saturation experiments 

 

Figure 4.5: Average values of increase in the amount of CO2 absorbed in aqueous suspension 

of NiNPs as a function of particle concentration at room temperature and atmospheric pressure 

when CO2 is bubbled for 30 mins. [3, 6] 

 The results of the CO2 saturation experiments can be seen in figure 4.5 

procedure of which was described in chapter 3 section 3.3.2. Figure 4.5 shows 

the enhancement of CO2 solution concentration (all species of CO2, i.e. CO2(aq), 

H2CO3 and H3O
+ and HCO3

-, present in water) as a function of the NiNP 

concentration. The concentration of dissolved CO2 was determined by titrating 

the CO2 solution with 0.1 M NaOH solution. The amount of CO2 dissolved in 

water (without the NiNPs) was similar to that reported in the literature (lit. [7] 

~39 mM). A maximum is observed at 30 ppm [three times the capacity of de-

ionized water], as compared with that of water without NiNPs. By further 

increasing the particle concentration a decrease in the CO2 dissolution was 
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observed. Based on this result all further analysis were performed with a NiNP 

concentration of 30 ppm. 

 

 

Figure 4.6: Dynamic light scattering results of NiNPs at different concentrations suspended in DI 

water. 

 However, another factor that may lead to reduction of CO2 absorption in 

the NiNPs suspension at high concentration is agglomeration of the NiNPs. This 

was not considered by Bhaduri and Šiller [3] previously. As the amount of 

NiNPs increase in suspension, the probability of agglomeration also increases. 

Figure 4.6 shows the DLS measurements of the NiNPs at different 

concentrations when suspended in DI water. It is observed that the intensity of 

the main peak (~<1000 nm) decreases and there is a shift of the peak towards 

the larger size with the increasing concentration of NiNPs. Thus indeed the 

particle size increases with increasing concentration of NiNPs in suspension. It 

should also be noted that DLS measurements show higher particles sizes than 
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that of HRTEM due to presence of a passive hydrodynamic layer on the surface 

of the particles that causes also agglomeration of the particles [8, 9]. Lim et al. 

[8] showed with increasing the particle concentration of magnetic particles 

(nickel nanoparticles) like in this case, the DLS estimation and error will 

increase drastically. In the present study the nanoparticles have no surfactant 

coating to protect them from agglomeration, leading to their rapid 

agglomeration.   

 Along with particle size the zeta potential of 30 ppm NiNPs was 

measured in DI water and in CO2 saturated solution (chapter 3, section 3.3.9). 

The zeta potential of NiNPs in DI water was -11 +1 mV. The zeta potential is 

negative due to presence of the OH groups present on the NiNPs surface [10] . 

In the saturated CO2 solution the zeta potential increased to - 5 +1 mV. The 

increase in the zeta potential is due to the presence of the acid. It known that 

the zeta potential is higher in acid solutions as compared with basic solutions 

[11]. This is due to the formation of positive bilayer on the nanoparticle surface 

due to the excess of H3O
+ in acid solutions and negative bilayer formation on 

the nanoparticle surface due to the excess of OH- in basic solutions [11]. The 

reduction in the zeta potential of the NiNPs suspensions suggest rapid rate of 

agglomeration after CO2 bubbling as compared to before CO2 bubbling.  

4.3 CO2 hydration kinetics (gas-liquid reaction) 

 Since the pH drop of the solution is a function of the formation of 

carbonic acid, the rate of pH change can be related to the rate of the overall 

reaction [rA] [12] i.e. reactions (1–3, pg 151). Similar approaches have been 

reported for the study of the catalytic activity of CA [12]. The rate of change of 

pH and conductivity are shown in figure 4.7. Two sets of experiments were 
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performed at different initial pH values to test the catalytic activity of Ni 

nanoparticles at pH values above and below 6. CA is not stable at low pH 

values (below pH of 5) [12, 13] and thus study of the catalytic activity of NiNPs 

becomes important at low pH values. It can be seen from Fig. 4.7 a and c that 

the change in pH in the presence of the catalyst [filled circles] is significantly 

more rapid than that without the catalyst [filled squares] for the two different 

initial pH values [at pH 6.2 and 5.5]. It should be noted that Bhaduri and Šiller 

[3] are the first to report the use of heterogeneous catalyst for hydration of CO2 

 The reactions associated with this process are [14, 15] 

𝐶𝑂2(𝑔𝑎𝑠) ↔ 𝐶𝑂2(𝑎𝑞)      (1) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ↔  𝐻2𝐶𝑂3    (2) 

𝐻2𝐶𝑂3 +  𝐻2𝑂 ↔  𝐻𝐶𝑂3
− + 𝐻3𝑂

+   (3) 

As there are no additional ions generated in the reaction the change in 

conductivity of the solution is a measure of the formation of bicarbonate ions 

from CO2. CO2(aq) being neutral in charge would not be responsible for the 

increase in conductivity of the solution. Thus the increase in the conductivity of 

the solution is due to the generation of carbonic acid, providing proof of the 

catalytic activity. It can be observed from figure 4.7 b and d that the initial rate of 

increase in the conductivity of the solution is higher in the presence of the 

NiNPs than in their absence. Thus the NiNPs act as a catalyst until the solution 

is saturated with bicarbonate ions and the surface of the NiNPs adsorbs some 

of those bicarbonates [see XPS analysis, section 4.4] and/or CO2 gas. 
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Figure 4.7: Average values of pH and ionic conductivity changes during bubbling of CO2 through 

DI water and aqueous NiNPs suspension. (a) pH change starting from pH above 6, (b) ionic 

conductivity change corresponding to pH change from above 6, (c) pH changes starting at pH 

value below 6 and (d) ionic conductivity change corresponding to pH change from below 6. [3, 

6] 

 It can be observed form figure 4.7 a and c that there is a sudden 

increase in the pH change in DI water when CO2 is bubbled in DI water. This is 

due to catalytic activity of the H+ ions [16] and thus the reaction of CO2 with DI 

water is autocatalytic. The theoretical calculation with known rate of reaction for 

reaction (1) and reaction (2) are shown in Appendix-II.  Appendix-II also shows 

calculations for the apparent rate of CO2 hydration reaction (uncatalysed and 

catalysed) calculated from the data represented in figure 4.7 a. (Data for up to 

40 sec was used as beyond 40 sec, the autocatalytic activity is observed.) The 
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theoretical rate of reaction (1) is 2.442 x 10-6 mol/s and reaction (2) is 8.547 x 

10-9 mol/s respectively whereas the experimental rate of reaction in the absence 

of NiNPs is 7.95 x10-9 mol/s and in presence of NiNPs is 3.80 x10-7 mol/s 

respectively. It can be observed from the calculations that the rate of 

uncatalysed reaction is close to one another where as that of the NiNP 

catalysed reaction rate is closer to the phase transfer rate (reaction 1). This 

suggest that the NiNPs catalysed reaction is mass transfer dependent. 

 In order to confirm that the increase in ion conductivity is not purely due 

to the ions leached into the water from the NiNPs themselves, changes in 

conductivity of solutions which only contains NiNPs were analysed (Fig. 4.8 a 

and b). It could be seen that this contribution to the ionic conductivity is 

negligible. Therefore, we can conclude that the increase in conductivity of the 

solution is purely due to an increase in the amount of bicarbonate ions alone. It 

was also observed that there was an initial immediate increase in the pH of DI 

water by 0.4–0.5 (Fig. 4.7a and b, observe the pH drop at 0 min) due to the 

addition of NiNPs and we suggest on the basis of our X-ray photoemission 

spectroscopy (XPS) analysis (section 4.4) that this is likely due to the 

dissociation of water and formation of OH groups on the NiNP surface. This 

assertion is supported by the observation of OH species on the [111] [17] and 

[110] [18] surfaces of single crystal Ni when exposed to H2O at 300 K [17, 18]. 

Thermal analysis of nickel hydroxides show that physical desorption of the 

water from the surface of nickel hydroxide starts at ~ 100-150 oC [19, 20] and 

the decomposition of nickel (II) hydroxide to nickel (II) oxide starts at 

approximately 260 oC [19, 20]. The operating temperature in this study is 20 °C 

and therefore water desorption and nickel (II) hydroxide decomposition is 

unlikely.  
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Figure 4.8: Average values of conductivity change of the Ni nanoparticle suspension compared 

with that of the blank and Ni suspension when bubbled with CO2 for (a) pH above 6 and (b) pH 

below 6. [3, 6] 

 pH is a function of H+ ion concentration due to the acid formation (figure 

4.7a and 4.7c). In addition the conductivity of the solution is also measured and 

the leaching of Ni2+ ions is minimal as seen from figure 4.8, therefore the 

changes in conductivity must be related to the formation of carbonic acid alone. 

In the literature it has been reported that the H+ ions catalyse the formation of 

carbonic acid [21, 22] at low pH values, pH range ~ 4.9-4.6 (the alkalinity of the 

CO2-H2O solution is zero and only the acid is present) [23]. There is also 

consensus in literature that the hydration reaction of CO2 is faster in the 

presence of hydroxyl groups in solution on pH values above 8 [24]. In Figure 

4.7b, at ~ 80 sec in both DI water with and without NiNPs the conductivity slope 

is changed, and from Figure 4.7a we can read out that the pH at that time is 

~4.9 and ~ 4.5, respectively, which is close to the suggested range from ref [25] 

when H+ ion catalysis would exist. This is also observed in Fig 4.7 d at 120 sec 

with the similar pH values. The XPS (see below) results show the surface of the 

nickel have -OH groups, so from the initial value until the pH of 4.5 the gas – 

liquid hydration reaction is catalysed by OH groups present on the Ni surface.  



155 
 

 Hernandez et al. [10] studied the influence of pH on the surface species 

and dissolution of Ni and NiO microparticles. It is known that Ni2+ ions do not 

leach in DI water but forms a passive Ni(OH)x layer on the surface of solid Ni 

[10, 26]. The formation of Ni(OH)x species leads to the change in pH of water 

[10] which is observed in figure 4.7a and 4.7c. Dissolution of Ni under acidic 

conditions depends on the nature of the acid and its concentration, for example 

dilute HNO3 dissolves Ni whereas concentrated HNO3 forms a passive layer on 

the Ni surface [10]. The low dissolution of solid nickel in solutions because 

nickel has an electochemical potential of -0.227V with reference to Standard 

Hydrogen Electrode (SHE) (see figure 3.3), suggesting that the Ni leaching rate 

is slow in acidic solutions in absence of an oxidizing agent stronger than H+ 

[27]. Hernandez et al. [10] reported that in presence of a mineral acid (like HCl) 

Ni leaching is high (>100 ppm) for pH <4 but is low (< 50 ppm) between pH 4-

12 for studied for 1000 ppm Ni microparticle suspension.  

 Therefore additional dialysis measurements are used to study the 

leaching of NiNPs in carbonic acid solution. Two reading of Ni2+ leaching from 

NiNPs in carbonic acid are presented one after 30 min and another after 60 

min. These time values are far greater than the reaction time. Table 4.1 

summarizes the results of the dialysis experiment. The results show that there 

was no detectable leaching of Ni2+ ions observed during the time of the reaction 

during rapid pH changes.  

Table 4.1 Dialysis results of Ni
2+

 ion leaching from NiNPs in carbonic acid solution 

Time (min) Ni 
2+

 ion concentration (ppm or mg/lit) 

0 <0.005 

30 <0.005 

60 <0.005 
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  Following the dialysis results a 0.005 mg/lit (i.e. 0.005 ppm) NiSO4 

solution was prepared to test the effect of Ni2+ ions on CO2 hydration rate using 

same methodology as used above to test the catalytic activity of NiNPs. Figure 

4.9 shows the pH changes in presence and absence of Ni2+ ions in DI water. 

The pH change profile in present and absence of Ni2+ ions are similar as 

compared the NiNPs have a faster rate of pH change. This clearly suggests that 

NiNPs are catalyst and not Ni2+ ions for hydration of CO2. 

 

Figure 4.9: Average values of pH changes during bubbling of CO2 through DI water, 0.005 ppm 

Ni
2+

 solution and 30 ppm NiNPs suspension.  

4.4 Chemical characterization of the NiNPs surface before and after CO2 

bubbling 

In order to have an insight into the reaction mechanism and the species present 

on the nanoparticle surface, X-ray photoelectron spectroscopy [XPS] was 

performed on the Ni nanoparticles before [Fig. 4.10] and after carbon dioxide 

bubbling [Fig. 4.11]. All in energy positions reported are within ±0.1 eV. 
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Figure 4.10: XPS spectra of NiNPs before bubbling of CO2; (A) O 1s and (B) Ni 2p3/2. [3, 6] 

 An insight into the chemical state of the NiNPs after dissolution in DI 

water without carbon dioxide exposure can be obtained by examination of the 

Ni 2p3/2 and O 1s core lines (Fig. 4.10). The Ni 2p3/2 line can be decomposed 

into peaks located at binding energies of 852.6 eV, 854.0 eV, 855.7 eV and a 

plasmon peak at 861.0 eV [28, 29]. The O 1s line was fitted by three peaks 

located at 529.8 eV, 531.3 eV and 532.2 eV. The Ni 2p3/2 peak at 852.6 eV 

binding energy is associated with Ni0 [30] while that at 855.7 eV corresponds to 

nickel in the Ni2+ oxidation state and has a binding energy corresponding to that 

of Ni(OH)2 [28, 31]. Moreover, the O 1s peak at 531.3 eV corresponds to 

oxygen in the hydroxyl (–OH) group associated with Ni(OH)2 [28]. The binding 

energy of the O 1s in multilayers of H2O (532.4 eV) [17] is at a higher binding 

energy than that of the -OH group (530.9 eV) [17] thus the peak observed at 

532.2 eV can be assigned to water adsorbed at the surface of the NiNPs [17, 

18]. The Ni 2p3/2 peak at 854.0 eV corresponds to NiO which is confirmed by 

the presence of the O 1s peak at 529.8 eV [28, 29]. 
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Figure 4.11.XPS spectra of NiNPs after bubbling with carbon dioxide; (A) O 1s, (B) Ni 2p3/2 and 

(C) C 1s. [3, 6] 

 XPS of the NiNPs after carbon dioxide bubbling is shown in Fig. 4.11. 

The Ni 2p3/2 is again fitted using three peaks, which are located at binding 

energies of 852.9 eV, 854.4 eV, and 855.9 eV, respectively, and a plasmon 

peak at 861.5 eV [28, 29]. The Ni peak at 852.9 eV corresponds to Ni0 [29] 

whereas the peaks at 854.4 eV and 855.9 eV correspond to the Ni2+ oxidation 

state [29]. The carbon C 1s line is also fitted with three peaks located at 284.8 

eV, 286.0 eV, and 288.1 eV. The C 1s component at 284.8 eV binding energy is 

assigned to adventitious carbon [28]. The C 1s peak at 286.0 eV corresponds to 

carbon in alcohol groups and that at 288.1 eV to carbon in ester groups [28]. 

The O 1s line is fitted with four peaks located at 530.1 eV, 531.7 eV, 532.5 eV 

and 533.2 eV. The peak for O 1s at 530.1 eV and the Ni 2p3/2 peak at 854.4 eV 

are assigned to NiO on NiNPs [29]. The O 1s peaks at 531.7 eV and 533.2 eV 
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correspond to the two different oxygen sites in the ester (–COO–) group (the 

first corresponding to the oxygen double bonded to carbon and the second to 

the oxygen single bonded to carbon) and the O 1s peak at 532.5 eV 

corresponds to the alcohol group (–C–OH) [28, 32]. Bicarbonate molecules 

contain both an ester and an alcoholic carbon, therefore we interpret the 

presence as a signature of bicarbonate species present on the nickel surface. 

We suggest that the Ni 2p3/2 peak at 855.9 eV corresponds to Ni(HCO3)X 

adsorbed at the Ni surface. 

