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Abstract

Functional data analysis (FDA) has many applications in almost every branch of science,
such as engineering, medicine and biology. It aims to cope with the analysis of data in
the form of images, curves and shapes. In this thesis, we study the 2D trajectories of
hyoid bone movement from X-ray image. Those curves are seen as the observations of
multi-dimensional functional data. We firstly develop an all-in-one platform for the data
acquisition and preprocessing. However, analyzing the data arises a lot of challenges. In
this thesis, we provide solutions to solve some of those challenging problems.

We propose one new registration method for handling those raw 2D curves. It basically
integrates Generalized Procrusts analysis and self-modelling registration method (GPSM).
However, the application reveals that the classification followed by registration does not
work well. Therefore, we propose two-stage functional models for joint curve registration
and classification (JCRC). In the first stage, we use a functional logistic regression model
where the aligned curves are estimated from the second stage. The latter uses a nonlinear
warping function while modelling the 2D curves, i.e. resolving the misaligned problem
and modelling problem simultaneously. This two-stage model takes into account both the
scalar variables and the multi-dimensional functional data. For the functional data clus-
tering, we propose mixtures of Gaussian process functional regression with time warping
and logistic allocation model, allowing the use of both types of variables and also allowing
simultaneous registration and clustering (SRC'). A two-level model is introduced. For the
data collected from subjects in different groups, a Gaussian process functional regression
model is used as the first level model; an allocation model depending on scalar variables
is used as the second level model providing further information over the groups. Those
three methods, i.e., GPSM, JCRC and SRC are all examined on both simulated data and

real data.

Keywords: Functional data analysis, Registration, Curve classification, Curve clustering,

Gaussian process functional regression model, Allocation model.
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Chapter 1

Introduction

1.1 Aim of the research

Dysphagia is defined as a subjective sensation of difficulty or abnormality of swallowing.
Oropharyngeal dysphagia is characterized by difficulty initiating a swallow, which is caused
by various diseases such as stroke, Parkinson’s disease, neuromuscular diseases, head and
neck cancer (AbdelJalil et al., 2015). The prevalence of dysphagia is expected to increase
taking into consideration an aging population and the increase of the incidence of diseases
related with dysphagia (Feiginl et al., 2003; Dorsey et al., 2007). Videofluoroscopic swallow
study (VFSS) is considered to be a gold standard tool in the assessment of patients with
dysphagia.

Figure 1.1: Example of one frame from a video clip.
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With the image data inside those video clips from VFSS, this research programme
aims to model patients’ recovery level by analyzing the trajectories of several bones during
swallowing, like the movement of hyoid bone and larynx shown in Figure 1.1, and patients’
other related information, such as age, gender and smoking status. In this thesis, we
focus on the trajectories of hyoid bone, which are considered as the observations of multi-
dimensional functional data. Those ‘related information’ are the observations of scalar
variables.

This thesis consists of three parts. The first part develops a platform to obtain the
motion data of hyoid bone from the X-ray video clips. We design desirable and efficient
algorithms to automatically or semi-automatically track the bone’s movement during swal-
lowing. The second part is concerned with preprocessing techniques, such as smoothing,
calibration, segmentation and registration for the raw trajectories before modeling. The
third part is about the classification and clustering for those 2D curves. We propose some
new approaches in the modeling part, that are capable of registering and modelling the
multi-dimensional functional data at the same time and allowing the use of both scalar

and functional variables.

1.2 Background of VFSS and data tracking

Most of the research of VFSS in the clinical setting is qualitative or semi-quantitative
and depends on subjective decision by an interpreter. Some clinicians or researchers are
using temporal parameters (e.g. oral transit time, pharyngeal transit time) or kinematic
parameters from motion analysis to classify the dysphagia, to predict the prognosis or to
assess the treatment effect (Pai et al., 2008; Nam et al., 2013; Seo et al., 2011; Molfenter
and Steele, 2014). The hyoid bone is the most commonly selected in kinematic analysis.
Both displacement and velocity of the hyoid bone excursion are associated with swallowing
function and dysphagia. The maximum excursion and peak velocity of the hyoid bone mo-
tion are associated with bolus bolume (Nagy et al., 2014) and changed with aging (Kang
et al., 2010). Hyoid bone anterior displacement is reduced in patients with myopathy and
irradiated nasopharyngeal carcinoma (Pai et al., 2008; Wang et al., 2010). Laryngeal ele-
vation velocity was an independent predictor of aspiration in patients with acute ischemic
stroke (Zhang et al., 2016). Therefore, the parameters from hyoid bone motion analysis
provide some meaningful solutions in research or clinical practices. However, the classical
manual tracking method is labor intensive and impractical in real clinical practice (Steele
et al., 2011; Ludlow et al., 2007).

To overcome this limitation, researchers have tried to develop software to track the
hyoid bone and to get the trajectory automatically. Kellen et al. (2010) have reported their

computer-assisted assessment of hyoid bone motion and found a high correlation between
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automatic tracking and manual tracking. This software can reduce the burdens for VFSS
motion analysis and make further quantitative analysis practically possible. However, one
of the limitations of the existing software is the lack of ability to track the masked points.
Most of them are unable to do semi-automatic smoothing and segmentation in this stage.
We developed algorithms to resolve these limitations. The trajectories obtained from the
tracking are basically the observations of multi-dimensional functional data, so that the

functional data analysis can be utilized to address the related issues.

1.3 Review of functional data analysis

The research area of functional data analysis (FDA) dates back to Grenander (1950)
and Rao (1958) and the term was first used by Ramsay (1982). Nowadays, it has many
applications in almost every branch of science, like engineering, medicine, biology and
geology. Essentially, it aims at coping with the analysis of data in the form of images,
curves and shapes. The most important characteristic of functional data is the intrinsically
infinite dimensionality. This, on one hand, provides rich information and gives much
chances for research work; on the other hand, brings challenges for theory and computation
(Wang et al., 2015).

The typical first generation functional data are composed of independent real-valued
functions {z;(t),i = 1,..., N} defined on a interval I = [0, L] on the real line. Gasser et al.
(1984), Rice and Silverman (1991) and Gasser and Kneip (1995) have termed those data as
curve data, which can also be regarded as the realizations of a one-dimensional stochastic
process like Hilbert space. We usually model functional data with parametric approaches
like the mixed effects nonlinear models (Raket et al., 2016), but the huge information
hidden in the infinite dimensional data, the demand of a large degree of flexibility, as
well as the natural ordering in the curve datum make loads of non- and semi-parametric
approaches possible (Gervini and Gasser, 2004).

Furthermore, some challenges arise while extending those functional data from one-
dimension to multi-dimensions, particularly the spatial and temporal registration problems
(Gower, 1975a; Gervini and Gasser, 2004; Srivastava et al., 2011a). A more challeng-
ing problem is to do registration and modeling (classification and clustering) for multi-
dimensional functional data at the same time. In this section, we will briefly illustrate the
background of registration, focusing on the time warping, and the functional classification

and clustering.

1.3.1 Time warping of functional data

Functional data always comes along with challenges, like observation noise, infinite-dimensionality

of function spaces as aforementioned. Among these problems, the lateral displacement
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termed as phase variation in curves, as opposed to amplitude variation in curve height,
has drawn much attention. The former can always increase the data variance, distort
principal components and make the underlying data structures unclear, so it is necessary
to remove the phase variation from the amplitude in a desirable fashion.

To do so, we need to articulate the concept of a time-warping function, which is a
mapping from one time scale to another. If we denote the system time or internal time
scale as t, which is the underlying time process shared by all the observations, then the
functional relationship g~'(t) represents the clock time or individual-specific time scale,
varying one from another. We call g~! the time warping function. In statistics, we are

always seeking methods to estimate ¢~ 1.

Time Warping function

There are many different types of warping functions to illustrate various phase variation.
In most cases, the choice of warping function relies on the particular application context.
It includes (a) uniform shift: shifting the time axis by a constant a € R, i.e. g~1(t) = a+t;
(b) uniform scaling: rescaling the time warping by a constant b € Ry , i.e. g~ '(t) = bt;
(¢) linear transform: combining uniform shift and uniform scaling leads to linear transfor-
mation: ¢g~1(t) = a + bt; (d) diffeomorphisms: including domain warpings given by a set
of diffeomorphisms of the domain to itself. If the domain is defined to be a full real line,
the set of linear transformations is just a special case of the set of diffeomorphines. The
warpings are practically restricted to compact intervals (Marron et al., 2015).

Generally, we define a warping function as the diffeomorphism: ¢g=!(¢) : [0, L] — [0, L],

which satisfies the following basic conditions:
1. Strict monotonicity: g=1(t1) < g~ t(t2) for t; < to where t; € [0, L],
2. Boundary conditions: ¢g=1(0) =0 and g~(L) = L,

3. Continuity: Ve > 0, 35 > 0, as [t — t2| < d, [g7 (t1) — g7 1 (t2)| < e

Strategies of registration

The main purpose of registration is to remove phase variation from amplitude variation
via estimating the warping function g~'. We do this for the sake of reducing the variance

of functional data and improving the statistical inference. Denote the functional data as
x(t) : R — R™,

where A is the dimension of « and ¢ represents the time scale for A = 1. t can also be seen
as the unit of the arc length along the curve as A > 1. The strategies for data registration,

generally, can be divided into two categories as follows:
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(a) While registering two curves x; and @9, in other words, doing the pairwise align-
ment of functions, the mostly often used strategy is to find a good metric for g~ !:
wlg~ Y1, 22]. These metrics are, but not restricted to, a variety of loss functions like
L? distance and similarity index defined by Sangalli et al. (2009). They might not
only just focus on function @ itself, but also care about its first derivative or second
derivative, features like landmarks or even the related equivalence classes (Srivastava

et al., 2011a,b). Then optimize this objective function

gl =arg max wlg ey, @], or g ' =arg min plg ey, 0],  (1.1)
g~ leG g~ teG

where G is the group of warping function ¢g~!, having different structures for specific
application context. The dynamic programming algorithm is widely used to obtain

the approximate global optimal solution.

Sometimes, the registration for multiple curves seems difficult in analyzing data
unless there already exist a template. In most cases the technique for multiple
registration is just the extension of the binary case, constructing a template by an
iterative way and aligning each of the remaining curves to it (Ramsay and Li, 1998;
Kneip et al., 2000). The others, however, try to use new methods, deriving models
tailored to the entire function data (Gervini and Gasser, 2004; Tang and Miiller,
1998).

(b) Another strategy is to model g~! directly or indirectly first and then estimate g—!

via maximum likelihood estimation (Raket et al., 2014) or Bayesian inference (Cheng
et al., 2016; Wu and Hitchcock, 2016; Earls and Hooker, 2017)

g ! :f(M[gflla:l,scg,...,wn]), (1.2)

1

where M denotes the model for g7 and f represents any function, such as the mean

of the posterior distribution or the maximum likelihood for the model, etc.

Most of these methods are confined to registering the functional data in the case of A =1,
i.e. one dimensional situation. Only a few approaches, like these by Sangalli et al. (2009),
Srivastava et al. (2011a) and Cheng et al. (2016) can be applied to the multi-dimensional
case. Their methods, however, are mostly used as one kind of preprocessing technique
before statistical analysis. It is of interest for us to find a new way to do registration for

multi-dimensional functional data, whether before or during modelling.
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1.3.2 Functional regression

Functional regression has been widely studied and it generally has two kinds: (1) functional
responses with either scalar or functional covariates or both and (2) scalar responses with
both scalar and functional covariates (Ramsay and Silverman, 2005). For the former,
Ramsay and Dalzell (1991) proposed the functional linear model (FLM), while the idea
originates from Grenander (1950) who derived it as the regression of one Gaussian process
on another. For the latter, the topic has been extensively explored, like Miiller (2005,
2011) and Morris (2015). We will focus on the second kind in this thesis.

The functional linear model with scalar response y € R and functional covariate x(t) €

R can be expressed as

y=bo+ /I;U(t)ﬁ(t)dt + €, (1.3)

where by and (3(t) are the regression coefficient and functional coefficient respectively,
€ is a zero mean random error, t € I; see e.g. Cardot et al. (1999, 2003), Hall and
Horowitz (2007) and Hilgert et al. (2013). Usually, we use the same functional basis, like
B-spline basis, to expand both the functional covariate x(t) and the coefficient function
B(t). For instance, while expanding x(t) and £(¢) in orthonormal basis {¢;,j7 > 1} into
x(t) = 2272, Bjg;(t) and B(t) = 3772, Bj¢; respectively, model (1.3) is equivalent to the

traditional linear model with the form

oo
y= bo—i—Zﬁij + €
j=1
where the summation on the 3;B; can be approximated by a finite sum, which is truncated
at the first J terms. The functional linear model (1.3) can be extended to multiple

functional covariates {x,(t),a = 1,..., A}, with a vector of scalar covariates {v;,j =
1,...,p} by

p A
Y= Zvjozj + Z/ 2o (t)Ba(t)dt + €. (1.4)
j=1 a=1"1a

The inference of model (1.4) is slightly different from model (1.3) because of the presence
of the unknown parameters {a;,7 = 1,...,p}. Hu et al. (2004) proposed one combined
least squares method to estimate a; and ;.

Adding a nonlinear link function f to the functional linear model (1.3) produces a

generalized functional linear model
y=f(bo+ /az(t)ﬂ(t)dt) +e. (1.5)
1

Model (1.5) can be within the exponential family or a quasi-likelihood framework and a
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suitable variance function. It has been investigated as f is known (James, 2002; Cardot
et al., 2003; Cardot and Sarda, 2005; Wang et al., 2010; Dou et al., 2012)) and unknown
(Miiller and Stadtmiiller, 2005; Chen and Miiller, 2011; Goldsmith et al., 2011). We refer

to Wang et al. (2015) for a comprehensive review on this subject.

1.3.3 Classification of functional data

Functional data classification is aimed to assign a group membership to a new data ob-
ject with a classifier or a discriminant. Most approaches, such as generalized functional
linear regression models and functional multi-class logit models, are based on functional
regression models featuring class labels as responses and the observed functional data and
other scalar covariates as predictors. Those methods usually apply a dimension reduction
technique using a truncated expansion in the data-adaptive eigenbasis or a pre-specified
function basis.

Generalized functional linear models (James, 2002; Miiller and Stadtmiiller, 2005;
Miiller, 2005; Goldsmith et al., 2011), including the functional logistic regression model,
are the most popular methods for regression-based functional classification. For a random
sample with two groups {(y;,x;);7 = 1,...,n}, where y; € {0,1} represents a class label
and x;’s are functional observations, a classification model for a functional observation x*

based on functional logistic regression is

T =p(y" =1lz"),

logit () = bo + / = (H)B(1)dt,

1

(1.6)

where by is an intercept term and [(¢) the coefficient function of the predictor *. The
model-based Bayes classification rule chooses the class label y* with the maximal posterior
probability among {p(y* = k|x*); k = 0,1}. This model can be easily extended to the case
with K (K > 2) groups. Several variants of the functional logistic regression model have
been studied (Wang et al., 2007; Zhu et al., 2010; Rincon and Ruiz-Medina, 2012).

1.3.4 Clustering of functional data

Functional clustering is an active research area in FDA and has received great attention
in the last decade. It is different from functional classification due to the unknown class
labels while grouping those objects. The aim of clustering is to group a set of data such
that data within groups (clusters) are more similar than across groups with respect to a
metric. It is often used as a preliminary step for data exploration by identifying particular
patterns to provide the user with convenient interpretation. Generally, it is a difficult

task due to the lack of distances or estimation from noise data and a definition for the
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probability of a functional variable. The most popular approaches of functional clustering
can mainly be divided into two categories: model-based approaches and non-parametric
approaches.

The model-based functional clustering technique is also called distribution-based clus-
tering. One approach is to model principal components (Delaigle and Hall, 2010; Bouvey-
ron and Jacques, 2011) or basis expansion coefficients (James and Sugar, 2003; Sam et al.,
2011)) with mixture Gaussian distributions. Another method is to model those curves
directly by mixture Gaussian process (Shi et al., 2005; Shi and Wang, 2008). Clusters
can be defined as objects (principal components, coefficients or curves) belonging most
likely to the same distribution. The related theoretical foundation is solid while suffering
from over-fitting. The EM algorithm is one of the most popular methods to implement
estimation, though may converge to a local optimum.

The non-parametric clustering mainly includes connectivity-based clustering, also known
as hierarchical clustering (Ferraty and Vieu, 2006) and centroid-based clustering, also
known as k-means clustering (Tarpey and Kinateder, 2003; Tokushige et al., 2007; Ieva
et al., 2013). The hierarchical clustering is based on the idea of curves being more related
to nearby curves than to curves further away. The related algorithms connect curves to
form “clusters” based on their distance. A cluster can be largely described by the maxi-
mum distance required to connect parts of the cluster. k-means clustering is to find the
k cluster centers and then assign the curves to the nearest cluster center to minimize
the squared distances from the cluster. We can also use the classical clustering tool for
finite dimensional data after reducing dimension. Specifically, after approximating the
curves into a finite basis of functions (Abraham et al., 2003), we can summarize the curves
by their coefficients in a basis of functions or by their first principle component scores
and then perform clustering. For instance, Abraham et al. (2003) and Peng and Miiller
(2008) perform the k-mean algorithm on B-spline coefficients and on a given number of
principle component scores, respectively. We refer to Jacques and Cristian (2014) for a
comprehensive review on functional clustering.

The common limitations of functional classification and clustering by those methods
aforementioned are (1) few of them are able to do registration while modelling the multi-
dimensional functional data; (2) most of them ignore the use of scalar variables, which

often provide useful information. This thesis will focus on solving these problems.

1.4 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we develop a framework for data acqui-
sition from X-ray image. The background on subjects and experimental design is firstly

described and then followed by the methodology of semi-automatic tracking for the hyoid
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bone. We also introduce procedures of semi-automatic smoothing, calibration and auto-
matic segmentation for the raw data. The validation results show that the semi-automatic
tracking has high agreement with manual tracking.

Chapter 3 proposes a methodology to implement the registration for the multi-dimensional
functional data. It firstly reviews the background of GPA (Gower, 1975a) and self-
modeling registration (Gervini and Gasser, 2004) and then discusses the integration of
those two methods (GPSM), as well as the corresponding algorithm. Numerical analyses
are given afterwards.

In Chapter 4, we propose one methodology for joint curve registration and classification
with mixed scalar and functional variables (JCRC'). It consists of two-stage functional
models with the first stage using a functional logistic regression model where the aligned
curves are estimated from the second stage model. The later uses the functional mixed
effect model for simultaneous registration and curve modelling. This methodology takes
advantage of both scalar variables and functional variables. Procedures of model inference
and implementation, as well as the asymptotic properties of interested parameters are
introduced. We also implement an iterative algorithm for predicting the outcomes and
present numerical analyses to investigate the performance of the proposed method.

