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ABSTRACT 

A multidisciplinary approach is used in order to gain a deeper understanding of 

petroleum geochemistry and specifically the aggregation properties of the asphaltenes. 

Such knowledge is essential to solving problems caused by asphaltene deposition in 

both the downstream and upstream sectors of the oil industry.  

In this thesis a thorough organic geochemical characterisation of a set of asphaltenes 

originating from a variety of non-degraded to biodegraded crude oils from locations 

distributed around the world including Nigeria, United Kingdom, Middle East, North 

America and Serbia have been performed. Several geochemical techniques including 

Iatroscan analysis and thin layer chromatography were used to describe the crude oils. 

Fourier transform infrared (FTIR), ultrasonic spectrometry and ruthenium ion catalysed 

oxidation (RICO) analysis in combination with gas chromatography-mass spectrometry 

(GC-MS) were used for the molecular characterisation of the asphaltenes. 

The crude oils have been characterised to elucidate their level of degradation, source, 

depositional environment and thermal maturity by a variety of biomarker and non-

biomarker parameters. The results reveal differences in the extent of biodegradation 

within the samples, ranging from level (1) to (6) using the Peters and Moldowan 

biodegradation scale (Peters et al., 2005a). The samples are sourced from either 

terrigenous organic matter deposited under oxic-suboxic conditions, marine organic 

matter deposited under anoxic conditions or a mixed contribution of terrestrial and 

marine sources.  

The processes to determine asphaltene concentrations in the oils were tested using 

Iatroscan and subsequently compared to gravimetric analysis. Results from both 

techniques show variations in asphaltene content in the whole oil. 

Following RICO analysis, acids are generated and released covalently bound hopanoic 

acids that reveal the existence of carbon number shift in the hopanes. The chemically 

bound biomarkers are consistent with low maturity distributions amongst all oils.  

Analysis of the FTIR spectra from the asphaltenes show that crude oil asphaltenes 

consist of aliphatic moieties bound to aromatic structures. Although, aliphatic moieties 
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are dominant, carboxyl groups and other oxygenated functionalities are significant 

components present. Carboxyl groups were detected in most of the asphaltenes analysed 

in this work from around the world, but were not detected in heavily biodegraded 

samples.   

High-precision ultrasound resonance spectroscopy was used to elucidate the mechanism 

of asphaltene aggregation in toluene solution. A new method namely the attenuation of 

sound for detecting asphaltene aggregation was developed. This work has identified that 

asphaltenes exhibit a critical nanoaggregate concentration (CNAC) in toluene at 

approximately ~0.03 – 0.16 g/L, depending upon the nature and source of the 

asphaltene. The CNAC of asphaltenes from the non-biodegraded oils is ~0.03 – 0.10 

g/L and from a biodegraded oil is ~0.16 g/L. The results confirm previous aggregation 

measurements in that asphaltenes can self-associate in solution to give rise to, more or 

less, extended aggregates. In general, CNAC is controlled by the effect of 

biodegradation and attenuation data has considerable potential to corroborate previous 

finds regarding CNAC.  

  



 

v 

 

ACKNOWLEDGEMENTS 

I would like to foremost thank my supervisors Dr Geoffrey Abbott and Nick Parker not 

only for the supervisory role but for their continuous support, timely encouragement and 

excellent guidance over the last 4 years in my graduate studies at the Newcastle 

University. Their supervision of this research was quite comprehensive without which it 

would have been tough to successfully complete. I highly appreciated their patience and 

trust during my research program. 

I will forever be indebted to Delta State Scholarship Board for the financial support as a 

postgraduate scholarship to do doctorate in the United Kingdom.  

I am thankful to all members of school of civil engineering and geosciences, namely, 

Prof. Tom Wagner, David Manning, Dr. Martin Jones, Helen Talbot, Carolyn Aitken 

and Angela Sherry, for their co-operation and useful discussions. My special thanks and 

gratitude go to Bernie Bowler, Paul Donohue, Phil Green, Graham Patterson, Yvonne 

Hall and Margaret Wardley for the special help I received at one time or the other. I am 

also thankful to all members of Biogeochemistry Research group during my graduate 

studies for their co-operation and useful discussions. 

I would like to thank Prof. M. J. Povey from School of Food Science and Nutrition at 

the University of Leeds for providing his Laboratory for the ultrasound study. I also 

acknowledge Dr. Nicholas Watson and M J Holmes for their technical support and 

advice at Leeds University. My colleagues, Onoriode Esegbue, Jasmin Black, Ida 

Shafiee Ismail, Victoria Oriuwa, Tom Charlton, Timi Oriaku, Mohammed Alaween, 

Eminue Oboho, Kauthar Al-Hadhrami, Davison Davis, Osarobo Ighodaro and Sani 

Makarfi are highly appreciated for all their contributions in one way or the other. I must 

also acknowledge the Department of Petroleum Resources of Nigeria for permission to 

release crude oil samples and the managements of the operating company (Chevron) for 

crude oil provision for this study. Thanks also to Dr. Ksenija Stojanović (University of 

Belgrade) and Dr. Jamie Burgess (Shell) for donation of some the crude oils for this 

study. 



 

vi 

 

Finally, my deepest gratitude goes to my parents Peter and Martina Agbidi for their 

invaluable sacrifice and encouragement, all family members, including Azuka Agbidi, 

Gabriel Njokede, Daddi Amudo, Gladys Opone, Lizzy Agbidi, Jones Okonye, Izu 

Osakwe, Thelma Okonye, Chika Agbidi, Ifeoma Agbidi, Uche Erhunmwunse, Chioma 

Adams, Olise Agbidi, Cleopatra Agbidi, Bright Omenogor, Joy Omenogor, Ambrose 

Isibor, Bestman Edema and Mudia Ojo-Igbinoba for their tireless effort and continuous 

support in my entire life.  

I also like to express my heartfelt thanks to my lovely wife, Gladys and my Kids, Eliora, 

Christa and Newton for their tremendous understanding and patience. Sorry I couldn’t 

be there all the times, but you were always treasured to my heart.   



 

vii 

 

DEDICATION 

This research project is dedicated to Azuka Agbidi for all the support he has offered 

toward the successful completion of this study. 

  



 

viii 

 

TABLE OF CONTENTS 

Abstract……………………………………………………………………………….iii 

Acknowledgements……………………………………………………………………v  

Dedication…………………………………………………………………………….vii 

Table of contents………………………………………………………………………viii 

List of tables…………………………………………………………………………....xv  

List of figures……………………………………………………………………...…xviii 

List of symbols……………………………………………………………………….xxvi 

List of appendices…………………………………………………………………….xxix  

Chapter 1 Introduction ................................................................................................. 1 

 Introduction ........................................................................................................ 1 

 Aim and objectives ............................................................................................. 2 

 Thesis structure ................................................................................................... 2 

Chapter 2 Literature Review ........................................................................................ 5 

 Introduction ........................................................................................................ 5 

 Petroleum characterisation ................................................................................. 5 

 Saturated hydrocarbons ............................................................................... 7 

 Aromatic hydrocarbons ............................................................................... 8 

 Resins .......................................................................................................... 9 

 Asphaltenes ............................................................................................... 10 

 Characterisation of asphaltenes ........................................................................ 10 



 

ix 

 

 Elemental composition of asphaltenes ...................................................... 11 

 Asphaltene structure .................................................................................. 11 

 Asphaltene molecular weights .................................................................. 12 

 Biomarkers ....................................................................................................... 13 

 Asphaltene bound-biomarkers .................................................................. 17 

 Biodegradation scales ....................................................................................... 20 

 Asphaltenes and aggregation ............................................................................ 22 

 Aggregation ............................................................................................... 22 

 Asphaltene precipitation and flocculation ................................................. 24 

 Relevance ......................................................................................................... 25 

 Scope and Delimitation .................................................................................... 26 

Chapter 3 Experimental Methods .............................................................................. 27 

 Introduction ...................................................................................................... 27 

 Description of samples ..................................................................................... 27 

 Nigerian oils .............................................................................................. 28 

 United Kingdom oils ................................................................................. 30 

 Middle East oils ........................................................................................ 33 

 North American oils .................................................................................. 33 

 Serbian oils ................................................................................................ 34 

 Coal samples ............................................................................................. 35 

 Methods and sample preparation ...................................................................... 35 



 

x 

 

 Iatroscan thin-layer chromatography (TLC-FID) ..................................... 36 

 Precipitation and purification of asphaltenes ............................................ 38 

 Asphaltene Recovery ...................................................................................... 38 

 Cleaning the Asphaltenes ................................................................................ 38 

 Fractionation of oils .................................................................................. 39 

 Fractionation of maltenes .......................................................................... 40 

 Ruthenium ion catalysed oxidation (RICO) of asphaltenes ...................... 40 

 Esterification of acids ...................................................................................... 41 

 Preparation of samples for Fourier transform infrared spectroscopy (FTIR)

 41 

 Preparation of samples for ultrasonic spectroscopy .................................. 41 

 Analytical techniques ....................................................................................... 42 

 Gas chromatography (GC) ........................................................................ 42 

 Gas chromatography-mass spectrometry (GC-MS) .................................. 42 

 Fourier transform infrared spectroscopy (FTIR)....................................... 43 

 Ultrasonic spectroscopy of asphaltenes in organic solvent ....................... 44 

Chapter 4 Oil and coal characterisation using conventional molecular parameters .. 46 

 Introduction ...................................................................................................... 46 

 Methods ............................................................................................................ 46 

 Results and discussion ...................................................................................... 47 

 Molecular characteristics of oils ............................................................... 47 

 Normal alkanes and acyclic isoprenoids ......................................................... 47 

 Steranes .......................................................................................................... 51 



 

xi 

 

 Tricyclic and tetracyclic terpanes .................................................................... 56 

 Aromatic hydrocarbons .................................................................................. 58 

 Source facies and thermal maturity ................................................................ 63 

 Biodegradation level based on Peters and Moldowan classification scale .... 65 

 Molecular characterisation of North Sea Coals ........................................ 67 

 Normal Alkanes and acyclic isoprenoids ......................................................... 67 

 Steranes .......................................................................................................... 69 

 Tricyclic and tetracyclic terpanes .................................................................... 72 

 Aromatic hydrocarbons .................................................................................. 74 

 Source facies and thermal maturity ................................................................ 76 

 Comparative biomarker analysis in the studied oils and coals. ................ 76 

 Summary and conclusions ................................................................................ 86 

Chapter 5 Determination of asphaltene content in crude oil ..................................... 87 

 Introduction ...................................................................................................... 87 

 Methods ............................................................................................................ 88 

 Data interpretation ............................................................................................ 88 

 Results and discussion ...................................................................................... 91 

 Iatroscan measurement of asphaltenes ...................................................... 91 

 Nigerian oil ...................................................................................................... 91 

 United Kingdom oils ........................................................................................ 92 

 Middle East oils ............................................................................................... 93 

 North American oils ........................................................................................ 94 

 Serbian oils ...................................................................................................... 95 

 Calibration measurement of asphaltenes ................................................... 96 

 Nigeria oils ....................................................................................................... 96 

 United Kingdom oils ........................................................................................ 97 

 Middle East oils ............................................................................................... 98 



 

xii 

 

 North American oils ........................................................................................ 99 

 Serbian oils .................................................................................................... 100 

 Summary and conclusions .............................................................................. 101 

Chapter 6 Structural characterisation of asphaltenes by FTIR ................................ 102 

 Introduction .................................................................................................... 102 

 Methods .......................................................................................................... 103 

 Sample preparation.................................................................................. 103 

 Analytical procedure ............................................................................... 104 

 Infrared analysis ...................................................................................... 105 

 Results and discussion .................................................................................... 107 

 Spectral analysis of asphaltene................................................................ 107 

 Functional characteristics of asphaltenes ................................................ 108 

 Nigerian oils .................................................................................................. 108 

 United Kingdom oils ...................................................................................... 109 

 Middle East oils ............................................................................................. 110 

 North American oils ...................................................................................... 110 

 Serbian oils .................................................................................................... 111 

 Structural characteristics of asphaltenes ................................................. 112 

 Nigerian oils .................................................................................................. 112 

 United Kingdom oils ...................................................................................... 113 

 Middle East oils ............................................................................................. 113 

 North American oils ...................................................................................... 114 

 Serbian oils .................................................................................................... 114 

 Chemometric analysis of spectroscopic data .......................................... 116 

 Summary and conclusions .............................................................................. 120 



 

xiii 

 

Chapter 7 Characterisation of bound biomarkers of asphaltenes released by 

ruthenium ion catalysed oxidation (RICO) ................................................................... 121 

 Introduction .................................................................................................... 121 

 Methods .......................................................................................................... 122 

 Sample preparation.................................................................................. 122 

 Identification and quantification of acids ................................................ 123 

 Chemometric multivariate analysis ......................................................... 124 

 Results and discussion .................................................................................... 126 

 n-alkanoic acids ....................................................................................... 126 

 Mass spectral characteristics of n-alkanoic compounds .............................. 126 

 Distribution of n-alkanoic compounds .......................................................... 127 

 α-ω-di-n alkanoic acids ........................................................................... 128 

 α-branched alkanoic acids ....................................................................... 129 

 Cyclic acids ............................................................................................. 129 

 Hopanoic acids .............................................................................................. 129 

 Steranoic acid acids ....................................................................................... 133 

 Effect of thermal maturation on asphaltene biomarkers ......................... 135 

 Effect of biodegradation on asphaltene biomarkers ................................ 137 

 Effect of source parameters on asphaltene biomarker ............................ 137 

 Comparative biomarker analysis of the studied maltene and bound 

asphaltenes. ........................................................................................................... 139 

 Summary and conclusions .............................................................................. 144 



 

xiv 

 

Chapter 8 The ultrasonic characterisation of asphaltene nanoaggregation in 

petroleum 145 

 Introduction .................................................................................................... 145 

 Theory ............................................................................................................ 147 

 Sound and ultrasonic sound wave ........................................................... 147 

 Speed of sound in homogenous liquid .................................................... 148 

 Speed of sound in asphaltene solution .................................................... 149 

 Attenuation of sound in asphaltene solution ........................................... 152 

 Methods .......................................................................................................... 153 

 Fitting to two straight lines and the mean CNAC ................................... 153 

 Error analysis .......................................................................................... 154 

 Results and discussion .................................................................................... 156 

 The effects of asphaltene concentration on ultrasonic velocity of sound 156 

 The effects of asphaltene concentration on attenuation of sound ........... 158 

 Comparative analysis of ultrasonic velocity and attenuation of sound to 

petroleum asphaltenes of different compositions .................................................. 160 

 Summary and conclusions .............................................................................. 163 

Chapter 9 Conclusions and Future Work ................................................................. 164 

 General conclusions ....................................................................................... 164 

 Future work .................................................................................................... 166 

  



 

xv 

 

LIST OF TABLES 

Chapter 2 

Table 2.1: Elemental composition of asphaltenes from various petroleum asphaltenes 

and coals. 

Chapter 4 

Table 4.1: Normal alkane and isoprenoid alkane distributions of the studied crude oil 

samples. 

Table 4.2: Sterane and hopane peak assignment. 

Table 4.3: Source and maturity parameters computed from steranes in the studied oils. 

Table 4.4: Biomarker ratios based on terpanes (m/z 191) in the studied crude oils. 

Table 4.5: Peak identification of biomarkers in aromatic hydrocarbons. 

Table 4.6: Selected molecular parameter for thermal maturity and source indicators 

from aromatic hydrocarbon fractions in the oils. 

Table 4.7: Summary of maturity and source facies biomarkers in the studied oils. 

Table 4.8: Biodegradation level of the studied oils based on the presence and absence of 

molecular parameters. 

Table 4.9: Normal alkane and isoprenoid alkane distributions of the studied coals. 

Table 4.10: Source and maturity parameters computed from steranes in the studied coals 

Table 4.11: Biomarker ratios based on terpanes (m/z 191) in the studied coals 

Table 4.13: Selected molecular parameter for thermal maturity and source indicators 

from aromatic hydrocarbon fractions in the coals. 

Table 4.13: Summary of maturity and source facies biomarkers in the studied coals. 

Table 4.14: Molecular parameters in the PCA of the oils and coal extracts. 



 

xvi 

 

Table 4.15: Loading weightings and molecular parameters used within the oil and coal 

extract samples in terms of principal component analyses. 

Table 4.16: Score weightings of studied samples in terms of PC1 – PC4. 

Chapter 5 

Table 5.1: Variation in gross composition (wt. %) for Nigerian crude oils calculated 

from Iatroscan analysis. 

Table 5.2: Variation in gross composition (wt. %) for United Kingdom crude oils 

calculated from Iatroscan analysis. 

Table 5.3: Variation in gross composition (wt. %) for Middle East crude oils calculated 

from Iatroscan analysis. 

Table 5.4: Variation in gross composition (wt. %) for North American crude oils 

calculated from Iatroscan analysis. 

Table 5.5: Variation in gross composition (wt. %) for Serbian crude oils calculated from 

Iatroscan analysis. 

Table 5.6: Differences in the asphaltene values of the Nigerian crude oils in the 

gravimetric method versus Iatroscan method. 

Table 5.7: Differences in the asphaltene values of the United Kingdom crude oils in the 

gravimetric method versus Iatroscan method. 

Table 5.8: Differences in the asphaltene values of the United Kingdom crude oils in the 

gravimetric method versus Iatroscan method. 

Table 5.9: Differences in the asphaltene values of the North American crude oils in the 

gravimetric method versus Iatroscan method. 

Table 5.10: Differences in the asphaltene values of the Serbian crude oils in the 

gravimetric method versus Iatroscan method. 

Chapter 6 

Table 6.1: List of samples used for the FTIR study. 

Table 6.2: General features of the infrared spectral bands from FTIR spectrum of 

asphaltenes. 

Table 6.3: Band assignments from FTIR. 



 

xvii 

 

Table 6.4: Structural relationships derived from the analysis of the ATR-FTIR spectra. 

Table 6.5: Ratios calculated from the ATR-FTIR spectra. 

Table 6.6: Cluster analysis of observations for absorption spectra of quantitative ratios, 

standardised variables, squared Euclidean distance, linkage and amalgamated steps. 

Table 6.7: Final partition of number of clusters. 

Chapter 7 

Table 7.1: List of the samples used in the RICO analysis of the asphaltenes. 

Table 7.2: Structural assignments of steroid alkanoic and hopanoic acid biomarkers 

present in the asphaltene fraction. 

Table 7.3: Parameters calculated on the basis of distribution and abundance of hopanoic, 

steranoic and n-alkanoic acids in the asphaltene fraction. 

Table 7.4: Cluster Analysis of Observations for biomarkers from RICO analysis. 

Table 7.5: Final partition of biomarkers from RICO analysis. 

Chapter 8 

Table 8.1: Experimentally determined CNAC with statistical uncertainties in velocity of 

sound for asphaltenes in toluene at 25 oC. 

Table 8.2: Experimentally determined CNAC with statistical uncertainties in attenuation 

of sound for asphaltenes in toluene at 25 oC. 

Table 8.3: Comparison of experimentally determined CNAC with statistical 

uncertainties in toluene using attenuation and velocity of sound for asphaltenes in 

toluene at 25 oC. 

  



 

xviii 

 

LIST OF FIGURES 

Chapter 2 

Figure 2.1: Separation of crude oil into four hydrocarbon group type. 

Figure 2.2: Molecular structures of representative straight chain and acyclic isoprenoids 

compounds in crude oils. 

Figure 2.3: Molecular structures of examples of five to six ring naphthenes 

Figure 2.4: Molecular structure of common aromatic hydrocarbons found in crude oil 

Figure 2.5: Molecular structure of asphaltene from different origin. 

Figure 2.6: Chemical structures of some acyclic isoprenoid and polycyclic classes built 

from isoprene subunits. 

Figure 2.7: Configuration pathway for the formation of hopanes in source rocks and 

crude. 

Figure 2.8: Configuration pathway for the formation of steranes in source rocks and 

crude oils. 

Figure 2.9: Illustration of chemical degradation. 

Figure 2.10: Biodegradation scale modified. 

Figure 2.11: Yen-Mullins model of asphaltene. 

Chapter 3 

Figure 3.1: Geographical location of the study samples. 

Figure 3.2: Location map of Niger Delta. 

Figure 3.3: Niger Delta: stratigraphy and formation depobelts. 

Figure 3.4: Location of Captain oil field. 

Figure 3.5: Location of the Nelson oil field. 



 

xix 

 

Figure 3.6: Location of the Flora oil field.  

Figure 3.7: Area of study in Serbian part of the Pannonian Basin. 

Figure 3.8: Research methodology flowchart. 

Figure 3.9: High-precision ResoscanTM ultrasound spectrometer. 

Chapter 4 

Figure 4.1: Representative GC/FID chromatograms of saturated hydrocarbon fractions 

of selected non-degraded NE (O) and biodegraded NC (O) crude oils from Niger Delta. 

Figure 4.2: Source rock anoxia inferred from the histogram of pristane/phytane ratios 

for the studied oils. 

Figure 4.3: Relationship between Pr/nC17 against Ph/nC18 for the studied oils. 

Figure 4.4: A cross plot of dibenzothiophene/phenanthrene ratio (DBT/PHEN) and the 

ratio of pristane to phytane for the studied oils. 

Figure 4.5: Representative GC-MS mass chromatogram m/z 217 showing the 

distributions of C27, C28 and C29 steranes from crude oil samples NC (O) and NE (O), 

Nigeria. 

Figure 4.6: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes 

from GC-MS analyses of studied oils and coals interpreted in terms of likely 

depositional environment. 

Figure 4.7: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes 

from GC-MS analyses of the studied oils interpreted in terms of likely source 

precursors. 

Figure 4.8: Cross plot of C29 steranes I/R against C29 steranes S/R parameter defines oils 

into various zones of thermal maturity. 

Figure 4.9: Representative partial m/z 191 mass chromatograms showing tricyclic and 

tetracyclic terpane distributions in NC (O) and NE (O) crude oils. 

Figure 4.10: Correlation between Ts/Tm and 29Ts/29Tm ratios showing the maturity of 

the studied oils 

Figure 4.11: Source rock anoxia inferred from extended hopanes (Hop (35/34) ratios of 

the studied oils. 



 

xx 

 

Figure 4.12: GC-MS m/z 178 and 192 mass chromatograms showing the distributions of 

the phenanthrene and methylphenanthrenes in representative oil NC (O) from Nigeria.  

Figure 4.13: GC-MS m/z 128 and 142 mass chromatograms showing the distributions of 

the naphthalene and methylnaphthalenes and also GC-MS m/z 156 and 170 mass 

chromatograms showing the distributions of dimethylnaphthalenes and 

trimethylnaphthalenes in the representative oil NC (O) from Nigeria. 

Figure 4.14: Cross plots of maturity parameter computed from aromatic hydrocarbons 

of the oils. 

Figure 4.15: Representative GC/FID chromatograms of saturated coal extracts of CA3 

(C) and CA6 (C) from North Sea coals, United Kingdom. 

Figure 4.16: Relationship between Pr/nC17 against Ph/nC18 for the North Sea coals from 

the United Kingdom. 

Figure 4.17: Source rock anoxia inferred from the histogram of pristane/phytane ratios 

from the North Sea coals. 

Figure 4.18: A cross plot of dibenzothiophene/phenanthrene ratio (DBT/PHEN) and the 

ratio of pristane to phytane from the North Sea coals. 

Figure 4.19: Representative GC-MS mass chromatogram m/z 217 showing the 

distributions of C27, C28 and C29 steranes from the coals, United Kingdom. 

Figure 4.20: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes 

from GC-MS analyses of the studied coals interpreted in terms of likely source 

precursors. 

Figure 4.21: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes 

from GC-MS analyses of studied coals interpreted in terms of likely depositional 

environment. 

Figure 4.22: Cross plot of C29 steranes I/R against C29 steranes S/R parameter defines 

North Sea coals into various zones of thermal maturity. 

Figure 4.23: Representative partial m/z 191 mass chromatograms showing tricyclic and 

tetracyclic terpane distributions in CA3 (C) and CA6 (C) coals. 

Figure 4.24: Correlation between Ts/Tm and 29Ts/29Tm ratios showing the maturity of 

the studied coals. 

Figure 4.25: Source rock anoxia inferred from extended hopanes (Hop (35/34) ratios of 

the coals from United Kingdom (after IGI’s p: 3.5 geochemical interpretation software). 



 

xxi 

 

Figure 4.26: GC-MS m/z 178 and 192 mass chromatograms showing the distributions of 

the phenanthrene and methylphenanthrenes in representative coal (CA3) from the North 

Sea, UK.  

Figure 4.27: GC-MS m/z 128 and 142 mass chromatograms showing the distributions of 

the naphthalene and methylnaphthalenes and also GC-MS m/z 156 and 170 mass 

chromatograms showing the distributions of dimethylnaphthalenes and 

trimethylnaphthalenes in the representative oil CA3 (C) from the North Sea, UK. 

Figure 4.28: Cross plots of maturity parameter computed from aromatic hydrocarbons 

of the coals. 

Figure 4.29: A loadings plots showing the relationship between different biomarker 

parameters in terms of the principal component analysis of the oil and coal extract 

samples used in the study. 

Figure 4.30: Principal component analysis (PC1 to PC2) results showing classification 

of the oils and coal extracts based on the score weightings of molecular parameters 

Figure 4.31: Principal component analysis (PC2 to PC3) results showing classification 

of the oils and coal extracts based on the score weightings of molecular parameters. 

Figure 4.32: Principal component analysis (PC3 to PC4) results showing classification 

of the oils and coal extracts based on the score weightings of molecular parameters. 

Chapter 5 

Figure 5.1: Percentage distribution of SARA fractions from the Nigerian oils with 

values. 

Figure 5.2:  Percentage distribution of SARA fractions for the United Kingdom crude 

oils. 

Figure 5.3:  Percentage distribution of SARA fractions from the Middle East oils with 

values. 

Figure 5.4: Percentage distribution of SARA fractions from the North American oils 

with values. 

Figure 5.5: Percentage distribution of SARA fractions from the Serbian oils with values.  

Figure 5.7: Correlation of asphaltene content (mg/g) recovered from Iatroscan versus 

gravimetric method from the Nigerian oils. 

Figure 5.8: Weight of asphaltene content (mg/g) recovered from the United Kingdom 

oils. 



 

xxii 

 

Figure 5.9: Correlation of asphaltene content (mg/g) recovered from Iatroscan versus 

gravimetric method from the United Kingdom oils. 

Figure 5.10: Weight of asphaltene content (mg/g) recovered from the Middle East oils. 

Figure 5.11: Weight of asphaltene content (mg/g) recovered from the North American 

oils. 

Figure 5.12: Correlation of asphaltene content (mg/g) recovered from Iatroscan versus 

gravimetric method from the North American oils. 

Figure 5.13: Weight of asphaltene content (mg/g) recovered from the Serbian oils. 

Chapter 6 

Figure 6.2: FTIR spectra obtained with FTIR-KBr compared with ATR-FTIR of the 

infrared spectra bands of asphaltene (NA61) from North America. 

Figure 6.2: Infrared spectra of representative asphaltene fractions from Nigerian crude 

oils. 

Figure 6.3: Infrared spectra of representative asphaltene fractions from United Kingdom 

crude oils. 

Figure 6.4: Infrared spectra of ME39(A) and ME43(A) asphaltene fractions from 

Middle East crude oils. 

Figure 6.5: Infrared spectra of representative asphaltene fractions from the North 

American crude oils. 

Figure 6.6: Infrared spectra of SN1(A) and SN2(A) asphaltene fractions from Serbian 

crude oils. 

Figure 6.7: Loading plots showing the relationship between studied asphaltene samples 

in terms of PC1 (56.67% of total variables) versus PC2 (20.37% of total variables) 

analysis of multivariate data analysis. 

Figure 6.8: Score plots showing the relationship between studied asphaltene samples in 

terms of PC1 (56.67% of total variables) versus PC2 (20.37% of total variables) 

analysis of multivariate data analysis. 

Figure 6.9: Dendrogram showing cluster analysis of Structural relationships derived 

from the analysis of the FTIR spectra. 

  



 

xxiii 

 

Chapter 7 

Figure 7.1: The mass spectrum of methyl hexadecanaote used to identify the n-alkanoic 

acids from the RICO products of the methyl esters. 

Figure 7.2: GC of n-alkanoic acids methyl esters from RICO products of representative 

asphaltenes of biodegraded and non-biodegraded Nigerian oils (top) with correspondent 

n-alkanes on maltenes (bottom).  

Figure 7.3: GC-MS m/z 98 ion chromatograms of α-ω-di-n alkanoic acids of RICO 

products of representative asphaltenes from Nigeria.  

Figure 7.4: GC–MS chromatograms of n-alkanoic acid for asphaltene ND (A) from 

Nigeria. The numbers above the peaks are the carbon numbers on the acid portion of the 

esters. 

Figure 7.5: Partial mass chromatograms of the C30 (m/z = 235), C31 (m/z = 249) and C32 

(m/z = 263) hopanoic acids on asphaltene sample from NB(A), NC (A) biodegraded oils 

and ND(A) of non-biodegraded oil from Nigeria. 

Figure 7.6 Bar charts showing a comparison of 22S/(22S + 22R) C32αβ maturity 

parameter values for maltene-derived hopanes and the asphaltene-derived hopanoic acid 

RICO products from biodegraded oils. 

 

Figure 7.7 Bar charts showing a comparison of 22S/(22S + 22R) C32αβ maturity 

parameter values for maltene-derived hopanes and the asphaltene-derived hopanoic acid 

RICO products from non-biodegraded oils. 

 

Figure 7.8: Partial mass chromatograms of the m/z = 275 and m/z = 289 of the steranoic 

and 4-methylstaronoic acids methyl esters of RICO products of asphaltenes from 

NB(A), NC(A) biodegraded oils and ND(A) of non-biodegraded Nigeria oils. 

 

Figure 7.9: Bar charts showing comparison of 20S/(20S + 20R) values for asphaltene-

derived steranoic acid RICO products and the maltene-derived steranes from 

biodegraded oils. 

 

Figure 7.10: Bar charts showing comparison of 20S/(20S + 20R) values for asphaltene-

derived steranoic acid RICO products and the maltene-derived steranes from non-

biodegraded oils. 

Figure 7.11: Distributions in steranoic acids from asphaltene-derived acid RICO product 

of C29 vs. C30 20S (20S/20S + 20R) maturity parameters 



 

xxiv 

 

Figure 7.12: Distributions in steranoic acids from asphaltene-derived acids RICO 

product of C29 vs. C30 (αββ/αββ + ααα) maturity parameters. 

Figure 7.13: Ternary diagram of C28 – C30ααα (R) of steranoic acid distributions from 

asphaltene fractions of asphaltene (a) corresponding to maltene (c), suggesting facies 

source of the oils. 

Figure 7.14: Ternary diagram of C28 – C30ααα (R) of steranoic acid distributions from 

asphaltene fractions of asphaltene (b) corresponding to maltene (d), suggesting of likely 

facies source. 

Figure 7.15: A loadings plot showing the relationship between different biomarker 

parameters in terms of PC1 versus PC2 analysis of multivariate RICO data analysis. 

Figure 7.16: A scores plot showing the relationship between studied oil and coal 

samples in terms of PC1 versus PC2 from a principal component analysis of biomarkers 

from RICO analysis. 

Figure 7.17: Dendrogram showing clusters formed from cluster analysis using PC1 to 

PC5 from RICO treatment of asphaltene. 

Chapter 8 

Figure 8.1: Schematic diagram of longitudinal ultrasonic waves. 

Figure 8.2: Schematic diagram of attenuation of sound.  

Figure 8.3: Schematic illustration of the fitting of the data to two straight lines. 

Figure 8.4: Measured velocity of sound versus concentration of asphaltene (NA61) in 

toluene at 25 oC. 

Figure 8.5: Measured velocity of sound versus concentration of asphaltene (SN1) in 

toluene at 25 oC. 

Figure 8.6: Measured velocity of sound versus concentration of asphaltene (SN1) in 

toluene at 25 oC. 

Figure 8.7: Statistical uncertainties of CNAC’s of studied asphaltenes in toluene at 25 

oC calculated from ultrasonic velocity of sound. 



 

xxv 

 

Figure 8.8: Measured attenuation of sound versus concentration of asphaltene (NA61) 

in toluene at 25 oC. 

Figure 8.9: Measured attenuation of sound versus concentration of asphaltene (SN1) in 

toluene at 25 oC. 

Figure 8.10: Measured attenuation of sound versus concentration of asphaltene (SN2) in 

toluene at 25 oC. 

Figure 8.11: Statistical uncertainties of CNAC’s of studied asphaltenes in toluene at 25 

oC calculated from attenuation of sound. 

  



 

xxvi 

 

LIST OF SYMBOLS  

IS = Internal standard 

UCM = unresolved complex mixture 

wt = weight of oil used for Iatroscan 

w = total weight of oil sample (mg) 

v = volume of oil sample used for Iatroscan (µl)  

V= total volume of oil (µl) 

Rc = response component 

Rf  = response factor 

ww = weight of oil used  

Pa = Peak area of the four components in oil sample generated from Iatroscan 

Rc(sat) = Components of saturates  

Rc(aro) = Components of aromatics  

Rc(resin) = Components of resins  

Rc(asp) = Components of asphaltenes 

Pa (Sat) = Peak areas of saturate 

Pa  (Aro) = Peak areas of aromatics 

Pa  (Resin) = Peak areas of resins 

Pa (Asp) = Peak areas of asphaltenes 

Comp(sat) = Percentage composition of saturates  

Comp(aro) = Percentage composition of aromatics 

Comp(Resin) = Percentage composition of resins 

Comp(Asp) = Percentage composition of asphaltenes 

Cx = Calculated amount of ester yield 



 

xxvii 

 

Px = Peak area of the ester 

Ps = Peak area of the internal standard 

WTa= Weight of the asphaltene 

WTi = Weight of the internal standard 

Cn = Amount per 1000C 

%C = Percentage weight of carbon in a given asphaltene 

Mc = Molar mass of the analyte 

u is the speed of sound 

κ is the wavenumber 

ω is the angular frequency of the wave 

p0 is the initial wave amplitude 

α is the attenuation coefficient 

k is the compressibility  

V is the total volume of the solution  

p is the pressure 

ks  is the adiabatic compressibility of the solution  

k1 is the apparent adiabatic compressibility of the asphaltene monomer  

kNA is the apparent adiabatic compressibility of the asphaltene nanoaggregate  

k0 is the adiabatic compressibility of the solution 

ρ0 is the density of the solvent  

ρ is the density of the asphaltene solution 

c is the mass concentration of the asphaltene  

c1 is the mass concentration of the asphaltene in the monomeric form 

cNA is the mass concentration of the asphaltene in the nanoaggregate form 



 

xxviii 

 

cnac is the numerical value of the CNAC  

w0is the mass of the solvent   

v0 is the specific volume of the solvent  

v1 is the apparent specific volume of asphaltene monomer  

vNA is the apparent specific volume of the asphaltene nanoaggregate 

  



 

xxix 

 

LIST OF APPENDICES 

Appendix 1.0: Study samples and locations. 

Appendix 2.0: Monitored ions (m/z) in selected ion and full scan modes. 

Appendix 3.0: Selected biomarker data for principal components analysis for the oils 

and coals. 

Appendix 4.0: Comparison of weight of asphaltene content (mg/g) recovered from 

Iatroscan and gravimetric.  

Appendix 5.0: Calculated contents in mg/g of the asphaltene fraction recovered from 

gravimetric procedure of the oils as mean ± one standard error. 

 



1 

 

Chapter 1 Introduction 

 Introduction  

As the world population grows, considerable effort is being spent developing 

unconventional sources of liquid and gaseous hydrocarbons. Amongst these are heavy 

oils, bituminous sands, oil shales and coals. Notable is the fact that these heavier 

feedstocks are rich in asphaltenes, which are precipitated from petroleum fluids and 

extracts by natural processes or in the laboratory by addition of excess nonpolar 

aliphatic hydrocarbon solvent e.g. n-pentane, n-hexane, or n-heptane (Speight, 1984). 

However, significant changes in pressure, temperature and composition of the crude oil 

properties as well as of the thermodynamic conditions at production, transport and 

processing of crude oils can also induce asphaltene precipitation (Wilhelms and Larter, 

1994; Buckley et al., 1998; Sheu, 2002; Hammami and Ratulowski, 2007). In such 

cases, the remaining fraction is called maltenes consisting of saturated hydrocarbons, 

aromatic hydrocarbons and resins. Characterisation of asphaltenes has become 

increasingly important as several economic problems including formation damage, flow 

line blockages and catalyst fouling have been linked to asphaltene precipitation, 

flocculation and deposition in the oil industry (Gawrys and Kilpatrick, 2005; Mullins, 

2010). Asphaltenes have also been found to be responsible for the facilitation of the 

formation of extremely stable water in-crude oil emulsions, which increase production 

problems (McLean and Kilpatrick, 1997b).  

Asphaltene molecular weight is a subject of debate (Speight and Moschopedis, 1981; 

Yen et al., 1984; Badre et al., 2006; Herod, 2010). The molecular weight debate is 

whether asphaltenes are monomeric (one fused-ring system per molecule) or polymeric. 

Badre et al. (2006), for example, observed that asphaltenes are monomeric, while 

Strausz et al. (1992a), proposed a crossed linked network of aromatic ring system 

(polymeric). Although, several workers have investigated the structural features of 

asphaltenes and agree that they consist of aromatic rings and appendages composed of 

aliphatic rings which are not easily biodegraded and have been used in oil-oil and oil-

source correlation especially for biodegraded oils (Behar et al., 1984; Strausz et al., 

1992b; Xiong and Geng, 2000). Despite the rapidly growing literature on the properties 

and the behaviour of petroleum asphaltenes, there is still controversy on their 
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aggregation properties. However, a deeper understanding of the chemical composition 

of asphaltenes may help us gain a better understanding of their nanoaggregation 

properties, sources of precursor materials, environmental conditions of deposition, 

biodegradation and maturation processes.  

 Aim and objectives  

This study is aimed at the molecular characterisation of asphaltenes in both non-

degraded and degraded crude oils from various oilfields around the world and to 

ascertain how aggregation properties correlate with the molecular characteristics. 

The following objectives were undertaken to achieve the above aims:  

a. To ascertain which oils are biodegraded or non-degraded and then assess the 

extent of biodegradation in oils using Peters and Moldowan scale (Peters and 

Moldowan, 2005). 

b. To assess biomarker distribution ratios of whole oils, maltenes and asphaltenes 

in terms of source facies input, maturation and depositional environment. 

c. To measure the content of asphaltenes using the Iatroscan method. 

d. To assess the structural composition of asphaltenes of crude oils using mid-

infrared attenuated  total reflectance spectra (FTIR-ATR). 

e. To assess the relationship of hopane and sterane distributions in maltenes with 

those of corresponding hopanoic and steranoic acids released during ruthenium-

ion-catalysed oxidation (RICO) treatment of respective asphaltenes of petroleum 

from the biodegraded and non-degraded crude oils. 

f. To measure the changes in the properties of the velocity and attenuation of 

sound at different concentrations of asphaltene precipitates using a high-

precision ultrasound resonance spectrometer, so as to gain more insights on 

asphaltene aggregation and build on an earlier high quality factor (high-Q) 

ultrasonics study that was used to demonstrate asphaltene nanoaggregation by 

Andreatta et al. (2005). 

 Thesis structure  

This thesis consists of nine chapters in the following order: 
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The first chapter provides a general introduction of the study. Here crude oil and the 

economic significance of asphaltenes are briefly introduced. The aims of the study and 

how to achieve these, as well as the need for the study are also presented. Following the 

brief introduction, a comprehensive literature review of previous work related to this 

thesis is presented in Chapter 2; petroleum characterisation, characterisation of 

asphaltenes, biomarkers, biodegradation scale, asphaltene aggregation, research 

problems, the relevance of research, scope and delimitation of the research. 

