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Abstract

Functional data analysis (FDA) has many applications in almost every branch of science,

such as engineering, medicine and biology. It aims to cope with the analysis of data in

the form of images, curves and shapes. In this thesis, we study the 2D trajectories of

hyoid bone movement from X-ray image. Those curves are seen as the observations of

multi-dimensional functional data. We firstly develop an all-in-one platform for the data

acquisition and preprocessing. However, analyzing the data arises a lot of challenges. In

this thesis, we provide solutions to solve some of those challenging problems.

We propose one new registration method for handling those raw 2D curves. It basically

integrates Generalized Procrusts analysis and self-modelling registration method (GPSM ).

However, the application reveals that the classification followed by registration does not

work well. Therefore, we propose two-stage functional models for joint curve registration

and classification (JCRC ). In the first stage, we use a functional logistic regression model

where the aligned curves are estimated from the second stage. The latter uses a nonlinear

warping function while modelling the 2D curves, i.e. resolving the misaligned problem

and modelling problem simultaneously. This two-stage model takes into account both the

scalar variables and the multi-dimensional functional data. For the functional data clus-

tering, we propose mixtures of Gaussian process functional regression with time warping

and logistic allocation model, allowing the use of both types of variables and also allowing

simultaneous registration and clustering (SRC ). A two-level model is introduced. For the

data collected from subjects in different groups, a Gaussian process functional regression

model is used as the first level model; an allocation model depending on scalar variables

is used as the second level model providing further information over the groups. Those

three methods, i.e., GPSM, JCRC and SRC are all examined on both simulated data and

real data.

Keywords: Functional data analysis, Registration, Curve classification, Curve clustering,

Gaussian process functional regression model, Allocation model.
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Chapter 1

Introduction

1.1 Aim of the research

Dysphagia is defined as a subjective sensation of difficulty or abnormality of swallowing.

Oropharyngeal dysphagia is characterized by difficulty initiating a swallow, which is caused

by various diseases such as stroke, Parkinson’s disease, neuromuscular diseases, head and

neck cancer (AbdelJalil et al., 2015). The prevalence of dysphagia is expected to increase

taking into consideration an aging population and the increase of the incidence of diseases

related with dysphagia (Feiginl et al., 2003; Dorsey et al., 2007). Videofluoroscopic swallow

study (VFSS) is considered to be a gold standard tool in the assessment of patients with

dysphagia.

Figure 1.1: Example of one frame from a video clip.
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With the image data inside those video clips from VFSS, this research programme

aims to model patients’ recovery level by analyzing the trajectories of several bones during

swallowing, like the movement of hyoid bone and larynx shown in Figure 1.1, and patients’

other related information, such as age, gender and smoking status. In this thesis, we

focus on the trajectories of hyoid bone, which are considered as the observations of multi-

dimensional functional data. Those ‘related information’ are the observations of scalar

variables.

This thesis consists of three parts. The first part develops a platform to obtain the

motion data of hyoid bone from the X-ray video clips. We design desirable and efficient

algorithms to automatically or semi-automatically track the bone’s movement during swal-

lowing. The second part is concerned with preprocessing techniques, such as smoothing,

calibration, segmentation and registration for the raw trajectories before modeling. The

third part is about the classification and clustering for those 2D curves. We propose some

new approaches in the modeling part, that are capable of registering and modelling the

multi-dimensional functional data at the same time and allowing the use of both scalar

and functional variables.

1.2 Background of VFSS and data tracking

Most of the research of VFSS in the clinical setting is qualitative or semi-quantitative

and depends on subjective decision by an interpreter. Some clinicians or researchers are

using temporal parameters (e.g. oral transit time, pharyngeal transit time) or kinematic

parameters from motion analysis to classify the dysphagia, to predict the prognosis or to

assess the treatment effect (Pai et al., 2008; Nam et al., 2013; Seo et al., 2011; Molfenter

and Steele, 2014). The hyoid bone is the most commonly selected in kinematic analysis.

Both displacement and velocity of the hyoid bone excursion are associated with swallowing

function and dysphagia. The maximum excursion and peak velocity of the hyoid bone mo-

tion are associated with bolus bolume (Nagy et al., 2014) and changed with aging (Kang

et al., 2010). Hyoid bone anterior displacement is reduced in patients with myopathy and

irradiated nasopharyngeal carcinoma (Pai et al., 2008; Wang et al., 2010). Laryngeal ele-

vation velocity was an independent predictor of aspiration in patients with acute ischemic

stroke (Zhang et al., 2016). Therefore, the parameters from hyoid bone motion analysis

provide some meaningful solutions in research or clinical practices. However, the classical

manual tracking method is labor intensive and impractical in real clinical practice (Steele

et al., 2011; Ludlow et al., 2007).

To overcome this limitation, researchers have tried to develop software to track the

hyoid bone and to get the trajectory automatically. Kellen et al. (2010) have reported their

computer-assisted assessment of hyoid bone motion and found a high correlation between
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automatic tracking and manual tracking. This software can reduce the burdens for VFSS

motion analysis and make further quantitative analysis practically possible. However, one

of the limitations of the existing software is the lack of ability to track the masked points.

Most of them are unable to do semi-automatic smoothing and segmentation in this stage.

We developed algorithms to resolve these limitations. The trajectories obtained from the

tracking are basically the observations of multi-dimensional functional data, so that the

functional data analysis can be utilized to address the related issues.

1.3 Review of functional data analysis

The research area of functional data analysis (FDA) dates back to Grenander (1950)

and Rao (1958) and the term was first used by Ramsay (1982). Nowadays, it has many

applications in almost every branch of science, like engineering, medicine, biology and

geology. Essentially, it aims at coping with the analysis of data in the form of images,

curves and shapes. The most important characteristic of functional data is the intrinsically

infinite dimensionality. This, on one hand, provides rich information and gives much

chances for research work; on the other hand, brings challenges for theory and computation

(Wang et al., 2015).

The typical first generation functional data are composed of independent real-valued

functions {xi(t), i = 1, . . . , N} defined on a interval I = [0, L] on the real line. Gasser et al.

(1984), Rice and Silverman (1991) and Gasser and Kneip (1995) have termed those data as

curve data, which can also be regarded as the realizations of a one-dimensional stochastic

process like Hilbert space. We usually model functional data with parametric approaches

like the mixed effects nonlinear models (Raket et al., 2016), but the huge information

hidden in the infinite dimensional data, the demand of a large degree of flexibility, as

well as the natural ordering in the curve datum make loads of non- and semi-parametric

approaches possible (Gervini and Gasser, 2004).

Furthermore, some challenges arise while extending those functional data from one-

dimension to multi-dimensions, particularly the spatial and temporal registration problems

(Gower, 1975a; Gervini and Gasser, 2004; Srivastava et al., 2011a). A more challeng-

ing problem is to do registration and modeling (classification and clustering) for multi-

dimensional functional data at the same time. In this section, we will briefly illustrate the

background of registration, focusing on the time warping, and the functional classification

and clustering.

1.3.1 Time warping of functional data

Functional data always comes along with challenges, like observation noise, infinite-dimensionality

of function spaces as aforementioned. Among these problems, the lateral displacement
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termed as phase variation in curves, as opposed to amplitude variation in curve height,

has drawn much attention. The former can always increase the data variance, distort

principal components and make the underlying data structures unclear, so it is necessary

to remove the phase variation from the amplitude in a desirable fashion.

To do so, we need to articulate the concept of a time-warping function, which is a

mapping from one time scale to another. If we denote the system time or internal time

scale as t, which is the underlying time process shared by all the observations, then the

functional relationship g−1(t) represents the clock time or individual-specific time scale,

varying one from another. We call g−1 the time warping function. In statistics, we are

always seeking methods to estimate g−1.

Time Warping function

There are many different types of warping functions to illustrate various phase variation.

In most cases, the choice of warping function relies on the particular application context.

It includes (a) uniform shift: shifting the time axis by a constant a ∈ R, i.e. g−1(t) = a+t;

(b) uniform scaling: rescaling the time warping by a constant b ∈ R+ , i.e. g−1(t) = bt;

(c) linear transform: combining uniform shift and uniform scaling leads to linear transfor-

mation: g−1(t) = a + bt; (d) diffeomorphisms: including domain warpings given by a set

of diffeomorphisms of the domain to itself. If the domain is defined to be a full real line,

the set of linear transformations is just a special case of the set of diffeomorphines. The

warpings are practically restricted to compact intervals (Marron et al., 2015).

Generally, we define a warping function as the diffeomorphism: g−1(t) : [0, L]→ [0, L],

which satisfies the following basic conditions:

1. Strict monotonicity: g−1(t1) < g−1(t2) for t1 < t2 where ti ∈ [0, L],

2. Boundary conditions: g−1(0) = 0 and g−1(L) = L,

3. Continuity: ∀ε > 0, ∃δ > 0, as |t1 − t2| < δ, |g−1(t1)− g−1(t2)| < ε.

Strategies of registration

The main purpose of registration is to remove phase variation from amplitude variation

via estimating the warping function g−1. We do this for the sake of reducing the variance

of functional data and improving the statistical inference. Denote the functional data as

x(t) : R→ RA,

where A is the dimension of x and t represents the time scale for A = 1. t can also be seen

as the unit of the arc length along the curve as A > 1. The strategies for data registration,

generally, can be divided into two categories as follows:

4



Chapter 1. Introduction

(a) While registering two curves x1 and x2, in other words, doing the pairwise align-

ment of functions, the mostly often used strategy is to find a good metric for g−1:

µ[g−1|x1,x2]. These metrics are, but not restricted to, a variety of loss functions like

L2 distance and similarity index defined by Sangalli et al. (2009). They might not

only just focus on function x itself, but also care about its first derivative or second

derivative, features like landmarks or even the related equivalence classes (Srivastava

et al., 2011a,b). Then optimize this objective function

g̃−1 = arg max
g−1∈G

µ[g−1|x1,x2], or g̃−1 = arg min
g−1∈G

µ[g−1|x1,x2], (1.1)

where G is the group of warping function g−1, having different structures for specific

application context. The dynamic programming algorithm is widely used to obtain

the approximate global optimal solution.

Sometimes, the registration for multiple curves seems difficult in analyzing data

unless there already exist a template. In most cases the technique for multiple

registration is just the extension of the binary case, constructing a template by an

iterative way and aligning each of the remaining curves to it (Ramsay and Li, 1998;

Kneip et al., 2000). The others, however, try to use new methods, deriving models

tailored to the entire function data (Gervini and Gasser, 2004; Tang and Müller,

1998).

(b) Another strategy is to model g−1 directly or indirectly first and then estimate g−1

via maximum likelihood estimation (Raket et al., 2014) or Bayesian inference (Cheng

et al., 2016; Wu and Hitchcock, 2016; Earls and Hooker, 2017)

g̃−1 = f(M [g−1|x1,x2, . . . ,xn]), (1.2)

where M denotes the model for g−1 and f represents any function, such as the mean

of the posterior distribution or the maximum likelihood for the model, etc.

Most of these methods are confined to registering the functional data in the case of A = 1,

i.e. one dimensional situation. Only a few approaches, like these by Sangalli et al. (2009),

Srivastava et al. (2011a) and Cheng et al. (2016) can be applied to the multi-dimensional

case. Their methods, however, are mostly used as one kind of preprocessing technique

before statistical analysis. It is of interest for us to find a new way to do registration for

multi-dimensional functional data, whether before or during modelling.
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1.3.2 Functional regression

Functional regression has been widely studied and it generally has two kinds: (1) functional

responses with either scalar or functional covariates or both and (2) scalar responses with

both scalar and functional covariates (Ramsay and Silverman, 2005). For the former,

Ramsay and Dalzell (1991) proposed the functional linear model (FLM), while the idea

originates from Grenander (1950) who derived it as the regression of one Gaussian process

on another. For the latter, the topic has been extensively explored, like Müller (2005,

2011) and Morris (2015). We will focus on the second kind in this thesis.

The functional linear model with scalar response y ∈ R and functional covariate x(t) ∈
R can be expressed as

y = b0 +

∫
I
x(t)β(t)dt+ ε, (1.3)

where b0 and β(t) are the regression coefficient and functional coefficient respectively,

ε is a zero mean random error, t ∈ I; see e.g. Cardot et al. (1999, 2003), Hall and

Horowitz (2007) and Hilgert et al. (2013). Usually, we use the same functional basis, like

B-spline basis, to expand both the functional covariate x(t) and the coefficient function

β(t). For instance, while expanding x(t) and β(t) in orthonormal basis {φj , j ≥ 1} into

x(t) =
∑∞

j=1Bjφj(t) and β(t) =
∑∞

j=1 βjφj respectively, model (1.3) is equivalent to the

traditional linear model with the form

y = b0 +

∞∑
j=1

βjBj + ε,

where the summation on the βjBj can be approximated by a finite sum, which is truncated

at the first J terms. The functional linear model (1.3) can be extended to multiple

functional covariates {xa(t), a = 1, . . . , A}, with a vector of scalar covariates {vj , j =

1, . . . , p} by

y =

p∑
j=1

vjαj +
A∑
a=1

∫
Ia

xa(t)βa(t)dt+ ε. (1.4)

The inference of model (1.4) is slightly different from model (1.3) because of the presence

of the unknown parameters {αj , j = 1, . . . , p}. Hu et al. (2004) proposed one combined

least squares method to estimate αj and βj .

Adding a nonlinear link function f to the functional linear model (1.3) produces a

generalized functional linear model

y = f
(
b0 +

∫
I
x(t)β(t)dt

)
+ ε. (1.5)

Model (1.5) can be within the exponential family or a quasi-likelihood framework and a
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suitable variance function. It has been investigated as f is known (James, 2002; Cardot

et al., 2003; Cardot and Sarda, 2005; Wang et al., 2010; Dou et al., 2012)) and unknown

(Müller and Stadtmüller, 2005; Chen and Müller, 2011; Goldsmith et al., 2011). We refer

to Wang et al. (2015) for a comprehensive review on this subject.

1.3.3 Classification of functional data

Functional data classification is aimed to assign a group membership to a new data ob-

ject with a classifier or a discriminant. Most approaches, such as generalized functional

linear regression models and functional multi-class logit models, are based on functional

regression models featuring class labels as responses and the observed functional data and

other scalar covariates as predictors. Those methods usually apply a dimension reduction

technique using a truncated expansion in the data-adaptive eigenbasis or a pre-specified

function basis.

Generalized functional linear models (James, 2002; Müller and Stadtmüller, 2005;

Müller, 2005; Goldsmith et al., 2011), including the functional logistic regression model,

are the most popular methods for regression-based functional classification. For a random

sample with two groups {(yi,xi); i = 1, . . . , n}, where yi ∈ {0, 1} represents a class label

and xi’s are functional observations, a classification model for a functional observation x∗

based on functional logistic regression is

π = p(y∗ = 1|x∗),

logit(π) = b0 +

∫
I
x∗(t)β(t)dt,

(1.6)

where b0 is an intercept term and β(t) the coefficient function of the predictor x∗. The

model-based Bayes classification rule chooses the class label y∗ with the maximal posterior

probability among {p(y∗ = k|x∗); k = 0, 1}. This model can be easily extended to the case

with K(K > 2) groups. Several variants of the functional logistic regression model have

been studied (Wang et al., 2007; Zhu et al., 2010; Rincon and Ruiz-Medina, 2012).

1.3.4 Clustering of functional data

Functional clustering is an active research area in FDA and has received great attention

in the last decade. It is different from functional classification due to the unknown class

labels while grouping those objects. The aim of clustering is to group a set of data such

that data within groups (clusters) are more similar than across groups with respect to a

metric. It is often used as a preliminary step for data exploration by identifying particular

patterns to provide the user with convenient interpretation. Generally, it is a difficult

task due to the lack of distances or estimation from noise data and a definition for the
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probability of a functional variable. The most popular approaches of functional clustering

can mainly be divided into two categories: model-based approaches and non-parametric

approaches.

The model-based functional clustering technique is also called distribution-based clus-

tering. One approach is to model principal components (Delaigle and Hall, 2010; Bouvey-

ron and Jacques, 2011) or basis expansion coefficients (James and Sugar, 2003; Sam et al.,

2011)) with mixture Gaussian distributions. Another method is to model those curves

directly by mixture Gaussian process (Shi et al., 2005; Shi and Wang, 2008). Clusters

can be defined as objects (principal components, coefficients or curves) belonging most

likely to the same distribution. The related theoretical foundation is solid while suffering

from over-fitting. The EM algorithm is one of the most popular methods to implement

estimation, though may converge to a local optimum.

The non-parametric clustering mainly includes connectivity-based clustering, also known

as hierarchical clustering (Ferraty and Vieu, 2006) and centroid-based clustering, also

known as k-means clustering (Tarpey and Kinateder, 2003; Tokushige et al., 2007; Ieva

et al., 2013). The hierarchical clustering is based on the idea of curves being more related

to nearby curves than to curves further away. The related algorithms connect curves to

form “clusters” based on their distance. A cluster can be largely described by the maxi-

mum distance required to connect parts of the cluster. k-means clustering is to find the

k cluster centers and then assign the curves to the nearest cluster center to minimize

the squared distances from the cluster. We can also use the classical clustering tool for

finite dimensional data after reducing dimension. Specifically, after approximating the

curves into a finite basis of functions (Abraham et al., 2003), we can summarize the curves

by their coefficients in a basis of functions or by their first principle component scores

and then perform clustering. For instance, Abraham et al. (2003) and Peng and Müller

(2008) perform the k-mean algorithm on B-spline coefficients and on a given number of

principle component scores, respectively. We refer to Jacques and Cristian (2014) for a

comprehensive review on functional clustering.

The common limitations of functional classification and clustering by those methods

aforementioned are (1) few of them are able to do registration while modelling the multi-

dimensional functional data; (2) most of them ignore the use of scalar variables, which

often provide useful information. This thesis will focus on solving these problems.

1.4 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we develop a framework for data acqui-

sition from X-ray image. The background on subjects and experimental design is firstly

described and then followed by the methodology of semi-automatic tracking for the hyoid
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bone. We also introduce procedures of semi-automatic smoothing, calibration and auto-

matic segmentation for the raw data. The validation results show that the semi-automatic

tracking has high agreement with manual tracking.

Chapter 3 proposes a methodology to implement the registration for the multi-dimensional

functional data. It firstly reviews the background of GPA (Gower, 1975a) and self-

modeling registration (Gervini and Gasser, 2004) and then discusses the integration of

those two methods (GPSM ), as well as the corresponding algorithm. Numerical analyses

are given afterwards.

In Chapter 4, we propose one methodology for joint curve registration and classification

with mixed scalar and functional variables (JCRC ). It consists of two-stage functional

models with the first stage using a functional logistic regression model where the aligned

curves are estimated from the second stage model. The later uses the functional mixed

effect model for simultaneous registration and curve modelling. This methodology takes

advantage of both scalar variables and functional variables. Procedures of model inference

and implementation, as well as the asymptotic properties of interested parameters are

introduced. We also implement an iterative algorithm for predicting the outcomes and

present numerical analyses to investigate the performance of the proposed method.

Furthermore, Chapter 5 proposes the simultaneous curve registration and clustering

(SRC ) for multi-dimensional functional data. Two-level models are introduced, including

the mixtures of Gaussian process functional regression with time warping as the first level

model and the logistic allocation model using the scalar variable as the second level model.

This methodology allows for simultaneous registration and modelling, and allows for the

use of both functional variables and scalar variables. It is implemented using an EM

algorithm. A comprehensive simulation study and real data analyses are followed in the

end.

Finally, we conclude in Chapter 6 with comments on future work.

9



Chapter 2

Semi-automatic Tracking,

Smoothing and Segmentation of

Hyoid Bone Motion from

Videofluoroscopic Swallowing

Study

2.1 Introduction

Motion analysis of hyoid bone via videofluoroscopic study has been used in clinical re-

search, but the classical manual tracking method is generally labor intensive and time

consuming. Although some automatic tracking methods have been developed, masked

points could not be tracked. The smoothing and segmentation, which are necessary for

functional motion analysis prior to registration, were not provided by the previous soft-

ware either. In this chapter, we try to develop a software to track the hyoid bone motion

semi-automatically. It works even in the situation where the hyoid bone is masked by

the mandible and it has been validated in dysphagia patients with stroke. In addition,

we added the function of automatic smoothing and segmentation, which is necessary for

further quantitative motion analysis and can reduce the time needed for manual working.

