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Abstract

The complexity and sophistication of modern control systems deployed in the
refinery operation, particularly the crude distillation unit as a result of increas-
ing demand for higher performance and improved safety, are on the increase.
This growing complexity comes with some level of vulnerabilities, part of which
is the potential failure in some of the components that make up the control
system, such as actuators and sensors. The interplay between these compo-
nents and the control system needs to have some built-in robustness in the
face of actuator and sensor faults, to guarantee higher reliability and improved
safety of the control system and the plant respectively, which is fundamen-
tal to the economy and operation of the system. This thesis focuses on the
application of frugally designed fault tolerant control systems (FTCS) with
automatic actuator and sensor faults containment capabilities on distillation
processes, particularly atmospheric crude distillation unit. A simple active
actuator FTCS that used backup feedback signal, switchable references and
restructurable PID controllers was designed and implemented on three distilla-
tion processes with varying complexities — methanol-water separation column,
the benchmark Shell heavy oil fractionator, and an interactive dynamic crude
distillation unit (CDU) to accommodate actuator faults. The fault detection
and diagnosis (FDD) component of the actuator FTCS used dynamic principal
component analysis (DPCA), a data-based fault diagnostic technique, because
of its simplicity and ability to handle large amount of correlated process mea-
surements. The reconfigurable structure of the PID controllers was achieved
using relative gain array (RGA) and dynamic RGA system interaction analy-
sis tools for possible inputs — outputs pairing with and without the occurrence
of actuator faults. The interactive dynamic simulation of CDU was developed
in HYSYS and integrated with MATLAB application through which the FDD
and the actuator FTCS were implemented. The proposed actuator FTCS is

proved being very effective in accommodating actuator faults in cases where



there are suitable inputs — outputs pairing after occurrence of an actuator

fault.

Fault tolerant inferential controller (FTIC) was also designed and implemented
on a binary distillation column and an interactive atmospheric CDU to ac-
commodate sensor faults related to the controlled variables. The FTIC used
dynamic partial least squared (DPLS) and dynamic principal component re-
gression (DPCR) based soft sensor techniques to provide redundant controlled
variable estimates, which are then used in place of faulty sensor outputs in
the feedback loops to accommodate sensor faults and maintain the integrity
of the entire control system. Implementation issues arising from the effects of
a sensor fault on the secondary variables used for soft sensor estimation were
addressed and the approach was shown to be very effective in accommodat-
ing all the sensor faults investigated in the distillation units. The actuator
FTCS and the FTIC were then integrated with the DPCA FDD scheme to
form a complete FTCS capable of accommodating successive actuator and
sensor faults in the distillation processes investigated. The simulation results

demonstrated the effectiveness of the proposed approach.

Lastly, fault tolerant model predictive control (FTMPC) with restructurable
inputs — outputs pairing in the presence of actuator faults based on pre-
assessed reconfigurable control structures was proposed, and implemented on
an interactive dynamic CDU. The FTMPC system used a first order plus dead
time (FOPDT) model of the plant for output prediction and RGA and DRGA
tools to analyse possible control structure reconfiguration. The strategy helped
improve the availability and performance of control systems in the presence
of actuator faults, and can ultimately help prevent avoidable potential disas-
ters in the refinery operation with improved bottom line — Profit. Overall,
the proposed approaches are shown to be effective in handling actuator and
sensor faults, when there are suitable manipulated variables and redundant
analytical signals that could be used to contain the effects of the faults on the

system.
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Chapter 1

Introduction

1.1 Background and Motivation

It is inconceivable nowadays that any facility will be built or retrofitted in the oil and gas
industry without a considerable level of automation. There is an increase in the complexity
and sophistication of modern control systems deployed in the industries, especially on
safety-critical systems. This growing complexity comes with some level of vulnerabilities,
part of which is the potential failure in some of the components that make up the control
system, such as actuators and sensors. The risk is even higher in complex chemical
plants like refinery with hundreds or thousands of sensors and actuators. The interplay
between these components and the control system needs to have some built-in robustness
to guarantee high level of safety and reliability of the plant, which is fundamental to the
operation of the system. More so, meeting the economic and operational targets of the
system requires its continued safe operation even in the presence of faults in the system

or some of its control system components.

In spite of the successes recorded in the last four decades or so with the use of com-
puters for conventional and advanced process control systems in our various industries,
the task of responding to abnormal situations (i.e. faults) is mostly performed manu-
ally. Billions of dollars are lost in the industries every year due to low productivity, loss
of operational hours, occupational injuries and illnesses resulting from major and com-
mon minor accidents occurring on a daily basis (McGraw-Hill Economics, 1985; Bureau
of Labor Statistics, 1998; National Safety Council, 1999). It was reported by Nimmo
(1995) that United States petrochemical industry alone incurs approximately 20 billion
US dollars in annual losses, while United Kingdom records up to 27 billion US dollars
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1. INTRODUCTION

losses every year (Laser, 2000) due to poor abnormal event management (AEM). It is also
interesting to know that about 70% of industrial accidents are caused by human errors
(Venkatasubramanian et al., 2003c). Despite advances in computer-based control applica-
tions in the industries, the fact that some of the worst chemical and nuclear power plants
accidents, namely Nuclear Tsunami of March 2011 (though caused by unforeseen natural
disaster) that had devastating effect on Japanese economy; Santrachs LNG plant explosion
(Skikda, Algeria) on January 19, 2004 where 27 people died, and 56 were injured; Kuwait
Petrochemicals Mina Al-Almedi refinery in June 2000; Occidental Petroleums Piper Al-
pha accident (Lees, 1996) on July 6, 1988 that resulted in the death of 162 employees of
the company; Chornobyl Nuclear Power Plant on April 26, 1986; Union Carbides Bhopal,
India, accident of December 3, 1984 that caused 3,800 deaths and approximately 11,000
disabilities (Jackson, 1993), just to mention a few, all happened in the last three decades
or so exposes the limitations of both current redundant architectures, control and safety
systems in various industries the world over. It is inevitable that some processing equip-
ment including actuators, sensors and control systems will breakdown or malfunction at
some point during their operational life span. Hence, it will be desirable to have a control
system that can accommodate those potential failures during operation while still main-
taining acceptable level of performance, albeit with some graceful degradation. Having
smart control systems with some fault tolerant capabilities on these plants would have
offered some robustness in the overall control architecture, and ultimately give sufficient
time to repair the impaired systems.

The increasing availability and application of intelligent actuators and sensors with
built-in diagnostic capabilities in several industries, oil and gas inclusive also supports
the efforts towards the development of smart plants. The demand for development and
application of smart controllers with built-in diagnostics and reconfigurable capabilities
for optimal operation and management of plants during normal and abnormal situations
in the process industries is therefore on the increase. These smart controllers could be
referred to as fault tolerant control systems (FTCS). FTCS is an advanced control system
with automatic components containment capabilities. It is necessitated by the increasing
demand for higher performance, improved safety, reliability and availability of control sys-
tems in the event of malfunctions in actuators, sensors and or other system components.
FTCS is also expected to provide desirable performance on complex automated facili-
ties when process equipment, actuators, and sensors breakdown or malfunction during

operation.



1.1 Background and Motivation

Fault Tolerant Control Systems has received a great deal of interest in both the in-
dustry and in the academia, but its actualization has faced some challenges in terms of
its applicability in the industry. FTCS has two major components — fault detection and
diagnosis (FDD) and fault tolerant controllers (FTC). FDD is a matured research area.
Researches in this area span over four decades with different and diverse techniques em-
ployed (Isermann, 1984; Frank, 1990; Patton and Chen, 1992a; Patton and Chen, 1992b;
[sermann, 1993; Frank, 1996; Garca and Frank, 1997; Isermann and Ball, 1997; Patton
and Chen, 1997; Zhang et al., 1997; Edward et al., 2000; Gomm et al., 2000; Blanke et
al., 2001; Blanke et al., 2003; Venkatasubramanian et al., 2003a; Venkatasubramanian et
al., 2003b; Venkatsubramanian et al., 2003c; Isermann, 2005; Zhang, 2006a; Sangha et al.,
2008; Zhang and Jiang, 2008; Chilin et al., 2012a; Yu et al., 2014). FDD mainly detects
fault, isolates (determines location and type) and estimates fault(s) magnitude(s); feeding
the information to FTC, an active and evolving research area, which then reconfigures
as appropriate to ensure acceptable performance in the impaired system in an online
real-time manner.

There are some commercial equipment monitoring and health management packages in
use in the industries, such as Profit Sensor from Honeywell, Plant Triage from Expertune
and AMS from Emerson. These packages employ techniques such as Multiple Linear
Regression (MLR) and Principal Components Analysis (PCA) in monitoring the process
variables and health of the system components, but have no integrated fault tolerant
controllers to take corrective actions when fault(s) is/are detected. The architecture and
integration of FDD and FTC to form FTCS sounds pretty straightforward theoretically,
but in actual fact, its actualization has faced numerous challenges as most of the developed
FDD techniques are for monitoring purposes rather than control purposes. Admittedly,
significant effort has been made recently in FTCS, where many algorithms and methods
have been developed in different application areas (Chandler, 1984; Vander Velde, 1984;
Eterno et al., 1985; Stengel, 1991; Rauch, 1994; Rauch, 1995; Blanke et al., 1997; Blanke
et al., 2000; Blanke et al., 2001; Diao and Passino, 2002; Isermann et al., 2002; Mehrabi
et al., 2002; Blanke et al., 2003; Bruccoleri et al., 2003; Qin and Badgwell, 2003; Zhang
and Jiang, 2003; Steinberg, 2005; Blanke et al., 2006; Isermann, 2006; Wang et al., 2007,
Zhang and Jiang, 2008; Noura et al., 2009; Chilin et al., 2010a; Chilin et al., 2010b; Chilin
et al., 2012a; Chilin et al., 2012b; MacGregor and Cinar, 2012; Mirzaee and Salahshoor,
2012; Lao et al., 2013). However, there are still so many issues to be addressed in the

application of FTCS to oil and gas processes. Some of these challenges include the ability
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of the FDD component to quickly and accurately detect and diagnose different faults
(actuator, sensor and component faults); the mechanism for effective integration of FDD
and FTC; the suitability of the FTCS to handle non-linear systems; its robustness to noise

and uncertainties and the complexity of computation required during implementation.

Hence, with the challenges listed above, this thesis contributes to the furtherance of
the development and application of FTCS to the oil and gas processes, particularly the
distillation processing units with special focus in its computational complexity, ease of
implementation and effective FDD and FTC integration mechanism. This involves the
development and application of simple restructurable feedback controllers with backup
feedback signals and switchable reference points to tolerate actuator faults; fault-tolerant
model predictive controllers (FTMPC) and fault-tolerant inferential controllers (FTIC) to
accommodate actuator and sensor faults respectively in the binary and crude distillation

units.

1.2 Aim and Objectives

The main aim of this thesis is to design Fault Tolerant Control Systems for distillation
processes with capabilities to automatically accommodate failures in components such
as actuators and sensors. The proposed FTCS will help to maintain reliable desirable
performance and stability of a crude distillation unit after the occurrence of faults, perhaps
with acceptable graceful performance degradation. It will also ensure reliable and effective
control system performance pre-fault era. This will involve strategies to monitor behaviour
of the crude distillation unit, including failures in sensors and actuators, and means by
which sub-optimal control strategies are designed and selected as circumstances change

in the system.

1.2.1 Aim

The main aim of this thesis is to develop and implement fault-tolerant controllers — simple
restructurable feedback controllers with backup feedback signals and switchable reference
points, fault-tolerant model predictive controllers (FTMPC) and fault-tolerant inferential

controllers (FTIC) to accommodate actuator and sensor faults in crude distillation units.
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1.2.2 Objectives

The objectives pursued in this work in order to achieve the main aim are;

1. Review of current relevant FDD and FTC strategies in the oil and gas industry.

2. Identify the current FDD architectures and their suitability for integration with FTC

towards building robust fault tolerant control systems for distillation processes.

3. Develop dynamic and interactive test-bed models in Matlab, Simulink, and Hysys

for the distillation processes.

4. Develop and implement suitable data-based fault diagnostic scheme for the processes

developed in (3).

5. Develop and implement simple reconfigurable fault-tolerant controller on the pro-

cesses developed in (3) to accommodate actuator faults.

6. Develop and implement fault-tolerant inferential control (FTIC) system on the pro-

cesses developed in (3) to accommodate sensor faults.

7. Integrate and implement FDD, the actuator fault-tolerant controller developed in
(5) and FTIC on the processes developed in (3) to accommodate sensor and actuator

faults respectively.

8. Develop and implement fault-tolerant model predictive control (FTMPC) on the

processes developed in (3) to tolerate actuator faults.

9. Integrate and implement FDD, FTIC, and FTMPC on the processes developed in

(3) to accommodate sensor and actuator faults respectively.

1.3 Scope of Study

The work reported in this thesis is limited to the development and application of FTCS
to processes in the oil and gas industry, particularly distillation processes. The review
of relevant FTCS components — FDD and FTC, is undertaken and suitable actuator and
sensor fault-tolerant controllers are developed and applied to binary and crude distillation

processing units.



1. INTRODUCTION

1.4 Thesis Contributions

This thesis further advances the existing body of knowledge in the development and
application of fault-tolerant control systems to the oil and gas processes. The main

contributions are listed below.

e Simple active restructurable feedback controllers with backup feedback signals and
switchable reference points are designed and integrated with dynamic principal com-
ponents analysis fault detection and diagnostic model to accommodate actuator
faults in binary and crude distillation processes. To achieve this, different reconfig-
urable control structures are analysed a priori using relative gain array (RGA) and
dynamic relative gain array (DRGA) analysis to select possible switching options

for the control system as circumstances change on the plant.

e The development of fault-tolerant inferential controller (FTIC) using dynamic prin-
cipal component regression (DPCR) and dynamic partial least square (DPLS) tech-
niques for controlled variable estimations, and integration with dynamic principal
component analysis (DPCA) fault monitoring diagnostic model to accommodate
sensor faults on simple and complex distillation processes is achieved in this work.
The FTIC system has sensor fault diagnostic model integrated with sensor fault-

tolerant control technique to contain the effects of sensor fault on the system.

e The integration of the FTIC and the restructurable feedback controllers with DPCA
fault diagnostic models to accommodate both actuator and sensor faults in crude
distillation unit as a complete fault-tolerant control system is also achieved in this

work.

e The development and implementation of fault-tolerant model predictive control
(FTMPC) integrated with both FTIC and DPCA fault diagnostic model to accom-
modate actuator and sensor faults in a dynamic crude distillation unit is another

major contributions of this thesis.

These contributions have been published in reputable international journal and presented

at different conferences as highlighted below.



1.5 Thesis Organisation

Journal Publication
Lawal, S. A. and J. Zhang, J. (2017), ‘Actuator fault monitoring and fault tolerant control
in distillation columns’; International Journal of Automation and Computing. 14(1), 80-

92.

Conference Papers
Lawal, S. A. and Zhang, J. (2015) ‘Actuator fault monitoring and fault tolerant control in

distillation columns’, 2015 21st International Conference on Automation and Computing

(ICAC), pp. 329 334.

Lawal, S. A. and Zhang, J. (2016) ‘Sensor Fault Detection and Fault Tolerant Control
of a Crude Distillation Unit’, in Kravanja, Z. and Bogataj, M. (eds.) 26th European
Symposium on Computer Aided Process Engineering. Amsterdam: Elsevier Science Bv,

pp- 2091 2096.

Lawal, S. A. and Zhang, J. (2016) ‘Fault monitoring and fault tolerant control in distilla-
tion columns’, 2016 21st International Conference on Methods and Models in Automation

and Robotics (MMAR), pp. 865-870.

Lawal, S. A. and Zhang, J. (2017) ‘Actuator and Sensor Fault Tolerant Control of a Crude
Distillation Unit’, in Espuna, A., Graells, M. and Puigianer, L. (eds.) Computer Aided

Chemical Engineering. Elsevier, pp. 1705-1710.

1.5 Thesis Organisation

The thesis is organised into seven chapters. Details contained in the remaining six chapters
are outlined as follows.

Chapter 2 presents a brief review of the different components of fault tolerant con-
trol system — fault detection and diagnosis (FDD) and fault tolerant controllers (FTC).
Passive and active fault-tolerant control systems are first introduced, after which FDD
which is a major component of active FTCS is discussed. Relevant state of the art fault
detection and diagnosis techniques are summarily reviewed to assess their suitability for
the development of the FTCS for complex chemical plants. Different techniques employed
under model-based and data-based fault detection and diagnosis are also outlined in this
section. The different approaches that have been researched in the development of fault-

tolerant controllers for complex systems including model predictive control are assessed,
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and the chapter is concluded with a brief discussion on techniques used in soft sensor
estimation such as DPCR and DPLS.

Chapter 3 details the design of the proposed simplified fault-tolerant control system
with its different components and how they are integrated. Fault-tolerant control system
for actuator faults is first presented, which also includes the rationale for using data-based
technique for the actuator fault detection and diagnosis part. The control strategies and
the tools employed in identifying and analysing different control loops pairing pre and
post-fault era in order to achieve a seamless switching and stability in the system post-fault
era are then presented. This is followed by detailing the procedures used to accomplish
the design of FTIC, the sensor fault-tolerant control system component of the FTCS. It
includes how the faulty controlled variable measurements are estimated using DPCR and
DPLS and the eventual integration of the predicted values into the FTCS. The chapter
is concluded with the presentation of the combined actuator and sensor faults FTCS.

Chapter 4 focuses on the implementation of the developed FTCS for actuator faults
accommodation on distillation processes. The system is applied to three different distil-
lation processes — a binary distillation column, the Shell heavy oil fractionator unit and a
crude distillation unit. The processes are appropriately described in this section, and of
particular interest is the development of an interactive dynamic crude distillation unit to
allow for implementation of the FTCS on a complex system. This is presented in such a
way as to demonstrate the applicability of the FTCS to plants with varying complexities.

Chapter 5 presents the implementation of the FTIC for sensor faults accommodation
for the same processes described in Chapter 4. This also highlights the effectiveness and
the applicability of the approach to systems with varying complexities. In the conclud-
ing part of this section, implementation of the combined sensor (FTIC) and actuator
components of the FTCS on a crude distillation unit is presented.

Chapter 6 details the design of fault tolerant model predictive control (FTMPC) and
its integration with data-based fault detection and diagnosis. The implementation of
the proposed FTMPC on a crude distillation unit is demonstrated afterward to show
its effectiveness. Changes are made to the interactive dynamic crude distillation unit
described in Chapter 4 to enable the implementation of FTMPC on the unit.

Chapter 7 presents a synopsis of the achievements and contributions of the thesis in
light of the set objectives in Chapter 1. Some recommendations for future works are then

discussed to conclude the thesis.



Chapter 2

Review of Fault Tolerant Control

Systems

2.1 Introduction

A significant number of researches has been carried out in FTCS, leading to the prolifer-
ation of a wide range of techniques in different application areas (Chandler, 1984; Vander
Velde, 1984; Eterno et al., 1985; Stengel, 1991; Rauch, 1994; Rauch, 1995; Blanke et al.,
1997; Blanke et al., 2000; Noura et al., 2000; Blanke et al., 2001; Diao and Passino, 2002;
[sermann et al., 2002; Mehrabi et al., 2002; Blanke et al., 2003; Bruccoleri et al., 2003;
Qin and Badgwell, 2003; Zhang and Jiang, 2003; Steinberg, 2005; Blanke et al., 2006;
Isermann, 2006; Wang et al., 2007; Zhang and Jiang, 2008; Noura et al., 2009; Chilin et
al., 2010a; Chilin et al., 2010b; Chilin et al., 2012a; MacGregor and Cinar, 2012; Mirzaee
and Salahshoor, 2012; Lao et al., 2013). FTCS is broadly classified into two types — pas-
sive and active fault-tolerant control systems (PFTCS and AFTCS). The classification
is functional, based on how the controllers handle faults in systems. Passive FTCS have
predesigned control laws that are made insensitive to some known faults and have limited
capabilities on the range and magnitude of faults that can be handled. Active FTCS, on
the other hand, have built-in fault monitoring diagnostic component that can detect the
occurrence of faults in real-time and relay the information to the reconfigurable controller
component of the control system to act, maintaining some level of acceptable performance
in the system despite the fault. Further considerations on the classes of FTCS as men-
tioned above and their many different components, as well as the major relevant state of

the art techniques that have been applied in the field of FTCS, will be discussed in this

9



2. REVIEW OF FAULT TOLERANT CONTROL SYSTEMS

chapter.

An outline of the rest of this chapter is as follows. A brief discussion on passive FTCS
is presented next, followed by active FTCS with its constituent components in Section 2.3.
Fault detection and diagnosis as the first major component of an active FTCS with its
two broad classification under model-based and data-based FDD are presented in Section
2.4. The different design approaches that have been developed under each FDD cate-
gory, including state and parameter estimation approaches under model-based FDD, and
principal component analysis (PCA) and projection to latent structure (PLS) approaches
under data-based FDD category are sufficiently discussed. A brief review of fault tolerant
controllers (FTC) as the second major component of an active FTCS and some of the
state-of-the-art techniques that have been developed in the field are then briefly discussed
in Section 2.5. Fault tolerant model predictive control (FTMPC), distributed model pre-
dictive control (DMPC) and fault tolerant inferential control (FTIC) are all presented
under FTC. This is followed by brief discussions on dynamic principal component regres-
sion (DPCR) and dynamic partial least square (DPLS) soft sensor estimation techniques
in Section 2.6. The chapter is concluded with a summary of all the major techniques

discussed therein.

2.2 Passive Fault Tolerant Control Systems

Passive fault tolerant controllers are also referred to as reliable controllers. They cannot
be considered as smart controllers because they usually have fixed structure and are with-
out built-in diagnostics to detect and diagnose faults in any system. Several authors have
worked on PFTCS. Liang et al. (2000) worked on state feedback controllers that can ac-
commodate a predefined set of actuator faults for nonlinear systems using Hamilton-Jacobi
inequality without any fault diagnostic component. Hsieh (2002) proposed a unified gain
margin constraint approach to develop a reliable, guaranteed cost controller using two-
stage linear quadratic (LQ) reliable control technique. Veillette et al. (1992) presented
the design of reliable centralised and decentralised control systems that guarantee stabil-
ity and H-infinity performance pre and post-fault era for sensor or actuator faults in the
centralised control system, and for control channel faults in the decentralised case. The
design of an algebraic Riccati equation based reliable LQ state-feedback controller that
guarantees system stability and known quadratic performance bound in the presence of a

selected subset of actuator faults was also proposed by Veillette (1995). Siljak (1980) and
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Yang et al. (1998) considered reliable control system design through the use of multiple
identical controllers that guarantee internal stability and H-infinity performance before,
during and after the occurrence of a sensor and or an actuator fault. Yang et al. (2000)
presented the design of reliable LQG controllers for linear systems with sensor faults,
covering normal operation, partial failure and complete failure, and Yang et al. (2001)
considered the application of reliable LQ state-feedback regulators to provide stability
for discrete-time systems with actuator failures. Zhao and Jiang (1998) proposed robust
pole region assignment techniques using a dynamic pre-compensator to modify the dy-
namic characteristics of the redundant actuator control channels and offer reliable control
performance. Yang and Zhang (1995) discussed a method that guarantees closed-loop
stability and an H-infinity-norm bound using multiple similar controllers based on alge-
braic Riccati equation approach to accommodate actuator faults. Yang et al. (2001) also
presented procedures for designing reliable H-infinity controllers that guarantee asymp-
totic stability and H-infinity performance during normal operation and in the presence
of faults in sensors and actuators for linear systems. All these techniques need neither
FDD system nor reconfigurable controllers to function, hence have limited capabilities in
handling more serious faults. More insight and a brief review of researches in PF'TCS can

be found in Yu and Jiang (2015).

2.3 Active Fault Tolerant Control Systems

Active FTCS is an advanced control system with automatic components containment ca-
pabilities that provides desirable performance on complex automated facilities whether
faults are present or not. There are many stakeholders in AFTCS research field, espe-
cially from within the academic community which reflects its multidisciplinary nature.
The improved consideration the field has received recently was necessitated by the need
to achieve a higher level of reliability, maintainability and performance in situations where
controlled systems can have potentially damaging effects on the personnel, plant and the
environment if faults occur in its or other system components (Patton, 1997a). Mod-
ern control systems are becoming increasingly complex and control algorithms even more
sophisticated. Consequently, the issues of availability, cost efficiency, reliability, oper-
ating safety and environmental protection are of major importance (Chen and Patton,
1999). Active Fault Tolerant Control System (AFTCS) aims to prevent catastrophic

consequences of fault by reconfiguring the control system to maintain satisfactory oper-
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ational performance even with severe faults. Control actions are generated based on the
observed faulty situations to achieve the process objectives using the process information
from the remaining functional sensors and manipulating the available healthy actuators

(MacGregor and Cinar, 2012).

AFTCS is of significant practical importance to the oil and gas industry — the focus of
this research. It offers benefits in addition to those offered by advanced control systems
through possession of diagnostics features that provide accurate timely information on the
occurrence of faults, such as sensor and actuator faults and the capabilities to manage such
failures in the control system components thereby maintaining the integrity of not just the
control system, but of the entire operation. Fault tolerant with diagnostics capabilities is
considered as one of the features of intelligent systems. According to Stengel (1991) “Fault
tolerant control systems, by design or implementation are intelligent systems”. Astrom
(1991) is of the same opinion that fault diagnostic capability is an essential ingredient
property of an intelligent system. One could argue that the use of FTCS in our various
industries, especially in chemical and petroleum processing industry could be the norm in
the next two decades or so, to take advantage of the increasing use of smart sensors and
actuators. The main motivation for the application of FTCS in the chemical and oil and
gas processing industries was driven historically by its application in the aircraft flight
control systems (Steinberg, 2005). However, FTC has not been widely applied to the oil
and gas industry, hence the need for this research. Another motivation for this research
is the possible application of the proposed FTCS to the refinery operations in Nigeria for

improved safety and higher economic rewards, particularly when faults occur.

AFTCS has two major discrete components: fault detection and diagnosis (FDD) and
fault tolerant controllers (FTC), and a third — controller reconfiguration and switching
mechanism which handles the interplay between FDD and FTC to achieve a seamless
AFTCS that meets its design objectives as shown in Figure 2.1. The effectiveness or
otherwise of an appropriate FDD component of the AFTCS, which essentially detects,
isolates and identifies faults will in large part determine the success or otherwise of the
whole AFTCS. Also, the ease of controller reconfiguration and switching mechanism,
in addition to having suitable healthy actuators and alternative measurements sources
for input-output restructuring will be crucial for the fault-tolerant effort. A detailed
discussion of the different FDD techniques is given in the next section. Beyond this

section, FTCS is used to refer to AFTCS for simplicity.
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Figure 2.1: FTCS General Structure (Source: Zhang and Jiang, 2008)

2.4 Fault Detection and Diagnosis

Fault detection and diagnosis has been researched extensively in the last four decades or
so, and several techniques have been developed. Some of the techniques are quantitative
model based approaches (Willsky, 1976; Himmelblau, 1978; Isermann, 1984; Basseville,
1988; Patton, 1991; Isermann, 1993; Patton, 1993; Yu et al., 1995; Frank, 1996; Patton
and Chen, 1996; Patton, 1997a; Patton, 1997b; Patton and Chen, 1997; Venkatsubra-
manian et al., 2003; Sangha et al., 2008), qualitative model based approaches (Arkin
and Vachtsevanos, 1990; Dvorak, 1992; Venkatasubramanian et al., 2003a), data based/
process history based approaches (Zhang et al., 1996; Zhang et al., 1997; Gomm et al.,
2000; Venkatasubramanian et al, 2003b; Zhang, 2006a; Yu et al., 2014), and knowl-
edge based approaches (Tzafestas, 1989). Several authors have adopted slightly varied
and overlapping classifications of FDD. For example Zhang (2006a) adopted three broad
classifications of FDD into model-based approaches, data analysis based approaches and
knowledge-based approaches; Zhang and Jiang (2008) used two broad classifications of
model-based and data-based methods with each method further classified into quantita-
tive and qualitative methods; while Venkatsubramanian et al. (2003a) broadly classified
FDD into three categories: quantitative model-based methods; qualitative model-based
methods and process history based methods. They all almost refer to the same broad
classification with slightly different nomenclatures. This work adopts the two broad clas-
sifications of Zhang and Jiang (2008) to summarise available FDD techniques, see Figure

2.2.
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Fault Detection and
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Note: LS/LRS — Least Squares/Recursive Least Squares; PCA — Principal Component Analysis;
PLS - Partial Least Squares

Figure 2.2: Classification of FDD techniques (Source: Zhang and Jiang, 2008)

FDD is a crucial component of an FTCS. Its effectiveness determines the applicability,
effectiveness and overall functionality of the resulting FTCS. An FDD scheme has three
main tasks: (1) fault detection which detects the presence of fault in a system and the
time it occurs; (2) fault isolation that determines the kind, location and time of detection
of a fault; and (3) fault identification which provides information on the size and time-
variant of fault (Isermann and Ball, 1997; Zhang and Jiang, 2008). For clarity sake, FDD
is used in this thesis to mean a combination of fault detection and isolation (FDI) plus the
fault identification function (Isermann, 2006). Fault identification is the determination of
type, size, location and time of detection of a fault (Isermann and Ball, 1997). There are
certain minimum performance criteria a suitable FDD candidate must satisfy to fit into
an overall structure of an active FTCS. Such desirable performance indices according to

Zhang and Jiang (2008) are:

Ability to handle different type of faults (actuator, sensor and system component

faults)

Ability to produce quick and accurate detection

Isolability, which is being able to differentiate between different faults

Identifiability

Suitability for fault tolerant control system integration
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2.4 Fault Detection and Diagnosis

Identifiability for multiple faults

Suitability for nonlinear systems

Robustness to noise and uncertainties

Computational complexity

The performance indices outlined above are the minimum requirements which an FDD
scheme must satisfy, at least to a greater extent before one can hope for a practically

applicable FTCS in the oil and gas industry. Model-based FDD is discussed next.

2.4.1 Model-based Fault Detection and Diagnosis

The traditional approach to fault diagnosis is based on hardware or physical redundancy
with the application of a voting scheme. It employs multiple lanes of sensors, actua-
tors, computers and software to measure and or control a particular variable (Chen and
Patton, 1999). Imagine employing this approach in modern complex systems with hun-
dreds, possibly thousands of variables to be measured, monitored and control. Indeed,
the drawbacks of having extra equipment and the accompanying costs, additional space
for installation and the costs of maintenance will be of serious concern. To overcome
these problems, analytical redundancy had been developed. It mainly uses the redundant
(or functional) relationships between various measured variables of the monitored system.
Analytical redundancy is deemed to be potentially more reliable. It does not need ad-
ditional hardware to generate residual signal. Hence, no additional hardware fault will
be introduced (van Schrick, 1993). Figure 2.3 illustrates the concepts of hardware and
analytical redundancy.

Patton and Chen (1997) defined model-based fault diagnosis as “the determination of
faults in a system by comparing the available system measurements with a priori infor-
mation represented by the system’s mathematical model, through generation of residual
quantities and their analysis.” Faults are declared when the residuals generated as a result
of the difference between the measured variables and their estimates from the mathemat-
ical models reach or exceed a set of fixed or variable thresholds on the particular residual.
A set of residuals can be designed with each having a unique sensitivity to individual faults
occurring in different location in the system. Fault isolation is then achieved with subse-

quent analysis of each residual after a threshold has been breached. Application of this
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HARDWARE REDUNDANCY
EXTRA SET
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FDI ALGORITHM WITH - ALARM
A MATHEMATICAL L DIAGNOSTIC
MODEL [ LOGIC

ANALYTICAL REDUNDANCY

Figure 2.3: Hardware and analytical redundancy (Source: Chen, 1995)

Table 2.1: Features of different FDD techniques(Source: Zhang and Jiang, 2008)

Criteria/method State estimation Parameter Simultaneous state Parity
estimation and parameter space
RLS & variant  estimation

Single Multiple Extended Two-stage

Observer KF  Observer KF KF KF
Fault sensor VA Vv Vv V4 * Vv v Vv
Actuator [ o [ v Vv VA Vv [
Type structure ' » 'y v Vv vV 4 'y
Speed of detection V4 Vv Vv Vv * Vv vV Vv
Isolability X X Vv VA v Vv Vv Vv
Identifiability X X L) * Vv vV v *
Suitability for FTC X X 4 v 4 Vv 4 X
Multiple fault identifiability oo ) Vv VA Vv Vv Vv *
Nonlinear systems X X [ VA [ Vv Vv Vv
Robustness 00 00 * * 'y » 'y Vv
Computational complexity v Vv * * 4 * 4 Vv

Note: (/) favourable; () less favourable; (X) not favourable; (#) applicable; (co) not applicable

approach hinges heavily on having a good knowledge of the process and the relationship
between faults and model states or parameters.

Also, a complete and accurate mathematical model of the system is required, which
is usually a constraint especially for complex chemical and petroleum processing facilities
as considered in this work. Modelling the dynamic of a system becomes more difficult
with increasing complexity with uncertainties in respect to the system’s structure, its
parameters and the effect of disturbances on the system. The primary tasks of an FDD;
fault detection, isolation and diagnosis will be discussed under state estimation, parameter
estimation and parity space techniques as the most frequently used model-based fault

detection and isolation techniques. Table 2.1, extracted from Zhang and Jiang (2008)

16



2.4 Fault Detection and Diagnosis

summarises their features against the performance indices earlier mentioned. Another
point worthy of mentioning is the issue of robustness in model based fault diagnosis.
Robustness against modelling uncertainty that results from incomplete knowledge and
understanding of the monitored processes is as important as the main objective for which
the diagnostic scheme was designed. It has become an important research issue in recent
time (Patton, 1997b; Patton and Chen, 1997; Chen and Patton, 1999). Model based fault
diagnosis involves two main stages of residual generation and decision making. It was
initially proposed by Chow and Willsky (1980) and is now generally accepted by the fault

diagnosis community:.

2.4.1.1 Residual Generation and Decision Making
I Residual Generation

It is a procedure for fault symptoms (residual signal) extraction from the system. It
generates a fault indicating signal — residual, using the available input and output infor-
mation from the monitored system. The generated signal should typically be zero or close
to zero when no fault occurs, and it is designed such that possible occurrence of a fault
is indicated from the onset. The value of the residual is significantly different from zero
when fault occurs. The residual is characteristically independent of the system inputs and
outputs in an ideal condition. It should typically only contain fault information to ensure
reliable fault detection and isolation. The algorithm used to generate residual is referred
to as residual generator (Chen, 1995; Chen and Patton, 1999). Figure 2.4 illustrates the
different residual generation techniques available.

Mathematical Derivation of Residual Generator

Let z represent a redundant signal generated by the monitored system (F7).

2(t) = Fi(u(t), y(t)) (2.1)

where u(t) and y(t) are the input and output of the system Fj. Then, residual r is

generated when z is compared with the system measured output y(t).

r(t) = Fa(y(t), 2(t)) = 0 (2.2)

Ideally, the residual should be zero in a fault free system, but the above expression

will be violated when a fault occurs. There are several other ways of generating residuals.
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Figure 2.4: Residual generation techniques in model-based FDD (Zhang and Jiang, 2008)

One is by using simulator, in which only the system input will be required and the signal
z is produced as the output of the simulator. This is then compared with the system
monitored output y to generate the required residual. However, this system has a major
drawback in that; its stability is not guaranteed when the monitored system is unstable.
An output observer based residual generator could also be used. In this case, both the
system input and output signals are required to generate an estimate of a linear function

of output y, say Ny. The system F, can then be expressed as:

Fy(y,z) = P(z — Ny) (2.3)

where P is a static or dynamic weighting matrix. Figure 2.5 below presents a general

structure for residual generator, expressed mathematically as:

0= [ils) ] | = Hleule) + Hylalyto (24)
y(s

r(t) =0 ifandonlyif f(t)=0 (2.5)

H,(s)+ Hy(s)Gu(s) =0 (2.6)
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Figure 2.5: General structure of a residual generator

H,(s) and H,(s) are realizable transfer matrices through stable linear systems, and f(t)
is the fault. The residual is designed to be zero for a fault free system as expressed in
equation 2.5 with constraint expressed in equation 2.6 satisfied. Certain desired residual
performance is achieved through suitable choice of H,(s) and H,(s) which must satisfy
equation 2.6. Detection of a fault is simply carried out by relating the residual evaluation
function J(r(t)), (e.g. the norm of the residual vector) with the threshold function 7'(¢),

chosen with some prior knowledge of the system. The expression is given below.

