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Abstract

Recently, cloud computing has been used for analytical and data-intensive processes

as it offers many attractive features, including resource pooling, on-demand capability

and rapid elasticity. Scientific workflows use these features to tackle the problems of

complex data-intensive applications. Data-intensive workflows are composed of many

tasks that may involve large input data sets and produce large amounts of data as

output, which typically runs in highly dynamic environments. However, the resources

should be allocated dynamically depending on the demand changes of the workflow,

as over-provisioning increases the cost and under-provisioning causes Service Level

Agreement (SLA) violation and poor Quality of Service (QoS). Performance prediction

of complex workflows is a necessary step prior to the deployment of the workflow.

Performance analysis of complex data-intensive workflows is a challenging task due

to the complexity of their structure, diversity of big data, and data dependencies, in

addition to the required examination to the performance and challenges associated

with running their workflows in the real cloud.

In this thesis, a solution is explored to address these challenges, using a Next Genera-

tion Sequencing (NGS) workflow pipeline as a case study, which may require hundred-

s/thousands of CPU hours to process a terabyte of data. We propose a methodology to

model, simulate and predict runtime and the number of resources used by the complex

data-intensive workflows. One contribution of our simulation methodology is that it

provides an ability to extract the simulation parameters (e.g., MIPs and BW values)

that are required for constructing a training set and a fairly accurate prediction of

the runtime for input for cluster sizes much larger than ones used in training of the

prediction model. The proposed methodology permits the derivation of runtime pre-

diction based on historical data from the provenance files. We present the runtime

prediction of the complex workflow by considering different cases of its running in the

cloud such as execution failure and library deployment time. In case of failure, the

framework can apply the prediction only partially considering the successful parts of
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the pipeline, in the other case the framework can predict with or without considering

the time to deploy libraries. To further improve the accuracy of prediction, we propose

a simulation model that handles I/O contention.
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Chapter 1: Introduction

Introduction

In the last decade, Cloud computing has addressed the challenges posed by Big Data

analytics due to its scalable, reliable and cost-effective nature, where it can be adopted

without organisations having to own their local computing infrastructure [88]. A lot

of research is currently taking place in the cloud, as the scientific workflow provides

a possibility for dealing with the growing scale and computational complexity of Big

Data problems in many fields such as Astronomy, Social Science, Bioinformatics, etc.

Scientific workflows are typically composed of several different tasks with complex ex-

ecution dependencies among them. This notion, which allows scientific applications to

be disciplined as directed graphs of tasks that are executed to analyse large input data

sets and generate large amounts of data as output when they are implemented in ex-

tremely dynamic environments [154]. Data-intensive workflows are one type workflow

that has been widely recognised as a significant technology for large-scale data analysis

and can provide users with an easy way to specify complex data-analysis tasks easily

within the distributed resources in the cloud. However, the assumption that all tasks

in a workflow can run on all resources is not always true because of the resource con-

straints, for instance, resource capacities for workloads or the impact of authorization

of the resources [70].

A key issue is that runtime pushes the users to specify an appropriate configuration

and number of IaaS cloud resources that need to fulfill running a given workflow. This

action becomes increasingly complex due to the relation between the cost of a given

configuration of resources and its potential influence on the performance of a given

target workflow under a certain demand levels. This can be hard to determine without

actually deploying and running the workflow in the cloud in a particular configuration

[44, 84]. But, using the actual deployment is costly and challenging; the process of

tuning the deployment to ensure sufficient and efficient use of resources can be costly,

complex and highly demanding process, especially for data-intensive workflows. On

the other hand, if such a relation is not determined or defined adequately in advance

by the owner of the workflow, there is a risk of miss-provisioning of resources that

supports the user, where resources used might be more or less than what is needed
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Chapter 1: Introduction

[15]. Both cases may lead to unsatisfactory results, such as over-provisioning hight

costs, under-provisioning caused Service Level Agreement (SLA) violation and poor

Quality of Service (QoS).

Performance evaluation can be used to answer performance related issues [67] for work-

flows during workflow design, capacity planning at deployment time or during system

operation. Therefore, the performance prediction of complex data-intensive execution

time is a solution to be adopted for the above challenge. Due to the analysis of such

applications, performance evaluation cannot be accomplished using this heavy-weight

technique because of the complexity of workflow structure, diversity of big data and de-

pendencies. This research applies a new technique that is repeatable and controllable

methodology in performance evaluation of complex applications before their actual de-

ployment using simulation tools. As a consequence, these simulation tools are a more

viable solution that provides an appropriate evaluation of the performance of work-

flows, where the workflow system is simulated to the cloud. Cloud simulation can offer

some benefits to workflow, including evaluating and optimising different algorithms

and techniques related to workflow execution and resource allocation to enable re-

search. A simulation framework is typically required for early testing of results before

the real deployment is performed. In general, simulators support real execution by two

main advantages [121]: 1) it provides a possibility to investigate a larger number of

parameter configurations, machine sizes, or scenarios that could be difficult to achieve

in practice; 2) can help to save time and cost in the real execution.

However, a longer runtime of the workflow is bound to substantially increase the cost.

In addition, a long run with a large number of resources may significantly increase

the energy consumption. Therefore, the key metrics for calculating both the cost

and energy are the runtime and the resource utilisation. The cost metric has not

been considered directly in this work because the commercial cloud providers typically

charge the users with a daily-based pricing model and the running of the data-intensive

workflow may stretch over a period of days. Therefore, the experiment for estimating a

cost is not calculated based on the real amount of resources used, but according to the

initial cost of the setup at day one, also taking into account the cost of existing shared

storage which cannot be distinguished because it is all shared within the subscriptions.
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Moreover, the energy metric is not considered because it is a non-trivial metric to

compute in this scenario, depending on the actual running conditions of the services

such as cooling and what else is running on that machine, which is clearly outside the

individual workflow control.

In this thesis, the focus is on addressing the problem of performance prediction of

complex data-intensive workflows through using simulation tools. As an example of

Big Data workflows, we will consider complex Next Generation Sequencing (NGS)

pipeline workflow as a case study, where the case processes a terabyte of data that

may require thousands of CPU hours. The simulators will need some of the adaptation

steps to track this type of workflow to be simulated.

1.1 Thesis statement

With the proliferation of using cloud infrastructure as a service (IaaS) for data-

intensive workflow executions and answering resource sizing questions, execution time

questions for deployment to the cloud is increasingly essential. With cloud simula-

tion, there is an opportunity for interpolation and extrapolation of system behaviour.

Hence, we have an aspiration to adapt an existing simulation toolkit and to use it

to model the behaviour of complex data-intensive workflows, as this is important for

processing and lowers costs required in tuning their configuration in the cloud. Ac-

cordingly, in this spectrum an adapted framework and its prediction model can answer

questions related to overall prediction and performance of data-intensive workflow ap-

plications; it may further answer performance related questions such as “what is the

best number of Cloud VMs to process a cohort of patients effectively?” Or “how long

does it take to process the cohort on a given set of resources?”. As an example, Figure

1.1 shows two unknown values. The first is the red bar (24-Sample), which represents

the framework that can be used to predict the execution time for much larger input

data according to a specific number of the resources. The second is the green bar

(24-Sample), which represents the framework that can be used to predict the number

of resources to determine the defined execution time.

The fundamental objectives of this research are to accomplish the following:
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Figure 1.1: An example prediction graph.

(1)- Performance prediction framework for the complex scientific work-

flows

This addresses if we can adapt and develop framework for performance predic-

tion of complex data-intensive workflows. Within an adapted framework, this

investigates if it will be possible to answer different questions about some form

of performance before the deployment of workflows into the cloud?

(2)- Methodology for coordinating a framework to function properly

This introduces a methodology for predicting the runtime and output data size

that is equipped with realistic data from archived provenance files of the work-

flow’s execution. These are required for constructing a training set and a fairly

accurate prediction of runtime for input and cluster sizes that are much larger

than ones used in the training of the prediction model.

(3)- Enhancement performance prediction of the framework

Two main perspectives guide the prediction improvement: First, how can we de-

velop the framework by adding a new component that improves the prediction.

Second, how can we explore the deployment of the pipeline workflow at an input

that is scalable with different scenarios through runs on the actual cloud. This

action supports a proposed methodology that presents the runtime prediction of

the complex pipeline workflow by considering different cases of its implementa-

tion in the cloud, such as executing failure and libraries deployment time that is
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then could be represented in the framework.

(4)- Complex scientific workflow modelling

Develop a way to model the scientific workflow from one system to another en-

actment system to facilitate the task of the simulator. Modelling should provide

a comprehensive description of the workflow, its services, required dependencies

and relationships between these components. A workflow description should en-

able the simulator to simulate its behavior to find an optimal deployment in a

range of clouds.

(5)- Extracting the necessary information

Analyze the provenance data and attempt to derive optimum benefit from the

construction of the prediction model that will assist in building and adapting

the framework.

1.2 Contributions

The original contribution of this work is a framework that adapts and develops runtime

performance prediction and forecasting of the required resources for complex data-

intensive workflows, where reflects its benefit on the deployment. Specifically:

(1)− A new technique to measure the performance of complex scientific workflows,

based on simulation tools which coordinate with the prediction model. The tech-

nique allows the owner of the workflow to test large input data on the cloud without

restriction of the configuration, where it forecasts a better deployment.

(2)− Another contribution of the research is migrating complex workflows between

cloud platforms: the opportunity is to switch running a complex workflow from one

cloud to another and for a better price and customer service. However, the critical

step is determining how long the workflow will run and the cost of execution, which

is particularly relevant for data-intensive workflows that typically takes many hours
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or days. Furthermore, another critical step is to choose the number and types of

instances to be provisioned in the new cloud environment and then use them to deploy

a complex workflow. Thus, the decision to treat the above critical steps can be made

by the framework.

(3)− The main contribution within developing such tools is simulating an I/O con-

tention problem with read or write operations. This improvement is conducted to

further improve the accuracy of prediction by modelling an I/O contention. A signif-

icant part of the work is in WorkflowSim, which models the complex workflow and

makes relevant changes that can be achieved in CloudSim.

(4)− A way to determine analytically the optimal number of engines is found; the

complexity of the hierarchical workflow engines as shown in the pipeline structure is

compounded with the fact that different stages in the pipeline exhibit different degrees

of data parallelism that would be difficult to determine.

(5)− Because virtual resources in IaaS clouds are diverse, the owner of the workflow

methodically evaluates the performance of their workflows using our framework after

it is supported by information of the provenance from different cloud providers. This

would allow users to clearly identify the resource configuration and providers that

would offer better and cheaper services for their workflows.

(6)− Using the real deployment to tune an efficient use of the resources has a risk

in term of security. In particular in Grid or Cloud environments, the implementation

of security policies where its own organisation’s computational resources reside [69].

It is, therefore, necessary to follow security policies when one wants to calculate the

performance of the executing workflows. Our framework provides a private testbed to

find the performance of the execution of the workflow.

1.3 Thesis Structure

Chapter 1 describes the motivation behind the work of the thesis and its aim; it

highlights the research problem and major contributions of the research.

Chapter 2 presents background material required for the methods of the thesis and

a summary of work closely related to the original research.
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Chapter 3 presents a summary to outlying the selected simulators and reasons for

their selection. The adaptation of these simulators to employ them for building a

framework to simulate a complex data-intensive workflow prediction and the proposed

methodology in a generic way are demonstrated in this chapter.

Chapter 4 outlines the runtime estimation methodology by adopting a complex ge-

nomics data processing pipeline workflow as a case study. A method of modelling an

e-Science Central workflow into another system is explained. The steps to adapt a

framework that allows us to predict the runtime when the user wants to scale up input

samples is also described. Evaluation of the impact of running the simulation in term

of execution time of the pipeline is conducted.

Chapter 5 presents extraction of a new dataset to provide an enhancement of the

framework for runtime and more factors such as resource numbers required to execute

the NGS pipeline. The pipeline simulation particularly used over the framework, is

addressed and how it benefits the pipeline workflow for many fields mentioned. The

implementation of the experiments are shown by how these enhancements work.