The development of the automatic or semi-automatic process from hyoid bone tracking

and smoothing to segmentation enables the motion analysis of VFSS to have a potential

wide use in clinical practice and research. This work has been published (Kim et al., 2017).

The structure of this chapter is as follows. Firstly, Section 2.2 briefly introduces the

background on subjects and experimental design. The methodology of semi-automatic

tracking for the hyoid bone, the way of semi-automatic smoothing and calibration, as well
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as the semi-automatic segmentation for the curves are given in Section 2.3. Section 2.4

discusses the validation and rough statistical analysis for hyoid bone motion. A summary

of this chapter follows in Section 2.5.

2.2 Subjects and experimental design

VFSS data and medical information for stroke patients were retrospectively reviewed from

the database of VFSS movie files and medical records in Seoul National University Bun-

dang Hospital. A total of 30 patients’ data (mean age: 62.0 ± 11.4 yrs, 23 men and 7

women) were used to develop software (tracking, smoothing and calibration, and segmen-

tation) and 20 circles from 17 patients trajectories (10 circles from 8 unmasked trajectories

and 10 circles from 9 masked trajectories) were used to validate the semi-automatic track-

ing method. One circle for each subjects trajectory of hyoid bone was usually detected

and extracted while two circles were obtained in subjects number 5, 11 and 16. Each circle

was used to validate the semi-automatic tracking method.

VFSS was tested in subjects with dysphagia after stroke with foods in various forms,

including fluid, thickened fluid, a semi-blended food, and boiled rice, which was the modi-

fied protocol (Logemann, 1993). Each food was provided by spoon. The lateral projection

of the VFSS taken during the 2-ml thin-fluid swallowing was used for software development

and validation. VFSS were recorded at 30 frames per second.

One researcher performed the manual tracking and automatic tracking of hyoid bone

from VFSS clips. When one type of tracking was performed, the tester did not consult the

result of another type of tracking in each patient. After all tracking were completed, the

validation were performed without modifying tracking results. The research protocol was

approved by the Seoul National University Bundang Hospital institutional review board

and was conducted in accordance with the regulatory standards of Good Clinical Prac-

tice and the Declaration of Helsinki (World Medical Association Declaration of Helsinki:

Ethical Principles for Medical Research Involving Human Subjects, 2000).

2.3 All-in-one platform for the motion analysis of hyoid

bone

2.3.1 Overview

Inspired by the method by Kellen et al. (2010), in our study we specify a target point on

the hyoid bone on one frame and then track the target automatically for the whole video

sequence. The ROI (region of interest) window size by default should be large enough so

that it is not so sensitive to the smaller movements of the hyoid bone. Each frame of the
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sequence is then processed to track the ROI centered at the target point across frames.

The tracking of the ROI which is partly masked by other objects such as the mandible in

some frames has been considered in our methodology. Furthermore, we also consider the

situation where the tracking process might collapse due to the existence of unidentifiable

and invisible ROI in some frames. An automatic monitoring and indication mechanism

has been added, enabling us to re-specify the target point and reset the window size of

ROI and then resume the tracking process. In order to correct for the subject’s head

motion during process, a new coordinate system is defined via the anterior-inferior border

of the second and fourth cervical vertebrae across the entire procedure. Semi-automatic

smoothing via cubic smoothing is added for those target points in the hyoid bone and in the

cervical vertebra for the sake of reducing tracking errors. Our platform also emphasizes the

segmentation. After selecting one desired circle from the data, the automatic segmentation

will be carried out. By analyzing the first and second derivatives, a definition of splitting

score is introduced and used for an automatic segmentation. This provides necessary and

useful information for clinical assessment and further statistical analysis such as functional

classification. The code for data tracking and for data preprocessing like semi-automatic

smoothing, calibration, validation and segmentation is based on MATALAB (R2014a) and

RStudio Version 0.99.484 - c©2009-2015 RStudio, Inc.

2.3.2 Procedures of tracking

To define the template ROI, the user uses the mouse to identify any target point on the

hyoid bone and then a square centered at it with default side lengths can be created

automatically. The target point, together with this square, called ROI or template, are

tracked automatically frame by frame by utilizing the information from horizontal and

vertical edge images calculated using Sobel edge operators (Sobel, 1990). The key point

is to minimize the sum of the squared difference between the local edge characteristics in

the templates and that in the images which have been rotated within and shifted over a

suitable neighborhood. The best match for the template in the next frame can then be

found. Hence the tracking process can be iterated by updating the positions of both ROI

and the target point. For the partly masked frames, another two points along the edge

of the mandible should be identified by mouse. Using the methodology described in the

previous section, the target point can still be tracked automatically.

When it comes to extreme situations, for example the ROI or the target point on the

hyoid bone being covered by other objects like the lower part of the mandible, the tracking

method (Kellen et al., 2010) no longer works because the local edge characteristics of ROI

are heavily interrupted. So far there has been little research on addressing this problem.

Technically, the masked ROI refers to the ROI totally or partly overlapped with other

objects such as the mandible during the tracking process. This often happens over just a
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few frames of the whole video sequences. In this case, it is hard to locate the target point

even by human eyes. The idea is to cut off the masked part in the current ROI. Besides

the target point, it is necessary to track another two points along the edge of the lower

part of the mandible simultaneously via the same tracking method (Kellen et al., 2010).

The locations of these two points should be flexible and the distance between them wide

enough to guarantee the line segment connected by them approximates the lower edge of

the mandible properly. We then check whether the current ROI crosses this line. The

masked part above the line will be cut off if it crosses; otherwise, it will be treated as

a normal case. Consequently, a new ROI′ on which the normal procedure of tracking is

based can be obtained (Figure 2.1). Another key point is the requirement of averaging

the template matching error over the number of pixels within the new ROI′.

Figure 2.1: Example of tracking the partly masked ROI. The target point pinpointed by
the middle red cross is covered by the mandible in this case. This ROI (the middle square)
is cut off by the line segment linked by another two red crosses (their corresponding ROI′s
are the upper and lower squares) along the lower edge of the mandible.

Assuming i0 is the reference frame number, in which the template ROI(i0) is produced

and i represents the current frame number, the template in the current frame is then

supposed to move with a rotation angle θ̃ and translation (x̃1, x̃2)
T 1. After this trans-

formation, the removal of the hidden part of the template (Figure 2.1) is required. As a

result, we obtain a new ROI′(i + 1) in the (i + 1)th frame, which is no longer a square.

All the x1’s and the corresponding x2’s of pixels within ROI′(i+ 1) are then saved in the

vectors ROI′x1(i + 1) and ROI′x2(i + 1) in order respectively. The ROI(i0) needs to be

changed to ROI′(i0) in the same way to make their local edge characteristics Ex1 and Ex2

1We use x1 and x2 to represent x-coordinate and y-coordinate of the point throughout the thesis.
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comparable (Kellen et al., 2010). The template matching error ∆(x̃1, x̃2; θ̃) is given by

∆(x̃1, x̃2; θ̃) =
1

N(i+ 1)

∑
x1∈ROI′x1 (i0);x2∈ROI′x2 (i0);

x′1∈ROI′x1 (i+1);x2∈ROI′x2 (i+1)

(Ex1(x1, x2, i0)− Ex1(x′1, x
′
2, i+ 1))2

+ (Ex2(x1, x2, i0)− Ex2(x′1, x
′
2, i+ 1))2,

(2.1)

where N(i + 1) stands for the total number of pixels within ROI′(i + 1). Equation

(2.1) is minimized by a global optimization method GA with a constrained search space

(Michalewicz and Hartley, 1996). In our implementation, the search constraints are:

−2.5π/180 ≤ θ̃ ≤ 2.5π/180, and −5 ≤ x̃1, x̃2 ≤ 5. The tracking for the next posi-

tion of the template and target point in this special case can then successfully progress.

However, the tracking process may become unstable if the ROI is totally masked by the

mandible. In this rare case, we may estimate the underlying point by the points tracked

in nearby frames or to track it manually.

In some rare extreme situations, such as the hyoid bone moving suddenly or too fast,

the target point is hardly recognizable (Figure 2.2). The optimal search is not applicable

Figure 2.2: Example of unrecognizable hyoid bone located in the square in red. The left
plot: the hyoid bone moves too fast, resulting in the almost equal gray scale value of the
area around it. The right frame: the strong reflective light makes the hyoid bone invisible.

to those circumstances; therefore, a sensitive monitoring mechanic should be used to avoid

possible wrong tracking. Kellen et al. (2010) used a prediction model to initialize the new

point position for the sake of improving tracking accuracy. We used a similar idea but for

monitoring purpose in our package. The prediction model and displacement error for the

next position of the target point are given by

H̃(i+ 1) ≈ H(i) + Ḣ(i)∆t+
Ḧ(i)

2
(∆t)2 +

...
H(i)

6
(∆t)3,
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and

∆H = |H̃(i+ 1)−H(i+ 1)|.

Here, ∆t is the inter frame period, i is the current frame’s sequence number, H(i) and

H(i + 1) are hyoid bone’s current and next position (or coordinates), Ḣ(i), Ḧ(i) and
...
H(i) are respectively the first, second and third derivative of H(i). Given the previously

acquired H(i), the ∆H (absolute difference between H̃(i + 1) and H(i + 1)) should be

less than a prespecified threshold (8 pixel units in our implementation). Otherwise, the

tracking will be regarded as a failure. The software will then automatically review the

possible wrong-tracking frames backward and forward to identify the accurate sequence

number of the first failure frame. After confirming it, we should then manually adjust the

window size of ROI(i), and then go back to the tracking procedure by re-specifying the

same target point in the ith frame by mouse click and continue the tracking process.

2.3.3 Smoothing and calibration

The tracking described in the previous subsections is based on the coordinate system

where the origin is located at the bottom-left corner of the image (image-based coordinate

system). The problem is that there might be sudden body or head motion which would

blur the movement of hyoid bone during the swallowing process. To remove as much of

this kind of error as possible, a new so-called patient-centric coordinate system is required

(Kellen et al., 2010; Potratz et al., 1992). Practically, it seems to be much more convenient

and efficient to define a new coordinate system based on two special points. As described by

Kim et al. (2015), the y-axis of the patient-centric coordinate system is defined as a straight

line connecting the anterior-interior border of the fourth cervical vertebra (C4(xc41 , x
c4
2 ),

origin) to that of the second cervical vertebra (C2(xc21 , x
c2
2 )). The x-axis is defined as a

line perpendicular to the y-axis crossing the origin, C4, as seen in Figure 2.3B. The points

C4 and C2 can be tracked at the same time using the methods illustrated in preceding

subsections over the entire video sequences (Figure 2.3A). To reduce the errors caused

by tracking, smoothing is carried out for both the target point in the hyoid bone and

the two tracking points in the cervical vertebra using a cubic smoothing spline. The

degree of smoothing is controlled by the smoothing parameter, which can be adjusted by

the operator to avoid over-fitting (Figure 2.3D). Then all the data is normalized by the

vertical distance from C4 to C2. Given those two points’ coordinates, the target point

H(x1, x2) in the image-based coordinate system can be transformed to H ′(x′1, x
′
2) in the

patient-centric coordinate system by a simple rotation and translation (Figure 2.3C).

The formula is given by

(x′1, x
′
2)

ᵀ =
1

|C2− C4|

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
(x1 − xc42 , x2 − x

c4
2 )ᵀ,
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Figure 2.3: Example of smoothing and calibration. A. Manually specified two points, C2
and C4, indicated as two red crosses, in the anterior-interior border of the second and the
fourth cervical vertebra at the beginning of tracking. B. The patient-centric coordinate
system with the origin C4, where the y axis is defined as the line crossing C4 and C2
upward and the x axis is defined as the line perpendicular to the y axis leftward. C.
The rugged trajectory in the left panel is raw data based on the image-centric coordinate
system (in pixel) while the smoothing one in the middle and the calibrated one in the right
panel is based on patient-centric coordinate system (in CU). D. Semi-automatic smoothing
by adjusting the spline parameter, which ranges from 0.15 to 0.45. Blue curves represent
the raw trajectory while the red ones are smoothing curves.

where

θ =
π

2
+ arctan

(xc41 − xc21
xc42 − x

c2
2

)
, |C2− C4| =

√
(xc41 − x

c2
2 )2 + (xc42 − x

c2
2 )2.

The effect of smoothing on diminishing tracking errors is demonstrated in the lower

panels of Figure 2.3. The calibration procedure aims to reduce the errors caused by head

motion and make the data collected from different subjects comparable. Our later data

analysis will be based on the trajectory after both smoothing and calibration, of which

the coordinate is based on cervical units (CU) (One cervical unit is defined as the distance

(in pixel) between C2 and C4, i.e.|C2− C4|).
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2.3.4 Segmentation

Dividing one circle of the trajectory into certain phases is necessary for the assessment

of the hyoid bone movement and is useful for further statistical analysis. However, little

research has been carried out in this area, particularly on automatic segmentation. In

terms of the concepts on phases, Kaneko (1992) performs a quantitative study manually

dividing the movement into 5 phases: 1st elevation phase, 2nd elevation phase, static phase

and 1st and 2nd descending phase. Yabunaka et al. (2011) have also done similar work

on sonographic assessment of hyoid bone movement during swallowing by segmenting the

movement into 4 phases: Elevation, Anterior, Remain and Return. We developed a semi-

automatic segmentation method. After manually selecting one complete desired circle

from the entire raw trajectory, an automatic segmentation is conducted.

For simplicity, we use points (x1(t), x2(t)) to represent x and y coordinates after cal-

ibration and smoothing in the t-th frame sequence. Two ends of the manually identified

complete circle are denoted by tA and tB. The technique is to acquire one desired time

interval including one peak in x2(t) and one valley in x1(t) at the same time. These two

points can be easily chosen by human eyes. For instance, the left panel of Figure 2.4A

shows that it is easy to identify the peaks and valleys in these two marginal curves. The

end points of tA and tB are chosen such that the interval (tA, tB) contains both one peak

in the upper curve (x2(t)) and one valley in the lower curve (x1(t)). Furthermore, the

distance between (x1(tA), x2(tA)) and (x1(tB), x2(tB)) should be as small as possible (see

the left panel of Figure 2.4B). The ideal situation is that the distance is equal to zero, i.e.,

the starting point A and ending point B overlap.

Once the desired circle is obtained, automatically dividing the movement into different

phases over (tA, tB) is workable via analyzing the corresponding velocity amplitude

v(t) =

√
(
dx1(t)

dt
)2 + (

dx2(t)

dt
)2, t ∈ (tA, tB).

Specifically, we can find the splitting points t from the equations: (A)dv(t)dt = 0; (B)d
2v(t)
dt2
≥

0. Conditions (A) and (B) guarantee that all the local minimal points in the velocity

amplitude curve are found (see the blue curve in the left panel of Figure 2.4C). Those

local minima are interesting splitting points, which can be directly used in segmentation

in most cases. The corresponding segmentation result is shown in the right panel of Figure

2.4C. In this case the three splitting points, as well as the start point and end point, are

used to split the trajectory into four phases: elevation phase, anterior movement phase,

descending phase and returning phase.

It is not uncommon that more than three candidate splitting points can be obtained

only based on the conditions (A) and (B) (Figure 2.5C), particularly for patients with
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stroke. We propose to find the three best splitting points based on a new measure-

ment, namely, the Splitting Score. Assume there exist m − 2 candidate splitting

points:t2, t3, . . . , tm−1(except the starting point t1 and end point tm). For the ith splitting

point ti(i ∈ [2,m− 1]), we use the following measures.

• Forward Splitting Score

FSS(ti) = max(v(t))− v(ti), t ∈ [ti−1, ti].

• Backward Splitting Score

BSS(ti) = max(v(t))− v(ti), t ∈ [ti, ti+1].

• Splitting Score

SS(ti) = FSS(ti) + BSS(ti).

In fact, the SS value can be regarded as the turning intensity for the candidate points,

the larger, the better. Those t′is with the top 3 Splitting Scores are chosen as the desired

splitting points. Figure 2.5C shows that there are 6 candidate splitting points satisfying

the conditions of (A) and (B). It is easy to identify the three points, indicated by the

labels 2, 5, 6, with the top 3 SS values. The result is shown in Figure 2.5D.

2.4 Validation and statistical analyses

We tracked 20 circles from 17 subjects using our semi-automatic tracking methodology.

Next, each swallow was also tracked manually by a trained observer, who was instructed

to track one recognizable and fixed target point on the hyoid bone across all frames by

clicking the mouse. For the same swallow, we compare the two different trajectories

tracked by automatic computer-assisted method and manually by human being. Similar

to the previous study by Kellen et al. (2010), we used Pearson correlation coefficients and

relative errors defined as

|ROMautomatic tracking − ROMmanual tracking|
ROMmanual tracking

× 100%

to measure the degree of agreement between the both, where ROM stands for range of mo-

tion. The range-of-motion measurement is calculated by finding the largest displacement

between any two points on the hyoid bone trajectory. Apart from the raw trajectories

(raw data without smoothing and calibration), five more comparisons were considered in

our validation: RawNC (Raw data transforming to a new coordinate system without being

scaled), RawNCC (Raw data with both coordinate system alternation and scaling), Smo
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(Raw data with smoothing), SmoNC (RawNC data with smoothing), SmoNCC (RawNCC

data with smoothing). Continuous variables are presented as mean ± 1 SD. Parameters

generated were compared between aspiration and non-aspiration groups using an inde-

pendent t-test. Furthermore, in order to justify the current validation methodology, the

Intraclass correlation and Pearson correlation are utilized to measure the inter-rater re-

liability between those two observers. We calculate those two measurements for both x

coordinates and y coordinates of three points’ locations in each frame by two raters’ man-

ual tracking. As mentioned before, those points are respectively located at the bottom

left of the hyoid bone, anterior-interior border of the second cervical vertebra and that of

the fourth cervical vertebra.

2.4.1 Results

Figure 2.6 and Figure 2.7 show both computer defined and manual defined trajectories

corresponding to six cases for two typical data sets, one from the unmasked group and

the other from the masked group. Overall, two trajectories in each case match pretty

well (see Pearson correlation coefficients and relative errors between manual tracking and

automatic tracking in Table 2.3). The slight difference may be caused by different target

points on the hyoid bone identified by computer and the trained observer.

Cases
ROM in x-axis ROM in y-axis ROM in 2D

A M A M A M

Unmasked group (10 circles from 8 trajectories)
Raw 55.22 ±15.06 57.57±13.87 53.96± 26.69 55.77± 26.49 70.72± 23.31 72.67±23.45
RawNC 54.98±16.21 56.87±14.58 55.06± 27.24 56.39± 25.27 71.50± 23.65 72.54±22.45
RawNCC 0.27±0.10 0.29±0.11 0.27± 0.18 0.29± 0.18 0.36± 0.17 0.38±0.18
Smo 55.01±15.01 55.00±14.63 53.16± 26.53 53.12± 26.55 70.53± 22.80 69.88±23.62
SmoNC 54.49±16.19 53.58±14.41 53.95± 26.96 53.67± 25.97 71.35± 23.33 69.90±23.12
SmoNCC 0.27±0.10 0.28±0.11 0.27± 0.17 0.28± 0.18 0.36± 0.17 0.37±0.18

Masked group (10 circles from 9 trajectories)
Raw 56.23±22.04 58.44±22.34 41.80± 16.06 43.01± 15.89 63.80± 22.52 65.89±23.32
RawNC 56.00±18.39 57.30±16.89 41.63± 15.46 43.48± 15.32 64.01± 21.30 64.24±18.38
RawNCC 0.31±0.13 0.33 ±0.14 0.22± 0.10 0.23± 0.11 0.36± 0.14 0.36±0.14
Smo 55.50±22.41 56.11±22.00 40.66± 16.43 41.03± 15.51 62.68± 22.46 63.53±22.73
SmoNC 55.14±18.49 55.37±17.23 40.35± 15.89 41.67± 15.03 63.12± 21.44 62.56±18.48
SmoNCC 0.31±0.13 0.32 ±0.14 0.21± 0.10 0.22± 0.10 0.35± 0.15 0.35±0.14

Table 2.1: ROM comparison between two methods. ROM - range of motion, A - automatic
tracking, M - manual tracking, 2D - 2 dimensions, Raw - raw data without smoothing and
calibration, RawNC - raw data transformed to a new coordinate system yet without being
scaled, RawNCC - raw data with complete calibration, Smo - raw data with smoothing,
SmoNC - RawNC data with smoothing, SmoNCC - RawNCC data with smoothing. Values
are mean ± SD.