Furthermore, Chapter 5 proposes the simultaneous curve registration and clustering
(SRC) for multi-dimensional functional data. Two-level models are introduced, including
the mixtures of Gaussian process functional regression with time warping as the first level
model and the logistic allocation model using the scalar variable as the second level model.
This methodology allows for simultaneous registration and modelling, and allows for the
use of both functional variables and scalar variables. It is implemented using an EM
algorithm. A comprehensive simulation study and real data analyses are followed in the
end.

Finally, we conclude in Chapter 6 with comments on future work.



Chapter 2

Semi-automatic Tracking,
Smoothing and Segmentation of
Hyoid Bone Motion from
Videofluoroscopic Swallowing
Study

2.1 Introduction

Motion analysis of hyoid bone via videofluoroscopic study has been used in clinical re-
search, but the classical manual tracking method is generally labor intensive and time
consuming. Although some automatic tracking methods have been developed, masked
points could not be tracked. The smoothing and segmentation, which are necessary for
functional motion analysis prior to registration, were not provided by the previous soft-
ware either. In this chapter, we try to develop a software to track the hyoid bone motion
semi-automatically. It works even in the situation where the hyoid bone is masked by
the mandible and it has been validated in dysphagia patients with stroke. In addition,
we added the function of automatic smoothing and segmentation, which is necessary for
further quantitative motion analysis and can reduce the time needed for manual working.
The development of the automatic or semi-automatic process from hyoid bone tracking
and smoothing to segmentation enables the motion analysis of VFSS to have a potential
wide use in clinical practice and research. This work has been published (Kim et al., 2017).

The structure of this chapter is as follows. Firstly, Section 2.2 briefly introduces the
background on subjects and experimental design. The methodology of semi-automatic

tracking for the hyoid bone, the way of semi-automatic smoothing and calibration, as well
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as the semi-automatic segmentation for the curves are given in Section 2.3. Section 2.4
discusses the validation and rough statistical analysis for hyoid bone motion. A summary

of this chapter follows in Section 2.5.

2.2 Subjects and experimental design

VFSS data and medical information for stroke patients were retrospectively reviewed from
the database of VFSS movie files and medical records in Seoul National University Bun-
dang Hospital. A total of 30 patients’ data (mean age: 62.0 = 11.4 yrs, 23 men and 7
women) were used to develop software (tracking, smoothing and calibration, and segmen-
tation) and 20 circles from 17 patients trajectories (10 circles from 8 unmasked trajectories
and 10 circles from 9 masked trajectories) were used to validate the semi-automatic track-
ing method. One circle for each subjects trajectory of hyoid bone was usually detected
and extracted while two circles were obtained in subjects number 5, 11 and 16. Each circle
was used to validate the semi-automatic tracking method.

VFESS was tested in subjects with dysphagia after stroke with foods in various forms,
including fluid, thickened fluid, a semi-blended food, and boiled rice, which was the modi-
fied protocol (Logemann, 1993). Each food was provided by spoon. The lateral projection
of the VFSS taken during the 2-ml thin-fluid swallowing was used for software development
and validation. VFSS were recorded at 30 frames per second.

One researcher performed the manual tracking and automatic tracking of hyoid bone
from VFSS clips. When one type of tracking was performed, the tester did not consult the
result of another type of tracking in each patient. After all tracking were completed, the
validation were performed without modifying tracking results. The research protocol was
approved by the Seoul National University Bundang Hospital institutional review board
and was conducted in accordance with the regulatory standards of Good Clinical Prac-
tice and the Declaration of Helsinki (World Medical Association Declaration of Helsinki:

Ethical Principles for Medical Research Involving Human Subjects, 2000).

2.3 All-in-one platform for the motion analysis of hyoid

bone

2.3.1 Overview

Inspired by the method by Kellen et al. (2010), in our study we specify a target point on
the hyoid bone on one frame and then track the target automatically for the whole video
sequence. The ROI (region of interest) window size by default should be large enough so

that it is not so sensitive to the smaller movements of the hyoid bone. Each frame of the
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sequence is then processed to track the ROI centered at the target point across frames.
The tracking of the ROI which is partly masked by other objects such as the mandible in
some frames has been considered in our methodology. Furthermore, we also consider the
situation where the tracking process might collapse due to the existence of unidentifiable
and invisible ROI in some frames. An automatic monitoring and indication mechanism
has been added, enabling us to re-specify the target point and reset the window size of
ROI and then resume the tracking process. In order to correct for the subject’s head
motion during process, a new coordinate system is defined via the anterior-inferior border
of the second and fourth cervical vertebrae across the entire procedure. Semi-automatic
smoothing via cubic smoothing is added for those target points in the hyoid bone and in the
cervical vertebra for the sake of reducing tracking errors. Our platform also emphasizes the
segmentation. After selecting one desired circle from the data, the automatic segmentation
will be carried out. By analyzing the first and second derivatives, a definition of splitting
score is introduced and used for an automatic segmentation. This provides necessary and
useful information for clinical assessment and further statistical analysis such as functional
classification. The code for data tracking and for data preprocessing like semi-automatic
smoothing, calibration, validation and segmentation is based on MATALAB (R2014a) and
RStudio Version 0.99.484 - (©2009-2015 RStudio, Inc.

2.3.2 Procedures of tracking

To define the template ROI, the user uses the mouse to identify any target point on the
hyoid bone and then a square centered at it with default side lengths can be created
automatically. The target point, together with this square, called ROI or template, are
tracked automatically frame by frame by utilizing the information from horizontal and
vertical edge images calculated using Sobel edge operators (Sobel, 1990). The key point
is to minimize the sum of the squared difference between the local edge characteristics in
the templates and that in the images which have been rotated within and shifted over a
suitable neighborhood. The best match for the template in the next frame can then be
found. Hence the tracking process can be iterated by updating the positions of both ROI
and the target point. For the partly masked frames, another two points along the edge
of the mandible should be identified by mouse. Using the methodology described in the
previous section, the target point can still be tracked automatically.

When it comes to extreme situations, for example the ROI or the target point on the
hyoid bone being covered by other objects like the lower part of the mandible, the tracking
method (Kellen et al., 2010) no longer works because the local edge characteristics of ROI
are heavily interrupted. So far there has been little research on addressing this problem.

Technically, the masked ROI refers to the ROI totally or partly overlapped with other

objects such as the mandible during the tracking process. This often happens over just a
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few frames of the whole video sequences. In this case, it is hard to locate the target point
even by human eyes. The idea is to cut off the masked part in the current ROI. Besides
the target point, it is necessary to track another two points along the edge of the lower
part of the mandible simultaneously via the same tracking method (Kellen et al., 2010).
The locations of these two points should be flexible and the distance between them wide
enough to guarantee the line segment connected by them approximates the lower edge of
the mandible properly. We then check whether the current ROI crosses this line. The
masked part above the line will be cut off if it crosses; otherwise, it will be treated as
a normal case. Consequently, a new ROI’ on which the normal procedure of tracking is
based can be obtained (Figure 2.1). Another key point is the requirement of averaging

the template matching error over the number of pixels within the new ROT .

Figure 2.1: Example of tracking the partly masked ROI. The target point pinpointed by
the middle red cross is covered by the mandible in this case. This ROI (the middle square)
is cut off by the line segment linked by another two red crosses (their corresponding ROI's
are the upper and lower squares) along the lower edge of the mandible.

Assuming i is the reference frame number, in which the template ROI(ig) is produced
and ¢ represents the current frame number, the template in the current frame is then
supposed to move with a rotation angle # and translation (Z1,#2)7 '. After this trans-
formation, the removal of the hidden part of the template (Figure 2.1) is required. As a
result, we obtain a new ROTI'(i + 1) in the (i + 1)th frame, which is no longer a square.
All the z1’s and the corresponding zs’s of pixels within ROI'(i + 1) are then saved in the
vectors ROT), (i + 1) and ROI/, (i + 1) in order respectively. The ROI(ip) needs to be

changed to ROI'(ip) in the same way to make their local edge characteristics F,, and E,,

"'We use z1 and 2 to represent z-coordinate and y-coordinate of the point throughout the thesis.
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comparable (Kellen et al., 2010). The template matching error A(Z, #2;60) is given by

. 1 ‘ .
A(Z1,29;0) = NG+1) Z (Ep, (21, 29,00) — Ey, (2], 25, 4 1))?
21€ROL, | (i0)iw2€ROL, (io);
27 €ROL, | (i+1);22€ROI;,, (i+1)
+ (Exg(x17 X2, ZO) - Eafz(xllv xl271 + 1))27
(2.1)

where N (i + 1) stands for the total number of pixels within ROI'(i + 1). Equation
(2.1) is minimized by a global optimization method GA with a constrained search space
(Michalewicz and Hartley, 1996). In our implementation, the search constraints are:
—2.51/180 < 0 < 2.57/180, and —5 < #y,i < 5. The tracking for the next posi-
tion of the template and target point in this special case can then successfully progress.
However, the tracking process may become unstable if the ROI is totally masked by the
mandible. In this rare case, we may estimate the underlying point by the points tracked
in nearby frames or to track it manually.

In some rare extreme situations, such as the hyoid bone moving suddenly or too fast,

the target point is hardly recognizable (Figure 2.2). The optimal search is not applicable

Figure 2.2: Example of unrecognizable hyoid bone located in the square in red. The left
plot: the hyoid bone moves too fast, resulting in the almost equal gray scale value of the
area around it. The right frame: the strong reflective light makes the hyoid bone invisible.

to those circumstances; therefore, a sensitive monitoring mechanic should be used to avoid
possible wrong tracking. Kellen et al. (2010) used a prediction model to initialize the new
point position for the sake of improving tracking accuracy. We used a similar idea but for
monitoring purpose in our package. The prediction model and displacement error for the

next position of the target point are given by

H(i+1)~ H(i) + H(i) At + H{(i)

(At)? + (At)?,

240
6
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and
AH = |H(i+1) — H(i +1)|.

Here, At is the inter frame period, i is the current frame’s sequence number, H (i) and
H(i + 1) are hyoid bone’s current and next position (or coordinates), H(i), H(i) and
H (i) are respectively the first, second and third derivative of H(i). Given the previously
acquired H(i), the AH (absolute difference between H (i + 1) and H(i 4 1)) should be
less than a prespecified threshold (8 pixel units in our implementation). Otherwise, the
tracking will be regarded as a failure. The software will then automatically review the
possible wrong-tracking frames backward and forward to identify the accurate sequence
number of the first failure frame. After confirming it, we should then manually adjust the
window size of ROI(7), and then go back to the tracking procedure by re-specifying the

same target point in the ith frame by mouse click and continue the tracking process.

2.3.3 Smoothing and calibration

The tracking described in the previous subsections is based on the coordinate system
where the origin is located at the bottom-left corner of the image (image-based coordinate
system). The problem is that there might be sudden body or head motion which would
blur the movement of hyoid bone during the swallowing process. To remove as much of
this kind of error as possible, a new so-called patient-centric coordinate system is required
(Kellen et al., 2010; Potratz et al., 1992). Practically, it seems to be much more convenient
and efficient to define a new coordinate system based on two special points. As described by
Kim et al. (2015), the y-axis of the patient-centric coordinate system is defined as a straight
line connecting the anterior-interior border of the fourth cervical vertebra (C4(z{*, z5"),
origin) to that of the second cervical vertebra (C2(z{?,x5?)). The z-axis is defined as a
line perpendicular to the y-axis crossing the origin, C'4, as seen in Figure 2.3B. The points
C4 and C2 can be tracked at the same time using the methods illustrated in preceding
subsections over the entire video sequences (Figure 2.3A). To reduce the errors caused
by tracking, smoothing is carried out for both the target point in the hyoid bone and
the two tracking points in the cervical vertebra using a cubic smoothing spline. The
degree of smoothing is controlled by the smoothing parameter, which can be adjusted by
the operator to avoid over-fitting (Figure 2.3D). Then all the data is normalized by the
vertical distance from C4 to C2. Given those two points’ coordinates, the target point
H(z1,x2) in the image-based coordinate system can be transformed to H'(z},z%) in the
patient-centric coordinate system by a simple rotation and translation (Figure 2.3C).

The formula is given by

1

cos(0 sin(0

—sin(0) cos(0)
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Figure 2.3: Example of smoothing and calibration. A. Manually specified two points, C2
and C4, indicated as two red crosses, in the anterior-interior border of the second and the
fourth cervical vertebra at the beginning of tracking. B. The patient-centric coordinate
system with the origin C4, where the y axis is defined as the line crossing C4 and C2
upward and the = axis is defined as the line perpendicular to the y axis leftward. C.
The rugged trajectory in the left panel is raw data based on the image-centric coordinate
system (in pixel) while the smoothing one in the middle and the calibrated one in the right
panel is based on patient-centric coordinate system (in CU). D. Semi-automatic smoothing
by adjusting the spline parameter, which ranges from 0.15 to 0.45. Blue curves represent
the raw trajectory while the red ones are smoothing curves.

where
ca_ ,.C2
0= g + arctan(H), |C2 — C4| = \/(a;izx —x5)2 + (25t — 22)2.

The effect of smoothing on diminishing tracking errors is demonstrated in the lower
panels of Figure 2.3. The calibration procedure aims to reduce the errors caused by head
motion and make the data collected from different subjects comparable. Our later data
analysis will be based on the trajectory after both smoothing and calibration, of which
the coordinate is based on cervical units (CU) (One cervical unit is defined as the distance
(in pixel) between C2 and C4, i.e.|C2 — C4]).
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2.3.4 Segmentation

Dividing one circle of the trajectory into certain phases is necessary for the assessment
of the hyoid bone movement and is useful for further statistical analysis. However, little
research has been carried out in this area, particularly on automatic segmentation. In
terms of the concepts on phases, Kaneko (1992) performs a quantitative study manually
dividing the movement into 5 phases: 1st elevation phase, 2nd elevation phase, static phase
and 1st and 2nd descending phase. Yabunaka et al. (2011) have also done similar work
on sonographic assessment of hyoid bone movement during swallowing by segmenting the
movement into 4 phases: Elevation, Anterior, Remain and Return. We developed a semi-
automatic segmentation method. After manually selecting one complete desired circle
from the entire raw trajectory, an automatic segmentation is conducted.

For simplicity, we use points (z1(t),z2(t)) to represent = and y coordinates after cal-
ibration and smoothing in the ¢-th frame sequence. Two ends of the manually identified
complete circle are denoted by t4 and tg. The technique is to acquire one desired time
interval including one peak in z2(t) and one valley in x;(t) at the same time. These two
points can be easily chosen by human eyes. For instance, the left panel of Figure 2.4A
shows that it is easy to identify the peaks and valleys in these two marginal curves. The
end points of t4 and tp are chosen such that the interval (t4,tp) contains both one peak
in the upper curve (z2(t)) and one valley in the lower curve (z1(¢)). Furthermore, the
distance between (z1(t4),z2(ta)) and (z1(tp),x2(tp)) should be as small as possible (see
the left panel of Figure 2.4B). The ideal situation is that the distance is equal to zero, i.e.,
the starting point A and ending point B overlap.

Once the desired circle is obtained, automatically dividing the movement into different

phases over (t4,tp) is workable via analyzing the corresponding velocity amplitude

olt) = /(20 oy (2202 ¢ (1,1,

Specifically, we can find the splitting points ¢ from the equations: (A) dzlgt) =0; (B) di;gt) >
0. Conditions (A) and (B) guarantee that all the local minimal points in the velocity
amplitude curve are found (see the blue curve in the left panel of Figure 2.4C). Those
local minima are interesting splitting points, which can be directly used in segmentation
in most cases. The corresponding segmentation result is shown in the right panel of Figure
2.4C. In this case the three splitting points, as well as the start point and end point, are
used to split the trajectory into four phases: elevation phase, anterior movement phase,
descending phase and returning phase.

It is not uncommon that more than three candidate splitting points can be obtained

only based on the conditions (A) and (B) (Figure 2.5C), particularly for patients with
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stroke. We propose to find the three best splitting points based on a new measure-
ment, namely, the Splitting Score. Assume there exist m — 2 candidate splitting
points:ta, ts, . . ., tm—1(except the starting point ¢; and end point ¢,,). For the ith splitting

point ¢;(i € [2,m — 1]), we use the following measures.

e Forward Splitting Score

FSS(t;) = max(v(t)) — v(t;), t € [ti—1,ti]
e Backward Splitting Score

BSS(t;) = max(v(t)) — v(t;), t € [ti,tiv1].

e Splitting Score
SS(t;) = FSS(t;) + BSS(;).

In fact, the SS value can be regarded as the turning intensity for the candidate points,
the larger, the better. Those t/s with the top 3 Splitting Scores are chosen as the desired
splitting points. Figure 2.5C shows that there are 6 candidate splitting points satisfying
the conditions of (A) and (B). It is easy to identify the three points, indicated by the
labels 2, 5, 6, with the top 3 SS values. The result is shown in Figure 2.5D.

2.4 Validation and statistical analyses

We tracked 20 circles from 17 subjects using our semi-automatic tracking methodology.
Next, each swallow was also tracked manually by a trained observer, who was instructed
to track one recognizable and fixed target point on the hyoid bone across all frames by
clicking the mouse. For the same swallow, we compare the two different trajectories
tracked by automatic computer-assisted method and manually by human being. Similar
to the previous study by Kellen et al. (2010), we used Pearson correlation coefficients and

relative errors defined as

|ROMautomatic tracking — ROMmanual tracking’ ” 100%

ROMmanual tracking

to measure the degree of agreement between the both, where ROM stands for range of mo-
tion. The range-of-motion measurement is calculated by finding the largest displacement
between any two points on the hyoid bone trajectory. Apart from the raw trajectories
(raw data without smoothing and calibration), five more comparisons were considered in
our validation: RawNC (Raw data transforming to a new coordinate system without being

scaled), RawNCC (Raw data with both coordinate system alternation and scaling), Smo
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(Raw data with smoothing), SmoNC (RawNC data with smoothing), SmoNCC (RawNCC
data with smoothing). Continuous variables are presented as mean + 1 SD. Parameters
generated were compared between aspiration and non-aspiration groups using an inde-
pendent t-test. Furthermore, in order to justify the current validation methodology, the
Intraclass correlation and Pearson correlation are utilized to measure the inter-rater re-
liability between those two observers. We calculate those two measurements for both x
coordinates and y coordinates of three points’ locations in each frame by two raters’ man-
ual tracking. As mentioned before, those points are respectively located at the bottom
left of the hyoid bone, anterior-interior border of the second cervical vertebra and that of

the fourth cervical vertebra.

2.4.1 Results

Figure 2.6 and Figure 2.7 show both computer defined and manual defined trajectories
corresponding to six cases for two typical data sets, one from the unmasked group and
the other from the masked group. Overall, two trajectories in each case match pretty
well (see Pearson correlation coefficients and relative errors between manual tracking and
automatic tracking in Table 2.3). The slight difference may be caused by different target

points on the hyoid bone identified by computer and the trained observer.