Chapter 3 describes experimental equipment, analytical methods, materials and 

procedures used in the present study. The issues of replicability and reproducibility are 

also discussed. 

Chapter 4 focuses on the biological marker (biomarkers) and non-biomarkers 

compounds of the crude oils and coals, so as to ascertain the probable sources, 

depositional environments, and the degree of alteration of the study samples. 

Chapter 5 focuses on the results obtained in measuring the amount of asphaltene content 

and the corresponding asphaltene precipitates from the oil samples. The results from 

Iatroscan runs are also presented and compared with gravimetric results. 

Chapter 6 describes the characterisation of different asphaltenes from various regions of 

the world in terms of their molecular structure and relates the changes to develop a 

classification system using asphaltene FTIR spectra. 

Chapter 7 provides a comparison study of corresponding biomarkers of the maltene 

fractions from conventional geochemical data and bound biomarkers of asphaltenes 

released by ruthenium ion catalysed oxidation. 

Chapter 8 provides the characterisation of asphaltene nanoaggregate as a function of 

concentration in toluene solution and proposed a concentration range at which 

nanoaggregate particles are formed depending on varying geochemical properties; 

source and biodegradation level.  

Finally, Chapter 9 provides the general conclusions and major contributions of this 

research study and attempts to relate the molecular chemistry of degraded and non-
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degraded Serbian oils of same source with that of their ultrasound data and also 

compare the molecular chemistry of non-degraded North American oil with the non-

degraded Serbian oil. 
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Chapter 2 Literature Review 

  Introduction 

This chapter is aimed at providing a detailed overview of some significant work on 

petroleum fluids composition and properties: with significant interest on the molecular 

nature of the asphaltene fraction (e.g. asphaltene composition, chemical structure, 

molecular weight etc.), biomarkers, and biodegradation. The properties of asphaltenes in 

crude oils are also comprehensively reviewed.  

 Petroleum characterisation  

Petroleum is a naturally occurring complex mixture, consisting of several thousands of 

hydrocarbon and non-hydrocarbon compounds which are derived from the thermal 

decay of buried organic matter over geological time (Hunt, 1996). The source of 

petroleum is a geopolymer termed kerogen (Tissot and Welte, 1984; Killops and 

Killops, 1994; Hunt, 1996). Kerogen is operationally defined as the organic constituent 

of sedimentary rocks that is insoluble in both aqueous alkaline and common organic 

solvents (Tissot and Welte, 1984). There are three principal stages (diagenesis, 

catagenesis and metagenesis) during the evolution of organic matter (Tissot and Welte, 

1984; Hunt, 1996). Catagenesis corresponds to the principal stage of oil and gas 

formation. During this stage, kerogen is heated from about 50 – 150 oC resulting in the 

generation of liquid and gaseous  hydrocarbons (Tissot and Welte, 1984).  

The major elemental constituents of kerogen are hydrogen and carbon with minor 

amounts of sulphur, nitrogen and oxygen (Welte, 1972; Dow, 1977; Tissot and Welte, 

1984). As kerogen thermally matures, hydrogen-rich kerogen generates predominantly 

oil whilst hydrogen-poor kerogen generates predominantly gas (Hunt, 1996). Three 

major types of kerogen namely Types I, II and III have been identified (Tissot and 

Welte, 1984). Type I kerogen is mainly derived from lacustrine algae and deposited in 

reducing environments. H/C ratios are generally high and therefore have an elevated 

potential for oil and gas generation. Type II kerogen contains organic carbon derived 

from various sources including phytoplankton, zooplankton, higher plants and bacteria. 

This kerogen type has higher H/C and lower O/C ratios relatively to other types. Type 
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III kerogen is mainly derived from terrestrial higher plants and has a lower and a higher 

O/C ratio relatively to the other kerogen types.  

Petroleum contains a broad range of molecular types from small, simple volatile 

compounds like methane to extremely large, complex non-volatile and colloidally 

dispersed macromolecules like asphaltenes. The hydrocarbon compounds, include 

molecules that comprise carbon and hydrogen atoms including acyclic alkanes (normal 

and isoalkanes), cycloalkanes (naphthenes), and aromatic hydrocarbons, while the non-

hydrocarbons contain one or more heteroatoms such as nitrogen, sulphur, oxygen 

(NSO) as well as metallic constituents, particularly vanadium, nickel and iron, which 

have considerable influence on product quality of the crude oil (Boduszynski, 1988; 

Speight, 1991). Hydrocarbon content may be as much as 97% w/w (especially for a 

light oils) or as low as 50% w/w for heavy oils and bitumen (Speight, 1991). 

Furthermore, the major constituents of the naphthene series of hydrocarbons found in 

crude oils are defined by the number of rings (e.g. containing monocyclic, bicyclic, 

tricyclic rings). These constituents have great consequence on the quality of the oil, 

such that it determines the price of its products. 

In general, crude oil can be classified on the basis of solubility and polarity of its 

compound fractions which can be easily distinguish from each other (Speight, 1991). 

The crude oils are separated into chemical class composition based on saturates (S), 

aromatics (A), resins (R), and the asphaltenes (A)  i.e SARA contents as shown in 

Figure 2.2 (Speight, 1999; Jiang et al., 2008). In this method, asphaltenes are initially 

precipitated from petroleum fluids and extracts by natural processes or in the laboratory 

by addition of excess non-polar aliphatic hydrocarbon solvent e.g. n-pentane, n-hexane, 

or n-heptane as shown in Figure 2.1. (Speight, 1984; Wilhelms and Larter, 1984; 

Speight, 1999). After the precipitation and isolation of the asphaltenes, the remaining 

soluble fraction in light n-alkanes, are maltenes consisting of saturated hydrocarbons, 

aromatic hydrocarbons and resins.  
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Figure 2.1: Separation of crude oil into four hydrocarbon group type. 

The maltenes can be further fractionated into individual fractions by eluting the 

adsorbed sample on a chromatographic column using solvents with different polarities. 

However, both resins and asphaltenes are hetero compounds and form the most 

aromatic component of the crude oil (Groenzin and Mullins, 1999). SARA 

compositions have also been studied using Iatroscan TLC-FID (Karlsen and Larter, 

1991; Lu et al., 2008). However, the practicality and application of Iatroscan TLC-FID 

in the separation of extracts or crude oils is limited by calibration and standardisation of 

response factors. 

 Saturated hydrocarbons 

Saturated hydrocarbons are often called aliphatic compounds composed entirely of 

straight chain alkanes and branched iso-alkanes with the general formula CnH2n + 2 

(where n is an integer) and molecular structure as shown in Figure 2.2. Also included in 

this group are the acyclic alkanes (normal and branched) and cycloalkanes or 

naphthenes (Killops and Killops, 1994). The naphthenes have a general formula CnH2n 

(Selley, 1985). Like the straight chains they occur in a homologous series containing 

one or more rings, each of which may have one or more alkyl side chains attached to 

each of the rings e.g. cyclopentane (C5H10), cyclohexane (C6H12), cyclohexane (C6H10), 

and ethyl cyclohexane (C8H16) with a general molecular structure as shown in Figure 

2.3. Among these naphthenes are also important biological markers called hopanes and 

steranes  detected in crude oil (Stout et al., 2007). In both light and heavy oils, 

naphthenes are liquid at normal temperature and pressure consisting of about 40% of 
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both oils (Selley, 1985). Saturated hydrocarbons have been the subject of numerous 

investigations, especially sterane and hopane compounds. These biomarkers have been 

successfully applied in geochemical characterisation of petroleum source rocks and 

crude oils (Philp and Gilbert, 1986; Peters and Moldowan, 1991). 

 

Figure 2.2: Molecular structures of representative straight chain and acyclic isoprenoids compounds in crude 

oils (Killops and Killops, 2005). 

 

 

Figure 2.3: Molecular structures of examples of five to six ring naphthenes redrawn from (Selley, 1985).  

 Aromatic hydrocarbons 

Aromatic hydrocarbons are found in crude oils and most commonly compounds are 

benzene, benzene derivatives and fused benzene ring compounds (Selley, 1985). Their 

molecular structures generally consist of one or more benzene rings that contain 

alternating single and double bonds in its chemical structure such as benzene (C6H6) or 

naphthalene (C10H8) as shown in Figure 2.4.  

  

Pristane (C19)

2,6,10,14-Tetramethylhexanedecane

Phytane (C20)

2,6,10,14-Tetramethylpentanedecane

n-heptadecane

Cyclohexane Cyclohexane Ethyl cyclohexaneCyclopentane
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Figure 2.4: Molecular structure of common aromatic hydrocarbons found in crude oil redrawn from Speight 

(1991) and (Selley, 1985). 

These hydrocarbons may be bonded to naphthenic rings and alkyl side chains. Aromatic 

hydrocarbons can be divided into monoaromatic, di- and tri-, aromatic hydrocarbons 

based on the number of aromatic rings and are known as polynuclear aromatic 

hydrocarbons (PAH) (Peters et al., 2005a).  Examples of monoaromatic including 

benzene, toluene, ethylbenzene and xylene (BTEX) while PAH’s include naphthalene, 

phenanthrene, dibenzothiophene, anthracene and pyrene etc (Kanaly and Harayama, 

2000). In crude oils and sediments, aromatics usually have other organic compounds of 

benzene derivatives that may contain other elements such as N, S, O and metals. Several 

studies applied aromatic hydrocarbons, especially the distributions and relative amounts 

of mono-, di- and PAH’s from GC-MS, for assessing the maturity of organic matter in 

source rocks and crude oils (Mackenzie et al., 1981; Welte et al., 1982; Radke, 1988). 

 Resins 

Resins are polar molecules in crude oils and solvent soluble sedimentary organic matter 

and contain heteroatoms such as nitrogen, oxygen or sulphur (Speight, 2004). The resin 

is defined operationally by the separation method (Speight, 1984; Andersen and 

Speight, 2001). Hence, different fractionation methods of crude oil will yield different 

quantity and resin composition (Andersen and Speight, 2001). Resins are composed of 

similar type of chemical structures as asphaltenes but with lower molecular weights 

(Murgich et al., 2006). They co-precipitate and strongly absorb onto the asphaltenes 

during separation processes (Mullins and Sheu, 1998). The nature of resins in crude oils 

has been debated and there is a concept that resins play an important role in asphaltene 

flocculation in crude oils (Carnahan et al., 1999; Mansoori et al., 2007). Hence, the 

stability of asphaltenes increases linearly with the amount of resins (León et al., 1999). 

Benzene DimethylbenzeneNaphthalene
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Despite the natural materials which stabilize asphaltenes in petroleum fluids, quite little 

is known due to limited research of resins.   

 Asphaltenes  

The typical definition of asphaltenes is that they are the heaviest and most polar 

components present among the hydrocarbon fractions in bituminous sands, oil shales, 

heavy oils and coal. Asphaltenes can also be defined as a solubility class, insoluble in 

light alkanes such as n-hexane, n-pentane, or n-heptane (Speight, 1984; Pelet et al., 

1986). They are soluble in aromatic solvents such as toluene, and the nature and amount 

of an asphaltene fraction is strongly dependent on the source and method of separation 

(Speight and Moschopedis, 1981; Speight, 2004). However, different solvents and 

methods can yield different compositions and amounts of asphaltene. One long debate 

in the asphaltene study has been their tendency to self-associate to form molecular 

nanoaggregates over a broad range of sizes (Speight and Moschopedis, 1981; Yen et al., 

1984). Asphaltene particles are believed to exist in the form of nanoaggregates in crude 

oils and organic solvents such as toluene. However, small size asphaltenes may dissolve 

in a petroleum crude or relatively large asphaltenes may flocculate out of the solution, 

due to excess n-alkane content of the oil, forming random flocs (large molecular 

assemblage) as shown in Figure. 2.11. Asphaltenes have been widely used for different 

studies, including (i) pyrolysis and (ii) ruthenium ion catalysed oxidation studies where 

asphaltenes are chemical degraded to small fragments with distributions that could be 

used to differentiate the oils (Behar et al., 1984; Ekweozor, 1984; Muhammad and 

Abbott, 2012). Such studies have been widely used, especially in oil-oil and oil-source 

rock correlation studies of severely altered biodegraded oils, or bitumen (Peng et al., 

1999b; Ma et al., 2008). 

 Characterisation of asphaltenes 

Over the past several years, there has been progress in the molecular characterisation of 

asphaltenes, focusing on revealing the true composition of asphaltene, chemical 

structure, and molecular weight. Several studies using different techniques have been 

extensively applied to unveil these characteristics. 
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 Elemental composition of asphaltenes  

Asphaltene elemental compositions have been found to be narrowly variable 

corresponding to H/C ratio of 1.15 ± 0.05%. However, values outside this range are 

often found depending in the proportions of the heteroelements, such as proportion of 

oxygen and sulphur (Speight, 1999). Many studies have investigated the elemental 

composition toward understanding aphaltenes deposition problems (Yen et al., 1961; 

Mullins and Sheu, 1998; Sarmah et al., 2010). Asphaltenes are a mixture of carbon, 

hydrogen, nitrogen, oxygen, sulphur and traces of nickel and vanadium (Mullins and 

Sheu, 1998; Branco et al., 2001; Sarmah et al., 2010). The elemental analysis (Table 

2.1), shows that asphaltenes are predominantly carbon (~ 80% w/w) and hydrogen (~ 

8% w/w) with smaller amounts of nitrogen, oxygen, sulphur, nickel and vanadium 

(Speight and Moschopedis, 1981; Mullins and Sheu, 1998; Speight, 1999; Bada et al., 

2007). Furthermore, oxygen contents vary from 0.3 – 4.9% w/w, sulphur from 0.3 – 

10.3% w/w and nitrogen from 0.6 – 3.3% w/w (Speight and Moschopedis, 1981; 

Speight, 1991). The H/C ratio of asphaltenes from different geological origins is about 

1.1 – 1.2 (Speight and Moschopedis, 1981; Callejas and Martínez, 2000). 

Table 2.1: Elemental composition of asphaltenes from various coal and bitumen  (Badre et al., 2006). 

Asphaltene sample C H N O S C:H 

UG8 p 81.07 7.11 1.02 1.60 8.94 1:1.045 

Athabasca p 77.03 8.01 1.27 3.00 8.18 1:1.239 

Ven20 p      84.75 7.81 1.75 1.72 4.57 1:1.098 

Lino c   90.35 5.53 2.23 1.90 ˂0.23 1:0.729 

BA c    79.23 6.19 1.49 1.36   0.39 1:0.931 

P  Petroleum asphaltenes 

C  Coal asphaltenes 

 Asphaltene structure 

The structure of asphaltenes has been investigated by various methods; including 

physical techniques, (infrared spectroscopy, X-ray, electron microscopy, small-angle 

neutron scattering) and chemical methods (oxidation and hydrogenation). They appear 

to agree that asphaltenes are aromatic molecules surrounded and linked by network of 
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aromatic ring systems, essentially a polymer (e.g., carboxylic acid, carbonyl, phenol, 

pyrrole and pyridine) capable of donating or accepting protons inter- and 

intramolecularly (Calemma et al., 1999; Gawrys and Kilpatrick, 2005). The physical 

methods suggest the fused system consists of aromatic rings and appendages made up of 

aliphatic rings, small aliphatic side chains and polar heteroatom-containing functional 

groups, such as hydroxyl, carboxyl, carbonyl groups (Mullins and Sheu, 1998). 

However, the application of chemical methods (H2O2/CH3COOH treatment and 

pyrolysis) to study the asphaltene aggregates from two Venezuelan crude oils have 

shown similar distributions of oxidation products, including terpanes and steranes (Liao 

et al., 2006). These techniques have proposed structures of asphaltene molecules, which 

include the atoms carbon, hydrogen, oxygen, nitrogen and sulphur contained in both 

polar and non-polar groups as in Figure 2.5. Hence, two representative asphaltene 

structures arise for two different crude oil asphaltenes of different source. Asphaltenes 

have been reported to possess structural features of remnants of the kerogen from which 

these were derived over geological time, and have been used to correlate crude oils to 

their source rocks, and to evaluate their thermal and reservoir emplacement histories, 

especially for biodegraded oils (Behar et al., 1984; Strausz et al., 1992b; Xiong and 

Geng, 2000).  

 
Figure 2.5: Molecular structure of asphaltene from different origin; (A) as proposed by Groenzin and Mullins 

(2000) and (B) Speight and Moschopedis (1981). 

 Asphaltene molecular weights 

The molecular weights of asphaltenes are variable and there is debate as to whether they 

are monomeric or polymeric as different measurements from previous studies has 

revealed various values which differ by as much as a factor of 10 or more (Groenzin and 

A B



 

13 

 

Mullins, 1999). The determination of molecular weights of asphaltenes has been 

difficult because of their tendency to associate with other fractions of hydrocarbons to 

form well-ordered crystalline structures. However, there is no general agreement to the 

problem as different measurements have given different molecular weights. The result 

of the molecular mass measurements of asphaltenes extracted from coal and petroleum 

using laser desorption/ionization (LDI) mass spectrometric measurements revealed that 

coal asphaltenes have a relatively narrow molecular weight distributions, typically 

within 600 - 800 amu, while petroleum asphaltenes show a broader molecular weight 

distributions, which falls rapidly above 1500 amu (Hortal et al., 2007). As a result, these 

measurements are in good agreement with mass spectrometric and molecular diffusion 

studies of asphaltenes. However, time-resolved fluorescence depolarization (FD) 

measurements have revealed that asphaltenes are small molecules weights with mean 

molecular weights of roughly 750 amu with most of the population being between 500 

and 1000 amu for petroleum asphaltene, and primarily monomeric and not polymeric 

(Groenzin and Mullins, 1999; Andreatta et al., 2005a). We must be cautious with 

assigning mean values size to the heterogeneous population of asphaltene aggregates 

due to wide range of stability among the various aggregates. This might lead which to 

conflicting interpretation of data from various techniques (Gawrys and Kilpatrick, 2005; 

Mostowfi et al., 2008; Gray et al., 2011). Thus, despite research on this subject, Sheu 

(2002) argued that the molecular weight is not suitable as a sole parameter to 

characterise asphaltene behavior in petroleum fluids. 

 Biomarkers 

Biomarker or biological marker molecules are certain organic compounds occurring in 

crude oils, bitumen, coal, and source rocks that can be traced back to their biological 

molecular precursors in the contemporary or extinct biota. These complex molecular 

fossils possess a basic carbon skeleton that can be linked to a known natural product in 

the biosphere such as chlorophyll, sterols, and hopanoids (Peters et al., 1992; Peters et 

al., 2005b). Many biomarkers in crude oils are resistant to secondary processes, e.g. 

biodegradation. In the past three decades, these classes of organic compounds have 

provided an improved understanding of sources of organic matter, environmental 

conditions during deposition, maturity, age and degree of biodegradation, in petroleum 
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exploration and production (Behar et al., 1984; Behar and Albrecht, 1984; Peters et al., 

2005b). Key common examples of biomarker classes include: branched and cyclic 

hydrocarbons. However, a whole variety of acyclic isoprenoid hydrocarbons like 

phytane, to polycyclic classes, such as the hopane and steranes have been reported in 

crude oils, bitumen, coal, and source rock extracts (Hunt, 1996; Peters et al., 2005b). 

All these compounds, extending from C5 – C45, and are formed from the same building 

blocks of isoprene units that are linked together (Killops and Killops, 1994). Thus, 

based upon the number of isoprene units present, acyclic isoprenoids can be grouped 

into four classes (i) head-to-tail acyclic isoprenoids which have their methyl groups 

linked to the even carbon numbers on the chain (ii) tail-to-tail acyclic isoprenoids (iii) 

head-to-head isoprene units, and (iv) irregular acyclic isoprenoids. Figure 2.6 shows 

some examples of acyclic isoprenoids and polycyclic classes found in crude oils and 

coal extracts. 

Numerous studies, including GC-MS have investigated biological markers, especially 

steranes and hopanes, which occur widely in petroleum and sediments. They are 

believed to be derived from the acyclic terpenoids, sterols and hopanoid terpenes 

biosynthesised by organisms present at the time of deposition (Mackenzie et al., 1980; 

Petrov, 1984; Peters et al., 2005b). These studies can hardly be overemphasized, as 

during diagenesis and catagenesis in sediments, biomarkers can undergo complex 

gradual structural modifications of a number of chiral centre as they achieve 

thermodynamic stability (Mackenzie et al., 1980).  

Below are the configuration pathways for the formation of hopanes from crude oils 

(Figure 2.7). Their structures can differ considerably between crude oils from different 

source facies and (Peters et al., 2005a) via the configuration pathway. The origin of 

hopane biomarkers suggests they are associated with bacterial inputs. However, the 

change of various biomarker ratios present in the different organic compounds can be 

associated with certain characteristic differences which has occurred in the oils and 

sediments. These, provide geological information on source, maturity, biodegradation 

and correlation studies. The hopane group comprises of three diagenetic products, 

namely 17α,21β-(H), 17β,21β-(H), and 17β,21α(H)- hopanes (Figure 2.7). Other 

triterpanes include pentacyclic oleananes, lupanes and gammacerane, which also exist in 
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the great family of triterpane structures. Oleanane is unambiguously linked with 

angiosperms (flowering plant), which have a terrestrial plant source (Ekweozor et al., 

1979; Peters and Moldowan, 1991; Peters et al., 2005b). Thus, the abundance of 

18α(H)- oleanane  relative to 17α(H)- hopane (oleanane index), monitored using the 

characteristic m/z 191 fragment ion from GC-MS analysis can be used as a source 

indicator (Ekweozor and Udo, 1988; Peters et al., 2005b). Thus, oleanane can be used to 

infer the age of source rock from which the oil has been generated and a ratio > 0.20 is 

characteristic of Tertiary source rocks while < 0.20 suggests Cretaceous or very early 

Tertiary source rocks (Peters et al., 2005a; Peters et al., 2005b). However, in GC-MS 

analysis, 18α(H)- oleanane has been reported to co-elute with less stable 18𝛽(H)- 

oleanane  isomer, in most common gas chromatograph column conditions which makes 

interpretation difficult. 

 

Figure 2.6: Chemical structures of some acyclic isoprenoid and polycyclic classes built from isoprene subunits 

(Hunt, 1996; IGI, 2004; Peters et al., 2005a). 
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Figure 2.7: Configuration pathway for the formation of hopanes in source rocks and crude oils (Peters et al., 

2005a). 

The sterane biomarkers have been widely reported and are believed to be derived from 

their biological steroids, which are linked to plant and animals. Hence during diagenesis, 

sterols undergo structural modifications by loss of 3𝛽-hydroxyl group to form various 

regular steranes (5α(H),14α(H),17α(H)) and rearranged steranes (5α(H),14𝛽(H),17𝛽(H)) 

isomers (see Figure 2.8).  

 
Figure 2.8: Configuration pathway for the formation of steranes in source rocks and crude oils (Peters et al., 

2005a). 

However, other form of steranes including C21 and C22 consisting of 

5α(H),14𝛽(H),17𝛽(H) stereomers could also arise from the bacterial modification of the 

regular steranes (Moldowan et al., 1991). Sterane distributions are usually determined 
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from m/z 217 chromatogram during GC-MS analysis. Huang and Meinschein (1979), 

suggested that the relative abundance of C27, C28 and C29 sterane members in the rocks 

could be used to differentiate organic matter source (terrestrial or marine source). 

Consequently, the relative abundance of C27-C28-C29 plotted on the ternary diagram 

established differences in the biological source contribution of the oils (Hu, 1991; Peters 

et al., 2005a; Peters et al., 2005b; Hakimi et al., 2011). Also, maturity is also thought to 

play a role in sterane configuration where the relative abundance of 

5α(H),14𝛽(H),17𝛽(H) steranes are more stable and increases with increasing thermal 

stress (Peters and Moldowan, 1991; Killops and Killops, 2005; Peters et al., 2005a).  

Studies of the absolute abundance of the various isomers of steranes and hopanes during 

hydrocarbon generation from source rocks have provided evidence that the changes in 

ratios of isomers may not only be the result of isomerisation in the bitumen. Differences 

between the isomers in generation rates from kerogen and thermal stabilities may also 

be important as shown during hydrous pyrolysis (Abbott et al., 1990) and in sediments 

thermally altered both by igneous intrusions (Bishop and Abbott, 1993) and burial 

maturation (Requejo, 1994). There is also evidence from thermochemolysis experiments 

in the presence of tetramethylammonium hydroxide (TMAH) that isomerisation takes 

place on the bound fraction (Abbott et al., 2001; Sugden and Abbott, 2002). 

 Asphaltene bound-biomarkers 

Asphaltenes are rich in biomarker compounds (see Figure 2.7 and 2.8), which are 

chemically bound or trapped within the macromolecular asphaltene network (Tissot and 

Welte, 1984; Pelet et al., 1986). Furthermore, asphaltene bound-biomarkers have been 

reported to be found in sediments, coals and petroleum over geological time, and can 

provide information on the source and maturity of the asphaltenes and therefore on the 

oils (or bitumens) that contain them, especially for biodegraded oils (Ekweozor and 

Strausz, 1982; Behar et al., 1984; Strausz et al., 1992b; Xiong and Geng, 2000).They 

are considered as polyaromatic structural units with aliphatic moieties (homologous 

series of alkyl moieties up to C40) which are covalently bonded to the aromatic rings 

(Calemma et al., 1998; Calemma et al., 1999; Strausz et al., 1999b). These 

polyaromatic asphaltene structures have been characterised to be microporous and very 

weak, which permit it to adsorb and occlude other organic hydrocarbon species (Liao 
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and Geng, 2002; Liao et al., 2006). Hence, they may be encapsulated within the core of 

asphaltenes and  could represent remnants of the original oil (Acevedo et al., 1997). 

Asphaltene biomarker compounds can be classified into two groups: (i) the adsorbed 

compounds and (ii) the occluded compounds. In the packed periphery inside the 

asphaltene aggregates, the adsorbed compounds may be exchanged within the bulk 

phase while occluded compounds can be adsorbed inside the asphaltene core (Liao and 

Geng, 2002; Liao et al., 2006). 

Previous studies, such as chemical degradation techniques, typically pyrolysis and 

ruthenium ion catalysed oxidation techniques have been extensively applied in 

geochemical studies of various forms of sedimentary organic matter including 

asphaltenes to release covalently bound biomarkers of asphaltenes (Rubinstein et al., 

1979; Ekweozor, 1984; Cassani and Eglinton, 1986; Mojelsky et al., 1992; Peng et al., 

1999c; Strausz et al., 1999b) and kerogen (Peng et al., 1998; Abbott et al., 2001; 

Sonibare et al., 2009; Barakat et al., 2012) as well as coal (Kidena et al., 2008; 

Muhammad and Abbott, 2012). However, these techniques are tedious, time consuming 

and different chemical methods can selectively release biomarkers with different 

compositions. The RICO technique using ruthenium tetroxide (RuO4) as oxidation 

reagent can release aromatic carbons in high yields to carbon dioxide (CO2) without 

interference from other moieties that are covalent-bonded to the asphaltene molecular 

structures (Mojelsky et al., 1992; Strausz et al., 1992a). Hence, minimises alteration to 

their isomeric distributions of aromatic units connected by an alkyl bridge into typically 

products of asphaltene bound-biomarker (Figure 2.9). Furthermore, Figure 2.9 

illustrates the selective oxidation of aromatic carbons to form to major products of 

carboxylic group. 
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Figure 2.9: Illustration of chemical degradation (Mojelsky et al., 1992). 

There have been reports of the major products analysed from the RICO reactions of 

asphaltenes in petroleum and the distinguished asphaltene bound-biomarkers were the 

carboxylic acids: series of n-alkanoic, α,ω-di-n-alkanoic acids, isoprenoid acids, 

hopanoic acids and steranoic acids etc, in asphaltenes (Mojelsky et al., 1992; Peng et 

al., 1997; Peng et al., 1999c). The occurrence of these biomarker compounds is similar 

to the biomarkers in the maltenes but show slight characteristic differences in the 

thermal maturity status (Peng et al., 1999c). The n-alkanoic acids resulting from the 

RICO oxidation products of asphaltenes show a distinctive characteristic of abnormally 

high abundance of monoacids with distributions covering the C1 – C32 range and a clear 

even-to-odd preference feature, while the hopanoic acids can occur also and are best 

detected using m/z 191 mass chromatograms. These hopanoic acids ranged from C28 – 

C35, with the following configurations at the C17 and C21 chiral centres, 17𝛽,21𝛽(H) 

(abbreviated to 𝛽𝛽); 17𝛽,21𝛽(H) (abbreviated to α𝛽) and 17𝛽,21α(H) which is 

abbreviated to 𝛽α (Bishop and Abbott, 1993). The 𝛽𝛽 stereochemistry is believed to 
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have been inherited from the precursors of bacteriohopanetetrol and related 

tetrafunctional biohopanoids (Rohmer et al., 1992).  

Furthermore, steranoic acid (steranoic carboxylic acid) distributions of asphaltene have 

characteristics similar to those of their parent hydrocarbons. The m/z 217 Mass 

chromatograms reveals carbon number distribution ranges from C27 – C29, while m/z 

275 shows C28, C29, and C30 members and those of the C28 members dominate the series 

of acids and are equivalent to regular sterane C27, C28, and C29 members in oil. Similar 

carbon number offsets have been reported in that sterane isomerization is more 

advanced in the oil fractions compared to the bound biomarker fractions and therefore 

there is steric protection afforded to the bound biomarkers by their covalent binding 

within macromolecular host networks (Peters et al., 1990; Love et al., 1995). 

Furthermore, m/z 289 mass chromatograms reveals the C29, C30, and C31 members 

equivalent to regular sterane C28, C29, and C30 members in oil (Peng et al., 1999c). 

These biomarkers from RICO have been widely used to explore oil-oil and oil-source 

correlations.  

  Biodegradation scales 

Biodegradation of crude oil in subsurface petroleum reservoirs is an important 

geochemical alteration process that can significantly alter the quality of crude oil. The 

alteration process can lead to the modification of oil properties and its chemical 

composition, inducing the decrease of lighter compounds and an increase in sulphur 

content, acidity, metal content and decrease in API gravity, with severe economic 

consequences on oil recovery and quality (Head et al., 2003; Bennett and Larter, 2008; 

Ross et al., 2010). An increase in the content of resins, asphaltenes, metals (like 

vanadium and nickel) and sulphur in crude oil relative to their saturated and aromatic 

content is a feature of biodegradation in hydrocarbons (Peters et al., 2005a; Peters et al., 

2005b). Thus, new compounds such as acyclic and cyclic, saturated and aromatic 

carboxylic acids, phenols and a complex variety of acidic compounds are formed. These 

compounds may be responsible for corrosion problems during processing of heavy and 

degraded oils (Head et al., 2003). 
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Seifert and Michael Moldowan (1979) reported biodegradation of several of compounds 

in crude oils caused by the sequence of bacterial attack and water washing where less 

resistant compounds classes are removed prior to the most resistant ones. Notable is the 

sequence, most susceptible n-alkanes > acyclic isoprenoids (norpristane, pristane, 

phytane, etc...) > hopanes (25-norhopanes present) ≥ steranes > hopanes (no 25-

norhopanes) ∼ diasteranes > aromatic steroids > porphyrins: least susceptible. The 

alteration of the molecular fingerprints and parameters of oils can affect source or 

maturity identification where partially biodegraded mature oils often resemble low 

maturity oils in composition from GC-MS analysis (Peters and Moldowan, 1991; Silva 

et al., 2008). Hence, Peters et al. (2005a) proposed a classification system of 10 point 

biodegradation scale using the presence and absence of certain compounds in petroleum 

oils to comprehensively assess biodegradation.  

Based on the approach, the general order-of-preference for biodegradation of Peters and 

Moldowan level 1 (abbreviated to PM 1) corresponds to early degradation (partial loss 

of n-alkanes), which are the most readily degraded, and Peters and Moldowan level 10 

(abbreviated to PM 10) severely degraded oil with complete removal of acyclic 

isoprenoids, steranes, terpanes and aromatic steroids and altered C26–C29 aromatic 

steroids (Figure 2.10). The pathway to various levels of crude oil degradation has been 

well documented in the literature (Volkman et al., 1984; Peters et al., 1996; Head et al., 

2003; Peters et al., 2005b; Bennett and Larter, 2008; Larter et al., 2012).  



 

22 

 

Figure 2.10: Biodegradation scale modified after Peters et al. (2005a). 

Furthermore, caution is needed when using the PM scale, since biodegradation is a 

complex ‘‘quasi stepwise” process with synchronous elimination of many components 

at different rates rather than a qualitative assessment of a generalized pattern of 

compositional alteration. The PM scale focussed on compositional changes (detailed 

assessment) during moderate to severe alteration stages, although the most significant 

decrease in oil quality (e.g. API gravity) takes place during depletion of volumetrically 

relevant compounds during the early stages of biodegradation (Head et al., 2003).  

 Asphaltenes and aggregation 

Asphaltene aggregations are encountered both in the oil reservoirs and during transport 

and processing of oils. However, understanding asphaltene aggregation is a complex 

multicomponent process that involves a great diversity of interactions, at molecular and 

colloidal scales (Brandt et al., 1995). Hence, two distinct properties are usually 

recognised: (a) aggregation and intermolecular forces and (b) asphaltene precipitation 

and flocculation. 

 Aggregation  

The tendency of asphaltene molecules to aggregate is closely related to their molecular 

structure, since more or less extended aggregates can form by tacking planar aromatic 

parts of the molecules through π-π association or hydrogen bonds (Brandt et al., 1995). 
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Generally, aggregation is the initial step towards precipitation and it depends on the 

state of solvent, temperature, pressure and concentration. However, there are two 

fundamental approaches currently debated in determining the morphologies of 

asphaltene-aggregated systems. One is the Island or Yen-Mullins model which was 

based on a pioneering work using X-ray diffraction (XRD) measurements for powdered 

asphaltenes samples from Kuwait tar oil, while the second is the archipelago model 

which consists of several aromatic moieties that are connected by alkyl bridges (Strausz 

et al., 1999a).  

In the Yen-Mullins model (Figure 2.11), there is a presumption that the asphaltene 

molecule is the key with a single fused (PAH) ring system. The second stage of the 

asphaltene hierarchical structure is the formation of asphaltene nanoaggregates with a 

single molecule (disordered stack of PAHs and with aggregation numbers ∼6) into 

micelles and then the final stage is when nanoaggregates can form clusters of 

nanoaggregates and the aggregation numbers are estimated to be eight nanoaggregates 

(Mullins, 2010). Modelling for this system has been carried out on the asphaltene 

colloidal state by assuming simplified representations of crude oil containing functional 

groups that can form attached groups in the liquid phase such as carboxylic acids, 

nitrogen bases, aromatic rings, carboxylic esters, and porphyrins (Andreatta et al., 

2005a; Mullins, 2010; Mullins, 2011). It is recalled that the formation of asphaltenes is 

similar to that of surfactants and as such they self-associate in solution to give rise to 

more or less extended aggregates. 

Figure 2.11: Yen-Mullins model of asphaltene Mullins (2010); (Mullins, 2011). 

Mullins et al. (2012b), also pointed out that asphaltene monomers initially occur as  

dimers and trimers, followed by nanoaggregate growth at fairly low concentrations, and 
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the intermolecular binding energies are significant to proceed unhindered, yielding low 

observed solubilities. In fact, asphaltene particles can exist in the form of 

nanoaggregates in crude oils and organic solvents such as toluene. For example, at room 

temperature in toluene using high quality factor (high-Q) ultrasonics: a study detected 

that asphaltenes starts to associates at a CNAC of 50 - 150 mg/L and proceed to form 

nanoaggregates at above 150 mg/L (Andreatta et al., 2005a; Andreatta et al., 2005b; 

Mullins, 2010). Furthermore, it has been shown that CNAC varies depending on the 

source of the oil. 

The archipelago model structurally classify asphaltenes as several aromatic moieties 

that are covalently linked together by aliphatic chains (Murgich et al., 1999; Strausz et 

al., 1999a). However, there is uncertainty to the number of aromatic rings present in the 

planar aromatic cores and the actual structure of the asphaltene molecules (Speight, 

1999).  

 Asphaltene precipitation and flocculation 

The aggregation of asphaltene molecules is believed to be the initial stage to asphaltene 

precipitation. However, it has long been confirmed that precipitation can occur due to 

changes in a petroleum system, among these including (i) changes in temperature and/or 

pressure as during oil production (ii) changes in fluid compositions as a mixture of 

several types of oils or injection of CO2 fluids into the oil reservoir during recovery, and 

(iii) changes in the compositions of asphaltenes (Speight, 1991; Wilhelms and Larter, 

1994). Knowledge of the mechanism of asphaltene aggregation may help to improve 

many problems associated to asphaltene deposition that are encountered by many 

industrial processes. These problems including oil pipeline blockage, plugging of wells 

and formation of tar mats in petroleum reservoirs and would result in less economic 

waste in the oil industry (Wilhelms and Larter, 1984; Buckley, 1999; Andreatta et al., 

2005b). Therefore, it is critical to know when and how asphaltenes will separate out of 

solution in the form of a heavier phase under a given set of operating conditions. 

In the last three decades, a number of studies have been dedicated to characterise 

precipitation, flocculation and deposition of asphaltene molecules in a petroleum 

system, These employ two general fundamental approaches: (a) the solubility approach 
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and (b) the colloidal approach (Leontaritis and Ali Mansoori, 1988; Ali Mansoori, 1997; 

Andersen and Christensen, 1999; Wang and Buckley, 2001). 

The first “solubility model” approach proposed that asphaltene molecules are formed 

when a large non-soluble particle (asphaltene) is stabilized in the solution by adsorption 

of resin on its surface as a function of the thermodynamic system, whereas relatively 

large aggregates may flocculate out of the solution and form micelles due to addition of 

excess n-alkanes. Studies, using surface tension and interfacial tension measurements, 

accurately detected the onset of asphaltene precipitation in crude oil (Vazquez and 

Mansoori, 2000; Priyanto et al., 2001). However, flocculation of asphaltene in n-

alkanes is known to be irreversible, having a hysteresis when the conditions are returned 

to prefloculation point (Acevedo et al., 1995). As a result of their adsorption affinity to 

solid surfaces, asphaltene flocs (random nanoaggregates) forming clusters or quite 

stable deposits.  

The second “colloidal model” approach suggests that asphaltenes would aggregate to 

form micelle-like aggregates or flocs of asphaltenes above a certain concentration 

resembling that of surfactants (Andersen and Birdi, 1991; Andreatta et al., 2005a; 

Mullins, 2010). The “colloidal model” is completely accepted by Yen-Mullins model 

with the observation of CNAC of asphaltene in solution. However, primary asphaltene 

aggregation in crude oil occurs when different aromatic ring geometric (disks, spheres, 

cylinders) shapes and become suspended in the solution when the concentration of the 

system exceeds the CNAC (Andreatta et al., 2005a; Mullins, 2010; Mullins et al., 

2012a). Furthermore, surface tension measurements of asphaltene/toluene systems have 

confirmed the CNAC of asphaltenes in different solvents with respect to asphaltic 

compounds are closely related. Hence, it is shown that asphaltene/toluene system has a 

hierarchy of aggregation, at which at a concentration below the CNAC, the asphaltenes 

in solution are in a molecular stage, whereas at above CNAC, asphaltenes exist as 

nanoaggregates which are much more uniform in their structure and less polydisperse. 