Table 2.1 shows the range of motion between manual tracking and automatic tracking

in terms of the x-axis, y-axis and 2D direction. Table 2.2 shows Pearson correlation
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Cases
Pearson r Relative errors(%)

x-axis y-axis x-axis y-axis 2D

Unmasked group (10 circles from 8 trajectories)
Raw 0.982 0.982 6.1± 4.7 6.5± 4.7 5.6± 4.1
RawNC 0.977 0.954 8.7± 5.0 6.5± 4.5 5.9± 3.9
RawNCC 0.977 0.958 9.2± 6.6 8.6± 6.0 6.9± 4.8
Smo 0.991 0.990 4.8± 3.8 4.6± 3.1 4.6± 3.4
SmoNC 0.984 0.967 6.5± 4.6 4.8± 4.6 4.8± 3.9
SmoNCC 0.984 0.971 7.6± 5.4 5.4± 4.6 5.4± 3.3

Masked group (10 circles from 9 trajectories)
Raw 0.975 0.965 6.1± 5.1 5.0± 4.3 5.3± 5.8
RawNC 0.972 0.946 7.3± 6.5 8.5± 7.8 6.4± 5.4
RawNCC 0.969 0.942 8.6± 7.6 7.1± 6.5 6.0± 6.2
Smo 0.982 0.978 4.3± 4.0 3.3± 4.1 4.1± 4.7
SmoNC 0.979 0.961 5.0± 5.6 6.9± 7.1 6.2± 4.3
SmoNCC 0.975 0.957 6.8± 6.9 5.8± 6.0 5.5± 4.9

Table 2.2: Pearson correlation coefficients between two methods and relative errors (%)
from two methods. Values are Pearson correlation coefficients or mean ±1 SD. P-values
for all Pearson correlation coefficient were less than 0.0001.

Tracking results Methods Estimate 95 % CI P value

x-coordinates
Pearson’s r 0.999 (0.998, 0.999) < 0.0001

ICC 0.998 (0.998, 0.999) < 0.0001

y-coordinates
Pearson’s r 0.998 (0.998, 0.998) < 0.0001

ICC 0.996 (0.995, 0.996) < 0.0001

Table 2.3: Average Pearson correlation coefficients and Intraclass correlation coefficients
(ICC) between two independent observers for measuring the inter-rater reliability.

coefficients and relative errors in terms of ROM from two methods. We can see that all

of coefficients are in the interval between 0.942 and 0.991 (p < 0.0001) and the relative

errors in terms of the x-axis, y-axis and 2D range of hyoid bone excursion ranges from 3.3

% to 9.2 %. Overall, the case of proper smoothing usually outperforms better.

Table 2.3 shows the average of Intraclass correlation and Pearson correlation coeffi-

cients for both x coordinates and y coordinates range from 0.995 to 0.999 (p-value <

0.0001). It indicates a high consistency of quantitative measurements made by those two

independent trained observers, which provides a justification of the methodological errors

in our study.

According to our automatic segmentation method, most of the hyoid bone motion (14

out of 30 subjects) can be typically segmented automatically into four phases. All of

the subjects fall into four groups in terms of segmentation results. There is an error for

automatic segmentation for six subjects, but the typical four phases can be segmented
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manually. There are four subjects with only 3 phases capable of being segmented (e.g.

no returning phase). In six subjects, the trajectories are abnormal and could not be

segmented into typical phases. Figure 2.8 shows four typical examples from each group.

2.5 Chapter Summary

To sum up, the main contributions of the present work include,

(a) the development of a new algorithm based on the existing method by Kellen et al.

(2010) to track the masked part of the hyoid bone and a dynamic monitoring me-

chanic to fix the wrong-tracking problems in time,

(b) the development of semi-automatic smoothing and calibration for reducing tracking

errors,

(c) the development of a new method of automatic segmentation of hyoid bone motion,

which could provide the researchers in the field of dysphagia a convenient, useful,

and all-in-one platform for the analysis of hyoid bone motion.

Once we have obtained these functional data, the next task is data preprocessing like

registration. The deformations or displacements, termed phase variation, always arise in

these curves. This can be shown through the different locations of splitting points while

doing automatic segmentation. The presence of phase variability often increases data

variance and alters underlying data structures (Marron et al., 2015). The splitting points

can also regarded as the landmarks from the perspective of functional registration. It

seems the standard landmark registration method, or the ones related to landmarks might

be employed. Thus, we will study the 2D curve registration for the movement of hyoid

bone, which is the purpose of the next chapter.
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Figure 2.4: Example of automatic segmentation for one non-aspiration case. A. The
curves of the x coordinates and y coordinates of all the data (the left panel) and the
entire 2D trajectory (the right panel): the dots connected with a line in red show the
raw trajectory just after being calibrated while the ones in green represent smoothing
data after calibration. B. Extracted one circle based on the two cutting points A and B
(the left panel) from the entire trajectory and the corresponding 2D trajectory (the right
panel). C. Automatically segmenting the trajectory into four phases. The upper curve
in green in the left panel stands for the smoothing y coordinates and the lower one for
the smoothing x coordinates, together with the curves in red representing raw data. The
curve in blue represents the velocity amplitude v(t), where t represents the video frame
sequence and the numbers in different colors stand for splitting points order. The right
panel shows the segmentation results in 2D trajectory.
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Figure 2.5: Examples of automatic segmentation. A. All the data and the entire trajec-
tory. B. Extracting one circle from the entire trajectory. C. Automatically splitting the
trajectory via choosing points satisfying the condition A and B. The numbers 2, 3, 4, 5,
6, 7 and 8 on the curves in the left panel are the candidate splitting points corresponding
to the points in black on the 2D trajectory in the right panel. D. Further automatically
segmenting the trajectory into four phases via selecting three splitting points from C. The
selected points 2, 3 and 4 in the left panel of D are equivalent to the points 2, 5 and 6 in
C.
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Figure 2.6: An example from unmasked group. The hyoid bone trajectories in red are
based on semi-automatic tracking methodology while those in green are by manual method.
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Figure 2.7: An example from masked group. The hyoid bone trajectories in red are based
on semi-automatic tracking methodology while those in green are by manual method.
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Figure 2.8: Examples of segmentation. A. Successful automatic segmentation to four
phases. B. Failed automatic segmentation but successful manual segmentation to four
phases. C. Manual segmentation to 3 phases (no returning phase). D. Failed segmentation
due to abnormal trajectory.
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Chapter 3

Registration for the

Multi-dimensional Functional

Data

3.1 Introduction

Figure 3.1 displays two batches of motion data of hyoid bone from normal people and

patients with stroke. They are acquired using the methodology described in Chapter 2.

First of all, observing the first two subgraphs (a) and (b) gives us some insight on the

spatial registration problems. Obviously, the issues concerning rotation, scaling and shift

for those 2D curves need to be dealt with simultaneously. Generalized Procrustes analysis

(GPA) proposed by Gower (1975a) is a straightforward method for those issues. Secondly,

subgraphs (c)-(f) show that there exist temporal registration issues, namely, time warping,

which is generally paid much attention in the registration of one dimensional functional

data. We have mentioned in Chapter 2 that those splitting points or landmarks are sort

of ambiguous and quite hard to identify fully automatically. That means it is not a good

choice to directly apply the standard landmark registration method to the data. In this

chapter, we attempt to develop a new framework by mixing two methods to address those

problems at the same time.

The structure of this chapter is as follows. Section 3.2 reviews the background of Gen-

eralized Procrustes analysis and self-modelling registration. A new methodology (GPSM )

is proposed and the related algorithm is discussed in Section 3.3. Section 3.4 carries

out numerical analysis, including the simulation study and real data analysis. Chapter

summary is in Section 3.5.
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(a) 2D curves from 15 normal people (b) 2D curves from 15 patients

(c) x1(t) from normal people (d) x1(t) from patients

(e) x2(t) from normal people (f) x2(t) from patients

Figure 3.1: 30 samples of the movement of hyoid bone from normal people and patients
with stroke. x1(t) and x2(t) represent the x-coordinates and y-coordinates of those 2D
curves, respectively.
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3.2 GPA and self-modelling registration

3.2.1 Generalized Procrustes analysis

Procrustes analysis is used to analyze the distribution of a set of shapes. In order to com-

pare them, the objects must be optimally superimposed, which is carried out by optimally

translating, uniformly scaling and rotating the objects. This means both the size of the

objects and the placement in space are adjusted. To get a similar size and placement,

we minimize a measure of shape difference called the Procrustes distance between those

objects. Ordinary or classical Procrustes analysis is exploited when a shape is compared

to another, or a set of shapes are compared to one arbitrarily selected reference shape.

The shape of an object can be thought of as a member of an equivalent class, which is

formed by removing the translational, uniformly scaling and rotational components. For

simplicity, we consider objects consisting of m points in 2 dimensions

{(x11, x21), (x12, x22), . . . , (x1m, x2m)}.

The mean of those points is given by

(x̄1, x̄2), where x̄a =

∑m
j=1 xaj

m
, a = 1, 2,

and the scale of the shape is

s =

√∑m
j=1(x1j − x̄1)2 + (x2j − x̄2)2

m
,

which is also called root mean square distance, a statistical measure of the object’s scale.

Procedures of how to remove those components are briefly described as follows:

• Translation. Translate the points

(x1j , x2j)→ (x1j − x̄1, x2j − x̄2), j = 1, . . . ,m,

such that their mean is translated to the origin.

• Uniform scaling. All the points are divided by the object’s initial scale

((x1j − x̄1)/s, (x2j − x̄2)/s),

so that the scale becomes 1. Note that there are other methods to define the scale

in the literature.

• Rotation. Since a standard reference orientation is always unavailable, removing the
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rotational component is more complicated. We consider two objects made up from

the same number of points

{(x11, x21), (x12, x22), . . . , (x1m, x2m)} and {(z11, z21), (z12, z22), . . . , (z1m, z2m)}

with scale and translation removed. Fix one of those objects as a reference orienta-

tion and rotate the other around the origin until the angle of rotation θ is found by

minimizing the sum of squared distances. A rotation by angle θ gives

(v1j , v2j) = (cosθz1j − sinθz2j , sinθz1j + cosθz2j), j = 1, 2, . . . ,m,

where (v1j , v2j) are the coordinates of rotated points. Thus, the optimal angle is

θ̂ = argmin
θ

m∑
j=1

(v1j − x1j)2 + (v2j − x2j)2

= tan−1
(∑m

j=1 x2jz1j − x1jz2j∑m
j=1 x1jz1j + x2jz2j

)
.

If the object is A-dimensional, the optimum rotation is represented by an A×A rotation

matrix and the singular value decomposition can be used to find the optimal value.

After superimposing the two objects by removing the translational, scaling and rota-

tional components, the difference between the shape of two objects can be assessed by

d =
m∑
j=1

√
(v1j − x1j)2 + (v2j − x2j)2.

We also call this measure as Procrustes distance.

The classical Procrustes analysis aims at superimposing a set of objects to an arbitrarily

selected shape while Generalized Procrustes analysis (GPA), proposed by Gower (1975a),

is mainly for optimally superimposing them. It compares a group of shapes to an optimally

determined mean shape. The procedure is outlined as follows:

1. Initialise the reference shape by arbitrarily choosing it among all of the available

instances.

2. Superimpose all instances to the current reference shape.

3. Compute the mean shape of the current group of superimposed shapes, as well as

the Procrustes distance between the mean and reference shape.

4. Stop the procedure if the Procrustes distance is below a threshold, otherwise set the

reference to the mean shape and continue to step 2.
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In the real data set, we regard 2D curves as the objects and will apply GPA to them to

deal with the translational, scaling and rotational components in the preprocessing stage.

However, GPA is unable to address the warping issues, i.e. the existence of different time

scale for each curve. Thus, it is necessary to develop some methods to handle the warping.

3.2.2 Self-modelling registration

Self-modelling registration method (SM ) proposed by Gervini and Gasser (2004) aims to

resolve warping problems by introducing a semi-parametric model for one dimensional

functional data. They assume the warping function g−1(t) to be linear combinations of

p common components, which are estimated combining data across individuals, thereby

avoiding over-fitting. They assume that sample curves {xi(t), i = 1, . . . , N} follow the

model

xi(t) = diτ{gi(t)}+ εi(t), i = 1, . . . , N, (3.1)

where {gi} are monotone increasing functions, τ is the structural mean and εi are random

errors. The functions {gi} are seen as one kind of the inverse of warping functions. Assume

di 6= 0, E(d) = 1, E(g−1(t)) = t and E(ε) = 0. This model is a working model and allows

rather limited type of amplitude variability, but it performs well in a real data set.

The warping functions proposed corresponding to the above model is

g−1i (t) = t+

p∑
j=1

wijφj(t), i = 1, . . . , N, (3.2)

where φj(t) = eᵀjξ(t), where ξ(t) = (ξ1(t), ξ2(t), . . . , ξq(t))
ᵀ is a vector of B-spline basis

functions and the score vectors wi = (wi1, . . . , wip)
ᵀ satisfy E(w) = 0. These φ−functions

are all localized non-negative bell-shaped functions, each of which accounting for time

variability at different segments of T . For identifiability, the spline coefficients must satisfy

three restrictions:

(A) ejk ≥ 0 for k = 1, . . . , q and ||ej || = 1 for j = 1, . . . , p.

(B) The coefficient matrix E = (ejk) ∈ Rp×q has the block structure 1 ≤ K1 < K2 <

· · · < Kp+1 ≤ q + 1 such that ejk > 0 for Kj ≤ k < Kj+1 and ejk = 0 for k < Kj

and k ≥ Kj+1.

(C) ej1 = ejq = 0 for all j, i.e. K1 = 2 and Kp+1 = q such that K2 ≥ 3 and Kp ≤ q − 1.

Condition (B) ensures that the components have connected and localized supports. Re-

striction (C) guarantees that g−1i (a) = a and g−1i (b) = b when the time interval is [a, b].

The proof on the identifiability of model (3.1) and model (3.2) are provided by Gervini

and Gasser (2004).
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Each φj can actually be regarded as a component associated with a hidden landmark,

which motivates the model (3.2) to some extent. Take the case of two landmarks per 1D

curve, li1 and li2, for example. Let l01 = l̄.1 and l02 = l̄.2 be the average landmarks. From

the registered curves x̃i(t) = xi(g
−1(t)), we know that x̃i(l0j) = xi(lij), j = 1, 2, for all

i. Thus, the warping functions must satisfy g−1i (a) = a, g−1i (l01) = li1, g
−1
i (l02) = li2 and

g−1i (b) = b. Using the simplest interpolation method, i.e. piecewise linear functions, we

get

g−1i (t) =


t+ (li1 − l01) t−a

l01−a t ∈ [a, l01],

t+ (li1 − l01) l02−t
l02−l01 + (li2 − l02) t−l01

l02−l01 t ∈ [l01, l02],

t+ (li2 − l02) b−t
b−l02 t ∈ [l02, b].

Let wij = lij − l0j and

φ1(t) =


t−a
l01−a t ∈ [a, l01],
l02−t
l02−l01 t ∈ [l01, l02],

0 t ∈ [l02, b].

φ2(t) =


0 t ∈ [a, l01],
t−l01
l02−l01 t ∈ [l01, l02],
b−t
b−l02 t ∈ [l02, b].

We can write g−1i (t) = t +
∑2

j=1wijφj(t). In other words, those triangles with peaks at

l01 and l02 can be expressed as combinations of linear B-splines with knots {a, l01, l02, b}.
Therefore, each component in the model (3.2) is associated with an underlying landmarks.

The self-registration method is used to estimate the associated components instead of the

individual landmarks.

To estimate the parameters in models (3.1) and (3.2), we minimize the average inte-

grated squared error given by

AISEN =
1

N

N∑
i=1

∫ b

a
||xi(t)− diτ{gi(t)}||2dt

=
1

N

N∑
i=1

∫ b

a
||xi(g−1i (t))− diτ(t)||2(g−1i )′(t)dt. (3.3)

Thus, we have the estimator of the structural mean

τ̂(t) =

∑N
i=1 d̂i(ĝ

−1
i )′(t)xi(ĝ

−1
i )(t)∑N

i=1 d̂
2
i (ĝ
−1
i )′(t)

. (3.4)

However, there are no explicit estimating equations for Ê or the ĝ−1i s. Two-stage al-

gorithms for minimizing equation (3.3) have been implemented by Gervini and Gasser
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(2004):

• Stage 1: initialization.

(a) Select desirable block delimiters K = (K1, . . . ,Kp+1) for the coefficient matrix

Ê and re-parameterize

(ej,Kj , . . . , ej,Kj+1−1) = (1, exp(uj))/{1 + ||exp(uj)||2}1/2,

where uj ∈ RKj+1−Kj are unconstrained vectors.

(b) Set ûj = 0, ŵi = 0, d̂i = 1 and τ̂(t) = x̄(t).

• Stage 2: iterations.

(a) Update g−1i (t). Update uj by using a Newton-Raphson step and recentre the

current ŵis so that ¯̂w = 0. Then, update ŵi by using a Newton-Raphson step.

(b) Update τ̂(t) and d̂i. Update τ̂ by using equation (3.4), compute xi(g
−1
i (t)) by

linear interpolation.

(c) Update d̂i and update the objective function (3.3). Exit if there is no significant

improvement; otherwise go back to (a).

On one hand, the advantage of this semi-parametric model for warping functions of one-

dimensional random curves over landmark registration is that there is no need to identify

individual landmarks. Also, it sufficiently makes use of data and avoids over-fitting to a

large degree by using the common structure of the warping functions. On the other hand,

this model lies in one strong assumption on the existence of hidden landmarks. For our

real data in Figure 3.1, there are some recognizable landmarks hiding in each 2D curve,

such as the turning points or splitting points aforementioned in Section 2.3.4 of Chapter 2.

Thus, we will exploit this model in our registration methodology for the multi-dimensional

functional data.

3.3 The methodology and algorithm

We attempt to integrate the GPA and self-modelling registration in order to deal with the

multi-dimensional functional data. For 2D curves {xi(t), t ∈ [0, L]; i = 1, . . . , N}, where t

is usually transformed to the unit of arc-length in the case of more than one dimensions,

assume Ti is the transformation in terms of translation, rotation and scaling for curve i.

We can regard Ti as the parametric matrix to be estimated. The procedures of GPA for

{xi, i = 1, . . . , N} can be outlined as:
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(a) Initialise µ(0)(t), the reference curve, as x0(t), which is arbitrarily chosen from

{xi(t), t ∈ [0, L]; i = 1, . . . , N}.

(b) For the (i0 + 1)th iteration, superimpose all the curves to µ(i0)(t) by

T
(i0+1)
i = argmin

T

∫ L

0
||Ti(xi)(t)− µ(i0)(t)||2dt, i = 1, 2, . . . , N. (3.5)

(c) Compute the Procrustes distance

D(i0+1) =

∫ L

0
|| 1
N

N∑
i=1

T
(i0+1)
i (xi)(t)− µ(i0)(t)||2dt.

(d) If |D(i0+1)−D(i0)| < δ, where δ is predetermined as 0.01, the iteration ends; otherwise

set µ(i0+1)(t) = 1
N

∑N
i=1 T

(i0+1)
i (xi)(t) and continue to step 2.

Suppose k iterations are required to reach below the threshold, then T̂i = T
(k)
i · T (k−1)

i · · ·
T
(1)
i , i = 1, 2, . . . , N .

As for the warping issue, we try to extend the self-modeling registration aforementioned

from one-dimension to multi-dimensions. Assume there are A dimensions, the sample

curves in a-th dimension are assumed to follow the model

xai(t) = daiτa{gi(t)}+ εai(t), t ∈ Li ⊂ R, i = 1, . . . , N, a = 1, . . . , A. (3.6)

The warping functions and the related restrictions are the same as the one-dimensional

case mentioned in Section 3.2. The average integrated squared error is given by

EN =
1

N

N∑
i=1

∫ L

0
||xi(t)− diτ{gi(t)}||2dt. (3.7)

The techniques of estimating the parameters in the model (3.6) are similar to the case

of one-dimensional curves. After getting the estimated warping functions, the curves are

required to be updated to a new time scale ĝ−1(t) and iteratively apply the GPA to them.