Cases ROM in z-axis ROM in y-axis ROM in 2D

A M A M A M
Unmasked group (10 circles from 8 trajectories)
Raw 55.22 £15.06 57.57+13.87 53.96 £26.69 55.77 £26.49 70.72+£23.31 72.67£23.45

RawNC 54.98+16.21 56.87+14.58 55.06 £27.24 56.39 +£25.27 71.50 £23.65 72.54+22.45
RawNCC 0.2740.10 0.2940.11 0.27£0.18 0.29 +0.18 0.36 +£0.17 0.38+0.18
Smo 55.01£15.01  55.00+14.63 53.16 £26.53 53.12+26.55 70.53 £22.80 69.884+23.62
SmoNC 54.49416.19 53.58+£14.41 53.95+26.96 53.67+£25.97 71.35+23.33 69.90+23.12
SmoNCC 0.27+0.10 0.284+0.11 0.27£0.17 0.28£0.18 0.36 £0.17 0.37+0.18
Masked group (10 circles from 9 trajectories)

Raw 56.23+£22.04 58.444+22.34 41.80£16.06 43.01 +15.89 63.80£22.52 65.894+-23.32
RawNC 56.00+£18.39 57.30+16.89 41.63 +£15.46 43.48+15.32 64.01 £21.30 64.24+18.38
RawNCC 0.31+0.13 0.33 £0.14 0.22£0.10 0.23£0.11 0.36 £0.14 0.36+0.14
Smo 55.50£22.41 56.114+22.00 40.66 +16.43 41.03 +15.51 62.68 £22.46 63.53+22.73
SmoNC 55.14+18.49 55.37+17.23 40.35+15.89 41.67+15.03 63.12£21.44 62.56+18.48
SmoNCC 0.31+0.13 0.32 £0.14 0.21£0.10 0.22+£0.10 0.35£0.15 0.35+0.14

Table 2.1: ROM comparison between two methods. ROM - range of motion, A - automatic
tracking, M - manual tracking, 2D - 2 dimensions, Raw - raw data without smoothing and
calibration, RawNC - raw data transformed to a new coordinate system yet without being
scaled, RawNCC - raw data with complete calibration, Smo - raw data with smoothing,
SmoNC - RawNC data with smoothing, SmoNCC - RawNCC data with smoothing. Values
are mean + SD.

Table 2.1 shows the range of motion between manual tracking and automatic tracking

in terms of the z-axis, y-axis and 2D direction. Table 2.2 shows Pearson correlation
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Pearson r Relative errors(%)

Cases . - . -
r-axis y-axis  zx-axis y-axis 2D

Unmasked group (10 circles from 8 trajectories)

Raw 0.982 0982 6.14+47 65+4.7 56+4.1
RawNC 0977 0954 87+50 65+£45 59+39
RawNCC 0977 0.958 9.2+£6.6 86=£6.0 69+48
Smo 0991 0990 484+38 46+31 46+£34
SmoNC 0.984 0967 65+46 48+46 4.8+39
SmoNCC 0984 0971 76+54 54+£46 54+33
Masked group (10 circles from 9 trajectories)

Raw 0.975 0965 6.1+5.1 50+43 53+£58
RawNC 0972 0946 73+65 8578 64+£54
RawNCC 0969 0942 86+£76 7.1£6.5 6.0£6.2
Smo 0982 0978 43+40 33+£41 41447
SmoNC 0979 0961 50+£56 69+71 62+43
SmoNCC 0975 0.957 6.8+6.9 58£6.0 55+49

Table 2.2: Pearson correlation coefficients between two methods and relative errors (%)
from two methods. Values are Pearson correlation coefficients or mean +1 SD. P-values
for all Pearson correlation coefficient were less than 0.0001.

Tracking results  Methods  Estimate 95 % CI P value

o-coordinates Pearson’s r  0.999 (0.998, 0.999) < 0.0001
ICC 0.998  (0.998, 0.999) < 0.0001

. Pearson’s r 0.998  (0.998, 0.998) < 0.0001
y-coordinates ICC 0.996  (0.995, 0.996) < 0.0001

Table 2.3: Average Pearson correlation coefficients and Intraclass correlation coefficients
(ICC) between two independent observers for measuring the inter-rater reliability.

coeflicients and relative errors in terms of ROM from two methods. We can see that all
of coefficients are in the interval between 0.942 and 0.991 (p < 0.0001) and the relative
errors in terms of the z-axis, y-axis and 2D range of hyoid bone excursion ranges from 3.3
% to 9.2 %. Overall, the case of proper smoothing usually outperforms better.

Table 2.3 shows the average of Intraclass correlation and Pearson correlation coeffi-
cients for both x coordinates and y coordinates range from 0.995 to 0.999 (p-value <
0.0001). It indicates a high consistency of quantitative measurements made by those two
independent trained observers, which provides a justification of the methodological errors
in our study.

According to our automatic segmentation method, most of the hyoid bone motion (14
out of 30 subjects) can be typically segmented automatically into four phases. All of
the subjects fall into four groups in terms of segmentation results. There is an error for

automatic segmentation for six subjects, but the typical four phases can be segmented
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manually. There are four subjects with only 3 phases capable of being segmented (e.g.
no returning phase). In six subjects, the trajectories are abnormal and could not be

segmented into typical phases. Figure 2.8 shows four typical examples from each group.

2.5 Chapter Summary

To sum up, the main contributions of the present work include,

(a) the development of a new algorithm based on the existing method by Kellen et al.
(2010) to track the masked part of the hyoid bone and a dynamic monitoring me-

chanic to fix the wrong-tracking problems in time,

(b) the development of semi-automatic smoothing and calibration for reducing tracking

errors,

(c) the development of a new method of automatic segmentation of hyoid bone motion,
which could provide the researchers in the field of dysphagia a convenient, useful,

and all-in-one platform for the analysis of hyoid bone motion.

Once we have obtained these functional data, the next task is data preprocessing like
registration. The deformations or displacements, termed phase variation, always arise in
these curves. This can be shown through the different locations of splitting points while
doing automatic segmentation. The presence of phase variability often increases data
variance and alters underlying data structures (Marron et al., 2015). The splitting points
can also regarded as the landmarks from the perspective of functional registration. It
seems the standard landmark registration method, or the ones related to landmarks might
be employed. Thus, we will study the 2D curve registration for the movement of hyoid

bone, which is the purpose of the next chapter.
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Figure 2.4: Example of automatic segmentation for one non-aspiration case. A. The
curves of the z coordinates and y coordinates of all the data (the left panel) and the
entire 2D trajectory (the right panel): the dots connected with a line in red show the
raw trajectory just after being calibrated while the ones in green represent smoothing
data after calibration. B. Extracted one circle based on the two cutting points A and B
(the left panel) from the entire trajectory and the corresponding 2D trajectory (the right
panel). C. Automatically segmenting the trajectory into four phases. The upper curve
in green in the left panel stands for the smoothing y coordinates and the lower one for
the smoothing x coordinates, together withohe curves in red representing raw data. The
curve in blue represents the velocity amplitude v(t), where ¢ represents the video frame
sequence and the numbers in different colors stand for splitting points order. The right
panel shows the segmentation results in 2D trajectory.
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oot

..................

Figure 2.5: Examples of automatic segmentation. A. All the data and the entire trajec-
tory. B. Extracting one circle from the entire trajectory. C. Automatically splitting the
trajectory via choosing points satisfying the condition A and B. The numbers 2, 3, 4, 5,
6, 7 and 8 on the curves in the left panel are the candidate splitting points corresponding
to the points in black on the 2D trajectory in the right panel. D. Further automatically
segmenting the trajectory into four phases via selecting three splitting points from C. The

selected points 2, 3 and 4 in the left panel of D are equivalent to the points 2, 5 and 6 in
C.
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Figure 2.6: An example from unmasked group. The hyoid bone trajectories in red are
based on semi-automatic tracking methodology while those in green are by manual method.
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Figure 2.7: An example from masked group. The hyoid bone trajectories in red are based
on semi-automatic tracking methodology while those in green are by manual method.
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2.8: Examples of segmentation. A. Successful automatic segmentation to four
B. Failed automatic segmentation but successful manual segmentation to four

phases. C. Manual segmentation to 3 phases (no returning phase). D. Failed segmentation

due to

abnormal trajectory.
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Chapter 3

Registration for the
Multi-dimensional Functional
Data

3.1 Introduction

Figure 3.1 displays two batches of motion data of hyoid bone from normal people and
patients with stroke. They are acquired using the methodology described in Chapter 2.
First of all, observing the first two subgraphs (a) and (b) gives us some insight on the
spatial registration problems. Obviously, the issues concerning rotation, scaling and shift
for those 2D curves need to be dealt with simultaneously. Generalized Procrustes analysis
(GPA) proposed by Gower (1975a) is a straightforward method for those issues. Secondly,
subgraphs (c)-(f) show that there exist temporal registration issues, namely, time warping,
which is generally paid much attention in the registration of one dimensional functional
data. We have mentioned in Chapter 2 that those splitting points or landmarks are sort
of ambiguous and quite hard to identify fully automatically. That means it is not a good
choice to directly apply the standard landmark registration method to the data. In this
chapter, we attempt to develop a new framework by mixing two methods to address those
problems at the same time.

The structure of this chapter is as follows. Section 3.2 reviews the background of Gen-
eralized Procrustes analysis and self-modelling registration. A new methodology (GPSM)
is proposed and the related algorithm is discussed in Section 3.3. Section 3.4 carries
out numerical analysis, including the simulation study and real data analysis. Chapter

summary is in Section 3.5.
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Figure 3.1: 30 samples of the movement of hyoid bone from normal people and patients
with stroke. «;(t) and xa(t) represent the z-coordinates and y-coordinates of those 2D
curves, respectively.
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3.2 GPA and self-modelling registration

3.2.1 Generalized Procrustes analysis

Procrustes analysis is used to analyze the distribution of a set of shapes. In order to com-
pare them, the objects must be optimally superimposed, which is carried out by optimally
translating, uniformly scaling and rotating the objects. This means both the size of the
objects and the placement in space are adjusted. To get a similar size and placement,
we minimize a measure of shape difference called the Procrustes distance between those
objects. Ordinary or classical Procrustes analysis is exploited when a shape is compared
to another, or a set of shapes are compared to one arbitrarily selected reference shape.
The shape of an object can be thought of as a member of an equivalent class, which is
formed by removing the translational, uniformly scaling and rotational components. For

simplicity, we consider objects consisting of m points in 2 dimensions

{(z11,221), (12, 222)5 - - -, (T1m> T2m) }-

The mean of those points is given by

m
(Z1,%2), where T, = z:];nlaj,a =12,

and the scale of the shape is

9

5 = \/Z;ﬁ:l(xlj —71)? + (225 — T2)?

m

which is also called root mean square distance, a statistical measure of the object’s scale.

Procedures of how to remove those components are briefly described as follows:
e Translation. Translate the points
(w15, T25) = (w15 — T1, T25 — T2), J=1...,m,
such that their mean is translated to the origin.
e Uniform scaling. All the points are divided by the object’s initial scale
(w1 — Z1)/s, (w25 — T2)/5),

so that the scale becomes 1. Note that there are other methods to define the scale

in the literature.

e Rotation. Since a standard reference orientation is always unavailable, removing the
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rotational component is more complicated. We consider two objects made up from

the same number of points

{(561173321)7 (3712, »’622), cee (xlmvam)} and {(2’11, 221), (212, 222)7 s (Z1m7 ZQm)}

with scale and translation removed. Fix one of those objects as a reference orienta-
tion and rotate the other around the origin until the angle of rotation @ is found by

minimizing the sum of squared distances. A rotation by angle 6 gives
(v1j,v25) = (cosfz1; — sinfzaj,sinbzy; + cosbza;), j=1,2,...,m,

where (v1;,v25) are the coordinates of rotated points. Thus, the optimal angle is

m
A . 2 2
0 = argmin E 1(1)1]‘ —x15)" + (v2j — x25)
‘]:

1 Zj:l L2515 — X15225
tan o .
D je1 T1j215 + 2225

If the object is A-dimensional, the optimum rotation is represented by an A x A rotation

matrix and the singular value decomposition can be used to find the optimal value.

After superimposing the two objects by removing the translational, scaling and rota-

tional components, the difference between the shape of two objects can be assessed by

m
d=>Y \/(Ulj — x15)? + (v2; — @25)%
=1

We also call this measure as Procrustes distance.

The classical Procrustes analysis aims at superimposing a set of objects to an arbitrarily

selected shape while Generalized Procrustes analysis (GPA), proposed by Gower (1975a),

is mainly for optimally superimposing them. It compares a group of shapes to an optimally

determined mean shape. The procedure is outlined as follows:

1.

Initialise the reference shape by arbitrarily choosing it among all of the available

instances.
Superimpose all instances to the current reference shape.

Compute the mean shape of the current group of superimposed shapes, as well as

the Procrustes distance between the mean and reference shape.

Stop the procedure if the Procrustes distance is below a threshold, otherwise set the

reference to the mean shape and continue to step 2.
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In the real data set, we regard 2D curves as the objects and will apply GPA to them to
deal with the translational, scaling and rotational components in the preprocessing stage.
However, GPA is unable to address the warping issues, i.e. the existence of different time

scale for each curve. Thus, it is necessary to develop some methods to handle the warping.

3.2.2 Self-modelling registration

Self-modelling registration method (SM) proposed by Gervini and Gasser (2004) aims to
resolve warping problems by introducing a semi-parametric model for one dimensional
functional data. They assume the warping function g~!(¢) to be linear combinations of
p common components, which are estimated combining data across individuals, thereby
avoiding over-fitting. They assume that sample curves {x;(t),i = 1,..., N} follow the

model
x;i(t) :diT{gi(t)}—l-Ei(t), i=1,..., N, (31)

where {g;} are monotone increasing functions, 7 is the structural mean and ¢; are random
errors. The functions {g;} are seen as one kind of the inverse of warping functions. Assume
d; #0, E(d) =1, E(g7(t)) =t and E(e) = 0. This model is a working model and allows
rather limited type of amplitude variability, but it performs well in a real data set.

The warping functions proposed corresponding to the above model is
p
g7 (1) =t+ > wyes(t), i=1,...,N, (3.2)
j=1

where ¢;(t) = e]T-E(t), where £(t) = (§1(2),&2(t),...,&4(t))T is a vector of B-spline basis
functions and the score vectors w; = (w;, . .., wip)T satisfy E(w) = 0. These ¢—functions
are all localized non-negative bell-shaped functions, each of which accounting for time
variability at different segments of T'. For identifiability, the spline coefficients must satisfy

three restrictions:
(A) ejp >0fork=1,...,qand |[ej||=1for j=1,...,p.

(B) The coefficient matrix E = (ej,) € RP*? has the block structure 1 < K; < Ky <
RN Kp+1 < g + 1 such that €k > 0 for Kj <k< Kj-i-l and €jk = 0 for k < Kj
and k > Kj+1.

(C) ej1 =ejqg=0forall j,ie K;=2and Ky = ¢ such that Ko >3 and K, <¢— 1.

Condition (B) ensures that the components have connected and localized supports. Re-
striction (C) guarantees that g; '(a) = a and g; *(b) = b when the time interval is [a, b].
The proof on the identifiability of model (3.1) and model (3.2) are provided by Gervini
and Gasser (2004).
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Each ¢; can actually be regarded as a component associated with a hidden landmark,
which motivates the model (3.2) to some extent. Take the case of two landmarks per 1D
curve, l;1 and [;o, for example. Let lg7 = 1 and lys = I 5 be the average landmarks. From
the registered curves #;(t) = z;(g7(t)), we know that %;(lo;) = z;(l;j),j = 1,2, for all
i. Thus, the warping functions must satisfy g; '(a) = a,g; *(lo1) = li1, g; "(lo2) = li2 and

9; 1(b) = b. Using the simplest interpolation method, i.e. piecewise linear functions, we
get
t+ (I — lOl)lgl_fa t € la,lp],
g, (1) = t+ (I — lon) 2255 + (Lo — lo) ;9L t € [lor, lo2],
t+ (lia — lo2) 3275 t € [loz, b].

Let Wij = lij — loj and

lé;—aa t e [a, l01],
¢1(t) = § gt t € [lo1, lo2],
0 t e [log, b]
0 t e [a, lDl],
$a(t) = ¢ 7524 t € [lo1, lo2],
lf_j(; t e [log, b]

We can write g; '(t) = t + 2]2.:1 w;j¢;(t). In other words, those triangles with peaks at
lo1 and lgy can be expressed as combinations of linear B-splines with knots {a, lo1, lo2, b}.
Therefore, each component in the model (3.2) is associated with an underlying landmarks.
The self-registration method is used to estimate the associated components instead of the
individual landmarks.

To estimate the parameters in models (3.1) and (3.2), we minimize the average inte-

grated squared error given by
1L
AISENn = N El/a sz(t) dzT{gz(t)}” dt

1L b
= 2 [l @) — dir @)oY 0 63)
=179

Thus, we have the estimator of the structural mean

S di(@ ) (Bzi(g )(E)

=N Ry

(3.4)

However, there are no explicit estimating equations for E or the 9; ls. Two-stage al-

gorithms for minimizing equation (3.3) have been implemented by Gervini and Gasser
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(2004):
e Stage 1: initialization.

(a) Select desirable block delimiters K = (K1, ..., Kp41) for the coefficient matrix

FE and re-parameterize

(€415 €4k —1) = (1, exp(uy)) /{1 + |lexp(uy)| P}/,

where u; € REi+1-K; are unconstrained vectors.

(b) Set it; = 0, w; =0, d; = 1 and 7(t) = &(t).
e Stage 2: iterations.

(a) Update g, L(t). Update u; by using a Newton-Raphson step and recentre the

current ;s so that w = 0. Then, update w; by using a Newton-Raphson step.
(b) Update 7(t) and d;. Update 7 by using equation (3.4), compute z;(g; *(t)) by
linear interpolation.

(¢) Update d; and update the objective function (3.3). Exit if there is no significant

improvement; otherwise go back to (a).

On one hand, the advantage of this semi-parametric model for warping functions of one-
dimensional random curves over landmark registration is that there is no need to identify
individual landmarks. Also, it sufficiently makes use of data and avoids over-fitting to a
large degree by using the common structure of the warping functions. On the other hand,
this model lies in one strong assumption on the existence of hidden landmarks. For our
real data in Figure 3.1, there are some recognizable landmarks hiding in each 2D curve,
such as the turning points or splitting points aforementioned in Section 2.3.4 of Chapter 2.
Thus, we will exploit this model in our registration methodology for the multi-dimensional

functional data.

3.3 The methodology and algorithm

We attempt to integrate the GPA and self-modelling registration in order to deal with the
multi-dimensional functional data. For 2D curves {x;(t),t € [0,L];i =1,..., N}, where ¢
is usually transformed to the unit of arc-length in the case of more than one dimensions,
assume 7; is the transformation in terms of translation, rotation and scaling for curve 1.
We can regard T; as the parametric matrix to be estimated. The procedures of GPA for

{z;,i=1,...,N} can be outlined as:
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(a) Initialise p(©)(t), the reference curve, as xo(t), which is arbitrarily chosen from
{z;(t),t € [0,L];i=1,...,N}.