 Relevance 

Chemical oxidation of isolated asphaltenes from crude oils and coals have been reported 

to provide acid products that contain biomarker compounds, which are chemically 
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bound or trapped within the macromolecular asphaltene network (Mojelsky et al., 1992; 

Strausz et al., 1992a). Their relative biomarker distributions have been reported to have 

the potential to reveal detailed information concerning thermal maturity, depositional 

environment and source of the asphaltenes, and evaluate crude oils and likely sources 

that contain the asphaltene (Rubinstein et al., 1979; Liao and Geng, 2002; Liao et al., 

2006). Hence, when oils are biodegraded or lack source rock data, biomarkers generated 

from oxidation products of asphaltenes can provide vital information. Furthermore, 

understanding the chemical compositions, structures of asphaltenes with formation of 

critical nanoaggregate would provide us with an improved understanding of the 

uncertainties in their aggregation properties and hence provide a clue to the origin of 

thick deposits that can reduce flow line permeabilities causing wellbore plugging, 

pipeline fouling and solid build-up in petroleum industries. 

  Scope and Delimitation 

This study is generally limited to studying how the molecular characteristics correlate 

with colloidal aggregation of asphaltenes in crude oils, for the purpose of providing a 

better understanding of the nanoaggregation properties. Consequently, crude oil and 

coal asphaltenes of various sources, precursor materials, environmental conditions of 

deposition, biodegradation and maturation processes will be used in this study. The 

molecular weights and sizes of asphaltenes will not be assessed. 

The study will focus on asphaltenes, which are considered as the n-hexane isolated 

solids precipitated from crude oil and coal, then purified over 72 hours with 

precipitating solvent using Soxhlet extraction to remove co-precipitated resins.    

Characterisation of the asphaltenes has been limited to RICO, FTIR and high precision 

ultrasound spectroscopy measurements.  
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Chapter 3 Experimental Methods 

 Introduction 

This chapter discusses the samples and various procedures used in preparing the 

samples into a form amenable for analysis in this study, as well as discussing the 

analytical techniques used to characterise the samples. Three major sections were 

utilised to achieve the objectives of this study:  

a. The first major section briefly describes the total of 44 samples and petroleum 

geology of the locations; including a spectrum of petroleum compositions from non-

biodegraded oils to biodegraded heavy crude oils and 3 coals. 

b. The second section provides the description of the various methods and analyses 

procedures adopted for the study. 

c. The final section describes the geochemical applications and analytical techniques 

used to characterise the set of oil and coal samples from the various locations.  

 Description of samples 

A total of 44 samples (Appendix 3.1), including 41 crude oils and 3 coals were used in 

this study. The crude oils were obtained from different locations around the world 

including Niger Delta (Nigeria), United Kingdom, Middle East, North America and 

Serbia (Figure 3.1). Among the total oil samples are six crude oil samples obtained from 

Chevron Nigeria limited exploration site located in offshore Niger Delta, Nigeria. The 

two crude oils from Serbia were donated by Dr. Ksenija Stojanović (University of 

Belgrade) and the remaining oil and coal samples were provided by Dr G. D. Abbott, 

Newcastle University, United Kingdom. 
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Figure 3.1: Geographical location of the study samples 

 Nigerian oils 

A total of 12 Nigerian crude oils, including non-degraded and biodegraded oils, were 

used in this study. The samples; NA1, NB2, NC3, NA, ND, NE, NF, NO, NN, N25, 

N18 and NN1 (Appendix 3.1) were collected from onshore and offshore oil fields 

located in the Niger Delta, Nigeria. The field names and other details were not disclosed 

as requested by the providers.  

The Niger Delta basin (Figure. 3.2) is located at the seaward part of the Benue trough 

and is an important oil-producing province in the world. Hence, several studies have 

been carried out on the petroleum system and basin evolution of the area (Dewey and 

Burke, 1974; Reijers, 2011).  The Niger Delta has been described as consisting of 

Cretaceous sediments of Albian to Maastrichian age, which builds through pulses of 

sedimentation over an oceanward dipping continental basement into the Gulf of Guinea 

on the Atlantic Ocean of West Africa, thereafter progradation took place over a 

landward-dipping oceanic basement, as shown in the schematic map (Figure 3.3).  

In the Niger Delta, three major lithographic units of sedimentary sequence of over 12 

km thickness from shallowest to deepest exist, namely:  

Sample location

NORTH AMERICA

NIGERIA

MIDDLE  

EAST

SERBIA

UNITED 

KINGDOM



 

29 

 

a. The Benin Formation is the youngest and is composed of predominantly massive, 

highly porous sandstones that was deposited mainly in the continental and delta plain 

settings (~ 2000 m thick in the depocenter), 

b. The Agbada Formation is overlain by the Benin Formation, composed of alternating 

interbedded sandstones and shales deposits (~ 4000 m thick in the depocenter and 

thinning seaward towards the delta margin), and 

c. The Akata Formation, is composed of massive marine shales (~ 6000 m thick) 

deposited during the Palaeocene and through the Recent (Sonibare et al., 2008). 

 

Figure 3.2: Location map of Niger Delta (EIA, 2012). 

The lithographic units of sedimentary subsurface sequence of the Niger Delta is made 

up of superimposed lithofacies; continental, transitional between continental and 

marine, and marine environments of deposition (Ekweozor et al., 1979). However, since 

oil was first discovered in commercial quantities in 1956, the region has becomes one of 

the most prolific hydrocarbon provinces in the world with over 5,000 wells and 100 oil 

fields discovered and an initial oil in place estimated at 30+ Billion barrels (bbls) of oil 

and 180 Trillion cubic feet (Tcf) of gas. Though, recently oil and gas exploration has 

shifted gradually focused on the deep and ultra-deep offshore part of the Niger Delta. A 

variety of critera can be used to define deep & ultra-deep, deep water sometimes 

defined as water depth greater than or equal to 500m. The ultra-deep water is defined as 

depths greater than or equal to 1500m (TOTAL, 2006). 
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Figure 3.3: Niger Delta: stratigraphy and formation depobelts (Ekweozor and Daukoru, 1994). 

Studies have shown that the principal sources of oil and gas accumulations in the region 

are type II, II-III and type III kerogen which exist mainly in the lower parts of the 

paralic sequence (Agbada Formation) and the topmost strata of the continuous marine 

shale (Akata Formation) deposited in marine deltaic environments (Sonibare et al., 

2008; Lehne and Dieckmann, 2010). Recent study has proposed the possibility of three 

source rock organofacies in the Niger Delta (Samuel et al., 2009).These organofacies 

are of a more marine organofacies that dominates the deep water accumulations, a 

terrigenous intra-delta organofacies that is passive over the entire delta and the shallow 

water accumulations comprising mixed source rock facies. 

 United Kingdom oils 

In this study, eleven crude oil samples were investigated; UKB, UK88, UK85, UK66, 

UK65, UK80, UK12, UK34, UK11, UK01, UK05, and UKV (Appendix 3.1) collected 

from oil fields located across the United Kingdom and the United Kingdom sector of 

the Northsea. These fields include Captain, Nelson and Flora oil fields (Figure 3.4).  

The Captain Field (Figure 3.4) lies at approximately 145 km northeast of Aberdeen on 

Block 13/22a, which is on the western margin of the Halibut Horst (Captain Ridge) in 

the Western Moray Firth region of the UK North Sea (Pinnock and Clitheroe, 1997). In 
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the field, the oil sources are from the matured organic-rich shales of the Kimmeridge 

Clay Formation and the reservoir rocks are characterised by two main distinctive 

stratigraphic units, namely,  

a. The Upper Captain Sandstones and 

b. The Lower Captain Sandstones (thick-bedded fine to medium grained 

sandstones with very little interbedded silt or claystone).  

 

Figure 3.4: Location of Captain oil field (The Scottish Government, 2009). 

The reservoir quality is generally good with average permeability of 7 darcys and 

porosity between 28 and 34% in the Lower Cretaceous in-situ rocks (Pinnock et al., 

2003). However, the oil quality is heavy with oil gravity ranging from 19o to 21o API 

and the oil reserve is estimated to be a total of 1000 million bbls (oil-in-place) and 

associated gas of 16 bcf (gas-in-place). 

The Nelson Field (Figure 3.5) lies at approximately 180 km east of Aberdeen and 

comprises of four blocks; 22/11, 22/6a, 22/7 and 22/12a situated in the UK sector of the 

Central North Sea.  
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Figure 3.5: Location of the Nelson oil field (Sumitomo Corporation, 2009). 

Hydrocarbon accumulations were first discovered in the Nelson oil field in 1988 and are 

believed to be sourced from the matured Jurassic Kimmeridge Clay Formation of the 

Forties Sandstone Member (Kunka et al., 2003). The reservoir oil quality is light with 

gravity of 40.6o API  and estimated recoverable reserve of a total 300 million bbls (oil-

in-place) with some 100 bcf of gas (Whyatt et al., 1992). 

The Flora field (Figure 3.6) is located approximately 325 km southeast of Aberdeen and 

9 km North of the Fife Field on the southern margin of the Central Graben and lies 

between Blocks 31/26a and 31/26c of the UK sector of the North Sea. (Hayward et al., 

2003). The field was discovered in August 1997 and is believed to be sourced mainly 

from the Kimmeridge Clay Formation of the Central Graben and is sealed by overlying 

Lower Cretaceous marls and Upper Cretaceous Chalk Group. The Flora Sandstone (an 

Upper Carboniferous fluvial deposit) and a thin Upper Jurassic veneer, trapped within a 

tilted fault block serve as the oil accumulation and have good reservoir quality with 

average porosity of 21%. Although, the reservoir suffers both sub-horizontal (floodplain 

shales) and vertical (faults) compartmentalization with 245 ft undersaturated oil column 

stacked within the fluvial channel sandbodies thought to be of Carboniferous or early 
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Permian age. The recoverable reserve is estimated at 13 million bbls (oil-in-place) and 

the field can produce 30000 BOPD at peak oil production (Hayward et al., 2003).  

 
Figure 3.6: Location of the Flora oil field (Hayward et al., 2003).  

 Middle East oils 

A total of five crude oil samples ME12, ME43, ME39, ME77 and ME78 from different 

oil fields in the Middle East were investigated. The sample set includes;  

a. Two Qatar oils (ME12 & ME43) were collected from offshore fields of Al 

Shaheen and Bul Hanine respectively. 

b. One Abu Dhabi oil (ME39) and 

c. Two crude oil samples (ME77 & ME78) were collected from oil fields of 

Raudhatain and Sabriyah situated in the northern region of Kuwait.  

 North American oils 

A total of 8 crude oils samples were obtained from the North America sector, among 

which are 

a. One sample (NAC) collected from an oil field in Canada and 

b. Seven samples; including NA61, NA72, NA73, NA74, NA75, NA76, and NA79 

were collected from oil fields located across different oil fields in Gulf of 

Mexico Basin at the North America region.  
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The Gulf of Mexico Basin is the largest petroleum producing basin in the North 

America show in Figure in 3.1, accounting for ~ 31% oil and ~ 48% gas production 

(Fails, 1990). Hence, many studies have substantially investigated the source rocks, 

migration and generation of petroleum in the northern Gulf of Mexico Basin. However, 

there are disagreements on the petroleum systems due to the variations in the organic 

source facies, hydrocarbon generation potential, different maturation history and mixing 

of fluids from multiple sources of the basin (Kennicutt Ii et al., 1992; Whelan et al., 

1994; White et al., 2003). In the offshore area, many petroleum accumulations and 

source rocks of nearly all ages have been proposed, including the three main models of 

hydrocarbon for the source of hydrocarbons in the Gulf of Mexico basin; the associated 

Cenozoic source (Marine deltaic shales), the disassociated Neogene source (Neogene 

organic rich source bed deposits and derived from salt dome dissolution) and the dis-

associated pre-Neogene source (Mesozoic and Palaeogene sources). However, 

regionally consistent correlations may be recognized (Bissada et al., 1988). 

 Serbian oils 

The Serbian oils, including two oil samples (SN1 & SN2) were collected from oil fields 

located at the Pannonian Basin (Figure 3.7), in Serbia (Stojanović et al., 2009). The 

Pannonian Basin is referred to as a typical continental Neogene back arc basin that is 

associated with a continental collision formed by processes of extension and subsidence 

and bordered by the Alps to the west and by the Carpathian Mountains to the east and 

north (Mrkić et al., 2011). However, the basin was formed due to processes of extension 

and subsidence during the late Miocene and a continuous tectonic activity resulting to 

subsidence, uplifting and young faulting of the basin during the Neogene and 

Quaternary (Šolević et al., 2008). The Serbian part of the Pannonian basin is the 

youngest sedimentary basin in the Alpine folded belt and belongs to the largest sub-

basin; consist of a system of unique deep troughs of its own subsidence and separated 

by basement highs. 
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Figure 3.7: Area of study in Serbian part of the Pannonian Basin (Šolević et al., 2008). 

Most hydrocarbon plays exist in the basin of Neogene and Palaeogene basin-fill, and in 

the Mesozoic and Palaeozoic basement located within the north and central parts of 

Serbia in the Banat Depression, characterized by high thermal history here the studied 

samples were collected (Figure. 3.7). The oil and gas fields are in close proximity to 

areas of mature source rocks, found in immature sediments stratigraphically overlying 

the mature ones (Šolević et al., 2008). 

 Coal samples 

In this study, 3 North Sea coals namely; CA3, CA4 and CA6 from the United Kingdom 

were investigated. The samples were provided by Dr. Geoff Abbott and collected from 

different depths of the North Sea coal deposits, UK. Vitrinite reflectance investigations 

have been carried out on the samples.  

 Methods and sample preparation 

This section describes and provides the description of the various methods and analyses 

procedures (Figure 3.8), used in this study. 
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Figure 3.8: Research methodology flowchart. 

 Iatroscan thin-layer chromatography (TLC-FID) 

Iatroscan analysis combines the resolution efficiency of thin-layer chromatography 

(TLC) with the detection sensitivity of the flame ionization detector (FID) for fraction 

quantification of crude oils (Karlsen and Larter, 1991). It provides for good precision 

and accurate information on the yield and relative proportions of the four major 

fractions of petroleum: saturates, aromatics, resins and asphaltenes (SARA). This 

technique is efficient, fast, cost-effective and uses small amounts of sample (Karlsen 

and Larter, 1991; Fan and Buckley, 2002). This study uses the Iatroscan to ascertain 

asphaltene concentrations. It is noteworthy that careful calibration need to be taken as 

the FID response factor (response area count per unit w/v% concentration), scan rate, 

hydrogen detector flow rate to the instrument and the size of the sample application spot 

can affect the results (Karlsen and Larter, 1991). Thus, the importance of accurate 

instrument setup and the fixing of operating variables for quantitative accuracy and 

reproducibility (Karlsen and Larter, 1991). 

In this study, the three-step solvent development procedure was applied to achieve clear 

and reproducible separation of the four fractions; saturates, aromatics, polar and 

asphaltenes using n-hexane, toluene and DCM/ MeOH (93/7; vol/vol) respectively 

(Karlsen and Larter, 1991). First, a standard sample from a North Sea crude 
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oil (~ 10 mg) was prepared in a glass vial and diluted in DCM (~ 1 mL) to reduce 

viscosity prior to spotting on the chromarods. Then, each of the oil samples (~ 10 mg) 

from the sample set were weighed and diluted with DCM (~ 1 mL). In this analysis, 

chromarods S-III sintered silica gel phase, 0.9mm diameter by 15 cm long quartz rods 

was used. The set of ten chromarods were held in a single rack allowing all to be 

processed and simultaneously detected in a quick succession. Using micro syringe, oil 

sample (~3 μL of ~10 mg/mL) of the freshly prepared sample solution was spotted in 

triplicate onto the rod base of each chromarods and developed according to increasing 

order of polarity using n-hexane, toluene and DCM/MeOH as eluent. After spotting, the 

rack containing the chromarods was air dried for a minute and then placed in the first 

development tank to elute in hexane for ~30 minutes which separates the saturated 

hydrocarbons for ~10 cm up the chromarods. The chromarods were then air dried for 3 

minutes. Further development takes place for ~15 minutes in toluene to separate the 

aromatics ~5 cm up the rods. The chromarods were then air dried for ~6 minutes and a 

final development takes place in 97:3 DCM/MeOH to separate the resins and 

asphaltenes for ~2 minutes. The chromarods were then dried in an oven at ~60 oC (90 

seconds). As soon as the set of chromarods have passed through all the development 

tanks and are dried they are placed in the Iatroscan for analysis. The chromarods were 

then scanned in an Iatroscan machine TH-10, Mk 5 (Iatron Lab Inc., Tokyo), equipped 

with a flame ionization detector (FID), interfaced with an electronic integrator (Perkin-

Elmer LCI-100) at a scan speed of 30 s per rod, effectively analysing 10 samples in 7.6 

minutes. 

The organic components separated on the chromarods were ionised and the ion currents 

were measured proportional to the organic mass of components being ionised in the 

flame and a response is recorded (data). The data were acquired, processed and stored 

on a Thermo-Atlas Chromatography Data system and the crude oil fractions represented 

by peaks in the form of chromatogram. The quantitative results were obtained by 

integrating the peak area for the four distinct components, including saturates, 

aromatics, resins and asphaltenes, assuming that each SARA fraction has an identical 

FID response factor.  
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 Precipitation and purification of asphaltenes 

The asphaltenes used in this study were isolated by consecutive precipitation steps as 

described by Alboudwarej et al. (2002). Here, the solvent n-hexane was used to isolate 

the asphaltenes from the crude oil samples. Hence, in this study a known weight of 

crude oil was weighed into a conical flask and dispersed with DCM (~1 – 2 mL) to 

reduce viscosity prior to the incremental introduction of 40-fold (w/v) of n-hexane; then 

the solution was followed by regular agitation to efficient mixing. The whole mixture 

was then stirred for 2 h in a ultrasonic bath and subsequently allowed to equilibrate 

overnight for 24 h in the dark. 

 Asphaltene Recovery 

The equilibrated mixture was then weighed into several centrifugation vials and 

separated by  centrifugal sedimentation at a speed of 3500 rev/minutes for 15 minutes 

using a Centrifuge 5810 model from Scientific Laboratory Supplies. Centrifugation of 

the mixture enables sedimentation of water and solid mixture. The asphaltenes were 

recovered by decanting the resulting supernatant (maltene; saturates, aromatics and 

resins) from the solid (asphaltene precipitate) into a round bottom flask. The recovered 

asphaltene precipitates were then re-dissolved in DCM (~1 mL) and re-precipitated with 

40-fold (w/v) of n-hexane before stirring for 30 minutes in an ultrasonic bath and 

allowed to equilibrate for 3 h and then asphaltenes were recovered by centrifugation. 

This procedure was repeated for two or three more times until the mixture becomes 

colourless, so as to remove any occluded resins and aromatics from the precipitated 

asphaltenes. Using a minimum volume of DCM (1 – 2 mL) needed, the asphaltenes 

were transferred into a pre-weighed glass vial and then the excess solvent in the glass 

vial was removed under a gentle stream of nitrogen gas and then stood overnight at 

ambient temperature until it evaporates completely. 

 Cleaning the Asphaltenes 

Co-precipitated resins and possible adsorbed compounds can be removed from dried 

asphaltenes using Soxhlet extraction technique for 72 h with n-hexane (Alboudwarej et 

al., 2002), thought this treatment can only be necessary if the asphaltene is required for 

compositional or bound biomarker studies (Muhammad and Abbott, 2012). Hence, the 



 

39 

 

dried asphaltene precipitates were crushed with a spatula, weighed and transferred into 

pre-extracted Whatman cellulose thimbles (1 x 10 cm). This thimble containing the 

asphaltene sample was then plugged with pre-extracted cotton wool and place into the 

Soxhlet extracting apparatus. Then was extracted using re-distilled n-hexane for 72 h (at 

24 h cycle each) and at the beginning of each cycle, fresh n-hexane solvent was used for 

extraction until the last cycle when the solvent becomes colourless. After the extraction, 

the extracts at each cycle were fractionated into aliphatic and aromatic hydrocarbons to 

ascertain asphaltene purity. Finally, the purified asphaltenes were transferred into a 

glass vial, air dried and weighed prior to further analyses. 

 Fractionation of oils 

The crude oil samples were fractionated using thin layer chromatography (TLC plate) 

technique to obtain aliphatic hydrocarbon and aromatic hydrocarbon fractions from 

which different biomarkers were investigated. The TLC plates were prepared using 

aqueous slurry of 0.5 mm thick Keiselgel 60 G silica gel activated for 24 h at 100 – 120 

oC. Each crude oil sample (~ 20 mg) was weighed in a glass vial and dissolved with 

DCM (~ 0.2 mL) to reduce the viscosity prior to TLC analysis. Then two internal 

standards (squalane and 1,1-binaphthyl) were prepared at different concentration and 

added for quantification of the aliphatic and aromatic hydrocarbon fractions 

respectively. The mixture of samples was then loaded onto the TLC plate at about 2 cm 

from the bottom of the plates.  

Two standards (n-eicosane and phenanthrene) were also prepared and spotted along the 

side of the plate to visually identify the different hydrocarbon bands; aliphatic and 

aromatic fractions on the TLC plate. The plate was then run in a developing chamber 

filled with 200 mL of re-distilled petroleum ether until the fractions reach the top of the 

plate. The plate was dried and sprayed with rhodamine-6G dye. The different 

hydrocarbon fractions were then, identified under UV light and the aid of the standards 

along the side of the plate. The identified bands, each corresponding to aliphatic, 

aromatic hydrocarbons and the remaining polar fractions were scraped off with the 

spatula. The aliphatic fraction was then eluted with 10 mL of dichloromethane and 30 

mL of petroleum ether while the aromatic fraction was eluted with 30 mL of 

dichloromethane and 10 mL of petroleum ether using short glass column (12.5 cm) into 
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a round bottom flask. This was followed by the evaporation of the fractions to about 1 

mL using a rotary evaporator and then concentrated under stream of nitrogen gas to 

about 0.5 mL and then transferred into a GC vials for GC and GC-MS analyses for 

biomarkers study. On each batch of 10 samples, a triplicate and a blank were prepared. 

 Fractionation of maltenes 

The resulting maltene fraction from the collection of the supernatant (aliphatic 

hydrocarbons, aromatic hydrocarbons and resins), during asphaltene isolation and the 

cleaning of the asphaltenes were separated into aliphatic and aromatic fractions using 

the TLC technique as described in section 3.3.3 prior to GC and GC-MS analyses. 

 Ruthenium ion catalysed oxidation (RICO) of asphaltenes 

Ruthenium ion catalysed oxidation technique has had a very significant role in 

characterizing biomarkers bound on asphaltenes from the aromatic-attached aliphatic 

appendages (Peng et al., 1999a; Peng et al., 1999b; Muhammad and Abbott, 2012). This 

technique allows the degradation of aromatic rings which results in the release of the 

acyclic and cyclic aliphatic substituents to which the aromatics are bound, as carboxylic 

acids (acyclic and cyclic acids) (Strausz et al., 1999b; Xu et al., 2003; Anlai et al., 

2008; Ma et al., 2008). The technique has been tested using model compounds for 

identifying oxidation products (Mojelsky et al., 1992). 

In this study, the procedure adopted involves adding purified asphaltenes (~50 mg) to a 

100 mL conical flask and DCM (~4 mL) and stirring until it dissolved completely. Then 

acetonitrile (~4 ml) was added to the mixture, followed by (~5 mL) of 12% aqueous 

sodium periodate (NaIO4) and RuCl3 (~5 mg). This was mixed in orbital shaker for 24 h 

at room temperature and during the course of chemical reaction the solution turned 

yellow. Then DCM (~10 mL) and methanol (~10mL) were added to destroy excess 

oxidising agent and then the mixture was transferred to centrifuge tubes and these were 

centrifuged (3500 rpm, 15 minutes). After the initial centrifugation, the supernatant was 

carefully decanted and the residue washed with DCM and water (~10 mL each). This 

process was again repeated for two more times. The recovered washings were combined 

with the supernatant and the organic phase, containing free carboxylic acids. The 



 

41 

 

solvent in the organic phase was removed by rotary evaporation (25 oC, 25 mmHg), 

following the addition of acetone (~5 mL) and re-evaporation to remove traces of water. 

 Esterification of acids  

About 1mL of DCM was used to transfer the acid fraction into a boiling tube before 

adding 25 µL of internal standard (1 mg/mL C15D31COOH) and 5 mL of 2% 

concentrated sulphuric acid in methanol. This mixture was then added with 3 - 4 anti-

bumping granules and placed in a test tube heater for 3 hrs. These granules avoiding the 

sudden production of large gas bubbles which can lead to 'bumping' in the boiling tube. 

After boiling the mixture was allowed cooling before adding 10 mL of deionised water 

and extracted with 10 mL DCM repeatedly for three different times. The DCM extract 

was then washed with 4 mL of 2% NaHCO3. This extract was extracted again with 

DCM (10 mL, x 3) before drying over anhydrous Na2SO4 and excess solvent was 

removed using a rotary evaporator at room temperature to about 1 mL and the esters 

transferred into a GC vial for GC and GC-MS analysis. 

 Preparation of samples for Fourier transform infrared spectroscopy 

(FTIR) 

To prepare the sample for FTIR measurement, the isolated and purified n-hexane 

asphaltenes from the crude oils were ground into fine powder with an agate mortar and 

pestle until the grains were not visible. The powdered asphaltenes were then stored in 

glass vial ready for FTIR measurements on diamond Smart Orbit - Nicolet 6700 FT-IR 

spectrometer. 

 Preparation of samples for ultrasonic spectroscopy  

The n-hexane isolated and purified asphaltenes used for the study were powdered and 

weighed using Mettler Toledo (Model MT5) 6 figure balance that was internally 

calibrated before use. Samples were prepared by mixing the weighed asphaltene powder 

with a known amount of toluene solvent (VWR Prolabo, purity of 99.5% Analar grade - 

Rampur) from the highest concentration to the lowest concentration of 2.3 g/L, with a 

stepwise reduction using volumetric flask and pipette with an error (± 0.06) as described 

by Andreatta et al. (2005a). The diluted asphaltene solutions was stirred and allow to 
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equilibrate for 15 – 20 minutes before applying per test from the lowest concentration to 

the highest concentration. 

 Analytical techniques  

 Gas chromatography (GC) 

Gas chromatography was performed on the aliphatic and aromatic hydrocarbon 

fractions of the whole oils, maltenes and RICO products in order to determine that the 

concentration were right for GC-MS analysis. The compounds were analysed using 

Hewlett-Packard 5890 Series II gas chromatography equipped with a fused silica 

capillary column (30 m x 0.25 mm i.d) coated with 0.25 µm dimethyl polysiloxane (HP-

5 phase). The GC oven temperature was initially programmed from 50 oC – 310 oC at 5 

oC min and then held at final temperature for 26 minutes with helium as the carrier gas 

(flow 1 mL/min, pressure of 52.76 kPa, split at 32 mL/min). The sample (1 µL) in 

hexane/DCM was injected by an HP7673/7683 auto sampler and the split opened after 1 

minute. After the solvent peak had passed the GC temperature programme and data 

acquisition commenced. The acquisition was stored on an Atlas laboratory data system 

on a desktop computer. 

 Gas chromatography-mass spectrometry (GC-MS) 

The saturated hydrocarbon fractions of the whole oils, maltenes and RICO products of 

the acids were analysed by gas chromatography-mass spectrometry analyses on a 

Agilent 6890 GC equipped with splitless mode injector at (280 oC) linked to a Agilent 

5975C MSD (electron voltage 70 eV, source temperature 230 oC, quadruple temperature 

150 °C multiplier voltage 1800V, interface temperature 310 oC). The acquisition was 

controlled by MSD Chemstation software. The samples were analysed initially in full 

scan mode 50 - 600 atomic mass units/second (amu/sec) or in selected ion mode (SIM) 

for 35 ions dwell time per ion for greater sensitivity. The sample (1μL) in hexane was 

injected by an HP 7673 auto sampler and the split opened after 1 minute. After the 

solvent peak had passed the GC temperature programme and data acquisition 

commenced.  
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Separation of the aliphatic and aromatic hydrocarbon fractions and RICO products of 

the acids were performed on an Agilent fused silica capillary column (30 m x 250 µm x 

0.25 µm) coated with 5% phenyl methyl siloxane (HP-5) phase. The GC was 

temperature programmed from 50 - 310 °C at 5 °C min and held at final temperature for 

26 minutes with helium as the carrier gas (flow rate of 1ml/min, initial pressure of 52.76 

kPa, split at 30 ml/min).  

The acquired ions for the aliphatics, aromatics and acid fractions were monitored in the 

selected ion modes (SIM) and full scan modes (Appendix 3.2). Some of the ions for the 

aliphatic hydrocarbon fractions were; m/z 85 for the n-alkanes and isoprenoids, m/z 109 

(diterpanes), m/z 123 (tetracyclic terpanes), m/z 149 (trisnorhopanes), m/z 163 

(bisnorhopane), m/z 177 (demethylated hopanes), m/z 183 (acyclic isoprenoids), m/z 191 

(triterpanes), m/z 205 (methylhopanes), m/z 217 (steranes), m/z 218 (steranes), m/z 219 

(steranes), m/z 231 (methyl steranes). Compounds were identified from mass 

chromatograms of diagnostic ions and mass spectra by comparison with published 

literature (Peters et al., 2005b). 

 Fourier transform infrared spectroscopy (FTIR) 

The FTIR measurements were performed using Thermo Scientific Nicolet 6700 FTIR 

spectrometer in absorbance mode and a diamond smart orbit accessory. The precipitated 

n-hexane asphaltene samples were finely powdered in an agate mortar. About 5 - 10 mg 

of asphaltene was carefully placed with a spatula on the attenuated total reflectance 

(ATR) crystal (Diamond MIRacle) with an approximate diameter of 100 μm and the 

spring-loaded ATR accessory was carefully lowered to make contact with the surface of 

the asphaltene sample at an incidence angle of 45o prior to the ATR-FTIR 

measurements. This was done gently as the asphaltene surface could be damaged by 

forceful contact with the internal reflection element. Consequently, ART-FTIR involves 

the collection of radiation reflected from the interface between the sample and a Zinc 

Selenide crystal (ZnSe), by which an evanescent wave penetrates from the crystal into 

the powder asphaltenes to obtain absorbance information as an interferogram signal. 

This interferogram signal permits sampling to generate an infrared spectrum while 

penetrating only a short distance (~1 – 4 micrometres) into the sample. However, prior 

to sample analysis, air was obtained under same sample condition through the relevant 
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ATR element when it was not in contact with the sample as background reference for 

each sample spectrum to enable direct comparison against absorbance libraries using 

OMNIC spectra software. Hence, all sample measurements resulted from an 

accumulation of 32 scans with a spectral resolution of 4 cm-1 in the 4000 – 500 cm-1 

spectral domain and spectral calculations were performed using OMNIC software 

(version 6.1, Nicolet 6700 instrument Corp.). In order to evaluate the reproducibility of 

the method, each sample was based on replicate analysis. The total analysis time for 

each asphaltene sample by ATR was less than 1 minute. 

 Ultrasonic spectroscopy of asphaltenes in organic solvent 

In this study, a high-precision ultrasound resonance spectroscopy (ResoScanTM, 2007) 

from TF Instruments GmbH, Germany (Figure 3.9) was used, which is specifically 

designed for the characterization of longitudinal (compressions and rarefactions) 

properties in the material (ResoScanTM, 2007). The acoustic ResoscanTM is similar to 

the instrument used by Andreatta et al. (2005a), but with several modifications that 

significantly improve precision. Both instruments are based on the “transmission” 

principle for measuring the speed of sound; however attenuation of sound was also 

used. The instrument has a resonance cavity with two channel-resonators Unit (RU) 

with built in resonator cells and Peltier thermostat (ResoscanTM – Research System from 

TF Instruments GmbH, Germany (Figure 3.9). The system has four main units: (I) 2-

Channel-Resonator unit (RU), (II) Cell temperature measurement unit (CTM), (III) 

Peltier thermostat control unit (PTC), (IV) Resonator unit lid and metal block for the 

resonator unit. It measures the speed and attenuation of acoustic waves at high 

ultrasonic frequency propagating through liquid samples as a function of time or 

temperature.  
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Figure 3.9: High-precision ResoscanTM ultrasound spectrometer. 

The instrument is equipped with temperature measurement, set-up together in a regular 

block surface and connected to an internal thermometer. The instrument is then 

thermostated at atmospheric temperature of 25 oC ± 0.005 oC, so as to provide a stable 

temperature of measurement of the ultrasound resonance instrument. In this study, ~2.3 

g of asphaltene powder in 1 L of toluene was used as the sample. Aliquots of this stock 

sample were diluted further on a mass basis to prepare asphaltene solutions in the ~0.06 

– 2.3 g/L concentration range. The measurement, involves the simultaneous 

determination of the ultrasonic attenuation and ultrasonic speed of sound with high 

accuracy and reproducibility in two identical cells, each containing a given volume of 

170 – 250 μL pure toluene solvent and analytic (asphaltenes) solution in the frequency 

range of 7 – 12 MHz and signal strength of 12 dB. The sound speed and attenuation 

frequency spectra are parameters of interest and are temperature dependent. 

Measurements were performed at several different concentrations ranging from ~0.06 – 

2.3 g/L. At least 10 measurements were made at each concentration of interest at ~25 oC 

and after each test; the cells were properly cleaned with toluene to avoid contamination. 

The interpretation of the formation of asphaltene aggregation is calculated by plotting 

either average sound velocity or sound attenuation as a function of asphaltene 

concentration as described in Section 8.3.1 and Figure 8.3. 
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Chapter 4 Oil and coal characterisation using conventional molecular 

parameters 

 Introduction 

Biomarkers provide valuable information that are used for source/depositional 

environment/thermal maturity/correlation of oil and their source rocks, as well as the 

degree of alteration for the oil (Peters and Fowler, 2002; Gürgey, 2003; Peters et al., 

2005b). Therefore, using the biomarker concept, oil fractions, in the absence of source 

rock samples, can give significant clues about the nature of their source rocks (Hughes 

et al., 1995).  

The objectives of this chapter are to use conventional organic geochemical molecular 

tools to broadly characterise the oils and coals in this study in terms of source facies 

input, thermal maturation and extent of biodegradation of the oils. This information will 

be used for ruthenium ion catalysed oxidation and ultrasonics study of the asphaltenes 

presented in the subsequent chapters of this thesis. 

 Methods 

All samples (oils and coal extracts) were fractionated into aliphatic, aromatic and resin 

fractions as described in Chapter three, Section 3.3.3. The aliphatic and aromatic 

fractions were then analysed by gas chromatography (GC) experimental conditions as 

discussed in section 3.4.1 to produce normal and isoprenoid alkanes data. In addition, 

hopanes (tricyclic, tetracyclic and pentacyclic terpanes) were generated from the m/z 

191; steranes using m/z 217, polymethyl aromatic compounds from m/z 142 for 

methylnaphthalenes; m/z 156 for dimethylnaphthalenes; m/z 178 for phenanthrene and 

m/z 192 for methylnaphthalenes were analysed by gas chromatography-mass 

spectometry (GC-MS) analyses as discussed in section 3.4.2. The detailed results 

obtained from all these analyses are tabulated in Table 4.1 – 4.13 of this thesis. 

Furthermore, biomarker data and principal component analysis (PCA) for the oil and 

coal samples has been statistically examined by IGI’s p: 3.5. The PCA reduce the 

dimensionality of the data by extracting latent variables to a few important groups to 

confirm the groupings established earlier.  
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 Results and discussion 

 Molecular characteristics of oils 

 Normal alkanes and acyclic isoprenoids 

Gas chromatograms of selected non-degraded (NE (O)) and biodegraded (NC (O)) 

crude oils are presented in Figure 4.1. Generally, the analysed non-degraded samples 

are dominated by n-alkane distributions of nC11 – nC34 and isoprenoids pristane (Pr) and 

phytane (Ph). However, there is evidence of biodegradation in some of the samples as in 

sample NC (O) shown in Figure 4.1, (unresolved complex mixture (UCM) due to 

possible significant microbial attack). The biodegraded oils show depletion of n-

alkanes. The geochemical ratios based on the n-alkanes distribution are presented in 

Table 4.1. The Pr and Ph were identified in the GC of all studied oils, with exception of 

NB (O), NC (O) UK80 (O) and UKV (O). The pristane/phytane (Pr/Ph) ratio is 

commonly used in organic geochemistry as an indicator of redox conditions in the 

depositional environment and source rock attributes of the oil (Didyk et al., 1978; Tissot 

and Welte, 1984; Powell, 1988). The interpretation infers that oils derived from mainly 

land plants would be expected to have Pr/Ph ˃ 3.0 (oxidizing conditions), low values of 

(Pr/Ph) ratio (˂ 0.6) are indicative of marine (anoxic conditions) and values between 0.6 

and 3.0 suggest intermediate conditions (dysoxic conditions). However, care has to be 

taken in drawing conclusions on the redox conditions derive from Pr/Ph ratios, as they 

are influenced by other complicating factors (Didyk et al., 1978; Peters et al., 2005a).  

The (Pr/Ph) ratios for the studied oils range from 0.35 – 4.59 (Table 4.1 & Figure 4.2) 

suggesting oils derived from marine to terrigenous organic matter deposited in 

environmental conditions that transcend anoxic to oxic conditions (IGI, 2004) with oil 

samples from Nigeria showing more oxic condition. The oils were further classified 

based on associated source rock by plotting the ratio of Pr/nC17 against Ph/nC18 in 

Figure 4.3. In general, the diagram infers that the studied oils derived probably from 

terrigenous higher plant and or rich in marine organic matter. The ratio of 

dibenzothiophene/phenanthrene (DBT/PHEN) and the ratio of pristane to phytane have 

been used to infer source rock and depositional environment (Hughes et al., 1995). 

Therefore, using the criteria proposed by these authors, (DBT/PHEN)/(Pr/Ph), the oils 
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are derived from marine + lacustrine (sulphate rich), lacustrine (sulphate poor), marine 

(+ lacustrine) shale and fluvio/deltaic (carbonaceous shale, coal) influence (Figure 4.4). 

 

Figure 4.1: Representative GC/FID chromatograms of saturated hydrocarbon fractions of selected non-

degraded NE (O) and biodegraded NC (O) crude oils from Nigeria. 

IS = Internal standard, UCM = unresolved complex mixture. 

 

Figure 4.2: Source rock anoxia inferred from the histogram of pristane/phytane ratios for the studied oils 

(After IGI’s p:3.5 geochemical interpretation software). 
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Figure 4.3: Relationship between Pr/nC17 against Ph/nC18 for the studied oils (After IGI’s p:3.5 geochemical 

interpretation software). 

 
Figure 4.4: A cross plot of dibenzothiophene/phenanthrene ratio (DBT/PHEN) and the ratio of pristane to 

phytane for the studied oils (After IGI’s p: 3.5 geochemical interpretation software).  
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Table 4.1: Normal alkane and isoprenoid alkane distribution of the studied crude oil samples. 