J(r(t)) <T(@)  for [f(t)=0 27)
Jr(#) > T(t)  for f(t) #0
The residual vector with the occurrence of faults is given as:
r(s) = Hy()Gs(s)f(s) = Grp(s)f(s) = Y [Gry(s)]ifils) (28)

where G,f(s) = Hy(s)Gy(s) is defined as the fault transfer matrix expressing the rela-
tionship between the residual and faults. [G,s(s)]; (which must be non-zero for the iy,
fault f; to be detectable, i.e. [G,f(s)]; # 0) is the iy, column of the transfer matrix G, ¢(s)
and f;(s) is the iy, component of f(s) (Chen, 1995; Chen and Patton, 1999). For more

reliable fault detectability, we can introduce this condition:

(G (0)]i # 0 (2.9)

19



2. REVIEW OF FAULT TOLERANT CONTROL SYSTEMS

II  Decision Making

The generated residuals are examined for likely occurrence of faults, and a decision rule is
then applied to determine if any faults have occurred. This process may involve a simple
threshold testing on the instantaneous values or moving average residual values, or it may
consist of methods of statistical decision theory, e.g., generalized likelihood ratio (GLR)
testing or sequential probability ratio testing (SPRT) (Willsky, 1976; Basseville, 1988;
Tzafestas and Watanabe, 1990; Chen and Patton, 1999). The hard bit of the model-
based fault diagnosis is done at the residual generation stage, which is the reason most

works in this field focus on it. The decision making part is relatively easy.

2.4.1.2 Faulty System Model

Building a mathematical model of the system under investigation is the first step in
model based fault diagnosis. A multiple-input multiple-output linear dynamic system is
considered in this section; a model linearized around an operating point will be used for
non-linear system. For the purpose of modelling a faulty system, an open-loop system
is considered, which can be separated into three parts: actuators, sensors and system
dynamics. Figure 2.6 presents the open loop system dynamics with actuator, sensor and

component faults under consideration (Chen and Patton, 1999).

The state space model of the system dynamics block in Figure 2.6 without the fault

component is given as:

(t) = Ax(t) + Bug(t)
yr(t) = Cz(t) + Dug(t)

(2.10)

where z € R" is the state vector, ur € R" is the input vector to the system, yzr € R™
is the real system output vector, f, € R™ is the sensor fault vector and f, € R" is the
actuator fault vector; A, B, C' and D are the known system matrices with appropriate

dimensions. Including component fault in equation 2.10 above results in:

#(t) = Aa(t) + Bun(t) + £.(1) (2.11)

The component fault affects the dynamics of the original system and needs to be captured
in the model. When such fault is represented as a change in the system parameter, such

as a change in the iy, row and j;, column element of matrix A, then we have:
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Actuator faults Component faults Sensor faults
fa(t) fe(®) fs(t)
Input Actuation | System Output
Actuators Dvhami | Sensors
ynamics
u(t) ug(t) Yr(t)
A
Parameter faults

Figure 2.6: Open loop system dynamics

i(t) = Ax(t) + Bug(t) + L;Aa;jz;(t)

Measured output

yt)

(2.12)

Here, z;(t) is the jy, element of vector z(t) and I; is an all zero n-dimensional vector

except the 7, element being 1. The output of the system is described below, with the

sensor and actuator dynamics ignored.

y(t) = yr(t) + f5(t)
ugr(t) = u(t) + fu(t)

u(t) = unr(t) + fis(t)

= Az(t) + Bu(t) + Bf.(t) + f.(t)
= Cu(t) + Du(t) + Df.(t) + fo(t)

(2.13)
(2.14)

(2.15)

(2.16)

A correct choice of the sensor and actuator fault vectors as presented in equations 2.13

and 2.14 can describe all sensor and actuator fault situations. Equation 2.15 describes a

system with an unknown input, for instance, an uncontrolled system. Instead, an input

sensor is used to measure the input to the actuator.

21



2. REVIEW OF FAULT TOLERANT CONTROL SYSTEMS

t) = Ax(t) + Bu(t) + Ry f(t)
y(t) = Cux(t)+ Du(t) + Raf(t)

y(s) = Gu(s)uls) + Gy(s)f(s) (2.18)
Gu(s) =C(sI—A'B+D
Gi(s) =C(sI —A) 'Ry + R,

(2.17)

(2.19)

Equation 2.16 presents a system with all possible actuator, component and sensor faults
while 2.17 is the compact state space model of a system with all possible faults where
f(t) € N9 is a fault vector with each f;(t) (i = 1,2,3,.....,g) corresponding to a specific
fault. The matrices R; and Ry are the fault entry matrices and they represent the effect
of faults on the system. wu(t) and y(t) are both known for fault detection and diagnosis
purpose. They are the input vector to the system (measured actuation) and the measured
output vector respectively. Equations 2.17 and 2.18 represent general model representa-
tion for faulty system in time domain and frequency domain respectively. The faulty
system representations are widely accepted in the fault diagnosis literature (Frank, 1990;
Gertler, 1991; Frank, 1992; Patton and Chen, 1992b; Frank, 1994; Gertler and Kunwer,
1995; Patton and Chen, 1997; Chen and Patton, 1999).

2.4.1.3 State Estimation Approach

State estimation is one of the several approaches employed in the residual generation
for fault detection and diagnosis purposes (Patton et al., 1989; Frank, 1990; Patton and
Chen, 1992a; Gertler and Kunwer, 1995). Output observer based residual generation is
the most commonly used approach, and it is discussed here as a representative of the

state estimation technique for residual generation.
I Observer based residual generation

Our interest here is outputs estimation using an observer to generate residual vectors.
Output estimates are sufficient for this purpose, so the use of full state observer is not
required. The approach estimates the outputs of the system through the measurements,
or a subset of it using either Luenberger observer(s) in a deterministic setting or Kalman
filter(s) in a stochastic setting. Then, the residual is the weighted output estimation

error (or innovations in the stochastic case) (Patton et al,, 1989; Frank, 1990; Patton
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Figure 2.7: Generalized Luenberger observer residual generator (Chen, 1995)

and Chen, 1992a; Frank, 1994; Chen, 1995). Given below is a residual generator via

generalised Luenberger observer, see Figure 2.7:

2(t) = Fz(t) + Ky(t) + Ju(t)

(2.20)
r(t) = L12(t) + Lay(t) + Lau(t)

The matrices in the equation 2.20 above should satisfy:

( F has stable eigenvalues
TA—-FT =KC
J=TB—KD (2.21)
LT+ L,C =0
L3+ LD =0

0
When the residual generator, equation (2.20) is applied to the system, equation (2.17),

the residual is:

é(t) = Fe(t) — TRy f(t) + KRof (1)

(2.22)
T(t) = Lle(t) + LQRQf(t)

where e(t) = z(t) — Tx(t). It is obvious from the above expressions that the residual
depends completely on faults. The other option is to use full order observer with T' = I.
A single residual is sufficient to detect fault, but a set of residual vectors (structured

residual set) or directional residual vector will be required to isolate faults with the ob-
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server based approach. The design of a structured residual set for sensor faults is pretty
straightforward. For instance, if the output vector y = (yi,...,ym) is replaced with an
output vector y (y1, ..., Yi—1): Yi+1), ---» Ym) Without the single sensor measurement y;, the
residual will be insensitive to the fault in the iy, sensor. However, for isolating an actuator
fault, the design of a structured residual set is not as straightforward and can be achieved
through the use of unknown input observers (Viswanadham and Srichander, 1987; Frank,
1990) or eigenstructure assignment (Patton et al, 1989; Chen, 1995). A fixed residual

vector can be designed through fault detection filter invented by Beard (1971).
IT  Unknown input observer

Mathematical description of any system under consideration is at the heart of model-based
fault detection and diagnosis. The more accurately the model represents the system,
the better the reliability and performance of the corresponding fault diagnostic scheme.
Modelling errors and disturbances are inevitable in such mathematical representation.
Hence, there is need to develop robust residual generator. Robust residual generation is
the most significant task in model-based fault diagnosis techniques, and unknown input
observer (UIO) belongs to such class of robust residual generator. It works on the principle
of decoupling the state estimation error from the unknown inputs (disturbances). By so
doing, the residual can also get de-coupled from each disturbance; the residual is defined
as a weighted output estimation error (Chen, 1995; Chen and Patton, 1999). Though
the unknown input vector is unknown, its distribution matrix is assumed known. The
approach was originally proposed by Watanabe and Himmelblau (1982), and the design
problem of UIO dated back to 1975 (Wang et al., 1975). Consider a dynamic system in

which its uncertainty can be summarised as an additive unknown disturbance:

#(t) = Ax(t) + Bu(t) + Ed(t)

(2.23)
y(t) = Cx(t)
Given the structure of a full-order observer described as:
2(t) = Fz(t) + T Bu(t) + Ky(t
£(1) = F2(0) + TBult) + Ky() .

B(t) = 2(t) + Hy(1)

where z(t) € R™ is the state vector, y(t) € R™ is the output vector, u(t) € R is the known
input vector, d(t) € R? is the unknown input (disturbance) vector, & € R is the estimated

state vector, z € R" is the state of the full-order observer, A, B, C', E are known matrices
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Figure 2.8: The structure of a full-order unknown input observer

with appropriate dimensions and F', T, K, H are matrices to be designed to achieve
unknown input de-coupling and other design requirements. The observer described by

equation 2.24 is shown in Figure 2.8.

When the observer (2.24) is applied to the system (2.23), the state estimation error
(e(t) = x(t) — &(t)) is governed by the expression

é(t) = (A — HCA — K\C)e(t) + [F — (A — HCA — F,0))2(t) + [Ky — (A—

HCA — K\C)H]y(t) + [T — (I — HO)|Bu(t) + (HC — I)Ed(t)  (2.25)

where

K=K, +K, (2.26)

Then, the state estimation error will be:

é(t) = Fe(t) (2.27)

If the following relations hold true:
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.

(HC —I)E =0
T=1I-HC
(2.28)
F=A—HCA-K,C
| Ky =FH

If all eigenvalues of F' are negative, e(t) will approach zero asymptotically, meaning & — x.
It means that the observer (2.24) is an unknown input observer of the system (2.23).
Hence, the design of UIO is to solve equations 2.26 and 2.28 and to make sure that all
eigenvalues of the system matrix F' are stable (Chen, 1995; Chen and Patton, 1999).
Table 2.2 summarises the procedure and the necessary conditions required for the design

of an unknown input observer.

2.4.1.4 Parameter Estimation Approach

Parameter estimation is one of the techniques employed in model-based fault diagnosis.
Fault detection and diagnosis can be achieved through system identification techniques
which presume that faults are reflected in the physical system parameters such as friction,
mass, viscosity, resistance, capacitance, inductance, and so on (Isermann, 1984; Isermann,
1987; Isermann and Freyermuth, 1991a; Isermann and Freyermuth, 1991b; Isermann,
1997). Again, for this approach like many other an accurate model of the system is
required. It uses the input-output model of the system. Since the goal is not only
to detect process faults but also to investigate process faults, the process models should
express as closely as possible the physical law which governs the system behaviour. Hence,
the process models have to be first of all developed by theoretical modelling, which means
stating the energy, mass and momentum balance equations, the phenomenological laws
for any irreversible phenomena and the physical-chemical state equations of the system
(Isermann, 1984). The models then appear in the continuous time domain, in partial or
ordinary differential equations form.

The simple idea of the detection approach is that the parameters of the actual system
are continuously estimated online using well-known parameter estimation method such as
least squares. The results are then compared with the parameters of the reference fault

free model conditions. Consider the system representation below:

y(t) = f(Pu(t)) (2.29)
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Table 2.2: Unknown input observer design procedure

Step 1 Check the rank condition for F and CE: If the rank(CE) # rank(E),
a UIO does not exist, go to step 10.

Step 2 Compute H,T and A;:
H = E[(CE)TCE]"Y(CE)T; T=1-HC, A =TA

Step 3 Check the observability: If (C, A;) observable, a UIO exist and K; can be

computed using pole placement, then go to step 9.

Step 4  Construct a transformation matrix P for the observable canonical decom-
position: To select independent n; = rank(Wy)(Wj is the observability
matrix of (C, A1)) row vector pf, ..., pni)" from Wy, together with other
n — Ny row vector pgl TR pz to construct a non-singular matrix as:

P = [pb oy Pngs Png+1, "'7pn]T

Step 5 Perform an observable canonical decomposition on (C, A;):

Ay 0
pAapPt=|"" CPt=[C* 0]
A12 A22

Step 6  Check the detectability of (C, Ay): If any one of the eigenvalues of Ay, is
unstable, a UIO does not exist and go to step 10.

Step 7 Select n; desirable eigenvalues and assign them to A;; — K;C’* using

pole placement.

Step 8  Compute Ky = P7'K, = P7'[(K})" (K2)"]", where K2 can be any

(n —ny) X m matrix.

Step 9  Compute F' and K: F=A-KC, K=K +Ky=K +FH.

Step 10 STOP
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where P is the model coefficient vector which is directly related to the physical parameters
of the system. The function f(.,.) can take either linear or nonlinear format. The basic

procedure in using parameter estimation for fault detection and diagnosis is:

e Build the system model using physical relations.

Determine the relationship between model coefficients and process physical param-

eters.

Estimate the normal model coeflicients.

Calculate the normal process physical parameters.

e Then, determine the parameter changes which occur for the various fault scenarios.

A database of faults symptoms can be built through the execution of the last step for
known faults. Coefficients of the system model are periodically identified during operation
from the measurable inputs and outputs, which are then compared with the normal and
faulty model parameters. To generate residuals using this method, an online parameter
identification algorithm should be used. If the estimation of the model is obtained at time
step kK — 1 as ]S(k_l), the residual can be defined in either of the following ways (Chen,
1995; Chen and Patton, 1999):

r(k) = P, — P,
r(k) = y(k) — f(Pu_1), u(k))

where P, is the normal model coefficient.

(2.30)

It is not easy to achieve fault isolation using parameter estimation approach. Simply
because the parameters being identified are model parameters which cannot always be
converted back to the system physical parameters (Isermann, 1984). However, the faults

are expressed as the variations in physical parameters.

2.4.1.5 Parity Space Approach

Desai and Ray (1984), Chow and Willsky (1980), Lou et al. (1986) and Frank (1990) were
the early contributors to the parity relation approach in fault detection and investigation.
The essence is to check the consistency (parity) of the mathematical relations of the
system by using the sensor measurements and the known process inputs. Parity relations

are usually transformed variants of the input-output or state space models of the system
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(Gertler and Singer, 1990; Gertler, 1991). Ideally, during steady state operation the
value of the parity equations should be zero, but in reality, the residuals are non-zero due
to model uncertainties, faults in the system, errors in sensors and actuators and model
inaccuracies. So, the idea of this approach is to rearrange the structure of the model to
get the best fault isolation. Willsky (1976) first introduced the idea of dynamic parity
relation which was further developed by other authors (Gertler et al., 1990; Gertler and
Singer, 1990). Redundancy primarily offers freedom to achieve further fault isolation in
the design of residual generation. Fault isolation requires the ability to generate residual
vectors which are orthogonal to each other for different faults.

The idea of parity space method can be explained as follows (Desai and Ray, 1984; Frank,

1990). Given the expressions below:

y(t) = Cx(t) (2.31)
y(t) = Cu(t) + Ay(t) (2.32)

where z(t) € R" is the true values of the state variable; y(t) € R™ is the measurement
vector and C' € R™*™ is the parameter matrix. Redundancy exists if m > n. Equation
2.32 represents a faulty condition while 2.31 represents a fault free condition. Then,

choose the projection matrix V € Rm=>™ to satisfy:

VO =0 (2.33)
Vv =1, -ccte)y o (2.34)

The rows of V are required to be orthogonal, being a null space of C, i.e. VIV = 1I,,_,.

Combining the observation y into a parity vector p yields:

p(t) =Vy(t) =VCax(t) + VAy(t) = VAy(t) (2.35)

p(t) = Vy(t) is the parity equation set whose residuals carry the signature of the mea-
surement faults. In the fault free case, p = 0. For a single i*" sensor fault: Ay =

000 .. Ay . .0

VAy = Ay; x (i'™ column of V) (2.36)
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Thus the column V' determines the m distinct directions associated with those m
sensor faults, which enables the distinction of the m fault signature and hence their
isolability. The above procedure assumes direct redundancy. Due to Chow and Willsky
(1980), the following procedure provides a general scheme for both direct and temporal
redundancy. Consider the standard discrete state space model below where A, B, C' and
D are parameter matrices of appropriate dimensions and z(t) denotes the n dimensional

state vector.

x(t+ 1) = Azx(t) + Bu(t)

(2.37)
y(t) = Cx(t) + Du(t)

y(t+1) = CAx(t) + CBu(t) + Du(t + 1) (2.38)

The above equation (2.38) is the output at ¢t + 1, and for s > 0, y(t + s) takes the form:

y(t+s) = CA®z(t) + CA* 'Bu(t) + ...+ CBu(t + s — 1) + Du(t + s) (2.39)
Collecting the equations for s = 0,1, ..., m; < m and writing it in a compact form yields:
Y(t) = Qx(t —mq) + RU(t) (2.40)

Pre-multiply the above expression with a vector w’ of appropriate dimension yields a
scalar equation:

wY (t) = wh Qx(t — my) + wl RU(t) (2.41)

The above expression will contain input, output and unknown state variables. It will

qualify as parity equation only if the state variables disappear which requires:

w'@Q =0 (2.42)

This is a set of homogeneous linear equations, and if the system is observable, these
n equations are independent. It has been shown that once the design objectives are
selected, parity equation and observer-based designs lead to identical or equivalent residual

generators (Gertler, 1991).
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2.4.2 Data-based Fault Detection and Diagnosis

The difficulties faced in developing detailed first principle models for complex chemical
processes with acceptable level of accuracy needed for fault monitoring and accommo-
dation purposes limit the application of model-based FDD to well-understood systems
like electro-mechanical systems. Data-based FDD, on the other hand, has been exten-
sively used in the chemical industries for process monitoring and fault diagnosis because
of its ability to provide reduced dimensional models for high dimensional processes. Its
extensive usage also stems from its simplicity and ability to handle large amount of cor-
related process measurements. A large amount of process data collected from a system
under normal and faulty conditions is required for the data-based FDD techniques. Using
the classification of Zhang and Jiang (2008), data-based FDD is further classified into
quantitative and qualitative methods.

The quantitative data based approaches extract features from the available process
data through multivariate statistical and non-statistical means. Neural networks FDD
approach is an example of the non-statistical method while principal component analysis
(PCA), statistical pattern classifiers and partial least squares (PLS) are examples of the
multivariate statistical methods. The qualitative data based FDD approaches, such as
expert systems, fuzzy logic, pattern recognition, qualitative trend analysis and frequency
and time frequency analysis, as presented in Figure 2.2 will not be discussed further in
this thesis as our focus is on model-based and data-based FDD methods. Multivariate
statistical approaches are powerful tools that are capable of compressing data to reduce
its dimensionality and still retain as much variation as contained in the original data set
for more straightforward analysis. The multivariate statistical techniques can efficiently
handle noise and correlation in the original data during transformation into a much lower

dimension.

2.4.2.1 Principal Component Analysis

PCA is a standard multivariate statistical technique that has been used for various anal-
yses stretching over a century. It was originally proposed by Pearson (1901) and later
developed by Hotelling (1947). Principal component analysis is based on orthogonal de-
composition of the covariance matrix of the process variables along direction that explains
the maximum variation of the data. Its main function is finding factors that have a much

lower dimension than the original data set which accurately describes the major trend in
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the original data set.

Let p denote the number of measured process variables; X be a n x p matrix of the scaled
measurements of n samples and p variables with covariance matrix . From matrix
algebra, > may be reduced to a diagonal matrix L by a particular orthonormal p x p

matrix U, i.e.,

Y =ULU" (2.43)

where columns of U are the principal component loading vectors and the diagonal elements
of L are the ordered eigenvalues of ¥ which defines the amount of variance explained by

the corresponding eigenvector. Then, the principal component transformation is given as:

T=XU or t;=Xu (2.44)

where t; and u; are the i'® column of T and U respectively. Equivalently, X can be

decomposed by PCA as:

p
X=T0" = tu (2.45)
i=1
The nxp matrix T = (¢, 1o, ..., t,) contains the so-called principal component (PC) scores

which are linear combinations of all the p variables. Typically, the first “a” principal
components (a < p) will capture the most variation in the original data if they are
correlated and can be used to represent the majority of data variation. There are different
criteria available for the selection of number of principal components “a”. In this work
however, we select “a” which account for between 75% and 90% variation in the original

data set and examine the suitability of different values of “a” for the FDD purpose using

appropriate data sets.

)A(:tlu’1+t2u'2+...+taufl+E:Ztiu;—l—E (2.46)
i=1

where E and X are the residual terms and the PCA model of X respectively. With an

in-control model established based on historical data collected during normal operation,

process monitoring is achieved by using the Hotellings 7% and squared prediction error

(SPE) monitoring statistics of the nominal model given below to detect fault from new

measurements.
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e 2.
P=>" < (2.47)
=1 "

where T? is the Hotelling’s T2 value for sample i, ; ; is the i*" element of principal compo-
nent j, A; is the eigenvalue corresponding to principal component j and a is the number
of principal components retained. SPE is simply the sum of squares of the difference
between the original scaled data and their estimates (X) from the PCA model. When the
process is in normal operation, both SPE and 7 monitoring statistics should be small
and within their control limits. However, when a fault appears in the monitored process,
the fault will cause some variables to have larger than normal magnitudes (large T value)
and change the variable correlations leading to large SPE values. The T? index indicates
nonconformity with the expected behaviour of the process as captured by the diagnostic
model while the SPE index presents deviations that result from events not described in
the diagnostic model (MacGregor and Cinar, 2012). The fault then causes the monitoring
statistics to violate their respective limits (thresholds) for some specified periods, before
a fault is eventually declared. The control limits for SPE and T2 are given by (2.48) and
(2.49) respectively.

( 1
SP By, = 01 [<29/2%2 1 4 elolio=L)]ag

;=5" X (2.48)

Jj=a+1 "3

1 _ 20109
\ ho =1 =52

a(n —1)

T2 =
lim (Tl _ CL)

Fon-aa (2.49)

In (2.48) and (2.49) above, ¢, is the value for normal distribution at 100(1—«)% confidence
level and F,, ,,_, . is the F distribution with appropriate degrees of freedom and confidence
level. Upon declaration of a fault, variable contribution plots are obtained for the SPE
and the Hotelling’s T2 for further fault diagnosis to identify the component that has
developed fault. This is done with some good understanding of the monitored process.
The Hotelling’s T variable contribution plot can be obtained using (2.50) below (Kourti
and MacGregor, 1996).

t .
cont_xy, , = % Uk Tfk (2.50)
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where cont_zy, ; is the contribution of variable x to score vector t; at point f (point of
fault declaration); ¢s;, A; and wy, ; are the score vector t;, the corresponding eigenvalue and
loading vector for k' variable respectively at the faulty sample f, while z;, is variable
xr also at point f. The SPE contribution plots can be easily obtained by taking the

contributions of each variable to the large SPE value at the point of fault declaration.

2.4.2.2 Projection to Latent Structure

Projection to latent structure (PLS) originated from the pioneering work of Wold (1982)
between the mid-1960s and early 1980s and was further developed by Wold and co-workers
(Wold et al., 1984a; Wold et al., 1984b; Wold et al., 1987). PLS, similar to PCA concep-
tually reduces the dimension of correlated process data by projecting them down onto a
lower dimensional latent variable space. PLS however, works with additional data matrix
Y, process quality variables together with the process variable X. PLS models the rela-
tionship between the two sets of data while compressing them simultaneously. It extracts
the latent variables that explain the variation in process data X, at the same time the
variation in X that is most predictive of the quality data Y. The first PLS latent variable
is the linear combination of the process variables that maximises the covariance between
them and the quality variable (Venkatasubramanian et al., 2003b). PLS defines the high
dimensional process variables (regressor) and process quality variables (response) (X and
Y') in terms of a small number of latent variables (7') that defines the major directions of
variation in the process data (MacGregor and Cinar, 2012). The basic model is defined
as:

X=TU"+F (2.51)
Y =TCT + F (2.52)

where X and Y are (n x p) and (n x m) matrices of observed values, T' = XW* is a
(n x a) matrix of latent variable scores (a < p), U, C' and W* are matrices of loading
estimated from the data, n is the number of observations, and p and m are the numbers of
regressor and response variables respectively. The concept of dependent and independent
variables has little place in latent variable model. E' and F' are errors associated with X
and Y respectively. The choice of process variables and process quality variables are user
defined (MacGregor and Cinar, 2012).

There are other variants of PCA and PLS techniques that have been used for faults

investigation over the years. Nonlinear PCA had been used to handle system nonlin-
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earity (Dong and McAvoy, 1996; Zhang et al., 1997); incorporation of multivariate SPC
with neural networks (Hoskins et al., 1991; Nomikos and Macgregor, 1994); application
of multiway PCA for batch processes (Nomikos and Macgregor, 1994); neural net PLS
incorporated with feedforward networks for PLS modelling (Qin and Mcavoy, 1992); appli-
cation of multiblock PLS (MacGregor et al., 1994); integration of PCA with discriminant
analysis techniques (Raich and Cinar, 1996); the use of recursive PCA (Li et al., 2000);
recursive PLS for adaptive modelling (Qin, 1998); the use of multiscale PCA (MSPCA)
approach which integrate PCA and wavelet analysis (Bakshi, 1998); and combination of
model based approach with multivariate statistical method (Gertler and McAvoy, 1998).

Multivariate statistical approaches are powerful tools capable of handling high dimen-
sional process variables that have good correlation to reveal the presence of abnormalities
in systems. From industrial successful application point of view, multivariate statistical
process monitoring techniques are the most widely used techniques for fault diagnostics
owing to their fast abnormal events detection, ease of implementation and little effort
required for their modelling with very little a priori process knowledge. However, they do
not possess ‘fingerprint’ or ‘signature’ properties for diagnosis due to their limited process

knowledge.

2.4.2.3 Dynamic PCA

Dynamic PCA is a variant of PCA technique that incorporates time-lagged measurements
in its model to capture the dynamic correlation behaviour of the system for effective fault
propagation analysis. The technique is the same as PCA with the only difference being
the increased dimension of the process variable p by a factor of [ (the number of time lags
considered) to give (I + 1)p process variables. In essence, this leads to an increase in the
columns of X to a new dimension n x ({+ 1)p resulting in orthonormal matrix U in (2.43)
having dimension (I + 1)p x (I 4+ 1)p. Consider an (n x p) process variable matrix X, the
augmented matrix X for DPCA at any time instant ¢ will be:

X=[X X(t—1) ... X(t—1)] (2.53)

If for instance, p = 3 and [ = 1, we have

X(t) = [z1(t) xo(t) z3(t) x1(t—1) xo(t —1) x3(t —1)] (2.54)
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where x;(t) and x;(t — 1) are the process variables at time ¢ and at [ = 1. The procedure

for the determination of the number of time lag (I) can be found in Ku et al. (1995).

2.4.2.4 Neural Networks

There are a number of papers on neural networks applications in process fault investiga-
tion (Venkatasubramanian and Chan, 1989; Watanabe et al., 1989; Ungar et al., 1990;
Venkatasubramanian et al., 1990; Hoskins et al., 1991; Zhang and Roberts, 1991; Gomm
et al., 2000; Zhang, 2006a; Sangha et al., 2008; Yu et al., 2014). For this approach, the
knowledge of training data set that covers normal operations, faults and symptoms is
required. Through training the relationship between faults and their symptoms can be
discovered and stored as network weights. The trained network is then used for fault diag-
nosis and abnormalities are matched with their corresponding faults. Neural networks are
attractive techniques for fault diagnosis as they are easy to develop and also due to their
ability to handle system nonlinearities. However, multiple neural networks may need to
be used for improved diagnostic performance as single neural network can lack robustness,
especially when there are insufficient data (Jacobs et al., 1991; Jordan and Jacobs, 1994;
Zhang et al., 1997; Zhang, 2006a). Reliable and robust trained network is essential for
reliable fault diagnosis. The reliability of a neural network depends on some factors, such
as the network topology, the training algorithm used, and the size of available training

data (Zhang, 2006a).

2.5 Fault Tolerant Controllers

This section discusses FTC as the other component of FTCS. Fault tolerant controllers
belong to the class of smart or intelligent controllers with built-in diagnostics. They are
capable of tolerating failures or malfunctions in system components, actuators and sensors
and still deliver satisfactory performance despite those failures. Hence, the main purpose
in FTC is to design a controller with suitable structure to achieve stability and satisfactory
performance, whether or not all the system components including the control system itself
are functioning correctly. An extensive number of researches has been carried out on FTC
since the early 1980s (Chandler, 1984; Vander Velde, 1984; Eterno et al., 1985; Stengel,
1991; Rauch, 1994; Rauch, 1995; Blanke et al., 1997; Blanke et al., 2001; Isermann et
al., 2002; Blanke et al., 2003; Mahmoud et al., 2003; Zhang and Jiang, 2003; Steinberg,
2005; Blanke et al., 2006; Isermann, 2006). This was motivated by the need to give aircraft
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control system much needed control capabilities to accommodate faults within the system
and still be able to land the aircraft safely. Interest in the design and application of FTC
grew in the other industries due to the increased safety and reliability demand beyond
what conventional controllers offer. These industries include aerospace, nuclear power
plants, automotive, manufacturing and chemical and process industries (Isermann et al.,

2002; Mehrabi et al., 2002; Bruccoleri et al., 2003; Zhang and Jiang, 2008).

Several techniques have been used in the design of fault tolerant controllers; Zhang
and Jiang (2008) gave a detailed classification of such techniques as shown in Figure 2.9.
They used criteria such as mathematical design tools, design approaches, reconfiguration
mechanism, and the type of systems investigated. It is not surprising that most of the
techniques that have been researched in FTC are concentrated in the aerospace and
aviation industry due to its historical reasons. Some impressive results on the design
and application of FTC have been published lately: application of distributed model
predictive control (DMPC) to accommodate actuator faults in a three unit continuous
stirred tank reactor (Chilin et al., 2010a; Chilin et al., 2010b; Chilin et al., 2012b); the
use of adaptive controller for FTC in General Electric XTE46 engine (Diao and Passino,
2002); combined model predictive control (MPC) and H, robust controller (Mirzaee and
Salahshoor, 2012) and the use of proactive fault tolerant Lyapunov-based MPC (Lao et
al., 2013) rather than reactive FTC that have been the norm over the last two decades or
so. Many of the techniques employed in FTC as presented in Figure 2.9 rely on ideas that
had been investigated in the past for other control purposes. Though well-known control
design techniques are used, they face new challenges and problems that may not appear
in the conventional controller design (Zhang and Jiang, 2008). It is essential that such
control methods deliver some good level of performance in the impair system in an online
real time manner. Owing to the demand and performance requirement of an FTC, it is
not unusual for an FTC to have a combination of different control structures and control
design algorithm. This thesis focuses on fault tolerant model predictive controller and
simple restructurable active FTC that uses backup feedback signal design approaches for
actuator fault accommodation, and fault tolerant inferential controller (FTIC) for sensor

fault accommodation respectively.
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2.5.1 Fault Tolerant Model Predictive Control (FTMPC)

Model predictive control is a high performing model-based process control strategy with
ability to handle multivariable interactions, constraints on control inputs and system
states, and optimisation requirements in a systematic manner. It is popular in the pro-
cess control industry because the actual operating objectives and operating constraint
can be represented explicitly in the optimisation problem solved at every control in-
stant (Camponogara et al., 2002). Several researchers have worked and continue to work
on FTMPC with interest in the area growing daily. Mhaskar (2006) designed a robust
model predictive controller to achieve fault-tolerant control of nonlinear systems subject
to uncertainties, constraints and actuator fault. He used Lyapunov-based approach to
formulate constraints that account for uncertainty explicitly in the predictive control law
and also explicitly to allow the characterisation of initial conditions starting from where
closed-loop stability is guaranteed. Zhang et al. (2014) used state space model predictive
fault-tolerant control to accommodate partial actuator faults in batch processes with un-
known disturbances. Zhang et al. (2014) propose an improved cost index that can aid
selection of relevant weighting factors for better control performance. Tao et al. (2014)
applied state space model predictive control to accommodate partial actuator fault in lin-
ear systems. Lao et al. (2013) proposed proactive Lyapunov-based fault-tolerant model
predictive control to handle effectively incipient actuator fault in chemical processes.
Mirzaee and Salahshoor (2012) presented a unified robust fault tolerant control frame-
work to effectively handle changes in unmeasured disturbance and model parameters, bi-
ases and drifts in sensors and actuators respectively. This was achieved through the use
of adaptive unscented Kalman filters (AUKFs) and fuzzy-based decision making (FDM)
algorithm for fault detection and isolation, and actuator and sensor faults diagnostics
respectively. The AUKF and FDM schemes were integrated with H., optimal robust
controller and MPC using a fuzzy switch scheme for switching between MPC and robust
controller for effective performance in actuator and sensor faults accommodation.

Generally, the design of an MPC has three main components:

e The model of the system under consideration. This is used essentially for the system
open-loop future trajectory prediction and in large part plays a crucial role in the

effectiveness or otherwise of the MPC.

e A control objective function to be minimised subject to constraints imposed by the

system model, restrictions on control inputs, system states and others.
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Figure 2.9: Classification of FTC (Source: Zhang and Jiang, 2008)
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e A receding horizon scheme that introduces feedback into the control law for distur-

bances and model-mismatch compensation.

Consider the state space model of a system as given below:

i(t) = Ax(t) + Bu(t),  z(0) = (2.55)

where x, u and y are the state variables, inputs and outputs of the system respectively,
A, B, C and D are matrices of appropriate dimensions. A brief description of a typical

MPC formulation is given as (Garcia et al., 1989):

i [ U, + )l (2560)
st. &= f(Z,u(t)) (2.56b)
ui(t) € U (2.56¢)
F(t) = 2(te) (2.56d)

where S(A), N and Z denote the family of piece-wise constant functions with sampling
interval A, the prediction horizon and the predicted trajectories of the nominal system in
(2.55) respectively, Q.1 and R, are positive definite symmetric weighting matrices. The
objective function in (2.56a) is to be minimised subject to constraint (2.56b) which is
supposed to have zero uncertainties in model (2.55) used to predict future trajectories
of the system. Constraints (2.56¢) and (2.56d) take into account the restrictions on the
control inputs and the measured system states respectively. The first step of the optimal
solution defined by (2.56), denoted as u}(t | ) is implemented and the whole procedure

is repeated continuously.

2.5.2 Distributed Model Predictive Control

MPC typically works in a centralised fashion, but when dealing with complex systems, as
we have in the chemical and oil and gas industry, for optimality, it may be better to have
distributed control schemes where local control inputs are computed using local measure-
ments and reduced-order of the sub-system dynamics. DMPC are used to coordinate the

implementation of separate MPC controllers to achieve optimal input trajectories in a
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distributed manner. It is a developing research area with interest from both the academia
and the industry. A review of DMPC by Christofides et al. (2013) gave algorithmic de-
tails of the different approaches that have been used in the design and implementation of
DMPC to provoke further researches in the area. Rawlings and Stewart (2008) presented
cooperative DMPC to guarantee nominal stability and performance properties with high
degree of communication between local controllers by using MPCs with modified objective
functions. Mercangoz and Doyle 111 (2007) proposed a DMPC algorithm based on the
work of Mutambara (1998) and implemented it for level control on an experimental four-
tank system. Chilin et al. (2010a) demonstrated the application of DMPC for actuator
faults; their work is briefly outlined below. Consider a nonlinear system described by a

state-space model:

B(t) = f(a(t), ua(t), uz(t), d(t)) (2.57)

where z(t) € R denotes state variables vector, d € R? is the model of the set of possible
faults, u;(t) € ™ and uy(t) € R™2 are the two different sets of possible manipulated
inputs. The faults are unknown and d;, j = 1...p, can take any value. The system
is controlled by two sets of control input w; and us (i.e. u(t) = ui(t) + wuo(t)). They
assumed a Lyapunov-based controller u,(t) = h(x) exists, which renders the origin of the

fault-free closed-looped system asymptotically stable with wug(t) = 0.