4.5 Mechanism of hydration reaction by NiNPs. 

 Based on the interpretation of the XPS results we can derive a possible 

reaction mechanism which is presented in figure 4.12. In the aqueous 

environment there is the generation of hydroxyl groups on the surface of the Ni 

nanoparticles. These hydroxyl groups are then attacked by the carbon dioxide 

molecule to form bicarbonate ions on the Ni surface which are then displaced 

by water molecules, which then lose hydrogen ions and regenerate the hydroxyl 

ions on the Ni surface. The absence of the –OH group on the surface of NiNPs 

(figure 4.12) in the XPS results suggests a possible conversion of –OH groups 

to –HCO3 groups when CO2 is bubbled in the NiNPs aqueous suspension. 

There were no hydroxyl groups observed in the XPS results of the Ni 

nanoparticles after CO2 bubbling, indicating the conversion of the hydroxyl 

groups to bicarbonate groups in the reaction. 

 



160 
 

 

Figure 4.12: Schematic of the reaction mechanism of hydration of CO2 by NiNPs. [3, 6] 

4.6 Conclusion 

 The current chapter presents proof that NiNPs catalyse the hydration of 

CO2. Catalysis is observed by the comparison of the pH and conductivity 

changes when CO2 is bubbled in DI water and NiNPs suspensions. A threefold 

enhancement in the dissolution of CO2 in water was observed in the presence 

of NiNPs (30 ppm). There was also an initial increase in the pH of water by 

addition of NiNPs, which was due to the formation of Ni(OH)x on the NiNP 

surface as seen from the XPS analysis. NiNPs do not leach detectable amounts 

Ni2+ ions in DI water and in carbonic acid solution. Ni2+ ions do not catalyse the 

hydration of CO2. The XPS analysis provided the reaction steps on the basis of 

which the reaction mechanism is suggested. 
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Chapter 5: 

Catalytic activity of NiNPs for 

hydration of CO
2
 (Part II) 

 

 

 

 

 

 In this chapter results of stopped flow spectrophotometery method used 

for analysis of kinetics of CO2 hydration are presented. To test the influence of 

mass transfer enhancement and increased saturation of CO2 due to presence 

of nanoparticles on observed pH change, inorganic nanoparticles (NiO and 

Fe2O3) have been used. pH changes of saturated CO2 solution added to buffer 

(with and without NiNPs) have been noted to qualitatively validate the catalysis 

of hydration of CO2 by NiNPs (method similar Mirjafari et al. [1]). The chapter 

also presents the effect of CO2 partial pressure on CO2 hydration in the 

presence and absence of NiNPs. Nickel nanowires (NiNWs) have been 

synthesised and have been tested for enhancement in CO2 saturation 

concentration and catalytic activity for CO2 hydration reaction. The results 

conclusively show that the NiNPs act as catalyst for the hydration of CO2. 
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5.1. Comment by David Britt [2]. 

 David Britt [2] commented on the paper published by Bhaduri and Šiller 

[3] that the experimentally observed increase in the rate of pH drop (figure 4.8a 

and 4.8c, chapter 4) is due to observed increase in the CO2 saturation 

concentration (figure 4.6, chapter 4) and is not due to catalytic activity of NiNPs 

as discussed in the paper. Britt [2] has recommended another commonly used 

methodology, where the pH change is observed when a saturated CO2 .solution 

is mixed with a buffer solution (e.g. reported by  Mirjafari et al. [1], chapter 3 

section 3.3.5 for detailed experimental procedure) be used with a modification 

of replacing the buffer solution with DI water.   

5.2 Stopped flow spectrophotometric analysis for reaction kinetics 

 Stopped flow spectrophotometery is a method of analysis for the 

measurement of kinetics of fast chemical reaction (i.e. for reactions that reach 

completion within 1-5 min) and is based on the principle that the light 

absorbance of a tracer dye or chemical compound changes as the reaction 

proceeds [4] (chapter 3, section 3.3.4). It has been commonly used for the 

measurement of kinetics of hydration of CO2 [5-9]. Recently Wang et al. [9] 

reported the hydration and dehydration of CO2 using the stopped flow 

spectrophotometer for accurate determination of the rate of hydration of CO2. In 

their methodology a saturated CO2 aqueous solution is brought into contact with 

Na2CO3 solution of a known concentration and the progress of the neutralization 

reaction is observed by a change in absorbance of the tracer dye [9]. 

The results (figure 5.1) of the stopped-flow spectrophotometery to 

determine the use of NiNPs on the rate of hydration of CO2 was carried out 

following a similar methodology as Wang et al. [9]. The kinetic constant of the 
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reaction was calculated by fitting the data with an exponential function using 

Origin 6.1 software (an example of the curve fitting is provided in figure 5.1b). In 

the stopped flow experiments the concentration of CO2 solution was kept 

constant and the concentration of carbonate solution was changed. The 

resultant kinetic constants at different Na2CO3 concentrations are plotted in 

figure 5.1a. The change in the kinetic constants is due to the change in the final 

pH of the resultant solution of saturated CO2 solution and Na2CO3 solution. The 

CO2 hydration kinetics is higher at lower pH but is slower at near neutral pH [6] 

and the results are similar to those observed by Wang et al [9] It is observed 

from the figure that there is no appreciable change in the rate constant of the 

reaction in the presence of NiNPs. This indicates that the NiNPs did not affect 

the equilibrium coefficient of the hydration reaction.   

    

Figure 5.1: Kinetic constants as a function of Na2CO3 concentration and an example of the 

exponential fit for the data obtained from the spectropotometer. [10] 

The lack of difference in kinetic constants in stopped-flow results is due 

to two possibilities [10]: firstly, that the pH range during the reaction is below 4.9 

and therefore the catalytic activity is dominated by H3O
+ ions [6, 11, 12] and that 

the NiNPs are poisoned by the phenolphthalein indicator because oxygen 
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(active site of phenolphthalein) has a higher binding energy than hydroxyl 

groups chemisorbed at the Ni surface [13] so they are hard to remove. 

5.3 CO2 hydration kinetics using pH change method using saturated CO2 

solution. 

 A qualitative method was used to test the pH dependence of the NiNPs’ 

activity for CO2 hydration. This method is commonly used to observe the 

catalytic activity of carbonic anhydrase (ref in Table 2.4, chapter 2). In this 

methodology a saturated solution of CO2 (pH 4) is mixed with a buffer solution 

at a known pH and the rate of change in pH is observed. The change in pH is 

due to the formation of carbonic acid from CO2(aq) of the saturated CO2 solution. 

This methodology was adapted from kinetic study of CA hydration as described 

by Mirjafari et at [1], described in section 3.2.5 chapter 3.  

 

Figure 5.2: Average values of pH dependent hydration of CO2 in presence of NiNPs at different 

pH A) at pH 7 using Bis-Tris-HCl buffer and B) at pH 11.5 using sodium carbonate solution.  

 Figure 5.2 shows the pH changes in Bis-Tris-HCl buffer (figure 5.2A) and 

sodium carbonate solutions (figure 5.2B) when a CO2 saturated solution is 

added in presence and absence of NiNPs. Figure 5.2A shows a faster pH drop 

in Bis-Tris-HCl buffer solution in the presence of NiNPs than its absence. This 

indicates the catalytic activity due to the presence of NiNPs at pH values below 
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8, with CO2 hydration following the H2O reaction mechanism (𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂  ↔

  𝐻2𝐶𝑂3). Figure 5.2B shows the pH changes at alkaline pH values (i.e. pH >10) 

in Na2CO3 solution. The NiNPs catalysis is minimal at alkaline pH (i.e. pH >10).  

 Above pH 10, CO2 hydration can be described by the OH reaction 

mechanism (𝐶𝑂2(𝑎𝑞) + 𝑂𝐻
−   ↔  𝐻𝐶𝑂3

−) whilst it operates via a mixed 

mechanism (OH and H2O reaction mechanism) at pH values between 10 and 8 

[6]. Therefore the results from figure 5.2 indicate that NiNPs helps in catalysis 

when the alkaline pH value is below 10 and does not help in catalysis when the 

pH value is above 10.  

5.4 NiNPs enhancement of CO2 absorption kinetics in carbonate solutions  

 Both the above methodologies (section 5.2 and 5.3) study kinetics of the 

hydration of CO2 based on saturated CO2 solution. Kim et al. [14] used a 

different approach for analysis of hydration of CO2. In their process CO2 is 

bubbled in a quiescent liquid (buffer solution) and the pH change response is 

observed in presence and absence of different bio-catalyst (see chapter 3 

section 3.33 for details). Their assumption is that, the physical mass transfer 

(the rate of CO2 transfer across the gas-liquid interface) is not affected by the 

presence of the catalyst and therefore rate of pH change is a direct measure of 

the kinetic rate enhancement of CO2 hydration. Bhaduri and Šiller [3] used the 

same reaction methodology and the same assumption for analysis of catalytic 

activity of NiNPs (section 4.3). They observed an enhanced rate of pH change 

in the presence of NiNPs than in its absence (figure 4.7) similar to the results 

observed by Kim et al. [14] (figure 3.2).  

 In order to test whether these assumptions are correct a new set of 

experiments were designed for analysis. In these experiments CO2 gas was 



169 
 

bubbled in a 0.1 M Na2CO3 and 0.1 M K2CO3 solutions and the pH changes 

were measured with and without the NiNPs (chapter 3, section 3.2.5). The CO2 

from the gas phase dissolves in the carbonate solution and reacts with water to 

from carbonic acid which then reacts with the carbonate ion to form bicarbonate 

ions. The reactions can be represented in series as 

𝐶𝑂2(𝑔) ↔  𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 + 𝐾2𝐶𝑂3 (𝑜𝑟 𝑁𝑎2𝐶𝑂3)

↔ 2𝐾𝐻𝐶𝑂3 (𝑜𝑟 2𝑁𝑎𝐻𝐶𝑂3) 

 The conversion of carbonate to bicarbonate results in a drop in pH when 

CO2 is bubbled in carbonate solution. The pH changes shows the overall rate of 

the reaction of CO2(aq) to bicarbonate formation. As all the chemical species in 

the above reaction are ionic species the reaction of carbonic acid with 

carbonate is a protonation step 𝐻2𝐶𝑂3 + 𝐶𝑂3
2−  ↔ 2𝐻𝐶𝑂3

− . The protonation step 

is an instantaneous process [15]. Therefore the rate of change of pH is 

dependent on the hydration reaction of CO2. 

 

Figure 5.3: pH profiles during bubbling of CO2 in sodium and potassium carbonate solutions 
with and without NiNPs.[10] 

 Figure 5.3 shows the results of the CO2 bubbling in N2CO3 and K2CO3 

solutions. It can be seen from the figure 5.3 that in the presence of the NiNPs 

the rate of CO2 absorption is faster than without the NiNPs. These results are 
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similar to the results observed in section 4.3 (figure 4.8). Therefore it can be 

concluded that there is an enhancement in the hydration of CO2 in the gas-

liquid form in the presence of the NiNPs. It is also known that K2CO3 has higher 

reaction kinetics than Na2CO3 with CO2(aq) [16]. This is the reason that the pH 

change is faster, in the presence of NiNPs, in K2CO3 solution than in Na2CO3 

solution when CO2 is bubbled through the solutions, respectively. 

 A direct comparison with the stopped flow or pH change method with the 

CO2 bubbling method is not possible. In the experiments in section 5.1 and 5.2, 

an initial equilibrium is reached between the CO2(aq) and HCO3
- (when we have 

a CO2 saturated solution). This equilibrium is then disturbed by adding a buffer 

or carbonate solution into it and depending on the pH of the solution, a new 

equilibrium is achieved between CO2(aq) and HCO3
-. This change in equilibrium 

from initial to final is reflected in the pH change of the solution. By studying how 

fast this equilibrium is achieved, the kinetics of the forward reaction 𝐶𝑂2(𝑎𝑞) +

 𝐻2𝑂 (𝑜𝑟 𝑂𝐻
−)  ↔ 𝐻2𝐶𝑂3 (pH dependent) can be studied. In the case of CO2 

bubbling i.e. when CO2 is bubbled in carbonate solution, CO2(aq) reacts rapidly 

with OH- in the carbonate solution leading to an equilibrium between CO2(aq) and 

HCO3
-, this is influenced by presence of NiNPs which is observed in the pH 

change profiles in figure 5.3. This also indicates that NiNPs could just act as 

enhancers in transfer of CO2 from gas phase to liquid phase (mass transfer) 

and not act as a catalyst. In order to distinguish between these two effects (i.e. 

CO2 mass transfer enhancement and CO2 hydration catalysis) the experiment in 

section 3.2.2 and 3.2.3., chapter 3, was repeated in presence of other inorganic 

nanoparticles and are discussed below in section 5.5.  



171 
 

5.5 Comparison of catalytic activity of different inorganic nanoparticles for 

CO2 hydration. 

 A major concern raised by Britt [2] for the catalytic activity of NiNPs for 

hydration of CO2 is that the increased CO2 saturation concentration may affect 

the results of CO2 hydration kinetics. The theoretical background of the 

experimental methodology used by Bhaduri and Šiller [3] is presented in section 

3.2.3, chapter 3. 

 Baltrusaitis et al. [17-21] reported that Fe2O3 and Al2O3 nanoparticles 

(Fe2O3NPs of 30 nm) can adsorb CO2 on their surface in the presence of 

moisture as carbonates. If an additional thin layer of water is present on the 

nanoparticle surface the amount of CO2 adsorbed can be increased up to 5 

times (as bicarbonates) to that in the absence of the thin water layer [19].  

Therefore another set of experiments were carried out in DI water with Fe2O3 

nanoparticles, as it was reported that Fe2O3 nanoparticles have similar surface 

chemistry as NiNPs in H2O environment (see section 4.4, chapter 4 for NiNPs 

data) [17-21] . Experimental procedure similar to sections 4.2 and 4.3 was 

repeated with Fe2O3 nanoparticles. Since the activity of NiNPs might be also 

affected by the presence of NiO species on the NiNPs surface (NiO has been 

detected by XPS, figure 4.10 & figure 4.11[3]), pure NiO nanoparticles were 

also tested for their catalytic activity for hydration of CO2.  

5.5.1 HRTEM and XRD of the Fe2O3 and NiO Nanoparticles 

 Figure 5.4 and 5.5 shows the TEM images of the Fe2O3 and NiO 

nanoparticles, respectively. The size distribution confirms all the particle size is 

below the size specified by the manufacturer (i.e. <50 nm) and the majority of 

the particles have size 8±5 nm and 12±7 nm, for Fe2O3 and NiO nanoparticles 
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respectively. The Fe2O3NPs show presence of a few rod like structures (figure 

5.4(a)) and the NiONPs also show some elongated structures (figure 5.5(b & 

c)). This elongation could be because both particles are magnetic and in 

presence of electron beam and its electric field they align during the imaging 

process. For example, similar alignment is observed in HRTEM images of the 

NiNPs (figure 4.1 top left). 

 

  

 

Figure 5.4: Shows the TEM images of the Fe2O3 nanoparticles (a, b, and c) and particle size 

distribution (d).  
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Figure 5.5: Shows the TEM images of the NiO nanoparticles (a, b, and c) and particle size 

distribution (d). 
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Figure 5.6 X-ray diffraction pattern of a) Fe2O3NPs (Fe2O3 planes in black and α-FeOOH planes 

in red) and b) NiONPs respectively. 

 Figure 5.6a and 5.6b shows the XRD pattern of the Fe2O3NPs and 

NiONPs respectively. The XRD of Fe2O3NPs (figure 5.6a) shows presence of 

the peaks for the following crystal planes (012), (104), (110), (113), (024), (116), 

(018), (214) and (300), respectively [22]. The Fe2O3NPs are very small in size 

(figure 5.4) and there is some hydration of the nanoparticles which can be seen 

from the presence of the peaks (110) and (111) peak of FeO(OH) (figure 5.6a 

indicated in red) [23]. The hydration could be due to the adsorption of moisture 

from the atmosphere. Figure 5.6b shows the presence of (111), (200), (220), 

(311) and (222) lattice planes respectively of NiONPs [24].  

