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Abstract 

From 1916 the “acetone butanol ethanol”, or “ABE”, fermentation process was the main 

production method for n-butanol. It was superseded in the 1950s by a more economical 

petrochemical process, causing the majority of plants to cease operation. In the 

fermentation, product inhibition led to low productivity and high energy demand in the 

downstream processing, making the process unable to compete with the petrochemical 

route. Overcoming these problems could revive the ABE industry and promote a bio-based 

economy. 

In situ product recovery (ISPR) can be applied to the fermentation process to counteract the 

effects of product toxicity. Productivity increases of greater than 300% are theoretically 

possible. Many ISPR techniques have been applied to the ABE process at laboratory scale, 

but a direct comparison of the different techniques has been hindered by experimental 

inconsistencies. Here, a techno-economic analysis was performed to compare the most 

developed ISPR techniques, with process simulations providing comparative data on the 

separation efficiency and energy demand. All the techniques were found to be economically 

viable, with profit increases compared to an equivalent batch plant of 110-175% and 

payback times of 2.2-4.5 years. In addition to generating the most profit and having the 

shortest payback time, perstraction was the only technique to lead to a reduction in overall 

plant energy demand, by ~5%, compared to a traditional ABE process. Thus perstraction 

warrants further investigation for application to the ABE process. 

Perstraction is significantly underdeveloped compared to other ISPR techniques. It was 

originally designed to overcome various problems associated with liquid-liquid extractions, 

including solvent toxicity. Here, experiments focused on the use of high-distribution toxic 

extractants with commercially available membranes. Results showed that high-distribution 

toxic extractants (1-pentanol, 1-hexanol, 1-heptanol, 1-octanol and 2-ethyl-1-hexanol) have 

a larger mass transfer coefficient than oleyl alcohol (the main non-toxic extractant), although 

chemical structure differences, such as branching, can have a greater impact on mass 

transfer than distribution coefficient.  Unfortunately, all extractants investigated here were 

transferred across the membrane to some extent, which would limit perstraction to non-

toxic extractants. However, differences in membrane type have a greater impact on mass 

transfer than the choice of extractant. Porous membranes have a mass transfer coefficient 

10 times greater than non-porous membranes, which would see a factor of 10 reduction in 
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membrane size and cost. Overall, this work has confirmed that perstraction is technically 

viable and compared options for process improvements through membrane and extractant 

selection.
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Chapter 1.  Introduction 

1.1: Bio-Based Chemicals 

One of the greatest challenges for society is to become more sustainable, moving away from 

using non-renewable sources such as fossil fuels (Sheldon et al., 2015). The importance of 

this is highlighted by organisations such as the European Commission developing and 

adopting a bioeconomy strategy to focus on this need and channel research efforts to 

address the common problem of sustainable production and use of biological resources 

(European Commision, 2012). 

In 2010 the majority of chemicals were derived from petrochemical sources, with only 4% 

from renewable sources. Renewably produced chemicals include polylactic acid produced by 

Cargill, Nebraska, USA, Bio-PE (polyethylene) by Braskem, Brazil and Bio-PDO (1,3-

Propanediol) by DuPont, Tennessee, UAS (Golden et al., 2015). The Department of Energy 

(DoE) produced a list of 12 bio-based building block chemicals that could be derived from 

sugar to displace the petrochemical supply chain. These chemicals were 1, 4 succinic, 

fumaric and malic acids, 2, 5 furan dicarboxylic acid, 3 hydroxy propionic acid, aspartic acid, 

glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, 

sorbitol, xylitol/arabinitol (Werpy et al., 2004) . The development of bio-based products is 

not a new concept; as up until the 1930’s bulk chemicals, such as butanol, ethanol, acetic 

acid, citric acid and lactic acid, were typically produced from biomass (Willke and Vorlop, 

2004). The re-commercialisation of these processes and development of new bio-products 

from renewable raw materials will fit into the bioeconomy strategy. 

 

1.2: Microbial n-Butanol and the ABE Fermentation 

In 2012 the global market for n-butanol was estimated to be approximately $7 billion (3.8 

million tons), with 4.6% growth predicted between 2013 and 2018 (Jiang et al., 2015). It is 

currently produced through oxo-synthesis of propene, but was originally produced by the 

acetone butanol ethanol (ABE) fermentation, with production dating back to World War I 

(Uyttebroek et al., 2015). The original process was considered uneconomical to run 

compared to the petrochemical-based process. Therefore the microbial production of n-

butanol eventually ceased in the 1980s (Green, 2011), although production was maintained 

in China, until 2004 (Chiao and Sun, 2007). There was the opportunity for re-emergence of 
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the ABE fermentation in China due to butanol consumption increasing by 6.7% per year. This 

increase could not be met by petrochemical production, therefore ABE plants were restarted 

or built, with a total solvent production of 210,000 tons achieved by September 2008 (Ni and 

Sun, 2009). Biobutanol production has also, since, commenced in Brazil at the HC 

Sucroquímica sugarcane biorefinery (Mariano et al., 2013).  

Since the ABE process stopped there have been significant technology developments that 

may make it possible to develop a competitive ABE process. This includes better 

understanding of the microorganism, through genome sequencing, allowing the 

development of specific genetic modification tools (Green, 2011). It also includes learning 

from process developments in ethanol fermentation in the 1980s, such as in situ product 

recovery research, and applying them to other fermentations (Stark and von Stockar, 

2003).The challenges associated with the ABE fermentation process are well-documented. 

Dürre (2011) and Green (2011) presented both the academic and industrial challenges, 

respectively, associated with microbial n-butanol production. These have been summarised 

in Table 1.1, below. The key overlapping challenges are high feedstock cost, low butanol 

yield and product recovery. These problems can be overcome through both strain and 

process development to create a more competitive process. 

Table 1.1: Summary of challenges facing ABE fermentation. 

Academic perspective (Dürre, 2011) Industrial perspective (Green, 2011) 

Substrates are expensive and compete with 
food 

High feedstock cost 

Formation of by-products Low butanol titres (increase recovery cost) 

Culture degeneration Low butanol yield 

Phage contamination Low volumetric productivities 

Low solvent yield Solvent recovery is energy intensive and 
expensive 

Low solvent tolerance High water usage 

Butanol recovery  

 

1.3: In Situ Product Recovery 

One way to improve the ABE fermentation process is the application of in situ product 

recovery (ISPR). This involves integrating the primary product recovery step with the 

fermentation. Van Hecke et al. (2014) stated the advantages of ISPR as: 

 Reducing downstream product recovery costs, due to an increased product 

concentration  
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 Improved volumetric recovery, due to reduction in product toxicity to the 

microorganism 

 Reduction in waste water, as a concentrated feed can be used 

 Improved yield, due to removal of product, which reduces unwanted side reactions 

and toxicity effects 

ISPR should help to overcome many of these challenges and those presented in Table 1.1. 

Although ISPR has been investigated for many bioprocesses, research is still required to aid 

the transition from lab-based research to industrial implementation.  Woodley et al. (2008) 

suggest that research should focus on the method of integration of the separation process, 

robustness of the ISPR process, rapid ISPR assessment methods and the degree of product 

enhancement achieved by the ISPR method. In a more recent review of ISPR technology, Van 

Hecke et al. (2014) stated that information is missing on the energy consumption, for both 

ISPR techniques and the overall process, which limits economic analysis. They also state that 

both the energy consumption and the economic analysis can be aided by the use of chemical 

process simulation software. Van Hecke et al. (2014) also suggested that research should 

focus on the scalability of ISPR processes, the long term robustness of the process, and 

maximising the product recovery through the ISPR method, with the overall aim of industrial 

implementation. 

 

1.4: Research Project 

The research project presented in this thesis focuses on the application of ISPR to the ABE 

fermentation for an industrial process. As stated by Uyttebroek et al. (2015): 

“Biomass for sustainable fuels and chemicals will be the only resource for future generations. 

The efficiency of the biobutanol production can be improved by altering upstream processes, 

by metabolic engineering, by decreasing by-product formation and by improving in situ 

product recovery” 

The application of ISPR to the ABE fermentation is likely to have a major impact on whether 

it is possible to recommerciallise the ABE fermentation and introduce more bio-based/bio-

derived products into the market. Overcoming the current limitations with ISPR, as discussed 

above, will see improvements in ISPR technology and help make decisions to improve the 

ABE process. 
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 To date, various ISPR methods have been investigated for their ability to reduce solvent 

inhibition, and to improve the yield and productivity of the fermentation. ISPR should also 

improve the economics and energy efficiency of the plant. So far this work has all been 

performed at laboratory scale, with very little consideration for application to commercial 

large-scale ABE processes. Consequently, there is no obviously superior technique for in situ 

recovery of ABE. This is compounded by the continuous developments occurring within each 

technique, such as membrane or adsorbent development for pervaporation and adsorption. 

These developments mean that it is difficult to assess within an in situ recovery technique 

what the best method is, let alone comparing these developments with other in situ 

recovery techniques. 

 

1.4.1: Industrial Partner – Green Biologics Ltd. 

This project has been carried out in collaboration with Green Biologics Ltd. Green Biologics 

are a renewable chemicals company with a primary focus on developing green alternatives 

to everyday products. The company has facilities in both the UK and USA to develop a 

commercial ABE process. Green Biologics has developed technology for the production of 

butanol through clostridial ABE fermentations, and are continuously looking to develop their 

process through both strain and process development. Through development of an 

advanced fermentation technique, such as in situ recovery of the butanol, it will be possible 

to improve the characteristics of the fermentation, such as yield, productivity and 

fermentation duration due to avoiding product inhibition of the microorganisms, enabling 

enhanced butanol production.  

 

1.5: Thesis Aims and Objectives 

The overall aim of the project is to develop an ISPR technique for the ABE fermentation that 

would be applicable to a commercial process. This technique should increase the yield and 

productivity of the fermentation as product concentration inhibitory to the microorganism 

are not reached. The recovery technique should produce a concentrated stream, which will 

reduce the load on downstream separation, increasing the energy efficiency of the process 

and improving the process economics. 

To achieve this aim the following objectives were defined: 
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1)  Assess existing ISPR research for the ABE fermentation, to determine the 

current state of various ISPR techniques with regards to commercial 

application. 

2) Perform a techno-economic analysis of ISPR techniques for the ABE 

fermentation, using process simulations to give a quantitative comparison, 

and select the most economic technique for further investigation. 

3)  Experimental development of chosen technique, with respect to application 

to a commercial ABE process. 

 

1.6: Research Contributions 

This aim of this research was to assess and develop an ISPR technique for integrating with an 

ABE fermentation. The following list outlines the main research contributions in this work, 

achieved whilst working towards this aim: 

 This work provided the first quantitative review of existing literature focusing on 

integrating ISPR with ABE fermentation at laboratory scale. A direct comparison 

across the wide range of research has been difficult, both within ISPR techniques and 

across all possible techniques. This is due to differences in fermentation protocols, 

including strain and media used, reactor configuration, etc. This limited previous 

comparisons to a qualitative analyses. To overcome this, here, a comparison was 

made based on the improvements seen between the integrated fermentation and 

the non-integrated control fermentation. This allowed for differences in the 

fermentation protocol to be minimised in the comparison. This work was published 

in the peer-reviewed journal Biotechnology Progress. 

 A techno-economic analysis of seven ISPR techniques for the ABE fermentation was 

completed. These techniques were:  

o Gas stripping: recovery into the gas phase through sparging anaerobic gas 

through the fermentor to selectively recover ABE. See sections 2.3.1.1 and 

3.2.1 

o Pervaporation: selective recovery across a permeable membrane into the gas 

phase. See sections 2.3.1.1 and 2.3.2 
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o Vacuum fermentation: application of a vacuum to the fermentor to “boil off” 

ABE at fermentation temperature. See sections 2.3.1.1 and 3.2.2 

o Flash separation: similar to vacuum fermentation but performed in an 

external separation vessel. See sections 2.3.1.1. 

o Liquid-liquid extraction: selective recovery of ABE into a second liquid phase. 

See sections 2.3.1.2 and 3.2.4 

o Perstraction: selective recovery of ABE into an extractant across a membrane 

separating the two liquids. See sections 2.3.1.2 and 3.2.5 

o Adsorption: Removal of ABE via capture onto a solid surface. See sections 

2.3.1.3 and 3.2.6 

This combined development of process simulations to understand the separation 

efficiency and energy demand of the process, followed by an early-stage economic 

analysis for application of ISPR to a batch ABE process. This is the first comparative 

assessment of this nature, and was designed to fill in the gaps in ISPR research for the 

ABE fermentation as raised by Van Hecke et al. (2014). This work was published in 

the peer-reviewed journal Bioresource Technology. 

 Based on the outcomes of the techno-economic analysis, perstraction was selected 

as the best ISPR technique for integration with the ABE fermentation. This conclusion 

was largely based on perstraction being the only technique to reduce the overall 

plant energy demand compared to the traditional process (in our simulations). 

 An in-depth analysis into perstraction was performed, focusing on commercially 

available materials and taking advantage of the proposed advantages of perstraction 

over liquid-liquid extraction.  To the best of the author’s knowledge this is the most 

comprehensive, comparative analysis of membranes for the extraction of ABE. The 

analysis included comparisons between porous and non-porous membrane, and 

hydrophilic and hydrophobic membranes. This analysis focused on the use of high-

distribution extractants, which were toxic to the fermentation. This is important as 

the use of toxic extractants is one of the proposed advantages of perstraction, due to 

the membrane isolating the toxic extractant from the microorganism. This provided 

greater insight into extractant selection. In particular, whilst a higher distribution 

coefficient leads to a high extraction rate it does not guarantee it. Instead, other 

factors, such as chemical structure, need understanding to be taken into account. 
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This outcome provides a new perspective on extractant selection that had not 

previously been discussed, particularly in relation to the ABE fermentation. 

 This research confirms suspicions by other researchers that oleyl alcohol can transfer 

across a membrane. A gas chromatography method for detection of oleyl alcohol was 

developed as part of this work. The detection/measurement of oleyl alcohol in the 

aqueous phase had not been performed for any previous perstraction or liquid-liquid 

extraction work with the ABE fermentation. 

 

1.7: Thesis Structure 

This thesis is broken down into six chapters in total. The others are, as follows: 

 Chapter 2 provides an overview of the ABE fermentation and ISPR, providing the 

background information and stating the key requirements required for the ABE 

fermentation and successful ISPR integration. This includes an overview of all 

possible ISPR techniques associated with the ABE fermentation and an initial 

assessment of the current state of each technology. This chapter also provides an 

overview of the current intellectual property associated with ISPR and butanol 

isomers, along with other commercialisation activities involving ISPR, butanol and the 

ABE fermentation. 

 Chapter 3 is presented in the form of a review paper for Biotechnology Progress 

(Outram et al., 2017), this has led to some intended repetition with the previous 

chapter. It is a comprehensive review of ISPR that has been applied to the ABE 

fermentation, with the aim of selecting the best ISPR technique to carry forward for 

further development. 

 Chapter 4 is a techno-economic analysis of seven ISPR techniques compared to a 

traditional ABE process. It is a research paper for Bioresource Technology (Outram et 

al., 2016).  The results of this chapter lead to the selection of perstraction for further 

development. 

 Chapter 5 is focused on perstraction development. It includes information on 

perstraction theory, and a more detailed assessment of perstraction in relation to it 

as an ISPR technique in general, and more specifically to the ABE fermentation and 

the next steps required for further development. This is followed by experimental 

work to develop perstraction focusing on the use of toxic extractants and 
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commercially available membranes. The chapter finishes with an assessment of how 

the experimental results impact the economics of applying this technique. 

 Chapter 6 provides the conclusions from the work presented in this thesis and how it 

complies with the objectives stated in Chapter 1, along with suggestions for future 

work.  
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Chapter 2.  Literature Review 

2.1: Biobutanol 

Butanol is a commodity chemical which has four isomers, with n-butanol (or 1-butanol) the 

focus of this thesis. n-Butanol has many industrial uses, in particular as a feedstock for other 

chemicals such as acrylate and methacrylate esters. These n-butanol derivatives are often 

found in surface coatings, adhesives, textiles, polymers and many more (Dürre, 2008). 

Currently, the main production route for n-butanol is propylene oxo synthesis, which is 

petrochemical based. n-Butanol can also be produced through fermentation producing so-

called “biobutanol” (Green, 2011). Until the 1950s, fermentative production of n-butanol 

was the main production route, responsible for 66% of n-butanol worldwide (Dürre, 2008). 

One advantage of biobutanol over petrochemical butanol is that it can be used as a biofuel, 

as well as a replacement for petrochemical butanol. As a biofuel, butanol can be a direct 

replacement for gasoline, or blended with gasoline or diesel (Dürre, 2007; Liu et al., 2013b). 

Biobutanol offers advantages over bioethanol as a biofuel as it is less corrosive, has a lower 

vapour pressure, will not absorb water and can be used in the existing infrastructure for 

gasoline (Dürre, 2008; Liu et al., 2013b). Furthermore, butanol has density lower heating 

value (MJ/kg) 1.2 times that of ethanol, so lower fuel consumption is possible (Jin et al., 

2011). 

Since the oil crisis in 1973, oil prices have dramatically increased. This has caused the 

chemical industry to look to non-fossil fuel sources for chemicals and fuels (Ni and Sun, 

2009). Biobutanol has attracted significant interest, as it can be used in both the chemical 

and fuel industry (Dürre, 2008). 

In this thesis, butanol will mean n-butanol. All other butanol isomers will be described by 

their full name. 

 

2.2: Acetone Butanol Ethanol (ABE) Fermentation 

The acetone butanol ethanol (ABE) fermentation was developed by Chaim Weizmann, 

between 1912 and 1914, and implemented on an industrial scale in 1915 to produce 

acetone, for use in the manufacture of cordite (a smokeless explosive) as part of the war 

effort (Gibbs, 1983; Jones and Woods, 1986). After World War I, the demand for butanol 
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rapidly increased due to the need for a quick-drying lacquers for the rapidly developing car 

industry, of which butanol and its ester, butyl acetate, were suitable (Dürre, 2008). When 

Weizmann’s patent expired in the 1936, production of ABE rapidly expanded worldwide with 

plants in USA, Japan, India, Australia and South Africa (Jones and Woods, 1986; Zverlov et al., 

2006). Two thirds of the world’s butanol was produced via fermentation (Dürre, 2008). In 

the 1950s the process began to decline, although production was sustained in USSR and 

South Africa until the 1980s (Dürre, 2008), and until 2004 in China (Chiao and Sun, 2007). 

The decline was due to the low crude oil prices and the increasing price of the main 

feedstock for the fermentation process, molasses, as this was also being used as an animal 

feed. This meant that the ABE fermentation could not compete, economically, with the 

cheaper petrochemical butanol (Gibbs, 1983; Jones and Woods, 1986; Dürre, 2008). 

Production has since restarted in China in 2007, using predominantly corn, although other 

feedstocks include molasses, cassava and corn stover (Jiang et al., 2015). Ni and Sun (2009) 

and Jiang et al. (2015) provide detailed accounts on the re-emergence and status of the ABE 

fermentation in China. 

 

2.2.1: ABE microorganisms 

The ABE process is an anaerobic fermentation typically performed using strains of 

Clostridium bacteria. The most commonly used industrial species are Clostridium 

acetobutylicum, Clostridium beijerinckii, Clostridium saccharobutylicum and Clostridium 

saccharoperbutylacetonicum (Ni and Sun, 2009; Dürre, 2011). C. acetobutylicum is the most 

widely studied strain, originally isolate from starchy substrates; whereas the other species 

prefer molasses (Dürre, 2011). C. acetobutylicum typically produces ABE in the ratio 30:60:10 

(McCoy and McClung, 1935), but C saccharoperbutylacetonicum can achieve butanol ratios 

of 73-85% (Keis et al., 2001). C. beijerinckii strains often produce isopropanol instead of 

acetone (Dürre, 1998).  

A wide range of substrates can be used to grow the microorganism, with all strains able to 

utilise arabinose, xylose, glucose, maltose and lactose (Keis et al., 2001). Other substrates 

can be used, but it is strain-dependant, for example C. saccharobutylicum cannot utilise 

pectin unlike the other three strains (Keis et al., 2001). Keis et al. (2001) and Rainey et al. 

(2015) provide more detailed information on strain-specific substrate utilisation and other 

strain characteristics. 
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The microorganisms typically, e.g. C. acetobutylicum, have a biphasic metabolism: in the 

growth phase acids (acetic and butyric) are produced (acidogenic phase), then a metabolic 

shift occurs into the solventogenic phase, in which the acids are re-assimilated and 

converted into ABE. Although, some organisms such as C. saccaroperbutylacetonicum are 

able monophasic and produce solvents during the growth phase. The production pathway 

for C. acetobutylicum in Figure 2.1 displays the metabolic reactions responsible for this.  

Jones and Woods (1986) provide a detailed description of the fermentation pathway and the 

ABE fermentation.  

 

Figure 2.1: C. acetobutylicum fermentation pathway (Jones and Woods, 1986) 

Two key parameters used to compare fermentations are yield, equation 2.1, (g ABE 

produced g-1 substrate consumed) and productivity, equation 2.2, (g ABE produced L-1 

fermentation broth h-1).  
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 𝑌𝑖𝑒𝑙𝑑 =
𝑚𝑎𝑠𝑠 𝐴𝐵𝐸 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (𝑔)

𝑚𝑎𝑠𝑠 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (𝑔)
 (2.1) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑚𝑎𝑠𝑠 𝐴𝐵𝐸 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (𝑔)

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑟𝑜𝑡ℎ (𝐿). 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ)
 

(2.2) 

 

For an industrial ABE fermentation, typical yields and productivities are 0.28-0.33 g ABE g-1 

substrate consumed and <0.3 g ABE h-1 L-1, respectively (Kumar et al., 2012).   

2.2.2: Downstream Separation 

The most common route for downstream separation of ABE fermentations is that described 

by Mariano and Filho (2011). Figure 2.2 shows a diagram of this process, which involves five 

distillation columns and a decanter. The first stage after the fermentor is a beer stripper in 

which the ABE is concentrated and removed through the top of the column, then the 

acetone and ethanol are removed in the next two columns, with the bottom product of the 

ethanol column being fed to a decanter. The decanter facilitates the split of the butanol-

water heterogeneous azeotrope, with the butanol-rich phase going to one column for a 

butanol product stream and the water-rich phase going to the other column for a 

wastewater product stream. The top of the butanol and water columns is at azeotropic 

conditions, therefore recycled back to the decanter to ensure maximum butanol recovery. 

(Mariano and Filho, 2011). 
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Figure 2.2: Schematic of downstream ABE separation process (Mariano and Filho, 2011; Roffler et al., 1987)). 

 

The process is very energy intensive due to the low concentrations of ABE (less than 2wt%) 

in the fermentation broth stream. Mariano and Filho (2011) developed an Aspen Plus® 

simulation of this process and found that more energy is required to separate the ABE 

fermentation broth than the energy content of butanol itself, which is 36 MJ/ kg butanol. 

Increasing the concentration of butanol entering the downstream separation would 

significantly reduce the energy demand of the plant, and the associated operating costs of 

the downstream processing. 

 

2.2.3: Problems with the Fermentation 

The demise of ABE fermentation occurred because it could not compete economically with 

the petrochemical production of butanol. There were a range of contributing factors, which 
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1were compiled by (Dürre, 2011). The main factors were the high substrate cost, low solvent 

yield and the high energy requirement in recovering the butanol by distillation (Dürre, 2008; 

2011). 

The cost of substrate was thought to contribute approximately 60% of the process operating 

costs (Jones and Woods, 1986). This, therefore, had a major influence on the cost of 

production. The substrate cost varies significantly with demand. Ideally an inexpensive 

substrate would be used that did not compete with other market uses, particularly food 

(Dürre, 2011). Using a pure glucose substrate would cost 1.11 $ kg-1, a first generation 

feedstock such as corn (0.19 $ kg-1) or sugarcane (0.047 $ kg-1), whereas a second generation 

feedstock (for example bagasse or corn stover, both 0.033 $ kg-1) are cheaper as they are 

typically seen as agricultural wastes (Kumar et al., 2012). Another possibility is third 

generation feedstocks, such as carbohydrate-rich alae, but significant development is 

required before this could be considered an industrial applicable feedstock (Wang et al., 

2017). The substrate costs could also be reduced if the fermentation could maintain 

production at the maximum yield. 

The fermentation, typically, has a low production yield of 0.33 g ABE g-1 substrate (Jones and 

Woods, 1986). The low yield is inherent to the fermentation due to multiple product (ABE) 

and by-product (H2 CO2, acetate and butyrate) formation (Tashiro et al., 2013). Furthermore, 

butanol concentrations greater than 15 g L-1 are toxic to the bacteria, which causes the 

fermentation to stop (Oudshoorn et al., 2009). This also influences the quantity of substrate 

used, as very dilute concentrations must be used, leading to large volumetric capacity batch 

fermentations (Roffler et al., 1987c).  

The low product concentrations increase the energy demand of the downstream processing, 

via distillation, to recover the acetone, butanol and ethanol (Ezeji et al., 2004a). The 

downstream separation makes up approximately 20% of the operating costs, the highest 

cost after feedstock (Jones and Woods, 1986). This is due to the low boiling point 

heterogeneous azeotrope, at 93°C, between butanol and water. This results in a large 

quantity of water being retained with the butanol, as shown at the top of the beer column in 

Figure 2.2. Consequently, a large quantity of water needs to be boiled to achieve acceptable 

purity levels of butanol (Dürre, 2008; Oudshoorn et al., 2011).  Solutions to these problems 

could significantly improve the economics of the process, allowing biobutanol to re-enter 

the chemical market. 
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2.2.4: ABE process improvements 

Two methods for improving the ABE fermentation have received substantial interest. The 

first is genetic modification of the microorganism to increase butanol tolerance and/or to 

increase the yield of butanol produced, preferably by removing the acetone and ethanol 

production capabilities of the microorganism. These targets are complementary, as, if the 

butanol concentration is increased, the bacteria would have to be able to tolerate it (Dürre, 

2008). 

The other method is through process development, in particular developing an advanced 

fermentation process that can remove butanol as it is produced, from the fermentation 

broth (Dürre, 2008). This will reduce butanol inhibition by maintaining the butanol 

concentration below inhibitory levels, consequently allowing an improvement in the yield. 

This is due to less substrate being required for cell maintenance and growth because of toxic 

fermentation conditions, instead it can be directed towards ABE production. It would also 

allow for the use of fed-batch fermentations, which would reduce the volume of 

fermentation broth (for a fixed annual production) to be treated and improve the 

productivity (Ezeji et al., 2004a). 

The two methods (strain and process development) are complementary and if performed in 

tandem could generate significant improvements in the fermentation process. This thesis is 

concerned with the process development, specifically the application of in situ product 

recovery to the ABE fermentation. 

 

2.3: In Situ Product Recovery  

In situ product recovery techniques are applied to bioprocesses to increase the productivity 

of inhibited fermentations, reduce the wastewater treatment costs (due to reduced process 

volumes used because fed-batch fermentations with a concentrated can now be used, 

assuming a fixed annual production) and minimise product degeneration (Roffler et al., 

1984). The aim of ISPR techniques are to remove the product from the vicinity of the cell as 

soon as it is formed (Freeman et al., 1993). Freeman et al. (1993) stated three methods 

through which increasing the productivity and yield is possible: 
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1. Minimising the effect of product accumulation, allowing for maximal product 

production. 

2. Minimising product loss through interaction with the cell or environmental 

conditions that can create uncontrolled removal of the product, for example through 

evaporation. 

3. Reduce the number of downstream processing steps following fermentation.  

It is the first of these effects that is the most important for the ABE fermentation, as, due to 

inhibition by butanol, the maximum concentration possible is approximately 15 g butanol L-1 

(Oudshoorn et al., 2009). The second point also contributes to low yield, and can be used to 

explain the low yield achieved in some fermentations (Mariano et al., 2011b). Mariano et al. 

(2011a) predicts, that for an ABE plant, the percentage losses of ABE in the gas stream are 

1.7, 0.2 and 1.4% of the total amount produced, therefore minimising these losses will be 

beneficial. 

Several reviews have been produced that give a comprehensive analysis of ISPR techniques 

covering a wide range of products. Stark and von Stockar (2003) tabulated various whole cell 

fermentation (rather than enzyme based processes) ISPR techniques. The most frequently 

investigated products were alcohols, in particular ethanol, closely followed by butanol. 

Although there are differences in the properties of butanol and ethanol, the techniques that 

have been well developed for ethanol, such as the BIOSTILL process developed in the 1980s 

(Groot et al., 1992), are a good starting point for the investigating the in situ removal of 

butanol. (Stark and von Stockar, 2003) divided up the different techniques into four 

categories; extractive, evaporative, immobilisation and size. These classifications agree with 

those proposed by Freeman et al. (1993). Cen and Tsao (1993) reviewed four main 

techniques: adsorption, gas stripping, extraction and membrane separation, all of which fit 

into the categories suggested by (Stark and von Stockar, 2003). Cen and Tsao (1993) 

focussed on the use of a mass separating agent (MSA), which facilitates separation of the 

product, e.g. an extractant or an adsorbent. Cen and Tsao (1993) state that the MSA has to 

be: 

 Biocompatible, so as to not inhibit the fermentation  

 Have a high selectivity and separation factor for the desired product 

 Easily separated from the reaction broth  

 Not cause degradation of the product or contaminate the product 
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 Easy to recover product from the MSA and allow the MSA to be recycled 

 A commercially available product 

 Schügerl and Hubbuch (2005) reviewed integrated bioprocess techniques, but the products 

and techniques reviewed were biopharmaceutical-related products, such as inclusion bodies 

and higher molecular weight products.  

Most recently, Van Hecke et al. (2014) produced a follow-up review to Stark and von Stockar 

(2003). 32% of the ISPR literature produced between 2003-2013 focused on recovery of 

organic solvents. The key requirements for industrial implementation of ISPR were discussed 

and found to be:  

1. Simple technology for straightforward scale up 

2. Demonstration of long-term robustness and scalability 

3. Demonstration of decreased energy demand 

4. Demonstration of maximum product recovery 

5. Techno-economic analysis of integrated techniques 

However, the critical parameters needed to assess these requirements are often missing 

from publications (Van Hecke et al., 2014). They also state that the application of ISPR will 

become more important industrially, because, as metabolic engineering advances, there is 

the potential for a wider range of “bio-products”, introducing more toxicity/processing 

problems. 

ISPR has been applied to the ABE processes with many different techniques investigated or 

suggested. The next section will give a brief explanation of the techniques that have been 

proposed for the in situ removal of butanol from the fermentation broth. 

 

2.3.1: Overview of techniques for the ABE fermentation 

The techniques have been divided into the four categories of in situ recovery techniques: 

evaporative, extractive, immobilisation and size, proposed by Stark and von Stockar (2003).  

To avoid confusion with immobilised fermentations, the immobilisation ISPR category will be 

termed “solid phase separations”. 
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2.3.1.1 Evaporative recovery techniques 

Evaporative techniques make use of the volatility differences between the product and the 

fermentation, separating the product through a liquid to gas phase transition. The 

techniques that fall into this category are gas stripping (Ezeji et al., 2003), flash separation 

(Mariano et al., 2008), vacuum fermentations (Mariano et al., 2011b), pervaporation (Groot 

et al., 1984b) and vapour permeation (Vane and Alvarez, 2008). Acetone, butanol and 

ethanol can all be removed from the fermentation broth in the gaseous phase. Removal of 

all three products makes evaporative techniques attractive. The downside to these 

techniques is the complete recovery of the products from the gaseous phase (Groot et al., 

1989; Ezeji et al., 2004a; Mariano et al., 2011b): large cooling duties are required to capture 

all the products, especially acetone. 

Gas stripping is the most widely researched evaporative technique for the ABE fermentation. 

It is a simple process, consisting of sparging an anaerobic gas through the fermentation 

broth, without harming the bacteria, whilst selectively removing the ABE. This means that it 

can be applied to a wide range of reactor configurations and to batch, fed-batch and 

continuous fermentations (Mollah and Stuckey, 1993; Ezeji et al., 2003; 2004a; Richter et al., 

2012; Ezeji et al., 2013). The downside to gas stripping is the large volumes of gas required 

to maintain solvent concentrations in the fermentation broth below inhibitory levels. In a 

typical fermentation a gas flow rate of 2-3 vvm is required (Ezeji et al., 2003; Xue et al., 

2012), which, when scaled up, means a large compressor and condensing duty will be 

required. The practicality of these large gas volumes also needs to be considered through 

thorough mechanical design of equipment. This includes considerations around the injection 

pressure of the gas to overcome the static head of the fermentation broth and the additional 

cost this would add to the fermentor design. Alternative process design, such as using an 

external stripper need to be considered if it would reduce the economic impact of applying 

gas stripping. A reduction in condensing duty may be possible if vapour permeation is 

applied. This is a process in which the gaseous stream leaving the fermentor is concentrated 

by passing across a membrane that removes the solvents (Vane and Alvarez, 2008). Due to 

its simplicity and ease of implementation gas stripping is one of the more favoured 

techniques, recent developments have seen gas stripping used as a tool to maintain solvent 

concentrations below toxic levels to investigate other factors affecting the fermentation. 
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Pervaporation (and membrane evaporation (Gapes et al., 1996)) is similar to gas stripping, 

but the gas and liquid phases are separated by a membrane. Pervaporation is, typically, 

performed with a circulation loop from the fermentor to an external pervaporation unit, 

with the solvent-depleted retentate being returned to the fermentor. The gas phase can 

either be a vacuum (Matsumura et al., 1988) or a sweep gas (Groot et al., 1984a). 

Pervaporation has been shown to successfully reduce the fermentation broth solvent 

concentration allowing for extended fermentations and increased substrate usage (Groot et 

al., 1984a), as with gas stripping. The biggest decision, with pervaporation, is the choice of 

membrane, as a high flux and selectivity for ABE is desired, but these two factors are 

inversely related (Gapes et al., 1996). This is due to both the flux and selectivity being 

functions of the membrane permeability. For example, porous membranes allow for high 

fluxes due to the ease of transport through the pores, relying more on the evaporative 

properties of the product for separation.  Whereas, non-porous membranes offer higher 

selectivity as the product has to diffuse through the membrane, therefore membrane 

diffusivity will have a greater influence (Gapes et al., 1996). The downsides to pervaporation 

are that it is more complex than gas stripping, even though it allows for a reduced gas flow 

rate (through the application of a vacuum), and has the potential for fouling by the bacteria 

and fermentation broth components (Qureshi and Blaschek, 1999a; Van Hecke et al., 2012).  

The final set of evaporative techniques applies a vacuum to the fermentation broth to “boil 

off” the solvents at fermentation temperature. This can be implemented through either an 

external flash separator (Mariano et al., 2008), or in situ to the fermentation (vacuum 

fermentation) (Mariano et al., 2011b). All investigations into these techniques have been 

carried out by the same research group (Mariano et al., 2008; 2010; 2011b; 2012b). 

Investigations into external flash separation have only been performed using mathematical 

modelling of the scenario, with experimental work performed on vacuum fermentations 

(Mariano et al., 2008; 2012b). Whilst experimental work has been performed, and shown to 

reduce the solvent concentration below 5 g L-1 removing product inhibition in the fermentor, 

it is limited to only batch fermentations (Mariano et al., 2011b; 2012a). Considerations are 

needed into the economics associated with applying a vacuum at 6.5 kPa, similar to Mariano 

et al. (2012a), as the fermentor will need to be reinforced to cope with this reduced 

pressure. 
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2.3.1.2 Extractive recovery techniques 

Extractive recovery techniques remove the ABE from the fermentation broth to a secondary 

liquid phase. This is predominantly achieved via liquid-liquid extraction (Roffler et al., 1988), 

with a range of extractants (Li et al., 2010; Dhamole et al., 2012; Garcia-Chavez et al., 2012), 

perstraction (Qureshi and Maddox, 2005), aqueous two phase extraction (Kim and Weigand, 

1992) and liquid demixing (Oudshoorn et al., 2011).  

The most developed extractive technique is liquid-liquid extraction (LLE), and is a common 

technique in the processing industries. It exploits the difference in solubilities of ABE in two 

immiscible liquids. Typically an organic solvent, which is immiscible with water, is used, 

providing it is non-toxic to the bacteria. Ishii et al. (1985) published a comprehensive list 

detailing key extractant criteria. This is discussed further in Chapter 3. For the ABE 

fermentation, oleyl alcohol is the most commonly used extractant, and has been used to 

prove that product inhibition can be reduced (Roffler et al., 1987c; b). Compromises have to 

be made when selecting the extractant, as it was found that extractants with higher 

partitions were toxic to the bacteria (Ishii et al., 1985; Roffler et al., 1987b). One solution to 

this has been to use a mixed extractant, such as decanol/oleyl alcohol, to combine the high 

partition of decanol with the non-toxic nature of oleyl alcohol (Evans and Wang, 1988a). This 

has also seen investigations into the use of an ionic liquid (Ha et al., 2010; Garcia-Chavez et 

al., 2012) or a non-ionic surfactant (cloud point extraction) (Dhamole et al., 2012). Biodiesel 

has also been investigated as an alternative extractant, as the biodiesel/ABE mixture could 

be used directly as a biofuel (Ishizaki et al., 1999; Li et al., 2010). The distribution coefficient 

for biodiesel was 1.23 (Li et al., 2010), lower than that of oleyl alcohol therefore more 

extractant would be required to remove the same quantity of butanol. The downside to 

biodiesel extractants is that the distribution coefficient of butyric acid is 1.62 (Li et al., 2010), 

so it is preferentially extracted over butanol which will cause a reduction in yield due to 

incomplete re-assimilation of butyric acid to butanol. A techno-economic analysis is required 

to compare the use of biodiesel as an extractant without product recovery for biofuel to 

oleyl alcohol with product recovery for the chemicals market. 

Perstraction is a development from LLE, similar to how pervaporation is a development of 

gas stripping. Perstraction separates the fermentation broth from the extractant using a 

membrane. The ABE transfers across the membrane into the extractant solvent. In theory it 

should enhance the fermentation more than LLE as it solves the problems caused by mixing 
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the extractant and fermentation broth i.e., extractant toxicity, incomplete phase separation 

and emulsion formation (Qureshi and Maddox, 2005). Against this, the presence of the 

membrane adds another mass transfer step for the ABE removal, which could slow down the 

overall process. The membrane also introduces the possibility of fouling which would require 

an increase in membrane area to maintain the desired flux.  

Generally, perstraction experiments so far have been relatively simple, performed using 

silicone tubing immersed in the fermentation broth or extractant, with the other passing 

through it. Whilst perstraction is supposed to overcome limitations, such as toxicity of the 

extractant, the main extractant to have been used is (non-toxic) oleyl alcohol (Qureshi et al., 

1992). Limited research into perstraction membranes have been performed, with silicone 

(Qureshi and Maddox, 2005) and polypropylene (Grobben et al., 1993) membranes being 

predominantly used. The development appears to follow a similar process to that of 

pervaporation membranes, so it would be expected, with continuing developments in 

membrane technology, that better membranes would become available.  

Aqueous two phase extraction is an alternative to traditional LLE, as it creates two aqueous 

phases which have different affinities for the biomass and products. This is done by the 

addition of soluble polymers, for example polyethylene glycol and dextran to the 

fermentation broth. Aqueous two phase extraction has been used in the biotechnology 

industry where an organic solvent would damage the biomolecules (e.g. proteins) to be 

extracted (Mattiasson, 1983). When paired with the ABE fermentation, it has been shown 

that increased yields and solvent concentrations were possible compared to a standard 

batch fermentation (Kim and Weigand, 1992). Research has not progressed further as 

butanol is not affected through use of an organic solvent as an extractant; instead research 

has focused on LLE.  

Liquid demixing separates the ABE from the fermentation broth by altering the liquid-liquid 

equilibrium, causing the formation of a butanol-rich organic phase, typically through the 

addition of salts to the mixture. This is one of the newer techniques for the separation of 

ABE, and has not yet been proven in situ for the fermentation, as the required concentration 

of the additive would inhibit the bacteria (Oudshoorn et al., 2011). The salt concentrations 

required are over 160 g/L of sodium chloride; this creates a large salt gradient across the cell 

membrane, therefore more energy would be required by the cell to maintain this at the 

expense of ABE production (Oudshoorn et al., 2009). However, the idea of being able to 
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separate the ABE into its own distinct phase whilst in fermentation conditions is appealing. 

Preliminary research into liquid demixing of ABE from water deemed it to be uneconomical 

due to the cost of the salt required, although this did not take into account recycling the salt 

for use in multiple fermentations (Oudshoorn et al., 2011). 