We call the combination of GPA and self-modelling registration as GPSM methodology.

The outline of the algorithm for GPSM is as follows (assuming GPA is used first and

followed by SM ):

1. Initialise µ(0)(t), the reference curve, as the cross-sectional mean of functional data,

i.e.

µ(0)(t) =
1

N

N∑
i=1

xi(t).
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2. For the (i0 + 1)th iteration, superimpose all the curves to µ(i0)(t) by

T
(i0+1)
i = argmin

T

∫ L

0
||Ti(xi)(t)− µ(i0)(t)||2dt, i = 1, 2, . . . , N.

3. Compute the Procrustes distance

D(i0+1) =

∫ L

0
|| 1
N

N∑
i=1

T
(i0+1)
i (xi)(t)− µ(i0)(t)||2dt.

4. If |D(i0+1) −D(i0)| < δ, where δ is predetermined as 0.01, continue to step 5; other-

wise, set

µ(i0+1)(t) =
1

N

N∑
i=1

T
(i0+1)
i (xi)(t),

and continue to step 2.

5. Suppose k iterations are required to reach below the threshold, then the T̂i = T
(k)
i ·

T
(k−1)
i ···T (1)

i , i = 1, 2, . . . , N . Calculate the synchronization coefficient sync1 defined

by James (2007), see the details in Section 3.4.2.

6. Compute the warping function by SM method, let x̂i(t) = T̂i(xi)(t),

g−1i (t) = argmin
1

N

N∑
i=1

∫ L

0
[x̂i(t)− diτ{gi(t)}]2dt, i = 1, 2, . . . , N. (3.8)

7. Calculate the sync2. If sync2 < sync1, update xi(t) = x̂i(g
−1
i (t)) and µ(i0+k)(t) =

τ (t), where τ (t) ≈ 1
N

∑N
i=1 xi(t), and continue to step 2. Otherwise, stop.

3.4 Numerical analyses

3.4.1 Data generation

We now compare the methodology (GPSM ) with the Generalized Procrustes analysis

(GPA) (Gower, 1975a), the extension of self-modelling registration (SM ) (Gervini and

Gasser, 2004) and square-root velocity method (SRV ) (Srivastava et al., 2011a) in terms

of both alignment and estimation. To generate data, we first generate one 2D curve

µ(t) = {(x1(t), x2(t)), t ∈ [0, L]} selected randomly from hyoid bone motions data as the

true structural mean. We use equidistant points tj = (j− 1)/(m− 1), where j = 1, . . . ,m,

as input grid. Then we generate data as follows:

(a) Warping. Two natural landmarks, lm1 and lm2, are identified manually. Normally
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the peak (maximum) and valley (minimum) of the structural mean along the x-axis

or y-axis can be regarded as landmarks. Then two random landmarks are generated

for each 2D curve. lmik = lmk + δik, k = 1, 2 with δik = min{max(Uik,−V ), V }, Uik
independent N(0, σ2w) random variables, and V = 1

3min{lm1, lm2 − lm1, L − lm2}
(the truncation makes sure that 0 < lmi1 < lmi2 < L). The inverse warping

functions gi(t) are piecewise linear with gi(0) = 0, gi(lmi1) = lm1, gi(lmi2) = lm2

and gi(L) = L.

(b) Rotation. Each 2D curve is rotated around the center
(
1
m

∑m
j=1 x1(tj),

1
m

∑m
j=1 x2(tj)

)
with the angle θi = −θ0 + 2θ0 ∗Wi and Wi independent U(0, 1).

(c) Scaling. Each 2D curve is scaled with the same scaling factor ai, which are indepen-

dent and identically distributed N(1, σ2a) random variables with σa = 0.1.

(d) Translating and adding random errors. The newly generated 2D curve (x′1(tj), x
′
2(tj))

will end up adding random translation and errors in the following way:
(
x′1(tj) +

M1i+N1ij , x
′
2(tj)+M2i+N2ij

)
, where M1i,M2i are independent N(0, 0.12) random

variables and N1i,N2i independent N(0, 0.012) random variables.

(e) In each dataset, sample size for the 2D curves N = 30 and grid size m = 100 are

used, with r = 50 replications for each combination. Three scenarios are examined

for each method. These are the following: (1) Scenario A: σw = 0.1 and θ0 = π/4;

(2) Scenario B: σw = 0.5 and θ0 = π/6; (3) Scenario C: σw = 1 and θ0 = π/8. (σw

and θ0 control the warping and rotating intensity, respectively)

Three different mean curves are selected, which results in generating three types of data

sets in each scenario. Figure 3.2 shows typical examples of one realization from Dataset

3 with three scenarios. The sub-figures (b)-(d) contains problems of rotation, translation,

scaling and warping.

3.4.2 Measurements

To measure the estimation error for the structural mean, we use the root average squared

error (James, 2007)

rase(µ̂) =

√∑m
j=1 ||µ̂(tj)− µ(tj)||2

m
,

where m is the number of observation points, µ(t) and µ̂(t) are the cross-sectional mean

of raw curves and of registered curves for each replication in each dataset.

Two other criteria are used to evaluate the registration comparison. We denote by xi

and x̂i, (i = 1, . . . , N) the raw and the registered 2D curves, respectively. The synchro-
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nization coefficient defined by James (2007)

sync =
1

N

N∑
i=1

∫
||x̂i(t)− 1

N−1
∑

j 6=i x̂j(t)||
2
dt∫

||xi(t)− 1
N−1

∑
j 6=i xj(t)||

2
dt
,

measures the overall cross-sectional variance of the registered curves relative the original

curves. The smaller the value of sync, the better the registration is. The inverse of pairwise

correlation between curves is defined as

ipc =

∑
i 6=j corr2(xi(t),xj(t))∑
i 6=j corr2(x̂i(t), x̂j(t))

,

where corr2(A,B) computes the correlation coefficient using

R =

∑
m

∑
N (AmN − Ā)(BmN − B̄)√

(
∑

m

∑
N (AmN − Ā)2)((

∑
m

∑
N (BmN − B̄)2)

.

Smaller values of ipc indicate better registration.

3.4.3 Results

All of the measures are averaged over r = 50 Monte Carlo simulations. Quantitatively,

GPSM outperforms GPA, SM and the SRV method, in any of the three scenarios, as

we can see from the Table 3.1. It is clear that the performance of GPA becomes worse

as the σw increases and θ0 decreases while SM becomes better, particularly in terms of

rase. This is because GPA is specialized at the rotation issue while SM works mainly for

warping. Overall, GPSM considers both rotation and warping issues, leading to much

better performance than GPA and SM. Figure 3.3 to 3.5 display three examples of reg-

istration results by four methods in Dataset 3, corresponding to Scenario A to C. All of

these demonstrate better registration by GPSM. More examples are given by Figures A.1

to A.8 in Appendix A.

3.4.4 Real data analysis

Our application to the real data, shown in Figure 3.1, is to do registration by the four

methods GPSM, GPA, SM and SRV. Table 3.2 shows the GPSM is better than the other

three methods in terms of registration. Figures 3.6 and 3.7 also justify its superiority.

After doing registration, we can do classification. Here, we use a simple rule similar to

the k-means algorithm. The group means are firstly obtained via any of the 2D registration

methods. Assume the group mean of training data is µk(t) and µ+
k (t) is the mean after

the addition of the test curve x∗. Each test curve is then assigned to the trained group
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Dataset 1 Dataset 2 Dataset 3
rase sync ipc rase sync ipc rase sync ipc

σw = 0.1, θ0 = π/4 0.07 0.02 0.80 0.08 0.02 0.80 0.06 0.03 0.80
GPSM σw = 0.5, θ0 = π/6 0.07 0.19 0.89 0.07 0.18 0.88 0.07 0.16 0.87

σw = 1, θ0 = π/8 0.09 0.27 0.90 0.08 0.19 0.89 0.07 0.18 0.89

σw = 0.1, θ0 = π/4 0.07 0.03 0.80 0.08 0.03 0.80 0.06 0.05 0.81
GPA σw = 0.5, θ0 = π/6 0.09 0.29 0.90 0.08 0.28 0.89 0.08 0.29 0.89

σw = 1, θ0 = π/8 0.12 0.45 0.92 0.10 0.40 0.92 0.09 0.38 0.91

σw = 0.1, θ0 = π/4 0.16 0.61 0.87 0.13 0.55 0.86 0.15 0.56 0.86
SM σw = 0.5, θ0 = π/6 0.10 0.60 0.92 0.10 0.57 0.91 0.10 0.51 0.91

σw = 1, θ0 = π/8 0.10 0.61 0.93 0.10 0.54 0.92 0.09 0.48 0.91

σw = 0.1, θ0 = π/4 0.16 0.15 0.81 0.40 0.18 0.81 0.12 0.14 0.81
SRV σw = 0.5, θ0 = π/6 0.13 0.41 0.90 0.44 0.29 0.88 0.12 0.27 0.88

σw = 1, θ0 = π/8 0.13 0.60 0.93 0.48 0.37 0.90 0.12 0.34 0.90

Table 3.1: The average results of estimation and registration by four methods. The bold
numbers indicate the best results.

.

Normal Abnormal
sync ipc sync ipc

GPSM 0.46 0.68 0.25 0.68
GPA 0.67 0.76 0.41 0.73
SM 0.76 0.84 0.55 0.78
SRV 0.89 0.76 0.64 0.75

Table 3.2: 2D registration results based on 15 curves of hyoid bone motion in normal and
abnormal group respectively.

which is closest in terms of Procrustes distance between means. In other words, x∗ is

classified as belong to k∗-th group if d(k) =
∫ L
0 |µk(t)−µ

+
k (t)|dt takes its minimum value

at k = k∗ for k = 1, . . . ,K. For our real dataset, K is set as 2.

We evaluate the classification performance by 5-fold cross validation. Apart from the

classification accuracy (CA), we use another two criteria for evaluating the classification

results. The first one is the Rand index (RI) (Rand, 1971a), having a value between 0 and

1, with 0 indicating two data clusterings disagree on any pair while 1 indicating a perfect

match. And the second one is called adjusted Rand index (ARI) (Hubert and Arabie,

1985a), a modified version of Rand index (ARI). A larger value of RI or ARI indicates

a higher agreement of the method and the truth. The average classification results for

those methods are shown in Table 3.3. It shows that all of the methods fail though GPSM

seems slightly better than others. This motivates us to come up with some other methods

to carry out prediction for this real dataset.
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CA RI ARI

GPSM 0.57 0.48 0.06
GPA 0.37 0.53 0.09
SM 0.37 0.53 0.13
SRV 0.50 0.43 -0.11

Table 3.3: Average classification results of three measurements by four methods.

3.5 Chapter Summary

In this chapter we propose a new registration method (GPSM ) for multi-dimensional func-

tional data. It integrates the Generalized Procrustes analysis (GPA) and self-modelling

registration (SM ) for the sake of addressing both spatial and temperal registration issues,

namely, rotation, shift, scaling and time warping. It outperforms the other methods as we

see from the numerical results.

However, this framework generally belongs to a kind of standard preprocessing method

for functional data analysis. It is usually conducted prior to modelling or classification.

These two separate steps are sometimes inconvenient and time consuming. Furthermore,

it does not work well when it comes to the prediction in some cases, for example, in our

real dataset, as shown in Table 3.3. Thus, we need to explore another methodology which

is capable of simultaneously carrying out registration and modelling, as well as considering

some other scalar variables. This is the aim of next two chapters.
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(a) 2D reference curve of Dataset 3

(b) Scenario A: σw = 0.1 and θ0 = π/4

(c) Scenario B: σw = 0.5 and θ0 = π/6

(d) Scenario C: σw = 1 and θ0 = π/8

Figure 3.2: Three examples of data in Dataset 3 corresponding to three scenarios.
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(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure 3.3: An example of registration results in Dataset 3 by four methods for Scenario
A with σw = 0.1 and θ0 = π/8.
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(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure 3.4: An example of registration results in Dataset 3 by four methods for Scenario
B with σw = 0.5 and θ0 = π/6.
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(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure 3.5: An example of registration results in Dataset 3 by four methods for Scenario
C with with σw = 1 and θ0 = π/8.
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(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure 3.6: Registration of curves from 15 normal people by four methods.
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(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure 3.7: Registration of curves from 15 abnormal people by four methods.
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Chapter 4

Joint Curve Registration and

Classification with Mixed Scalar

and Functional Variables

4.1 Introduction

Data classification will be conducted after the data acquisition and data registration stud-

ied in Chapter 2 and Chapter 3, respectively. While doing the classification for the data

(see Figure 4.1(a)), the misaligned problems, for example, the vertical variation and hor-

izontal variation, as seen from Figure 4.1(b), should be addressed. Several works e.g. by

Sangalli et al. (2009), Srivastava et al. (2011a) and Cheng et al. (2016) can be applied to

carry out the registration for 2D curves. But, their curve alignment is generally performed

as a preprocessing technique and the classification on the basis of curves is conducted af-

terwards. This way is not efficient, since on one hand, a subject belonging to the groups

“normal” or “patient” is closely related to how it unfolds its progression pace. This leads

to the necessity of simultaneous registration and modeling. On the other hand, those

methods rely only on functional variables, i.e., the curves. This does not always work

well, particularly for the data having heterogeneity which depends on both functional and

scalar variables. In the X-ray video data, the variations depend on time warping as well

as scalar variables such as average speed of hyoid bone and the initial level of disease.

Therefore, simultaneous curve registration and classification by considering all those fac-

tors mentioned is a better way for modeling functional data. The purpose of this chapter

is to resolve the problems aforementioned by proposing two-stage functional models for

joint curve registration and classification.

The chapter is organized as follows. Section 4.2 proposes the joint curve registration

and classification method, provides the related inference, implementation and asymptotic
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(a) (b)

Figure 4.1: The motion data of hyoid bone. (a) One X-ray image showing the location of
hyoid bone which will move forward and backward to form one 2D curve during swallowing,
as shown in (b). (b) 30 trajectories of hyoid bone motion from 15 normal people (curves
in green) and 15 patients with stroke (curves in red).

properties of estimators, and ends up with procedures for prediction. We present numerical

examples with simulated data and real data to evaluate the proposed model in Section

4.3. Finally, a short summary and discussion are included in Section 4.4.

4.2 The joint registration and classification models

Suppose there are N subjects coming from two groups. Let y be the binary variable,

where we label the subject by 1 if it is normal, or by 0 if it is abnormal. The num-

ber of normal and abnormal subjects are assumed to be N1 and N0, respectively, where

N1 + N0 = N . Let x1(t),x2(t), . . . ,xN (t) be 2D continuous curves, where xi(t) =

(x1i(t), x2i(t)) and x1i(t), x2i(t) are the corresponding x-coordinates and y-coordinates

of xi(t). Let xki(t)
∆
= xi(t)|yi=k be the i-th 2D curve in the k-th group, where xki(t) =

(x1ki(t), x2ki(t))andxaki(t)
∆
= xai(t)|yi=k, a = 1, 2; k = 0, 1. Let v1, . . . ,vN be the observed

scalar variables. For example, in our study, they can represent subjects’ gender, age,

smoking status and some features or summary statistics originated from those 2D curves,

such as the average motion speed and average acceleration amplitude. Suppose there are

mki time points on which the i-th curve in k-th group are observed. The data set is

D = {(yki, x1ki(tij), x2ki(tij),vki); i = 1, . . . , Nk; j = 1, . . . ,mki; k = 0, 1},

where yki
∆
= yi|yi=k,vki

∆
= vi|yi=k. We can also denote D by {(yi,xi(tij),vi); i = 1, . . . , N},

where tij stand for the observed time points for the i-th curve.
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4.2.1 The models

Most existing methods carry out the classification for the curves with registration problems

depending only on the information from themselves. In some cases, this might not be

enough. We may need to use information from other variables, either functional or scalar.

One example is given in the previous chapter; see the discussion around Table 3.3. Thus, we

will use both functional and scalar variables for classification. Given the data {(xi(t),vi)},
we start the first stage models with the assumption

yi|vi,xi(t) ∼ Bernoulli(1, πi), πi = P (yi = 1|vi,xi(t)).

Then use the following functional logistic regression model

logit(πi|vi,xi(t)) = b0 + vᵀi b1 +

∫
xi(g

−1
i (t))β(t)dt, i = 1, . . . , N, (4.1)

where b0 and b1 are scalar coefficients and β(t) = (β1(t), β2(t))
ᵀ are coefficient functions.

xi(g
−1
i (t)) =

(
x1i(g

−1
i (t)), x2i(g

−1
i (t))

)
, are the 2D curves after registration and g−1i (t) is

the warping function for the i-th curve.

In the second stage, we will model these curves. The preprocessing procedure Gener-

alized Procrustes analysis (GPA) (Gower, 1975b) will be used at the beginning to address

part of registration problems except warping. Little work has been done on model-based

registration for multi-dimensional curves. Borrowing the ideas from Raket et al. (2016),

we model the the continuous curve xaki(t) by

xaki(t) = (τak ◦ gki)(t) + raki(t) + εai(t), i = 1, . . . , Nk, (4.2)

where a = 1 or 2 represents the x- or y-coordinates of xi(t); the item (τak ◦ gki) denotes

functional composition: (τ ◦g)(t) = τ(g(t)), where τak(·) is a fixed but unknown nonlinear

mean curve. We set τak(t) = ξa(t) + φak(t), where ξa is the underlying profile shared

across two groups and φak is the group-specific variation centered around ξa. Both can be

approximated by a set of basis functions, the details are given in the next section. The

variation among different subjects is modeled by a non-linear functional random-effects:

raki(t), by a Gaussian process with zero mean and a parametric covariance function S.

The error item εai(t) is assumed to be Gaussian white noise with variance σ2.

According to the discussion in Section 4.1, the variation among different subjects needs

to be considered. Thus, we allow warping function depending on k (k = yi) and i. We

further assume

gki(t) = t+ wk(t) + wki(t),

where wk(t) is the fixed part, representing consistent timing across all subjects in group
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k, and wki(t) is the random part, representing the random variation of timing of subject

i in the group k. Instead of making assumptions for curves wk(t) and wki(t), we first

discretize them by a set of fixed parameters, for instance, by wk = (wk(t1), . . . , wk(tnw))

and wki = (wki(t1), . . . , wki(tnw)) respectively (Zeng et al., 2017). We then model wki by

a Gaussian distribution with zero mean and a parametric covariance function H. We can

also define the warping function as linear functions, some of which have been examined

by others (Liu and Yang, 2009; Sangalli et al., 2010).

We call the models defined in (4.1) and (4.2) as joint curve registration and classifica-

tion (JCRC ) models.

4.2.2 Estimation

Firstly, we estimate the function g(t) involved in model (4.1) in the second stage. The

discrete form of model (4.2) for the i-th curve data xaki =
(
xaki(ti1), . . . , xaki(timki

)
)ᵀ

can

be expressed as follows

xaki = τ ak(gki) + raki + εi, for a = 1, 2; k = 0, 1; i = 1, . . . , Nk, (4.3)

where τak(gki) =
(
τak
(
gki(ti1)

)
, . . . , τak

(
gki(timki

)
))ᵀ

, and raki and εi are both mki col-

umn vector. We respectively set S as the Matern covariance function with parameters

ρs and H as the unstructured covariance function or Brownian covariance function with

parameter ρh (Raket, 2016). This can be estimated by the data; the details are pro-

vided in the next subsection. Other covariance functions can also be used (Shi and

Choi, 2011). Let Saki and Hki be the covariance matrix of raki and wki respectively,

which can be calculated by the corresponding covariance function. We model τak(t) us-

ing q basis functions {ψ1(t), . . . , ψq(t)} with weights ca = (ca1, . . . , caq)
ᵀ for ξa(t), with

weights dak = (dak1, . . . , dakq)
ᵀ for φak(t) . Thus, τak(gki) = Ψki(ca + dak), where

Ψki = [Ψki1, . . . ,Ψkiq]mki×q,Ψkil = (ψl(gki(ti1)), . . . ,ψl(gki(timki
)))ᵀ, l = 1, . . . , q. Here,

we use a smooth non-linear deformation of the curves for gki(t), which is produced by an

increasing spline (Raket, 2016).