5.5.2 CO2 saturation and CO2 hydration kinetics.  

 Figure 5.7 shows results of the saturation experiments (chapter 3, 

section 3.3.3) when CO2 is bubbled in Fe2O3NPs or NiONPs suspension 

(calculation of the titration in appendix I). In presence of all types of 

nanoparticles in suspension there is an increase in the amount of CO2 

saturation. The Fe2O3NPs and NiONPs suspensions show an increase in CO2 

uptake but there is no dependency on the particle concentration. There is a 
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three times increase in the CO2 uptake in presence of Fe2O3NPs and NiONPs 

but NiNPs has a different trend as can be observed in figure 5.7. At 30 ppm 

nanoparticle concentration, the CO2 saturation concentration is almost identical 

for all nanoparticles, therefore 30 ppm concentration was chosen for the 

bubbling of CO2 in nanoparticle suspension. 

 

Figure 5.7: Average values of increase in the saturation concentration of CO2 absorbed in 
aqueous suspension of Fe2O3NPs, NiONPs and NiNPs as a function of particle concentration at 
room temperature and atmospheric pressure. 

  As discussed previously in chapter 4 section 4.2 that agglomeration of 

the nanoparticles is one of the factors that affects the CO2 saturation 

concentration in nanoparticle suspension. Figure 5.8 shows the dynamic light 

scattering data for aggregate size determination of Fe2O3NPs, NiONPs and 

NiNPs suspensions respectively. The agglomerate sizes obtained in the DLS 

measurements as a function of nanoparticle concentration are summarized in 

table 5.1. DLS shows particle size larger than those observed in the TEM 

images due to the formation of passive hydrodynamic layer on the surface of 

the particles [25, 26].  
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Figure 5.8 Dynamic light scattering data obtained for different nanoparticles suspended in DI 
water at concentration of 10 ppm, 20 ppm, 30 ppm and 40 ppm respectively. 

 In DLS the wide peaks indicate high particle size distribution whereas 

narrow peaks indicate monodispersed particles [26]. Zang et al. [27] reported 

that commercial oxide nanoparticle suspensions in DI water show higher 

particle size in DLS as compared to TEM because sonication cannot completely 

de-agglomerate commercial oxide nanoparticles when suspended in DI water. 

They observed that for commercial Fe2O3NPs (5-25 nm particle size) and 

NiONPs (10-20 nm particle size) the DLS measurements show particle size of 

200 ±10 nm and 750 ±30 nm respectively at a concentration of 10 ppm 

dispersed in DI water (18 MΩ/cm conductivity). They also observed that for lab 

synthesized Fe2O3 nanoparticles there was not much difference in particle size 

obtained by TEM (80-90 nm) and DLS (85 ±3 nm). Therefore they concluded 

that sonication cannot completely de-agglomerate nanoparticles to their 

principle size in suspension [27]. 
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Table 5.1 The nanoparticle aggregate size obtained (in nm) from DLS of different nanoparticle 
suspensions with increase in nanoparticle concentration. 

Particle concentration 

(ppm) 

Aggregate size of 

Fe2O3 (nm) 

Aggregate size of 

Ni (nm) 

Aggregate size of 

NiO (nm) 

10 142 389 254 

20 163 606 292 

30 140 528 384 

40 254 821 339 

  

 It is observed from Table 5.1 that for particle concentration of 40 ppm 

Fe2O3NPs show large increase in the particle size indicative of particle 

agglomeration of nanoparticles while for particle concentration of 10, 20 and 30 

ppm some variation in particle size is observed. The width of the peaks 

observed in the DLS results of Fe2O3NPs (figure 5.8) show narrow size 

distribution of the agglomerated nanoparticles as compared to NiONPs and 

NiNPs at all measured concentrations (10-40 ppm). It was also observed that 

Fe2O3NPs suspension retained a red colour even after 2 years from the 

preparation of the dispersion. The Fe2O3NPs at 10 ppm concentration show 

similar results as reported by Zhang et al. [27]. 

 The NiONPs suspension show a steady increase in the particle size with 

increase in particle concentration from 10 ppm to 30 ppm respectively (figure 

5.8 and table 5.1). It can also be observed that the width of the peak increased 

with increasing the NiONPs concentration. This indicates that there is a larger 

size distribution of aggregates formed with increasing NiONPs concentration. At 

the concentration of 40 ppm NiONPs shows smaller aggregate sized (table 5.1), 

but the aggregate distribution is larger than those observed at lower 
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concentrations (see figure 5.8). The DLS results of NiONPs aggregate at 10 

ppm concentration show smaller hydrodynamic diameter than that observed by 

Zhang et al. [27].  

 The DLS results of NiNPs show highest value of particle size of all the 

studied nanoparticles. There is a small peak observed at an aggregate size of 

120 nm at 10 ppm concentration and disappears with increasing particle 

concentration. The peak observed at 5.58 µm increases with increasing particle 

concentration. There is an increase in the aggregate size of NiNPs in 

suspension with increasing NiNPs concentration as observed in table 5.1. 

Figure 5.8 shows that the width of DLS peaks for NiNPs increases with 

increasing particle concentration. In this study there is no surfactant used to 

protect the nanoparticles from agglomeration, leading to rapid agglomeration. 

As sonication time was the same for all the nanoparticles for DLS analysis it is 

observed that NiNPs aggregate quicker than the oxide nanoparticles.  

  

Figure 5.9: Zeta potential values for different nanoparticles (Fe2O3NPs- circles, NiNPs- squares, 
NiONPs-triangles) suspended in DI water at different concentration, measured at room 
temperature and atmospheric pressure.  
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Zeta potential is the measure of the surface charge of a particles in 

suspension. The greater the surface charge of the particles, higher is the 

repulsive forces between the particles, therefore lower is the rate of 

agglomeration. Suspensions having high surface charge (positive or negative) 

have higher suspension stability [26]. At the iso-electric point (when zeta 

potential value is 0 mV) the particles readily come out of suspension [26]. 

Figure 5.9 shows the zeta potential values of different nanoparticles suspended 

in DI water at different nanoparticle concentration. The experimental procedure 

for zeta potential measurements is given in section 3.3.9, chapter 3. All 

readings were repeated thrice and average data is presented here. It can be 

observed that, for oxide nanoparticles (NiONPs and Fe2O3NPs) the zeta 

potential increases with increasing nanoparticle concentration. However, for 

NiNPs the there is a slight decrease in zeta potential with increasing particle 

concentration. The Zeta potential for Fe2O3NPs is below -20 eV which suggests 

better stability of the Fe2O3NPs suspension [26] as compared to NiNPs and 

NiONPs suspensions. Both the NiONPs and NiNPs suspension zeta potentials 

is close to the iso-electric point of 0 eV, suggesting that the suspension stability 

is poor. The results of zeta potential show similar trend of suspension stability 

as the DLS results.   
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Figure 5.10: Average values of pH change when CO2 is bubbled through DI water and 30 ppm 

concentration of a) Fe2O3 suspension, b) NiONPs suspension and c) NiNPs suspension.  

Figure 5.10 shows the pH changes in 30 ppm suspension of different 

nanoparticle suspensions when CO2 is bubbled through a pool of liquid. The 

experimental methodology is as described in chapter 3, section 3.2.3. (Each 

experiment was repeated 5 times and average values are presented in figure 

5.8.) It is seen from the figure 5.9 in presence of Fe2O3NPs and NiONPs the 

rate of pH change profile is almost identical to that of DI water, but in the 

presence of NiNPs the pH change profile completely changes. In presence of 

NiNPs and NiONPs there is an initial increase in the pH of the solutions. All the 

nanoparticles at 30 ppm concentration showed almost identical increase in the 

saturation concentration of CO2 (figure 5.7).  In the pH change experiment only 

NiNPs show a different pH change profile as compared to DI water, proving that 

the final CO2 saturation concentration is not related to the catalytic activity of 
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CO2 hydration. Baltrusaitis et al. [17-21] proposed the formation for carbonic 

acid on Fe2O3NPs surface based on their gas phase FTIR studies using 40% 

relative humidity and pure CO2. The above results indicate that even though the 

Fe2O3NPs show similar surface chemistry as NiNPs in the presence of water 

followed by exposure to CO2 (see XPS results, section 5.4.3), they just absorb 

the CO2 on the surface and do not catalyse the hydration reaction of CO2 in 

solution.  

 It is also known that nanoparticles can increase the rate of mass transfer 

in gas-liquid absorption process [28, 29]. There are three plausible mechanisms 

available for mass transfer enhancement. They are as follows [29] 

a) The presence of nanoparticles increases the transport of gas species 

from the hydrodynamic boundary layer of the gas-liquid interface to the 

bulk of the solid. This is done by the adsorption of gas on the 

nanoparticle surface in the diffusion driven hydrodynamic boundary layer 

and desorption in the bulk liquid.  This is called as shuttle effect or 

grazing effect.  

b) Another mechanism suggests that the presence of the nanoparticles 

facilitates the formation of eddy currents in the hydrodynamic boundary 

layer (due to Brownian motion), leading to reduction in the thickness of 

the hydrodynamic boundary layer. This reduces the diffusion barrier 

along the gas-liquid interface and enhances mass transfer coefficient.  

c) The nanoparticles may also affect the gas-liquid interface area by 

adsorption on the surface of the gas-liquid interface. This increases the 

diffusion coefficient of the gas in the liquid. For bubble column reactors 
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the bubble size are affected with the presence of the nanoparticles due 

to this effect. Thus enhancing the surface area for mass transfer. 

 All the above mentioned mechanisms have earlier been studied 

independent of the particle surface chemistry and are generalized observations 

[28, 29]. Therefore in the presence of Fe2O3NPs, NiONPs and NiNPs the 

enhancement in mass transfer rates are plausible. As stated previously the 

change in pH of the nanoparticle suspension is due to the formation of carbonic 

acid alone. Therefore from figure 5.10 it is observed that only in the case of 

NiNPs there is an increase in the rate of change of pH as compared to DI water 

and no difference is observed in the case of Fe2O3NPs and NiONPs. This 

suggests that the increase in rate of pH change is due to a chemical reaction 

and is not just due to increase in rate of mass transfer of CO2 gas into the 

nanoparticle suspension.  

5.4.3 Chemical characterization of the oxide nanoparticle surfaces before 

and after CO2 bubbling.  

 XPS analysis was carried out only for NiONPs and Fe2O3NPs to 

determine the chemical species on the surface of the nanoparticles in order to 

suggest and understand the steps in the reaction mechanism. The XPS results 

of Fe2O3NPs before and after CO2 bubbling can be seen in figure 5.11 and 

figure 5.12, respectively. The experimental methodology for the XPS analysis is 

presented in Chapter 3 section 3.3.6. The fitting of the Fe2p peaks were carried 

out using mixed doublets.  
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Figure 5.11: XPS spectrum of Fe2O3NPs before (a. Fe2p, b. O1s) and after CO2 bubbling (c. 

Fe2p and d. O1s). 

 The chemical species present on the surface of the Fe2O3NPs 

suspended in water can be analysed by observing the F2p and O1s spectra 

seen in figures 5.11a and 5.11b, respectively. The Fe 2p3/2 spectrum is fitted 

with two oxidation states i.e. Fe2+ is assigned to the peak at 710.5 eV [30] and 

Fe3+ assigned to peak at 712.8 eV [30]. The O 1s peaks show the presence of 

three components at 529.6 eV, 530.4 eV and 531.8 eV. The peaks at binding 

energy of 529.6 eV (O) and 531.8 eV (OH) correspond to the presence of 

FeOOH species [31, 32] and peak at 529.6 eV also suggests presence of 

unreacted Fe2O3 species [32]. The peak at 530.4 eV indicated presence of 

Fe3O4 species on the surface of the Fe2O3NPs [32]. Therefore the XPS results 

confirm the presence of OH species on the Fe2O3NPs, similar results were 

reported by Baltrusaitis et al. [17-21] in their gas adsorption studies using FTIR.  
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Figure 5.12: XPS spectrum of Fe2O3NPs after CO2 bubbling a) Fe2p, b) O1s and c) C1s. 

 The surface species present on the Fe2O3NPs after CO2 bubbling can be 

analysed fitting the by Fe 2p3/2, O 1s and C 1s XPS spectra in figure 5.12a and 

5.12b and 5.12c, respectively. The Fe 2p3/2 peaks show presence of iron in two 

oxidation states i.e. 710.3 eV and 712.9 eV assigned to Fe2+ and Fe3+ 

respectively [30]. The O1s peak shows presence of two oxygen species on the 

Fe2O3NPs surface at 530.1 eV and 531.7 eV respectively. The first O 1s peak at 

530.1 eV can be assigned to chemisorbed CO2 on the Fe2O3NPs surface [33]. 

The peak at 531.7 eV can be assigned to the presence of CO3
2+ species 

present on the Fe2O3NPs surface [34]. The carbon peak at 284.8 is assigned to 

adventitious carbon, the peak at 286.2 eV is assigned to chemisorbed CO2 [33] 

and the peak at 288.9 eV is assigned to CO3
2+ [34] on the Fe2O3NPs surface. 

Baltrusaitis et al. [17-21] did gas phase studies of adsorption of CO2 adsorption 
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on Fe2O3NPs in presence of water vapour using attenuated total reflectance 

Fourier transform Infrared spectroscopy (ATR-FTIR). They also observed 

presence of OH groups on Fe2O3NPs surface after exposure to water vapour 

and transformation of the OH to CO3 groups when exposed to CO2 [19]. Based 

on their results Baltrusaitis et al. [17, 19, 21] suggested that Fe2O3NPs would 

catalyse the hydration of CO2. Similar chemical species are observed on the 

surface of Fe2O3NPs in this study when the Fe2O3NPs are suspended in water 

and after CO2 bubbling, but no catalytic activity was observed (section 5.4.2).  

 

Figure 5.13: XPS spectrum of NiONPs before CO2 bubbling (a. Ni2p, b. O1s) (c. Ni2p and d. 

O1s). 

 The surface chemistry of the NiONPs after suspending in DI water before 

the introduction of CO2 was analysed by examination of the Ni 2p3/2 and the O 

1s core lines (figure 5.13a and 5.13b). The peaks of Ni 2p3/2 can be assigned to 

two components at binding energy of 853.5 eV and 855.4 eV. The peak at 

853.5 eV is associated to Ni species present in Ni2+ oxidation state [35] and the 

peak at 855.4 eV is due to presence of Ni3+ oxidation state [35]. The O 1s peak 

shows presence of four different species at binding energies of 528.8 eV, 530.4 

eV, 530.5 eV and 532.4 eV respectively. The peak observed at binding energy 

of 528.8 eV is assigned to presence of NiO and Ni2O3 species [36, 37]. The 
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presence of Ni2O3 species also would have a presence of NiOH species at 

530.4 eV [36] and associated water at 532.4 eV [38]. The presence of peak at 

530.5 eV indicates the presence of NiO-OH species present on the NiONPs 

surface [38].  

 

Figure 5.14: XPS spectrum of NiONPs after CO2 bubbling a) Ni2p, b) O1s and c) C 1s. 

 The change in surface species after CO2 bubbling can be analysed by 

interpretation of the Ni 2p3/2, O 1s and C 1s core lines in figure 5.14a, 5.14b and 

5.14c, respectively. The C 1s core line shows presence of three peaks at 284.4 

eV, 286.2 eV and 288.5 eV, respectively. The peak at 284.8 eV is assigned to 

adventitious carbon [38]. The peaks in the Ni 2p3/2 spectrum shows presence of 

two oxidation species of Ni i.e. Ni2+ at 583.6 eV [35] and Ni3+ at 855.6 eV [35] 

respectively. The O 1s spectra show presence of six different species of oxygen 

at 528.9 eV, 529.7 eV, 530.5 eV, 531.1 eV, 531.4 eV and 531.7 eV respectively. 
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The peak at 528.9 eV is assigned to Ni2O3 species present on the surface along 

with the peak 530.6 eV for NiOH and 531.7 eV as associated water with Ni2O3 

[36]. The O 1s peak at 530.6 eV and the C 1s peak at 286.2 eV is assigned to 

chemisorbed CO2 on the surface of the NiONPs [39]. The peak at 529.7 eV can 

be assigned to NiO [38] and the peak at 531.1eV can be assigned to NiOOH 

species [38]. The peak at 531.4 eV can shows the presence of CO3
2- species 

[40, 41] on the surface of the NiONPs. The C 1s peak at 288.5 eV is assigned 

to the carbonate species of NiCO3 [42].   