Sample 

 
Type Location Pr/Ph NorPr/Ph Pr/nC17 

 
Ph/nC18 nC17/nC18 CPI 

NA1 (O) Oil Nigeria 4.59 0.33 0.92  0.22 1.80 1.13 

NB2 (O) Oil Nigeria 4.38 0.33 1.14  0.29 2.58 0.95 

NC3 (O) Oil Nigeria 4.29 0.34 1.00  0.26 2.14 1.12 

NA (O) Oil Nigeria 1.02 nd 1.57  0.97 nd nd 

NB (O) Oil Nigeria nd nd nd  Nd nd nd 

NC (O) Oil Nigeria nd nd nd  Nd nd nd 

ND (O) Oil Nigeria 2.36 0.52 0.81  0.39 2.03 1.16 

NE (O) Oil Nigeria 2.52 0.51 0.44  0.19 1.92 1.09 

NF (O) Oil Nigeria 2.18 0.56 0.46  0.24 2.02 0.78 

NO (O) Oil Nigeria 1.32 0.62 8.47  25.55 nd nd 

NN (O) Oil Nigeria 2.35 nd 2.92  1.40 1.95 nd 

N25 (O) Oil Nigeria 2.01 0.41 13.14  6.31 1.13 nd 

N18 (O) Oil Nigeria 1.96 0.37 27.89  11.79 0.44 nd 

NNI (O) Oil Nigeria 2.84 0.37 3.32  1.41 1.90 nd 

NN41 (O) Oil Nigeria 2.13 0.43 5.60  2.35 0.65 1.04 

UKB (O) Oil United Kingdom 1.11 0.69 13.08  28.85 nd nd 

UK88 (O) Oil United Kingdom 1.10 0.76 0.52  0.57 4.24 0.95 

UK85 (O) Oil United Kingdom 1.58 0.44 0.96  0.70 3.02 1.05 

UK66 (O) Oil United Kingdom 1.25 0.87 0.42  0.39 5.30 0.99 

UK65 (O) Oil United Kingdom 1.27 0.76 0.50  0.47 4.53 1.00 

UK80 (O) Oil United Kingdom nd nd nd  Nd nd nd 

UK34 (O) Oil United Kingdom 1.33 0.60 0.82  0.68 3.25 1.06 

UK11 (O) Oil United Kingdom 0.76 0.88 0.24  0.37 5.39 0.97 

UK01 (O) Oil United Kingdom 0.78 0.95 0.31  0.45 4.76 0.93 

UK05 (O) Oil United Kingdom 0.72 0.86 0.30  0.46 4.14 0.94 

UKV (O) Oil United Kingdom nd nd nd  Nd nd nd 

NA72 (O) Oil North America 0.95 0.91 1.09  1.34 5.91 nd 

NA73 (O) Oil North America 1.10 0.81 0.75  0.12 5.91 1.01 

NA74 (O) Oil North America 1.10 0.92 0.46  0.52 6.12 1.00 

NA75 (O) Oil North America 1.01 0.87 1.18  1.54 5.49 nd 

NA79 (O) Oil North America 1.24 0.82 1.39  1.62 10.26 nd 

NA61 (O) Oil North America 1.02 1.01 0.43  0.52 8.50 nd 

NA76 (O) Oil North America 1.05 0.91 0.44  0.52 5.85 1.16 

NAC (O) Oil North America 0.35 nd 1.91  0.25 nd nd 

ME77 (O) Oil Middle East 0.54 1.26 0.2  0.42 5.34 1.08 

ME39 (O) Oil Middle East 0.76 0.82 0.18  0.26 4.56 0.97 

ME43 (O) Oil Middle East 0.72 0.69 0.23  0.36 5.36 1.01 

ME12 (O) Oil Middle East 0.89 0.6 0.66  1.74 7.45 1.04 

SN1 (O) Oil  Serbia 1.51 nd 3.04  2.34 nd nd 

SN2 (O) Oil  Serbia 1.44 0.50 0.56  0.41 1.95 1.47 

Pr/Ph = pristane/phytane ratio; Didyk et al. (1978); (Peters et al., 2005b). Nor Pr: nor pristane (C18 isoprenoid); 

Pr/nC17 and Ph/ nC18; nC17 and nC27 are n-alkanes with the 17, 18 and 25 carbon chain lengths (Peters et al., 2005a); 

CPI = 0.5 x (((nC25+2nC27+nC29+nC31+nC33)/(nC24+nC26+nC28+nC30+nC32)) + ((nC25+nC27+nC31+nC33)/ 

(nC26+nC28+nC30+nC32+nC34))); Bray and Evans (1961). nd: not determined due to low concentration in the 

parameter. 
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 Steranes 

The measured ratios from the sterane distributions are listed in Table 4.3 and  the  C27 –

C29 ααα steranes in the oils show mixed kerogen types (terrestrial and marine) 

characteristics with results in the range of 14% – 53%, 8% – 31% and 27% – 65% for 

the C27, C28 and C29 ααα steranes respectively. However, the abundance of C29 regular 

steranes, is higher compared to the C27 and C28 regular steranes (Figure 4.7) suggests a 

terrigenous contribution in the oils. The Nigerian oils (NO and NN), United Kingdom 

oils (UK85 and UK88), North American oils (NAC), and Middle East oils (ME77, 

ME39 and ME12) are comparatively richer in cholestane (C27), suggesting a greater 

input in marine organic matter (Huang and Meinschein, 1979).  

Generally, diasteranes and regular steranes are included in the biomarkers commonly 

used for maturity assessment (Seifert and Moldowan, 1978; Peters and Fowler, 2002). 

In the oils, sterane (C29ααα) 20S/(20S + 20R) and αββ/(αββ + ααα) ratios range from 

0.28 – 0.57 and 0.36 – 0.60 respectively (Table 4.3). These values are consistent with 

oils generated from immature to  mature source rocks (Peters et al., 2005a), which is 

further supported by Figure 4.8 that shows low to mid maturity status of the oils. 
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Figure 4.5: Representative GC-MS mass chromatogram m/z 217 showing the distributions of C27, C28 and C29 

steranes from crude oil samples NC (O) and NE (O) from Nigeria. See Table 4.2 for peaks identification. 

 

 

Figure 4.6: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes from GC-MS analyses 

of studied oils interpreted in terms of likely depositional environment. (After IGI’s p: 3.5 geochemical 

interpretation software). 
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Figure 4.7: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes from GC-MS analyses 

of the studied oils interpreted in terms of likely source precursors. (After IGI’s p: 3.5 geochemical 

interpretation software). 

 

 

Figure 4.8: Cross plot of C29 steranes I/R against C29 steranes S/R parameter defines oils into various zones of 

thermal maturity (After IGI’s p: 3.5 geochemical interpretation software).
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Table 4.2: Sterane and hopane peak assignment (IGI, 2004). 

Peak Sterane compound name Peak Hopane compound name 

A Diapregnane 19T C19-tricyclic terpane 

B Pregnane 20T C20-tricyclic terpane 

C Homodiapregnane 21T C21-tricyclic terpane 

D Methylpregnane 22T C22-tricyclic terpane 

a C27 13β(H), 17α(H),20S- diacholestane  23T 13β(H),14α(H)-18,19-dinorcheilanthane 

b C27 13β(H), 17α(H),20R- diacholestane 24T 13β(H),14α(H)-19-norcheilanthane 

c C27 13α(H), 17β(H),20S- diacholestane T25S–T25– T25R 13β(H),14α(H)- cheilanthane (25S+25R) 

d C27 13α(H), 17β(H),20R- diacholestane 24T (H) 18β(H)-de-E-hopane 

e C28 13β(H), 17α(H),20S-24-methyldiacholestane T26 S) + (T26 R) 13β(H),14α(H)-19-methylcheilanthane (25S+25R) 

f  C28 13β(H), 17α(H),20S-24-methyldiacholestane T28S 13β(H),14α(H),25S-19-n-propylcheilanthane  

g C28 13β(H), 17α(H),20R-24-methyldiacholestane T28R 13β(H),14α(H),25R-19-n-propylcheilanthane 

h  C28 13β(H), 17α(H),20R-24-methyldiacholestane T29S 13β(H),14α(H),25S-19-i-butylcheilanthane 

i  C27 5α(H), 14α(H), 17α(H),20S-cholestane T29R 13β(H),14α(H),25R-19-i-butylcheilanthane 

j/k  
C275α(H),14β(H),17β(H),20R-cholestane+C2913β(H), 

17α(H),20Sdiasterane 
Ts 18α(H)-22-29,30-trisnorneohopane (Ts) 

l  C27 5α(H), 14β(H), 17β(H),20S-cholestane Tm 17α(H)-22,29,30-trisnorhopane (Tm) 

m  C27 5α(H), 14α(H), 17α(H),20R-cholestane 28H 
17α(H), 18α(H)-28,30-bisnorhopane (+  

17β(H), 18α(H)-28,30-bisnormoretane) 

n  C29 13β(H), 17α(H)-20R-24-ethyldiacholestane 29H 17α(H)-25norhopane 

o C28 5α(H), 14α(H),17α(H),20S-24-methylcholestane 29Ts 17α(H)-norhopane 

p  C28 5α(H), 14β(H), 17β(H),20R-24-methylcholestane 29M 17β(H)-normoretane 

q  C28 5α(H), 14β(H), 17β(H),20S-24-methylcholestane OL 18α(H)-oleanane 

r C28 5α(H), 14α(H), 17α(H),20R-24-methylcholestane 30H 17α(H)-hopane 

s  C29 5α(H), 14α(H), 17α(H),20S-24-ethylcholestane 30M 17β(H), 21β(H)-moretane 

t C29 5α(H), 14β(H), 17β(H),20R-24-ethylcholestane 31S 17α(H)-22S-homohopane 

u C29 5α(H), 14β(H), 17β(H),20S-24-ethylcholestane 31R 17α(H)-22R-homohopane 

v C29 5α(H), 14α(H), 17α(H),20R-24-ethylcholestane Ga gammacerane 

w C30 5α(H), 14α(H), 17α(H),20S-24-propylcholestane 31S, R Mor 17β(H)-homomoretane (22S+22R) 

x C30 5α(H), 14β(H), 17β(H),20R-24-propylcholestane 32S 17α(H)-22S-dihomohopane 

y C30 5α(H), 14β(H), 17β(H),20S-24-propylcholestane 32R 17α(H)-22R-dihomohopane 

z C30 5α(H), 14α(H), 17α(H),20R-24-propylcholestane 33S 17α(H)-22S-trihomohopane 

  

 

33R 17α(H)-22R-trihomohopane 

  

 

34S 17α(H)-22S-tetrahomohopane 

  

 

34R 17α(H)-22R-tetrahomohopane 

  

 

35S 17α(H)-22S-pentahomohopane 

    
35R 17α(H)-22R-pentahomohopane 
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Table 4.3: Source and maturity parameters computed from steranes in the studied oils.  

New Name Preg 20S(20S+20R) 20S(20S+20R) 20S(20S+20R) 20S(20S+20R) Sterane (%) 

    C29ααα C29αββ C27 ααα C28 ααα C27 ααα C28 ααα C29 ααα 

NA1 (O) 7.01 0.28 0.44 0.13 0.19 14 21 65 

NB2 (O) 8.94 0.30 0.50 0.15 0.18 17 21 62 

NC3 (O) 8.58 0.28 0.53 0.17 0.19 19 22 58 

NA (O) 12.89 0.36 0.54 0.27 0.23 31 26 43 

NB (O) 11.00 0.35 0.48 0.27 0.24 30 26 44 

NC (O) 14.51 0.43 0.51 0.25 0.23 30 28 43 

ND (O) 13.84 0.33 0.46 0.24 0.23 27 26 47 

NE (O) 9.98 0.33 0.43 0.22 0.21 26 24 50 

NF (O) 9.02 0.31 0.41 0.27 0.23 29 25 46 

NO (O) 19.59 0.55 0.42 0.42 0.14 47 15 39 

NN (O) 15.20 0.37 0.36 0.37 0.21 40 23 37 

N25 (O) 11.69 0.36 0.39 0.29 0.24 32 26 42 

N18 (O) 12.97 0.37 0.41 0.28 0.27 30 30 40 

NNI (O) 11.87 0.38 0.41 0.29 0.25 31 28 41 

NN41 (O) 12.64 0.35 0.38 0.29 0.27 31 29 40 

UKB (O) 17.20 0.55 0.46 0.43 0.14 48 16 36 

UK88 (O) 18.24 0.50 0.50 0.30 0.22 34 25 41 

UK85 (O) 8.59 0.47 0.43 0.26 0.22 29 25 46 

UK66 (O) 22.69 0.52 0.46 0.51 0.15 56 17 27 

UK65 (O) 20.11 0.54 0.50 0.39 0.16 47 19 34 

UK80 (O) 18.97 0.53 0.46 0.40 0.19 45 22 33 

UK34 (O) 23.00 0.51 0.48 0.42 0.16 48 18 34 

UK11 (O) 15.24 0.52 0.45 0.43 0.15 48 17 36 

UK01 (O) 18.47 0.57 0.48 0.45 0.17 48 19 33 

UK05 (O) 21.78 0.55 0.49 0.47 0.15 51 16 33 

UKV (O) 18.22 0.56 0.45 0.45 0.17 49 19 32 

NA72 (O) 20.20 0.50 0.44 0.35 0.23 37 24 39 

NA73 (O) 20.23 0.52 0.45 0.31 0.23 33 25 42 

NA74 (O) 20.14 0.51 0.44 0.27 0.24 29 26 45 

NA75 (O) 20.25 0.52 0.45 0.30 0.21 33 23 44 

NA79 (O) 22.67 0.54 0.47 0.31 0.24 33 26 42 

NA61 (O) 17.16 0.52 0.41 0.32 0.23 35 26 39 

NA76 (O) 19.33 0.53 0.47 0.34 0.23 36 24 40 

NAC (O) 29.03 0.46 0.36 0.41 0.15 44 16 39 

ME77 (O) 29.59 0.52 0.44 0.45 0.16 47 17 36 

ME39 (O) 28.55 0.54 0.50 0.50 0.08 53 8 39 

ME43 (O) 12.84 0.53 0.45 0.35 0.11 37 12 51 

ME12 (O) 7.25 0.53 0.51 0.50 0.17 51 17 32 

SN1 (O) 5.01 0.44 0.60 0.23 0.21 24 22 53 

SN2 (O) 16.82 0.47 0.58 0.29 0.29 32 31 37 

Preg = diginane + 5α-pregnane + 20-methyldiginane + 5α methylpregnane/ same + C29 5α, 14α, 17α 20R + C29 5α, 14α, 17α 20S + 

C29 5α, 14β, 17β 20R + C29 5α, 14β, 17β 20S (Mackenzie, 1984). % C27ααα, C28ααα and C29ααα = C27, C28, C29 as percentage of sum 

27-29 for 5α(H), 14α(H), 17α(H)-20R sterane (Peters et al., 2005a); C29ααα Sterane = 5α(H), 14α(H), 17α(H)-C29 20S/(20S+20R) 

sterane; C29αββ Sterane = 5α(H), 14β(H), 17β(H), C29 20S/(20S+20R) sterane; C27ααα Sterane = 5α(H), 14α(H), 17α(H)-C27 

20S/(20S+20R) sterane; C28ααα Sterane = 5α(H), 14α(H), 17α(H)-C28 20S/(20S+20R) sterane measured in m/z 217 mass 

chromatograms (Huang and Meinschein, 1979; Peters et al., 2005a). 
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 Tricyclic and tetracyclic terpanes  

Tricyclic and tetracyclic terpanes are widely ocurring biomarker constituents of many 

sediments and crude oils (Neto et al., 1982). The Nigerian oils contain a notable higher  

oleanane index than gammacerane index (Table 4.4) and the presence of oleanane is an 

indicator of terrigenous input, for samples mainly deposited in a deltaic environment 

(Ekweozor et al., 1979; Peters et al., 2005b). The oleanane index calculated from the 

Nigerian oils range from 0.03 – 0.53 and the Serbian oils from 0.03 – 0.07 (Table 4.4) 

and this reflects a high contribution of angiosperms in the source rocks that generated 

the oils. Generally, oleanane was detected only in the Nigerian and Serbian oils, whilst 

gammacerane occurs in low abundances in all oil samples. Gammacerane is an indicator 

of stratified water column and high abundance is often seen in saline lacustrine oils 

(Sinninghe Damsté et al., 1995). The studied oils have relatively low gammacerane 

index values ranging from 0.02 – 0.27 for the Nigerian oils, 0.02 – 0.34 for the United 

Kingdom oils, 0.03 – 0.78 for the American oils, 0.11 – 0.33 for the Middle East oils 

and 0.16 -0.27 for the Serbian oils.  

The Ts/(Ts+Tm) ratio is generally used as a maturity parameter for oils of similar 

source and can also be used to infer source depositional environment of oils of similar 

maturity. However, it appears to be sensitive to clay-catalysed reactions (Seifert and 

Moldowan, 1978). The Ts/(Ts+Tm) values for the studied oils range from 0.08 - 0.86 

and those for C29Ts index range from 0.02  –  0.82 (Table 4.4), indicating different 

maturity levels between the oil samples. Hence, the correlation between plots of Ts/Tm 

and 29Ts/29Tm ratios (Figure 4.10), shows early - late maturity for all the oils. The C35 

versus C3422(S + R)-17α (H), 21β (H)-extended hopanes may be used as indicative of 

source rock conditions during deposition, although it is affected by thermal maturity 

(Peters and Moldowan, 1991). The studied oils are most likely to be derived from 

organic matter deposited in dysoxic to anoxic depositional condition (Figure 4.11). 
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Figure 4.9: Representative partial m/z 191 mass chromatograms showing tricyclic and tetracyclic terpane 

distributions in NC (O) and NE (O) crude oil. Peak assignments are in Table 4.2 

 
Figure 4.10: Correlation between Ts/Tm and 29Ts/29Tm ratios showing the maturity of the studied oils (after 

IGI’s p: 3.5 geochemical interpretation software). 

 
Figure 4.11: Source rock anoxia inferred from extended hopanes (Hop (35/34) ratios of the studied oils (after 

IGI’s p: 3.5 geochemical interpretation software). 
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Table 4.4: Biomarker ratios based on terpane (m/z 191) in the studied crude oils. 

Sample Name Ts/(Ts+Tm) 29Ts/29Tm 29Hops 30Hops 31Hops HomoHop Hop(35/34) GI OI 

NA1 (O) 0.40 0.15 0.33 0.50 0.17 0.29 0.40 0.05 0.31 

NB2 (O) 0.43 0.16 0.33 0.49 0.18 0.30 0.41 0.05 0.34 

NC3 (O) 0.42 0.15 0.31 0.52 0.18 0.29 0.37 0.05 0.32 

NA (O) 0.49 0.29 0.30 0.49 0.22 0.40 0.43 0.17 0.34 

NB (O) 0.50 0.27 0.29 0.49 0.23 0.42 0.39 0.16 0.28 

NC (O) 0.50 0.34 0.36 0.42 0.21 0.41 0.49 0.27 0.53 

ND (O) 0.46 0.23 0.35 0.44 0.21 0.36 0.40 0.16 0.42 

NE (O) 0.47 0.16 0.34 0.46 0.20 0.34 0.40 0.09 0.50 

NF (O) 0.43 0.16 0.33 0.46 0.20 0.34 0.37 0.10 0.30 

NO (O) 0.56 0.32 0.22 0.43 0.34 0.62 0.55 0.16 0.03 

NN (O) 0.44 0.22 0.32 0.50 0.18 0.31 0.44 0.05 0.42 

N25 (O) 0.42 0.17 0.33 0.48 0.19 0.34 0.42 0.08 0.37 

N18 (O) 0.42 0.15 0.30 0.50 0.20 0.35 0.41 0.08 0.36 

NNI (O) 0.41 0.18 0.35 0.45 0.20 0.35 0.41 0.06 0.46 

NN41 (O) 0.39 0.03 0.36 0.48 0.16 0.32 0.37 0.02 0.34 

UKB (O) 0.57 0.29 0.23 0.43 0.34 0.61 0.56 0.15 nd 

UK88 (O) 0.53 0.28 0.21 0.43 0.36 0.60 0.55 0.11 nd 

UK85 (O) 0.86 0.22 0.21 0.48 0.31 0.56 0.48 0.08 nd 

UK66 (O) 0.67 0.35 0.20 0.46 0.33 0.57 0.48 0.16 nd 

UK65 (O) 0.50 0.53 0.18 0.45 0.37 0.56 0.35 0.07 nd 

UK80 (O) 0.66 0.82 0.04 0.53 0.43 0.70 0.56 0.07 nd 

UK34 (O) 0.51 0.40 0.19 0.45 0.36 0.57 0.58 0.02 nd 

UK11 (O) 0.60 0.30 0.18 0.43 0.39 0.64 0.55 0.12 nd 

UK01 (O) 0.73 0.49 0.18 0.41 0.42 0.69 0.61 0.16 nd 

UK05 (O) 0.76 0.51 0.17 0.41 0.42 0.70 0.51 0.23 nd 

UKV (O) 0.56 0.36 0.24 0.47 0.29 0.53 0.38 0.34 nd 

NA72 (O) 0.42 0.14 0.30 0.35 0.35 0.52 0.51 0.13 nd 

NA73 (O) 0.43 0.15 0.30 0.35 0.35 0.54 0.57 0.08 nd 

NA74 (O) 0.44 0.14 0.32 0.35 0.32 0.49 0.50 0.08 nd 

NA75 (O) 0.43 0.15 0.31 0.35 0.34 0.53 0.67 0.14 nd 

NA79 (O) 0.36 0.13 0.47 0.06 0.47 0.63 0.52 0.32 nd 

NA61 (O) 0.31 0.11 0.32 0.33 0.35 0.53 0.58 0.03 nd 

NA76 (O) 0.29 0.04 0.64 0.05 0.31 0.49 0.53 0.78 nd 

NAC (O) 0.21 0.18 0.28 0.41 0.32 0.50 0.58 0.15 nd 

ME77 (O) 0.20 0.07 0.41 0.30 0.28 0.44 0.57 0.19 nd 

ME39 (O) 0.91 0.60 0.30 0.34 0.36 0.61 0.55 0.13 nd 

ME43 (O) 0.55 0.22 0.30 0.31 0.39 0.64 0.49 0.11 nd 

ME12 (O) 0.59 0.37 0.23 0.48 0.29 0.53 0.47 0.33 nd 

SN1 (O) 0.50 0.19 0.24 0.55 0.20 0.37 0.39 0.25 0.07 

SN2 (O) 0.46 0.21 0.22 0.48 0.30 0.53 0.41 0.16 0.03 

 

Ts/(Ts+Tm ) = 18α (H)-trisnorneohopane/17α (H)-trisnorhopane ratio; Moldowan et al. (1986). C29Hops = C29 Hopane/ (C29 + C30 

+C31 22S and C31 22R); Killops et al. (1998). C30Hops = C30 Hopane/ (C29 + C30 +C31 22S and C31 22R); Killops et al. (1998). 

C31Hops = (C31 22S and SSR Hopane)/ (C29 + C30 +C31 22S and C31 22R); Killops et al. (1998). HomoHop = αβ C35homohopane 

(22S+22R)/∑C31. Hops C35 /C34 17α(H), 21β(H)- pentakishomohopane (22S+22R)/ 17α(H), 21β(H)- tetrakishomohopane (22S + 

22R); ten Haven et al. (1987). GI (Gammacerane index) = gammacerane/ gammacerane + C30 17β(H), 21β(H)-Hopane; (ten Haven 

et al., 1987). OI (Oleanane index) = 18α(H)-oleanane/oleanane 17α(H), 21β(H)-Hopane; measured in m/z 191.(Ekweozor and 

Telnaes, 1990).  

nd: not determined due to low concentration in the parameter 

 Aromatic hydrocarbons  

The major aromatic compounds studied includes methyl-, dimethyl-, and 

trimethylnaphthalenes, phenanthrene, methyl- and dimethylphenanthrenes, 

dibenzothiophene and benzothiophene, which were analysed by GC-MS for thermal 

maturity and organic source assessments. The distributions of the representative oil NC 

(O) are shown in Figures 4.12 and 4.13, with assignments of the peaks in Table 4.5. 
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Figure 4.12: GC-MS m/z 178 and 192 mass chromatograms showing the distributions of the phenanthrene and 

methylphenanthrenes in representative oil NC (O) from Nigeria.  

(P: phenanthrene; 3MP: 3-methyl phenanthrene; 2MP: 2-methyl phenanthrene; 9MP: 9-methyl phenanthrene, 1MP: 1-methyl 
phenanthrene 

 
Figure 4.13: GC-MS m/z 128 and 142 mass chromatograms showing the distributions of the naphthalene and 

methylnaphthalenes and also GC-MS m/z 156 and 170 mass chromatograms showing the distributions of 

dimethylnaphthalenes and trimethylnaphthalenes in the representative oil NC (O) from Nigeria. Assignments of 

the peaks labelled in table 4.5. 
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Table 4.5: Peak identification of biomarkers in aromatic hydrocarbons. 

Ions Peak Compound 

m/z 178 P Phenanthrene 

m/z 192 3 MP 3-Methylphenanthrene 

  2 MP 2-Methylphenanthrene 

  9 MP 9-Methylphenantherene 

  1 MP 1-Methylphenanthrene 

m/z 128 N Naphthalene 

m/z 142 a 2-Methylnaphthalene 

  b 1-Methylnaphthalene 

m/z 156 c 2-Dimethylnaphthalenes 

  d 1- Dimethylnaphthalenes 

  e 2,6+2,7- Dimethylnaphthalenes 

  f 1,3+1,7- Dimethylnaphthalenes 

  g 1,6- Dimethylnaphthalenes 

  h 1,4+2,3- Dimethylnaphthalenes 

  i 1,5- Dimethylnaphthalenes 

  j 1,2- Dimethylnaphthalenes 

m/z 170 k 1,3,7- Trimethylnaphthalenes 

  l 1,3,6- Trimethylnaphthalenes 

  m 1,3,5- Trimethylnaphthalenes 

  n 1,4,6- Trimethylnaphthalenes 

  o 1,4,7+1,2,6+1,6,9- Trimethylnaphthalenes 

  p 1,2,4- Trimethylnaphthalenes 

  q 1,2,5- Trimethylnaphthalenes 

  r 1,2,3- Trimethylnaphthalenes 

The Methylphenanthrene Index (MPI-1) is a commonly used molecular thermal 

maturity parameter and is sensitive to maturity increase (Radke, 1988) but facies 

dependent (Radke et al., 1982a). MPI-1 can also be used to calculate the vitrinite 

reflectance equivalent (% VRc) for crude oils with MPI-1 increasing from ca. 0.4 at VRc 

of 0.6 % up to ca. 1.6 at the end of oil window (VRc 1.3%) and  decreases to ca. 0.5 at 

VRc 2.0% at the end of gas window. The ratios of MPI-1 (0.08 – 1.00) and MPI-2 (0.11 

– 1.01) calculated from the distributions of methylphenanthrenes in the oils (Table 4.5 

& Figure 4.14) shows a consistent increase. There is a good positive correlation 

between the calculated MPI-1 and MPI-2. These maturity parameters have variable 

thermal maturity from immature to late thermally maturity of the oils. 
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Figure 4.14: Cross plots of maturity parameter computed from aromatic hydrocarbons (MPI-1 and MPI-2) of 

the oils (After IGI’s p: 3.5 geochemical interpretation software). 
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Table 4.6: Selected molecular parameter for thermal maturity and source indicators from aromatic 

hydrocarbon fractions in the oils. 

Sample Name MPI-1 MPI-2 MNR 4/1 MDT 3/2MDBT DBT/PHEN %R (MDBT) 

NA1 (O) 0.61 0.62 0.59 5.35 3.41 0.12 1.34 

NB2 (O) 0.82 0.81 0.61 5.03 3.79 0.11 1.33 

NC3 (O) 0.75 0.75 0.62 4.96 4.07 0.11 1.32 

NA (O) 0.77 0.87 0.55 3.49 2.51 0.09 1.23 

NB (O) 0.79 0.79 0.50 3.79 2.57 0.07 1.25 

NC (O) 0.93 0.93 0.57 3.34 2.43 0.10 1.22 

ND (O) 0.93 0.96 0.60 3.78 2.59 0.12 1.25 

NE (O) 0.81 0.81 0.62 4.15 2.64 0.13 1.28 

NF (O) 0.84 0.84 0.62 4.13 2.75 0.12 1.28 

NO (O) 0.61 0.66 0.49 2.00 1.19 0.04 1.09 

NN (O) 1.00 1.01 0.65 3.79 4.80 0.07 1.25 

N25 (O) 0.76 0.69 0.48 2.91 1.89 0.02 1.18 

N18 (O) 0.79 0.69 0.53 3.19 1.97 0.01 1.21 

NNI (O) 0.97 0.97 0.66 4.63 3.21 0.11 1.31 

NN41 (O) 0.82 0.77 0.35 2.92 3.33 0.03 1.18 

UKB (O) 0.64 0.65 0.42 2.09 1.10 0.03 1.10 

UK88 (O) 0.47 0.48 0.48 2.16 1.06 0.47 1.11 

UK85 (O) 0.23 0.25 0.52 nd nd Nd nd 

UK66 (O) nd nd 0.63 7.91 0.55 Nd 1.45 

UK65 (O) 0.11 0.15 0.55 nd nd Nd nd 

UK80 (O) nd nd 0.58 1.72 0.83 Nd 1.05 

UK34 (O) nd nd 0.65 5.00 0.61 Nd 1.33 

UK11 (O) 0.43 0.44 0.47 1.81 0.99 0.97 1.06 

UK01 (O) 0.38 0.37 0.41 2.47 1.11 1.21 1.14 

UK05 (O) 0.40 0.40 0.42 2.58 1.12 1.24 1.15 

UKV (O) 0.59 0.62 0.56 2.59 1.96 0.03 1.15 

NA72 (O) 0.68 0.70 0.52 2.51 1.44 0.94 1.15 

NA73 (O) 0.64 0.65 0.55 2.77 1.63 0.85 1.17 

NA74 (O) 0.64 0.65 0.54 2.83 1.67 0.87 1.18 

NA75 (O) 0.65 0.69 0.52 2.42 1.40 0.90 1.14 

NA79 (O) nd nd 0.49 2.58 1.59 Nd 1.15 

NA61 (O) 0.57 0.57 0.49 1.65 1.07 1.45 1.03 

NA76 (O) 0.60 0.62 0.50 1.96 1.27 0.98 1.08 

NAC (O) 0.64 0.63 0.60 0.99 1.68 0.04 0.90 

ME77 (O) 0.58 0.65 0.50 2.32 1.62 1.00 1.12 

ME39 (O) 0.57 0.67 0.50 3.74 2.44 1.16 1.25 

ME43 (O) 0.51 0.56 0.53 2.08 1.51 0.93 1.10 

ME12 (O) 0.14 0.24 0.55 nd nd Nd nd 

SN1 (O) 0.08 0.11 0.55 2.24 2.49 0.04 1.11 

SN2 (O) 0.51 0.53 0.46 2.33 1.25 0.11 1.13 

MPI-1 = 1.5(2MP+3MP)/(P+1MP+9MP); Radke et al. (1982b).  MPI-2 = 3(2MP)/(P+1MP+9MP); (Radke et al., 1982b). MNR = 

(2-MN/1MN); DBT/PHEN; Hughes et al. (1995); MPR = (2MP) / (1MP); (Radke et al., 1984). 
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 Source facies and thermal maturity  

Based on the molecular properties, the oils exhibit two likely source facies i.e. 

terrigenous and marine source facies. These two distinct source rocks are typical of the 

oils from Nigeria as previously observed by Sonibare et al. (2008). The presence of 

18α(H)-oleanane in the oils is also a good indicator of terrestrial organic input into the 

deltaic shale oil source rocks and it has been suggested as biomarker for angiosperm 

(flowering) plants (Ekweozor et al., 1979). Hence, the abundance of oleanane permits 

the grouping of the likely source rocks that generated the oils into two families of 

terrigenous/deltaic and marine shale (Table 4.7). The maturity parameters based on 

aromatic compounds; MPI-1 and MPI-2 were generally well-correlated and allowed 

maturity trends to be established. 
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Table 4.7: Summary of maturity and source facies biomarkers in the studied oils. 

Sample  Pr/Ph CPI Sterane (%) Maturity Likely source 

      C27ααα C28 ααα C29 ααα     

NA1 (O) 4.59 1.13 14.05 20.90 65.05 mid/mid Terrigenous/Deltaic shale 

NB2 (O) 4.38 0.95 17.15 21.12 61.73 mid/mid Terrigenous/Deltaic shale 

NC3 (O) 4.29 1.12 19.33 22.37 58.31 mid/mid Terrigenous/Deltaic shale 

NA (O) 1.02 nd 30.98 26.45 42.58 low/--- Terrigenous/Marine shale 

NB (O) nd nd 29.94 26.12 43.95 mid/mid Terrigenous/Marine shale 

NC (O) nd nd 29.52 27.77 42.71 high/mid Terrigenous/Marine shale 

ND (O) 2.36 1.16 27.16 26.13 46.71 high/mid Terrigenous/Marine shale 

NE (O) 2.52 1.09 25.75 23.80 50.44 mid/mid Terrigenous/Marine shale 

NF (O) 2.18 0.78 29.11 25.07 45.82 mid/mid Terrigenous/Marine shale 

NO (O) 1.32 nd 46.51 14.86 38.63 low/--- Marine/Marine shale 

NN (O) 2.35 nd 40.19 22.90 36.92 mid/mid Marine/Marine shale 

N25 (O) 2.01 nd 32.26 26.11 41.63 mid/mid Terrigenous/Marine shale 

N18 (O) 1.96 nd 29.93 29.69 40.38 mid/mid Terrigenous/Marine shale 

NNI (O) 2.84 nd 31.44 27.53 41.02 high/mid Terrigenous/Marine shale 

NN41 (O) 2.13 1.04 31.16 29.20 39.64 mid/mid Terrigenous/Marine shale 

UKB (O) 1.11 nd 47.53 16.13 36.33 high/mid Open marine/Marine shale 

UK88 (O) 1.10 0.95 34.12 24.83 41.05 mid/mid Terrigenous /Marine shale 

UK85 (O) 1.58 1.05 29.49 24.95 45.57 low/--- Terrigenous/Marine + lacustrine shale 

UK66 (O) 1.25 0.99 56.05 17.10 26.85 high/mid Open marine/Marine shale 

UK65 (O) 1.27 1.00 46.73 18.94 34.33 ? Open marine/Marine shale 

UK80 (O) nd nd 45.18 22.05 32.76 ? Open marine/Marine shale 

UK34 (O) 1.33 1.06 47.53 18.45 34.01 ? Open marine/Marine shale 

UK11 (O) 0.76 0.97 47.58 16.73 35.69 mid/mid Open marine/Marine shale 

UK01 (O) 0.78 0.93 48.06 18.65 33.29 ? Open marine/Marine shale 

UK05 (O) 0.72 0.94 50.65 16.36 32.99 ? Open marine/Marine shale 

UKV (O) nd nd 49.16 19.21 31.62 ? Open marine/Marine shale 

NA72 (O) 0.95 nd 36.64 23.91 39.45 high/mid Open marine/Marine shale 

NA73 (O) 1.10 1.01 32.79 25.03 42.17 ?/mid Open marine/Marine shale 

NA74 (O) 1.10 1.00 29.34 26.12 44.54 mid/mid Open marine/Marine shale 

NA75 (O) 1.01 nd 32.71 23.05 44.24 mid/mid Open marine/Marine shale 

NA79 (O) 1.24 nd 32.82 25.61 41.58 low/low Open marine/Marine shale 

NA61 (O) 1.02 nd 34.96 25.62 39.43 low/low Open marine/Marine shale 

NA76 (O) 1.05 1.16 35.78 24.42 39.80 mid/mid Shallow marine/Marine shale 

NAC (O) 0.35 nd 44.49 16.02 39.49 mid/mid Shallow marine/Lacustrine shale 

ME77 (O) 0.54 1.08 47.19 16.56 36.26 low/high Marine/Marine + lacustrine shale 

ME39 (O) 0.76 0.97 52.82 8.34 38.85 mid/low Marine/Marine + lacustrine shale 

ME43 (O) 0.72 1.01 37.10 12.04 50.87 mid/? Marine/Marine + lacustrine shale 

ME12 (O) 0.89 1.04 50.82 16.76 32.42 mid/mid Shallow marine/Lacustrine shale 

SN1 (O) 1.51 nd 24.44 22.16 53.40 low/mid Shallow marine/Marine shale 

SN2 (O) 1.44 1.47 31.64 31.05 37.31 mid/mid Shallow marine/Marine shale 
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 Biodegradation level based on Peters and Moldowan classification scale 

The varying degrees of alteration of the crude oils were ranked on the scale of Peter and 

Moldowan (PM) based on molecular composition, visual inspection of GC and GC-MS 

data from distributions, e.g. n-alkanes and isoprenoids, triterpanes, steranes as presented 

in Table 4.8. As revealed in the table, the oils from Nigeria (NA (O), NB (O), NC (O), 

NO (O), NN (O), N25 (O) N18 (O), NN1(O) and NA41 (O)),  United Kingdom ( UKB 

(O), UK66(O), UK65(O), UK80(O), North America (NA79 and NAC), Middle East 

(ME77) and Serbia (SN1) are characterised by complete or partial removal of n-alkanes 

and isoprenoid alkanes and the other oil samples are relativly unbiodegraded. Thus, 

these oils have undergone different level of biodegradation as shown in Table 4.8, with 

biodegradation ranking from PM level 1 to PM level 6.  

  



 

66 

 

Table 4.8: Biodegradation level of the studied oils based on the presence and absence of molecular parameters 

by Peters and Moldowan (1993). 

Sample  
n-alkanes Isoprenoids Steranes Hopanes Diasteranes Aromatics PM Scale Biodegradation 

NA1 (O) √ √ √ √ √ √ 1 Non-degraded 

NB2 (O) √ √ √ √ √ √ 1 Non-degraded 

NC3 (O) √ √ √ √ √ √ 1 Non-degraded 

NA (O) − − √ √ √ √ 6 Biodegraded 

NB (O) − √ − √ √ √ √ 5 Biodegraded 

NC (O) − √ − √ √ √ √ 5 Biodegraded 

ND (O) √ √ √ √ √ √ 1 Non-degraded 

NE (O) √ √ √ √ √ √ 1 Non-degraded 

NF (O) √ √ √ √ √ √ 1 Non-degraded 

NO (O) − √ − √ √ √ √ 5 Biodegraded 

NN (O) √ − √ − √ √ √ √ 3 Biodegraded 

N25 (O) √ − √ − √ √ √ √ 3 Biodegraded 

N18 (O) √ − √ − √ √ √ √ 3 Biodegraded 

NNI (O) √ − √ √ √ √ √ 2 Biodegraded 

NN41 (O) √ − √ − √ √ √ √ 3 Biodegraded 

UKB (O) − √ − √ √ √ √ 5 Biodegraded 

UK88 (O) √ √ √ √ √ √ 1 Non-degraded 

UK85 (O) √ √ √ √ √ √ 1 Non-degraded 

UK66 (O) − − √ √ √ √ 6 Biodegraded 

UK65 (O) − − √ √ √ √ 6 Biodegraded 

UK80 (O) − − √ √ √ √ 6 Biodegraded 

UK34 (O) √ √ √ √ √ √ 1 Non-degraded 

UK11 (O) √ √ √ √ √ √ 1 Non-degraded 

UK01 (O) √ √ √ √ √ √ 1 Non-degraded 

UK05 (O) √ √ √ √ √ √ 1 Non-degraded 

UKV (O) √ √ √ √ √ √ 1 Non-degraded 

NA72 (O) √ √ √ √ √ √ 1 Non-degraded 

NA73 (O) √ √ √ √ √ √ 1 Non-degraded 

NA74 (O) √ √ √ √ √ √ 1 Non-degraded 

NA75 (O) √ √ √ √ √ √ 1 Non-degraded 

NA79 (O) √ − √ − √ √ √ √ 3 Biodegraded 

NA61 (O) √ √ √ √ √ √ 1 Non-degraded 

NA76 (O) √ √ √ √ √ √ 1 Non-degraded 

NAC (O) − − √ √ √ √ 6 Biodegraded 

ME77 (O) √ − √ √ √ √ √ 3 Biodegraded 

ME39 (O) √ √ √ √ √ √ 1 Non-degraded 

ME43 (O) √ √ √ √ √ √ 1 Non-degraded 

ME12 (O) √ √ √ √ √ √ 1 Non-degraded 

SN1 (O) − √ − √ √ √ √ 5 Biodegraded 

SN2 (O) √ √ √ √ √ √ 1 Non-degraded 

√ = present; − = complete removal; √ − = minor removal. 
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 Molecular characterisation of North Sea Coals  

 Normal Alkanes and acyclic isoprenoids   

The analysed coals are dominated by n-alkanes distributions of nC12 - nC36, maximizing 

at nC13 – nC15 (Figure 4.15). The Pr/Ph ratios for the coals range from 2.44 – 4.36 

(Table 4.9) and this suggests that the coals are derived from source rock with significant 

terrestrial organic matter contribution, deposited in an oxic environment (Figure 4.17). 