Then, they designed a DMPC structure (see Figure 2.10) to achieve closed-loop stabil-
ity and performance using two Lyapunov-based MPC, LMPC2 and LMPC1 to compute
control input trajectories us and u; respectively (Chilin et al., 2012a; Chilin et al., 2012b).
Consider the expressions for LMPC2 (equation 2.58a — 2.58¢) and LMPC1 (equation 2.59a
—2.59d) below:

ud?elisl(lA)/O [ZT(T)Q.& (1) + uly (T) Reyttar (T) + ule (7) Regtiga (7)]d(7) (2.58a)
(1) = f(&(7), uar (), uga(7),0) (2.58b)
ug (1) = h(Z(jA)), V7Te[iA (G+1A), j=0... N-1 (2.58¢)
z2(0) = z(ty) (2.58d)
oV (z) 3V (z)

5 @), b (), a2 (0),0) <

f((t), h(x(tx)),0,0) (2.58¢)

and
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NA
min / [E (1) Qe (7) + gy (7) Revuar (7) + g (7 | ) Reaun(7 | t)]d(7) - (2.592)
Uq1 € (A) 0

(1) = f(@(7), uar(7), ugy(7 | 1), 0) (2.59b)
z(0) = z(ty) (2.59¢)
oV (x) oV (x)

f(@(tr), uar (0), ugy (0 | 1), 0) <

f(@(te), h(x(tr)), ug(0 | t),0)  (2.59d)

ox ox

where V' is the Lyapunov function, Z is the predicted trajectory for the fault-free system
with uy being the input trajectory computed by the LMPC2 and u; being the Lyapunov-
based controller h(x) applied in a sample and hold fashion. The DMPC is implemented
thus:

1. Both LMPC1 and LMPC2 receive the state measurement z(t;) from the sensor at

each sampling instant .

2. LMPC2 evaluates the optimal input trajectory of us based on z(t;) and sends the
first step input value to its corresponding actuators and the entire optimal input

trajectory to LMPCI.

3. After receiving the entire input trajectory of us together with x(¢x), LMPC1 evalu-

ates the future input trajectory of wu;.
4. LMPCI1 then sends the first step input value of u; to its corresponding actuators.

wi(T | tr) and wy (7 | tg) are the optimal solutions to the optimisation problems of

LMPC2 and LMPCI1 respectively. Hence, the manipulated inputs to the system are:

ui(t | 2(te)) = ugy(t —te [ tn), VT E [t tisr)
(2.60)

ug(t | w(tr)) = uge(t —tu [ tr), VT € [t trsa)
A non-zero residual is generated when fault occurs in a system. The residual is generated

through this expression (# and z are the filter state for the fault-free system and the

measured state respectively):

r(t) =| z(t) — z(t) | (2.61)
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Figure 2.10: DMPC structure (Source: Chilin et al, 2010)

The main idea behind this approach is that there is an extra control input uy that can
be called upon to stabilize the system in the presence of a fault. It is suspected that the

effectiveness of the approach will depend on the type and severity of the fault.

2.5.3 Fault Tolerant Inferential Control

Inferential control is a robust strategy that has been deployed in the industry for decades.
It is used to control variables whose measurements are not readily accessible (i.e. cannot
be measured directly) or have substantial time delay (Kano et al., 2000; Zhang, 2006b) and
therefore need to be inferred from the measured secondary variables that have reasonable
correlation with the unmeasured controlled variables. The inference is usually made
through a variety of analytical techniques. The process through which the inference
is achieved could be referred to as soft-sensing or soft-sensor. Bolf et al. (2008) used
neural network-based soft sensor to estimate kerosene distillation end point and freezing
point in a crude refinery operation. Zhou et al. (2012) proposed bootstrap aggregated
neural network and bootstrap aggregated partial least square regression techniques to
infer and control kerosene dry point in refineries with varying crudes. Kano et al. (2000)
also employed dynamic partial least square regression to estimate distillate and bottom
compositions for inferential control of a distillation system. Zhang (2006b) developed an
off-set free inferential control strategy with principal component regression and partial
least squares for distillation composition control.

The main idea of estimating certain variable of interest from other related variables
has also been exploited in sensor fault accommodation. Deshpande et al. (2009) applied

state estimator approach to provide controlled variable estimate for feedback control af-
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ter declaration of a sensor fault. Manuja et al. (2008) used a combination of generalised
likelihood ratio and reduced order models to accommodate sensor fault in an ideal binary
distillation column. However, there are some application issues that need to be addressed
during implementation, especially when the sensor fault effect has manifested in the sec-
ondary variables used for inference which could lead to inaccurate estimates. The use
of inaccurate controlled variable estimate for feedback control purposes could worsen the

already abnormal situation in the system and may cause the system to be unstable.

2.6 Soft Sensor Estimator

Soft sensor or software sensor generally refers to analytical ways of obtaining values of cer-
tain variable(s) of interest from several other measurements. There are several techniques
available for prediction of an output from process measurements. Dynamic principal com-
ponent regression (DPCR) and dynamic partial least square (DPLS) techniques are the

focus of this thesis.

2.6.1 Dynamic Principal Component Regression

DPCR is a variant of principal component regression (PCR) and uses principal compo-
nents (PCs) of the process variable matrix for its regression model development. DPCR
is used to develop soft sensors for controlled variables whose sensors could potentially
develop fault. The soft sensors can be developed using carefully selected process measure-
ments that have good correlation with the controlled product quality variables. The input
matrix X that is used for the regression comprises of process measurements at the current
and the [ previous sampling times to incorporate system dynamics into the DPCR model.
A brief description of DPCR is given below. More information about PCR and DPCR
can be found in Geladi and Kowalski (1986) and Ku et al. (1995). Given an n x (I + 1)p
matrix X with n samples, p process variables and [ previous sampling time measurements.
Then we can have a linear combination of the first a principal components (PC) of X as

the model output given as:

Ta:XUa:XU1+XU2+XU3+ —i—Xua (262)
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Q = Taw = Xan = XU1UJ1 + XUQUJQ -+ XUgIU3 + ... + Xuawa
or (2.63)

= Xan = X0 = 23191 + 23292 + 23393 + ...+ x(l+1)p9(l+1)p

<>

where T, = [t t2 ...1,] are the PC scores, U, = [u; wus ...u,| are the PC loading
vectors, ¢ is the controlled product quality variable estimate, w is a vector of model
parameters in terms of PCs, 21 to x(41), are the model input (selected process variables),

and 6, to 641), are the model parameters. The least squares estimation of w is:
W= (T.T,)'T)Y = (U.X'XU,) 'U XY (2.64)

Then, the model parameters in (2.63) can be obtained through DPCR as:

0=Ub = U,(UX'XU,) U XY (2.65)
The data set that is used to develop the DPCR is usually partitioned into training and
testing data sets, and models with different numbers of principal components would be
developed using the training data and then tested with the testing data set. The model

with the smallest testing error is then selected.

2.6.2 Dynamic Partial Least Square

Dynamic partial least square, also known as dynamic projection to latent structure
(DPLS) is an extension of projection to latent structure discussed in Section 2.4.2.2.
It incorporates time-lagged measurements of the regressor or process variables into the
input matrix X to capture the dynamic behaviour of the system whose responses Y are
to be predicted. This increases the columns of regressor matrix X, or the number of
process variables “p” by a factor of | (number of time-lag), giving n x (I 4+ 1)p dimension
for matrix X. The DPLS projects matrices X and Y onto a subset of latent variables
t and u respectively. More details about the PLS approach can be found in Geladi and
Kowalski (1986). Equations (2.51) and (2.52) in Sections 2.4.2.2 can also be presented as

below:

X=> tp] +E (2.66)

Jj=1
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Y=Y uq +F (2.67)

j=1
A linear relationship between the regressor and response variables is achieved by perform-
ing an ordinary least squares regression between each pair of the corresponding ¢ and u
vectors.

ﬁj = tjbj j = 1,2, NN (268)

where b; is the coefficient from the inner linear regression between the jth latent variables
t; and uj, i.e.:

The number of latent variables to be retained can be determined through cross-validation.

2.7 Summary

In this chapter, fault tolerant control systems (FTCS) and its major components — fault
detection and diagnosis (FDD) and fault tolerant controllers (FTC) were discussed. The
two types of FTCS — passive and active FTCS and the latest researches and techniques
that have been developed in these areas were also presented. Passive FTCS was briefly
discussed while actives FTCS being the focus of this thesis was discussed in sufficient
details. The two main categories of FDD — model based and data based FDD and some
of the state-of-the-art approaches developed under the two categories were sufficiently
discussed. Under the model based category, approaches such as residual generation tech-
niques, state estimation approach, parameter estimation approach, parity space approach
and unknown input observer; including the modelling of faulty system under model based
were all discussed. Similarly, FDD approaches under the data based category compris-
ing of dynamic principal component analysis, dynamic partial least squares and neural
network were equally discussed.

The second component of FTCS, the reconfigurable fault tolerant controller (FTC)
and the numerous researches undertaken in the field were also presented in this chapter.
Different techniques used in achieving FTC were also discussed. However, only model
predictive control (MPC) and distributed model predictive control (DMPC) were briefly
outlined, as they form the basis of one of the approaches used for actuator fault accom-
modation in this thesis. A brief mention of fault tolerant inferential control (FTIC) for

sensor faults accommodation and some of the techniques used in this thesis for soft sensor
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estimation were similarly presented. All the relevant aspects of FTCS this thesis focuses

on were all discussed in sufficient details.
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Chapter 3

Simplified Fault Tolerant Control

Systems

3.1 Introduction

The design of simple restructurable feedback controllers like proportion-integral-derivative
(PID) with backup feedback signals and switchable reference points is discussed in this
chapter. As discussed in the previous chapter, most of the current fault-tolerant controllers
involve techniques with high level of complexity and computational tasks in their design
and implementation. The proposed fault-tolerant control technique offers a simplified
approach to the design and implementation of controllers capable of tolerating actua-
tor and sensor faults in complex systems, with perhaps acceptable graceful performance
degradation. The approach is expected to achieve results comparable to those employing
complex computational tasks, though different possible control structures would have to
be analysed a priori using tools like relative gain array (RGA) and dynamic relative gain
array analysis to select possible switching options. As it is often the case that, for any
given process, there are several ways of controlling it, some better than others, so selecting
a sub-optimal strategy under faulty condition would be far more acceptable than process
shut-down. However, the switchability and restructurability of a fault tolerant controller
are process dependent as maintaining acceptable level of performance in some processes
may not always be achievable due to lack of suitable controlled and manipulated variable
pairing. This has to be carefully assessed taking into consideration the remaining healthy

actuators and the process variables pairing for control purposes.

Simplified fault-tolerant control system for actuator faults that uses data-based tech-
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nique for actuator fault detection and diagnosis is first presented in the next Section. The
mechanism used to integrate the FDD and the simplified FTC with its different com-
ponents is discussed. The control strategies and the tools employed in identifying and
analysing different control loops pairing pre and post-fault era are then presented, in order
to achieve a seamless switching and stability in the system post-fault era. This is followed
by detailing the procedures used to achieve the design of FTIC, the sensor fault-tolerant
control system component of the FTCS. It includes how the faulty controlled variable
measurements are estimated using DPCR and DPLS and the eventual integration of the
predicted values into the FTCS. The chapter is concluded with the presentation of the

combined actuator and sensor faults FTCS.

3.2 Fault Tolerant Control System Design for Actu-

ator Faults

The detailed procedure for the design of actuator fault-tolerant control system for com-
plex chemical processes is presented in this section. The system is a conventional PID
controller with extended restructurable capability for actuator fault accommodation. PID
controllers are relatively easy to implement and are popular among plant operators. Its
extended version with additional capabilities, particularly one that offers fault-tolerant
control capability without any doubt will be an excellent addition to the list of growing
FTCS for industrial applications. The block diagram of a conventional feedback con-
troller for a single loop as presented in Figure 3.1 has four major components — the PID
controller, actuator, plant and sensor. r, e, u.,u and d in Figure 3.1 are set-point, devi-
ation, controller output, manipulated variable and disturbance respectively, while y, v,
and y, are actual controlled output, measured primary controlled output and measured
uncontrolled secondary variables respectively.

Figure 3.2 presents the structure of the proposed FTC for actuator faults for a com-
plex chemical process. The figure has some notable differences from that of a conventional
feedback controller. There are additional blocks like DPCA FDD scheme, reconfiguration
mechanism, two weighting matrices blocks and a reconfigurable PID controller block in-
stead of an ordinary PID controller block. e, u., uq4,y,y, and ys are vectors, as previously
defined while 74, 7,,us, y» and y, are vectors of appropriate dimensions for back-up set

point signal, switchable references, back-up manipulated variables, controlled variables
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Figure 3.1: A conventional feedback controller block diagram

back-up signals and restructurable controlled outputs respectively. 7, is the vector form
of r, which is the reference points for the primary controlled variables. The DPCA FDD
scheme of the system deals with process monitoring for timely and accurate detection and
diagnosis of actuator faults. The reconfiguration mechanism acts on the fault information
received from the FDD scheme. It contains several possible controller switching options
designed a priori based on rigorous analysis of a closed set of possible actuator faults using
RGA and DGRA, including stability analysis of the entire system. The reconfigurable
PID controller implements the selected reconfigurable option by reconfiguring its control
structure after isolating the faulty actuator using the back-up signals for reference points
and the primary controlled outputs. This is made possible with the use of the weighting
matrices blocks for seamless implementation. Procedures involved in some of the major

components of the FTCS are detailed in the next sections.

3.2.1 DPCA FDD Scheme

Dynamic PCA monitoring technique is used in the integrated actuator FDD scheme to
identify possible actuator faults occurrence. In order to avoid repetition, the procedures
presented in Section 2.4.2.4 will be augmented further to highlight how the FDD scheme
functions in the whole FTCS system. The matrix of the scaled measurement “X” in

equation 2.40 is given as:

X=[u y u (3.1)

where X is the matrix of past measurements of all the process variables to be included

in the DPCA diagnostic model with dimension n x (I+ 1)p , u is an n X (I + 1)np matrix
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Figure 3.2: The proposed FTC for actuator faults

of manipulated variables, y, is an n x (I + 1)np matrix of primary controlled variables,
ys is an n X (I + 1)ns matrix of measured secondary variables and p (p = 2np + ns) is
the total number of variables included in the monitoring diagnostic model during normal
operation. n, np, ns and [ are the total number of samples, total number of primary
controlled variables, number of measured secondary variables and the time lag considered
respectively. It is assumed that the manipulated variable “u” is always available, otherwise
it can be obtained from the knowledge of the controller output “u.”. The first phase of
the FDD scheme is the development of an actuator fault detection scheme, as described in
Section 2.4.2.4. The scheme is then used to monitor the process for possible actuator faults
using the computed control limits for the Hotelling’s 7% and the SPE monitoring statistics
as presented in equations 2.41 and 2.42. The second phase of the FDD scheme involves
fault diagnosis to identify the particular faulty actuator through the use of contribution

plots of the monitoring statistics.

Contribution plots are simply graphical representations depicting the contributions of
each variable in the diagnostic model to the values of the Hotelling’s 7 and SPE monitor-
ing statistics, particularly upon detection of a fault. In this thesis, excess contributions of
each variable is used by first computing their total contributions to the monitoring statis-
tics at the point of fault declaration and the following two consecutive sampling periods
for proper diagnosis. Average contributions of each variable to the monitoring statistics
during normal operation are also obtained and subtracted from the total contributions

earlier computed to obtain the variable excess contribution. The variables that contribute
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the most to the faulty situation are then mapped to a particular actuator fault based on
the knowledge of the system. Hotelling’s T2 variable contributions to a faulty actuator
are obtained using the following equations (Kourti and MacGregor, 1996). Let r be the

number of score vectors that violate their limits (r < a).

tri

cont_xy, , = \
J

Uk, j Tfk (3.2)
where cont_xy 5,18 the contribution of variable xj to score vector ¢; at point f (point of
fault declaration); a is the number of principal components, t¢;, A; and wy ; are the score
vector t;, the corresponding eigenvalue and loading vector for k' variable respectively
at the faulty sample f, while z, is variable z; also at point f. The value of cont_xy,
represents ti—]] which should always be positive and it is set equal to zero if negative. The

total contribution of variable z to the detected fault is given as:

T

cont_xy, = Z (cont_xy, ) (3.3)

j=1
Average variable contributions to the monitoring statistics during normal operation at
any instance is given as:

t.
= Lo (3.4)

avg_ Ty ;
avg xy,; should always be positive and is set to zero if negative. The overall average
contributions of each variable to Hotelling’s 72 monitoring statistics pre-fault era is given

as:
n

Tk avg = Z(ng_xk,j> (3-5)
j=1

Subtracting equation 3.5 from equation 3.3 gives the excess contributions of each variable
to the out of control situation, which are then plotted to identify the variables indicative of
the fault and then mapped unto a particular actuator fault. After successful detection and
diagnosis of an actuator fault and subsequent implementation of the FTC, for continued
process monitoring, np is reduced by 1 and p by 2. The dimension of X post-fault era
now reduces to n x (I + 1)(p — 2) . This reflects the isolation of the faulty actuator and
subsequent removal of a controlled variable for further system monitoring. Output of the
FDD monitoring scheme is passed on to the reconfiguration mechanism to reconfigure the

input-output pairing for the whole system as appropriate.
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3.2.2 Control Strategies and Loop Pairing Assessment

It is imperative that rigorous process interaction of the multivariable system is undertaken,
in order to have good understanding of the effect of variable pairing reconfiguration on
the stability of the system, particularly during faults accommodation. Different control
strategies during normal operation and faulty conditions are investigated to determine
the optimum and sub-optimal controlled variable-manipulated variable pairing for every
potential actuator fault in the system. The task involved is non-trivial and it is achieved

through the use of RGA and DRGA.

3.2.2.1 Relative Gain Array (RGA)

Relative gain array, developed by Bristol (1966) and extended by Mcavoy (1983) and
Shinskey (1988) is used for the control loop interaction analysis. A brief description of
the procedures involved in the analysis is given in this section. RGA gives a quantitative
measure of the level of interaction amongst the loops of a multivariable control structure
using the system process gains matrix, which defines the steady state open-loop relation-
ship between the inputs and outputs. Let the relationship between outputs and inputs of

a multivariable system be presented as below:

yi(s) ki ki - Ry uy(s)
S koy koo -+ k Us(s
y2§ ) _ ‘21 ‘22 .2p 2.( ) (3.6)
| Yp(s) | | o1 Ko kop || up(s) ]
Equation 3.6 can be presented in a compact form as:
y(s) = K - u(s) (3.7)

where y(s), u(s) and K are controlled outputs, manipulated inputs and the steady state
process gain matrix respectively. K can be obtained by independently varying the ma-
nipulated inputs of the multivariable system one at a time and then allowing the system
to reach a new steady state. Several changes can be made to individual manipulated
variable over a reasonably long period of time during the process simulation to gather
enough data, which can then be used to obtain a more accurate K matrix and dynamic
models, in this case, transfer function models of the system using System Identification

Toolbox in MATLAB. The RGA (A) of the system can then be obtained using:
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A=K > (K")™ (3.8)

*

where -* represents element by element multiplication. Several A for different sets of K
matrices will have to be analysed for each possible actuator fault and implemented on the
system to assess the stability of the system under various degrees of actuator faults. The
RGA analysis could involve several hundreds of different inputs-outputs pairing for all
the possible actuator faults, particularly for complex system. This will help to determine

an optimum/sub-optimal inputs-outputs pairing during controller reconfiguration in any

faulty situation.

3.2.2.2 Dynamic Relative Gain Array (DRGA)

RGA has some limitations as it does not consider the transient behaviour and effect of
presence of disturbances in the system. DRGA is used in conjunction with RGA for a more
robust loop pairing and stability analysis. DRGA was first introduced by Witcher and
Mcavoy (1977) and later by Bristol (1979) to address the perceived limitations of RGA
by using the transfer function models of the system instead of the traditional steady
state process gains. It can give more accurately the extent of interactions that is present
amongst different loop pairing and more insight into the stability of the system, especially
during controller reconfiguration. The denominator of the transfer function models pro-
vides an opportunity to evaluate the magnitude of the elements of relative gain at several

frequencies by setting s = jw.

3.2.3 Reconfigurable PID Controllers

As it is often the case, for any given process, there are several possible sub-optimal
control structures (input-output pairing) for the system, some more effective than others.
The simple reconfigurable PID controller proposed here leverages on the opportunity of
having more than one manipulated variables that can be used to effect control of an
output. Several possible control structures will have to be assessed a priori as explained
in the last section using RGA and DRGA, and then stored for possible implementation
in the event of an actuator fault being identified. Let the control error generated by a

conventional feedback control law in Figure 3.1 be:

e=r—y, (3.9)
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and the control error with back-up feedback signal for an actuator fault in Figure 3.2 be
CR =Tr — Uy (3.10)

where

re =Bl " and y, =B,y (3.11)

B is a weighting matrix block given as:

. By 0
B = diag(B, By) = (3.12)
0 By

B, and (3, during normal operation, are identity and zero square weighting matrices with
dimension (np, np) for the primary controlled variables and back-up feedback signals re-
spectively. The weighting matrices are used to deactivate and activate actual and backup
feedback signal as appropriate during fault-tolerant controller reconfiguration. Substitut-

ing equation 3.11 and equation 3.12 into equation 3.10 gives

€RrR = [r, ] — [yp b
0 Bb 0 Bb

Let the reconfigurable PID controller be

0 0
/Bp g T /Bp T yT]T (313)

Gr=[GI GI”* (3.14)

where G, and G, are the actual controllers used during normal process operation and the
pre-assessed backup feedback controllers to accommodate possible actuator fault occur-
rence respectively. Weighting matrix 8 is also introduced in equation 3.14 in order to

implement the reconfigurable controller, which now becomes
Gre = BGRr (3.15)
The control law for the reconfigurable fault tolerant PID controller is then given as

u = GRceR (316)

The different possible manipulated and controlled variable pairing are assessed a priori

to decide on the reconfiguration pairing upon detection and identification of a fault.
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Figure 3.3: The proposed FTIC for sensor faults

Hence, accommodation of any individual fault is dependent on having a suitable healthy
actuator that is able to provide satisfactory performance in the impaired system. Only
a single fault-tolerant control system is considered in this thesis. However, the approach
can also be applied to duplex FTCS structure. By single and duplex FTCS, we mean a
single and double fault-tolerant control system backup for each pre-assessed actuator fault

provided there are suitable restructurable manipulated and controlled variable pairings.

3.3 Fault Tolerant Control Systems Design for Sen-

sor Faults

Faulty sensor output degrades the performance of a control system, and could significantly
impact on the economy of the plant. It could also potentially lead to disaster if the fault
effect is not quickly and adequately mitigated. Multiple sensors have been used in the
past to accommodate the effects of any potential failure in sensors, particularly for safety-
critical systems. The use of analytical means to achieve the same purpose has been on
the increase in the last few decades. Analytic methods are also used in some cases to
detect and identified sensor faults, particularly for the model-based FDD. This work uses
DPCR and DPLS approaches to estimate primary controlled variables whose values could
be affected by potential faulty sensors using appropriate measured uncontrolled secondary
variables as part of a fault-tolerant control scheme. Figure 3.3 presents the structure of the

proposed fault-tolerant control system for sensor fault accommodation. The sensor fault-
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tolerant controller is referred to as fault-tolerant inferential controller (FTIC) and shares
the same DPCA FDD scheme with FTC for actuator fault accommodation. Sensor faults
are detected and diagnosed in the same way as actuator faults using Hotelling’s 7 and
SPE monitoring statistics together with their contribution plots, as discussed in Section

3.2.1.

3.3.1 Soft Sensor Estimator Using DPCR and DPLS

The soft sensor estimator block in Figure 3.3 computes estimates of the primary controlled
variables using both DPLS and DPCR with the procedures detailed in Section 2.6. The
two approaches each produces an estimate for every controlled variable in the system, and
the more accurate estimate, that is the estimate that is closest to the actual measured
controlled output is selected for that particular controlled variable. This exercise is carried
out with the data collected during normal operation of the system to determine the best
approach for each controlled variable. In order to achieve this, several matrix blocks are
first identified, each containing variables that have good correlation with and best describe
a particular output. The matrix blocks are then used with the best approach as explicated
in Section 2.6 to develop soft sensor estimates of the primary controlled variables (y,)
before, during and after occurrence of sensor faults. The expression below presents the
relationship between the estimates and the actual measured controlled variables pre and

post-fault era.

Yp est = Yp for <ty
ypiest 7& yp fOT t Z tf

(3.17)

where y, .+ and y, are vectors of estimates and actual measured controlled outputs, ¢ is
a time instance during the simulation and t; is the time a sensor fault is declared. The
element of y, . corresponding to that of faulty y, is then used in place of the faulty
sensor output for continued safe and satisfactory operation of the concerned control loop.

Next section gives more details on how this is achieved.

3.3.2 Fault Tolerant Inferential Controller

Inferential control is a control strategy that has been implemented in the industry for
decades. It is usually employed in situations where the controlled variables are not read-

ily accessible (i.e. cannot be measured directly) or have substantial time delay (Kano et
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al., 2000; Zhang, 2006b) and need to be inferred from measured secondary variables that
have strong correlation with the controlled variable. Its application in this thesis is rather
for substitution of faulty sensor outputs to maintain the integrity of the whole control
system. Essentially, empirical models developed from process data is used to achieve the
inference. However, care must be taken when there is strong correlation among the mea-
surement variables to be used for the estimation as collinearities will inflate the variances
of the least squares estimators. This could in turn lead to inaccurate model parameters
estimations and ultimately inaccurate inferred values for the controlled variables, which is
why principal components (PC) are used to estimate the model parameters as presented
in equations 2.64 and 2.65. In the proposed FTIC, a redundant controlled variable sig-
nal is always available through the soft sensor scheme which is then called upon after a
sensor fault is identified. From Figure 3.3, let the controlled variables compared with the

references r, be

y;; - le yp + Bs2 ypfest (318)

where (51 and (s are weighting matrices used to implement the measured and estimated

controlled variable signals. (4 is defined as:

lezl fO?" t<tf
Ba # 1 for t>1y

During normal operation, (s is an identity matrix while S is a zero matrix. However,

(3.19)

when a sensor fault is declared, the faulty sensor is isolated and the diagonal element of
Bs1 corresponding to the faulty sensor changes to zero while its corresponding diagonal
value in s changes to 1. This mechanism is used to ensure that controlled variable

feedback signals, whether measured or inferred are always available for control purposes

« /o

- obtained in

thereby maintaining the integrity of the whole control system. The

equation 3.18 is the vector containing the feedback signals for the controlled outputs.

3.4 Fault Tolerant Control System Design for Actu-

ator and Sensor Faults

The complete FTCS that is capable of accommodating sensor and actuator faults is

presented in Figure 3.4. It combines the capabilities of both the actuator FTC and the
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Figure 3.4: FTCS for combined actuator and sensor faults

sensor FTC. Using Figure 3.4, the controlled outputs feedback signal for the FTCS (y,)

in equation 3.11 now becomes:

yy =B [y;T ylﬂT = [(dmg(ﬁsl Yp + Bs2 yp,est))T ylﬂT (3.20)

Hence, error generated by the FTCS in equation 3.10 is given as:
T . T
en=0([ry 3] — [(diag(Bs yp + Bs2 Ypest))” w3 ]") (3.21)

Structure of the control law “u” presented in equation 3.13 remains unchanged and it is
capable of tolerating both actuator and sensor fault. It is assumed that only one actuator
fault can occur at any given time. However, the F'TCS is able to accommodate sensor and
actuator faults occurring successively. The DPCA FDD scheme is designed to detect and
diagnose both actuator and sensor faults, and depending on the fault identified, the FTCS
implements appropriate scheme using the reconfiguration mechanism part of the system.
If an actuator fault is declared, the identified actuator fault is isolated and an appropriate
control restructuring is undertaken to select a new set of controlled variable — manipulated
variable pairing for the entire system, thereby reducing the dimension of the control
structure by one. The predefined controller settings are then implemented while the FDD

scheme continues to monitor the process post-fault era to guarantee its safe operation. If
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the detected fault is a sensor fault, the feedback control loop involving the faulty sensor
will not be functional and the fault-tolerant inferential control is implemented, by-passing

the faulty sensor.

3.5 Summary

We have undertaken in this chapter, the design of simple restructurable feedback controller
using backup feedback signals, switchable reference points, restructurable PID controllers
and redundant controlled variable estimates to accommodate sensor and actuator faults.
The FDD scheme that monitors the system was developed using DPCA data-based ap-
proach to detect and identify actuator and sensor faults. RGA and DRGA tools are used
to analyse different possible control structures and stability of the system. We have also
explained the mechanism through which controller reconfiguration is achieved including
how the soft sensor estimates of the controlled variables are obtained. Procedures in-
volved in the development and implementation of actuator FTC and sensor FTC were
explained with clarity. Lastly, how the integrated FTCS functions as a complete system

to accommodate actuator and sensor faults was described.
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Chapter 4

Implementation of the Proposed
FTCS for Actuator Faults

Accommodation on Distillation

Columns

4.1 Introduction

Design and implementation of FTCS for the oil and gas industry, particularly the distil-
lation process is the main focus of this thesis. The distillation column is among the most
common and energy intensive units in any refinery operation. It is fundamental to the
chemical and process industries, which is why its dynamics and control has been studied
extensively. Implementation of the actuator faults tolerant control system proposed in
Chapter 3 on three different distillation processes with varying degrees of complexities
under normal operation and faulty circumstances is presented in this chapter. This is to
demonstrate the flexibility of the approach under various actuator faults. The developed
FTCS for actuator fault, as described in Section 3.2, is first implemented on a binary
distillation column with two primary control loops (Lawal and Zhang, 2015), and then
on a fractionator, the Shell heavy oil fractionator with three primary control loops and
four measured secondary variables (Lawal and Zhang, 2017b). Lastly, the control system
is implemented on a crude distillation unit with several interactive primary control loops

and numerous indirectly controlled secondary variables.
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4.2 Application to a Binary Distillation Column

Figure 4.1 presents the binary distillation column, the first of the three case studies on

which the actuator FTC is to be implemented.

4.2.1 Process Description and Control Strategies Prior Assess-

ments

The binary distillation column studied here is a comprehensive nonlinear simulation of a
methanol-water separation column. The column has ten theoretical stages and is used to
separate feed with 50% weight fraction methanol into methanol with 95% weight fraction
and water containing 5% weight fraction of methanol as the distillate and bottom products
respectively. Disturbances in the system are changes in feed flow rate and feed composi-
tions. A nonlinear stage-by-stage dynamic model of the column has been developed using
mass and energy balances. The simulation has been validated against pilot plant test and
is well known for its use in control system performance studies (Tham et al., 1991a; Tham
et al., 1991b; Zhang and Agustriyanto, 2003). The assumptions imposed on the column
model include negligible vapour hold-up, perfect mixing in each stage, and constant liquid
hold-up. Table 4.1 presents a summary of the column steady-state conditions. There are
five control loops in the column, as presented in Figure 4.1 — column pressure, condenser
level, reboiler level, top and bottom composition control loops. However, only the top and
bottom control loops are considered in the simulation as it is assumed that the column
has perfect pressure control, and so do levels in the condenser and reboiler. Levels in the

condenser and reboiler are controlled by the top and bottom flow rates respectively.

Table 4.1: Nominal column operating data

Column Parameters Values

No of theoretical stages 10

Feed tray )

Feed composition (Z) 50% methanol

Feed flowrate (F) 18.23 g/s

Top composition (Yp) 0.95 (weight fraction)
Bottom composition (Xp) 0.05 (weight fraction)
Top product flow rate (D) 9.13 g/s

Bottom product flow rate (B) 9.1 g/s

Reflux flow rate (L) 10.11 g/s

Steam flow rate (V) 13.81 g/s

The column is controlled using reflux-vapour (LV') control strategy where the top com-
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Figure 4.1: Binary distillation column

position (Yp) is controlled by the reflux flow rate (L) and the bottom composition (Xp)
by the steam flow rate (V) to the reboiler. The column has a 2 by 2 control structure

with the process model given as (Zhang and Agustriyanto, 2003):

1.09e—%  —1.30e~5
Yp(s) _ E5lo7T 137271 L(s) (4.1)
2.27¢=55  _7.18¢75% '
Xp(s) 715571 2950571 V(s)

Only RGA is used to assess the column control structure. Using equation 3.8 the elements

of the RGA is obtained as:

1.6053 —0.6053
A= (4.2)

—0.6053  1.6053
Elements of the RGA confirm the input-output pairing of the binary distillation column.
A fault in one actuator will leave the other as the only healthy actuator that could be
used to control either output. These possibilities are explored during the simulation, and

the column PI controller settings during normal and faulty conditions are presented in

Table 4.2.
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Table 4.2: Distillation column controller settings

Controller parameters

PI loop 1 PI loop 2
Kpl E Kp2 T;
Normal operation 45  18.67 -20 184

Reflux actuator fault acc. — - -101 13.5
Steam actuator fault acc. 70.7 21 - -

4.2.2 Process Simulation under Normal and Faulty Conditions

The column was simulated in MATLAB for 1300 minutes with 30 second sampling time
to give a total of 2600 data points for normal process conditions. The top and bottom
product compositions are measured by composition analysers with 10 sampling time delay
(5 minutes). A combination of 10% and 5% changes in feed flow rate and feed composition
were randomly introduced into the system during simulation for both normal and faulty
conditions. After collection of data for normal process condition, low and high magnitude
faults were also introduced into the system at different times to simulate fault cases.
This was achieved by restricting the flow of reflux and steam rates to represent stuck
valves, thereby acting as actuator faults. Seven actuator faults were investigated for the
reflux and steam actuators, and Figure 4.2 presents the column with faulty actuators.
Details of the faults are presented in Table 4.4. Four low magnitude actuator faults
(F1, F3, F6, and F7) were investigated, with values of the manipulated variables held
close to their respective steady state values. The first 2 low magnitude faults (F'1 and
F3) were investigated for low magnitude fault detectability while the last 2 low magnitude
faults (F'6 and F'7) were introduced to investigate effects of disturbances on low magnitude
faults propagation and detectability. Also, two high magnitude actuator faults (F'2 and
F4) and a combination of the two high magnitude actuator faults (F'5) were considered.
The fault cases were each simulated for 750 minutes to collect 1500 samples. A total of
14 variables are monitored during simulation: the top and bottom product compositions,
the manipulated variables — reflux and steam flowrates, and the ten tray temperatures,

as presented in Table 4.3.

4.2.3 Actuator Faults Diagnostic Model Development and FDD

Random noises with zero means and 0.15 and 0.001 standard deviations are first added to

the ten tray temperatures and the top and bottom compositions respectively, to represent
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Table 4.3: Variables for the binary distillation column

Variables Variable description

Variable 1~ Top composition [weight fraction]

Variable 2 Bottom composition [weight fraction]

Variable 3 Reflux flow rate [g/s]

Variable 4  Steam flow rate [g/s]

Variable 5 Stage 10 temperature [°C]|

Variable 6 ~ Stage 9 temperature [°C]

Variable 7 Stage 8 temperature [°C]

Variable 8  Stage 7 temperature [°C]

Variable 9 Stage 6 temperature [°C]|

Variable 10  Stage 5 temperature [°C]|
°C]
°C]
°C]
°C]

o
o
o

o

Variable 11 Stage 4 temperature |°
Variable 12 Stage 3 temperature
Variable 13 Stage 2 temperature
Variable 14 Stage 1 temperature

o

o

o

Table 4.4: Distillation column fault list

Fault Fault description

F1 Reflux valve stuck between 7-10 g/s after sample 750

F2 Reflux valve stuck between 5- 8 g/s after sample 750

F3 Steam valve stuck between 10-14 g/s after sample 750

F4 Steam valve stuck between 10-13 g/s after sample 750

F5 Reflux and steam valves stuck @ 8 g/s and 13 g/s after samples 750 and
1150 respectively

F6 F1 repeated with feed flow rate disturbance introduced after sample 900

F7 F3 repeated with feed flow rate disturbance introduced after sample 900

true measurements of the data collected during normal operating conditions in Section
4.2.2. Figure 4.3 presents the top and bottom compositions, their respective manipulated
variables and the ten tray temperatures for normal operating conditions.

A DPCA diagnostic model with one time-lagged measurements was developed using
the procedures described in Section 2.4.2 with the first 1600 samples out of the 2600
collected under normal operating conditions while the last 1000 samples were used for
validation. The data was scaled to zero mean and unit variance to obtain matrix X in
equation 3.1 where u includes reflux and steam flow rates, y, includes the top and bottom
compositions, and y, comprises of the ten tray temperatures. Four principal components
account for 82.17% variations in the original data and are sufficient to develop the DPCA
diagnostic model. The diagnostic model developed for the fault free system is applied to
the seven faulty data sets to detect faults. Figure 4.4 presents the 7% and SPE monitoring
plots for the fault-free system while Figure 4.5 and Figure 4.6 show those of the seven
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Reflux valve actuator fault

Steam valve actuator fault

Figure 4.2: Binary distillation column with faulty actuators

fault cases (F'1 — F7). The red line in Figures 4.4 — 4.6 is the 99% control limit. A
fault is declared after the control limits are violated for four successive sampling times to
reduce the occurrence of false alarms. Once the presence of an actuator fault is detected,
further fault identification analysis is carried out through contribution plots as described
in Section 3.2.1 to identify variables that are responsible for the fault, and ultimately
isolate the fault. Figures 4.7 and 4.8 present the excess contribution plots for the fault
cases detected, with the blue and yellow bars representing excess contributions of each

variable at the point of fault declaration and the next sampling time respectively.