(b) For the (ig + 1)th iteration, superimpose all the curves to p()(t) by

(2

) L
70— g [ G0 - WO @IFR =128 (35

(c) Compute the Procrustes distance

plioth) — / ZT“O“ ;) (t) — pt) (1) [Pdt.
0

(d) If |D(i0+1)—D(i0)| < d, where ¢ is predetermined as 0.01, the iteration ends; otherwise
set ploth) (1) = + Zfil '.Z}(ZOH)(;BZ')(t) and continue to step 2.

Suppose k iterations are required to reach below the threshold, then T, = Ti(k) . Ti(k_l) e

7V i=12.. N
As for the warping issue, we try to extend the self-modeling registration aforementioned
from one-dimension to multi-dimensions. Assume there are A dimensions, the sample

curves in a-th dimension are assumed to follow the model
xm;(t) :daiTa{gi(t)}+€ai(t), telL; CR, 1=1,...,N, a=1,..., A (3.6)

The warping functions and the related restrictions are the same as the one-dimensional

case mentioned in Section 3.2. The average integrated squared error is given by

1L L
_Nz/n%mﬂmmmwm (3.7)
i=1"0

The techniques of estimating the parameters in the model (3.6) are similar to the case
of one-dimensional curves. After getting the estimated warping functions, the curves are
required to be updated to a new time scale g~!(¢) and iteratively apply the GPA to them.
We call the combination of GPA and self-modelling registration as GPSM methodology.
The outline of the algorithm for GPSM is as follows (assuming GPA is used first and
followed by SM):

1. Initialise p(9)(t), the reference curve, as the cross-sectional mean of functional data,

i.e.

N
(0) Z
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2. For the (ig + 1)th iteration, superimpose all the curves to p(%)(t) by

7

T = argmin / Tz () — @ (B)|Pdt,  i=1,2,...,N.
0
3. Compute the Procrustes distance

plio+1) — / ZT“OH (z:)(t) — (0 ()| 2dt.
0

4. If |D(i0+1) — D(i0)| < 6, where ¢ is predetermined as 0.01, continue to step 5; other-

wise, set

(Z()—l—l
o = 50
-N

and continue to step 2.

5. Suppose k iterations are required to reach below the threshold, then the T, = Ti(k) .

Ti(k_l)--~T-(1),i =1,2,...,N. Calculate the synchronization coefficient syncl defined

7

by James (2007), see the details in Section 3.4.2.

6. Compute the warping function by SM method, let a&;(t) = Tj(x;)(t),
g L(t) —argman/ — d;m{gi(t)})2dt, i=1,2,...,N. (3.8)

7. Calculate the sync2. If sync2 < syncl, update z;(t) = &;(g; ' (t)) and plo+k) (1) =
7(t), where 7(t) ~ % Zf\il x;(t), and continue to step 2. Otherwise, stop.

3.4 Numerical analyses

3.4.1 Data generation

We now compare the methodology (GPSM) with the Generalized Procrustes analysis
(GPA) (Gower, 1975a), the extension of self-modelling registration (SM) (Gervini and
Gasser, 2004) and square-root velocity method (SRV') (Srivastava et al., 2011a) in terms
of both alignment and estimation. To generate data, we first generate one 2D curve
p(t) = {(x1(t),z2(t)),t € [0, L]} selected randomly from hyoid bone motions data as the
true structural mean. We use equidistant points t; = (j —1)/(m —1), where j =1,...,m,

as input grid. Then we generate data as follows:

(a) Warping. Two natural landmarks, Im1 and Im2, are identified manually. Normally
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the peak (maximum) and valley (minimum) of the structural mean along the x-axis
or y-axis can be regarded as landmarks. Then two random landmarks are generated
for each 2D curve. Im;, = Ilmy + dik, k = 1,2 with §;; = min{max(Ujx, V), V'}, U
independent N(0,02) random variables, and V' = fmin{lmy,lms — Imy, L — Imo}
(the truncation makes sure that 0 < Im;; < Im;s < L). The inverse warping
functions g;(t) are piecewise linear with ¢;(0) = 0, g;(lm;1) = Imy, gi(Im2) = lmg
and ¢;(L) = L.

(b) Rotation. Each 2D curve is rotated around the center (75 Y7 21 (t5), 7= Y272 @2(t5))

with the angle 6; = —6y + 260y * W; and W; independent U(0, 1).

(¢) Scaling. Each 2D curve is scaled with the same scaling factor a;, which are indepen-
dent and identically distributed N(1,02) random variables with o, = 0.1.

(d) Translating and adding random errors. The newly generated 2D curve (z (¢;), z5(t;))
will end up adding random translation and errors in the following way: ($/1 (tj) +
M1; +N1;;, 25(t5) +M2¢+N2ij), where M1;, M2; are independent N (0,0.1%) random
variables and N1;, N2; independent N(0,0.012) random variables.

(e) In each dataset, sample size for the 2D curves N = 30 and grid size m = 100 are
used, with r = 50 replications for each combination. Three scenarios are examined
for each method. These are the following: (1) Scenario A: o, = 0.1 and 6y = 7/4;
(2) Scenario B: ¢, = 0.5 and 6y = 7/6; (3) Scenario C: o, = 1 and 0y = 7/8. (0w

and 6y control the warping and rotating intensity, respectively)

Three different mean curves are selected, which results in generating three types of data
sets in each scenario. Figure 3.2 shows typical examples of one realization from Dataset
3 with three scenarios. The sub-figures (b)-(d) contains problems of rotation, translation,
scaling and warping.

3.4.2 Measurements

To measure the estimation error for the structural mean, we use the root average squared

error (James, 2007)
: \/2;”1 lia(ts) — plt)?
rase(fi) = ;

m

where m is the number of observation points, pu(t) and fu(t) are the cross-sectional mean
of raw curves and of registered curves for each replication in each dataset.
Two other criteria are used to evaluate the registration comparison. We denote by x;

and &;, (¢ =1,...,N) the raw and the registered 2D curves, respectively. The synchro-
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nization coefficient defined by James (2007)

. . 2
syme — 1 i Jl2it) = w55 20 &5 ()| dt
- = —,
N [lwat) — 75 >z @i (0)]dt

measures the overall cross-sectional variance of the registered curves relative the original
curves. The smaller the value of sync, the better the registration is. The inverse of pairwise

correlation between curves is defined as

> iz corr2(zi(t), x;(t))
Zi;ﬁj corr2(&;(t), (1))’

pc =

where corr2(A, B) computes the correlation coefficient using

Zm ZN(AmN - A)(BmN - B) )
V0 S (Amy = AR, S (B — B)?)

R=

Smaller values of ipc indicate better registration.

3.4.3 Results

All of the measures are averaged over r = 50 Monte Carlo simulations. Quantitatively,
GPSM outperforms GPA, SM and the SRV method, in any of the three scenarios, as
we can see from the Table 3.1. It is clear that the performance of GPA becomes worse
as the oy, increases and 6y decreases while SM becomes better, particularly in terms of
rase. This is because GPA is specialized at the rotation issue while SM works mainly for
warping. Overall, GPSM considers both rotation and warping issues, leading to much
better performance than GPA and SM. Figure 3.3 to 3.5 display three examples of reg-
istration results by four methods in Dataset 3, corresponding to Scenario A to C. All of
these demonstrate better registration by GPSM. More examples are given by Figures A.1
to A.8 in Appendix A.

3.4.4 Real data analysis

Our application to the real data, shown in Figure 3.1, is to do registration by the four
methods GPSM, GPA, SM and SRV. Table 3.2 shows the GPSM is better than the other
three methods in terms of registration. Figures 3.6 and 3.7 also justify its superiority.
After doing registration, we can do classification. Here, we use a simple rule similar to
the k-means algorithm. The group means are firstly obtained via any of the 2D registration
methods. Assume the group mean of training data is py(t) and pf (¢) is the mean after

the addition of the test curve x*. Each test curve is then assigned to the trained group
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Dataset 1 Dataset 2 Dataset 3
rase  sync  ipc rase  sync  ipc rase sync  1pc
ow=0.1,60p=7/4 0.07 0.02 0.80 0.08 0.02 0.80 0.06 0.03 0.80
GPSM o, =0.5,p =7/6 0.07 0.19 0.89 0.07 0.18 0.88 0.07 0.16 0.87
ow=1,60=7/8 0.09 0.27 0.90 0.08 0.19 0.89 0.07 0.18 0.89
ow=0.1,60p=7/4 007 0.03 0.80 0.08 0.03 0.80 0.06 0.06 0.81
GPA 04, =05,00=7/6 0.09 0.29 0.90 0.08 0.28 0.89 0.08 0.29 0.89
ow=160=7/8 012 045 0.92 0.10 0.40 0.92 0.09 0.38 0.91
ow=0160p=7/4 016 0.61 0.87 0.13 0.55 0.86 0.15 0.56 0.86
SM ow=0.560p=7/6 010 0.60 0.92 0.10 0.57 0.91 0.10 0.51 091
ow=1,0=7/8 010 0.61 0.93 0.10 0.54 0.92 0.09 048 0091
ow=01,6p=7/4 0.16 0.15 0.81 0.40 0.18 0.81 0.12 0.14 0.81
SRV o0, =05,00=7/6 013 0.41 0.90 0.44 0.29 0.88 0.12 0.27 0.88
ow=1,0=7/8 0.13 0.60 0.93 0.48 0.37 0.90 0.12 0.34 0.90

Table 3.1: The average results of estimation and registration by four methods. The bold
numbers indicate the best results.

Normal Abnormal

sync  ipc sync  ipc
GPSM 0.46 0.68 0.25 0.68
GPA 0.67 0.76 0.41 0.73
SM 0.76 0.84 0.55 0.78
SRV 0.89 0.76 0.64 0.75

Table 3.2: 2D registration results based on 15 curves of hyoid bone motion in normal and
abnormal group respectively.

which is closest in terms of Procrustes distance between means. In other words, x* is
classified as belong to k*-th group if d(k) = fOL |, (t) — pif ()| dt takes its minimum value
at k =k for k =1,..., K. For our real dataset, K is set as 2.

We evaluate the classification performance by 5-fold cross validation. Apart from the
classification accuracy (CA), we use another two criteria for evaluating the classification
results. The first one is the Rand index (RI) (Rand, 1971a), having a value between 0 and
1, with 0 indicating two data clusterings disagree on any pair while 1 indicating a perfect
match. And the second one is called adjusted Rand index (ARI) (Hubert and Arabie,
1985a), a modified version of Rand index (ARI). A larger value of RI or ARI indicates
a higher agreement of the method and the truth. The average classification results for
those methods are shown in Table 3.3. It shows that all of the methods fail though GPSM
seems slightly better than others. This motivates us to come up with some other methods

to carry out prediction for this real dataset.
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CA RI ARI

GPSM 0.57 0.48 0.06
GPA  0.37 0.53 0.09
SM 0.37 0.53 0.13
SRV 050 043 -0.11

Table 3.3: Average classification results of three measurements by four methods.

3.5 Chapter Summary

In this chapter we propose a new registration method (GPSM ) for multi-dimensional func-
tional data. It integrates the Generalized Procrustes analysis (GPA) and self-modelling
registration (SM) for the sake of addressing both spatial and temperal registration issues,
namely, rotation, shift, scaling and time warping. It outperforms the other methods as we
see from the numerical results.

However, this framework generally belongs to a kind of standard preprocessing method
for functional data analysis. It is usually conducted prior to modelling or classification.
These two separate steps are sometimes inconvenient and time consuming. Furthermore,
it does not work well when it comes to the prediction in some cases, for example, in our
real dataset, as shown in Table 3.3. Thus, we need to explore another methodology which
is capable of simultaneously carrying out registration and modelling, as well as considering

some other scalar variables. This is the aim of next two chapters.
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Figure 3.2: Three examples of data in Dataset 3 corresponding to three scenarios.
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Figure 3.3: An example of registration results in Dataset 3 by four methods for Scenario
A with o, = 0.1 and 6y = 7/8.
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Figure 3.4: An example of registration results in Dataset 3 by four methods for Scenario
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Figure 3.5: An example of registration results in Dataset 3 by four methods for Scenario
C with with o, = 1 and 6y = /8.
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Figure 3.7: Registration of curves from 15 abnormal people by four methods.
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Chapter 4

Joint Curve Registration and
Classification with Mixed Scalar

and Functional Variables

4.1 Introduction

Data classification will be conducted after the data acquisition and data registration stud-
ied in Chapter 2 and Chapter 3, respectively. While doing the classification for the data
(see Figure 4.1(a)), the misaligned problems, for example, the vertical variation and hor-
izontal variation, as seen from Figure 4.1(b), should be addressed. Several works e.g. by
Sangalli et al. (2009), Srivastava et al. (2011a) and Cheng et al. (2016) can be applied to
carry out the registration for 2D curves. But, their curve alignment is generally performed
as a preprocessing technique and the classification on the basis of curves is conducted af-
terwards. This way is not efficient, since on one hand, a subject belonging to the groups
“normal” or “patient” is closely related to how it unfolds its progression pace. This leads
to the necessity of simultaneous registration and modeling. On the other hand, those
methods rely only on functional variables, i.e., the curves. This does not always work
well, particularly for the data having heterogeneity which depends on both functional and
scalar variables. In the X-ray video data, the variations depend on time warping as well
as scalar variables such as average speed of hyoid bone and the initial level of disease.
Therefore, simultaneous curve registration and classification by considering all those fac-
tors mentioned is a better way for modeling functional data. The purpose of this chapter
is to resolve the problems aforementioned by proposing two-stage functional models for
joint curve registration and classification.

The chapter is organized as follows. Section 4.2 proposes the joint curve registration

and classification method, provides the related inference, implementation and asymptotic
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Figure 4.1: The motion data of hyoid bone. (a) One X-ray image showing the location of
hyoid bone which will move forward and backward to form one 2D curve during swallowing,
as shown in (b). (b) 30 trajectories of hyoid bone motion from 15 normal people (curves
in green) and 15 patients with stroke (curves in red).

properties of estimators, and ends up with procedures for prediction. We present numerical
examples with simulated data and real data to evaluate the proposed model in Section

4.3. Finally, a short summary and discussion are included in Section 4.4.

4.2 The joint registration and classification models

Suppose there are N subjects coming from two groups. Let y be the binary variable,
where we label the subject by 1 if it is normal, or by 0 if it is abnormal. The num-
ber of normal and abnormal subjects are assumed to be N7 and Ny, respectively, where
N; + Ny = N. Let @i(t),x2(t),...,xzn(t) be 2D continuous curves, where x;(t) =
(214(t), z2;(t)) and x14(t), xe;(t) are the corresponding x-coordinates and y-coordinates
of ;(t). Let x(t) 2 x;(t)|y,=r be the i-th 2D curve in the k-th group, where x;(t) =
(x1xi (), Togi(t))andxqu; (t) 4 Zqi(t)|y,=k-a = 1,2,k = 0,1. Let v1,...,vn be the observed
scalar variables. For example, in our study, they can represent subjects’ gender, age,
smoking status and some features or summary statistics originated from those 2D curves,
such as the average motion speed and average acceleration amplitude. Suppose there are

my; time points on which the i-th curve in k-th group are observed. The data set is
D = {(Yki, w1ri(tij), Tori(tij), vri);i = 1,.. ., Nis g = 1,y k = 0, 14,

where yp; = Yilyi=k» Uk 2 Vily,—k- We can also denote D by {(y;, ;(tij),vi);i =1,...,N},

where t;; stand for the observed time points for the i-th curve.
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4.2.1 The models

Most existing methods carry out the classification for the curves with registration problems
depending only on the information from themselves. In some cases, this might not be
enough. We may need to use information from other variables, either functional or scalar.
One example is given in the previous chapter; see the discussion around Table 3.3. Thus, we
will use both functional and scalar variables for classification. Given the data {(x;(t),v;)},

we start the first stage models with the assumption
yi|vi, i (t) ~ Bernoulli(1,m;), m = P(y; = 1|v,, x;(t)).
Then use the following functional logistic regression model
logit(m;|v;, zi(t)) = bo + v] by + /mi(ggl(t))ﬁ(t)dt, i=1,...,N, (4.1)

where by and by are scalar coefficients and 3(t) = (81(t), B2(t))T are coefficient functions.
x;(g; (1) = (z1:(9; ' (1)), z2:(g; ' (t))), are the 2D curves after registration and g; '(t) is
the warping function for the i-th curve.

In the second stage, we will model these curves. The preprocessing procedure Gener-
alized Procrustes analysis (GPA) (Gower, 1975b) will be used at the beginning to address
part of registration problems except warping. Little work has been done on model-based
registration for multi-dimensional curves. Borrowing the ideas from Raket et al. (2016),

we model the the continuous curve z,x;(t) by
xa;ﬂ-(t) = (Tak o gki)(t> + 'f'aki(t) + €ai(t)7 i=1,..., N, (4.2)

where a = 1 or 2 represents the z- or y-coordinates of z;(t); the item (74 o gx;) denotes
functional composition: (70g)(t) = 7(g(t)), where 74x(+) is a fixed but unknown nonlinear
mean curve. We set 7x(t) = &u(t) + Pur(t), where &, is the underlying profile shared
across two groups and ¢,y is the group-specific variation centered around &,. Both can be
approximated by a set of basis functions, the details are given in the next section. The
variation among different subjects is modeled by a non-linear functional random-effects:
Taki(t), by a Gaussian process with zero mean and a parametric covariance function S.
The error item e4;(t) is assumed to be Gaussian white noise with variance o2

According to the discussion in Section 4.1, the variation among different subjects needs
to be considered. Thus, we allow warping function depending on k£ (k = y;) and i. We
further assume

gki(t) =t+ wk(t) + wki(t),

where wy(t) is the fixed part, representing consistent timing across all subjects in group
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k, and wy;(t) is the random part, representing the random variation of timing of subject
i in the group k. Instead of making assumptions for curves wy(t) and wg;(t), we first
discretize them by a set of fixed parameters, for instance, by wy = (wg(t1), ..., wi(tn,))
and wy; = (wi;(t1), ..., wki(ty, )) respectively (Zeng et al., 2017). We then model wy; by
a Gaussian distribution with zero mean and a parametric covariance function H. We can
also define the warping function as linear functions, some of which have been examined
by others (Liu and Yang, 2009; Sangalli et al., 2010).

We call the models defined in (4.1) and (4.2) as joint curve registration and classifica-
tion (JCRC') models.