Based on the plot of (DBT/PHEN) versus (Pr/Ph) (Figure 4.18) it can be concluded that 

the coals were deposited in fluvial-deltaic setting with possible input of marine shale  

(Hughes et al., 1995).  

 
Figure 4.15: Representative GC/FID chromatograms of saturated coal extracts of CA3 (C) and CA6 (C) from 

North Sea coals, United Kingdom. 
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Figure 4.16: Relationship between Pr/nC17 against Ph/nC18 for the North Sea coals from the United Kingdom 

(Interpretation from geochemical software IGI’s p: 3.5). 

 
Figure 4.17: Source rock anoxia inferred from the histogram of pristane/phytane ratios from the North Sea 

coals (Interpretation from geochemical software IGI’s p: 3.5). 

 
Figure 4.18: A cross plot of dibenzothiophene/phenanthrene ratio (DBT/PHEN) and the ratio of pristane to 

phytane for the studied coals (Interpretation from geochemical software IGI’s p: 3.5). 
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Table 4.9: Normal alkane and isoprenoid alkane distribution of the studied coals. 

Sample 

 
Type Location Pr/Ph NorPr/Ph Pr/nC17 

 
Ph/nC18 nC17/nC18 CPI 

CA 3 (C) Coal North Sea- UK 2.44 0.49 0.53  0.27 3.64 nd 

CA 4 (C) Coal North Sea- UK 4.36 0.31 0.74  0.20 3.79 1.01 

CA 6 (C) Coal North Sea- UK 2.48 0.36 0.64  0.33 6.17 nd 

Pr/Ph = pristane/phytane ratio; Didyk et al. (1978); (Peters et al., 2005b). Nor Pr: nor pristane (C18 isoprenoid); 

Pr/nC17 and Ph/ nC18; nC17 and nC27 are n-alkanes with the 17, 18 and 25 carbon chain lengths; CPI = 0.5 x 

(((nC25+2nC27+nC29+nC31+nC33)/(nC24+nC26+nC28+nC30+nC32)) + ((nC25+nC27+nC31+nC33)/ 

(nC26+nC28+nC30+nC32+nC34))); Bray and Evans (1961).  

 Steranes 

The sterane mass chromatograms m/z 217 of representative North Sea coals CA3(C) 

and CA6(C) are shown in Figure 4.19. In general, the measured ratios from the C27 – 

C29 ααα sterane distributions (Table 4.10) indicates the origin of the coals from land 

plants (Figure 4.20) with results in the range of 31 – 41%, 14 – 20% and 44 – 50 %,  for 

the C27, C28, C29 ααα steranes respectively. 

The ratios of (C29ααα 20S/(20S + 20R) and αββ/(αββ + ααα) sterane range from 0.35 – 

0.39 and 0.36 – 0.47 respectively (Table 4.10), which indicates that the coal samples are 

early mature (Figure 4.22) and this supports the previous interpretations based on n-

alkanes/isoprenoids.  
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Figure 4.19: Representative GC-MS mass chromatogram m/z 217 showing the distributions of C27, C28 and C29 

steranes from the coals, United Kingdom. 

 

 
Figure 4.20: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes from GC-MS analyses 

of the studied coals interpreted in terms of likely source precursors. (After IGI’s p: 3.5 geochemical 

interpretation software). 
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Figure 4.21: Ternary diagram showing the distribution of the C27, C28, and C29-Steranes from GC-MS analyses 

of studied coals interpreted in terms of likely depositional environment. (After IGI’s p: 3.5 geochemical 

interpretation software). 

 

 

Figure 4.22: Cross plot of C29 steranes I/R against C29 steranes S/R parameter defines North Sea coals into 

various zones of thermal maturity. (After IGI’s p: 3.5 geochemical interpretation software). 

 

Table 4.10: Source and maturity parameters computed from steranes in the studied coals. 

New Name Preg 20S(20S+20R) 20S(20S+20R) 20S(20S+20R) 20S(20S+20R) Sterane (%) 

    C29ααα C29αββ C27 ααα C28 ααα C27 ααα C28 ααα C29 ααα 

CA 3 (C) 23.72 0.35 0.43 0.30 0.19 31 20 50 

CA 4 (C) 6.99 0.38 0.47 0.39 0.14 41 14 45 

CA 6 (C) 22.55 0.39 0.36 0.36 0.16 38 17 44 

Preg = diginane + 5α-pregnane + 20-methyldiginane + 5α methylpregnane/ same + C29 5α, 14α, 17α 20R + C29 5α, 14α, 17α 20S + 

C29 5α, 14β, 17β 20R + C29 5α, 14β, 17β 20S (Mackenzie, 1984). % C27ααα, C28ααα and C29ααα = C27, C28, C29 as percentage of sum 

27-29 for 5α(H), 14α(H), 17α(H)-20R sterane; C29ααα Sterane = 5α(H), 14α(H), 17α(H)-C29 20S/(20S+20R) sterane; C29αββ 

Sterane = 5α(H), 14β(H), 17β(H), C29 20S/(20S+20R) sterane; C27ααα Sterane = 5α(H), 14α(H), 17α(H)-C27 20S/(20S+20R) 

sterane; C28ααα Sterane = 5α(H), 14α(H), 17α(H)-C28 20S/(20S+20R) sterane measured in m/z 217 mass chromatograms (Huang 

and Meinschein, 1979; Peters et al., 2005a). 
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 Tricyclic and tetracyclic terpanes  

The distribution of terpanes obtained from m/z 191 mass chromatograms of 

representative North Sea coals CA3(C) and CA4(C) for this study are shown in Figure 

4.23 and they are dominated by pentacyclic triterpanes. The calculated biomarker ratios 

are shown in Table 4.11. The values of Ts/(Ts+Tm) ratios from the coals range from 

0.08 - 0.37 and those of C29Ts index range between 0.04 and 0.20 (Table 4.11), 

indicating low thermal maturity level for the samples. Hence, the correlation between 

plots of Ts/Tm and 29Ts/29Tm ratios (Figure 4.24), shows early – mid maturity for the 

coals. The hopane C30 βα/βα + αβ and homohopanes 22S/(22S + 22R) isomerisation 

ratios of C32 values range from 0.37 – 0.44 and 0.56 – 0.60 respectively (Table 4.11). 

These values indicates that the coals were deposited in an oxic/dysoxic environment 

based on Hop (35/34) ratio and are thermally mature based on Figure 4.27, however 

their Ts/Tm values are generally lower than 0.6 and this shows that they are early 

mature.  

 

Figure 4.23: Representative partial m/z 191 mass chromatograms showing tricyclic and tetracyclic terpane 

distributions in CA3 (C) and CA6 (C) coals. 
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Figure 4.24: Correlation between Ts/Tm and 29Ts/29Tm ratios showing the maturity of the studied coals 

(After IGI’s p: 3.5 geochemical interpretation software). 

 

 

Figure 4.25: Source rock anoxia inferred from extended hopanes (Hop (35/34) ratios of the coals from the 

North Sea, UK (After IGI’s p: 3.5 geochemical interpretation software). 

 

Table 4.11: Biomarker ratios based on terpane (m/z 191) in the studied coals 

Sample Name Ts/(Ts+Tm) 29Ts/29Tm 29Hops 30Hops 31Hops Hop32 Hop(35/34) GI OI 

CA 3 (C) 0.37 0.20 0.26 0.44 0.30 0.58 0.35 0.08 nd 

CA 4 (C) 0.08 0.04 0.29 0.37 0.34 0.60 0.33 0.04 nd 

CA 6 (C) 0.27 0.19 0.23 0.45 0.32 0.56 0.44 0.09 nd 

 

Ts/(Ts+Tm ) = 18α (H)-trisnorneohopane/17α (H)-trisnorhopane ratio; Moldowan et al. (1986). C29Hops = C29 Hopane/ (C29 + C30 

+C31 22S and C31 22R); Killops et al. (1998). C30Hops = C30 Hopane/ (C29 + C30 +C31 22S and C31 22R); Killops et al. (1998). 

C31Hops = (C31 22S and SSR Hopane)/ (C29 + C30 +C31 22S and C31 22R); Killops et al. (1998). HomoHop = αβ C35homohopane 

(22S+22R)/∑C31. Hops C35 /C34 17α(H), 21β(H)- pentakishomohopane (22S+22R)/ 17α(H), 21β(H)- tetrakishomohopane (22S + 

22R); ten Haven et al. (1987). GI (Gammacerane index) = gammacerane/ gammacerane + C30 17β(H), 21β(H)-Hopane; (ten Haven 

et al., 1987). OI (Oleanane index) = 18α(H)-oleanane/oleanane 17α(H), 21β(H)-Hopane; measured in m/z 191(Ekweozor and 

Telnaes, 1990). 
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 Aromatic hydrocarbons  

The aromatic fractions obtained from the North Sea coals contain many compounds and 

the distributions of the representative coal CA3(3 ) are shown in Figure 4.26 and 4.27. 

The molecular parameters calculated from the aromatic compounds are presented in 

Table 4.13. The MPI-1 and MPI-2 ratios derived from the distributions of 

methylphenanthrenes in the coals range from 0.52 – 0.65 and 0.56 – 0.70 respectively 

(Table 4.13). The ratios of MPI-1 (0.52 – 0.65) and MPI-2 (0.56 – 0.70) calculated from 

the distributions of methylphenanthrenes in the coals (Table 4.13 & Figure 4.28) shows 

a consistent increase. There is a good positive correlation between the calculated MPI-1 

and MPI-2 ratios. These thermal maturity parameters indicate thermally mature coals.  

 
Figure 4.26: GC-MS m/z 178 and 192 mass chromatograms showing the distributions of the phenanthrene and 

methylphenanthrenes in representative coal (CA3) from the North Sea, UK.  
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Figure 4.27: GC-MS m/z 128 and 142 mass chromatograms showing the distributions of the naphthalene and 

methylnaphthalenes and also GC-MS m/z 156 and 170 mass chromatograms showing the distributions of 

dimethylnaphthalenes and trimethylnaphthalenes in the representative oil CA3 (C) from the North Sea, UK. 

 

Figure 4.28: Cross plots of maturity parameter computed from aromatic hydrocarbons of the coals. 

Table 4.13: Selected molecular parameter for thermal maturity and source indicators from aromatic 

hydrocarbon fractions in the coals. 

Sample Name MPI-1 MPI-2 MNR 4/1 MDT 3/2MDBT DBT/PHEN %R (MDBT) 

CA 3 (C) 0.65 0.70 0.63 6.67 2.90 0.01 1.40 

CA 4 (C) 0.52 0.56 0.66 4.77 2.00 0.01 1.31 

CA 6 (C) 0.60 0.64 0.64 4.79 2.21 0.05 1.31 

MPI-1 = 1.5(2MP+3MP)/(P+1MP+9MP); Radke et al. (1982b).  MPI-2 = 3(2MP)/(P+1MP+9MP); (Radke et al., 1982b). MNR = 

(2-MN/1MN); DBT/PHEN; Hughes et al. (1995); MPR = (2MP) / (1MP); (Radke et al., 1984). 
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 Source facies and thermal maturity 

Based on the molecular properties of the studied coals from the North Sea, they exhibit 

overwhelmingly terrigenous organofacies and are believed to have been sourced from 

land-plants (Table 4.13). The high Pr/Ph ratios and the minor presence of gammacerane 

in the coals, may suggest hypersaline conditions. The coals are thermally immature – 

early mature as evident in the thermal maturity parameters calculated for the coals 

(Table 4.9, 4.10 and 4.13). 

Table 4.13: Summary of maturity and source facies biomarkers in the studied coals. 

Sample  Pr/Ph CPI Sterane (%) Maturity Likely source 

      C27ααα C28 ααα C29 ααα     

CA 3 (C) 2.44 nd 30.79 19.70 49.51 mid/mid Land plant/coal measures 

CA 4 (C) 4.36 1.01 40.98 14.15 44.87 mid/low Land plant/coal measures 

CA 6 (C) 2.48 nd 38.28 17.47 44.25 mid/mid Planktonic/land plant 

 

 Comparative biomarker analysis in the studied oils and coals. 

This section aims to integrate the results obtained from various biomarker parameters 

and provides a better understanding with regards to source facies, maturity and levels of 

biodegradation on the studied oil samples from different locations around the world. 

Principal component analysis (PCA) was applied to the data set (Appendix 3.0) to 

reduce the dimensionality of the data (PC1 – PC4) and account for the variation within 

the data (Zumberge, 1987). Thus, the resulting data is plotted in a two dimensional 

graph, whilst the two significant components still retain the relationships among the 

samples within the dataset.  

The PCA performed here uses the 33 biomarker parameters (see Table 4.14). The 

loading weightings for each principal component are given in Table 4.15. The loading 

weightings for (PC1 and PC2) account for 53.75 % of the total variance in the dataset, 

distinctly separating the samples amongst related biomarkers. The loadings for PC1 

show strong positive values for pregnanes (Mackenzie, 1984), C29ααα, C27ααα regular 

steranes (Peters et al., 2005a), DBT/PHEN (Hughes et al., 1995) and the 31Hops 

(Killops and Killops, 2005), homohopanes (Peters et al., 2005a), Hop (35/34) (ten 

Haven et al., 1987; Peters et al., 2005a), Pr/nC17 and Ph/nC18 (Peters et al., 2005a), 

while most of the aromatics and C28ααα regular steranes (Peters et al., 2005a) have 
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relatively strong negative loadings. The loading and score plots constructed on the basis 

of the PC1, (38.23 %) versus PC2, (15.52 %) shows the contribution of each variable 

related to PC1 and PC2 (Figure 4.29) and the relationships among the samples are also 

displayed in the plane of the PC1 and PC2 (Figure 4.30). Although, the score plot of 

PC1 against PC2 shows a meaningful pattern that can be attributed to the common 

characteristics of the oils and coals, the positive axis of PC1 is characterised by marine 

organic matter input whilst the negative axis is characterised by increasing terrestrial 

input. The Nigerian oils and North Sea coals are influenced by the terrestrial organic 

matter input. 

The second principal component (PC2), which account for 15.52 % of the total variance 

in the dataset, grouped all Nigerian oils including (NA1, NA2, NA3, NE, NF, NA, NB, 

NC, N18, N25, ND & NN1) with the coals (CA3, CA4 & CA6) in the cluster (Figure 

4.30). The loadings plots for the PC2 (Figure 4.29) show positive weightings for 

hopanes, tricyclic terpanes, steranes, aromatics (MNR & DMNR) whilst the aromatics 

(4/1 MDT, 3/2MDBT, %R (MDBT) (Radke et al., 1982a), DBT/PHEN (Hughes et al., 

1995), MPI-1, MPI-2, MP(3+2)/9+1) (Radke et al., 1986) and n-alkanes (Peters et al., 

2005a) have negative loadings. 

The third principal component (PC3) accounts for 7.97% of the variance in the dataset. 

The loadings of the variables on the third component are shown in Figure 4.29. As 

observed previously, the PC3 show sterane variability, with pregnanes and C27ααα 

regular steranes having strong positive loadings whilst the C29αββ (Peakman et al., 

1989; Peters et al., 2005a), C28ααα, and C29ααα steranes (Peters et al., 2005a) have 

negative loadings.  

The fourth principal component (PC4) accounts for only 6.97% of the variance in the 

dataset. The loadings of the variables show that it has positive loading for C29αββ and % 

C29ααα (Huang and Meinschein, 1979; Peters et al., 2005a), MNR (Radke et al., 

1982b), 31Hops (Killops et al., 1998), t29/t23, t26/t25 (Seifert and Moldowan, 1978) 

and the n-alkane parameters. However, negative loading were observed the parameters 

of hopanes, aromatics and steranes. The scores on PC4 (Figure 4.29) appear to have 

random setting of the samples within the plot of the dataset.  
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Furthermore, to improve the potential of identifying similarities and differences of the 

samples, hierarchical cluster analysis (HCA) from the principal components generated 

from PCA (Figure 4.32) was used to remove the negative influence of the multi- 

collinearity of the dataset in the analysis (Hair, 2006). The classification is however 

more clearly shown in the dendrogram (Figure 4.30) from the hierarchical cluster 

analysis of the PC1 and PC2 from the PCA. There is a meaningful pattern attributed to 

the common source characteristic of the samples (marine and terrestrial organic matter 

input). Note the proximity of the samples in the plot indicates similarity in their 

molecular characteristics, and therefore many oils generated from the same source rocks 

are classified in the same cluster.  

In general, however the oils from Nigeria and North Sea coals seem to be grouped 

together compared to the other oils. Other clusters are mixture of oils from different 

geographical locations (e.g. the United Kingdom and Middle East oils) consist 

exclusively of cluster 2 with similarity amongst them of 84 to 97%. Similarly, cluster 3 

is a combination of oils from the Middle East (ME77) and most of the North American 

oils with exception of NAC oil from North America that are grouped in this cluster with 

similarity of over 99%.  

It is also clear from Figure 4.30 that biodegradation does not seem to influence 

classification of the oils. Since, the biodegraded (e.g. NAC & UK88) and non-

biodegraded  (e.g. ME39 & ME43) oils are grouped in the same cluster.   
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Table 4.14: Molecular parameters in the PCA of the oils and coal extracts. 

 

Ratios were calculated from Pr = pristane; hop.= hopanes; ster.=steranes; hopane αβ and βα refers to 17α(H),21β(H) and 

17β(H),21α(H); hopane S/(S+R) refers to stereochemistry at C-22; sterane S/(S+R) refers to stereochemistry at C-20 (ααα 

configuration); sterane αββ and ααα refers to 5α(H),14β(H),17β(H) and 5α(H),14α(H),17α(H). Preg = pregnane. 

Number Compound Parameter Explanation 

1 

Steranes 

Preg 

C29 as percentage of sum 27-29 for 5α(H), 14α(H), 17α(H)-20R sterane diginane  +  

5α-pregnane + 20-methyldiginane + 5α methylpregnane/ same + C2 9 5α, 14α, 17α 
20R + C29 5α, 14α, 17α 20S + C29 5α, 14β, 17β 20R + C29 5α, 14β, 17β 20S 

2 C29ααα 
C29 ster. S/(S + R) 

3 C29αββ C29 ster. αββ/(αββ + ααα)  

4 C27ααα C27 ster. S/(S + R) 

5 C28ααα C28 ster. S/(S + R) 

6 % C27ααα C27 ster. as percentage of sum 27-29 for 5α(H), 14α(H), 17α(H)-20R sterane 

7 % C28ααα C28 ster. as percentage of sum 27-29 for 5α(H), 14α(H), 17α(H)-20R sterane 

8 % C29ααα C29 ster. as percentage of sum 27-29 for 5α(H), 14α(H), 17α(H)-20R sterane 

9 

Aromatics 

4/1 MDT 4-methyldibenzothiophene/1-methyldibenzothiophene 

10 3/2MDBT 3- and 2-methyldibenzothiophene 

11 DBT/PHEN dibenzothiophene/phenanthrene  

12 %R (MDBT) mean vitrinite reflectance (% Rm) from of 4-methyldibenzothiophene relative to 1-

methyldibenzothiophene  

13 MPI-1 3- + 2-methylphenanthrene/phenanthrene and 9- + 1-methylphenanthrene  

14 MPI-2 2-methylphenanthrene/phenanthrene and 9- + 1-methylphenanthrene  

15 MP(3+2)/9+1 3- + 2-methylphenanthrene/9- + 1-methylphenanthrene  

16 MNR methylnaphthalene ratio (2-MN/1-MN)  

17 DMNR 2,6- + 2,7-dimethylnaphthalene/1,5-dimethylnaphthalene  

18 

Hopanes 

Ts/(Ts+Tm) 18α(H)-trisnorneohopane/17α(H)-trisnorhopane ratio 

19 29Ts/29Tm 18α(H)-norneohopane/17α(H)-norhopane 

20 29Hops C29Hops = C29 Hopane/ (C29 + C30 +C31 22S and C31  22R 

21 30Hops C30Hops = C30 Hopane/ (C29 + C30 +C31 22S and C31  22R 

22 31Hops C31Hops = C31 Hopane/ (C29 + C30 +C31 22S and C31  22R 

23 HomoHop αβ C35homohopane (22S+22R)/? C31 

24 Hop(35/34) C35αβS/C3 4αβS 

25 OI 18α(H)-oleanane/oleanane 17α(H), 21β(H)-Hopane 

26 Hop/Mor 17α(H)-norhopane/17β(H)-moretane 

27 Hop(30/29) 17α(H)-hopane/17α(H)-norhopane 

28 

Tri- & 

Tetracyclic  

t29/t23 C29 17α(H)-hopane/C23 cheilanthanes  

29 t26/t25 C26 to C25/17α(H)-hopane  

30 t20-t26/T30 C28 to C26 cheilanthanes/17α(H)-hopane 

31 

n-alkanes 

Pr/Ph pristane/phytane  

32 NorPr norpristane/pristane 

33 nC17/nC18 nC1 7/nC18 -alkane using GC data 
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Table 4.15: Loading weightings and molecular parameters used within the oil and coal extract samples in 

terms of principal component analyses (see table 4.14 for parameter explanation). 
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Figure 4.29: A loadings plots showing the relationship between different biomarker parameters in terms of the 

principal component analysis of the oil and coal extract samples used in the study (see table 4.14 for Molecular 

parameters).  
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Figure 4.30: Principal component analysis (PC1 to PC2) results showing classification of the oils and coal 

extracts based on the score weightings of molecular parameters (see Table 4.16 for Score weightings).  

The score plot of PC2 and PC3 is presented in Figure 4.31 and results of the PCA show 

that PC2 and PC3 cumulatively account for 23.49% of the variables within the dataset. 

As observed in the previous sections, the samples were grouped in a total of three 

clusters on the PC2 against PC3 (Figure 4.31). Nevertheless, it is interesting to note that 

this principal component grouped the Nigerian oils (NA1, NA2 & NA3), United 

Kingdom oils (UK66 & UK34), Middle East oil (ME39) and North Sea coals (CA3, 

CA4 & CA6) in same cluster (Cluster 1) with simlarity amongst them of 97 - 100% 

indicating very similar biomarker compounds with respect to their scores on the PCs. 

Cluster 2 consist of mixture of oils from Nigeria (NA, NB, NC, N25, NN41, NE, NF, 

NO & N18), United Kingdom (UKB, UK66, UK34, UK65, UK11, UK01, UK05, 

UK88, UK85, UKV & UK80), North America (NAC), Middle East (ME12 & ME43) 
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and Serbia (SN1 & SN2). Cluster 3, on the other hand, consists mainly of North 

American oils (NA72, NA73, NA74, NA75, NA61, NA79 & NA76) all of which are 

source from marine shale. 

The principal components PC3 and PC4 only account for less than 16% of the total 

variation within the dataset and there is no grouping into identifable clusters (Figure 

4.32). 

 

Figure 4.31: Principal component analysis (PC2 to PC3) results showing classification of the oils and coal 

extracts based on the score weightings of molecular parameters (see Table 4.16 for Score weightings). 
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Figure 4.32: Principal component analysis (PC3 to PC4) results showing classification of the oils and coal 

extracts based on the score weightings of molecular parameters (see Table 4.16 for Score weightings). 
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Table 4.16: Score weightings of studied samples in terms of PC1 – PC4 

Score 1 Score 2 Score 3 Score 4 

-6.484 0.316 2.105 1.931 

-6.277 0.069 1.714 1.202 

-6.460 0.664 1.713 1.288 

-3.352 1.242 -1.234 -0.153 

-3.639 1.550 -1.266 -0.297 

-3.132 0.082 -2.046 -0.549 

-4.227 -0.629 -0.649 -0.517 

-5.004 -0.004 0.139 0.074 

-4.820 0.021 0.069 -0.408 

2.861 1.252 -0.125 -1.638 

-3.774 -0.657 -0.675 -3.463 

-2.842 -0.142 -1.665 -0.756 

-3.500 0.205 -2.206 -0.771 

-4.756 -0.670 -0.801 -1.550 

-3.755 -1.287 -2.843 -1.283 

2.896 1.373 -0.714 -1.405 

2.186 0.525 -1.135 1.288 

0.817 2.876 -1.792 2.356 

3.210 1.597 3.065 -0.982 

3.650 1.989 0.177 0.311 

4.750 5.417 -0.491 0.013 

3.087 1.900 1.999 -0.058 

4.159 1.071 -0.092 -0.052 

5.399 1.007 -0.478 0.134 

5.260 1.152 0.141 -0.598 

1.398 1.995 -0.625 -2.162 

1.715 -2.014 -0.963 -0.018 

0.980 -2.382 0.122 0.962 

1.024 -2.290 -0.930 0.871 

1.985 -2.038 -1.120 0.606 

3.971 -5.264 0.605 2.903 

2.767 -2.905 -1.293 1.178 

2.509 -7.756 -0.693 1.384 

2.175 -0.947 -0.354 -2.894 

2.628 -3.540 0.525 -1.267 

3.935 -0.551 2.364 -1.740 

2.614 -0.419 0.882 0.795 

3.345 2.836 -0.404 0.784 

-1.254 3.681 -0.301 4.639 

-0.523 1.613 -1.725 1.763 

-2.610 -0.554 3.235 -0.857 

-2.340 0.245 4.185 -0.034 

-0.571 -0.633 3.579 -1.029 
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 Summary and conclusions 

a. The extent of biodegradation within the oils, ranges from level (1) to (6) using the 

Peters and Moldowan biodegradation scale. 

b. The non-biomarker and biomarker analyses of the samples predict their source facies 

as being any one of terrigenous organic matter deposited under oxic-suboxic conditions, 

marine organic matter deposited under anoxic or mixed contribution of terrestrial and 

marine sources. 

c. The oils and coals studied in this work show a broad range of maturity from 

immature to late mature. 

d. The results of the principal components analysis permitted an independent grouping 

of the studied samples and as such source facies influence is thought to be the dominant 

control on the groupings. 
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Chapter 5 Determination of asphaltene content in crude oil 

 Introduction 

It is now routine to separate crude oils into different group-type fractions using 

Iatroscan (Karlsen and Larter, 1991). This is a thin-layer chromatography with flame 

ionisation detector (TLC-FID). TLC-FID thus reveals the percentage distribution of the 

crude oil classes: saturated hydrocarbons, aromatic hydrocarbons, resins and asphaltene 

fractions (Karlsen and Larter, 1991; Pollard et al., 1992). The technique, depends on 

differences in the polarity of crude oil components and has become worthwhile as it is 

fast, efficient and cost effective for screening complex mixtures, such as crude oil 

(Karlsen and Larter, 1991; Bharati et al., 1994; Jiang et al., 2008). The practical 

application of this technique in the petroleum industry has been investigated (Karlsen 

and Larter, 1991; Bharati et al., 1997). Hence, using Iatroscan in this study has relied 

upon natural standard (North Sea oil) for quantification of the crude oils and calibrating 

the instrument. 

In this chapter, gravimetric results from consecutive precipitation of asphaltene as 

described by Alboudwarej et al. (2002) and Iatroscan measurements are presented. The 

questions to be addressed are: 

a. What is the gross composition (wt. %) of the saturate, aromatic, resin, and asphaltene 

fractions in the different crude oils? 

b. What is the asphaltene content in oil (mg/g) from Iatroscan versus gravimetric 

method? 

c. Does biodegradation affect the asphaltene content? 

d. Does source affect the asphaltene content? 

e. Which is most accurate, Iatroscan or gravimetric? 
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 Methods 

Quantification of SARA fractions of thirty-six suites of non-degraded and degraded 

crude oils from varying locations around the world was performed with standard oil 

(North Sea oil) and the distribution generated in percentage weight of the oil. The 

samples include:  

a. Fourteen crude oils from Niger Delta, Nigeria. 

b. Ten oils from United Kingdom. 

c. Two oils from Middle East. 

d. Eight from North America and  

e. Two oils were from the Serbia region.  

The samples were prepared as described in chapter 3, section 3.3.1 and 3.3.2. The 

SARA fractions of the oil were estimated as in Karlsen and Larter (1991) using 

Iatroscan (TLC-FID). The generated data (%) of the total asphaltene component in 

crude oil from Iatroscan were converted to (mg/g) using equations 5.1 – 5.14. 

 Data interpretation 

The typical TLC-FID chromatograms of the crude oil fractions: saturated hydrocarbons, 

aromatic hydrocarbons, resins and asphaltenes used in Iatroscan calibration may differ 

significantly from each other with respect to density and composition. As a result, it is 

necessary to have a calibration standard (North Sea oil) that is chemically similar to the 

samples being analysed. Thus, analytical precision was calculated in each case of the 

crude oil fractions using equations shown below. 

wt (mg) = w (mg) *v (μL V (μL)⁄                                                                      Eq. 5.1 

where: wt= weight of oil used for Iatroscan (mg), w = total weight of oil sample (mg), v 

= volume of oil sample used for Iatroscan (μL) and V = total volume of oil (μL). 

Considering the weight of the oil (µg) used in µg the equation 5.1 can be written as: 

ww (μg) =  wt ∗ 1000                                                                                   Eq. 5.2 
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However, a correction constant can be obtained from each of the components from the 

standard North Sea oil as: 

Response component Rc = pa (Rf ∗  ww⁄ )                                                     Eq. 5.3 

where Rc  = response component, Rf  = response component, and ww  = weight of oil 

used and Pa is the peak area of the four components in oil sample generated from 

Iatroscan. Each of the response components is estimated with respect to the response 

factor as follows:  

Rc (sat)= pa (sat) (0.57 ∗  ww⁄ )                                                                          Eq. 5.4 

Rc (Aro)= pa (Aro) (0.36 ∗  ww⁄ )                                                                        Eq. 5.5 

Rc (resin)= pa (resin) (0.06 ∗ ww⁄ )                                                                     Eq. 5.6 

Rc (Asp)= pa (Asp) (0.02 ∗ ww⁄ )                                                                         Eq. 5.5 

where  Rc (sat) , Rc (Aro) , Rc (resin)  and Rc (Asp) , are components of saturates, aromatics, 

resins and asphaltenes respectively. Pa (sat), Pa (Aro), Pa (resin), and Pa (Asp) are the peak 

areas of saturate Rf (sat), aromatic Rf (aro), Rf (resin),and asphaltene Rf (Asp)  components 

respectively while  0.57, 0.36, 0.06 and 0.02 are the respective response factors of the 

saturate, aromatic, resin and asphaltene components of the standard (North Sea oil).  

From Eq. 5.3, the derived equations Eq. 5.4 – 5.7 of the percentage of the four 

components can be written as in Bharati et al. (1994). 

Comp (sat) = Rf (sat)* 100 (Rf (sat)⁄ +  Rf (aro) + Rf (resin) + Rf (Asp)              Eq. 5.8 

Comp (Aro) = Rf (Aro)* 100 (Rf (sat)⁄ +  Rf (aro) + Rf (resin) + Rf (Asp)            Eq. 5.9 

Comp (Resin) = Rf (Resin)* 100 (Rf (sat)⁄ +  Rf (aro) + Rf (resin) + Rf (Asp)      Eq. 5.10 

Comp (Asp) = Rf (Asp)* 100 (Rf (sat)⁄ +  Rf (aro) + Rf (resin) + Rf (Asp)            Eq. 5.11 

where Comp (sat), Comp (Aro), Comp (resin)  and Comp (Asp) are percentage 

composition of saturates, aromatics, resins and asphaltenes respectively generated from 
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the Iatroscan. However, the total asphaltene parameters in the crude oil were converted 

to mg/g using:  

Comp (Asp) = [wA(mg) w0 (mg)⁄ ]                                                                     Eq. 5.12 

where Comp (Asp) = weight (%) of asphaltene fraction as measured by Iatroscan (see 

section 3.3.1) 

wA = weight of asphaltene recovered from Iatroscan procedure (mg) 

w0 = weight of oil sample (mg) 

Then the parameter of our experiment is written as: 

wA =  w0 (mg) ∗  A (%)                                                                                       Eq. 5.13 

wA =  wA (mg) ∗  w0 (g)                                                                                      Eq. 5.14 
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  Results and discussion 

 Iatroscan measurement of asphaltenes 

In this section, the gross percentage compositions of the oils were obtained from 

calculating arithmetic means and standard deviations of repeated peaks areas for the 

saturate, aromatic, resins and asphaltene fractions of crude oil for 36 replicate analyses 

from the standard S-III rods run of Iatroscan procedure from Equations (5.8 – 5.11). 

The statistical results obtained from the Iatroscan method is shown in Appendix 5.1. 

However, the results obtained from Iatroscan of the total asphaltene content in oil 

(mg/g) were then converted applying Eq. 5.12. Furthermore, total asphaltene content of 

Iatroscan results, were compared with those obtained from asphaltene content of 

gravimetric method from the same crude oil as section 5.4.2. 

 Nigerian oil 

The SARA gross compositions of the representative Nigerian crude oils are shown in 

Figure 5.1. The saturated hydrocarbons comprised 48.27 (± 6.12) – 80.76 (± 15.93) wt. 

% of the gross composition of the oil, aromatic hydrocarbons 14.35 (± 9.92) – 33.87 (± 

1.79) wt. %, and resins 3.02 (± 4.15) – 18.83 (± 5.34) wt. % and asphaltenes 0.09 (± 

0.10) – 5.01 ± (3.90) wt. % presented as Table 5.1. As illustrated in Figure 5.1 the gross 

compositions of the Nigerian crude oils were poor in asphaltenes compared to richer 

aromatic hydrocarbons. 

 

Figure 5.1: Percentage distribution of SARA fractions from the Nigerian oils with values reported as means, 

with error bars +/- one SD, see table 5.1. 

 

  



 

92 

 

Table 5.1: Variation in gross composition (wt. %) for Nigerian crude oils calculated from Iatroscan analysis. 

Sample Biodegradation  Saturates Aromatics Resins Asphaltenes 

  level  (wt. %) SD (wt. %) SD (wt. %) SD (wt. %) SD 

NA1 (O) 1 71.58 ± 5.47 21.87 ± 2.68 6.42 ± 2.76 0.13 ± 0.04 

NB2 (O) 1 64.91 ± 6.15 27.15 ± 4.66 7.84 ± 6.45 0.09 ± 0.10 

NC3 (O) 1 63.27 ± 14.18 23.91 ± 0.71 12.52 ± 14.00 0.3 ± 0.20 

NA (O) 6 51.51 ± 4.72 33.87 ± 1.79 13.44 ± 3.04 1.17 ± 0.14 

NB (O) 6 48.27 ± 6.12 31.34 ± 1.04 18.83 ± 5.34 1.56 ± 0.17 

NC (O) 6 80.76 ± 15.93 14.35 ± 9.92 4.56 ± 5.77 0.32 ± 0.25 

ND (O) 1 59.24 ± 10.73 26.3 ± 7.18 13.29 ± 3.20 1.16 ± 0.55 

NE (O) 1 59.70 ± 5.31 18.58 ± 9.61 16.71 ± 7.90 5.01 ± 3.90 

NF (O) 1 78.57 ± 0.15 18.27 ± 0.06 3.02 ± 0.08 0.14 ± 0.00 

NO (O) 6 64.29 ± 15.71 25.15 ± 9.03 10.09 ± 6.62 0.47 ± 0.11 

NN (O) 3 58.86 ± 0.92 28.74 ± 0.37 12.08 ± 1.17 0.32 ± 0.18 

N25 (O) 3 58.3 ± 0.50 29.91 ± 0.10 11.47 ± 0.50 0.33 ± 0.10 

N18 (O) 3 59.79 ± 0.33 29.24 ± 0.25 10.81 ± 0.53 0.16 ± 0.04 

NN1 (O) 1 52.71 ± 1.56 31.13 ± 2.39 14.52 ± 1.19 1.65 ± 0.20 

SD = Standard deviation 

 

  United Kingdom oils 

The distributions of the SARA fractions of the oils from United Kingdom are shown in 

Figure 5.2. The saturated hydrocarbons comprised 43.60 (± 2.71) – 73.80 (± 17.31) wt. 

%, of the gross composition of the oil, aromatic hydrocarbons 11.43 (± 2.23) – 35.25 (± 

0.11) wt. %, and resins 6.61 (± 1.60) – 30.74 (± 2.59) wt. % and asphaltenes 0.63 (± 

0.11) – 6.01 (± 0.89) wt. % as presented in Table 5.2. The compositions show slightly 

richer asphaltenes compared to Nigerian oils (Figure 5.2). 
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Table 5.2: Variation in gross composition (wt. %) for United Kingdom crude oils calculated from Iatroscan 

analysis. 

Sample Biodegradation level Saturates Aromatics Resins Asphaltenes 

    (wt. %) SD (wt. %) SD (wt. %) SD (wt. %) SD 

UKB (O) 5 73.80 ± 17.31 18.28 ± 10.04 7.29 ± 6.78 0.63 ± 0.11 

UK88 (O) 3 53.62 ± 1.27 30.78 ± 0.82 11.40 ± 0.61 4.20 ± 0.21 

UK85 (O) 3 55.61 ± 1.41 25.34 ± 1.82 16.06 ± 2.18 2.99 ± 0.65 

UK66 (O) 5 80.10 ± 3.76 11.43 ± 2.23 6.61 ± 1.60 1.87 ± 0.06 

UK65 (O) 3 54.17 ± 1.27 26.69 ± 0.29 13.13 ± 0.67 6.01 ± 0.89 

UK80 (O) 5 54.17 ± 1.16 26.69 ± 2.76 13.13 ± 3.04 4.49 ± 1.52 

UK34 (O) 3 43.60 ± 2.71 35.23 ± 0.11 18.47 ± 2.58 2.69 ± 1.06 

UK11 (O) 1 49.55 ± 2.45 17.94 ± 1.03 30.74 ± 2.59 1.77 ± 0.23 

UK01 (O) 1 54.06 ± 2.93 33.87 ± 1.86 10.39 ± 2.70 1.68 ± 0.91 

UK05 (O) 1 52.86 ± 1.74 34.81 ± 2.12 10.63 ± 1.61 1.70 ± 0.54 

SD – Standard deviation 

 

 

Figure 5.2: Percentage distribution of SARA fractions for the United Kingdom crude oils with values reported 

as means, with error bars +/- one SD, see table 5.2. 

 Middle East oils 

The gross compositions of the representative crude oils from Middle East are shown in 

Figure 5.3. The oils are highly variable in the distributions of SARA fractions. However 

they are dominated by saturated hydrocarbons. The saturated hydrocarbons varies from 

75.69 (± 23.29) – 78.61 (± 26.29) wt. %, aromatic hydrocarbons vary from 16.17 (± 

20.86) – 20.47 (± 20.32) wt. %, resins vary from 3.37 (± 2.06) – 4.73 (± 5.88) wt. % 

and asphaltene vary from 0.39 (± 0.10) – 0.47 (± 0.37) wt. % as presented in Table 5.3. 
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Table 5.3: Variation in gross composition (wt. %) for Middle East crude oils calculated from Iatroscan 

analysis. 

Sample Biodegradation level Saturates   Aromatics   Resins   Asphaltenes   

    (wt .%) SD (wt. %) SD (wt. %) SD (wt. %) SD 

ME39 (O) 1 75.69 ± 23.29 20.47 ± 20.86 3.37 ± 2.06 0.47 ± 0.37 

ME43 (O) 1 78.71 ± 26.29 16.17 ± 20.32 4.73 ± 5.88 0.39 ± 0.10 

SD – Standard deviation 

 

 
Figure 5.3:  Percentage distribution of SARA fractions from the Middle East oils with values reported as 

means, with error bars +/- one SD, see table 5.3.  