4.2.4 Implementation of Actuator FTC on Identified Actuator
Faults

The proposed reconfigurable FTC scheme is implemented on the distillation column upon
detection of an actuator fault. The two actuators investigated in the system are reflux
flow and steam flow actuators with varying degrees of faults as presented in Table 4.4.
The error signals generated by the system during normal operation for the top and bottom

composition controllers (G,) in equation 3.13 is:
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Figure 4.4: T? and SPE monitoring plots for the fault-free system
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1000/ 100 0] |y
0100]|]|r 0100

e = 2 U2 (4.3)
0000]||m 000 0]|] ym
0000/ me 000 0] me

where 1,1, Tp2, Yp1, and y,e are the reference points and outputs of the primary controlled
variables while ry1, 742, yp1, and yo are the backup feedback signals for reference points
and the primary controlled outputs respectively. It can be observed that weightings
for the backup signals are zeros. When an actuator fault is detected and subsequently
identified, for instance, the reflux flow actuator, the reconfigurable controller is then
activated using the only healthy actuator, in this case the steam valve actuator provided

the top composition is deemed more valuable. Equation 4.3 then becomes:

000 0] |rm 000 0]/ yn
o000 e | 000 0]y »
R

0010]]|m 0010/|]yn

000 0] | 000 0/ v

and the control law for accommodating the reflux valve actuator fault is obtained using

equation 3.16 as:

Uy 00 0 0 0
Ug 00 0 O 0
u= = (4.5)
Up 00 Gp O Th1 — Yb1
Upa 00 0 0 0

Equation 4.5 presents the reconfigured controller that accommodates the reflux valve
actuator fault using the steam valve actuator while the bottom composition is left uncon-

trolled. The procedure is the same if the steam valve actuator fault is declared.

4.2.5 Results and Discussions

Figures 4.5 and 4.6 show the T2 and SPE plots for faults F'1 to F'4 and F5 to F7
respectively. Figure 4.7 shows the contribution plots for F'2 and F4 while Figure 4.8
presents those of F'5 and F'7. Figures 4.7 and 4.8 present the excess contributions of each

variable to the larger than normal value of T at the point of fault declaration. By excess
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contributions, we mean the difference between contributions of each variable to the values
of T? at the point of fault declaration and their respective average contribution under
fault free conditions. From the analysis of T2 and SPE plots shown in Figures 4.5 and
4.6, the monitoring statistics for faults F'2, F'4, '5 and F'7 exceeded their control limits
at different times during the simulation, so these faults were detected. Faults F'2 and
F5 were detected 13 sampling times (6 mins 30 sec.) after introduction, at sample 763,
while it took 115 sampling time (approximately 58 mins), at sample 865 for fault effect
to manifest in F'4 as presented in Figure 4.5. Fault 7 (F'7) was detected at sample 969,
approximately 110 minutes after it was introduced as shown in Figure 4.6. Note that faults
F'3 and F'7 are the same with the exception of disturbances introduced after the faults to
investigate the effects of the disturbances on the faults propagation and detectability. A
10% increase in feed composition disturbance was introduced at sample 900 in the case
of F'3 while the same magnitude of disturbance in feed flow rate was introduced in the
case of F'7, also at sample 900.

Basically, disturbances do affect fault propagation and detection in the column and
could amplify a rather minor undetected fault as shown in the case of F'7 which was
detected 69 sampling times (approx. 35 minutes) after the disturbance was introduced.
Further analyses were conducted to identify the faults using contribution plots upon dec-
laration of a fault. The T2 contribution plots gave a more consistent indication of the
variables responsible for the faults; hence only 72 contribution plots are used for fault
identification in this instance. In the case of F2 and F'5 where reflux actuation faults
were identified, the contribution plot as shown in Figure 4.7 identified the top composi-
tion and the top four tray temperatures (variables 1, 11, 12, 13, 14, 25, 26, 27 and 28)
as the major contributors to the out-of-control situation. Analysis of the 72 contribution
plots presented in Figures 4.7 and 4.8 combined with the process knowledge aided the
fault identification. For instance, when the reflux actuator fault occurred (stuck reflux
valve), and after it was detected, the contribution plot isolates variables indicative of the
fault. The detected reflux actuator fault with reduced reflux flow caused the top tray
temperature measurements to rise significantly which ultimately led to the top composi-
tion drifting out of control. Hence, the contributions of these variables (top composition
and the top tray temperatures) to the 7 monitoring statistics increased significantly as
presented in Figures 4.7. The rise in the top tray temperature measurements as a con-
sequence of reduced reflux flow is peculiar to the reflux actuation fault, which aided its

isolation. Similarly, observing contribution plots for F'4 and F'7 as presented in Figures
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Figure 4.9: Responses of the top and bottom compositions to F2 and F5 reflux actuator
faults accommodation

4.7 and 4.8, when the steam actuator fault occurred, the bottom composition drifted out
of control which also affected the steam controller output and the bottom tray tempera-
tures. These effects manifest in the larger than average contributions of these variables to
the T2 values at the point of fault declaration and beyond. This was the pattern exploited
in the fault identifications as different faults show different variable contributions to the

T? values after an occurrence of a fault.

As mentioned in Table 4.4, F'1, F2 and F6 are all reflux actuator faults of different
magnitudes; while F'3, F4 and F'7 are steam actuator faults, also of different magnitudes.
F'5 is a combination of reflux and steam actuator faults, with the reflux actuator fault
occurring first. Observations from Figures 4.7 and 4.8 show different variable contribution
patterns which aided fault isolation. Faults F'1, F3 and F'6 were not detected because
only small changes were made to the values of the two actuators which were close to
the nominal values of the two manipulated variables as shown in Table 4.1 under reflux
and steam flow rates. The resulting values for the process variables were within normal
operating conditions. Fault 6 (F'6), a rather minor undetected fault in F'1, was affected
by the amplifying effect of the disturbance (increased in feed flow rate after sample 900)
on its propagation which moved it to marginal stability.

Clearly, the conventional LV control strategy used for the binary column normal op-
eration could not accommodate the actuator faults. Hence, the control strategy in the
column is restructured by switching to a one-point control strategy where the only re-

maining healthy actuator, steam flow rate actuation in the case of F'2 and F'5 or reflux
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Figure 4.10: Responses of the top and bottom compositions to F4 and F7 steam actuator
faults accommodation

flow rate actuation in the case of F'4 and F'7 is used to accommodate the faults and
maintain the more valuable of the two compositions within an acceptable range while
the other is uncontrolled. Steam flow actuation was immediately reconfigured and im-
plemented to tolerate reflux valve faults, F'2 and F'5 by manipulating the steam flow
rate to directly maintain the top composition at its set point thereby tolerating reflux
valve actuator faults in F'2 and F'5 as presented in Figure 4.9. Table 4.2 presents the
reconfigurable PI controller settings for the column under normal and faulty conditions.
Similarly, upon detection of steam flow actuator faults, F'4 and F'7, the column control
structure was reconfigured and immediately switched to reflux valve one-point control by
manipulating reflux flow rate to directly maintain the bottom composition at set point
if the bottom composition is deemed more important, thereby tolerating the steam flow
actuation faults F'4 and F'7 as shown in Figure 4.10. It is worth mentioning at this point
that, the fault accommodation approach implemented in this case is sub-optimal as it is
practically impossible to use one manipulated variable to maintain both top and bottom
compositions at their set points. The sub-optimal fault accommodation approach pro-
vides desirable performance and will be far more acceptable than shut-down. SP, Unc.
and Acc. are used in Figures 4.9 and 4.10 to represent set point, uncontrolled fault and
accommodated fault respectively. The effects of the disturbances, feed flow rates and the

feed compositions after the faults were well compensated for by the actuator FTC scheme

as can be observed in Figures 4.9 and 4.10.

4



4.3 Application to the Shell Heavy QOil Fractionator

@_
—

”l
O

— 5
NA 'l
UPPER REFLUX ¥y "@ T,

P
’ /( %’ Y4 é) FI 1op praw
d, -

INTERMEDIATE REFLUX

iy

BOTTOM REFLUX
-V
Ry ’
QEn 1N
CONTROL \l?
u, . o
3 (D

FEED BOTTOMS

SIDE
STRIPPER

——D—H—
) % Y,
A
SIDE DRAW

Figure 4.11: Shell heavy oil fractionator

4.3 Application to the Shell Heavy Oil Fractionator

The proposed actuator FTC scheme is applied to the Shell heavy oil fractionator in this
section. It is the second case study to be considered under the proposed actuator FTC.
Figure 4.11 presents the schematic diagram of the system. The system is relatively more
complex than the binary distillation column considered in the previous section. There are

more interactions amongst the control loops.

4.3.1 Process Description and Control Loop Pairing

The Shell heavy oil fractionator benchmark used here was developed by Shell Company
as a test bed for the assessment of new control theories and technologies in 1986 (Prett
and Morari., 1987; Vlachos et al., 2002). It is a highly constrained multivariable process
with large dead times and very strong interactions amongst its control loops. The original
system is slightly modified in this study by relaxing some of its constraints for the purpose
of actuator faults accommodation. The heavy oil fractionator has five inputs and seven
outputs, and it provides a realistic test bed for control related studies. The process

was modelled using a first-order plus dead time transfer function matrix. Three out
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Table 4.5: Variables for heavy oil fractionator

Variables Output variables

Variable 1 Top end point (y;)

Variable 2 Side end point (y2)

Variable 3 Top temperature (ys3)
Variable 4 Upper reflux temperature (yy)

Variable 5 Side draw temperature (ys)
Variable 6 Inter. reflux temperature (yg)
Variable 7 Bottom reflux temperature (y;)

Input variables

Variable 8 Top draw (u;)

Variable 9 Side draw (us)

Variable 10 Bottom reflux duty (us)
Disturbance variables
Inter. reflux duty (d;)
Upper reflux duty (ds)

of the 5 inputs (top draw — wy, side draw — us and bottom reflux duty — u3) into the
system are used as manipulated variables, directly maintaining 3 process outputs (top
end point — y, side end point — y» and bottom reflux temperature — y7) at their set
points while the remaining 2 inputs — intermediate reflux duty (d;) and upper reflux duty
(do) serve as unmeasured disturbances into the system. The other four outputs are not
controlled. Table 4.5 gives the full listing of all the system variables. The manipulated
variables are subject to saturation (+0.5) and rate limit (£ 0.05 per sample time) actuator
hard constraints, which introduce non-linearity into the system. The disturbances are
bounded within absolute values not more than 0.5. The complete model of the system is
given in Table 4.6 while Figure 4.12 presents the system with different back-up feedback
signals (indicated by dashed lines) for possible implementation of actuator fault tolerant
controller. The system is controlled using three reconfigurable PI controllers with integral
anti-windup.

The input-output selection for the control configuration was achieved after careful
analysis of the system coupled with the use of RGA analysis as described in Section
3.2.2.1. The transfer function matrix of the system given in equation 4.6 is used to obtain
the steady state RGA for the system as shown in equation 4.7. Based on the RGA values,
the manipulated variables uq, us and us are used to control y;, y» and y7 respectively under
normal operating conditions, producing a 3x3 control configuration. Possible controller
reconfigurations are pre-assessed using the RGA tool for the input-output pairings under

different faulty conditions.
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Table 4.6: Shell heavy oil fractionator transfer function model parameters

Top draw Side draw Bot. reflux Int. reflux Upper reflux
(u1) (u2) duty (us) duty (d1) duty (d2)
K T 0 K T 0 K T 0 K T 0 K T 0
Top end point (y1) 4.05 50 27 177 60 28 588 50 27 1.20 45 27 144 40 27
Side end point (y2) 539 50 18 572 60 14 690 40 15 152 25 15 183 20 15
Top temperature (y3) 3.66 9 2 1.65 30 20 553 40 2 1.16 11 0 1.27 6 0
Upper reflux temp. (ya) 592 12 11 254 27 12 810 20 2 1.73 5 0 1.79 19 0
Side draw temp. (ys) 4.13 8 5 238 19 7 6.23 10 2 1.31 2 0 1.26 22 0
Inter. reflux temp. (y6) 4.06 13 8 418 33 4 6.53 9 1 1.19 19 0 117 24 0
Bottom reflux temp. (y7) 4.38 33 20 442 44 22 720 19 0 1.14 27 0 126 32 0
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Figure 4.12: Schematic of the Shell heavy oil fractionator integrated with FTCS
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The input-output pairing for controller reconfiguration of the three actuator faults,
F'1 —top draw actuator fault; F'2 — side draw actuator fault; and F'3 — bottom reflux duty
actuator fault investigated in this case study is also determined. When a fault is declared

and identified, for instance top draw actuator fault (F'1), we are left with just two healthy
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Table 4.7: Controlled and manipulated variables pairing

Manipulated Inputs

Controlled Outputs Normal F1 F2 F3
Top end point (y;) Uy uz  uz -
Side end point (ys) Us Uy U U
Bot. Reflux Temp. (y7) Us - =y

Table 4.8: Shell heavy oil fractionator reconfigurable PI controller settings

Controller parameters

Normal F1 F2 F3
Controlled Output Loop K, T; K, T; K, T; K, T;
Top end point 0.05 0.0215 0.2 0.004 0.21 0.0056 - —
Side end point 0.45 0.0160 0.45 0.016 0.20 0.001 0.45 0.016
Bot. Reflux Temp. 3 0.005 - - - - 1 0.020

actuators, side draw and bottom reflux duty actuators (uy and wg) to maintain three
outputs at set points. This is unrealizable using the conventional PID control strategy.
Therefore only two outputs are controlled directly while the third is uncontrolled. We
have chosen the top draw and the side draw end points (y; and y;) as the outputs to
control after actuator fault (F'1 — w;) was declared by appropriately reconfiguring the
remaining healthy actuators. An example of the RGA matrix obtained under F'1 is given
in equation 4.8 and Table 4.7 presents the inputs-outputs pairing for the three fault cases.
Table 4.8 presents the PI controller settings for the reconfigured controllers under normal

condition and each faulty actuator.

—0.570  1.5702
RGAFm = (48)

1.5702 —0.5702

where Ap; is the RGA for F'1.

4.3.2 Process Simulation under Fault-Free and Faulty Condi-

tions

The heavy oil fractionator was simulated without actuator faults in Simulink for 2000
minutes with 1 minute sampling time as shown in Figure 4.13 to collect 2000 samples
of the seven outputs and three manipulated variables. Intermediate reflux duty (d;)
and upper reflux duty (ds) serve as disturbances and were randomly introduced into the

system during normal process operation. Gaussian noise of zero mean and 0.003 standard
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Figure 4.13: Heavy oil fractionator Simulink model
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Figure 4.14: Input and output responses to set-point changes and disturbance

Table 4.9: Heavy oil fractionator fault list

Fault Fault description

F1 Top draw actuator fault — control valve stuck at 0.5
F2 Side draw actuator fault — control valve stuck at 0.5
F3 Bottom reflux duty actuator fault — control valve stuck at 0.5

deviation were added to each of the 7 outputs to represent true measurements of the
data collected. Figure 4.14 presents the system actuator outputs under normal operating
conditions and their respective outputs responses to changes in set-points and introduction
of disturbances. Details of the three actuator fault cases (F'1, F2 and F'3), one each for
the three actuators (uq,us and ug) are presented in Table 4.9. The fault was introduced
in each case at 800 minutes as a constant value of 0.5 (i.e. control valve stuck to 0.5).

The fault cases were each simulated for 2000 minutes to collect 2000 samples.

4.3.3 Actuator Fault Detection and Diagnosis

Precisely the same procedure applied in the methanol-water separation column to detect
and diagnose actuator faults was used here. 1100 samples of the 2000 samples collected
during normal operating conditions were used to develop the DPCA diagnostic model
with one time lag while the remaining 900 samples were used for validation. The training
data set was scaled to zero mean and unit variance. Three principal components which
account for 86.95% variation (e = 3) in the original data are used to develop the DPCA

diagnostic model for process monitoring and actuator FDD. Figure 4.15 shows the process
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Figure 4.15: T? and SPE monitoring plots for training and testing data
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Figure 4.16: T? and SPE monitoring plots for faults F1 — F3

monitoring performance indices for the training and testing data sets. The developed

diagnostic model is then applied to the three faulty actuator cases in the Shell heavy oil

fractionator to detect possible fault occurrences. A fault is declared when the monitoring

indices, T? and SPE violate their respective limits for four consecutive sampling times to

ensure no false alarm is recorded. Figure 4.16 presents the Hotelling’s T2 and SPE process

monitoring performance for the three faults (F'1 — F'3). After a fault is declared, its root

cause is further investigated through contribution plots which provide information on the

contribution of each variable to the faulty scenario thereby aiding its isolation.
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4.3.4 Implementation of FTC on Identified Actuator Faults

When there is an actuator fault, the 3 by 3 control configuration used for normal process
operation will have to be restructured, settings of the reconfigurable controllers retuned
and the set points switched as appropriate upon detection and isolation of an actuator
fault in order to maintain the integrity of the system. This is achieved through the
feedback and set points backup signals as shown in Figure 4.12. The different pre-assessed
input-output pairings presented in Table 4.7 and the appropriate reconfigured controller
settings presented in Table 4.8 are implemented, depending on the fault identified. The
error vector generated for the reconfigurable controller for the system during normal

operation is obtained as equation 4.9 using equation 3.13.

_100000_ _rpl- _100000_ _ypl—
01 00O0O T'p2 01 00O0O Yp2
o — 001000 T'p3 001000 Yp3 (4.9)
000O0O0O Tp1 000O0O0O0 Yol
000O0O0O0 Tb2 000O0O0O0 Yp2
00 0O0O0O | 763 | 00 0O0O0O | Y3

where 1,1, rp2, 7p3 are the reference points for the system outputs; yp1, Yp1, Yp1 are the
outputs; 71, 72, Tp3 are the backup signals for reference point and vyp1, ype, Yp3 are the
corresponding outputs backup feedback signals. When the top draw actuator fault (F'1)

is declared and the fault tolerant controller reconfigured as appropriate, equation 4.10 is

obtained.
00 0O0O0OTO O Tp1 0 00O0O0OTO 0 Ypl
01 00O0O Tp2 01 0O0O00O0 Yp2
00 0O0O0OTO O r 0O 00O0O0O@ O
A o s (4.10)

000100 1 000100 Ypl
00 0O0O0OTO Th2 000O0O0OO 0 Yb2
00 0O0O0OTO O 753 000O0O0OTO 0 Yn3

Then, the fault tolerant control law under F'1 is given as
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Uy O 0 0 0 00 0
U2 0 G2 0 0 0 0 Tp2 — Yp2
U3 O 0 0 0 00O 0
u= = (4.11)
Upy 0 0 0 Gn 00 Tv1 — Yn1
Upa O 0 0 0 00 0
Up3 O 0 0 0 00O 0

As shown in equation 4.10 and equation 4.11 above, the weightings for different signals
are activated and deactivated as appropriate to accommodate the fault declared and sub-

optimally maintain the system within acceptable operating region.

4.3.5 Results and Discussions

The three actuator faults investigated in this system — top draw actuator fault (F1),
side draw actuator fault (F'2) and the bottom reflux duty actuator faults (F'3) were all
detected. The DPCA diagnostic model monitoring statistics, 7% and SPE detected the
top draw actuator fault (F'1) 11 minutes and 8 minutes respectively after its introduction
as presented in Figure 4.16. Side draw reflux actuator fault (F2) violated the 7% and
SPE monitoring limits at 809 and 807 minutes respectively while bottom reflux duty
actuator fault (F3) was detected at 808 and 806 minutes respectively. Hotelling’s T2 and
SPE variable contribution plots are analysed at the point an actuator fault is detected to
investigate the root cause of the fault. The variable contribution plots shown in Figure
4.17 present excess contributions of each variable to the average values of T? and SPE
that led to the fault being declared. Top temperature (variable 3) and top draw (variable
8) contributed significantly to the fault, as identified by 7% contribution plot. The SPE
contribution plot shows side end point, top temperature, upper reflux temperature, side
draw and bottom reflux duty (variables 2, 3, 4, 5, 8 and 10) as the major contributors to
the faulty situation recorded. A critical analysis of the effect of top draw actuator fault
(F'1), depending on the magnitude of the fault shows a similar effect on the variables
identified by the diagnostic model as being responsible for the fault.

Though the T2 and SPE contribution plots give indications of the likely causes of the
fault, however an understanding of the system is still required to make the connections
between the fault detected and the variables identified by the isolation technique. The side

draw actuator fault (F'2) was caused by a significantly large value of side draw (variable
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Figure 4.17: T? and SPE excess contribution plots for faults F1 — F3

9) which is the output of the faulty actuator as identified by the contribution plots. SPE
contribution plots in addition to the faulty actuator output also show top end point, side
end point, upper reflux temperature and intermediate reflux temperature (variables 1, 2,
4,6 and 9) as the variables responsible for the fault, as presented in Figure 4.17. Similarly,
side draw temperature, intermediate reflux temperature, bottom reflux temperature and
bottom reflux duty actuator output (variables 5, 6, 7, and 10) are identified by the T2
contribution plots as the variables responsible for the bottom reflux duty actuator fault
(F3). SPE contribution plots indicate the top end point and the top draw actuator
(variables 1 and 8) as the root causes of the fault. The pattern observed in this system
for the bottom reflux duty actuator fault (F'3) is similar to the one observed in the steam

valve actuator fault for the methanol-water separation column.

After the fault is detected and isolated as either being top draw actuator fault (u;),
side draw actuator fault (us) or bottom reflux duty actuator fault (ug), it has to be
accommodated in order to stabilise the system and ensure its continued safe operation,
at least sub-optimally. When top draw actuator fault (u;) occurs, clearly the 3 by 3
control structure will not be functional and depending on the severity of the fault, one
of the remaining two healthy actuators, side draw actuator (uy) and the bottom reflux
duty actuator (us) are reconfigured to control the top end point (y;) as presented in
Table 4.7. Reflux duty actuator (ug) is reconfigured to maintain the top end point at set

point, leaving the bottom reflux temperature (y7) uncontrolled, as shown in Figure 4.18.
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Figure 4.18: Output responses of accommodated actuator fault 1 (F1)

The control structure reconfiguration was achieved through the backup feedback signals
presented in Figure 4.12. Appropriate backup feedback signals, in this case r,; and
were activated by changing their weightings from 0 to 1 and at the same time changing
the weightings of the corresponding feedback signal to zero, as shown in equation 4.10.
SP, NF, FR and AFR in Figures 4.18 — 4.20 represent set points, no faults, fault responses
and accommodated fault responses respectively. It can be observed from Figure 4.18 that
the bottom reflux duty was able to maintain the top end point at set point despite the
influence of disturbances. Also, the performance of side end point control loop was slightly

affected due to the strong interaction in the system.

In the case of side draw actuator fault (F'2), none of the two remaining healthy actu-
ators (u; and ug) was able to accommodate the fault. Though the RGA analysis suggests
the top draw (u;) should be able to maintain the side end point (y2) at set point, however
its performance was very poor as can be observed from Figure 4.19. FTC was recon-
figured to a 2 by 2 structure controlling the top end point (y;) and side end point (y2)
by manipulating bottom reflux duty (u3) and top draw (u) respectively making use of
the backup feedback signals and reference point reconfiguration mechanism. The bottom
reflux duty was able to keep the top end point at set point. However, the top draw was
not effective in maintaining side end point at set point. The bottom reflux temperature

is uncontrolled having reduced the control configuration to 2 by 2.

The same scenario was observed when the bottom reflux duty actuator fault (u3) was
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Figure 4.19: Output responses of accommodated actuator fault 2 (F2)

declared. Neither of the two remaining healthy actuators, top and side draw actuators
(u; and uy) were able to control the bottom reflux temperature. Figure 4.20 presents
the fault tolerant controller performance for the bottom reflux duty actuator fault (£3)
where top draw actuator (u;) was reconfigured to control y;. Observations from Figure
4.20 shows that implementation of fault tolerant controller in this particular case could

not improve the system performance.

4.4 Application to Crude Distillation Unit

The preservation of the integrity of crude distillation unit in the presence of actuator
faults through the implementation of the proposed actuator FTC is presented in this
section. The crude distillation unit is a complex energy intensive industrial distillation
process with substantial time lag and severe interaction amongst its control loops. The
use of a control system in CDU only ensures system stability and consistent production
of quality products as long as no fault occurs. However, in the presence of control system
component faults, such as actuator fault, a more robust control system with automatic
components containment capabilities will be required to provide desirable performance in
the system. Implementation of the proposed actuator fault tolerant control system, as

detailed in Chapter 3, on such a complex process demonstrates the simplicity, effectiveness
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Figure 4.20: Output responses of accommodated actuator fault 3 (F3)

and applicability of the accommodating strategy in the presence of actuator faults. A
dynamic HYSY'S model of the crude distillation unit investigated in this thesis is presented
in Figure 4.21. The dynamic CDU model has been used in previous works by Yu et al.
(2008) (in Chinese) and Zhou et al. (2012) to investigate multi-objective optimization of

industrial CDU and inferential estimation of kerosene dry point respectively.

4.4.1 Crude Distillation Unit Process Description

The crude distillation unit in HYSY'S consists of a train of heat exchangers, an atmospheric
CDU with a 3-phase condenser attached, a vacuum CDU, three pumparound cooling
circuits, three side draws with stripper attached to each, crude furnace, several separator
vessels and 29 control loops, as presented in Figure 4.21. Three different crudes designated
as standard, middle and heavy are created in HYSYS. However, only standard crude was
used throughout the simulation with random introduction of middle and heavy crudes
during simulation, representing approximately 2% of the total volume of crude charged
into the system. This introduction serves as disturbances in the system, representing
changes in composition of the standard crude. The crude is heated to 185°C' through series
of exchangers by exchange with hot intermediate streams from the crude and vacuum

columns before entering the furnace where its temperature is raised to 360°C, the
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4.4 Application to Crude Distillation Unit

temperature at which it enters the atmospheric column flash zone. The focus of this thesis
is mainly on the atmospheric crude unit, hence operations and control of the vacuum unit

is not discussed.

The crude mixes with the bottom boil-up vapour and the steam injected into the bot-
tom separator vessel to strip the lightest hydrocarbons from the column bottom residue.
As the hot vapour from the flash zone rises, it is contacted by the colder reflux flowing
down the column. The pumparound circuits and the overhead condenser provide the
reflux that is used to condense the side liquid products. The products from the system
are naphtha, kerosene, diesel, atmospheric gas oil (AGO) and the CDU residue. The side
liquid products are kerosene, diesel and AGO; and are drawn from column stages 9, 17
and 22 respectively. The side products are transferred into their respective side strippers
with attached reboiler and separator vessels with steam injection lines to strip the prod-
ucts off lighter hydrocarbons. The pumparound streams are drawn from stages 2, 17 and

22; and the cooled pumparound streams are returned to stages 1, 16 and 21 respectively.

The column has 29 control loops — 20 flow control loops, 6 level control loops, 2
temperature control loops and 1 pressure control loop. The flow control loops are used to
maintain the flowrates of specific streams including pumparound, side draw, steam and
products rate. The level controllers are used as master controllers together with some flow
controllers in a cascade control settings to control liquid percentage levels in the separators
attached to the pre-flash column, the main column, side strippers and liquid level in the
overhead condenser. The temperature controllers control the temperature of the crude
entering the flash zone and that of the vapour leaving the top of the column, while the
pressure controller controls the pressure of the 3-phase condenser. Details of all the
controlled variables (y;) — manipulated variables (u;) pairing and their respective nominal
operating conditions are presented in Table 4.10, while Table 4.11 presents the column
nominal values for some selected process variables. The complete list of all the seventy-
one process variables monitored in the system is presented in Appendix A. The controllers
are used to maintain the flow, temperature and pressure profile of the column, which in
turn maintain the specified product quality variables for the system. The product quality
variables used for the CDU are ASTM D1160 cut-points at 0% and 100% for kerosene,
ASTM D1160 cut-points at 90% and 95% for diesel, ASTM D93 flash points for kerosene
and AGO, and AGO viscosity at 210F.
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Figure 4.22: Interactions between HYSYS and MATLAB application

4.4.2 Development and Simulation of Interactive Dynamic Crude

Distillation Unit

The dynamic crude distillation model in HYSYS is integrated with MATLAB programme
to create an interactive dynamic crude distillation simulator, through which effective
implementation of the proposed actuator fault tolerant control system could be achieved.
This requirement is fundamental to successfully implement the actuator FTC because it
allows flow of information between the two applications. The CDU model to monitor
and control resides in HYSYS while the actuator FTC system is developed in MATLAB.
Hence, the requirement to automate the operation, monitoring and implementation of
the proposed FTCS on the dynamic CDU model in HYSYS becomes necessary. Figure
4.22 illustrates the interface between the two applications. First, an active connection
is created in MATLAB that allows it to connect and simulate the dynamic CDU model
in HYSYS for a specified period of time. Then different sub connections are created
in MATLAB to access objects in the CDU HYSYS model that contain the variables
of interest. These are process variables that need to be monitored, manipulated and
controlled in some cases to ensure that actuator faults are quickly detected, identified and

accommodated, depending on the severity of the fault identified.

To minimise the number of object connections to be created in MATLAB, an appro-
priate number of spreadsheet objects are created in HYSYS that contain all the different

variables and parameters that may need to be adjusted as appropriate during the simula-
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Table 4.10: CDU control structure

No Controllers Controlled Variables Manipulated Variables Nominal Valve
Opening
1 FIC-PA1 1st pumparound mass flow Valve PA1 desired position  85.70%
2 FIC-PA2 2nd pumparound mass flow Valve PA2 desired position  77.33%
3 FIC-PA3 3rd pumparound mass flow Valve PA3 desired position  56.65%
4 TIC-100 Crude flash zone temperature Q-103 control valve 48.51%
5 FIC-103 Stream 48 mass flow Valve 103 desired position  32.10%
6 LIC-104 V-104 liquid percent level Separator V104 liquid level 49.37%
7 FIC-104 Stream 43 mass flow Valve 104 desired position  41.59%
8 FIC-105 CDU steam mass flow Valve 105 desired position  50.83%
9 TIC-106 Vap out temperature FIC-106 SP 34.27%
10 FIC-106 Reflux mass flow Valve 106 desired position — 32.66%
11 PIC-107 OP-101 Condenser Pressure FIC-107 SP 92.61%
12 FIC-107 Stream 2 mass flow Valve 107 desired position  90%
13 FIC-108 LP Offgas mass flow Valve 108 desired position 0%
14  LIC-110 OP-101 liquid percent level FIC-110 SP 59.50%
15  FIC-110 Naphtha draw flow Valve 110 desired position  30.97%
16 FIC-111 Side draw 1 mass flow Valve 111 desired position  39.13%
17 LIC-112 OP-100 reboiler liquid percent level FIC-112 SP 7.58%
18  FIC-112 Kerosene mass flow Valve 112 desired position — 21.27%
19 FIC-113 Side draw 2 mass flow Valve 113 desired position  79.07%
20 FIC-114 Side stripper 2 steam flow Valve 114 desired position  35.35%
21 LIC-115 Separator V-115 liquid level FIC-115 SP 57.13%
22 FIC-115 Diesel mass flow Valve 115 desired position  73.34%
23  FIC-116 Side draw 3 mass flow Valve 116 desired position — 74.16%
24  FIC-117 Side stripper 3 steam flow Valve 117 desired position  76.73%
25 LIC-118 Separator V-118 liquid level FIC-118 SP 82.62%
26  FIC-118 AGO mass flow Valve 118 desired position  90.00%
27  LIC-119 Separator V-119 liquid level FIC-119 SP 47.46%
28 FIC-119 CDU residue mass flow Valve 119 desired position — 42.29%

tion. The spreadsheets created in HYSY'S include spreadsheets for all the process variables
of interest, the manipulated variables, controlled variables, disturbance variables, process
quality variables, and the percentage maximum control valve openings. Figures 4.23 shows
the spreadsheet of all the process variables monitored in the system. Data in the spread-
sheets are accessed and stored in MATLAB during simulation. The disturbance variables
spreadsheet is used to randomly introduce disturbances into the system during simula-
tion while the actuator fault spreadsheet is also used to introduce faults into the system.
The process variables collected during the simulation include temperature and flow rate
measurements of the crude flash zone, pump-arounds, side draws, reflux stream, and the
temperature measurements of all the 29 stages in the column. Flow rates and tempera-

tures of naphtha, kerosene, diesel, AGO, the CDU residue and the ratios of the feed rate
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Table 4.11: Nominal crude distillation unit operating conditions

Selected Process Variables Values
Crude mass flow 235,200 kg/hr
Crude temperature 15.65°C

Crude flash zone flow

Crude flash zone temperature

Reflux flow rate

Reflux flow temperature

Vapour out flow

Vapour out temperature

Column bottom boil-up

First pumparound flowrate

First pumparound return temperature
Second pumparound flowrate

Second pumparound return temperature
Third pumparound flowrate

Third pumparound return temperature
First side draw flow rate

First side draw flow rate

Second side draw flow rate

Second side draw flow rate

Third side draw flow rate

Third side draw flow rate

Naphtha to crude feed ratio

Kerosene to crude feed ratio

Diesel to crude feed ratio

AGO to crude feed ratio

CDU residue to crude feed ratio

Heat flow to the furnace

209,200 kg/hr
360°C

68,550 kg/hr
22°C

125,800 kg/hr
138°C

9,931 kg/hr
121,600 kg/hr
119°C

50,000 kg/hr
200°C

35,000 kg/hr
245°C

15,000 kg/hr
199°C'

65,000 kg/hr
245°C

20,000 kg/hr
327.2°C

0.221

0.03062
0.2351
0.06921
0.4439

1.198¢+008 k.J/h

to each of the products flow rates are also included. The automated HYSYS-MATLAB
CDU model is simulated for 600 minutes with 30 seconds sampling time to collect 1200
data points under normal operating conditions. An example of the MATLAB code used
for the simulation is presented in Appendix B. A total of seventy-one variables including
the controlled variables, some manipulated variables and the disturbance variables are
monitored during the simulation. Figures 4.24 and 4.25 present the plots of some select
process variables and those of the product quality variables for the system during normal
operating conditions. Table 4.12 presents the nominal values of the product quality vari-
ables. The system is also simulated for 400 minutes with 30 seconds sampling time for
the five different actuator faults investigated in this section (F'1 — F'5) as shown in Figure

4.26. Details of the actuator faults are discussed in Section 4.4.4.
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[~ Spreadsheet: CDUData = ==
| Connections | Parameters | Formulas | Spreadsheet | Calculation Order | User Variables | MNotes |
- Current Cell
Imported From: [Pa3s | Exportable
Variable: ITemperature | Angles in: | | [ Edit Rows/Columns
A e D E
1 2.352e+005 kg/h 2218C 248.0 kPa 1.06%e+004 kg/h 2454C
2 1565C 2314C 1848 C 4229 kg'h 360.0 C
3 1822 C 2451C 246.2 kPa 219.2C 2.092e+005 kg/h
4 1770C 2730C 1714 C 2398 C 138.0C
5 1B38C 2849 C 5.1972+004 kg/'h 3182cC 1.2582+005 kg/h
6 1881 C 3073C 2184 C 980.9 kg/h 0.2210
7 1914 C 3148C 7202 kg/h 506.9 kg/h 3.062e-002
8 1943 C 3273C 2295C 3502 kg/h 0.2351
Q 197.0C 3407 C 5.529e+004 kg/h 6.855e+004 kg/h 6.921e-002
10 1991 C M76C 2289 C 9931 kg/h 04439
11 2020C 3510C L628e+004 kg/h 1.200e+005 kg/h 1.500e+004 kg/h
12 2052 C 3531C 3007 C 1197 C 6.500e+004 kg/h
13 2084C 3553C 1.044e+005 kg/h 5.000e+004 kg/h 2.000e+004 kg/h
14 2120C 3584 C 3479C 2004 C 1.198e+008 ki/h
15 2162 C 3535C 7798 kg/h 3.500e+004 kg/h
Delete l [ Function Help... l [ Spreadsheet Only... l [ ignored

Figure 4.23: Spreadsheet for all the monitored process variables

4.4.3 Control Strategies Prior Assessment

The current control structure of the system as presented in Figure 4.21 and discussed in
Section 4.4.1 needs to be modified to allow for implementation of our proposed actuator
FTC on the system. Majority of the controlled variables that we are interested in are
indirectly controlled by maintaining the flow rates of some of the streams including pump-
arounds, side draws and products draw rates. After careful consideration of the CDU
current control structure and taking into consideration advice from experts, we decided
to restructure some of the control loops to directly control some variables using suitable
manipulated variables. At first, through consultation of relevant literature and careful
observation of the system, 12 controlled variables which include temperatures of the stages
where side products are drawn and the flow rates and temperature of some of the products
were selected. Also, 12 possible manipulated variables that could be used to directly

control
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Figure 4.24: Plot of some selected process variables
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Figure 4.25: Dynamic CDU product quality variables
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Table 4.12: CDU process quality variables

Process Quality Variables Values
Kero Cut Pt: ASTM D1160 — Atm (Cut Pt-0.0%) 184.9°C
Kero Cut Pt: ASTM D1160 — Atm (Cut Pt-100.0%) 241.7
Kero Cut Pt: ASTM D93 Flash Pt 71.28°C
Diesel Cut Pt: ASTM D1160 — Atm (Cut Pt-90.0%) 341°C
Diesel Cut Pt: ASTM D1160 — Atm (Cut Pt-95.0%) 354.9°C
AGO Cut Pt: ASTM D93 Flash Pt 139.1°C
AGO Cut Pt: Viscosity @ 210F 3.22 cP

the selected controlled variable were selected as presented in Table 4.13. The twelve
selected control loops are each simulated in open loop for 700 minutes with 30 second
sampling time, making necessary changes to their set points to collect sufficient data for
model identification. Data for the open loop responses to changes in the manipulated

variables collected during simulation was then used to develop a set of first and second
order plus dead time (FOPDT & SOPDT) models using System Identification Toolbox
in MATLAB.