All the unknown parameters in the model (4.3) to be estimated are

θx
∆
= {ca,dak,wk,wki,ρh,ρs, σ, a = 1, 2; k = 0, 1; i = 1, . . . , Nk}.

Borrowing the ideas from Raket et al. (2016), those parameters can be estimated iteratively

through three conditional models, leading to the estimator of g(t) determined by wk and

wki only. The details are given in Section 4.2.3.
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Secondly, referring back to model (4.1) in the first stage, we have

logit(πi|vi,xi(t)) = b0 + vᵀi b1 +

∫
x̂i(t)β(t)dt, i = 1, . . . , N, (4.4)

where x̂i(t) = xi(ĝ
−1
i (t)). Using the fast fitting methods for generalized functional linear

models proposed by Goldsmith et al. (2011), the xai(ĝ
−1
i (t)) are estimated as

x̂ai(ĝ
−1
i (t)) =

Kx∑
j=1

paijφaj(t)

= pai
ᵀφa(t), a = 1, 2.

Here, paij =
∫
x̂ai(ĝ

−1
i (t))φaj(t)dt, φa(t) =

(
φa1(t), . . . , φaKx(t)

)ᵀ
is the collection of the

firstKx eigenfunctions of the smoothed covariance matrix
∑
x̂a

(t1, t2) = cov[x̂ai(t1), x̂ai(t2)]

(Ramsay and Silverman, 2005). Using the truncated power series spline basis, the coeffi-

cient function βa(t) can be approximated as

βa(t) = ea1 + ea2t+

Ke∑
j=3

eaj(t− κj)+

=

Ke∑
j=1

eajξaj(t)

= ξᵀa(t)ea, a = 1, 2,

where Ke is the number of truncated power series spline basis, {κj}Ke
j=3 are knots and t+ ={

t, t > 0

0, t ≤ 0
. We further assume that {eaj}Ke

j=3 ∼ NKe−2(0, σ
2
eI) for inducing smoothing.

Other choices of basis functions can also be used with corresponding changes to penalty.

Thus, ∫
x̂ai(ĝ

−1
i (t))βa(t)dt =

∫
pai

ᵀφa(t)ξ
ᵀ
a(t)eadt

= pai
ᵀJaφξea, a = 1, 2,

where Jaφξ is a Kx ×Ke dimensional matrix [Jaφξ]Kx×Ke with the (i, j)th entry equal to∫
φai(t)ξaj(t)dt. Denote ui by the fixed effects:

(
1,vᵀi ,p1i

ᵀ[J1φξ]·1,p1i
ᵀ[J1φξ]·2,p2i

ᵀ[J2φξ]·1,p2i
ᵀ[J2φξ]·2

)ᵀ
,

where [Jaφξ]·j is the j-th column vector of the matrix [Jaφξ]Kx×Ke , η by a vector of
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parameters:

(b0, b1, e11, e12, e21, e22)
ᵀ,

zi by a design vector: (
pai

ᵀ[Jaφξ]·j
)ᵀ
1≤a≤2;3≤j≤Ke

,

and α by the random effects {e1j , e2j}Ke
j=3. Model (4.4) can then be reformulated as

logit(πi|vi,xi(t)) = b0 + vᵀi b1 +
2∑

a=1

2∑
j=1

pai
ᵀ[Jaφξ]·jeaj +

2∑
a=1

Ke∑
j=3

pai
ᵀ[Jaφξ]·jeaj ,

= uᵀ
i η + zᵀiα, i = 1, . . . , N,

{eaj}Ke
j=3 ∼ NKe−2(0, σ

2
eI), a = 1, 2.

(4.5)

In the classical definition of generalized linear mixed models, the responses {yi}1≤i≤N are

conditionally independent given the vector α. Let θ
∆
= {b0, b1, e11, e12, e21, e22, σe} denote

all the parameters involved in model (4.4) to be estimated in this stage. Once we have

chosen the basis functions for β(t), model (4.5) only depends on the choice of Kx and Ke.

According to Ruppert (2002) we select Ke large enough to avoid under-smoothing and

select Kx ≥ Ke to meet the identifiability constraint. A pair of desirable Kx and Ke are

selected by the Cross-Validation method. This model can be fit robustly using standard

mixed effects software (Ruppert, 2002; McCulloch et al., 2008).

4.2.3 Implementation

Model (4.3) has lots of parameters and also has effects that interact, which makes simul-

taneous likelihood estimation intractable. We borrow the scheme proposed by Raket et al.

(2016) in which fixed effects τak, warping parameters wk and wki and variance parameters

σ2, ρs and ρh are estimated iteratively on three different levels of modelling.

• Nonlinear model – estimating warping parameters wk and wki. At this level, we

fix all the other parameters and simultaneously perform conditional likelihood esti-

mation of group-specific warping effects wk and predict the random subject-specific

warping effects wki.

• Fixed warp model – estimating the fixed effects τak. At this level, we fix the group-

specific warping effects wk at the conditional maximum likelihood estimate, and the

random subject-specific warping effects wki at the predicted values. The resulting

model turns out to be an approximate linear mixed-effects model with Gaussian

random effects rki and εi. This allows direct maximum-likelihood estimation of the

remaining fixed effects τak.
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• Linearized model – estimating the variance parameters σ2, ρs and ρh. At this

level, the first-order Taylor approximation of model (4.3) in the random warp wki is

considered. We carry out this linearization around the estimate of wk plus the given

prediction of wki from the nonlinear model. The resulting model is also a linear

mixed-effects model and we can explicitly compute the likelihood. All the variance

parameters σ2, ρs and ρh are estimated using maximum-likelihood estimation.

These three different levels of modelling leads to the estimator of warping function g−1(t).

Going back to GLMM model (4.5), we can then estimate those parameters in θ.

First of all, let xak = (xᵀ
ak1, . . . ,x

ᵀ
akNk

)ᵀ ∈ Rmk , where mk =
∑Nk

i=1mki, and xa =

(xᵀ
a0,x

ᵀ
a1)

ᵀ ∈ Rm, where m =
∑1

k=0mk. Let σ2Sak, σ
2Sa be the covariance matrices of

rak = (raki)i and ra = (rak)k respectively. In order to simplify the likelihood computa-

tions, all the random effects are scaled by a noise standard deviation σ. The norm induced

by a full-rank covariance matrix B is denoted by ||A||2B = ATB−1A.

(i) Estimate the fixed effects τak

Given wk and wki, we have xaki ∼ Nmki
(Ψki(ca + dak), Imki

+ Saki), a = 1, 2 and

i = 1, . . . , Nk, where In denotes the n×n identity matrix. The negative log likelihood for

the weights ca is proportional to

l(ca) =
1∑

k=0

Nk∑
i=1

||xaki − Ψkica||2Imki
+Saki

.

The estimator of ca is given by

ĉa = (Ψᵀ(Im + Sa)
−1Ψ)−1Ψᵀ(Im + Sa)

−1xa,

where Ψ = [Ψᵀ
01, . . . ,Ψ

ᵀ
0N0

,Ψᵀ
11, . . . ,Ψ

ᵀ
1N1

]ᵀ ∈ Rm×q. The negative log likelihood for the

weights dak (its square magnitude is penalized by a weighting factor η) is proportional to

l(dak) =

Nk∑
i=1

||xaki − Ψ i(ĉa + dak)||2Imki
+Saki

+ ηdᵀakdak,

This gives the estimator

d̂ak = (Ψᵀ
k(Imk

+ Sak)
−1Ψk + ηIW )−1Ψᵀ

k(Imk
+ Sak)

−1(xak − Ψkĉa),

where Ψk = [Ψᵀ
k1, . . . ,Ψ

ᵀ
kNk

]ᵀ ∈ Rmk×q.

(ii) Estimate warping parameters wk and wki

52



Chapter 4. Joint Curve Registration and Classification with Mixed Scalar and
Functional Variables

Given ĉa and d̂ak, we have the joint probability density function of (xaki,wki) given

by

f(xaki,wki) = f(xaki|wki) ∗ f(wki) ∼ Nmki
(Ψki(ĉa + d̂ak), Imki

+ Saki) ∗Nnw(0,Hki).

We can simultaneously estimate the fixed warping effects wk and predict the random

warping effects wki from the joint conditional negative log posterior. It is proportional to

l(wk,wki) =

2∑
a=1

Nk∑
i=1

||xaki − Ψki(ĉa + d̂ak)||2Imki
+Saki

+ 2

Nk∑
i=1

||wki||2Hki
, (4.6)

where Ψki is determined by mki discrete values of the inverse of warping function gki(t)

which is totally characterized by wk and wki as aforementioned. By minimizing l(wk,wki)

we can obtain the estimation of wk and the prediction of wki.

(iii) Estimate the variance parameters σ2, ρs and ρh

By using the first-order Taylor approximation of model (4.3) in the the random warping

parameters wki around a given prediction w0
ki (w0

ki is specified by the estimate of wki from

(ii) in the current iteration), we can write this model as a vectorized linear mixed-effects

model

xa ≈ Ga +Ba(W −W 0) + ra + ε, a = 1, 2, (4.7)

where xa = {xai, i = 1, . . . , N}, with effects given by

Ga =
{
Ψki|gki=g0ki(ca + dak)

}
kij
∈ Rm,

Ba = diag(Baki)ki ∈ Rm×Nnw ,

Baki =

{
∂gki

(
τak
(
gki(tj)

))∣∣∣
gki=g

0
ki

(
∇wki

(
gki(tj)

))ᵀ∣∣∣
wki=wki

0

}
j

∈ Rmki×nw ,

W = (wki)ki ∼ NNnw(0, σ2IN ⊗Hnw×nw), W 0 = (w0
ki)ki ∈ RNnw ,

ra ∼ Nm(0, σ2Sa), Sa = diag(Saki)ki ∈ Rm×m,

ε ∼ Nm(0, σ2Im).

Here, g0ki(t) = t+wk(t) +w0
ki(t), diag(Baki)ki is the block diagonal matrix with the Baki

matrices along its diagonal, and diag(Saki)i is the block diagonal matrix with the Saki

matrices along its diagonal. The derivation of the linearized model (4.7) is similar to the

proof of C.2 in Appendix C. The negative profile log likelihood function for the model

(4.7) is proportional to

l(σ2,ρs,ρh) =

2∑
a=1

σ2||xa −Ga +BaW
0||2V a

+

2∑
a=1

log detV a + 2mlogσ2,
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where V a = Sa +Ba(In ⊗Hnw×nw)Bᵀ
a + Im.

To speed up convergence, we usually repeat the above three steps for several times

within each iteration. Given the estimators wk and wki, we can obtain the estimator of

g(t).

(iv) Fit the generalized functional linear model

Going back to GLMM model (4.5), we can then estimate the parameters θ using max-

imum likelihood and restricted maximum likelihood techniques. Furthermore, variance

estimators and confidence intervals, like Figure 4.5 in simulation study 1, can be obtained

following standard methods and software (Ruppert et al., 2003; Wood, 2006). The details

are given in Goldsmith et al. (2011). The nlme package (Jose et al., 2017) is used for

fitting the generalized linear mixed effects model in our simulation studies.

4.2.4 Asymptotic properties of estimation of θ

Following the implementation, we will explore the asymptotic properties of the estimation

of the parameters θ involved in the generalized linear mixed model (4.5) using the methods

of Jiang and Zhang (2001). They show that the first-step estimator θ̃ of the vector θ of

parameters acquired by solving a system of estimating equation is consistent. Additionally,

a second-step estimator θ̂, obtained by solving a system of optimal estimating equations

whose coefficients are estimated by θ̃, maintains the asymptotic optimality. Their methods

can be directly applied to the JCRC models in terms of asymptotic properties, which to

some extent also justify our methodology.

For simplicity, we assume b1 in model (4.5) is univariate. Then the fixed effect µi =

{µij}6j=1 and the design vector zi = {zij}2(Ke−2)
j=1 . Let the number of time points be the

same for all subjects. The base statistics defined by Jiang and Zhang (2001) corresponding

to the model (4.5) are

Lj =

N∑
i=1

uijyi, 1 ≤ j ≤ 6,

L6+j =
( N∑
i=1

zijyi
)2 − N∑

i=1

(zijyi)
2, 1 ≤ j ≤ 2(Ke − 2),

The base statistics L is a vector with dimension (2Ke + 2). Let D be an arbitrary matrix

with dimension 7 × (2Ke + 2). Then the first-step estimator is obtained by solving the

equation

DL = Dµ(θ) (4.8)

where µ(θ) = E(L).

Let Θ be the parameter space. Since D, L and µ(θ) may depend on N , we shall
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use the notation DN , LN and µN (θ). The solution to (4.8) does not change if DN is

replaced by C−1N DN , where CN = diag(cN,1, . . . , cN,7) and cN,j (1 ≤ j ≤ 7) is a sequence

of positive constants. We write

AN = C−1N DNLN ,

AN (θ) = C−1N DNµN (θ).

Then, the first-step estimator θ̃ = θ̃N is the solution to the equation

AN (θ) = AN . (4.9)

Assume θ0 is the vector of true parameters and define d(x,A) = inf
y∈A
|x−y|. Let VN be the

covariance matrix of LN . Write UN = ∂µN/∂θ
ᵀ|θ0

. Let HN,j(θ) = ∂2µN,j/∂θ
2, where

µN,j is the jth component of µN (θ), and HN,j,ε = sup
|θ−θ0|≤ε

||HN,j(θ)||, for 1 ≤ j ≤ 2Ke+2.

Let dN,ij be the (i, j) element of DN and use λmin as the smallest eigenvalue. We have

the following theorems on the existence, consistency and asymptotic normality of the first-

and second-step estimators.

Theorem 4.1. (Existence and Consistency) Suppose that, as N →∞,

AN −AN (θ0)→ 0

in probability, and

lim inf d{AN (θ0),A
c
N (Θ)} > 0.

Then, with probability tending to one, the solution to (4.9) exists and is in Θ. If, in

addition, there is a sequence ΘN ⊂ Θ such that

lim inf inf
θ /∈ΘN

|AN (θ)−AN (θ0)| > 0,

lim inf inf
θ∈ΘN ,θ 6=θ0

|AN (θ)−AN (θ0)|
|θ − θ0|

> 0.

Then, any solution θ̃N to (4.9) is consistent.

Theorem 4.2. (Asymptotic Normality) Suppose that

(i) the components of µN (θ) are twice continuously differentiable;

(ii) θ̃N satisfies (4.9) with probability tending to one and is consistent;
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(iii) there exists ε > 0 such that

|θ̃N − θ0|
(λN,1λN,2)

1
2

max
1≤i≤7

c−1N,i
( 2Ke+2∑

j=1

|dN,ij |HN,j,ε

)
→ 0

in probability, where

λN,1 = λmin

(
C−1N DNVND

ᵀ
NC

−1
N

)
,

λN,2 = λmin

(
Uᵀ
ND

ᵀ
N (DNVND

ᵀ
N )−1DNUN

)
;

(iv) [C−1N DNVND
ᵀ
NC

−1
N ]−

1
2 [AN −AN (θ0)]→ N(0, I7) in distribution.

Then, θ̃ is asymptotically normal with mean θ0 and asymptotic covariance matrix

(DNUN )−1DNVND
ᵀ
N (DNUN )−ᵀ.

By replacing the conditions of Theorems 4.1 and 4.2 by corresponding conditions with

a ‘probability statement’, we can get the sufficient conditions for existence, consistency

and asymptotic normality of the second-step estimators. The details of the proofs are

available in Jiang and Zhang (2001).

4.2.5 Prediction

It is of interest to predict y∗ at a new test data point (x∗(t),v∗). We develop an iteration

method to predict y∗ through both model (4.1) and model (4.2).

1. Initialise y∗ by fitting the model (4.1) without using functional variables, i.e.

logit(πi|vi) = b0 + vᵀi b1, i = 1, . . . , N.

We initially predict π∗ = 1

1+exp{b̂0+v∗ᵀˆb1}
, where {b̂0, b̂1} are the estimators of

{b0, b1}. If π∗ ≥ 0.5, we set y∗(0) = 1; otherwise, y∗(0) = 0.

2. Calculate x∗(g−1(t)) given y∗(i0), where i0 indicates the i0-th iteration. Given the

observed 2D curve x∗(t) = (x∗1(t), x
∗
2(t))

ᵀ and the estimators θ̂1, the estimate of the

subject-specific warping part wk∗ can be obtained by minimizing the joint condi-

tional negative log likelihood

l(ŵk,wk∗) =
2∑

a=1

||x∗a − Ψk∗(ĉa + d̂ak)||2Imk∗+
ˆSak∗

+ 2||wk∗||2ˆHak∗
, k = y∗(i0),
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where gk∗(t) = t+ŵk(t)+wk∗(t) and Ψk∗ is determined by mki discrete values of the

inverse of warping function gk∗(t). Then x∗(g−1(t)) can be predicted as x∗(ĝ−1k∗ (t))

where ĝk∗(t) = t+ ŵk(t) + ŵk∗(t).

3. Update y∗ as y∗(i0+1) from the logistic functional model (4.1) given the data (x∗(ĝ−1k∗ (t)),v∗),

where k = y∗(i0).

4. Repeat step 2 and 3 until the value of y∗ remains unchanged.

Regarding to how the initial value of y∗ influences the final results, two typical scenarios

might be considered. The first scenario is that if π∗ is close to 1 or 0, say, 0.9 or 0.1, the

initial value of y∗ always equals the final result 1 or 0. The reason is that the data is able

to provide sufficient information and the above procedure will result in the convergence

to the correct result, like Scenario A in Table 4.2 and Table 4.3 in the real data analysis.

However, if π∗ is close to 0.5, say 0.45 or 0.55, it is very likely that the initial value of y∗

is different from final result. This is since the data does not give enough information, see

the discussion of Scenario B in Table 4.2.

4.3 Numerical analyses

4.3.1 Simulation study 1

In this simulation study, we explore the performance of the proposed method JCRC in

terms of estimating b0, b1,β(t) in model (4.1). Scalar binary outcomes yi are generated

based on the following models

ωi = b0 + vi1b1 +
1

m

m∑
j=1

(
x1i(g

−1(tj))β1(tj) + x2i(g
−1(tj))β2(tj)

)
,

πi =
1

1 + exp(−ωi)
,

yi ∼ Bernoulli(1, πi), i = 1, . . . , N,

(4.10)

where vi1 is scalar variable and x1(g
−1(t)), x2(g

−1(t)) are functional variables.

Data generation

1. We will generate the outcomes y’s through four steps.

(a) Generate the underlying true curves, i.e. the curves based on the internal time

scale g−1(t). We assume the curves in two groups share the following two

different true means, similar to two patterns of the real curves of hyoid bone’s
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(a) 2D curves (b) µ1(t) (c) µ2(t)

Figure 4.2: True mean curves. Curves in green indicate the first group (y = 0) while those
in red represent the second group (y = 1).

movement

µ1(t) =
(
µ11(t), µ21(t)

)
=
(
exp(cos(2πt+ 0.2)), exp(sin(2πt− 0.3))

)
,

µ2(t) =
(
µ12(t), µ22(t)

)
=
(
exp(cos(2πt1.05 − 0.15)), exp(sin(2πt1.1 + 0.1))

)
.

(4.11)

Figure 4.2 shows the underlying true curves. We use the equidistant points

tj = j+1
102 , j = 1, . . . , 100 as the input grid, i.e. mki = 100. The underlying true

mean curve for the i-th curve is generated by

τ aki = µk + r0aki, k = 0, 1; i = 1, . . . , N/2,

where r0aki = T ᵀ
0 · Γ i0, T

ᵀ
0T 0 = M0. The matrix M0 is created by Matern

covariance function with ρr = (100, 0.3, 3), where the three elements represent

the scale, range and smoothness, respectively (Raket, 2016). The vector Γ i0

consists of 100 independent normal random variables N(0, σ2r ). We can regard

τ aki as the true curves xaki(g
−1).

(b) Generate the scalar variables v’s. By sampling from the uniform distribution

we generate scalar variables v

vki ∼

{
U(1, 2), i = 1, . . . , N/2, k = 0,

U(0.5, 1.5), i = 1, . . . , N/2, k = 1.

(c) Set coefficients b0 = −1, b1 = 0.04, and the coefficient functions β1(t) = 20t2 −
14t+ 1.2, β2(t) = 30sin(2πt− 1.8).