Chapter 6 presents the extension of the framework environment to model shared stor-

age and simulating contention in I/O operations as equally to the cloud. It also shows

how the extension improves the estimation of runtime performance of the pipeline.

Additionally, the required time of the deployment library, as reality observed is demon-

strated.

Chapter 7 summarises and highlights the main conclusions derived from this work;

it proposes a number of directions for future work in this area.
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2.1 Summary

This chapter introduces the background knowledge and the related work that mo-

tivated the work proposed and presented in this thesis. Section 2.2 is inaugural to

provide a brief preliminary on the Cloud computing. Section 2.3 starts describing

Big-Data application in the Cloud computing and some of background information re-

garding the scientific workflow and its challenges. Section 2.4 illustrates performance

prediction of cloud applications, which is the main focus of this thesis and some related

works based on time and data volume are presented in this section. Furthermore, a

cloud simulation will be observed in Section 2.5 in the case of describing the require-

ments of our research, also the simulation-based works are related to the research scope

stated in this section. Meanwhile, gaps in the research topic are highlighted, where we

describe how this work can address these issues. Finally, the chapter is summarised in

Section 2.6.

2.2 Cloud Computing

Over the past decade, Cloud computing has been a new emergence in the field of

information technology. This paradigm provides a novel operating model for both

commercial and scientific users to access and deploy their applications at anytime

from anywhere in the world at reasonable prices depending on their Quality of Service

(QoS) specification in a pay-per-use basis. The cloud has been defined by NIST [114]

as “a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction.”

In general, Cloud computing can be divided into two main parts [150]: hardware and

services. The hardware (Datacenter) is a layer of resources that provides a service

on demand basis. The services layer can have three popular computing models [115]:

1) Infrastructure as a service (IaaS)- where the cloud resources are offered in

the form of independent raw virtual machines. Users take responsibility for and have

the flexibility to install operating systems and software, such as using Amazon EC2

- 10 -



Chapter 2: Literature review

[77] and Microsoft Azure [5]. They also require 2) Platform as a Service (PaaS)-

in this layer, where the cloud provider offers a computing platform which consists

of an operating system, programming language execution environments, web servers

and databases. This facility provides an environment for developers to create, host

and deploy applications, saving developers from managing the complexities of the

infrastructure (set up and configuration). Example of PaaS include Google App Engine

(GAE) [78] and Salesforce.com [79]. Afterwards 3) Software as a Service (SaaS)-

in this layer, the cloud provider install and operate application software on the cloud

and end users can access the software from cloud clients. Examples of SaaS include

Microsoft office 365 and Dropbox.

Hence, Cloud computing has brought a significant opportunity for data-intensive work-

flows in various fields [55, 75, 112, 116], but it has introduced many challenges. Exploit-

ing the benefits of cloud infrastructure in the deployment of data-intensive workflows

requires providing a functional infrastructure that meets Big Data application require-

ments, which can be a challenge. For example, efficient storage and scalable parallel

programming are still challenging for scientific efforts [98]. A further challenge is the

heterogeneous nature of the cloud resources and a dynamic, changing performance

of the Cloud computing infrastructure [128]. Another challenge is the resource pro-

visioning relative to the monetary cost and performance optimisation of applications

[155].

2.3 Big-Data application in the Cloud

Big Data applications are applied to many scientific disciplines such as astronomy,

genomics, atmospheric research and other areas. However, scientific workflows have

become more popular for domain scientists for formalising and structuring a complex

scientific process in the cloud. Therefore, an increasing volume of Big Data applications

have motivated researchers to use the power of Cloud computing to solve their analyses.

Evidently, Cloud computing is a solution to Big Data problems [37, 90] because:- 1)

it provides suitable storage for massive data storage issues, 2) it offers a cost-effective

solution to the problem based on a pay-as-you-go system, 3) it gives a scalable solution
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for computing hardware requirements and 4) it facilitates the resources parallelisation

required to execute data-intensive workflows. Given these reasons referenced allow us

to solve Big Data problem with Cloud computing. The following subsection introduces

the workflow.

2.3.1 Scientific Workflow

A workflow is an automation process for data tasks or sequencing activities logically

which works on a set of predefined rules [101]. The workflow can be classified into

business workflows and scientific workflows. The business workflow describes a work

process in the business environment as sequential steps, and it comprises of procedures,

people and tools involved in each step of a business process [74]. The benefit of using

business workflow is to provide adequate and a reliable operational business process

[16].

Scientific workflows have been implemented widely to allow scientists and engineers

to implement more and more complex applications for accessing and processing large

data repository and run a scientific experiment on the Grid or Cloud [133]. However,

workflows can be executed in a different environment, where they behave somewhat

differently when the same software (applications) runs in a different environment.

Therefore, there are many efforts that have been devoted towards the development

of scientific workflow tools that discover their behaviour, and information about the

current state of the workflow running. The work in this thesis applies a simulation

tool to address the challenge for complex scientific workflow’ behaviour.

The workflow consists of a set of connected tasks/jobs that represent data flows and/or

control dependencies. Each task/job represents a single step of work that is composed

of one logical step in the overall process. The composition of a scientific workflow allows

a researcher to represent the required steps and dependencies of the desired overall

analysis. There are a number of mechanisms to specify data flows or dependencies. In

one case, workflows are designed directly by representing both the computational steps

and the data flows through them. Examples of this mechanism are shown in Figure

2.1 within a DAX structure (will be explained afterwards). As examples, MONTAGE,

EPIGENOMICS, SIPHT, LIGO and CYBERSHAKE workflows. In another case,

- 12 -



Chapter 2: Literature review

Figure 2.1: The structure of five pragmatic scientific workflows from Pegasus [19].

Figure 2.2: The structure of the e-scientific workflow from NGS pipeline.

the composition of the workflow contains two levels, where the first one works as

an abstract level which describes the high-level workflow and second level consist

of instances of the abstract level with actual data [73]. As example of this type is

presented in Figure 2.2 within a (BWA) workflow that uses the sequence alignment

of the reads [97].

The most common method in which scientific workflows can be presented is a Directed

Acrylic Graphs (DAG) or Directed Cyclic Graphs (DCG) [48]. Indeed, there are two

entities that describe scientific workflow, which are actions and tasks. On the one

hand, an action is a logical step needed to achieve a part of the workflow [24]. On

the other hand, a task is an instance of an activity [40]. Therefore, the task would

be taken as a representation of the execution of an activity. Although most systems
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use an XML based representation in addition to using graphs, such as Pegasus having

different representation for its abstract workflow definition, the DAX (DAG in XML),

which is the input to the mapping process of the Pegasus. Another example is e-

Science Central [72], where the abstract representation of the workflow is perhaps as a

linked set of individual software components (blocks) that run in sequence using items

of data.

2.3.2 Workflow Pipeline

In this subsection, we describe a workflow-based software architecture, where it enables

end-to-end, high-level workflow processing in a cloud environment consisting of many

heterogeneous resources connected to each other along with input and output data

products [137, 153]. These components may include local software, scripts, services,

libraries, etc.

First, the term “Workflow” is used to describe a set of high-level specifications for the

collection of computational processes and dependencies that are required in order to

accomplish a specific goal. Second, “pipeline” is used as a term to refer to a series of

processes, usually linear, which process or transform data. In general, the processes

are considered to be running concurrently. The graphical representation of the pipeline

data flow does not normally branch or loop. A first step takes raw data as input does

something to it, its results are then sent to second process, where this then continues

as needed. Eventually, the workflow ends with the final results being produced by the

last process in the pipeline.

Thus, mixing both terms, a term as “workflow pipeline” can be used to refer to an

abstract architecture of the process as a series of stages from the generation of a

goal description, through execution, to the completed point, where the results are

collated, then staged out to the user. According, the workflow pipeline is defined as a

computation and data analysis processes of the pipelines that should be accomplished

by sequencing and concurrent tasks that handle streams of data [99].

In principle, data workflow systems (DWFSs) efficiently support data-intensive prob-

lems within parallelism over big data sets by providing scalable, distributed deployment
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and automation execution of the workflow over a cloud infrastructure. These charac-

teristics make workflows an essential choice for implementing Big Data processing

workflow pipelines. For example, works in the literature, such as Taverna [120, 143],

Taverna2-Galaxy [144], Graphical pipeline for Computational Genomics (GPCG) [54],

and Google Genomic Cloud, Pegasus [51, 60, 61], demonstrate such pipelines. These

works demonstrate how the pipeline experiments are executed on computing platforms,

where these processes are required to be mapped to a pool of executable software com-

ponents. This execution stage of the pipeline is known as “concrete”. The next section

describes this process in more detail by presenting the workflow pipeline life-cycle.

2.3.3 Workflow Pipeline life-cycle

There are many definitions of the workflow life-cycle in the literature; all have proposed

their owns phases of the life-cycle [48, 64, 111]. Three phases of the life-cycle have

been suggested by Katharina et al [64]. Also, four phases were suggested by Bertram

et al [111], whereas additional phase has been included to define stage-in data within

computing resources before the execution phase starts. Of course, capturing prove-

nance data is important for the workflow execution, which provides information for

workflow reproducibility. Therefore a new phase is suggested by Deelman et al. [48].

In this subsection, the focus is on the three main phases of the workflow and pipeline

lifecycle summarised in: Specification, Realisation and Execution (See Figure 2.3). In

the following subsection, provenance data are discussed as one more phase.

Specification: (Description of the goal), This stage of the pipeline covers the pro-

grams involved in defining a workflow, the language used, how the workflow can be

presented and ways that the user can specify the requirements of enactment of the

workflow, where they eventually wish to have an abstract workflow in this stage. An

abstract workflow is a description of the computation process in terms, relevant files

and logical transformations; the dependencies between the workflow components can

be specified in the abstract [47].

Realisation: (Abstract and concrete workflow), This stage can accept the abstract

of the workflow, which is generated in the specification stage. The aim of this stage is

validating a workflow and mapping its elements to the specific resources (scheduling
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Figure 2.3: The workflow pipeline lifecycle [134].

and deployment). Furthermore, it implements preparation for execution. This stage

needs more careful observation due to its function of carrying out various optimisation

to the abstract workflow, which otherwise might have caused the computationally

intensive and time-consuming processes.

Execution: (workflow enactment) While the above stages are complete, the work-

flow moves into an execution stage, which is the workflow enactment in the cloud

environment. Due to the complexity of Cloud computing heterogeneous compositions,

deploying different parts of the workflow in different locations is evident. Therefore,

this stage of the pipeline does not involve simply placing the compiled code on a spec-

ified resource and letting it execute. Once execution of the workflow pipeline begins,

execution time may be considered as a significant factor in performance. This per-

formance needs to be managed well according to the requirements of the workflow

owner.

High-performance: The workflow pipeline is both compute intensive and data in-

tensive that uses the distributed resources. As a consequence, this poses significant

challenges regarding an execution time of the workflow pipeline. The execution time

is the time needed to execute the workflow pipeline. This time can be calculated from

- 16 -



Chapter 2: Literature review

a first component starting until the last one is completed [113]. It includes the time to

deploy workflows and their libraries, which fully consume time on the cloud, exclud-

ing idle time for components to complete and transition data time between different

parts. Therefore, to achieve high performance could be accomplished by mapping the

complex workflow pipeline to the complex resources or proposing an augmented frame-

work which contains the simulation annotation that corresponds to the behaviour of

the workflow. For example, GridFlow [36, 118] is a simulation-based tool which uses a

performance-driven strategy to determine the best resource for scheduling a task. In

this thesis, the focus mainly is on the complex data-intensive workflows and describes

how it can benefit from developing a new framework to simulate its behaviour and

measure its performance.