Table 4.13: Initial 12 by 12 inputs — outputs reconfiguration for actuator FTC

No Controllers Controlled Variables Manipulated Variable

1 FIC-PA1 SS-2 return flow rate 1st pumparound mass flow
2 FIC-PA2 Stage 17 temperature 2nd pumparound mass flow
3 FIC-PA3 Stage 22 temperature 3rd pumparound mass flow
4 FIC-104 CDU residue mass flow Crude flash zone mass flow
5 FIC-105 Bottom boil-up flow CDU bottom steam 2

6 FIC-106 Vap out temperature Reflux mass flow

7 FIC-111 Kerosene product mass flow SS-1 draw rate

8 FIC-114 Diesel temperature SS-2 steam

9 FIC-117 AGO temperature SS-3 steam

10  FIC-113 Diesel product mass flow SS-2 draw rate

11  FIC-116 AGO product mass flow SS-3 draw rate

12 TIC-100 Crude flash zone temperature Furnace heat flow

The 12 by 12 model of the system is presented in Appendix C and was used to
investigate the level of interactions amongst the loops using RGA and DRGA analysis.
Several rigorous simulations and analysis of the system were undertaken based on the
results of the RGA and DRGA suggested controlled variable (y;) — manipulated variable
(u;) pairing. A number of the pairing suggested by the tools drive the system to marginal
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4.4 Application to Crude Distillation Unit

stability and in some cases make the system unstable. Reasonable efforts were made to
reduce the model to a manageable 5 by 5 system in order to implement the proposed

actuator FTC on the automated CDU system.

Table 4.14: Reduced 5 by 5 inputs — outputs pairing

No Controllers Controlled Variables Manipulated Variable

1 FIC-105 Bottom boil-up flow (9,931 kg/h) CDU bottom steam 2 (3,500 kg/h)
2 FIC-106 Stage 1 temperature (138 °C) Reflux mass flow (68,550 kg/h)

3  FIC-114 Diesel temperature (228.9 °C) SS-2 steam flow (1,000 kg/h)

4 FIC-117 AGO temperature (309.7 °C) SS-3 steam flow (500 kg /h)

5 TIC-100 CFZ temperature (360 °C) Furnace heat flow (1.198e+08 kJ/h)

Details of the reduced model inputs — outputs pairing is shown in Table 4.14 and
equations 4.12 and 4.13 present the FOPDT models and the RGA results respectively. The
reduced fault free system has bottom boil-up flow (), stage 1 temperature (yz), diesel
temperature (y3), AGO temperature (y4) and crude flash zone temperature (y5) being
directly controlled by CDU bottom steam (u;), reflux flow rate (ug), side stripper 2 (SS-
2) steam flow rate (u3), side stripper 3 (SS-3) steam flow rate (u4) and furnace heat output
(us) respectively. The new reconfigured pairing using the manipulated variables to directly
control the selected controlled variables is again simulated to ensure effective control of
the outputs. The performances of the new control structure using PID controllers tuned
with the IMC tuning tool in HYSYS is compared with those of the original structure
for the selected controlled variables and presented in Figure 4.27. Table 4.15 presents

the PID controllers’ settings used for the reconfigured system during fault free and faulty

situations.
30.85 0.0321e=5-3%  0.0065¢—'5*  0.00014e~'-5%  6.18e—07e"12¢
5+26.11 140.0865 540.054 540.361 540.0068
0.0145 —0.055931 0.0271e~09-5¢ 0.0247 7.39e—06e0-5%
5+0.064 14+1.001s 540.099 540.101 540.0778
—2.59 -2
Gs(s) = | 008556  —0.0535e—2-5% —0.301 0.0485 1.61e—05e~2¢ (4.12)
5+0.098 1+1.414s 5+0.575 5+0.129 5+0.1536
0.03637  —2.095¢~!4:5%  —0.0055¢—3-5% —0.2837 0.00011¢~10-5s
540.078 5+41.2 540.031 5+0.256 1+1e—06s
0.17986  0.00035¢—%¢ 0.191 0.182 0.000173
L 14+2.95s 540.0114 1+1.012s 14+1.37s 5+1.46
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11472 0.0427 0.0191 —0.0015 —0.2075 |
0.0344 0.5563 0.3548  0.0723 —0.0178
Ags(s) = | 0.0138 0.0647 0.6097  0.1529  0.1589 (4.13)
—0.0473 0.0580 0.0205  0.7805  0.1882
—0.1481 0.2783 —0.0042 —0.0042 0.8782

where G5 and Ags are the transfer function models of the reduced 5 by 5 system and the

corresponding RGA respectively.

Having established a stable operation of the fault free system with the restructured
controllers and achieved effective control of the selected outputs, possible reconfiguration
of the control structure is undertaken in the event of an actuator fault occurring in any of
the five control loops. RGA and DRGA tools as described in Sections 3.2.2.1 and 3.2.2.2
are used a priori to investigate possible control structure reconfiguration upon detection
of an actuator fault. For instance, a fault in the CDU bottom steam (u;) control valve
will reduce the system to a 5 by 4 control structure where four manipulated variables are
available to maintain five controlled variables at desired set points. Non-squared RGA is
first used to eliminate the least effective controlled variable thereby reducing the system
to 4 by 4 after which RGA and DRGA are used to select possible input-output pairing.
The decision on the controlled variable to leave out in the effect of an actuator fault could
also be due to economic reasons, and most importantly what is physically and technically
achievable given the circumstance. Equations 4.14 — 4.23 show the reduced 4 by 4 models
for each of the five faults and their respective RGA results. Example application of the
DRGA system interaction analysis tool for the input-output pairing and reconfiguration
of the fault-free system and the reduced system under an actuator fault respectively is
presented in Appendix D. However, not all the faults can be accommodated by switching
the manipulated variables, even for the fault-free system as observed during the initial
fault free simulation. Table 4.16 presents the possible inputs — outputs reconfiguration

upon detection and identification of an actuator fault.

—0.055931 0.0271e¢—0-5s 0.0247  7.39e—06e—9-5°
14+1.001s 540.099 s+0.101 54+0.0778
—0.0535e—3-59s —0.301 0.0485 1.6le—05e—2*
1+1.414s s4+0.575 s+0.129 54+0.1536
Gri(s) = 4.14
( ) —2.095¢—145s  _0.0055e~3-5%  —0.2837  0.00011e10-5s ( )
s+41.2 s40.031 s4+0.256 14+1e—06s
0.00035¢ 6 0.191 0.182 0.000173
s+0.0114 1+1.012s 14+1.37s s+1.46
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4.4 Application to Crude Distillation Unit

Table 4.15: Reconfigurable actuator FTC PID settings

Y1 Y2 Y3 Ya Ys

K, 0.78 0.50 8.35 8.48 0.51

Normal T 0.04 0.30 1.74 3.90 0.69
Tp - - - - -

K, - 0.50 8.35 8.48 0.51

F1 17 - 0.30 1.74 3.90 0.69
Tp - - - - -
K, 0.78 0.25 8.35 8.48 -
F2 17 0.04 13.1 1.74 3.90 -
Tp - 0.25 - - -

K, 0.78 - 0.45 8.48 0.51

F3 17 0.04 - 5.00 3.90 0.69
Tp - - 0.79 - -

K, 0.78 0.50 - 0.58 0.51

F4 T 0.04 0.30 - 2.00 0.69
Tp - - - 1.66 -
K, 0.78 0.50 8.35 8.48 -
F5 17 0.04 0.30 1.74 3.90 -
Tp - - - - -

0.5681 0.3480 0.0685 0.0153
0.0675 0.6130 0.1515 0.1680
Apy = (4.15)
0.0508 0.0176 0.7690 0.1625

0.3136 0.0214 0.0110 0.6541

Table 4.16: Possible inputs — outputs reconfiguration

Manipulated Inputs

Controlled Outputs Normal F1 2 F3 F4 F5
Bottom boil-up flow (y1) Uy - Uy Uy Uy Uy
Stage 1 temperature (y2) Ug Uy Uus - Us Uy
Diesel temperature (ys) U3 Us U3 Us - us3
AGO temperature (y4) on Ug Uy Uy us o
Crude flash zone temp. (ys) Us us - Uus us -

G and Ap; are the transfer function models and the corresponding RGA values for the

reduced 4 by 4 system under actuator fault one (F'1). The resulting y; — u; pairings are
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Yo — U, Y3 — Us, Y4 — uyg and ys — us after isolating u; (CDU bottom steam control valve)

as there is no suitable manipulated variable to control ;.
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Figure 4.27: Controlled variable plot for the reconfigured fault-free system

30.85 0.0065¢—1-58 0.00014e—1-55  §.18e—07e~125
s+26.11 s+0.054 s+0.361 54+0.0068
0.0145 0.0271e—9-55 0.0247 7.39e—06e—0-55
GFQ( s) _ s40.064 540.099 s+0.101 s40.0778
0.03556 —0.301 0.0485 1.6le—05e—28
540.098 s+0.575 s+0.129 s+0.1536
0.03637  —0.0055¢—3-5¢ —0.2837 0.00011e—10-5s
| 5+0.078 s+0.031 5+0.256 14+1e—06s

1.2927 0.0195 -0.0016 —0.3107 ]
—0.1711 0.3482 0.0661  0.7568
—0.0262 0.6113 0.1518  0.2632
—0.0954 0.0210 0.7837  0.2907

(4.16)

(4.17)

G o and Aps are the transfer function models and the corresponding RGA values for the

reduced 4 by 4 system under actuator fault two (F'2). The reconfigured control structure

under F'2 for the inputs — outputs pairings are y; — uy, yo — us, y3 — uz and y4 — uy after

isolating uy (reflux flow control valve fault), leaving y5 uncontrolled.
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Gpg(s) =

30.85 0.0321e5-34s 0.00014e— 155 6.18e—07e— 123
5426.11 14-0.086s 540.361 s+0.0068
0.03556  —0.055931e—3-6s 0.0485 1.6le—05e~2s
54+0.098 1+1.001s s+0.129 s+0.1536
0.03637 —2.095¢ 1455 —0.2837 0.00011e—10-5s
s40.078 s+41.2 s4+0.256 14+1e—06s
0.17986 0.00035¢ 65 0.182 0.000173
142.95s s+0.0114 14+1.37s 5+1.46
1.1254 0.0810 —0.0010 —0.2054
0.0632 0.5421 0.2534 0.1412
—0.0409 0.1038 0.7508 0.1864
—0.1477 0.2731 —-0.0032 0.8779

(4.18)

(4.19)

Grz and Apg are the transfer function models and the corresponding RGA values for

the reduced 4 by 4 system under actuator fault three (F'3) where u, ug,us and us are

reconfigured to control vy, y3, y4, and y5 respectively after isolating the faulty control valve

(us), leaving y, uncontrolled.

GF4(8) =

Apy =

30.85 0.0321e—5-34s 0.0065e¢ 155 6.18e—07e 125
s+26.11 14-0.0865 s4+0.054 540.0068
0.0145 —0.055931 0.0271¢—0-5s 7.39e—06e 055
540.064 14+1.001s 5+0.099 s+0.0778
0.03637  —2.095¢—14:55  —0.0055¢~3-5%  0.00011e~10-5s
5+0.078 s+41.2 s+0.031 14+1e—06s
0.17986 0.00035¢ 65 0.191 0.000173
14+2.95s s+0.0114 14+1.02s s+1.46
1.1363 0.0520 0.0533 —0.2417
0.0281 0.5068 0.5879 —0.1228
—0.0167 0.1651 0.3755 0.4761
—0.1478 0.2762 —0.0168 0.8884

(4.20)

(4.21)

Gr4 and Apy are the reduced 4 by 4 transfer function models and the corresponding RGA

values for the CDU system under actuator fault four (F'4) where y1, y2, y4, and ys are con-

trolled directly using wuq, us, uz and us respectively after control structure reconfiguration

with SS-3 steam control valve (uy4) isolated and y3 uncontrolled.

30.85 0.0321¢—5-34s 0.0065¢—1:5s 0.00014e—1-5s
s+26.11 140.086s s+0.054 54+0.361

0.0145 —0.055931 0.0271¢—0-5s 0.0247
5+0.064 141.001s s+0.099 s40.101
0.03556  —0.0535e—3-59s —0.301 0.0485
s+0.098 1+1.414s s+0.575 s4+0.129
0.03637  —2.095¢— 1455 _0.0055¢—3-58 —0.2837
s4+0.078 s+41.2 s+0.031 54+0.256
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0.8544 0.1287 0.0183 —0.0014
0.0297 0.5435 0.3546 0.0721
Aps = (4.23)
0.0747 0.1632 0.6074 0.1547

0.0412 0.1646 0.0197 0.7746

Grs and Aps are the transfer function models and the corresponding RGA values for the
CDU system under actuator fault five (F'5). There is no suitable manipulated variable
that could be used to directly maintain y; at set point and the system control structure
is reduced to 4 by 4 with y; — uy,y2 — us,y3 — uz and y4 — uy inputs — outputs pairing

respectively.

Table 4.17: Crude distillation unit fault list

Fault Fault description

F1: FIC 105 CDU bottom steam control valve maximum opening restricted to 30% (50.84**)
F2: FIC 106 Reflux flow control valve maximum opening restricted to 28% (32.66**)

F3: FIC 114 Side stripper-2 steam control valve maximum opening restricted to 25% (35.35%*)
F4: FIC 117 Side stripper-3 steam control valve maximum opening restricted to 50% (76.73%*)
F5: TIC 100 Furnace heat flow control valve maximum opening restricted to 44.82% (48.51**)

Note: ** — Nominal operating condition

4.4.4 Introduction of Actuator Faults

The five actuator faults investigated in this CDU case study are presented in Table 4.17.
F1 is the bottom boil-up control valve fault; F'2 is the reflux flow control valve fault; F'3 is
the SS-2 steam control valve fault; F'4 is the S5 —3 steam control valve fault, and F'5 is the
furnace heat flow control valve fault. The full range of throttling of the control valves is
restricted one at a time to values below their nominal operating conditions on 150 minutes
(sample 300) during the simulation. These restrictions limit the ability of the individual
control valve to maintain their respective controlled variables at set point leading to
detection of faults. Effects of the individual faults on the five controlled variables and
the seven product quality variables presented in Tables 4.13 and 4.11 respectively are
shown in Figures 4.28 to 4.37. Figures 4.28 and 4.29 show the effects of F1 on each of
the controlled variables and the process quality variables respectively; Figures 4.30 and
4.31 show those of F'2; Figures 4.32 and 4.33 show the effect of F'3 on the controlled and
product quality variables in that order; Figures 4.34 and 4.35 present the effect of F'4
on the same variables and Figures 4.36 and 4.37 show the effect of F'5 on both sets of
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controlled variables and product quality variables respectively.
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Figure 4.29: Plots of the product quality variables under F1
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Figure 4.33: Plots of the product quality variables under F3
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Figure 4.35: Plots of the product quality variables under F4

106



4.4 Application to Crude Distillation Unit

Bottom BoilUp Flow - F5
T

E T T 0} T T T

£ 9950 Iy T . 5
@ ) \ -

g S800 - — Mermal Operation — — — Operation under F5 T
E QBEH‘} 1 1 1 1 1 1 1

1] 50 100 150 200 250 300 350 400
Wap Out Temperature - F5
139 T T T T

S
13? 1 1 1 1 1 1 1
1) 50 100 150 200 250 300 as0 400
Diesel Temperatune - F5
. 230 T T T = T T T T
& - P PR - —S
@ 228 | Yy - .
&
= 226 1 1 1 1 1 1 1
0 50 100 150 200 250 300 as0 400
AGO Temperature - F5
312 T T T T T T T
] - hY
o 7 -
& 310 ——— e = e
E |
& . N
= 208 1 I i I - 1 1 1
Q 50 100 150 200 250 300 350 400
Crude Flash Zone)- F5
— 388 F T T T T T T T ]
.—_‘;ia.sq— 7 —_—— T e ——— - —_—
o 362 ! u
£ 360 = 7
— 358 b 1 I I I 1 1 1 ]
1) 50 100 150 200 250 300 as0 400
Time (minutes)
Figure 4.36: Plots of the controlled variables under F5
186 F5 - Kero Cut Pt ASTM D1160 - Atm{Cut Pt-0.0%) 243 F5 - Kero Cut Pt ASTM D1160 - Atm(Cut Pt-100.0%)
G o =) i
L \,__’______\_:T}Pb—\.\ E [ e ™ om e = — — —
185 v 242
g ~—————— B
= [
184 241
0 100 200 300 400 0 100 200 300 400
2 F5 - Kero Cut Pt: ASTM D83 Flash Pt 3850 F5 - Digsel Cut Pt ASTM D1 160 - At Cut Pt-80.0%)
e 7 _ ] & rn
a 71.5 F) N o 345 A
£ ¥ ! N
[ [ £
71 340 —L
Q 100 200 300 400 Q 100 200 300 400
370 F5 - Diesel Cut Pt: ASTM D1 180 - Atm(Cut Pt-85.0%) a3 F5 - AGO Cut Pt ASTM D83 Flash Pt
Al
=) [=) ! |
o ~ a f
a 360 i o 140 [T N
5 v ——— = 5
= [~ =
350 138
1) 100 200 300 400 1) 100 200 300 400
F5 - AGO Cut Pt: Viscosity {@ 210F
4 T T T T T T T
£ a5 MNormal Operation — — — Operation under F5 I"ﬂ._, e — — —— e — |
o
2 =
] i i i i i i i
0 50 100 150 200 250 300 as0 400

Time {minutes)

Figure 4.37: Plots of the product quality variables under F5
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4.4.5 Diagnostic Model Development and Faults Detection and

Identification

The 1200 data points collected for all the seventy-one process variables monitored during
the CDU fault-free simulation in MATLAB are used to develop a DPCA diagnostic model
for the system. First, measurement noises are added to all the variables except the feed
charged to product flow ratios. The data is then scaled to zero means and unit variance.
The procedures described in Section 2.4.2 are followed using 800 samples out of the 1200
collected during normal operating conditions to develop the fault detection and diagnostic
model, while the remaining 400 data points are used to validate the model. Five principal
components which account for 85.85% variation in the original data set with one time
lag (I = 1) are sufficient to develop the dynamic PCA diagnostics model. The diagnostic
model is then used to monitor the operation of the interactive dynamic CDU system
under the five faulty conditions to detect and identify possible occurrence of actuator
faults. Figures 4.38 and 4.39 present the T2 and SPE monitoring statistics with control
limit (red line) for the training and validating data sets and those of the five fault cases
(F1—F5) respectively. The values of the 7% and SPE monitoring statistics should be small
and within their control limits in the absence of fault, but large enough to be detected as
fault when one is present. An actuator fault is declared after the limits of both monitoring
statistics are violated for eight consecutive sampling times (4 minutes) simultaneously.
Actuator faults could also be declared faster if the values of the monitoring statistics are
more than double those of their respective limits for two consecutive sampling period.
These criteria are appropriate to eliminate declaration of false alarm, and also because of

the complexity of the system being investigated.

The moment an actuator fault is detected, further fault diagnostic is carried out
through contribution plots of the monitoring statistics to identify the fault. When the
fault is declared, each of the principal components (PC) used to develop the diagnostic
model is checked, in this case five principal components, at the point of fault declaration
to identify the PC that violates its limit (£ limit for each PC). Figures 4.40 to 4.44 present
the PC plots for each of the fault cases. The cumulative effects of the variables responsible
for the PCs going outside their bounds as shown in Figures 4.40 to 4.44 are then presented
pictorially in the contribution plots. Figures 4.45 to 4.49 present the contribution plots

of the five fault cases.
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Figure 4.38: T? and SPE plots for the training and validating data sets
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Figure 4.39: T? and SPE plots for faults 1 — 5 (F1 — F5)
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Figure 4.40: PC plots for fault F1
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Figure 4.41: PC plots for fault F2
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Figure 4.42: PC plots for fault F3
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Figure 4.43: PC plots for fault F4
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Figure 4.44: PC plots for fault F5

4.4.6 Implementation of the Actuator FTC on CDU for the
Identified Actuator Faults

The structure of the control system pre-fault era may need to be reconfigured upon decla-
ration and identification of an actuator fault, so as to preserve the integrity of the control
system and most importantly ensure the CDU system is continued to be operated safely
and economically in spite of the fault. Settings of some of the reconfigured controllers
may also need to be adjusted and the back-up feedback signals switched as appropriate.
As discussed in the previous sections, not all of the five actuator faults investigated in
this case study can be accommodated. This is due to the non-availability of suitable
manipulated variable that could be used to accommodate the faults. Faults F'1 and F5
as described in Table 4.17 could not be accommodated as there are no suitable manip-
ulated variables that could be used to sub-optimally control them. However, fault cases
F2 — F4 are sub-optimally accommodated when identified using different manipulated
variables as presented in Table 4.16. To accommodate the F'2 actuator fault, the error
signal generated by the reconfigurable actuator FTC for the fault-free automated CDU

system during normal operation is given as:
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where 7,; and y,; (i = 1...5) are the system reference points and the primary controlled
outputs respectively; r,; are the reference points backup signals and y,; are the corre-
sponding outputs backup feedback signals. To accommodate reflux flow actuator fault
(F2), the furnace heat flow control valve (us) is reconfigured and its controller settings
(settings in the rectangular boxes) adjusted as presented in Table 4.15. The error signal

for the reconfigured actuator FTC under F2 fault is obtained as:

100 00O0O0O0OO0ODO Tp1 1000 0O0O0OO0OO0ODO
00 0O0O0OO0OO0OO0OOQ OO Tp2 00 0O0O0OO0OO0OO0OO 0OTO
001 00O0O0OO0O0OTO0 Tp3 001 00O0O0O0O0OTO0
00 010O0O0O0O0OTO0 T'p4 00 010O0O0OO0O0OTO0
00 0O0O0OO0OO0OO0OO OO Tp5 00 0O0O0OO0OO0OO0OO 0OTP
€ERF2 = -
00 0O0O0OO0OO0OO0OO OO Tp1 00 0O0O0OO0OO0OO0OO 0OTO
00 0O0O0OO0OT1TTUO0TQO0ODTFO0 Tp2 00 00O0OO0OT1TTQO0TQO0OTFO0
00 0O0O0OO0ODOTO 0O 0O 53 00 0O0O0OO0ODO0OTO0OTQO0OTO
00 0O0O0OO0OO0OO0OOQ 0OTO Tb4 00 0O0O0OO0OO0OO0OOQ 0OTO
00 0O0O0OO0O0OO0OO OO Tb5 00 0O0O0OO0OO0OO0OO OO
(4.25)
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The fault tolerant control law to accommodate F'2 actuator fault is then given as

Uy G 0 0 0 00 0 0O00O0 Tp1 — Ypl
Us 0o 00 0 00 0 0O0O0 0
us 0 0Gs 0 00 O O0OO Tp3 — Yp3
Uy 0 00 G, 00 0 0O0O Tpd — Ypd
iy — us | 0o 00 0 00 0 0O00O0 0 (4.26)
Up1 0o 00 0 00 0 0O0O0 0
Up2 0 0 0 0 00 G 00O Tp2 — Tp2
Up3 0o 00 0 00 0 0O00O0 0
Upa 0o 00 0 00 0 0O00O0 0
| Ups | 00 0 0 00 0 000]][ 0 |

Similarly, the error signals (egp;, i = 3,4) and the fault tolerant control laws (up;) under

actuator faults F'3 and F4 are obtained as

1000 0O0O0OO0OO0ODO T'pl 1000 0O0O0O0OO0ODO Ypl
00 0O0O0OO0OO0OO0OO 0OTO Tp2 00 00O0OO0OO0OTQO0ODTUO OO Yp2
00 0O0O0OO0OO0OO0OO OO Tp3 00 0O0O0OO0OO0OTO0ODTUOTP Yp3
00 010O0O0O0O0OTO0 T'p4 0O0010O0O0OO0O0OTPO0 Ypa
00 0O0O1O0O0OO0O0OTPO0 Tp5 00 0O0O1TO0O0OTQO0TUO0OFPO Yps
ERF3 = -
00 0O0O0OO0O0OO0OOQ OO Tp1 00 00O0OO0OO0OTQO0ODTUO OO Up1
00 0O0O0OO0OO0OO0OOQ 0OTD Tp 00 00O0OO0OO0OO0OUODDO UYp2
00 0O0O0OO0ODOT1TOQO0OTGO 753 000O0O0OO0OOT1TO0OSF®O Ub3
00 0O0O0OO0OO0OO0OO 0OTO Tb4 00 0O0O0OO0OO0OTQO0ODTUOTO Ubd
00 0O0O0OO0OO0OO0OO OO Tb5 00 0O0O0OO0OO0OTQO0ODTUOTP Ups
(4.27)
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w G, 00 0 000 0 00]|/[r—yn
” 0000 000 0 00 0
us 0 000 000 0 00 0
” 000G 0 00 0 00/ 7—uym
iy — us | _ 0 00 0 G5 00 0O 00 Tps — Ups (4.28)
o 0000 000 0 00 0
sz 0000 000 0 00 0
s 0000 0 0 00 Gy 00/ | 15—
- 0 000 000 0 00 0
lws | |0 000 000 0 00| o0
(1000000000 [rm ] [t000000000]][yn
010000000 0]]|mn 010000000 0]|uye
000000000 O0]]|mr 000000000 0]|uys
000000000 O0]]|mr 000000000 O0] |y
0000100000]]|#rs 0000100000/ | uys
€RF4 = -
000000000 0]|m 000000000 0]|]|uyn
000000000 O0]/|m 000000000 O0] |y
000000000 O0]|m 000000000 O0] | us
00000000T10]|m 0000000010] |y
(0000000000 |ms| [0000000000] ]|y
(4.29)
(w | [e 0000000 0 0]y
s 0 Gy 00 0 000 0 0] re—uyo
us 0 0000000 0 0 0
” 0 0000000 0 0 0
om0 000G 000 0 0]y )
un 0 0000000 0 0 0
sz 0 0000000 0 0 0
s 0 0000000 0 0 0
b 00 0 00 0 000 G 0| roa— v
lws| |0 0000000 0 0] o0

The weightings for the primary and backup feedback signals are deactivated and activated
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as appropriate in order to accommodate the identified actuator faults as shown in equa-
tions 4.24 to 4.30 so as to sub-optimally maintain the system within acceptable operating

region and preserve the integrity of both the control system and the process.

4.4.7 Discussion of Results

All the five actuator faults investigated in the dynamic CDU as presented in Table 4.17
are detected using the DPCA monitoring statistics developed in Section 4.4.5 with data
collected during the fault free simulation of the system. Fault case 1 (F'1 — bottom boil-up
control valve fault) was detected at sample 301, a minute after introduction on both 72
and SPE monitoring statistics as presented in the fault monitoring statistics of the 5 fault
cases in Figure 4.39. Fault case 2 (F'2 — reflux control valve actuator fault) was detected
at sample 305 (2 minutes 30 seconds after introduction) for 7% monitoring statistic and
at sample 302 (1 minute after introduction) for SPE monitoring statistic as presented
in Figure 4.39. Fault case 3 (F'3 — SS-2 steam actuator fault) was detected 9 minutes
and 1 minute 30 seconds after introduction, at samples 317 and 302 for 72 and SPE
monitoring statistics respectively. Actuator fault F'4 (SS — 3 steam actuator fault) was
detected at samples 315 and 302 for the 7% and SPE monitoring statistics respectively,
8 minutes and 1 minute 30 second after introduction for the T2 and SPE monitoring
statistics respectively. The fifth actuator fault case (F'5 — furnace heat flow actuator
fault) was detected 4 minutes and 1 minute 30 seconds after introduction, at samples 308
and 302 for the 77 and SPE monitoring statistics respectively.

After an actuator fault is declared, the contributions of each variable monitored in the
system to the fault recorded are further investigated through the variable contribution
plots of the two monitoring statistics. Contributions in excess of normal average variable
contributions to the monitoring statistics at the point of fault declaration are examined
to identify variables responsible for the fault. Normal average variable contributions are
the average contributions recorded for each variable during normal operating conditions.
To achieve this, the plot of each PC used to develop the monitoring statistics, in this case
5 PCs are examined to identify the PC that violates their limits. Figures 4.40 to 4.44
present the PC plots for the 5 fault cases respectively. Table 4.18 summarises the PCs
that violate their bounds (£ limit for each PC), and the cumulative contributions of the

PCs for each actuator fault are presented in Figures 4.45 to 4.49.

Figure 4.45 presents the contribution plots for F'1, and observation from the 72 con-
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tribution plot reveals variables 55 and 53, bottom boil-up mass flow (y;) and the CDU

bottom steam flow (u;) as the two major variables that contributed to the faulty situation.

Table 4.18: List of PCs that violate their limits for faults F'1 — F'5

Faults Principal Components

F1 PC1, PC3, PC4, PC5

F2 PC1, PC2, PC3, PC4, PC5
F3 PC2, PC3, PC4

F4 PC3, PC4, PC5

F5 PC4, PCh

The SPE contribution plot also reveals variables 40, 49 and 69, that is diesel temperature,
SS-2 return temperature and AGO feed ratio in addition to the actual controlled variable
for the control loop as being responsible for the fault. The fault was easily identified
using the two contribution plots due to significantly large changes in the contributions of
those variables associated with the control loop, particularly variables 53 and 55. These
two variables are directly linked to the faulty actuator. The contribution plots for F'2 as
presented in Figure 4.46 show variables 64, 49, 3, 17, 18 and 40; which are temperature
of the vapour leaving the column (y2), SS-2 return temperature, stages 2, 16 and 17 tem-
peratures and diesel temperature respectively as being responsible for the fault according
to the T? contribution plot. The SPE contribution plot for F'2 also shows variable 54;
the reflux mass flow (uy) as variable with significantly large contribution in addition to
variables 64, 3, and 49 which were already picked up by the T? contribution plots. These
variables are closely connected to the faulty control loop. For instance, reduced reflux
mass flow (variable 54) is a consequence of the faulty valve which had a direct negative
impact on variables 64 and 3 — temperature of stages 1 and 2, leading to the identification
of the actuator fault.

For the fault case 3 (F'3), the T? contribution plot as shown in Figure 4.47 identifies
variables 40, 49, 46 and 51; which are diesel temperature (y3), SS-2 return temperature and
mass flow, and SS-2 steam flow (u3) respectively, as the variables with larger than average
contributions to the monitoring statistics. The SPE contribution plot also identified the
same variables as being responsible for the fault. Again, the identified variables are closely
linked to the faulty control valve and can be mapped to the fault. Significant changes
in the values of the contributions of these variables to the monitoring statistics are the

direct consequence of the actuator fault F'3. Figure 4.48 presents the contribution plots
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Figure 4.45: T? and SPE excess contribution plots for fault F1
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Figure 4.46: T? and SPE excess contribution plots for fault F2
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Figure 4.48: T? and SPE excess contribution plots for fault F4
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Figure 4.49: T? and SPE excess contribution plots for fault F5

for F'4. The T? contribution plot reveals variables 1, 69, 41, 42, 47 and 66; the crude oil
mass flow, AGO feed ratio, AGO mass flow, AGO temperature (y4), SS-3 return mass flow
and naphtha feed ratio respectively as being responsible for the fault. SPE contribution
plot also reveals variables 41, 42, and 69 in addition to variables 40 (diesel temperature),
39 (diesel mass flow), 50 (SS-3 return temperature) and 49 (SS — 2 return temperature)
as being the contributing variables to the fault. A critical analysis of the effect of fault
F4 on those variables shows good cause to associate the variables to the fault as they
are closely linked to the faulty control loop. The T2 and SPE contribution plots for F'5
are shown in Figure 4.49. It reveals variable 71, the furnace heat flow (us) to the crude
flash line as the major contributor to the fault. The 72 contribution plot in addition
to variable 71 (us) also shows variables 40 and 49, diesel temperature and SS-2 return
temperature as being contributors while SPE contribution plot reveals variable 62, the
crude flash zone temperature (ys) as another major contributor to the fault recorded.
A fault in the furnace heat flow valve directly affects the crude flash zone temperature
(y5), making the variables — fault mapping easily achievable. Adequate knowledge of the
system being investigated is still required to make the connections between the variables

identified by the contribution plots and the faults declared by the monitoring statistics.
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Figure 4.50: Controlled variables response plot for accommodated F2

Table 4.19 summarises the list of variables responsible for each fault.

The identified faults are accommodated according to the possible actuator FTC re-
configuration presented in Table 4.16. Fault F'1 could not be accommodated as there
was no suitable manipulated variable that could keep it at set point, even in the ab-
sence of any actuator fault, as observed during the system rigorous fault free simulation.
When fault F'2 (uy — faulty reflux flow control valve) is identified and isolated, non-square
RGA analysis suggested y, (stage 1 temperature) is left uncontrolled and the remaining
four controlled loops are maintained. However, further input-output pairing investigation
through RGA and DRGA reveals y, (stage 1 temperature or temperature of the vapour
leaving the column) could be controlled by manipulating us (furnace heat flow rate) as
presented in Table 4.16. Figures 4.50 and 4.51 show the responses of the five controlled
variables and the seven products quality variables to the implementation of the actuator
FTC on the dynamic CDU system to accommodate F'2. The solid blue lines in the figures
are the responses of the controlled variables and products quality variables during normal
operating conditions; the dashed red lines are the responses of the same variables under
faults while the dashed blue lines are the responses of the controlled variables and the

product quality variables to the implementation of the actuator FTC strategy. The actu-
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Figure 4.51: Process quality variables response plot for accommodated F2

ator FTC system is able to accommodate fault F'2, maintaining y» (stage 1 temperature)
at set point and reduced the effects of the fault on other controlled variables while ys
(crude flash zone temperature) is left uncontrolled, as presented in Figure 4.50. Similarly,
the effects of the fault on the product quality variables are reduced greatly, particularly
for the ASTM D1160 cut points at 0% and 100% for kerosene, ASTM D93 flash point for
kerosene and diesel, and ASTM D1160 cut points at 90% and 95% for diesel, as presented
in Figure 4.51. No improvement is recorded on the viscosity at 210F for AGO.

Fault F'3 (us — faulty SS-2 steam control valve) is accommodated by reconfiguring
the actuator FTC using us (reflux flow control valve) to directly maintain y; (diesel
temperature) at set point and the controller settings tuned as appropriate, as presented
in Table 4.15. Figures 4.52 and 4.53 present the responses of the five controlled variables
and the seven product quality variables to the implementation of the accommodating
actuator FTC. The curves are as previously defined above. The actuator FTC is very
effective in accommodating F'3 by quickly returning y3 (diesel temperature) to its set point
and reducing the effect of the fault on other controlled variables, except for y, (stage 1
temperature) which is uncontrolled, as presented in Figure 4.52. The strategy is not so

effective in reducing the effects of the fault on all the product quality variables as can be
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Table 4.19: Variables responsible for faults F1 — F5

Faults Variables
T2 55, 53
F1
SPE 55, 40, 49, 69
T2 64, 49, 3, 17, 18, 40
F2
SPE 64, 3, 71, 49, 54
T2 40, 49, 46, 51
F3
SPE 40, 46, 51, 41, 42, 52, 59
- T2 69, 1, 41, 42, 47, 66
SPE 42, 40, 39, 41, 47, 49, 69
T2 71, 49, 40, 18, 1
F5

SPE 71, 62, 59, 2

observed from Figure 4.53. The strategy was only able to reduce the fault effect on ASTM
D1160 cut points at 90% and 95% for diesel, ASTM D93 flash point for diesel and viscosity
at 210F for AGO; while ASTM D1160 cut points at 0% and 100% for kerosene and ASTM
D93 flash point for kerosene further drifted away from their respective nominal values.
This is because the controller reconfigured to directly maintain ys (diesel temperature)
at set point is direct acting and increased reflux flow rate (us) in order to maintain y; as
set point. This action led to reduced temperature on the top stages of the column which
invariably made the product quality variables to drift further away from their nominal

values. This is a decision that will be made based on the economy of the plant.