  The XPS analysis shows the presence of the carbonate species on the 

NiONPs surface when CO2 is bubbled in NiONPs suspension in DI water. The 

presence of the OH groups on the NiONPs surface, when NiONPs are 

dispersed in DI water and their transformation to CO3
2- species on the NiONPs 

surface indicates similar reaction steps to that of NiNPs [3] (section 4.4, Chapter 

4) and Fe2O3NPs.  

5.5 Effect of partial pressure of CO2 on NiNPs catalysis.  

 In order to investigate further if the NiNPs are catalyst for hydration of 

CO2, the activity observed in the CO2 bubbling experiments (section 4.3, section 

5.4.2) was studied under different partial pressure of CO2. In all the studies 

discussed above 100% CO2 gas was used for the analysis of the hydration 

reaction. In this section the partial pressure of CO2 is changed to 12% in air and 

the kinetics has been studied. As described in section 3.2.3, chapter 3, the rate 

of CO2 hydration reaction is dependent on the partial pressure of the CO2 in the 

gas phase. It can be seen from the calculations in Appendix II, that the rate of 

CO2 hydration is dependent on the concentration of CO2(aq). CO2(aq) 

concentration depends on the partial pressure of CO2 in the gas phase. As the 

partial pressure decreases in the gas phase, the concentration of CO2 
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molecules decreases at the interface and thus the reaction kinetics should 

decrease [43]. The experimental description can be found in chapter 3, section 

3.2.3. Every experiment is repeated five times and average data is presented. 

 

Figure 5.15: a) Average values of pH changes when 12% CO2-Air mixture is bubbled in DI water 

and 30ppm NiNPs suspension, b) Average values of pH change pH change when 12% and 

100% CO2 is bubbled in 30 ppm NiNPs suspension and c) Average values of pH change when 

12% and 100% CO2 is bubbled in DI water.  

 Figure 5.15a shows the change in pH is still more rapid in the presence 

of NiNPs in suspension as compared to DI water when 12% CO2-Air gas 

mixture is bubbled through them. This result is similar to the results observed 

previously (section 4.3 and section 5.4.2). The results in figure 5.15b show that 

the catalytic hydration rate of CO2 (in presence of NiNPs) slightly decreases 

when the partial pressure of the CO2 in the gas phase is decreased. However, it 
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is observed from figure 5.15c that the autocatalytic activity of CO2 hydration in 

DI water is highly reduced when the partial pressure of CO2 is reduced. This 

proves the assumption made previously about partial pressure of CO2 affecting 

the rate of CO2 hydration.  

 All the above data suggest that in the presence of the NiNPs the rate 

limiting step is the transfer of CO2g to CO2(aq) rather than the hydration of 

reaction of CO2. The reduction in rate of CO2 hydration (observed as the rate of 

pH change in figure 5.15b) is due to the slow gas-liquid mass transfer due to the 

low partial pressure of CO2. As described in chapter 3 section 3.2.3 and 

appendix II, the CO2 phase transfer rate from gas to DI water is dependent on 

the partial pressure of CO2. 

5.7 Catalytic activity of synthesised nickel nanowires for hydration of CO2. 

5.7.1 HRTEM, SEM and XRD of nickel nanowires 

 Figure 5.16 shows the SEM, EDX and TEM images of the synthesised 

NiNWs following the procedure described in chapter 3, section 3.2.7. The SEM 

images show similar morphology of the NiNWs as reported by Bentley et al. 

[44]. It is seen from the TEM micrographs (figure 5.16c) that NiNWs are uniform 

in diameter of 400 + 100 nm. The insitu EDX of the SEM images of the 

nanowires confirm the presence of Ni in the observed nanostructures and no 

presence of any impurities (Al signal is from the aluminium stub). Figure 5.17 

shows the XRD pattern for the synthesised nanowires. The peaks observed in 

the pattern correspond to the lattice planes of (111), (200) and (220) 

respectively [45]. 
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Figure 5.16 a) SEM image and b) EDX of the synthesised NiNWs and C) TEM image of the 
synthesised NiNWs   

   

Figure 5.17: XRD pattern of the synthesised NiNWs. 
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5.7.2 CO2 saturation and catalytic activity of NiNWs for hydration of CO2 

 

Figure 5.18 Average values of increase in the saturation concentration of CO2 absorbed with 
NiNPs and NiNWs suspension as a function of particle concentration at room temperature and 
atmospheric pressure. 

 Figure 5.18 shows the saturation concentration of CO2 in NiNPs and 

NiNWs suspension with respect to the increase in concentration of the Ni 

nanostructure. It is observed that the NiNWs are more effective than the NiNPs 

in the uptake of CO2 in DI water. The maximum uptake of NiNWs is 3.6 times 

more than that of DI water at a concentration of 20 ppm as compared to 3 times 

with NiNPs at 30 ppm concentration. It is observed that the increase in the CO2 

uptake with the NiNPs is linear with the increasing NiNPs concentration till 30 

ppm and then there is a decrease in the uptake of CO2 with further NiNP 

increase. In the case of the NiNWs there is an exponential increase in the 

uptake of CO2 with increase of NiNWs concentration. The maxima is obtained 

at 20 ppm and with further increase in the NiNWs concentration there is no 

considerable increase or decrease in the CO2 uptake.  
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Figure 5.19 Average values of change in pH when CO2 is bubbled through the liquid at 
atmospheric pressure and maintained at room temperature, a) in DI water and 30 ppm NiNWs 
suspension and b) in DI water and 30 ppm NiNPs suspension.  

 The figure 5.19a shows the pH change in DI water, NiNPs suspension 

and NiNWs suspension when CO2 is bubbled through them. The experimental 

procedure is presented in chapter 3, section 3.2.3. (Each experiment was 

repeated five times and average data is presented). It can be observed that the 

presence of the NiNWs show faster pH drop as compared to that of DI water. 

The change in pH in NiNPs suspension is also faster as compared to pH 

change in DI water. Both NiNPs and NiNWs show similar catalytic activity for 

hydration of CO2. 

5.7.3 Chemical characterization of NiNWs surfaces before and after CO2 

bubbling. 

  

Figure 5.20: X-ray photoemission spectroscopy of NiNWs surface before (a Ni 2p3/2 & b O 1s) 
CO2 bubbling.  
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 The comparison of different surface species present on the NiNWs is 

done by examination of the XPS peaks shown in figure 5.20a and 5.20b 

obtained for Ni 2p3/2 and O 2s core lines respcetively of the NiNWs before CO2 

bubbling. Figure 5.19a indicates presence of three Ni oxidation peaks at 852.2 

eV, 855.6 eV and 856.2 eV respectively. The collective plasmon peak of Ni can 

be observed at 862.0 eV. The O 2s core line spectrum shows presence of three 

different oxygen species at binding energies of 529.8 eV, 531.5 eV and 533.6 

eV respectively. The Ni 2p3/2 peak at 852.2 eV corresponds to metallic Ni0 [38, 

46] whereas the peaks at 855.6 eV and 856.2 eV correspond to the Ni2+ 

oxidation [38, 46, 47]. The O 1s peak at 529.8 eV corresponds to NiO [47] 

whereas the peak at 531.5 eV corresponds to that of Ni(OH)x [47], respectively. 

It is known that the difference between the hydroxyl oxygen and NiO is about 

1.7 eV [48]. The O 1s peak at 533.6 eV is associated to multilayer of adsorbed 

water on the NiNWs surface [47, 49]. The relative intensity of O 2s peaks of NiO 

and Ni(OH)x is higher in the NiNWs as compared to NiNPs (see figure 4.10a, 

section 4.4, chapter 4) [3]. This may be one of the reasons for the increased 

CO2 saturation value observed in figure 5.17. 
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Figure 5.21: XPS spectra of NiNWs after bubbling with carbon dioxide; (a) Ni 2p3/2, (b) O 1s and 
(C) C 1s.  

 Figures 5.21a, 5.21b and 5.21c show the XPS core lines of Ni2p3/2, O1s 

and C1s after CO2 bubbling. After the CO2 introduction to the NiNWs 

suspension it is observed that there is a considerable change in the O 1s core 

line spectrum of the NiNWs. It can be observed that Ni 2p3/2 spectral line can be 

fitted with three Ni oxidation states at 852.1 eV, 855.4 eV and 856.1 eV, 

respectively and the O 1s spectral line can be fitted with five components at 

529.0 eV, 530.7 eV, 531.4 eV, 532.1 eV, and 533.8 eV respectively. The Ni 

2p3/2 peak at 852.1 eV corresponds to metallic Ni0 [38, 46], whereas the peaks 

at 855.4 eV and 856.1 eV correspond to Ni2+ oxidation state of Ni [38, 46, 47].  

The O 1s peak at 529.0 eV corresponds to the NiO [35] and the peak at 533.8 

eV corresponds to the multilayer of water on the NiNWs surface [47]. The O1s 

peak at 532.1 eV is assigned to adsorbed O2 on the NiNWs surface [46]. The O 

1s peaks at 530.7 eV indicates the presence of CO2 adsorbed on the NiNWs 
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surface [39] . The peak at 531.4 eV is assigned to the carbonate on the NiNWs 

[50]. The C 1s peak at 286.1 eV corresponds to chemisorbed CO2 [39] and that 

at 288.1 eV to carbonate species [51]. From the XPS results therefore the 

presence of Ni(CO3)x species can be confirmed.  

5.8 Conclusion 

 The NiNPs catalysis for CO2 hydration was proven by the method used 

by Mirjafari et al. [1] and was found to be pH dependent. Fe2O3NPs and 

NiONPs were used for comparison in order to show that the NiNP catalysed 

CO2 hydration is independent of final saturation concentration of dissolved CO2. 

Although it has been suggested by Baltrusaitis et al. [17-21] based on their gas 

phase analysis that oxide nanoparticles (Fe2O3NPs) can enhance the CO2 

hydration. In this study it was observed that it is not valid for bulk aqueous 

systems. Furthermore NiONPs have similar surface chemistry as NiNPs, they 

do not show any catalytic activity in the CO2 bubbling experiment. It was also 

found that the partial pressure of CO2 affects the hydration of CO2. Even at low 

CO2 partial pressure NiNPs showed catalytic activity for hydration of CO2. The 

reduction of the partial pressure of CO2 reduces the catalysed reaction rate of 

CO2 hydration in presence of NiNPs because the rate limiting step is the 

transfer of CO2g to CO2(aq) rather than the hydration reaction of CO2. Nickel 

nanowires were synthesised using the method described by Bentley et al. [44]. 

The NiNWs show higher saturation amount of CO2 than NiNPs. The XPS 

analysis of the NiNWs show similar surface species as NiNPs when exposed to 

DI water and CO2 (bubbled in NiNWs suspension). The relative intensity of 

Ni(OH)x and H2Oads on the NiNWs is higher than NiNPs which could be one of 

the reasons for the higher CO2 absorption in solution.   
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Chapter 6: 

Catalytic activity of NiNPs for 

hydration of CO
2
 (Part III): Photo-

catalysis and temperature 

dependence 

 

 

 

 

 

 

 Chapter 6 presents data on the photo-catalytic activity of NiNPs and the 

temperature dependence of the NiNPs catalysis for hydration of CO2. The 

NiNPs show higher catalytic activity in presence of sunlight than in its absence. 

It is observed that sunlight has an influence on the clathrate structure of liquid 

water which reduces its reaction rate with CO2. NiNPs surface are unaffected 

with the change in clathrate structure of DI water. This is one of the reasons for 

the observed enhancement in the catalytic activity of NiNPs. The NiNPs also 

have a surface plasmon resonance (SPR) in the visible range that could lead to 

increased rate of H2O dissociation on the NiNPs surface. Dissociation of H2O on 

the NiNPs surface is the first step of hydration of CO2. Therefore the increase in 

H2O dissociation due to SPR is considered as another reason for the photo-
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catalytic enhancement of CO2 hydration by NiNPs. CO2 saturation in NiNPs 

suspension and catalytic activity of NiNPs is tested at temperatures between 

10-60 °C. There is a threefold increase in CO2 saturation concentration in 

presence of NiNPs and is independent of temperature. The NiNPs catalysis 

show temperature dependence in the temperature range of 10-60 °C. The 

optimum catalytic activity was observed between 20-30 °C. 

6.1 Photo- catalysed hydration of CO2 by NiNPs 

 Nickel is an active photo-catalyst for various oxidation and reduction 

reactions like hydrogenation, desulfurization, reduction of organic compounds 

etc [1-3]. Therefore the the photo-catalytic activity of NiNPs for the hydration of 

CO2 is studied. The experimental procedure for the photochemical study is 

presented in chapter 3 section 3.3.7. All the experiments were repeated five 

times and the average data is presented below. 

6.1.1 CO2 hydration kinetics in absence and presence of light (with and 

without IR filter) 

  

Figure 6.1: The average values of change in pH of DI water (squares) and NiNPs 

suspension (circle) when CO2 is bubbled (a) in the presence of solar simulator with 

wavelength range of 200-2400 nm and (b) in the dark. 
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 Figure 6.1a and 6.1b show the pH changes when CO2 is bubbled in DI 

water or NiNPs suspension in the presence and absence of light, respectively. 

The solar simulator used as a light source had an emission of light in the 

wavelength range of 200-2400 nm. The pH profiles show a rapid change in the 

pH in the presence of the NiNPs than in its absence. The results observed in 

this study are similar to the ones observed previously [4-6] (chapter 4 section 

4.3 and chapter 5 section 5.7.2). The activity of the NiNP catalysis can be 

evaluated by determining the proximity of the catalysed and uncatalysed pH 

profiles. This is done by comparing the area under the uncatalysed and 

catalysed pH change curves.   

 Comparison of the area between the pH profiles in figure 6.1a and 6.1b 

can be used to demonstrate an effect of light on the catalytic rate of CO2 

hydration in the presence of NiNPs. The integration of the curves provides a 

numerical value for comparison of catalytic activity. The difference in the 

integral value (between catalysed and uncatalysed curves) gives a numerical 

comparison of the proximity of the catalysed and uncatalysed pH profile curves. 

Comparing the area thus obtained under different irradiation conditions provides 

information on the enhancement in the activity of the catalyst. Numerical 

integration of the pH profiles in figure 6.1a and 6.1b was carried out in order to 

determine the area between the pH profiles in both the graphs. It was observed 

that area obtained under the curve shown in fig 6.1a is 24.1 % higher than that 

obtained under the curve shown in fig 6.1b. This qualitatively proves that there 

is an enhancement in the comparative activity of NiNPs in the presence of light 

than in dark. 
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Figure 6.2: Average values of pH change profile when CO2 is bubbled in DI water 

(square) or NiNPs suspension (circle) with light but in the (a) absence and (b) presence 

of IR filter with solar simulator emission wavelength range of 200-1200 nm. 

 To investigate the effect of IR radiation from solar light simulator on the 

CO2 hydration reaction another set of experiments were carried out using an IR 

filter. The IR filter limited the emission of the wavelength of the solar simulator 

to 200-1100 nm (see emission spectra in Appendix III). The power of the 

radiation received at the sample position did not show any considerable 

decrease due to the presence of the IR filter. The power of the solar simulator 

was measured at the sample position as mentioned in chapter 3 section 3.3.8. 

Figure 6.2a and 6.2b shows the pH profiles in the absence and presence of the 

IR filter, respectively, when CO2 was bubbled in DI water or NiNPs suspension. 

It is observed from the figures 6.2a and 6.2b that the pH change in the presence 

of NiNPs is faster than in its absence. The NiNPs show similar pH profile (figure 

6.2a and 6.2b) in presence and absence of the IR filter when compared to the 

uncatalysed reaction. For the uncatalysed CO2 hydration reaction pH change 

profile is slower in presence of IR filter as compared to its absence. It can thus 

be concluded that the uncatalysed reaction is also affected by the presence of 

IR filtered light. 