2.3.4 Provenance

Provenance in the workflow is an approach that captures and records the history of

the data object. This includes a graph structure for processes, where the time stamp,

program version number, component or service version number, execution host, library

versions, user data, intermediate data products that link back to the source data used

for initialisation and potentially other data are recorded. For the scientific workflow,

data provenance gives users the capacity to reproduce and verify results. The workflow

can also be optimised. A single experiment of pipeline workflows may require weeks to

run, even in the cloud. Thus, there is a need for scientists to monitor the experiment

during its execution. Runtime provenance analysis allows for scientists to monitor

workflow execution, allowing them to take actions before the end of the workflow

execution.

Data provenance is also required for transformed workflow execution. However, the

inputs of a workflow are outputs of the components of the executed workflow. There-

fore, by tracking the provenance of the executed workflow, outputs can be immediately

reused. Nevertheless, different ways to record data provenance are often needed in a

workflow system. Some use internal structures to manage provenance information,

while others rely on external services which could be generic. As one example, Triana

has its own internal format to record provenance information and for interacting with

- 17 -



Chapter 2: Literature review

external services [38]. Another is Karma [130], where the provenance system repre-

sents large independent workflows. That system can gather data from various workflow

systems, providing a search-able database of data provenance that have extensive capa-

bilities for formulating data provenance queries. Provenance has, therefore, introduced

significant functionality for Big Data projects [63]. Dealing with provenance data is

then often required when an estimation of execution time is needed for workflows [146].

To satisfy the prediction requirements of the developed framework, a statistical pro-

cess, to be explained in Chapter 3, for building a training set for predicting execution

time based on historical data from provenance files is required.

2.3.5 Requirements and Challenges

Workflows have become a tool capable of representing complex analyses of intensive

data. They also provide a useful representation used to solve large-scale computation.

These representations bring many challenges for Big Data problems, ranging from the

design of the processing system in relation to scalability and flexibility to data analysis

that has a higher level. As stated, a workflow pipeline consists of a composition of con-

figurable library packages and tools that are implemented for analysis algorithms and

many stage-in/stage-out operations managed during execution time. In this subsec-

tion, we briefly describe the major requirements that should be available in the pipeline

processing system. Likewise, we discuss some of the most notable challenges, including

facing the development and use of the workflow pipeline for Big Data analytics in the

cloud environment.

• A first requirement is a Scalability: [27]

As a pipeline consuming and producing large amounts of distributed data with a cloud-

based platform, Big Data processing must be able to scale simultaneously in the use of

input data. For example, in Bioinformatics [124], the data analysis has been growing

exponentially from small data as an input about 15GB and to output results about

1TB over the execution time.

• A second requirement is a Flexibility and Extensibility: [29]

The system must have the ability to track developments in technology by making a
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rapid adaptation of an existing pipeline. One key is re-configuring tools; this means

exploring different options by changing their configuration parameters so that the new

tools are added rapidly, according to required versions that track their evolution. If a

new version of the algorithms has been released, old sequences require re-processing, as

the set of variants are called by the new version even if there are only slight difference

compared to the original. Actually, even slightly different configurations for applied

tools within a single pipeline will generally produce qualitatively different results.

• A third requirement is a Traceability:[29]

This requirement relates to the changeability in variant lists that are produced over

different times; an explanation is required through these records of variants, in terms

of different production for the pipelines. Consequently, this will bring a requirement

of producing more details about pipeline execution, where recording and storing the

provenance of every set of variants, in a method that makes it responsive and easy to

explain the difference observed through the output datasets, is applied.

• A fourth requirement is a Reproducibility:[29]

The most important requirement for pipeline processing is support for reproducibility.

However, the process must have the ability to be repeatable at different times; this will

give the possibility to compare different results obtained at different times. Therefore,

it is possible to use different versions of the tools.

The tackling of Big Data pipeline challenges can be managed by advanced technology

and Cloud computing. There are, however, challenges. Therefore, the following elab-

orate on the challenges and issues that are associated with pipeline management in

distributed heterogeneous environments.

• A first challenge is pipeline performance variability:

Workflow management systems for extreme-scale systems, including speed up, have

been optimised for supporting single application performance. Unfortunately, these

capabilities are not available on complex workflows [92]. Because these workflows

differ from single applications in terms of execution in one homogeneous environment

in a number of significant ways; for one, they are a combination of multiple different

programming/execution models and heterogeneous execution platforms. One key to
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the challenge is understanding how application performance variability may arise due

to the number of workflow and system components, in addition to their heterogeneity

and strong interdependence. Moreover, hardware and software reaction ability and

user-created events at runtime will add another level of complexity.

• A second challenge is platform heterogeneity:

The heterogeneous platform makes the challenge of accessing clouds of various vendors

and provision virtual machines uniform. Since there exists heterogeneity in the cloud

platform, it will obstruct workflow pipeline management at different levels in the cloud

for the following reasons [87]: 1- the connection to the cloud will be specified by various

cloud providers; 2- resource provisioning, where there exists no standard for provision-

ing resources as different providers provision cloud resources; 3- migrating workflows

between cloud platform can be inconsistent for instance types that complicate the

migration of the workflow from one cloud to another.

• A third challenge is Resource Selection:

Choosing the number and types of virtual machines affects running a workflow on the

cloud. Hence, optimal run time is hard to be determined, while the scheduling problem

is NP-complete in general [138]. Thus, it is a challenge to choose the best-determined

configuration for a given workflow.

• A fourth challenge is Increasing Data Size:

In order to do this, several thousand of computing nodes may be needed to handle

very large data requirements, complexity storage and processing. The challenge is

to manage data flow during workflow execution and the execution environment (e.g.

coordinating the requirements and data volumes). However, there are many issues

such as cost-related trade offs, low latency and high throughput when the data are

distributed across many servers [89]. By considering the volume of big data, the

complexities of challenges is magnified as data scales to greater levels.

• A fifth challenge is security and authorization:

Security is a significant issue with regards to big data workflows, especially for those

with sensitive data. The activities in these workflows require computing resources

as well as human resources. Where there is human involvement additional security
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concerns may be introduced. In planning or allocating resources capacities, we often

assume that the task is allocated to resource and start execution once the processor

becomes available. However, the security policies impose further constraints on task

execution and therefore may affect application performance. In addition, authorization

is an important aspect of security [70]. So that, the authorization constraints must be

taken into account when resource allocation strategies would be considered for both

human resources and computing resources.

• A Sixth challenge is information for cloud provider and customer:

For cloud customers, the challenge is a possibility to know how their applications will

behave in a set of resources and the costs before renting resources. It involves potential

in growing and shrinking the required resources pool [14]. Another challenge for the

service provider is to know the application response time, which is affected by variable

demand for the service [117]. Because resources are shared among multiple users, they

can simultaneously request the service. The service provider may also want to scale-

up the resource pool to meet Quality of Service (QoS) for the users. However, time

and cost are involved in the process of scaling up or scaling down, both the rendering

software and computing resources.

One of the methods that may be used to investigate the performance of Big Data

applications depends on the number of requests machines is via deployment of the

application. But, this method requires a real deployment of the application in a phys-

ical infrastructure, which limits the scale of the experiments in terms of cost and time

for running tests. Moreover, reproducing the experiment with different configurations

requires generation, submission and processing of user requests, which may be time

consuming.

2.4 The performance prediction of Cloud applica-

tion

Cloud application development has come a long way in recent years, the enterprises

are already reaping benefits for users such as in saving costs. On the other hand, cloud

users benefit from reducing execution time. The performance of the cloud service and
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Big Data applications are dependent on each other, and this task is a challenge due

to the diversity of Big Data applications and the complexity of cloud resources. How-

ever, the resources should be allocated dynamically depending on demand changes of

applications, where over-provisioning increases the cost and under-provisioning causes

Service Level Agreement (SLA) violation and Quality of Service dropping. There-

fore, performance prediction of the application is a necessary step before deploying

them to the infrastructure resources. For this purpose, a performance prediction of

an application running on Cloud computing platforms has become significantly impor-

tant [20]. Overall, performance prediction is complex and shall consider, both parallel

computation process and data transformation time.

Choosing performance models and different design options should be considered along

with various aspects including [20]: 1) process-level parallelism, 2) distribution of

tasks on multi-core platforms, 3) application related parameters and 4) characteristics

of the datasets. In the following subsection, we introduce some proposed models,

for the framework, which leverages the performance prediction of cloud applications.

Two impact factors are focused on, including runtime and data size for predicting

performance as they are adopted in this thesis.

2.4.1 Performance Prediction Models

The clusters and grids are distributed systems that have been used for executing

workflow applications [86]. Recently, the Cloud computing infrastructure is gaining

popularity due to offering several choices and benefits to the users compared to tradi-

tional high-performance environments, mainly when an infinity computing resources

will be available on demand for provisioning. However, using a large number of the

resources may result in short execution time, but at the expense of a high monetary

cost. In contrast, slightly longer execution time may be tolerated if this comes at a

lower monetary cost. In order to decide how many resources are needed to execute

the workflow efficiently, efficient use of the platform resources, including computation

and communication (e.g., CPU and BW), might be required as well as shared stor-

age. Therefore, we need an ability to predict the application’s performance such as

execution time.

- 22 -



Chapter 2: Literature review

Moreover, execution time of the application is affected by the number of resources used,

the application’s structure and its complexities; data volume and their dependencies

also affect execution time. For example, tasks that have no dependencies may execute

in parallel; so that by allocating a large number of resources a small workflow execution

time can be obtained. In different cases, where the tasks have dependencies and are

executed sequentially, execution time will not be affected even by adding additional

resources.

Furthermore, the expectations of cloud application customers receive a certain level of

application performance as in SLA; an application performance should be guaranteed

at execution time [151]. To preserve the cloud application performance, the process

typically runs in highly dynamic environments.

Therefore, determining the performance of a complex application, its massive com-

putational needs and data richness, execution time of the application needs to be

predicted. This benefits more efficient running and development of a complex ap-

plication. Toward this end, researchers have worked with the topic of performance

prediction modelling and analysis of complex applications [13].

In general, there are four groups of the predictive models, which are the table-driven

methods, control theory, queuing theory and machine learning techniques [14].

• Table driven method: In this method, the application’s behaviour is recorded in

the table for different values of the workload intensity and their resources which have

been allocated to it. The interpolation is used for calculating the values that are not

found in table [17]. This method is inappropriate for scalability due to the consuming

time for building the table, as it needs many numbers of executed applications, different

states of the resource allocation and different types of workloads to fill the table.

• Control Theory: This model can be used for automatic resource allocation for

multi-tier applications. Determining the relationship between the resource utilisation

and the performance measurement is used to design a feedback controller [103]. There-

fore, a processing model of the applications should be determined correctly.

• Queuing Theory: The performance prediction of the application can be achieved

by the Queuing Network (QN). It works for modelling the relationship between work-
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load and the performance criteria [148]. The queuing system contains an allocated

server of the application and departs from one queue arrival at another queue. The

specification of required parameters such as the request arrival rate and the average re-

sources requirement can be estimated by solving some equations resulting from system

evaluation [139]. Regardless, it does not need a training phase and is very sensitive to

the parameters estimation, whereas the estimation of its parameters is expensive.

• Machine learning: This method can be considered as the newest proposed ap-

proach. Machine learning is a method used in different prediction aspects such as

predicting future behaviour of resources, SLA violations, the application performance

and the execution time of jobs. It works based on a training phase to expect the appli-

cation behaviour. Therefore, building a model can predict the application behaviour

depending on past observations of the application behaviour [20].

Because machine learning learns through historical data of the application; therefore,

it is impossible to make an immediate, accurate prediction. Furthermore, to obtain a

better performance of the prediction needs, a more significant collection of historical

data for feeding is required for a training set [23]. Another problem of machine learning

is its capability for error. Brynjolfsson and McAfee [23] state that diagnosing and

correcting errors are difficult due to the need for going through the complexity of the

algorithms and related processes.