 North American oils 

The gross compositions of the representative North American crude oils are shown in 

Figure 5.4. The oils are highly variable in the distributions of the SARA fractions. 

However they are dominated by saturated hydrocarbons, where they varies from 21.69 

(± 0.67) – 92.19 (± 0.53) wt. %, aromatic hydrocarbons vary from 6.98 (± 0.02) – 48.14 

(± 2.93) wt. %, resins vary from 0.63 (± 0.50) – 45.65 (± 3.58) wt. % and asphaltene 

vary from 0.21 (± 0.02) – 13.72 (± 1.40) wt. % as presented in Table 5.4. 
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Table 5.4: Variation in gross composition (wt. %) for North American crude oils calculated from Iatroscan 

analysis. 

Sample Biodegradation  Saturates   Aromatics   Resins   Asphaltenes   

  level (wt. %) SD (wt. %) SD (wt. %) SD (wt. %) SD 

NA72 (O) 1 58.65 ± 4.58 30.50 ± 4.80 10.45 ± 0.36 0.40 ± 0.11 

NA73 (O) 1 50.23 ± 1.02 23.81 ± 1.66 23.82 ± 0.49 2.14 ± 1.02 

NA74 (O) 1 55.75 ± 3.99 28.38 ± 0.78 15.11 ± 3.98 0.77 ± 0.77 

NA75 (O) 1 55.99 ± 2.06 29.61 ± 2.37 14.14 ± 0.71 0.26 ± 0.07 

NA79 (O) 3 92.19 ± 0.53 6.98 ± 0.02 0.63 ± 0.50 0.21 ± 0.02 

NA61 (O) 1 21.49 ± 0.67 48.14 ± 2.93 21.92 ± 2.03 8.45 ± 0.77 

NA76 (O) 1 22.95 ± 0.16 17.69 ± 4.76 45.65 ± 3.58 13.72 ± 1.40 

NAC (O) 6 35.59 ± 19.97 37.42 ± 14.91 22.83 ± 4.31 4.16 ± 0.82 

SD – Standard deviation 

 

 

Figure 5.4: Percentage distribution of SARA fractions from the North American oils with values reported as 

means, with error bars +/- one SD, see table 5.4. 

 Serbian oils  

The gross compositions of Iatroscan analysis from the two representative oil samples 

from Serbia are shown in Figure 5.5. The composition of saturated hydrocarbons varies 

from 52.84 (± 2.93) – 67.80 (± 2.10) wt. %, aromatic hydrocarbons vary from 20.98 (± 

0.74) – 23.57 (± 1.48) wt. %, resins vary from 9.63 (± 1.32) – 16.44 (± 4.71) wt. % and 

asphaltene vary from 1.59 (± 0.21) – 7.15 (± 0.60) wt. % as presented in Table 5.5. 

Table 5.5: Variation in gross composition (wt. %) for Serbian crude oils calculated from Iatroscan analysis. 

Sample Biodegradation  Saturates   Aromatics   Resins   Asphaltenes   

  level (wt. %) SD (wt. %) SD (wt. %) SD (wt. %) SD 

SN1 (O) 6 52.84 ± 2.93 23.57 ± 1.48 16.44 ± 4.71 7.15 ± 0.60 

SN2 (O) 1 67.8 ± 2.10 20.98 ± 0.74 9.63 ± 1.32 1.59 ± 0.21 

SD – Standard deviation 
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Figure 5.5: Percentage distribution of SARA fractions from the Serbian oils with values reported as means, 

with error bars +/- one SD, see table 5.5. 

 Calibration measurement of asphaltenes  

In this study, for the purposes of calibration measurement, 19 crude oil samples were 

obtained and used in the Iatroscan analysis (Appendix 4.0). The calculated contents in 

mg/g of the asphaltene fraction recovered from gravimetric procedure of the oils are 

reported as mean ± one standard deviation (Appendix 5.0).  

 Nigeria oils  

Table 5.6 shows the results of Iatroscan analysis and gravimetric procedure of total 

asphaltene content recovered from Nigerian oils. A comparison of both quantified cases 

(Figure 5.6), gives a lower yields of asphaltenes for gravimetric. However, plotting 

Iatroscan TLC-FID versus gravimetric procedure, gives a coefficient of determination 

(i.e. percentage value of the square of correlation coefficient, R2) of 93% (Figure 5.7). 

Table 5.6: Differences in the asphaltene values of the Nigerian crude oils in the gravimetric method versus 

Iatroscan method. 

Sample Biodegradation Gravimetric Iatroscan 

  level  (mg/g) SD  (mg/g) SD 

NA (O) 6 1.65 ± 0.24 11.72 ± 0.14 

NB (O) 6 1.11 ±  0.49 15.62 ± 0.17 

NC (O) 6 2.53 ± 1.44 3.21 ± 0.25 

ND (O) 1 1.90 ± 0.96  11.58 ± 0.55 

SD – Standard deviation 
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Figure 5.6: Weight of asphaltene content (mg/g) recovered from the Nigerian oils with values reported as 

means, with error bars +/- one SD, see table 5.6. 

 

Figure 5.7: Correlation of asphaltene content (mg/g) recovered from Iatroscan versus gravimetric method 

from the Nigerian oils. 

 United Kingdom oils 

Table 5.7 shows the summary of the total amount of asphaltene contents recovered from 

the 4 selected oils analysed by Iatroscan and gravimetric procedures from the United 

Kingdom crude oils. Note, Iatroscan TLC-FID has an asphaltene content which exceeds 

that of gravimetric method excluding the biodegraded oil (Figure 5.8). As both methods 

are used to determine asphaltene content in oils, a correlation between the two methods 

is expected. This is confirmed by a strong negative coefficient in Figure 5.9. 

Table 5.7: Differences in the asphaltene values of the United Kingdom crude oils in the gravimetric method 

versus Iatroscan method. 

Sample Biodegradation Gravimetric Iatroscan  

    (mg/g) SD  (mg/g) SD 

UKB (O) 5 28.72 ± 0.12 6.26 ± 0.11 

UK11 (O) 1 8.21 ± 3.78 17.68 ± 0.23 

UK 01 (O) 1 7.03 ± 0.11 16.80 ± 0.91 

UK 05 (O) 1 5.44 ± 0.46 17.01 ± 0.54 
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Figure 5.8: Weight of asphaltene content (mg/g) recovered from the United Kingdom oils with values reported 

as means, with error bars +/- one SD, see table 5.7. 

 

Figure 5.9: Correlation of asphaltene content (mg/g) recovered from Iatroscan versus gravimetric method 

from the United Kingdom oils. 

 Middle East oils 

Table 5.8 shows the results of Iatroscan and gravimetric analyses of representative 

crude oils from Middle East used in this study. A comparison of both techniques 

(Figure 5.10), shows a quantified higher absolute yield of asphaltene content from 

Iatroscan analysis compare to gravimetric analysis.  

Table 5.8: Differences in the asphaltene values of the United Kingdom crude oils in the gravimetric method 

versus Iatroscan method. 

Sample Biodegradation Gravimetric Iatroscan 

  level  (mg/g) SD  (mg/g) SD 

ME39 (O) 1 16.05 ± 3.11 4.70 ± 0.37 

ME43 (O) 1 22.21 ± 0.53 3.92 ± 0.10 

SD = Standard deviation 
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Figure 5.10: Weight of asphaltene content (mg/g) recovered from the Middle East oils with values reported as 

means, with error bars +/- one SD, see table 5.8. 

 North American oils 

Table 5.9 shows the results of gravimetric and Iatroscan method used to determine 

asphaltene content in the 7 oil samples from North America. A comparison of results of 

two procedures is shown in Figure 5.11 with standard deviation. In both quantified 

cases, the North American oils give a coefficient agreement (R2) of 87% (Figure 5.12). 

However, sample NA79 (O) and NAC (O) gave a higher yield of asphaltenes (Table 

5.9).  

Table 5.9: Differences in the asphaltene values of the North American crude oils in the gravimetric method 

versus Iatroscan method. 

Sample Biodegradation Gravimetric  Iatroscan  

  level   (mg/g) SD  (mg/g) SD 

NA73 (O) 1 4.19 ± 1.98 21.41 ± 1.02 

NA74  (O) 1 4.07 ± 1.36 7.67 ± 0.77 

NA75  (O) 1 1.73 ± 1.19 2.64 ± 0.07 

NA76  (O) 1 124.36 ± 0.57 137.16 ± 1.40 

NA79  (O) 3 2.79 ± 0.14 2.09 ± 1.40 

NA61  (O) 1 36.34 ± 12.45 84.50 ± 0.77 

NAC (O) 6 50.16 ± 0.16 41.65 ± 0.82 
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Figure 5.11: Weight of asphaltene content (mg/g) recovered from the North American oils with values 

reported as means, with error bars +/- one SD, see table 5.9. 

 

 

Figure 5.12: Correlation of asphaltene content (mg/g) recovered from Iatroscan versus gravimetric method 

from the North American oils. 

 Serbian oils 

Table 5.10 shows the summary of gravimetric analysis and Iatroscan analysis results 

from the 2 oil samples from Serbia, while comparison of variable asphaltene yields of 

both cases are presented in Figure 5.13.  

Table 5.10: Differences in the asphaltene values of the Serbian crude oils in the gravimetric method versus 

Iatroscan method. 

Sample Location Gravimetric  Iatroscan  

     (mg/g) SD  (mg/g) SD 

SN1 (O) 6 20.05 ± 9.19 71.53 ± 0.60 

SN2 (O) 1 24.34 ± 9.74 15.94 ± 0.21 

 

 
Figure 5.13: Weight of asphaltene content (mg/g) recovered from the Serbian oils with values reported as 

means, with error bars +/- one SD, see table 5.10. 
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 Summary and conclusions 

Iatroscan TLC-FID analysis was used to characterise crude oils and measurements were 

compared with gravimetric determinations. The results showed that: 

a. The crude oils in this study showed variable gross compositions (wt. %) with 

saturated hydrocarbons ranging from 21.49 – 92.19 wt. %, aromatics ranging from 

25.62 – 48.14 wt. %, resins ranging from 0.63 – 45.65 wt. % and asphaltenes ranging 

from 0.09 – 13.72 wt. %. 

b. The range of asphaltene contents determined from both the Iatroscan (2.09 – 137.16 

mg/g) and gravimetric (1.11 – 124.36 mg/g) methods were comparable (see Appendices 

4.0 and 5.0). However for every non-degraded oil the Iatroscan measured a consistently 

higher asphaltene content compared to gravimetric analysis whilst for biodegraded oils 

the gravimetric procedure quantified a higher value consistently for the asphaltenes as 

compared to the Iatroscan method. Therefore values of the asphaltene content are 

dependent on the measurement methodology. 

c. It also appears that the asphaltene content is affected by source facies of the oils, as 

similar terrigenous sources give lower asphaltenes as compared to open marine/ shallow 

marine Nigerian oils using the same measurement method. 

d. The correlation of Iatroscan method and gravimetric determination appears low when 

all oils are considered. 
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Chapter 6 Structural characterisation of asphaltenes by FTIR 

 Introduction 

Different infrared spectroscopy (IR) techniques have been used to identify functional 

groups in asphaltenes (Wilt et al., 1998). Absorption FTIR, diffuse reflectance FTIR 

(DRIFT), attenuated total reflectance (ATR) and photo acoustic (PAS) techniques have 

been used to obtain chemical information to improve the understanding of petroleum 

asphaltenes and related organic compounds (Wilt et al., 1998). Due to the 

extraordinarily complex chemical structure of asphaltenes, the use of FTIR has 

encountered certain challenges regarding the correct assignment of bands to the various 

functional groups (Li et al., 2007). Nevertheless, compared to absorption FTIR 

spectroscopy, ATR-FTIR analysis is a promising alternative to replace absorption FTIR 

methods because it requires little or no sample preparation, the acquisition of spectra is 

fast with better detection signals in the 700–900 cm-1 region and offers an acceptable 

repeatability in samples (Thomasson et al., 2000; Tay and Kazarian, 2009). 

Furthermore, the ATR-FTIR technique also provides the benefit of no significant 

spectral distortion over DRIFT, due to scattering when analysing powders, consequently 

complex mathematical procedures including, Kramers–Krönig transformation to correct 

spectral distortion is not required. Although, the disadvantage of ATR-FTIR technique 

is that it lacks mathematical descriptions for quantitative interpretation of the absorption 

bands from IR spectra that is provided by DRIFT and PAS. The traditional FTIR 

technique requires the preparation of the potassium bromide (KBr) pellet,which is 

difficult and time-consuming (Thomasson et al., 2000; Li et al., 2007). 

Investigations using the FTIR technique for quantitative (McLean and Kilpatrick, 

1997a), and qualitative (McKay et al., 1976) analyses of asphaltenes have been carried 

out. However, the qualitative investigation usually permits the use of either frequency 

assignments or intensities related to specific bands for determination of functional 

groups (McLean and Kilpatrick, 1997a; Mullins and Sheu, 1998). Coelho et al. (2006), 

for example suggested a linear relationship between the frequency ratios (2927 cm-1  

and 2957 cm-1) and the ratios of nCH2/mCH3 of the corresponding aliphatic chains of 

asphaltenes. Where n is suggested to reflect the number of alkyl substitution of aromatic 

molecule and m represents the number of branched and side chains for aromatic rings. 
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Likewise, the nCH2 is attributed to methyl and mCH3 methylene groups. Similarly, 

frequency assignments of 2920 cm-1 and 2950 cm-1 were assigned to the symmetric 

stretching frequencies of the methylene groups (Lin and Patrick Ritz, 1993; Calemma et 

al., 1995; Groenzin and Mullins, 2000). The technique reported by these authors to 

define the ratio of nCH2/mCH3 of aliphatic chains, usually described a method, where 

ratios are calculated from the area of bands from IR spectra of a series of linear or 

branched alkanes to infer both aliphatic chain length and the degree of branching groups 

within the asphaltene structures. Consequently, the basic interpretation derived from the 

nCH2/mCH3 ratio, shows that the  increasing ratio is probably attributable to longer 

aliphatic chains bonding to aromatics rings with least amount of branching structure.In 

previous FTIR study of carbonaceous samples obtained by ATR-FTIR analysis (Castro 

and Vazquez, 2009; Tay and Kazarian, 2009), reported the results for high refractive 

index materials, such as crude oils. Both these studies show that the ATR-FTIR 

technique can provide crucial information on the molecular structure of asphaltenes 

containing multiple functionalities such as aromatic, aliphatic, carbonyl and hydroxyl 

groups. 

This chapter is generally aimed at applying ATR-FTIR analysis together with a 

multivariate statistical analysis to study the composition and molecular structure of 

asphaltenes extracted from crude oils, so as to further the understanding of petroleum. 

Hence the objectives of the study were the following: 

a. To investigate the various functional groups in the asphaltenes, 

b. To compare and contrast asphaltenes from different locations, 

c. To characterise the possible chemical structure of the asphaltenes, 

d. To classify the asphaltenes on the basis of functional families. 

 Methods 

 Sample preparation  

Sixteen representative crude oils were chosen to form a sample set of oils differing from 

physical properties; weakly biodegraded (PM scale 1), moderate (PM scale 3) and 

heavily biodegraded (PM scale 5 - 6) asphaltene rich oils from various locations around 

the world. The samples selected included, n-hexane extracted asphaltene fractions from 
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Nigeria, United Kingdom, Middle East, Serbia and North American crude oils. Initially, 

the crude oils undergo fractionation as previously described in Chapter 3, section 3.3.2, 

3.3.2.1 and 3.3.2.2 and subsequently purified as described in section 3.3.7 and retained 

for FTIR analysis. The studied samples are presented (in Table 6.1). 

Table 6.1: List of samples used for the FTIR study 

Sample Location PM scale Asphaltene content (wt. %) Likely source 

 

NA(A) Nigeria 6 1.17 Terrigenous/Marine shale 

NC(A) Nigeria 6 0.32 Terrigenous/Marine shale 

ND(A) Nigeria 1 1.16 Terrigenous/Marine shale 

NN(A) Nigeria 3 0.32 Marine/Marine shale 

UK88(A) United Kingdom 3 4.20 Terrigenous /Marine shale 

UK11(A) United Kingdom 1 1.77 Open marine/Marine shale 

UK01(A) United Kingdom 1 1.68 Open marine/Marine shale 

UK05(A) United Kingdom 1 1.70 Open marine/Marine shale 

ME39(A) Middle East 1 0.47 Marine/Marine + lacustrine shale 

ME43(A) Middle East 1 0.39 Marine/Marine + lacustrine shale 

SN1(A) Serbia 5 7.15 Shallow marine/Marine shale 

SN2(A) Serbia 1 1.59 Shallow marine/Marine shale 

NA61(A) North America 1 8.45 Open marine/Marine shale 

NA76(A) North America 1 13.72 Shallow marine/Marine shale 

NA79(A) North America 3 0.21 Open marine/Marine shale 

NAC (A) North America 6 4.16 Shallow marine/Lacustrine shale 

 Analytical procedure 

Following a literature survey, experiments were conducted on (i) absortion FTIR using 

KBr pellets and (ii) ATR-FTIR using asphaltene grains to test the suitability of the 

analytical procedure that  addresses the respective objectives stated in section 6.1. An 

asphaltene sample from Table 6.1 was selected for FTIR study. Based on the results of 

the study as shown in Figure 6.2, ATR-FTIR spectra of the asphaltene (NA61(A))from 

non-degraded North American crude oil show  similar  pattern  with that of absortion 

FTIR. However, the ATR-FTIR, displayed better detection signal bands in the 700–900 

cm-1 region of asphaltene as shown in Figure 6.2. 
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Figure 6.2: FTIR spectra obtained with traditional FTIR-KBr compared with ATR-FTIR of the infrared 

spectra bands of asphaltene (NA61) from North America. 

 Infrared analysis  

The FTIR analyses were conducted in absorbance mode as described previously in 

Chapter 3, section 3.3.3. The acquired spectral bands of asphaltenes from the ATR-

FTIR measurements were integrated numerically using OMNIC 6.1 software and 

principal component analysis (PCA). Consequently, OMNIC 6.1 was applied to extract 

more precisely various functional groups in the asphaltene structure by correcting the 

baseline across the entire spectrum using line segments between adjacent points to 

produce a new baseline point and possible changes within the structure were identified. 

Furthermore, the characteristics of ATR-FTIR spectra bands obtained from infrared 

(IR) of the different asphaltenes related to stretching, bending and rocking vibrations 

has been validated by comparison with previous studies (Mullins and Sheu, 1998; 

Abbas et al., 2008). The PCA statistical tool allowed the determination of outliers and 

consequently physicochemical properties of the genetic affinities of the functional 

families of the asphaltenes. Prior to the classification, the tool normalised all the spectra 

to the respective maximum absorbance, so as to discriminate the effect of their 

associated concentration profile. 
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Table 6.2: General features of the infrared spectral bands from FTIR spectrum of asphaltenes from Scotti and 

Montanari (1998) in Mullins and Sheu (1998). 

Wavelength (cm-1) Functional group assignments 

3100 -3640 O-H, N-H stretch 

3000 -3100 aromatic C-H stretch 

2780 -3000 aliphatic C-H stretch 

1640 -1800 carbonyl C=O stretch 

1620 -1590 aromatic C-C stretch 

915 -852 aromatic C-H oop def (1 adj H on aromatic ring) 

760 -730 aromatic C-H oop def (4 adj H on aromatic ring) 

Symbols used in the table: oop (out-of-plane), def (deformation), adj= adjacent. 

Table 6.3: Band assignments  from FTIR (Abbas et al., 2008). 

Wavenumber (cm-1) Type of vibration Intensity Functional group 

3550 -3230 O-H str vib m-s Hydrogen-bonded O-H (intermolecular) 

3080 -3010 =C-H str vib m =C-H (aromatic) 

2975 -2950 C-H str vib asym m-s -CH3" 

2940 -2915 C-H str vib asym m-s -CH2" 

2870 -2840 C-H str vib sym m -CH2" 

2885 -2865 C-H str vib sym m -CH3" 

1720 -1690 C=O str vib vs Ketones 

1655 -1635 C=O str vib vs Polycyclic quinones 

1625 -1590 "C=C str vib" v Ring -C=C- 

1525 -1470 "C=C str vib" v Ring -C=C- 

1465 -1440 C-H def vib sym m "CH3" 

1390 -1370 C-H def vib asym m-s C-CH3 

1310 -1210 C-O str vib m -O-Aryl 

1260 -1180 O-H def and C-O str vib comb s O-H and C-O (phenol) 

1160, 1075 =C-H in-plane def vib m Aromatic =C-H (substituted benzenes) 

1070 -1030 S=O str vib vs S=O, sulfoxide 

1050 -1025 C-O str vib s Ar-O-CH2-O-Ar 

940 -920 C-H def v Ar-O-CH2-O-Ar 

900 -830 =C-H oop def vib(1H) m-s Aromatic =C-H 

850 -810 =C-H oop def vib(2H) w-m Aromatic =C-H 

815 -785 =C-H oop def vib(3H) w Aromatic =C-H 

760 - 730 =C-H oop def vib(3H) 

 

Aromatic =C-H 

770 -735 =C-H oop def vib(4H) s Aromatic =C-H 

725 - 720 (CH2) rocking s Aliphatic (CH2)n 

720 - 680 =C-H oop def vib s Aromatic =C-H 

Symbols used in the table: str (stretching), vib (vibration), asym (asymmetric), sym (symmetric), def 

(deformation), comb (combination), oop (out-of-plane), w (very weak), m (medium), s (strong), v (variable). 
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 Results and discussion 

 Spectral analysis of asphaltene  

In order to characterise the chemical properties, three distinctive regions were chosen to 

allow the identification of functional groups that belong to asphaltenes in the oils. The 

regions including (a) 3640 – 2780 cm-1 (b) 1800 – 915 cm-1 region and (c) 900 – 650 

cm-1. The results of processed spectra detected these regions (Figure 6.2). These 

characteristic peaks could be assigned to various functional groups of different 

hydrocarbons (aliphatic, aromatic and alicyclic). The spectra of the asphaltene 

contributions were identified by comparing spectra with previously published studies 

(Scotti and Montanari, 1998; Abbas et al., 2008).  

a) Assignment of 3640 – 2780 cm-1 region 

In this region, three characteristic bands normally assigned to the hydroxyl group region 

3100 – 3640cm-1, aromatic stretching region 3000 – 3100cm-1and aliphatic stretching 

region 3000 – 2780 cm-1 were measured and various chemical functional group ratios 

calculated. However, two regions from the asphaltene fractions exhibited intense and 

sharp bands, which might be classified as follows: The most intense absorption band 

appears in 2700 – 3000 cm-1 the saturated aliphatic species C−H stretch in CHx at 2915 

and 2975 cm-1 which is useful in characterising the carbon− and hydrogen− containing 

species (C−H stretching) of alkyl (Scotti and Montanari, 1998) and the very weak 

absorption bands that could be definitely attributed to aromatic species stretching in the 

(3000 – 3100 cm-1) region. 

b) Assignment of 1800 – 915 cm-1 region 

This region, typically consist of two sets of absorption bands; with one set 

carboxyl/carbonyl group region near (1700 cm-1) and the other near 1500 cm-1, which 

are consistent with aromatic compounds. However, the absorption bands may occur as 

single band, which is assigned to symmetric carbonyl C=O functional group (carbonyl 

compound)  or appear split of the C−C aromatic group in COO− group, as an 

asymmetric doublet (Scotti and Montanari, 1998). In this region (1800 – 915 cm-1), 
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represents carbonyl groups, including ketones, aldehydes, esters, and amides (Castro 

and Vazquez, 2009). 

c) Assignment of 900 – 650 cm-1 region 

This region of the ATR-FTIR spectra, observed three bands that were assigned to 

aromatic out-of-plane region having one isolated aromatic hydrogen atom at 900 – 730 

cm-1, two or three adjacent aromatic hydrogen atoms per ring in the range of 850 – 730 

cm-1, and the presence of four aromatics that corresponds to 4 adjacent hydrogen atoms 

at 760 – 735 cm-1 on the aromatic ring system (Scotti and Montanari, 1998; Walker and 

Mastalerz, 2004; Abbas et al., 2008). 

 Functional characteristics of asphaltenes 

The following section describes the characteristic features observed in the spectra of the 

studied asphaltenes, using ATR-FTIR, and calculated FTIR indices are presented in 

Figures(6.2- 6.6) and Table (6.4). 

 Nigerian oils 

The ATR-FTIR spectra of representative asphaltenes from Nigerian oils are presented 

in Figure 6.2. The IR signals show some similarities and differences between the higher 

maturity (NA(A), NC(C)) and lower maturity (ND(A), NN(A)) oils. The following 

spectra bands have been observed for the asphaltenes: a minor broad bandat 3000 – 

3100 cm-1 (aromatic C=C bond stretching) due to the presence of complex aromatic 

compounds and a prominent aliphatic stretching region (at 3000 – 2780 cm-1), with 

dominant peaks at 2919 and 2842 cm-1. The carbonyl band is detected at around 1700 

cm-1 while the stretching of multiple carbon to carbon bonds are near 1600 cm-1. The C–

C deformation peak corresponding to –CH3 is at 1336 cm-1 and (–CH2) at 1444 cm-1. 

The out-of-plane region 900 – 650 cm-1 is detected near 724, 813 and 863 cm-1 that 

indicates the presence of aromatics. The main difference between the higher maturity 

and lower maturity crude oils is in the region (1800 – 650 cm-1). The spectra of 

asphaltenes from higher maturity oils is characterised by no anhydride bands, higher 

absorption bands at 1582 (aromatic C=C stretching mode),1455(C−H def vib sym), and 

1375 (C−H def vib asym) cm-1 (Figure 6.2), while the anhydride band at 1706 cm-1, due 
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to the stretching mode of carbonyl C=O groups, was detected in the spectra of 

asphaltenes from less mature oils.  

 

Figure 6.2: Infrared spectra of representative asphaltene fractions from Nigerian crude oils. 

 United Kingdom oils 

The ATR-FTIR spectra of asphaltene samples from United Kingdom oils appear 

relative similar (Figure 6.3). The spectral bands clearly reveal the presence of hydroxyl 

group band with a peak at 3054 cm-1, which indicates the presence of –NH2 and –OH 

groups and often considered important for asphaltene aggregation via H bond (Ascanius 

et al., 2004). There is a distinct aromatic band in the aromatic stretching region 3000 – 

3100 cm-1 and a prominent aliphatic stretching region 3000 – 2780 cm-1, with dominant 

peaks at 2918 and 2847 cm-1. In the carbonyl (C=C) band range, due to anhydride, ester, 

carboxylic acid and ketone groups are observed at 1694, 1591, 1453, 1374 cm-1 

respectively. The out-of-plane region 900 – 650 cm-1 is detected near 865, 799 and 750 

cm-1 that indicates the presence of aromatics. 

 
Figure 6.3: Infrared spectra of representative asphaltene fractions from United Kingdom crude oils. 
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 Middle East oils 

The presented spectra of both asphaltenes from the Middle East oils has revealed 

similar bands (Figure 6.4). The spectra is characterised by a weak hydroxyl group band 

with a peak at 3058 cm-1. There is prominent aliphatic stretching region 3000 – 2780 

cm-1, with dominant peak at 2918 and 2850 cm-1. The carboxylic acid peak at 1450 cm-1 

(Figure 6.4) is the dominant of the carbonyl  (C=C) band range, that was observed at 

1689, 1595, 1559 and 1376 cm-1. Also detected was the broad band at 1140 cm-1 that 

indicates the presence of sulphoxides. The out-of-plane region 900 – 650 cm-1 is 

detected at 863, 806 and 745 cm-1indicating the presence of aromatic C–H deformation 

bonds. 

 
Figure 6.4: Infrared spectra of ME39(A) and ME43(A) asphaltene fractions from Middle East crude oils. 

 North American oils 

The ATR-FTIR spectra of asphaltenes from North American oils has revealed similar 

bands (Figure 6.5). The absorption band at 3040 cm-1 is due to the vibrations of the 

(C=C) bonds in the aromatic rings. The region 3000 – 3100 cm-1corresponds to 

molecules with –NH or –OH groups in the asphaltenes. The prominent absorption bands 

of aliphatic C–H stretching region 3000 – 2780 cm-1, are at 2919 and 2885 cm-1 

indicates the presence of alkyl. The absorption bands at 1689, 1595, 1559 and 1376 cm-

1, due to the C=O stretching modes of aromatic hydrocarbons, were identified. The 

spectra of asphaltenes from North American oils are characterised by the absence of an 

anhydride band, absorption of bands at 1596 (aromatic C=C stretching region), higher 

absorption of bands 1456 (C−H def vib sym), and 1372 (C−H def vib asym) cm-1 

(Figure 6.5). The absorption at 1034 cm-1, point to the presence of the sulphoxide group. 
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The out-of-plane region have been identified in these asphaltenes at (869, 801 and 745 

cm-1). 

 

Figure 6.5: Infrared spectra of representative asphaltene fractions from the North American crude oils. 

  Serbian oils 

The ATR-FTIR spectra of the two (2) asphaltenes from Serbian oils has revealed 

similar spectra bands (Figure 6.5). The absorption band at 3047 cm-1 is due to the 

vibrations of the (C=C) bonds in the aromatic rings was observed in the region 3000 – 

3100 cm-1. The prominent absorption bands of aliphatic C–H stretching region (3000 – 

2780 cm-1), are at (2914 and 2864 cm-1), indicates the presence of alkyl groups.  

 

Figure 6.6: Infrared spectra of SN1(A) and SN2(A) asphaltene fractions from Serbian crude oils. 

The absorption bands at 1701, 1594, 1456 and 1374 cm-1, due to the C=O stretching 

modes of aromatic hydrocarbons, were identified. Also bands at 1162 and 1029 cm-1 

were detected and are typical forC–O–C stretching of ethers due to the presence of the 
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sulphoxide groups (Orrego-Ruiz et al., 2011).The out-of-plane region have been 

identified in these asphaltenes from Serbia at (859, 801 and 750 cm-1). 

 Structural characteristics of asphaltenes 

In the present study, only the relatively prominent and stable peaks were used and 

calculations were based on the ratios of integrated characteristic absorption peak areas 

that are associated with selected functional groups. These ratios, including aromaticity 

(AR1 and AR2, see Table 6.5), degree of condensation (DoC1 and DoC2, see Table 

6.5), chain length, chain length factor (A factor and C factor, see Table 6.5) which are 

presented in Tables 6.4 and 6.5. The A and C factors are generally used in describing 

kerogen type and level of maturation. Hence, an increase in the “A” factor indicates a 

strong hydrocarbon-generating potential, whilst a continuous decrease in the “C” factor 

(ratio of oxygenated groups to C=C stretching groups) indicates maturation level 

(Iglesias et al., 1995). 

 Nigerian oils 

The variations between asphaltenes from different stages of biodegradation of oils are 

noted, however in ATR-FTIR calculated ratios. The results of all considered structural 

relationships and ratios for asphaltenes from the Nigerian oils are presented in Tables 

6.4 and 6.5 respectively. In asphaltene samples NA(A) and NC(A) from heavy 

biodegraded oils showed significant similar AR1 values (0.32 and 0.36 respectively), 

however the asphaltene (ND) from the weakly biodegraded oil, is slightly higher (0.49). 

The CH2/CH3 can be used to assess both longer aliphatic chain lengths and degree of 

branching (Lin and Patrick Ritz, 1993). The methyl and methylene CH2/CH3 ratio 

calculated from aliphatic stretching region, shows that the parameter increases slightly 

for asphaltenes of heavy biodegraded oil than for asphaltenes of weak biodegraded oils 

(0.53 and 0.44 respectively). Therefore, asphaltene fractions NA(A) may probably be 

attributed to longer alkyl chain lengths and less alkyl branching, while ND(A) may have 

shorter alkyl chain lengths and more alkyl branching structures. Another difference 

appears in the degree of condensation of aromatic rings (DoC1 and DoC 2 ratios) 

generally indicates increases maturity (Iglesias et al., 1995; Ibarra et al., 1996). 

Therefore, DoC1 and DoC2 normally have similar trend and the condensation of 
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aromatic domains increased with maturity. These ratios, calculated in the asphaltenes 

from Nigerian oils in the aromatic stretching and aromatic out-of-plane deformation 

stretching regions resulted in a progressively rising DoC value (Table 6.4). These ratios 

are significantly higher for asphaltenes of higher matured oils than less matured oils 

range (DoC1; 0.00 - 0.17) and (DoC2; 0.00 - 1.08). The “A” factor and “C” factor 

generally suggests the hydrocarbon-generating potentials and maturation level (Iglesias 

et al., 1995). The “A” factor, in Nigerian asphaltenes are displayed in Table 6.4. The 

observed decreased of “A” factor value in asphaltenes from Nigeria oils, indicates the 

maturation level of the samples, which has been previously confirmed in Chapter 5, 

section 5.2.1.5. 

 United Kingdom oils 

The ATR-FTIR ratios, calculated from the integrated spectra of the asphaltenes from 

the United Kingdom oils is presented in Table 6.4. It is clear that, UK88(A) has the 

highest aromaticity “AR1”, followed by the UK11(A) and UK01(A) (0.17 - 0.10 

respectively). The ratio of CH2/CH3 in the aliphatic stretching regions is significantly 

similar for all analysed asphaltenes range from (0.48 - 0.51). The higher ratio of 

CH2/CH3 reflects longer alkyl chain lengths and less-branched aliphatic structures. 

Therefore, asphaltene fractions UK88(A) may be attributed to longer alkyl chain lengths 

and less alkyl branching, while UK11(A) may have shorter alkyl chain lengths and 

more alkyl branching structures.These DoC1 and DoC2 ratios, calculated in the 

aromatic stretching and aromatic out-of-plane deformation stretching regions are similar 

(DoC1; 0.03 - 0.09) as shown in Table 6.2. Hence, observed similar values suggest the 

same maturity level for all of the oils as previously confirmed in Chapter 5, section 

5.2.1.5. 

 Middle East oils 

The ATR-FTIR ratios presented in Table 6.4 are calculated from the integrated spectra 

of the asphaltenes from the Middle East, ME43(A) exhibited the lowest CH2/CH3 ratio 

and ‘A’ factor, reflecting shorter aliphatic branching structures and highest 

hydrocarbon-generating potential. In contrast,asphaltene ME39(A), showed the highest 

aromaticity and lowest hydrocarbon-generating potential. Variations of the quantitative 
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ratios of the integrated characteristic absorption areas differ between ME43(A) and 

ME39(A). Consequently, in the degree of condensation of aromatic rings (DoC1) ratio 

calculated in the aromatic stretching and aromatic out-of-plane deformation stretching 

regions differs significantly (DoC1; 0.17 and 0.03respectively). Hence, the observed 

values suggest higher matured ME39(A) compared to ME43(A). 

 North American oils 

The ATR-FTIR ratios calculated from the integrated spectra of asphaltenes from the 

North American oils are presented in Table 6.2. The aromaticity ratio of asphaltenes of 

the heavy biodegradedoils from North America (NA79(A) and NAC(A)), is higher than 

for (NA61(A) and NA76(A)) of weak biodegraded oil (AR1; 0.66 - 0.85 and 0.24 – 

0.18 respectively). These results suggest that the asphaltenes of heavy biodegraded oils 

contain aliphatic structures that are longer and less-branched aliphatic structures. In 

contrast, the asphaltenes of weak biodegraded oils have lower CH2/CH3 ratios, 

signifying shorter and more-branched aliphatic structures. Another difference appears in 

the degree of condensation of aromatic rings (DoC1 and DoC 2) ratios. These ratios, 

calculated in the aromatic stretching and aromatic out-of-plane deformation stretching 

regions for the asphaltenes of heavy biodegraded and weak biodegraded oils differs 

(DoC1; 0.14 – 0.16 and 0.06 – 0.25) and (DoC2; 0.49 – 0.66 and 1.39 – 1.41 

respectively). The observed values suggest the different maturation level among the 

asphaltenes. 

 Serbian oils    

The ATR-FTIR ratios calculated from the integrated spectra of asphaltenes from the 

Serbian oils are presented in Table 6.2. The aromaticity ratio of asphaltene SN1(A) of 

heavy biodegraded oil from Serbia, is lower than for SN2(A) of weak biodegraded oil 

(AR1; 0.21 and 0.27 respectively).The ratio of CH2/CH3 in the aliphatic stretching 

region, is higher for SN1(A) sample than for SN2(A) sample (0.34 and 0.24, 

respectively). These results suggest that SN1(A) contain aliphatic structures that are 

long and less-branched aliphatic structures. In contrast, SN2(A) have lower CH2/CH3 

ratios, signifying short and more-branched aliphatic structures. Another difference 

appears in the degree of condensation of aromatic rings (DoC1 and DoC 2) ratios. 
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These ratios, calculated in the aromatic stretching and aromatic out-of-plane 

deformation stretching regions differs significantly (DoC1; 0.02 and 0.14) and (DoC2; 

0.67 and 1.01) respectively. Hence, the observed DoC suggests that asphaltene SN1(A) 

is from more mature oil than asphaltene SN2(A). 

Table 6.4: Structural relationships derived from the analysis of the ATR-FTIR spectra* 

 
Calculated as defined in Table 6.5 

Table 6.5: Ratios calculated from the ATR-FTIR spectra (Walker and Mastalerz, 2004; Chen et al., 2012). 

Index Parameter Index calculation Band region (cm-1) 

Aromaticity AR1 CHar stretching/CHal stretching (3000-3100)/(2800-3000) 

Aromaticity AR2 

CHar out-of-plane deformation/CHal 

stretching (700-900)/(2800-3000) 

Degree of condensation of aromatic 

rings DOC1 CHar stretching/C=C stretching (3000–3100)/1600 

Degree of condensation of aromatic 

rings DOC2 

CHar out-of-plane deformation/C=C 

stretching (700–900)/1600 

Chain length factor CH2/CH3 

C-H stretching vib sym/C-H str vib 

asym (2900–2940)/(2940–3000) 

Hydrocarbon generating potential A factor 

CHal stretching/(CHal stretching + 

C=C) 

(2800–3000)/[(2800–3000) + 

1600] 

Oxygen functionality O (C=C)al/CHal stretching (1470-1500)/(2800-3000) 

  

 

Sample Location AR1 AR2 DOC1 DOC2 CH2/CH3 A factor DoS C 

NA(A) Nigeria 0.32 0.00 0.13 0.29 0.53 0.98 2.68 0.48 

NC(A) Nigeria 0.36 0.17 0.17 1.08 0.54 0.98 0.26 0.54 

ND(A) Nigeria 0.49 0.04 0.00 0.00 0.44 1.00 1.16 0.51 

NN(A) Nigeria 2.47 0.00 0.01 0.00 0.30 0.48 1.75 1.59 

UK88(A) United Kingdom 0.49 0.01 0.03 0.07 0.49 0.88 0.76 0.69 

UK11(A) United Kingdom 0.17 0.05 0.09 0.92 0.51 0.95 0.72 0.23 

UK01(A) United Kingdom 0.37 0.08 0.04 0.55 0.50 0.88 0.50 0.39 

UK05(A) United Kingdom 0.45 0.06 0.03 0.35 0.48 0.85 0.64 0.30 

ME39(A) Middle East 0.34 0.08 0.03 0.47 0.41 0.85 0.91 0.28 

ME43(A) Middle East 0.24 0.13 0.17 1.94 0.35 0.94 0.58 0.42 

SN1(A) Serbia 0.21 0.07 0.02 0.67 0.44 0.91 1.27 0.34 

SN2(A) Serbia 0.27 0.06 0.14 1.01 0.60 0.95 0.49 0.24 

NA61(A) North America 0.24 0.05 0.80 1.41 0.47 1.00 0.28 0.80 

NA76(A) North America 0.18 0.03 0.02 1.39 0.38 0.98 0.43 1.21 

NA79(A) North America 0.66 0.21 0.01 0.49 0.38 0.69 0.43 0.51 

NAC(A) North America 0.85 0.14 0.02 0.66 0.42 0.83 2.53 0.60 
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 Chemometric analysis of spectroscopic data 

From previous sections it has been shown that although asphaltenes are influenced by 

biodegradation processes, in general asphaltenes from oils that have common source 

facies exihibit similar functional characteristies. However, the use of chemometric 

tools, structural relationships derived from the analysis of  the ATR-FTIR spectra can 

explored for the potential of identifying similarities and differences amongst the 

asphaltenes. Consequently, chemometric analysis of ATR-FTIR data for the asphaltenes 

was carried out through multivariate methods, including principal component analysis 

(PCA) and Cluster analysis to detect samples according to their proximity in the 

principal components (PC1 and PC2): the closer the samples have similar 

characteristics and that are different from samples of other groups. The Minitab 16.0 

statistical software was used to generate the PCA (loading and score plots), dendrogram 

and other revalant data. The input variables, including aromaticity, degree of 

condensation of aromatic rings, chain length factor and hydrocarbon generating 

potential are presented in Table 6.4. 