Whilst research has been performed on the extraction process, limited information is 

available on the most economical and least energy intensive process to remove the ABE 

from the extractant. The removal of ABE and regeneration of the extractant add an extra 

unit operation to the process, compared to the traditional distillation based separation 

presented in section 2.2.2; assuming that the beer column is considered as the primary 

separation equivalent to the ISPR technique. This, therefore, adds additional operation and 

capital costs to the ABE process that need to be taken into account alongside the primary 

separation step. 

 

2.3.1.3 Solid phase separations 

Solid phase separations involve the transition from the liquid to the solid phase. This 

category is centralised around adsorption techniques to remove the solvents from the broth 

(Groot and Luyben, 1986), although the newly developed technique of freeze crystallisation 

for separation can also be considered a solid phase separation technique (Oudshoorn et al., 

2009). 

Adsorption is the oldest technique investigated for ISPR of ABE from the fermentation broth: 

it was first investigated by Weizmann et al. (1948). It involves the bonding of the ABE to a 

solid surface, as the fermentation broth flows over it. The exiting broth stream will have a 

reduced ABE concentration reducing the solvent inhibition. This is typically a batch process, 

as once all the binding sites are occupied, no more ABE will be removed from the broth, 

therefore regeneration of the adsorbent via removal of the ABE is a key part of the process 

(Maddox, 1982). Research into adsorption has focused on the wide range of adsorbents 

available, including activated carbon (Weizmann et al., 1948), silicalite-based zeolites (Ennis 

et al., 1987) and polymeric resins (Groot and Luyben, 1986). The major problem with 

adsorption as a technique is that it removes acetic and butyric acid from the broth (Yang et 

al., 1994). This reduces the yield of the fermentation as the acids cannot be converted to 

solvents. 
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Freeze crystallisation is a newly proposed separation technique for ABE, originating from the 

purification of waste water and process streams (van der Ham et al., 1998; Oudshoorn et al., 

2009). Eutectic freeze crystallisation works by freezing the bulk water, and removing the 

butanol (which has a significantly lower freezing point, of -88.6°C, than water) as a 

concentrated solvent stream. This is a more energetically favourable transition than the 

liquid to gas phase change. As no research has been performed into this, some investigation 

would be required, such as into  adverse biological effects and the introduction of solid 

handling equipment (Oudshoorn et al., 2009). Another challenge would be processing the 

ice/solvent stream. The concentration of ABE in the fermentation broth would be about 1 

wt% therefore very little liquid will need to be removed creating a highly viscous slurry. 

 

2.3.1.4 Size-based separation techniques 

The last category for ISPR is size, in which ABE is removed from the fermentation broth 

based on size of the molecule. This is predominantly achieved via the use of a membrane, 

such as via ultrafiltration (Ferras et al., 1986) or reverse osmosis (Garcia et al., 1986).  

Although, pervaporation and perstraction are also membrane-based techniques, the phase 

change across the membrane is the primary means of separation therefore they are not 

considered size-based separation techniques.  

Ultrafiltration has two roles with ISPR, firstly as a method to remove the ABE from the 

vicinity of the cells and secondly as a cell concentration tool. Ferras et al. (1986) investigate 

coupling ultrafiltration to a fermentation to facilitate continuous fermentation. This proved 

successful, and high biomass densities were generated, although there was increased fouling 

of the membrane. The application of ultrafiltration is unlikely to be used on an industrial 

scale due to loss of nutrients in the permeate and it does not significantly increase the 

solvent concentration in the permeate. Instead ultrafiltration could be used to increase the 

biomass concentration in the fermentor and to remove the cells from solvents before an 

alternative recovery technique, which is harmful to the microorganism, could be applied 

(Qureshi et al., 2005; Mariano et al., 2008). 

Reverse osmosis is a technique commonly used to purify water, and has a lower cut off point 

than ultrafiltration so only water will pass through the membrane. When applied to the ABE 

process, the ABE will be retained in the retentate with the permeate returning to the 

fermentor. Garcia et al. (1986) tested the applicability of reverse osmosis to the ABE 
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fermentation and found that, when in combined with an ultrafiltration membrane, reverse 

osmosis could separate butanol from the aqueous phase. The downside to this is that the 

reverse osmosis membrane also separated glucose, acetic acid and butyric acid from the 

aqueous phase, with only the water being returned to the fermentor. This would have a 

negative impact on the fermentation as ideally glucose, acetic acid and butyric acid would be 

returned to the fermentor for conversion into solvents. The ultrafiltration membrane was 

required to eliminate fouling of the reverse osmosis membrane but rapid fouling was seen 

on the ultrafiltration membrane (Garcia et al., 1986). Realistically, reverse osmosis is not 

ideally suited for coupling to the ABE fermentation as it isolates the water rather than the 

ABE. Reverse osmosis is possibly better suited to end-process concentration of the solvents 

to the desired purity.  

 

2.3.1.5 Hybrid Separation Strategies 

More recent work has focused on the use of a combination of techniques or stages to 

improve the separation. These have been termed “hybrid” strategies by Xue et al. (2014d). 

With ISPR this has focused on the use of two or more stages to increase product 

concentration such as Xue et al. (2014b) with two-stage gas stripping, combined gas-

stripping pervaporation (Xue et al., 2016b) or Lu and Li (2014) with the combination of LLE 

and gas stripping. Generally these are initial investigations, requiring further work to support 

the claims made with regards to energy improvements.  

Furthermore, the definition of two-stage or hybrid strategies needs further clarification. 

Typically the first stage of the ISPR process removes ABE from the fermentation broth, the 

second stage further concentrates the product collected during the first stage. This could be 

considered analogous to recovery by LLE followed by distillation as proposed by Roffler et al. 

(1988), yet this is not considered a hybrid strategy. In practice, only the first separation stage 

is the ISPR; further stages can be considered as further purification steps. There are many 

different routes for separation of product from the fermentation broth, condensate or 

separating agent. These options need to be thoroughly investigated alongside each 

technique to understand which gives the best performance. The application of a hybrid 

separation strategy will, ultimately, increase the complexity of the process. This will need to 

be considered from both an operational and economical standing, compared to single-stage 

strategies, before too much development is performed.  
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2.3.2: Technique Applicability 

Table 2.1 summarises the current state of research of each technology. All of the techniques 

can be found in other industries, but are normally applied as end-of-process techniques. 

There is very little data concerning process optimisation, energy consumption and economic 

analyses of industrial-scale ISPR operation. This is no doubt due to the complexity and time-

consuming nature of designing a suitable plant, then developing process simulations to 

establish energy demand and sizing of plant equipment for a detailed economic analysis.  
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Table 2.1: Comparison of state of single-stage ISPR technologies. 

 

 Type of 

technique 

ISPR 

Fermentations 

Performed? 

Mode  

(Batch, Fed-batch, 

Continuous) 

Optimised 

at 

laboratory 

Scale? 

Separating 

Agent 

Regeneration? 

Energy Data 

Available? 

Economic 

Analysis 

Plant 

Applicable 

Design 

Flash Evaporative No n/a No n/a Yes 

(Mariano et 

al., 2011a) 

No Yes 

(Mariano 

et al., 

2011a) 

Vacuum Evaporative Yes Batch (Mariano et 

al., 2011b) 

Yes 

(Mariano 

et al., 

2012a) 

n/a Yes 

(Mariano et 

al., 2012a) 

No Yes 

(Mariano 

et al., 

2012a) 

Gas Stripping Evaporative Yes All (Ezeji et al., 2003; 

2004a; 2013) 

Yes (Ezeji 

et al., 

2005) 

n/a No No Yes (Groot 

et al., 

1989) 

Pervaporation Evaporative Yes All (Qureshi et al., 

1992; Wu et al., 

2012) 

Partially 

(Van 

Hecke et 

al., 2013) 

n/a Yes 

(Matsumura 

et al., 1988; 

Van Hecke 

et al., 2012) 

No Yes (Van 

Hecke et 

al., 2012) 

Vapour 

Permeation 

Evaporative No n/a No n/a No No Yes (Vane 

and 

Alvarez, 

2008) 
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1 Ionic liquids have been tested in shake-flask fermentations for toxicity (Cascon et al., 2011), but no LLE-fermentation data has been published.

 Type of 

technique 

ISPR 

Fermentatio

ns 

Performed? 

Mode  

(Batch, Fed-batch, 

Continuous) 

Optimised 

at 

laboratory 

Scale? 

Separating 

Agent 

Regeneratio

n? 

Energy 

Data 

Available? 

Economic 

Analysis 

Plant 

Applicable 

Design 

LLE - Organic Extractive Yes Batch and Fed-Batch 

(Roffler et al., 1987c; 

b; Qureshi et al., 

1992) 

No Yes (Roffler 

et al., 1988) 

Partially 

(Kurkijärvi 

et al., 

2014) 

Yes (Roffler 

et al., 

1987a) 

Yes (Roffler 

et al., 1988) 

LLE - Ionic 

Liquid 

Extractive No1 n/a No No Yes (Garcia-

Chavez et 

al., 2012) 

No No 

Cloud Point 

Extraction 

Extractive Yes Batch (Dhamole et 

al., 2012) 

No No No No No 

Perstraction Extractive Yes All (Qureshi et al., 

1992; Grobben et al., 

1993; Tanaka et al., 

2012) 

No No No No No 

Liquid 

Demixing 

Extractive No n/a No No No Rudimentar

y 

(Oudshoorn 

et al., 2011) 

Yes 

(Oudshoorn 

et al., 2011) 

Aqueous Two 

Phase 

Extractive Yes Batch (Kim and 

Weigand, 1992) 

No No No No No 
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 Type of 

technique 

ISPR 

Fermentatio

ns 

Performed? 

Mode  

(Batch, Fed-batch, 

Continuous) 

Optimised 

at 

laboratory 

Scale? 

Separating 

Agent 

Regeneration

? 

Energy Data 

Available? 

Economic 

Analysis 

Plant 

Applicable 

Design 

Adsorption Solid phase Yes All (Ennis et al., 1987; 

Yang et al., 1994; 

Wiehn et al., 2014) 

No Yes 

(Oudshoorn 

et al., 2012) 

Rudimentar

y (Qureshi 

et al., 2005) 

No Yes (Yang 

and Tsao, 

1995) 

Freeze 

Crystallisation 

Solid phase No n/a No n/a No No No 

Ultrafiltration Size based Yes  Continuous (Ferras et 

al., 1986) 

No n/a No No Yes (Ferras 

et al., 1986) 

Reverse 

Osmosis 

Size based Yes  Fed-Batch (Garcia et 

al., 1986) 

No n/a No No  Yes (Garcia 

et al., 1986) 
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Four of the techniques suggested have not yet been tested with the ABE fermentation, Table 

2.1. Liquid demixing and freeze crystallisation were both suggested by Oudshoorn et al. 

(2009), and while some follow-up work occurred with liquid demixing (Oudshoorn et al., 

2011), the techniques are still just concepts rather than a practical solution to ABE removal. 

Flash fermentations have been studied to a greater extent, with a plant scale design and 

energy analysis (Mariano et al., 2011a), but the concept has not been experimentally tested 

with an ABE fermentation. It could be inferred that this concept is likely to work via the 

research into vacuum fermentations by the same research group (Mariano et al., 2011b). 

Though differences in recovery could be possible, as vacuum fermentations are aided by the 

fermentation gases stripping ABE from the solution having a cumulative effect on ABE 

removal (Mariano et al., 2011b), the same effect might not be seen in an external flash 

separation unit. Vapour permeation is a combination of pervaporation and gas stripping, but 

so far has only had a preliminary investigation with model solutions, spent fermentation 

broth and process simulations (Vane and Alvarez, 2013; Vane et al., 2013). Until all these 

techniques have been experimentally validated it is not possible confirm their applicability at 

an industrial scale. 

As a category, evaporative ISPR techniques are the most developed, Table 2.1. This is due to 

the simplicity of these techniques, and because minimal additional equipment is required to 

test them, in particular vacuum fermentations and gas stripping. These techniques have 

dilute ABE concentrations in the gas stream, therefore the process has suffered from 

insufficient capture of the product. Unless the product can efficiently be removed from the 

fermentor and form two phases on condensing it will not provide any advantage over the 

traditional distillation (Xue et al., 2014b). Incomplete product capture will have a negative 

effect on the economics as the overall plant yield will decrease, which is counterproductive 

to the strain and fermentation developments to improve bacterial yield.  Pervaporation is 

one of the more complicated evaporative techniques and the most widely researched ISPR 

topic for the ABE fermentation. Most of the research in this area is concerned with the 

development of new membrane materials, and not all of the research is tested with actual 

fermentation broth. These materials show promise for selective removal of ABE, but unless 

more work is done on the commercialisation of these membranes and an economic study 

using them for ISPR of butanol they will remain an academic study.  



30 
 

LLE was the first technique to be considered for an industrial process (Roffler et al., 1987a). 

The majority of the work since has focused on finding or developing a biocompatible 

extractant that is selective for ABE. From literature it would appear that finding a non-toxic 

extractant has been prioritised over the development of an extraction process ideal for 

combining with the ABE fermentation. There has been limited research focusing on the use 

of a more industrial-style setup, such as an external extraction column (Roffler et al., 1988). 

Ionic liquids have been suggested for use with the ABE as an alternative to organic 

extractants (Ha et al., 2010). The problem with ionic liquids is their limited commercial 

availability on a large enough scale to be used with the fermentation. The proposed benefit 

of ionic liquids as an extractant is that they can be customised for a specific purpose (Ha et 

al., 2010), which will add to the difficulty of acquisition and the cost. Cloud point extraction 

and aqueous two-phase extraction have both been tested as a possibility for application with 

the fermentation, but no further development has occurred.  

Perstraction was developed to overcome some of the potential problems with LLE and to 

enable the use of an extractant with a more favourable partition for ABE. It has been used in 

all fermentation operating modes, but there has been no research into the energy and 

economic impact on the ABE fermentation, Table 2.1. Research appears to have stagnated, 

with a primary focus on feasibility and extractant selection. No research has looked at 

process optimisation or the effects of different membrane/extractant combinations. With 

the membrane developments that have occurred for pervaporation (Liu et al., 2013a), it 

could be assumed that the same developments would be applicable to perstraction. 

Perstraction results have shown promise for application to the ABE fermentation (Qureshi 

and Maddox, 2005), but more work is required to properly understand the process at a 

molecular level and to determine whether the membrane or extractant is dominant in 

extraction of the product. This is not to say that while perstraction can still be considered a 

relatively new technique it cannot be developed for commercial processes, as TNO have 

developed a modular ISPR perstraction unit which has been proven for a phenol 

fermentation (Heerema et al., 2011b). 

Adsorption is the only immobilisation-based technique that has been combined with 

fermentation. It is one of the more developed techniques for ISPR, but there is still a lot to 

be researched with regards to practical operation before it can be applied at industrial scale. 

There has been little research into how the process would be combined with the 
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fermentation. Many experiments have directly added the adsorbents to the stirred tank 

reactor (STR) or shake flask where the fermentation was occurring (Yang et al., 1994). There 

have only been a couple of examples where the adsorbent had been combined with the 

fermentation in an external column configuration (Yang and Tsao, 1995; Wiehn et al., 2014; 

Xue et al., 2016a).  Lee et al. (2015) found that the bacteria were negatively impacted by the 

addition of the adsorbent to the STR, through the abrasive contact of the adsorbent on the 

cell, resulting in the fermentation acid crashing. This indicates the importance of finding an 

adsorptive process that does not compromise the microorganisms’ integrity. Wiehn et al. 

(2014) are the only researchers to have investigated an alternative process using expanded 

bed adsorption to reduce fouling of the adsorbent and harm to the bacteria. In contrast, the 

mechanism of adsorption is well understood, with many different adsorbents tested for 

efficient removal of ABE. Not all of these adsorbents have been tested with an actual ABE 

fermentation (Eom et al., 2012a; 2012b). The adsorbents need to be tested with the ABE 

fermentation and investigations into the energy and economics are required. 

Amongst the size-based techniques, it is possible to rule reverse osmosis out as a suitable, 

standalone, ISPR technique. For reverse osmosis to be technically viable it would have to be 

combined with a cell retention unit prior to it, similar to that performed by Garcia et al. 

(1986). Ultrafiltration can be used in combination with the ABE fermentation, but it would 

be more beneficial to the fermentation to combine it with another downstream unit 

allowing a recycle of any unused substrate and nutrients. Minier et al. (1990) demonstrated 

this by coupling the permeate with distillation, selectively removing the ABE from the broth 

and recycling any the ABE-free fermentation broth back to the fermentor. This makes 

ultrafiltration a cell retention unit operation rather than an ISPR technique, as it is the 

downstream technique that removes the ABE from the fermentation broth. Utilising a cell 

retention method, such as ultrafiltration or an immobilised bioreactor, could allow for better 

separation conditions to be used during ABE removal via other techniques.  

From the data in Table 2.1, vacuum fermentations, gas stripping, pervaporation, LLE with an 

organic extractant and adsorption could be considered the most developed techniques. All 

these techniques would require a degree of development to ensure optimal performance 

within an industrial-based process.  Pervaporation and adsorption are more complex and 

would require more development than the other techniques due to the use of a membrane 

or adsorbent.  
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2.3.3: Technology Readiness Levels 

To better assess and rank the development of each ISPR technique for the ABE fermentation 

an assessment of the technology readiness level (TRL) was performed. This was based on the 

Horizon 2020 TRL scale (EARTO, 2014). Each ISPR technique was assigned a TRL, shown in 

Table 2.2. No techniques have been categorised as TRL7 or higher, progression to this level 

would be more fitting of a commercial/industrial focused company rather than a research 

organisation or university. 

Table 2.2: Technology readiness levels of ISPR techniques. 

TRL 

Scale 
Horizon 2020 Definition ISPR Techniques 

1 Basic principles observed Freeze crystallisation 

2 Technology concept formulated 

Cloud point extraction 

Liquid demixing 

Vapour permeation 

3 Experimental proof of concept 

LLE – ionic extractant 

Ultrafiltration 

Reverse osmosis 

Flash separation 

Aqueous two phase extraction 

4 Technology validated in lab 

Adsorption 

Vacuum fermentation 

Perstraction 

5 
Technology validated in relevant 

environment 
Gas Stripping 

6 
Demonstration in relevant 

environment 

LLE – organic extractant 

Pervaporation 

7 
System prototype demonstration in 

an operational environment 
 

8 System complete and qualified  

9 
Actual system proven in operational 

environment 
 

 

It is not surprising that the conclusions from Table 2.1, that vacuum fermentations, gas 

stripping, pervaporation, LLE with an organic extractant and adsorption are the most 

developed techniques, are in agreement with the TRLs shown in Table 2.2. This is because 

both have been formulated based on the same literature. Interestingly, based on Table 2.2, 
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perstraction is considered to be at the same level as adsorption and vacuum fermentation. 

This is largely because perstraction for ISPR has been tested in batch, fed-batch and 

continuous operation with successful results. 

 

2.3.4: Commercial/Industrial Scale Biobutanol Production 

Currently, most research into in situ butanol removal has been performed at laboratory 

scale. There are very few reports of advancement of ISPR technologies to pilot or 

commercial scale (Van Hecke et al., 2014). Green (2011) stated that product recovery via 

integrated fermentations was an attractive process option for commercial biobutanol 

production. Visioli et al. (2013) noted that between 2008 and 2012 there was an increasing 

trend of patents being registered for ISPR and butanol/isobutanol production, increasing the 

percentage of patents focused on ISPR to 20%. However, there is still a greater focus on 

substrate choice and treatment, and organism development (28% and 27%, respectively) 

(Visioli et al., 2013). Many biobutanol-focused companies include ISPR as part of their 

technology portfolio: this indicates the importance of ISPR technology in progressing 

renewable chemical and biofuel production, below is a summary of their outputs.  

The most publicised integrated fermentation technology is the GIFT TM process developed by 

Gevo Inc. In 2013, this process started operating at a 1 million litre-scale fermentation at 

Gevo’s plant in Luverne, Minnesota, USA (Gevo Inc, 2013). The process used an ex situ flash 

separation to remove isobutanol from the fermentation broth before returning the 

isobutanol-depleted broth to the fermentor. The vapours from the flash separation were 

condensed and phase separation was allowed to occur to obtain a bio-isobutanol-rich phase 

(Evanko et al., 2012). This process would be applicable to the ABE fermentation and is very 

similar process to that modelled by Mariano et al. (2008; 2011a), although it does not 

include the cell separation step. The difference is that Gevo Inc. is that it is producing bio-

isobutanol, rather than n-butanol through the ABE fermentation. Gevo are targeting both 

the chemical and fuel market with an initial focus on four key markets: solvents, gasoline 

blends, jet fuel and isooctane (Gevo Inc., 2017). 

ButamaxTM Advanced Biofuels LLC. , a BP and DuPont joint venture, is also focusing on the 

production of bio-isobutanol, using liquid-liquid extraction to remove the product from the 

fermentation (Grady et al., 2009). From the Grady et al. (2009) patent, it could be surmised 

that the extractant to be used is oleyl alcohol, which is in agreement with Ishii et al. (1985) 
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and Roffler et al. (1987b), who found that oleyl alcohol is the best extractant for butanol 

recovery. 

Cobalt Technologies were investigating the production of bio-n-butanol via a continuous 

immobilised biofilm concentrate fermentation (Wilson, 2011). Interestingly, they have not 

acknowledged the use of an ISPR process. Instead they have modified the traditional 

distillation process to be more energy- and cost-efficient. Cobalt Technologies achieved this 

through the design of a vapour compression distillation system that can reduce the 

separation energy by 50-75% (Contag, 2008; Kaufman et al., 2010). This demonstrates that 

the microorganism and fermentation operating mode are a major factor in process design, 

and an integrated fermentation might not be best suited to all fermentation processes. 

 Green Biologics Ltd. (GBL) is headquartered in Abingdon, UK with a plant in the USA for the 

production of n-butanol and acetone. They have developed expertise in both synthetic 

biology and advanced fermentation process technology to produce bio-n-butanol through a 

Clostridium biocatalyst using a range of sustainable feedstocks (Davies, 2013; Green 

Biologics Ltd, 2014). GBL have included ISPR as part of their process development with a 

patent focusing on a single-stage fermentation with controlled product removal (Green et 

al., 2014).  

Optinol Inc, based in San Fransisco, USA have focused on process development of n-butanol 

using a non-genetically modified organism, rather than developing a high-butanol producing 

strain (Optinol Inc, 2014). As part of their process development an ISPR process was created 

extracting the butanol into an oil phase, with the oil removed from the fermentor as a foam. 

When the foam is broken an aqueous phase containing 4% butanol is formed. Optinol have 

stated that for a fermentation broth with a butanol concentration of 16g/L, 34% of butanol 

can removed through this method (Day et al., 2013). While the oil used for extraction has a 

low affinity for butanol compared to oleyl alcohol, this extraction technique exploits the oil-

water phase properties to allow for a simple separation of the two phases. Since 2013 there 

has been no further news about the progress of this company. 

VITO, a European research organisation in Belgium has also investigated ISPR in relation to 

the ABE process. They have focused on membrane technology, in particular pervaporation, 

publishing a number of research articles on the subject (Van Hecke et al., 2012; 2013; 2015). 

Membrane technology has also been a focus of the Dutch research organisation TNO, who 

have investigated perstraction for ISPR of phenol (Heerema et al., 2011a; 2011b). While their 
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process has not been investigated with the ABE fermentation, developments within both 

these companies have used commercially available membranes. This indicates that the 

industrial use of membrane technology is likely to be possible in the near future. 

ISPR has the potential to significantly improve fermentation, with productivity increases over 

300% observed (Ezeji et al., 2004a). There is a large commercial interest as biobutanol-

focused companies all have ISPR included in their product portfolio. This is further supported 

by research organisations having an interest in the application of ISPR, particularly as the 

application of ISPR will be relevant to other fermentation processes as well. The techniques 

used by industrial biotechnology companies are similar to the most researched techniques in 

Table 2.1, with the use of a vacuum for low temperature separation and LLE methods being 

the most popular.  Both these techniques are well understood separation techniques found 

in other industries. Utilising techniques that are already understood has meant a quicker 

speed of development. For example LLE was the first fully developed technique, by Roffler et 

al. (1987a) in 1987 with a full process design and economic analysis.  

 

2.3.5: Progressing ISPR 

Research into ISPR and the ABE fermentation can be divided into two classes: advanced, 

meaning approaching or in commercial operation at some scale, and preliminary, meaning 

still very much in the research phase. The techniques which have been investigated most 

thoroughly are gas stripping, vacuum fermentations, pervaporation, LLE, perstraction and 

adsorption. Other techniques, such as flash separations, extractive fermentations using 

alternative extractants such as ionic liquids, liquid demixing, aqueous two phase extraction 

and freeze crystallisation are at a considerably earlier development stage. Reverse osmosis 

has greater applicability as an end of process dehydration technique rather than to remove 

ABE from the fermentation. It is debatable whether ultrafiltration can be classified as an ISPR 

technique as it has greater potential as a biomass concentration or removal step within the 

integrated fermentation process. Cell retention could be considered as an ISPR aid, to be 

used in conjunction with techniques considered harmful to the microorganism, and would 

include ultrafiltration and immobilised fermentations.  

For the “real” impact of ISPR research, the application and scale up needs to be considered. 

Researchers need to consider how applicable a laboratory method is at scale and if 

performance will be hindered by a more industrial applicable method. More work is also 
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required on the energy benefits and economic impact of each technique. There are many 

statements indicating ISPR “should” or “could” reduce the energy demand without research 

to confirm this. Research also needs to focus on the use of commercially available and cost 

effective materials. The development of new materials for separation is desirable and 

necessary, but ISPR technology will be left behind if materials are not easily accessible when 

processes are being designed.  

 

2.4: Summary 

This chapter has provided an overview of the ABE fermentation, ISPR, and an overview of all 

techniques proposed for combination with ABE fermentation. The proposed techniques have 

been shown to be at a range of different development stages. The next steps are to further 

investigate the most developed ISPR techniques and their application to the ABE 

fermentation. As already stated, these techniques are gas stripping, pervaporation, vacuum 

fermentations, liquid-liquid extraction, perstraction and adsorption. A greater understanding 

of these techniques from a fermentation, energy and economic assessment is required. This 

will help satisfy the key requirements of ISPR as stated by Van Hecke et al. (2014).  The 

following chapter provides an in-depth assessment of these techniques and their impact on 

the fermentation, to determine whether there is an optimum technique or which 

information is missing and required to enable this assessment. 
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Chapter 3.  Applied In Situ Product Recovery in ABE Fermentation 

This chapter is a modified version of a review article originally published in Biotechnology 

Progress (Outram et al., 2017), therefore there is some intended repetition with the previous 

chapter. 

 

3.1: Introduction 

This chapter focuses on the application of ISPR to the ABE fermentation and the impact it has. 

The primary focus has been free cell (not immobilised or biofilm based) fermentations in a 

stirred tank reactor (STR), to allow for comparison of the various ISPR techniques. Other reactor 

configurations, such as immobilised fermentations, have been considered where STR 

fermentations have not been performed. The techniques that have been experimentally 

combined with the ABE fermentation are gas stripping, vacuum fermentations, pervaporation, 

liquid-liquid extraction, perstraction and adsorption. 

It must be noted that the application of ISPR to the ABE fermentation is the primary separation 

stage. It is therefore additional to the further downstream process, which is typically distillation, 

to separate individual products and achieve the desired purities for sale. 

 

3.2: In Situ Product Recovery 

The aim of ISPR techniques is to remove the product from the vicinity of the cell as soon as it is 

formed (Freeman et al., 1993), this should lead to increased productivity and overall titres for 

fermentations in which product inhibition occurs and reduced waste water treatment costs 

(Roffler et al., 1984). There have been several comprehensive reviews covering ISPR for a wide 

range of fermentations and products. Van Hecke et al. (2014) provided the most recent review, 

which considered developments in ISPR between 2003-2013. They conclude that more research 

is required to prove scalability, long-term robustness and stability of the ISPR technology, 

decreased energy consumption and to maximise the product recovery (Van Hecke et al., 2014). 

Since 2012, there has been a dramatic increase in the number of reviews focusing on the ISPR 

from the ABE fermentation. Abdehagh et al. (2014), focussed on the separation ability of the 
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technique, rather than improvements in production. This study concluded that pervaporation 

and adsorption show the most promise for ISPR. Huang et al. (2014) provide an overview of gas 

stripping, vacuum/flash separations, liquid-liquid extraction, membrane techniques and 

adsorption, with a focus on novel separating agents such as ionic liquids and composite 

membranes.  Xue et al. (2014d) qualitatively compares ISPR techniques to conventional 

distillation, concluding that no ISPR technique will be able to concentrate the products to 

reagent grade. The most recent review was by Staggs and Nielsen (2015), which focused on the 

mode of application of the ISPR technique i.e. direct contact or recirculation in an external 

contactor. To complement these reviews this review’s focus is on the effect of each technique 

on the fermentation. 

The ISPR techniques were compared in terms of the amount of substrate utilised, productivity 

and yield. The “substrate utilised” is defined here as the total amount of substrate consumed 

during the fermentation. The productivity is defined here as the mass (g) of ABE produced per 

litre of reactor volume per hour. The yield is the mass (g) of ABE produced per mass (g) of 

substrate consumed (Qureshi and Blaschek, 2001a). The equations for yield and productivity are 

supplied in section 2.2.1. The % substrate utilised, productivity or yield increase is the 

percentage difference between the substrate utilised, productivity or yield for the integrated in 

situ recovery fermentation and the non-integrated (control) fermentation. These parameters 

have been selected as they are generally considered to be the main parameters of comparison 

in experiment-based literature, particularly productivity and yield. Substrate utilisation was 

selected to demonstrate the improvements in the fermentation, particularly fermentation 

longevity due to reduced toxicity. Measurement of substrate can be considered more reliable 

than product concentration, which can be highly inaccurate due to varying product separation 

methods. Furthermore, the concentrated product is not always directly measured, sometimes 

being inferred from model solution data or assuming the yield is the same as the control 

fermentation (de Vrije et al., 2013). Also, the final concentration varies based on volume used 

for calculation, i.e. fermentation volume (which is variable during the fermentation) through to 

the condensate concentration post separation, particularly with evaporative techniques. 

Productivity and yield provide a standardised measure of the fermentation performance. By 

comparing the % increase compared to the control fermentation, the effects of various 
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differences in experimental methods should be negated, or at least minimised, allowing trends 

relating to the impact of the ISPR technique on the fermentation can be observed.  

This review differs from the previous reviews by taking a quantitative approach to the 

comparing the experimental data of the ISPR techniques and their impact on the fermentation. 

This review also considers the final concentration from each ISPR technique that will enter the 

downstream distillation process, where possible. 

 

3.2.1: Gas Stripping 

Gas stripping is a separation technique that involves the removal of solvents via dissolution into 

a gas passing through the fermentation broth. This technique was studied by a range of authors 

from the mid 1980s (e.g. Ennis et al. (1986)) , through to the present day (e.g. Xue et al. 

(2016b)). Numerous publications cover all operation modes and a range of bioreactor 

configurations (Ezeji et al., 2003; Lu et al., 2012; Chen et al., 2014a; 2014b).  

Gas stripping for ABE fermentations involves the recycling of the fermentation gases (carbon 

dioxide and hydrogen), or application of other anaerobic gases such as oxygen-free nitrogen 

(Ennis et al., 1986; 1987; Groot et al., 1989),  through the fermentor via a condenser to remove 

the ABE from the gas stream (Qureshi et al., 1992). As it can be performed in situ, at laboratory 

scale, without the need for expensive equipment and reactor modifications gas stripping is 

considered a simple technique (Qureshi and Blaschek, 2001b). This cannot be assumed to be the 

same at commercial plant scale. Based on data from Ezeji et al. (2003), the concentration in the 

gas stream is very dilute at approximately 1.7 mg L-1, meaning that large condensing duties will 

be required, which will significantly increase operating costs. Additionally the compressor duty 

to supply gas at flow rates of 2-3 vvm of a plant-scale reactor is energy intensive (Ennis et al., 

1986). On top of the large condensation capacity, the plant design needs to ensure that all 

equipment is capable of withstanding the high pressures required for the circulating gasses to 

overcome the static head in the fermentor. The design, particularly for compressors, also needs 

to account for any safety issues that might arise from compressing hydrogen to ensure flow 

through the fermentor, this will see an increase in equipment cost. 
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A wide range of studies have been performed for gas stripping, with Ezeji’s body of work (Ezeji 

et al., 2003; 2004a; 2005; 2007a; 2013) being the most comprehensive. A general conclusion to 

be drawn from this data is that the productivity of the fermentation is improved through the 

application of gas stripping. The productivities in Table 3.1 show an increase moving from batch 

to fed-batch. It must be noted that the productivity increase seen by Maddox et al. (1995), 

357%, is due to the low productivity of the control fermentation (0.07 g ABE L-1 h-1). This 

demonstrates that relieving product inhibition has a significant positive effect on the 

fermentation. This removal of product toxicity has allowed for more substrate to be consumed, 

with more than a 100% increase in substrate utilization possible.
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Table 3.1: Free cell ABE fermentation outcomes with gas stripping in an STR. 

M
o

d
e

 Microorganism Substrate 
(Concen-

tration for 
ISPR) 

% Substrate 
Increase for 

ISPR (vs. 
control) 

ABE 
Productivity 

for ISPR (g ABE 
L-1 h-1) 

% 
Productivity 

Increase  
(vs. control) 

Yield for 
ISPR (g ABE 

g-1 
Substrate) 

% Yield 
Increase  

(vs  
control) 

Gasa Ref. 

B
at

ch
 

        

Clostridium 
acetobutylicum P262b 

Lactose (58 g 
L-1) 

101% 0.31 41% 0.27 -31% N2 (Ennis et 
al., 1986) 

C. acetobutylicum 
P262b 

Whey 
Permeate/ 
Lactose (199 
g L-1) 

542% 0.32 357% 0.35 35% CO2+
H2 

(Maddox 
et al., 
1995) 

Clostridium 
beijerinckii BA101 

Glucose (162 
g L-1) 

263% 0.6 107% 0.47 21% CO2+
H2 

(Ezeji et 
al., 2003) 

C. beijerinckii BA101 Liquefied 
Corn Starch 
(LCS) (55 g L-

1) 

23% 0.31 107% 0.43 5% CO2+
H2 

(Ezeji et 
al., 

2007a) 

C. beijerinckii BA101 Saccharified 
Liquefied 
Corn Starch 
(SLCS) (64 g L-

1) 

41% 0.4 74% 0.41 2% CO2+
H2 

(Ezeji et 
al., 

2007a) 

C. beijerinckii CC101 Wood Pulp 
Hydrolysate 
(33 g L-1) 

36% 0.17 55% 0.39 18% CO2+
H2 

(Lu et al., 
2013) 

C. beijerinckii NRRL 
B593c 

Glucose/ 
Xylose (60 g 
L-1) 

77% 0.29 81% 0.32d - CO2+
H2 

(de Vrije 
et al., 
2013) 
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M
o

d
e

 Microorganism Substrate 
(Concen-

tration for 
ISPR) 

% Substrate 
Increase for 

ISPR (vs. 
control) 

ABE 
Productivity 

for ISPR (g ABE 
L-1 h-1) 

% 
Productivity 

Increase  
(vs. control) 

Yield for 
ISPR (g ABE 

g-1 
Substrate) 

% Yield 
Increase  

(vs  
control) 

Gasa Ref. 

Fe
d

- 
B

at
ch

 
  

C. beijerinckii BA101 Glucose (500 
g L-1) 

1001% 1.16 300% 0.47 21% CO2+
H2 

(Ezeji et 
al., 

2004a) 

C. beijerinckii BA101 Saccharified 
Liquefied 
Corn Starch 
(SLCS) (226 g 
L-1) 

395% 0.59 157% 0.36 -10% CO2+
H2 

(Ezeji et 
al., 

2007a) 

C. acetobutylicum 
P262b 

Whey 
Permeate 
(183 g L-1) 

576% 0.26 271% 0.38 19% CO2+
H2 

(Qureshi 
et al., 
1992) 

C
o

n
ti

n
u

o
u

s 
  

C. beijerinckii BA101 Glucose 
(1125 g L-1)e 

2278% 0.92 229% 0.41 5% CO2+
H2 

(Ezeji et 
al., 2013) 

C. beijerinckii NRRL 
B593c 

Glucose/ 
Xylose (52 g 
L-1)f 

56% 0.93 40% 0.30c - N2 (de Vrije 
et al., 
2013) 

C. beijerinckii NRRL 
B593c 

Glucose/ 
Xylose (41 g 
L-1) 

88% 1.3 65% 0.30c - N2 (de Vrije 
et al., 
2013) 

a CO2 and H2 represent recycling of the gases produced during fermentation 
b C. acetobutylicum P262 has since been reclassified as Clostridium saccharobutylicum P262 (Keis et al., 2001) 
c C. beijerinckii NRRL B593 produces isopropanol instead of acetone (de Vrije et al., 2013) 
d Yield has been assumed equal to the yield of the batch for calculations of the productivity (de Vrije et al., 2013) 
e, f, g The dilution rate was 0.003 h-1, 0.06 h-1 and 0.11 h-1, respectively
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Interestingly, there is a decrease in productivity when moving to a continuous fermentation 

compared to the fed-batch fermentation, but it should be noted that this comparison is 

based upon only one strain C. beijerinckii BA101. In the continuous fermentations performed 

by Ezeji et al. (2013), this decrease in productivity cannot be related to the decrease in yield 

(0.92 g L-1 h-1 and 0.41 g g-1 for continuous (Ezeji et al., 2013) compared to 1.16 g L-1 h-1 and 

0.47 g g-1 for fed-batch (Ezeji et al., 2004a)), because if the yield was the same as in the fed-

batch fermentation the productivity would still be lower. Low productivity is a result of the 

cyclic fermentation profile, switching between the acidogenic and solventogenic phase, 

which means that a true steady state is not attained. The reduced yield is due to the removal 

of some of the nutrients from the process, in the reactor bleed, meaning 100% sugar 

utilisation was not possible (Ezeji et al., 2013). 

There are some results in Table 3.1 which show the yield of the gas stripping process being 

greater than the theoretical yield of the bacteria, which is 0.40 g g-1 (Ezeji et al., 2013). In the 

work by Ezeji et al. (2003; 2004a; 2013) the increased yield, 0.41-0.47 g g-1, is contributed to 

the consumption of other carbon sources present in the complex medium used, such as 

sodium acetate. It is also suspected that less substrate is used for biomass maintenance, 

therefore a greater product yield is possible (Ezeji et al., 2004a). No reason was provided for 

the higher than expected yield in the case of Ezeji et al. (2007a). In some cases a decrease in 

yield compared to the non-integrated fermentation is seen, for example Ennis et al. (1986) 

observed a 31% decrease in yield; but this is probably related to inefficient condensing 

capability, meaning that not all solvents are captured and are consequently not accounted 

for when calculating the yield, as seen by Groot et al. (1989) and Ezeji et al. (2004a) who 

take into account solvent losses when calculating the overall yield. This inability to capture 

all the solvents has a knock-on effect, meaning that the productivities cannot be assumed to 

be accurate, adding further uncertainty to any comparison between operating modes. de 

Vrije et al. (2013) overcame the loss of products by assuming the same yield as the control 

fermentation, 0.30-0.32 g g-1, and used this to calculate the productivity. This calculation 

method is likely to provide an inaccurate result as it assumes that the ISPR technique has no 

negative or positive effect on the microorganism’s performance. 

Gas stripping has limitations due to the low ABE concentration in fermentation broth, large 

quantities of water removed and high gas flow rates required (Xue et al., 2012). Xue et al. 

(2012) proposed that operating at higher butanol concentrations, 8 g butanol L-1 compared 
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to 5 g butanol L-1, would increase the concentration of product in the vapour and reduce the 

energy for separation. The downside to this is if 8 g butanol L-1 is often inhibitory to the 

bacteria. Xue et al. (2012) tested this idea in an immobilised fermentation using an 

intermittent gas flow rate. The gas flow only operated while the butanol concentration in 

the broth was greater than 8 g butanol L-1. This gas stripping regime saw a 33% increase in 

productivity compared to the control, while the yield remained constant. Stripping at a 

higher concentration saw a condensate concentration of 195.9 g ABE L-1, compared to 76.8 g 

ABE L-1 achieved by Ezeji et al. (2007a) in a fed-batch free cell fermentation with saccharified 

liquefied cornstarch  with the butanol maintained no higher than 5 g butanol L-1.  