Work in this thesis investigates the performance prediction of the application in large-

scale data by using a training phase (i.e., small training set) to expect the application’s

behavior coupled with simulation tools. The limitations of the methods mentioned

above are observed in our framework.

2.4.1.1 Runtime aware-driven performance

In fact, since time is the fundamental measurement of performance, many studies have

focused on a prediction methods for runtime-based performance, such as. Liu et al

[102] proposed an algorithm for duration estimation of the workflow, they achieved an

evaluation using both real-world examples and simulations. Also, research related to

performance modelling is considered, while the infrastructures have been used to run

the workflow.
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Glatard et al [62], they have used a probabilistic model to forecast workflow perfor-

mance, when both jobs execution time and transfer between jobs have been considered.

Spooner et al [131] presented an existing performance-aware grid management system

(TITAN) for understanding the performance implications of scheduling grid workflows.

Zhao and Jarvis [152] described a methodology for predicting the execution time of

parallel applications composed of multiple interacting components. Viana et al in

[140] proposed a cost model that can be used for scheduling a scientific workflow in

clouds. The aim is to help develop adequate configuration of the cloud environment,

according to restrictions imposed by the user. The configuration composes the Vir-

tual Machines (VMs) regarding both execution time and costs selecting from different

choices of instance types and number of VMs.

Silva et al [46] proposed a model that works based on input data of the tasks that

predict the task parameters such as runtime, the disk space and the memory con-

sumption. Firstly, the classification of the tasks is achieved by the workflow type and

the task type. The correlation between each parameter and the size of input data can

be calculated depending on the collected dataset. In case a parameter is not correlated

with the size of input data, a clustering technique might be applied to split the dataset

into smaller groups. Eventually, if there is a correlation between the parameters and

input data size, it is estimated according to the ratio (parameter/input data size),

otherwise, it is predicted a mean value.

Pham et al in [125] proposed a two-stage approach using a machine learning method

to predict a task execution time of the workflow for various input data in the Cloud.

However, the first stage is dedicated to predicting the value of the runtime parameters

based on historical data for a task on different clouds. The second stage predicts the

execution time of the task by applying all predicted runtime parameters together with

pre-runtime parameters that have been collected before. The purpose of this method

is to evaluate the use of different machine learning regression methods.

Although the majority of the works that are mentioned above are often short runs

(a few seconds or minutes), and because of that, they only predict execution time of

tasks and not a complete prediction execution time of the workflow. In contrast, our

work in this thesis can achieve prediction performance by using a methodology (will
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be explained in Chapter 4) to estimate an execution time over a large set of workflows

(pipeline).

2.4.1.2 Data sizes aware-driven performance

Another indicator is a data size that often complementary to performance prediction

of data-intensive analysis applications. Specifically, this indicator has an important

role in completing Big Data applications under different numbers of resources in the

cloud, which serves users to expose completion time of their application as well as the

providers to evaluate QoS of the cloud center [129].

There exists many Big Data workflow platforms that are designed for homogeneous

clusters of cloud resources, for instance, Apache YARN, Mesos, Apache Spark. The

expectation in these platforms is for workflow administrators to determine the num-

ber and configurations of cloud allocated resources. These platforms request from

workflow administrators determine the amount and configuration of allocated cloud

resource. Public cloud providers (Amazon, Azure) can provide branded price calcu-

lators, which allow comparison of cloud resource leasing costs. However, Big Data

processing frameworks have directed divers for QoS measures. These calculators are

unable in recommending or comparing configurations across workflow activities [128].

For instance, many examples have attempted to automate the configuration selec-

tion of Hadoop frameworks over heterogeneous cloud-based virtualisation resources.

Herodotou and Babu [71] they use a relative-box model to estimate cost statistic fields

and use analytical models to predict data flow and cost fields based on their proposing

to use a What-if engine for MapReduce optimisation. Tian and Chen [136] they study

components in MapReduce for incorporating a cost function for measuring the relation-

ship between input dataset size and available resources. They produced a successful

predicted scale performance showing how to determine an optimal number of virtual

machines which are required for allocation. Jarvis et al [83] present performance pre-

diction based on internal structures that exhibit highly variable runtime depending on

a certain degree of data-dependence. The developed model is used in the context of

an interactive scheduling system which provides rapid feedback to the users and can

make a decision to either submit the workloads to available resources or allocate more
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resources to schedule their workloads.

The above works are based on virtual machine configuration (CPU Speed, RAM Size,

cloud location, etc.). However, our work is different from selection VMs configuration,

where it based on QoS and SLA requirements for mapping any complex workflow for

Big Data programming frameworks and define resources number.

In this work, we show how to build a data prediction process that starts with an input

data size feed as the input and uses our simulation framework to generate estimated

time forecasts as output and output data size with all workflow pipeline components.

2.5 Cloud Computing Simulation

Recently, companies are transferring applications into the cloud at significantly greater

rates. Therefore, the evaluation of performance level of the application as well as the

cloud system itself becomes necessary. Actually, experimenting in a real environment is

not recommended because the cloud system deployment requires using many hardware

resources, network resources, storage resources, etc. In addition, an evaluation of

critical scenarios and failure in a real system is difficult. Moreover, the facility for

repeating experiments in a real cloud is almost impossible. Furthermore, having certain

knowledge of networking fundamentals, cloud resource management, and cloud security

is required when performing experiments within a real system. Performing experiments

in the cloud can come at a high cost in financial and time resources.

To overcome these problems with a more viable solution, cloud simulation tools are one

possibility. These tools can provide appropriate evaluation of the performance of cloud

applications at early development stages. Simulation tools have spread in industry

and academic fields. Simulations provide a free environment that can replicate a real

cloud’s behavioural environment [25]. Therefore, using simulation tools, experiments

need less effort for preparing them.

There are several simulation tools which carried out research in the cloud. Fakhfakh

et al [57] discuss more details of the most existing simulators in the literature that

concerning Cloud computing. Most of all, well-known cloud simulator and its extension

have been presented such as the CloudSim [34]. Here, the target is a particular use of
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the simulators that are most relevant for simulation-based performance prediction of

the workflows.

2.5.1 Mapping a Workflow to Simulation

As mentioned in a previous section, the abstract workflow is composed of many tasks

and data dependencies between them; they need to be mapped to a Big Data pro-

gramming framework and cloud resources. The mapping or graph of data analysis

activities for cloud resources demands a well decision to select relevant configurations

from an abundance of possibilities and make decisions that take into account workflow

execution time. Mapping can be performed either by the user or by the workflow sys-

tem directly. Therefore, finding the best mapping can lead to a significant problem.

Integrating the workflow system with resource provisioning technologies to determine

the appropriate amount of resources that are required for workflow execution may

hurt the performance and deteriorate the QoS if they are under-provided. Additional

costs or unneeded costs occur when there is over-provisioning. Instead, users can apply

the distribution of their workflow to target execution resources through low-commands.

These, however, need advance information to identify the number of required resources

for workflow execution.

The Pegasus workflow management system (WMS) approach can achieve bridging

between the scientific domain and the execution environment, performing required

mapping of the high-level workflow (i.e., abstract) to an executable workflow descrip-

tion of the computation [53]. In particular, the cloud simulation environment supports

workflow systems’ categories, which includes mapping [41]. There is also modelling of

the (WMS) that is defined similarly to that one of Pegasus WMS [47]. Therefore, a

mapping potentiality exists in the simulation of the cloud that provides us with an

opportunity to conduct the complex workflow.

2.5.2 Simulation Performance Prediction aware of Big-Data

The execution of a Big Data application in real environment is 1) expensive due to its

requirements of availability of many resources over an execution time; 2) time costly
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because it requires an actual deployment and execution under different heavy loads;

3) costly and difficulty in repeating the experiment because the number of testing is

undefined to reach appropriate results. Therefore, a simulation is another technique

used as a solution for performance prediction of applications. In the following, exist-

ing tools are highlighted in the literature, where these tools attempt to predict the

performance of the application by testing through simulation tools.

The EMUSIM [33]: This simulation tool tends to estimate performance and costs

for an application, focusing on supporting modelling, evaluation and validation of

application. It combines Automated Emulation Framework (AEF) [32] for producing

an improvement in the input parameters for simulations and CloudSim for simulating.

The mOSAIC [126]: There was a notable contribution in this area by Rak et al, who

present a technique to evaluate trade-off between costs and performance of the cloud

application through benchmarks and simulation. In [127] the authors extended this

approach to consider bag-of-tasks scientific applications. The integrated framework

applying a cloud simulation environment is able to predict the behavior of the devel-

opment stage performance and cloud resource usage. Rozinat et al [80], describe a

simulation system for operational decisions to support the context of workflow man-

agement. The proposed approach combines and extends the workflow management

system (YAWL) and the process mining framework ProM.

COMPASS [93]: This tool is used for automating performance modelling. That is

based on statistical analysis and the integration of a structure performance model

(ASPEN Model) from the parallel application code. However, available parallelism

and data movement should be indicated by the user to generate an accurate model.

Otherwise, COMPASS uses Banerjee-Wolfe dependency analysis, which cannot detect

data dependency through memory operations and generates a conservative parallelism

profile. Additionally, COMPASS is not efficient with irregular applications due to the

computation and memory access patterns which are data dependent.

ElasticSim [26]: This tool aims to evaluate the performance of scheduling and resource

provisioning algorithms. The ElasticSim participates in development of the CloudSim

to support resource runtime auto-scaling and modelling stochastic task execution time.

This tool works as the promising platform for an evaluation of the practical perfor-
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mance of the workflow throughout GUI advantages.

CloudAnalyst [142]: This simulator provides a user facility to model scenarios while

Software as a Service (SaaS) data centres and users are in a different location geo-

graphically. Therefore, its purpose is an evaluation of the performance of large scale-

distributed applications on the cloud. It works based on CloudSim.

iCanCloud [119]: This simulator was developed by Nunez et al. The iCanCloud can

predict trade-offs between cost and performance of a given set of applications executed

in specific hardware. It provides a GUI for designing and running the experiments.

Furthermore, it allows parallel execution of one experiment over several machines. It

also supports simulation of federated cloud environments that contain inter-network

resources from both public and private domains.

MPI-PERF-SIM [12]: This tool applies performance prediction of parallel programs

on hierarchical clusters which is based on two main steps:- one at the installation

time of the parallel application and the other at the runtime. In order to model the

components accurately, they are sketched those components. In the second step in

this approach, the generated model was used to the completion time estimation via

the fast simulator MPI-PERF-SIM.

GroudSim [122]: This simulator developed to simulate the execution of scientific ap-

plications in a computational grid or cloud. GroudSim focuses on IaaS service and can

be extended to support additional models. Moreover, it provides several features for

simulating complex scenarios.

All tools as mentioned above have limitations such as no consideration for data-

intensive applications or they lack capabilities to quantify resources in advance. The

proposed framework in this thesis has a novel contribution, where it targets to adders

these limitations.

2.5.3 Big Data Workflows Deployment Optimisation

Cloud-based computing and storage services aid with the rapid deployment of cloud

infrastructures; Big Data workflows have been increasingly shifted or are on the way to

relocating to clouds. There are several efforts have been made to develop workflow op-
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timisation in the Big Data era. One of the efforts is considered workflow engines, such

as Hadoop ecosystem that runs on cloud platforms with virtual resources [3]. Other

efforts are devoted towards works that relate to task scheduling or module mapping

for workflows. For example [149], authors create a mathematical model for pipeline

workflow and network components; they conduct an exhaustive investigation that per-

forms an accurate prediction of the execution time of a computing module in a real

network. Also, Coetzee and Jarvis [42] present a new semi-automated approach that’s

based on a semantically rich type system which needs little programming expertise

from the user. This approach uses composition, planning, code generation and perfor-

mance tuning of scalable hybrid analytics with online and offline usage of the analytic

environments.