 In order to evaluate the effect of NiNPs in the presence and absence of 

the IR irradiations, numerical integration was also carried out to determine the 
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area between the catalysed and uncatalysed pH profiles. It was observed that 

there was an increase in area by 12.0% in absence of the IR filter than in its 

presence. Therefore IR irradiation plays an important role in the hydration of 

CO2.  

 Comparing the area under the curves in figure 6.1b and figure 6.2b it was 

found that there was an increase in the area by 10.8% under solar irradiation 

using IR filter as compared to the dark. The increase in area between the 

curves provides a qualitative proof that light does have an effect on the 

comparative activity of NiNP catalysed and uncatalysed CO2 hydration. 

6.1.2. Chemical characterization of the NiNPs before and after CO2 

bubbling 

  

Figure 6.3: XPS spectrum of NiNPs a) before bubbling and b) after bubbling of CO2 

under solar irradiation without filter 

 In figure 6.3a and 6.3b the X-ray photoemission spectra of NiNPs before 

and after CO2 bubbling (in presence of light without filter) show that the NiNPs 

have presence of NiO component (at 854.0 eV and 854.4 eV in figure 6.3a and 

6.3b, respectively [4, 7, 8]) and larger metallic Ni (at 852.6 eV and 852.9 eV in 

figures 6.3a and 6.3b, respectively [4, 7, 8]) on its surface. The peaks at 855.7 

eV and 855.9 eV are assigned to Ni(OH)x and Ni(HCO3)x species [4] whereas 

the peak at 861.0 eV and 861.5 eV correspond to the collective plasmon peak 

of Ni [4, 7, 8] 
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6.1.3 Discussion on photochemical effect on hydration of CO2 (catalytic 

and non-catalytic)   

 It has been reported that metallic Ni and NiO both collectively work as a 

photo-catalyst for water splitting reaction in the presence of semiconductor 

(TiO2) materials [9-11]. In this process the semiconductor generates an 

electron-hole pair by absorption of light. The electron is then used by metallic 

nickel to produce H2 gas and the hole is used by NiO to produce O2 gas [9-11]. 

It is also known that water can dissociate on both the Ni and NiO surface [12]. 

Therefore it is reasonable to assume here that the water dissociation is 

enhanced on the NiNPs surfaces in the presence of light, enhancing the 

observed hydration of CO2. 

 It is known that water absorbs light in the UV-Vis and IR range for 

excitation of various OH stretching and bending vibrations [13-15]. Liquid water 

exists in form of clathrate like structure and on absorbance of sunlight there are 

changes in this structure [16-18]. Liquid water consists of two different types of 

clathrate structures, structure 1 (SI) and structure 2 (SII) [16-18] each consisting 

of the 512 (pentagonal dodecahedra) because there are 12 faces of 

pentagonally bonded water molecules encapsulating a cavity [19]. It is known 

that upon sunlight irradiation the water molecule itself acts as a guest molecule 

in this cavity of its clathrate structure [16-18]. Other gas molecules can stay 

within this cavity of the clathrate structure of water, having less transitional 

motion, but more rotational and vibrational motion [19]. The CO2 molecule is a 

guest molecule in this clathrate structure of liquid water [18, 20] (generally 

termed as CO2(aq)) when CO2 is bubbled in water before undergoing hydration 

reaction. Liquid water clathrate structures can accommodate guest molecules 
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between diameters 0.4-0.7 nm [19]. The CO2 molecule has a diameter of 0.33 

nm [21]. Therefore it is expected that the change in the clathrate structure of 

liquid water may provide additional stability to the guest CO2 molecule from the 

hydration reaction before undergoing the hydration reaction itself. This could 

explain the slow lowering of the pH change in the uncatalysed hydration of CO2.    

 It has been demonstrated that defects in the Ni lattice (i.e. steps in the 

lattice) are one of the active sites for the dissociation of water to H(ads) and 

OH(ads) [22-25]. The dissociation energy of water on Ni surface can be 

calculated by density functional theory (DFT) simulation. The dissociation 

energy was calculated to be 90.69 kJ/mol for Ni [111] surface and 36.66 kJ/mol 

for Ni [211] surface [24]. The uncatalysed dissociation energy of water is 493.04 

kJ/mol [26, 27]. This reduction in dissociation energy of water on the NiNPs 

surface is the first step in the catalytic hydration of CO2. The change in the 

calthrate structure of water does not affect the water dissociation on the NiNPs 

surface. Therefore, whether there is light or dark, an enhancement in the rate of 

hydration of CO2 is observed in the presence of NiNPs.  

 

Figure 6.4: UV-Vis absorption spectrum of 30 ppm NiNPs suspension. 

 It is also known that NiNPs have a surface plasmon resonance (SPR) in 

the UV-Vis range. SPR have been extensively used for surface enhanced 
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Raman scattering (SERS) [28, 29], and recently used for catalytic applications 

as well [30-33]. Figure 6.4 shows the UV-Vis absorption spectrum of 30 ppm 

suspended NiNPs. It can be observed from figure 6.4 that NiNPs have a SPR 

peak at 400 nm. The SPR peak for NiNPs that have been reported lie between 

355-422 nm [34, 35]. The presence of the peak shows that NiNPs absorb light 

in the UV-Vis range and this SPR may also contribute in further enhancing the 

catalytic activity of NiNPs for hydration of CO2 in presence of light.  

 Christopher et al. [32, 33] recently showed that silver nanoparticles 

(AgNPS) can enhance the rate of oxidation of ammonia and carbon mono oxide 

under sunlight irradiation. The excited AgNPs plasmons help populate the O2 

molecules on their surface to form negative ion state enhancing the O2 

dissociation reaction [33]. Similarly Xu et al. [30] demonstrated that AgNPs can 

work as surface plasmon assisted catalyst (SPAC) for the reversible reactions 

of 4-aminothiophenol (4ATP) to 4,4′-dimercaptoazobenzene (DMAB). They 

found that the reversible nature of 4ATP-DMAB conversions by surface 

plasmon excitation is a function of their respective oxidative or reductive 

environments [30]. It is postulated here that in this study the surface plasmon 

resonance of NiNPs may enhance the H2O dissociation on the Ni surface 

leading to higher reaction rates of CO2 hydration.  

6.2 Temperature dependent study of kinetics of CO2 hydration 

6.2.1 Effect of temperature on the saturation of CO2 in presence of NiNPs.  

 Chapter 3 section 3.2.1 describes the procedure used for studying the 

CO2 saturation concentration in NiNPs suspension and DI water at different 

temperatures. Each experiment was repeated five times and average data is 

presented. It is known that solubility of gases decrease with increase in 
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temperature [36].  The same trend of decrease of the amount of CO2 saturation 

concentration (with and without NiNPs) at temperatures between 10-60 °C is 

observed here as seen from figure 6.5. There is a linear decrease in the 

concentration of CO2 with increase in temperature in the absence of NiNPs. The 

values of the titration at 20 °C were same as those reported in section 4.2, 

chapter 4 [4] and section 5.3.2, chapter 5. The increase in the saturation 

concentration of CO2 in presence of NiNPs is approximately constant at all 

given temperatures at about 85.3 ±7 mM. The data suggest that the 

enhancement in CO2 saturation concentration is not affected with temperature. 

(see further discussion in chapter 8) 

 

Figure 6.5 Average values of saturated CO2 concentration in DI water and NiNPs suspension as 

a function of increase in temperature. 

6.2.2 Kinetic study of CO2 hydration at different temperatures 

 The pH of solutions depends on the temperature [37, 38]. The pH 

change profiles of CO2 bubbling experiments were also carried out at different 

temperatures to validate the observation of catalytic activity of the NiNPs 

catalyst following the procedure described in chapter 3 section 3.3.8. 
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Figure 6.6: Average values of change in pH of DI water (square) or NiNPs suspension (circle) 
when CO2 is bubbled through liquid maintained at temperatures (a) 10 °C, (b) 20 °C, (c) 30 °C, 
(d) 40 °C, (e) 50 °C and (f) 60 °C. 

Figure 6.6 shows the pH change profile of DI water and NiNPs 

suspension at different temperatures. pH is a function of temperature therefore 

there is a change observed in the initial pH of the suspension or DI water at 

different temperatures. Catalytic activity of NiNPs was observed in the 

temperature range 10-60 °C. It is observed from the figure 6.6 that as the 

temperature changes difference in the area under the catalysed and 
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uncatalysed pH profile curves also change. A larger catalytic activity was 

observed for the NiNPs to catalyse the hydration of CO2 at ambient 

temperatures (20-30 °C) than that at lower (10-20 °C) or higher (40-60 °C). It is 

observed that with the change in temperature there is a change in the reaction 

kinetics of the non-catalysed hydration of CO2. For all the profiles for the pH 

change for non-catalytic reaction (the filled squares in figure 6.6 (a-f)) of CO2 

hydration a reverse S-shaped curve observed consistent with the previously 

observed results ((chapter 4 section 4.3, chapter 5 section 5.5.2) and chapter 6 

section 6.1)). It is evident form figure 6.6 (c) that the reaction rate is slowest at 

30 °C. It is known that solubility of CO2 deceases with increase in temperature 

[39, 40] that would also affect the rate of hydration reaction of CO2. The NiNPs 

suspension show similar exponential pH change profile at in the temperature 

range of 10-60 °C.  

6.3 Conclusion 

 The catalytic activity of the NiNPs was considered in the presence of the 

artificial solar simulator, with and without IR and dark as control. It is observed 

that the rate of hydration of CO2 is photo catalytically enhanced in presence of 

NiNPs with both IR and visible spectrum. It was also found that the rate of 

uncatalysed hydration of CO2 depends on the structure of liquid water and is 

affected by sunlight. The change in the clathrate structure of liquid water does 

not affect the NiNPs surface that being the one of the reason for the observed 

catalytic activity of NiNPs. The NiNPs absorb light in the UV-Vis range and this 

might be another reason for the observed enhancement in the catalytic 

hydration of CO2 by NiNPs in presence of light. It was also observed that the 

amount of CO2 saturation in DI water in the presence of the NiNPs is 
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independent of temperature. The NiNPs showed catalytic activity at all tested 

temperatures with best activity at ambient temperatures (20-30 °C).  
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Chapter 7: 

Catalytic activity of NiNPs for 

hydration of CO
2
 (Part IV): Possible 

applications 

 

 

 

 

Chapter 7 considers the possible applications for the NiNPs catalysis for 

hydration of CO2. These studies include CaCO3 precipitation in a non-saturated 

CO2 solution and the CO2 absorption in carbonate solutions. The influence of 

heating on the catalytic activity of NiNPs was investigated. The oxidation of the 

NiNPs surface due to the heating was analysed using XPS and XRD.  

7.1 CaCO3 precipitation yields and analysis 

 The results obtained in chapter 4 and 6 show that there is an increase in 

the saturation (equilibrium) concentration of CO2 in NiNP suspension as 

compared to DI water. The aim of this study is to observe the amount of CO2 

absorption in a non-equilibrium condition, by monitoring the concentration of 

CO2 in a pre-saturation condition, by CaCO3 precipitation. The experimental 

details are described in chapter 3, section 3.2.10 where CO2 is bubbled in DI 

water or NiNPs suspension and the CaCO3 is precipitated using 0.1M NaOH 

and 0.1M CaCl2 solution. Similar experiments were carried out by Favre et al. 
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[1] to determine the catalytic activity Carbonic Anhydrase for CO2 hydration by 

CaCO3 precipitation.  

 

Figure 7.1: Average values of CaCO3 precipitate obtained by addition of CaCl2 and 

NaOH in DI water and NiNPs suspension after CO2 bubbling at different time intervals.  

 

 Figure 7.1 shows the amount of CaCO3 precipitated in presence and 

absence of NiNPs in DI water as a function of CO2 gas bubbling of time. The 

calcite phase of CaCO3 was confirmed using XRD (see below figure 7.4). The 

CaCO3 precipitate yield in the presence of the NiNPs was three times higher 

than that of DI water, similar to the results observed by Bhaduri and Šiller [2] 

and chapter 4 (section4.2) and chapter 6 (section 6.2.1). The experiments were 

performed at constant temperature of 20 °C. Figure 7.2a and 7.2b, are optical 

images of the precipitates obtained in absence and presence of NiNPs, 

respectively.  
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Figure 7.2: Precipitate of CaCO3 by NaOH and CaCl2 solution; a) Control and b) with NiNPs. 

 SEM Figure 7.3 shows the SEM images of the CaCO3 precipitate in 

presence of NiNPs. Micron sized (2-10 µm) spherical precipitates are observed. 

XRD of the precipitate is shown in figure 7.4, which confirms the presence of 

the calcite phase of CaCO3 [3]. The diffraction plane of Ni [111] is also present 

[4] which indicates also the presence of NiNPs in the precipitates. Therefore the 

NiNPs could act as nucleation sites for the crystals to grow, since the NiNPs are 

spherical in shape (see figure 4.1 in chapter 4), the carbonate precipitate are 

also spherical (instead of normal cubic shape [5, 6]).  

 

  

Figure 7.3: SEM images of the precipitate of CaCO3 obtained in presence of NiNPs catalysed 
hydration of CO2 using NaOH and CaCl2. 

 

A B 
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Figure 7.4: XRD of the precipitate of CaCO3 obtained in presence of NiNPs catalysed hydration 
of CO2 using NaOH and CaCl2 [3]. Insert is the magnification of the later end of the XRD pattern 
to show the Ni [111] peak [4]. 

 

7.2 Enhancement of CO2 absorption rate in 50 wt% potassium carbonate 

solution 

In the previous section the precipitation of CaCO3 confirmed that the 

NiNPs enhance the CO2 saturation capacity of DI water. Enhanced rate of 

hydration reaction can also affect the performance of many gas absorbers [7], 

specially amines [8] and carbonate [7] absorption systems that are commonly 

used for separation of CO2.  In order to study the effect of NiNPs on absorption 

solutions for enhanced separation of CO2, 30 ppm of NiNPs were dispersed in 

50% (weight %) of potassium carbonate (this concentration is used industrial 

application [9]) and CO2 gas was passed through the solution (for details of the 

experiment see chapter 3 section 3.2.11). Potassium carbonate solutions are 

commonly used in industry for separation of CO2 due to its higher CO2 loading 

capacity as compared to sodium carbonate solutions [7, 9, 10]. The carbonate 

absorption process for CO2 separation is limited with low reaction kinetic rates 

[9]. Therefore the current study focuses on the effect of NiNPs on the rate of 

CO2 absorption in 50 wt% K2CO3 solution by measuring the increase in weight 
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of the carbonate solution for a prolonged exposure to CO2 gas bubbled through 

the solution (for experimental details see chapter 3, section 3.2.9). The increase 

in weight is proportional to the amount of CO2 captured by the 50 wt% K2CO3 

solution.  

   

Figure 7.5 Average values of gravimetric uptake of CO2 in potassium carbonate solution (with 
and without NiNPs circles and squares, respectively) with a fine bubbler (Pyrex 1, porosity 100-
150 µm).  

Figure 7.5 shows the results of gravimetric uptake of CO2 in 50 wt% 

K2CO3 solution in the absence and presence of NiNPs. The experiment was 

carried out until no additional change in the weight of the reaction vessel was 

observed. The reactions of the absorption process care given by the following 

reaction equations 3a-3e. 

𝐶𝑂3
2− + 𝐻2𝑂  ←→  𝐻𝐶𝑂3

− + 𝑂𝐻−        3a 

𝐶𝑂2 + 𝑂𝐻
−   ←→  𝐻𝐶𝑂3

−          3b 

𝐶𝑂2 + 𝐻2𝑂  ←→  𝐻2𝐶𝑂3          3c 

𝐻2𝐶𝑂3   +  𝐻2𝑂 ←→  𝐻3𝑂
+ + 𝐻𝐶𝑂3

−      3d 

𝐶𝑂3
2− + 𝐻+   ←→  𝐻𝐶𝑂3

−        3e 
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Carbonate solutions (K2CO3 and Na2CO3) have a high pH (i.e. >11) and as CO2 

is bubbled into the carbonate solution its pH drops [11]. The reaction 3a takes 

place when the K2CO3 is instantaneously dissolved in DI water and CO2 

hydration reaction takes place via reaction 3b till the pH reaches 10 [12].  