3.2.1.1 Hybrid Gas Stripping 

Since 2013 there has been a flurry of investigations into hybrid separations. A major focus of 

the hybrid separation processes has been improving the efficiency of gas stripping. This has 

included investigations into multi-stage gas stripping processes, increasing the temperature 

at which gas stripping is performed and hybrid gas-stripping pervaporation processes (de 

Vrije et al., 2013; Setlhaku et al., 2013; Xue et al., 2013a; Chen et al., 2014b; Xue et al., 

2014b; 2016b), with the aim of reducing the energy requirements for further separation of 

the condensate. Oudshoorn et al. (2009) estimated the selectivity of gas stripping for 

butanol to be between 4 and 22, which is low compared to distillation with an estimated 

selectivity of 72, therefore the recovered solution is not very concentrated. It has been 

widely noted that to achieve significant decreases in the energy for downstream purification, 

two-phase separation needs to be observed in the recovered ABE solution (Lu et al., 2012; 

2013; Chen et al., 2014b). To achieve this phase separation, it has been suggested that the 

butanol concentration in the fermentor should be greater than 8 g L-1, but concentrations 

this high start to impact on the fermentation performance (Chen et al., 2014b; Xue et al., 

2014b).  

To achieve this higher concentration Xue et al. (2013a) proposed a two-stage gas stripping 

process. The aqueous phase condensate from the first stripping stage, 153 g ABE L-1, being 

subjected to gas stripping to achieve a more concentrated solution, 447 g ABE L-1. When 

combined with the organic phase from the first stripping stage the final product solution was 

532 g ABE L-1 (Xue et al., 2013a). The first stage reduced inhibition in the fermentor, while 

the second stage increased the concentration of condensate. Xue et al. (2014b) proceeded 
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to further optimise the process and achieved a final product concentration of 671 g ABE L-1, 

predicting a 50% decrease in operational energy to 7-15 MJ kg-1 butanol (Xue et al., 2014d). 

 de Vrije et al. (2013) discussed the use of increasing the temperature while gas stripping to 

improve the selectivity of the process. de Vrije et al. (2013) utilised the bacteria’s natural 

sporulation cycle for a repeated batch process. The broth was heated to 70°C at the end of a 

batch to remove the products via enhanced gas stripping and heat shock the spores to 

restart the fermentation with fresh media added. The final condensate concentration, nor 

total product formation was not stated so this cannot be compared to the two-stage process 

proposed by Xue et al. (2014b). Chen et al. (2014b) also investigated the use of a higher 

stripping temperature, but combined the fermentation with an immobilised cell bioreactor. 

Immobilisation of the cells allowed the fermentation medium to be heated to 70°C without 

impacting the viability of the bacteria. This saw condensate concentrations of 703 g butanol 

L-1 in the organic phase and 78 g butanol L-1 in the aqueous phase. The combined 

concentration was 150 g butanol L-1 (Chen et al., 2014b), indicating that a two-stage 

stripping system will offer better performance. 

Gas stripping has also been combined with pervaporation, using a carbon nanotube filled 

polydimethylsiloxane (CNT-PDMS) membrane (Xue et al., 2016b). Gas stripping was first 

performed on the fermentation broth to relieve ABE toxicity. Pervaporation was then 

performed on the aqueous phase portion of the condensate to further increase the final 

product concentration. This method produced a final product concentration of 623 g ABE L-1 

(Xue et al., 2016b), which is slightly lower than that achieved using the two-stage gas 

stripping process (671 g ABE L-1) (Xue et al., 2014b). Xue et al. (2016b) predict that the 

energy for the pervaporation step will be as low as 4 kJ kg-1 butanol due to the starting 

solution containing 80 g L-1 butanol. The overall two-stage gas stripping-pervaporation 

process would require ~20 MJ kg-1 butanol. Compared to two-stage gas stripping a hybrid 

gas stripping-pervaporation process is more complex, producing a lower product 

concentration and requires more energy for this stage of the process.  

These hybrid techniques apply a second/enhanced separation stage to the fermentation. 

Other than de Vrije et al. (2013), have all focused on immobilised fermentations. It would be 

useful to see the potential impact these hybrid techniques (if possible) could have when 

combined with free cell fermentations. Liu et al. (2004) and van der Merwe et al. (2013) 

proposed flowsheets with alternative product concentration techniques to distillation for 
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the ABE fermentation. It would be advantageous to complete a similar analysis for the 

various hybrid options to help decide which further concentration techniques would be best 

suited for an industrial process. 

 

3.2.2: Vacuum Fermentation 

Vacuum fermentations have a reduced pressure in the fermentor, causing the ABE to “boil 

off” at fermentation temperature. Vacuum fermentations were first used in the ethanol 

industry to selectively remove ethanol from fermentation broths. The use of a vacuum for an 

ABE fermentation should be more straightforward than for an ethanol fermentation, as the 

Clostridium sp. used are strict anaerobes (Mariano et al., 2011b). The viability of vacuum 

fermentations was experimentally tested by Mariano et al. (2011b; 2012a; 2012b). 

Mariano et al. (2011b) demonstrated that it is possible to recover ABE from fermentation 

broths under vacuum on a laboratory scale with no adverse effects on the bacteria. The 

system was initially characterised using a model ABE solution, with concentrations ranging 

from 5-15 g butanol L-1, but this was found to be unrepresentative of real fermentation 

broths in which the gas created by the bacteria expands under reduced pressure, stripping 

the solvents from the broth. This effectively creates a hybrid gas stripping-vacuum system. 

Mariano et al. (2012b) reported that under constant vacuum conditions the rate of removal 

of butanol was approximately 10 times higher than that found by Ezeji et al. (2003) using gas 

stripping, which could reduce the butanol concentration by up to 68.5% (Mariano et al., 

2012b). Performing the fermentation under vacuum was able to achieve butanol 

concentrations of less than 1 g L-1 in the fermentation broth (Mariano et al., 2011b). More 

recently vacuum fermentation was also proven to be effective with combining with 

simultaneous saccharification, fermentation and recovery (Qureshi et al., 2014b). Qureshi et 

al. (2014b) successfully demonstrated the combined process using 86 g L-1 corn stover as a 

feedstock, in simultaneous saccharification, fermentation and recovery. The ability to utilise 

lignocellulosic feedstocks as well as combining feedstock treatment with the fermentation 

and recovery should also see a reduction in operational costs.  

Two vacuum modes have been investigated: constant and cyclic. Cyclic vacuum 

fermentations were found to be considerably more competitive in terms of energy demand 

than traditional distillation. The cyclic vacuum process allows the concentration of butanol 

to build up, then reduces the concentration rapidly by applying a vacuum for 2 hours, 



47 
 

repeating this process throughout the fermentation (Mariano et al., 2012a).  This is the only 

variation in operation that has been investigated. Currently all trials have been on batch 

fermentations (Table 3.2) with a maximum applied vacuum time of 30 hours (Mariano et al., 

2011b), so whether vacuum fermentation can be extended for improved productivity is 

unknown. Whether this extended time at reduced pressure would impact microbial 

performance is also unknown (Mariano et al., 2011b; 2012a; 2012b). 
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Table 3.2: ABE fermentation performance with in situ vacuum recovery in an STR. 

M
o

d
e

 Micro-
organism 

Substrate 
(Concen-

tration for 
ISPR) 

% Substrate 
Increase for 

ISPR (vs. 
control) 

ABE 
Productivit
y for ISPR (g 
ABE L-1 h-1) 

% 
Productivit
y Increase  

(vs. control) 

Yield (g 
ABE g-1 

Substrate
) 

% Yield 
Increase  

(vs. 
control) 

Operating 
Temp-

erature 
(°C) 

Vacuum 
Range 

(mmHg) 

Vacuum 
Operating 

Mode 

Ref. 

B
at

ch
 

C. 
beijerinckii 
P260 

Glucose (62 
g L-1) 

38% 0.34 31% 0.24 -31% 37 711-737  Inter-
mittent 

(Mariano 
et al., 

2011b) 

C. 
beijerinckii 
NCIMB 
8052 

Glucose (66 
g L-1) 

56% 0.37 54% 0.34 -8% 35 711-737  Inter-
mittent 

(Mariano 
et al., 

2012a) 

C. 
beijerinckii 
P260 

Glucose (58 
g L-1) 

29% 0.28 8% 0.22 -37% 37 711-737  Contin-
uous 

(Mariano 
et al., 

2011b) 

C. 
beijerinckii 
NCIMB 
8052 

Glucose (65 
g L-1) 

54% 0.43 79% 0.29 -22% 35 711-737  Contin-
uous 

(Mariano 
et al., 

2012b) 

C. 
beijerinckii 
P260 

Corn Stover 
(83 g L-1) 

7% 0.34 55% 0.39 30% 35 584 Contin-
uous 

(Qureshi 
et al., 

2014b) 
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All of the literature focussing on vacuum fermentations for the ABE process is a product of 

the same researchers (Mariano et al., 2011b; 2012a; 2012b; Qureshi et al., 2014b). In each of 

these studies inefficient condensation resulted in low ABE capture with ABE condensate 

concentration of 16-49 g L-1, lower than the concentration required for spontaneous phase 

separation (Mariano et al., 2011b). Consequently the yield has been underestimated as 

demonstrated by the negative yield increases seen in Table 3.2. Qureshi et al. (2014b) 

accounted for losses of ABE in the system, based on previous work, and therefore achieved a 

positive yield increase of 30%. This appears to be a common flaw in evaporative techniques, 

in particular vacuum fermentation and gas stripping (Ezeji et al., 2004a; Qureshi et al., 

2014b).  Another potential problem with the use of vacuum fermentations, highlighted by 

Mariano et al. (2011b; 2012a), was that a small concentration of acids (up to 0.4 g L-1) was 

detected in the condensate. As the fermentation utilises acids as intermediates, acid 

removal is undesirable during ISPR as it will reduce the yield of the process.  

Mariano et al. (2012a) assessed the energy requirement for the addition of a vacuum to the 

fermentation. They showed that the use of a vacuum reduced the downstream distillation 

energy requirement by 11.2 MJ kg-1 butanol for a continuous vacuum and 15 MJ kg-1 butanol 

for intermittent vacuum. When combined with the energy required for the vacuum 

fermentation the total energy requirement became 32.4 and 22.0 MJ kg-1 butanol for 

continuous and intermittent vacuum, respectively. For a comparable batch process without 

ISPR, the energy requirement was 26.8 MJ kg-1 butanol. The use of a continuous vacuum will 

see an increase in the plant energy demand, defeating one of the main purposes of adding 

ISPR. The use of an intermittent vacuum sees an 18% decrease in energy. Mariano et al. 

(2011a) have demonstrated that as the butanol concentration in the first distillation column 

increases the energy requirements rapidly decrease. This can be inferred as the reason for 

the intermittent vacuum fermentation requiring less energy than the continuous vacuum 

fermentation, where the condensate concentrations were 51.5 g ABE L-1 and 33 g ABE L-1 

respectively (Mariano et al., 2012a). 

Generally, the conclusions over application of vacuum to ABE fermentations are not 

definitive, as there is not enough data (Table 3.2). The application of a vacuum can increase 

the substrate utilisation and productivity of the fermentation, but without an efficient 

product capture step the benefits are not observed, as significant product is lost. The 

decreased yield would have a negative effect on the process economics, impacting the 
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amount of feedstock required. Additionally, the practicality of scaling up a vacuum 

fermentation system needs to be considered. This process would require a reinforced 

fermentor to withstand the continuous reduced pressure that the fermentor would be 

operating at, this would increase the required capital cost. The duration that the vacuum is 

operational for will also need to be taken into account to ensure the equipment is suitably 

rated for these conditions. Consideration is also required as to the potential hazards if air 

was to leak into the system, and potential effects when mixed with the fermentation gasses, 

in particular hydrogen, and the increased risk of explosion.  

3.2.3: Pervaporation 

Pervaporation utilises a membrane between the fermentation broth and the gaseous phase 

(Groot et al., 1984a). A simplified schematic is shown in Figure 3.1. Pervaporation renders 

the flowsheet more complex, as generally an external unit is required to perform the 

separation. It is possible for pervaporation to be performed within the bioreactor (Larrayoz 

and Puigjaner, 1987; Cho and Hwang, 1991), but this would be an unusual configuration.  

 

 

Figure 3.1: Diagram of a fermentation with pervaporation. 

 

Pervaporation has been shown to increase the substrate utilisation, productivity and yield of 

ABE fermentations (see Table 3.3). It is the most widely researched area in relation to ISPR 

and the ABE fermentation. Within this body of research, there is a greater focus on 

membrane performance than integrated fermentation performance (Liu et al., 2013a). Of 

the work performed where the ABE fermentation is coupled to a pervaporation system no 

definitive conclusion can be drawn on fermentation or pervaporation operating conditions.  
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Table 3.3: Free cell ABE fermentation with in situ recovery by pervaporation in an STR. 

M
o

d
e

 Microorganism Substrate 
(Concen-

tration for 
ISPR) 

% Substrate 
Increase for 

ISPR (vs. 
control) 

Productivity 
for ISPR (g 
ABE L-1 h-1) 

% 
Productivity 
Increase (vs. 

control) 

Yield for 
ISPR (g 
ABE g-1 

Substrate) 

% Yield 
Increase 

(vs. 
control) 

Mem-
brane 

Driving 
Force 

Driving 
Force 
Rate 

Ref 

B
at

ch
 

C. beijerinckii 
BA101 

Glucose 
(60 g L-1) 

5% 0.5 47% 0.42 42% Silicone 
tubing 

Air 2-18 L 
min-1 

(Qureshi 
and 
Blaschek, 
1999c) 

C. acetobutylicum 
XY16 

Glucose 
(60 g L-1) 

15% 0.3 50% 0.37 29% PDMS/ 
ceramic 
composite 

Vacuum <400Pa (Wu et al., 
2012) 

C. 
saccharobutylicu
m P262 

Whey 
Permeate/ 
Lactose 
(211 g L-1) 

424% 0.43 207% 0.37 19% Silicone N2 40-42 L 
hr-1 

(Qureshi 
et al., 
2014a) 

C. acetobutylicum 
DP217 

Cassava 
(70 g L-1) 

0% 0.51 21% 0.36 9% Silicalite-
PDMS/PA
N 

Vacuum 280 Pa (Li et al., 
2014) 

 F
e

d
-B

at
ch

 

 

C. acetobutylicum 
ATCC824 

Glucose 
(199 g L-1) 

138% 0.66 47% 0.27 -18% PDMS Vacuum 200 Pa (Shin et 
al., 2015) 

C. acetobutylicum 
ATCC824 

Glucose 
(276 g L-1) 

231% 0.94 109% 0.28 -15% 
 

SDS Vacuum 200 Pa (Shin et 
al., 2015) 

C. acetobutylicum 
XY16 

Glucose 
(200 g L-1) 

285% 0.21 5% 0.28 -3% PDMS/ 
ceramic 
composite 

Vacuum <400Pa (Wu et al., 
2012) 

C. acetobutylicum 
XY16 

Glucose 
(200 g L-1) 

285% 0.25 25% 0.3 3% PDMS/ 
ceramic 
composite 

Vacuum <400Pa (Wu et al., 
2012) 
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M
o

d
e

 Microorganism Substrate 
(Concen-

tration for 
ISPR) 

% Substrate 
Increase for 

ISPR (vs. 
control) 

Productivit
y for ISPR (g 
ABE L-1 h-1) 

% 
Productivity 
Increase (vs. 

control) 

Yield for 
ISPR (g 
ABE g-1 

Substrate) 

% Yield 
Increase 

(vs. 
control) 

Mem-
brane 

Driving 
Force 

Driving 
Force 
Rate 

Ref 

Fe
d

-B
at

ch
 

C. beijerinckii 
BA101 

Glucose 
(384 g L-1) 

568% 0.98 180% 0.43 -2% Silicone Air 2-18 L 
min-1 

(Qureshi 
and 
Blaschek, 
2000) 

C. 
acetobutylicum 
ATCC824 

Glucose 
(445 g L-1) 

950% 0.18 33% 0.35 21% Silicalite-
Silicone 

Vacuum 266-
666 Pa 

(Qureshi 
et al., 
2001) 

C. 
acetobutylicum 
DP217 

Cassava 
(736 g L-1) 
 
 

951% 0.76 80% 0.38 15% Silicalite-
PDMS/PA
N 

Vacuum 280 Pa (Li et al., 
2014) 

C. 
acetobutylicum 
P262a 

Whey 
Permeate 
(123 g L-1) 

355% 0.14 100% 0.34 6% Polyprop-
ylene 

N2 10-20 L 
min-1 

(Qureshi 
et al., 
1992) 

C.acetobutylicum 
ATCC 55025 

Glucose  
(172 g L-1) 

144% 0.46 15% 0.32 3% Zeolite-
PDMS 

Vacuum <1kPa (Xue et 
al., 2015) 

C
o

n
ti

n
u

o
u

s C. 
acetobutylicum 
ATCC824 
 
 

Glucose 
(100 g L-1)/ 
Xylose (50 g 
L-1)b 

201% 0.65 126% 0.30 67% PDMS 
(Pervatec
h) 

Vacuum 960 Pa (Van 
Hecke et 
al., 2015) 

a C. acetobutylicum P262 has since been reclassified as C. saccharobutylicum P262 (Keis et al., 2001) 
b The overall dilution rate was 0.0017 h-1



53 
 

For pervaporation the major decision to be made is the choice of membrane, as the ideal 

membrane should selectively allow the transfer of ABE while retaining butyric acid, acetic 

acid, water and nutrients. The membrane also needs to be minimally fouling, so that it is not 

blocked by cells adhering to the membrane surface. Table 3.3 shows that a range of 

organophilic membranes have been tested, all of which show an improvement in the 

productivity of the fermentation. While silicone (including polydimethylsiloxane, PDMS) has 

been the most investigated membrane, as it is commercially available, inexpensive, and 

offers easy manipulation for the development of laboratory-scale pervaporation units (Groot 

et al., 1984a; 1984b; Larrayoz and Puigjaner, 1987; Qureshi and Maddox, 1992; Qureshi and 

Blaschek, 1999c; Xue et al., 2014c; Shin et al., 2015; Van Hecke et al., 2015) other membrane 

choices, including polypropylene (Qureshi et al., 1992), oleyl alcohol liquid membrane on a 

polypropylene support (Matsumura et al., 1988), polystyrene-b-polydimethylsiloxane-b-

polystyrene (SDS) (Shin et al., 2015)and PDMS supported ionic liquid membranes (Izák et al., 

2008) have been investigated. More recently there has been a move towards the use of 

composite membranes, utilising a combination of materials for improved selectivity and flux 

performance. This has included silicalite-silicone composite membrane (Qureshi et al., 2001) 

silicalite-PDMS/polyacrylonitrile (PAN) membrane (Li et al., 2014), PDMS/ceramic composite 

(Wu et al., 2012), zeolite-mixed PDMS (Xue et al., 2015) and carbon nanotube filled PDMS 

(CNT-PDMS) (Xue et al., 2014a). A wider range of membranes have been investigated for 

butanol/water or ABE/water solutions, but this does not necessarily transfer to the 

performance in conjunction with a fermentation (Liu et al., 2013a).  

The membrane choice affects the selectivity and diffusion rates of the ABE, which will 

determine the concentration of the ABE in the permeate. Selectivity and flux are both 

functions of the membrane. Careful selection of the membrane material and increasing 

membrane thickness can improve the selectivity. In contrast, the flux increases with a 

decrease in membrane thickness. Other improvements in flux can be made to pervaporation 

through the use of higher temperatures, for example, but this would require an additional 

step of microorganism removal prior to heating the pervaporation feed stream (to 65-78°C), 

and cooling of the retentate prior to re-addition to the bioreactor (Van Hecke et al., 2012; 

Cai et al., 2013). Other factors such as feed concentration and composition, biomass 

concentration and sweep gas flow rate also influence the membrane flux (Qureshi and 

Blaschek, 1999a; 1999c). Qureshi and Blaschek (1999c) and Gapes et al. (1996) state that the 

application of a vacuum on the permeate side increased the flux compared to the 
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application of a sweep gas, which explains why recent research has focussed on vacuums 

(Van Hecke et al., 2012; Wu et al., 2012; Van Hecke et al., 2013).   

The use of a composite membrane has also been proposed as a method of achieving non-

competitive flux and selectivity. Polymers have high flux, are relatively cheap and easy to 

fabricate into a membrane, but are prone to aging over a long time. Inorganic materials are 

often highly selective for butanol and have good strength but are expensive. By combining 

both materials together the membrane should be more selective with a sufficient flux while 

not having a prohibitive cost for scale-up (Huang et al., 2014). Li et al. (2014) used a silicalite-

PDMS/PAN membrane and were able to achieve an average permeate concentration of 201 

g ABE L-1, resulting in spontaneous phase separation. Xue et al. (2014a) used a CNT-PDMS 

membrane. They were able to achieve a butanol separation factor of 16.6 and butanol titres 

over 100 g butanol L-1 in the permeate, when the membrane consists of 10% carbon 

nanotubes. This membrane has not been directly applied to the ABE fermentation. Zeolite-

PDMS were also tested by Xue et al. (2015), with an 80% zeolite loaded PDMS membrane 

being combined with a free cell fermentation. The condensate collected contained 253 g 

ABE L-1, which formed an organic phase containing over 600 g butanol L-1. The membrane 

surface was smooth and non-porous, this reduced fouling by the bacteria as there were no 

pores or imperfections for the bacteria to stick to (Xue et al., 2015). The addition of a second 

material to increase the selectivity and flux significantly improves the compatibility with the 

ABE process. Combine this with achieving high purity ABE (greater than 250 g ABE L-1 in the 

total permeate) means the downstream energy required for product recovery would 

decrease (Li et al., 2014). Currently these membranes have only been made for research 

purposes. An economic study is required to understand the impact the use these novel 

membranes would have on the process.   

As pervaporation is an evaporative ISPR technique, the product is captured through 

condensation. The inefficiencies of condensation of ABE have already been discussed in the 

sections concerning gas stripping and vacuum fermentation. In the papers regarding these 

techniques the inefficiencies of complete product capture are acknowledged, but this has 

not been the case for pervaporation. In Table 3.3 it can be observed, for fed-batch 

fermentations, a negative yield increase compared to the control fermentation. The fed-

batch fermentations are not inhibited by ABE or limited by available substrate, as an 

increase in substrate utilisation is observed, yet there is a decrease in yield compared to the 
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control fermentation. This indicates the potential loss of product, possibly through 

incomplete condensation. Incomplete product capture appears to be an inherent issue 

where the ABE is transferred to the vapour phase and needs to be considered when 

designing the fermentation process. As the recovery of solvents (ABE) from inert gasses is 

known to be problematic, particularly with water-cooled systems (Frank, 2000), it should be 

considered a key area of focus for researchers looking at evaporative techniques. It is 

possible to use a refrigerant-cooling system (Frank, 2000), below ambient temperatures but 

a detailed energy and economic analysis would be required to develop the most efficient 

solvent-capture system. 

To date pervaporation research for the ABE fermentation has predominantly focused on 

glucose based media, Table 3.3. On this type semi-defined media (e.g. glucose with corn 

steep liquor), Qureshi and Blaschek (1999b) found that the pervaporation membrane was 

not fouled by direct contact with the fermentation broth. The closest example to using an 

industrial applicable feedstock is cassava by Li et al. (2014), and they also reported that their 

pervaporation did not experience any fouling. As more second generation lignocellulosic 

feedstock’s are introduced for bioprocess, the feed mixtures tend to be more complex with a 

higher solid content. This could see an increase in fouling, and requirements for larger 

membrane areas but thorough testing is required. 

3.2.4: Liquid-Liquid Extraction 

Liquid-liquid extraction (LLE) is a common technique in the processing industries. It exploits 

the differences between relative solubility of a compound in two immiscible components. 

Typically the solvent used is an organic liquid which is immiscible in water, therefore when 

applied to a fermentation broth the product will preferentially transfer from the aqueous 

phase into the organic phase. 

There are a variety of key parameters that need to be considered, described in Table 3.4. 

Davison and Thompson (1993) also stated that the operability of the LLE system and the 

method of contacting must be considered, especially for plant or pilot plant operation, which 

was only considered by Roffler et al. (1988). One of the biggest challenges with LLE is finding 

an extractant, which can satisfactorily meet all of the key characteristics for the extractant.  
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Table 3.4: Key Characteristics for LLE extractant. 

Key Characteristic Ref. 

Non-toxic to the microorganism  (Ishii et al., 1985; Davison and 
Thompson, 1993) 

Have a high partition coefficient (high 
capacity) 

(Ishii et al., 1985; Davison and 
Thompson, 1993) 

Immiscible with water and not 
emulsion-forming with aqueous phase  

(Ishii et al., 1985) 

Favourable physical properties, for 
example a low viscosity and a large 
density difference compared to water  

(Ishii et al., 1985; 
Weilnhammer and Blass, 1994) 

High chemical stability, particularly at 
high temperatures (to ease extractant 
renewal) 

(Weilnhammer and Blass, 
1994) 

Sterilisable (Ishii et al., 1985) 

Commercially available at low cost  (Ishii et al., 1985; 
Weilnhammer and Blass, 1994; 
Li et al., 2010) 

 

Ishii et al. (1985) and Roffler et al. (1987b) performed a series of extractive batch 

fermentations to find a suitable extractant for the ABE fermentation, and both concluded 

that oleyl alcohol is an acceptable extractant for butanol. It is non-toxic to the 

microorganisms and has a good distribution coefficient with an average distribution 

coefficient for butanol of 4.4 (Roffler et al., 1987b). Table 3.5 shows that oleyl alcohol 

increases both yield and productivity compared to a non-integrated fermentation, unlike 

other tested extractants. As a consequence of this, oleyl alcohol is the most widely studied 

extractant, with Roffler et al. (1987b) performing batch fermentations and fed-batch 

fermentations (Roffler et al., 1987c), before moving to a scaled down industrial fed-batch 

system (Roffler et al., 1988) (the outcomes of these are shown in Table 3.5) and an economic 

assessment of a commercial process of a continuous ABE fermentation with an inline 

recovery unit using oleyl alcohol (Roffler et al., 1987a). The fed-batch fermentations 

demonstrate an improvement over integrated batch fermentations, with substrate 

utilization and productivity increases over 100% being achieved (Roffler et al., 1987c).   

Roffler et al. (1987c; b) reported final organic phase butanol concentrations of 24-30 g 

butanol L-1. This is a small concentration increase, especially compared to those seen in the 

condensate for the evaporative techniques. ABE separation from the oleyl alcohol should be 

less intensive than separation from water, as there is no water-butanol/water-ethanol 

azeotrope formations, but the low concentration will impact the energy requirement.
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Table 3.5: Liquid-Liquid Extraction coupled with free cell ABE fermentation in an STR. 

M
o

d
e

 

Microorganism Substrate 
(Concen-

tration for 
ISPR) 

% 
Substrate 
Increase 
for ISPR 

(vs. 
control) 

Productivity 
for ISPR (g 
ABE L-1 h-1) 

% 
Productivity 

Increase 
(vs. control) 

Yield for 
ISPR (g 
ABE g-1 

Substrate) 

% Yield 
Increase 

(vs. 
control) 

Extractant Ref. 

B
at

ch
 

C. acetobutylicum 
ATCC824 

Glucose 
(97 g L-1) 

18% 0.69 19% 0.17 -6% Kerosene (Roffler et 
al., 1987b) 

C. acetobutylicum 
ATCC824 

Glucose 
(78 g L-1) 

-5% 0.53 -9% 0.17 -6% 50wt% Dodecanol in 
kerosene 

(Roffler et 
al., 1987b) 

C. acetobutylicum 
ATCC824 

Glucose 
(89 g L-1) 

9% 0.43 -26% 0.16 -11% 30wt% Tetradecanol 
in kerosene 

(Roffler et 
al., 1987b) 

C. acetobutylicum 
ATCC824 

Glucose 
(100 g L-1) 

22% 0.72 24% 0.19 6% Oleyl Alcohol (Roffler et 
al., 1987b) 

C. acetobutylicum 
ATCC824 

Glucose 
(100 g L-1) 

22% 0.71 22% 0.17 -6% 50wt% Oleyl alcohol 
in decane fraction 

(Roffler et 
al., 1987b) 

C. acetobutylicum 
ATCC824 

Glucose 
(100 g L-1) 

22% 0.74 28% 0.18 0% 50wt% Oleyl alcohol 
in benzyl benzoate 

(Roffler et 
al., 1987b) 

Clostridium 
saccharoper-
butylacetonicum 
N1-4  

Potato 
glucose 
(75 g L-1) 

34% 0.52 2% 0.38 0% Oleyl Alcohol (Ishizaki et 
al., 1999) 

C. saccharoper-
butylacetonicum 
N1-4  

Potato 
glucose 
(74 g L-1) 

32% 0.55 8% 0.4 5% Methylated crude 
palm oil 

(Ishizaki et 
al., 1999) 

C. acetobutylicum 
BCRC10639 
(ATCC824) 

Glucose 
(unknown) 

 0.27 28% 0.21 15% Biodiesel (Yen and 
Wang, 
2013) 
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M
o

d
e

 

Microorganism Substrate 
(Concen-

tration for 
ISPR) 

% 
Substrate 
Increase 
for ISPR 

(vs. 
control) 

Productivity 
for ISPR (g 
ABE L-1 h-1) 

% 
Productivity 

Increase 
(vs. control) 

Yield for 
ISPR (g 
ABE g-1 

Substrate) 

% Yield 
Increase 

(vs. 
control) 

Extractant Ref. 

B
at

ch
 

C. acetobutylicum 
ATCC824 

Glucose 
(86 g L-1) 

51% 0.36 9% 0.36 -8% Oleyl Alcohol (Lu and Li, 
2014) 

C. acetobutylicum 
ATCC824 

Glucose 
(117 g L-1) 

105% 0.46 39% 0.37 -4% Oleyl Alcohol with 
gas stripping 
 

(Lu and Li, 
2014) 

Fe
d

-B
at

ch
 

 

C. acetobutylicum 
ATCC824 

Glucose 
(155 g L-1) 

91% 0.9 55% 0.24 33% Oleyl Alcohol (Roffler et 
al., 1987c) 

C. acetobutylicum 
ATCC824 

Glucose 
(218 g L-1) 

169% 1.5 159% 0.22 22% Oleyl Alcohol (Roffler et 
al., 1987c) 

C. acetobutylicum 
ATCC824 

Glucose 
(303 g L-1) 

274% 1.3 124% 0.21 17% Oleyl Alcohol (Roffler et 
al., 1987c) 

C. acetobutylicum 
ATCC824 

Glucose 
(86 g L-1) 

60% 0.17 -23% 0.23 -21% PPG1200 (Barton 
and 
Daugulis, 
1992) 

C. acetobutylicum 
BCRC10639 
(ATCC824) 

Glucose 
(unknown) 

 0.30 37% 0.31 65% Biodiesel (Yen and 
Wang, 
2013) 

C. acetobutylicum 
P262 a 

Whey 
Permeate 
(68.6 g L-1) 

154% 0.15 114% 0.35 9% Oleyl Alcohol (Qureshi et 
al., 1992) 

C. acetobutylicum 
ATCC824 

Glucose 
(300 g L-1) 

270% 1 72% 0.19 6% Oleyl Alcohol (Roffler et 
al., 1988) 

a C. acetobutylicum P262 has since been reclassified as C. saccharobutylicum P262 (Keis et al., 2001) 
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Other solvents have been tested with fermentations, such as decanol, dibutylphthalate, 2-

butyl-1-octanol and polypropylene glycol 1200 (PPG) (Eckert and Schügerl, 1987; Wayman 

and Parekh, 1987; Evans and Wang, 1988a; Barton and Daugulis, 1992; Qureshi and Maddox, 

1995; Bankar et al., 2012; González-Peñas et al., 2014a). Decanol has a high distribution 

coefficient for butanol, 6.2, but is toxic to the bacteria and dissolves into the fermentation 

broth (Eckert and Schügerl, 1987; Evans and Wang, 1988a). Evans and Wang (1988a) 

investigated a mixture of decanol-oleyl alcohol as an extractant, where it was observed that 

a mixture containing 40% of decanol was detrimental to fermentation. On the other hand, 

Bankar et al. (2012) did perform a successful continuous fermentation with a 20% decanol, 

80% oleyl alcohol mixed extractant with a two-stage immobilised reactor. A maximum 

solvent productivity of 2.07 g L-1 h-1 was achieved in the second stage reactor at a dilution 

rate of 0.5 h-1.The downside of this was the final product concentration only reached 25.32 g 

ABE L-1. Dibutylphthalate was used as an extractant by Wayman and Parekh (1987) but 

Roffler et al. (1987b) ruled out its use in a fermentation due to the density being very similar 

to water making the removal of the extractant from the fermentation broth difficult. Barton 

and Daugulis (1992) screened 63 organic solvents and decided that PPG 1200 was the best 

extractant. This was largely due to the high partition coefficient and biocompatibility of the 

extractant. Unfortunately, PPG 1200 did not show the same promise in fed-batch 

fermentations as a reduction in both productivity (-23%) and yield (-21%) was seen, Table 

3.5. The authors have associated this with the extraction of acids and intermediates into the 

PPG as the glucose uptake rate had increased by 60% compared to the control, with only a 

26% increase in solvent formation (Barton and Daugulis, 1992). Extraction of acids is not a 

desirable trait in the extractant, as the acids cannot be assimilated into the desired products. 

2-butyl-1-octanol was suggested as an extractant as a result of González-Peñas et al. (2014b) 

extractant screening method. It was selected as it was shown to be biocompatible, with an 

increase in yield over the control experiment. Surprisingly, González-Peñas et al. (2014b) 

found 2-butyl-1-octanol to be a better extractant than oleyl alcohol which has been the most 

commonly used extractant for ISPR. 2- butyl-1-octanol produced a yield of 27.43 w/w% 

compared to 25.5 w/w% for oleyl alcohol. It also had a greater distribution coefficient (6.76) 

and selectivity (644) for butanol compared to oleyl alcohol (4.57, 295) (González-Peñas et al., 

2014b). 

With LLE the achieved yields are very low (Table 3.5), especially compared with evaporative 

techniques like gas stripping and pervaporation (Tables 3.2 and 3.3). With evaporative 
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techniques the average yield is 0.35 g ABE g-1 substrate which is close to the theoretical 

yield. The average yield for LLE is 0.25 g ABE g-1 substrate, which is approximately 40% lower 

than evaporative techniques. This reduction in yield between techniques is likely to be 

related to the contact of extractant with fermentation broth. Either substrate or acids is 

being removed from the broth into the extractant or the extractant is having a toxic effect. 

While these extractants have been selected as they are biocompatible, the sustained contact 

over the duration of the fermentation could be having a negative impact. In contrast, there 

is a general improvement in productivity over the control fermentation; therefore further 

work would be required to understand why the yield is lower than other techniques. 

One of the proposed advantages of ISPR techniques is the increased product titres, reducing 

the downstream separation energy demand. Unfortunately the product concentration in the 

organic phase is rarely stated; rather the total product quantity/concentration based on the 

fermentor volume is specified. Without this concentration it is difficult to assess the 

extraction efficiency in the same manner as evaporative techniques, where the final 

condensate concentration is stated. 

For an economically viable process it is essential that the extractant is recyclable, usually 

meaning that the removal of ABE from it is straightforward. Unfortunately, removal of ABE 

from the extractant and regeneration of the extractant have not been discussed much in the 

literature.  Roffler et al. (1987a) developed a steam stripping or distillation system for the 

removal of ABE from oleyl alcohol as part of their economic assessment. This was successful, 

as oleyl alcohol has a boiling point of 282-349°C, significantly higher than that of butanol. 

This technique has not been subjected to rigorous testing to understand the process and 

effects on the oleyl alcohol (Roffler et al., 1987a). Vacuum distillation followed by flash 

separation has been suggested as an alternative method of separation, but this has not been 

proven experimentally (Shi et al., 2005). However, this was a very general investigation into 

the fermentation performance and energy requirements, and did not provide any indication 

whether flash separation of ABE from oleyl alcohol would be beneficial to the process.  Lu 

and Li (2014) have suggested applying gas stripping to the extractant phase inside the 

fermentor. This regenerates the extractant while it is still in contact with the fermentation 

broth, removing the need for external distillation. The results of a “bottle experiment” have 

proven to be promising as the gas-stripped extractant experiment had greater productivity 

and yield than the standard LLE experiment. The results are shown in Table 3.5. The 
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productivity and yield increase is related to maintaining a product concentration gradient 

between the fermentation broth and extractant. Although, it must be noted that the yield 

decreases between the control fermentation and ISPR fermentations. The authors do not 

acknowledge why there is this decrease in yield, creating difficulties in assessing the true 

impact of applying gas stripping to the extractant phase. The ABE concentrations in the 

condensate from gas stripping stage ranged between 166-204 g ABE L-1. This is a significant 

increase in product concentration compared to the butanol concentration in the extractant 

of 40 g butanol L-1 oleyl alcohol (Lu and Li, 2014), although it is lower than the 

concentrations exhibited by the two-stage gas process (500-700 g ABE L-1 (Xue et al., 2013a; 

2014b)). Lu and Li (2014) did not report any energy requirements for this system and Roffler 

et al. (1988) did not report the concentration of ABE after separation from the extractant, 

making a comparison with distillation or other ISPR techniques difficult. 

To circumvent the re-extraction step both Ishizaki et al. (1999), Li et al. (2010) and Yen and 

Wang (2013) have investigated the use of an extractant that would allow for direct use as a 

biofuel while in the extracted form. The use of biodiesel (methylated fatty acids e.g. 

methylated crude palm oil) was shown to reduce the need for recovery from the extractant 

(Ishizaki et al., 1999; Li et al., 2010; Yen and Wang, 2013), as it produces an ABE-enriched 

biodiesel,  which significantly improves the quality of biodiesel with an increased cetane 

number and a reduced cold filter plugging point (Li et al., 2010). The disadvantage with 

biodiesel is that it preferentially removes butyric acid from the fermentation, which is 

required by the bacteria to produce butanol (Li et al., 2010). Although, Yen and Wang (2013) 

still observed an increase in yield over the control fermentation by 15% in a batch 65% in  

fed-batch fermentation using biodiesel as an extractant, Table 3.5. Ishizaki et al. (1999) 

demonstrated that the use of methylated crude palm oil is competitive in terms of 

fermentation characteristics compared to an extractive fermentation using oleyl alcohol, 

Table 3.5; with an 8% improvement in productivity and 5% yield improvements compared to 

2% and 0% respective improvements with oleyl alcohol. Direct extraction with biodiesel will 

also see acetone transferred into the proposed fuel. Chang et al. (2014) suggests that the 

addition of acetone will not have a negative impact on the use of ABE-enriched biodiesel in a 

combustion engine. Equivalent results were seen when acetone was mixed with gasoline 

and tested a spark ignition engine (Elfasakhany, 2016). If ABE-enriched fuel was to be 

introduced, long term testing on engine performance and wear would be required. The idea 

of using biodiesel as an extractant to create a superior biofuel is attractive and could form 
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part of an ABE-based biorefinery creating multiple products (García et al., 2011). If this were 

the case, the end use of the ABE produced needs to be considered when choosing an 

extractant. 

3.2.5: Perstraction (Membrane Extraction) 

Perstraction is a development from liquid-liquid extraction. It works on the same principles 

of mass transfer of ABE from an aqueous phase to an organic solvent, but the organic 

solvent and fermentation broth are separated by a membrane. The ABE transfers across the 

membrane into the organic phase. It is very similar to pervaporation, but has a liquid on the 

permeate side to provide the “driving force” rather than a gas or vacuum. If the key criteria 

for LLE, outlined in Table 3.4, are not achieved, then LLE is not possible with the ABE 

fermentation.  A membrane separating the two process streams can in principle overcome 

these problems (Jeon and Lee, 1987). 

The main technique has been extraction into oleyl alcohol across a silicone membrane, as 

this has favourable partition characteristics for butanol (Jeon and Lee, 1987; 1989; Qureshi 

et al., 1992; Grobben et al., 1993; Qureshi and Maddox, 2005). Qureshi and Maddox (2005) 

demonstrated in a batch fermentation that perstraction could increase the substrate 

utilisation by 694%, productivity by 163% and yield by 33%, Table 3.6. However Grobben et 

al. (1993) investigated the use of fatty acid methyl esters from sunflower oil, which would 

allow for the direct use of the extractant and biobutanol as a biofuel (this is similar to the 

work by Li et al. (2010) and Ishizaki et al. (1999)). The use of fatty acid methyl esters did not 

match the performance by oleyl alcohol with a 40% decrease in productivity compared to 

the control fermentation and only a 16% increase in substrate utilisation, Table 3.6. This 

could be due to the lower distribution coefficient for ABE in the fatty acid methyl esters 

(0.45, 1.1 and 0.05 respectively) compared to oleyl alcohol creating a lower driving force 

across the membrane.  Jeon and Lee (1987) investigated two other solvents for the use of 

perstraction; polypropylene glycol and tributyrin. Table 3.6 shows that while the alternative 

solvents show improvement over the non-integrated fermentation (productivity increases of 

68% for polypropylene glycol and 42% for tributyrin) oleyl alcohol remains the best 

extractant for the recovery of ABE. When choosing possible extractants for perstraction it 

seems that the same criteria for selecting an extractant for LLE were used in case of any 

back-extraction of the solvent into the fermentation broth (Qureshi et al., 1992). 
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Table 3.6: Free Cell ABE Fermentation in an STR with in situ recovery via perstraction. 