However, the performance and cost of deploying a cloud cluster are highly dependent

on exploiting cloud resource abundance [94]. So that, the critical factor to optimise

the deployment is to determine an optimal resource usage contributing to resource

efficiency. Therefore, by optimising the workflow deployment or execution, this can

lead to 1) reducing execution time and monetary cost, 2) increasing reliability, 3)

improvement in QoS and 4) improvement in resources utilisation.

Working on Big Data workflows, owners must be careful when deploying them in

various environments. For instance, configuration, provisioning, libraries, and shared

components adding to optimisation in performance. So that, the owners face difficulty

with characterised elements without help from providers or means.

Typically, the number of the resources allocated to a workflow based on the load

demand and the QoS requirements can be defined by the customer. However, the

selection of an appropriate value is crucial, where a good choice leads to significant

performance and financial benefits for the cloud customer. The cloud operator can

benefit from improved flexibility and ability to meet QoS requirements.

It is, therefore, through the optimisation, the requirements of improving the QoS

and cost-efficiency of execution workflow; ideally, can be managed by using proactive

tools, which predict execution time and provisions resources based on: 1) avoiding

under-provision if there is always enough capacity to handle the workflow tasks, 2)

reducing over-provisioning through decrease the number of resources that will not be
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at any given time and keep cost minimal. Performance optimisation is a significant

branch of workflow optimisation research in the cloud. Simulation has brought new and

exciting benefits such as flexibility and high fidelity models for the target architecture

environment. Therefore, concerning is how to evaluate a performance of the workflows

before deployment. This thesis addresses an issue of performance deployment through

modelling and optimisation optimising of data-intensive workflow.

2.5.3.1 Simulation Performance Prediction aware of Workflows Deploy-
ment

The deployment of complex data-intensive workflows on the cloud should be offered

where they are suitable for predictable performance and use cost. Currently, this is

difficult because it is inadequate for technologies at the level of modelling and analytics

that identifies key characteristics of the data-intensive application and their impact on

performance. There is also a lack of information that addresses the system’s operation

and infrastructure in overall performance. On the other hand, testing data-intensive

workflow on the real cloud is difficult due to their massive data processing and con-

sumption time.

The feature of cloud deployment is scalability. However, cloud instances can be de-

ployed only when they have required it; therefore, the payment is just for the utilised

applications and data storage. Another feature is elasticity, where the cloud can be

scaled depending on user demand to the IT system. One issue is assessing the costs

involved due to on-demand; and another issue is the provider cannot guarantee SLA

due to the scalability and availability. Therefore, the enterprises will become reluctant

to move to different cloud platforms without technologies that allow users to make

proactive, knowledge-driven decisions as it will enable them to have future trends and

behaviours predicted.

The advantages of the approach that predicts the performance of applications without

actual deployment onto the real cloud are: 1) avoiding the burden that can be faced

with fully deployment of all applications components in various cloud platforms, 2)

the potential of re-deploying multiple times using different deployment configuration,

3) the payment will be once for cloud resources that will be used by the application
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with high utilisation because it has tested before.

There are some tools that attempted to predict the performance of the application

under testing when not deployed in the cloud. Examples of performance prediction

tools are as follows:

CloudCmp [95]: This framework is a systematic comparator of the performance of

different cloud services. This tool focused on comparing low level performance of

cloud services such as CPU and Network throughput. It aids customers to select more

suitable cloud provider for a given application based on the measured metrics that

collected during the execution of a suite of benchmark tasks that stress different types

of virtual resources provided by each target platform.

CloudProphet [96]: This tool aims to predict the performance and costs of legacy

applications when executed on cloud infrastructures. The purpose of this approach is to

focus on applications’ that are cloud-aware by design. That means it takes into account

the tracing of resource usage events (i.e., CPU, memory, disk I/O, and network) of

the on-premise application, extracts the dependencies between those events, and finally

replays them on the target cloud platform. The various accuracy of the tool prediction

depends on how the event traces collected on-premise correctly and are replayed in the

cloud that represent the runtime behaviour of the application.

CDOSIM [59]: This simulation tool aids to estimate the cost and performance prop-

erties of different cloud deployment options (CDO) for a given application. The mod-

elling performance of different cloud resources can be observed in terms of Mega Integer

Plus Instructions Per Second (MIPIPS) and the required resources that are needed for

all application statements. CDOSIM has extended the cloud simulator, CloudSim,

and integrated it into the CloudMIG framework that can be implemented to support

VM migration.

CloudAdvisor [85]: This tool supports customers with a potential method of com-

paring different cloud providers in terms of their estimated price and performance

for a given application workload and subject several user preferences (e.g., maximum

budget, throughput expectation, and energy saving). The CloudAdvisor involves a

detailed characterisation of the performance capability for each resource type (e.g.,
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CPU, Memory, Disk I/O, and Network) offered by the target cloud platforms, which

can be performed by executing resource-specific benchmark suites in each cloud. This

is where measuring the estimation quality depends on how well the provided resource

characterisation would match the actual resource needs of a given application.

In this thesis, a deeper understanding of the above issues, using a novel combination of

estimation runtime performance of complex workflow couple with simulation method,

along with a scheme that estimates by adapting the simulation tool. The research

focuses on predicting exemplary application in runtime compared with actual execution

time from provenance data and the case study that considers in this thesis is a complex

data-intensive workflow.

2.5.4 I/O Contention in the Cloud Simulation

The performance of Big Data applications is dominated by time that is required by

computation processes, read and write operations, and response time of the requested

resources such as storage. However, virtualisation in data centre supports concurrent

use of I/O (input/output) resources by several Virtual Machines (VMs). Big data

workflows are more massive in workloads that can be allocated to many VMs. There

is a concurrent sharing use of a storage device by running several VMs at the same.

Therefore, I/O contention occurs when there is several VMs compete to have access to

the shared storage for reading and writing operations, causing latency and bottlenecks.

This issue can affect performance degradation as a result of the delay of response time

[91].

In the context of a performance prediction simulator of the data-intensive application,

most existing a modelling and simulation of a parallel I/O covers this limitation. Based

on the survey of the latest cloud simulation tools in [57], several simulation tools are

proposed in the literature. They considered various aspects such as modelling cloud

environments and simulating several workloads running on them. Nevertheless, as

shown in the previous works, there is no simulator that has considered I/O contentions.

However, much less commonly, a tool has targeted runtime prediction for Big Data

applications in which modelling of storage performance plays a fundamental role. Here,

we give an overview of those that are developed in CloudSim.
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Long and Zhao [107] present an extension of CloudSim to model a new kind of dis-

tributed storage technology in the cloud to store and manage Big Data. This extension

has been achieved by adding the file striping and data replica management functions,

making it into a simulation platform for computing and storage. This new feature can

help implement the data cloud entities and test specific data layout and replica man-

agement strategies. It is less useful; however, its utility in modelling workflow-based

applications. Sturm et al [132] developed a storage component in CloudSim. However,

the extension focused on the mechanism to simulate object storage-based cloud ser-

vices (STaaS or Storage-as-a-Service) and, again, did not consider workflows. Grozev

and Buyya [66] proposed a hard disk drive (HDD) processing element representing the

I/O capacity of a storage disk as an extension to the CloudSim simulator. However,

that alone is not enough to model the I/O contention in the cloud.

Louis et al [109] proposed CloudSimDisk, another extension to CloudSim aimed at

modelling and simulation of energy-aware storage in cloud systems. It was based on

an analytical energy consumption model for hard drives and considered transaction

time and energy consumption related to adding and retrieving binary files used by

VMs.

Other works, less related to the simulation, include Costa et al [43] prediction mech-

anisms to estimate the performance of a workflow application or storage operation.

Based on the target application’s characteristics, the proposed mechanisms can speed

up the exploration of the configuration space. The effectiveness of this mechanism was

evaluated in some scenarios, including different system scale, hardware platform and

configuration choices. The mechanisms provided high accuracy to support the user’s

decisions about configuration and provisioning the storage system, while being less

resource-intensive than running real applications. This work is conceptually similar to

our work in detecting and fixing potential performance prediction issues, but differs in

the development of a complex and error-prone distributed storage system specialised

in workflow applications

To the best of our knowledge, existing research in the area of cloud simulation falls short

in addressing the problem of I/O contention that arises from multiple VMs accessing

the shared cloud storage. Therefore, modelling the performance of I/O contention is
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Figure 2.4: Overview of simulation performance prediction aware of workflow deploy-
ment

a challenging due to the dealing with I/O flows issued by several VMs and because

of the complexity of Big Data workflows. In this thesis, we tackle this problem by

introducing a simple model for I/O contention in our framework environment, where

many VMs can access shared storage and make read and write operations considering

response time. This solution is described in chapter 6.

2.6 Conclusion

Deploying complex workflow activities to cloud resources regarding execution time

must be considered due to a right decision that must be taken through a given config-

uration from an abundance of possibilities. Therefore, each complex workflow needs

to predict an execution time prior to deployment onto the cloud without running on

the real cloud.

The solution of this issue is to use cloud simulation tools that can measure an evalu-

ation of the performance of cloud applications before deploying them in a real cloud

environment. There is no support for a complex data-intensive workflow in previous

works that have predictable performance execution time couple with simulation tools

as shown in previous sections. The runtime estimation for different input and cluster

sizes that are much larger than ones feeding the training set can be predicted; then

information about cluster sizes becomes available before the deployment; it offers us
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the possibility to highlight the best one.

In this thesis, the focus is on presenting a proposed methodology that is coupled with

an adaption of the simulator. This is a novel contribution where it targets to cover

the gaps, see Figure 2.4, it provides a summarised overview of our framework that

can predict execution time of the complex data-intensive workflows. The next chapter

presents the preparation and key background information with selected simulators and

relevant case study.

- 37 -



Chapter 2: Literature review

- 38 -



3
Framework for workflows

prediction

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Using WorkflowSim and CloudSim . . . . . . . . . . . . . . . . 41

3.2.1 Overview of CloudSim . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Overview of WorkflowSim . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Why these tools . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Existing Examples of Pegasus Workflow Experiments . . . . . 47

3.3 Simulation Environment for Prediction . . . . . . . . . . . . . 49

3.3.1 Modelling Workflow Phase . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Building Estimation Module Phase . . . . . . . . . . . . . . . . 51

3.3.3 Extracting Input Parameters Phase . . . . . . . . . . . . . . . 56

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

- 39 -



Chapter 3: Framework for workflows prediction

Summary

This chapter describes the simulators that will be used and reasons for their selection.

The preparation steps for adapting the selected simulators to employ them for build-

ing a framework for data-intensive workflows prediction are demonstrated. It shows

how the proposed solution methods can be associated with the source code of these

simulators and how it becomes feasible to implement complex workflows.

3.1 Introduction

Employing a cloud simulator to accurately predict runtime performance of data-

intensive (DI) workflows executing within a cloud environment is an attractive area for

researchers. The availability of these tools for providing an accurate prediction of the

time taken for the DI workflows to execute would be beneficial for both scalability and

performance optimisation (See Chapter 2). To meet the research aim, it is necessary

to build a simulation model that can interpolate and extrapolate the behaviour of the

DI workflow. A methodology is proposed, integrating its modelling within an existing

cloud simulation toolkit for estimating the execution time of such applications, that

requires a different modification.

This chapter will present a summary of what will be modified in a selected simula-

tion toolkit: the WorkflowSim adaptation. The processes are: the method of filling

in the synthetic workflow template with some parameters collected from provenance,

constructing the estimation module, the automation method to generate missing ca-

pacity values for both the CPU unit and network in the data centre, and determine

an efficient way to make compatible the differences between the enactment workflow

model.

In the remainder of this chapter, Section 3.2 will give a detailed function of CloudSim

and WorkflowSim and their components, as well it shows some of the existing exam-

ples of the Pegasus workflows. Section 3.3 describes simulation environment for the

prediction that shows the methodology phases, including Subsection 3.3.1 models the

input workflow into the simulator template. Subsection 3.3.2 demonstrates an estima-
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tion module and its main role in the work of the framework. Also, Subsection 3.3.3

explains the description of provenance information and capturing the relevant infor-

mation. Finally, what has been performed is discussed.