4.2.2 Estimation

Firstly, we estimate the function g(¢) involved in model (4.1) in the second stage. The
discrete form of model (4.2) for the i-th curve data x.x; = (waki(ti1)7 . Taki (timki))T can

be expressed as follows
Taki = Tak(gki) + Taki + €, for a=1,2; k=0,1; i=1,..., N, (4.3)

where Tk (gri) = (Tak (gki(til)), ey Tak (gki(timki)))T, and r,;; and €; are both my; col-
umn vector. We respectively set S as the Matern covariance function with parameters
ps and H as the unstructured covariance function or Brownian covariance function with
parameter p; (Raket, 2016). This can be estimated by the data; the details are pro-
vided in the next subsection. Other covariance functions can also be used (Shi and
Choi, 2011). Let Sg; and Hy; be the covariance matrix of r,x; and wy; respectively,
which can be calculated by the corresponding covariance function. We model 7,x(t) us-
ing ¢ basis functions {¢1(t),...,¢e(t)} with weights ¢, = (cqa1,...,Caq)T for &,(t), with
weights dgr = (dak1,- -+, dakg)T for ¢ur(t) . Thus, Ter(gki) = Pri(ca + dak), where
Ui = [Prits - Phiglmpixg: Yrit = (1(gri(tin))s - - - ¥i(gri(timy;)))7,0 = 1,...,q. Here,
we use a smooth non-linear deformation of the curves for gi;(t), which is produced by an
increasing spline (Raket, 2016).

All the unknown parameters in the model (4.3) to be estimated are
033 é {Ca, dak7 Wi, Wi, Phy Ps, 0, 4 = 17 27 k= 07 172 = 17 s 7Nk}

Borrowing the ideas from Raket et al. (2016), those parameters can be estimated iteratively
through three conditional models, leading to the estimator of g(¢) determined by w; and

wy; only. The details are given in Section 4.2.3.
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Secondly, referring back to model (4.1) in the first stage, we have
logit(m|’vi, a:l(t)) =by + ’U;-rbl + /il(t)ﬁ(t)dt, i1=1,...,N, (44)

where &;(t) = x;(g; '(t)). Using the fast fitting methods for generalized functional linear
models proposed by Goldsmith et al. (2011), the 2,;(g; '(t)) are estimated as

K:I)
Tai(G; (1)) = Zpaij¢aj(t)
j=1
=pai'®,(t), a=1,2.

Here, poij = [ #4i(9; (1)) daj(t)dt, ¢, (t) = (¢a1(t), .- -, bak,(t))" is the collection of the
first K, eigenfunctions of the smoothed covariance matrix ) 4. (t1,t2) = cov[Zai(t1), Tai(t2)]
(Ramsay and Silverman, 2005). Using the truncated power series spline basis, the coeffi-

cient function 3,(t) can be approximated as

K.

Bo(t) = ea1 + eat + Y eaj(t — rj) 4
=3

K
= eajaj(t)
j=1
= €l(t)eq, a=1,2,

where K, is the number of truncated power series spline basis, {x; }JK;3 are knots and t4 =
t, t>0
0, t<0
Other choices of basis functions can also be used with corresponding changes to penalty.
Thus,

. We further assume that {eg; }]K:‘i3 ~ Nk, 2(0,021) for inducing smoothing.

/ Fai (371 (6)) B, ()dt = / Pai” ba()EL(t)eadt

:paiTJaqbfea’ a = ]-a2a

where J4¢ is a K, x K, dimensional matrix [Joe¢] i, x k. With the (7, 7)th entry equal to
[ Pai(t)&qj(t)dt. Denote u; by the fixed effects:

(1, 0], p1i"[Jigel1, P1iT [ i) 20 P2i [Jope) 1, P2i T [Joge] 2) T,

where [Jgge].; is the j-th column vector of the matrix [Jopelk,xK., M by a vector of
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parameters:

(bo, b1, e11,€e12,€21,€22)7,

z; by a design vector:
T
(Pai" [Jage]-i) 1 <acasj<rc.

and a by the random effects {e;;, eg; }f(:“g Model (4.4) can then be reformulated as

2 2 2 K.
logit (il s, @i(t)) = bo + v]b1 + > > Pai’[Jasel j€aj + Y > Pai’ [Jage] j€as;
a=1 j=1 a=1 j=3 (45)
=un+zla, i=1,....N,

{eaj}]l'{:eg ~ Nk, 2(0,02I), a=1,2.

In the classical definition of generalized linear mixed models, the responses {y; }1<;<n are
conditionally independent given the vector c. Let 6 = {bo, b1, €11, €12, €21, €22, 0.} denote
all the parameters involved in model (4.4) to be estimated in this stage. Once we have
chosen the basis functions for 3(t), model (4.5) only depends on the choice of K, and K.
According to Ruppert (2002) we select K, large enough to avoid under-smoothing and
select K, > K. to meet the identifiability constraint. A pair of desirable K, and K. are
selected by the Cross-Validation method. This model can be fit robustly using standard
mixed effects software (Ruppert, 2002; McCulloch et al., 2008).

4.2.3 Implementation

Model (4.3) has lots of parameters and also has effects that interact, which makes simul-
taneous likelihood estimation intractable. We borrow the scheme proposed by Raket et al.
(2016) in which fixed effects 7,1, warping parameters wj, and wyg; and variance parameters

02, p, and p;, are estimated iteratively on three different levels of modelling.

e Nonlinear model — estimating warping parameters wy and wyg;. At this level, we
fix all the other parameters and simultaneously perform conditional likelihood esti-
mation of group-specific warping effects wy and predict the random subject-specific

warping effects wyg;.

e Fixed warp model — estimating the fixed effects 7,5. At this level, we fix the group-
specific warping effects w;, at the conditional maximum likelihood estimate, and the
random subject-specific warping effects wyg; at the predicted values. The resulting
model turns out to be an approximate linear mixed-effects model with Gaussian
random effects ry; and ¢;. This allows direct maximum-likelihood estimation of the

remaining fixed effects 7.
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e Linearized model — estimating the variance parameters o2, p, and p;. At this
level, the first-order Taylor approximation of model (4.3) in the random warp wy; is
considered. We carry out this linearization around the estimate of wy, plus the given
prediction of wy; from the nonlinear model. The resulting model is also a linear
mixed-effects model and we can explicitly compute the likelihood. All the variance

parameters o2, p, and pj;, are estimated using maximum-likelihood estimation.

These three different levels of modelling leads to the estimator of warping function g=*(¢).
Going back to GLMM model (4.5), we can then estimate those parameters in 6.

First of all, let @, = (wlkl,...,wlka)T € R™, where my = Zf\i“l myi, and &, =
(sclo,m;l)T € R™, where m = th;:o my. Let 028,41, 028, be the covariance matrices of
Tak = (Paki)i and rq = (74k )k respectively. In order to simplify the likelihood computa-
tions, all the random effects are scaled by a noise standard deviation o. The norm induced
by a full-rank covariance matrix B is denoted by || A| ’23 = ATB'A.

(i) Estimate the fixed effects 7,

Given wy and wy;, we have o ~ Ny, (Pri(cq + dak)s Im,,;, + Saki),a = 1,2 and
1=1,..., Ng, where I,, denotes the n x n identity matrix. The negative log likelihood for

the weights ¢, is proportional to

1 N

) = 3l Bucaly, ...

k=0 i=1

The estimator of ¢, is given by
eo=(OT(Ip+S,) ') T (I, + S,) x4,

where ¥ = [¥(,,... ,EI’SNOJI’L, e ‘I’L\H]T € R™*1, The negative log likelihood for the

weights dg (its square magnitude is penalized by a weighting factor 1) is proportional to

Ny
l(dak) = Z Hxaki - !pi(éa + dak)H%’mh_i_Saki + ndlkdak’
i=1 ‘

This gives the estimator
da, = (O] (I, + Sar) s+ 0Iw) WL (I, + Sar) ™ (®ak — Prta),

where @), = [¥[,,... . W] |T € R

(ii) Estimate warping parameters wj; and wy;
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Given ¢, and Elak, we have the joint probability density function of (®uxi, wi;) given
by

F(@aris Whi) = f(@arilwri) * f(wri) ~ N, (Pri (€0 + dar), Ly, + Saki) * N, (0, Hyi).

We can simultaneously estimate the fixed warping effects wy and predict the random

warping effects wy; from the joint conditional negative log posterior. It is proportional to

2 Ng Ni
wp,wii) = Y | @aki — Prila + dak>’|21mk'+saki +2) HwkiHQI{M: (4.6)
a=1i=1 ’ i=1

where Wy, is determined by my; discrete values of the inverse of warping function gg;(t)
which is totally characterized by wy and wy; as aforementioned. By minimizing l(wy, wg;)
we can obtain the estimation of wy and the prediction of wy;.

(iii) Estimate the variance parameters o2, p, and p),

By using the first-order Taylor approximation of model (4.3) in the the random warping
parameters wy; around a given prediction wgi (wgi is specified by the estimate of wy,; from
(ii) in the current iteration), we can write this model as a vectorized linear mixed-effects

model
o~ Gy + B,(W —W% 7, +e, a=1,2, (4.7)

where x, = {x4;,1 =1,..., N}, with effects given by

i kij
B, = diag(Bagi)r; € R™* N,

By = {8%. <Tak (gki(tj))) (Vw,ﬂ- (gki(tj)))T‘wM:wkio }j
W = (wkz)kz ~ Nan (0, U2IN X Hnwxnw)y WO = (’wgz)]m S RNn“’,
ro ~ N (0,028,), S, = diag(Saki)r: € R™™,

€ ~ Ny (0,0%1,,).

G, = {Wki|gki=gg (Ca + dak)} e Rm’

c Rmkz KTy )

gki:ggi

Here, g,gi(t) =t+wg(t) + wgi(t), diag(B ki )ki is the block diagonal matrix with the By,
matrices along its diagonal, and diag(S.;); is the block diagonal matrix with the S,
matrices along its diagonal. The derivation of the linearized model (4.7) is similar to the
proof of C.2 in Appendix C. The negative profile log likelihood function for the model
(4.7) is proportional to

2 2
(o2, p,, pp,) = Zagﬂwa -G, + BaWO||%/a + Zlog detV , + 2mlogo?,

a=1 a=1
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where Vi, = S, + B,(I,, ® Hy, xn, ) Bl + L.

To speed up convergence, we usually repeat the above three steps for several times
within each iteration. Given the estimators w; and wy;, we can obtain the estimator of
g(t).

(iv) Fit the generalized functional linear model

Going back to GLMM model (4.5), we can then estimate the parameters 8 using max-
imum likelihood and restricted maximum likelihood techniques. Furthermore, variance
estimators and confidence intervals, like Figure 4.5 in simulation study 1, can be obtained
following standard methods and software (Ruppert et al., 2003; Wood, 2006). The details
are given in Goldsmith et al. (2011). The nlme package (Jose et al., 2017) is used for

fitting the generalized linear mixed effects model in our simulation studies.

4.2.4 Asymptotic properties of estimation of 6

Following the implementation, we will explore the asymptotic properties of the estimation
of the parameters 8 involved in the generalized linear mixed model (4.5) using the methods
of Jiang and Zhang (2001). They show that the first-step estimator 0 of the vector 6 of
parameters acquired by solving a system of estimating equation is consistent. Additionally,
a second-step estimator 6, obtained by solving a system of optimal estimating equations
whose coefficients are estimated by 6, maintains the asymptotic optimality. Their methods
can be directly applied to the JCRC models in terms of asymptotic properties, which to
some extent also justify our methodology.

For simplicity, we assume b; in model (4.5) is univariate. Then the fixed effect pu; =
2(K.—2)

{Mij}?:l and the design vector z; = {2;;},2;" ~. Let the number of time points be the
same for all subjects. The base statistics defined by Jiang and Zhang (2001) corresponding

to the model (4.5) are

N
Li =) ujy, 1<j<6,
=1

N N

Lowj = (D zigui)’ =Y (zjwi)®, 1<) <2(K.—2),

=1 =1

The base statistics L is a vector with dimension (2K, +2). Let D be an arbitrary matrix
with dimension 7 x (2K, + 2). Then the first-step estimator is obtained by solving the
equation

DL = Du(6) (4.8)

where p(0) = E(L).
Let © be the parameter space. Since D, L and u(6) may depend on N, we shall

54



Chapter 4. Joint Curve Registration and Classification with Mixed Scalar and
Functional Variables

use the notation Dy, Ly and uxn(0). The solution to (4.8) does not change if Dy is
replaced by C]_VlDN, where C'y = diag(cn,1,...,¢cn7) and en; (1 <4 < 7) is a sequence

of positive constants. We write

Ay =Cy'DyLy,
An(8) = Cy'Dypy(6).

Then, the first-step estimator 8 = 6 is the solution to the equation
An(0) = An. (4.9)

Assume 0 is the vector of true parameters and define d(z, A) = in{f4 |z —y|. Let Viy be the
ye

covariance matrix of Ly. Write Uy = Oy /007|g . Let Hy ;(6) = (’*)QuNJ/@BQ, where

Ky ; is the jth component of uy (0), and Hyj = sup |[Hy;(0)], for 1 < j <2K.+2.
|0—90‘§6
Let dn;j be the (3, j) element of Dy and use Ay as the smallest eigenvalue. We have

the following theorems on the existence, consistency and asymptotic normality of the first-

and second-step estimators.

Theorem 4.1. (Existence and Consistency) Suppose that, as N — oo,
AN — AN(O()) — 0

i probability, and
lim inf d{AN(eo), A?V(@)} > 0.

Then, with probability tending to one, the solution to (4.9) exists and is in ©. If, in
addition, there is a sequence @ C O such that

liminf inf |AN(0) — AN(B())’ > 0,

VIS,
liminf  inf [An(9) — An(80)| > 0.
0O, 040, |0 — 6|

Then, any solution Oy to (4.9) is consistent.

Theorem 4.2. (Asymptotic Normality) Suppose that

(i) the components of un(0) are twice continuously differentiable;

(i1) O satisfies (4.9) with probability tending to one and is consistent;
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(iii) there exists € > 0 such that

- max c]_vli( Z ’dN,ij’HNyjye) —0

in probability, where

AN,1 = Amin (CfleNVND}VCfVl)v
AN2 = Amin (UNDN (DNVN DY) ' DyUy);

(iv) [CN'DNVNDY,CRY " 2[Ax — An(00)] — N(0,I7) in distribution.

Then, 0 is asymptotically normal with mean 0y and asymptotic covariance matrix
(DnUN) 'DyVy DY (DNUN)TT.

By replacing the conditions of Theorems 4.1 and 4.2 by corresponding conditions with
a ‘probability statement’, we can get the sufficient conditions for existence, consistency
and asymptotic normality of the second-step estimators. The details of the proofs are
available in Jiang and Zhang (2001).

4.2.5 Prediction

It is of interest to predict y* at a new test data point (x*(¢),v*). We develop an iteration
method to predict y* through both model (4.1) and model (4.2).

1. Initialise y* by fitting the model (4.1) without using functional variables, i.e.

logit (7;|v;) :b0+'vgb1, 1=1,...,N.

We initially predict 7* = ———L——— where {by,b} are the estimators of

1+exp{bo+v*Th1}
{bo, b1 }. If 7" > 0.5, we set y*(©) = 1; otherwise, 3*(*) = 0.

2. Calculate z*(g~1(t)) given y*(0), where i( indicates the 7o-th iteration. Given the
observed 2D curve &*(t) = (2%(t), 2%(t))7T and the estimators 01, the estimate of the

subject-specific warping part wy, can be obtained by minimizing the joint condi-

tional negative log likelihood

2
l@uw* - x*_w*é +& 2 > +2'U7*2A 5 k= *(iO)a
(Wr, wee) = > || — P4 "k)HImk*JrSak* w5 Y

akx*
a=1
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where gg«(t) = t + W (t) + wi«(t) and Py, is determined by my; discrete values of the
inverse of warping function gi.(t). Then x*(g~1(t)) can be predicted as z*(g;.! (t))
where g« (t) =1+ ”Lbk(t) + Wiy (t)

3. Update y* as y*©*D from the logistic functional model (4.1) given the data (z*(g, (t)), v*),
where k = y*(0).

4. Repeat step 2 and 3 until the value of y* remains unchanged.

Regarding to how the initial value of y* influences the final results, two typical scenarios
might be considered. The first scenario is that if 7* is close to 1 or 0, say, 0.9 or 0.1, the
initial value of y* always equals the final result 1 or 0. The reason is that the data is able
to provide sufficient information and the above procedure will result in the convergence
to the correct result, like Scenario A in Table 4.2 and Table 4.3 in the real data analysis.
However, if 7* is close to 0.5, say 0.45 or 0.55, it is very likely that the initial value of y*
is different from final result. This is since the data does not give enough information, see

the discussion of Scenario B in Table 4.2.

4.3 Numerical analyses

4.3.1 Simulation study 1

In this simulation study, we explore the performance of the proposed method JCRC' in
terms of estimating by, b1, 3(¢) in model (4.1). Scalar binary outcomes y; are generated

based on the following models

m

1 _ _
wi = bo +vib + > (waalg ™ (#))Brty) + wailg™ (1) Ba(ty)),
j=1
1 (4.10)
Ty = 5
1 + exp(—wj)
y; ~ Bernoulli(1, m;), i=1,...,N,

where v;1 is scalar variable and z1(g1(¢)), x2(g'(¢)) are functional variables.

Data generation

1. We will generate the outcomes y’s through four steps.

(a) Generate the underlying true curves, i.e. the curves based on the internal time
scale g71(t). We assume the curves in two groups share the following two

different true means, similar to two patterns of the real curves of hyoid bone’s
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y-coordinates
5
/
d
5
d
5

T T
05 10 15 20 25 0.0 02 04 06 08 1.0 0.0 02 04 06 08 10

x-coordinates t t

(a) 2D curves (B) m(t) () (1)

Figure 4.2: True mean curves. Curves in green indicate the first group (y = 0) while those
in red represent the second group (y = 1).

movement

pi(t) = (n11(t), p21(t)) = (exp(cos(27t + 0.2)), exp(sin(2mt — 0.3))),

po(t) = (n12(t), poa(t)) = (exp(cos(27rtl'05 —0.15)), exp(sin(2xt + 0.1))).
(4.11)

Figure 4.2 shows the underlying true curves. We use the equidistant points

PR D |
J 102>

mean curve for the i-th curve is generated by

7 =1,...,100 as the input grid, i.e. mg; = 100. The underlying true

Taki = Mk + 7o,  k=0,1i=1,...,N/2,

where 70, = T - I'jo, T]To = M. The matrix My is created by Matern
covariance function with p, = (100,0.3,3), where the three elements represent
the scale, range and smoothness, respectively (Raket, 2016). The vector I';o
consists of 100 independent normal random variables N (0,02). We can regard

Taki as the true curves @ i(g~1).

(b) Generate the scalar variables v’s. By sampling from the uniform distribution

we generate scalar variables v

U(1,2), i=1,...,N/2, k=0,
Vii ~
g U(0.5,1.5), i=1,...,N/2, k=1.

(c) Set coefficients by = —1, by = 0.04, and the coefficient functions £ (t) = 20t? —
14t + 1.2, Ba(t) = 30sin(27t — 1.8).

(d) Generate y’s from model (4.4). We have Ny batches of data in each group,
where £k = 0 and 1, Ng + N; = N.
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Figure 4.3: An example of the observations of scalar variable with N = 180. The ‘blue’
ones stand for those in the range of overlapping.

2. Generate the original 2D curves x(t) by adding the warping function and errors as

follows.