M
o

d
e

 Microorganism Substrate 
(concentration 

for ISPR) 

% Substrate 
Increase for 

ISPR (vs. 
control) 

Productiv-
ity for 
ISPR (g 

ABE L-1 h-1) 

% 
Productiv-

ity Increase 
(vs. control) 

Yield for 
ISPR (g ABE 

g-1 
Substrate) 

% Yield 
Increase 

(vs. 
control) 

Membrane Extractant Ref 
B

at
ch

 

C. 
acetobutylicum 
P262a 

Lactose/Whey 
Permeate (227 g 
L-1) 

694% 0.21 163% 0.44 33% Silicone 
tubing  

Oleyl 
Alcohol 

(Qureshi 
and 
Maddox, 
2005) 

C. saccharoper-
butylacetonicu
m N1-4 

Potato Glucose 
(89 g L-1) 

50% 0.32 -16% 0.21 -23% PTFE Oleyl 
Alcohol 

(Tanaka et 
al., 2012) 

C. saccharoper-
butylacetonicu
m N1-4 

Potato Glucose 
(86 g L-1) 

45% 0.39 3% 0.23 -13% PTFE 1-
Dodecanol 

(Tanaka et 
al., 2012) 

Fe
d

-B
at

ch
 

C. 
acetobutylicum 
ATCC824 

Corn Mash/ 
Glucose (601 g 
L-1) 

902% 1.02 113% 0.36 23% Silicone 
tubing  

Oleyl 
Alcohol 

(Jeon and 
Lee, 1987) 

C. 
acetobutylicum 
ATCC824 

Corn Mash/ 
Glucose (422 g 
L-1) 

603% 0.81 69% 0.35 21% Silicone 
tubing  

Polypro-
pylene 
glycol 

(Jeon and 
Lee, 1987) 

C. 
acetobutylicum 
ATCC824 

Corn Mash/ 
Glucose (155 g 
L-1) 

158% 0.68 42% 0.32 9% Silicone 
tubing  

Tributyrin (Jeon and 
Lee, 1987) 

C. 
acetobutylicum 
DSM1731 
(ATCC8529) 

Potato powder 
(92 g L-1) 

26% 1.00 59% 0.35 35% Polypro-
pylene 

Oleyl 
Alcohol/ 
Decanol 

(Grobben 
et al., 
1993) 

C. 
acetobutylicum 
DSM1731 
(ATCC8529) 

Potato powder 
(85 g L-1) 

16% 0.38 -40% 0.32 23% Polypro-
pylene 

Fatty acid 
methyl 
esters 

(Grobben 
et al., 
1993) 
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M
o

d
e

 Microorganism Substrate 
(concentration 

for ISPR) 

% Substrate 
Increase for 

ISPR (vs. 
control) 

Productiv-
ity for 
ISPR (g 

ABE L-1 h-1) 

% 
Productiv-

ity Increase 
(vs. control) 

Yield for 
ISPR (g ABE 

g-1 
Substrate) 

% Yield 
Increase 

(vs. 
control) 

Membrane Extractant Ref 
Fe

d
- 

B
at

ch
 

C. 
acetobutylicum 
P262a 

 

 

 

Whey Permeate 
(123 g L-1) 

355% 0.24 243% 0.37 16% Silicone 
tubing  

Oleyl 
Alcohol 

(Qureshi 
et al., 
1992) 

C
o

n
ti

n
u

o
u

s 

C. 
acetobutylicum 
ATCC824 
 
 
 

Corn Mash/ 
Glucose  
(2134 g L-1)b 

unknown 2.27 305% 0.33 2% Silicone 
tubing  

Oleyl 
Alcohol 

(Jeon and 
Lee, 1989) 

a C. acetobutylicum P262 has since been reclassified as C. saccharobutylicum P262 (Keis et al., 2001) 
b Dilution rate was 0.2 h-1
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There have been two examples, Shukla et al. (1989) and Tanaka et al. (2012), where toxic 

solvents have been used in a perstraction system. Shukla et al. (1989) chose 2-ethyl-1-

hexanol as an extractant. 2-ethyl-1-hexanol is known to be toxic to bacteria, but was 

considered less toxic than 1-octanol therefore would be an acceptable extractant (Shukla et 

al., 1988). The results of the toxicity tests of 1-octanol or 2-ethyl-1-hexanol were not 

published, so the degree of toxicity under the conditions described is unknown. Shukla et al. 

(1989) used a hollow fibre polypropylene membrane and did not report any ill effects from 

the use of this extractant, although an immobilised C. acetobutylicum on wood chips was 

used for the fermentation, this could reduce the chances of the bacteria coming into contact 

with the solvent at the membrane interface. The only acknowledgement of using a toxic 

extractant was by Tanaka et al. (2012), who chose 1-dodecanol as an extractant. It was 

selected based on a high partition coefficient of 5.14, but it is unknown why 1-dodecanol 

was chosen over other high-distribution, toxic extractants such as 1-octanol with a 

distribution coefficient of 5.6-7.33 (Kim et al., 1999).The same levels of bacterial growth 

were seen when using 1-dodecanol and oleyl alcohol as an extractant for perstraction. While 

the same levels of growth was seen and there was a slight increase in productivity (3%) there 

was a 13% decrease in yield compared to the control fermentation. The authors have not 

commented on this, as the maximum butanol productivity for both oleyl alcohol and 1-

dodecanol, 0.979 g L-1 h-1 was 1.25 times higher than the maximum butanol productivity for 

the control, 0.817 g L-1 h-1. 

One of the problems of LLE was the trade-off between having a high partition coefficient and 

being non-toxic to the bacteria. It was thought that the use of a membrane would allow for 

the use of extractants with higher partition coefficients. As seen in Table 3.6 from the 

description above most researchers have chosen extractants known to be non-toxic to the 

bacteria. The earlier research appeared to indicate that some extractant is leaching across 

the membrane into the aqueous phase (Groot et al., 1990). Groot et al. (1990) believed that 

this was related to sorption of the solvent to the membrane. Some tests they performed 

using hexanol and silicone exhibited toxic effects to the fermentation, although data 

confirming this is not shown (Groot et al., 1990).  Jeon and Lee (1987) stated that tributyrin 

had a partial inhibitory effect over time; therefore the fermentation with perstraction could 

not be run for only 84 hours, consuming 154 g L-1 glucose compared to the oleyl alcohol 

based fermentation which operated for 209 hours consuming 601 g L-1 glucose. Resulting in 

the conclusion that non-toxic solvents had to be used for perstraction.  If this is true, one of 
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the motivations for research into perstraction has been incorrect, meaning there might be 

very little advantage of using perstraction rather than LLE. In contrast, Qureshi and Maddox 

(2005) suspected that back diffusion was a possible reason for the fermentation stopping, 

but later disregarded it, as it was shown that the fermentation stopped due to nutrient 

depletion. Combining this with the successful fermentations performed by Shukla et al. 

(1989) and Tanaka et al. (2012) using toxic extractants, there is no conclusive evidence that 

higher partition coefficient extractants cannot be used. 

The majority of research has used silicone tubing as the membrane, Table 3.6 (Jeon and Lee, 

1987; 1989; Groot et al., 1990; Qureshi et al., 1992; Shah and Lee, 1994; Qureshi and 

Maddox, 2005), because it is widely available and has acceptable mass transfer 

characteristics. It is also possible that it was chosen because it is readily available in the 

laboratory and easy to configure into an appropriate system (Jeon and Lee, 1987; 1989; 

Groot et al., 1990; Qureshi et al., 1992; Qureshi and Maddox, 2005). Jeon and Lee (1987) 

chose it as it has high permeability for butanol and acetone, can be autoclaved, has high 

mechanical strength, is easy to handle, biologically inert, compatible with many organic 

solvents and had been used for pervaporation with the ABE fermentation (Jeon and Lee, 

1987). Qureshi and Maddox (2005) stated similar reasons for using a silicone membrane, 

including that silicone had been proven not to foul and there was no dead space for bacterial 

growth on the tubing. There has been very little comparison in terms of other membrane 

options. Only Groot et al. (1990) have compared possible membrane options, which were 

silicone, neoprene and latex. Based on the mass transfer coefficient, silicone had the highest 

coefficient for all extractants tested compared to neoprene and latex. For hexanol, the 

corresponding mass transfer coefficient was 5.2x10-7 m s-1 for silicone, 0.4 x10-7 m s-1 for 

neoprene and 0.3 x10-7 m s-1 for latex; meaning that the membrane choice will have a 

significant impact on the mass transfer in the system.  No comparisons of polypropylene 

hollow fibre membranes and silicone have been performed. Grobben et al. (1993) have used 

an alternative polypropylene membrane. Polypropylene membranes appear comparable to 

silicone tubing (Table 3.6), but different bacterial strains and substrates have been used for 

the fermentation.  Shukla et al. (1989) used a Celgard X20, a hydrophobic microporous 

hollow fibre membrane. It is suspected that this is also a polypropylene membrane which 

was commercially available at the time of research. Tanaka et al. (2012) chose a 

polytetrafluoroethylene (PTFE) membrane as it is more hydrophobic than other membranes 

that have been used, therefore it should be more selective for ABE. The supposed increased 
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selectivity due to the PTFE membrane could not be validated as was not compared with 

alternative membrane materials. It is evident that membranes for perstraction need to be 

optimised, as membrane development continues and become more commercially available, 

it is likely that more sophisticated industrially applicable membranes will become available 

(Qureshi and Maddox, 2005).  

Comparing the fermentations in Table 3.6 with oleyl alcohol LLE fermentations in Table 3.5, 

not much difference can be seen in fermentation performance. Perstraction appears to 

enable higher fermentation productivities. Perstraction does show a greater, more 

consistent increase in yield, between the ISPR and control fermentation compared to the LLE 

fermentations; achieving an average yield of 0.33 g g-1
 consumed for integrated 

fermentations. This could be because the membrane reduces transfer of key nutrients and 

intermediates into the extractant phase. Similar to LLE, the recovery of ABE from the 

extractant is not considered, nor is the product concentration in the organic phase 

consistently reported. Qureshi and Maddox (2005) reported that the butanol concentration 

never exceed 10 g butanol L-1 oleyl alcohol, although the extractant was replaced with fresh 

extractant 5 times during the fermentation. The extractant was replaced to limit the product 

build up in the fermentor, but this concentration is lower than that reported for LLE at 40 g 

butanol L-1 oleyl alcohol (Lu and Li, 2014). Unless the extractant concentration can be 

increased or optimised for better fermentation performance this lower extractant 

concentration is likely to increase the energy for distillation. In this scenario the use of 

perstraction with non-toxic extractants will have to be suitably justified to be applied to the 

ABE fermentation.

3.2.6: Adsorption 

Adsorption is the binding of a compound onto the surface of a solid adsorbent or resin. It is 

the oldest technique investigated for the use of ISPR from ABE fermentations. In 1948, 

Weizmann et al. (1948) first investigated butanol adsorption to relieve product inhibition 

and reduce the energy demand due to distillation.  

A wide range of adsorbents have been used in conjunction with the butanol and the ABE 

fermentation, and this list is continually evolving as new, more complex adsorbents become 

available. Some of the adsorbents used are activated carbon (Weizmann et al., 1948; Groot 

and Luyben, 1986; Cousin Saint Remi et al., 2012; Xue et al., 2016a), silicalite or silicalite-

based zeolites (Milestone and Bibby, 1981; Maddox, 1982; Ennis et al., 1987; Cousin Saint 
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Remi et al., 2012) and polymeric resins (Groot and Luyben, 1986; Ennis et al., 1987; Nielsen 

et al., 1988; Nielsen and Prather, 2009; Xue et al., 2016a). The initial conclusion from 

Qureshi et al. (2005) was that silicalite adsorbents improved the fermentation the most, as 

they have the ability to concentrate fermentation broth from 5 g butanol L-1 to 810 g butanol 

L-1, but more recent work exhibits a tendency towards polymeric resins (Nielsen and Prather, 

2009; Eom et al., 2012a; Lin et al., 2012a; 2012b). Over time the adsorbents used have 

become increasingly complex with Cousin Saint Remi et al. (2012) recommending ZIF-8, a 

metal organic framework adsorbent from Sigma-Aldrich as a superior adsorbent to silicalite. 

The most recent work published on adsorption has moved back to the use of commercially 

available resins, along with selecting an activated carbon resin Norit ROW 0.8 to be 

combined with the fermentation broth, rather than a polymeric resin such as Dowex 

Optipore L-493 and SD-2 (Xue et al., 2016a).  

The majority of the adsorbents have not been tested in an ABE fermentation, rather using a 

model ABE solution instead. Thus there is a small amount of fermentation data to compare 

in Table 3.7. Yang et al. (1994) are one of the few who have investigated an adsorbent in 

conjunction with fermentation. They demonstrated that the addition of 30% resin to a 

fermentation can achieve 130% increase in productivity of the fermentation. When this was 

adapted to a fed-batch fermentation with external column the productivity increased by 

233% for a single cycle adsorption, and 323% with multiple adsorption cycles. 
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Table 3.7: Free cell ABE fermentation in an STR with adsorption recovery of products. 

M
o

d
e

 

Micro-
organism 

Substrate 
(Concen-

tration for 
ISPR) 

% 
Substrate 
Increase 
for ISPR 

(vs. 
control) 

Productivit
y for ISPR (g 

L-1 h-1) 

% 
Productivit
y Increase 

(vs. control) 

Yield 
for 

ISPR (g 
g-1) 

% Yield 
Increase 

(vs. 
control) 

Adsorption 
Mode Adsorbent 

g 
adsorbent 

mL-1 
liquor Ref 

B
at

ch
 C. aceto-

butylicum 
ATCC824 

Glucose 
(92 g L-1) 

22-47% 0.53 33% 0.32 3% 

Batch (In 
situ) 

Polyvinyl-
pyridine 

(PVP) resin 

5% 
(Yang 
et al., 
1994) 

0.63 58% 0.32 2% 10% 

0.74 85% 0.31 1% 20% 

0.92 130% 0.32 3% 30% 

Fe
d

-B
at

ch
 

C. aceto-
butylicum 
ATCC824 

Glucose 
(190 g L-1) 

334% 

1.33 233% 0.32 2% 
Single cycle 

(ex situ 
column) 

Polyvinyl-
pyridine 

(PVP) resin 
n/a 

(Yang 
and 

Tsao, 
1995) 

C. aceto-
butylicum 
ATCC824 

Glucose 
(1199 g L-

1) 

2636% 

1.69 323% 0.32 4% 
Cyclic  (Ex 

situ 
column) 

Polyvinyl-
pyridine 

(PVP) resin 
n/a 

(Yang 
and 

Tsao, 
1995) 

C. acet-
obutylicum 
ATCC824 

Glucose 
(180 g L-1) 

67% 

0.72 14% 0.28 65% 

Expanded 
Bed 

Adsorption 
(Ex situ) 

Poly 
(styrene-co-
divinylbenze
ne) (Dowex 

Optipore 
L493) 

n/a 

(Wieh
n et 
al., 

2014) 

C. aceto-
butylicum 

JB200 

Glucose 
(158 g L-1) 

267% 

0.34a -3% 0.22a 0% 
Single cycle 

(ex situ 
column) 

Activated 
Carbon (Norit 

ROW 0.8) 
n/a 

(Xue 
et al., 
2016a

) 
a productivity of butanol production and butanol yield, rather than for total products 
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In the past two years more research has focused on combining adsorption with the 

fermentation. Liu et al. (2014) combined the adsorption using KA-I resin with an immobilised 

biofilm reactor. A membrane was used to ensure no biomass came into contact with the 

adsorbent. Two adsorption modes were investigated, selective for butanol and co-

adsorption of acetone, both these methods observed a reduction in productivity and yield by 

37% and 9% for the butanol selective adsorption and 9% and 7% when acetone was co-

adsorbed.  Lee et al. (2015) added the adsorbent directly to the fermentor. Fouling was not 

observed, but the authors commented on the potential physical interaction between the 

biomass and adsorbent being detrimental to the fermentation. The reasons suggested for 

this appear to be tenuous, but the mode of adsorption should be considered to minimise 

impact on the bacteria. This work demonstrated that in batch fermentations, using a 

modified C. acetobutylicum ATCC 824, the product concentration could be increased due to 

the adsorption of products, reducing toxicity. The final broth concentration reached 10 g 

butanol L-1 this is the same as the fermentation with no ISPR, and the same yield was 

observed in both fermentations (Lee et al., 2015).  

Follow up work by Lee et al. (2016) using an ex situ adsorption column, combined with a  

fed-batch fermentation using C. beijerinckii NCIMB 8052, saw no detrimental effects to the 

fermentation. The integrated and non-integrated fermentation both had the same yield of 

0.31, but the integrated fermentation had an increased total product concentration of 26 g 

ABE L-1 compared to 18.5 g ABE L-1. No productivity was supplied for these fermentations 

(Lee et al., 2016). Wiehn et al. (2014) proposed an expanded bed adsorption process. This 

allows the fermentation broth to pass through the adsorbent without the need for microbial 

separation, due to the increased voidage space in the bed. A reduced biomass concentration 

was observed, compared to the control fermentation, but the overall fermentation metrics 

appeared positive with increases in both yield and productivity by 14% and 65% respectively, 

Table 3.7. A limited degree of fouling was observed in the 72 hour experiment, this could be 

a bigger issue in longer fermentations (Wiehn et al., 2014). Xue et al. (2016a) used an 

activated carbon resin in both free cell STR fermentations and an immobilised bioreactor. 

The results of the free cell fermentation are shown in Table 3.7 with a productivity decrease 

of 3% and no change in the yield. The immobilised cell fermentation had a productivity 

increase of 22% and the same yield as the control fermentation. The batch fermentation 

only used a single cycle adsorbent, whereas the immobilised fermentation had 3 adsorbent 

cycles enabling greater product removal hence a higher productivity. The immobilised 
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fermentation eventually ceased due to a build-up of acetone to 18 g L-1 in the fermentation 

broth, inhibiting the bacteria (Xue et al., 2016a).  

 Although the limited integrated adsorption-ABE fermentation generally indicates a good 

compatibility between the two processes, the real industrial feedstock’s need to be 

considered. Industrial feedstock’s will have a considerably higher solids content compared to 

laboratory feeds such as glucose-based media, this will increase the likelihood of fouling, 

particularly from feed components such as proteins.  Additionally, feedstocks which are 

lignocellulosic would typically undergo a hydrolysis step prior to fermentation, this can 

release additional chemicals e.g. phenols which could adsorb to the resin, competing the 

butanol and reducing the adsorbent capacity for the desired product. This would increase 

the mass of adsorbent required per fermentor volume, and potentially interfere with the 

desorption step and further downstream processing. 

Weizmann et al. (1948), in agreement with Yang et al. (1994) and Lin et al. (2012b) observed 

that the adsorption is competitive. Butanol is adsorbed in preference to acetone, for 

example. The order of preference for adsorption was ethanol as the weakest, followed by 

acetone, then butanol as the strongest (Lin et al., 2012b). Yang et al. (1994) found that the 

order was ethanol, acetone, acetic acid, butanol then butyric acid. This order is undesirable, 

as the butyric acid displaces the butanol, the desired product to be removed, and hinders 

the conversion of the butyric acid to butanol. Additionally Xue et al. (2016a) experienced the 

increased concentration of other products in the broth causing the fermentation to stop. 

This also raises questions as to whether any key nutrients are adsorbed during the process, 

which would be highly undesirable. 

A downside of adsorption is that it is inherently a batch process, as the ABE has to bind to 

the adsorbent and then, once it has reached capacity, desorption has to occur. In many 

experiments, batch adsorption was performed (Maddox, 1982; Groot and Luyben, 1986; 

Nielsen et al., 1988; Yang et al., 1994), meaning that once the adsorbent has reached 

capacity it can no longer relieve product inhibition. This indicates that the ratio of adsorbent 

to broth needs to be optimised, as the productivity varies with the quantity of adsorbent, 

Table 3.7. The alternative is operating a minimum of two external packed bed columns in a 

cyclic manner, allowing for one column to be adsorbing, while the other is desorbing (Ennis 

et al., 1987; Yang and Tsao, 1995; Qureshi et al., 2005; Lin et al., 2012a). Operation in this 

cyclic manner with a fed-batch fermentation yielded a favourable fermentation productivity, 
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Table 3.7, (Yang and Tsao, 1995; Xue et al., 2016a). This operating mode would reduce the 

adsorbent inventory required per fermentation, although the product removal would have 

to occur externally from the bioreactor. Ideally the development of a continuous adsorption 

process (e.g. simulated moving bed adsorption) would be best suited, to allow the simplest 

removal of ABE and regeneration of adsorbent.  

Once the adsorbent has reached its capacity the ABE needs to be removed and the 

adsorbent regenerated. The main methods of adsorption are through, increasing the 

temperature (Cousin Saint Remi et al., 2012; Xue et al., 2016a) displacement with steam (Lee 

et al., 2015) or another solvent, e.g. methanol (Yang et al., 1994; Lin et al., 2012b), or 

through vacuum evaporation(Nielsen and Prather, 2009; Wiehn et al., 2014). The recovered 

butanol titres ranged from 43-167 g L-1 (Lee et al., 2015; Xue et al., 2016a). If the higher 

concentrations are consistently achievable then the desorbed titres are similar to that 

achieved by LLE (Lu and Li, 2014), but still lower than the concentrations achieved in gas 

stripping (Xue et al., 2013a).

3.3: Comparison of Techniques 

Currently no review has compared all possible ISPR techniques for ABE fermentations. One 

challenge is that it is difficult to make accurate comparisons between work performed by 

different groups, as different methods and procedures have been followed. This includes the 

use of different strains, media, reactor configurations and mode of operation. To make a 

valid comparison between the different ISPR techniques they have principally been 

compared in terms of their fermentation performance in STRs (see Tables 3.1-3.1, 3.5-3.7). 

The downside of this approach is that not all techniques have been coupled to an ABE 

fermentation in an STR. Furthermore, there is significant variability in the data extracted 

within each ISPR technique. 

From batch fermentations it can be observed that every technique tested (gas stripping, 

vacuum fermentations, pervaporation, liquid-liquid extraction, perstraction and adsorption) 

can have a positive effect on the fermentation. This is due to the removal of the butanol 

inhibition allowing for complete utilisation of the substrate and the possibility of prolonged 

fermentations. This is seen by the significant increase in substrate utilisation in Tables 3.1-

3.3 and Tables 3.5-3.7. Only in two batch fermentations was an increase in substrate not 

observed, Table 3.3 and Table 3.5. In the case of pervaporation, no additional substrate was 

fed to the reactor and both the control and integrated fermentation consumed all the 
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substrate supplied (Li et al., 2014). For LLE, a decrease in substrate utilisation was observed 

with a 50 wt% dodecanol in kerosene extractant. There was also a decrease in productivity 

and yield, which could be related to toxicity of dodecanol to the bacteria (Roffler et al., 

1987b; Tanaka et al., 2012). The most prominent ISPR techniques for batch fermentations 

are gas stripping (see Table 3.1) and pervaporation (Table 3.3). It is difficult to compare 

different adsorption processes, as a major factor in the improvement in productivity is the 

quantity of adsorbent added to the broth, but this is not always reported, Table 3.7. 

Where overcoming product inhibition has been successfully demonstrated for any 

technique, the next step is to perform a fed-batch fermentation which increases substrate 

loading and fermentation time giving higher productivity. Increases of substrate 

consumption between 100-900% compared to the control fermentation are common, Tables 

3.1, 3.3, 3.5-3.7. Fed batch data is only reported for: gas stripping, pervaporation, liquid-

liquid extraction, perstraction and adsorption. Adsorption, Table 3.7, enables the greatest 

improvement in productivity compared to standard batch fermentations, though the 

mechanism of adsorption contact has changed. This is closely followed by gas stripping, but 

the data in Table 3.1 has a degree of unreliability, as the productivity was calculated 

including estimated solvent losses (Ezeji et al., 2004a). In all cases a condenser was not 

sufficient to capture all the solvents produced, so the true productivity of the fermentation 

is unknown. This is a common problem with evaporative techniques due to the highly 

volatile nature of acetone and the high dilution of the vapours. Liquid-liquid extraction, 

however, appears to perform well with relatively repeatable increases in productivity and 

yield, Table 3.5 (Roffler et al., 1987c). 

In literature there have been some discrepancies between what is considered a fed-batch 

and continuous process. There have been several occurrences where a fed-batch 

fermentation has been called continuous in literature (Li et al., 2014; Shin et al., 2015). The 

continuous process described by Shin et al. (2015) and Li et al. (2014) is the same as the fed-

batch process described by Wu et al. (2012) and Qureshi and Blaschek (2000). It must be 

recognised that for ISPR typical process definitions no longer match the process. With a fed-

batch ISPR process, there is a feed in but there is also a product stream out. The product 

stream is not representative of the fermentor, in the same way it would be for a traditional 

continuous process, and the fermentor cannot be considered steady state as the 
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concentrations (particularly biomass) change, although, often a concentrated feed is used to 

maintain a constant fermentation volume.  

Continuous fermentations can be performed, but the continuous removal of fermentation 

broth leads to a lower increase in yield than for fed-batch fermentations, (Table 3.6). In spite 

of this reduced yield, greater consistency in improved productivity is seen. The reduction in 

yield for continuous fermentations is due to substrate removal via the outlet stream being 

accounted for as substrate consumption. This can have a significant effect on the process 

economics, as the substrate has the largest contribution to the cost of production (Jones and 

Woods, 1986). The dilution rate of a continuous fermentation controls the growth rate of 

the bacteria. From the limited data comparing continuous free cell fermentations, the 

dilution rate does not appear to affect the ISPR. Only gas stripping, pervaporation and 

perstraction have been combined with continuous fermentation, with a greater focus on the 

application of fed-batch fermentations. Interestingly perstraction, Table 3.6, shows the 

greatest improvement in productivity for continuous fermentations closely followed by gas 

stripping, Table 3.1.  

In recent years, there has been a growing trend towards immobilised fermentations. A good 

example of this is Xue et al. (2012; 2013a; 2016a; 2016b) who have combined immobilised 

bioreactors with gas-stripping and adsorption. Immobilised fermentations have also been 

considered for combination with pervaporation and LLE (Friedl et al., 1991; Qureshi and 

Maddox, 1995; Bankar et al., 2013). This has included a range of reactor configurations from 

a packed fermentor with circulating feed to a fluidised bed reactor and a range of support 

material from bonechar to sugarcane bagasse (Friedl et al., 1991; Qureshi and Maddox, 

1995; Bankar et al., 2013). Immobilised fermentations are not yet a realised commercial 

technology for the ABE fermentation (van der Merwe et al., 2013), but in combination with 

an ISPR could allow for enhanced separation conditions, e.g. high temperatures (Chen et al., 

2014b), without being detrimental to the bacteria.  Experimental comparisons of 

immobilised fermentations with ISPR need to be investigated to understand if immobilised 

bacterial fermentations should have an increased focus compared to free cell fermentations. 

One of the factors driving the application of ISPR to the ABE fermentation is the potential 

energy reduction, due to increased ABE concentration going to downstream processing. The 

energy associated with separation is generally not considered alongside the experimental 

results. Xue et al. (2013b) suggest that energy reductions will not be observed if the ISPR 
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technique cannot concentrate the ABE to more than 40 wt%. This would allow removal of 

the beer stripper from product purification, which has the largest energy demand, 

concentrating the fermentation broth from 2 wt% ABE (Xue et al., 2013b). None of the 

single-single stage techniques have suggested they can concentrate the product to this 

concentration. The hybrid, two-stage separation processes combined based upon an initial 

gas stripping stage are the only techniques to create an ABE solution greater than 40 wt%, 

with concentrations over 650 g ABE L-1 possible (Xue et al., 2014b). To date, hybrid systems 

have only considered two-stage gas stripping (Xue et al., 2014b), combined gas-stripping and 

pervaporation (Xue et al., 2016b) and extractive gas stripping (Lu and Li, 2014). There is the 

potential for many more hybrid or two-stage separation systems to be designed. The 

economics of two-stage systems will need to be considered and compared to a traditional 

batch and single-stage ISPR process. The application of a single stage ISPR and beer stripper 

is effectively a two-stage process; therefore the cost of implementations and operation 

could be a deciding factor for commercial implementation. 

The review has compared 6 ISPR techniques based on available experimental data focusing 

on free cell fermentations. To mitigate the effects of various experimental methods the % 

increase of substrate utilised, productivity and yield was considered. The experimental data 

has successfully demonstrated that ISPR has a positive impact on the fermentation. The 

generation of models to represent the fermentation with integrated ISPR could help speed 

up developments in ISPR. They can help focus developments to the techniques that would 

provide the greatest improvements to the process. Experimental work can then be 

completed to validate the model results and confirm there are no biocompatibility issues. 

This will reduce the time and expense of testing every ISPR possibility experimentally, and 

provide a comparable baseline. The publication of experimental results can also be improved 

to aid the comparison of different studies. This can be done by ensuring that enough data is 

provided to enable a mass balance of the process to be calculated, hence enabling an easier 

comparison; see Appendix A for a suggestive list of data to be included. 

3.4: Conclusion 

From the comparison of STR fermentations it is possible to say that all techniques exhibit 

improvements in fermentation productivity and that for different operating modes different 

techniques appear to be superior. For batch fermentations, gas stripping and pervaporation 

were favourable, for fed-batch: adsorption and gas stripping, and continuous perstraction 
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has the greatest improvement. The use of novel two-stage or hybrid techniques also needs 

to be considered, particularly their compatibility with free cell STR fermentations. This 

means that the decision on which technique to apply will be based on additional data such 

as energy consumption and an economic analysis. These should be considered alongside the 

fermentation data, and this would help to categorically state which is the best ISPR 

technique. Future work should include process optimisation as part of trying new feedstocks, 

improved strains or separating agents (e.g. membranes, adsorbents, and extractants).    

3.5: Summary 

While all techniques show improvements in the fermentation, there is not enough 

information to make an opinion as to which technique should be of primary focus for 

industrial application. Important information regarding the energy demand and the 

economic impact of ISPR is missing. As indicated by Van Hecke et al. (2014) the use of a 

techno-economic analysis through process modelling would provide useful data for making 

this decision. Focusing on the techniques discussed in this chapter, along with flash 

separation due to its simplicity and similarity to vacuum fermentations, a techno-economic 

analysis has been completed in Chapter 4.
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Chapter 4.  Techno-Economic Analysis 

A comparison of the energy use of in situ product recovery techniques for the Acetone 

Butanol Ethanol fermentation. This chapter is a research article published in Bioresource 

Technology (Outram et al., 2016). 

 

4.1: Introduction  

Butanol is a commodity chemical that can be produced via the Acetone Butanol Ethanol 

(ABE) fermentation. The fermentation is limited by high product toxicity especially of 

butanol, therefore only reasonably dilute product concentrations (~20 g ABE L-1) are attained 

(Green, 2011). This affects the energy requirement for product separation and purification 

(Dürre, 2008), which is important as the energy cost for the process was the second highest 

overall production cost, contributing 14%, behind that of the feedstock (79%) in a 

conventional batch ABE process (Pfromm et al., 2010; Green, 2011). To overcome product 

toxicity, in situ product recovery (ISPR) has been applied and extensively researched for the 

ABE fermentation at laboratory scale (Abdehagh et al., 2014). ISPR also provides the 

potential to increase the plant’s production capacity from the same fermentor volume, 

through increased fermentation productivity and the use of fed-batch fermentations (Ezeji et 

al., 2004a).  While ISPR has been proven to increase the productivity and yield of the ABE 

fermentation, a definitive identification of the optimum technique has remained elusive.  

A wide range of ISPR techniques have been investigated for compatibility with the ABE 

fermentation process. They can be compared using three key criteria. These are: the 

technique’s ability to remove the product from the fermentation broth, the energy 

requirement and the economic impact. A meaningful comparison of the various techniques 

based on the extant literature is difficult for various reasons: differences in experimental 

method, ranging from media composition and microorganism strain to reactor configuration, 

for example. Only a few techniques have been subject to a comprehensive energy and 

economic analysis. The most mature techniques for ISPR are gas stripping, pervaporation, 

vacuum (and flash) fermentations, liquid-liquid extraction (LLE), perstraction and adsorption, 

which have been highlighted in the recent review by Staggs and Nielsen (2015). All of these 

techniques have been proven to reduce product inhibition, but none are sufficiently 

developed for application to an industrial process (Van Hecke et al., 2014).  
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The effects of application of the various modes of ISPR on the process have been widely 

studied, generally demonstrating improvements in productivity and the reduction of product 

toxicity (Ezeji et al., 2010), whereas the associated energy demand of ISPR processes are 

often absent from literature (Van Hecke et al., 2014). This paper focuses on the energy 

demand associated with ISPR techniques. A rough economic assessment of each process is 

made to compare the payback time associated with adding an ISPR technique to an existing 

batch plant. 

It is known that ISPR can reduce downstream process energy demand, but the effect on the 

whole ABE production process has not been accounted for (Van Hecke et al., 2014). Some 

limited energy analysis has been performed (see Table 4.1). A wide range of values have 

been calculated, based upon varying assumptions and process designs. The assumptions and 

process designs have been stated in Table 4.1’s legend. These substantial differences 

between the various process designs and calculation methods make it extremely difficult to 

compare results across techniques.  
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Table 4.1: Comparison of energy information in literature for ISPR. 

Technique 
Oudshoorn 

et al. 

(2009)a 

Qureshi 

et al. 

(2005)b 

Groot 

et al. 

(1992)c 

Nielsen 

and 

Prather 

(2009)d 

Mariano 

et al. 

(2011a)e 

Mariano 

et al. 

(2012a)e 

Salemme 

et al. 

(2016)f 

(MJ kg-1 

BuOH) 

(MJ kg-1 

BuOH) 

(MJ kg-

1 ABE) 

(MJ kg-

1 

BuOH) 

(MJ kg-1 

BuOH) 

(MJ kg-1 

BuOH) 

 

Flash     4.4-6.5   

Vacuum      10.2-15.6  

Gas 

Stripping 
14-31 22 21    15.3 

Pervapora

tion 
2-145 14 9     

Liquid-

liquid 

Extraction 

7.7 9 14    9.9 

Perstracti

on 
7.7       

Adsorptio

n 
1.3-33 8 33 7.8    

a Energy required for separation of butanol from water. Calculations on steady state flow and 
enthalpy changes in the system. Using thermodynamic data from NRTL property package in 
Aspen Plus 12.1 (Oudshoorn et al., 2009). 
b Energy requirement for butanol separation from broth. Unknown calculation method. 
c Estimated total heat of recovery for the overall heat process. Based upon recovering by a two 
column system. Unknown calculation method. 
d For adsorption and desorption process. Calculated from mass balance. 
e Electrical energy only for in situ separation, based on process simulations.  
f Energy requirement for separation technique and a four column distillation set up. All energy 
was made homogenous by expressing as fuel equivalents.  No units were given by Salemme et 
al. (2016), but the specific energy demand for butanol is calculated as the total energy rate 
supplied divided by the mass flowrate of butanol in the system and the lower heating value of 
butanol. 

 

In this work, comparative simulations have been performed for all ISPR techniques 

presented in Table 4.1. Simulations for perstraction were considered independently from 

liquid-liquid extraction, unlike that performed by Oudshoorn et al. (2009). The process 
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simulations allowed for comparison of both the effectiveness of the ISPR techniques, and the 

energy demand for both the ISPR technique and the downstream processing.  The 

simulations were also beneficial for an economic assessment of the techniques. 

 

4.2: Process Simulations 

Process simulations were produced for a 50,000 te yr-1 ABE production plant with IPSR, using 

UniSim Design (Honeywell). A 50,000 te yr-1 plant was simulated being representative of a 

retrofit of a medium sized bioethanol plant for the production of biobutanol. The plants 

were compared on a production rate basis.  This was based on a constant feed rate and a 

fixed conversion rate, accounting for the increased productivity of an ISPR fermentation, 

allowing for inefficiencies in the ISPR technique to be observed. The fermentation 

concentration was controlled to a maximum of 5 g L-1, in the stream returning to the 

fermentor after every ISPR technique. This is below the inhibitory concentration of butanol, 

allowing every ISPR process to have the same production rate hence the same fixed 

conversion rate. It is assumed that the ISPR techniques have no physiological impact on the 

bacteria. The thermodynamics of the process were described using the Extended-NRTL (Non-

Random Two Liquid) model, based on previously being used for simulations of ABE and 

ethanol fermentations (Wooley and Putsche, 1996; Oudshoorn et al., 2009; van der Merwe 

et al., 2013). This model is good for multicomponent, azeotropic, dilute systems, like that 

experienced with the ABE fermentation. The Extended-NRTL version of the model is better 

suited to the wide temperature and concentration ranges present in the ISPR systems, 

utilising interaction parameters as a function of temperature. Two models were used; one 

with the binary coefficients estimated using UNIFAC vapour-liquid equilibrium, the other 

using UNIFAC liquid-liquid equilibrium. The model used depended on the mass transfer 

occurring in each unit operation. Model applicability was confirmed by comparing it to 

experimental data from Stockhardt and Hull (1931), see Figure 4.1.  Good correlation 

between the experimental data and model, especially for the low butanol concentrations (3-

8 g L-1) when ISPR occurs with the average error between bubble and dew point 

temperatures being 0.59% and 0.75%, respectively.  Additionally the model was compared 

to experimental, ternary ABE data (Perelygin, 1980), where the model predicted the 

equilibrium concentrations with good accuracy. The average error in bubble point 

temperatures was 0.46%, and an error of 8% for predicted acetone and ethanol 
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concentrations. The error for butanol was larger at 16% but the concentration ratio of 

butanol was significantly less than that experienced in the fermentation broth. 

 

Figure 4.1: Vapour-liquid equilibrium data at 101.3 kPa for butanol water comparing the extended-NRTL model from 
UniSim Design with experimental data from Stockhardt and Hull (1931). 

The fermentations and downstream separations via distillation were based upon the work of 

Mariano et al. (2011a), using the same stoichiometric reactor model and downstream 

processing route. However, one alteration to the downstream processing route was made by 

adding the ISPR ABE-rich stream after the beer column rather than before. The beer column 

is used to concentrate the ABE in the fermentation and remove any unwanted components 

from the product stream, such as substrate, acetic acid and butyric acid that have not been 

converted to products, and biomass. For ISPR to have a positive impact the product recovery 

should be a concentrated ABE stream with no contaminants, therefore it will be not need to 

be pre-processed before ABE purification negating the need for it to be passed through the 

beer column. This agrees with Huang et al. (2014), with acetone being removed first, 

followed by ethanol then butanol and water. The beer column is still present in the 

simulations for processing the remaining fermentation broth at the end of the fermentation.  

 The reactor conversion was based on an ABE product ratio of 23:75:2 (wt%), this considers a 

process using a high-butanol-producing strain. This is similar to the ratios seen by Tanaka et 

al. (2012). 80% of the product is produced via ISPR methods with a constant substrate 

concentration of 20 g L-1 in the reactor. During the ISPR process the reactor conversion was 

set based on the amount of substrate converted to each product, ABE, or intermediate, 

acetic and butyric acid, based upon the stoichiometric reactions provided by Mariano et al. 

(2011a). The percentage of substrate converted into acetone, butanol, ethanol, butyric acid, 
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acetic acid and biomass were 6.24%, 15.9%, 0.34%, 2.24%, 1.64%, 46.7%, respectively. 

Carbon dioxide and hydrogen were also produced during the fermentation. These are 

represented as by-products of these reactions. As the simulation is performed under steady-

state conditions the conversions ensure that there is a uniform concentration of substrate, 

products and biomass. For this reason, the fermentation broth is not returned to the 

fermentor after ISPR has been applied, although in real fermentations the fermentation 

broth would be returned to the fermentor for further processing. 