Fault case 4 (F4) is accommodated upon identification by reconfiguring the actuator
FTC using uz (SS-2 steam control valve) to directly maintain y4 (AGO temperature) at
set point, leaving y3 (diesel temperature) uncontrolled. Figures 4.54 and 4.55 present
responses of the controlled and product quality variables to the actuator fault accom-
modating strategy respectively. The plots are as previously defined. It can be observed
from Figure 4.54 that the reconfigured actuator FTC was able to maintain y, (AGO tem-
perature) at set point and reduced the effects of the faults on other controlled variables.
However, the results of the accommodating strategy on the product quality variables sug-
gest it is not effective as all the product quality variables further drifted away from their
respective nominal values, as presented in Figure 4.55. The responses of the product
quality variables under F'4 are better than under the accommodating strategy, and it
might be better to leave the fault (F'4) uncontrolled as suggested by the inputs — outputs
pairing tools, RGA and DRGA. Fault case 5 (F'5 — faulty furnace heat flow control valve)
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Figure 4.52: Controlled variables response plot for accommodated fault F3

could not be accommodated as there is no suitable manipulated variable to reconfigure

to keep it at set point.

The actuator FTC works well in situations where there are suitable manipulated vari-
ables that could be reconfigured to accommodate the identified actuator fault. However,
the reconfiguration is not always possible as observed in this case study where F'1 and
F'5 could not be accommodated due to non-availability of suitable manipulated variable
pairing. Hence, the proposed actuator FTC provides an opportunity to sub-optimally
maintain the integrity of control systems in the presence of actuator faults by reconfigur-
ing the structure of the control system to minimise the impact of the fault on the system.
The sub-optimal actuator FTC strategy is system dependent and it needs no additional
hardware, but needs the possible control reconfiguration structure pre-assessed and used
as back-up when necessary. The accommodating strategy is not always applicable, not
only when there are no suitable manipulated variables, but also when the available pairing
during faulty circumstance cannot effectively accommodate the identified fault as evident
in the accommodation of F'4 (faulty SS-3 steam control valve) using ug (SS-2 steam control

valve).

124



4.4 Application to Crude Distillation Unit

a&c%nrrkxlated F3 - Kem Cut Pt: ASTM D1160 - Atm{Cut Pt0.0%) Acogsr%rrkxlated F3 - Kem Cut Pt: ASTM D1160 - Atm{Cut Pt-100.0%)

4

h
— H I —
& 185 = — _ 2 =
a \n a 240 —
E ~ 1= —
A" —
K 180 ~ =2 R —
~—
175 230
a 100 200 300 A0 ] 100 200 300 A0
75 Aecommedated F3 - Kero Cut Pt ASTM D23 Flash Pt Accommodated F3 - Diesel Cut Pt ASTM D1 180 - Atmi Cut Pt-20.0%)
_ 5 __ 360 I,
g Do g L= -
. [~ S ~ — — —
a 70 I a S o o ——
g - g 340 TR ===
= ] = lJi
65 320
1] 100 200 300 A0 ] 100 200 300 A0
Aﬁcgg‘-ﬁmﬂdated F3 - Diesel Cut Pt: ASTM D1 160 - Atmy(Cut Pt-55.0%) 145 Accommedated F3 - AGO Cut Pt: ASTM DE3 Flash Pt
I -
Y I o - S
g L~ g ST
o 3680 by . — ] a 140 ¥l
& [ A ——— 4 Vi o —
= R = S
L
340 135
1] 100 200 300 400 a 100 200 300 400
a5 Accommaodated F3 - AGD Cut Pt Viscosity @ 210F
g T T T T T T T
- e e ——— o —— o —
%ﬁ 35 (e g
-
@aoq b Vi —_— L T L . o ———— |
= MNormal Operation — — — Operation under F3 — — — Operation under Accommodated F3
25
a 50 100 150 200 250 300 350 A0
Time (minutes)
Figure 4.53: Product quality variables response plot for accommodated fault F3
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Figure 4.54: Controlled variables response plot for accommodated fault F4

125



4. IMPLEMENTATION OF THE PROPOSED FTCS FOR ACTUATOR
FAULTS ACCOMMODATION ON DISTILLATION COLUMNS

ﬂc%{n_: modated F4 - Kemo Cut Pt: ASTM D1160 - Atm{Cut Pt-0.0%) Accommodated F4 - Kero Cut Pt ASTM D11680 - Atm({Cut Pt-100.0%)

2425
-~ //_'\_r\______ — o
£ 185 :‘:‘,_—:—‘T‘-——l—r)’\"‘—x________ g 2e2p A
£ Y £ 2415 L
< 184 + 2 Y P _
= - e — 241 RN -
183
L] 100 200 300 400 0 100 200 300 400
12 Accommedated F4 - Kero Cut Pt ASTM D23 Flash Pt Accommodated F4 - Diesel Cut Pt ASTM D1 180 - Atmi Cut Pt-20.0%)
- 345 S
=) ﬁ“h——ﬂ—vf-w\r__"‘_' o M.
@ - — v L340
a 71 A a L
£ N, E 335 - o
= TN = ll\ ST
. —— —— 330 -
70 -
L] 100 200 300 400 0 100 200 300 400
Accommodated F4 - Diesel Cut Pt ASTM D1 160 - AtmiCut Pt-95.0%) 14z Accommodated F4 - AGO Cut Pt: ASTM D23 Flash Pt
360 Y
& S il S . N
= 1 138 ' -——— ==
[=1 [=1
g 350 5 R £ 136 \ - = —
@ 1 i/ a 1 s - —_
= \ / = 134 .~
340 == 132
L] 100 200 300 400 1} 100 200 300 400
4 Accommodated F4 - AGD Cut Pt Viscosity & 210F
& Normal Operation — — — Operation under F4 — — — Opemtion under Accommodated F4
250 e ]
= = — = = = = e
8 3r o i
=l ST T ]
25 I 1 I i I 1 1

o
2
8
g
g
g
g
g
g

Time (minutes )

Figure 4.55: Product quality variables response plot for accommodated fault F4

4.5 Summary

This chapter details application of the proposed actuator fault tolerant controller on three
distillation processes of varying complexities. The implementation of the actuator FTC
on a binary distillation column to accommodate steam and reflux control valves faults
was first discussed, and the strategy proved very effective in accommodating either fault
using the only available manipulated variable based on the plants economic preferences.
The application of the accommodating strategy on the Shell heavy oil fractionator with
relatively more complex interactions than the binary column was also presented. The
strategy was able to accommodate effectively the top end point (y;) using the reflux duty
actuator control valve (u3) upon identification of top draw actuator fault (u;), though not
so effective for the other faults as presented in Section 4.3.5. And lastly, implementation of
the actuator FTC on an interactive dynamic CDU was presented. The CDU represents a
very complex system with severe control loops interaction, and the actuator FTC proved
effective in some cases and not so effective in others, particularly when there are no

suitable inputs — outputs pairing after occurrence of an actuator fault.

This strategy can help improve the availability and performance of control systems
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in the presence of actuator faults and ultimately prevent avoidable potential disasters in
the refinery operation with improved bottom line, profit by sub-optimally maintaining

continued safe operation of the plant during abnormal events.
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Chapter 5

Implementation of Proposed FTCS
for Sensor Faults Accommodation on

Distillation Columns

5.1 Introduction

Sensors play a critical role in any control system, in fact no good control can be achieved
without accurate information on the state of the system. The health of sensors in con-
trol systems is very important, and the presence of faults in such sensors needs to be
quickly accommodated, either through information from redundant sensors or through
analytical means. The use of analytical means to provide alternative measurements of
controlled variables could be achieved through different approaches, and it forms the core
of our proposed sensor fault accommodating strategy. This thesis used dynamic princi-
pal component regression (DPCR) and dynamic partial least square (DPLS) techniques
to infer the controlled variable estimates as described in Section 2.6. Implementation of
the proposed fault-tolerant inferential controller (FITC) to accommodate sensor faults in
distillation processes is presented in this chapter. Applications of the control scheme to
binary distillation column (Lawal and Zhang, 2016a) and crude distillation unit (Lawal
and Zhang, 2016b), as presented here show the effectiveness of the proposed scheme. The
FTIC is a part of a complete FTCS that also includes accommodation of actuator faults.
Implementation of the whole FTCS on sensor and actuator faults in a crude distillation

unit is also presented.
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Top composition
sensor fault

Bottom composition
sensor fault

Figure 5.1: Binary distillation column with faulty Sensors

5.2 Application to Binary Distillation Column

The binary distillation column investigated in this section is the methanol-water sepa-
ration column already discussed in Section 4.2.1. Figure 5.1 presents the column with
faults in its top and bottom composition sensors, which are to be accommodated using

the proposed FTIC.

5.2.1 Process Simulation and Faults Introduction

The distillation column is simulated during normal operating conditions for 1300 minutes
with 30 second sampling time using the reflux-vapour (LV) control strategy. The top
composition (Yp) is controlled by the reflux flow rate (L) and the bottom composition
(Xp) by the steam flow rate (V') to the reboiler. The column is simulated in MATLAB
with a total of 2600 data points collected under the fault-free conditions. Top and bottom
product compositions are measured directly by composition analysers with 5 minutes time
delay. Approximately ten percent step changes in feed composition and flow rate are

introduced as disturbances into the system during simulation in order to generate data
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that is robust enough for fault diagnosis and to also prevent false faults detection. Four
sensor faults are introduced into the system — F'1, F2, '3, and F'4; one at a time, two each
for the top and bottom composition sensors respectively. The top and bottom composition
sensor readings are held at constant outputs of 85% and 3% methanol weight fractions for
F1 and F2 respectively. This represents step changes of approximately -10% and -40%
for the top and bottom composition sensors respectively. In fault cases F3 and F4, the
top and bottom compositions measured values are multiplied by random variables with
values between 0.8 and 0.85 for top composition and values between 0.3 and 0.7 for bottom
composition. This implies random biases, loss of efficiencies with relative magnitudes of
between 10 — 15% and 30 — 70% for the top and bottom composition sensors respectively.
Table 5.1 presents details of the sensor faults. The sensor fault cases are each simulated
for 750 minutes to collect 1500 samples. Fourteen variables are monitored during the
simulation — the top and bottom product compositions, the manipulated variables (reflux
and steam flow rates), and the ten tray temperature measurements. Random noises
with zero means and standard deviations of 0.15 and 0.001 are added to the ten tray
temperature measurements and the top and bottom compositions respectively, to present
the measurements as real plant data. The plots of the ten tray temperature measurements
and the measured top and bottom compositions during normal operations are presented

in Figure 5.2.
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Figure 5.2: Tray temperature measurements and top and bottom compositions
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Table 5.1: Binary distillation column fault list

Fault Fault description

F1 Top composition sensor fault with sensor output stuck at 0.85 after sample 750 (static)

F2 Bottom composition sensor fault with sensor output stuck at 0.03 after sample 750
(static)

F3 Top composition sensor fault with random sensor outputs between 0.85 - 0.80 introduced

after sample 750
F4 Bottom composition sensor fault with random sensor outputs between 0.035 - 0.015

introduced after sample 750

5.2.2 Soft Sensor Estimation

Estimates of the top and bottom product compositions at time ¢ are computed using the
measured uncontrolled secondary variables from the column; these variables are the ten
tray temperature measurements at times ¢ and ¢t — 1 through DPLS and DPCR based soft
sensors. One time lag (I = 1) was sufficient to adequately capture the system dynamics
in this case. The first 2000 samples collected during normal operating conditions are used
to develop the soft sensors, with 1200 samples used for training and the remaining 800
samples used for the predictive model validation. The data is first scaled to zero mean and
unit variance to ensure that all the variables have similar magnitudes. The procedures
detailed in Sections 2.6 and 3.3.1 are followed to obtain the soft sensor estimates. Figure
5.3 presents the top and bottom composition estimates for the training and validating
data sets obtained using both the DPLS and DPCR. It can be observed from the plots
that the two techniques produced approximately the same estimates with little or no
difference at all. Hence, only the estimates obtained through DPCR is used for sensor

fault accommodation in this case study.

Table 5.2 presents the top and bottom compositions model parameters (6y; and 6y;)
and their respective prediction errors on testing data obtained using DPCR as discussed
in Sections 2.6. Since the model is developed using scaled data, and the estimates are to
be used on-line and in real time, there is need for the estimates to be converted back to
the original scale before being implemented for fault tolerant inferential control purposes.

The unscaled identified models are:
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Figure 5.3: Measured and predicted top and bottom compositions

}A/D(t) - ?D —|— leATl (t) —|— edQAT2<t> + ctt + edloATl()(t) —|— anATl (t - 1)—|— (5 1)

edlgATQ(t — 1) 4+ 4 ngoATm(t — 1)

A

XB(t) - XB + GblATl(t) + ebgAT2<t) —|— e —|— 91,10AT10(t> + anATl (t - 1)+
legATg(t - ]_) + -4 HbgoATl()(t - ]_)

(5.2)

where Yp(t) and Xp(t) are the top and bottom composition estimates at time ¢, Yp and
Xp are means of the top and bottom compositions, @41 to G40 and 6y to Gy are their
respective model parameters; AT;(t) and AT;(t — 1) are the deviations of the 10 tray

temperature measurements from their nominal mean values at times ¢t and ¢ — 1.
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Table 5.2: DPCR composition model parameters

Testing data SSE Top Bottom
Composition Composition

No(7) Top comp. Bot. comp. 04 Op;
1 3758.335 1463.879 -0.0958 -0.3259
2 1885.141 1704.118 -0.0197 -0.0135
3 610.680 272.977 0.0880 0.0063
4 596.131 282.444 0.1628 -0.0082
5 540.099 299.222 0.2160 0.0448
6 540.009 302.801 -0.1512 0.0625
7 473.246 307.980 -0.2823 0.0870
8 473.928 307.891 -0.2590 0.0628
9 427.133 306.718 -0.1345 0.0301
10 384.548 313.749 -0.0544 0.0056
11 348.722 312.184 -0.0510 -0.3986
12 338.5243** 312.247 0.0030 -0.3440
13 364.322 268.817 0.0803 -0.0877
14 366.678 267.869 0.1823 -0.0776
15 368.386 265.899 0.2149 0.0175
16 367.722 265.896 -0.1511 0.0399
17 378.624 257.507 -0.1689 0.0339
18 381.404 254.430 -0.2594 0.0652
19 381.871 252.188 -0.1595 0.0406
20 399.469 245.1322%* -0.0345 0.0256

SSE: Sum of squared error;  **: Smallest SSE

5.2.3 Composition Sensor Faults Detection and Identification

The procedures described in Section 2.4.2 is used to develop a diagnostic model with
one time-lagged measurements, using the first 1600 samples out of the 2600 collected
under normal operating conditions while the last 1000 samples are being used for model
validation. The data was scaled to zero mean and unit variance to obtain matrix X in
equation 3.1 where u includes reflux and steam flow rates, y, includes the top and bottom
compositions and y, comprises of the ten tray temperatures. Four principal components
account for 82.17% variations in the original data and are sufficient to develop the DPCA
diagnostic model. The diagnostic model developed for the fault free system is applied to

the four faulty data sets to detect sensor faults.
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Figure 5.4 presents the 72 and SPE monitoring plots for the fault-free system while
Figure 5.5 shows those of the four fault cases (F'1 — F'4). The red line in Figures 5.4 and
5.5 is the 99% control limit. A fault is declared when the control limits for SPE or 7%
are violated for four sampling times consecutively. This helps to reduce the occurrence
of false alarms. Once a sensor fault is detected, further fault diagnostic is undertaken
through contribution plots to identify variables that are responsible for the fault, and
ultimately isolate the fault. Figures. 5.6 and 5.7 present the contribution plots for the
detected sensor fault cases. The contribution plots give indication of variables that have
contributed excessively to the values of the monitoring statistics, thereby causing the
monitoring statistics to go outside their normal operating bounds. Details of how the

contribution plots aided the sensor fault identification are given in Section 5.2.5.

5.2.4 Composition Sensor Faults Accommodation Using FTIC

The proposed sensor fault tolerant controller is implemented on the distillation column the
moment a sensor fault is identified. This is made possible through the use of the relevant
redundant controlled variable signal, which is the estimate provided by the DPCR based
soft sensor and is used in place of the faulty sensor output in the feedback control loop as
presented in Figure 3.3. The controlled variable feedback signals (y,,) used during normal

operation is obtained using equation 3.18 as:

y, = 10 Yp N 0 0 5A/D7DPCR (5.3)
01 Xg 00 XB DPCR

When a sensor fault is identified, for instance, a top composition sensor fault (faulty Yp
value), the diagonal element corresponding to the faulty top composition sensor output
changes to zero to isolate it while the corresponding diagonal element in the redundant
backup feedback signal (DPCR estimate) is activated accordingly. The resulting con-

trolled variable feedback signal during the sensor fault accommodation is then given as:

0 0 Y, 10 Y,
yI,J _ D . ADiDPCR (5.4)
01 Xp 0 0 XB DPCR

The sensor FTIC strategy simply replaces the faulty sensor output with the DPCR inferred
estimates to maintain the integrity of the control system and that of the plant, which in

this case is a binary distillation column. The same procedure is followed if the bottom
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composition sensor fault is identified. Figures 5.8 and 5.9 present the accommodation of

sensor fault cases F'1 — F'2 and F'3 — F4 respectively using FTIC.
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5.2.5 Results and Discussions

All the four sensor faults investigated in the binary distillation column are detected and
properly identified. From the analysis of the 72 and SPE monitoring plots presented in
Figure 5.5, sensor faults F'1 — F'4 were all detected. F'1, top composition sensor fault,
as presented in Table 5.1 was detected at sample 760 on both 72 and SPE monitoring
plots, 5 minutes after it was introduced at sample 750. Fault F'2, bottom composition
sensor fault was detected and identified at samples 796 and 781, some 23 minutes and 15
minutes 30 seconds after introduction on 72 and SPE monitoring plots respectively. Fault
F'3 has similar characteristics with F'1, and it was identified 5 minutes after introduction,
at sample 760 on both 72 and SPE monitoring plots. It took 22 minutes and 7 minutes
at samples 794 and 764 on T? and SPE monitoring plots respectively, for fault F'4 to be
detected, as presented in Figure 5.5.

Upon detection of a fault, further diagnostics are undertaken to identify the actual
fault that has just been flagged through the use of 72 and SPE contribution plots, aided
by a good understanding of the process under investigation. Observations from the 772
and SPE contribution plots shown in Figure 5.6 show that top composition (variables 1
and 15) is the major contributor to the sensor fault F'1. The fault was easily detected due
to a sudden change in the top composition sensor output, causing the system to drift out
of acceptable operating conditions. A similar situation was observed in sensor fault F'3.
The top composition sensor is highly sensitive, even a 5% drift in its output will result in
a declaration of a sensor fault. The contribution of reflux flow rate (variables 3 and 17)
to faults F'1 and F'3 is also significant, but much less than those of variables 1 and 15.
Bottom composition sensor faults F2 and F'4, as presented in Figures 5.6 and 5.7 show
variables 3, 4, 5, 6, and 7 (reflux flow rate, steam flow rate, temperature of stages 10, 9
and 8) as the major contributors to the fault declared from the T2 contribution plot. The
SPE contribution plot for F2 is rather more conclusive, indicating variables 2 (bottom
composition) and 5 (bottom stage temperature) as perhaps the only contributing variables
to the faulty situation. Good knowledge of the process together with contribution plots
aided the fault identification.

The proposed sensor FTIC is implemented on the binary distillation column for the
fault cases F'1 — F'4 upon identification. Figures 5.8 and 5.9 present the responses of
the top and bottom compositions under the sensor fault accommodating strategy. The

inferential control strategy used the soft sensor estimates in place of the faulty sensor
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measurements for feedback control, thereby accommodating the sensor fault. The effects
of feed flow and feed composition disturbances after the faults were well compensated for
by the fault tolerating control approach, as can be observed from Figures 5.8 and 5.9. The

sensor FTIC strategy works quite well in preserving the integrity of the control system.

5.3 Application to Crude Distillation Unit

Real-time sensor faults detection, identification and implementation of the proposed sen-
sor fault tolerant controller, also referred to as fault tolerant inferential controller (FTIC)
on a dynamic crude distillation unit to accommodate sensor faults is presented in this
section. As demonstrated here, faulty sensors need to be quickly identified and isolated in
order to preserve the integrity of both the control system and the process. A detailed de-
scription of the dynamic crude distillation unit on which the sensor FTIC is implemented
was given in Section 4.4.1, and Figure 5.10 presents the unit with the four sensor faults
investigated in this section. Only the important parts of the CDU system that relate
directly to the implementation of the sensor FTIC is described here to avoid repetition.
Figure 5.11 gives a summary of the CDU schematic showing all the input and output vari-
ables into the system, including the disturbance variables (DV) and the products quality
variables (PQV).

The crude distillation unit has a total of 71 variables which include flow rates and
temperatures of all the streams and temperature measurements of all the column stages.
There are three disturbances in the system, namely the crude composition, temperature
and flow rate as shown in Figure 5.11. Crude oil is fed into the atmospheric distillation
unit developed in HYSYS at a temperature of around 15°C'. The crude is then heated to
185°C' through series of heat exchangers by exchange with hot intermediate streams from
the crude and vacuum columns, before entering the furnace where its temperature is raised
to 360°C', the temperature at which it enters the atmospheric column flash zone. The
column has naphtha, kerosene, diesel, atmospheric gas oil (AGO) and the CDU residue
as its products. ASTM D1160 cut-points at 0% and 100% for kerosene, ASTM D1160
cut-points at 90% and 95% for diesel, ASTM D93 flash points for kerosene and AGO, and
AGO viscosity at 210F are the product quality variables used to determine the quality
of the products. The nominal values for the product quality variables are presented in
Table 5.3. Details of the sensor faults investigated in the system as shown in Figure 5.10

are given in Section 5.3.2.
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5.3.1 Process Simulation and Controlled Variables Estimation

The CDU model in HYSYS is first integrated with MATLAB programme to build an
interactive dynamic system that will, in effect aid the implementation of the sensor FTIC
on the crude distillation unit. The FDD system that is used to detect and identify sensor
faults and the sensor FTIC are built in MATLAB and implemented on the CDU system in
HYSYS. Hence, the automation of the simulator for effective sensor FTIC implementation
becomes necessary. The two systems are integrated as described in Section 4.4.2. A
disturbance variable spreadsheet created in the CDU HYSYS model is accessed through
MATLAB programme, and it is used to randomly introduce disturbances into the system
during simulation. The same spreadsheet is used to introduce sensor faults into the
system, details of the sensor faults introduction is given in Section 5.3.2. The automated
CDU simulator is simulated for 600 minutes with 30 seconds sampling time under normal

operating conditions to collect 1200 data points.

Table 5.3: CDU product quality variables

Process Quality Variables Values
Kero Cut Pt: ASTM D1160 — Atm (Cut Pt-0.0%) 184.9°C
Kero Cut Pt: ASTM D1160 — Atm (Cut Pt-100.0%) 241.7
Kero Cut Pt: ASTM D93 Flash Pt 71.28°C
Diesel Cut Pt: ASTM D1160 — Atm (Cut Pt-90.0%) 341°C
Diesel Cut Pt: ASTM D1160 — Atm (Cut Pt-95.0%) 354.9°C
AGO Cut Pt: ASTM D93 Flash Pt 139.1°C
AGO Cut Pt: Viscosity @ 210F 3.22 cP

A total of seventy-one variables including the temperature and flow rate measurements
of the crude flash zone, pump-arounds, side draws, reflux stream, and the temperature
measurements of all the 29 stages in the column, flow rates and temperatures of naphtha,
kerosene, diesel, AGO, the CDU residue and the ratios of the feed rate to each of the
products flow rates are monitored during the simulation. The system product quality
variables during nominal operating conditions and a summary of the flow of information
between the HYSYS model and MATLAB during simulation for FDD and on-line soft

sensor estimation of the controlled variables are presented in Figures 5.12 and 5.13.
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Figure 5.13: Simplified procedures for FDD and CDU PQV soft sensor estimates

Four controlled variables sensor faults are investigated in this section — (1) first
pumparound flowrate; (2) CFZ temperature; (3) CFZ flowrate; (4) stage one temper-
ature/vapour out temperature. Estimates of the controlled variables are obtained using
carefully selected measured uncontrolled secondary variables at times ¢ and ¢ — [ through
DPLS and DPCR based soft sensors. One time lag (I = 1) was sufficient to adequately
capture the system dynamics in this case. 800 out of the 1200 samples collected during
nominal operating conditions are used to develop the soft sensors, where 600 samples are
used for training and 200 samples used to validate the soft sensor models. The data is
first scaled to zero mean and unit variance to ensure that all the variables have equal
weighting in the soft sensor estimates.

The procedures detailed in Sections 2.6 and 3.3.1 are followed to obtain the soft sensor
estimates. The DPLS soft sensor gives more accurate estimates of the four controlled
variables as presented in Figures 5.14 and 5.15, and are used to accommodate the sensor
faults through the proposed sensor FTIC. However, soft sensor estimates during normal
process operating conditions and faulty sensor conditions could be quite different. The
quality of the soft sensor estimates is affected by the propagating fault effect on the
variables used for the controlled variable estimation, just before and at the moment a
fault is identified and isolated. Therefore, certain measures need to be taken during
implementation of the sensor FTIC to ensure system stability and effective sensor FTIC

performance.
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Figure 5.14: DPLS estimates of controlled variables 1 & 2
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Figure 5.15: DPLS estimates of controlled variables 3 & 4
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5.3.2 Flow and Temperature Sensor Faults Introduction, Detec-

tion and Identification

Two sensor faults each for flow and temperature sensor measurements are investigated in
this section, as presented in Table 5.4. Sensor fault F'1 — first pumparound flow sensor fault
was introduced into the system at sample 301. The value of the sensor output is reduced
by 20%, signifying a 20% bias. The second sensor fault F'2 — CFZ temperature sensor
fault also had a 20% reduction in its actual measured value and was equally introduced
at sample 301. Sensor faults F'3 and F4, CFZ flow rate and stage 1 temperature sensor
faults both had 20% biases on their outputs and were also introduced at sample 301.
A gain of 0.8 value was added to each control loop, and the sensor outputs were each
multiplied by the gain to introduce the faults, as presented in Figure 5.10. The system
is then simulated for 400 minutes with 30 seconds sampling time, one at a time for the
four sensor faults. Figure 5.16 shows the effects of each sensor fault on their respective
controlled variable, while Figures 5.17 to 5.20 present the responses of all the product

quality variables to each of the sensor faults.

Table 5.4: CDU sensor fault list

Fault Fault description

F1 1st pumparound flow sensor fault with 20% bias introduced @ sample 301
F2 CFZ temperature sensor fault with 20% bias introduced @ sample 301

F3 CFZ flow sensor fault with 20% bias introduced @ sample 301

F4 Stage 1 temperature sensor fault with 20% bias introduced @ sample 301

After the sensor faults have been introduced into the system, they need to be detected
and isolated as quickly as possible to ensure the system stability and preserve the integrity
of the control system. A DPCA diagnostic model is developed for the dynamic CDU using
the 1200 data points collected for all the seventy-one process variables monitored during
the system fault-free simulation. The procedures described in Section 4.4.5 are followed
using 800 samples out of 1200 collected during normal operating conditions to develop
the fault detection and diagnostic model, while the remaining 400 data points are used to
validate the model. Five principal components (PC) which account for 85.85% variation
in the original data set with one-time lag (I = 1) are sufficient to develop the dynamic
PCA diagnostics model. The diagnostic model is then used to monitor the operation

of the interactive dynamic CDU system to detect and identify possible occurrence of
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Figure 5.19: Responses of product quality variables to sensor fault F3
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Figure 5.20: Responses of product quality variables to sensor fault F4

sensor faults. The 72 and SPE monitoring statistics for the training and testing data
sets and those of the four sensor fault cases F'1 — F'4 are presented in Figures 5.21 and
5.22 respectively. A sensor fault is declared after the limits of the monitoring statistics
are violated simultaneously for four consecutive sampling times (2 minutes), or when the
values of the monitoring statistics are more than double those of their respective limits for

two consecutive sampling period. The criteria are to help eliminate possible declaration

of false alarm.

Immediately a sensor fault is detected, the contribution plots of the monitoring statis-
tics are used to identify the fault. Each principal component (PC) used to develop the
diagnostic model is checked at the point of fault declaration to identify the PC that vio-
lates its limit. The PC plots for the four sensor faults as presented in Figures 5.23 to 5.26
show plots depicting the principal components being plotted within their respective +£99%
control limits for ease of detecting fault and computing contributions of each variable to
the faulty situation. Figures 5.27 — 5.30 present the contribution plots of the four sensor
faults. The contribution plots show the cumulative effect of the variables responsible for
the PCs that violate their limits. For each PC that violates its limit at the point of fault
declaration, the variables that contribute majorly to that PC value are identified through
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Figure 5.23: PC plots for sensor fault F1

contribution plots. Take for instance, sensor fault F'1 has all its PCs violating their limits
as presented in Figure 5.23. The variables responsible for those violations are picked up in
the contribution plot of the same fault F'1 shown in Figure 5.27. More detailed discussion
of how the PC plots and the contribution plots are used to identify the sensor faults are

given in Section 5.3.4.

5.3.3 Accommodation of Identified Sensor Faults through Im-

plementation of Sensor FTIC

Upon detection and identification of a sensor fault, the proposed sensor FTIC is im-
plemented on the dynamic crude distillation unit. The relevant redundant soft-sensor
estimate of the controlled variable whose sensor developed fault is used in the feedback
control loop instead of the faulty sensor output. The controlled variable feedback signals

(y,) used during the system normal operation is obtained using equation 3.18 as:
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Figure 5.24: PC plots for sensor fault F2
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Figure 5.25: PC plots for sensor fault F3
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Figure 5.26: PC plots for sensor fault F4
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Figure 5.27: Excess contributions plots for sensor fault F1
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Figure 5.28: Excess contributions plots for sensor fault F2
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Figure 5.29: Excess contributions plots for sensor fault F3
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Figure 5.30: Excess contributions plots for sensor fault F4

1 000 a1 0000 QDPLSI
0100 00 0O ]
Yy = (G Yores, (5.5)
0010/ 000 0/ Gopse,
0 001 Y4 0000 QDPLS4

Y1 toys and y,p, ¢ 0 Yy, 5, are the controlled variables sensor outputs and their respec-
tive redundant soft sensor estimates. When sensor fault £'1 — 1st pumparound flow sensor
fault (y;) is identified, its diagonal element changes to zero, isolating the faulty sensor
while the corresponding diagonal element in the redundant soft sensor backup feedback
signal is activated accordingly. Then, the controlled variables feedback signals used to

accommodate the sensor fault is given as:

0000 Y1 1000 QDPLSI

= 010 0| u| {0000 5.
0 010 Y3 0000 :&DPLS?,
000 1]y 000 0/ | Gops,
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Figure 5.31: Accommodated sensor faults F1 — F4 controlled variables

This procedure is applied to other sensor faults (F£'2, F'3 and F'4) when they are identified.
The responses of the controlled variables to the implementation of the sensor FTIC to
accommodate faults F'1 — F'4 are presented in Figure 5.31. The solid blue lines are the
measured values of the controlled variables during normal operation; the dashed red lines
are the faulty sensor outputs of the controlled variables, while the dashed blue lines are
the responses of the controlled variables to the implementation of sensor FTIC. Figures
5.32 — 5.35 present the responses of the product quality variables, green dashed lines,
to the same accommodating sensor fault strategy. Red and blue lines are as previously

defined.

5.3.4 Results and Discussions

The sensor faults investigated in the dynamic CDU were all detected, using the 72 and
SPE monitoring plots presented in Figure 5.22. The first pumparound flow sensor fault —
F1 was detected a minute after introduction at sample 302 on both 7?2 and SPE monitoring
plots. Sensor fault F2 — CFZ temperature sensor fault was detected 3 minutes and

1 minute after introduction at samples 306 and 302 on 72 and SPE monitoring plots
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Figure 5.32: Responses of PQV to implementation of sensor FTIC on sensor fault F1
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5.3 Application to Crude Distillation Unit

respectively. F'3 — CFZ flow sensor fault was detected at samples 308 and 302, 4 minutes
and 1 minute on 72 and SPE monitoring plots respectively. Sensor fault F'4 — stage 1
temperature sensor fault was detected on 72 and SPE monitoring plots at samples 306
and 302 after introduction, 3 minutes and 1 minute respectively.

Immediately the sensor faults are detected, further diagnostics are carried out to iden-
tify the faults through the principal component (PC) plots and the monitoring statistics
contribution plots. The PC plots shown in Figures 5.23 to 5.26 identified the PCs that
violate their limits. Information from the PC plots is used to compute the contributions of
each variable to the faulty situation and presented in the 7% and SPE contribution plots
shown in Figures 5.27 to 5.30. Both T2 and SPE contribution plots picked up variable 56,
the first pumparound flow sensor output as the only contributing variable to the fault F'1
as presented in Figure 5.27. Its value drifted well out of the operating region. Variables
17, 18, 49, 50, 64 and 71, which are stages 16 and 17 temperatures, side streams (SS) 2
and 3 return temperatures, stage 1 temperature and furnace heat flow respectively, have
high contributions to the large T2 value for fault 2. The SPE contribution plot shows
variables 18, 19, 35, 55, 58 and 62, which are respectively temperatures of stages 17 and
18, Naphtha mass flow, bottom boil-up mass flow, second pumparound mass flow and
CFZ temperature, as being responsible for the high SPE values, as presented in Figure
5.28. The variables identified by the 72 and SPE contribution plots have a direct connec-
tion with the sensor output. For instance, when the CFZ temperature sensor displays a
value below set-point, the manipulated variable that is used to keep the controlled vari-
able at set-point, in this case, the furnace heat input into the column increases in order
to maintain the CFZ temperature at a desired value. Also, increased CFZ temperature
will affect virtually all the column temperatures, particularly the ones near the bottom,
as observed here.

Sensor fault F'3 has variables 19, 20, 21, 29, 30, 44, 50, 55, 62 and 70, which are
temperatures of stages 18, 19, 20, 28 and 29, CDU residue temperature, SS-3 return
temperature, bottom boil-up mass flow, CFZ temperature and the crude feed to CDU
residue ratio respectively, as the major contributors to the faulty situation according to
T? contribution plot. SPE contribution plot has variables 25, 26, 27, 55, 58, 60, 63 and 71,
which are respectively temperatures of stages 24, 25 and 26, bottom boil-up mass flow,
second pumparound mass flow, third pumparound mass flow, CFZ mass flow and the
furnace heat flow as being responsible for the fault, as presented in Figure 5.29. Table 5.5

presents the variables responsible for each sensor fault. Fault in CFZ mass flow sensor has
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a direct impact on most flows in the CDU, especially the ones closely linked to the amount
of feed charged into the column like bottom boil-up mass flow, the pumparound flows and
the sensor displayed value for the CFZ mass flow as identified by the contribution plots.
Also, an increase or otherwise in the CFZ mass flow as a consequence of its faulty sensor
will affect the furnace heat input and the temperatures of the bottom stages in the column.
These are the variables identified by the contribution plots as being symptomatic of the
sensor fault.

Sensor fault F'4 according to T contribution plot has variables 3, 4, 17, 18, 49 and
58, which are temperatures of stages 2, 3, 16 and 17, SS-2 return temperature and sec-
ond pumparound mass flow respectively as being symptomatic of the fault. The SPE
contribution plot shows variables 3, 4, 18, 49, 54, 58, 64 and 71, which are respectively
temperatures of stages 2, 3, and 17, SS-2 return temperature, reflux mass flow, second
pumparound mass flow, temperature of the vapour leaving the column (stage 1 temper-
ature) and the furnace heat flow as the major contributing variables to the abnormal
situation. Figure 5.30 presents the contribution plots for sensor fault F'4. Sensor fault
F4 obviously has a direct effect on the reflux mass flow which is being used to control
it. It also affects the temperatures of the top stages and the flows closely associated with
the reflux flow like first and second pumparound flows, as identified by the contribution
plots. The variables indicative of each fault, together with good knowledge of the process
are used to identify the faults.