(a)

(b)

(c)

Model the true mean curves p;(t), po(t) and rgki using B-spline basis function
with 8 knots, resulting in the coeflicients c,, dy) and dgg; where ), dy = 0,a =
1,2,k =0,1. SO, Taki = !pki(ca +dg + daki)-

Introduce time warping. For simplicity, we set gg;(t) = t+wg;(¢) and use hyman
spline (monotone cubic spine using Hyman filtering) based on the anchor knots
tw = (0,0.33,0.67,1) (ny = 4). Set wy; ~ N4(0, T]T;), where T[T} = Oy,

10 4 10 8
01 = and 02 = [8 15], and Fz = (Fil,FiQ)T with F“,I‘ig being
independent random variables N(0,02) for i = 1,..., Ny. Thus, Tari(gri) =

wi(Ca + Ao + dagi).
Set € ~ N(0,0%I) and generate ,;(t) based on the model (4.2).

Figure 4.3 and Figure 4.4 show one example of the observations of the scalar variable

and the functional variable, respectively, with N = 180 and 40, = 0, = 0 = 0.02. More

examples

can be found at Section B.1 in Appendix B.
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y-coordinates

(a) 2D curves (b) @1(t) (c) @a(t)

Figure 4.4: An example of 2D raw curves from the scenario: 40, = 0, = 0 = 0.02 and
N =180 . Curves in green indicate the first group, i.e. y = 0, while those in red represent
the second group, i.e. y = 1.

Results

Under the same constraints 40, = 0, = 0 = 0.02, we will study the performance of

estimation by calculating the average bias (AB) for the coefficient b

A 1 100 R
AB(B) = 155 > [ — b,
j=1

and the average root mean squared error (ARMSE) for the coefficient functions 3

A 1 100 1 100 R )
ARMSE(B) = 100; 00 ;(ﬁj(ti) — B(t:))2-

This is done over 100 replications for different sample sizes N = 60, 90, 120, 180.
The performances of the estimators in model (4.10) as N increases is demonstrated in
Table 4.1. It shows that the ARMSE of the estimators decreases while the sample size

increases.

AB ARMSE

bo b B B2
N=60, K, =18, K. =12 2.36 1.88 12.38 19.64
N=90, K, =30, K. =30 2.27 1.45 11.50 16.56
N=120, K, = 35, K. =35 1.40 1.01 8.27 13.54
N=180, K, = 35, K, = 35 1.09 092  7.88 1191

Table 4.1: The average bias and average root mean squared error for the estimators as
the number of subjects increases.

Also, we show one example of the 95% confidence intervals for the coefficients functions
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BetaHat
BetaHat

-80 -60 40 -20
1

TimePoints TimePoints
(a) 95% confidence interval for f3 (t) (b) 95% confidence interval for B (t)

Figure 4.5: An example of confidence intervals for B(t) from the scenario: N = 180, K, =
35, K, = 35. The lines in green are the true 3, the lines in black stand for the estimators ,@,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100¢;.

B(t) and the distribution of # from the fourth scenario N = 180, K, = 35, K. = 35 in
Figure 4.5 and Figure 4.7, respectively. Additionally, the result of registration for the
example in Figure 4.4 is demonstrated in Figure 4.6. Extra numerical results can be seen
at Section B.2 and B.3 in Appendix B.

4.3.2 Simulation study 2

The performance of the proposed JCRC models in terms of prediction will be evaluated
in this simulation study. Meanwhile, we will compare it with the model defined in (4.1)
without scalar variables (denoted by JCRC-f), and the simple logistic linear regression
model without functional variables (denoted by LLR). We also compare them with the
curve classification based on the square-root velocity representation for analyzing shapes
of curves (Srivastava et al., 2011a) (denoted by SRV) and the integration of Generalized
Procrustes analysis (Gower, 1975b) and self-modeling method (Gervini and Gasser, 2004)
(denoted by GPSM). The principal of curve classification and the details of procedures
for GPSM method has been discussed in Chapter 3.

We still consider 2D curves coming from two groups. For each group, the corresponding
observations of functional variables (t) and scalar variables v will be generated. There are
Ny, batches of data in each group, where £ = 0, 1. We will first evaluate and compare five
methods based on the simulated data D = {(yi, Z1ri(tij), Tori(tij), vri)ii = 1,..., Np; j =
1,...,my; k= 0,1} in two scenarios; see Scenario A and Scenario B in Table 4.2. Addi-
tionally, one of the data settings in the previous simulation study will also be used here

as the third scenario (Scenario C).
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x-coordinates

(a) Aligned xq(t)

y-coordinates

(b) Aligned xo(t)

Figure 4.6: The curves after registration by JCRC, corresponding to the raw curves in

Figure 4.4.
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Figure 4.7: An example of the distribution of 7 from the scenario: N = 180, K, = 35, K, =
35. Circles in green indicate the first group, i.e. ¥ = 0 while those in red represent the
second group y = 1. The dotted line in black in the middle represents = = 0.5.

62



Chapter 4. Joint Curve Registration and Classification with Mixed Scalar and
Functional Variables

y-coordinates

10 15

05

x-coordinates
15

y-coordinates
15

T T T T T T T T T T T T T T T T T
05 10 15 20 25 00 02 04 06 08 10 00 02 04 06 08 10

x-coordinates t t

(a) 2D curves (b) g4 (t) (©) p2(t)

Figure 4.8: True mean curves for 4; = 0.18. Curves in green indicate the first group
(y = 0) while those in red represent the second group (y = 1).

Data generation

1. Generate the underlying true curves, i.e. the curves based on the internal time scale

g~ 1(t). We first assume that the curves in two groups share the following two slightly
different true means, which is similar to two patterns of those real curves of hyoid

bone’s movement

B () = (s (), w1 () = (exp{eos(2mt)}, exp{sin(2rt)}),

(4.12)
pa(t) = (pi2(t), poa(t)) = (exp{cos(2mt™t — 61)}, exp{sin(2nt'? + 61)}).

The degree of overlapping between two groups relies on the value of §;. The smaller
the value of by, the higher the degree of overlapping, and the harder it is to classify
those curves. We use the equidistant points ¢; = %,j =1,...,100 as the input
grid, i.e. mg; = 100. The underlying true curves are generated by

Car(97 () = par(t), a=1,2; k=0,1.

Figure 4.8 shows the shape of the true mean curves for §; = 0.18.

. Generate the original 2D curves x(t) by adding the warping function, amplitude

variation and errors as follows.
(a) Model the true curves xq.(g~'(t)) using B-spline basis function with 8 knots
and obtain the coefficients ¢, and dg where Y, dor, =0, =1,2;k =0, 1.

(b) Introduce time warping. For simplicity, we set gg;(t) = t+wg;(t) and use hyman
spline (monotone cubic spine using Hyman filtering) based on the anchor knots
tw = (0,0.33,0.67,1) (ny = 4). Set wy; ~ Ny(0,TLI;), where T T}, = Oy,
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Figure 4.9: (a)-(c): an example of raw curves for Scenario A with é; = 0.18, 40y, = 0, =
o = 0.03; (d)-(f): an example of raw curves for Scenario B with é; = 0.15, 404, = 0, =
o = 0.02. Curves in green indicate the first group (y = 0) while those in red represent the
second group (y = 1).

10 4 10 8

0O, = and Oy = ,and I'; = (I—'il,Fig)T with I';1, I';2 being
4 8 8 15

independent random variables N (0,02) for i = 1,..., Nj.

(c) Set the amplitude variation 7q,; = T - I, where T]Ty = Oq, a = 1,2,
k=0,1and i = 1,..., N;. The matrix Qg is created by Matern covariance
function with p, = (100,0.3,3), where the three elements represent the scale,
range and smoothness, respectively (Raket, 2016), and I'jo is a vector of 100
independent normal random variables N(0,02). Set € ~ N(0,o>I).

(d) Generate x(t) based on the model (4.3). Figure 4.9 shows two examples of raw
data.

3. Generate v’s. We next generate those scalar variables v by sampling from uniform
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Figure 4.10: Observations of scalar variable in two groups. The ‘blue’ ones stand for those
in the range of overlapping.

distribution as follows:

v U(1,2), i=1,2,...,No,
' U(l —62,2—68), i=No+1,...,No+ Ni.

Note that as d2 becomes larger, the degree of overlapping becomes smaller. Hence it
becomes easier to carry out classification using scalar variables. Figure 4.10 shows

two examples of v’s with do = 0.7 and 0.5.

Results

To investigate how the overlapping of the observations of both scalar variables and curves
affects the performance of fitting and prediction, we study two scenarios: (A) 6; = 0.18,
9o = 0.7, 40y, = 0, = 0 = 0.03 (Figure 4.9 (a)-(c) and Figure 4.10 (a)) ; (B)dé; = 0.15,
92 = 0.5, 40y = 0, = 0 = 0.02 (Figure 4.9 (d)-(f) and Figure 4.10 (b)). Both scenarios
are studied under the same constraints Ny = N; = 60, half for training data set and
half for test data set. There are 100 replications for each scenario. Also, we study the
scenario: (C) using the data setting in the previous simulation study with constraints
4oy = 0 = 0 = 0.02 and N = 120 (half for training and half for test). We use three
criteria to measure the performance of clustering. These are classification accuracy (CA),
the Rand index (RI) (Rand, 1971b) and adjusted Rand index (ARI) (Hubert and Arabie,
1985b) are used to measure the performance of classification (or prediction).

We set K, = 18 and K, = 10 for Scenario A and Scenario B and K, = 18, K, = 12 for

Scenario C by 5-fold Cross-Validation method. Table 4.2 summarizes the comparison of
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average classification results by CA, RI and ARI. Firstly, we see the values of CA, RI and
ARI for method JCRC are much higher than the other four in all scenarios. It shows our
proposed method JCRC outperforms the rest in terms of classification. The reason is that
the combination of functional variables and scalar variables is more helpful in classifying
the subjects than using only the functional variables or scalar variables. Specifically, the
CA values by LLR only based on scalar variable are 0.85, 0.75 and 0.75, are much less
than 0.95, 0.94 and 0.91 by JCRC in three scenarios, respectively. The results of curve
classification, depending on functional variables only, are all less than 0.8 except those
in Scenario C (less than 0.86), by method JCRC-f, GPSM and SRV. Secondly, on one
hand, as the overlapping of v’s increases from Scenario A to Scenario B (or Scenario C),
contributing to harder differentiation of which group each subject belongs to, the method
LLR performs worse with the value of CA decreasing from 0.85 to 0.75. On the other
hand, because of the decrease of noise determined by o, 0, and o, JCRC-f, GPSM and
SRV perform better from Scenario A to Scenario C. In whatever case, JCRC has the most
stable and best results. Figure 4.11 shows the registration of raw curves from Figure 4.9
by method JCRC in Scenario A and Scenario B.

Other combinations with varying sample sizes, distinct overlapping determined by d;
for functional variables and ds by scalar variables and different o,,, o, and ¢ have also

been examined. The results presented here are typical.

Scenario A Scenario B Scenario C
CA RI  ARI CA RI  ARI CA RI  ARI
JCRC 0.95 0.90 0.81 0.94 0.89 0.79 0.91 0.86 0.71
LLR 0.85 0.78 0.49 0.75 0.63 0.25 0.75 0.63 0.25
JCRC-f 0.70 0.58 0.16 0.78 0.66 0.32 0.86 0.77 0.54
GPSM 0.73 0.61 0.22 0.76 0.64 0.27 0.86 0.77 0.54
SRV 0.56 0.52 0.03 0.58 0.52 0.04 0.63 0.55 0.11

Table 4.2: Comparison of average classification results among five methods.

4.3.3 Real data analysis

The application to real data is to carry out the classification for normal people and patients
with stroke by modelling the trajectories of their hyoid bone movement and the other
scalar variables. The data set contains two groups, one for normal people and the other
for patients. Figure 4.1(a) and 4.1(b) show one frame from a X-ray video clip and raw
curves with 15 people in each group, respectively. The scalar variables we choose are
motion time (duration), average velocity and acceleration amplitude of those curves. By
using the package of GPA, we do the preprocessing for those 2D raw curves first. The

procedures include multi-dimensional shift, scaling and rotation, as mentioned in Section
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(b) Aligned curves from Scenario B

Figure 4.11: The aligned curves for both scenarios corresponding to raw data from Figure
4.9. Curves in green indicate the first group (y = 0) while those in red represent the
second group (y = 1).
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3.2.1 of Chapter 3. In the part of modelling those curves, we assume the warping function
be a smooth nonlinear deformation produced by an increasing spline and the random vector
wy; be a Brownian bridge observed at discrete anchor points. B-spline basis functions are
utilized for modeling the mean curves. The covariance function for the amplitude variance
is the Matern covariance function. For our proposed method JCRC, we evaluate the
classification performance by 5-fold cross-validation. It means 12 samples are trained and
the remaining 3 are tested for each group. The results are shown in Table 4.3. We see
that the method JCRC outperforms the other methods.

Methods CA RI  ARI
JCRC 0.76 0.69 0.39
LLR 0.63 0.45 0
JCRC-f 050 0.43 0
GPSM  0.57 0.48 0.06
SRV 0.50 0.43 -0.11

Table 4.3: Average classification results of three measurements for five methods. The
results by GPSM and SRV are from the real data analysis of Chapter 3.

4.4 Chapter Summary

We have proposed two-stage models for joint curve registration and classification (JCRC),
with the first stage fitting the logistic functional linear regression model and the second
stage modelling the multi-dimensional curves with the misaligned problems. The predic-
tion of misaligned curves acquired in the first stage will be used in the second stage. The
estimation and implementation of two-stage models are provided. We also developed an
iterative algorithm to predict the outcomes. Numerical results show the superiority of our

proposed model. The main contributions include:

(a) simultaneously carrying out registration and modeling for multi-dimensional func-

tional data,

(b) the use of both functional and scalar covariates while conducting classification.

The methodology discussed in this chapter is just for the purpose of classification, i.e.
supervised learning in the computing community. How about the task of clustering for
multi-dimensional functional data? In the area of unsupervised learning, it is much more
difficult than classification due to the lack of response value y. We will study the problem

of simultaneous registration and clustering in the next chapter.
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Chapter 5

Simultaneous Registration and

Clustering for Multi-dimensional
Functional Data

5.1 Introduction

As mentioned in the last chapter, in our study of the motion analysis of hyoid bone,
there exist obvious misaligned problems for those curves in both vertical and horizontal
variation (see Figure 4.1 in Chapter 4). Usually, curve registration is implemented as
a preprocessing technique and the clustering is conducted afterwards. It is not efficient,
since a subject belonging to which cluster is closely related to how it unfolds its progression
pace. Another challenging problem for this study is that the heterogeneity of regression
relationships among different groups. It consists in both the subjects’ scalar covariates
and the potential time warping for curves corresponding to the subjects. These scalar
covariates include, but not restricted to, the initial level of disease, gender, age and the
characteristics of those trajectories themselves, like motion time, average speed and range
of motion. Therefore, simultaneous curve registration and clustering by considering all
those factors seems to be a better way for modeling the functional data. There are some
research work on handling the similar problems. For instance, Wu and Hitchcock (2016)
proposed a Bayesian method for simultaneous registration and clustering for functional
data. They used a discrete approximation generated from the family of Dirichlet distri-
butions to allow warping functions of great flexibility. Liu and Yang (2009) developed
a framework that allows for simultaneously aligning and clustering k-centers functional
data. But their model did not use any subject specific information (scalar variables) and
assumed the heterogeneity among groups just depends on the curves themselves; similar

idea is also used in k-means alignment for curve clustering by Sangalli et al. (2010). On
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the other hand, Shi and Wang (2008) proposed a hierarchical mixture of Gaussian process
(GP) functional regression models with an allocation model to do curve prediction and
clustering. They used the functional covariates to reconstruct the response curve and the
personal scalar variables, such as height and gender, to deal with heterogeneity of the
regression relationships among different groups. However, their method did not consider
the misaligned problem. In addition, most related models are limited to one dimensional
curves. To address the above problems, we try to construct one hierarchical mixture of
models for the sake of simultaneous curve registration and clustering.

This chapter is organized as follows. Section 5.2.1 defines simultaneous registration
and clustering (SRC) models via two-level models. We discuss the estimation and the
details of implementation in Section 5.2.2 and Section 5.2.3 respectively. The problem
of model selection and the related methods are discussed in Section 5.2.4. Section 5.3
presents a number of examples with simulated data and real data. A short summary and

discussion are given in Section 5.4.

5.2 The simultaneous registration and clustering method

Suppose there are N subjects coming from K different groups, x(t),x2(t),...,xN(t)
being the observations of 2D continuous curves, where x;(t) = (x1,(t), z2;(t))T, x1,(t) and
x9;(t) are the corresponding z-coordinates and y-coordinates of x;(t). Let vq,...,vx be
the observed scalar variables. Suppose there are m; time points on which the i-th curve

is measured. The data set is
D = {(mi(tij),'vi);i: 1,...,N;j = 1,...,mi}.

We introduce a latent indicator variable z; = (214, ..., 2x;)T for the i-th subject where z;;

takes value 1 if they are in the k-th group and 0 otherwise.

5.2.1 The model

In our study of 2D curves, we will use the preprocessing procedure Generalized Procrustes
Analysis (GPA) (Gower, 1975b) to address part of registration problems in advance except
warping. Conventionally, most methods tried to complete all the registration problems
including warping before clustering. This is not the best way since different warping
functions may need to be used in different clusters, yet we have no such information
before clustering, and heterogeneity among different subjects should also be considered.

Thus, a hierarchical structure defined by two levels of models is proposed.
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We start with the first level model for the continuous curve as follows

Zai(t)|zp=1 = (Tak © gki)(t) + Taki(t) + €ai(t), i=1,..., N, (5.1)

where a = 1 or 2 represents z- or y-coordinates of x;(t). The item (7. © gr;) denotes
functional composition: (7 o g)(t) = 7(g(t)), where gg;(t) is the inverse of a warping
function. 7,4 (+) is a fixed but unknown nonlinear mean curve, which can be approximated
by a set of basis functions, the details will be given in the next subsection. The variation
among different subjects is modeled by a non-linear functional random-effects, 4;(t), by
a Gaussian process with zero-mean and a parametric covariance function S (Shi et al.,
2012). The error item e4;(t) is assumed to be Gaussian white noise with variance o2.
Following the previous discussion, we need to use different warping function in different
cluster, and we also need to consider the variation among different subjects, and thus, we
allow warping function depending on k£ and ¢. Using the same assumption of the inverse

of warping function g;(t) in the previous chapter, we assume
gm'(t) =t+ wk(t) + wki(t),

where wy(t) is the fixed part and wg;(¢) is the random part in terms of different sub-
jects. We then discretize them by a set of fixed parameters, for example, by w; =
(w(t1), ..., wg(tn,)) and wg; = (wri(t1), ..., wk(t,,)) respectively. wy; are modelled
by a Gaussian distribution with zero mean and a parametric covariance function H.