3.2 Using WorkflowSim and CloudSim

As mentioned in the previous chapter, the simulation tools are applicable solutions for

studies that evaluate the performance of cloud applications. And it was also underlined

that the performance prediction of the DI workflows must be achieved before they

are deployed, ensuring that the cloud infrastructure effectively provide the services

according to the SLA agreement with the desired QoS.

However, the right decision in choosing a proper simulation tool, considering the above

matters, must be taken according to some feature availability. For instance, the simu-

lator should be supported with more realistic for modelling the cloud environments and

applications; another characteristic is the deployment of a workflow with communicat-

ing its jobs or tasks (i.e., tasks or data dependencies). In the following subsections, a

brief explanation for both simulators, CloudSim and WorkflowSim, and their potential

to support the stated goal is presented, highlight the reasons for choosing them.

3.2.1 Overview of CloudSim

CloudSim has become a well-known and an expansible simulator tool, where about 57%

of the other simulators are an extension of the CloudSim [57], as many researchers

around the world have started using it. For instance, researchers at the National

Research Centre for Intelligent Computer Systems (Beijing) have used CloudSim for

SLA-oriented management and optimisation of the cloud environments. Additionally,

researchers at Kookmin University (Seoul, Korea) used it for their investigation on

workflow scheduling in clouds. What’s more, it offers the following features [34]:

• it facilitates the modelling and simulating of a large scale of the data centre.

• it facilitates the modelling and creation of more than one virtual machine (VMs)

with policies for provisioning host resources to VMs.
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Figure 3.1: The CloudSim components and simulation engine [34].

• it facilitates the modelling and simulating of energy aware allocation heuristics

provision data centre resources.

• it also facilitates the modelling and simulating the data centre topologies and

message passing applications.

• it facilitates the modelling and simulating the diversity of cloud types such as

federated.

• it has ability of dynamic insertion of simulation elements, stopping and resuming

simulation.

• it provides the users with an ability for defining policies for allocation of the hosts

and policies for allocating VM.

The components and core simulation engine of the CloudSim framework are shown in

Figure 3.1. CloudSim realises a discrete event-driven simulation as a technique that

is used to pass an event between the entities in the simulation framework. This tech-

nique supports the function of several cores, such as queuing and processing of events,

creating entities of cloud system (services, host, data centre, broker, VMs), commu-

nicate the components in the framework, and managed the simulation clock. The

CloudSim components represent an abstraction of components of the Cloud comput-
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ing environment such as the virtual machine (VM), data centre, CPU, and Bandwidth

[34].

Modelling the cloud computing environment

The resources of Cloud computing are interconnected together; they can scale up

or down dynamically. Therefore, CloudSim abstracts cloud computing resources as

a set of entities; one entity is an instance of a component, which is described by

the data center, including many physical machines. These machines can use any

virtualisation technique to provide multiple virtual machines (VMs). The applications

can be submitted to these VMs; the number of the VMs can be changed dynamically

over time. In the following, more details related to components of CloudSim [34, 35],

which are shown in Figure 3.1, are discussed.

Data center : It encapsulates a set of computing hosts that can be either homo-

geneous or heterogeneous concerning their hardware configurations (memory, cores,

capacity, and storage). Where the host in a CloudSim denotes to the physical node in

a cloud, such as assigned in a pre-configured processing capability, that is expressed

in millions of instruction per second- MIPs.

Cloud Coordinator : This component is an extension of the data centre; it is re-

sponsible for exporting the cloud infrastructure and platform level to the federation.

It keeps monitoring the internal state of data centre elements, conducting negotiations

with the cloud providers in a federation to deal with any unexpected peak in demand

for resources in the local resources. It ensures that the agreed SLAs are delivered

through monitoring the execution lifecycle of the application.

Virtual Machine VM : This is a modelling of the virtual machine component in

CloudSim, which is managed and hosted by the host components. Each VM has re-

lated characteristics such as accessible memory, processing, storage size, and the VM’s

internal provisioning policy (space-shared and time-shared), based on these policies

the host can simultaneously instantiate multiple VMs and allocate the cores in the

VMs.

Cloudlet : It is modelling of the cloud-based application services (jobs or tasks),

which are commonly deployed and executed in the data centre. Every job/task has
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predefined instruction length and volume of data that have been taken into account

to be hosted successfully.

VM Provisioning : This models the provisioning policy of allocating VMs to the

hosts. The main function of the VM provisioning is selecting an available host in the

data centre, considering the VM deployment requirements such as memory, storage,

and a processing element (PE). CloudSim package depends on a simple VM Provi-

sioner policy to allocate VMs, which is selecting the first available Host that contains

abundant elements and are meeting the VM deployment requirements.

Memory Provisioning : Models the provisioning policy for allocating memory to

VMs. This component can model the allocating physical memory space to the rival

VMs. Once a memory provisioner component determines the space that is requested

for the new VM deployment, then the deployment and execution of the VM will be

possible.

BW Provisioner : This models the provisioning policy of bandwidth which is re-

quired to deploy a VM on a host component. This component provides an allocation

of network bandwidth for a set of deployed VMs on the data centre. To meet the

application requirements, developers and researchers can extend it with their specific

policies such as priority and QoS.

Storage Allocation : Storage area in the CloudSim for storing large chunks of data is

modeled. SANStorage is implemented as an interface to simulate saving and retrieving

data. The bandwidth is a fundamental factor to measure a speed of transmitting the

data. Where extra time can add to task unit execution as a delay time, which is

consumed for transferring data files through the data centre over the network speed.

Network Topology : This models the information about network behavior in

CloudSim. It commonly uses the information that is generated by the BRIT topology

generator.

Sensor : It is modelling a sensor component that can benefit a cloud coordinator to

observe the specific parameters such as energy consumption, resource utilisation.

As we mentioned above the CloudSim is an event-driven simulation tool, which all

components are dealing with the message, such that each entity communicate with
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another one by passing the event as a message. In particular, the CloudSim has

a limitation for performing simulation and executing only individual job/task [35].

While the workflow cannot be simulated in the CloudSim. Therefore, there needs to

be an exploration of the simulation tool that deals with the workflows and undertake

their dependencies between the jobs/tasks.

3.2.2 Overview of WorkflowSim

One of the most widely used examples of a simulation environment for workflows is

WorkflowSim, developed by Chen et al [41]. It is an extension of the CloudSim simu-

lator and enables modelling and simulation of scientific workflows (data flow) with the

DAG form in the cloud. The simulator follows the approach proposed by the Pegasus

WMS, contains a workflow mapper, engine and scheduler, and components such as

the clustering engine [47]. These components allow WorkflowSim users to evaluate

and optimise different algorithms and techniques related to workflow execution and

resource allocation, which if done in the real cloud, would be time consuming and

costly.

WorkflowSim is based on the identification of popular workflow systems for scientific

workflows and their components (e.g., composition, mapping, and execution) to sup-

port some acceptable features of workflows and optimisation techniques. It is designed

to be on a top layer of CloudSim specifically at an existing task scheduling layer, in-

cluding workflow Mapper, Workflow Engine, Clustering Engine, Workflow Scheduler,

Failure Generator and Failure Monitor etc. This layer consists of four main compo-

nents as follows:

Workflow Mapper : this supports the importing DAG files that are formatted in

DAX and other metadata information such as the size of the file from a workflow

generator [45].

Workflow Engine : it supports handling the state of the tasks by releasing them

to the Clustering Engine and also managing to ensure that tasks do not release until

their parents complete the execution successfully.

Clustering Engine : approach merges tasks into jobs intending to reduce the sched-
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uler overhead. Usually, an atomic unit that can be seen by the execution system is

a job, which includes a set of tasks and are viably executed, either sequentially or in

parallel.

Workflow Scheduler : this matches jobs to the resources based on the criteria which

are predefined by users. WorkflowSim depends on CloudSim to support an accurate

and reliable job-level execution model, such as the time-shared model and space-shared

model.

3.2.3 Why these tools

Based on the possibilities of the simulators that offered above, we decided to choose

CloudSim and WorkflowSim. Typically, the CloudSim can provide a high fidelity

model on the specifications of cloud hardware. This makes it a powerful architecture

for modelling and simulating complex DI workflows without suffering from a lack of

modelling of the main components of the cloud environments, which can be handled

and would be slight at most.

As a notable simulation facility that fits the purpose of simulating the workflows on the

cloud. WorkflowSim is a significant option because it supports building the framework

as efficiently as possible. However, one potential problem is that WorkflowSim cannot

accept a complex DI workflow which implemented in e-Science Central platform [72].

Because only it can model Pegasus workflows, five recognised scientific applications

have been implemented in this simulator, which are: LIGO Inspiral analysis [6], Mon-

tage [18], CyberShake [65], Epigenomics [7], and SIPHT [4]. Therefore more progress

is needed, such as a method to map e-SC workflows into what WorkflowSim can enact

(will be explained in Chapter 4).

One of the benefits of WorkflowSim is that it enables a workflow to be simulated in

repeatable and reproducible experiments, with no charge for testing environment [108].

Another benefit of the simulators is that they are based on Java, open source code

that allows one to write classes and develop the code as required.
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3.2.4 Existing Examples of Pegasus Workflow Experiments

Experiment 1

To simulate the Pegasus workflow in WorkflowSim and to be familiar with using its

configuration parameters, we conducted the LIGO Inspiral Analysis workflow [22],

which is an application used to investigate gravitational wave signature for data that

collected by large-scale interferometers. The workflow’s mission helps to detect and

determine the influence of gravity changes in which gravity occurs due to the curvature

of time and space. The LIGO Inspiral workflow was divided into multiple groups of

interconnected tasks. Figure 3.2 shows the structure of a small LIGO Inspiral work-

flow. The figure presents a graph of the abstract of the workflow as tasks, with each

task having a task ID and expected execution time that was collected from workflow

gallery [10]. For more information about the abstract, see DAX file in [11].

The experiment here is to evaluate Inspiral execution under different scenarios. The

value of MIPs was varied in each execution using three values (1000, 1500 and 2000)

as well as applying variations of BW with two setting(15 and 100). By controlling the

number of VMs ranged from 1 – 10 at any setting of both parameters, we can see the

entire execution time of the workflow across the virtual machines (VMs). Figure 3.3

shows a graph of all scenarios as the execution varies. The optimal parameters values

can be determined experimentally through the training that is beneficially for many

studies, such as scheduling, resources utilisation, cost mandatory etc.

Experiment 2

One benefit achieved through using the WorkflowSim is the scheduling algorithms

development. In this experiment, WorkflowSim was used as a tool to show how a simple

extension of the Minimum Completion Time (MCT) scheduling algorithm produced a

benefit of the execution of the workflow in reducing the Makespan and cost [106]. This

work also allowed us to be in better understanding the available simulated environment

in the WorkflowSim and proved to be very useful for the workflow.
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Figure 3.2: The structure of the LIGO Inspiral workflow.
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3.3 Simulation Environment for Prediction

As mentioned previously, CloudSim and WorkflowSim were selected for building a

simulation-based performance prediction framework of complex DI workflows. In order

to address the overall goal, we need to develop the framework as automation tool of

its input parameters and predictive platform for the execution time.

Once a standard parameterisation of the WorkflowSim was used to run a workflow, the

environmental parameters are assigned as a sequence of manual configuration steps;

these parameters’ values can be taken from a dedicated set of values from the previous

real execution. An overview of the methodology used in preparing the selected simu-

lators to achieve the target is presented in Figure 3.4. We illustrate the methodology

phases and their mechanisms in the following subsection.