Reaction mechanisms 3b and 3c simultaneously occur between pH 10 and 8 

with reaction 3c being the slowest step [12].  The reactions 3d and 3e like 3a 

are instantaneous [13]. Thus CO2 hydration is the most important step in the 

CO2 capture when using potassium carbonate solutions. Therefore, in summary 

as the CO2 and carbonic acid starts reacting with the carbonate solution, the pH 

of the solution changes and the reaction mechanisms of CO2 hydration changes 

[11] from 3b to 3c depending on the pH of the solution [12]. From figure 7.5 it 

can be observed that initial rate of CO2 absorption is similar for both 50 wt% 

K2CO3 solution with and without NiNPs catalyst but after 60 minutes the rate of 

reaction is faster in presence of the NiNPs. This kind of enhancement in CO2 

absorption is a result of the carbonate-bicarbonate buffering ability of carbonate 

solutions. Pinsent and Roughton [14] report that the rate of CO2 hydration 

increases as the bicarbonate/carbonate ([HCO3
-]/[CO3

2-]) ratio increases. 

Therefore as CO2 reacts with the carbonate solution the bicarbonate ions are 

formed (following reaction 3b) (the value of the numerator increases while that 

of the denominator decreases), leading to the observed autocatalytic 

enhancement absorption of CO2.  

Figure 7.5 shows that in the presence of NiNPs there is the increase in weight 

of the carbonate solution (after saturation) due to enhanced kinetic rate of CO2 

hydration (but lower than the full capacity of the carbonate solution, which is 

15.92 g, if there is 100% conversion of K2CO3 to KHCO3). There is an increase 

in CO2 loading (mol of CO2 per mol of K2CO3) by ~27%. 
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Table 7.1: Rate of CO2 absorption in K2CO3 solutions in with and without of NiNPs. 

System Rate (moles/min) Regression (R
2
) 

Potassium carbonate 0.0048 0.963 

Potassium carbonate + NiNPs 0.00852 0.971 

 

 In figure 7.5 the rapid increase in CO2 absorption after 60 min until 

saturation is used to estimate the in enhancement in absorption rate of CO2 in 

carbonate solutions in presence of NiNPs. The data points between 60 min and 

saturation are linearly fitted (see appendix III) and the data is shown in table 

7.1. It can be observed that the data showed a good linear fit (R2>0.96) and the 

slope can be used to compare the enhancement in rate. There is ~77% 

increase in the absorption rate of CO2 in carbonate solution in the presence of 

NiNPs under the same operating conditions.  

7.3 Temperature treatment of NiNPs  

7.3.1 Chemical characterization of NiNPs after temperature treatment 

When carbonates are used for the separation of CO2 from flue gases, the 

solvent is regenerated by heating the CO2-saturated carbonate solution to 

release the trapped in CO2 [7]. Therefore in order to use NiNPs as enhancers in 

carbonate separation technology as set of experiments were performed to test 

the effect of heating on the catalytic activity of NiNPs was studied by XPS. 

Figure 7.6 shows the surface species present on the NiNPs surface before and 

after heat treatment (experimental detail in chapter 3 section 3.2.10). Three 

different species were observed in Ni 2p3/2 spectra for NiNPs before and after 

heat treatment respectively. In figure 7.6a the peaks at 852.5 eV, 854.1 eV and 

855.7 eV can be assigned to Ni0, NiO and Ni(OH)x respectively [15] and figure 
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7.6b the peaks at 852.4 eV, 854.0 eV and 855.7 eV can be assigned to Ni0, NiO 

and Ni(OH)x respectively [15]. The peak at 861.0 eV in figure 7.6a (or 860.9 eV 

in figure 7.6b) is assigned the value for a collective plasmon peak of Ni [2, 16, 

17].  The presence of the two peaks in the O 2s spectra shows the presence of 

oxygen in two oxidation states. In figure 7.6c the peak at 529.3 eV corresponds 

to NiO [15] whereas the peak at 531.0 eV corresponds to NiOHx [18]. The 

existence of the NiOHx is due to the dissociative adsorption of water from the 

atmosphere. It is know that the OH bond on the surface has a binding energy 

difference of 1.8 eV higher than that of NiO [18]. Thus the peak at 531.0 eV is 

assigned to NiOHx. The peaks in O 1s at 529.5 eV and 531.2 eV after heat 

treatment observed in figure 7.6d also correspond to NiO [15] and NiOHx [18, 

19]. The C 1s peak in figure 7.6e and 7.6f at 284.4 eV can be attributed to 

adventitious carbon [2, 16, 17]. The survey spectrum shows presence of Ni 3p, 

Ni 2p, C 1s and O 1s peaks for NiNPs before (figure 7.6g) and after (figure 

7.6b) heat treatment. 
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Figure 7.6: XPS results of the NiNPs before (a. Ni 2p3/2, c. O 1s, e. C 1s and g. Survey) heat 

treatment and after (b. Ni 2p3/2, d. O1s, f. C1s and h. Survey) heat treatment at 150 °C for 8 

hours in air.  
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Figure 7.7: X-ray diffraction pattern of the NiNPs (a) before and (b) after heat treatment at 150 

°C for 8 hours. 

The figure 7.7 shows the X-ray diffraction pattern of the NiNPs before and after 

heat treatment at 150 °C for 8 hours. The XRD pattern detects the bulk changes 

taking place in the NiNPs due to heat treatment. The crystal planes observed as 

peaks can be associated to the [111], [200], [220], [311], and [222] planes 

associated with 2θ = 44.43°, 51.78°, 76.26°, 92.77° and 98.27° respectively of 

cubic nickel lattice with space group of Fm-m3 [20, 21]. The absence of NiO 

peaks (2θ = 43.20° (most intensive), 62.87°, 75.20° and 79.38°) from the XRD 

diffraction patterns shows that no any significant bulk oxidation of the NiNPs 

occurred during the heat treatment.  

7.3.2 Catalytic activity of temperature treated NiNPs for CO2 hydration 

  

Figure 7.8: average values of pH changes during bubbling of CO2 through DI water (a) heat 
treated NiNPs (at 150 °C for 8 hours in air) suspension and (b) without heat treatment. 
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The catalytic activity of the heat treated NiNPs was also studied. The 

experiment was repeated 3 times and average data is presented. The figure 7.8 

shows the pH change profile when CO2 is bubbled in heat treated NiNPs 

suspension and NiNPs suspension without heat treatment. The catalytic activity 

of NiNPs was observed even after heat treatment (150 °C for 8 hours in air) 

thus making the NiNPs suitable for use as enhancers in carbonate absorber 

systems.  

7.4 Conclusion 

 It was observed that the presence of NiNPs increased the precipitation of 

CaCO3 three times in DI water compared to the precipitation without NiNPs. 

The XRD and SEM results show that the precipitate are calcite with small 

spherical structures. The results show that the NiNPs work as active enhancers 

for carbonate absorption tests. The gravimetric results show that the NiNPs 

enhance the absorption of CO2 in K2CO3 solutions. The NiNPs with and without 

heat treatment show the presence of Ni and NiO species on the surface. The 

XRD of the NiNPs (with and without heat treatment) do not show any significant 

bulk oxidation of the NiNPs.  The heat treated NiNPs showed catalytic activity 

for the hydration of CO2. 
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Chapter 8: 

Vapour-Liquid Equilibrium of CO
2
-H

2
O 

system in presence of nanoparticles  

 

 

 

 

 

 

 The present chapter draws a preliminary understanding of the vapour-

liquid equilibrium (VLE) of the CO2-H2O system in presence of nanoparticles. 

Some results in chapter 4-7 have been used to develop this understanding of 

influence of nanoparticles (solid particles) on the VLE of CO2-H2O system. 

Surface tension of the liquid is one of the parameters that affect VLE. It is 

observed that there is change in surface tension of the nanoparticle suspension 

as compared to DI water. This could be reason for the new CO2-H2O VLE 

leading to the increase in saturation concentration of CO2. 

8.1 Vapour-liquid equilibrium of CO2-H2O 

 Vapour-liquid equilibrium (VLE) defines the distribution of the 

composition of the species 𝑖 in the gas and liquid phase when gas absorption is 

involved. The distribution of the species 𝑖 in the gas and liquid phase is given by 

Henry's law for ideal solution and Roult's law for dilute solutions. These laws 
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provide information of the final state of the absorption process that is governed 

by thermodynamic laws. Even though thermodynamics can predict the final 

absorption limit of a gaseous species 𝑖 in a liquid it is unable to determine the 

rate of absorption.  

 When gas-absorption with chemical reaction is considered it is found that 

it is in violation of Henry's law [1]. Henry's law may provide information of the 

unreacted absorbed species but it does not account for the reacted species. 

Considering a non-reversible reaction of gas reactant Ag with the liquid reactant 

Bl (i.e. water) occurring in the liquid phase leading to a product Caq in the 

aqueous phase. The reaction can be written as 

𝐴𝑎𝑞 + 𝐵𝑙  →   𝐶𝑎𝑞 

Therefore the total amount of species A in the liquid is given as 𝐴𝑎𝑞 + 𝐶𝑎𝑞 where 

the 𝐴𝑎𝑞 is the amount of unreacted A in the liquid and 𝐶𝑎𝑞 accounts for the 

amount of A converted to C, depending on the stoichiometric coefficient of the 

reaction [2].  

 In the case of a reversible reaction  

𝐴𝑎𝑞 + 𝐵𝑙  
𝑘−1
← 

𝑘1
→  𝐶𝑎𝑞 

the reaction itself has an equilibrium coefficient K that is given by the equation 

[2, 3]  

𝐾 = 
𝑘1
𝑘−1

= 
[𝐶𝑎𝑞]

[𝐴𝑎𝑞][𝐵𝑙]
 

where 𝑘1is the kinetic constant for forward reaction, 𝑘−1is the kinetic constant 

for the reverse reaction and [Aaq], [Bl], [Caq] are the concentration of the 
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reactants and products given by the above reaction. The equilibrium constant 

thus gives the relationship between the unreacted reactants and the products. 

In aqueous systems the concentration of water is not considered as it is the 

continuous phase. Thus CO2-H2O equilibrium is given as [3, 4]  

𝐾 = 
𝑘1
𝑘−1

= 
[𝐻𝐶𝑂3

−][𝐻3𝑂
+]

[𝐶𝑂2(𝑎𝑞)]
= 10−2.8 = 1.6 × 10−3 

 Due to this relationship the amount of acid produced in the reaction is 

very low as compared to the CO2(aq) value. The value of this acid is 

considerable when studying the reaction of CO2 in DI water which can reduce 

the pH of water to 4 (at 1 atm partial pressure of CO2). Due to the small amount 

of H2CO3 in relation of CO2(aq), leads to the vapour liquid equilibrium of CO2-H2O 

system to follow Henry's law.  

8.2 CO2-H2O equilibrium in nanoparticle suspensions 

 The review of literature suggests that the reports on the effect of solid 

particles on the vapour-liquid equilibrium are scanty. However, the dynamic 

mass transfer process has been studied in detail [5, 6]. It may be noted that 

Bhaduri and Šiller [7] were the first to report that the solid particles of sub-

micron size affect the vapour-liquid equilibrium. As their study was mainly 

related to catalysis, experimental observation were not analysed in detail. 

Recently Liu et al. [8] reported that the absorption capacity of solutions can be 

increased by addition of solid particles. They considered glycol with ZIF-8 

(zeolitic imidazolate framework-8) as their system of analysis. CO2 does not 

react with glycol and therefore the ZIF-8 and glycol system is a non-interactive 

system. Liu et al. [8] have not considered vapour-liquid equilibrium their study. 
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 In the studies described in chapter 4-7 it is observed that the vapour 

liquid equilibrium is affected due to the presence of the nanoparticles. The study 

showed that the CO2 is observed as absorbed specie on the nanoparticle 

surface and is also reacting with the solvent (i.e. water) to form carbonic acid in 

solution. A detailed analysis of vapour-liquid equilibrium was not carried out as it 

is beyond the scope of the thesis and area of study. However, some general 

comments have been made on the basis of the results presented in chapters 3-

7.  

 

Figure 8.1: Average values of CO2 equilibrium concentration in different nanoparticle 

suspension at different nanoparticle concentration. 

 It can be observed from figure 8.1 that the material of the nanoparticle 

and surface chemistry affect the of equilibrium concentration of CO2 in the 

presence of nanoparticles in suspension. The concentration values observed in 

figure 8.1 reflect the total CO2 concentration i.e. CO2(aq) and H2CO3 together. It 

is observed that for different oxide nanoparticles the equilibrium concentration 

of CO2 is independent of particle concentration. In the case of NiNPs the CO2 

equilibrium concentration increases initially with particle concentration, reaches 



233 
 

a maxima and then reduces with further increase in NiNPs concentration. These 

results show that the material of the nanoparticles, in particular their interaction 

with the solution (i.e. metallic, oxide etc) would be a factor affecting the CO2 

equilibrium concentration. Baltrusaitis and Grassian [9] observed that presence 

of a thin aqueous layer on oxide nanoparticle (Al2O3 and Fe2O3) surface can 

increase the CO2 adsorption capacity (gas-solid equilibrium) up to 5 times 

compared to the absence of the aqueous layer. They suggest that this increase 

in adsorption capacity is due to the formation of hydroxyl (OH) groups on the 

nanoparticle surface.  

8.3 Distinguishing between adsorbed and free CO2(aq) in NiNPs suspension 

 

Figure 8.2: Average amount of CaCO3 precipitated when CO2 is bubbled in DI water or 30 ppm 

NiNPs suspension under the same different bubbling time. 

 As water reacts with CO2 to form carbonic acid and there is bicarbonate 

ions on the surface of the NiNPs, there might exist a relationship between the 

free bicarbonate ions in solution and the bicarbonate ions on the surface of the 

NiNPs. The precipitation study (figure 8.2) indicates that the absorbed CO2 can 

be precipitated as CaCO3 out of solution. The amount of NiNPs added in the 

solution is ~3 mg whereas the amount of CaCO3 precipitated from the NiNPs 
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solution is nearly 400 mg, compared to ≈120 mg of CaCO3 obtained in the 

control sample. Therefore 3 mg compared with 400 mg is very low to contribute 

to ≈280 mg of excess carbonate obtained. This suggests that there is an 

interaction between the carbonate species in solution and the carbonate 

species on the NiNPs surface. A more detailed analysis of the absorption 

system would lead to a new understanding of VLE and Henry's law when 

applied to suspension or slurry systems, similar to the one suggested by 

Dankwerts for gas-liquid reaction system [1] (section 8.1).  

8.4 Effect of temperature on CO2 equilibrium concentration in NiNPs 

suspension 

 

Figure 8.3: Average values of CO2 equilibrium concentration at different temperatures in DI 

water and 30 ppm NiNPs suspension. 

 From figure 8.3 it is observed that the difference of amount of CO2 

absorbed by the NiNPs suspension as compared to that of DI water is 

independent of temperature. This might be due to the strong interaction 

between the adsorbed species of CO2 (as bicarbonate ions) on the surface of 

the NiNPs which could be independent of temperature. The temperature range 

studied are low, higher temperatures ranges might have different effect on the 
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VLE of CO2-H2O-NiNPs system. Adsorption-desorption studies of bicarbonate 

ions on the NiNPs surface would provide an insight for why the excess CO2 

absorbed in the NiNPs suspension does not change with temperature. 

8.5 Discussion on VLE of CO2-H2O system in presence of nanoparticles 

 All the above results suggest that there is a change in the vapour liquid 

equilibrium of CO2-H2O system in presence of nanoparticles. The previous 

assumptions made in chapter 4 section 4.2 and chapter 5 section 5.5.2 on 

adsorption of CO2 on the surface of the NiNPs do not justify the results obtained 

in the above CaCO3 precipitation studies (section 8.3). Therefore it is suspected 

that there would be another phenomena that would have affected the vapour-

liquid equilibrium of CO2-H2O system in presence of the nanoparticles.. 