We define a logistic allocation model in the second level model for the latent indicator

variable in the form

)
Pk = 1) = g = exp{v] B} i=1,....,N; k=1,...,K—1, (5.2)

L+ 3205 exp{v] 8;}

with p(zg; = 1) = 7g; = 1 — Z{i}l 7, where {Br,k = 1,..., K — 1} are unknown
parameters to be estimated. We can also replace model (5.2) by other models, e.g. Potts
model (Green and Richardson, 2000). The information of scalar variables is integrated
with functional variables via the two-level models (5.1) and (5.2). The reason of using
both types of variables is that the variation between subjects does not usually depend
on the curve data only, summary statistics or some subject-specific variables do provide
useful information, like the scenario in Figure 5.7 and Figure 5.8 in the simulated example
and Table 5.2 and Figure 5.12 in the real data analysis. The introduction of the latent
indicator variable is very useful in the implementation; see the details below.

We call the models defined in (5.1) and (5.2) as simultaneous registration and clustering
(SRC') models.
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5.2.2 Estimation
The discrete form of model (5.1) for the ith curve data x,; = (:L‘ai(tﬂ), . ,xai(timi))T can
be expressed as follows
Tail =1 = Tak(Gki) + Taki + €, for a=1,2; k=1,... K, (5.3)

where T4k (gri) = (Tak (gki(til)), e Tak (gki(timi))y. Similar to the last chapter, we still
set H as Brownian covariance function or unstructured covariance function with parameter
pr, (Raket, 2016) and let H,; be the covariance matrix of wg;. We then model 7,4 (t) using
q basis functions {¢1(t),...,1e(t)} with weights doi, = (dak1, - - - dakg)T- Thus, Tar(gri) =
Wiida, where Wi = Wi, Phiglmixg Yeat = (Vi(gri(tin)), - - i(gri(tim;)))T, 1 =
1,...,q9. We still use a smooth non-linear deformation produced by a cubic Hermite
spline (Raket, 2016) for the curves. r.;; and €; are both m;-dimensional column vector.
We set S as the Matern covariance function with parameters p, and let S,k be the co-
variance matrix of rq;. p;, and p, can be estimated by the data, and Hy; and S.x; can be
calculated by the corresponding covariance function; see the details in the next subsection.

The unknown parameters from the k-th component for the a-coordinates (z- or y-
coordinates) of the i-th curve are denoted by 6., 2 {dak, Wi, Wi, P, P 0} Let Oy
be the vector of {@.,a = 1,2}. We can similarly define 8; = {0y;,k = 1,..., K},
0={0;,i=1,...,N}and B = {8,k =1,..., K—1}. The Gaussian mixture distribution

for the i-th curve data can be written in the form
p(xi|0;, 8) = Zmp (2i|0r;), i=1,...,N,

where p(x;|0k;) = p(x1i|01ki)p(x2i|021;). We assume x1; and xy; are conditional indepen-

dent given those parameters. The log-likelihood of (8, 3) is therefore

N K
=> 108;{ > Wkip(miwki)}-
=1 k=1

It is quite tricky to conduct the estimation due to the large number of unknown
parameters. EM algorithm will be adopted in this paper. We have defined the latent
indicator variable z;, which is treated as missing. The joint likelihood function of & and

z, where z = {z;;i = 1,..., N}, takes the form

p(z, 2|0, B) = p(z|B)p(x|z,0) H H T p(a] Qi) ** .

i=1k=1
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Taking the logarithm, we have the log-likelihood for complete data (x, z)
N K
1.(0,8) =logp(z, z|0,8 ZZz/ﬂ <log7rki + logp(xiwki)) (5.4)
i=1 k=1
The expected value of the complete log-likelihood with respect to z is given by
K N
Ez{le(6.8)} =) > Elarilz, 0. ) <10g7w + 1ogp(mi|0m->>
k=1 i=1
K N (5.5)
=> > My <10g77ki + logp($i|0kz‘)> :
k=1 i=1

where

My; 2 E(zilz, 0, 8) = ;’ﬂp(m ki) i=1,...,N;k=1,...,K.

Sy miip(xil6ji)

The derivation of My, is given by C.1 in Appendix C. The procedure of EM algorithm

includes
1. Initialise 8%) and BU) and evaluate the Mj,; (E-step)

7Tk

; m\e ))
S e (mzw“”)

My, =

2. Fix Mj; and maximize Q(0,3) with respect to 8 and 3

K
>N My <10g77ki + 10gp($z‘!9ki)> ;

k=11=1

||l>

leading to 8(0t1) and @lio+h) (M-step).

The technical details are given in the next subsection.

5.2.3 Implementation

In E-step, we first initialize the weights Mj;. In practice, we choose M,g?) ~ U(0,1) for
the purpose of simplicity. Each My; is then divided by their summation Zi{:l Mp; and
we set W,(“) M, (0). In M-step, there are no analytic solutions to the maximization of

Q(0,3) with respect to 6, so that we use the following algorithms. Maximizing Q(6, 3)
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with respect to 6 given the current weights M;; is equivalent to maximizing

K 2
Z Z My ( Z (logp(waiwakz’))> :
k=1 i=1 a=1
All the parameters within 6 are estimated iteratively through three conditional models.
The ideas are given in Section 4.2.3 of Chapter 4. In order to simplify the likelihood
computations, all the random effects are scaled by a noise standard deviation o.
(i) Estimate the fixed effects 7,
Given 000) we have Zailz=1 ~ Ny (Pridak, Im; + Saki),a =1,2and i =1,...,N.
The negative log likelihood for the weights d, (its square magnitude is penalized by a

weighting factor 7) is proportional to

N
U(dak) = Myi||ai — Pidal|7, g tndiyda, a=12 k=1.. K
i=1 '

This gives the estimator

N I, + S —1 -1 I, + Sak -1
dak: <!p£(mTka> !pk—i-’f]Iq) !pz(mTka) a}a, a:1,2; k:17...,K,
where ¥y, = [@],,..., @] |T € R™*, m = SN mi, ®e = (2], ;o] \)T and

(L, + Sak1) /M
I, + Sak A

mxXm
M, eR . (5.6)

(Imy + Sakn)/Min
(ii) Estimate warping parameters wj; and wy;

Given 8%) and d,, we have the joint probability density function of (T 4i, wi;) given
by

P(Tais Wii) = P(Taiwis) * p(wi) ~ Ny (Pridages L, + Saki) * Ny, (0, Hy).
We can simultaneously estimate the fixed warping effects wy and predict the random

warping effects wy; from the joint conditional negative log posterior. It is proportional to

2 N N
Hwp, wrs) =Y Y Myg|[aai — PridalT, 5.+ 2ZMkinkiH2Hkia k=1,... K,

a=1 1=1 i=1
(5.7)
where Wy, is determined by m; discrete values of the inverse of warping function gg;(t)

which is totally characterized by wy and wy; as aforementioned. By minimizing l(wy, wg;)
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we can obtain the estimation of wy and the prediction of wy;.

(iii) Estimate the variance parameters o2, p, and p;,

By using the first-order Taylor approximation of model (5.3) in the the random warping
parameters wy,; around a given prediction 'wgi (wgi is specified by the estimate of wy; from
(ii) in the current iteration), we can write this model as a vectorized linear mixed-effects

model
Zalop=1  Gap + Ba(Wy — W) +rg+e, a=1,2 k=1,..., K, (5.8)
where x, = {@x4,7i=1,..., N}, the effects are given by
G, = {Wm\gk 90 dak} € R™,
By = diag(Baki)i € RN,

T .
By = {5gm <Tak (Qki(tj))) gi—gl (V'w,ﬂ. (gki(tj))) ‘wk._wg } € R XM,
i —Ygq = oy

Wi = (wii)i ~ Ny, (0,0°In @ Hyyxny), W = (w)); € RN™,
Tak ~ Nm(O, UQSak), Sak = diag(Saki)i (S Rmxm,
€~ Nm(oa UQIm)a

where g9.(t) = t + wi(t) + wd,(t). diag(Baki)k; is the block diagonal matrix with the
B,i; matrices along its diagonal, and diag(Sgx;): is the block diagonal matrix with the
Sk matrices along its diagonal. The derivation of the linearized model (5.8) is given by
C.2 in Appendix C. The negative profile log likelihood function for the model (5.8) is

proportional to

K

2
0% popn) =Y { > Plla — G + Ba Wil + Zlog detVak} + 2mKlogo?,
k=1 a=1

(Sak+Bak (IN®Hn1U X Ny ) Blk—’—Im)
where V. = M € R™*™, with the definition similar to
k

Im+5ak in (5.6).

To speed up convergence, we usually repeat the above three steps several times within
each iteration.

(iv) Update Mj; and estimating 3

Fix 60t and update

mp(x;|0\0 )

7 1
Sl p(ailele )

My; =
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where o)
(io) exp{v]B;""}

ﬂ-ki = — . 5
’ 1+ Zlel exp{v}ﬁg-lo)}

and mr; =1 — ZJKZ _11 7rj(.§°). Then maximize Q(0, 3) with respect to 3, which is equivalent

k=1,...,K —1,

to maximize

AN (K K—1 K—1

1(B) = Z { Z Mki{vg,@k —log[1+ Z exp{v]B;}] } — Mglog[1+ Z exp{v]B;}] }
i=1 \ k=1 j=1

Jj=1

This is very similar to the log-likelihood for a multinomial logit model (My;’s are cor-
responding to the observations) and can be maximized by iteratively re-weighted least

square algorithm.

5.2.4 Model selection, clustering and related methods

There are two questions on the model selection for our proposed simultaneous registration
and clustering method for multi-dimensional functional data: one is how to determine the
number of knots for the splines and another is how many clusters. For the former, since
our data is rather dense and insensitive, it works well using a relatively small number of
equally-spaced knots. For the choice of the number of clusters, K, since the number of
parameters, p;, in model (5.1) is relative to the number of subjects, IV, a second-order bias
correction version of AIC called AIC, (Sugiura and Nariaki, 1978; Kenneth and David,

2004) is utilized:
2pi(pi+1)

AIC, = —21(@) + 2 ,
C 1(®) + pl+N—pl—1

where l(@) is the maximized log-likelihood function, @ = {é, B} in this paper.
In inference, we first choose K clusters by AIC.. Then fit the data using the method
discussed in the previous subsections and denote the estimates of the parameters by 0 and

,@. Under the framework of SRC method, the fixed-effect part of the ith individual curve
is calculated by

K
Zoi(t) =) #ni[Fae(@ri(t)], a=1,2; i=1,... N, (5.9)
k=1

exp{’vi,Bk} )
1+E§{:711 exp{’Ui,@j}
For any individual data D* = {(@14, x2),v*} in D, the posterior distribution of the

where g (t) =t + wi(t) + Wi, (t) and 7 =
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cluster membership z* = (2{,...,2})7 is given by

sz(m1*|élk)P(ﬂ32*|é2k)

p(z, = 1|D%) = - - —,
ZJK:Ol Tip(x14]01;)p(224]025)
where N
* eXp{’U*TBk}
Ty =

B 1 ‘1‘2 -1 eXP{U*TBj}'

As a result, the best cluster membership for D* can be determined by

k* = argmaxy_y ke {p(z, = 1|D")}.

The average mean curve for each group can be calculated from {&q;(t)|.,,=1} for k =
1,... K.

Related methods

Functional k-means method is a popular approach for clustering curves (Chiou and Li,
2007), which is an extension of k-means cluster (MacQueen, 1967; Lloyd, 1982) for scalar
variables. The idea can be extended to do clustering and registration simultaneously.

Using the similar notation around (5.3), we can define the following objective function

N K
F = ZZz (@i, Ti(gri)) » (5.10)

=1 k=1

where d represents one kind of distance between each curve to its assigned mean curve

T (gki) and
1, if k= argmin; d(z;, 7;(gji)),
Zi = )
0, otherwise.

In order to find the values {zy;} and the {7Tx(gx;)} to minimize F', we can perform an
iterative procedure in which each iteration involves two steps of the optimization with
respect to {zp;} and {7x(gxi)} respectively. This approach is denoted by k-means-f and
12

its iterative procedures are as follows (use d = || - ||* for the purpose of simplicity and

convenience.):

1. Choose the initial values for the zx;. We can use any clustering method for scalar

variables {3;} corresponding to the functional variables {«;}.

2. Fix zi; and minimize F with respect to the 7,;(gx;). In this phase, minimizing F' is

7
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equivalent to maximizing

§2k<§ (logp xmwam)))

k=1 i=1

with the assumption that the covariance matrix of x,; are the same over all the
subjects. The detailed estimation of {8,;;} have been mentioned before and the

Tak(gri) can be obtained straightforwardly.

3. Fix 741 (gx;) and minimize F' with respect to zj;. Since the term F'in (5.10) involving
different ¢ are independent, we can optimize F' for each i separately by choosing zy;

as follows
1, if k = argmin; H(mz — Tj(gji))HQ;
Zki = .
0, otherwise.

4. Repeat Step 2 and Step 3 until convergence.

A special case of the SRC model defined in Section 5.2.1 is that the allocation model
in (5.2) doesn’t depend on any scalar variables (denoted by SRC-f, i.e. use the function
variable only). This special case is very similar to the above k-means-f approach. Actually
the k-means-f algorithm is a special case of EM algorithm for SRC-f. Using similar
notation around (5.3) and assuming ®q;lz,—1 ~ Nm,(Tak(9ki),0I1),a = 1,255 =1,..., N,

where 0 is shared by all the clusters, we have the density function of x,; with the form
p(mai‘eaki) = (277'(5) 2 eXp{ Y ’waz Tak(gki)HZ}'

Let p(zg; = 1) = m, k= 1,..., K with Zszl 7, = 1 be the allocation model. Using the

EM algorithm for the Gaussian mixtures described in Section 5.2.2, we have

Tk H(21:1 eXP{ - ||maz’ - Tak(gki)|’2/25}
Sy i oy exp{ — [[@ai — Taj(g;0)[12/20}

My; =

Clearly, My; — zp;, when 6 — 0. Thus Ez[logp(x, 2|6, 3)] ~ —%F + costant, when ¢ is
small. It means the optimization problem is the same as the k-means-f algorithm given
by (5.10) (using d = || - ||?).

5.3 Numerical analyses

We shall evaluate the performance and properties of the proposed SRC model in this
section. We will compare it with functional k-means clustering (k-means-f) with simul-

taneous registration as discussed in Section 5.2.4, the SRC without using an allocation
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model (SRC-f) and scalar k-means clustering (k-means-s). The k-means-s is a general
k-means clustering method using scalar variables only. We will conduct analysis on both

simulated and real data.

5.3.1 Simulation study

In this simulation study, we consider 2D curves coming from two groups. For each group,
the corresponding observations of functional variables @(t) and scalar variables v will
be generated. There are N batches of data in each group, where kK = 1, 2. We will
evaluate and compare four methods based on the simulated data D = {(x;(ti;), v;);i =
1,...,N;j=1,...,m;} in different scenarios where N = N + Ns.

Data generation

1. Generate the underlying true curves, i.e. the curves based on the internal time
scale g~ !(t). We first assume those curves in two groups share the following two
slightly different true means, similar to two patterns of the real curves of hyoid

bone’s movement

B () = (s (), w1 () = (exp{eos(2mt)}, exp{sin(2nt)}),

(5.11)
pa(t) = (pi2(t), poa(t)) = (exp{cos(27rt1‘05 — by)}, exp{sin(2mt™! + b1)}).

The degree of overlapping between two groups relies on the value of b;. The smaller
the value of by, the higher the degree of overlapping, and more difficult to cluster
those curves. We use the equidistant points ¢; = %,j =1,...,100 as the input

grid, i.e. m; = 100. The underlying true curves are generated as

Tar(97 (1) = par(t), a=1,2; k=1,2.
Figure 5.1 shows the shape of the true mean curves for different values of b;.

2. Generate the original 2D curves «(t) by adding the warping function, amplitude

variation and errors as follows.

(a) Model the true curves xq;(g~1(t)) using B-spline basis function with 8 knots

and obtain the coefficients d .

(b) For simplicity, we set g;(t) = t +wy;(t) and use hyman spline (monotone cubic
spine using Hyman filtering) based on the anchor knots t,, = (0,0.33,0.67,1)
10 4

(nw = 4). Set wy; ~ Nuo(0,T(T';), where T}T), = O, O1 = N
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8
variables N(0,02), where i = 1,..., N.

10 8
0O, = [ 15] s and I'; = (Fil, FZ‘Q)T with Fﬂ, I bejng independent random

(c) Set the amplitude variation rqx; = T - I'ig, where T{Ty = Og, a = 1,2,
k=1,2,7i=1,...,Ng. The matrix Oy is created by the Matern covariance
function with p, = (100, 0.3,3), where the three elements represent the scale,
range and smoothness, respectively (Raket, 2016), and I'jy is a vector of 100

independent normal random variables N(0,02). Set € ~ N(0,o>I).

(d) Generate x(t) based on the model (5.3).

3. Generate v’s. We generate the scalar variables v by sampling from uniform distri-

bution as follows:

s, =z,
’ U(l—bQ,Q—bg), 1=N1+1,..., N1+ No.

Note that the larger the value of ds, the lower the degree of overlapping and easier

to carry out clustering using scalar variables.

Results

In order to investigate how the overlapping of the observations of both scalar variables and
functional variables affect the performance of clustering, we study four scenarios with the
constraints 402 = 02 = 02 = 0.01% and N; = N2 = 30. There are 100 replications for each
scenario. We use two criteria to measure the performance of clustering. These are Rand
index (RI) (Rand, 1971a) and adjusted Rand index (ARI) (Hubert and Arabie, 1985a),
mentioned in Section 3.4.4 of Chapter 3 for assessing the performance of each method.

Four methods are applied to the simulated data D in Scenario 1 with b; = 0.12,
by = 0.8, Scenario 2 with b; = 0.10, by = 0.8, Scenario 3 with b; = 0.08, by = 0.8
and Scenario 4 with b; = 0.08, by = 0.6. Figure 5.2 and Figure 5.3 show the raw data
depending on different bs and b1 respectively. First of all, we apply the AIC, to choose the
number of clusters. The results from Figure 5.4 show that AIC,. score reaches its minimum
at 2 clusters. Table 5.1 summarizes the comparisons by average ARI and RI. Overall,
both measures suggest that the proposed SRC outperform the other three methods in all
scenarios because of the use of both functional and scalar data.

From Table 5.1, we note that all the four methods perform best in Scenario 1 compared
with the other scenarios. In this scenario, both b; and by take the largest values, indicating
that the overlapping of the functional data (Figure 5.3 (c)) and scalar data (Figure 5.2
(a)) are the smallest and both greatly contribute to distinguishing those two clusters. The
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Figure 5.2: Observations of scalar variable in two cases. The ‘blue’ ones stand for those
in the range of overlapping.

other three methods, SRC-f, k-means-f and k-means-s based on either functional data or
scalar data, also have good performance but not as good as SRC.