(d) Generate y’s from model (4.4). We have Nk batches of data in each group,

where k = 0 and 1, N0 +N1 = N .
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Figure 4.3: An example of the observations of scalar variable with N = 180. The ‘blue’
ones stand for those in the range of overlapping.

2. Generate the original 2D curves x(t) by adding the warping function and errors as

follows.

(a) Model the true mean curves µ1(t), µ2(t) and r0aki using B-spline basis function

with 8 knots, resulting in the coefficients ca, dak and daki where
∑

l dal = 0, a =

1, 2; k = 0, 1. So, τaki = Ψki(ca + dak + daki).

(b) Introduce time warping. For simplicity, we set gki(t) = t+wki(t) and use hyman

spline (monotone cubic spine using Hyman filtering) based on the anchor knots

tw = (0, 0.33, 0.67, 1) (nw = 4). Set wki ∼ N4(0,T
ᵀ
kΓ i), where T ᵀ

kT k = Ok,

O1 =

[
10 4

4 8

]
and O2 =

[
10 8

8 15

]
, and Γ i = (Γ i1,Γ i2)

ᵀ with Γ i1,Γ i2 being

independent random variables N(0, σ2w) for i = 1, . . . , Nk. Thus, τaki(gki) =

Ψ ∗ki(ca + dak + daki).

(c) Set ε ∼ N(0, σ2I) and generate xaki(t) based on the model (4.2).

Figure 4.3 and Figure 4.4 show one example of the observations of the scalar variable

and the functional variable, respectively, with N = 180 and 4σw = σr = σ = 0.02. More

examples can be found at Section B.1 in Appendix B.
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(a) 2D curves (b) x1(t) (c) x2(t)

Figure 4.4: An example of 2D raw curves from the scenario: 4σw = σr = σ = 0.02 and
N = 180 . Curves in green indicate the first group, i.e. y = 0, while those in red represent
the second group, i.e. y = 1.

Results

Under the same constraints 4σw = σr = σ = 0.02, we will study the performance of

estimation by calculating the average bias (AB) for the coefficient b

AB(b̂) =
1

100

100∑
j=1

|b̂j − b|,

and the average root mean squared error (ARMSE) for the coefficient functions β

ARMSE(β̂) =
1

100

100∑
j=1

√√√√ 1

100

100∑
i=1

(β̂j(ti)− β(ti))2.

This is done over 100 replications for different sample sizes N = 60, 90, 120, 180.

The performances of the estimators in model (4.10) as N increases is demonstrated in

Table 4.1. It shows that the ARMSE of the estimators decreases while the sample size

increases.

AB ARMSE

b̂0 b̂1 β̂1 β̂2

N=60, Kx = 18, Ke = 12 2.36 1.88 12.38 19.64
N=90, Kx = 30, Ke = 30 2.27 1.45 11.50 16.56
N=120, Kx = 35, Ke = 35 1.40 1.01 8.27 13.54
N=180, Kx = 35, Ke = 35 1.09 0.92 7.88 11.91

Table 4.1: The average bias and average root mean squared error for the estimators as
the number of subjects increases.

Also, we show one example of the 95% confidence intervals for the coefficients functions
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(a) 95% confidence interval for β̂1(t) (b) 95% confidence interval for β̂2(t)

Figure 4.5: An example of confidence intervals for β̂(t) from the scenario: N = 180,Kx =
35,Ke = 35. The lines in green are the true β, the lines in black stand for the estimators β̂,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100tj .

β(t) and the distribution of π̂ from the fourth scenario N = 180,Kx = 35,Ke = 35 in

Figure 4.5 and Figure 4.7, respectively. Additionally, the result of registration for the

example in Figure 4.4 is demonstrated in Figure 4.6. Extra numerical results can be seen

at Section B.2 and B.3 in Appendix B.

4.3.2 Simulation study 2

The performance of the proposed JCRC models in terms of prediction will be evaluated

in this simulation study. Meanwhile, we will compare it with the model defined in (4.1)

without scalar variables (denoted by JCRC-f ), and the simple logistic linear regression

model without functional variables (denoted by LLR). We also compare them with the

curve classification based on the square-root velocity representation for analyzing shapes

of curves (Srivastava et al., 2011a) (denoted by SRV ) and the integration of Generalized

Procrustes analysis (Gower, 1975b) and self-modeling method (Gervini and Gasser, 2004)

(denoted by GPSM ). The principal of curve classification and the details of procedures

for GPSM method has been discussed in Chapter 3.

We still consider 2D curves coming from two groups. For each group, the corresponding

observations of functional variables x(t) and scalar variables v will be generated. There are

Nk batches of data in each group, where k = 0, 1. We will first evaluate and compare five

methods based on the simulated data D = {(yki, x1ki(tij), x2ki(tij),vki); i = 1, . . . , Nk; j =

1, . . . ,mki; k = 0, 1} in two scenarios; see Scenario A and Scenario B in Table 4.2. Addi-

tionally, one of the data settings in the previous simulation study will also be used here

as the third scenario (Scenario C).
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(a) Aligned x1(t) (b) Aligned x2(t)

Figure 4.6: The curves after registration by JCRC, corresponding to the raw curves in
Figure 4.4.

Figure 4.7: An example of the distribution of π̂ from the scenario: N = 180,Kx = 35,Ke =
35. Circles in green indicate the first group, i.e. y = 0 while those in red represent the
second group y = 1. The dotted line in black in the middle represents π = 0.5.
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(a) 2D curves (b) µ1(t) (c) µ2(t)

Figure 4.8: True mean curves for δ1 = 0.18. Curves in green indicate the first group
(y = 0) while those in red represent the second group (y = 1).

Data generation

1. Generate the underlying true curves, i.e. the curves based on the internal time scale

g−1(t). We first assume that the curves in two groups share the following two slightly

different true means, which is similar to two patterns of those real curves of hyoid

bone’s movement

µ1(t) =
(
µ11(t), µ21(t)

)
=
(
exp{cos(2πt)}, exp{sin(2πt)}

)
,

µ2(t) =
(
µ12(t), µ22(t)

)
=
(
exp{cos(2πt1.1 − δ1)}, exp{sin(2πt1.2 + δ1)}

)
.

(4.12)

The degree of overlapping between two groups relies on the value of δ1. The smaller

the value of b1, the higher the degree of overlapping, and the harder it is to classify

those curves. We use the equidistant points tj = j+1
102 , j = 1, . . . , 100 as the input

grid, i.e. mki = 100. The underlying true curves are generated by

xak(g
−1(t)) = µak(t), a = 1, 2; k = 0, 1.

Figure 4.8 shows the shape of the true mean curves for δ1 = 0.18.

2. Generate the original 2D curves x(t) by adding the warping function, amplitude

variation and errors as follows.

(a) Model the true curves xak(g
−1(t)) using B-spline basis function with 8 knots

and obtain the coefficients ca and dak where
∑

k dak = 0, a = 1, 2; k = 0, 1.

(b) Introduce time warping. For simplicity, we set gki(t) = t+wki(t) and use hyman

spline (monotone cubic spine using Hyman filtering) based on the anchor knots

tw = (0, 0.33, 0.67, 1) (nw = 4). Set wki ∼ N4(0,T
ᵀ
kΓ i), where T ᵀ

kT k = Ok,
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(a) 2D curves (b) x1(t) (c) x2(t)

(d) 2D curves (e) x1(t) (f) x2(t)

Figure 4.9: (a)-(c): an example of raw curves for Scenario A with δ1 = 0.18, 4σw = σr =
σ = 0.03; (d)-(f): an example of raw curves for Scenario B with δ1 = 0.15, 4σw = σr =
σ = 0.02. Curves in green indicate the first group (y = 0) while those in red represent the
second group (y = 1).

O1 =

[
10 4

4 8

]
and O2 =

[
10 8

8 15

]
, and Γ i = (Γ i1,Γ i2)

ᵀ with Γ i1,Γ i2 being

independent random variables N(0, σ2w) for i = 1, . . . , Nk.

(c) Set the amplitude variation raki = T ᵀ
0 · Γ i0, where T ᵀ

0T 0 = O0, a = 1, 2,

k = 0, 1 and i = 1, . . . , Nk. The matrix O0 is created by Matern covariance

function with ρr = (100, 0.3, 3), where the three elements represent the scale,

range and smoothness, respectively (Raket, 2016), and Γj0 is a vector of 100

independent normal random variables N(0, σ2r ). Set ε ∼ N(0, σ2I).

(d) Generate x(t) based on the model (4.3). Figure 4.9 shows two examples of raw

data.

3. Generate v’s. We next generate those scalar variables v by sampling from uniform
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(a) δ2 = 0.7 (b) δ2 = 0.5

Figure 4.10: Observations of scalar variable in two groups. The ‘blue’ ones stand for those
in the range of overlapping.

distribution as follows:

Vi ∼

{
U(1, 2), i = 1, 2, . . . , N0,

U(1− δ2, 2− δ2), i = N0 + 1, . . . , N0 +N1.

Note that as δ2 becomes larger, the degree of overlapping becomes smaller. Hence it

becomes easier to carry out classification using scalar variables. Figure 4.10 shows

two examples of v’s with δ2 = 0.7 and 0.5.

Results

To investigate how the overlapping of the observations of both scalar variables and curves

affects the performance of fitting and prediction, we study two scenarios: (A) δ1 = 0.18,

δ2 = 0.7, 4σw = σr = σ = 0.03 (Figure 4.9 (a)-(c) and Figure 4.10 (a)) ; (B)δ1 = 0.15,

δ2 = 0.5, 4σw = σr = σ = 0.02 (Figure 4.9 (d)-(f) and Figure 4.10 (b)). Both scenarios

are studied under the same constraints N0 = N1 = 60, half for training data set and

half for test data set. There are 100 replications for each scenario. Also, we study the

scenario: (C) using the data setting in the previous simulation study with constraints

4σw = σr = σ = 0.02 and N = 120 (half for training and half for test). We use three

criteria to measure the performance of clustering. These are classification accuracy (CA),

the Rand index (RI) (Rand, 1971b) and adjusted Rand index (ARI) (Hubert and Arabie,

1985b) are used to measure the performance of classification (or prediction).

We set Kx = 18 and Ke = 10 for Scenario A and Scenario B and Kx = 18,Ke = 12 for

Scenario C by 5-fold Cross-Validation method. Table 4.2 summarizes the comparison of
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average classification results by CA, RI and ARI. Firstly, we see the values of CA, RI and

ARI for method JCRC are much higher than the other four in all scenarios. It shows our

proposed method JCRC outperforms the rest in terms of classification. The reason is that

the combination of functional variables and scalar variables is more helpful in classifying

the subjects than using only the functional variables or scalar variables. Specifically, the

CA values by LLR only based on scalar variable are 0.85, 0.75 and 0.75, are much less

than 0.95, 0.94 and 0.91 by JCRC in three scenarios, respectively. The results of curve

classification, depending on functional variables only, are all less than 0.8 except those

in Scenario C (less than 0.86), by method JCRC-f, GPSM and SRV. Secondly, on one

hand, as the overlapping of v’s increases from Scenario A to Scenario B (or Scenario C),

contributing to harder differentiation of which group each subject belongs to, the method

LLR performs worse with the value of CA decreasing from 0.85 to 0.75. On the other

hand, because of the decrease of noise determined by σw, σr and σ, JCRC-f, GPSM and

SRV perform better from Scenario A to Scenario C. In whatever case, JCRC has the most

stable and best results. Figure 4.11 shows the registration of raw curves from Figure 4.9

by method JCRC in Scenario A and Scenario B.

Other combinations with varying sample sizes, distinct overlapping determined by δ1

for functional variables and δ2 by scalar variables and different σw, σr and σ have also

been examined. The results presented here are typical.

Scenario A Scenario B Scenario C
CA RI ARI CA RI ARI CA RI ARI

JCRC 0.95 0.90 0.81 0.94 0.89 0.79 0.91 0.86 0.71
LLR 0.85 0.78 0.49 0.75 0.63 0.25 0.75 0.63 0.25

JCRC-f 0.70 0.58 0.16 0.78 0.66 0.32 0.86 0.77 0.54
GPSM 0.73 0.61 0.22 0.76 0.64 0.27 0.86 0.77 0.54
SRV 0.56 0.52 0.03 0.58 0.52 0.04 0.63 0.55 0.11

Table 4.2: Comparison of average classification results among five methods.

4.3.3 Real data analysis

The application to real data is to carry out the classification for normal people and patients

with stroke by modelling the trajectories of their hyoid bone movement and the other

scalar variables. The data set contains two groups, one for normal people and the other

for patients. Figure 4.1(a) and 4.1(b) show one frame from a X-ray video clip and raw

curves with 15 people in each group, respectively. The scalar variables we choose are

motion time (duration), average velocity and acceleration amplitude of those curves. By

using the package of GPA, we do the preprocessing for those 2D raw curves first. The

procedures include multi-dimensional shift, scaling and rotation, as mentioned in Section
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(a) Aligned curves from Scenario A

(b) Aligned curves from Scenario B

Figure 4.11: The aligned curves for both scenarios corresponding to raw data from Figure
4.9. Curves in green indicate the first group (y = 0) while those in red represent the
second group (y = 1).
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3.2.1 of Chapter 3. In the part of modelling those curves, we assume the warping function

be a smooth nonlinear deformation produced by an increasing spline and the random vector

wki be a Brownian bridge observed at discrete anchor points. B-spline basis functions are

utilized for modeling the mean curves. The covariance function for the amplitude variance

is the Matern covariance function. For our proposed method JCRC, we evaluate the

classification performance by 5-fold cross-validation. It means 12 samples are trained and

the remaining 3 are tested for each group. The results are shown in Table 4.3. We see

that the method JCRC outperforms the other methods.

Methods CA RI ARI

JCRC 0.76 0.69 0.39
LLR 0.63 0.45 0

JCRC-f 0.50 0.43 0
GPSM 0.57 0.48 0.06
SRV 0.50 0.43 -0.11

Table 4.3: Average classification results of three measurements for five methods. The
results by GPSM and SRV are from the real data analysis of Chapter 3.

4.4 Chapter Summary

We have proposed two-stage models for joint curve registration and classification (JCRC ),

with the first stage fitting the logistic functional linear regression model and the second

stage modelling the multi-dimensional curves with the misaligned problems. The predic-

tion of misaligned curves acquired in the first stage will be used in the second stage. The

estimation and implementation of two-stage models are provided. We also developed an

iterative algorithm to predict the outcomes. Numerical results show the superiority of our

proposed model. The main contributions include:

(a) simultaneously carrying out registration and modeling for multi-dimensional func-

tional data,

(b) the use of both functional and scalar covariates while conducting classification.

The methodology discussed in this chapter is just for the purpose of classification, i.e.

supervised learning in the computing community. How about the task of clustering for

multi-dimensional functional data? In the area of unsupervised learning, it is much more

difficult than classification due to the lack of response value y. We will study the problem

of simultaneous registration and clustering in the next chapter.
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Chapter 5

Simultaneous Registration and

Clustering for Multi-dimensional

Functional Data

5.1 Introduction

As mentioned in the last chapter, in our study of the motion analysis of hyoid bone,

there exist obvious misaligned problems for those curves in both vertical and horizontal

variation (see Figure 4.1 in Chapter 4). Usually, curve registration is implemented as

a preprocessing technique and the clustering is conducted afterwards. It is not efficient,

since a subject belonging to which cluster is closely related to how it unfolds its progression

pace. Another challenging problem for this study is that the heterogeneity of regression

relationships among different groups. It consists in both the subjects’ scalar covariates

and the potential time warping for curves corresponding to the subjects. These scalar

covariates include, but not restricted to, the initial level of disease, gender, age and the

characteristics of those trajectories themselves, like motion time, average speed and range

of motion. Therefore, simultaneous curve registration and clustering by considering all

those factors seems to be a better way for modeling the functional data. There are some

research work on handling the similar problems. For instance, Wu and Hitchcock (2016)

proposed a Bayesian method for simultaneous registration and clustering for functional

data. They used a discrete approximation generated from the family of Dirichlet distri-

butions to allow warping functions of great flexibility. Liu and Yang (2009) developed

a framework that allows for simultaneously aligning and clustering k-centers functional

data. But their model did not use any subject specific information (scalar variables) and

assumed the heterogeneity among groups just depends on the curves themselves; similar

idea is also used in k-means alignment for curve clustering by Sangalli et al. (2010). On
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the other hand, Shi and Wang (2008) proposed a hierarchical mixture of Gaussian process

(GP) functional regression models with an allocation model to do curve prediction and

clustering. They used the functional covariates to reconstruct the response curve and the

personal scalar variables, such as height and gender, to deal with heterogeneity of the

regression relationships among different groups. However, their method did not consider

the misaligned problem. In addition, most related models are limited to one dimensional

curves. To address the above problems, we try to construct one hierarchical mixture of

models for the sake of simultaneous curve registration and clustering.

This chapter is organized as follows. Section 5.2.1 defines simultaneous registration

and clustering (SRC ) models via two-level models. We discuss the estimation and the

details of implementation in Section 5.2.2 and Section 5.2.3 respectively. The problem

of model selection and the related methods are discussed in Section 5.2.4. Section 5.3

presents a number of examples with simulated data and real data. A short summary and

discussion are given in Section 5.4.

5.2 The simultaneous registration and clustering method

Suppose there are N subjects coming from K different groups, x1(t),x2(t), . . . ,xN (t)

being the observations of 2D continuous curves, where xi(t) = (x1i(t), x2i(t))
ᵀ, x1i(t) and

x2i(t) are the corresponding x-coordinates and y-coordinates of xi(t). Let v1, . . . ,vN be

the observed scalar variables. Suppose there are mi time points on which the i-th curve

is measured. The data set is

D = {(xi(tij),vi); i = 1, . . . , N ; j = 1, . . . ,mi}.

We introduce a latent indicator variable zi = (z1i, . . . , zKi)
ᵀ for the i-th subject where zik

takes value 1 if they are in the k-th group and 0 otherwise.

5.2.1 The model

In our study of 2D curves, we will use the preprocessing procedure Generalized Procrustes

Analysis (GPA) (Gower, 1975b) to address part of registration problems in advance except

warping. Conventionally, most methods tried to complete all the registration problems

including warping before clustering. This is not the best way since different warping

functions may need to be used in different clusters, yet we have no such information

before clustering, and heterogeneity among different subjects should also be considered.

Thus, a hierarchical structure defined by two levels of models is proposed.
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We start with the first level model for the continuous curve as follows

xai(t)|zki=1 = (τak ◦ gki)(t) + raki(t) + εai(t), i = 1, . . . , N, (5.1)

where a = 1 or 2 represents x- or y-coordinates of xi(t). The item (τak ◦ gki) denotes

functional composition: (τ ◦ g)(t) = τ(g(t)), where gki(t) is the inverse of a warping

function. τak(·) is a fixed but unknown nonlinear mean curve, which can be approximated

by a set of basis functions, the details will be given in the next subsection. The variation

among different subjects is modeled by a non-linear functional random-effects, raki(t), by

a Gaussian process with zero-mean and a parametric covariance function S (Shi et al.,

2012). The error item εai(t) is assumed to be Gaussian white noise with variance σ2.

Following the previous discussion, we need to use different warping function in different

cluster, and we also need to consider the variation among different subjects, and thus, we

allow warping function depending on k and i. Using the same assumption of the inverse

of warping function gki(t) in the previous chapter, we assume

gki(t) = t+ wk(t) + wki(t),

where wk(t) is the fixed part and wki(t) is the random part in terms of different sub-

jects. We then discretize them by a set of fixed parameters, for example, by wk =

(wk(t1), . . . , wk(tnw)) and wki = (wki(t1), . . . , wki(tnw)) respectively. wki are modelled

by a Gaussian distribution with zero mean and a parametric covariance function H.

We define a logistic allocation model in the second level model for the latent indicator

variable in the form

p(zki = 1) = πki =
exp{vᵀiβk}

1 +
∑K−1

j=1 exp{vᵀiβj}
, i = 1, . . . , N ; k = 1, . . . ,K − 1, (5.2)

with p(zKi = 1) = πKi = 1 −
∑K−1

l=1 πli, where {βk, k = 1, . . . ,K − 1} are unknown

parameters to be estimated. We can also replace model (5.2) by other models, e.g. Potts

model (Green and Richardson, 2000). The information of scalar variables is integrated

with functional variables via the two-level models (5.1) and (5.2). The reason of using

both types of variables is that the variation between subjects does not usually depend

on the curve data only, summary statistics or some subject-specific variables do provide

useful information, like the scenario in Figure 5.7 and Figure 5.8 in the simulated example

and Table 5.2 and Figure 5.12 in the real data analysis. The introduction of the latent

indicator variable is very useful in the implementation; see the details below.