Table 5.5: Variables responsible for faults F1 — F4

Faults Variables

T2 56

F1
SPE 56

- T2 17, 18, 49, 50, 64, 71
SPE 18, 19, 35, 55, 58, 62

3 T2 19, 20, 21, 29, 30, 44, 50, 55, 62, 70
SPE 25, 26, 27, 55, 58, 60, 63, 71
T2 3,4, 17, 18, 49, 58

F4

SPE 3,4, 18, 49, 54, 58, 64, 71

Sensor FTIC is implemented after the identification of a sensor fault using the backup
soft sensor estimate in the feedback control loop, in place of the faulty sensor output as

described in the last section. It can be observed from Figure 5.31 and Figures 5.32 — 5.35
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that the proposed sensor FTIC worked quite well in accommodating the sensor faults,
maintaining the product quality variables within their normal operating regions. The
nature of a sensor fault and its effect on the system determine whether or not it should be
accommodated. Take sensor fault F'1 for instance, due to the way the system is designed
a 20% loss of efficiency means the value recorded is 20% lower than the actual measured
value. The controller responded by sending a corrective signal to the valve to open wider,
however, due to the operating condition and physical restriction of the valve, opening it
by 100% made little difference to the actual flow going through it. The amount of fluid
flowing through the valve did not change much despite the fault and did not affect the
system, as presented in Figure 5.32. The same scenario also played out in sensor fault F'3;
the FTIC was able to improve the system performance in this case, but not significantly
as the effect of the fault did not drive the system to instability as presented in Figure
5.34.

It is important to note that the faults also affect the secondary variables used to
infer the back-up soft sensor estimates of the controlled variables at the point of fault
declaration t;. Hence, the secondary variables shifted backwards by n sampling times
(i.e. measurements at t; — n sampling times) are used to first stabilise the system up
until sampling time t; — 2. Value of n is chosen based on the knowledge of the system,

particularly the system settling time.

5.4 Sensor and Actuator Faults Accommodation in

Crude Distillation Unit

The effectiveness of the proposed fault tolerant control system (FTCS) in accommodating
both actuator and sensor faults is demonstrated in this section. The combined actuator
and sensor fault tolerant controllers are implemented on the crude distillation unit to
accommodate successive sensor and actuator faults. Like most of the existing FTCS, it is
based on the assumption that no two faults are occurring simultaneously. However, the
proposed simplified accommodating strategy can accommodate successive sensor faults
and combined sensor and actuator faults occurring consecutively. Only three faults are
investigated under this section, a sensor fault, an actuator fault and a combined sensor
and actuator as presented in Table 5.6 and Figure 5.36. This will avoid repetition as

the techniques employed in accommodating individual fault are also applied when dealing
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with two or more faults occurring successively. The interactive dynamic CDU described

in Sections 4.4.1 and 5.3.1 is used for this purpose.

Table 5.6: CDU sensor and actuator fault list

Fault Fault description

F1 CF7Z temperature sensor fault with 20% bias introduced @ sample 201
F2 Reflux flow control valve maximum opening restricted to 28%, introduced @ sample 351
F3 Combined F1 and F2 faults introduced @ samples 201 and 351 respectively

5.4.1 Sensor and Actuator Faults Introduction, Detection and

Identification

As listed in Table 5.6, fault F'1 is CFZ temperature sensor fault introduced into the
system at sample 201, the magnitude and manner of introduction are similar to the CFZ
temperature sensor fault F'2 investigated in Section 5.3.2, Table 5.4. Faults F2 is reflux
flow control valve fault as described in Section 4.4.4 under introduction of actuator fault,
while fault F'3 is the combined sensor fault F'1 and actuator fault F'2 introduced at samples
201 and 351 respectively. After the faults were introduced, the DPCA fault detection
and diagnostics scheme developed with five PC in Section 4.4.5 is employed to detect
and identify the faults. Figure 5.37 presents the 72 and SPE monitoring statistics for the
training and validating data sets and those of fault £'3. Faults F'1 and F'2 produced similar
plots to those presented in Sections 5.3.2 and 4.4.5, Figures 5.23 and 4.39 respectively.
Hence they are not presented here. It is very important to note that the sensor fault F'1
that was first introduced has to be isolated and accommodated using the sensor FTIC
described in Section 5.3 before the actuator fault that was later introduced could be
detected and identified. Otherwise, the actuator fault will be masked by the effect of the
sensor fault on the system, as can be observed from Figure 5.37.

Figure 5.38 shows the effect of the fault on their respective controlled variables, while
Figure 5.39 presents the responses of the system product quality variables to fault F3.
Upon detection of a fault, whether a sensor or an actuator fault, the contribution plots of
the 72 and SPE monitoring statistics are used to identify the fault, by associating certain
variables that have unusually large contributions to the abnormal situation to a particular

fault.
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Figure 5.37: T? and SPE for training and testing data sets, and fault F3

For the combined sensor and actuator fault F'3, the individual faults were separately
identified as discussed in Section 5.3.4 (the sensor part of F'3) and 4.4.7 (the actuator

part of F'3); the variables contributing to each fault are the same as previously explained.

5.4.2 Sensor and Actuator Faults Accommodation Using FTIC
and FTC

Accommodation of sensor fault F'1 and actuator fault F'2 are not discussed separately
to avoid repetition as they are discussed under fault F3. To accommodate the sensor
part of fault F'3, the DPLS soft sensor estimate of the CFZ temperature is used in the
feedback loop to replace the faulty sensor output, to maintain the system stability. This
was discussed in Section 5.3.4. Having accommodated the sensor fault, the actuator part
of fault F'3 can be accommodated by first isolating the faulty valve, and then switch the
manipulated variable of the faulty loop to another one that can effectively be used to keep
the concern controlled variable within an acceptable operating region. The pre-assessed
input-output reconfiguration pairing presented in Table 4.15 is used to reconfigure the fur-
nace heat flow into the system to directly control the temperature of the vapour leaving
stage 1 (stage 1 temperature), leaving the CFZ temperature uncontrolled. This automat-
ically leaves the sensor part of the same fault ineffective, because the CFZ temperature

is no longer being controlled. However, the CFZ temperature soft sensor estimate is still
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Figure 5.39: Responses of the PQV to fault F3

165



5. IMPLEMENTATION OF PROPOSED FTCS FOR SENSOR FAULTS
ACCOMMODATION ON DISTILLATION COLUMNS

being used as an indicator. The sensor part of fault F3 is accommodated as stated below.

VRN LU B 20 R D O i 5.7
0 1 Yp2 00 Ynprs, Yp2

where y), is a vector of the controlled variable feedback signals, y,1 and y,, are CFZ

temperature and the stage 1 temperature respectively, while §,,,, . and g,,,, are their

corresponding DPLS based soft sensor estimates. The feedback controlled variables v, in

equation 3.20 is for the combined feedback signal y;, and the backup feedback signal s,

as presented in Figure 3.4. It is given as:

Ypprs,

yp2

|
—~
ot
0,9]
~—

Yy
Yn1

Yv2

The error signal generated to accommodate fault F'3 according to equation 3.21 is obtained

as:

00 0O Tpl — Upprs,
00 0O Tpo —
€p3 = P2 Y2 (59)
00 00O o1 — Ybl
0 001 Tp2 — Yp2

The fault tolerant control law used to accommodate the actuator part of fault F'3 is then

given as:

Uy 0O 00 0 0
Us 000 0 0
Up1 000 O 0
| Uy | 1000 G | [ e = Y2 |

5.4.3 Results and Discussions

The three fault cases investigated in this section were all identified using the DPCA FDD
scheme described in Sections 4.4.5 and 5.3.2. Sensor fault F'1 is the same as the sensor
part of fault F'3 and was detected 3 minutes and 1 minute after introduction, at samples

206 and 202 on T2 and SPE monitoring plots respectively. Actuator fault F'2 is the same
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Figure 5.40: Accommodated controlled variables for faults F1 — F3

as the actuator part of fault F'3 and was detected at samples 355 and 352, 2 minutes 30
seconds and 1 minute after introduction on 72 and SPE monitoring plots respectively.
The faults are identified accordingly using the appropriate contribution plots as discussed
for sensor fault F'2 in Section 5.3.4 and for actuator fault F'2 in Section 4.4.7 respectively.

The same variables are responsible for the faults as previously discussed.

The combined actuator and sensor faults F'3 is accommodated as presented in Fig-
ures 5.40 and 5.41. After the sensor part of fault F'3 was declared, its redundant soft
sensor estimate is used in the feedback loop in place of the faulty sensor measurement to
accommodate the fault. It can be observed in the first two rows of Figure 5.40 that the
sensor fault was well accommodated. The actuator part of fault F'3 is accommodated by
reconfiguring the FTCS, switching its manipulated variable to the furnace heat flow into
the system and the controller settings changed as appropriate. This enables the stage 1
temperature to be controlled directly using the furnace heat flow and leaving the CFZ
temperature uncontrolled; this effectively discontinued the use of CFZ temperature soft
sensor estimate to accommodate the sensor fault. Figure 5.41 shows the responses of
the product quality variables to the implementation of the simplified FTCS on the CDU

system.
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Figure 5.41: Accommodated PQV for fault F3

5.5 Summary

The implementation of the sensor fault tolerant inferential controller (FTIC) on industrial
distillation processes have been reported in this section. The effectiveness of the approach
was first demonstrated on a binary distillation column, using the proposed sensor FTIC to
accommodate sensor faults through the use of soft sensor estimates of the appropriate con-
trolled variable instead of the faulty sensor output to maintain the integrity of the control
system and that of the process. The approach was also implemented on an interactive
dynamic crude distillation unit to further demonstrate its applicability and efficacy on
complex industrial distillation processes. There are possible implementation issues that
could arise as a result of using the soft sensor estimates of the affected controlled vari-
able sensor outputs for FTIC, which could worsen the abnormal situation if not quickly
addressed. This is because, the effect of the sensor fault on the secondary variables to be
used to estimate the controlled variable will lead to inaccurate estimates, and when used
in the feedback loop creates further problem for the system. This is addressed by using
nominal values of the secondary variables to estimate the output for a specified period of
time and also holding the appropriate manipulated variable at its nominal value to first

stabilise the system before switching to the FTIC mode.
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5.5 Summary

The proposed FTCS is then implemented on the CDU to accommodate successive
sensor and actuator fault. The simplified restructurable fault tolerant control system
worked effectively in handling the faults introduced, and without any doubt will improve
the availability and robustness of control systems employed in the operation of refineries.
It will also help to quickly arrest abnormal situations arising from the occurrence of faults

in sensors and actuators.

169






Chapter 6

Faults Tolerant Model Predictive

Control

6.1 Introduction

This chapter explores the use of restructurable model predictive control strategy, referred
to in this thesis as “Fault-Tolerant Model Predictive Control (FTMPC)” to accommodate
actuator faults in a crude distillation unit. Model predictive control (MPC) has gained
wide acceptance in the industry because of its constraints handling capabilities, which is
one of its main features leveraged on in this thesis to accommodate actuator faults. Its
design involves obtaining over the control horizon, the optimal sequence of adjustments
to the manipulated variables that will over the prediction horizon minimise the predicted
control errors. The first move of the sequence of adjustments to the manipulated variable
is implemented, and the whole process is repeated. An actuator fault presents a severe
constraint to the effective good performance of a control system in any plant, more so in
a complex system like crude distillation unit. FTMPC belongs to the class of constraint
optimisation based control algorithm with extended capabilities of possible control struc-
ture reconfiguration in the presence of faults. The model used for output prediction in
FTMPC is updated, its objective function and constraints are also adjusted in the face

of actuator faults for safe and continued economic operation of the system.

This chapter is organised as follows. The next section describes the design of the
FTMPC, the development of the first order plus dead-time (FOPDT) model of the system
investigated and the possible control structure reconfiguration pre and post-fault era.

Integration of the fault detection and diagnosis (FDD) scheme with the proposed FTMPC
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for actuator faults diagnosis and accommodation is also discussed. This is followed by
the integration of fault-tolerant inferential control (FTIC) with the FDD scheme and the
proposed FTMPC to form a complete FTCS to accommodate both actuator and sensor
faults. Application of the FTMPC together with FTIC to the crude distillation system
discussed in Chapter 4, to accommodate actuator and sensor faults is then presented in
Section 6.4, followed by the discussion of results in Section 6.5 and a summary of the

chapter in the final section.

6.2 Design of Fault-Tolerant Model Predictive Con-

trol

The fault tolerant model predictive control (FTMPC) system discussed in this section
is a constrained optimisation based control algorithm. It possesses the ability to ac-
commodate actuator faults by reconfiguring its control structure based on pre-assessed
sub-optimal control structure reconfiguration. Different approaches have been used in
the design and implementation of FTMPC on complex chemical processes. Chilin et al.
(2010b) applied distributed model predictive control to accommodate actuator faults in
a reactor-separator process using redundant control input to offer extra control flexibil-
ity. MacGregor and Cinar (2012) implemented FTMPC on injection-moulding and batch
polymerisation processes by treating actuator faults as unmeasured disturbances without
necessarily changing the input-output control structure of the system. Kettunen (2010)
in his PhD thesis used control allocation (CA), an idea first presented by Buffington and
Enns (1996) for FTMPC control reconfiguration to accommodate actuator faults in a
complex de-aromatisation process. These approaches have some form of actuation redun-
dancy to provide extra capabilities for actuator fault accommodation when it occurs. In
this work however, the implementation of FTMPC on CDU with reduced control structure
dimension (restructured input-output pairing) and the non-trivial task of model-updating
for the re-assigned FTMPC configuration during implementation are considered (Lawal
and Zhang, 2017a). The integration of FTMPC and FTIC to accommodate actuator and
sensor fault is also considered.

In the design of the FTMPC, it is assumed that the plant model is linear, in the form
of step response model; that the performance index is quadratic and that the constraints

are of linear inequalities form. Given the performance index J at time instant k for a
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fault-free system as:

P

C
Jk) =) Nk +ilk) —r(k+ilk)lg,, + D IAak+il kg, (61)

i=1 i=1
where ¢, v and Au are the predicted output vector, reference trajectory of the output
and changes of the input vector respectively; P and C' are the prediction horizon and
control horizon respectively; while I', and I'y are the positive-definite weighting matrices
for predicted errors and control moves respectively. I', and I', are used effectively as
tuning parameters to give satisfactory dynamic performance. For the FTMPC design, it
is assumed the number of manipulated variables equals that of controlled variables, giving
a square step response model in a matrix form. The MPC usually serves as master con-
troller, setting the reference points for the lower level controllers, mostly PID controllers
for effective control. The control performance of an MPC controller relies mainly on the
predictive performance of the model. In the presence of an actuator fault, the dimen-
sion of the manipulated variable reduces, and there may be the need to reconfigure the
output-input pairing structure of the MPC in absence of redundant manipulated variable
to compensate for the loss. This is achieved by using the pre-assessed control structure re-
configuration when certain control input becomes unavailable. The reconfiguration seeks
to pair outputs with the most effective inputs in the presence of the fault using tools like
RGA and dynamic RGA, so as to minimise loss of effectiveness in the control system.
This approach is similar to the one employed in Chapter 4 to accommodate actuator
fault. Subsequently, the MPC objective function is adjusted as appropriate to reflect the
isolated control input and the restructured output-input pairing. The resulting FTMPC
maintains the essential features of the original MPC — making use of the system reduced
explicit model to predict output response, the use of receding horizon idea and optimizing

the predicted plant behaviour through computation of control signal.

6.3 Integration of FDD, FTIC and FTMPC

The proposed FTMPC only accommodates actuator faults, and it is integrated with the
FTIC scheme proposed in Chapter 3 for a complete fault-tolerant control system that is
capable of accommodating both actuator and sensor faults. The two control strategies
share the same FDD scheme for initial detection and identification of actuator and sensor

faults respectively. Figure 6.1 presents the complete FTCS with FTIC and FDD inte-
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DPCAFDD pimi 1

Soft Sensor

Figure 6.1: FTCS with integrated FTMPC, FTIC and FDD

grated, similar to Figure 3.4. The notable difference is the replacement of reconfigurable
PID controller with FTMPC and PID controllers as master and slave controllers respec-
tively, and the way the control structure reconfiguration mechanism is achieved. The fault
detection and identification scheme integrated with the FTMPC and FTIC was discussed
in Section 3.2.1, and the FTIC was as developed in Section 3.3.2 using either dynamic
principal component regression or dynamic partial least squares technique for controlled

output estimation.

6.4 Application of the proposed FTMPC to Crude
Distillation Unit

The proposed FTMPC, integrated with FTIC and FDD is implemented on the atmo-
spheric crude distillation unit described in Chapter 4, Sections 4.4.1 and 4.4.2 to accom-
modate actuator and sensor faults respectively (Lawal and Zhang, 2017a). The interac-
tive dynamic CDU was developed in HYSYS and integrated with MATLAB application
to simulate the unit. It consists of a train of heat exchangers, an atmospheric CDU with
a 3-phase condenser attached, a vacuum CDU, three pumparound cooling circuits, three
side draws with stripper attached to each, crude furnace, several separator vessels and 29
control loops, as presented in Figure 4.21. The CDU has five product streams — naph-
tha, kerosene, diesel, atmospheric gas oil (AGO) and the CDU residue. Seven products
quality variables — ASTM D1160 cut-points at 0% and 100% for kerosene, ASTM D1160
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6.4 Application of the proposed FTMPC to Crude Distillation Unit

cut-points at 90% and 95% for diesel, ASTM D93 flash points for kerosene and AGO,
and AGO viscosity at 210F are monitored to ascertain the quality of the products, as
presented in Table 4.12.

Five control loops are used to investigate the effectiveness of the FTMPC approach.
The controlled variables — bottom boil-up flow (y;), stage 1 temperature (), diesel tem-
perature (y3), AGO temperature (y4) and crude flash zone temperature (ys) are directly
controlled by the CDU bottom steam (u;), reflux flow rate (ug), side stripper 2 (SS-2)
steam flow rate (us), side stripper 3 (SS-3) steam flow rate (u4) and the furnace heat out-
put (us) respectively, as discussed in Section 4.4.3 and presented in Table 4.14. The five
control loops are each simulated in open loop for 700 minutes with 30 seconds sampling
time, making necessary changes to their set points to collect sufficient data for model
identification. Data for the open loop responses to changes in the manipulated variables
collected during simulation is then used to develop a set of first order plus dead time
(FOPDT) models using the System Identification Toolbox in MATLAB. Equation 6.2

below presents the 5 by 5 transfer function models of the system.

30.85 0.0321e—5-34s 0.0065¢—1-58 0.00014e— 155 6.18e—07e~125
s+26.11 140.086s s+0.054 s+0.361 s+0.0068
0.0145 —0.055931 0.0271e—9-55 0.0247 7.39e—06e 055
s40.064 14+1.001s 5+0.099 s+0.101 s+0.0778
— 0.03556  —0.0535e—3-593 —0.301 0.0485 1.6le—05e—2¢
s) = 2
G5( ) 540.098 1+1.414s s+0.575 s+0.129 s+0.1536 (6 )
0.03637  —2.095¢—145s  _0.0055¢—3-53 —0.2837 0.00011e—10-5s
s4+0.078 s+41.2 s+0.031 5+0.256 1+1e—06s
0.17986 0.00035¢ 6 0.191 0.182 0.000173
| 1+2.95s s+0.0114 14+1.012s 14+1.37s s+1.46

A model predictive controller is developed in HYSY'S using the models obtained above,
with appropriate constraints applied to the controlled variables and the manipulated vari-
able moves. The MPC serves as master controller to the five low-level PID controllers,
setting their set-points in a cascade control structure. The MPC controller in HYSYS
is based on optimisation of a quadratic objective function involving the predicted errors.
Figures 6.2 and 6.3 show the settings for the FTMPC in HYSYS for the fault-free sys-
tem, while Figure 6.4 presents the performance of the FTMPC to set-point changes and

disturbances.

The fault-free system under FTMPC is simulated for 400 minutes with 30 seconds
sampling time through MATLAB using the settings presented in Figures 6.2 and 6.3, and
Figure 6.5 presents its product quality variables. With the established stable operation of
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Figure 6.2: FTMPC developed in HYSYS

the system, possible FTMPC control structure reconfiguration under faulty actuators is
undertaken using RGA and DRGA tools and presented in Tables 6.1 and 6.2, as discussed
in Section 4.4.3. F'1 and F2 in Tables 6.1 and 6.2 are faults F'1 and F'2 investigated in
this chapter and defined in Section 6.4.2.

6.4.1 FDD Model Development

The diagnostic model developed in Section 4.4.5 with five principal components and one
time-lag (I = 1) for the actuator and sensor faults detection and identification is used in
this chapter. Though the data used for the diagnostic model development was collected
when the plant was being controlled using individual PID controllers, however, the plant’s
behaviour and operating conditions are the same with the same type and magnitude of
disturbances added. T2 and SPE monitoring statistics are used to detect faults, and their
contribution plots are used for fault identification. The values of the monitoring indices
are small and within their control limits in the absence of a fault, but are unusually large
for a sustained period when a fault is present. A fault is declared after the limits of

either monitoring statistics are violated for eight consecutive sampling times (4 minutes).
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Figure 6.3: Control structure of the FTMPC in HYSYS
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Figure 6.5: Process quality variables

Faults could also be declared faster if values of the monitoring statistics are more than
double those of their respective limits for two consecutive sampling period. These criteria
are deemed appropriate to ensure that no false alarm is declared, and also because of
the complexity of the system being investigated. Figure 6.6 shows the T2 and SPE

monitoring statistics with control limit (red line) for the training and validating data sets

under normal process operation.

6.4.2 Fault Introduction and Accommodation

Two faults each for the actuator (F'1 and F2) and sensor (F'3 and F4) faults are investi-
gated in this chapter. The faults are F'1 — reflux flow control valve fault; F'2 — SS-2 steam
control valve fault; F'3 — crude flash zone temperature sensor fault; and F'4 — vapour
out/stage 1 temperature sensor fault, as described in Table 6.3. The two actuator faults
were part of the faults investigated in Chapter 4, while the two sensor faults were pre-
viously investigated in Chapter 5. This allows for comparison of the effectiveness of the
different approaches given similar fault scenarios. The full range of throttling of the ac-
tuators are restricted one at a time to values below their nominal operating conditions at
150 minutes (sample 300) during the simulation. These restrictions limit the ability of the

individual control valve to maintain their respective controlled variables at set point. To

178



6.4 Application of the proposed FTMPC to Crude Distillation Unit

Table 6.1: Reconfigurable FTMPC PID settings

Y Y2 Y3 Ya Ys

K, 0.78 0.50 8.35 8.48 0.51

Normal 17 0.04 0.30 1.74 3.90 0.69
Tp - - - - -
K, 0.78 0.1000 8.35 8.48 -
F1 17 0.04 10.000 1.74 3.90 -
Tp - 0.0043 - - -

K, 0.78 - 0.45 8.48 0.51

F2 17 0.04 - 3.21 3.90 0.69
Tp - - 0.10 - -

Table 6.2: Possible inputs — outputs reconfiguration

Manipulated Inputs

Controlled Outputs Normal F1 F2
Bottom boil-up flow (y1) Uy Uy uy
Stage 1 temperature (y2) Ug us -

Diesel temperature (y3) us3 us Ug
AGO temperature (y4) Uy Uy Uy
Crude flash zone temp. (ys) us - us

introduce the sensor faults, their respective sensor outputs were multiplied from sample
301 by a factor of 0.8 in their control loop, signifying 20% biases. Each fault was simu-
lated for 400 minutes with 30 seconds sampling time. The responses of the five controlled
variables to the actuator faults F'1 and F'2 as presented in Figures 6.7 and 6.8 respectively
are slightly different from similar faults investigated in Chapter 4, Figures 4.30 and 4.32
respectively. The effects of the sensor faults F'3 and F'4 on their respective outputs are as
presented in Chapter 5, Figure 5.16. Responses of the seven product quality variables to
faults F'1 and F'2 are presented in Figures 6.9 and 6.10 respectively, while those of faults
F3 and F'4 are as presented in Chapter 5, Figures 5.18 and 5.20 respectively. The solid
blue line and the dashed red line in Figures 6.9 and 6.10 are the normal and the fault

responses respectively.

The diagnostic model described in the previous chapter is applied to monitor the
operation of the interactive dynamic CDU system under the four faulty conditions to

detect and identify possible occurrence of faults. Figure 6.11 presents the T2 and SPE
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Figure 6.7: Controlled variables responses to actuator fault F1
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181



6. FAULTS TOLERANT MODEL PREDICTIVE CONTROL

370

Temp (“C)

350

i

Viscosity (cP)
Lo
[%2]

(]

Figure 6.10: Responses

1000

F2 - Kero Cut Pt ASTM D1160 - Atm(Cut Pt-0.0%)

F2 - Kero Cut Pt ASTM D1160 - Atm({Cut Pt-100.0%)

Time (minutes )

T2 for F1
/\_/“\
0 100 200 300 400
TZ for F2
e
0 100 200 300 400
T2 for F3
el |
:
0 100 200 300 400
<104 T for F4
0 100 200 300 400

Time {minutes

1000

1000

245
- éiqu e — ===
";:—-—-——-.,_,___u./“‘—/-’ g 243 J{
- e S | )
~— & 242 b
—— T T
241
0 100 200 300 400 0 100 200 300 400
F2 - Kero Cut Pt ASTM D83 Flash Pt F2 - Diesel Cut Pt ASTM D1 160 - Atm(Cut Pt-80.0%)
— 350 o
e m T T o PN e e e —
’ = 345 ¢ h
- £ = i
_n—"""—_.\_\__,_.-b7 —
N 3 240
335
0 100 200 300 400 o 100 200 300 400
F2 - Diesel Cut Pt ASTM D1160 - Atm(Cut PL-85.0%) > F2 - AGOD Cut Pt ASTM D83 Flash Pt
o 142 N
- 5 ~ -
/ -\\ P a ;
; E — — ]
]
__ﬂu,f\\/_/i, —] & 138
136
0 100 200 300 400 0 100 200 300 400
F2 - AGO Cut Pt: Viscosity @ 210F
T T T T — T T T
F o ™ e ]
L - i
-
C 1 1 1 1 1 1 1 ]
0 50 100 150 200 250 300 350 400

of product quality variables to actuator fault F2

w107 SPE for F1

] 100 200 300 400
SPE for F2

/\w—-...—..,a*"‘-“w

o 100 200 300 400
SPE for F3

a 100 200 300 400

«10% SPE for F4

a 100 200 300 400

Time (minutes

Figure 6.11: 7% and SPE monitoring plots for faults F1 — F4

182



6.4 Application of the proposed FTMPC to Crude Distillation Unit

Table 6.3: Crude distillation unit fault list

Fault Fault description

F1: FIC 106 Reflux flow control valve maximum opening restricted to 28% @ Sample 301

F2: FIC 114 Side stripper-2 steam control valve maximum opening restricted to 25% @ Sample 301
F3 CF7Z temperature sensor fault with 20% loss of efficiency introduced @ sample 301

F4 Stage 1 temperature sensor fault with 20% loss of efficiency introduced @ sample 301

monitoring statistics of the fault cases F'1 — F4. Further diagnostics are undertaken
through the monitoring statistics contribution plots to identify a fault as soon as it is
declared. The diagnostic procedure is as presented in the previous chapters. Figures
6.12 and 6.13 present the PCs plots for faults F'1 and F2 as they are slightly different
to similar faults investigated in Chapter 4, in Figures 4.41 and 4.42 respectively due to
different control strategies used in each case. The PC plots for faults F'3 and F4 are the
same with similar faults investigated in Chapter 5, in Figures 5.24 and 5.26 respectively.
The PCs that violate their limits in each fault detected are identified and used to obtain
the cumulative effect of each variable’s contribution to the fault. The contribution plots
for faults F'1 and F2 are presented in Figures 6.14 and 6.15 respectively, while those of
faults F'3 and F'4 are as presented in Chapter 5, in Figures 5.28 and 5.30 respectively.

6.4.3 Implementation of FTMPC and FTIC

When an actuator fault is detected and subsequently isolated, say for instance fault F'1 —
reflux valve actuator fault, the dimension of the available manipulated variables reduces by
1. The performance of the impaired FTMPC system is then improved by restructuring
its outputs — inputs pairing, particularly the controlled variables whose set-points are
controlled directly by the FTMPC, while minimising the effects of the fault on the entire
system. The dimension of the process models used for error prediction, as presented
in equation 6.2 also changes from 5 by 5 to 5 by 4, taking into account the isolated
manipulated variable.

Under fault F'1, the furnace heat flow control valve (us) is paired with the vapour
out temperature (y2), and the five controlled variables are now being controlled by the
remaining four manipulated variables (uy, us, u4 and us) having isolated the reflux control
valve (ug) as presented in Table 6.2. Equation 6.3 presents the reduced models of the

system post-fault era. The constraints are also adjusted as appropriate in HYSY'S for sub-
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Figure 6.12: PC plots for actuator fault F1
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Figure 6.13: PC plots for actuator fault F2
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Figure 6.14: Excess contribution plots for actuator fault F1
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Figure 6.15: Excess contribution plots for actuator fault F2
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optimal performance of the FTMPC. Similarly, actuator fault F'2 (SS-2 steam actuator
fault) is accommodated according to the reconfiguration structure presented in Table 6.2,
similar to the reconfiguration structure used in Chapter 4. The reduced models of the
system used for error prediction is updated and presented in equation 6.4. Figures 6.16
and 6.17 present the responses of the five controlled variables to the implementation of
FTMPC on actuator faults F'1 and F2 respectively, while Figures 6.18 and 6.19 present

those of the seven product quality variables for the two actuator faults respectively.
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Sensor faults /'3 and F'4 are accommodated after identification as described in Section
5.3.3 where the relevant redundant soft-sensor estimate of the controlled variable whose
sensor developed fault is used in the feedback control loop instead of the faulty sensor
output. In the case of sensor fault F'3 — crude flash zone temperature sensor fault (ys), the
diagonal element corresponding to its output changes to zero, as presented in equation
5.5, isolating the faulty sensor while the corresponding diagonal element in the redundant
soft sensor backup feedback signal is activated accordingly. The same procedure is applied
to accommodate sensor fault F'4 — vapour out temperature sensor fault when declared.
The responses of the implementation of FTIC on faults F'3 and F'4 to the five controlled
variables and the seven product quality variables are presented in Figures 6.20 and 6.21,

and Figures 6.22 and 6.23 respectively.
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6.5 Results and Discussions

The four faults investigated in this chapter were all detected and identified as previously
presented in Section 4.4.7 and Section 5.3.4 in Chapters 4 and 5 respectively. The actuator
faults F'1 — reflux control valve actuator fault and F2 — SS-2 steam actuator faults were
detected at samples 305 and 324, 2 minutes 30 seconds and 12 minutes respectively after
introduction from 7% monitoring statistic as presented in Figure 6.11; and at sample 301
for the two faults on SPE monitoring statistic. Fault cases F'3 — CFZ temperature sensor
fault and F'4 — vapour out temperature sensor fault were detected at samples 307 and
305, 3 minutes 30 seconds and 2 minutes 30 seconds respectively after introduction on 7%
monitoring statistic. SPE monitoring plots picked up the faults at sample 301 in both

cases.

There are minor variations in the fault detection time and the magnitudes of con-
tributions of the variables responsible for the unusually large values of the 72 and SPE
monitoring statistics for faults F'1 and F'2, as presented in Figures 6.14 and 6.15 respec-
tively. This is in comparison to the discussions of similar faults presented in Section 4.4.7
(Figures 4.46 and 4.47 respectively). However, the same variables responsible for similar
faults investigated in Chapter 4 (F'2 and F'3), as presented in Table 4.19 are responsible
for the faults F'1 and F'2 respectively. Similarly, faults /'3 and F'4 have the same variables
presented in Table 5.5 (F2 and F'4 respectively) as being symptomatic of the faults.

After the identification of the faults, FTMPC was implemented on the dynamic CDU
to accommodate faults F'1 and F'2 according to the reconfiguration structure presented in
Table 6.2. The responses of the FTMPC implementation to the five controlled variables
for F'1 and F'2 are presented in Figures 6.16 and 6.17 while their corresponding product
quality variables are presented in Figures 6.18 and 6.19 respectively. The solid blue line,
the dashed red line and the dashed blue line in Figures 6.16 — 6.19 represent the normal
process operation, faulty responses and responses of the controlled and product quality
variables to the implementation of the FTMPC respectively. The FTMPC was able to
accommodate the faults and minimise their effects on the other controlled variables. Since
some of the outputs — inputs pairing are sub-optimal, it is inevitable to have some offset
owing to the effect of the faults on the system. The FTMPC approach was able to
significantly reduced the impact of the faults on the system, judging by the responses of
the product quality variables as presented in Figures 6.18 and 6.19, notably the ASTM
D1160 cut points at 0% and 100% for kerosene and ASTM D93 flash point for kerosene.
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Figure 6.16: Responses of the five controlled variables to the accommodated fault F1

The results obtained are comparable to those presented in Chapter 4 as can be observed
from the sum of squared error (SSE) of the control errors of the two actuator faults

accommodating strategies presented in Table 6.4.

Table 6.4 gives a summary of the relative effectiveness of the two actuator FTCS —
restructurable PID controllers and FTMPC — proposed in this work. As can be observed
from Table 6.4, FTMPC performed better with reduced errors between the nominal op-
eration conditions of the controlled variables before the fault and the responses achieved
during fault accommodation for the reflux control valve actuator fault (F'1). Four out of
the five controlled variables recorded reduced errors compared with their responses under
the restructurable PID controllers, with the exception of the Bottom boil-up (y;) whose
error of 50,332 was much larger under FTMPC. However, the effects of the implementa-
tion of FTMPC on the product quality variables during F'1 actuator fault accommodation
were not so profound. Only two (kerosene cut point at 100% and diesel cut point at 90%)
out of the seven product quality variables recorded lower errors when compared to their
responses under the restructurable PID controllers investigated in Chapter 4. Similarly,

FTMPC performed better than the simple restructurable PID controllers in the case of
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Figure 6.17: Responses of the five controlled variables to the accommodated fault F2
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Figure 6.18: Responses of PQV to implementation of FTMPC on fault F1
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Figure 6.19: Responses of PQV to implementation of FTMPC on fault F2
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Figure 6.20: Responses of the five controlled variables to the accommodated fault F3
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Figure 6.21: Responses of the five controlled variables to the accommodated fault F4
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Figure 6.22: Responses of PQV to implementation of sensor FTIC on fault F3
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Table 6.4: SSE of control errors for FTMPC & restructurable PID for F1 & F2

Reflux control valve SS-2 steam control
actuator fault (F1) actuator fault (F2)
Restructurable FTMPC Restructurable FTMPC

controller (Chapter controller (Chapter
Controlled variables (Chapter 4) 6) (Chapter 4) 6)
Bottom boil-up flow (y1) 5,266 50,332 4,017 18,254
Stage 1 temperature (y2) 6,077 1,702 13,496 12,246
Diesel temperature (y3) 417 28 4,476 535
AGO temperature (y4) 2,235 91 303 16
Crude flash zone temp. (ys) 27,963 22,623 13 24
Product quality variable
Kerosene Cut Pt: (Cut Pt-0.0%) 4,889 6,276 24,599 26,444
Kerosene Cut Pt: (Cut Pt-100.0%) 15,474 9,366 14,659 16,957
Kero Cut Pt: ASTM D93 Flash Pt 3,474 4,876 642 7,823
Diesel Cut Pt: (Cut Pt-90.0%) 19,484 18,068 15,550 4,747
Diesel Cut Pt: (Cut Pt-95.0%) 22,380 24,478 12,917 3,231
AGO Cut Pt: ASTM D93 Flash Pt 1,308 2,679 1,028 481
AGO Cut Pt: Viscosity @ 210F 360 481 29 12

SS-2 steam control valve actuator fault (£'2) with reduced errors in three out of the five
controlled variables investigated in this section. Four out of the seven product quality
variables investigated under F'2 also recorded reduced errors compared to when restruc-
turable PID controllers were implemented to accommodate the same fault, as presented
in Table 6.4.

Faults F3 and F4 are accommodated as described in Section 5.3.4 by using the backup
soft sensor estimate in the feedback control loop in place of the faulty sensor output. The
backup soft sensor estimates for the CFZ temperature and the vapour out temperature
are as presented in Figures 5.14 and 5.15 respectively. The responses of the five controlled
variables and the seven product quality variables for faults F3 and F4 are presented in
Figures 6.20 and 6.21, and Figures 6.22 and 6.23 respectively, and are comparable to those
obtained in Chapter 5, Section 5.3.4.