The reactor was assumed to be continuous. Whilst this is not a direct representation of the 

ABE process, which would typically be a batch or fed-batch fermentation, it allows for a 

direct comparison of the energy demand for the ABE production process with different ISPR 

methods. This was due to the simulation software only being able to simulate a steady-state 

bioprocess. Other reactor types such as biofilm or immobilised reactors have been 

demonstrated at laboratory scale but have not yet been demonstrated commercially for the 

ABE fermentation therefore have not been considered for simulation (van der Merwe et al., 

2013). An additional continuous reactor was added to the process to represent the batch 

culture produced at the end of the fermentation. For the batch process the reactor 

conversion based on substrate consumption for acetone, butanol, ethanol, and biomass 

production was 14.2%, 36.2%, 0.78% and 48.9%, respectively. It was assumed that no acids 

would be present at the end of the batch phase, as they would have been re-assimilated into 

ABE to achieve the maximum yield possible. Hence, the whole process energy could be 

calculated, allowing comparison to standard batch fermentations.  

The ISPR techniques simulated were flash fermentation, vacuum fermentation, gas stripping, 

pervaporation, liquid-liquid extraction, perstraction and adsorption. These methods of ISPR 

were selected as they are the most developed techniques and performance information is 

available in conjunction with the ABE fermentation. Key process conditions were based on 

experimental data from literature. The process flow diagrams used for the simulations in 

UniSim Design are shown in Table 4.2 and Figure 4.2, along with the specific details relating 

to each ISPR technique.  
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Table 4.2: Description of ISPR technology simulations. 

ISPR 
Technique 

Diagram Sensitivity Analysis Changes 

Variable Range 

Flash 
Fermentation 
(Mariano et 
al., 2008) 

 

Vacuum 
Pressure (kPa) 
 
Condenser 
Temperature 
(°C) 

0.5925-
6.9575 
 
 
0-4 

Vacuum 
Fermentation 
(Mariano et 
al., 2011b) 

 

Vacuum 
Pressure (kPa) 
 
Condenser 
Temperature 
(°C) 
 
 
 
 

5.823-7.117 
 
 
0-4 

Gas Stripping 
(Ezeji et al., 
2003; 2004a) 

 

Compressor 
Pressure (kPa) 
 
Condenser 
Temperature 
(°C) 
 
Gas Bleed 
 

101-202 
 
 
-2 - 2 
 
 
 
2.4-12.2% 



84 
 

Pervaporation 
(Wu et al., 
2012) 

 

Vacuum 
Pressure (kPa) 
 
Condenser 
Temperature 
(°C) 
 
Component Split 
 
 
 
 
 
 

3.47-5.47 
 
 
-2 – 2 
 
 
 
±10% 

Liquid-liquid 
Extraction 
(Roffler et al., 
1987a) 

 

Extractant: 
broth ratio 
 
Preheater 
Temperature 
(°C) 
 
 
 
 
 

0.5184-
0.6336 
 
 
80-100 
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 Perstraction 
(Qureshi and 
Maddox, 
2005) 

 

Extractant: 
broth ratio 
 
Preheater 
temperature 
(°C) 
 
Component split 
 
 
 
 

0.000594-
0.000726 
 
80-100 
 
 
 
±10% 

Adsorption 
(Yang et al., 
1994) 

 

Steam 
temperature 
(°C) 
 
Adsorbent: 
broth ratio 
 
Water: 
adsorbent ratio 
 
 
 

250-270 
 
 
 
0.9-1.1 
 
 
3.177-3.877 
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Figure 4.2: Downstream distillation stream conditions for simulation 

 

In addition to simulating the ABE fermentation with ISPR, a conventional batch ABE 

fermentation was also simulated. As the application of ISPR increases the productivity of the 

plant, hence annual production, the batch plant capacity was assumed to be 18,000 te yr-1. 

This is representational of the same capacity plant, without the ISPR technique applied. The 

annual production is reduced due to batch fermentations, but the annual number of 

fermentations per year is increased due to shorter fermentation times. This accounts for a 

63% decrease in production capacity, compared to the 50,000 te yr-1 basecase.  

Van Hecke et al. (2014) suggested that there are limitations to current simulation software 

with regards to its ability to incorporate ISPR technologies into the simulations. The 

limitations, such as the inability to effectively simulate a membrane or adsorption process, 

stem from the software being designed for the traditional petrochemical industry. Perhaps 

this explains the lack of information surrounding process energy consumption. As UniSim 

Design was designed for the chemical industry, it is not wholly suited to simulating a 

bioprocess, although it is ideal for simulating separation processes of ABE from water. To 

overcome the limitations of the software, the following assumptions were made: 

 Stoichiometric, continuous, steady-state simulation of the fermentation. The 

continuous stream from the fermentor was assumed to represent the desired 



87 
 

conditions in the reactor. The flow leaving the reactor is representation of the 

conditions and concentrations that would be observed during a fed-batch, ISPR 

fermentation 

 The NREL database was used to provide properties for biomass (Wooley and Putsche, 

1996). The chemical composition of biomass was defined as CH1.57N0.23O0.39S0.0035 

allowing the molecular weight to be calculated as 24.6 kg kmol-1 (Wooley and 

Putsche, 1996).  This allowed for creation of a biomass component the same as that 

used by Mariano et al. (2011a) 

 Acetic acid and butyric acid were produced as reaction intermediates. They were 

assumed to be present in the broth in their dissociated form, as the pH of the broth 

(minimum pH 5 (Qureshi and Maddox, 2005)) is greater than the pKa of the acids 

(4.76-4.88). This reduces acid removal from fermentation broth during ISPR, 

particularly during evaporative techniques, to ensure no contamination of the final 

product 

 The rate of product formation is assumed to be equivalent to that observed at low 

solvent titres, ~5 g ABE L-1, this concentration is considered non-inhibitory to the 

fermentation (Ezeji et al., 2004a) 

 Membranes can be simulated as component splitters, using membrane flux data 

(from literature, Table 4.2) to calculate retentate and permeate component fractions. 

The pressure drop across the membrane was not simulated, though the pressures 

are controlled in the streams leaving the component splitter. This is particularly 

important for pervaporation 

 The extractant oleyl alcohol, for LLE and perstraction, is simulated as a hypothetical 

component, using UNIFAC to calculate component properties such as molecular 

weight, critical temperature, critical pressure, critical volume and acentricity. UNIFAC 

was used as no experimental data was available for these values; experimental data 

would have provided greater accuracy 

 Adsorption and desorption were simulated as conversion reactions, with carbon 

representing the adsorbent. As the process is simulated as a series of conversion 

reactions, carbon forms an ideal basis for matrix, as it is present within UniSim’s 

component database and activated carbon has been used as an adsorbent for ABE  

(Groot and Luyben, 1986) 
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 Evaporation-based techniques utilised a gas scrubber to reduce the ABE 

concentrations in the gas emission streams to capture product and ensure the plant’s 

gas emission were within workplace exposure limits. The limits were acetone, 500 

ppm, butanol, 50 ppm, and ethanol, 1000 ppm, based upon United States 

Department of Labor Occupational Safety and Health Administration (OSHA, 2014) 

 Final product concentrations for acetone, butanol, ethanol and water were 99.5 wt%, 

99.5 wt%, >80 wt% and 99.5 wt% respectively 

 No losses of product in the downstream distillation process. 

 Two distillation column solvers were used. The legacy inside-out solver, which is a 

general purpose solver for most general problems. For more complex conditions such 

as near azeotropes the modified inside-out solver was used to allow better 

calculation of factors such as heat exchange inside the column flowsheet. All solvers 

used are stated in Table 4.2 and Figure 4.2. 

 All recycle streams were simulated by inclusion recycle operator. This was done to 

ensure successful convergence of the simulations. 

Further to this, no energy integration was applied to the simulations, to allow for an equal 

comparison of maximum energy demand across each technique. Using process stream 

information from the simulations, grand composite curves were developed for each ISPR 

technique, to understand if any energy can be saved from heat integration. These were 

developed following the method provided by Towler and Sinnott (2013a). 

 

4.2.1: Economic Analysis Method 

An economic analysis was performed based on the results of the simulations. The fixed 

capital costs were estimated  using an updated Bridgewater’s method (4.1), described in 

Towler and Sinnott (2013b).  

 𝐶 = 380,000𝑈 (
𝑄

𝑠
)

0.3

 (4.1) 

Where:  

𝐶 is the capital cost in U.S. dollars, U.S. Gulf Coast, Jan 2010 basis  

𝑈 is the number of functional units 

𝑄 is the plant capacity in tonnes per year 
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𝑠 is the reactor conversion (biological yield) 

The variable operating costs were based upon the mass balance and relative energy 

requirements extracted from the process simulations. For the economic analysis the product 

yield was assumed to be 0.32 kg ABE kg-1 substrate, 0.1 kg biomass kg-1 substrate and 0.58 kg 

gas kg-1 substrate. The feedstock and product values were taken from Kumar et al. (2012) 

and Qureshi et al. (2013). The sale of fermentation gases (H2 and CO2), corn oil, corn protein 

and fibres and biomass was included as additional products. The process simulations were 

developed to represent a retrofit of a medium sized bioethanol plant. The economic analysis 

considers the impact of adding ISPR to the plant, by calculating the additional fixed capital 

required, the additional profit made and associated payback times due to the addition of 

ISPR. 

 

4.3: Results and Discussion 

The process simulations were designed to assess the process energy demand for ABE 

fermentations incorporating ISPR. The separation efficiency was used to compare how well 

each ISPR technique can remove ABE from the fermentation broth. The maximum energy 

demand and separation efficiencies are shown in Figures 4.3 and 4.4, respectively Figure 4.3 

shows the upstream and downstream contributions to the total energy, where the upstream 

is in relation to the fermentation and ISPR process shown in Table 4.2 and downstream is the 

distillation purification process shown in Figure 4.2. 
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Figure 4.3: Maximum energy requirement for seven ISPR techniques (production rate 50 kt yr-1), representing individual 
upstream (blue), downstream (red) and total requirements (green), compared to a batch process (production rate 18 kt 
yr-1). 

 

Figure 4.4: Separation efficiency for each ISPR technique. 

 

The simulation results provide insight into both the energy required for the fermentation 

and ISPR technique, and the impact the ISPR method has on the downstream energy 

consumption. All energy uses were included in the analysis, including the energy required for 

heating, cooling and electrical pump duty. This is in contrast to previous work, such as 

Mariano et al. (2011a; 2012a), where only the energy for the vacuum pumps is considered. A 

sensitivity analysis was performed to assess the reliability of the simulations and the 

assumptions on which they were based. The variables tested and their ranges are shown in 

Table 4.2. 

0

50

100

150

200

250

300

350

En
e

rg
y 

(M
J 

kg
-1

A
B

E)

Process Technique

Upstream Downstream Total

0%

10%

20%

30%

40%

50%

60%

70%

80%

Se
p

ar
at

io
n

 E
ff

ic
ie

n
cy

Process Technique



91 
 

 

4.3.1: Upstream Energy 

The “upstream energy” is the energy required for the fermentation and in situ separation 

step, which are shown in Table 4.2. Figure 4.3 shows a wide range of energy demands for 

this section of the process. Of all the ISPR techniques, perstraction has the lowest upstream 

requirement, and LLE the highest. The high LLE energy demand is due to the large volume of 

extractant used for removal of the butanol from the fermentation broth. More extractant 

means more energy is required for butanol removal via distillation and sterilisation of the 

extractant before coming in contact with the fermentation broth. The recovery of ABE from 

any separating agent and renewal of the separating agent has been included as part of the 

upstream energy demand. For LLE this makes a significant contribution to its high energy 

demand. Oleyl alcohol is also used as the extractant in the perstraction process, but, as a 

membrane separates the fermentation broth and extractant phases, smaller volumes of 

oleyl alcohol are required, less energy is required for renewal of the extractant and no 

energy is required for dispersion and coalescence of the two phases. 

 

4.3.2: Evaporative Techniques 

In general, evaporative techniques have a high upstream energy demand. This is largely due 

to the low concentration of ABE in the recovered stream and the associated difficulties of 

capturing the gas from this stream. For example in gas stripping, the ABE is heavily diluted as 

the gas flow rate required to maintain the butanol concentration in the fermentation broth 

below inhibitory levels is substantial. In these simulations the butanol concentration in the 

bioreactor was maintained at 3.5 g L-1, based on the concentrations seen by Ezeji et al. 

(2004a). Water is also removed from the fermentation broth with evaporative techniques, 

further diluting the vapour stream. Energy was then required to capture the ABE from the 

vapour phase. It is difficult to capture 100% of the solvents at 1-2°C due to the low vapour 

pressures of the ABE, in particular acetone, which has a vapour pressure of 0 kPa at 

approximately -50°C. This was also remarked upon by Ezeji et al. (2004a) in their laboratory-

scale trials. It was not possible to capture the entire product from the vapour phase within 

the temperature ranges for condensers seen in literature. Clearly, final product titres, 

therefore yields and productivities, for evaporative-based experimental techniques will 
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contain substantial errors. This is why the evaporative techniques data have larger error bars 

in Figures 4.3 and 4.4. 

Pervaporation has the smallest evaporative downstream energy. The separation is largely 

achieved by a non-porous membrane. This reduces the amount of water being removed 

from the fermentation broth. Less energy will be required for evaporation and condensation 

as less water is being removed from the fermentation broth. For all other evaporative 

techniques there is direct contact between the liquid and vapour phase.  

The flash and vacuum techniques are very similar processes, but they exhibit different 

upstream energy requirements due to the location of the separation. Flash separation is 

performed in an external vessel, whereas vacuum separation takes place inside the 

fermentor. The application of a vacuum to the fermentor is likely to have an additive effect 

to stripping of the ABE by the gasses produced in the fermentation. Mariano et al. (2011b) 

came to this conclusion when comparing vacuum and flash separations. This also goes some 

way to explain the differences seen in the separation efficiencies between the two 

techniques, Figure 4.4. The results show that vacuum fermentation is superior to flash 

separation, but the cost of implementing this needs to be considered particularly when 

considering the size of the fermentation vessel that needs to withstand 6.5 kPa vacuum. In 

practice, sensibly achieving a 6.5 kPa vacuum is going to be unattainable, particularly on a 

retrofit plant where the original fermentor would not have been designed to withstand a 

constant vacuum. 

The evaporative techniques are more sensitive to changes in the simulations. This is 

probably due to the amount of solvent removed from the broth being a direct result of the 

energy applied, unlike other techniques that use a separating agent to remove the product 

from the fermentation broth. All changes to the process occurred in the upstream section, 

but significant variance is seen in the downstream process, particularly with gas stripping. 

 

4.3.3: Downstream Separation 

The downstream energy is related to the purification of the ABE by a sequence of distillation 

steps, as seen in Figure 4.2. In contrast to the upstream energy demand, LLE has the lowest 

downstream energy requirements for ISPR techniques. This low energy requirement means 

that, overall, LLE is not the most energy intensive ISPR technique. Rather, it is gas stripping, 
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which has one of the highest upstream energy requirements and the highest downstream 

energy requirement. The downstream energy is almost identical to the energy required for 

upstream processing.   

The four largest ISPR downstream energy demands are for the evaporative separation 

techniques. Due to the large amounts of water removed from the fermentation broth during 

the in situ recovery step. The downstream energy requirement is heavily dependent on the 

concentration of ABE entering the downstream system. The ISPR techniques with the lowest 

downstream energy demands have much higher concentrations of ABE at this point. LLE 

produces the most concentrated stream from in situ recovery. It is therefore not surprising 

that LLE and perstraction have the lowest downstream processing energy demands, as they 

both utilise a non-polar organic extractant for separation. The extractant’s affinity for water 

is extremely low, hence the high product concentration and low downstream energy 

demand.  

Compared to a standard conventional batch ABE fermentation, it can be seen that all ISPR 

processes have a greater upstream energy, Figure 4.3. This is to be expected, as at least one 

additional unit operation is being added to the upstream process.  In contrast, all ISPR 

techniques, other than gas stripping, have a lower downstream energy than the standard 

batch process. This is expected due to the increased concentration of ABE in the 

downstream section of the process, resulting in lower downstream energy demand. 

Interestingly, however, when the energy demand for the whole process is considered, only 

perstraction has a lower total energy than the batch process. The reduction is nearly 5%. 

 

4.3.4: Separation Efficiency 

From the simulations it was also possible to quantify a comparative degree of recovery. This 

is not evident in the existing literature.  The separation efficiency is a comparison of the 

amount of ABE separated from the fermentation broth during ISPR compared to the amount 

of ABE present in the fermentation. As all ISPR simulations had the same feed flow rate and 

reaction scheme, an assessment of the techniques’ abilities to remove ABE from the 

fermentation broth can be made (see Figure 4.4). The simulation results show that the 

highest separation efficiency is achieved by LLE, then by vacuum fermentation. Based on the 

simulations the minimum separation efficiency required to achieve a maximum 

fermentation broth concentration of 5 g ABE L-1 is 36%. This minimum threshold is achieved 
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by all techniques other than flash separations and gas stripping. This is due to the difficulty 

of capturing the ABE from the dilute vapour phase generated as part of the ISPR method. 

Adsorption has the potential to be a very selective technique for the recovery of ABE from 

the fermentation broth. The downside is that product recovery and adsorbent regeneration 

both require steam. The steam is a means of direct heat application for separation, although 

some water vapour will be transferred into the product recovery stream to downstream 

processing. Other methods of adsorbent regeneration are possible, such as chemical 

recovery, for example with methanol, but the ABE would then need to be recovered from 

the methanol, further increasing the number of process steps (Yang et al., 1994). 

 

4.3.5: Membrane Technologies 

Based on the results shown in Figures 4.3 and 4.4, the effect of using a membrane 

technology can be observed. In the case of LLE and perstraction, it can be seen that the 

membrane option (perstraction) has a lower degree of recovery and energy demand for 

upstream processing although it has a slightly higher downstream energy demand. The 

comparison for evaporative technologies is slightly more difficult, as both flash separation 

and vacuum separation are equivalent to pervaporation. As vacuum separation is a 

significantly more effective technique than flash separation this will be used here as the 

comparison with pervaporation. Pervaporation has a lower degree of recovery and lower 

energy demand than vacuum separation. The energy differences between vacuum 

separation and pervaporation are small compared to those calculated for the extractive 

processes.  

From these simulation results it is clear that the use of membranes currently hinders the 

effectiveness of the separation, as both membrane techniques have a lower separation 

efficiency compared to vacuum fermentations and LLE. It is also worth noting that with 

current membrane technology the mass transfer differences across the membrane, between 

pervaporation and perstraction, do not have a large impact on the separation efficiency. The 

relatively large error associated with the separation efficiency of pervaporation and 

perstraction was expected due to the software’s inability to directly simulate a membrane 

operation; therefore there was greater reliance on published experimental data, and there is 

very limited information available in relation to the membrane permeability and diffusion 

rates, particularly for perstraction. 
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In terms of energy of the process, the use of membranes reduces the energy demand of the 

process although it is questionable whether the energy reduction for evaporative techniques 

is enough to justify pervaporation over vacuum fermentation. Vacuum fermentations and 

pervaporation both require 87 MJ kg-1 ABE for the upstream separation and the downstream 

separation for pervaporation is 3 MJ kg-1 ABE less than that required for vacuum 

fermentations. The greater separation efficiency corresponds to an increase in ABE 

recovered, which is likely to generate a bigger profit than any savings made from reducing 

the energy by 3 MJ kg-1 ABE. These results can probably be improved through membrane 

development and optimisation to make membrane techniques more widely used. 

 

4.3.6: Heat Integration 

Heat integration can be used to reduce the energy demand of the process. González-Bravo 

et al. (2016) have previously investigated heat integration for downstream biobutanol 

separation, assessing two distillation systems and two hybrid liquid-liquid 

extraction/distillation systems. Their results indicated that the energy demand can be 

reduced through heat integration but they did not consider applying it alongside ISPR. Using 

process stream information from the simulations it was possible to assess the potential for 

reducing the heating and cooling demand. Grand composite curves were developed for each 

simulation, so the minimum energy for heating and cooling could be calculated, using a ΔTmin 

of 20°C. An example grand composite curve is presented in Figure 4.5. The calculated 

minimum energy does not include energy for electrical equipment such as pumps and 

compressors or energy required to maintain a constant temperature in the bioreactor or 

other equipment (for example membrane units). 
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Figure 4.5: Example grand composite curve for liquid-liquid extraction flowsheet 

The minimum heating and cooling energy required for a batch process was 19.7 MJ kg-1 ABE, 

this was similar to that required for gas stripping (18.3 MJ kg-1 ABE) and flash separation 

(18.9 MJ kg-1 ABE). These ISPR techniques did not achieve the minimum separation efficiency 

of 36%,  therefore the concentrations of ABE in the downstream separation section are 

going to be equivalent to that of a batch system so similar minimum energies is not 

unexpected.   

The techniques which achieved a separation efficiency greater than 36% all had significantly 

lower minimum energies for heating and cooling, apart from liquid-liquid extraction with a 

minimum energy of 54.3 MJ kg-1 ABE. This was the largest minimum energy of all the 

techniques, and is largely related to the energy required to recover the ABE from the 

extractant and subsequently cool the extractant for reuse. Vacuum fermentation, 

pervaporation, adsorption and perstraction all have similar minimum heating and cooling 

energies of 9.5 MJ kg-1 ABE, 6.3 MJ kg-1 ABE, 5.5 MJ kg-1 ABE and 4.1 MJ kg-1 ABE, 

respectively. Having minimum heating and cooling requirements lower than the batch 

process means that heat integration applied to the ISPR processes will further reduce the 

process energy demand. Applying heat integration would increase the capital cost due to 

heat exchanger requirements. Further work would be required to fully understand the 

possible heat exchange networks and to optimise the energy savings that could be made, 

alongside the additional capital cost for installation of the heat exchange network.  
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4.3.7: Literature Comparisons 

It is difficult to make comparisons between the simulation results presented here and 

previously published results in the literature. As previously stated, the results from literature 

in Table 4.1 rely on assumptions that are different in each source and vary from some of the 

assumptions used in these simulations. The major difference with this work is that the data 

presented in Table 4.1 are primarily concerned with the energy required for just the 

separation technique, rather than the entire upstream and downstream process.  The 

biggest difference seen between the literature results and this is the energy requirements 

for LLE. The overall energy, 185 MJ kg-1 ABE (Figure 4.3), was one of the highest where as in 

previous studies the energy demand for LLE (7-9 MJ kg-1 BuOH) was one of the lowest (Table 

4.1). It is suspected that the previous studies did not include the energy required to separate 

the ABE from the extractant (Groot et al., 1992; Qureshi et al., 2005; Oudshoorn et al., 

2009). This difference can have a significant impact on the viability of the process from an 

energy demand assessment.  

In contrast, other authors such as Salemme et al. (2016) have only considered alternative 

downstream processing routes, replacing the traditional batch column with either a gas 

stripper or LLE unit using 2-ethyl-1-octanol. The results provided by Salemme et al. (2016)  

include heat integration, therefore could be compared to these minimum energy demand 

results presented in this work. For gas stripping they achieved a specific energy requirement 

of 15.3 MJ kg-1, this is very similar to the minimum energy demand of 18.3 MJ kg-1 ABE 

achieved in this work; indicating that that gas stripping is very similar to a distillation column. 

The results for LLE vary greatly with Salemme et al. (2016) achieving 9.9 MJ kg-1 whereas this 

work presents a minimum energy requirement of 54.3 MJ kg-1 ABE. It must be noted that 

this paper has an additional distillation column and the primary separation is occurring at 

concentrations less than 10 g L-1 whereas the feed concentration used by Salemme et al. 

(2016) is 30 g L-1. This difference in concentration can have a large impact on the energy 

required for separation as demonstrated by Mariano et al. (2011a).  

 

4.3.8: ISPR versus Batch Processing 

It is well-documented that for the traditional ABE fermentation process the energy-intensive 

nature of solvent purification by distillation is one of the biggest challenges to be overcome 

(Ezeji et al., 2004b; Dürre, 2007; Green, 2011). The information that is available tends to 
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compare the energy for ISPR with other ISPR techniques, as shown by Table 4.1, with hardly 

any comparison to the conventional batch process, particularly in terms of the whole 

process. One of the significant results is that whilst the downstream energy requirement can 

be reduced through the application of an ISPR technique, increases in whole process energy 

are usually observed. This is confirmed by Mariano et al. (2012a), in which the energy for a 

vacuum fermentation is considered. The same result was observed here (Figure 4.3) for all 

ISPR techniques, apart from perstraction, the whole process energy is greater than that for 

the batch process. This means that whilst the use of ISPR can reduce the downstream 

energy, it shifts the associated costs to an alternative part of the process. 

It is clear that, generally speaking, non-evaporative processes will provide less intensive 

recovery and a greater annual production because of the high condensing power required 

for acetone capture. The target output for the simulations was 50,000 tonnes ABE year-1. In 

no ISPR technique was the entire product produced recovered, indicating that no technique 

is 100% efficient for recovery. As the substrate inputs were constant across every ISPR 

technique, the losses were used to assess the effectiveness of each technique through the 

separation efficiency, Figure 4.4. The losses are due to the lack of development, in terms of 

scale up and optimisation, with the application of ISPR to the ABE fermentation. The only 

technique to have shown any systematic process development is LLE, which the simulations 

show has the highest separation efficiency (Roffler et al., 1987a; 1988). These losses need to 

be assessed for each technique. Minimisation of these losses will see an increase in product 

recovery, and a reduction in the energy requirement.  

The results in Figure 4.4 show that the more developed techniques, vacuum fermentation 

and LLE, exhibit some of the highest recoveries of ABE from the fermentation broth. 

However, this is probably a result of their higher technology readiness levels than a 

fundamental phenomenon. Ideally, the results would have shown that the technique with 

the lowest energy demand also had the highest separation efficiency clearly indicating the 

best ISPR technique.   As this is not the case, it means that a compromise is required when 

deciding on an appropriate technique. From the results presented here, perstraction 

appears to be the most favourable technique, as it is the only ISPR technique that gives an 

improvement over the batch process in terms of overall energy demand. Furthermore, it has 

the third highest separation efficiency, indicating good separation characteristics. Another 

possible advantage is that it is at a relatively early stage of development, so could yet prove 
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to be more effective, if membrane technology advances or if economies of scale are realised 

for this technology.  

Information concerning the development of these techniques from laboratory scale upwards 

is limited (Van Hecke et al., 2014). The simulations are only a representation of the process, 

and advances in these technologies could significantly alter the results presented here. 

Improvements to the process could come in the form of membrane, adsorbent or extractant 

development. Development of these technologies at larger scales, thereby providing scale-

up data would have a significant impact on the ABE process, particularly for adsorption and 

perstraction. 

 

4.3.9: Economic Assessment 

An economic comparison of the application of multiple ISPR techniques to the ABE 

fermentation has not previously been described in literature (Abdehagh et al., 2014). This is 

due to the early stage of development of most ISPR techniques and scarcity of information 

about associated costs, such as membranes and adsorbents. An economic assessment has 

been completed by Roffler et al. (1987a) for LLE using oleyl alcohol, compared to a batch 

plant to produce the same quantity of butanol, indicating that 20% less capital was required 

due to reduced broth volume required and higher fermentation productivity. Abdi et al. 

(2016) have provided a comparison of a non-integrated ABE fermentation with an ABE 

fermentation integrated with flash separation at a pressure of 7kPa in an external vessel.  

This analysis demonstrated how the application of ISPR could significantly increase the 

profitability of the process, meaning the ABE fermentation would be more able to cope with 

fluctuations in the market price of butanol. van der Merwe et al. (2013) primarily focused on 

varying the downstream processing route, but found the application of ISPR, using gas 

stripping, with LLE as the first downstream processing step to be profitable. This is similar to 

the economic assessment performed by Liu et al. (2004), which considered the use of LLE or 

gas stripping replacing the initial beer column, with varying distillation routes. Results shown 

in Table 4.3 compare the extra capital required and extra profit generated by utilising ISPR.  

The fixed capital cost was estimated using an updated Bridgewater’s method (Towler and 

Sinnott, 2013b). It provided an estimate of the upstream fixed capital required for each ISPR 

technique based on the number of functional units in the process, for a plant in the U.S. Gulf 

Coast, January 2010. The downstream process capital expenditure was not considered as it is 
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identical for every technique, due to having the same process configuration (Figure 4.2). This 

method agrees with other literature values for both a batch ABE plant and a plant with ISPR. 

Kumar et al. (2012) calculated that the capital cost for a batch plant producing 10,000 tonnes 

of butanol per year from corn to be $10.3 million. Nilsson et al. (2014) estimated the capital 

cost for an ABE plant with gas stripping to be approximately $62 million. Both values are 

similar to the results shown in Table 4.3, indicating a good estimate of the capital cost. 

The operating costs were based on the annual production and the relative energy 

requirements (MJ kg-1 ABE) from the process simulations for each technique. The yield for 

the ISPR techniques has been assumed to be equivalent to a batch process, therefore each 

ISPR process has the same annual production and feedstock consumption. In reality the 

overall annual production would vary for each technique due to different efficiencies of the 

recovery; however for optimal economic efficiency all products need to be recovered at 

some point during the process, allowing the overall process yield to match the bacterial 

yield. Product and feedstock values ($ kg-1) were taken from Kumar et al. (2012) and Qureshi 

et al. (2013). The payback time for the addition of ISPR to an existing ABE fermentation plant 

was calculated and shown in Table 4.3. This compares the extra capital cost required for ISPR 

and the extra profit generated through the use of an ISPR technique. This method agrees 

with the method used by Abdi et al. (2016) who observed operating costs for the integrated 

fermentation increase by 181%, this is similar to the results presented here whereby the 

operating costs increased by 182% for vacuum separation and 205% for flash separation.  

Similar to the results in existing literature, the use of ISPR increases the profitability of a 

fixed volume plant. In terms of comparing ISPR techniques, perstraction and adsorption have 

the joint lowest payback time, closely followed by vacuum fermentation. These three 

options also have the greatest increase in profitability over a batch process. The major 

variable affecting the profitability is the energy cost, which was determined from the process 

simulations.  It is unsurprising that the techniques with the lowest energy demand also had 

the shortest payback time. 

All ISPR techniques assessed could increase plant profitability (Table 4.3) through increasing 

capacity. The ISPR-based plants produce 2.75 times more product than that of the batch 

plant. Perstraction is the only ISPR technique to produce an equivalent increase in the profit. 

Gas stripping was the least profitable of all the ISPR techniques, only increasing the batch 

profit by 110%. This is due to the high energy demand of the process, (Figure 4.3), which, 
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when combined with the increased capital cost, increases the additional payback time of the 

plant. The application of flash fermentation to the ABE process has a similar effect.  

The economics of the process needs to be considered alongside the separation efficiency. 

Vacuum fermentation and LLE have the greatest separation efficiencies but fall in the middle 

of the range in terms of profit increase, due to the higher energy demand. These are also the 

most developed techniques, therefore have limited scope for development. Perstraction, 

adsorption and pervaporation have the greatest increase in profitability, but there is a much 

greater scope for development to improve the separation efficiencies of these ISPR 

techniques, making the techniques more attractive for commercial ABE production. 

The potential reduction in energy has been one of the driving forces for research into the 

application of ISPR to the ABE process. Perstraction is the only technique which has an 

energy demand lower than that of a batch process. It is a very similar technique to LLE and 

should be able to overcome some of the problems that occur when using LLE, specifically 

extractant toxicity and the volume of extractant required. The biggest difference between 

LLE and perstraction is the amount of product recovered, (Figure 4.4). Increasing the 

separation efficiency will help to make perstraction an ideal ISPR technique for the ABE 

fermentation. However, it has one significant disadvantage: its relative lack of development. 

Currently, perstraction exhibits low extractant rates, as there has been no systematic 

optimisation of the extractant and membrane materials vs. flow rates (Qureshi and Maddox, 

2005). Significant membrane development occurred for the use of pervaporation in ABE 

pervaporation between Groot et al. (1984a)’s use of silicone tubing and Van Hecke et al. 

(2012)’s use of commercially available pervaporation modules from Pervatech. If similar 

developments can occur for perstraction, it could prove to be the most cost-effective ISPR 

technique for the ABE fermentation. 
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Table 4.3: Economic assessment of the application of ISPR to an ABE production plant. 

  Batch Flash Vacuum Gas Stripping Pervaporation LLE Perstraction Adsorption 

Capital Cost $ (million) 10.1 68.4 54.7 68.4 68.4 54.7 54.7 54.7 

A
n

n
u

al
 P

ro
d

u
ct

io
n

 

Acetone kt yr-1 3.9 10.7 10.7 10.7 10.7 10.7 10.7 10.7 

Butanol kt yr-1 13.7 37.5 37.5 37.5 37.5 37.5 37.5 37.5 

Ethanol kt yr-1 0.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

TOTAL kt yr-1 18.0 49.3 49.3 49.3 49.3 49.3 49.3 49.3 

O
p

er
at

io
n

al
 C

o
st

 

Feedstock Cost $ yr-1 (million) 9.6 26.4 26.4 26.4 26.4 26.4 26.4 26.4 

Energy Cost $ yr-1 (million) 1.4 8.1 5.0 11.5 4.8 7.4 3.8 4.5 

Other $ yr-1 (million) 2.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

TOTAL $ yr-1 (million) 13.4 40.8 37.7 44.2 37.5 40.1 36.4 37.2 

P
ro

d
u

ct
 S

al
es

 

Acetone $ yr-1 (million) 4.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 

Ethanol $ yr-1 (million) 0.3 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

Butanol $ yr-1 (million) 16.2 44.3 44.3 44.3 44.3 44.3 44.3 44.3 

Additional 

Products 
$ yr-1 (million) 4.1 11.3 11.3 11.3 11.3 11.3 11.3 11.3 

TOTAL $ yr-1 (million) 25.1 68.9 68.9 68.9 68.9 68.9 68.9 68.9 
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  Batch Flash Vacuum Gas Stripping Pervaporation LLE Perstraction Adsorption 

Profit $ yr-1 (million) 11.8 28.1 31.2 24.7 31.3 28.8 32.4 31.6 

  

Extra Capital $ (million) 
 

58.3 44.6 58.3 58.3 44.6 44.6 44.6 

Extra Profit $ yr-1 (million) 16.3 19.4 12.9 19.6 17.0 20.7 19.9 

Additional Payback 

Time  
yr  3.6 2.3 4.5 3.0 2.6 2.2 2.2 

% Profit Increase    139% 165% 110% 166% 145% 175% 169% 
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4.4: Conclusions 

Previously, no ISPR technique has been identified as being the most profitable for removal of 

ABE from fermentation broth. This study shows that ISPR generally increases the overall 

energy requirement of the plant. The one exception found in this study is perstraction, 

which had the lowest overall energy requirement, leading to a 175% increase in profit over a 

conventional batch plant. However, perstraction does not provide the greatest separation 

efficiency. This was achieved by LLE, which is a more mature technique. However, 

developments in perstraction membrane technology it could be possible to recover more 

ABE, matching the separation efficiency of LLE, in which case perstraction would be the best 

performing process by most metrics. 

 

4.5: Summary 

This focus of this chapter has been a techno-economic analysis to compare seven ISPR 

techniques suggested for the ABE fermentation.  A comparison of this nature has not 

previously been performed, and is not possible based on an analysis of literature alone. Key 

findings from this analysis are that the application of ISPR does reduce the downstream 

energy requirements for ABE separation, in accordance with previously published 

statements. However, the overall energy of the plant increases as a more “intensive” 

separation is required; separating ABE at a lower concentration, 5-8 g butanol L-1, compared 

to 15 g butanol L-1, while maintaining viability of the bacteria. As stated by Van Hecke et al. 

(2014), analysis of the whole process had not been completed, therefore these results help 

provide a greater understanding of the impact ISPR can have on a process.  

 

Perstraction has been identified as the most promising technique for combining with the 

ABE fermentation, as it has the potential to reduce the overall energy demand below that of 

an equivalent sized batch process while achieving the minimum separation required to 

reduce the impact of product toxicity. As summarised in both Chapters 2 and 3, perstraction 

is a relatively immature ISPR technique compared to the other ISPR techniques investigated 

in this chapter. A better understanding of both the impact of membrane and extractant 

choices available for perstraction is required. The next chapter in this thesis is concerned 

with the application of perstraction to the ABE process. 



105 
 

Chapter 5.  Perstraction 

5.1: Introduction 

Perstraction is a technique which was developed to tackle the weaknesses of liquid-liquid 

extraction (LLE). LLE was found to be an effective technique for ISPR but there were several 

problems which hindered the fermentation (Jeon and Lee, 1987; Roffler et al., 1987b; c).  

The problems associated with LLE are: 

1. Majority of extractants are toxic to the bacteria, limiting the duration of the 

fermentation (Jeon and Lee, 1989; Qureshi and Maddox, 2005) 

2. Reduces toxic effects from butanol, but replaces it with toxic effects of the extractant 

3. Accumulation and inactivation of cells at the extractant interface (formation of a rag 

layer) (Jeon and Lee, 1989; Qureshi and Maddox, 2005)  

4. Extraction of product intermediates (acetic acid and butyric acid) (Qureshi and 

Maddox, 2005)  

5. Formation of an emulsion, which is difficult to separate (Qureshi and Maddox, 2005) 

6. Loss of extractant due to inefficient phase separation (Jeon and Lee, 1989; Qureshi 

and Maddox, 2005) 

7. High energy demand required for sterilisation of the extractant (Jeon and Lee, 1989) 

To overcome these problems a membrane was placed between the fermentation broth and 

the extractant to separate the phases, Figure 5.1, reducing the problems seen with LLE 

(Abdehagh et al., 2014). This ISPR process is called perstraction (Ezeji et al., 2007b). It can 

also be called membrane-assisted solvent extraction, membrane solvent extraction, 

membrane extraction or pertraction (although pertraction can also be used to described 

processes using a liquid membrane, rather than transfer into an extractant). Perstraction is 

similar to the technique pervaporation, where products are transported across the 

membrane into a vapour phase.  
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During perstraction the fermentation products diffuse through the membrane into the 

extractant (Huang et al., 2014). The other fermentation broth components (e.g. biomass, 

substrate, nutrients and intermediates) are retained in the retentate and returned to the 

fermentor (when an external perstraction unit is used). The membrane provides a large fixed 

surface area for mass transfer. In LLE, energy has to be supplied to the process to disperse 

the extractant in the broth, for a large mass transfer area (Abels et al., 2013). The downside 

of using a membrane is the additional resistance it adds to the extraction process and the 

potential for fouling (Cen and Tsao, 1993; Ezeji et al., 2007b; Abels et al., 2013; Abdehagh et 

al., 2014; Huang et al., 2014).  

In LLE, a compromise between distribution coefficient (the ratio of the concentration i in the 

organic phase to the concentration of i in the aqueous phase) and toxicity to the 

microorganism is required. When using perstraction an extractant with a more favourable 

distribution coefficient, that is toxic to the microorganism or forms a stable emulsion with 

the fermentation broth, can be selected (Daugulis, 1988). Commonly, an organic extractant 

is used due to their availability, but other liquids such as ionic liquids could also be used 

(Abels et al., 2013). The selection of an extractant with a high selectivity for ABE could also 

help retain some fermentation broth components in the retentate (Abdehagh et al., 2014; 

Xue et al., 2014d).  

Perstraction also has several additional parameters which can influence the mass transfer 

and rate of product removal, such as flow rate and membrane area (Tanaka et al., 2012; 

Abels et al., 2013). Understanding of these variables and how they affect mass transfer 

would allow perstraction to be easily scalable and transfer to continuous operation (Abels et 

al., 2013). 

 

Figure 5.1: Principle of perstraction. 

Membrane 
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5.2: Examples of Perstraction – Industrial and Research 

Perstraction, under its many guises, has been used or investigated in several industries. It 

has been proposed for product removal from several inhibitory fermentations such as 

ethanol (Matsumura and Märkl, 1986), phenol (Heerema et al., 2006; 2011a; 2011b), butyric 

acid (Zigová et al., 1999; Wu and Yang, 2003) and the ABE fermentation (Jeon and Lee, 1987; 

1989; Grobben et al., 1993; Qureshi and Maddox, 2005; Tanaka et al., 2012). The application 

of perstraction to fermentation has, generally, not proceeded past proof of concept stage, 

Table 2.1. Currently the only example of further developments is with a recombinant phenol 

fermentation by TNO, the Netherlands Organisation for applied scientific research (Heerema 

et al., 2011a). The production of phenol was engineered into a solvent-tolerant 

Pseudomonas putida S12, but phenol still has an inhibitory effect on the bacteria, hence the 

need for ISPR. Perstraction was chosen as the method of ISPR to minimise contact between 

the microorganism and extractant and prevent emulsion formation. The use of perstraction 

was demonstrated to increase the fermentation productivity 132% (Heerema et al., 2011b). 