The results of the PCA show the whole multivariate data is reduced to about 5 

important PCs accounting for 96.35% of the variance in the whole data (Table 6.6). 

Howerver, PC1 and PC2 together account for 77.04% of the variance. The loading of 

the various input variables on PC1 show the most important contributors to this 

components are biodegradation in the nagative axis. On the hand, the most contributors 

to PC1 consist of the aromaticity, degree of condensation of aromatic rings, chain 

length factor and hydrocarbon generating potential. 

The score plots constructed on the basis of the PC1, (56.57%) versus PC2, (20.27%) 

shows the relationship between samples with reference to the plane of  PC1-PC2 

(Figures 6.7 and 6.8). As shown in the score plots (Figure 6.8), the axis regroup in the 

positive part, asphaltenes of weakly biodegraded oils ( as cluster 2; ND(A), UK11(A), 

NA61(A), ME39(A), ME43(A), UK01(A), UK01(A), NA76(A) samples) and the 

negative zone is essentially characterised by the presence of asphaltenes of moderately 
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or heavily biodegraded oils (cluster 3; NN(A), UK88(A), NA79(A) and  cluster 1; 

NA(A), NC(A), NAC(A), SN1(A), SN2(A)). 

Furthermore, improvement in discriminating the asphaltenes is achieved using the 

cluster analysis, as shown by the dendogram (Figure 6.9 and Table 6.7). Thus, classified 

the asphaltenes into three main groupings of which cluster (1) represents asphaltenes 

(NA(A), NC(A), NAC(A), SN1(A) and SN2(A)) that are grouped together in a near 

identical chemical composition of which their level of similarity > 80% of the oils and 

cluster (2) represents (ND(A), UK11(A), NA61(A), ME39(A), ME43(A), UK01(A), 

UK01(A), NA76(A) samples), with their level of similarity >91% of the oils  and 

consists exclusively of asphaltenes from weakly biodegraded oils. Cluster (3) represents 

asphaltenes (NN(A), UK88(A) and NA79(A)), with simlarity ˃ 61%. As previously 

observed in Figure 6.8, both asphaltenes (NN(A) and NA79(A)) are from moderately 

biodegraded oils with negative scores on PC1 - PC2 and asphaltene UK88(A) from 

weakly biodegraded oil has positive scores on PC1 - PC2. 

The  multivariate analysis reveal similarities influenced by biodegradation, maturation 

effects and characteristic chemical compositions from infrared regions on asphaltenes of 

different regions. 

 
Figure 6.7: Loading plots showing the relationship between studied asphaltene samples in terms of PC1 

(56.67% of total variables) versus PC2 (20.37% of total variables) analysis of multivariate data analysis. 
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Figure 6.8: Score plots showing the relationship between studied asphaltene samples in terms of PC1 (56.67% 

of total variables) versus PC2 (20.37% of total variables) analysis of multivariate data analysis. 

 
Figure 6.9: Dendrogram showing cluster analysis of structural relationships derived from the analysis of the 

FTIR spectra. 
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Table 6.6: Cluster analysis of observations for absorption spectra of quantitative ratios, standardised 

variables, squared Euclidean distance, linkage and amalgamated steps. 

Step Number of clusters Similarity level Distance level Clusters joined New clusters In new clusters 

1 15 96.35 0.19 1           2 1 2 

2 14 94.91 0.26 6         13 6 2 

3 13 94.46 0.03 6         10 6 3 

4 12 94.33 0.29 6         14 6 4 

5 11 91.28 0.45 3          6 3 5 

6 10 90.72 0.48 3         9 3 6 

7 9 90.68 0.48 11      12 11 2 

8 8 89.63 0.54 3         7 3 7 

9 7 88.91 0.58 3          8 3 8 

10 6 87.97 0.62 5        15 5 2 

11 5 83.23 0.87 1        16 1 3 

12 4 81.33 0.97 4         5 4 3 

13 3 80.09 1.03 1        11 1 5 

14 2 61.32 2.01 3         4 3 11 

15 1 61.01 2.02 1        11 1 16 

 

Table 6.7: Final partition of number of clusters 

Clusters  
Number of 

observations 

Within clusters sum of 

squares 

Average distance from 

centroid 

Maximum distance from 

centroid 

1 3 0.63 0.43 0.64 

2 8 1.59 0.42 0.66 

3 1 0.00 0.00 0.00 

4 2 0.20 0.31 0.31 

5 2 0.12 0.14 0.24 
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 Summary and conclusions 

The ATR-FTIR spectroscopy and chemometric analyses of asphaltenes provide 

valuable information about the molecular structures of asphaltenes isolated from crude 

oils from various locations, including Nigeria, United Kingdom, North America, the 

Middle East and Serbia. 

a. In general, characteristic band regions indicate important functionalities observed in 

the ATR-FTIR spectra of the studied asphaltenes; including mainly saturated aliphatic 

and aromatic structures. Other bands are characteristic of carbon-oxygen functionalities 

including anhydride, esters, carboxylic acids and ketones. The oxygenated 

functionalities in the form of the sulphoxide group are also significantly. 

b. Comparison of asphaltenes of different locations indicated that the key diagnostic 

band at 1706 cm-1, due to the stretching mode of carbonyl C=O groups, was detected in 

the spectrum of asphaltenes from United Kingdom, Middle East, Serbian and lightly 

biodegraded Nigerian oils, but was absent in all North American and heavily 

biodegraded Nigerian oils. 

c. The structural parameters; CH2/CH3 ratio and ‘A’ factor reveal the longest aliphatic 

chain length and highest hydrocarbon-generating potential amongst all the asphaltenes. 

This however was observed to be maturity and degradation dependent. Hence, the ‘A’ 

factor of the asphaltenes decreases with increasing maturity and in contrast CH2/CH3 

ratio increases with maturity and biodegradation. 

d. The multivariate analysis provides an alternative way for classifying asphaltene 

group-types on the based on their chemical characteristics (which were probably 

influenced by their source organofacies, amongst other things) in each sample type. The 

variability of the spectroscopic data coupled with principal components capture two 

components (PC1 and PC2) explain 78.84% of the total variance in the asphaltene 

within the data set. 
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Chapter 7 Characterisation of bound biomarkers of asphaltenes 

released by ruthenium ion catalysed oxidation (RICO) 

 Introduction 

RICO has been used in a number of studied on crude oils (Mojelsky et al., 1992; 

Trifilieff et al., 1992; Peng et al., 1999b; Peng et al., 1999c; Strausz et al., 1999a; 

Strausz et al., 1999b; Ma et al., 2008) as well as coals (Stock and Tse, 1983; Blanc and 

Albrecht, 1991; Muhammad and Abbott, 2012). In a RICO study of asphaltenes in 

petroleum, Strausz et al. (1999a) also found a host of biomarkers bound on α-aromatic 

ring compounds, which includes both acyclic (n-alkyl and iso-alkyl) and cyclic 

(hopanoids, steroids etc). However, the alkyl groups (n-alkyl and iso-alkyl) are the 

dominant components of the oxygenated functionalities that are also present as ester and 

ether and carbon-carbon bonds to the aromatic cores of the asphaltenes (Peng et al., 

1999c; Strausz et al., 1999a). Consequently, the changes in the relative abundance of 

certain biomarker isomers (biomarker maturity ratios) of hopanes from hopanoic acids 

have been investigated and the maturity profiles of the homohopanes and the hopanoic 

acids are suggested to be comparable from natural heating of organic-rich sediments 

and laboratory pyrolysis experiments (Bennett and Abbott, 1999). 

RICO has been used by petroleum geochemists for correlation studies, such as; 

assessments of genetic relationships, biodegradation, maturity and other important 

geochemical parameters with aim of decreasing exploration risks (Peng et al., 1999b; 

Ma et al., 2008; Silva et al., 2008). Therefore, the main aim of this chapter is to 

investigate asphaltene bound on biomarkers frombiodegraded and non-biodegraded oils 

from different locations with RICO, in order to obtain information on the structural 

variability of the asphaltenes. Hence, the objectives were the following: 

a. To characterise the aliphatic moieties in asphaltenes from different sources and 

regional locations. 

b. To compare and contrast the biomarker distributions, such as those of hopanes and 

steranes in maltenes with their corresponding asphaltenes (hopanoic and steranoic 

acids) released during RICO treatment.  
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c. To investigate the thermal maturation parameters from the effect of RICO products. 

d. To investigate biodegradation pathways and source information obtained from 

biomarkers bounded on the asphaltenes. 

e. To evaluate the importance of bound biomarkers of asphaltenes released by RICO 

treatment and established the genetic affinities of such variables among asphaltenes and 

maltenes. 

 Methods 

 Sample preparation  

Sixteen crude oil samples, including thirteen crude oils consisting of a range of oils at 

different biodegradation levels) and three coal samples were sampled to cover different 

regional locations, source facies and depositional environments (see Table 7.1). In the 

present study, also used were corresponding sixteen asphaltene fractions from oils and 

coal extracts listed in Table 7.1. However, to justify that the acid-containing fractions of 

the RICO products have no significant input from free maltenes, corresponding samples 

were chosen and then compared. 
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Table 7.1: List of the samples used in the RICO analysis of the asphaltenes 

New Name Location Source facies 

NA(A) Nigeria Terrigenous/Marine shale 

NB(A) Nigeria Terrigenous/Marine shale 

NC(A) Nigeria Terrigenous/Marine shale 

ND(A) Nigeria Terrigenous/Marine shale 

NN(A) Nigeria Marine/Marine shale 

SN1(A) Serbia Shallow marine/Marine shale 

SN2(A) Serbia Open marine/Marine shale 

ME77(A) Middle East Marine/Marine + lacustrine shale 

NA61(A) North America Open marine/Marine shale 

NA76(A) North America Shallow marine/Marine shale 

NA79(A) North America Open marine/Marine shale 

UK88(A) United Kingdom Open marine/Marine shale 

UK11(A) United Kingdom Open marine/Marine shale 

CA3(A) North Sea coal, UK Terrigenous/Marine shale 

CA4(A) North Sea coal, UK Terrigenous/Fluvio deltaic 

CA6(A) North Sea coal, UK Terrigenous/Marine shale 

The asphaltenes were isolated from the crude oils and coal extracts by precipitation as 

described in Chapter 3, Section 3.3.2.1.The asphaltenes were then cleaned as described 

in Chapter 3, Section 3.3.2.2 to attain satisfactory purity by removal of co-precipitated 

resins and possible adsorbed compounds from the isolated asphaltene solids. 

Furthermore, the cleaned asphaltene was subjected to RICO procedure.  

The RICO analysis adopted for this study was carried out as previously described in 

Chapter 3, Section 3.3.5, and 3.3.5.1. Subsequently, the resulting products were 

analysed by GC (see section 3.4.1) and GC-MS (see section 3.4.2) as previously 

described. The GC-MS was operated in the selected ion detection mode (Appendix 3.2). 

 Identification and quantification of acids 

The biomarkers bonded on the asphaltenes of oils and coals after RICO treatment were 

analysed as methyl esters. However, the derivatised acids were then identified on the 

bases of their respective mass spectra (comparison with standards), relative retention 

time in mass chromatograms and comparison with published mass spectra in GCMS 

distributions (Jaffé et al., 1988; Christie, 1998; Bennett and Abbott, 1999). 

Consequently, quantification of compound was achieved as previously described by 

Peng et al. (1999c) using peak areas in the mass chromatogram compared to the relative 
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response factor of a known amount of internal standard (nC16d31) added to the product. 

Hence, the amount of ester was calculated assuming equal FID response factors for the 

standard and the sample constituents by application of the expression Eq. 7.1: 

Cx = (Px * WTi)/ (Ps * WTa)                                                                                    Eq. 7.1 

where Cx (mg/g) is the calculated amount of a given ester, Px is the peak area of the 

ester, Ps is the peak area of the internal standard, WTa is the weight of the asphaltene and 

WTi is the weight of the internal standard added to the sample. Note that deuterated 

hexadecanoic (nC16d31) acid was used as the internal standard and relative response 

factor of the ester was assumed to be unity. The ester yields (Cx) could then be 

calculated using the corresponding acid yields, Eq. 7.2: 

Cn = (Cx* %C)/(12 *Mc)                                                                                        Eq. 7.2 

where Cn represent the amount per 1000C (number carbon atoms in an asphaltene), the 

percentage weight of carbon in a given asphaltene is %C, the molar mass of carbon is 

12 and themolar mass of analyte is Mc. However, the response factors of the esters, 

including; n-alkanoic acids, α-ω-di-n alkanoic acids, hopanoic and steranoic acid 

methyl esters were assumed to be corresponding to the same carbon member of n-

alkanoic acid methyl esters. 

 Chemometric multivariate analysis 

As part of the data analysis, hierarchical cluster analysis dendrogram (HCA) was 

conducted for the studied data: including biomarkers bonded on the asphaltenes and 

corresponding maltanes and oils to have a comprehensive view of the genetic affinities 

of the data set. The HCA is mainly aimed at developing classification system, so as to 

definesamples that have similar characteristics and that are different from samples of 

other groups. Consequently, an important statistical tool used in understanding and 

improving chemical results (Peters and Fowler, 2002; Azevedo et al., 2008). This 

statistical analysis relies on selected measured variables that reduce the dimensionality 

of the data to a few important groups, or clusters that best described the homogeneous 

clusters of cases. In this study, the HCA calculations were performed using computer 

program from Minitab 16.0 statistical software for hierarchical cluster Euclidean 



 

125 

 

distance, where each selected parameters of aliphatic hydrocarbon and asphaltene 

fractions were normalised and used as factors. 
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 Results and discussion 

The oxidation products of the asphaltenes from the organic phase, including linear 

acids, branched alkanoic acids and cyclic acids, as the previous evidence indicated 

(Peng et al., 1999c; Anlai et al., 2008; Muhammad and Abbott, 2012). Typically, the 

linear acids are n-alkanoic acids and α-ω-di-n alkanoic acids, while the branched 

alkanoic acids are α -methyl, α -ethyl-, α –propyl n-alkanoic acids and cyclic acids are 

the steranoic, and hopanoic acids methyl esters. 

 n-alkanoic acids 

 Mass spectral characteristics of n-alkanoic compounds 

The series of n-alkanoic acids are by far the most abundant class of the monoacids in 

the RICO products of the studied asphaltenes. In order to identify the n-alkanoic acids 

by mass spectrometry, it was necessary to establish a typical fragmentation pattern of 

mass spectra of authentic compound to predict the compounds of which there were no 

standards, as reported (Christie, 1998). Hence, the mass spectrum of authentic methyl 

hexadecanaote is a typical example used for identification, shown in Figure 7.1. In this 

instance, the molecular ion that may distinguish the spectrum from that of the straight-

chain analogue and other branched isomers are clearly seen and the important 

prominent ion is that of ion [M]+ at m/z 270 representing molecular ion from COO 

group. However, this ion is accompanied by the adduct ion [M-31]+ and [M-43]+ at m/z 

231 and m/z 227 respectively. These fragmentation ions at m/z 231 and m/z 227 

correspond to the loss of a methoxyl (CH3O) and C3(carbonyl bond),respectively, from 

the methoxyl group. Hence, during the fragmentation process, the availability of C3 

favourable mechanistic pathways can result in the characteristic McLafferty 

rearrangement ion at m/z 74 confirming that it is indeed a methyl ester. 
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Figure 7.1: The mass spectrum of methyl hexadecanaote used to identify the n-alkanoic acids from the RICO 

products of the methyl esters. 

 Distribution of n-alkanoic compounds 

The RICO products of the asphaltenes, revealed the presence of series of n-alkanoic 

acids homologous or pseudo homologous series of α-ω-di-n alkanoic acids and α-

branched alkanoic acids. Figure 7.2 shows the gas chromatograms of the RICO 

products, in the form of their methyl ester derivatives, released from representative 

asphaltenes of Nigerian oils with corresponding maltene (bottom). The n-alkanoic 

distribution covers the C7 - C37 range with a predominance of C7 - C16 especially C16 

acids (Figure 7.2). The presence of short-chain C8–C14 fraction indicates the presence of 

short alkyl bridges in the asphaltene. This observation was previously reported to occur 

in the extractable organic phase of the oxidation products of asphaltenes (Peng et al., 

1999c; Strausz et al., 1999b; Ma et al., 2008). It must be noted that the distribution of n-

alkanoic acids differs significantly, from those reported from maltene distribution and 

composition of the n-alkane series as shown in Figure 7.2. The carbon preference index 

(CPI20 - 30) of the RICO products of the asphaltenes showed variability in the range of 

0.77 -1.19 (Table 7.3). 
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Figure 7.2: GC of n-alkanoic acids methyl esters from RICO products of representative asphaltenes of 

biodegraded and non-biodegraded Nigerian oils (top) with correspondent n-alkanes on maltenes (bottom). The 

numbers above the peak are the carbon numbers in the acid portion of the esters. 

 α-ω-di-n alkanoic acids 

The resulting α-ω-di-n alkanoic acids containing carbon numbers ranging from C9– C36 

can be identified in the organic phase of the RICO products (Figure 7.3). The α-ω-di-n 

alkanoic acids were identifiable through a major ion at m/z 98 mass chromatogram of 

the RICO products as shown in Figure 7.3.  

 
Figure 7.3: GC-MS m/z 98 ion chromatograms of α-ω-di-n alkanoic acids of organic phase of RICO products 

of representative asphaltenes from Nigeria. The identified numbers above the peaks are the carbon numbers 

in the acid portion of the esters. 
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 α-branched alkanoic acids 

The distributions of the α -methyl, α -ethyl-, and α –propyl n-alkanoic acids were 

identified in the organic phase of the RICO products, with m/z 88, 102, 106 mass 

chromatograms respectively (Figure 7.4). The concentration drops off monotonically 

with increasing chain length.  

 

Figure 7.4: GC–MS chromatograms of n-alkanoic acid for asphaltene ND (A) from Nigeria. The numbers 

above the peaks are the carbon numbers on the acid portion of the esters. 

 Cyclic acids 

 Hopanoic acids 

The hopanoic acids are present in C30 - C32 range, and were easily identified by 

molecular ions at m/z 191/235 of the methyl esters in the case of C30 acid, m/z 191/249 

for C31 and m/z 191/263 for C32 homologous series (Jaffé et al., 1988; Bennett and 

Abbott, 1999; Rodrigues et al., 2000). The mass chromatograms of the characteristic 

fragment ions of the C30 - C32 isomers of the hopanoic acids for the representative 

samples from Nigeria is shown in Figure 7.5, with peak identification given in Table 

7.2. However, three diastereomeric series 17α(H),21β (H) and 17β(H),21β(H) hopane 

skeleton and 17β(H),21α(H) of moretane skeleton configurations were identified. The 

C33-C35 hopanoic acids are either absent or present in negligible measures and thus, the 

present study focused on the important C30-C32 homologues. It is interesting to note 
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that, the pair of diasteroisomers (22R and 22S) 17α(H),21β(H) and 17β(H),21α(H)- of 

C30 and C31 hopanoic acids were dominant than those of the C32 homologues pair of 

17𝛽(H),21𝛽(H) configuration and the resulting parameters are given in Table 7.3. The 

difference between the proportion of 22S relative to 22R-C32 of 17(H),21β(H), shows 

lower values for the samples (Figures 7.6 and 7.7). The values for these samples are 

relatively low, hence supports higher thermal stress of their transformation at position 

17 and 21 forming the more stable 17α(H),21β(H) and 17β(H),21α(H) isomers (Cyr and 

Strausz, 1984; Jaffé et al., 1988; Bennett and Abbott, 1999).  

 

Figure 7.5: Partial mass chromatograms of the C30 (m/z = 235), C31 (m/z = 249) and C32 (m/z = 263) hopanoic 

acids on asphaltene sample from NB(A), NC (A) biodegraded oils and ND(A) of non-biodegraded oil from 

Nigeria. 
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Table 7.2: Structural assignments of steroid alkanoic and hopanoic acid biomarkers present in the asphaltene 

fraction. 

Ion  Peak Compound 

m/z 275 SE1 [5𝛽(H),14α(H),17α(H)-cholestan-3-yl] methanoic acid (20R*) 

 

SE2 [5α(H),14α(H),17α(H)-cholestan-3-yl] methanoic acid (20R*) 

 

SE3 [5𝛽(H),14α(H),17α(H)-24-methylcholestan-3-yl] methanoic acid  

 

SE4 [5α(H),14α(H),17α(H)-24-methylcholestan-3-yl] methanoic acid 

 

SE5 [5α(H),14α(H),17α(H)-24-methylcholestan-3-yl] methanoic acid 

 

SE6 [5α(H),14α(H),17α(H)-24-ethylcholestan-3-yl] methanoic acid 

m/z 289 SE7 [5α(H),14α(H),17α(H)-24-ethylcholestan-3-yl] methanoic acid 

 

SE8 2-[5𝛽(H),14α(H),17α(H)-24-cholestan-3-yl] ethanoic acid (20R*) 

 

SE9 2-[5α(H),14α(H),17α(H)-24-cholestan-3-yl] ethanoic acid (20R*) 

 

SE10 2-[5α(H),14α(H),17α(H)-24-methylcholestan-3-yl] ethanoic acid  

 

SE11 2-[5α(H),14α(H),17α(H)-24-methylcholestan-3-yl] ethanoic acid 

 

SE12 2-[5α(H),14α(H),17α(H)-24-ethylcholestan-3-yl] ethanoic acid 

 

SE13  2-[5α(H),14α(H),17α(H)-24-ethylcholestan-3-yl] ethanoic acid 

m/z 235 HA 1 17α(H), 21𝛽(H)-hopanoic acid 22S 

 

HA 2 17α(H), 21𝛽(H)-hopanoic acid 22R 

 

HA 3 17𝛽 (H), 21α(H)-moretanoic acid 22S 

 

HA 4 17𝛽 (H), 21α(H)-moretanoic acid 22R 

 

HA5 17𝛽 (H), 21𝛽(H)-hopanoic acid 22S 

 

HA6 17𝛽 (H), 21𝛽(H)-hopanoic acid 22R 

m/z 249 HA7 17α(H), 21𝛽(H)-30-homohopanoic acid 22S 

 

HA8 17α(H), 21𝛽(H)-30-homohopanoic acid 22R 

 

HA9 17𝛽(H), 21α(H)-30-homomoretanoic acid 22S 

 

HA10 17𝛽(H), 21α(H)-30-homomoretanoic acid 22R 

 

HA11 17𝛽(H), 21𝛽(H)-30-homohopanoic acid 22S 

 

HA12 17𝛽(H), 21𝛽(H)-30-homohopanoic acid 22R 

m/z 263 HA13 17α (H), 21𝛽(H)-30,31-bishomohopanoic acid 22S 

 

HA14 17α(H), 21𝛽(H)-30,31-bishomohopanoic acid 22R 

 

HA15 17𝛽(H), 21α(H)-30,31-bishomomoretanoic acid 22S 

  HA16 17𝛽(H), 21α(H)-30,31-bishomomoretanoic acid 22R 

 HA17 17𝛽(H), 21𝛽(H)-30,31-bishomohopanoic acid 22S 

 HA18 17𝛽(H), 21𝛽(H)-30,31-bishomohopanoic acid 22R 
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Figure 7.6 Bar charts showing a comparison of 22S/(22S + 22R) C32αβ maturity parameter values for maltene-

derived hopanes and the asphaltene-derived hopanoic acid RICO products from biodegraded oils (see table 

7.3). 

 

Figure 7.7 Bar charts showing a comparison of 22S/(22S + 22R) C32αβ maturity parameter values for maltene-

derived hopanes and the asphaltene-derived hopanoic acid RICO products from non-biodegraded oils (see 

table 7.3). 
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Table 7.3: Parameters calculated on the basis of distribution and abundance of hopanoic, steranoic and n-

alkanoic acids in the asphaltene fraction. 

Sample Location 

22S

22S + 22R
 

20S

20S + 20R
 Sterane (%) CPI 

    C32αβ C29αααR C28αααR C29αααR C30αααR   

NA(A) Nigeria 0.39/0.58 0.16/0.64 28.95/30.05 26.90/27.05 44.14/42.89 1.09/nd 

NB(A) Nigeria 0.43/0.57 0.24/0.34 28.62/24.98 27.46/57.89 43.92/17.12 1.00/nd 

NC(A) Nigeria 0.42/0.57 0.07/0.42 32.04/25.88 30.04/37.93 37.92/36.19 1.11/nd 

ND(A) Nigeria 0.46/0.57 0.14/0.63 21.39/26.49 28.32/24.80 50.29/48.71 1.02/1.11 

NN(A) Nigeria 0.40/0.58 0.14/0.51 20.01/30.68 30.95/27.48 49.04/41.84 1.11/1.31 

SN1(A) Serbia 0.52/0.59 0.34/0.78 29.62/24.44 28.62/22.16 41.76/53.40 0.86/nd 

SN2(A) Serbia 0.52/0.59 0.41/0.65 32.54/33.68 33.49/30.15 33.97/36.17 0.79/1.21 

ME77(A) Middle East 0.19/0.58 0.46/0.63 28.91/47.29 27.91/16.79 43.17/35.91 1.16/0.97 

NA61(A) North America 0.48/0.60 0.27/0.54 37.56/34.23 23.85/24.79 38.60/40.99 1.02/0.96 

NA76(A) North America 0.51/0.93 0.29/0.59 40.09/35.70 24.44/24.57 35.46/39.72 0.93/1.04 

NA79(A) North America 0.50/0.57 0.20/0.57 29.31/36.12 26.39/21.52 44.30/42.36 1.19/1.66 

UK88(A) United Kingdom 0.28/0.60 0.39/0.61 34.93/35.37 36.35/26.40 28.72/38.22 0.81/1.00 

UK11(A) United Kingdom 0.51/0.59 0.32/0.61 44.94/30.70 21.39/21.52 33.67/47.77 0.85/0.90 

CA3(A) United Kingdom 0.46/0.58 0.36/0.75 10.11/34.25 31.23/18.95 58.66/46.80 0.77/1.26 

CA4(A) United Kingdom 0.46/0.59 0.32/0.75 9.94/42.69 40.80/13.96 49.26/43.36 1.11/1.12 

CA6(A) United Kingdom 0.26/0.55 0.32/0.58 5.73/38.73 29.72/17.34 64.55/43.93 1.01/1.37 

The values on the left of "/ are parameters from compounds bound on the asphaltenes and the right values of /” are 

the parameters corresponding maltenes of the whole oil; CPI20-30 = 0.5x[(C21-C29)(odd)/(C20-C28)(even) + (C21-

C29)(odd)/(C22-C30)(even)]. 

 Steranoic acid acids 

Two series of bound steroid acids with the carboxylic acid distributions were released 

from the oxidation products of the representative asphaltenes shown in Figure 7.8. The 

ion chromatogram m/z 275 and m/z 289 of the methyl ester derivatives of the carboxylic 

acids were used to revealed the presence of a series of ring-C aromatic steroid with a 

methanoic and ethanoic acid group, respectively attached to ring A. These acids occur 

as a series of 3β-carboxylic acids (C28 - C30) and 4-methylsterane carboxylic acids (C29 - 

C31) with their chromatographic profiles shown in Figure 7.8 and peak identification in 

Table 7.2. The series of similar distribution was previously reported to occur in 

oxidation products but not identical to sterane of maltane fraction of oil (Peng et al., 

1997). 
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Figure 7.8: Partial mass chromatograms of the m/z = 275 and m/z = 289 of the steranoic and 4-methylstaronoic 

acids methyl esters of RICO products of asphaltenes from NB(A), NC(A) biodegraded oils and ND(A) of non-

biodegraded Nigeria oils. (Refer to Table 7.2 for legend). 

 

Figure 7.9: Bar charts showing comparison of 20S/(20S + 20R) values for asphaltene-derived steranoic acid 

RICO products and the maltene-derived steranes from biodegraded oils. The C27 20αααR sterane in saturated 

hydrocarbon fraction of maltene corresponds to C28 20αααR sterane carboxylic acids. 
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Figure 7.10: Bar charts showing comparison of 20S/(20S + 20R) values for asphaltene-derived steranoic acid 

RICO products and the maltene-derived steranes from non-biodegraded oils. The C27 20αααR sterane in 

saturated hydrocarbon fraction of maltene corresponds to C28 20αααR sterane carboxylic acids. 

 Effect of thermal maturation on asphaltene biomarkers 

The isomeric distribution of hopanoic acids (Meredith et al., 2000) and incorporated 

carboxylic acids from the migration pathway can be used to describe the maturity of the 

rocks through which an oil had migrated (Jaffé and Gallardo, 1993). Thus, results from 

maturity parameters (Table 7.3), such as C30αβ/(αβ + βα), C31S/(S + R), C32S/(S+R), 

generally indicate maturity level. The results are consistent with previous evaluation 

that bound biomarkers of hopanoic acids should have lower maturity level compared to 

those of corresponding crude oil maltenes (Pelet et al., 1986; Peng et al., 1997; Liao 

and Geng, 2002). It is noteworthy that the thermal maturities molecular parameters of 

the biomarkers (Table 7.3) in the hopanes from the maltenes show strikingly different 

molecular distributions from the hopanoic acids released from asphaltenes following 

RICO treatment (Table 7.3). The epimeric ratio at C-22 in C32, 17α, 21β(H) for the 

maltenes  has values (0.55 – 0.93) generally close to equilibrium range value indicating 

a thermally mature state, while those of asphaltenes (0.19 – 0.51) are considerably 

below the equilibrium level, indicating significant thermal immaturity (Peters et al., 

2005a). Hence, the asphaltenes are less mature than their aliphatic hydrocarbon 

counterparts. It is not clear why this is the case but may likely be related to the 
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isomerisation of the bound biomarkers being protected from secondary alterations (Jaffé 

and Gallardo, 1993).  

This is also true of the assessment of the maturity of αββ /(αββ + ααα) for C29ααα and 

C30ααα isomerisation ratios calculated from the bound biomarkers compared with their 

maltene counterparts (Table 7.3). The maturation changes of the thermally dependent 

stereoisomerisations in asphaltenes are less compared to stereoisomerisations of 

hydrocarbon fractions equivalent. 

 

Figure 7.11: Distributions in steranoic acids from asphaltene-derived acid RICO products of C29 vs. C30 

20S/(20S + 20R) maturity parameters (see Table 7.3). 

 

Figure 7.12: Distributions in steranoic acids from asphaltene-derived acids RICO product of C29 vs. C30 

αββ/(αββ + ααα) maturity parameters (see Table 7.3). 
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 Effect of biodegradation on asphaltene biomarkers 

The RICO products and corresponding n-alkane data obtained from the selected 

samples in this study show differences in terms of their biodegradation histories (Figure 

7.1). The distribution of n-alkanoic acid methyl ester, suggests that the easiest 

biodegraded n-alkane bonded on aromatic ring in asphaltene macromolecular network 

had little or nomicrobiological degradation effect on the alkyl side chain bonded on the 

asphaltenes. The RICO products of the studied asphaltenes show similar degree of 

biodegradation, confirmed by the presence of large amounts of n-alkanoic acid methyl 

ester. In contrast, n-alkanes from their corresponding aliphatic maltene fractions (e.g. 

NB (M), NC (D), SN1 (M), NA79 (M)) samples, display various baseline hump of n-

alkanes, branch alkanes and isoprenoids, hence believed to have been exposed to 

significant microbiological degradation. In general, crude oil samples show 

characteristic distributions of regular sterane C27>C28>C29(22ααα) that reflect 

biodegradation (Peters et al., 2005b). However, we observed the dominance of C29 

regular sterane (Table 7.3 and Figure 7.8), which may have resulted from the 

degradation of the lower homologs (C27 and C28). The investigated samples from this 

class of biomarker suggested C28>C29<C30 for sterane carboxylic acids in the RICO 

products, probably biodegraded oils and C28<C29< C30 for non-degraded oils.  

 Effect of source parameters on asphaltene biomarker 

There have been many studies using the distribution of C27, C28 and C29 regular steranes 

to determine oils from different source or organofacies of the same source rock, e.g. 

Peters et al. (2005b). In this study, the percentage distribution of C27, C28 and C29 

regular steranoic acids have been plotted in a ternary diagram into groups defined by 

depositional environments (Figures 7.13 and 7.14). Furthermore, since the distribution 

of C28, C29 and C30 steranoic carboxylic biomarker acids correspond to that of their free 

steranes C27, C28 and C29 counterpart of maltene of oils (Rodrigues et al., 2000), the 

saturated hydrocarbon fractions of these fractions were compared with those of 

asphaltenes (Figures 7.13 and 7.14). The ternary plots show disagreement with their 

counterparts of steranoic acids from the asphaltene fraction. The biomarker pattern 

observed from the steranoic acids presumably reflect the original distribution of 

steranoic acids after expulsion from the source rock and the maltene source might have 
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been incorporated on its secondary migration route. This result lend to support the view 

that asphaltenes represent parts of kerogens during the formation of oil (Cassani and 

Eglinton, 1986). 

 

Figure 7.13: Ternary diagram of C28 – C30ααα (R) of steranoic acid distributions from asphaltene fractions of 

asphaltene (a) corresponding to maltene (c), suggesting likely depositional environment. (After IGI’s p: 3.5 

geochemical interpretation software). 
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Figure 7.14: Ternary diagram of C28 – C30ααα (R) of steranoic acid distributions from asphaltene fractions of 

asphaltene (b) corresponding to maltene (d), suggesting likely facies source. (After IGI’s p: 3.5 geochemical 

interpretation software). 

 Comparative biomarker analysis of the studied maltene and bound 

asphaltenes. 

An attempt was made to correlate asphaltenes that exhibited similar molecular 

characteristics. PCA applied to the dataset (Table 7.3) resulted with two significant 

PC’s (PC1 and PC2) accounting for 62.38% of the total variance in the data. Loading 

and score plots constructed on the basis of PC1 versus PC2 show the contribution of 

each variable related to PC1 and PC2 (Figure 7.15) and the genetic relationship among 

the asphaltenes again in the plane of PC1 and PC2 (Figure 7.16). 
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As shown in the score plots (Figure 7.16), three distinct asphaltene clusters along the 

PC1 are recognised: Cluster 1 (8 asphaltenes from Nigerian and North American oils), 

cluster 2 (7 asphaltenes from Serbian, United Kingdom and Middle East oils) and 

cluster 3 (3 asphaltenes from North Sea coals). When the distribution of molecular 

parameters in Figure 7.15 is interpreted, PC1 appear to be mostly influenced to source 

organic facies. In Figure 7.15, PC1 is characterised by marine organic matter designated 

by % C28 that are enriched in the cluster 1 asphaltenes whilst at the left hand side of the 

PC1 axis, PC1 is characterised by terrestrial organic matter inferred by % C30 that are 

enriched in the cluster 3 asphaltenes. However, cluster 2 is characterised by increasing 

diatom input designated by C29 ααα, C30 αββ (αββ + ααα) and C30 ααα S(S + R). Along 

the PC2, the asphaltene clusters are clearly divided into cluster 2 (7 asphaltenes 

including from, Nigeria, Serbia, United Kingdom and Middle East oils) and cluster 3 (4 

asphaltenes from North Sea coals). PC2 displays negatively correlation variable of 

higher % C30 ratio, and Cluster 1 C28 ααα, C30 αββ (αββ + ααα) and C30 ααα S(S + R) 

ratios. It can therefore be expected that PC2 is sensitive to source facies by higher % 

C30 and increasing angiosperm. 

On the hand, the HCA applied to dataset (Table 7.3) resulted with the first four PC’s 

accounting for about 94% of the total variance in the data. The dendrogram correlate 

excellently with the scores plot showing significant heterogeneity with three clusters 

similarities. Cluster 1 consist of asphaltenes (Nigerian and North American oils), have 

94.76% similarity level while Cluster 2 consist of asphaltenes (Serbian, United 

Kingdom and Middle East oils ), have 81.19% similarity level (Table 7.3) and Cluster 3 

consist of asphaltenes (North Sea coals). Cluster 1 consist of asphaltenes (NA, ND, NN 

& NB) from marine (+ lacustrine) shale sourced Nigerian oils and asphaltenes (NA76, 

NA79, NA61 & NAC) from marine shale sourced North American oils. However, 

cluster 2 consists of mixture of asphaltenes from two different geological locations and 

sources. The heterogeneity of the cluster shows the two asphaltenes (SN1 & SN2) from 

marine (+ lacustrine) shale sourced Serbian oils and asphaltenes (UK88, UK11) from 

marine (+ lacustrine) shale sourced United Kingdom oils. Cluster 3 consists exclusively 

of asphaltenes (CA3, CA4 & CA6) from fluvio/deltaic (coal) sourced North Sea coals. 

The significance of the difference is shown from the distance between cluster centroids 

(0.00 – 2.19) is highest wherever it is involved (Table 7.4). Since, the studied North Sea 
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coals were generally deposited under oxic and dysoxic conditions, the difference could 

be reflected on level of maturity the coals were generated. 

Table 7.3: Cluster Analysis of Observations for biomarkers from RICO analysis 

Step 
Number of 

clusters 

Similarity 

level 

Distance 

level 

Clusters 

joined 

New 

clusters 

In new 

clusters 

1 15 87.890 0.88 4     5 4 2 

2 14 83.980 1.16 1     4 1 3 

3 13 77.370 1.63 1     2 1 4 

4 12 77.030 1.66 1    11 1 5 

5 11 75.730 1.75 1    10 1 6 

6 10 75.620 1.76 6    12 6 2 

7 9 68.660 2.27 1     9 1 7 

8 8 68.230 2.3 1     6 1 9 

9 7 66.730 2.41 1     7 1 10 

10 6 66.38 2.43 1     3 1 11 

11 5 65.58 2.49 1     13 1 12 

12 4 62.78 2.69 14    15 14 2 

13 3 59.21 2.95 14    16 14 3 

14 2 56.57 3.14 1     8  1 13 

15 1 35.95 4.63 1     14 1 16 

 

Table 7.4: Final partition of biomarkers from RICO analysis 

 

Clusters  

Number of 

 observations 

Within clusters sum of 

squares 

Average distance from 

centroid 

Maximum  

distance from 

centroid 

1 3 1.33 0.66 0.79 

2 4 8.81 1.46 1.90 

3 5 15.98 1.76 2.19 

4 1 0.00 0.00 0.00 

5 3 8.29 1.66 1.76 
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Figure 7.15: A loadings plot showing the relationship between different biomarker parameters in terms of PC1 

versus PC2 analysis of multivariate RICO data analysis. 