6.6 Summary

The development and application of fault-tolerant model predictive control (FTMPC),

integrated with an FDD scheme and FTIC to accommodate actuator and sensor faults
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Figure 6.23: Responses of PQV to implementation of sensor FTIC on fault F4

in a crude distillation unit is presented in this chapter. The design and restructurability
of the FTMPC system were first discussed. The restructurability and the effectiveness of
the approach, just like most active fault-tolerant control system depend on the possibility
of being able to reconfigure its input-output pairing upon detection and identification of a
fault. The FTMPC system used a first order plus dead time (FOPDT) model of the plant
for output prediction and RGA and DRGA tools to analyse possible control structure
reconfiguration. Its FDD scheme used the DPCA technique described in Chapter 3 and
FTIC also presented in Chapter 3. The proposed FTMPC was then implemented on a
CDU with two faults each for both actuator and sensor. The approach was able to detect,
identify and accommodate all the faults investigated, and the results compare favourably
with similar faults investigated in Chapters 4 and 5. Overall, the approach proves effective
in handling actuator fault sub-optimally, when there are suitable manipulated variables

that could be used to lessen the effects of fault on the system.
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Chapter 7

Conclusions and Recommendations

for Future Works

7.1 Conclusions

This thesis investigated, and contributed to the furtherance of the development and ap-
plication of fault tolerant control system (FTCS) to the oil and gas processes, particularly
the distillation processing units. First, a simple restructurable feedback controller with
backup signals and switchable references (actuator FTCS) was developed and applied
to three different distillation processes with varying complexities — binary distillation
column, the Shell heavy oil fractionator and a crude distillation unit to accommodate
actuator faults in the systems. Second, a fault tolerant inferential controller (FTIC) was
also developed and implemented on a binary and crude distillation units to accommodate
sensor faults — temperature and flow sensor faults. Third, both the simple restructurable
feedback controller (actuator FTCS) and the FTIC are integrated with a dynamic prin-
cipal component analysis (DPCA) based fault detection and diagnosis (FDD) scheme to
form a complete FTCS, which was then implemented on a dynamic crude distillation unit
to accommodate both actuator and sensor faults. Lastly, a fault tolerant model predic-
tive controller (FTMPC) was developed, integrated with FTIC and implemented on a
dynamic crude distillation unit to accommodate actuator and sensor faults respectively

on the system.

Firstly, this thesis used dynamic principal component analysis technique based FDD
to quickly and effectively detect and identify faults. The DPCA technique was chosen

based on its many strengths, and most importantly due to the complexities of the sys-
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tems being dealt with. The FDD scheme employed 72 and SPE monitoring statistics and
their respective contribution plots together with good understanding of the processes, to
effectively detect and identify faults. This was a crucial first step in the design of an
effective F'TCS for the distillation processes investigated. Then a simple restructurable
proportional-integral-derivative (PID) controller with backup signals and switchable refer-
ences (actuator FTCS) was developed, integrated with the FDD scheme and implemented
on a nonlinear methanol-water separation column, the benchmark Shell heavy oil fraction-
ator, and an interactive dynamic crude distillation unit to accommodate actuator faults.
The effect of disturbances on actuator faults propagation was also reported in this thesis.
Disturbances, depending on its direction and magnitude, can amplify a rather minor unde-
tected fault as evident in the results presented on the methanol-water separation column
in Chapter 4. The restructurability of the developed FTCS was based on pre-assessed pos-
sible control structure reconfiguration using RGA and DRGA system interaction analysis
tools. The approach proved effective in accommodating actuator faults in the three dis-
tillation processes considered. However, implementation of the proposed actuator FTCS
is system dependent as different layers of performances have to be critically analysed for
the whole system and configured as appropriate. Actuator fault accommodation is not
always possible as observed in the cases of the Shell heavy oil fractionator and the crude
distillation unit. Another important factor that should be critically considered in the de-
sign and implementation of actuator FTCS on any system is a very good understanding
of the process in terms of its products quality and economics. This is very important as it
determines the level of degradation that is acceptable in the system or its products before
the operation becomes unprofitable.

Secondly, the FTIC developed in this thesis used inferred primary controlled vari-
ables from the measured uncontrolled secondary variables, based on DPLS and DPCR
soft sensor estimation techniques. The inferred controlled variables were used in place of
the faulty sensor outputs in the feedback control loops to maintain the integrity of the
methanol-water separation column and the crude distillation unit investigated in this the-
sis. The FTIC also made use of the DCPA based FDD to first detect and identify the flow
and temperature sensor faults investigated in the systems for prompt and effective faults
isolation. The proposed FTIC approach is proved to be very effective in accommodating
all the sensor faults investigated, and was able to maintain the integrity of each control
loop, thereby preserving the specified products quality variables in each case.

Thirdly, the proposed simple actuator FTCS and the FTIC developed were both inte-
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grated with the DPCA based FDD, to form a complete FTCS capable of accommodating
actuator and sensor faults, and applied to the interactive dynamic crude distillation unit.
Successive sensor and actuator faults were detected, identified and accommodated in the
dynamic crude distillation unit using the complete FTCS.

Lastly, fault-tolerant model predictive control (FTMPC) was developed, and inte-
grated with the FTIC and FDD schemes to form another variant of a complete FTCS
to accommodate actuator and sensor faults respectively. The complete FTCS was again
implemented on a crude distillation unit as presented in Chapter 6. The approaches were
able to accommodate actuator and sensor faults in the simulated system, when suitable
input-output pairing was available after declaration of a fault according to the pre-assessed
control reconfiguration structure. The results obtained in this case are comparable to the
ones obtained when actuator FTCS and FTIC were used. However, actuator fault ac-
commodation is not always possible without suitable back-up or satisfactory input-output
pairing, irrespective of the level of sophistication of the control system. It will be possible
to implement this approach for systems with tens of input-output pairings, though several
hundreds of possible back-up models will be required for possible reconfiguration, or at
the very least pre-assessed.

In conclusion, the primary aim of this thesis, which is the development and implemen-
tation of fault-tolerant control systems — simple restructurable feedback controllers with
backup feedback signals and switchable reference points (actuator FTCS), fault-tolerant
model predictive controllers (FTMPC) and fault-tolerant inferential controllers (FTIC)
to accommodate actuator and sensor faults on distillation processes, particularly crude
distillation unit was achieved. All the nine objectives set out at the onset of this thesis
were achieved, and the thesis is able to further advance the existing body of knowledge in
the development and application of fault-tolerant control systems to industrial distillation

processes with the contributions listed below.

e Simple active restructurable feedback controllers with backup feedback signals and
switchable reference points (actuator FTCS) was designed and integrated with
DPCA FDD scheme to accommodate actuator faults in binary and crude distil-

lation processes.

e Fault-tolerant inferential controller (FTIC) that uses dynamic principal component
regression (DPCR) and dynamic partial least square (DPLS) techniques for con-

trolled variables estimations from measured uncontrolled secondary variables was
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developed, and integration with the DPCA based FDD scheme to accommodate

sensor faults on simple and complex distillation processes.

e The integration of the FTIC and the actuator FTCS with DPCA FDD scheme as
a complete fault-tolerant control system (FTCS) was achieved and implemented on

a crude distillation unit to accommodate both actuator and sensor faults.

e The development and implementation of fault-tolerant model predictive control
(FTMPC) integrated with both FTIC and DPCA fault diagnostic model to ac-
commodate both actuator and sensor faults in a crude distillation unit was also

achieved.

7.2 Recommendations for future works

This thesis and several other works on the design and application of FTCS are premised
on an assumption that, only one actuator fault occurs at any given time as it is very un-
likely that two or more actuators could fail simultaneously. However, it will be interesting
to further investigate strategies that could be deployed to accommodate possible simulta-
neous multiple actuator failures in the oil and gas processing industry. This will without
a doubt involve the design of fault diagnostic scheme that is able to detect and identify
multiple simultaneous faults, whether actuators, sensors or other system components. It
will be an interesting research area as the combined effects of the faults, particularly actu-
ators may make it difficult to determine the severity of individual actuator fault and make
their accommodation even more difficult. Our future work in relation to distillation pro-
cesses will look at the possibility of detecting and accommodating multiple simultaneous
actuator faults in crude distillation units.

Similarly, accommodation of multiple sensor faults occurring simultaneously is worth
further investigation. The combined effects of the multiple sensor faults on the secondary
variables that would be used to predict the concern controlled variables might be difficult
to isolate, which could result in inaccurate predictions of the controlled variables of inter-
est. The possible implementation issues that might arise as a result of using the existing
techniques like the FTIC strategy presented in this thesis to accommodate multiple sen-
sor faults could be looked at in our future researches on sensor fault accommodation is
distillation processes.

The effectiveness of most fault tolerant control systems, especially the ones designed
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for actuator faults accommodation, rely heavily on the availability of suitable redundant
or essential manipulated variable that could be activated or switched as appropriate in
the face of an actuator fault to enhance the availability and reliability of the accommo-
dating control system. To have redundant actuators in complex chemical processes like
oil refineries in anticipation of possible faults to some critical actuators might not be de-
sirable due to potential large number of such actuators, the cost implication and other
factors. There could be ways in which the faulty actuator(s), depending on the nature
and severity of the fault could still be used sub-optimally in maintaining the integrity of
both the process and the control system. It is certainly an area that is worth investigating
further.

Despite their strength, the use of data-based FDD techniques like DPCA and DPLS
for fault diagnosis also have limitations in the sense that, multiple faults could have
similar variables contributing to their larger than usual monitoring statistics, leading to
a very difficult fault identification process. More so, for complex systems like the crude
distillation unit investigated in this thesis, further investigation for exhaustive possible
faults and the probable use of sectionalised DPCA for fault diagnosis might be required.
The sectionalised DPCA could be used to investigate faults in different parts of the process
as against lumping the entire process together, and this could be further investigated.

The use of combined model-based and data-based fault diagnostic scheme for actuator
and sensor fault detection and accommodation in distillation processes is another fasci-
nating research area that could be explored in the future. The combined FDD technique
could leverage on the strength of data-based techniques such as the ease of computation,
its ability to handle nonlinearity and large amount of process data. The challenge of
obtaining a high fidelity model for the combined FDD could be solved by using process
data from the system to build suitable models like state space to combine with the DPCA
model from the data-based approach. Though, the combined FDD approach have the po-
tential to make fault detection and identification less effective as any missing information
in the data used to develop the model could be amplified.

Another research area that is worth exploring is the application of DMPC technique
to accommodate faults in a crude distillation unit where two sets of manipulated variables
could be used to accommodate any potential actuator fault. The entire refinery operation
that includes vacuum and atmospheric crude distillation units and fluid catalytic cracking
unit could all be investigated for actuator and sensor faults using this approach. It is our

believe that advances in some of these future researches will have great influence on the
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application of FTCS in the refinery operation.
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Appendix A

Crude Distillation Unit Variable List

The table below presents all the process variables monitored in the crude distillation unit.

Variables Description Unit
1 CO Feed - Mass Flow [kg/h]
2 CO Feed - Temperature [°C]
3 TS-1 - Stage 2 Temperature [°C]
4 TS-1 - Stage 3 Temperature [°C]
5 TS-1 - Stage 4 Temperature [°C]
6 TS-1 - Stage 5 Temperature [°C]
7 TS-1 - Stage 6 Temperature [°C]
8 TS-1 - Stage 7 Temperature [°C]
9 TS-1 - Stage 8 Temperature [°C]
10 TS-1 - Stage 9 Temperature [°C]
11 TS-1 - Stage 10 Temperature [°C]
12 TS-1 - Stage 11 Temperature [°C]
13 TS-1 - Stage 12 Temperature [°C]
14 TS-1 - Stage 13 Temperature [°C]
15 TS-1 - Stage 14 Temperature [°C]
16 TS-1 - Stage 15 Temperature [°C]
17 TS-1 - Stage 16 Temperature [°C]
18 TS-1 - Stage 17 Temperature [°C]
19 TS-1 - Stage 18 Temperature [°C]
20 TS-1 - Stage 19 Temperature [°C]
21 TS-1 - Stage 20 Temperature [°C]
22 TS-1 - Stage 21 Temperature [°C]
23 TS-1 - Stage 22 Temperature [°C]
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A. CRUDE DISTILLATION UNIT VARIABLE LIST

Variables Description Unit
24 TS-1 - Stage 23 Temperature [°C]
25 TS-1 - Stage 24 Temperature [°C]
26 TS-1 - Stage 25 Temperature [°C]
27 TS-1 - Stage 26 Temperature [°C]
28 TS-1 - Stage 27 Temperature [°C]
29 TS-1 - Stage 28 Temperature [°C]
30 TS-1 - Stage 29 Temperature [°C]
31 PreFlash - Bottom Stage Pressure [kPa]
32 PreFlash - Bottom Stage Temperature [°C]
33 PreFlash - Top Stage Pressure [kPa]
34 PreFlash - Top Stage Temperature [°C]
35 Naptha - Mass Flow [kg/h]
36 Naptha - Temperature [°C]
37 Kero Product - Temperature [°C]
38 Kero Product - Mass Flow [kg/h]
39 Diesel - Mass Flow [kg/h]
40 Diesel - Temperature [°C]
41 AGO - Temperature [°C]
42 AGO - Mass Flow [ke/h)
43 CDU Residue - Mass Flow [kg/h]
44 CDU Residue - Temperature [°C]
45 SS-1 Return - Mass Flow [kg/h]
46 SS-2 Return - Mass Flow [ke/h)
47 SS-3 return - Mass Flow [ke/h]
48 SS-3 return - Temperature [°C]
49 SS-2 Return - Temperature [°C]
50 SS-1 Return - Temperature [°C]
51 SS-2 Steam - Mass Flow [kg/h]
52 SS-3 Steam - Mass Flow [ke/h)
53 CDU Btm Steam-2 - Mass Flow [ke/h]
54 Reflux - Mass Flow [kg/h]
55 Btm BoilUp - Mass Flow [ke/h)
56 PA1 S - Mass Flow [kg/h]
57 PA1 S - Temperature [°C]
58 PA2 S - Mass Flow [kg/h]
59 PA2 S - Temperature [°C]
60 PA3 S - Mass Flow [ke/h]
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Variables Description Unit

61 PA3 S - Temperature [°C]
62 CFZ TS - Temperature [°C]
63 43 S - Mass Flow [ke/h]
64 Vap Outl - Temperature [°C]
65 Vap Outl - Mass Flow [ke/h]
66 ProdRatio - B2: Naphtha Feed Ratio

67 ProdRatio - B3: Kero Feed Ratio

68 ProdRatio - B4: Diesel Feed Ratio

69 ProdRatio - B5: AGO Feed Ratio

70 ProdRatio - B6: CDU Residue Feed Ratio

71 Heat flow to the furnace [kJ/h]
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Appendix B

Sample MATLAB Code for CDU

Simulation

An example of the MATLAB code used to simulate the dynamic interactive crude distil-

lation unit is shown below.

% NROMAL SYSTEM SIMULATION WITH ALL DISTURBANCES AND NO FAULT
% HYSYS - MATLAB INTERFACE

% LINK HYSYS TO MATLAB
hys = actxserver("HYSYS.Application’);

% ACCESS ACTIVE HYSYS FLOWSHEET THROUGH MATLAB
hysActive = hys.ActiveDocument;
hysFlowsheet = hysActive.Flowsheet;

% CONNECT TO SUB-FLOWSHEET COL1 (ATM CDU)
hysSubFlowsheets = hysFlowsheet.Flowsheets;
hysCOL1 = hysSubFlowsheets.Item(’COL1’);

% ACCESS HYSYS SOLVER IN MATLAB
hysSolver = hysActive.Solver;

% LINK TO MATERIAL STREAMS PA1S & SS2-RETURN IN COL1
hPA1S = hysCOL1.Streams.Item(’PA1S’);
hSS2R = hysCOL1.Streams.Item(’SS-2 Return’);
%hSS2R.MassFlow.GetValue*3600;
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B. SAMPLE MATLAB CODE FOR CDU SIMULATION

% ACCESS HYSYS SPREADSHEETS IN MATLAB
h-MV = hysFlowsheet.Operations.Item("MVs’);
hysSS = hysFlowsheet.Operations.Item(’DistVar’);
h_X = hysFlowsheet.Operations.Item(’CDUData’);
h_PQV = hysFlowsheet.Operations.Item(’Process QVs’);

% INITIAL SIMULATION WITH NOMINAL OPERATING CONDITIONS
hysSS.Cell(’A1%).CellValue = hysSS.Cell(’C1’).CellValue;

hysSS.Cell(’A2’).CellValue = hysSS.Cell(’C2’).CellValue;
hysSS.Cell(’A3’).CellValue = hysSS.Cell(’C3’).CellValue;
hysSS.Cell(’A4’).CellValue = hysSS.Cell(’C4’).CellValue;
hysSS.Cell(’A5’).CellValue = hysSS.Cell(’C5’).Cell Value;
hysSS.Cell(’A6’).CellValue = hysSS.Cell(’C6’).Cell Value;

% SPECIFY SOME EMPTY ARRAYS
N = 3600; PQV = [|;
X=1;

% Initialising the simulation with nominal values
runTime=0.5;

allowToRun=1;

for runSim=1:1200
if (allowToRun == 1)
% Initialising the simulation with nominal values
if (runSim>=1 && runSim<101)
hysSolver.Integrator.RunFor(runTime, minutes’); % 1-50 mins
end
% FIRST DISTURBANCE INTRODUCED: CRUDE TEMP (15.60C)
% Make +/- 20 % changes to Crude Temperature.
if (runSim>= 101 && runSim<151)
hysSS.Cell(’A1’).CellValue = hysSS.Cell(’B1’).CellValue;
hysSolver.Integrator.RunFor(runTime, minutes’); % 51-75 mins
end
if (runSim>=151 && runSim<201)
hysSS.Cell(’A1’).CellValue = hysSS.Cell(’C1’).Cell Value;
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hysSolver.Integrator.RunFor(runTime, minutes’); % 76-100 mins
end

if (runSim>=201 && runSim<251)

hysSS.Cell(’A1%).CellValue = hysSS.Cell(’'D1").CellValue;
hysSolver.Integrator.RunFor(runTime, 'minutes’); % 101-125 mins
end

if (runSim>=251 && runSim<301)

hysSS.Cell(’A1%).CellValue = hysSS.Cell(’C1’).CellValue;
hysSolver.Integrator. RunFor(runTime, 'minutes’); % 126-150 mins

end

% SECOND DISTURBANCE INTRODUCED (2.352E+005 KG/H)
% Make +/- 20 % changes to Crude Flow Rate By Changing FIC-100 SP.
if (runSim>=301 && runSim<351)
hysSS.Cell(’A2’).CellValue = hysSS.Cell(’B2’).CellValue;
hysSolver.Integrator.RunFor(runTime, minutes’); % 151-175 mins
end
if (runSim>=351 && runSim<401)
hysSS.Cell(’A2’).CellValue = hysSS.Cell(’C2’).CellValue;
hysSolver.Integrator.RunFor(runTime, minutes’); % 176-200 mins
end
if (runSim>=401 && runSim<451)
hysSS.Cell(’A2’).CellValue = hysSS.Cell(’'D2").CellValue;
hysSolver.Integrator.RunFor(runTime, minutes’); % 201-225 mins
end
if (runSim>=451 && runSim<501)
hysSS.Cell(’A2’).CellValue = hysSS.Cell(’C2’).CellValue;
hysSolver.Integrator.RunFor(runTime, minutes’); % 226-250 mins

end

% THIRD DISTURBANCE INTRODUCED (CO Feed Comp)
% Make + /- 20 % changes to Crude Feed Composition
if (runSim>=>501 && runSim<551)
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B. SAMPLE MATLAB CODE FOR CDU SIMULATION

hysSS.Cell(’A2%).CellValue = hysSS.Cell('B2’).CellValue;
hysSS.Cell(’A3’).CellValue = hysSS.Cell(’B3’).CellValue;
hysSolver.Integrator.RunFor(runTime, minutes’); % 251-275 mins
end

if (runSim>=>551 && runSim<601)

hysSS.Cell(’A2’).CellValue = hysSS.Cell(’C2’).Cell Value;
hysSS.Cell(’A3’).CellValue = hysSS.Cell(’C3’).CellValue;
hysSolver.Integrator. RunFor(runTime, 'minutes’); % 276-300 mins
end

if (runSim>=601 && runSim<651)

hysSS.Cell(’A2%).CellValue = hysSS.Cell('B2’).CellValue;
hysSS.Cell(’A4’).CellValue = hysSS.Cell('B4’).CellValue;
hysSolver.Integrator.RunFor(runTime, minutes’); % 301-325 mins
end

if (runSim>=651 && runSim<701)

hysSS.Cell(’A2’).CellValue = hysSS.Cell(’C2’).Cell Value;
hysSS.Cell(’A4’).CellValue = hysSS.Cell(’C4’).Cell Value;
hysSolver.Integrator. RunFor(runTime, ' minutes’); % 326-350 mins

end

% FOURTH DISTURBANCE INTRODUCED (50 %)
% Make +/- 20 % changes to CFZ Feed Rate By Changing LIC-104 SP.
if (runSim>=701 && runSim<751)
hysSS.Cell(’A5%).CellValue = hysSS.Cell('B5’).CellValue;
hysSolver.Integrator. RunFor(runTime, minutes’); % 351-375 mins
end
if (runSim>=751 && runSim<801)
hysSS.Cell(’A5’).CellValue = hysSS.Cell(’C5’).Cell Value;
hysSolver.Integrator.RunFor(runTime, minutes’); % 376-400 mins
end
if (runSim>=801 && runSim<851)
hysSS.Cell(’A5).CellValue = hysSS.Cell(’D5’).Cell Value;

hysSolver.Integrator.RunFor(runTime, minutes’); % 401-425 mins
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end

if (runSim>=851 && runSim<901)

hysSS.Cell(’A5’).CellValue = hysSS.Cell(’C5’).Cell Value;
hysSolver.Integrator. RunFor(runTime, ' minutes’); % 426-450 mins

end

% FIFTH DISTURBANCE INTRODUCED (360°¢ %) % Make +/- 20 % changes to
CFZ Temp.
if (runSim>=901 && runSim<951)
hysSS.Cell(’A67).CellValue = hysSS.Cell('B6).CellValue;
hysSolver.Integrator.RunFor(runTime, 'minutes’); % 451-475 mins
end
if (runSim>=951 && runSim<1001)
hysSS.Cell(’A67).CellValue = hysSS.Cell(’C6’).CellValue;
hysSolver.Integrator. RunFor(runTime, 'minutes’); % 476-500 mins
end
if (runSim>=1001 && runSim<1051)
hysSS.Cell(’A67).CellValue = hysSS.Cell(’D6’).Cell Value;
hysSolver.Integrator. RunFor(runTime, minutes’); % 501-525 mins
end
if (runSim>=1051 && runSim<1201)
hysSS.Cell(’A6’).CellValue = hysSS.Cell(’C6’).Cell Value;
hysSolver.Integrator.RunFor(runTime, minutes’); % 526-600 mins

end

% SOME CELLS ARE MULTIPLIED BY 3600 TO CONVERT THEIR UNITS TO
KG/H
X0 = [h.X.Cell’A1’).CellValue*N h_X.Cell('A2).CellValue
h_X.Cell(’A3).CellValue h_X.Cell(’A4").CellValue h_X.Cell("A5’).CellValue
h_X.Cell("A6’).CellValue h_X.Cell(’A7").CellValue h_X.Cell(’A8’).CellValue
h_X.Cell(’A9%).CellValue h_X.Cell("A10’).CellValue h_X.Cell(’A11").CellValue
h_X.Cell(’A12%).CellValue h_X.Cell("A13").CellValue h_X.Cell(’A14").CellValue
h_X.Cell(’A15%).CellValue h_X.Cell('B1’).CellValue h_X.Cell('B2’).CellValue
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B. SAMPLE MATLAB CODE FOR CDU SIMULATION

h_X.Cell(’
h_X.Cell(’
h_X.Cell(’
h_X.Cell(’
h_X.Cell(’
h_X.Cell(’
h_X.Cell(’

(’B3’).CellValue h_X.Cell(’B4’).CellValue h_X.Cell("B5’).CellValue
(’B6’).CellValue h_X.Cell(’B7").CellValue h_X.Cell(’B8”).CellValue
('B9’).CellValue h_X.Cell(’B10").CellValue h_X.Cell(’B11").CellValue
(’B12%).CellValue h_X.Cell(’B13’).CellValue h_X.Cell(’B14").CellValue
('B15").CellValue h_X.Cell(’C1’).CellValue h_X.Cell(’C2’).CellValue
(’C3’).CellValue h-X.Cell(’C4’).CellValue h_-X.Cell(’C5’).CellValue*N
(’C6%).CellValue h_X.Cell(’C7’).CellValue*N h_X.Cell("C8’).CellValue
h_X.Cell("C9’).CellValue*N h_X.Cell(’C10’).CellValue h_X.Cell(’C11").CellValue*N
h_X.Cell(’C12’).CellValue h_X.Cell(’C13’).CellValue*N h_X.Cell(’C14").CellValue
h_X.Cell(’C15’).CellValue*N h_X.Cell('D1’).CellValue*N h_X.Cell('D2’).CellValue*N
h_X.Cell("D3’).CellValue h_X.Cell(’'D4").CellValue h_X.Cell("D5).Cell Value
h_X.Cell("D6’).CellValue*N h_X.Cell("D7’).CellValue*N h_X.Cell(’D8’).Cell Value*N
h_X.Cell(’D9’).CellValue*N h_X.Cell(’D10’).CellValue*N h_X.Cell(’D11’).CellValue*N
h_X.Cell("D12’).CellValue h_X.Cell(’'D13’).CellValue*N h_X.Cell(’'D14’).CellValue
h_X.Cell("D15%).CellValue*N h_X.Cell("E1").CellValue h_X.Cell(’E2’).CellValue
h_X.Cell("E3’).CellValue*N h_X.Cell("E4’).CellValue h_X.Cell("E5’).Cell Value*N
h_X.Cell(’E6").CellValue h_X.Cell("E7’).CellValue h_-X.Cell(’E8”).CellValue
h_X.Cell("E9’).CellValue h_X.Cell(’E10’).CellValue h_X.Cell(’E11").CellValue*N
h_X.Cell("E12").CellValue*N h_X.Cell(’E13").CellValue*N h_X.Cell(’E14”).CellValue*NJ;

X = [X; X0]; % SOME CELLS ARE MULTIPLIED BY 3600 TO CONVERT THEIR

3
6
9

UNITS TO KG/H
PQV_0 = [h.PQV.Cell(’A1’).CellValue h_ PQV.Cell(’A2’).CellValue
h_-PQV.Cell("A3’).CellValue h_PQV.Cell(’A4").CellValue h-PQV.Cell(’A5’).CellValue
h_ PQV.Cell("A6").CellValue h_ PQV.Cell("A7’).CellValue];

PQV = [PQV; PQV 0];

end

end
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Appendix C

12 x 12 Transfer Function Models of
the Dynamic CDU

GA(S)

GB(S)

Gals) Gp(s)
Ge(s) Gp(s)
0.00029¢—2s 0.00026 —0.00007¢ 1455 0.0065¢ 5575 —0.493 0.000003e—*
52+0.185+0.095 5240.145+0.098 5+0.044 $2+84s+1 0.3855+1 5240.315+0.278
—0.12 —0.000059 —0.00017¢~9-97s —0.00015 0.00079 —0.00083¢~3-355
3.79s5+1 3.51s+1 0.069s+1 540.476 5+0.165 0.063s+1
—0.015¢ 3% —0.0000016e—12-55 —0.00014 —0.00019 0.00077 —0.00074e—2-225
52+40.2540.11 5+0.185 s+0.538 540.248 $s40.133 0.849s+1
0.0029¢—10-8s 0.012 0.269¢—6-44s 1.002¢—1-22s —6.74¢ 175 0.438
0.0385+1 s+0.23 0.091s+1 0.938s+1 1.17s+1 0.0064s+1
0.00029¢—6-14s 0.00068 0.0043¢—9-55 0.056 52.34 0.032¢—5-22s
1.755+1 5+0.233 54+0.239 s+1.2 5+43.82 0.154s+1
—0.023 —0.000056 —0.000092¢ 9695 _(.0000046¢—0-5¢ 0.00024 —0.00093
5240.275+0.15 3.335+1 0.424s+1 540.043 540.064 0.977s+1 i
(C.2)
—0.015¢~9-5s 1.326 —0.000034 341.3 —9.76 0.00000019
s+0.19 5+40.78 5240.043540.044 5+50.47 5+21.26 52+0.0625+0.0037
0.00016 0.00033 0.00000098¢ —8-5¢ 0.000512¢—4s 0.00125 0.00000044
5+0.116 54+0.722 0.062s5+1 540.267 5+0.24 5+0.247
0.00012¢—*% 0.00016 0.0000065 —0.000075¢~ 145 0.0008 0.00000071
540.089 s4+0.102 540.1008 540.045 540.2424 540.374
—0.875¢—4:04 —43.87e~ 108 —0.93¢—3-14s —0.581e 1495 —0.51e~9-5s —0.00512¢—3-65s
2.74s5+1 s5+47.38 1.33s+1 0.00013s+1 54+0.249 0.08365+1
—0.0087e 258 —0.012 —0.011e~9-5s 0.0066e~1-5s —0.0058¢~ 155 0.00000062¢ 125
5+0.126 5+0.166 54+0.162 5+0.0535 540.367 5+0.0065
—4.325¢~6-55  0.000098¢ 165 0.0000015 0.000452¢—9-5s 0.000412 0.00000012¢—9-58
54+0.086 0.2025+1 540.0398 540.0993 540.101 5+0.076 i
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C. 12 x 12 TRANSFER FUNCTION MODELS OF THE DYNAMIC CDU

Go(s)

GD(S) =

0.00089¢ —0-22s

—0.000075¢—10-55

—0.00011e—9-55 —0.00017¢—12s 0.2325 —0.00062¢ 655
0.01245+1 5+0.0568 s+0.0383 s+0.0315 0.00011s+1 s+0.011
—0.0083¢ 355 —0.000057 —0.00017e~265  —0.00005¢~1-55 0.00059 —0.00089¢ —3-6¢
$2+40.215+0.063 6.63s+1 1.7s+1 5+0.148 540.098 1.414s+1
—0.175¢~8-01s —0.0000044 —0.000037¢=0-55  —0.000072¢~0-5s 0.00061 —0.031e~14-5s
2.4s5+1 s4+0.134 s4+0.1183 s+0.0844 5+0.0788 5+36.5
0.000089 0.0399¢—6-14s 0.00086e—2-53 0.0019¢ %5 0.396¢ 0195 2.829¢ 1455
5240.0665+0.012 2.555+1 5+0.255 s+0.215 0.0965+1 s+43.7
0.00046¢—6-43s 0.00094¢—5-4s 0.015¢1-9s 0.0088 56.61e~2:55  —0.00057e~9-5¢
0.0695+1 0.065s+1 0.073s+1 0.0518s+1 5+166.9 s+0.0000037
0.000428 0.000126¢~ 155 0.0000033e % —0.0169¢ 155 0.003 0.0000059¢ 63
| 52+0.325+0.0043 623541 s+0.12 s+23.38 0.401s+1 s+0.0114 i
1.36 0.0025¢~ 158 —0.00061¢—6-55 0.218¢—0-223s 0.243¢—0-81s 0.000049
s4+1.072 3s+1 0.025+1 0.101s+1 0.0965+1 58.7s+1
0.00011e~1-5s 0.00014¢—0-55 0.000014¢~8-46s —0.00502 0.00081 0.0000003¢ ~2*
540.073 s+0.21 0.065+1 54+0.575 s+0.129 s+0.154
0.00011e=3-55  0.000138¢~2-55 0.00013 —0.000091e~3-55 —0.00473 0.000002¢—10-5s
54-0.063 54+0.0704 s+0.091 54+0.0313 54+0.256 0.0000015+1
—0.012¢—5-58 0.149¢—% —0.0064¢—10-3s —1.21e 15 0.067e2-55  0.0000009¢ —14-5s
5+0.095 s40.135 0.072s5+1 s+0.168 s4+0.144 54+0.002
—0.026e~1-28 —0.0412¢—2-44s 13.37 —0.176¢—10-65s —14.64 0.0000004¢—12-5s
0.013s+1 0.0885+1 s+14.13 2.155+1 5+3.36 540.000006
—0.0052e~ 1455 _0.000036e=9%  —0.000025¢6-45s 0.00318 0.003 —0.0000023
54+24.9 0.000001s+1 2.325+1 5+0.043 1.34s+1 s+1.18

(C.5)

where G13(s) is the 12 by 12 models of the crude distillation unit whose inputs-outputs

pairing is presented in Table 4.13, Section 4.4.3; G4(s), Gp(s), Ge(s) and Gp(s) are the

subsets of the G2(s) models as presented above.
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Appendix D

Dynamic RGA

The dynamic RGA was used together with the steady state RGA to analyse various con-
trol loops interaction in the CDU to obtain the best input-output pairing configuration.
This of course was followed by rigorous simulations of the suggested pairing and reconfig-
urations by RGA and DRGA to achieve the best results. Examples of the application of
the DRGA to the crude distillation unit control loops pairing for the fault free system and
the reduced system models under reflux flow control valve actuator fault (F'2) are given
below. Given the transfer function models of the 5 by 5 fault free system as presented in

equation 4.12 as:

30.85 0.0321¢—5-34s 0.0065¢ 155 0.00014e—1-55  6.18e—07e 125
s+26.11 140.086s s+0.054 s40.361 5+0.0068
0.0145 —0.055931 0.0271e—0-5s 0.0247 7.39e—06e—0-55
s4+0.064 141.001s s40.099 s40.101 s40.0778
_ 0.03556  —0.0535e—2-59s —0.301 0.0485 1.61e—05e 25
s) = D.1
Gs(s) 540.008 1+1.414s 510.575 540.129 510.1536 (D.1)
0.03637  —2.095¢— 1455  _0.0055¢3-55 —0.2837 0.00011¢—10-5s
s+0.078 s+41.2 s40.031 s4+0.256 1+1e—06s
0.17986 0.00035¢—6¢ 0.191 0.182 0.000173
| 1+2.95s s+0.0114 1+1.012s 1+1.37s s+1.46

If s in the denominators of the transfer function models in (D.1) above are replaced by
jw (i.e. s = jw), where j = v/—1 and w is the frequency range under which the control
loops interactions are to be investigated. A frequency range of 10? to 10! is assumed. The
dynamic RGA of the system in (D.1) can be obtained by replacing the steady state gain
matrix in equation 3.8 with the system transfer function models (G5(s)) and testing over

the frequency range 102 to 10

ADynamic - G5~*(G5T)_1 (DQ)
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D. DYNAMIC RGA

where Apynamic is the dynamic RGA of the fault free system. Figure D.1 below presents
the plots of the relative gains of the CDU input-output pairing presented in Table 4.14. It
can be observed from Figure D.1 that the relative gains for the input-output pairing across
the frequency range support the input-output pairing. The results of the dynamic RGA
are supported by those of the RGA given in equation 4.13 and also confirmed through
rigorous simulations of the different inputs-outputs pairing combinations.

Similarly, using the transfer function models of the reduced 4 by 4 system under fault F'2 as
presented in equation 4.16 (D.3) and applying equation (D.2) using Gg2(s) over the same
frequency range gives the dynamic RGA (Apgs) for the control loop reconfiguration under
F2 shown in Figure D.2. The relative gains in Figure D.2 confirm the reconfiguration
pairing used to accommodate actuator fault F'2, and also support the RGA results in

equation 4.17.

30.85 0.0065e 155 0.00014e—1-55  §.18e—07e 125

5426.11 54+0.054 54+0.361 s+0.0068
0.0145 0.0271e—9-5s 0.0247 7.39e—06e~9-53

064 . 1101 077
GFZ(S) _ s+0.06 s+0.099 s+0.10 s+0.0778 (DB)

0.03556 —0.301 0.0485 1.61le—05e—2s

s4+0.098 s+0.575 s+0.129 s+0.1536
0.03637  —0.0055¢—3-5s —0.2837 0.00011e¢—10-5s

| 54+0.078 s+0.031 5+0.256 14+1e—06s

* T \—1

Relative gain

4 T T

2= J -

D_ f—i_

2 1 i P | i

102 10 10¢ 10°
o ; — - : e
B o .
=
g o .
= I |

2

102 107! 10 10?

5 T - . . - . s -
5 1 1 L L L

102 107" 10 10°

S T T

| l

-5 1 1

102 107" 10 10

Frequency (rad/min.}

Figure D.1: Frequency response of dynamic RGA for the fault-free system
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Frequency response of dynamic RGA for the CDU under fault F2
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