Compared to the ABE fermentation, the phenol fermentation has a low productivity of 

approximately 0.007 g L-1 h-1 (0.072 mM h-1) (Heerema et al., 2011b). This means that the 

rate of extraction does not need to be as fast as that required for the ABE fermentation, 

where productivities greater than 0.21 g L-1 h-1 are observed in a batch system (Qureshi and 

Maddox, 2005). Whilst increased perstraction rates are possible by increasing the membrane 

area this will adversely affect the economics of perstraction.  

Perstraction has been suggested for other separation processes where methods such as 

distillation would be energy intensive, such as the separation of two organic solvents, for 

example 2-propanol/n-heptane mixtures (Papadopoulos and Sirkar, 1993). It has also been 

proposed for the treatment of liquid radioactive waste. LLE is often used to remove metals 

from a waste stream with an organic extractant, but similar disadvantages to using LLE in 

fermentations are observed. The use of a membrane can overcome these problems, and is 

advantageous due to the precisely defined interfacial area (Zakrzewska-Trznadel, 2013). 

Perstraction is also used for the production of low-alcohol beverages (Diban et al., 2008; 

Wollan, 2008; De Francesco et al., 2014). The highly selective nature of perstraction, due to 

membrane and extractant combinations, means that only the alcohol is removed. This 

means that the final product resembles the alcoholic version, as closely as possible; 

something that is difficult to achieve with other dealcoholisation techniques (De Francesco 
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et al., 2014). De Francesco et al. (2014) reduced the ethanol content in beer to less than 1% 

(v/v) in four hours of operation with a polypropylene hollow fibre membrane and deaerated 

water as the extractant. 

 

5.3: Perstraction Theory 

The mechanism for mass transfer in perstraction is related to the concentration of the solute 

on either side of the membrane and the mass transfer across the membrane. 

 

5.3.1: Liquid-Liquid Equilibrium 

The separation is equilibrium-based, as for LLE. A concentration gradient is established 

between two phases and, ideally, the solute has a preference for extracting phase. This can 

be defined by the distribution coefficient (or partition coefficient), 𝐾𝑑: 

 𝐾𝑑 =
𝐶𝑖𝐸

∗

𝐶𝑖𝐴
∗  (5.1) 

Where:  

𝐶𝑖𝐸
∗  is the concentration of i in the extractant phase in equilibrium with the 

concentration in the aqueous phase (g L-1). 

𝐶𝑖𝐴
∗  is the concentration of i in the aqueous phase in equilibrium with the 

concentration in the extractant phase (g L-1). 

When 𝐾𝑑 > 1 the solute i has a greater affinity for the extractant, than the aqueous phase. 

This is desired for the extraction of products from the fermentation broth as it will increase 

the product concentration, making separation of product from extractant easier. 

It is assumed that the distribution coefficient for a liquid-membrane-liquid system will be the 

same as that for a liquid-liquid system at equilibrium, as the liquid-liquid equilibrium 

distribution coefficient has been used as the main extractant selection parameter in ABE 

perstraction research (Jeon and Lee, 1987; Tanaka et al., 2012). This is true for a porous 

membrane system, as there is a direct liquid-liquid interface which is immobilised by the 

membrane. The direct liquid-liquid interface would mean that it is possible for a 

concentration equilibrium, equivalent to a LLE system, to be established between the two 

phases. In a non-porous system, multiple equilibriums are established. Firstly, between the 
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aqueous phase and the membrane and, secondly, between the membrane and extractant 

phase. For equilibrium to occur, all phases must be at equilibrium including the aqueous 

phase with the extractant phase, as described by (5.1). The maximum value for distribution 

coefficient possible will be equal to that for a LLE system, therefore this value of distribution 

coefficient has been used to select high capacity extractants.  

 

5.3.2: Membrane Mass Transfer 

5.3.2.1 Types of Membrane 

There are three types of membrane that could be considered for perstraction, Figure 5.2:

 

1) Non-porous membranes rely on the absorption of solute into the membrane and 

desorption out of the membrane into the extractant. 

2) Porous membranes, where the membrane acts as a support to immobilise the 

interface between the fermentation broth and the extractant. For example, when 

using a hydrophobic membrane, the non-polar extractant will fill the pores and the 

solute will dissolve into the extractant, and transfer through the pores into the bulk 

solution. 

3) Immobilised liquid membrane, a liquid is immobilised in the pores of the membrane 

allowing an alternative liquid to be used as an extractant. The difficulty with this 

membrane is selecting a liquid which is immiscible in both the fermentation broth 

and extractant. Otherwise this membrane is not too dissimilar from using a porous 

membrane. 

It is assumed that all membrane types are incompressible. With porous membranes the 

pores are filled with a liquid, thereby there will be no volume change with pressure changes. 

Figure 5.2: Types of membrane for perstraction. 
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There are two main models that can be used to describe mass transfer across a membrane: 

the solution-diffusion model for non-porous membranes or the pore-flow model for porous 

membranes (Wijmans and Baker, 1995). In the solution-diffusion model the solute diffuses 

through the membrane based on a concentration gradient. The pore-flow model is based on 

a pressure-driven flow through the pores, this relies on the membrane excluding some 

permeants from passing through (Wijmans and Baker, 1995). As the perstraction process is 

not typically pressure-driven, the solution-diffusion model is best suited to describe the 

mass transfer across the membrane. 

 

5.3.2.2 Solution-Diffusion Model 

As previously stated, the transfer of solute across the membrane is governed by the 

equilibrium of solute on both the aqueous and extractant phase; defined by equation (5.1). 

When considering the concentration profile across the membrane, with 𝐾𝑑 > 1 the 

concentration of the solute should be higher in the extractant, Figure 5.3. This can be related 

to the chemical potential in the system, and this is the overall driving force, producing a 

gradient over the membrane (Wijmans and Baker, 1995). This is an assumption of the 

solution-diffusion model: it ensures that there is a continuous gradient over the membrane, 

Figure 5.3. The solution-diffusion model also relies on the assumption that the rates of 

adsorption and desorption are higher than the transport through the membrane, allowing 

the transport characteristics to be described solely by the membrane (Wijmans and Baker, 

1995). 
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Based on the review by Wijmans and Baker (1995), the mass transfer across the membrane 

can be related to Fick’s Law using the following derivation. Assuming a constant chemical 

potential gradient across the membrane, the flux of the solute i, 𝐽𝑖, can be described by: 

 𝐽𝑖 = −𝐿𝑖

𝑑𝜇𝑖

𝑑𝑥
 (5.2) 

Where: 

 
𝑑𝜇𝑖

𝑑𝑥
 is the gradient in chemical potential of component i 

 𝐿𝑖  is a coefficient of proportionality 

Figure 5.3: Schematic of chemical potential and concentration profiles, at equilibrium, during perstraction with a 
hydrophobic membrane and an extractant with a Kd>1. 𝝁𝒊 is the chemical potential of component i, 𝒕𝒎 is the 

membrane thickness, 𝑪𝒊𝑨
𝒃  is the bulk concentration of i in the aqueous phase, 𝑪𝒊𝑨

∗  is the concentration of i in the 
aqueous phase in equilibrium with the extractant, 𝑪𝒊𝑨

𝒎  is the concentration of i in the aqueous phase at the membrane 

interface, 𝑪𝒊𝒎
𝑨  is the concentration of i in the membrane at the interface with the aqueous phase, 𝑪𝒊𝒎

𝑬  is the 
concentration of i in the membrane at the extractant interface, 𝑪𝒊𝑬

𝒎  is the concentration of i in the extractant at the 

membrane interface, 𝑪𝒊𝑬
𝒃  is the concentration of i in the bulk extractant, 𝑪𝒊𝑬

∗  is the concentration of i in the extractant in 
equilibrium with the aqueous phase. 
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As the concentration is considered the main driving force between two phases, the chemical 

potential, 𝜇𝑖, can be related to the concentration via: 

 𝑑𝜇𝑖 = 𝑅𝑇 𝑑 ln(𝛾𝑖𝑐𝑖) + 𝑣𝑖𝑑𝑝 (5.3) 

Where:  

 𝑅 is the gas constant (J mol-1 K-1) 

 𝑇 is the temperature (K) 

 𝛾𝑖 is the activity coefficient of i  

 𝑐𝑖 is the molar concentration of i (mol mol-1) 

 𝑣𝑖  is the molar volume of i 

 𝑃 is the pressure 

For incompressible phases, such as liquids and solids the volume does not change with 

pressure. It is also assumed that there is no pressure gradient across the membrane, so the 

volume/pressure term can be disregarded in equation (5.3) (Wijmans and Baker, 1995). 

Assuming that a dilute solution is considered, the solution follows Henry’s law and the 

activity coefficient is constant. Therefore equations (5.2) and (5.3) can be combined to give: 

 𝐽𝑖 = −
𝑅𝑇𝐿𝑖

𝑐𝑖

𝑑𝑐𝑖

𝑑𝑥
 (5.4) 

This has the same form as Fick’s law, where the diffusion coefficient, 𝐷𝑖  is: 

 𝐷𝑖 =
𝑅𝑇𝐿𝑖

𝑐𝑖
 (5.5) 

 𝐽𝑖 = −𝐷𝑖

𝑑𝑐𝑖

𝑑𝑥
 (5.6) 

Integrating (5.6) over the membrane thickness, 𝑙: 

 𝐽𝑖 =
𝐷𝑖(𝐶𝑖𝑚

𝐴 − 𝐶𝑖𝑚
𝐸 )

𝑙
 (5.7) 

Where: 

 𝐶𝑖𝑚
𝐴  is the concentration of i in the membrane, at the interface with the aqueous 

phase 

 𝐶𝑖𝑚
𝐸  is the concentration of i in the membrane, at the interface with the extractant 
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Using this relationship the mass transfer rate through the membrane can be described. The 

difficulty with isolating the flux through the membrane is understanding the concentration 

profile across the thickness of the membrane. Shukla et al. (1989) found that for a 

hydrophobic hollow fibre membrane, the shell side (aqueous phase) had a considerably 

greater mass transfer resistance than the extractant side and that of the membrane, 

therefore the overall mass transfer from the bulk aqueous phase to the bulk extractant 

phase needs to be considered. 

 

5.3.3: Overall Mass Transfer 

Taking the principles of Fick’s law, and applying it across the whole perstraction system (bulk 

aqueous phase, 𝐶𝑖𝐴
𝑏 , to bulk extractant phase, 𝐶𝑖𝐸

𝑏 , Figure 5.3), the flux and mass transfer can 

be described by (Boontawan and Stuckey, 2005): 

 𝐽𝑖 = 𝐾𝑜𝑣[Δ𝐶𝑖] (5.8) 

Where: 

 𝐽𝑖  is the flux of component i across the membrane (g h-1 m-2) 

 𝐾𝑜𝑣 is the overall mass transfer coefficient (m s-1) 

 Δ𝐶𝑖 is the concentration gradient of component i (g L-1) 

Assuming a system where the solute is transferring from the bulk aqueous phase to the bulk 

extractant phase, the concentration gradient can be described as the difference between 

the concentration in the aqueous phase and the concentration of the extractant phase in 

equilibrium with the aqueous phase (Boontawan and Stuckey, 2005): 

 [Δ𝐶𝑖] = 𝐶𝑖𝐴
𝑏 −

𝐶𝑖𝐸
𝑏

𝐾𝑑
 (5.9) 

 [Δ𝐶𝑖] = 𝐶𝑖𝐴
𝑏 − 𝐶𝑖𝐴

∗  (5.10) 

Substituting this into equation (5.8), the flux across the system can be described in terms of 

the bulk solution concentrations and the overall mass transfer coefficient: 

 𝐽𝑖 = 𝐾𝑜𝑣,𝐴(𝐶𝑖𝐴
𝑏 − 𝐶𝑖𝐴

∗ ) (5.11) 
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This has been derived based on the aqueous side concentrations, hence the mass transfer 

coefficient is based on the aqueous side (𝐾𝑜𝑣,𝐴). If the extractant concentrations had been 

used then the overall mass transfer coefficient would be represented as 𝐾𝑜𝑣,𝐸. 

In this scenario, the flux is the rate of mass transfer per unit area for mass transfer (g h-1m-2) 

 𝐽𝑖 =
1

𝐴

𝑑𝑁𝑖𝐴
𝑏

𝑑𝑡
 (5.12) 

 𝐽𝑖 =
𝑉𝐴

𝐴

𝑑𝐶𝑖𝐴
𝑏

𝑑𝑡
 (5.13) 

Where: 

 𝐴 is the membrane area for mass transfer (m2) 

Combining this with equation (5.11), the mass transfer is related to the change in 

concentration with respect to time: 

 𝑉𝐴

𝑑𝐶𝑖𝐴
𝑏

𝑑𝑡
= 𝐾𝑜𝑣,𝐴𝐴(𝐶𝑖𝐴

𝑏 − 𝐶𝑖𝐴
∗ ) (5.14) 

By measuring the change in concentration over time, overall mass transfer coefficient can be 

calculated. The method for this is shown in Appendix B. 

 

5.3.4: Overall Mass Transfer Coefficient 

Kiani et al. (1984) describe the overall mass transfer coefficient in relation to the individual 

mass transfer coefficients relating to the stages of mass transfer shown in Figure 5.3.  

 𝐽𝑖 = 𝑘𝑤(𝐶𝑖𝐴
𝑏 − 𝐶𝑖𝐴

𝑚) ≅ 𝑘𝑚(𝐶𝑖𝑚
𝐴 − 𝐶𝑖𝑚

𝐸 ) ≅ 𝑘𝐸(𝐶𝑖𝐸
𝑚 − 𝐶𝑖𝐸

𝑏 ) (5.15) 

 𝐽𝑖 = 𝐾𝑜𝑣,𝐴(𝐶𝑖𝐴
𝑏 − 𝐶𝑖𝐴

∗ ) = 𝐾𝑜𝑣,𝐸(𝐶𝑖𝐸
∗ − 𝐶𝑖𝐸

𝑏 ) (5.16) 

This relationship is typically described as the overall mass transfer coefficient being the sum 

of the individual resistances found in the system. This consists of the aqueous boundary 

layer, the extractant boundary layer and membrane resistance (Kiani et al., 1984; 

Boontawan and Stuckey, 2005). 

 
1

𝐾𝑜𝑣,𝐴
=

1

𝑘𝐴
+

1

𝑘𝑚
+

1

𝐾𝑑𝑘𝐸
 (5.17) 

Or 
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1

𝐾𝑜𝑣,𝐸
=

𝐾𝑑

𝑘𝐴
+

1

𝑘𝑚
+

1

𝑘𝐸
 (5.18) 

5.3.4.1 Membrane Mass Transfer Coefficient 

As already shown by the solution-diffusion model (5.7) transfer through the membrane is 

dependent on the diffusivity of the solute in the membrane, 𝐷𝑖. The mass transfer also 

depends on the type of membrane used.  

Boontawan and Stuckey (2005) discuss the mass transfer coefficient using a non-porous 

silicone membrane in a perstraction system. Under equilibrium conditions, the system can 

be thought to have three distinct phases; which can be described by three distribution 

coefficients:  

𝐾𝑑𝑖,𝐴
𝐸  The distribution of i between the aqueous phase and extractant 

𝐾𝑑𝑖,𝐴
𝑚  The distribution of i between the aqueous phase and the membrane 

𝐾𝑑𝑖,𝐸
𝑚  The distribution of i between the extractant and the membrane 

The transfer through the membrane can then be thought of as a relationship between the 

solubility of i in the membrane and its ability to diffuse through the membrane (Boontawan 

and Stuckey, 2005). 

 
1

𝑘𝑚
=

1

𝐾𝑑𝑖,𝐴
𝑚 𝐷𝑖𝑚

 (5.19) 

Groot et al. (1991) relate the diffusion through a rubbery material, like silicone, to diffusion 

through liquids. It is therefore proposed that the Wilke-Chang relation can be used to 

estimate the diffusion coefficient through the membrane. 

 𝐷𝑖𝑚 = 7.4𝑥10−8
(𝜙𝑀𝑚)0.5𝑇

𝜂𝑚𝑉𝑖
0.6  𝑐𝑚2𝑠−1 (5.20) 

 

Where 

 𝐷𝑖𝑚 Mutual diffusivity at infinite dilution of i in the membrane (cm2 s-1) 

 𝜙 association factor (𝜙 = 1 for hydrophobic compounds) 

 𝑀𝑚 Molar mass of membrane (g mol-1) 

  𝑇 absolute temperature (K) 
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 𝜂𝑚 dynamic viscosity of membrane (Pa.s) 

𝑉𝑖 molar volume at normal boiling point (m3 mol-1) 

For porous membranes, the pores are filled with either the extractant or aqueous phase, 

with mass transfer occurring at the liquid-liquid phase interface; it is assumed that this is the 

only place for mass transfer, i.e. no diffusion through the solid portion of the membrane 

(Prasad and Sirkar, 1992).  Kiani et al. (1984) and Prasad and Sirkar (1992)relate the transfer 

through the membrane to the diffusion of i between the two liquids and the pore structure 

of the membrane. 

 
1

𝑘𝑚
=

𝜏𝑚𝑡𝑚

𝐷𝑖𝐸𝜖𝑚
 (5.21) 

Where 

 𝜏𝑚 pore tortuosity (actual pore length divided my membrane thickness) 

 𝜖𝑚 membrane porosity 

Equation (5.21) relies on the assumptions that diffusion of the solute is unhindered, the 

membrane is symmetric and wetted completely by the desired phase and no two-

dimensional effects occur (Prasad and Sirkar, 1992). 

 

5.3.4.2 Boundary Layer Mass Transfer Coefficients 

The boundary layer mass transfer coefficients, 𝑘𝐴 and 𝑘𝐸, describe the interactions between 

the liquid phases and the membrane interface. The boundary layer mass transfer 

coefficients will be affected by the membrane geometry, e.g. whether it is a flat sheet or 

tubular. Though, in general, the boundary layer mass transfer coefficients can be described 

by the Sherwood correlation, describing the convective mass transfer film coefficient by 

relating it to the Reynolds number and Schmidt number of the system (Prasad and Sirkar, 

1988; Viegas et al., 1998). 

 𝑆ℎ =
𝑘𝐿

𝐷
= 𝑓(𝑅𝑒, 𝑆𝑐) (5.22) 

 𝑅𝑒 =
𝜌𝒗𝐿

𝜂
 (5.23) 
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 𝑆𝑐 =
𝜂

𝜌𝐷
 (5.24) 

Where: 

 𝑆ℎ Sherwood Number 

 𝑘 convective mass transfer film coefficient (m s-1) 

 𝐷 mass diffusivity (m2 s-1) 

 𝐿 Characteristic length (m) 

 𝑅𝑒 Reynolds number 

𝜂 Dynamic viscosity (Pa.s) 

 𝜌 density (kg m-3) 

 𝒗 mean velocity of the fluid (m s-1) 

 𝑆𝑐 Schmidt number 

This relates the mass transfer to the fluid motion through the system and the diffusivity, 

considering both the momentum (viscosity) and mass diffusivities. This shows that mass 

transfer in the system is dependent on the fluid properties of both the aqueous and 

extractant phase. 

 

5.4: Perstraction and the ABE Fermentation 

The application of perstraction to the ABE fermentation has not been extensively 

investigated compared to the other ISPR techniques. Of the research performed 80% of the 

work was carried out between 1987-1994, with two further studies nearly 10 years apart in 

2005 and 2012 (Jeon and Lee, 1987; 1989; Groot et al., 1990; Grobben et al., 1993; Qureshi 

and Maddox, 2005; Tanaka et al., 2012). An additional further study was carried out in 2014 

by Núñez-Gómez et al. (2014) but this did not focus on the fermentation and only used a 

model solution to investigate process parameters. 

The impact of perstraction on the ABE fermentation was discussed in Chapter 3, reviewing 

perstraction alongside other ISPR techniques that have been applied to the ABE 

fermentations. Table 3.6 provides comprehensive information regarding the impact 

perstraction has on the fermentation. This data showed that perstraction increased the 
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productivity and yield of the fermentation, resulting in increased substrate consumption in 

fed batch and continuous fermentations. This positive impact means that product inhibition 

can be relieved, increasing the fermentation duration, the substrate concentration and final 

product titre. The work to date has primarily focused on the use of non-porous silicone 

membranes or porous hollow-fibre polypropylene membranes, primarily with oleyl alcohol 

as an extractant, Table 5.1. Other membrane extractant combinations have been tested 

using a synthetic ABE solution, Table 5.2, but not carried forward for integrating with the 

ABE fermentation. 

Table 5.1: Membrane - extractant combinations integrated with ABE fermentation in literature. 

Reference Membrane (and configuration) Extractant 

Jeon and Lee (1987) Silicone (tubing) 

Oleyl alcohol 

Polypropylene glycol 

Tributyrin 

Jeon and Lee (1989) Silicone (tubing) 
Oleyl alcohol 

Water 

Shukla et al. (1989) Polypropylene (hollow-fibre) 2-Ethyl-1-hexanol 

Groot et al. (1990) Silicone (tubing) 
Isopropyl myristate 

Ethylene glycol 

Qureshi et al. (1992) Silicone (tubing) Oleyl alcohol 

Grobben et al. (1993) 
Polypropylene (hollow-fibre) 

Oleyl alcohol/Decane (50% 

v/v) 

Polypropylene (hollow-fibre) Fatty acid methyl esters 

Shah and Lee (1994) Silicone (tubing) Oleyl alcohol 

Qureshi and Maddox 

(2005) 
Silicone (tubing) Oleyl alcohol 

Tanaka et al. (2012) 
Polytetrafluoroethylene (PTFE) 

(sheet) 

Oleyl alcohol 

Dodecanol 
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Table 5.2: Membrane - extractant combinations used with a synthetic ABE solution only in literature. 

Reference Membrane (and configuration) Extractant 

Groot et al. (1990) 

Neoprene (tubing) 

Hexane 

Hexanol 

Isopropyl myristate 

Latex (tubing) 

Hexane 

Hexanol 

Isopropyl myristate 

Silicone (tubing) 

Hexane 

Hexanol 

Octanol 

Decanol 

Oleyl alcohol 

Dibutyl phtalate 

Diethelene glycol 

Triethylene glycol 

Tetraethylene glycol 

Glycerol 

1,2 Butanediol 

1,3 Butanediol 

Núñez-Gómez et al. 

(2014) 
PTFE (sheet) Toluene 
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Various reports discuss the impact perstraction has on the fermentation, rather than the 

successes (or failure) of the separation process. Uncoupling the fermentation and 

perstraction performance is difficult due to fermentation concentration being a controlling 

factor in the mass transfer of the separation. Tanaka et al. (2012) attempted to do this by 

calculating the butanol productivity per unit membrane area (g L-1 h-1 m-2). The butanol 

productivity is a function of the bacteria, and a measure of the average “healthiness” of the 

cells. By considering the productivity per unit membrane area, the productivity has 

effectively been standardised around one perstraction parameter. This allows some 

comparison across fermentations, as performed by Tanaka et al. (2012), but it is still 

connected to the fermentation performance. A potentially better comparison is to consider 

the rate of butanol transfer across the membrane per unit area, or butanol flux (5.13). This is 

still dependant on the concentration of butanol present in the system, which is dependent 

on the bacteria, but in most cases the concentration was maintained below inhibitory levels, 

so the variation is minimal. Only Grobben et al. (1993) state the butanol flux, but for other 

fermentations it can be calculated from the experimental data provided, Table 5.3. The 

extraction efficiency was also stated or calculated where possible. The extraction efficiency 

is defined as the percentage of ABE (or butanol) recovered in the extractant compared to 

the total ABE (or butanol) produced in the fermentation, (5.25). 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐴𝐵𝐸 𝑖𝑛 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝐵𝐸 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝐹𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
% (5.25) 
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Table 5.3: Comparison of integrated perstraction fermentations based on literature data. 

Reference Membrane Extractant Butanol Flux (g 

h-1 m-2) 

ABE 

Extraction 

Efficiency 

Jeon and 

Lee 

(1987) 

Silicone Oleyl alcohol 3.83 93.3% 

Silicone Polypropylene glycol 3.02 95.2% 

Silicone Tributyrin 2.40 88.1% 

Jeon and 

Lee 

(1989) 

Silicone Oleyl alcohol 1.35 77.5% 

Silicone Water 1.79 83.6% 

Qureshi 

et al. 

(1992) 

Silicone Oleyl alcohol 1.21 51.4% 

Grobben 

et al. 

(1993) 

Polypropylene Oleyl alcohol/Decane 

(50% v/v) 

8.8a - 

Polypropylene Fatty acid methyl 

esters 

0.46a - 

Qureshi 

and 

Maddox 

(2005) 

Silicone Oleyl alcohol 0.96 45.0% 

(84.5%b) 

Tanaka et 

al. (2012) 

PTFE Oleyl alcohol 37.85 48%c 

PTFE Dodecanol 51.42 52%c 

a Values given by Grobben et al. (1993), with average for first 25h for oleyl 
alcohol/decane mixture and first 10h for fatty acid methyl esters extractant. All 
other flux values were calculated from literature data 
b Extraction efficiency if no loss of ABE to environment, assuming all ABE 
remained in the system 
c Butanol extraction efficiency, no values for total ABE produced/ extracted 
stated in literature.  

 

 

As observed in Table 5.3, a wide range of fluxes were achieved, with the highest achieved by 

Tanaka et al. (2012). These fluxes are in the equivalent range to the butanol productivity per 
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membrane area they reported (78.6 g L-1 h-1 m-2 for 1-dodecanol and 63.7g L-1 h-1 m-2 for oleyl 

alcohol), and compared to the work by Jeon and Lee (1987) (3.07 g L-1 h-1 m-2 for oleyl alcohol 

with a silicone membrane) the order of magnitude difference is still maintained (Tanaka et 

al., 2012). Tanaka et al. (2012) used a porous membrane, whereas the silicone membranes 

used were non-porous. Other than Grobben et al. (1993), all fluxes were calculated with 

fermentation endpoint data. This is representative of the flux over the course of the entire 

perstraction duration. Grobben et al. (1993) chose to report the flux for the initial start-up 

stages of perstraction (first 25h for the oleyl alcohol/decane mixed extractant and first 10h 

for the fatty acid methyl acid extractant). Generally, the butanol concentration in the 

fermentation broth is typically higher than that observed during steady-state ISPR phase of 

the fermentation. Comparing the butanol flux to the fermentation productivity, Figure 5.4, 

there is no obvious correlation indicating that the butanol flux is independent from the 

productivity. The butanol flux was also compared to the distribution coefficient for the 

extractant used, Figure 5.5. While there is significant variability in the data, there is a general 

trend towards the greater the butanol distribution coefficient, the greater the butanol flux.  

 

Figure 5.4: Comparison of butanol flux and fermentation productivity from literature data 
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Figure 5.5: Comparison of extractant distribution coefficient with butanol flux from literature data 

The variability in the data is likely to be related to different experimental conditions and 

membrane materials, considering the fluxes for oleyl alcohol as an extractant with a silicone 

membrane as an example. Jeon and Lee (1987) focused on applying perstraction to the ABE 

process and removing ABE toxicity from the fermentation, reducing the butanol 

concentration in the fermentation broth to approximately 4 g L-1. Later work by Jeon and Lee 

(1989) saw the optimisation of the perstraction process to maintain a relatively stable 

butanol concentration in the fermentation broth, approximately 6 g L-1,  which would lead to 

a reduction in membrane flux as the same membrane area was used. The research by 

Qureshi et al. (1992) and Qureshi and Maddox (2005) used a complex media consisting of 

whey permeate and yeast extract, rather than the defined media used by Jeon and Lee 

(1987), which could increase membrane fouling from unknown media components such as 

proteins reducing the butanol flux across the membrane. 

Table 5.3 also shows that there is a wide range of separation efficiencies: 45-95%. The 

lowest separation efficiency was measured by Qureshi and Maddox (2005). Although this 

was not a problem for the fermentation, as the butanol concentration in the broth was 

maintained below inhibitory limits, consistently achieving a separation efficiency of 95% 

would enable a reduction in membrane size and/or extractant inventory. 

While perstraction can enhance the ABE fermentation, it exhibits high mass transfer 

resistances due to the membrane. These high resistances mean that there is a low product 

flux across the membrane. Most researchers acknowledge the high resistances to mass 

transfer, but there is little understanding of what contributes to the resistances and how to 
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reduce them. The mass transfer coefficient will affect the extraction efficiencies, as mass 

transfer is the rate controlling step of the process (Qureshi and Maddox, 2005; Tanaka et al., 

2012). Of the three mass transfer resistances, see equation (5.17), Shukla et al. (1989) 

suggest that the aqueous phase had the greatest resistance to mass transfer. As the aqueous 

phase mass transfer resistance (s cm-1) was 4-6 time greater than the extractant and 

membrane resistances, which were approximately equal (Shukla et al., 1989). While the high 

mass transfer resistance can be overcome by increasing the membrane area, this increases 

the cost of the ISPR technique. Surprisingly, little work has been done to investigate this side 

of perstraction for the ABE fermentation and to use this knowledge to influence the 

membrane and extractant choices made. The only demonstration of this is by Groot et al. 

(1990), who tested many extractants with a synthetic ABE solution prior to focusing on one 

membrane-extractant combination for both an apolar and a polar extractant, Tables 5.1 and 

5.2. 

One of the reasons for using perstraction was the potential ability to overcome the toxic 

effects of extractants on the microorganism in LLE. As the distribution coefficient impacts 

the butanol flux across the membrane, it will be beneficial to use an extractant with as large 

a distribution coefficient as possible. The extractants with higher distribution coefficients 

than oleyl alcohol tend to be toxic to the ABE fermentation, therefore overcoming this could 

improve the effectiveness of perstraction. There have been two published uses of a toxic 

extractant, Shukla et al. (1989) and Tanaka et al. (2012), but generally the use of a toxic 

extractant has been neglected, due to concerns of the extractant leaching into the 

fermentation broth. Without further investigation it is unknown how far the use of toxic 

extractants can be pushed for use as an extractant in perstraction. Tanaka et al. (2012) 

performed the most recent research using 1-dodecanol but there was no justification for the 

use of this extractant and, to date, no follow-up work has been published demonstrating the 

long term viability of using a toxic extractant with perstraction. Typically the application of 

ISPR allows for extended fermentation runs through a fed-batch fermentation, whilst it has 

been shown that perstractive fermentations can be run for over 400 hours (Qureshi and 

Maddox, 2005), the use of toxic solvents might restrict this. It might also be possible to use 

an extractant with a higher partition coefficient than 1-dodecanol, which could reduce the 

extractant inventory on site. The use of an extractant with a higher extractant coefficient 

could mean the use of a chemical that is more toxic to the bacteria than 1-dodecanol, 

therefore unfavourable effects might still be seen. 
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5.5: Progressing Perstraction for use in the ABE Fermentation 

Developments are needed to improve the extraction rate across the membrane, so that the 

extraction rate is higher than the production rate without the need for a disproportionally 

large membrane compared to the fermentor volume.  Clarification is also required on the 

effect of extractants that are toxic to the fermentation. If it is possible to use a toxic 

extractant this would, hopefully, allow for a reduced extractant inventory and an increased 

extraction rate. An increased extraction rate would allow for a smaller membrane area. This 

would positively impact the efficiency of extraction and the operating costs of the plant. This 

could lead to perstraction becoming a more desirable ISPR technique than LLE.  

In this thesis both the extractant and membrane choice have been experimentally 

investigated, with the aim of maximising the mass transfer rate of perstraction for 

application to a commercial ABE process. The use of toxic extractants was one of the 

proposed advantages of perstraction over LLE. Therefore, it was decided to focus on the use 

of toxic extractants, as these have a higher distribution coefficient than non-toxic 

alternatives such as oleyl alcohol. As Figure 5.5 showed, there is a general trend towards a 

greater butanol distribution coefficient leading to a greater butanol flux, so the toxic 

extractants should further improve the rate of mass transfer. As discussed above, one of the 

concerns of using toxic extractants was leaching across the membrane. Therefore, the 

extractant concentration in the aqueous phase was measured to provide a greater 

understanding of the transfer of extractant across the membrane. With regards to 

membrane choice, as shown in Table 5.2, only Groot et al. (1990) compared membrane 

material, but these were all non-porous tubular membranes. Therefore, a comparison of 

membrane materials was also performed, considering factors such as porosity and 

hydrophobicity which had not previously been compared. 

 

5.6: Materials and Method 

5.6.1: Extractants 

Seven extractants were used: 1-pentanol (Acros Organics), 1-hexanol (Acros Organics), 1-

heptanol (Acros Organics), 1-octanol (Acros Organics), 2-ethyl-1-hexanol Acros Organics), 

oleyl alcohol (Acros Organics) and RO (reverse osmosis) water (generated by Sartorius Arium 

Advanced System). 
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5.6.2: Membranes 

Six membranes were investigated, three tubular membranes and three flat-sheet 

membranes. The tubular membranes were: silicone (Fisher, with a 0.75mm wall thickness, 

3mm internal diameter, 500mm length),  non-porous PTFE (Cole Parmer, with a 0.76mm wall 

thickness, 2.48mm internal diameter, 500mm length), polyethersulfone (PES) (FUD182, 

Daicen, Japan, 150,000 molecular weight cut-off, approx. 0.01μm pore size. 1.28mm outside 

diameter, 1.03mm internal diameter, 500mm length). The flat-sheet membranes were: 

regenerated cellulose (RC55, GE, pore size = 0.45μm, diameter = 50mm), polyamide/nylon 

(NL17, GE, pore size = 0.45μm, diameter = 50mm) and PTFE (TE36, GE, pore size = 0.45μm, 

diameter = 47mm). 

5.6.3: Microorganism and Medium 

The strain C. saccharoperbutylacetonicum N1-4 was used in this study. The cultures were 

stored in lyophilised form at 4°C. The culture was reconstituted in Reinforced Clostridial 

Medium (RCM) (Oxoid). This was done by mixing 1mL media, taken from a 60mL RCM serum 

bottle, to suspend the lyophilised culture. Less than 0.1mL (approximately one drop) of the 

re-suspended culture was added to the 60mL RCM serum bottle and placed in an incubator 

and grown for 19-20 hours at 32°C. After incubation, the optical density at 600nm (OD600nm), 

pH and microscopy of the culture was checked, and deemed ready for transfer for 

fermentation if  OD600nm was 2-2.5, pH 5-5.5 and the cells looked healthy and motile. This 

formed the seed culture 

All media components were purchased from Fisher or Sigma at standard laboratory grade. 

The base media used was prepared by dissolving the following components in of RO water 

for the desired final concentration: 2.5 g L-1 yeast extract, 2.5 g L-1 tryptone, 0.025 g L-1 

FeSO4, 0.5 g L-1 (NH4)2SO4 and 19.52 g L-1 MES (2-(N-morpholino)ethanesulfonic acid) buffer. 

The medium was adjusted to pH 6.5. A glucose solution was prepared, for a final 

concentration of 50 g L-1. Both the base media and glucose solution were autoclaved at 

121°C for 22 minutes, and then mixed together. Once dispensed the medium was left to 

equilibrate in the anaerobic cabinet overnight (Whitley A35 anaerobic workstation). 

5.6.4: Fermentation – Solvent Toxicity Test 

The fermentation occurred in 100mL serum bottles, with 60 mL working volume. 6mL of 

seed culture was transferred into each serum bottle, and grown under anaerobic conditions 

(in the anaerobic cabinet) at 32°C for 14-16 hours until the butanol concentration was 
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approximately 5 g L-1. This corresponds to glucose consumption of 16-20 g L-1, which could 

be determined through testing a sample with glucose meter. Once the glucose 

concentration had reached 30-35 g L-1, extractant was then added to the serum bottle to 

test for solvent toxicity. Five toxic extractants were tested (1-pentanol, 1-hexanol, 1-

heptanol, 1-octanol, and 2-ethyl-1-hexanol) at three concentrations 0.5 g L-1, 1 g L-1 and 5 g 

L-1. Samples were collected every 2 hours after extractant addition for measuring ABE 

concentration, glucose concentration, cell density and microscopy. The cell density was 

measured using a spectrophotometer at 600nm (Amersham Biosciences Ultrospec 10). 

All solvent toxicity experiments were performed in duplicate. 

 

5.6.5: Synthetic ABE Solution 

A synthetic acetone (Fisher), butanol (Acros Organics) and ethanol (Fisher) solution was 

made up with RO water. The final ABE concentration was 16 g ABE/L, at ABE ratio of 

22.5%:75%:2.5%. 

 

5.6.6: Perstraction 

Perstractive recovery of ABE was tested using two experimental setups, depending on the 

type of membrane used, 400 mL synthetic ABE solution was used with 200 mL of extractant. 

The ABE solution has a greater volume to allow an equilibrium to become established more 

quickly. 

For tubular membranes (silicone, non-porous PTFE and PES): The 400 mL synthetic ABE 

solution was placed in a 500mL bottle, with a three port cap with two tubes for recirculation 

and a filter to ensure pressure stabilisation. 200mL was placed in a 250 mL bottle, with a 

three port cap connecting the tubular membrane to the tubing exiting the synthetic ABE 

solution bottle and a filter on the third port for pressure stabilisation. The tubing was 

immersed in the extractant with the ABE solution pumped through tubing using a multi-

headed peristaltic pump (Watson Marlow 505U) at 150 mL min-1 for the silicone and non-

porous PTFE membrane, Figure 5.6. A flow rate of 30 mL min-1 was used for the PES 

membrane because of the smaller internal diameter. To ensure good mixing the extractant 

bottle was agitated at approximately 350 rpm using a magnetic stirrer. The each experiment 

would last for 150-200 hours and samples were taken periodically throughout the 
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experiment, for both the synthetic ABE solution and extractant, for analysis of the ABE and 

extractant concentrations. 

Experiments with silicone tubing were performed in triplicate, PTFE in duplicate (due to 

conclusive results) and in duplicate with the PES membrane. 

 

Figure 5.6: Tubular perstraction set up. 

For the flat-sheet membranes (RC55, NL17 and PT36), modified Duran bottles were used to 

contact the two phases, as shown in Figure 5.7. The membrane was sandwiched between 

two silicone washers then clamped between two glass joints with 40 mm internal diameter. 

This internal area was the area for mass transfer. 200 mL extractant was placed in the 250 

mL bottle and 400 mL synthetic ABE solution was placed in the 500 mL bottle. Both bottles 

were closed with solid lids (no ports) as shown in Figure 5.7. The bottles were placed in 

agitated incubator at 32°C and agitated at 200 rpm. The experiment lasted for 150-200 

hours. With samples were taken periodically, from both bottles, throughout the experiment, 

for analysis of ABE and extractant concentration. A technical drawing of the setup is 

provided in Appendix C. 

Due to the limited number of membranes available these experiments were performed in 

duplicate. 
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Figure 5.7: Flat-sheet membrane perstraction set up. 

 

The overall mass transfer coefficient was calculated, (5.14), for every tested membrane-

extractant combination. It was assumed that both systems were well mixed, therefore a 

comparison across the two systems can be made. 

 

5.6.7: Chromatographic Analysis 

5.6.7.1 ABE and Extractant Concentration 

In the aqueous phase samples, concentrations of ABE and extractant were measured by 

liquid injection gas chromatography (Thermo Scientific Trace 1300). In the extractant phase 

only ABE concentrations were measured, by headspace gas chromatography (Thermo 

Scientific Triplus 300 headspace). Both used a split-splitless injector, with a 50:1 ratio, and 

flame ionisation detector. A HP-FFAP column (50 m, diameter 0.32 mm and film thickness 

0.5 μL, Agilent J & W) was used for separation. The carrier gas was nitrogen at a flow rate of 

20mL min-1. The oven temperature increased from 80°C to 200°C at a rate of 10°C min-1 

followed by a 3 minute hold. The injector temperature was 250°C and the refractive index 

detector temperature was 300°C.  
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5.6.7.2 Oleyl alcohol concentration 

Aqueous phase samples, which potentially contained oleyl alcohol, were prepared for liquid 

injection gas chromatography by extraction into 1-octanol at a ratio of 800 μL of sample: 

1000 μL 1-octanol. The samples were vortexed for 2 minutes, before settling and 

centrifugation (Sigma 1-14) at 13000 rpm for 5 minutes. 800μL of the organic phase was 

aliquoted from the sample, ready for analysis. 1-octanol/oleyl alcohol samples were 

prepared in octanol with 5g L-1 palmitoleyl alcohol for internal standard. 

Oleyl alcohol was measured using liquid injection gas chromatography (Thermo Scientific 

Trace 1300), with a HP-FFAP column, split-splitless injector and flame ionisation detector. 

The carrier gas was nitrogen at a flow rate of 20 mL min-1. The oven temperature started at 

175°C and increased to 240°C at a rate of 125°C min-1, with a final hold of 6.5 minutes. The 

injector temperature was 250°C and the detector temperature was 300°C. 