The first three scenarios share the same value of by, indicating that the degree of over-
lapping in two clusters for scalar data does not change (Figure 5.2 (a)). The performance
of k-means-s remains the same. The overlapping in two clusters for functional data, how-
ever, gets smaller and smaller as the value of b; increases from Scenario 1 to Scenario 3.
It leads to a sharp decline for the performance of SRC-f and k-means—f, both of which
depend on functional data only, as opposed to a mild decrease of the performance of SRC,
which is based on both scalar data and functional data.

The scenario 4 has the smallest b; (Figure 5.3 (a)) and by (Figure 5.2 (b)) and it is
quite difficult to carry out clustering just based on functional data or scalar data only.
Consequently, the values of ARI for SRC-f, k-means-f and k-means-s are very small. But
SRC' still performs well and are much better than the others.

Other combinations with varying overlapping determined by b; and by and with dif-

ferent sample sizes have also been examined. The results presented here are very typical.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

RI  ARI RI  ARI RI  ARI RI  ARI

SRC 0.98 0.96 0.95 0.90 091 0.82 0.80 0.61
SRC-f 0.90 0.80 0.75 0.49 0.62 0.25 0.62 0.25
k-means-f 0.91 0.83 0.76 0.53 0.64 0.29 0.64 0.29
k-means-s 0.81 0.62 0.81 0.62 0.81 0.62 0.69 0.37

Table 5.1: Comparison of average clustering results among four methods.

82



Chapter 5. Simultaneous Registration and Clustering for Multi-dimensional Functional
Data

o o
© 7 o @ 7
3
o o
o 7 — o 7
o | i o
g « 8 g
£ £ =
e e e
s w s 2 T o
gz g g 2
g g g
Lo ] M i Lo
o | 4 o |
g 3
o
T T T T T T T d T T T T
00 05 10 15 20 25 30 02 12 -02 12
x-coordinates
o - o
] ] =l
. - w
&
" 2 " 1 w 2
g o 2 o o
e e 2
T =] T o k<l w
5 « g - g @
g g g
L, X o | > o
o | E o |
g 3
-
s
T T T T T T T T T T T
0.0 05 10 15 20 25 30 02 12 02 12
x-coordinates
o o o
3 E
o i o
o 7 [
o | | o |
g o 8 g«
e e =
5 @ 5 24 5 @
g - g -
g g 8
g g g
i o | X e B
o | R o |
& 3
o
- 2 o
g T : T T T T T St
00 05 10 15 20 25 30 02 00 02 04 06 08 10 12 -02 00 02 04 06 08 10 12
x-coordinates t t

(c) by = 0.12

Figure 5.3: The raw 2D curves in one simulation run in three cases.

83



Chapter 5. Simultaneous Registration and Clustering for Multi-dimensional Functional
Data
o - o -
i : g
O S 1 Q S
< < )
g g
§ §
T T T T T T T T T T
1 2 3 4 5 1 2 3 4 5
Number of components in mixture model Number of components in mixture model
(a) Scenario 1 (b) Scenario 2
§ 8 % g
o 27 8 €1
=y T = ]
g g
&5 &

Figure 5.4: The value of AICc calculated from

method SRC.

T T T
2 3 4

Number of components in mixture model

(c) Scenario 3

o

84

T T T T T
2 3 4

o

Number of components in mixture model
(d) Scenario 4

one replication in each scenario for the



Chapter 5. Simultaneous Registration and Clustering for Multi-dimensional Functional
Data

Recovery of curves and cluster patterns

To understand the underlying process better, it is necessary to use the optimal alignment
to estimate the entire curve, so we estimate the aligned individual curves and reconstruct
the cluster pattern using equation (5.9).

Figure 5.5 displays one simulation run of N = 100, with N; = Ng = 50 curves in each
group. The top panel presents the original raw curves in the two clusters in two colors in
two dimensions (z-axis and y-axis) for a new scenario with 402 = 02 = o2 = 0.022,b; =
0.15,b9 = 0.8. The other panels respectively show the individual aligned curves resulting
from SRC, SRC-f and k-means-f, with the value of RI (1, 0.63, 0.79) and the value of
ARI (1, 0.26, 0.54) respectively. The SRC properly differentiates the two clusters (red
and green) after curve alignment and performs better in recovering the cluster patterns.

Figure 5.6 summarizes the result of clustering patterns. It shows the SRC method
recovered the true pattens very well. As a measure of estimation error, we use the root
average squared error (Gervini and Gasser, 2004), see the details in Section 3.4.2 in Chapter
3. The values of rase are 2.9, 4.6 and 5.4 corresponding to three models SRC, SRC-f and

k-means-f.

A simulation example in an extreme scenario

It is not uncommon that sometimes the functional variables provide little information so
that it fails to implement the clustering just based on those curves. However, the addition
of scalar variables can make the clustering possible. We simulate a run of N = 100
(sample size), with 402 = 02 = 02 = 0.022,b; = 0.05,b2 = 0.8, and N; = Ny = 50
curves in each group. Figure 5.7 displays the individual aligned curves resulting from
three methods, from which no discernible clusters are visible. The RI and ARI for SRC,
SRC-f and k-means-f are, however, markedly different with the values of (0.82,0.50,0.50)
and (0.64,0,0) respectively. Figure 5.8 summarizes the mean functions of two clusters by
three methods. Their values of rase are 1.1, 18.3 and 4.3 respectively. Those results show
that the use of SRC leads to meaningful findings but the other twos are equivalent to
random guess. This extreme scenario provides further evidence of the good performance

of the proposed SRC.

5.3.2 Real data analysis

The application to a real data is to cluster the normal people and the patients with stroke
by studying their hyoid bone motion as well as the other scalar variables. Two groups,
one for normal people and the other for patients, are included. Figure 4.1(a) in Chapter
4 shows one frame from a X-ray video clip. The raw data before being preprocessed are

shown in Figure 4.1(b). Most of the assumptions are the same as the example of real
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Figure 5.5: (a) and (b) are simulated 2D curves of two groups (green and red). (c)-(h) are
aligned individual cruves by SRC, SRC-f and k-means-f.
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Figure 5.6: Mean functions for 2D curves in each cluster. Black lines are true mean curves.
Red lines, purple lines and green lines stand for mean curves calculated from the results
from SRC, SRC-f and k-means-f respectively.

data analysis in Chapter 4 except for the choice of scalar variable. The scalar variable we
choose in this example is the size of Pyriform Sinus Residue (see its position in Figure 5.9).
Regarding to those 2D curves, we firstly carry out the preprocessing procedures like multi-
dimensional shift, scaling and rotation using the package of GPA. We then use B-spline
basis functions for modeling the mean curves. The covariance function for the amplitude
variance is assumed to be a Matern covariance function. We assume the warping function
be a smooth nonlinear deformation produced by an increasing spline and the random
vector wy; be a Brownian bridge observed at discrete anchor points.

We examine the performance of four methods SRC, SRC-f, k-means-f and k-means-s
aforementioned. The values of AICc are shown in Figure 5.10. It shows that the two-
component mixture model has the smallest value. Table 5.2 shows the values of RI and
ARI by comparing clustering results by the four methods with the clinic outcomes. We
can see that the SRC method outperforms the other three. As a matter of fact, both
SRC-f and k-means-f with value of RI equivalent to 0.5 fail in this real data example. It
is similar to the extreme example in Figure 5.7 and Figure 5.8. More numerical results

are provided in Figure 5.11 and Figure 5.12.
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Figure 5.7: (a) and (b) are simulated 2D curves of two groups (green and red). (c)-(h) are
aligned individual curves by SRC, SRC-f and k-means-f.
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Figure 5.8: Mean functions for 2D curves from two clusters. The black lines are true mean
functions. The red lines, purple lines and green lines are respectively corresponding to
results obtained from the model SRC, SRC-f and k-means-f.

Model RI  ARI
SRC 0.71 0.42
SRC-f 0.50 0.02
k-means-f | 0.50 0.02
k-means-s | 0.67 0.33

Table 5.2: Results of clustering by four methods for the real data

5.4 Chapter Summary

We have proposed a methodology for simultaneous registration and clustering, SRC, for

multi-dimensional functional data which considers both the curves and scalar variables.

This model captures the heterogeneity from the potential time warping for curves and

scalar variables corresponding to each subject while carrying out the clustering in the

meantime. It can be implemented with EM algorithm. Numerical examples show that it

outperforms three other related methods, SRC-f, k-means-f and k-means-s. The results

in Section 5.3.1 show that in most cases the inclusion of scalar variables can improve the

performance of clustering in functional data analysis. The main contributions include:

(a) simultaneously carrying out registration and modeling for multi-dimensional func-

tional data allowing variation among subjects,

(b) the use of both functional and scalar covariates while conducting clustering.
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Figure 5.9: Highlight of Pyriform Sinus Residue, covered by the red circle
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Figure 5.10: The values of AICc for SRC
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Figure 5.11: Curves of hyoid bone motion for two true groups, where the bold curves in
green (upper panel) and in red (lower panel) are the average mean curve for each group
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Figure 5.12: Curves of hyoid bone motion for two groups clustered by SRC, where the
bold curves in green (upper panel) and in red (lower panel) are the average mean curve
for each group
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Chapter 6

Conclusion and Future Work

In this thesis, we conduct the acquisition, registration, classification and clustering for
multi-dimensional functional data. Chapter 2 discusses how to acquire the movement data
from the video clips. We develop an all-in-one platform to do semi-automatic tracking,
data preprocessing like smoothing and segmentation, of hyoid bone motion from videoflu-
oroscopic swallowing study. Once the observations of 2D functional data are obtained,
we propose one new methodology (GPSM) for registration in Chapter 3. It combines the
advantages of both Generalized Procrustes analysis (Gower, 1975a) and self-modelling reg-
istration (Gervini and Gasser, 2004). Good performance of registration is demonstrated
in both simulation study and real data analysis. However, the classical classification after
the registration seems not satisfactory. Thus, in Chapter 4, we propose the method of
joint curve registration and classification (JCRC') with mixed scalar and functional data.
Two-stage functional models are developed. The functional logistic regression model is
utilized in the first stage, where the estimation of registered curves are obtained from the
second stage. The latter aims to do the registration and modelling for the curves by a
nonlinear mixed-effect model. Furthermore, we extend the problem from classification to
clustering in Chapter 5. We propose the simultaneous registration and clustering (SRC')
models via two-level models. They include mixtures of Gaussian process functional re-
gression and logistic allocation model, allowing simultaneous registration and modeling
for curves and the use of both scalar and function variables. Both JCRC in Chapter
4 and SRC in Chapter 5 consider two types of data, leading to much better results for
classification and clustering on simulated data and real data.

To estimate the x(§~1(¢)) and the coefficient function B(¢) in Section 4.2.2 of Chapter
4, we can alternatively use the same functional basis, like B-spline basis, to expand both
x(g71(t)) and B(t) and follow with the truncation. We use the fast fitting method. It works
well while 2(§~1(¢)) is poorly observed and able to estimate arbitrary smooth coefficient

functions (Goldsmith et al., 2011). It is also of interest to study the convergence of the
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iterative algorithm developed in Section 4.2.5. Practically, we get the final prediction
while the value of y* does not change and in general, five iterations are enough for those
simulated examples. However, in theory, it still needs more work to prove the convergence
of this algorithm in future.

Model selection for the SRC in Chapter 5 is an interesting but difficult issue for a
mixture model, especially for the models with complex forms. Kenneth and David (2004)
suggested AICc should be used unless g > 40 for the model with the large value of p;. In
our model, the number of parameters p; is quite close to the number of subject N. Thus,
we use AICc. It works well for the examples discussed in that chapter. It is worth further
study under a general functional data analysis framework.

Generally, the registration for multi-dimensional functional data is much more com-
plicated than one dimensional case. In both Chapter 4 and Chapter 5, we use the pre-
processing package GPA (Gower, 1975b) and a further registration via a simple warping
function. The latter is one of the key parts in our models. This approach performs very
well in the numerical examples presented in both chapters. Further research is required to
improve the iterative implementation for the complete registration, similar to the shape
geodesic algorithm by the metric-based method proposed by Srivastava et al. (2011a).
The inverse of warping function ¢ in model (5.1) can also be replaced with various types
of other functions depending on types of data. For instance, we can define the warping
function as simple as a horizontal shift, i.e. gg;(t) = ¢ + by; or a linear stretch of the
curves, i.e. gxi(t) = (1 + by;)t + c;, where by; and cg; are both one dimensional unknown
parameter. Those linear warping functions have been examined by others (Liu and Yang,
2009; Sangalli et al., 2010). The success of resolving registration problem often depends
on the flexibility of choosing warping function.

The results we obtained for the real data are encouraging although it is still in early
stage. Research for this topic is ongoing. More features extracted from video clips along
with other variables, both functional and scalar, are under investigation. Different types

of models for data fitting, clustering/classification and prediction are being developed.
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Appendix A

Extra Numerical Results of
Registration for Multi-dimensional
Functional Data

Figures A.1 to A.8 provides the extra numerical examples of Dataset 1 and Dataset 2 in
Section 3.4.3.
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Figure A.1: Three examples of data in Dataset 1 corresponding to three scenarios.
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Figure A.2: An example of registration results in Dataset 1 by four methods for Scenario
A with o, = 0.1 and 6y = 7/8.
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Figure A.3: An example of registration results in Dataset 1 by four methods for Scenario
B with o, = 0.5 and 6y = /6.
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Figure A.4: An example of registration results in Dataset 1 by four methods for Scenario
C with o, = 1 and 6y = /8.
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Figure A.5: Three examples of data in Dataset 2 corresponding to three scenarios.
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Figure A.6: An example of registration results in Dataset 2 by four methods for Scenario
A with o, = 0.1 and 6y = 7/8.
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Figure A.7: An example of registration results in Dataset 2 by four methods for Scenario
B with o, = 0.5 and 6y = /6.
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Figure A.8: An example of registration results in Dataset 2 by four methods for Scenario
C with o, = 1 and 6y = /8.
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Appendix B

Extra Numerical Results by
JCRC method

B.1 More examples of raw data

Figures B.1 to B.4 provide extra numerical results for the simulated examples discussed
in Chapter 4.

B.2 More examples of aligned curves

Figures B.5 to B.7 show the results after registration, corresponding to the raw data from
Figures B.1 to B.3.

y-coordinates

(a) 2D curves (b) @1(t) (c) x2(t)

Figure B.1: An example of 2D raw curves from the scenario: 40, = o, = ¢ = 0.02 and
N =60 . Curves in green indicate the first group (y = 0), while these in red represent the
second group (y = 1).
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Figure B.2: An example of 2D raw curves from the scenario: 40, = o, = ¢ = 0.02 and
N = 90.

y-coordinates
x-coordinates
y-coordinates

(a) 2D curves (b) x1(¢) (c) @2(t)

Figure B.3: An example of 2D raw curves from the scenario: 40, = 0, = 0 = 0.02 and
N = 120.
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Figure B.4: Three examples of observations of scalar variable with N = 60, 90, 120.

105



Appendix B. Extra Numerical Results by JCRC method
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(a) @1 (t) (b) 22(t)

Figure B.5: The curves after registration by JCRC, corresponding to the raw curves in
Figure B.1.
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Figure B.6: The curves after registration by JCRC, corresponding to the raw curves in
Figure B.2.
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Figure B.7: The curves after registration by JCRC, corresponding to the raw curves in
Figure B.3.
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B.3 More examples of inference and prediction

Figures B.8 to B.13 demonstrate the confidence intervals of 3(¢) and the distribution of 7

under three different scenarios, corresponding to Table 4.1.
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Figure B.8: An example of confidence intervals for 8(t) from the scenario: N = 60, K, =
18, K. = 10. The lines in green are the true 3, the lines in black stand for the estimators B,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100¢;.
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Figure B.9: An example of the distribution of 7 from the scenario: N = 60, K, = 18, K, =

10. Circles in green indicate the first group (y = 0) while those in red represent the second
group (y = 1). The dotted line in black in the middle represent = = 0.5.
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Figure B.10: An example of confidence intervals for 3(t) from the scenario: N = 90, K, =
30, K, = 30. The lines in green are the true 3, the lines in black indicate the estimators B,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100¢;.

o ]
o |
o
w ]
o
S 1
o a
<
D' — [s)
o
a
o~ = =
o ®° o2 °
0 0 a0
o 20 oo & 0%
o 0o opn  © Oooo ]
(=T o =}
o
T T T T T
0 20 40 60 80
subjects

Figure B.11: An example of the distribution of # from the scenario: N = 90, K, =
30, K. = 30. Circles in green indicate the first group (y = 0) while those in red represent
the second group (y = 1). The dotted line in black in the middle represents 7 = 0.5.
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Figure B.12: An example of confidence intervals for 3 (t) from the scenario: N = 120, K, =
35, K, = 35. The lines in green are the true 3, the lines in black indicate the estimators B,
and the dotted red lines represent the boundaries of 95% confidence intervals. ‘TimePoints’
are equal to 100¢;.
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Figure B.13: An example of the distribution of 7 from the scenario: N = 120, K, =
35, K. = 35. Circles in green indicate the first group (y = 0) while those in red represent
the second group (y = 1). The dotted line in black in the middle represents 7 = 0.5.
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Appendix C

Derivation of M;;. and the

linearized model

C.1 Derivation of M,

Using Bayes’ theorem, the posterior distribution with respect to z has the form

(z|x, 6,3) O(HHTI’k (0.

i=1k=1

By factorizing it over i, it is clear that the {z;,i = 1,..., N} are independent under the

posterior distribution. Hence,

E(zki|x, 0, 8) = E(zyilzi, 0, B)
= p(2ri = 1z, 0,8)
_ p(zki = 11B)p(@il2ki = 1,0) (C.1)
B p(zil6,8)
. TriD (24| Ok; )
-~ p(xil6,8)

We know that
p(xil6,8) = p(zi|B)p(wi|i, 6, B)
Z;
=> H (zki = 11B)p(®i| 21 = 1,0))™ (C.2)

Zki =

= Z mjip(xi]0;s)-
j=1
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Thus,
TriD(i|Oki)

E(z % :c,0, = .
(zssf, 6,5) S mip(xi10;:)

C.2 Derivation of the linearized model

At the linearized level, we apply the first-order Taylor approximation of model (5.3) in
Section 5.2.2 in the random warp wyg;. We reconsider gg;(t) as a function with respect to
wy, + wy;. Thus, the linearization can be carried out around the estimate of w;, plus wgi

obtained from the previous step. This results in a linear mixed-effects model as follows:
. ~ ) o
Tail iy N waZ‘zkizl,wki:wgi + Vwki(a’azbm:l)‘wki:wgi (Wi — wy;)
where

Lailzpmy Wr=w9, = Tak(gki)‘wki:wgi + Taki T €

= Whilg,,—g0 dak + Taki + €,

and according to the chain rule,

. 833ai|Zm:1,t=tj T
vwki(mai‘zkizl)’wki:wgi - T Vwki (gki(tj)) w—w?, [
J

_ {a(Tak (Qki(tj))>

Ogri

T
v y ki t > ‘ } ERmanw'
gki:ggi ( Wi (g Z( ])) wkl:w]gl

J

In practical, we use finite difference for calculating the derivative of g;(t) with respect to

Wi
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