 Surface tension of the liquid is one of the parameters that affect the 

dynamic equilibrium of distribution of molecules in gas and liquid phase of a 

species [10]. The presence of surfactants or nanoparticles can increase or 

decrease the free forces action at line of tension between the gas and liquid 

thus affecting the vapour-liquid equilibrium [10]. It is known that the presence of 

nanoparticles increases or decreases the tension of the liquid-gas interface [11]. 

In the case of oil recovery from oil wells (carbonate reservoir), SiO2 

nanoparticles have shown an enhancement in oil recovery [12]. The presence 

of the particles alters the wettability of the reservoir from oil-wet to water-wet 

thus enhancing the recovery of oil from oil fields [12]. Similarly Murshed et al. 

[13] show that the presence of nanoparticles at oil-water interface decreases 

the surface tension between the liquids and increases thermal diffusion across 

the interface. Therefore it is reasonable to assume here that, the influence of 
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nanoparticles on surface tension could lead to the new vapour liquid equilibrium 

in CO2-H2O system. 

 Esmaeilzadeh et al. [14] studied the effect of ZnO2 nanoparticles 

including surfactants on liquid-liquid, liquid-air and liquid-solid interface 

properties. Their results show that at a given concentration of surfactants the 

surface tension of liquid-air system decreases with increasing particle 

concentration. Wi et al. [15] also reported similar decrease in surface tension of 

the nanoparticle suspension with increasing nanoparticle concentration. Vafaei 

et al. [16] studied the influence of Bi2Te3 nanoparticles on surface tension of air-

nanoparticle suspension. They found that by increasing the nanoparticle 

concentration there was a decrease in the surface tension of the suspension.  

 

Figure 8.4 Average values of surface tension of different nanoparticle suspensions at different 
nanoparticle concentration at room temperature. (Square- NiNPs, Circle- Fe2O3NPs and 
Triangle- NiONPs) 

  Figure 8.4 shows the surface tension of different nanoparticle 

suspensions having different nanoparticle concentration measured at room 

temperature. The precision of the surface tension meter was checked by 

measuring the surface tension of water for ten repeats. The surface tension of 
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water was measured as 73.1 ±0.1 dyne/cm which is close to the literature value 

of 72.7 dyne/cm [17, 18]. It can be observed from figure 8.4 that by increasing 

the concentration of nanoparticles in suspension there is a reduction in the 

surface tension of the suspension. For NiNPs (black square in figure 8.4) it can 

be seen that as the concentration of the NiNPs there is a decrease in the 

surface tension till a minima is reached at 30 ppm. After 30 ppm there is an 

increase observed in the surface tension of NiNPs suspension. The decrease in 

surface tension follows a similar trend of increase in saturated concentration of 

CO2 observed in figure 8.1. The reason for this could be, at higher 

concentration the agglomeration of the particles in the bulk and low particle 

concentration at the surface of the suspension (section 5.2.2, chapter 5) [11]. 

Similar trend in decrease in surface tension with increasing nanoparticle 

concentration, reaching a minima and then increase in surface tension with 

increase in nanoparticle concentration was observed by Jeong et al. [19] (for 

Al2O3 nanoparticles in water) and Pantzali et al. [20] (for CuO nanoparticles in 

water). 

 Fe2O3NPs suspension (red circles in figure 8.4) show minimal increase in 

the surface tension with increase in concentration of the Fe2O3NPs. NiONPs 

suspension show a linear decrease in surface tension with increasing NiONPs 

concentration (green triangles in figure 8.1). Similar decrease in trend of surface 

tension with increase in nanoparticle concentration was observed by Chen et al. 

[21] (for laponite particles in DI water) and Okubo et al. [22] (for polystyrene and 

silica nanoparticles in water). The trend of change in surface tension of 

Fe2O3NPs and NiONPs are similar to the trends observed in the CO2 saturation 

results in figure 8.1. 
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 It can be observed from figure 8.4 that different nanoparticles have 

different values for reduction of the surface tension of DI water. This difference 

in the reduction of surface tension might be due to the different bulk densities of 

different nanoparticles. The change in density affects the interaction between 

the nanoparticles and water molecules affecting the van der Waals forces of the 

liquid surface. This causes the surface tension of the suspension to change [10, 

23]. Bhuiyan et al. [23] also recently reported that smaller particles have greater 

effect on surface tension than larger particles. 

8.6 Conclusion 

 It can be concluded from the results that the VLE of CO2-H2O does get 

affected in the presence of different nanoparticles. The presence of 

nanoparticles increases the amount of CO2 absorbed in water as compared DI 

water alone. CO2 exists on the surface of the nanoparticles in the form of 

M(HCO3)x species that may be in equilibrium with CO2(aq) species in solution. 

This equilibrium between the adsorbed M(HCO3)x species and CO2(aq) species 

is observed to be independent of temperature. Surface tension was also 

analysed as a parameter affecting the CO2-H2O VLE. The presence of 

nanoparticles in suspension reduced the surface tension of the suspension as 

compared to DI water. This reduction in surface tension could be the reason for 

the attainment of new CO2-H2O VLE in nanoparticle suspension. 
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Chapter 9: 

Mineralization of CO
2
 using gypsum 

and sodium chloride in novel bridge 

reactor 

 

 

 

 

 

 Chapter 9 describes a novel process developed for the mineralization of 

CO2 using gypsum and sodium chloride. The reaction is carried out in a new 

reactor design termed as "bridge reactor". At first the theoretical background of 

the bridge reactor has been explained. Then the use of the bridge reactor for 

the mineralization of CO2 using gypsum and sodium chloride is discussed. The 

calcium carbonate obtained was chemically analysed for impurities to validate 

the yield results. The mass transfer studies were performed to test the 

correlation between the concentration gradient and transfer of ions along the 

bridge of the bridge reactor. 

9.1 Mineralization of CO2 using "Bridge Reactor" 

The working and design of the bridge reactor has been described in chapter 3, 

section 3.2.13. In the reaction Na2CO3 was taken as the limiting reagent to 

compare the effectiveness of the bridge to transfer CO2 from acid side to the 
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base side of the reactor. CO2 would react with Na2CO3 to form NaHCO3, 

therefore the amount of precipitate would be reduced by this and the yield of 

CaCO3 in the base side of the reactor. Another possibility is that CO2 would 

react to form carbonic acid and dissociate as bicarbonate ion, upon crossing the 

bridge that could then increase in yield of CaCO3 which would be a proof of 

transfer and mineralization of CO2 in the base side of the reactor. Salt bridges 

have been extensively used to link two halfs of a galvanic cell and the transfer 

of ions in the bridge takes place when electrons flow from an external circuit [1]. 

The external circuit is an important part of the galvanic cell, lacking which there 

is no reaction possible. In the current application we use the salt bridge for the 

first time to transfer ions for a series reaction to mineralize CO2. The mass 

transfer is driven by concentration gradient alone (see section 3.2.12, chapter 

3). 

9.2 Chemical Characterization of precipitate obtained in bridge reactor 

 

Figure 9.1: FTIR spectra of the CaCO3 samples obtained from control and bridge reactors and  
CaSO4·2H2O (gypsum). 

 The precipitate obtained from the control and the bridge reactor was 

characterised using XRD and FTIR and was found to be pure calcium 
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carbonate. Figure 9.1 shows the FTIR spectra for controlled and bridge reactor 

sample. The peaks at 745 cm-1, 874 cm-1, 1088 cm-1 and 1403 cm-1 all 

correspond to the vaterite form of CaCO3 [2, 3] whereas the peaks at 713 cm-1, 

874 cm-1 and 1043 cm-1 correspond to the calcite form of CaCO3 [4, 5]. The 

peaks at 714 cm-1 (and 745 cm-1) and 874 cm-1 are associated with the in-plane 

and out of plane vibration of O-C-O vibration and the peak at 1403 cm-1 is 

associated with the asymmetric stretching vibration [2, 3]. The gypsum 

characteristic peak of the SO4 vibration at 1109 cm-1 [6] is very small which 

confirms the successful removal of gypsum form the precipitate.  

 

Figure 9.2: XRD spectra of the precipitated CaCO3 in control and bridge reactor showing two 
crystal polymorphs of calcium carbonate (calcite and vaterite) 

Figure 9.2 shows the XRD spectrum of the CaCO3 precipitate obtained 

from the bridge reactor and the control [7]. In both of the samples calcite and 

vaterite polymorphs are observed [7], which are the same as the FTIR results. 

XRD data suggest that the calcite is the dominant phase of CaCO3 in the bridge 

reactor rather than vaterite.  
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It is known that vaterite would transform to calcite in presence of water 

[8, 9]. Therefore during vaterite synthesis, care is taken for rapid separation of 

vaterite crystals with short reaction times (reaction time up to 30 min) [10-15]. 

As compared to these reports [10-15] the reaction time in bridge reactor is long 

(about 360 min) that could lead to transformation of vaterite to calcite.  

9.3. Precipitation yields of CaCO2 in bridge reactor and control 

  

Figure 9.3: a) Percentage yield of CaCO3 in bridge reactor and control, b) percentage 

conversion of CaSO4 in bridge reactor and control. 

 Figure 9.3a shows the yields of CaCO3 in the control and the bridge 

reactor obtained by the procedure described in chapter 3 section 3.2.12. All the 

experiments were repeated in triplets. The theoretical yield is considered as the 

base line for comparison between the yield in the bridge reactor and the control. 

Theoretical CaCO3 yield was calculated taking the initial Na2CO3 as the limiting 

reagent in the reaction stochiometery. The yield of the control and bridge 

reactor were calculated using the weight of the washed and dried precipitate. In 

the control there was 96 +1% yield as compared to theoretical yield, whereas in 

the bridge reactor there was 117 +1% yield as compared to the theoretical yield. 

Thus there is a ~21 % increase in the amount of CaCO3 obtained in the batch 

reactor compared to the control 
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 Based on the assumptions made previously (chapter 3 section 3.2.12; 

that there is transfer of ions form the acid side of the bridge reactor to the base 

side of the bridge reactor), the increase in CaCO3 precipitation is due to the 

transfer of CO2 from the acid side to the base side of the reactor.  Therefore the 

20 +1% increase in yield obtained in the bridge reactor is due to CO2 being 

trapped as carbonates without use of any additional basic material.  

 Figure 9.3b shows the conversion of CaSO4 in the control and the bridge 

reactor. Na2CO3 is taken as the limiting reagent in the control reaction and 

CaSO4 becomes the second limiting reagent in the series reaction in the bridge 

reactor. The amount of CaSO4 added in control and bridge reactor was the 

same. In the control sample only ~81% conversion of CaSO4 was observed. 

The theoretical conversion of CaSO4 based on Na2CO3 limiting reagent is 

~83%. The conversion of CaSO4 observed in the bridge reactor is 97.6% that 

implies ~ 14% excess conversion of CaSO4 compared to the theoretical limit of 

the control sample. This is due to the conversion of CaSO4 to CaCO3 due to the 

transfer of CO2 from the acid side of the bridge reactor to the basic side of the 

bridge reactor. The same experiment was repeated successfully three times.  
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Figure 9.4 a) the pink colourless interface (between carbonate solution and NaCl solution-acid 

side of the rector) before the start of the reaction and b) the pink colourless interface (between 

carbonate solution and NaCl solution) at the end of 300 min observed in the bridge in the acid 

side of the reactor.  

Phenolphthalein was added as an indicator to keep a check on the 

bridge and observe the acidity and basicity of the bridge. Phenolphthalein being 

a basic indicator indicates the carbonate region of the bridge and colourless 

part indicates the non-carbonate region of the bridge. As phenolphthalein 

changes its colour below pH of 8.2 the colourless region indicates the existence 

of acid [16]. It was observed that at the beginning of the reaction (i.e. before the 

addition of calcium carbonate) the glass bridge was pink in colour till the bottom 

as seen in figure 9.4a. As the reaction proceeded for five hours this pink-

colourless interface moved upward and was observed to be at the U-bend of 

the acid side of the bridge figure 9.4b. This interface represents the 

bicarbonate-acid interface and the movement of this interface in the bridge 

indicates the movement of the HCO3
- ions within the bridge. 
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Figure 9.5:  Pictures showing the changes in colour of phenolphthalein during reaction of 

sodium carbonate and gypsum for a) control sample after 230 min of reaction, b) base side of 

bridge reactor after 230 min of reaction, c) control sample after 250 min of reaction and d) base 

side of bridge after 250 min of reaction. 

 As the phenolphthalein indicator was added to the carbonate solution the 

change in the intensity of the pink colour gives an approximation about the 

kinetics of the reaction. It was observed that as the reaction completed the 

colour of the basic side of the bridge reactor and the control became lighter 

when compared to the control sample. Figures 9.5a and 9.5b shows the colour 

of the control and bridge reactor, respectively, after 230 min (i.e. 46 ml of 

CaSO4 was added) and figures 9.5c and 9.5d show the control and bridge, 

respectively, after 250 min (i.e. 50 ml of CaSO4 was added).  It can be seen that 

figure 9.5a is darker pink in colour than figures 9.5b. Also figure 9.5c is more 
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faint pink in colour than figure 9.5d. This change in colour indicates that the 

reaction in the bridge reactor is faster than the reaction in the control sample. 

However this could also be because the bridge reactor has smaller volume of 

Na2CO3 solution than the control because part of the solution was used to 

prepare the bridge. 

9.4 Mass transfer studies in the "bridge reactor" 

 In order to validate and understand the mass transfer process of ions 

within the bridge reactor (Section 3.2.14 chapter 3) used for the mineralization 

of CO2 experiments above (section 9.1-9.3),  a set of experiments were carried 

out with two different concentrations of Na2CO3 to see the effect of 

concentration gradient on the mass transfer process. It should be noted that this 

is the first report on the use of bridge reactor, thus there is no theoretical or 

experimental literature on the use of a salt bridge for mass transfer under a 

concentration gradient. Thus this section is important to prove that mass 

transfer of ions would occur across the salt bridge under a concentration 

gradient to validate the results obtained in the mineralization of CO2 experiment 

in section 9.1-9.3. In this experiment two liquid samples were used and no gas 

was involved as described in section 3.2.13, chapter 3.  Modifications were 

made to test the movement of a common ionic component through the bridge 

by following the movement of an indicator dye and checking the yield of the 

product at the end of the process. In these experiments the yield results were 

compared to that of a control. Chapter 3 section 3.2.12 provides the 

experimental details of the mass transfer experiments in the bridge reactor. All 

experiments were repeated twice. 
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  In the first set of experiments 0.1 M Na2CO3 was taking in two sides of 

the bridge reactor and phenolphthalein indicator was added in to the right hand 

side of the reactor to test the movement of the material from the right hand cell 

to the left hand cell. The concept of the reaction was the same as in section 9.2, 

but CO2 gas/ carbonic acid was replaced by Na2CO3 solution. The initial setup 

of the reaction cell can be seen in figure 9.6A at time zero. Then the movement 

of the dye was observed by taking snapshots after every 1 hour. Figure 9.6 

gives the photographic images of the movement of the phenolphthalein 

indicator in the bridge showing the diffusion mass transfer in the bridge reactor 

as the reaction proceeds (In order to track the movement of the dye the main 

interface has been encircled in figure 9.6). In this experiment 1 ml of 0.2 M 

CaSO4 solution was added to the left hand side of the reactor and 1 ml of water 

was added in to the right hand side of the reactor (to keep the bridge balanced 

and avoid movement of material from one side to another). It can be seen from 

figure 9.6(b-f) that there was a movement of the dye though the bridge as the 

reaction proceeded. This could confirm the movement of phenolphthalein form 

the right hand cell to the left hand cell of the reactor. 
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Figure 9.6: Dye diffusion test for bridge reactor with concentration of 0.1 M Na2CO3 (right hand 

side cell) and DI water dilution. (a) 0 min, (b) 60 min, (c) 120 min, (d) 180 min, (e) 240 min, and 

(f) 300 min. 

  After the end of the reaction the precipitated CaCO3 was washed, 

dried and weighed and compared to that of the control sample. It was found that 

the precipitate obtained in the bridge reactor was less than that of the control by 

~4%. One of the possible reasons for the reduction of the precipitate is that the 

concentration of the right hand side of the cell was very small to that of the left 



251 
 

hand of the cell. Thus the resultant concentration at the end of the reaction in 

the right hand cell was ~0.05 M of Na2CO3 which was less than the starting 

concentration of Na2CO3 (i.e. 0.1 M).  