Modelling 
workflow Phase  

Modelling input 
Workflow to 

Simulator
template

1

Workflow
Input

Building estimation
Module pahse

Collection of 
information

2

Database
Provenance

Extraction of 
prediction equations

The Simulator
Extracting input parameters

Creation of prediction 
Unit

Parsing

Input Synthetic 
Workflow

3

Self-generating Environment 
Parameters
(MIPs + BW)

Figure 3.4: The Methodology of the proposed prediction Framework

3.3.1 Modelling Workflow Phase

It is apparent from the methodology figure that the phase represents a modelling input

workflow into the simulator template. However, WorkflowSim was primarily designed

to simulate Pegasus workflows. Therefore, this required a way to convert an input

workflow into a form acceptable to the WorkflowSim before a submission process is
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done. This mechanism would be achieved manually. For example, to model the NGS

pipeline designed and implemented in e-SC required a certain level of adaptation. Both

systems are similar in that they support execution of scientific workflows (data flows),

yet there are some important differences between them. Specifically, e-SC workflows

are more fine-grained and can operate at two levels: basic and composite. A basic

workflow may include many tasks, but all of them run on the same machine (workflow

engine). That helps to optimise execution of small, short-lived tasks because data

transfer between them is local. A composite workflow also consists of tasks, but some

of them invoke basic and/or composite sub-workflows. Each of these sub-workflows

may run on a different workflow engine, which helps handle data and task parallelism

that often occurs in scientific analyses.

The distinction between basic and composite workflows is especially important when

Big Data workflows are considered because it heavily affects how data is transferred

between tasks. Tasks of a basic workflow pass data via a local filesystem, whereas

in composite workflows data needs to be shared between VMs, thus it is transferred

to/from the shared storage provided by e-SC. However, finding a balance between

effective parallel execution across some machines and using fast local data transfer is

not obvious, as discussed in [27].

After the modelling phase, the generation of the synthetic workflow stage is arisen.

But, the synthetic workflows include two steps: the structure that has included iden-

tification of individual tasks and their composition. Consistent with a technique that

was used by Pegasus WFMS to create a synthetic workflow, the same technique to fill

out the synthetic template what belongs to a new workflow needs to be followed.

Input Synthetic Workflow

Workflow traces have been collected and published in the workflow Gallery [10] through

Pegasus WMS. The toolkit called Workflow Generator can produce synthetic workflows

by gathering metadata (e.g., input/output data sizes, runtime of the tasks) to facilitate

the evaluation of the workflow performance under diverse configurations within the

simulation. From these traces, the workflow DAX file in the XML format can be filled

and used as input to the WorkflowSim.

- 50 -



Chapter 3: Framework for workflows prediction

The XML file contains the representation of abstract workflow description, which com-

prise of all the computational tasks, the execution of the tasks’ order, the required in-

puts of each task, the expected output of each task, and the argument with which the

task should be invoked. Finally, the synthetic workflow that is generated by a workflow

generator can be simulated by WorkflowSim, and many examples of the DAXes files

are available in [11].

Consequently, constructing and populating the data to create a new synthetic workflow

relies upon relevant data in the provenance file. However, the ultimate objective is

simulating the DI workflows which have no existing information in the provenance,

in particular when a large size of input sample is considered. Therefore, a method

to populate the missing parameters in the synthetic template had to be found, where

these parameters need to be populated by estimating them. For example, the sizes of

output data and the execution of times processed for each task. This is explained in

phase 3.

3.3.2 Building Estimation Module Phase

Provenance provides a very significant service to workflow applications in such ser-

vices as verification of process and review of recorded data [76]. However, an abstract

template that was obtained from the previous phase is not completely adequate and

requires more detailed information that can be extracted from the provenance. There-

fore, in this phase 2, the focus is on the usage of the provenance data for building an

estimation module and present extracted data and how it can be utilised. This phase

can be prepared by the steps described below.

i- Data Collection and Analysis

Once the workflow’s process is complete in the cloud, the description of steps leading

to the results is often stored away as a file. However, the decision as to what to retain

the provenance data in the cloud storage is a trade-off regarding the long-term storage

cost and can be considered by the users [145]. Therefore, weeks or months may pass

before the scientist realises a produced result. Data provenance contains information

on what the datasets generated, which is important for this work in two respects: to

create the synthetic workflow and to extract the prediction equations.
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As we have seen in Pegasus WFMS is used in Workflow Generator as a tool to create

synthetic workflows. But based on what is know, there is a lack of the provenance

information discovery for the end user, in particular the DI workflows. Therefore,

a method to discover and collect the provenance data for this workflow needs to be

determined. For instance, the cloud platform for data analysis, e-Science Central

supports secure storage for sharing and runs workflows for analysis data [72]. It

facilitates the collection of the provenance information and uses the fragment of the

code written in the Prolog language and supported by the ReComp team [1] (Appendix

A). The e-SC provenance files of an executed workflow can be downloaded. The

Prolog program is provided with the “Invocation id” number, which refers to top-level

workflow; after that, the program exports information as a CSV file.

At the time that provenance files are exported as CSV files, an analysis of particular

information can be performed (i.e., execution time, input data size and output data

size). This could deliver a prediction based on a set of input data. Thus, prediction

provides the basis for building an estimation module. However, the prediction of both

execution time and the size of the output data for the data-intensive workflow within

all its components (e.g., sub-workflow) is necessary, where having statistics on the past

execution of the workflows is needed. Therefore, a historical database is used, with

the information of the workflow’s execution stored and the prediction model uses this

information. For example, details about execution time and the size of input/output

data of the pipeline workflow are stored in the provenance storage system in e-SC

Central [147]. This file contains the data which can be summarised in Table 3.1. This

is used to extract the execution time and input/output data size for each component

in the workflow.

ii- Extracting Prediction Equations

Typically, DI workflow is executed multiple times, with each execution having differ-

ent input data size to predict its performance (e.g., its execution time with various

resource numbers). The differences in the number of required resources of the workflow

execution can be attributed to the size of the input data. However, the performance

metrics are for exploring the relationships between the input data size of the workflow

and the execution time, including accurate estimation of these requirements being cru-
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Table 3.1: Provenance information

Label Name Description

1- Invocation id Refer to the Workflow identification

2- Workflow Name Refer to the Workflow name (BWA, PICARD, etc.)

3- Block Name Refer to the name of each block in the Workflow (block 1,block 2,etc.)

4- Block Label Each block has a label (GZip, PrepareLibrary, etc.)

5- Start Time Beginning time to execute the Workflow

6- End Time Finishing time in executing the Workflow

7- Data Consumed The size of input data

8- Data Produced The size of output data

cial. Moreover, it is important to examine how variation in all input data sizes over

workflow components may affect workflow execution time and thus affect performance.

Therefore, a statistical analysis is needed to extract these relationships.

For the purpose of the development of our framework, a linear least squares regression

method is used for extracting the prediction equations to build an estimation module

and in turn to predict runtime and input/output data size [141]. This simple method

has been chosen because the data elicited from the provenance information exhibits a

linear dependency. The accurate indicator of a generated function can be controlled

by r-squared (R2) which have values between 0 and 1. Figure 3.5 shows the formula

of the regression used.

The experimental results show that the linear regression approach, when compared

with the polynomial regression in the description of the runtime and output data size

of the NGS pipeline, offers the best accuracy for the prediction studied, including cases

where the predicted resource usage presents linear dependencies on the input data size.

µ{Y | X}=β0 + β1X

  mean of Y given X  or 
 Regression of Y on X 

Intercept Slope
Unknown 
parameter

Figure 3.5: A simple linear regression model.

1) Runtime Estimation

An accurate estimation of the execution time becomes a dominant factor in different

cloud research fields. For example, to investigate an efficient scheduling [100]. Execu-

tion time of the workflow is commonly used as a metric to scale workflow performance
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[56]. The scope of the work and goal, in the broader context of performance prediction

that requires estimation the runtime of the DI workflow. For example, the focus is

on execution time estimation in the complex structure for the e-SC workflow pipeline.

The execution time for the entire workflow pipeline (i.e., workflow and sub workflow)

needs to be estimated to determine a reasonable runtime that can be used to manage

the deployment.

The estimation module is used; it is described in subsection 3.3.2 to estimate the

execution time of each component of the workflow-based pipeline. The runtime esti-

mation approach uses the data sizes that are collected from provenance information as

input to the estimation module; the prediction is based on prediction equations which

are also extracted from the provenance by the least squares linear regression. Thus,

in this way, the execution time can be predicted with accuracy for each component of

the workflow pipeline.

2) Output Data Size Estimation

The aim of this prediction differs from the runtime approach in that with the concern

is predicting the execution time of each workflow in the whole pipeline. The concept of

output data size prediction is similar to applying a similar result for runtime prediction,

but with the resulting output data size instead. That means both input and output

of the estimation module are data sizes; prediction occurs sequentially for the whole

pipeline.

However, the different sizes of the input data in the sample may lead to significant

differences in the output over the process. Exploration of the data is begun using

the relationships between input and output data size of the workflow that represents

performance metrics and are crucial to estimate it. Statistical analysis (i.e., Least

Squares Linear Regression) is used to extract these relationships; the assessment of how

the output data size is affected is based on variations in the input data size. Hence, this

prediction is mostly performed on the initial input data only. An estimation module is

provided with specific prediction equations of data sizes such that the ability enables

prediction not only for execution time but also output data size.

Variance: The performance prediction framework is used to estimate the execution
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time of the data-intensive workflow; the predicted runtime usually lies in an interval

around the actual execution time of the workflow pipeline. Variances are given for

actual times that tell us how spread out the estimated times are, where the closer

variance is to zero. When working with sample data sets, the following formula to

calculate variance can be used.

S2 =

∑
(Xi −X)2

n− 1
(3.1)

where S2 is the variance; Xi is the term in the dataset; X is the sample mean and n

is the sample size.

iii- Integrating Estimation Module

The performance prediction model supplies estimated activity for the execution time

and the input/output data sizes of the workflow for the WorkflowSim. Such activity has

not been built in the original version. Therefore, it was necessary to devise a predictive

model and integrate it into the framework to complete the research objectives. This

model should provide the simulator with a training-based approach. The reason is that

this can cover cases for testing workflow, which has input data much larger than the

training set. Another reason is building a training set without cost, hence a re-training

set if it is required, can be done by rerunning the simulator.

The estimation module consists of two main branches: (1) runtime estimation, which

predicts the execution time of each component of the DI workflow (e.g., workflow

pipeline); (2) input/output data sizes estimation, by this the output data size is pre-

dicted and will be input for the next component of the DI workflow. Both activities

of prediction depend on the data size as input to the model of estimating the runtime

and output data size.

Building a prediction model using a statistical method over the input dataset depends

on the predicted equations described above. That involves multiple phases: (1) creat-

ing the runtime and output data sizes estimation units; (2) generating a training set

and its configuration; (3) extracting and filling information in the DAX files of the

synthetic workflow; (4) testing a scale-up input data that is outside the training set.
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3.3.3 Extracting Input Parameters Phase

Phase 3 is an extractor that extracts unknown parameters that are required for the

simulator as input. There are two unknown input parameters that are needed for the

operation of the WorkflowSim and inputs used to complete missing information in the

synthetic workflow file. Both types are generated during running the simulator in a

coordinated manner while fulfilling its prediction potential, as explained below.

i- Extracting Simulator Parameters

The WorkflowSim as any software requires the setting of its input parameters that

presented an initial step before the running. For us to be able to run this simulator, the

following steps describe how to set up an execution environment and run DI workflow.

An execution environment consists of a set of input parameters have to be set with

value. Here, we learn how to make self-generation parameters by the simulator.

To configure modelled resources in the simulation, a set of the parameters need to be

specified with proper values, depending on the users’ desired intent, with the most

parameters used in the WorkflowSim shown in Table 3.2. Two primary input pa-

rameters are focused on that significantly affect the execution time of the workflow,

including MIPS and BW. The input parameter (MIPs) is a million instructions per

second that scale the computation process time (i.e., CPU speed) [9]. The bandwidth

(BW) is a bit-rate measurement that defines a transmission capacity over a network

communication system [8].