5.6.7.3 Glucose concentration 

The glucose concentration was measured, for extraction toxicity samples, using high 

performance liquid chromatography (Thermo Scientific Dionex Ultimate 3000) with 

refractive index detector (ERC Refractomax 520). A Rezex RPM column (7.8 x 300 mm, 

Phenomenex) at 85°C, using HPLC grade water mobile phase at a flow rate of 0.6 mL min-1. 

5.7: Results and Discussion 

5.7.1: Extractant Choice 

In the majority of work to date oleyl alcohol has been the extractant used for perstraction, 

Table 5.1. This stems from LLE research, where oleyl alcohol was the chosen extractant, as it 

was non-toxic and had a high distribution coefficient (𝐾𝑑 ≈ 3.5 − 4.7) (Ishii et al., 1985; 

Roffler et al., 1987b; Kim et al., 1999).  

A wide selection of solvents were tested for use as extractant for acetone, butanol and 

ethanol. Kim et al. (1999) provides the most in-depth assessment of partition coefficients. 

Dadgar and Foutch (1985) and Ishii et al. (1985) have completed the most detailed studies 

into solvent toxicity for LLE with the ABE fermentation. From the published data in these 

three studies, there were 21 extractants which has a partition coefficient equal or higher 

than that of oleyl alcohol for butanol. Of these extractants only three (2-butyl-1-octanol, 2-

hexyl-1-decanol and polypropylene glycol) have been confirmed to be non-toxic to the ABE 

fermentation. This indicates that there is a strong relationship between having a high affinity 



131 
 

for butanol and toxicity to Clostridium spp. These 21 solvents formed the starting point for 

selecting extractants for testing with perstraction, a complete list is provided in Table 5.4. 

From the 21 solvents, two were ionic liquids (Aliquat 336 and phosphonium); these have 

been ruled out of selection due to lack on information and accessibility of the liquid. This 

leaves 19 organic solvents for selection.
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Table 5.4: Initial 21 extractants with physical properties and reasons for not selecting. 
 

Toxicity Butanol 
Distribution 
Coefficient 

Molecular 
Weight 

Boiling 
Point 
(°C) 

Freezing 
Point 
(°C) 

Density 
(gcm-3) 

Viscosity 
(mPa.s) 
(at 25C) 

Solubility 
in H2O 

Reason for Not Selecting 

4-Methyl-2-
pentanone 

unknown 4.02 100.16 117 -84.7 0.802   1.91 
g/100mL 

Similar BPT to water 

Oleyl alcohol NT 4.3 268.5 330-360 13-19 0.849   Insoluble   

n-Propyl acetate T 4.34 102.1 102 -95 0.89   1.89% Similar BPT to water 

3-Pentanone unknown 4.5 86.1 101.5 -39 0.815   50 g L-1 Similar BPT to water 

2-Hexyl-1-decanol 
(C16 Guerbert 
Alcohol) 

NT 4.5 242.4 195 -18 0.836 41 (at 20 
C) 

insoluble High viscosity compared 
to butanol 

Ethyl acetate unknown 4.62 88.11 77.1 -83.6 0.897   8.3g/100mL Similar distribution to 
oleyl alcohol 

Oxocol (C14-15) T 4.7             Similar distribution to 
oleyl alcohol 

Polypropylene 
glycol 

NT 5.13a 1000           Non-toxic 

1-Dodecanol T 5.14 186.3 259 24 0.8309 17.2 (at 
20°C) 

0.004 g L-1 High viscosity compared 
to butanol 

Undecanol T 5.55 172.3 243 19 0.8298 17.2 Insoluble High viscosity compared 
to butanol 

1-Octanol T 5.6-7.3 130.2 195 -16 0.824 7.3 0.460 g L-1   

2-Ethyl-1-hexanol T 6.09 130.2 180 -76 0.833 6.3 slightly 
(0.2%) 

  

1-Decanol T 6.2 158.3 232.9 6.4 0.8297 10.9 Insoluble High viscosity compared 
to butanol 
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Toxicity Butanol 

Distribution 
Coefficient 

Molecular 
Weight 

Boiling 
Point 
(°C) 

Freezing 
Point 
(°C) 

Density 
(gcm-3) 

Viscosity 
(mPa.s) 
(at 25C) 

Solubility 
in H2O 

Reason for Not Selecting 

1-Heptanol T 6.62 116.2 175.8 -34.6 0.8187 5.8 slightly 
(0.2%) 

  

2-Butyl-1-octanol NT 6.76b 186.3 147   0.833   insoluble Non-toxic 

Tributyl phosphate T 7.47b 266.3 289 -80 0.9727   1mL/165mL 
water 

Similar Density to Water 

1-Pentanol T 7.48 88.2 137 -78 0.811 3.6 22 g L-1   

Aliquat 336 (ionic 
liquid) 

unknown 8.86a 404.16           Ionic Liquid - Lack of 
information 

1-Hexanol T 9.91 102.1 157.1 -44.6 0.8136 4.6 5.9 g L-1   

Phosphonium (ionic 
liquid) 

unknown 11.55a             Ionic Liquid - Lack of 
information 

Phenol T 24 94.1 181.7 40.5 1.07   8.3 g 
100mL-1 

Safety 

Toxicity notation: T- Toxic, NT- Non-Toxic 
All butanol distribution coefficients from Kim et al. (1999), unless specified: a González-Peñas et al. (2014b) b Jeon and Lee (1987) 
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The list of 19 extractants was further narrowed down based on safety to humans. This saw 

the removal of phenol, which has the highest partition coefficient of 24 (Kim et al., 1999). If 

perstraction was to be used in an industrial process, there will be large volumes of 

extractant present on the plant, therefore any extractant has to be inherently safe, so as not 

to harm any plant personnel and maintain integrity of the product. Phenol would also incur 

laboratory safety concerns when experimentally testing the extractant for use with the 

fermentation. 

The list of extractants was considered with respect to the extractants physical properties, 

such as boiling point, density and viscosity. This allowed for comparison with the physical 

properties of acetone, butanol and ethanol.  

Downstream separation was a contributing factor to the industrial ABE process being 

discontinued, therefore recovery of the product from the extractant must be considered 

with regards to complexity of the process, energy demand and cost. In the traditional 

process, large amounts of energy are required for the downstream separation due to the 

high water concentration in the fermentation broth, which forms a low boiling azeotrope at 

93°C, impacting the operating costs of the process. By comparing the physical properties of 

the extractant and products, considerations about the ease of separation of the product 

from the extractant could be accounted for. Ideally, any solvent used for extraction would 

have a boiling point higher than that of butanol, assuming separation of ABE and the 

extractant would be by distillation. Next, density was considered. All extractants on the list 

have densities of around 0.81 g cm-3, similar to that of butanol, hence gravity separation or 

similar, was not a viable proposition. Lastly, viscosity was considered; as expected, as the 

carbon chain of the organic solvents increased the viscosity increased. Groot et al. (1990) 

found that maldistribution of the extractant occurred due to the high viscosity of ethylene 

glycol being used. It was decided that for an initial investigation, solvents with a viscosity of 

the same order of magnitude as butanol would be considered. As discussed in section 5.3.3, 

the boundary layer mass transfer coefficients can be described as functions of the Reynolds 

and Schmidt number (5.22), both of which are functions of viscosity (5.23 and 5.24). It is 

expected that the viscosity of the extractant will affect the mass transfer of ABE into the 

product phase, therefore a low viscosity would be preferable for a high mass transfer rate. 

From the initial 21 solvents, 5 toxic extractants along with oleyl alcohol and water were 

selected for testing with the ABE fermentation. The selected extractants and their basic 
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physical properties and partition coefficients are shown in Table 5.5, below. All the 

extractants are believed to be toxic to Clostridia. 

Table 5.5: Selected extracts for perstraction testing, with distribution coefficient and physical properties. 

Extract-
ant 

Distribution Coefficient (Kim 
et al., 1999) Molecular 

Weight 

Boiling 
Point 

Density Viscosity 
Solubility 
in water 

Acetone Butanol Ethanol (°C) g cm-3 
mPa.s 

(at 25°C) 
g L-1 

1-
Pentanol 

0.88 7.48 0.078 88.2 137 0.811 3.619 
22.0 

1-
Hexanol 

Unknown 9.91 1.0-1.2 102.1 157.1 0.8136 4.578 
5.9 

1-
Heptanol 

0.65 6.62 0.75 116.2 175.8 0.8187 5.810 
1.0 

1-
Octanol 

0.52 
5.6-
7.33 

0.50-
0.64 

130.2 195 0.824 6.271 
<1.0 

2-Ethyl-
1-

Hexanol 
0.58 6.09 0.47 130.2 180 0.833 7.288 

<1.0 

Oleyl 
Alcohol 

0.52 4.3 0.22 268.5 ~330 0.850 28.32a 
Insoluble 

Water - - - 18.0 100 1 0.89 n/a 
a (Blahušiak et al., 2013) 

The extractants have been selected based upon the butanol partition coefficient. Whilst 

there are two other products in the fermentation broth, it is butanol that causes inhibition 

to the microorganism at the lowest concentration. It must be noted that generally the 

partition coefficient for acetone and ethanol is less than one for these organic solvents, 

therefore the acetone and ethanol will disproportionately partition into the aqueous phase 

rather than the organic extractant. This will limit the amount of acetone and ethanol 

transferred into the extractant. The toxicity of acetone and ethanol to the Clostridia is 

unknown, as the product concentrations do not reach inhibitory levels, therefore the effects 

of the build-up of acetone and ethanol in the fermentation broth is unknown. Although, the 

distribution coefficient of oleyl alcohol for acetone is 0.52 (Kim et al., 1999), this is similar to 

the other distribution coefficients for acetone in Table 5.5, and there have been no 

suggestions of acetone toxicity in LLE fermentations. Oleyl alcohol and RO water were also 

investigated to provide a comparison to literature data. 

5.7.2: Extractant Toxicity 

A membrane is used in perstraction as a physical barrier between the two phases, though 

there may be a direct interface between the phases when using porous membranes. This has 
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the potential for back transfer of extractant into the aqueous phase. If this does occur, the 

concentration of extractant in the aqueous phase is expected to be around the solubility 

limit of the extractant in water, therefore small extractant concentrations, up to 0.05%       

(w/v), were selected, unlike the toxicity experiments used for LLE where extractant 

concentrations between 9-85% (w/v) were used (Roffler et al., 1987b; Evans and Wang, 

1988b). To compare fermentation performance the yield and productivity of the 

fermentation were compared. The yields and productivities were normalised against the 

control fermentation yields and productivities to negate any differences that might be 

observed in different starting cultures or environmental effects. 

The overall yield and productivity are shown in Figures 5.8 and 5.9, respectively. From these 

graphs it is obvious that both 1-octanol and 2-ethyl-1-hexanol are toxic to the bacteria at all 

concentrations tested, with a lower yield and productivity than the control fermentation. All 

three concentrations had the same impact on the fermentation, as the productivity is 

roughly equal across all three concentrations. 1-Heptanol also exhibited a decrease in yield 

and productivity at all three concentrations, but not to the same extent as 1-octanol and 2-

ethyl-1-hexanol for 0.5 and 1 g extractant L-1 concentrations. For 1-heptanol, as the 

concentration of extractant increased, the yield and productivity both decreased. For 1-

hexanol and 1-pentanol a negative impact was only observed at a concentration of 5 g 

extractant L-1. At concentrations of 1 g extractant L-1
 or 0.5 g extractant L-1, the productivity 

was shown to have an increase when compared to the control fermentation, Figure 5.9. This 

indicates that the presence of 1-hexanol or 1-pentanol at low concentrations has the 

potential to simulate solvent production. 
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Figure 5.8: Comparison of the normalised overall ABE yield, in 100 mL bottle screen, when five toxic extractants were 
added at concentrations 5, 1 and 0.5 g L-1, once the butanol concentration had reached 5 g L-1. Performed in duplicate. 

 

Figure 5.9: Comparison of the normalised overall ABE productivity, in 100 mL bottle screen, when five toxic extractants 
were added, at concentrations 5, 1 and 0.5 g L-1, once the butanol concentration had reached 5 g L-1. Performed in 
duplicate. 

 

Figure 5.10: Comparison of the normalised ABE productivity post extractant addition, at concentrations 5, 1 and 0.5 g L-1, 
once the butanol concentration had reached 5 g L-1, in 100 mL bottle screen. Performed in duplicate. 
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The normalised productivity post extractant addition, as shown in Figure 5.10, confirms the 

impact that the extractant has on the fermentation. It can clearly be observed that all of the 

extractants at 5 g extractant L-1 have a major impact, reducing the productivity during this 

stage of the fermentation to less than 20% of that achieved in the control fermentation. As it 

is known that butanol concentrations higher than 8 g butanol L-1 can inhibit the 

fermentation, the addition of 5 g extractant L-1 which is also an alcohol, when the butanol 

concentration is approximately at 5 g L-1, results in a total alcohol concentration of 

approximately 10 g L-1 in the fermentation broth, therefore an inhibitory effect is expected. 

This agrees with literature, in that generally alcohols have been found to be toxic to ABE-

producing bacteria (Roffler et al., 1987b). 

Figure 5.10 also shows how, as the carbon chain increases, so does the toxicity of the 

alcohol. It is suspected that this is related to the solubility or polarity of the extractant (Bruce 

and Daugulis, 1991; Kim et al., 1999). Generally, as the carbon chain increases, the molecule 

becomes more hydrophobic therefore less soluble in water, forming an organic phase. 

Exposure of the cells to an extractant-based phase has a greater effect on the toxicity 

compared to when it is only exposed at soluble concentrations (Kim et al., 1999). This is due 

to toxicity affecting the cells differently at a molecular or phase level. Molecular level toxicity 

occurs below the extractants solubility level in water. It has been suggested that the organic 

solvent would dissolve into the cell affecting the cell membrane permeability and enzyme 

activity. Phase toxicity occurs above the solubility concentration of the organic solvent and is 

due to the solvent coating the outside of the cells. This would disrupt the uptake of nutrients 

and removal of products, along with disrupting the cell wall (Bruce and Daugulis, 1991; Kim 

et al., 1999). It can be surmised that this explains why low concentrations (<1 g L-1) of 1-

pentanol and 1-hexanol do not have a negative impact on the fermentation, as all other 

extractants are insoluble at 1 g extractant L-1.  5 g extractant L-1 is below the solubility limit 

for 1-pentanol and 1-hexanol and the concentration in relationship to the amount of 

biomass present could be too great, therefore a toxic effect at a molecular level occurs. 

 

5.7.3: Comparison of Perstraction Extractants with a Silicone Membrane 

To compare the proposed extractants a perstraction system using a silicone membrane was 

used. The perstraction system design was based upon that used by Jeon and Lee (1987), 

Groot et al. (1990) and Qureshi et al. (1992). Silicone was chosen as it is non-porous, so 
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should limit the back transfer of extractants into the aqueous phase. Other advantages were 

ease of use and compatibility with the fermentation, as described by Qureshi and Maddox 

(2005). Furthermore, it has historically been used for perstraction of ABE from fermentation 

broth therefore providing a comparison with existing literature. A synthetic ABE solution was 

used to represent the fermentation broth, with ABE concentrations in the ratios observed in 

the fermentation broth, providing an idea of the rate of transfer that will be possible from 

the fermentation broth. 

The perstraction system operated for approximately 120 hours, with an average 

temperature of 23-25°C. This temperature was used as experiment was performed at room 

temperature due to equipment limitations with regards to mixing and temperature control. 

Ideally, the system would have operated at fermentation temperature (32°C), operation at 

this temperature would likely see an increase in the mass transfer rate.  It was expected that 

an equilibrium between the aqueous and extractant phases would be obtained, as Groot et 

al. (1990) stated that they had achieved equilibrium in about 25 hours, using a silicone 

membrane. Figures 5.11 and 5.12 show the extractant concentration of butanol over the 

course of the experiment for 2-ethyl-1-hexanol and oleyl alcohol, respectively. These two 

extractants were the highest and lowest mass transfer rate as inferred by the overall mass 

transfer coefficient, respectively, for extracting butanol from the aqueous phase. In both 

cases the butanol concentration in the extractant did not begin to plateau until closer to 120 

hours, indicating that an equilibrium was not established in 25 hours. Different membrane 

thicknesses (0.3mm compared to 0.75mm in this work) and a different extractant (isopropyl 

myristate) could explain the shorter equilibrium time observed by Groot et al. (1990). 
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Figure 5.11: Butanol concentration in extractant, 2-ethyl-1-hexanol, over duration of experiment. Performed in triplicate, 
each colour represents an individual run. 

 

Figure 5.12: Butanol concentration in extractant, oleyl alcohol, over duration of experiment. Performed in triplicate, each 
colour represents individual run. 

To confirm that equilibrium was not achieved, the ratio of concentration of butanol in 

extractant and aqueous phase over the duration of the experiment was compared. If an 

equilibrium was achieved, the distribution coefficient of butanol in that extractant should 

have been achieved. Figure 5.13 demonstrates that this is not the case, as the ratio for all 

extractants is still increasing at 120 hours. 2-Ethyl-1-hexanol has the fastest rate but still has 

not achieved the equilibrium partition value of 6 (Table 5.5) observed in liquid-liquid 

extraction. It is possible that this value will not be attained due to the presence of the 

membrane, which increases the number of phase interfaces over which the equilibrium 

needs to establish. If the membrane-extractant distribution is in favour of the membrane 
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aqueous-extractant distribution coefficient. This means that an alternative extractant 

selection criteria is required, rather than distribution coefficient alone as in Jeon and Lee 

(1987).  

 

Figure 5.13: Ratio of butanol concentration, partition coefficient, in each extractant during 120 hours perstraction, data 
points for all three repeats are shown. 

From Figure 5.13 oleyl alcohol and water have a similar change in concentration ratio over 

time. This is interesting as oleyl alcohol has a higher capacity for butanol than water. It is 

also apparent that the straight chain alcohols (1-octanol, 1-heptanol, 1-hexanol and 1-

pentanol) all have very similar concentration ratios over time, forming the middle cluster in 

Figure 5.13. While these extractants are all relatively close in the butanol concentration 

ratio, based on the end points (110-120 hours), the order of extractants (highest ratio first) is 

1-hexanol, 1-pentanol, 1-heptanol, 1-octanol. This order of distribution coefficients, highest 

first, in Table 5.5 follows the same order. In fact at approximately 120 hours, all extractants 

are in the order of their respective distribution coefficients. This highlights how using a high 

distribution coefficient extractant compared to oleyl alcohol will have a positive impact on 

the removal of butanol from the fermentation broth. 
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The data points in Figure 5.13 are from all three repeats for each extractant. It can be seen 

that the points for each extractant agree well. This gives assurance of the repeatability of the 

experiments.  

To allow for a quantitative assessment of the different extractants, the overall mass transfer 

for butanol has been assessed. The overall mass transfer coefficient is independent of 

membrane area, allowing for comparison of this system with others in literature. The overall 

mass transfer coefficient for butanol was calculated based on transfer of butanol out of the 

aqueous phase. The aqueous-based overall mass transfer coefficient, 𝐾𝑜𝑣,𝐴 (5.14), was 

selected. This was because the primary aim of combining perstraction with the ABE 

fermentation is to remove the ABE from the fermentation broth and maintain 

concentrations below inhibitory levels. Only the mass transfer coefficient for butanol was 

assessed due to butanol being the primary product and the acetone and ethanol having a 

low affinity for the extractants, as evidenced by the distribution coefficients in Table 5.5. 

Figure 5.14 shows the aqueous-based overall mass transfer coefficient for each extractant 

with a silicone membrane. This graph shows that 2-ethyl-1-hexanol has the highest overall 

mass transfer coefficient for butanol. The lowest overall mass transfer coefficient for butanol 

was oleyl alcohol, which was approximately 8 times lower than that of 2-ethyl-1-hexanol. All 

the other extractants tested had a higher overall mass transfer coefficient than oleyl alcohol. 

This means that by switching to an organic extractant with a higher distribution coefficient 

than oleyl alcohol, the rate of transfer will increase and a reduction in extractant volume 

would be possible. All the other extractants had density and viscosity values closer to that of 

water than oleyl alcohol.  As shown in equations (5.22), (5.23) and (5.24), the density and 

viscosity affect the film transfer coefficients on either side of the membrane. The order of 

magnitude higher viscosity of oleyl alcohol perhaps hinders the convective mass transfer.  
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Figure 5.14: Aqueous-based overall mass transfer coefficient of butanol for each extractant using a silicone membrane. 

 

The straight chain alcohols saw an increase in overall mass transfer coefficient as the carbon 

chain length decreased, though all the overall mass transfer coefficients were very similar in 

the range of 0.16-0.19 μm s-1. This is approximately 3 times smaller than that of 2-ethyl-1-

hexanol. This is particularly interesting, especially for 1-octanol which has the same 

molecular weight and chemical composition as 2-ethyl-1-hexanol. It is hypothesised that the 

branched ethyl group increases the extracting capability of the extractant. The same 

phenomena has been observed with the extraction of ethanol from aqueous solutions, 

whereby alcohols formed good extractants, but the location of the hydroxyl group and a 

branched chain increased the distribution coefficient of ethanol (Roddy, 1981). Munson and 

King (1984) suggested that this was due to the steric effects caused by the branching. 

Whereby, as the steric hindrance increases the extraction selectivity increases, particularly in 

C6 or higher alcohols. This is due to the branched carbon chains hindering electron access to 

the hydroxyl group, therefore a slight positive charge is present on the hydrogen, and this 

would be attracted to the polar ethanol molecule (Munson and King, 1984). It is possible 

that the same effects are occurring with the extraction of butanol from aqueous solution. 

Where the 2-ethyl-hexanol the carbon chains induce a positive charge which is attracted to 

the polar hydroxyl group of the butanol, hence 2-ethyl-1-hexanol has a significantly 

increased overall mass transfer coefficient. 

Surprisingly, the use of water as an extractant had a higher overall mass transfer coefficient 

than all the organic extractants, other than 2-ethyl-1-hexanol. This type of comparison of 
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water as an extractant for perstraction has not previously been investigated. Jeon and Lee 

(1989) did test water alongside oleyl alcohol, but different process conditions were used so a 

direct comparison was not possible. The advantage of using water as a potential extractant 

is the ease of availability, cost and safety, compared to the organic extractants. The 

downside is that it will not be possible to increase the concentration of ABE in the aqueous 

phase, which is one of the key requirements of ISPR (as it reduces downstream energy 

requirements (Xue et al., 2014b)). This could be overcome by developing it into a hybrid 

technique, by extracting the ABE from the water with a high distribution, and toxic, 

extractant such as 2-ethyl-1-hexanol to concentrate the ABE.  

Over 120 hours of perstraction the butanol concentration in the water extractant reached 

approximately 4.5 g L-1 this is lower than a typical batch fermentation broth concentration of 

around 12g L-1 (Ezeji et al., 2003). This is because, when equilibrium is reached, the 

concentration in both the synthetic ABE solution and the extraction should be equal. While it 

would be possible to control the butanol concentration in the fermentation broth below 

inhibitory concentrations this would cause an increase in the downstream processing costs, 

either due to high distillation energy or the addition of another separation step to up 

concentrate the ABE. It must also be noted that the volume of water required for extraction 

will be significantly greater than that of an organic extractant which can increase the 

concentration of the ABE, but this is balance by the cost of water being cheaper than an 

organic extractant.  

The use of overall mass transfer coefficients to decide on the best extractant-membrane 

combination has not been widely investigated in literature. The earliest perstraction 

research with the ABE fermentation by Jeon and Lee (1987) did not consider the overall 

mass transfer to aid selection. Only Groot et al. (1990) considered the overall mass transfer 

coefficient when selecting an extractant. Table 5.6 provides a comparison of all the mass 

transfer coefficients provided in literature using a silicone membrane and the extractants 

tested in this work. All the overall mass transfer coefficients are of the same order of 

magnitude, providing confidence in the results achieved. The differences in temperatures 

could explain the slight variations in values, as it is known that increased temperatures can 

increase the mass transfer across membranes (Xue et al., 2014a). The duration of the 

experiments could also influence the overall mass transfer coefficient. As already stated 

Groot et al. (1990) found equilibrium to be reached around 25 hours, whereas the butanol 
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equilibrium required at least 120 hours. Comparing the results across this work and Groot et 

al. (1990), oleyl alcohol has the lowest overall mass transfer coefficient in both cases. Also, 

in both cases the overall mass transfer coefficient of 1-hexanol is greater than that of 1-

octanol. 

Table 5.6: Comparison of overall mass transfer coefficients of butanol using a silicone membrane in literature. 

Extractant Groot et al. 
(1990) 
30°C  
(x10-7 m s-1)a 

Grobben et 
al. (1993) 
37°C 
(x10-7 m s-1)b 

Jeon and Lee 
(1989) 
35°C 
(x10-7 m s-1)b 

This work 
 
23-25°C 
(x10-7 m s-1)a 

2-Ethyl-1-
hexanol 

   5.38 ± 0.316 

1-Octanol 4.0   1.62 ± 0.243 

1-Heptanol    1.60 ± 0.101 

1-Hexanol 5.2   1.69 ± 0.101 

1-Pentanol    1.87 ± 0.131 

RO Water    2.14 ± 0.206 

Oleyl Alcohol 2.2 ~3 0.42  
(4.23x10-6 
cm s-1) 

0.67 ± 0.024 

a Calculated from mass transfer test using synthetic ABE solution 
b Calculated from fermentation data 
 
In all cases, other than water, the extractant back-transferred across the membrane into the 

aqueous phase. It was visually evident during these experiments, as the aqueous phase 

became cloudy, Figure 5.15. This was due to the organic extractant mixing with the synthetic 

ABE solution and creating a stable emulsion, as when using RO water for the extractant, the 

ABE solution did not go cloudy. It is expected that a stable emulsion formed due to the fast 

recirculation of the synthetic ABE solution, 150 mL min-1. Surprisingly, oleyl alcohol also 

transferred across the membrane into the aqueous phase; something that had not 

previously been observed. 
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Figure 5.15:  Pictures of the synthetic ABE solution after 120 hours perstraction. Extractant used, left to right, top row: 
RO water, 1-octanol, 2-ethyl-1-hexanol; bottom row: 1-heptanol, 1-hexanol, 1-pentanol, oleyl alcohol. 

To better understand the transfer of extractant across the membrane and determine the 

potential impact on the fermentation, the extractant concentration in the aqueous phase 

was measured. 2-ethyl-1-hexanol, 1-octanol, 1-heptanol, 1-hexanol and 1-pentanol were 

measured by gas chromatography. Oleyl alcohol concentration had not previously been 

measured in either the perstraction or the liquid-liquid extraction literature for the ABE 

fermentation. To measure the oleyl alcohol an extraction step was required to extract all 

oleyl alcohol into an organic phase to aid detection on the GC. It was assumed that 100% of 

the oleyl alcohol was extracted. 

Figure 5.16 shows the aqueous phase concentration of extractants during perstraction for all 

extractants other than oleyl alcohol and RO water. Although oleyl alcohol was analysed using 

gas chromatography only trace amounts were detected, below the limit of detection for the 

oleyl alcohol. Example chromatograms showing this are provided in Appendix D. The 

transfer of oleyl alcohol across a silicone membrane is something suspected by Qureshi et al. 

(1992), though in later work they do not believe diffusion of oleyl alcohol across the 

membrane would cause the fermentation to stop (Qureshi and Maddox, 2005). It was not 

possible to detect if water transferred across the membrane, whilst using RO water 
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extractant, during the experiment but based on volumes of the aqueous and extractant 

phase it appeared that no water had transferred across the membrane. 

 

Figure 5.16: Concentration of extractant in the aqueous phase over the course of the perstraction experiments, showing 
all three repeats for each extractant. 

Figure 5.16 shows that the concentration increases with time until it plateaus, establishing a 

constant aqueous concentration. The equilibrium concentration of 2-ethyl-1-hexanol, and 

the time profile generally, was approximately the same as that of 1-octanol. Once the 

aqueous concentration had reached solubility limits any further extractant to transfer across 

the membrane formed an organic phase layer on top of the aqueous phase, as 

demonstrated by 1-heptanol in Figure 5.17. This indicates that even though the solubility 

limit of extractant was obtained, there was still a driving force for transfer of the extractant. 

The order of concentration from highest to lowest follows that of molecular weight and 

solubility in water, Table 5.5. The aqueous phase concentration is higher than the maximum 

solubility in water. This is due to an emulsion forming, Figure 5.15, meaning that complete 

phase separation has not occurred. 
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Figure 5.17: Aqueous phase after 120h perstraction with 1-heptanol. A layer of 1-heptanol can be observed on the 
surface of the synthetic ABE solution. 

The transfer of extractant into the aqueous phase would have a negative effect on the 

fermentation, particularly for 2-ethyl-1-hexanol, which exhibited the highest rate of removal 

of butanol from the aqueous phase. For all the extractants shown in Figure 5.16, after 24 

hours of perstraction the aqueous phase concentration is higher than that tolerable by the 

bacteria, as determined by the toxicity experiments in section 5.7.2. Other than toxicity, the 

loss of extractant into the fermentation broth means that the extractant would need to be 

regularly replenished, thereby increasing the operating costs of the process.  

From these results it is evident that perstraction can remove ABE from an aqueous solution, 

and although oleyl alcohol is a good extractant, the rate of extraction can be significantly 

increased through the use of extractants with higher distribution coefficients.  The downside 

to this is that these extractants are toxic to the fermentation, and will leach across the 

membrane, it is therefore imperative to find a membrane-extractant combination which will 

not allow transfer of the extractant. 

5.7.4: Membrane Choice 

As demonstrated by Table 5.1 only a limited number of membranes have been tested for 

perstraction compared to the number of extractants that have been investigated. This is 
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similar to the early developmental stages of pervaporation where PDMS/silicone and 

polypropylene membranes were typically chosen (Qureshi and Blaschek, 1999a).  It is 

understood that membrane development is required to improve perstraction characteristics 

(Qureshi and Maddox, 2005), but for perstraction to be a viable option for ABE fermentation 

the membrane used needs to be commercially available. There are many novel membrane 

materials that have been proposed to be combined with the ABE fermentation for other 

ISPR techniques such as pervaporation (Liu et al., 2013a), for example carbon nanotube 

based membranes (Xue et al., 2014a), but the lack of commercial availability would hinder 

fermentation process development.  

There is a wide range of commercial membrane material for a wide range of industrial 

applications of which 6 membranes, Table 5.7, were selected for investigation for 

perstraction of ABE based upon accessibility and compatibility with organic solvents. Silicone 

was chosen as a non-porous membrane with successful ABE transfer based on previous 

perstraction work. Non-porous PTFE is extremely chemically resistant and has different 

characteristics to silicone. The porous membrane materials were selected based on good 

affinity for organic solvents, as shown in Figure 5.18. PES, the third membrane evaluated, is 

recommended for cell culture media as it is low-protein binding. This selection of 

membranes allows for the comparison of hydrophobic and hydrophilic membrane, porous 

and non-porous membranes, and differences in membrane configuration. 
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Table 5.7: Membrane materials and properties of those tested for perstraction of ABE. 

Membrane Configuration Hydrophobic
/ Hydrophilic 

Porous
/ 
Non-
Porous 

Pore 
Size 
(μm) 

Area for 
Mass 
Transfer 
(m2) 

Membrane 
thickness 
(mm) 

Silicone Tube Hydrophobic Non-
Porous 

n/a 0.00528 0.75 

PTFE Tube Hydrophobic Non-
Porous 

n/a 0.00500 1.52 

PTFE Sheet Hydrophobic Porous  0.45 0.00126 0.22 

Regenerated 
Cellulose 

Sheet Hydrophilic Porous 0.45 0.00126 0.075 

Polyamide 
(Nylon) 

Sheet Hydrophilic Porous 0.45 0.00126 0.11 

Polyether 
Sulphone 
(PES) 

Tube (hollow 
fibre) 

Hydrophilic Porous  ~0.01 0.00181 0.25 
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 Figure 5.18: A quick reference membrane selection guide for WhatmanTM Filters (GE Healthcare, 2016) 

 

The differences in membrane configuration necessitated different perstraction setups, 

Figures 5.6 and 5.7. As shown in Table 5.7 this led to differing surface areas for mass 

transfer. The overall mass transfer coefficient was therefore use, to allow for comparison 

across the different perstraction setups used. To compare any potential effects experienced 

by the different configurations (notably between a tubular system and flat sheet 

membranes) the Reynolds number for each system was calculated using equation (5.23). 
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Table 5.7 also shows that each membrane has a different thickness. This is due to these 

membranes being commercially available materials, so there is limited or no choice over the 

membrane thickness. While membrane thickness does have an impact on the membrane 

mass transfer coefficient, thickness is a manufacturing constraint that would be inherent to 

an industrial process. Therefore, the membranes have been compared based on the butanol 

mass transfer rate and the overall mass transfer coefficient.  

 

5.7.5: Perstraction: Membrane Comparison with 2-Ethyl-1-Hexanol and Oleyl 

Alcohol Extractants 

To compare the membranes two extractants were selected: 2-ethyl-1-hexanol and oleyl 

alcohol. These extractants were chosen because 2-ethyl-1-hexanol provided the fastest mass 

transfer rate with silicone and oleyl alcohol because it is non-toxic to the bacteria and is the 

least soluble in the aqueous phase. The overall mass transfer rate was used to compare the 

membrane and extractant performance.  

 

Figure 5.19: Comparison of membrane performance, based on the overall mass transfer coefficient, with 2-ethyl-1-
hexanol and oleyl alcohol as an extractant. 

The first observation from Figure 5.19 is that 2-ethyl-1-hexanol provides faster mass transfer 

in all membrane cases (other than the non-porous PTFE membrane) than oleyl alcohol. This 

illustrates how extractant selection will play a significant part in obtaining an optimum 

extractant process. Figure 5.19 also shows that the non-porous membranes have an overall 

mass transfer coefficient 10 times smaller than that of the porous membranes, which 

illustrates the importance of membrane choice. 
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No transfer of ABE was observed over a 120 hour period using either extractant when a non-

porous PTFE membrane was used, Figure 5.19. PTFE is a more rigid material than silicone, 

which has a more natural fluidity therefore it is easier for chemicals to diffuse through the 

material. Consequently, this also meant that it was easier for the extractant to transfer 

through. It was thought that a material with less natural fluidity like PTFE would have better 

properties for retaining the extractant, while still allowing the ABE to diffuse through. No 

transfer of ABE across the membrane indicates the membrane is impermeable or there is no 

driving force for mass transfer. If the membrane does not allow absorption of either phase 

(aqueous or extractant) no connection between the two phases is established and there is 

no driving force for mass transfer. This is graphically demonstrated in part (a) Figure 5.20. 

 

 

In contrast to non-porous PTFE, silicone allowed for absorption of the extractant into the 

membrane, as extractant diffused through and into the aqueous phase, Figure 5.16. This 

absorption into the membrane creates a connection between the phases, creating the 

driving force for mass transfer. When a porous membrane is used there is an interface 

between the two phases therefore the relationship between the two phases is established. 

This is partially supported by Groot et al. (1990) who proposed that the permselectivity of 

the membrane is affected by an extractant, influencing the transfer of the desired 

compound, indicating that the extractant plays a dominant role in the transfer across the 

membrane. With a porous membrane, the extractant is in direct contact with the aqueous 

phase, therefore considering the localised extractant concentration at the pore mouth can 

be assumed to be equal to the bulk phase concentration, assuming good mixing of the bulk 

phase. This is a higher extractant concentration than in the non-porous silicone membrane 

as indicated by the shade of extractant in Figure 5.20. This higher concentration will relate to 

Figure 5.20: Diagram representing extractant concentration with different membrane types. (a) represents a non-porous 
PTFE membrane, (b) a non-porous silicone membrane and (c) a generic hydrophobic porous membrane. 
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a higher capacity for ABE at the interface, therefore a greater overall mass transfer 

coefficient, Figure 5.19.  

To ensure that the differences were related to the membranes being porous or non-porous, 

rather than differences in system configuration, the overall mass transfer coefficient was 

compared on the basis of Reynolds number as shown in Figure 5.21. The tubular system 

Reynolds number is given in equation (5.23) and the flat-sheet system by equation (5.26). 

 𝑅𝑒𝑁 =
𝜌𝑁𝐷𝑖𝑑

2

𝜇
 (5.26) 

Where 

 𝑅𝑒𝑁 is the Reynolds number in an agitated system 

 𝑁 is the rotational speed, revolutions per second (s-1) 

 𝐷𝑖𝑑 is the maximum inner flask diameter (m) 

 

Figure 5.21: Overall mass transfer coefficient compared to the Reynolds number for each membrane. Data for every 
membrane type shown, categorised by extractant used (blue=2-ethyl-1=hexanol, orange=oleyl alcohol). The dashed 
black lines separate the different membrane-extractant categories. The top section represents porous membranes with 
2-ethyl-1-hexanol, the middle section is porous membranes with oleyl alcohol and the bottom section is non-porous 
membrane experiments with all extractatants. The data points on left are from the tubular system and the ones on the 
right from the flat sheet system. 

The flat sheet system had a higher Reynolds number than the tubular system, but the mass 

transfer coefficient for the tubular PES membrane falls within the same numerical range as 

the flat sheet membranes, indicating that differences in the membrane configuration are not 

responsible for the differences between the porous and non-porous membranes. 
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Comparing the different porous membranes to deduce which is the best material of those 

tested is more complex. With 2-ethyl-1-hexanol PES has the highest overall mass transfer 

coefficient, closely followed by the polyamide membrane. For oleyl alcohol the polyamide 

membrane had the highest overall mass transfer coefficient. The PES membrane did not 

perform as well due to incompatibles between the PES and oleyl alcohol, which saw the 

membrane dissolve when submerged in the extractant as shown in Figure 5.22. This 

incompatibility is the reason for the large error bars present on Figure 5.19. The porous PTFE 

membrane with 2-ethyl-1-hexanol also exhibits a large error. This is also due to membrane-

extractant incompatibilities in that small holes appeared in the membrane, as shown in 

Figure 5.22, below.  

 

Figure 5.22: Pictures showing membrane-extractant incompatibilities. Left: PES in oleyl alcohol, where membrane pieces 
are seen floating the extractant. Right: A porous PTFE membrane after contact with 2-ethyl-1-hexanol, the circles show 
areas of damage, with small holes through the membrane. 

 

Membranes are often mounted on a support material to increase their strength and 

durability. This material also needs to be chemically compatible with ABE and the extractant. 

As PTFE is resistant to most chemicals, and the non-porous PTFE showed no weakness to 2-

ethyl-1-hexanol, it could be the material used to support the membrane was not chemically 

compatible with the extractant. Therefore, the membrane support material also needs to be 

considered for extractant compatibility. 

The membranes tested had different affinities for water. As displayed in Table 5.7, the 

regenerated cellulose, polyamide and PES membrane are hydrophilic, whereas the silicone 
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and PTFE membranes are hydrophobic. The benefits of a hydrophobic membrane are that 

the organic components of the synthetic ABE solution will preferentially transfer through, 

and in relation to porous membranes the pores will be filled with and retain the extractant. 

With the hydrophilic membranes (all porous) the membrane will be filled with the aqueous 

phase and form an immobilised phase interface with the extractant. Based on the results in 

Figure 5.19 it seems that the hydrophilic membranes showed greater promise compared to 

the hydrophobic membranes. With oleyl alcohol as the extractant using the porous PTFE 

membrane, the overall mass transfer coefficient was lower than the hydrophilic membranes. 

With 2-ethyl-1-hexanol; the PTFE membrane had a higher overall mass transfer coefficient 

than the regenerated cellulose membrane, but when the instabilities of the PTFE membrane 

with 2-ethyl-1-hexanol are considered, the regenerated cellulose seems to be a better 

membrane. The downside to the use of hydrophilic membranes was the transfer of water 

into the extractant. Table 5.8 shows pictures of the flat sheet membrane systems after 120 

hours. For the hydrophilic membranes, in particular regenerated cellulose with both 

extractants and polyamide with oleyl alcohol, two phases can be seen in the 250 mL 

extractant bottle. The extractant is now resting on top of the aqueous phase that has passed 

through the membrane. Whilst this allows for easy separation of the solvent, it would 

reduce the volume of the fermentation and reduce the contact time of the extractant and 

aqueous phase at the membrane interface. The PTFE membrane system is also shown in 

Table 5.8 and no additional phase is visible in either bottle. This transfer of the aqueous 

phase would represent loss of fermentation broth and contamination of the extractant 

potentially causing difficulties in recovering the ABE from the extractant.  
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Table 5.8: End-point photos of flat sheet perstraction systems. Aqueous phase = 500mL bottle, extractant =250mL bottle. Red arrow indicates aqueous-extractant phase interface. 
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As previously demonstrated in Figure 5.16, it is possible for the extractant to transfer across 

the membrane. Figure 5.23 compares the extractant transfer across the membrane for the 

different membranes tested with 2-ethyl-1-hexanol. With all membranes some 2-ethyl-1-

hexanol transferred into the aqueous phase, including the non-porous PTFE where very low 

concentrations of 2-ethyl-1-hexanol (<0.1 g L-1) were present. With every membrane the 2-

ethyl-1-hexanol concentration plateaus after approximately 40 hours of operation. After 

discounting the non-porous PTFE membrane, two distinct bands of data points can be seen 

in Figure 5.23. The higher band corresponds to hydrophobic membranes, silicone and porous 

PTFE, and the lower band to the hydrophilic membranes, regenerated cellulose, polyamide 

and PES. It is not surprising that the hydrophilic membranes have a lower extractant 

concentration in the aqueous phase as the membranes should have a natural repellent to 

the extractant, but as shown in Table 5.8 the hydrophilic membranes allow water to pass 

across. With the hydrophilic membranes the extractant concentration reaches around 0.6-

0.7 g L-1, this concentration would still be toxic to the ABE fermentation; based on the results 

of the toxicity tests (see Figure 5.10). 