We call the models defined in (5.1) and (5.2) as simultaneous registration and clustering

(SRC ) models.
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5.2.2 Estimation

The discrete form of model (5.1) for the ith curve data xai =
(
xai(ti1), . . . , xai(timi)

)ᵀ
can

be expressed as follows

xai|zki=1 = τ ak(gki) + raki + εi, for a = 1, 2; k = 1, . . . ,K, (5.3)

where τ ak(gki) =
(
τak
(
gki(ti1)

)
, . . . , τak

(
gki(timi)

))ᵀ
. Similar to the last chapter, we still

setH as Brownian covariance function or unstructured covariance function with parameter

ρh (Raket, 2016) and let Hki be the covariance matrix of wki. We then model τak(t) using

q basis functions {ψ1(t), . . . , ψq(t)} with weights dak = (dak1, . . . , dakq)
ᵀ. Thus, τ ak(gki) =

Ψkidak where Ψki = [Ψki1, . . . ,Ψkiq]mi×q,Ψkil = (ψl(gki(ti1)), . . . , ψl(gki(timi)))
ᵀ, l =

1, . . . , q. We still use a smooth non-linear deformation produced by a cubic Hermite

spline (Raket, 2016) for the curves. raki and εi are both mi-dimensional column vector.

We set S as the Matern covariance function with parameters ρs and let Saki be the co-

variance matrix of raki. ρh and ρs can be estimated by the data, and Hki and Saki can be

calculated by the corresponding covariance function; see the details in the next subsection.

The unknown parameters from the k-th component for the a-coordinates (x- or y-

coordinates) of the i-th curve are denoted by θaki
∆
= {dak,wk,wki,ρs,ρh, σ}. Let θki

be the vector of {θaki, a = 1, 2}. We can similarly define θi = {θki, k = 1, . . . ,K},
θ = {θi, i = 1, . . . , N} and β = {βk, k = 1, . . . ,K−1}. The Gaussian mixture distribution

for the i-th curve data can be written in the form

p(xi|θi,β) =
K∑
k=1

πkip(xi|θki), i = 1, . . . , N,

where p(xi|θki) = p(x1i|θ1ki)p(x2i|θ2ki). We assume x1i and x2i are conditional indepen-

dent given those parameters. The log-likelihood of (θ,β) is therefore

l(θ,β) =
N∑
i=1

log
{ K∑
k=1

πkip(xi|θki)
}
.

It is quite tricky to conduct the estimation due to the large number of unknown

parameters. EM algorithm will be adopted in this paper. We have defined the latent

indicator variable zi, which is treated as missing. The joint likelihood function of x and

z, where z = {zi; i = 1, . . . , N}, takes the form

p(x, z|θ,β) = p(z|β)p(x|z,θ) =

N∏
i=1

K∏
k=1

πzkiki p(xi|θki)
zki .
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Taking the logarithm, we have the log-likelihood for complete data (x, z)

lc(θ,β) = logp(x, z|θ,β) =

N∑
i=1

K∑
k=1

zki

(
logπki + logp(xi|θki)

)
. (5.4)

The expected value of the complete log-likelihood with respect to z is given by

Ez{lc(θ,β)} =
K∑
k=1

N∑
i=1

E(zki|x,θ,β)

(
logπki + logp(xi|θki)

)

=

K∑
k=1

N∑
i=1

Mki

(
logπki + logp(xi|θki)

)
,

(5.5)

where

Mki
∆
= E(zki|x,θ,β) =

πkip(xi|θki)∑K
j=1 πjip(xi|θji)

, i = 1, . . . , N ; k = 1, . . . ,K.

The derivation of Mki is given by C.1 in Appendix C. The procedure of EM algorithm

includes

1. Initialise θ(i0) and β(i0) and evaluate the Mki (E-step)

Mki =
π
(i0)
ki p(xi|θ

(i0)
ki )∑K

j=1 π
(i0)
ji p(xi|θ(i0)ji )

.

2. Fix Mki and maximize Q(θ,β) with respect to θ and β

Q(θ,β)
∆
=

K∑
k=1

N∑
i=1

Mki

(
logπki + logp(xi|θki)

)
,

leading to θ(i0+1) and β(i0+1) (M-step).

The technical details are given in the next subsection.

5.2.3 Implementation

In E-step, we first initialize the weights Mki. In practice, we choose M
(0)
ki ∼ U(0, 1) for

the purpose of simplicity. Each Mki is then divided by their summation
∑K

k=1Mki and

we set π
(0)
ki = M

(0)
ki . In M-step, there are no analytic solutions to the maximization of

Q(θ,β) with respect to θ, so that we use the following algorithms. Maximizing Q(θ,β)
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with respect to θ given the current weights Mik is equivalent to maximizing

K∑
k=1

N∑
i=1

Mki

( 2∑
a=1

(
logp(xai|θaki)

))
.

All the parameters within θ are estimated iteratively through three conditional models.

The ideas are given in Section 4.2.3 of Chapter 4. In order to simplify the likelihood

computations, all the random effects are scaled by a noise standard deviation σ.

(i) Estimate the fixed effects τ ak

Given θ(i0), we have xai|zki=1 ∼ Nmi(Ψkidak, Imi + Saki), a = 1, 2 and i = 1, . . . , N .

The negative log likelihood for the weights dak (its square magnitude is penalized by a

weighting factor η) is proportional to

l(dak) =

N∑
i=1

Mki||xai − Ψkidak||2Imi+Saki
+ ηdᵀakdak, a = 1, 2; k = 1, . . . ,K.

This gives the estimator

d̂ak = (Ψᵀ
k(
Im + Sak
Mk

)−1Ψk + ηIq)
−1Ψᵀ

k(
Im + Sak
Mk

)−1xa, a = 1, 2; k = 1, . . . ,K,

where Ψk = [Ψᵀ
k1, . . . ,Ψ

ᵀ
kN ]ᵀ ∈ Rm×q, m =

∑N
i=1mi, xa = (xᵀ

a1, . . . ,x
ᵀ
aN )ᵀ and

Im + Sak
Mk

∆
=


(Im1 + Sak1)/Mk1

. . .

(ImN + SakN )/MkN

 ∈ Rm×m. (5.6)

(ii) Estimate warping parameters wk and wki

Given θ(i0) and d̂ak, we have the joint probability density function of (xai,wki) given

by

p(xai,wki) = p(xai|wki) ∗ p(wki) ∼ Nmi(Ψkid̂ak, Imi + Saki) ∗Nnw(0,Hki).

We can simultaneously estimate the fixed warping effects wk and predict the random

warping effects wki from the joint conditional negative log posterior. It is proportional to

l(wk,wki) =

2∑
a=1

N∑
i=1

Mki||xai − Ψkid̂ak||2Imi+Saki
+ 2

N∑
i=1

Mki||wki||2Hki
, k = 1, . . . ,K,

(5.7)

where Ψki is determined by mi discrete values of the inverse of warping function gki(t)

which is totally characterized by wk and wki as aforementioned. By minimizing l(wk,wki)
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we can obtain the estimation of wk and the prediction of wki.

(iii) Estimate the variance parameters σ2,ρs and ρh

By using the first-order Taylor approximation of model (5.3) in the the random warping

parameters wki around a given prediction w0
ki (w0

ki is specified by the estimate of wki from

(ii) in the current iteration), we can write this model as a vectorized linear mixed-effects

model

xa|zki=1 ≈ Gak +Bak(W k −W 0
k) + rak + ε, a = 1, 2; k = 1, . . . ,K, (5.8)

where xa = {xai, i = 1, . . . , N}, the effects are given by

Gak =
{
Ψki|gki=g0kidak

}
ij
∈ Rm,

Bak = diag(Baki)i ∈ Rm×Nnw ,

Baki =

{
∂gki

(
τak
(
gki(tj)

))∣∣∣
gki=g

0
ki

(
∇wki

(
gki(tj)

))ᵀ∣∣∣
wki=w0

ki

}
j

∈ Rmi×nw ,

W k = (wki)i ∼ NNnw(0, σ2IN ⊗Hnw×nw), W 0
k = (w0

ki)i ∈ RNnw ,

rak ∼ Nm(0, σ2Sak), Sak = diag(Saki)i ∈ Rm×m,

ε ∼ Nm(0, σ2Im),

where g0ki(t) = t + wk(t) + w0
ki(t). diag(Baki)ki is the block diagonal matrix with the

Baki matrices along its diagonal, and diag(Saki)i is the block diagonal matrix with the

Saki matrices along its diagonal. The derivation of the linearized model (5.8) is given by

C.2 in Appendix C. The negative profile log likelihood function for the model (5.8) is

proportional to

l(σ2,ρs,ρh) =
K∑
k=1

{ 2∑
a=1

σ2||xa −Gak +BakW
0
k||2V ak

+
2∑

a=1

log detV ak

}
+ 2mKlogσ2,

where V ak =

(
Sak+Bak

(
IN⊗Hnw×nw

)
Bᵀ

ak+Im

)
M k

∈ Rm×m, with the definition similar to

Im+Sak

M k
in (5.6).

To speed up convergence, we usually repeat the above three steps several times within

each iteration.

(iv) Update Mki and estimating β

Fix θ(i0+1) and update

Mki =
π
(i0)
ki p(xi|θ

(i0+1)
ki )∑K

j=1 π
(i0)
ji p(xi|θ(i0+1)

ji )
,
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where

π
(i0)
ki =

exp{vᵀiβ
(i0)
k }

1 +
∑K−1

j=1 exp{vᵀiβ
(i0)
j }

, k = 1, . . . ,K − 1,

and πKi = 1−
∑K−1

j=1 π
(i0)
ji . Then maximize Q(θ,β) with respect to β, which is equivalent

to maximize

l(β)
∆
=

N∑
i=1

{
K−1∑
k=1

Mki

{
vᵀiβk − log

[
1 +

K−1∑
j=1

exp{vᵀiβj}
]}
−MKilog

[
1 +

K−1∑
j=1

exp{vᵀiβj}
]}
.

This is very similar to the log-likelihood for a multinomial logit model (Mki’s are cor-

responding to the observations) and can be maximized by iteratively re-weighted least

square algorithm.

5.2.4 Model selection, clustering and related methods

There are two questions on the model selection for our proposed simultaneous registration

and clustering method for multi-dimensional functional data: one is how to determine the

number of knots for the splines and another is how many clusters. For the former, since

our data is rather dense and insensitive, it works well using a relatively small number of

equally-spaced knots. For the choice of the number of clusters, K, since the number of

parameters, pl, in model (5.1) is relative to the number of subjects, N , a second-order bias

correction version of AIC called AICc (Sugiura and Nariaki, 1978; Kenneth and David,

2004) is utilized:

AICc = −2l(Θ̂) + 2pl +
2pl(pl + 1)

N − pl − 1
,

where l(Θ̂) is the maximized log-likelihood function, Θ̂ = {θ̂, β̂} in this paper.

In inference, we first choose K clusters by AICc. Then fit the data using the method

discussed in the previous subsections and denote the estimates of the parameters by θ̂ and

β̂. Under the framework of SRC method, the fixed-effect part of the ith individual curve

is calculated by

x̂ai(t) =
K∑
k=1

π̂ki
[
τ̂ak(ĝki(t))

]
, a = 1, 2; i = 1, . . . , N, (5.9)

where ĝki(t) = t+ ŵk(t) + ŵki(t) and π̂ki =
exp{vi

ˆβk}
1+

∑K−1
j=1 exp{vi

ˆβj}
.

For any individual data D∗ = {(x1∗,x2∗),v
∗} in D, the posterior distribution of the
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cluster membership z∗ = (z∗1 , . . . , z
∗
K)ᵀ is given by

p(z∗k = 1|D∗) =
π∗kp(x1∗|θ̂1k)p(x2∗|θ̂2k)∑K0
j=1 π

∗
j p(x1∗|θ̂1j)p(x2∗|θ̂2j)

,

where

π∗k =
exp{v∗ᵀβ̂k}

1 +
∑K−1

j=1 exp{v∗ᵀβ̂j}
.

As a result, the best cluster membership for D∗ can be determined by

k∗ = argmaxk=1,...,K{p(z∗k = 1|D∗)}.

The average mean curve for each group can be calculated from {x̂ai(t)|zki=1} for k =

1, . . . ,K.

Related methods

Functional k-means method is a popular approach for clustering curves (Chiou and Li,

2007), which is an extension of k-means cluster (MacQueen, 1967; Lloyd, 1982) for scalar

variables. The idea can be extended to do clustering and registration simultaneously.

Using the similar notation around (5.3), we can define the following objective function

F =

N∑
i=1

K∑
k=1

zkid
(
xi, τ k(gki)

)
, (5.10)

where d represents one kind of distance between each curve to its assigned mean curve

τ k(gki) and

zki =

{
1, if k = argminj d

(
xi, τ j(gji)

)
,

0, otherwise.

In order to find the values {zki} and the {τ k(gki)} to minimize F , we can perform an

iterative procedure in which each iteration involves two steps of the optimization with

respect to {zki} and {τk(gki)} respectively. This approach is denoted by k-means-f and

its iterative procedures are as follows (use d = || · ||2 for the purpose of simplicity and

convenience.):

1. Choose the initial values for the zki. We can use any clustering method for scalar

variables {βi} corresponding to the functional variables {xi}.

2. Fix zki and minimize F with respect to the τ ak(gki). In this phase, minimizing F is
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equivalent to maximizing

K∑
k=1

N∑
i=1

zki

( 2∑
a=1

(
logp(xai|θaki)

))

with the assumption that the covariance matrix of xai are the same over all the

subjects. The detailed estimation of {θaki} have been mentioned before and the

τ ak(gki) can be obtained straightforwardly.

3. Fix τ ak(gki) and minimize F with respect to zki. Since the term F in (5.10) involving

different i are independent, we can optimize F for each i separately by choosing zki

as follows

zki =

{
1, if k = argminj ||

(
xi − τ j(gji)

)
||2;

0, otherwise.

4. Repeat Step 2 and Step 3 until convergence.

A special case of the SRC model defined in Section 5.2.1 is that the allocation model

in (5.2) doesn’t depend on any scalar variables (denoted by SRC-f, i.e. use the function

variable only). This special case is very similar to the above k-means-f approach. Actually

the k-means-f algorithm is a special case of EM algorithm for SRC-f. Using similar

notation around (5.3) and assuming xai|zki=1 ∼ Nmi(τ ak(gki), δI), a = 1, 2; i = 1, . . . , N,

where δ is shared by all the clusters, we have the density function of xai with the form

p(xai|θaki) = (2πδ)−
mi
2 exp

{
− 1

2δ
||xai − τ ak(gki)||2

}
.

Let p(zki = 1) = πk, k = 1, . . . ,K with
∑K

k=1 πk = 1 be the allocation model. Using the

EM algorithm for the Gaussian mixtures described in Section 5.2.2, we have

Mki =
πk
∏2
a=1 exp

{
− ||xai − τ ak(gki)||2/2δ

}∑K
j=1 πj

∏2
a=1 exp

{
− ||xai − τ aj(gji)||2/2δ

} .
Clearly, Mki → zki, when δ → 0. Thus Ez [logp(x, z|θ,β)] ≈ − 1

2δF + costant, when δ is

small. It means the optimization problem is the same as the k-means-f algorithm given

by (5.10) (using d = || · ||2).

5.3 Numerical analyses

We shall evaluate the performance and properties of the proposed SRC model in this

section. We will compare it with functional k-means clustering (k-means-f ) with simul-

taneous registration as discussed in Section 5.2.4, the SRC without using an allocation
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model (SRC-f ) and scalar k-means clustering (k-means-s). The k-means-s is a general

k-means clustering method using scalar variables only. We will conduct analysis on both

simulated and real data.

5.3.1 Simulation study

In this simulation study, we consider 2D curves coming from two groups. For each group,

the corresponding observations of functional variables x(t) and scalar variables v will

be generated. There are Nk batches of data in each group, where k = 1, 2. We will

evaluate and compare four methods based on the simulated data D = {(xi(tij),vi); i =

1, . . . , N ; j = 1, . . . ,mi} in different scenarios where N = N1 +N2.

Data generation

1. Generate the underlying true curves, i.e. the curves based on the internal time

scale g−1(t). We first assume those curves in two groups share the following two

slightly different true means, similar to two patterns of the real curves of hyoid

bone’s movement

µ1(t) =
(
µ11(t), µ21(t)

)
=
(
exp{cos(2πt)}, exp{sin(2πt)}

)
,

µ2(t) =
(
µ12(t), µ22(t)

)
=
(
exp{cos(2πt1.05 − b1)}, exp{sin(2πt1.1 + b1)}

)
.

(5.11)

The degree of overlapping between two groups relies on the value of b1. The smaller

the value of b1, the higher the degree of overlapping, and more difficult to cluster

those curves. We use the equidistant points tj = j+1
102 , j = 1, . . . , 100 as the input

grid, i.e. mi = 100. The underlying true curves are generated as

xak(g
−1(t)) = µak(t), a = 1, 2; k = 1, 2.

Figure 5.1 shows the shape of the true mean curves for different values of b1.

2. Generate the original 2D curves x(t) by adding the warping function, amplitude

variation and errors as follows.

(a) Model the true curves xak(g
−1(t)) using B-spline basis function with 8 knots

and obtain the coefficients dak.

(b) For simplicity, we set gki(t) = t+wki(t) and use hyman spline (monotone cubic

spine using Hyman filtering) based on the anchor knots tw = (0, 0.33, 0.67, 1)

(nw = 4). Set wki ∼ N4(0,T
ᵀ
kΓ i), where T ᵀ

kT k = Ok, O1 =

[
10 4

4 8

]
and
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(a) b1 = 0.08

(b) b1 = 0.10

(c) b1 = 0.12

Figure 5.1: True mean curves µ1(t) (lines in green) and µ2(t) (lines in red) of group 1 and
group 2 with b1 = 0.08, 0.10, 0.12.
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O2 =

[
10 8

8 15

]
, and Γ i = (Γ i1,Γ i2)

ᵀ with Γ i1,Γ i2 being independent random

variables N(0, σ2w), where i = 1, . . . , Nk.

(c) Set the amplitude variation raki = T ᵀ
0 · Γ i0, where T ᵀ

0T 0 = O0, a = 1, 2,

k = 1, 2, i = 1, . . . , Nk. The matrix O0 is created by the Matern covariance

function with ρr = (100, 0.3, 3), where the three elements represent the scale,

range and smoothness, respectively (Raket, 2016), and Γj0 is a vector of 100

independent normal random variables N(0, σ2r ). Set ε ∼ N(0, σ2I).

(d) Generate x(t) based on the model (5.3).

3. Generate v’s. We generate the scalar variables v by sampling from uniform distri-

bution as follows:

Vi ∼

{
U(1, 2), i = 1, 2, . . . , N1,

U(1− b2, 2− b2), i = N1 + 1, . . . , N1 +N2.

Note that the larger the value of d2, the lower the degree of overlapping and easier

to carry out clustering using scalar variables.

Results

In order to investigate how the overlapping of the observations of both scalar variables and

functional variables affect the performance of clustering, we study four scenarios with the

constraints 4σ2w = σ2r = σ2 = 0.012 and N1 = N2 = 30. There are 100 replications for each

scenario. We use two criteria to measure the performance of clustering. These are Rand

index (RI) (Rand, 1971a) and adjusted Rand index (ARI) (Hubert and Arabie, 1985a),

mentioned in Section 3.4.4 of Chapter 3 for assessing the performance of each method.

Four methods are applied to the simulated data D in Scenario 1 with b1 = 0.12,

b2 = 0.8, Scenario 2 with b1 = 0.10, b2 = 0.8, Scenario 3 with b1 = 0.08, b2 = 0.8

and Scenario 4 with b1 = 0.08, b2 = 0.6. Figure 5.2 and Figure 5.3 show the raw data

depending on different b2 and b1 respectively. First of all, we apply the AICc to choose the

number of clusters. The results from Figure 5.4 show that AICc score reaches its minimum

at 2 clusters. Table 5.1 summarizes the comparisons by average ARI and RI. Overall,

both measures suggest that the proposed SRC outperform the other three methods in all

scenarios because of the use of both functional and scalar data.