  

  

 

Figure 9.7: Dye diffusion test for bridge reactor with concentration of 0.3 M Na2CO3 (right hand 

side cell) without dilution. (a) 0 min, (b) 60 min, (c) 120 min, (d) 180 min, (e) 240 min, and (f) 

300 min.  

Therefore the above experiment was repeated with a concentration of 0.3 M 

Na2CO3 in the right hand cell of the bridge reactor and the left hand side 
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reactant concentration was same as in the above experiment (0.1 M Na2CO3). 

Additionally the concentration of the right hand side cell was kept constant by 

adding in 1 ml of 0.3 M Na2CO3 solution. The results of the experiments can be 

seen in figure 9.7. As compared to the low concentration experiments the 

diffusion of phenolphthalein was observed in the first 3 hours of the reaction but 

then remained approximately constant till the end of the reaction. After the end 

of the reaction the CaCO3 precipitate was washed, dried and weighed. It was 

observed that there was ~14% enhancement in the CaCO3 yield as compared 

to the control. This provides proof that if provided a proper concentration 

gradient the salt bridge can work as a selective mass transport operator for 

particular reaction sequence without use of electric current.  

9.5 Conclusion 

 The chapter introduces the use of a novel reactor along with a novel 

process for the mineralization of CO2. It was observed that the bridge reactor 

had higher yields than the control sample proving the capture of CO2. The 

bridge reactor yielded 21% more carbonates as compared to the control and 

17% more carbonates as compared to the theoretical yield. A mechanism for 

the working of the bridge reactor has also been presented. The mass transfer 

results show that there can be transfer of carbonate ions across the bridge 

based on a concentration gradient present at all times. Gypsum was chosen as 

a mineral source for Ca because gypsum is comparatively more soluble (i.e. 2 

g/l) than most of the other Ca/Mg mineral sources as presented in chapter 2. 
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Chapter 10: 

Conclusion and Roadmap to the 

Future  

 

 

 

 

 

 

 The current chapter provides conclusions for the study of NiNPs catalysis 

for hydration of CO2 and its applications. All the major findings are presented 

and the further research areas have been suggested.  

10.1 Overall conclusion of the thesis 

 Chapter 4 presents that NiNPs acted as catalyst for the hydration of CO2. 

The catalytic activity of the NiNPs was shown by pH change method when CO2 

is bubbled in DI water. The steps of the catalytic process of hydration of CO2 

were based on the XPS results. NiNPs showed no leaching in acidic 

environments and there was no effect of Ni2+ ions on the catalytic activity of 

NiNPs.  

 Chapter 5 presented further validation of the catalytic activity of NiNPs. 

Different nanoparticles (Fe2O3 and NiO) were tested to for catalytic activity. 
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Although all the nanoparticles (Fe2O3 and NiO) showed an enhancement in the 

CO2 uptake, no catalytic activity was observed in the pH change experiments. 

This asserted that the increase in CO2 saturation was not a reason for the 

reported pH change. pH change experiments using 12% CO2-Air mixture also 

showed catalytic activity of NiNPs for hydration of CO2. This is important 

because the flue gas from power plants has a maximum concentration of 12% 

CO2. 

 In chapter 6 was presented the photochemical and temperature 

dependence of rate of catalytic hydration of CO2 in presence of NiNPs. A 

qualitative analysis was performed and it was observed that NiNPs show the 

best activity in presence of light including IR range energy range, rather than in 

absence of IR or in dark. The mechanistic overview of the process has been 

discussed. The activity of NiNPs for hydration of CO2 was also found to be 

dependent on temperature. The catalytic activity was highest at temperatures 

between 20-30 °C and reduced at higher and lower temperatures. This is the 

reason why Ni was observed in sea urchin larvae for bone growth. 

 Chapter 7 presented data on application of catalysis of NiNPs to 

enhance CO2 precipitation as CaCO3 and CO2 absorption in potassium 

carbonate solution. The NiNPs showed threefold increase in the amount of 

precipitation of CaCO3 as compared to DI water without NiNPs. The precipitated 

CaCO3 (calcite) has spherical morphology due to the nucleation of CaCO3 

crystals on NiNPs surface. The NiNPs showed a two times enhancement in the 

rate of CO2 absorption in 50% (by weight) potassium carbonate solution. This 

can help intensify the CO2 absorption process using carbonate solutions and 

reduce equipment size. 
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 Chapter 8 presents a brief understanding of the effect of nanoparticle on 

the vapour-liquid equilibrium of CO2-H2O system. The enhancement of CO2 

saturation is dependent on the elemental composition of the nanoparticles in 

suspension. The CO2 saturation concentration is dependent on particle 

concentration for NiNPs but was observed to be independent for oxide 

nanoparticles. The surface tension of the nanoparticle suspension was lower 

than that of DI water without nanoparticles. This change in surface tension is 

the reason for increase in saturation concentration of CO2 in nanoparticle 

suspensions. The increase in CO2 saturation as compared to DI water is 

independent of temperature. This can used to develop novel aqueous based 

CO2 separation systems. 

A new method for the mineralization of CO2 to CaCO3 is presented in 

chapter 9. A novel “bridge reactor” along with a novel process for the 

mineralization of CO2 is demonstrated. Gypsum was chosen as a mineral 

source for Ca2+ ions because gypsum has a larger solubility (i.e. 2 g/l) than 

most of the other Ca/Mg mineral sources as overviewed in chapter 2 (table 2.1). 

It is observed that the bridge reactor has higher yields of CaCO3 than the 

control sample proving the capture of CO2 in mineral form. The bridge reactor 

yielded 21% more carbonates as compared to the control and 17% more 

carbonates as compared to the theoretical yield. A mechanism for the working 

of the bridge reactor has been discussed. The mass transfer results show that 

there can be transfer of carbonate ions across the bridge based on a 

concentration gradient present at all times. In order for mass to transfer from the 

acidic side of the reactor to the basic side of the reactor, the concentration of 

the reactant on the acidic side has to be higher than the concentration of the 

reactant on the basic side.   
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10.2 Suggestions for future work 

 The reduction of global greenhouse gases is important for maintaining 

further climate changes. Mineralization of CO2 into carbonate minerals is one of 

the safest method for long term storage of CO2 in the lithosphere. The 

mineralization of CO2 at the moment is limited by various factors and in the 

current study one of the factors i.e. the hydration of CO2 was addressed 

10.2.1 Application to mineralization of CO2 

 Bodor et al. [1] used the NiNPs to show that the enhanced hydration rate 

of CO2 could be used to enhance the precipitation of CaCO3 from CaO solution. 

They also concluded that in concentrated CaO solutions, the dissolution of CaO 

becomes the rate limiting step. The results in their study show that the NiNPs 

are active in enhancing Ca carbonation in diluted solutions. Therefore it is likely 

that use of NiNPs would be aptly suited for diluted brine carbonation as there is 

a lot of dissolved Ca and Mg ions in industrial brine solutions. This is worth for 

future studies. 

10.2.2 Immobilization of NiNPs 

 As the NiNPs are very small in size there are chances of loss of the 

catalyst during large scale operations. Therefore it would be interesting to study 

the immobilization of the NiNPs on a catalyst support like alumina or silica. This 

would enable the reuse of these catalysts.  

10.2.3 Optimization of transport process in the bridge reactor 

 A novel reactor has been demonstrated in this study. There isn’t any 

relevant literature on the use of such type of reactor. Thus it provides an 

opportunity to study the transport processes in this novel setup. This would 
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provide more insight into the various reactions that can be achieved using this 

novel reactor. The momentum transport (fluid mechanics) studies would provide 

insight of the actual fluid motion within the reactor and energy transport could 

open new possible applications into new reaction systems i.e. temperature 

dependent slow mass transferred reactions. These studies would not only 

propose the use of this reactor for other possible reactions but also provide 

insight to the current reaction mechanism of tri-phasic reaction of mineralization 

of CO2 using gypsum. 

10.2.4 Study of influence of nanoparticles on vapour-liquid equilibrium 

 Chapter 8 provides the stepping stone for the influence of nanoparticles 

on the vapour-liquid equilibrium of gas-slurry system. It was found that the 

nanoparticles in suspension reduce the surface tension of the suspending 

media. This change in surface tension affects the CO2-H2O vapour liquid 

equilibrium. The same should be tested for other vapour-liquid systems (like 

ammonia-water) as well. A thermodynamic and mathematical model to relate 

the change in surface tension to change in vapour liquid equilibrium needs to be 

developed and tested. Influence of particle size on both surface tension and 

vapour liquid equilibrium can also be studied. Using microchannel systems one 

could study the effect of nanoparticle on interface mass transfer for gas-liquid 

systems. 

  



260 
 

References 

[1] M. Bodor, R.M. Santos, Y.W. Chiang, M. Vlad, T.V. Gerven, Impact of Nickel 

Nanoparticel of Mineral Carbonation, The Scientific World Journal, 2014 (2014) 

921974.  



261 
 

APPENDIX -I 

Calculations for Concentration of CO2 using titration 

MNaOH = 0.1012 

Concentration 
of NiNPs  
(ppm) 

Reading 
1 (ml) 

Reading 
2 (ml) 

Reading 
3 (ml) 

Reading 
4 (ml) 

Averag
e (ml) 

Conc. of 
CO2 (M) 

Std. Dev. 

0 4 4 3.4 4.7 4.03 0.0403 0.005315 

10 7.2 7.2 7 7 7.10 0.0710 0.001155 

20 10 10 10.4 11 10.35 0.1035 0.004726 

30 13 12.5 13 13.2 12.93 0.1293 0.002986 

40 12 11.4 11.6 12 11.75 0.1175 0.003 

50 12 12 11 10.5 11.38 0.1138 0.0075 

 

10 ml of the DI water (or nanoparticle suspension) saturated with CO2. 

Sample calculation 

MCO2 x VCO2 = MNaOH x VNaOH 

MCO2 = MNaOH x VNaOH  = 0.1 x 4.18  = 0.0418 M 

   VCO2     10 

MNaOH = 0.1011 

Concentration 
of Al2O3NPs 
(ppm) 

Reading 
1 (ml) 

Reading 
2 (ml) 

Reading 
3 (ml) 

Reading 
4 (ml) 

Averag
e (ml) 

Conc. of 
CO2  

(M) 

Std. Dev. 

0 4 4 3.4 4.7 4.18 0.0418 0.005315 

10 13 13 13.5 13 13.13 0.1313 0.0025 

20 12 13 13.5 13.5 13 0.13 0.007071 

30 13 13 13.5 13.5 13.25 0.1325 0.002887 

40 13 12.5 13 14 13.13 0.1313 0.006292 
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MNaOH = 0.0998 

Concentration 
of Fe2O3NPs 
(ppm) 

Reading 
1 (ml) 

Reading 
2 (ml) 

Reading 
3 (ml) 

Reading 
4 (ml) 

Averag
e (ml) 

Conc. of 
CO2  

(M) 

Std. Dev. 

0 4 4 3.4 4.7 4.18 0.0418 0.005315 

10 12.5 13 12 12.5 12.5 0.1247 0.004082 

20 12 10.5 12 13 11.88 0.1186 0.010308 

30 13.5 13.5 13 13 13.25 0.1322 0.002887 

40 13 13 12.5 13 12.87 0.1284 0.0025 

 

 

 

MNaOH = 0.0987 

Concentration 
of NiONPs 
(ppm) 

Reading 
1 (ml) 

Reading 
2 (ml) 

Reading 
3 (ml) 

Reading 
4 (ml) 

Averag
e (ml) 

Conc. of 
CO2  

(M) 

Std. Dev. 

0 4 4 3.4 4.7 4.18 0.0418 0.005315 

10 13 13.5 12.7 13.7 13.1 0.1310 0.003989 

20 13.5 13.5 13.2 13.5 13.3 0.1332 0.001767 

30 14 12.8 14 14.5 13.6 0.1365 0.006181 

40 14.5 14.5 14 14 14 0.1400 0.002700 
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APPENDIX -II 

Calculations and comparison of theoretical and experimental rate of 

hydration of CO2 (uncatalysed and catalysed) 

Observations: 

Residence time: 0.1 s 

Diameter of bubbles: 1 mm = 1 x 10-3 m 

Gas flow rate: 1.69 moles/min = 0.633 ml/min 

Diameter of the glass jar (ID): 59 mm = 5.9 x10-2 m 

kinetic constant for CO2 interface transfer (k) [1] = 5.5 x 10-6 m/s  

kinetic constant for hydration of CO2 (k2) = 0.0035 s-1 [2] 

Theoretical Calculations: 

Due to the small height of the bubble column reactor (75 mm) the bubble size 

did not increase and was assumed to be constant for the calculations.  

1. Volume of the bubble: 
4

3
 𝜋𝑟3   

                                            = (4 x 3.14 x (1 x 10-3)3)/3 = 4.18 x 10-9 m3 = 4.18 x 

10-3 cm3 = 4.18 x 10-3 ml 

2. Flow rate of bubble = 
𝑔𝑎𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑏𝑢𝑏𝑏𝑙𝑒
 = 

0.633

4.18× 10−3
 = 151.43 bubbles/sec ~ 

152 bubbles/sec 

3. Number of bubbles = Flow rate of bubbles x residence time 

   = 152 x 0.1 = 15.2 bubbles 

4. Interface area (bubbles) = No of bubbles x Area of bubble 

   = 15.2 x 4 x π x (1 x 10-3)2 = 2.009 x 10-4 m2 

5. Cross section area of glass jar = 𝜋𝑟2  = 3.14 x (5.9 x 10-2)2 = 1.093 x 10-2 m2 

6. Total interface area (A) = Cross section area + Interface area (bubbles) 

                    = 1.093 x 10-2 + 2.009 x 10-4 = 1.11 x 10-2 m2 

The concentration of the gas at the interface is given by the ideal gas equation 

and is  

C = 40 moles/m3 = 4 x 10-2 M. 

7. Rate of CO2 interface transfer = A x k x C = 1.11 x 10-2 x 5.5 x 10-6 x 40 = 

2.442 x 10-6 mol/s 

The rate constant for hydration of CO2 is taken as pseudo-first order kinetics 

8. Rate of CO2 hydration = k2 x CO2 in solution = 0.0035 x 2.442 x 10-6  = 8.547 

x 10-9 mol/s 
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Calculations for the experimental results: 

The rates obtained from the figure 4.7a. The data considered till autocatalysis is 

observed in the figure (i.e. 40 sec). 

Rate of uncatalysed CO2 hydration = 
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑛𝑐.  𝑜𝑓 𝐻+ 𝑖𝑜𝑛𝑠

𝑇𝑖𝑚𝑒
 

         = 
10−6− 10−5.88

40
 = 7.95 x 10-9 mol/s 

Rate of catalysed CO2 hydration = 
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑛𝑐.  𝑜𝑓 𝐻+ 𝑖𝑜𝑛𝑠

𝑇𝑖𝑚𝑒
 

         = 
10−6.2− 10−4.8

40
 = 3.80 x 10-7 mol/s 

 It can be observed from the calculations that, the uncatalysed rate of CO2 

hydration in the experiment is close to the calculated theoretical value (i.e. 

8.547 x 10-9 mol/s), whereas the catalysed rate value is higher than the 

theoretical value but lower than the mass transfer rate (i.e. 2.442 x 10-6 mol/s) 
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APPENDIX -III 

The emission spectra of the solar simulator with and without filter has 

been presented as obtained from the manufacturer.  

 
Figure A3.1: Emission spectrum of the solar simulator (6255, 150 W Xe Ozone 

free) for the entire wavelength range.  

 
Figure A3.2: Emission spectrum obtained after using the IR filter.  
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APPENDIX -IV 

Curve fitting of CO2 absorption in 50% potassium carbonate solution in 

presence and absence of NiNPs. 

 

Figure A4.1: CO2 absorption in 50% potassium carbonate solution using liner fit. 

 

Figure A4.2: CO2 absorption in 50% potassium carbonate solution in presence 

of NiNPs using liner fit. 

 