 

Figure 5.23: Concentration of the extractant, 2-ethyl-1-hexanol, in the aqueous phase over the course of perstraction 
based on membrane type. Data points for all repeats are shown. 

When using oleyl alcohol no transfer of extractant was observed, other than trace amounts 

with the silicone membrane. Oleyl alcohol is more hydrophobic than 2-ethyl-1-hexanol 

therefore the properties of the membrane are more effective for retaining the extractant. In 

particular the porous PTFE was able to retain the oleyl alcohol, but not the 2-ethyl-1-

hexanol. Tanaka et al. (2012) described the PTFE membrane as more hydrophobic than other 

hydrophobic membranes used for perstraction. This, combined with the increased 
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hydrophobicity of oleyl alcohol, could explain why the silicone membrane allowed the oleyl 

alcohol to pass across but the porous PTFE membrane did not.  

When using the silicone membrane an emulsion formed, as shown in Figure 5.15. With the 

porous membranes an emulsion did not form: the liquid remained clear (see Table 5.8). It is 

assumed that this is related to the mechanism of transfer across the membrane. With the 

silicone, the extractant had to absorb into the membrane, then desorb into the ABE solution. 

When using the porous membrane the two phases were in contact with one another, 

therefore one solution did not need to desorb into the other hence a better phase 

separation. The reduction/avoidance of emulsion formation was another one of the 

disadvantages of LLE that perstraction was supposed to overcome. This observation lends 

further support to the use of porous membranes over non-porous membranes. 

Overall the choice of membrane and extractant needs to be investigated in tandem to 

ensure no undesired membrane-extractant interactions and the highest possible mass 

transfer coefficient. The results presented here indicate that porous membranes have a 

significantly increased overall mass transfer coefficient compared to non-porous 

membranes. The differences between mass transfer coefficient for porous and non-porous 

membranes outweigh other physical factors of the system such as agitation, which should 

also have an impact on the mass transfer. With regards to the transfer of extractant across 

the membrane into the aqueous phase, hydrophilic membranes are favourable but they do 

allow the transfer of water into the extractant phase. The presence of water in the 

extractant would hinder the separation of ABE from the extractant, but if the water-

extractant mixture does not form an emulsion and easy phase separation is feasible, then 

this might be more desirable than higher concentrations of toxic extractant in the 

fermentation broth.  

From the membranes tested in this work the regenerated cellulose, or polyamide, 

membrane would be most suitable in combination with oleyl alcohol for combining with the 

ABE fermentation. This is due to porous membranes providing a higher mass transfer rate, 

whilst hydrophilic membranes reduce the back transfer of extractant into the aqueous 

phase. Oleyl alcohol would have to be used as the 2-ethyl-1-hexanol still transferred across 

the membrane into the aqueous phase and was present at a concentration toxic to the 

bacteria. 
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5.7.6: Literature Comparison (Impact on Fermentation) 

Other than Groot et al. (1990) existing literature concerning the application of perstraction 

to the ABE process, does not focus on the use of synthetic ABE solutions to characterise the 

system. Instead perstraction is applied directly to the fermentation process. By calculating 

the butanol flux for each system, using equation (5.13) it is possible to compare the results 

from this work to the existing literature. The comparison is shown in Table 5.9. The butanol 

fluxes from literature are the same order of magnitude as those achieved using a synthetic 

ABE solution in this work. In some cases the flux is higher, but that can be explained by the 

butanol flux being a function of butanol concentration in the system. In the fermentation 

butanol is constantly being produced, and the aim of ISPR is for the product removal rate to 

be equal to the production rate. Therefore, the overall butanol concentration in the 

fermentation broth should be relatively constant. However, with the synthetic ABE solution 

the total butanol in the system is constant, therefore the aqueous concentration of butanol 

decreases through the experiment. This higher average butanol concentration, seen during a 

fermentation, will lead to a higher butanol flux over the duration of the ISPR stage. 
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Table 5.9: Comparison of butanol flux between literature and this work. 

Membrane Extractant Butanol Flux 
(g h-1 m-2) 

ABE Medium Reference 

Silicone Oleyl Alcohol 3.8 Fermentation Broth (Jeon and Lee, 1987) 

Silicone Polypropylene 
Glycol 

3.0 Fermentation Broth (Jeon and Lee, 1987) 

Silicone Tributyrin 2.4 Fermentation Broth (Jeon and Lee, 1987) 

Silicone Oleyl Alcohol 1.4 Fermentation Broth (Jeon and Lee, 1989) 

Silicone Water 1.8 Fermentation Broth (Jeon and Lee, 1989) 

Silicone Oleyl Alcohol 1.2 Fermentation Broth (Qureshi et al., 1992) 

Silicone Oleyl Alcohol 1.0 Fermentation Broth (Qureshi and 
Maddox, 2005) 

Polypropylene Oleyl Alcohol 
/Decane 

8.8 Fermentation Broth (Grobben et al., 
1993) 

Polypropylene Fatty acid methyl 
esters 

0.5 Fermentation Broth (Grobben et al., 
1993) 

Porous PTFE Oleyl Alcohol 37.8 Fermentation Broth (Tanaka et al., 2012) 

Porous PTFE Dodecanol 51.4 Fermentation Broth (Tanaka et al., 2012) 

Silicone 2-Ethyl-1-Hexanol 4.7±0.32 Synthetic ABE This work 

Silicone 1-Octanol 2.7±0.13 Synthetic ABE This work 

Silicone 1-Heptanol 2.7±0.20 Synthetic ABE This work 

Silicone 1-Hexanol 3.1±0.49 Synthetic ABE This work 

Silicone 1-Pentanol 3.4±0.11 Synthetic ABE This work 

Silicone RO Water 1.5±0.15 Synthetic ABE This work 

Silicone Oleyl Alcohol 1.6±0.23 Synthetic ABE This work 

Regenerated 
Cellulose 

2-Ethyl-1-Hexanol 19.6±1.93 Synthetic ABE This work 

 Regenerated 
Cellulose 

Oleyl Alcohol 15.4±3.05 Synthetic ABE This work 

Porous PTFE 2-Ethyl-1-Hexanol 19.1±0.76 Synthetic ABE This work 

Porous PTFE Oleyl Alcohol 12.2±2.52 Synthetic ABE This work 

Polyamide 2-Ethyl-1-Hexanol 16.3±2.39 Synthetic ABE This work 

Polyamide Oleyl Alcohol 15.7±3.07 Synthetic ABE This work 

PES 2-Ethyl-1-Hexanol 13.4±3.38 Synthetic ABE This work 

PES Oleyl Alcohol 16.2±4.79 Synthetic ABE This work 

 

Surprisingly, in both examples where a hollow fibre polypropylene membrane was used 

(Grobben et al. (1993)) the flux was more in line with that seen by a non-porous silicone 

membrane rather than a porous membrane. The PTFE membrane used by Tanaka et al. 

(2012) showed dodecanol having a higher flux than oleyl alcohol. Although dodecanol was 

not tested in this work, 2-ethyl-1-hexanol has a higher flux than oleyl alcohol; once again 

confirming that using an extractant with a higher partition coefficient will increase the rate 

of removal of butanol from the system. When using oleyl alcohol as an extractant Tanaka et 

al. (2012) achieved a flux of 37.8 g h-1 m-2, this is 3 times greater than the flux achieved using 
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a synthetic solution. If this is treated as a uniform scaling factor, then with 2-ethyl-1-hexanol 

extractant a flux of approximately 57 g h-1 m-2 could be possible.  This flux would be greater 

than that achieved with dodecanol as the extractant, which would be expected due to 2-

ethyl-1-hexanol having a higher distribution coefficient than dodecanol (6.09 compared to 

5.14). Tanaka et al. (2012) did not discuss the possibility of transfer of extractant into the 

aqueous phase; and they did not measure the dodecanol concentration in the aqueous 

phase, therefore it is unknown whether any was present at low concentrations. They did 

state that no toxic effects were seen during the fermentation and they therefore assumed 

that there was no transfer, which is not a robust assumption. As shown by this work it is 

unlikely that there was no transfer of dodecanol, but dodecanol may not be toxic to the 

bacteria at lower concentrations. Tanaka et al. (2012) did demonstrate that dodecanol was 

toxic when 5mL was mixed with 5 mL of actively growing cells, but Roffler et al. (1987b) 

tested the toxicity by mixing 1 mL of dodecanol with 9 mL of actively growing cells and 

reported that full bacterial growth was observed. It is unlikely that the extractant 

concentration will reach 10% (v/v), unless the integrity of the membrane is affected, 

therefore dodecanol could potentially be a considered a non-toxic extractant for 

perstraction, but toxic for LLE. The toxicity of any extractant proposed for perstraction needs 

to be tested at ratios that would be seen during ISPR, as these are likely to be around the 

solubility limit of the extractant rather than the ratios that would be used during LLE. This 

has the potential to widen the number of possible extractants that can be used for 

perstraction. 

 

5.7.7: Updated Techno-Economic Analysis 

The results have shown that is possible to increase the rate of butanol removal from an 

aqueous solution by varying the membrane and extractant used. Very little comparison has 

previously been performed regarding this, as the techno-economic analysis in Chapter 4 

used only data available in literature, and the work by Qureshi and Maddox (2005) was used 

as the baseline for perstraction. It can now be updated, based on the results presented here 

to understand the impact these changes could have. Based on the results, the porous 

regenerated cellulose membrane has been considered and both 2-ethyl-1-hexanol and oleyl 

alcohol have been considered for the extractant. 

For perstraction, there are two main factors that affect the process economics: 
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1) Membrane area – the larger the membrane area, the larger the CAPEX and OPEX (for 

membrane replacement) 

2) Solvent recovery from extractant: the energy required to recover the ABE from the 

extractant will depend on concentration (Mariano and Filho, 2011), which is a 

function of the distribution coefficient of the extractant. 

The following sections will show how the results in this chapter have the potential to 

improve the overall process economics. 

 

5.7.7.1 Membrane Area 

The required membrane area and associated cost for each scenario was calculated (see 

Appendix E), based on the butanol flux. Assuming a desired butanol productivity of the 

system to be 1 g L-1h-1 and a fixed fermentation volume of 100 m3 (as it is similar to  the 

fermentor sizes used for production, as the largest fermentor size for the ABE fermentation, 

in the USA, was 189,250L (Dürre, 1998)). This productivity was chosen as it is easily achieved 

by fed-batch fermentations with perstraction and other ISPR techniques, Table 3.6. The 

associated membrane cost was calculated based on the membrane cost used by Oudshoorn 

et al. (2010) of 250 € m-2. In reality, every membrane material would have a different cost, 

but as all materials are commercially available it has been assumed that the cost differences 

between the different materials would be small. This assumption, therefore, allows for an 

idea of the impact different membrane sizes would have on the costs associated with 

perstraction. 

The results in Table 5.10, compare both silicone and regenerated cellulose membranes with 

oleyl alcohol and 2-ethyl-1-exanol from this work, along with the perstraction based case, 

Qureshi and Maddox (2005), from Chapter 4. The silicone/oleyl alcohol experiment in this 

work has a slightly higher flux than that observed by Qureshi and Maddox (2005). Increasing 

the butanol flux of the system reduces the required membrane size. Therefore based on 

butanol flux, moving from a non-porous membrane to a porous membrane could see a 

reduction in membrane cost by 90% or more. In comparison, the improvement seen by using 

an extractant with a higher distribution coefficient for butanol is much smaller; with only a 

21% cost reduction by switching from using oleyl alcohol to 2-ethyl-1-hexanol, with a 

regenerated cellulose membrane. However, the difference between oleyl alcohol and 2-

ethyl-1-hexanol with a silicone membrane is greater: a 68% reduction in cost.  
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Table 5.10: Comparison of membrane area and associated costs based on a fermentation productivity of 1 g butanol L-1   

h-1 for this work and that by Qureshi and Maddox (2005). 

Membrane Extractant Butanol 
Flux  
(gm-2h-

1) 

Membrane 
Area (m2) 

Membrane 
Cost 
(Thousand €) 

Reference 

Silicone Oleyl 
Alcohol 

1.0 100000 25000 (Qureshi and 
Maddox, 2005) 

Silicone Oleyl 
Alcohol 

1.5 66667 16667 This work 

Silicone 2-Ethyl-1-
Hexanol 

4.7 21277 5319 This work 

Regenerated 
Cellulose 

Oleyl 
Alcohol 

15.4 6494 1623 This work 

Regenerated 
Cellulose 

2-Ethyl-1-
Hexanol 

19.6 5102 1276 This work 

 

5.7.7.2 Impact of Extractant Loss 

The experimental results, in section 5.7.3 and 5.7.5, clearly indicate that extractant will be 

lost to the fermentation broth during perstraction. Replacing the lost extractant will have an 

impact on the operating cost of the fermentation. Using the same assumptions as in the 

previous section (5.7.7.1), of a fixed fermentation volume of 100m3, the amount of 

extractant that needs replacing can be calculated. The approximate cost of 2-ethyl-1-hexanol 

and oleyl alcohol are 1.41 USD L-1 and 8.1 USD L-1, respectively (Alibaba, 2018), converted to 

Euros at an exchange rate of 1 USD=0.8 Euro. The lost extractant concentrations were based 

on the experimental results presented here. For oleyl alcohol with a silicone membrane, 

trace amounts were detected by GC, but the concentration was below the limit of detection. 

Therefore, the limit of detection (0.01 g oleyl alcohol L-1) will be used to represent this loss. 

Qureshi and Maddox (2005) did not consider the loss of extractant to the fermentation 

broth, therefore a comparative cost cannot be calculated. The results are shown in Table 

5.11. 
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Table 5.11: Impact of extractant being lost to the fermentation broth, based on the experimental data presented 

Membrane Extractant Extractant 
Concentration 
in 
Fermentation 
Broth (g/L) 

Volume lost 
per 
100,000m3 
Fermentation 
Broth 

Cost of Lost 
Extractant 
(Thousand €) 

Reference 

Silicone Oleyl 
Alcohol 

Unknown Unknown Unknown (Qureshi 
and 
Maddox, 
2005) 

Silicone Oleyl 
Alcohol 

0.01 1176 7623 This work 

Silicone 2-Ethyl-1-
Hexanol 

1.8 216086 245474 This work 

Regenerated 
Cellulose 

Oleyl 
Alcohol 

0 0 0 This work 

Regenerated 
Cellulose 

2-Ethyl-1-
Hexanol 

0.7 84033 95462 This work 

 

Even though oleyl alcohol is nearly 6 times more expensive than 2-ethyl-1-hexanol it would 

be more economic to operate with oleyl alcohol due to its lower solubility in water. When 

considering this alongside the toxicity results, which show 2-ethyl-1-hexanol would be toxic 

at these concentrations, it is beneficial to use a non-toxic extractant with as low as possible 

solubility in water. 

5.7.7.3 Updated Process Simulations 

The experimental results were used to update the perstraction process simulation from 

Chapter 4 (Table 4.2), to understand the impact an alternative membrane or extractant 

would have on the process. 

 The perstraction separation was based on the split of ABE in the extractant and that left in 

the aqueous solution. In the work described in this chapter the perstraction was a batch 

process, therefore the ABE concentration in the aqueous phase was constantly decreasing 

until equilibrium was reached, whereas in the fermentation by Qureshi and Maddox (2005) 

ABE was constantly produced by the bacteria, thereby maintaining a relatively constant 

concentration in the aqueous phase.  This difference in method has had an impact on the 

ABE splits (see Table 5.12 below) for the silicone – oleyl alcohol combination. This decrease 

in ABE production causes an increase in the energy requirements for the process, 

highlighting how important an efficient separation is. If the product flow for this work had 

been the same as that achieved in the simulation based on the work by Qureshi and Maddox 
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(2005) then the total energy requirements for the plant would have been approximately the 

same. The difference in splits will also be related to the differences in membrane areas. The 

membrane area used by Qureshi and Maddox (2005) was 0.113 m2, which is 20 times larger 

than the silicone membranes used in this work, Table 5.7, and 90 times larger than the 

regenerated cellulose membranes. 
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Table 5.12: Comparison of energy required for different membrane-extractant combinations, based on updated perstraction process simulation, from Chapter 4, using experimental data. 

Membrane Extractant 
Permeate Split Extractant

: Feed 
Ratio 

Product 
Flow 

(Tonnes/yr) 

Energy (MJ/kgABE) 
Source 

Acetone Butanol Ethanol Upstream Downstream Total 

Silicone 
Oleyl 

Alcohol 
0.85 0.45 0.85 0.00066 33284 52.37 26.19 78.56 

Qureshi 
and 

Maddox 
(2005) 

Silicone 
Oleyl 

Alcohol 
0.10 0.21 0.03 0.00031 17053 123.62 39.43 163.06 This work 

Silicone 
2-Ethyl-1-
Hexanol 

0.22 0.68 0.14 0.00066 32476 138.49 25.43 163.92 This work 

Regenerated 
Cellulose 

Oleyl 
Alcohol 

0.15 0.53 0.12 0.00078 27171 78.10 28.44 106.54 This work 

Regenerated 
Cellulose 

2-Ethyl-1-
Hexanol 

0.28 0.69 0.23 0.00067 33233 89.87 25.16 115.03 This work 

 



168 
 

Comparing the data in Table 5.12 for this work, it is possible to see that the use of oleyl 

alcohol led to a lower annual production rate than 2-ethyl-1-hexanol. This is due to the 2-

ethyl-1-hexanol having a greater distribution coefficient than oleyl alcohol. This is 

particularly noticeable in the decrease in the downstream energy requirement. However, 

the use of 2-ethy-1-hexanol increases the overall energy demand of the process. The 

decrease in downstream energy for 2-ethyl-1-hexanol compared to oleyl alcohol is not great 

enough to negate the increase in upstream energy. This increase in upstream energy is 

because 2-ethyl-1-hexanol is closer to butanol in terms of physical properties such as boiling 

point and viscosity. This makes the separation of butanol from 2-ethyl-1-hexanol more 

complex compared to the separation from oleyl alcohol. This increase in energy could 

indicate that using an extractant such as oleyl alcohol would be more beneficial, particularly 

as the same rate of extraction could be achieved by increasing the membrane area. The 

balance of increased energy to additional membrane cost would need to be considered 

when selecting the extractant.  

A bigger change in energy difference is changing from silicone to a regenerated cellulose 

membrane. This sees the upstream energy decrease by 40-50 MJ kg-1 ABE. This is due to the 

increased product flow due to the higher membrane flux. This will help to decrease the 

overall process costs in terms of energy and a smaller membrane; providing further evidence 

that the use of a porous membrane will be beneficial to establishing an economical 

perstraction-fermentation process. 

 

5.8: Summary 

Perstraction was developed to overcome the problems associated with using LLE as an ISPR 

technique. The main problem of LLE for this fermentation was the toxicity of the extractant 

to the bacteria. Even though this was a primary aim of perstraction much of the existing 

perstraction literature focused on oleyl alcohol, which is non-toxic to the bacteria. This work 

has focused on using toxic extractants, due to their higher distribution coefficients for 

butanol.  

The experiments presented here have shown that extractants that have a higher distribution 

coefficient can remove butanol from a water-based solution at a faster rate than oleyl 

alcohol. Also, the selection of a branched extractant has the potential to increase the overall 

mass transfer compared to its linear equivalent isomer, as demonstrated with 2-ethyl-1-
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hexanol having an overall mass transfer coefficient 3 times greater than 1-octanol. A higher 

rate of extraction would mean a smaller membrane area, reducing the cost associated with 

perstraction. The downside was that all extractants studied here transferred across the 

membrane into the aqueous phase at concentrations toxic to the bacteria, thereby removing 

one of the supposed advantages of perstraction. It is clear, however, that the degree of 

toxicity significantly varies with concentration. For instance, here it has been demonstrated 

that 1-pentanol and 1-hexanol improve the fermentation at 0.5 g L-1 but are toxic at 5 g L-1. A 

similar observation can be made based on the literature for dodecanol. It means that some 

extractants that have distribution coefficients higher than oleyl alcohol are toxic when used 

for LLE, but still have the potential to be used for perstraction even if there is a small degree 

of transfer across the membrane. 

Further mass transfer experiments into alternative membranes showed porous membranes 

had an overall mass transfer coefficient of the order of 10 times greater than that of a non-

porous membrane. The porous membranes also exhibited a greater resistance to the 

transfer of oleyl alcohol into the aqueous phase, although the toxic 2-ethyl-1-hexanol still 

transferred across the membrane. The advantages in extraction rate seen through the use of 

a porous membrane are greater than those observed from changing from oleyl alcohol to a 

toxic extractant such as 2-ethy-1-hexanol. Therefore, it could be possible to further improve 

the economics of perstraction by using a porous membrane, such as regenerated cellulose, 

compared to the non-porous silicone. 
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Chapter 6.  Conclusion 

The overall aim of this research project was to investigate and develop an in situ product 

recovery technique for application to commercial scale ABE fermentation. The chosen 

technique should be able to increase the product stream concentration, whilst improving the 

energy efficiency and economics of the fermentation process.  

The main conclusions of this project are summarised below, alongside the main objectives 

set in Chapter 1. The results matching each successive objective were used to inform the 

decisions made when meeting the next objective.  

6.1: Assessment of Existing ISPR research 

The first objective was to assess existing ISPR research, in particular for the ABE 

fermentation, and to determine whether any technique was in a position to be scaled up for 

commercial application. Work towards this objective was presented in Chapters 2 and 3. 

The conclusions from this work are: 

 Fourteen ISPR techniques have been proposed for integration with the ABE 

fermentation. Unfortunately, none technique has been fully tested or demonstrated 

to meet all the requirements outlined in section 2.3. This means that there is obvious 

technique for scale up without further research into applying the technique to the 

ABE fermentation. 

 An assessment of the techniques that have been integrated with the fermentation 

(gas stripping, vacuum fermentation, pervaporation, liquid-liquid extraction, 

perstraction and adsorption), demonstrated that ISPR has the capability to improve 

the fermentation metrics, such as yield, productivity and substrate consumption, as 

long as the technique does not have a negative impact (e.g. toxic) on the 

microorganism. As no technique shows a clear dominance in terms of fermentation 

performance, other factors such as energy demand and economic analysis are 

required to provide a more insightful quantitative comparison of the different ISPR 

techniques.  

 All of the experimental techniques have only been assessed based on laboratory 

scale operation. Many of the techniques have not considered how to recover the 
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product from the separating agent. Unless product capture is considered alongside 

fermentation integration none of these techniques will be applicable for scale-up. 

 As stated previously, development of the techniques has focused on laboratory scale 

operation; for some of these methods direct scale up is not possible. For example the 

direct addition of an extractant or adsorbent to the fermentation broth, would not 

be realistic. Instead, once proof of concept has been demonstrated, research needs 

to progress to consider scaled down versions of industrial based methods. It must be 

acknowledged this is a complex task as suitable equipment for most scale down 

designs does not exist in an “off the shelf” manner. 

 Gas stripping, although it looks like an attractive technique at laboratory scale, is not 

as simple when scaling up. A detailed engineering analysis of the system is required 

but the compression of fermentation gasses, which includes hydrogen is likely to 

present a health and safety risk. Combining this with the inability for complete 

product capture as the current laboratory methods, which can include a liquid 

nitrogen trap would not be practical at production scale. Most of the new ABE ISPR 

research still revolves around gas stripping, with researchers stating it is suitable for 

scale up. Researchers need to address some of these fundamental problems, rather 

than the current research which involves making the gas stripping process more 

complex through hybrid-ISPR techniques. Rather than focus on gas stripping as an 

ISPR for a production process, it should be used as a tool to improve fermentation 

characteristics  

6.2: Techno-economic analysis of ISPR techniques for the ABE fermentation 

The second objective developed directly from the outcomes of the literature assessment. By 

performing a techno-economic analysis of ISPR techniques for the ABE fermentation, 

through process simulations, comparative information on the separation efficiency and 

energy impact of each technique was determined, and provided sufficient data for a first 

stage economic analysis (Chapter 4). The gaps in existing literature highlighted by Van Hecke 

et al. (2014) could be filled in, hence a more complete picture of applying ISPR to the ABE 

fermentation was developed. Therefore, it was possible to gain a better understanding of 

the impact these techniques could have on commercial scale processes. The results of the 

techno-economic analysis were used to select the best technique to carry forward for 

further investigation. 
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Seven ISPR techniques were considered: gas stripping, vacuum fermentation, flash 

separation, pervaporation, LLE, perstraction and adsorption. They were compared to a 

traditional batch process. The key findings from this work are: 

 In the simulations, all techniques other than gas stripping and flash fermentation 

were able to achieve the minimum separation effectiveness required to maintain a 

butanol concentration below 5 g L-1, therefore below inhibitory levels to the 

microorganism. This, generally, supports the experimental findings in literature 

whereby all techniques saw an improvement in fermentation metrics. Gas stripping, 

also saw an improvement in fermentation metrics in experimental-based literature 

but was plagued with product capture inefficiencies. These inefficiencies were 

apparent in the simulations through a separation effectiveness below the minimum 

requirement. This is further evidence to support that gas stripping is not as an ideal 

technique for ISPR, unlike its reputation in literature. 

 A reduction in downstream energy, compared to a traditional batch ABE plant, was 

observed for all techniques other than gas stripping. This confirms one of the 

fundamental aims of ISPR, to reduce the downstream energy demand as this was the 

second largest operating cost after feedstock costs. 

 The simulation results showed that the upstream energy demand increased 

compared to the batch process. This initial separation is now occurring at a low 

product concentration (~5-8 g ABE L-1) rather than end of fermentation 

concentrations (~15-18 g ABE L-1). This increases the energy required for separation, 

and therefore the energy demand for the whole process. This means that researchers 

should focus on process optimisation, rather than developing new, more complex 

ISPR methods. The techniques assessed in this thesis, have all been successfully 

demonstrated to improve the fermentation, and see a reduction in downstream 

energy (other than gas stripping). The only technique that has demonstrated process 

optimisation, beyond investigating different separating agents, is gas stripping which 

has been demonstrated to be one of the least applicable techniques for scale up. 

 The techno-economic analysis identified perstraction as the best technique for 

integrating with the ABE fermentation. This is largely based on perstraction being the 

only technique to have a reduction in overall plant energy demand, compared to a 

traditional batch process. Perstraction is one of the least developed techniques of 
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those investigated in the techno-economic analysis, as shown by an assessment of its 

TRL in Chapter 2. Research into perstraction had shown it to be successful at 

removing butanol from the fermentation broth, but the research has not progressed 

beyond a “proof of concept” stage. Meaning, there was no optimisation and limited 

or no rational decisions behind the operating parameters (extractant and membrane 

choice). This led to the research performed in Chapter 5. 

6.3: Experimental development of chosen technique – perstraction 

Perstraction is a membrane extraction technique, whereby the product is transferred across 

a membrane into an extractant. It was developed to overcome problems observed in LLE, 

such as product toxicity and emulsion formation. Research prior to this study had 

predominantly focused on extractant selection, but the main extractant tested was oleyl 

alcohol, this was the extractant of choice for LLE and non-toxic to the bacteria, therefore no 

significant advantage of perstraction had been experimentally demonstrated compared to 

LLE. 

In this thesis, research into perstraction was developed by focusing on developments that 

would be compatible with being integrated at a commercial scale. This included using 

commercially available membranes, rather than bespoke membranes used in recent 

academic studies. Another focus of this research was the use of toxic extractants, as they 

typically have a higher distribution coefficient than non-toxic extractants. A higher 

distribution coefficient should increase the extraction rate, which was thought to be 

controlled by the concentration (or chemical potential) difference between the fermentation 

broth and extractant.  

The key findings in this thesis are: 

 In previous literature, extractant selection had been based on the distribution 

coefficient of butanol in the extractant, with a larger distribution coefficient leading 

to faster mass transfer. This is generally true but other factors are important, such as 

chemical structure, with regards to mass transfer with perstraction. This is because 2-

ethyl-1-hexanol had a mass transfer coefficient approximately 3 times larger than the 

next fastest toxic extractant, 1-pentanol, which has a larger distribution coefficient of 

7.5 compared to 6.1 for 2-ethyl-1-hexanol. Also, the overall mass transfer coefficient 

for water being the second largest of all the extractants tested. This indicates that 
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while work to date has focused on selecting extractants based on the distribution 

coefficient, it might be a good starting point, but it should not be the sole factor used 

for perstraction, as it has been in previous research. 

 This research demonstrated that all the extractants tested, including oleyl alcohol, 

transferred across the silicone membrane into the aqueous phase. For the toxic 

extractants, the concentration would have inhibited the bacteria, as demonstrated 

by the toxicity tests. As well as transferring across the membrane the extractant 

formed a stable emulsion with the aqueous solution, therefore two of the proposed 

advantages of perstraction are no longer valid.  

 Until this study, there had been no comprehensive comparison of membrane types. 

The most noticeable effect was that porous membranes can increase the overall 

mass transfer coefficient by as much as an order of magnitude. This would reduce 

membrane costs by a factor of at least 10. 

 With all membranes, the extractant leached into the aqueous phase, but with porous 

membranes the concentrations present never exceeded the saturation level and an 

emulsion did not form. This is still not ideal, as the back extraction will substantially 

limit the use of toxic extractants. However, it does mean that extractants that are 

non-toxic below the saturation concentration could be used. 

 This study confirmed the need to use a hydrophobic membrane. As hydrophobic 

membrane would allow the pores to be filled with extractant, while a hydrophilic 

membrane would be filled with the fermentation broth. The hydrophilic membranes 

had a larger mass transfer coefficient, but allowed the aqueous solution to pass 

through the membrane into the extractant. In practice this would not be ideal as it 

would contaminate the extractant and cause extractant regeneration problems.  

 Only batch perstraction experiments were performed. These current methods would 

not be suitable for scale up. Equipment design for a continuous, scaled process needs 

to be considered. This includes a continuous perstraction-fermentation recirculation, 

which will maximise the concentration difference between the fermentation broth 

and extractant, as well as integrating extractant regeneration into the process. 

Perstraction is still in its early stages of development for integration with the ABE 

fermentation. This research has built upon existing knowledge that perstraction has the 

ability to remove ABE from the fermentation. This research has demonstrated that 



175 
 

perstraction is a good candidate to be used as an ISPR technique for the ABE fermentation in 

its own right, rather than building upon LLE knowledge.  

 

6.4: Future Work 

Based on the work in this thesis, there is scope for further work to better understand ISPR 

and its relationship to the ABE fermentation and, in particular, the role perstraction plays in 

this: 

1. A comparison between free-cell and immobilised fermentations with ISPR is 

required, to understand the differences between the two fermentation modes and 

the advantages of each technique. This work primarily focused on free-cell 

fermentations so as to quantitatively compare the impact of ISPR. An immobilised 

fermentation can increase the range of possible operating parameters for ISPR, 

therefore a comparison between fermentation operating modes with ISPR could 

help direct future research. 

2. Since the commencement of this work there has been a growing research interest in 

hybrid or two-stage ISPR processes. A comparative techno-economic analysis, similar 

to that performed in this work, is required to understand how hybrid processes 

compare to single-stage techniques and perstraction.  

3. To further understand the key factors when selecting an extractant for perstraction. 

This work could be developed by investigating a wider range of branched 

extractants, to better understand how they affect the rate of extraction. This should 

include 2-butyl-1-octanol, which has recently been suggested as a possible 

alternative to oleyl alcohol for LLE (González-Peñas et al., 2014b). 

4. To progress perstraction, a scalable system needs to be developed.  

This could be done in collaboration with a commercial membrane supplier to achieve 

both best membrane operation and extraction functions.  

5. This work has demonstrated that perstraction is unlikely to be successful with a toxic 

extractant and commercially available membranes. It would be beneficial to 

complete a parallel LLE and perstraction study with the same extractant and 

fermentation conditions. This would help to provide more information on the true 

advantages, if any, of perstraction compared to LLE from an experimental 

perspective. 
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6. Further investigation in to the use of water as an extractant. The initial results show 

water with a silicone membrane to be more favourable than oleyl alcohol. The 

downside of this is that the use of water as an extractant would not provide a more 

concentrated ABE solution. However, the use of water would remove any toxicity 

issues and would be cheaper than an organic extractant. With the growing increase 

in hybrid ISPR methods, maybe this could provide an alternative first stage. 
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Appendix A. Checklist for data to be included with ISPR results 

 

 Duration of ISPR as well as the total fermentation duration (h). 

 Volume of fermentation broth (L). 

 Product concentrations in the fermentation broth (g L-1). 

 The volume of the recovered phase (L). E.g. the volume of condensate collected 

during gas stripping. 

 Volume or mass of any separating agent used (L or g). E.g. the volume of extractant 

used during LLE or perstraction. 

 Concentration of the products (including by-products such as acetic and butyric acid) 

in the recovered phase (g L-1). E.g. for LLE the concentration of products in the 

extractant. 

 Total amount of substrate consumed (g). 

 Total amount of product produced (fermentation broth + recovered) (g). 

 Fermentation productivity (g ABE L-1 h-1).  

 Fermentation yield (g ABE g-1 substrate). 

 Substrate utilisation rate (g substrate L-1 h-1). 
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Appendix B. Overall Mass Transfer Coefficient Calculation 

Starting from equation (5.14) in section 5.3.3: 

 𝑉𝐴

𝑑𝐶𝑖𝐴
𝑏

𝑑𝑡
= 𝐾𝑜𝑣,𝐴𝐴(𝐶𝑖𝐴

𝑏 − 𝐶𝑖𝐴
∗ ) (5.14) 

Integrating this equation at boundary conditions, 𝑡 = 0, 𝐶𝑖𝐴 = 𝐶𝑖𝐴,0: 

 ∫
1

𝐶𝑖𝐴 − 𝐶𝑖𝐴
∗ 𝑑𝐶𝑖𝐴

𝐶𝑖𝐴

𝐶𝑖𝐴,0

= ∫ −
𝐾𝑜𝑣,𝐴𝐴

𝑉𝐴
𝑑𝑡

𝑡

0

 B.1 

 ln(𝐶𝑖𝐴 − 𝐶𝑖𝐴
∗ ) − ln(𝐶𝑖𝐴,0 − 𝐶𝑖𝐴

∗ ) = −
𝐾𝑜𝑣,𝐴𝐴𝑡

𝑉𝐴
 B.2 

 ln(𝐶𝑖𝐴 − 𝐶𝑖𝐴
∗ ) = ln(𝐶𝑖𝐴,0 − 𝐶𝑖𝐴

∗ ) −
𝐾𝑜𝑣,𝐴𝐴𝑡

𝑉𝐴
 B.3 

Or 

 ln (
𝐶𝑖𝐴 − 𝐶𝑖𝐴

∗

𝐶𝑖𝐴,0 − 𝐶𝑖𝐴
∗ ) = −

𝐾𝑜𝑣,𝐴𝐴𝑡

𝑉𝐴
 B.4 

The mass transfer coefficient can be found from a plot of ln(𝐶𝑖𝐴 − 𝐶𝑖𝐴
∗ ) or ln (

𝐶𝑖𝐴−𝐶𝑖𝐴
∗

𝐶𝑖𝐴,0−𝐶𝑖𝐴
∗ ) vs. 𝑡. 

This expression can also be derived of the extractant phase based mass transfer coefficient 

𝐾𝑜𝑣,𝐸. Using a mass balance across the membrane, the transfer can be described as: 

 𝑁𝑖𝑇 = 𝑁𝑖𝐴,0 − 𝑁𝑖𝐴 = 𝑁𝑖𝐸 − 𝑁𝑖𝐸,0 B.5 

Assuming each phase has a constant volume: 

 
𝑁𝑖𝐴,0 − 𝑁𝑖𝐴

𝑉𝐴
= 𝐶𝑖𝐴,0 − 𝐶𝑖𝐴 B.6 

 
𝑁𝑖𝐸 − 𝑁𝑖𝐸,0

𝑉𝐸
= 𝐶𝑖𝐸 − 𝐶𝑖𝐸,0 B.7 

Therefore: 

 𝑁𝑖𝑇 = (𝐶𝑖𝐴,0 − 𝐶𝑖𝐴)𝑉𝐴 = (𝐶𝑖𝐸 − 𝐶𝑖𝐸,0)𝑉𝐸 B.8 

Based on this principle that the change in moles in the aqueous phase is the same as the 

change of moles of i in the extractant, equation (5.14) can written as equation (B.9) to 

represent the overall mass transfer based on the extractant phase. 

 𝑉𝐸

𝑑𝐶𝑖𝐸

𝑑𝑡
= 𝐾𝑜𝑣,𝐸𝐴(𝐶𝑖𝐸

∗ − 𝐶𝑖𝐸
𝑏 ) B.9 

Following the same process as for the aqueous phase, results in: 

 ln(𝐶𝑖𝐸
∗ − 𝐶𝑖𝐸) = ln(𝐶𝑖𝐸

∗ − 𝐶𝑖𝐸,0) −
𝐾𝑜𝑣,𝐸𝐴𝑡

𝑉𝐸
 B.10 
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 ln (
𝐶𝑖𝐸

∗ − 𝐶𝑖𝐸

𝐶𝑖𝐸
∗ − 𝐶𝑖𝐸,0

) = −
𝐾𝑜𝑣𝐴𝑡

𝑉𝐸
 B.11 

In theory the starting concentration of i in the extractant should be 0 (𝐶𝑖𝐸,0 = 0), therefore: 

 ln(𝐶𝑖𝐸
∗ − 𝐶𝑖𝐸) = ln(𝐶𝑖𝐸

∗ ) −
𝐾𝑜𝑣,𝐸𝐴𝑡

𝑉𝐸
 B.12 

 ln (1 −
𝐶𝑖𝐸

𝐶𝑖𝐸
∗ ) = −

𝐾𝑜𝑣,𝐸𝐴𝑡

𝑉𝐸
 B.13 

The mass transfer coefficient can be found from a plot of ln(𝐶𝑖𝐸
∗ − 𝐶𝑖𝐸) or ln (1 −

𝐶𝑖𝐸

𝐶𝑖𝐸
∗ ) vs. 𝑡. 
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Appendix C. Flat Sheet Membrane Perstraction System Design 

 

Figure C.1: Technical drawing of flat sheet perstraction system. 



196 
 

Appendix D. Oleyl Alcohol Chromatograms 

 

Figure D.1: Chromatogram of known oleyl alcohol concentrations, black=0.1 g L-1, blue=0.5 g L-1, pink=1 g L-1, brown=2.5 g L-1. 
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Figure D.2: Chromatogram showing trace amounts of oleyl alcohol from sample taken during perstraction experiments with silicone tubing. 
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Appendix E. Estimating Membrane Area 

The membrane area was estimated based on the following assumptions: 

 Fermentation volume = 100,000 L (100 m3). This was selected as it is similar to  the 

fermentor sizes used for production, as the largest fermentor size for the ABE 

fermentation, in the USA, was 189,250L (Dürre, 1998). 

 Butanol productivity = 1 g L-1 h-1, an easily attainable productivity for fed-batch ABE 

fermentations with perstraction (Table 3.6) and other ISPR methods. 

 Butanol flux (g h-1 m-2) was calculated using equation (5.13), which translates to: 

 𝐽𝑏 =
𝑉(𝐶𝑏,0

𝑏 − 𝐶𝑏,𝑡
𝑏 )

𝐴. 𝑡
 (F.1) 

 

The membrane area (m2) was then estimated as follows: 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑔ℎ−1) = 𝐵𝑢𝑡𝑎𝑛𝑜𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑉𝐹 (F.2) 

Where: 

 𝑉𝐹 is fermentation volume (L) 

 𝐴 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝐽𝑏
 (F.3) 

 

 

 

 