From Table 5.1, we note that all the four methods perform best in Scenario 1 compared

with the other scenarios. In this scenario, both b1 and b2 take the largest values, indicating

that the overlapping of the functional data (Figure 5.3 (c)) and scalar data (Figure 5.2

(a)) are the smallest and both greatly contribute to distinguishing those two clusters. The
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(a) b2 = 0.8 (b) b2 = 0.6

Figure 5.2: Observations of scalar variable in two cases. The ‘blue’ ones stand for those
in the range of overlapping.

other three methods, SRC-f, k-means-f and k-means-s based on either functional data or

scalar data, also have good performance but not as good as SRC.

The first three scenarios share the same value of b2, indicating that the degree of over-

lapping in two clusters for scalar data does not change (Figure 5.2 (a)). The performance

of k-means-s remains the same. The overlapping in two clusters for functional data, how-

ever, gets smaller and smaller as the value of b1 increases from Scenario 1 to Scenario 3.

It leads to a sharp decline for the performance of SRC-f and k-means–f, both of which

depend on functional data only, as opposed to a mild decrease of the performance of SRC,

which is based on both scalar data and functional data.

The scenario 4 has the smallest b1 (Figure 5.3 (a)) and b2 (Figure 5.2 (b)) and it is

quite difficult to carry out clustering just based on functional data or scalar data only.

Consequently, the values of ARI for SRC-f, k-means-f and k-means-s are very small. But

SRC still performs well and are much better than the others.

Other combinations with varying overlapping determined by b1 and b2 and with dif-

ferent sample sizes have also been examined. The results presented here are very typical.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
RI ARI RI ARI RI ARI RI ARI

SRC 0.98 0.96 0.95 0.90 0.91 0.82 0.80 0.61
SRC-f 0.90 0.80 0.75 0.49 0.62 0.25 0.62 0.25

k-means-f 0.91 0.83 0.76 0.53 0.64 0.29 0.64 0.29
k-means-s 0.81 0.62 0.81 0.62 0.81 0.62 0.69 0.37

Table 5.1: Comparison of average clustering results among four methods.
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(a) b1 = 0.08

(b) b1 = 0.10

(c) b1 = 0.12

Figure 5.3: The raw 2D curves in one simulation run in three cases.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 5.4: The value of AICc calculated from one replication in each scenario for the
method SRC.
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Recovery of curves and cluster patterns

To understand the underlying process better, it is necessary to use the optimal alignment

to estimate the entire curve, so we estimate the aligned individual curves and reconstruct

the cluster pattern using equation (5.9).

Figure 5.5 displays one simulation run of N = 100, with N1 = N2 = 50 curves in each

group. The top panel presents the original raw curves in the two clusters in two colors in

two dimensions (x-axis and y-axis) for a new scenario with 4σ2w = σ2r = σ2 = 0.022, b1 =

0.15, b2 = 0.8. The other panels respectively show the individual aligned curves resulting

from SRC, SRC-f and k-means-f, with the value of RI (1, 0.63, 0.79) and the value of

ARI (1, 0.26, 0.54) respectively. The SRC properly differentiates the two clusters (red

and green) after curve alignment and performs better in recovering the cluster patterns.

Figure 5.6 summarizes the result of clustering patterns. It shows the SRC method

recovered the true pattens very well. As a measure of estimation error, we use the root

average squared error (Gervini and Gasser, 2004), see the details in Section 3.4.2 in Chapter

3. The values of rase are 2.9, 4.6 and 5.4 corresponding to three models SRC, SRC-f and

k-means-f.

A simulation example in an extreme scenario

It is not uncommon that sometimes the functional variables provide little information so

that it fails to implement the clustering just based on those curves. However, the addition

of scalar variables can make the clustering possible. We simulate a run of N = 100

(sample size), with 4σ2w = σ2r = σ2 = 0.022, b1 = 0.05, b2 = 0.8, and N1 = N2 = 50

curves in each group. Figure 5.7 displays the individual aligned curves resulting from

three methods, from which no discernible clusters are visible. The RI and ARI for SRC,

SRC-f and k-means-f are, however, markedly different with the values of (0.82, 0.50, 0.50)

and (0.64, 0, 0) respectively. Figure 5.8 summarizes the mean functions of two clusters by

three methods. Their values of rase are 1.1, 18.3 and 4.3 respectively. Those results show

that the use of SRC leads to meaningful findings but the other twos are equivalent to

random guess. This extreme scenario provides further evidence of the good performance

of the proposed SRC.

5.3.2 Real data analysis

The application to a real data is to cluster the normal people and the patients with stroke

by studying their hyoid bone motion as well as the other scalar variables. Two groups,

one for normal people and the other for patients, are included. Figure 4.1(a) in Chapter

4 shows one frame from a X-ray video clip. The raw data before being preprocessed are

shown in Figure 4.1(b). Most of the assumptions are the same as the example of real
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(a) Original x1(t) (b) Original x2(t)

(c) SRC, aligned x1(t) (d) SRC, aligned x2(t)

(e) SRC-f, aligned x1(t) (f) SRC-f, aligned x2(t)

(g) k-means-f, aligned x1(t) (h) k-means-f, aligned x2(t)

Figure 5.5: (a) and (b) are simulated 2D curves of two groups (green and red). (c)-(h) are
aligned individual cruves by SRC, SRC-f and k-means-f.
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(a) Cluster 1 (b) Cluster 2

Figure 5.6: Mean functions for 2D curves in each cluster. Black lines are true mean curves.
Red lines, purple lines and green lines stand for mean curves calculated from the results
from SRC, SRC-f and k-means-f respectively.

data analysis in Chapter 4 except for the choice of scalar variable. The scalar variable we

choose in this example is the size of Pyriform Sinus Residue (see its position in Figure 5.9).

Regarding to those 2D curves, we firstly carry out the preprocessing procedures like multi-

dimensional shift, scaling and rotation using the package of GPA. We then use B-spline

basis functions for modeling the mean curves. The covariance function for the amplitude

variance is assumed to be a Matern covariance function. We assume the warping function

be a smooth nonlinear deformation produced by an increasing spline and the random

vector wki be a Brownian bridge observed at discrete anchor points.

We examine the performance of four methods SRC, SRC-f, k-means-f and k-means-s

aforementioned. The values of AICc are shown in Figure 5.10. It shows that the two-

component mixture model has the smallest value. Table 5.2 shows the values of RI and

ARI by comparing clustering results by the four methods with the clinic outcomes. We

can see that the SRC method outperforms the other three. As a matter of fact, both

SRC-f and k-means-f with value of RI equivalent to 0.5 fail in this real data example. It

is similar to the extreme example in Figure 5.7 and Figure 5.8. More numerical results

are provided in Figure 5.11 and Figure 5.12.

87



Chapter 5. Simultaneous Registration and Clustering for Multi-dimensional Functional
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(a) Original x1(t) (b) Original x2(t)

(c) SRC, aligned x1(t) (d) SRC, aligned x2(t)

(e) SRC-f, aligned x1(t) (f) SRC-f, aligned x2(t)

(g) k-means-f, aligned x1(t) (h) k-means-f, aligned x2(t)

Figure 5.7: (a) and (b) are simulated 2D curves of two groups (green and red). (c)-(h) are
aligned individual curves by SRC, SRC-f and k-means-f.
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(a) Cluster 1 (b) Cluster 2

Figure 5.8: Mean functions for 2D curves from two clusters. The black lines are true mean
functions. The red lines, purple lines and green lines are respectively corresponding to
results obtained from the model SRC, SRC-f and k-means-f.

Model RI ARI

SRC 0.71 0.42
SRC-f 0.50 0.02

k-means-f 0.50 0.02
k-means-s 0.67 0.33

Table 5.2: Results of clustering by four methods for the real data

5.4 Chapter Summary

We have proposed a methodology for simultaneous registration and clustering, SRC, for

multi-dimensional functional data which considers both the curves and scalar variables.

This model captures the heterogeneity from the potential time warping for curves and

scalar variables corresponding to each subject while carrying out the clustering in the

meantime. It can be implemented with EM algorithm. Numerical examples show that it

outperforms three other related methods, SRC-f, k-means-f and k-means-s. The results

in Section 5.3.1 show that in most cases the inclusion of scalar variables can improve the

performance of clustering in functional data analysis. The main contributions include:

(a) simultaneously carrying out registration and modeling for multi-dimensional func-

tional data allowing variation among subjects,

(b) the use of both functional and scalar covariates while conducting clustering.
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Figure 5.9: Highlight of Pyriform Sinus Residue, covered by the red circle

Figure 5.10: The values of AICc for SRC

90



Chapter 5. Simultaneous Registration and Clustering for Multi-dimensional Functional
Data

(a) Curves from 15 normal people

(b) Curves from 15 abnormal people

Figure 5.11: Curves of hyoid bone motion for two true groups, where the bold curves in
green (upper panel) and in red (lower panel) are the average mean curve for each group
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(a) Cluster 1 with 16 people

(b) Cluster 2 with 14 people

Figure 5.12: Curves of hyoid bone motion for two groups clustered by SRC, where the
bold curves in green (upper panel) and in red (lower panel) are the average mean curve
for each group
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Chapter 6

Conclusion and Future Work

In this thesis, we conduct the acquisition, registration, classification and clustering for

multi-dimensional functional data. Chapter 2 discusses how to acquire the movement data

from the video clips. We develop an all-in-one platform to do semi-automatic tracking,

data preprocessing like smoothing and segmentation, of hyoid bone motion from videoflu-

oroscopic swallowing study. Once the observations of 2D functional data are obtained,

we propose one new methodology (GPSM ) for registration in Chapter 3. It combines the

advantages of both Generalized Procrustes analysis (Gower, 1975a) and self-modelling reg-

istration (Gervini and Gasser, 2004). Good performance of registration is demonstrated

in both simulation study and real data analysis. However, the classical classification after

the registration seems not satisfactory. Thus, in Chapter 4, we propose the method of

joint curve registration and classification (JCRC ) with mixed scalar and functional data.

Two-stage functional models are developed. The functional logistic regression model is

utilized in the first stage, where the estimation of registered curves are obtained from the

second stage. The latter aims to do the registration and modelling for the curves by a

nonlinear mixed-effect model. Furthermore, we extend the problem from classification to

clustering in Chapter 5. We propose the simultaneous registration and clustering (SRC )

models via two-level models. They include mixtures of Gaussian process functional re-

gression and logistic allocation model, allowing simultaneous registration and modeling

for curves and the use of both scalar and function variables. Both JCRC in Chapter

4 and SRC in Chapter 5 consider two types of data, leading to much better results for

classification and clustering on simulated data and real data.

To estimate the x(ĝ−1(t)) and the coefficient function β(t) in Section 4.2.2 of Chapter

4, we can alternatively use the same functional basis, like B-spline basis, to expand both

x(ĝ−1(t)) and β(t) and follow with the truncation. We use the fast fitting method. It works

well while x(ĝ−1(t)) is poorly observed and able to estimate arbitrary smooth coefficient

functions (Goldsmith et al., 2011). It is also of interest to study the convergence of the
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iterative algorithm developed in Section 4.2.5. Practically, we get the final prediction

while the value of y∗ does not change and in general, five iterations are enough for those

simulated examples. However, in theory, it still needs more work to prove the convergence

of this algorithm in future.

Model selection for the SRC in Chapter 5 is an interesting but difficult issue for a

mixture model, especially for the models with complex forms. Kenneth and David (2004)

suggested AICc should be used unless N
pl
> 40 for the model with the large value of pl. In

our model, the number of parameters pl is quite close to the number of subject N . Thus,

we use AICc. It works well for the examples discussed in that chapter. It is worth further

study under a general functional data analysis framework.

Generally, the registration for multi-dimensional functional data is much more com-

plicated than one dimensional case. In both Chapter 4 and Chapter 5, we use the pre-

processing package GPA (Gower, 1975b) and a further registration via a simple warping

function. The latter is one of the key parts in our models. This approach performs very

well in the numerical examples presented in both chapters. Further research is required to

improve the iterative implementation for the complete registration, similar to the shape

geodesic algorithm by the metric-based method proposed by Srivastava et al. (2011a).

The inverse of warping function g in model (5.1) can also be replaced with various types

of other functions depending on types of data. For instance, we can define the warping

function as simple as a horizontal shift, i.e. gki(t) = t + bki or a linear stretch of the

curves, i.e. gki(t) = (1 + bki)t+ cki, where bki and cki are both one dimensional unknown

parameter. Those linear warping functions have been examined by others (Liu and Yang,

2009; Sangalli et al., 2010). The success of resolving registration problem often depends

on the flexibility of choosing warping function.

The results we obtained for the real data are encouraging although it is still in early

stage. Research for this topic is ongoing. More features extracted from video clips along

with other variables, both functional and scalar, are under investigation. Different types

of models for data fitting, clustering/classification and prediction are being developed.
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Appendix A

Extra Numerical Results of

Registration for Multi-dimensional

Functional Data

Figures A.1 to A.8 provides the extra numerical examples of Dataset 1 and Dataset 2 in

Section 3.4.3.
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(a) 2D reference curve of Dataset 1

(b) Scenario A: σw = 0.1 and θ0 = π/4

(c) Scenario B: σw = 0.5 and θ0 = π/6

(d) Scenario C: σw = 1 and θ0 = π/8

Figure A.1: Three examples of data in Dataset 1 corresponding to three scenarios.
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(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure A.2: An example of registration results in Dataset 1 by four methods for Scenario
A with σw = 0.1 and θ0 = π/8.
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Data

(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure A.3: An example of registration results in Dataset 1 by four methods for Scenario
B with σw = 0.5 and θ0 = π/6.
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Data

(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure A.4: An example of registration results in Dataset 1 by four methods for Scenario
C with σw = 1 and θ0 = π/8.
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Appendix A. Extra Numerical Results of Registration for Multi-dimensional Functional
Data

(a) 2D reference curve of Dataset 2

(b) Scenario A: σw = 0.1 and θ0 = π/4

(c) Scenario B: σw = 0.5 and θ0 = π/6

(d) Scenario C: σw = 1 and θ0 = π/8

Figure A.5: Three examples of data in Dataset 2 corresponding to three scenarios.
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Data

(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure A.6: An example of registration results in Dataset 2 by four methods for Scenario
A with σw = 0.1 and θ0 = π/8.
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Data

(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure A.7: An example of registration results in Dataset 2 by four methods for Scenario
B with σw = 0.5 and θ0 = π/6.
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(a) Registration by GPA

(b) Registration by SM

(c) Registration by SRV

(d) Registration by GPSM

Figure A.8: An example of registration results in Dataset 2 by four methods for Scenario
C with σw = 1 and θ0 = π/8.
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Appendix B

Extra Numerical Results by

JCRC method

B.1 More examples of raw data

Figures B.1 to B.4 provide extra numerical results for the simulated examples discussed

in Chapter 4.

B.2 More examples of aligned curves

Figures B.5 to B.7 show the results after registration, corresponding to the raw data from

Figures B.1 to B.3.

(a) 2D curves (b) x1(t) (c) x2(t)

Figure B.1: An example of 2D raw curves from the scenario: 4σw = σr = σ = 0.02 and
N = 60 . Curves in green indicate the first group (y = 0), while these in red represent the
second group (y = 1).
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(a) 2D curves (b) x1(t) (c) x2(t)

Figure B.2: An example of 2D raw curves from the scenario: 4σw = σr = σ = 0.02 and
N = 90.

(a) 2D curves (b) x1(t) (c) x2(t)

Figure B.3: An example of 2D raw curves from the scenario: 4σw = σr = σ = 0.02 and
N = 120.

(a) (b) (c)

Figure B.4: Three examples of observations of scalar variable with N = 60, 90, 120.
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(a) x1(t) (b) x2(t)

Figure B.5: The curves after registration by JCRC, corresponding to the raw curves in
Figure B.1.

(a) x1(t) (b) x2(t)

Figure B.6: The curves after registration by JCRC, corresponding to the raw curves in
Figure B.2.

(a) x1(t) (b) x2(t)

Figure B.7: The curves after registration by JCRC, corresponding to the raw curves in
Figure B.3.
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B.3 More examples of inference and prediction

Figures B.8 to B.13 demonstrate the confidence intervals of β̂(t) and the distribution of π̂

under three different scenarios, corresponding to Table 4.1.
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(a) 95% confidence interval for β̂1(t) (b) 95% confidence interval for β̂2(t)

Figure B.8: An example of confidence intervals for β̂(t) from the scenario: N = 60,Kx =
18,Ke = 10. The lines in green are the true β, the lines in black stand for the estimators β̂,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100tj .

Figure B.9: An example of the distribution of π̂ from the scenario: N = 60,Kx = 18,Ke =
10. Circles in green indicate the first group (y = 0) while those in red represent the second
group (y = 1). The dotted line in black in the middle represent π = 0.5.
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(a) 95% confidence interval for β̂1(t) (b) 95% confidence interval for β̂2(t)

Figure B.10: An example of confidence intervals for β̂(t) from the scenario: N = 90,Kx =
30,Ke = 30. The lines in green are the true β, the lines in black indicate the estimators β̂,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100tj .

Figure B.11: An example of the distribution of π̂ from the scenario: N = 90,Kx =
30,Ke = 30. Circles in green indicate the first group (y = 0) while those in red represent
the second group (y = 1). The dotted line in black in the middle represents π = 0.5.
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(a) 95% confidence interval for β̂1(t) (b) 95% confidence interval for β̂2(t)

Figure B.12: An example of confidence intervals for β̂(t) from the scenario: N = 120,Kx =
35,Ke = 35. The lines in green are the true β, the lines in black indicate the estimators β̂,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100tj .

Figure B.13: An example of the distribution of π̂ from the scenario: N = 120,Kx =
35,Ke = 35. Circles in green indicate the first group (y = 0) while those in red represent
the second group (y = 1). The dotted line in black in the middle represents π = 0.5.
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Appendix C

Derivation of Mik and the

linearized model

C.1 Derivation of Mik

Using Bayes’ theorem, the posterior distribution with respect to z has the form

p(z|x,θ,β) ∝
N∏
i=1

K∏
k=1

πzkiki p(xi|θki)
zki .

By factorizing it over i, it is clear that the {zi, i = 1, . . . , N} are independent under the

posterior distribution. Hence,

E(zki|x,θ,β) = E(zki|xi,θ,β)

= p(zki = 1|xi,θ,β)

=
p(zki = 1|β)p(xi|zki = 1,θ)

p(xi|θ,β)

=
πkip(xi|θki)
p(xi|θ,β)

.

(C.1)

We know that

p(xi|θ,β) =
∑
zi

p(zi|β)p(xi|zi,θ,β)

=
∑
zki

K∏
k=1

(
p(zki = 1|β)p(xi|zki = 1,θ)

)zki
=

K∑
j=1

πjip(xi|θji).

(C.2)
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Thus,

E(zki|x,θ,β) =
πkip(xi|θki)∑K
j=1 πjip(xi|θji)

.

C.2 Derivation of the linearized model

At the linearized level, we apply the first-order Taylor approximation of model (5.3) in

Section 5.2.2 in the random warp wki. We reconsider gki(t) as a function with respect to

wk + wki. Thus, the linearization can be carried out around the estimate of wk plus w0
ki

obtained from the previous step. This results in a linear mixed-effects model as follows:

xai|zki=1
≈ xai|zki=1,wki=w0

ki
+∇wki

(xai|zki=1
)|wki=w0

ki
(wki −w0

ki)

where

xai|zki=1,wki=w0
ki

= τak(gki)|wki=w0
ki

+ raki + ε

= Ψki|gki=g0kidak + raki + ε,

and according to the chain rule,

∇wki
(xai|zki=1

)|wki=w0
ki

=

{
∂xai|zki=1,t=tj

∂gki

(
∇wki

(
gki(tj)

))ᵀ∣∣∣
wki=w0

ki

}
j

=

{∂(τak(gki(tj)))
∂gki

∣∣∣
gki=g

0
ki

(
∇wki

(
gki(tj)

))ᵀ∣∣∣
wki=w0

ki

}
j

∈ Rmi×nw .

In practical, we use finite difference for calculating the derivative of gki(t) with respect to

wki.
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