 

Figure 7.16: A scores plot showing the relationship between studied oil and coal samples in terms of PC1 

versus PC2 from a principal component analysis of biomarkers from RICO analysis. 
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Figure 7.17: Principal component analysis results showing similarity of the samples based on biomarkers from 

RICO treatment of asphaltene. 
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 Summary and conclusions 

Bound biomarker compounds generated from oxidation products of sixteen asphaltenes 

from various locations, sources and depositional environments, were assessed. The 

following interpretations were based on the results (see data in Table 7.3): 

a. The RICO products revealed a clear difference in the distributions of n-alkanoic acid 

methyl ester compared to their corresponding maltenes. The aliphatic moieties in the 

asphaltenes are dominated by n-alkyl distributions.   

b. Comparison of the molecular distributions of the hopanes - hopanoids in the 

asphaltenes, revealed the existence of carbon number shifts between the series. The 

hopanoic fractions showed the presence of three diastereomeric series (17α(H),21β(H) 

and 17β(H),21β(H) hopane skeleton and 17β(H),21α(H)), whilst the maltene fractions 

contain only two series (17α(H),21β(H) and 17β(H),21α(H) epimers with sidechain 

22S- and 22R-configugations.  

c. The thermal maturity parameters calculated from the bound biomarkers of the 

asphaltene fractions are consistent with low maturity distribution amongst all oils.  

d. The RICO products of the asphaltenes showed that alkyl and hopanoids moieties are 

not exposed to microbiological degradation. Hence, bound biomarker ratios obtained 

from the asphaltenes may be considered as relatively reliable parameters for the oils. 

e. Successful application of chemometric analysis by principal components help to 

correlate a better distinction and classification of the data and consequently of the 

locations.   
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Chapter 8 The ultrasonic characterisation of asphaltene 

nanoaggregation in petroleum 

 Introduction 

The petroleum industry is an example where several analytical techniques including 

ultrasonic (Andreatta et al., 2005a; Mullins et al., 2007; Mullins, 2010), small-angle 

neutron scattering (Gawrys and Kilpatrick, 2005) centrifugation (Mostowfi et al., 2008; 

Indo et al., 2009), and conductivity (Sheu, 1998; Andreatta et al., 2005a) have studied 

the tendency of asphaltenes to self-associate and form molecular aggregates. Among 

these, centrifugation studies have shown that there is some uncertainty where the exact 

critical nanoaggregate concentration of asphaltene (CNAC) can be identified (Mostowfi 

et al., 2008). Whereas, other studies such as conductivity measurements have provided 

evidence of CNAC, which is in agreement with high-Q ultrasonics study due to 

aggregation in organic solvents (Mullins, 2011). 

Ultrasound resonance spectroscopy is one of the emerging technologies that have been 

investigated by numerous researchers (Seifert and Moldowan, 1979; McClements, 

1991; Povey, 1997; Andreatta et al., 2005a; Holmes et al., 2011; Abbott and Povey, 

2012; Mullins et al., 2012b; Parker and Povey, 2012). The ultrasound spectroscopy 

measurement provides precise frequencies and bandwidths for a series of resonances 

from which velocity of sound and attenuation data are recorded. Generally, this is a 

non-destructive technique that is applied to probe a wide range of materials, including 

many that are optically opaque, and provides accurate, fast, reliable and high quality 

information at low cost (Povey, 1997). Other applications, include the flow dynamics 

and composition of oils, the oil content and droplet size of emulsions and the solid fat 

content of partially crystalline emulsions (McClements and Povey, 1992). 

The use of ultrasonic spectroscopy for characterizing asphaltene has been established by 

(Andreatta et al., 2005a; Mullins et al., 2012b). However, most work to date has 

focused on the asphaltene as a function of toluene solution, for example the preparation 

of asphaltene concentration to show the existence of asphaltene nanoaggregates along 

with structures of other length scales (Sheu, 2002). A high-Q ultrasonic measurement is 

believed to have led to the development of a simple molecular aggregations model (Yen 
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model or the Yen-Mullins model). The reported model found that asphaltenes in toluene 

and known surfactants comprises of monomers and nanoaggregates. The challenge of 

understanding the fundamental dynamics of asphaltene aggregation as a function of the 

crude oil composition is enormous. Hence, this work aims to fill this knowledge gap 

and builds on an earlier high quality factor (high-Q) ultrasonics study that was used to 

demonstrate asphaltene nanoaggregation (Andreatta et al., 2005a). 

Andreatta et al. (2005a), have shown that asphaltenes exhibit a critical nanoaggregate 

concentration (CNAC) at room temperature in the range of 50 – 150 mg/L in toluene, 

depending upon the asphaltene. The authors illustrated the state of colloidal aggregation 

using the micelle phase equilibrium model, comprising monomer and nanoaggregate. In 

the study by Andreatta et al. (2005a), high resolution ultrasonic spectroscopy was 

performed on asphaltenes from Kuwaiti crude oils (UG8 and  BG5) as well as known 

surfactants: sodium dodecyl sulphate (SDS), hexade-cyltrimethylammonium bromide 

(C16TAB), polyoxyethylene 23 lauryl ether (Brij 35; C12E23), and polyoxyethylene 

sorbitan monooleate (Tween 80), purity > 99%. In order to validate the model for 

aggregation in asphaltene solutions, the following were considered: (a) standard 

surfactants and (b) mathematical model (Andreatta et al., 2005a). The standard 

surfactants were used to detect the formation of critical micelle concentration (CMC) 

and both the surfactants and asphaltenes are considered to be nonionic surfactants that 

undergo micelle formation. The mathematical model (equations) provides the micelle 

phase equilibrium model for standard surfactant and asphaltene data. From the 

mathematical model, at low concentrations the aggregation transition is accompanied by 

change in the gradient of the speed of sound as a function of asphaltene concentration.  

In our study, high-precision ultrasound resonance spectroscopy by the Resoscan-

Research system is used directly to probe the asphaltene bulk properties to understand 

the formation of aggregation in crude oils. The instrument simultaneously measures 

both the velocity and attenuation of sound of a given sample as described in Chapter 3, 

section 3.4.4. In order to elucidate the essential dynamics of asphaltene aggregation, the 

objectives were based on the following, 

a. To characterise the velocity of sound (or attenuation of sound) as a function of 

the concentration of asphaltene. 
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b. To extract the CNAC from the velocity of sound and attenuation data. 

c. To compare and contrast the CNACs, such as those of ultrasonic velocity and 

attenuation of sound from asphaltenes of different geological locations. 

d. To calculate the error in the CNAC value that has not been calculated in earlier 

research. 

e. To calculate the error in the measured CNAC value; this was not performed in 

the study by Andreatta et al. (2005a). 

 Theory 

 Sound and ultrasonic sound wave 

Sound is a travelling wave which is an oscillation of pressure transmitted through a 

solid, liquid, or gas. However, the propagation of sound is dependent on physical, 

chemical and biological properties of material through which it propagates (Povey, 

1997). Consequently, as the wave of compression and rarefaction (e.g. auditory sound, 

seismic waves) passes through the homogeneous medium, particles oscillate elastically 

about their equilibrium points as illustrated in Figure 8.1. Hence, the speed of sound can 

be determined from Urick equation as:   

 

Figure 8.1: Schematic diagram of longitudinal ultrasonic waves. 

u = 
1

√kρ
                                                                                                                  Eq.8.1 

where ρ is the density of the medium and k is its compressibility.  The compressibility 

is a measure of how easily the system is compressed under a force (gases have large 

compressibilities and solids have low compressibilities), and is given mathematically as 

k = 
1

u

dV

dp
,                                                                                                                 Eq.  8.2 

where V is the volume of the fluid and p is the pressure. 

Pressure distribution at an 

instant in time p(x)

Wavelength 

Amplitude p0
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An ultrasonic wave is an oscillating sound wave which has a frequency greater than 20 

kilo-Hertz. However, this frequency is greater than the upper limit of the human hearing 

range. Its application to study asphaltene in toluene solution is associated with the 

characteristics of elastic constant, density, composition and microstructure of a phase-

equilibrium system (Andreatta et al., 2005a). However, as ultrasonic wave can travel 

through materials in different forms, e.g. shear waves, surface waves and compressional 

waves are frequently used as non-destructive probes of material concentrations and 

structural properties (McClements, 1991). Consequently, compressional wave passes 

through a polydisperse medium by successive compressions and expansions (Figure 

8.1), leaving the physical properties of the material unaltered. The use of ultrasonic 

wave to study materials, mostly measure velocity and attenuation parameters that is 

associated with the physical properties of the material. 

 Speed of sound in homogenous liquid 

The pure homogenous liquids possess no discontinuity and as such do not scatter 

ultrasound waves. In this system, Urick equation (Equation 8.1) represents the simple 

ultrasonic properties and volume of the liquid. 

As the wave propagates through the medium, its energy will be dissipated to the 

surrounding, causing a reduction in the wave amplitude.  This is termed attenuation.  In 

a homogeneous liquid, there are two main contributions to the sound attenuation. 

Viscous losses arise due to the inherent viscosity of the liquid, which causes dissipation 

of energy whenever there is relative motion within the liquid. Thermal losses arise since 

the compression/rarefaction of the medium causes local heating (relative to the 

background temperature); these local regions act as heat sources, and dissipate energy 

into the surroundings via heat conduction. 

The effect of attenuation is to cause the amplitude of sound wave to decrease as it 

propagates (Figure 8.2).  Considering motion along x we can write the variation of 

pressure in an ideal, non-attenuating medium as 

 p(x, t) = p0exp [i(κx − ωt)]                                                                 Eq. 8.3 
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where κ = 2π/λ is the wavenumber and ω = 2πf is the angular frequency of the wave, 

and p0 is the initial wave amplitude. 

In an attenuating medium, this becomes modified as 

p(x, t) = p0 exp (−αx)exp[i(κx − ωt)].                                              Eq. 8.4 

In other words, the amplitude decays exponentially with distance.  The rate of this 

decay in amplitude is specified by the attenuation coefficient, α (McClements, 1991; 

Povey, 1997).  The unit of attenuation is often express as decibels per meter (dB m-1), 

where 1Np is equivalent to 8.686 dB (McClements, 1991). 

 

Figure 8.2: Schematic diagram of attenuation of sound. The pressure of the wave decreases exponentially with 

distance travelled 𝐱. 

 Speed of sound in asphaltene solution 

Generally, for dilute solutions, the velocity of sound and the solution density can be 

expressed as a function of the concentration of the solute. Here we describe the model 

employed by Andreatta et al (2005a) for modelling the variation of the speed of sound 

of a solution with its concentration, including the process of aggregation at some critical 

concentration. This model begins by modelling the solution density and compressibility 

in terms of the asphaltene concentration; this can then be related to the speed of sound 

in the solution via Eq. 8.1. 

The asphaltene molecules exist in either monomeric or aggregate forms, or a 

combination of both. The total mass of asphaltenes w is the sum of the mass in 

monomeric form  w1 and the mass in nanoaggregate form wNA,.i.e.: 

w = w1+ wNA.                                                                                                        Eq. 8.7 
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The total volume of the solution can be expressed as the sum of the apparent volumes of 

the solvent, monomers and nanoaggreates: 

 V = w0v0+ w1wv1 + wNAvNA,                                                                              Eq. 8.8   

where w0 is the mass of the solvent, v0 is the specific volume of the solvent, v1 is the 

apparent specific volume of monomers and vNA is the apparent specific volume of the 

nanoaggregates.  

The mass of the asphaltene solution can be written as: 

ρV = w0+ w1+ wNA.                                                                                               Eq. 8.9  

The density of the asphaltene solution is then expressed as: 

ρ = ρ0 + (1– v1ρ0)c1 + (1 −  vNAρ0)cNA                                                                     Eq. 8.10 

where ρ0 is the density of the solvent, c1 is the mass concentration of the monomeric 

form and cNA is the mass concentration of the asphaltene in the aggregate form. The 

total mass concentration of asphaltene is equal to c = c1+cNA. 

If we assume that the phase-equilibrium model for asphaltene is valid here, then: 

c1 = c and cNA = 0 (for c < cnac) 

c1= cnac and cNA= c −cnac (for c > cnac) 

where cnac is the numerical value of the CNAC. The density of the solution, both 

above and below the aggregation concentration, follows as: 

ρ = ρ0+ (1−v1 ρ0) c.  (for c < cnac)                                                                                    Eq. 8.11 

ρ = ρ0 + (vNA  −  v1)ρ0cnac + (1 −  vNAρ0)c     (for c ˃ cnac)                        Eq. 8.12  

Having developed expressions for the solution density as a function of concentration, 

we turn to address the adiabatic compressibility. The adiabatic compressibility of the 

solution ks (at constant entropy S) is related to density according to: 
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ks = 
1

ρ
(

∂ρ

∂P
)

S
.                                                                                                          Eq. 8.13                                                         

Differentiating Eq. (8.10) gives: 

  (
∂ρ

∂P
)

s
= (

∂ρ0

∂P
)

S
  + (

(1− v1ρ0)

∂P
)

S
c1+ (1 −  v1ρ0

) (
∂c1

∂P
)

S
 + 

 (
∂(1− vNAρ0)

∂P
)

S
cNA + (1 −  vNAρ0) (

∂cNA

∂P
)

S
.                                                       Eq. 8.14                                                                                                      

We assume that the concentration of monomers c1  and the concentration of 

nanoaggregates cNA   changes with pressure only through changes in the solution 

volume. Then it follows that: 

(
∂c1

∂P
)

S
= c1k                                                                                                           Eq. 8.15 

(
∂cNA

∂P
)

S
= cNA k                                                                                                      Eq. 8.16 

The adiabatic compressibility of the solvent is given by: 

k0  = 
1

ρ0
(

∂ρ0

∂P
)

S
                                                                                                       Eq. 8.17 

The apparent adiabatic compressibility of the asphaltene monomers is: 

 k1  = −
1

v1
 (

∂v1

∂P
)

S
                                                                                                Eq. 8.18  

Similarly, the apparent adiabatic compressibility of the nanoaggregates is defined by: 

kNA = -
1

vNA
(

∂vNA

∂P
)

S
                                                                                               Eq. 8.19 

With these definitions, and using Eq. 8.14 we can write: 

ρk  = ρ0k0 + k[(1 −  v1ρ0)c1 + (1 −  vNAρ0)cNA] +  ρ0c1v1(k1 −  k0) +  

ρ0cNAvNA(kNA − k0),                                                                                           Eq. 2.20 

k = k0 + (k1 −  k0)v1c1 + (kNA − k0)vNAcNA.                                                  Eq. 2.21 
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Recall that Eq. 8.1 gives the speed of sound as a function of the density and 

compressibility of the medium.  Substituting in our expressions for the density and 

compressibility of the solution, and taking the limit of dilute solutions (c1<<1 and 

cNA <<1) we arrive at the following expression for the solution speed of sound: 

u = u0 + 
u0

2
 [v1 (2 −  

k1

k0
) −  v0] c1 + 

u0

2
 [vNA (2 −  

kNA

k0
) −  v0  ] cNA.                Eq. 8.22 

This tells us that, for c <cnac: 

u= u0 + 
u0

2
 [v1 (2 −  

k1

k0
) −  v0] c ,                                                                                   Eq. 8.23 

and for c > cnac: 

u = u0 + 
u0

2
[v1 (2 − 

k1

k0
) −  vNA (2 −  

kNA

k0
)] cnac   + 

 
u0

2
[vNA (2 −  

kNA

k0
) −  v0  ] c.                                                                               Eq. 8.24 

We see that both above and below the CNAC, the speed of sound varies linearly with 

the total asphaltene concentration c.  But, importantly, the gradient of this relationship is 

different either side of the CNAC. This tells us that if we plot the solution speed of 

sound versus asphaltene concentration we expect two straight lines, with the transition 

between these behaviours occurring at the CNAC.  This is the principle we will use to 

identify the CNAC. 

 Attenuation of sound in asphaltene solution 

The above section describes a physical model for how we expect the speed of sound to 

vary as concentration is changed through an aggregation process. A similar model for 

attenuation is challenging, due to the necessity to account for the multitude of 

contributions to the attenuation in a suspension. Nonetheless, we can examine the 

variation of attenuation empirically. Below and above the CNAC, the physical 

characteristics of the liquid are different (below we have a solution, above we have a 

suspension), and so we would expect the attenuation to change discontinuously at the 

CNAC. We will see that this is indeed the case, and that the attenuation appears to scale 
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linearly with concentration either side of the CNAC, similar to the speed of sound. As 

such, we will empirically proceed to determine the CNAC from the attenuation data by 

fitting to two straight lines and identifying their crossing point, as detailed below for the 

speed of sound data. While it would be interesting to determine more precisely the 

actual functional form of the attenuation either side of the CNAC, this is beyond the 

scope of this work which is focussed on identifying the CNAC. 

 Methods 

The asphaltenes used in this study were three crude oil asphaltenes (SN1, SN2 and 

NA61) from different regional locations, source facies and depositional environments. 

They were prepared as described in Chapter Three, section 3.3.2., 3.3.2.1, 3.3.2.2 and 

3.3.7. Ultrasonic spectroscopy was carried out on the asphaltenes in toluene as 

described in section 3.4.4. 

In order to determine the mean CNAC value more accurately, it was necessary to fit the 

data to two connected straight lines (the CNAC then being associated with the point of 

intercept of these two lines). Then, be considering the error in these two straight line 

fits, it was possible to estimate the error of the CNAC itself.  We will describe these 

methods below. 

 Fitting to two straight lines and the mean CNAC 

To extract the CNAC we need to fit our speed of sound and attenuation data to two 

straight lines. Here we describe this methodology. For generality, we consider some 

general data y(x) which approximates two straight lines, as shown in Figure 8.3, and 

seek to find the crossing point of the data subsets, denoted xcross. To find the optimum fit 

to two connected straight lines, it is necessary to divide the data into two subsets, one 

representing the data below the critical point, one representing the data above the 

critical point.  Then each subset can be independently fit to a straight line; the success 

of each straight line fit is provided by the R2-coefficient.  However, the choice of how 

and where to divide the data requires some care.  Here we define this division as being 

when the sum of the R2-coefficients is maximised, in other words, we vary the boundary 

between the two subsets of the data until the best combined fit is achieved.  
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Each data subset is then fit to a straight line using the least squares method. This 

provides a mean fit function for each subset, ŷ1 and ŷ2, where the 1 and 2 subscripts 

refer to the lower and upper data subsets. That is, 

ŷ1 = â1+  β̂1x,     for x <  xcross                                                             Eq. 8.25 

ŷ2 = â2 + β̂2x,     for x >  xcross                                                             Eq. 8.26 

Here â1 and â2 are the best-fit y-intercepts, and β̂1 and β̂2are the best-fit gradients, of 

these straight lines. The best-fit mean CNAC crossing point is then the intercept 

between these two lines of best fit. At this crossing point, ŷ1  = ŷ2. Setting this and 

rearranging for x leads to an expression for the x-position of the crossing point, 

xcross =
α1 − α2

β2 − β1
.                                                                                                            Eq. 8.27 

In our curves of sound velocity and sound attenuation, this coincides with the best-fit 

CNAC. 

 Error analysis 

In order to estimate the accuracy of the determined mean CNAC for asphaltenes in 

toluene solutions in the range ~ 0.006 – 2.3 g/L concentration, Sigmaplot 11.0 software 

packages was used to ascertain the statistical uncertainty limit for the intercepts and 

gradients as illustrated in Figure 8.3. 



 

155 

 

 

Figure 8.3: Schematic illustration of the fitting of the data to two straight lines. The black lines, 𝐲𝟏,�̂� and 𝐲𝟐,�̂� are 

the two lines of best fit. The grey lines represent the extreme fits, within error tolerances. The axes here 

represent generalised variables x and y - in our work y corresponds to either velocity of sound or sound 

attenuation and x represents asphaltene concentration. 

An important distinction between this study and the Andreatta study is the calculation 

of the CNAC error. The best fit CNAC above is the crossing point of the lines of best 

fit   xcross . However, the fits have errors associated with them. This allows us to 

establish the statistical error associated with xcross and hence the CNAC as follows.  

For the line of best fit for each subset of the data, the statistical uncertainty of the 

intercept and gradient was calculated using the Sigmaplot 11.0 software package. In 

other words, the y-intercept and gradient for each straight line fit lies within a range. 

Consideration of the extreme values provides a bound on the possible straight line fits, 

such as those shown in Figure 8.3 (grey lines).  From these extreme fits, we deduce the 

range in the crossing points, i.e. the CNAC. 

We wish to compare the CNAC from different oil samples, and it is important to 

establish whether any numerical difference is statistically significant. A 2-sample t-test 

was applied on the CNAC values with errors, so as to determine the statistical 

difference between the mean CNACs. This test quantifies how significant is the 
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difference between two means. The produced p-value must be greater than 0.05 for the 

mean to define the group to be statistically significant different. 

 Results and discussion 

 The effects of asphaltene concentration on ultrasonic velocity of sound  

Figures 8.4 – 8.6 show the variation of the speed of sound for the asphaltene solution as 

a function of concentration (all at 25 oC), for the three different oils NA61, SN1 and 

SN2.  The chosen subsets of data below and above the CNAC are shown by blue cycles 

and red cycles, respectively.  The line of best fit for each subset (solid line) is 

superimposed. The data agrees well with the expected form of two connected straight 

lines.  

 

Figure 8.4: Measured velocity of sound versus concentration of asphaltene (NA61) in toluene (NA61) at 25 oC. 
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Figure 8.5: Measured velocity of sound versus concentration of asphaltene (SN1) in toluene at 25 oC. 

  

Figure 8.6: Measured velocity of sound versus concentration of asphaltene (SN2) in toluene at 25 oC. 



 

158 

 

 

Figure 8.7: Statistical uncertainties of CNAC’s of studied asphaltenes in toluene at 25 oC calculated from 

ultrasonic velocity of sound. 

 

Table 8.1: Experimentally determined CNAC with statistical uncertainties in velocity of sound for asphaltenes 

in toluene at 25 oC. 

 Sample Mean CNAC (g/L) "+" "-" Upper CNAC (g/L) Lower CNAC (g/L) 

North American (Non-degraded) 0.03 0.04 0.02 0.08 0.02 

Serbian (biodegraded) 0.16 0.03 0.08 0.19 0.07 

Serbian (Non-degraded) 0.10 0.04 0.03 0.14 0.08 

 

The mean CNAC, and their errors, are depicted in Figure 8.7 and tabulated in Table 8.1.  

The CNAC varies across the 3 samples (SN1, SN2 and NA61), over the range ~ 0.03 – 

0.16 g/L (Table 8.1). A similar trend of CNAC has been observed by others for 

asphaltenes in toluene solution (Andreatta et al., 2005b; Mullins, 2010). According to 

these authors, asphaltenes in toluene solution exhibit CNACs at ~ 0.05 – 0.15 g/L. The 

mean CNAC of asphaltenes (SN1 & SN2) have a significant difference from 0.10 – 

0.16 g/L respectively, with p = 0.13. This p-value indicates that this difference is 

statistical significant, and suggests that asphaltenes of different compositions exhibit 

CNACs with some variability in the exact value. The asphaltenes from the non-

degraded oils (NA61 & SN2) are not significantly different, suggesting a similar CNAC 

covers across the non-degraded oils (p = 0.02). 

 The effects of asphaltene concentration on attenuation of sound 

The corresponding results for the sound attenuation as a function of concentration are 

shown in Figures 8.8 – 8.11 and Table 8.2. 
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Figure 8.8: Measured attenuation of sound versus concentration of asphaltene (NA61) in toluene at 25 oC. 

 

Figure 8.9: Measured attenuation of sound versus concentration of asphaltene (SN1) in toluene at 25 oC. 

 

Figure 8.10: Measured attenuation of sound versus concentration of asphaltene (SN2) in toluene at 25 oC. 
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Figure 8.11: Statistical uncertainties of CNAC’s of studied asphaltenes in toluene at 25 oC calculated from 

attenuation of sound. 

 

Table 8.2: Experimentally determined CNAC with statistical uncertainties in attenuation of sound for 

asphaltenes in toluene at 25 oC. 

 

 Sample Mean CNAC (g/L) "+" "-" Upper CNAC (g/L) Lower CNAC (g/L) 

North American (Non-degraded) 0.07 0.05 0.03 0.12 0.02 

Serbian (biodegraded) 0.15 0.07 0.05 0.22 0.11 

Serbian (Non-degraded) 0.06 0.02 0.06 0.04 0.03 

 

The attenuation data also fits well to two connected straight lines, although it should be 

emphasized that we offer no physical explanation for this appearance.  We proceed to 

empirically identify the CNAC as the crossing point of these two fitted straight lines.   

The CNAC of the studied samples (SN1, SN2 and NA61), range from ~0.06 – 0.15g/L 

(Table 8.2). The asphaltenes from the non-biodegraded oils (SN2 & NA61) are 

significantly similar with CNAC value of ~0.06 – 0.07 g/L respectively (p = 0.156) 

whilst the asphaltene from the biodegraded oil (SN1) is significantly different with 

CNAC value of 0.15g/L (p = 0.156).  These values support the values derived from the 

sound data.   

 Comparative analysis of ultrasonic velocity and attenuation of sound to 

petroleum asphaltenes of different compositions 

As discussed in Sections 8.1.1 and 8.1.2 ultrasound spectroscopy is sensitive to detect 

the presence of aggregation in asphaltene/toluene system. Examples of its application 

for the purpose of this study have generated sound velocity and attenuation shown in 

Figures (8.4 – 8.11). There is a steady decrease in velocity as concentration increases to 

a point (sudden break in the velocity of curve), wherein the velocity increases as the 
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asphaltene molecules aggregate into cluster to form larger clusters. The velocity of 

sound from the studied asphaltenes, irrespective of their sources, exhibits a similar 

behaviour (Figure 8.4 – 8.6). This behaviour is similar to observation of Andreatta et al. 

(2005a). These authors conducted a series of stepwise dissolution of asphaltene solids in 

toluene system as well as known surfactants. Consequently, measurements of these 

concentrations revealed that asphaltenes are non-ionic surfactants that form 

nanoaggregates and exhibit CNACs. 

In addition, the attenuation data do exhibit similar behaviour to velocity data for all 

studied asphaltene in toluene samples. The clear break in SN1 asphaltene curve (Figure 

8.6) is in contrast to the behaviour of SN2 asphaltene in toluene using velocity of sound 

(Figure 8.10). It will be difficult to confuse the behaviour since SN2 increases the 

attenuation of sound compared to velocity of sound. It should be pointed out that 

attenuation of sound data from the measurement of asphaltene in toluene solution at 25 

oC do exhibit similar break in curve to velocity data that represents CNAC. The data of 

velocity and attenuation of sound from asphaltene of non-biodegraded oil has been 

shown (Table 8.3) to be much low concentrations (C ≤ 0.03 – 0.10 g/L) whilst higher 

concentrations (C ≤ 0.15 – 0.16 g/L) for asphaltene of degraded oil. 
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Table 8.3: Comparison of experimentally determined CNAC with statistical uncertainties in toluene using 

attenuation and velocity of sound for asphaltenes in toluene at 25 oC 

 Sample Mean CNAC (g/L) "+" "-" Upper CNAC (g/L) Lower CNAC (g/L) 

NA61 (Non-degraded) 0.07/0.03 0.05/0.04 0.03/0.02 0.12/0.08 0.02/0.02 

SN1 (biodegraded) 0.15/0.16 0.07/0.03 0.05/0.08 0.22/0.08 0.11/0.07 

SN2 (Non-degraded) 0.06/0.10 0.02/0.04 0.06/0.03 0.04/0.14 0.03/0.08 

The values on the right of "/ are mean CNACs estimated using attenuation of sound, the lift of /” are the CNACs 

from ultrasonic velocity of sound on the asphaltene-toluene system; “+” and “-” are the estimated standard errors. 
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 Summary and conclusions 

High-precision ultrasound spectroscopy was used to assess asphaltene aggregates in 

toluene. The ultrasound data clearly show a change in the aggregation profile of 

asphaltenes at 25 oC, in the range of approximately 0.03 – 0.16 g/L. These data are 

consistent with formation of nanoaggregates at the previously reported CNAC of 

approx. 0.10 g/L. Our results provide further evidence that substantial aggregation is 

taking place in regions of low concentrations (C ≤ 0.03 g/L) for primary molecular 

aggregation formations in non-degraded oils and higher concentrations (C ≤ 0.16 g/L) 

for biodegraded oil. Asphaltene nanoaggregates of biodegraded oils showed an increase 

in the CNAC from both sound velocity and attenuation compared to those of the non-

degraded oils, indicating that the molecular composition of crude oils may be correlated 

with the asphaltene aggregation process. This result is consistent with recent studies 

which indicate that asphaltenes can self-associate in solution to give rise to, more or 

less, extended aggregates (Andreatta et al., 2005a; Betancourt et al., 2008; Mullins, 

2010). 

The CNAC derived from the attenuation data yields good agreement with the velocity 

data, which indicates that the phase-equilibrium theory fits well for both measurements 

at room temperature. Furthermore, since the interaction of asphaltene particles is 

sensitive to the effects of concentration, the theory can best be associated with 

components of a hydrocarbon system. Consequently, attenuation sound data has 

considerable potential to corroborate previous finds regarding CNAC, it is nevertheless 

very compelling that very substantial aggregation is taking place in the corresponding 

concentration range. 

 Importantly, the statistical uncertainty in the CNAC value measured from both the 

velocity and attenuation of sound data shows significant difference between asphaltenes 

of biodegraded to non-biodegraded oils. 
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Chapter 9 Conclusions and Future Work 

 General conclusions 

The oils analysed in this study consist of varying levels of biodegradation ranging from 

1 to 6 on the Peters and Moldowan (PM) biodegradation scale. 

The studied biomarkers suggest that the oils were sourced from facies containing either 

terrigenous organic matter deposited under oxic-suboxic conditions, marine organic 

matter deposited under anoxic conditions or a mixed contribution of terrestrial and 

marine sources. The thermal maturities of the oils were assessed using both the 

distributions of the saturated and the aromatic biomarkers. There was a wide range of 

values for the thermal maturity parameters of the oils ranging from immature to highly 

mature. 

The Iatroscan technique tends to measure a consistently higher asphaltene content in 

most oils as compared to the gravimetric procedure whilst for biodegraded oils the 

gravimetric procedure quantified a higher value consistently for the asphaltenes as 

compared to the Iatroscan method. The reasons for this are unknown, but it could be 

that biodegraded asphaltenes have a different chemical composition to that of 

undegraded asphaltenes. 

The attenuated total reflectance (ATR) FTIR analysis of the asphaltenes revealed that 

the asphaltenes consist predominantly of aliphatic moieties bound to aromatic 

structures. Furthermore, minor components of hydroxyl, ether, ester, carboxyl, 

sulphoxide and ketone groups are also present. However, irrespective of source facies 

and location, carboxyl groups were detected in asphaltenes from weakly biodegraded 

oils and absent in all asphaltenes from heavily biodegraded oils. 

The biomarkers of the maltenes show different distributions compared to those of the 

asphaltenes, e.g. the 17β(H),21β(H) hopanes are absent from the maltenes whereas the 

asphaltene RICO products of hopanoids revealed all three series 17α(H),21β(H), 

17β(H),21β(H) and 17β(H),21α(H) of hopane skeleton configurations. The maturity 

parameters of the hopane distributions of the maltenes and oils were observed to show 

apparent higher levels of thermal maturity compared to those of the respective 

asphaltenes that show lower levels of thermal maturity. The composition of the steroids 

in the asphaltenes includes C28 - C30 regular steranes and C29 - C31 steranoic acids which 
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were observed to consist of the 5α(H),7α(H),17α(H) with 20S and 20R configurations. 

The maturity parameters of the chemically bound biomarkers are also consistent with 

apparent lower maturity amongst all oils compared to the corresponding sterane in the 

maltene hydrocarbon fraction. The most likely explanation is that isomerisation of the 

bound biomarkers is inhibited due to steric effects afforded by the protective nature of 

the asphaltene matrix (Jaffe and Gardinali, 1990).  

The critical nanoaggregate concentration of asphaltenes (CNAC) in toluene solution 

was measured using high-precision ultrasound resonance spectroscopy. According to 

the Mullins model (Mullins, 2010), the CNAC represents the concentration at which the 

asphaltene changes from being in monomeric form (for concentrations below the 

CNAC) to a nanoaggregate of approximately 8 asphaltene monomerics molecules. 

Using the mathematical model proposed by Andreatta et al (2005a), the CNAC is 

identified as the intersection of two straight line when the speed of sound is plotted as a 

function of asphaltene concentration. The attenuation of sound versus concentration 

shows a similar behaviour, allowing a second, albeit empirical approach to determine 

the CNAC. The measured CNAC values, lie between ~0.03 – 0.16 g/L were comparable 

with previously measured CNAC values by Andreatta et al. (2005a). Furthermore, the 

CNAC of non-degraded and biodegraded oils is found to be statistically significantly 

different. The CNAC of asphaltenes from the non-biodegraded oils starts to associate at 

~0.03 – 0.10 g/L and from a biodegraded oil at ~0.16 g/L. These results indicate that 

biodegradation influences the aggregation properties of the asphaltenes.  
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 Future work 

The application of organic geochemical techniques and high-precision ultrasound 

resonance spectroscopy in this study has potential to improve our understanding of both 

the biomarkers and the aggregation properties of asphaltenes. The mechanisms 

responsible for aggregation of asphaltenes in whole oils is another long term goal that 

must be quantified. Recent studies (Mullins et al., 2012a) have shown the concentration 

of formation and most significantly, the link between laboratory species and those that 

exist in crude oils, especially in the oil reservoirs. Future studies should consider the 

feasibility of investigating the following: 

a. Iatroscan and gravimetric studies have highlighted the difficulties in quantifying 

asphaltene contents in crude oils, it is proposed that it may be feasible to use ATR-FTIR 

spectroscopy to quantify in-situ asphaltenes in whole oils. The method has been 

demonstrated to reliably characterize and obtain information at a microscopic level of 

crude oil asphaltenes without having to precipitate the asphaltenes out of the oil with 

aliphatic organic solvents (Welte et al., 1982; Gabrienko et al., 2014). The ATR-FTIR 

spectroscopy can measure the asphaltene content by applying the focal plane array 

(FPA) detector in the vicinity of the diamond crystal to probe a relatively thin layer of 

crude oil. Consequently, the detector allows recording of up to several thousand 

individual infrared spectra simultaneously of the crude oil. Future studies could 

investigate the possibility that ATR-FTIR spectra could be used to quantify the 

asphaltene content in an oil.  

b. There are some compounds in acid fractions of the RICO products of oil asphaltenes 

that have not been identified. There is therefore the need to further investigate these 

products as these could improve the understanding of the nature of precursor molecules 

in asphaltenes. 

c. Ultrasonic spectroscopy of asphaltenes from more crude oils (biodegraded and non-

biodegraded samples) from various sources should be acquired and analysed from 

regional locations to identify the significant differences that exist between asphaltenes 

of the biodegraded and non-degraded oils. This is necessary as the technique used to 

characterise the asphaltene aggregation in this study did not consider the potential that  
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various potential sources can provide an improved understanding of asphaltene 

aggregation state in petroleum.  

d. Aggregation can also be further investigated over higher concentrations of up to 10.0 

g/L in crude oils to increase the information regarding the balance of association/ 

disassociation of aggregates as a function of concentration. In addition, a log-log scale 

should be plotted at the lower concentrations to see if asphaltene in crude oil exhibits a 

power law, which is a function of the continuous phase together with the suspended 

particles, operating at low concentrations. 

e. Ultrasound may be used to  determine  the  size  of  the  scattering  particles  from  

the  acoustic spectrum including the changing size of asphaltene particles during 

aggregation. This method uses attenuation as a function of frequency to measure the 

size distribution of the dispersed phase. 
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APPENDIX 

Appendix 1.0: Study samples and locations 

No Sample name Sample type Location 

1 NA1 Oil Nigeria 

2 NB2 Oil Nigeria 

3 NC3 Oil Nigeria 

4 NA Oil Nigeria 

5 NB Oil Nigeria 

6 NC Oil Nigeria 

7 ND Oil Nigeria 

8 NE Oil Nigeria 

9 NF Oil Nigeria 

10 NO Oil Nigeria 

11 NN Oil Nigeria 

12 N25 Oil Nigeria 

13 N18 Oil Nigeria 

14 NNI Oil Nigeria 

15 NA41 Oil Nigeria 

16 UKB Oil United Kingdom 

18 UK88 Oil United Kingdom 

19 UK85 Oil United Kingdom 

20 UK66 Oil United Kingdom 

21 UK65 Oil United Kingdom 

22 UK80 Oil United Kingdom 

23 UK34 Oil United Kingdom 

24 UK11 Oil United Kingdom 

25 UK01 Oil United Kingdom 

26 UK05 Oil United Kingdom 

27 ME12 Oil Middle East 

28 UKV Oil United Kingdom 

29 ME77 Oil Middle East 

30 ME39 Oil Middle East 

31 ME43 Oil Middle East 

32 SN1 Oil Serbia 

33 SN2 Oil Serbia 

34 NA72 Oil North America 

35 NA73 Oil North America 

36 NA74 Oil North America 

37 NA75 Oil North America 

38 NA79 Oil North America 

39 NA61 Oil North America 

40 NA76 Oil North America 

41 NAC Oil North America 

42 CA3 Coal North Sea, UK 

43 CA4 Coal North Sea, UK 

44 CA6 Coal North Sea, UK 
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Appendix 2.0: Monitored ions (m/z) in selected ion and full scan modes 
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Appendix 3.0: Selected biomarker data for principal components analysis for the oils and coals 
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Appendix 4.0: Comparison of weight of asphaltene content (mg/g) recovered from Iatroscan and gravimetric 

methods. 
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Appendix 5.0: Calculated contents in mg/g of the asphaltene fraction recovered from gravimetric procedure of 

the oils as mean ± one standard error. 

Sample Location GRAVIMETRIC  IATROSCAN  

     (mg/g) SD  (mg/g) SD 

NA (O) Nigeria 1.65 ± 0.24 11.72 ± 0.14 

NB (O) Nigeria 1.11 ±  0.49 15.62 ± 0.17 

NC (O) Nigeria 2.53 ± 1.44 3.21 ± 0.25 

ND (O) Nigeria 1.9 ± 0.96  11.58 ± 0.55 

UKB (O) United Kingdom 28.72 ± 0.12 6.26 ± 0.11 

UK11 (O) United Kingdom 8.21 ± 3.78 17.68 ± 0.23 

UK 01 (O) United Kingdom 7.03 ± 0.11 16.8 ± 0.91 

UK 05 (O) United Kingdom 5.44 ± 0.46 17.01 ± 0.54 

ME39 (O) Middle East 16.05 ± 3.11 4.70 ± 0.37 

ME43 (O) Middle East 22.21 ± 0.53 3.92 ± 0.10 

SN1 (O) Serbia 20.05 ± 9.19 71.53 ± 0.60 

SN2 (O) Serbia 24.34 ± 9.74 15.94 ± 0.21 

NA73 (O) North America 4.19 ± 1.98 21.41 ± 1.02 

NA74  (O) North America 4.07 ± 1.36 7.67 ± 0.77 

NA75  (O) North America 1.73 ± 1.19 2.64 ± 0.07 

NA76  (O) North America 124.36 ± 0.57 137.16 ± 1.40 

NA79  (O) North America 2.79 ± 0.14 2.09 ± 1.40 

NA61  (O) North America 36.34 ± 12.45 84.50 ± 0.77 

NAC (O) North America 50.16 ± 0.16 41.65 ± 0.82 

 