However, at the beginning of a simulation the workflow, we have no idea about the

parameters of the execution environment (i.e., MIPs and BW). Therefore, an empirical

approach is applied, running the simulator a number of times, across a given range of

both the MIPs and the BW values , to tune a setting value of the MIPs and BW (i.e.,

the bandwidth within the data center).

As described above, there needs to be an allocation of the capacity of the computation

and transmission units with MIPs and bandwidth values. They will be derived from

a simulation to construct the training set. The work relies on the perspective of the

training set to predict the runtime of the workflows, which is based on fixing the

functional training set to be more influential on testing sets outside of the training
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Table 3.2: Input Metrics

Parameters dependence Parameters Description

size Image size (MB)
ram VM memory (MB)
mips CPU speed
bw Capacity BW in VM
pesNumber Number of CPUs

VM parameters

Vmm VM name

VmNum Number of VMs
num user Number of the usersGlobal parameters
MaxTransferRate The bandwidth within a data centre in MB/s

arch=“x86” System architecture
Os Operating system
Cost The cost of using processing in this resource
CostperStorage The cost of using storage in this resource

Data centre parameters

CosetperBw The cost of using BW in this resource

boundaries.

To begin with the initial stage, we need to build the training set and configure its

parameters, so that we have proposed to use an empirical approach for running Work-

flowSim repeatedly to extract these parameters. The most significant function of an

empirically the simulator is to predict continuous values until finding a minimum rel-

ative error between the actual and estimated execution times on the samples from the

training set. Meanwhile, the runtime estimation module that will be summarised in

next section would be cooperated to support the training set with the estimated run-

time, consequently to improve the MIPs and BW values. Thus, at a minimum relative

error, we can pick up the MIPs and BW values and be considering them as optimal

capacity parameters for the testing sets, (will be explained in more details in the next

chapter in the methodology).

ii- Extracting Synthetic Workflow Parameters

As an output from the phase 1, the template for the synthetic workflow still suffers

from inadequate information. This information must be collected and placed in the

context of the template to enable execution of the WorkflowSim on a new workflow.

In this step, a necessary extraction method to derive the missing parameters of the

synthetic workflow is planned.

In this regard, the simulator’s parser and an estimation module have a fundamental role
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in addressing this problem. However, the original parser model of the simulator was

designed to parse an XML file which constructed based on Pegasus system. Therefore,

to make the simulator accept a new format of the workflow from a different system,

we have to develop the parse to be tailored with the new workflow’s format, at the

same time the parser should manage a treatment of missing parameters.

The workflow template generating phase is followed by predicting the missing param-

eters by assigning different values (from estimation module) to the parameters (e.g.,

expected runtime, input data size, and output data size) in the template. The pre-

diction data are assigned to these missing parameters according to the input data size

and the estimation module is then used to make predictions. While assigning data

to the parameters, the parser model parses and creates the internal template within

full information for each identified node. Both of those units (i.e., the parser and the

estimation units) have been working together to generate the missing parameters with

taking into account the sequence. Firstly, parsing and predicting to create the output

data volume overall workflow template, and secondly parsing and predicting to gener-

ate the execution time because the execution time of each node depends on the input

data size as an input parameter to estimation function.

3.4 Conclusion

In this chapter, the simulators have been introduced, which will be used to build

a framework to predict the performance of the data-intensive workflow with better

accuracy in runtime. The key steps require an adaption of these simulators and make

them adequate to accept complex workflows rather than the Pegasus workflow system.

The complex workflow that will be applied as a case study is implemented in the e-SC

system as well as a pipeline of the workflows it will be described in the next chapter.

We have presented approaches that can extract the framework parameters and predict

execution times, input data size, and output data size. The approach also uses these

parameter values for populating the synthetic workflow with data that are conveyed

by WorkflowSim. The detailed steps are followed in conjunction with a coordinator

methodology that clarifies the approach to enable such complex workflows can be
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simulated and predicted for their performance. Two experiments were conducted using

WorkflowSim and provided us confidence to work with these tools.

In the next chapter, more detail about the case study and description of the processes

conjunction methodology to build the framework for runtime performance prediction

of the complex data-intensive workflows is given.
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Summary

The simulation, together with a newly proposed runtime estimation methodology,

provides an overview of the performance and benefits to predict the resource number

associated with data-intensive processing. Such an approach has implications on fields

that include health care. In this chapter, a complex genomics data processing Next

Generation Sequencing (NGS) workflow-based pipeline is implemented as a case study

because there is a lack of evidence on how well NGS pipelines behave with an increase

in the number of input samples. A way of converting e-SC pipeline workflow into one

that can be accepted by the WorkflowSim is explained. An integration method for the

methodology phases is described with the WorkflowSim to produce a new framework

that allows one to predict the runtime if the NGS pipeline’s user wants to scale up

input samples. How this methodology is working correctly is shown with implementing

some of the experiments that have already been executed in the cloud with the same

input samples.

4.1 Introduction

A big data workflow is composed of many applications that may involve large input

data and produce large amounts of data as an output [49]. The scale and demand of

these applications is such that they might rapidly overwhelm stand alone computing

systems. One solution to this problem is to deploy the workflow into a commercial

cloud environment that provides ample resources and elastic provision. However, hiring

resources clearly costs money and the process of tuning the deployment to ensure

sufficient and efficient use of resources can be a costly exercise in itself. Therefore

some means of predicting the performance of deployed workflows would be extremely

useful and could save money.

In this chapter, this problem is explored by considering the pipeline workflow deployed

on the Microsoft Azure public cloud [27]. The NGS pipeline is used to discover variants

in patients’ exome. The local deployment of this pipeline, processing a cohort of 24

patient samples, typically takes several days to execute. The Azure deployment can
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potentially run much faster, but given limited funds it is necessary to find an optimal

or near-optimal deployment minimising execution time and cost.

As pointed out earlier, the selected simulators have been a significant tool for the

evaluation and improvement a single workflow, although there is a lack of support for

simulating a pipeline (a set of workflows). A simulation platform should be modified

to simulate the execution behavior of the NGS pipeline as implemented in e-Science

Central e-SC . The main contributions of this chapter is to propose a methodology for

predicting the runtime and output data size using WorkflowSim/CloudSim, parame-

terised with realistic data from archived provenance file of e-SC workflows. In order to

achieve this, the e-SC workflow enactment model has been translated into a Pegasus

workflow suitable for input into WorkflowSim and used WorkflowSim and CloudSim

to predict runtime and the output data size. To the best of our knowledge this is a

novel approach of prediction.

The current chapter is structured as follows: In the next section 4.2, the conceptual

structure of the NGS pipeline and its characteristic is discussed. Section 4.3 will

describe the methodology phases, which included modelling the NGS pipeline to the

synthetic workflow, building an estimation module, and WorkflowSim for extracting

input parameters. Section 4.4 shows the experiments that evaluate and examine the

methodology which is proposed for prediction the sample input data over the training

data set. Finally, the conclusion of the chapter is presented.

4.2 A Case Study of data-intensive Workflow- NGS

Pipeline

To explore the problem of simulating workflow deployment in the cloud, we have chosen

a case study using the NGS pipeline [27]. These workflows were designed following the

WES 1 data processing pipelines used at the Institute for Genetic Medicine, Newcastle

University. In general, a pipeline consists of a composition of workflows that include

typical NGS processing steps [123], which are raw sequence alignment (BWA), cleaning

(Picard), sequence recalibration, filtering, variant calling and recalibration (GATK),

1The Whole Exome Sequencing is an application of the NGS, represents an efficient approach for
studying the genetic basis of human phenotypes [135].
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coverage analysis (bedTools), and annotation (Annovar). It consists of a top level,

coordinating workflow that invokes 8 sub-workflows, each of which implements one

step of the pipeline, see Figure 4.1.
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Figure 4.1: The structure of the NGS pipeline; highlighted in dashed blue is the
top-level workflow; red dots indicate the synchronisation points when the top-level
invocation waits for all child invocations to complete. [27]

For each step, the sub-workflows are executed synchronously in parallel over a number

of samples or sub-chromosomal regions. Each patient sample includes 2-lane, pair-end

raw sequence reads. The average size of the input is about 150 Gbases per sample,

which is provided as compressed files of nearly 15 GiB size. The top-level workflow

processes N of these samples (N ≥ 6) are executed by submitting N sub-workflow

invocations for a particular step. Then, the process waits until all of the submission

are complete, before then moving on to the following step.

Overall, the pipeline involves three key stages:

(1)- preparation of the raw sequences for variant discovery and coverage calculation.

(2)- variant calling and recalibration.

(3)- variant filtering and annotation.

Stages 1 and 3 are executed in a loop so that all tools involved are invoked on each

sample separately. As there is no dependency between samples in these two stages,

paralellisation is straightforward. Conversely, Stage 2 runs only once for all input

samples, thus parallel processing across samples is no longer possible. However, since
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the tools used in Stage 2 can operate independently on individual chromosomes (or even

on smaller sub-chromosomal regions), the pipeline exploits that property by splitting

each exome within each sample along chromosome boundaries. Then M variant calling

sub-workflows are submitted (M ≥ 23) each with a particular chromosome region taken

from all input samples.

Both Pegasus and e-SC support enactment of scientific workflows which combine tasks

into a directed acyclic graph (DAG). These systems share some common features

but there are important differences between their deployment and workflow execution

model.

4.2.1 e-SC architecture and workflow enactment model

e-SC consists of three main components: the server, database and workflow engine. It

follows the common master-worker pattern in which the server orchestrates execution

of workflows across one or more workflow engines. All e-SC components can be de-

ployed on a single VM (all-in-one deployment) but in larger scale experiments, such

as the NGS pipeline, they are deployed separately with single server and database VM

and multiple engine VMs. The e-SC workflow enactment model is based on the work

stealing approach: the server submits workflow invocations to a shared FIFO queue.

From there, invocations are pulled by the engines. Each engine can run one or more

invocations concurrently in order to improve performance on a multi-core VMs.

The e-SC workflows can be of two types: basic and compound. Basic workflows execute

within a single engine (within a single invocation thread on that engine), and so the

data transfer between tasks is enclosed within a VM and can be very efficient. In

addition, there are compound workflows that are workflows which submit one or more

subworkflows. A subworkflow can again be compound or basic. Of course, data transfer

between the parent and its child subworkflows is supported by the server. However,

in the Cloud, workflow engines can directly communicate with scalable cloud storage

such as Azure Blob Store or Amazon S3, which enables effective data transfer for large

scale workflow applications. Moreover, links between blocks can transmit a list of

input data and so a single parent workflow can start multiple subworkflows – one for

each element on the list. Figure 4.1 shows the architecture of e-SC deployed in the
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Azure Cloud.

4.2.2 Pegasus architecture and workflow enactment model

Pegasus is a workflow compiler that cooperates with the centralised workflow execution

system, Condor DAGMan [110]. Although workflow instances have input data that

are required for computation, they are independent of the execution resources. It,

therefore, creates Pegasus as an executable workflow by mapping the workflow instance

onto the execution resources. And then, the workflow engine executes the workflow

tasks in order, depending on their dependencies. Once the jobs are ready to run, this

can be determined by the Condor DAGMan, which submits them to the HTCondor

queue for the execution. For data storage, the shared file system can be configured by

the user, such as for the Network File System (NFS). Additionally, Pegasus can plan

the workflow using an object store such as Amazon S3.

As indicated in Chapter 2, the description of the abstract workflow in XML format

is used as an input to Pegasus and called DAX. This file is captured in all the tasks

that achieve computation, required inputs and expected output data for each task, the

dependencies of these tasks, and the estimated execution time. The logical identifier

represents all input/output datasets and executable tasks. WorkflowSim follows the

execution model of the Pegasus WFMS. Often, a workflow is modelled as a DAX

relationship. Of the assumption is that DAG = (V,A), where the set of vectors

V = {T1, T2, . . . , Tn} represents tasks in the workflow and set of arcs A represents

data dependencies between these tasks. However, a workflow consists of tasks, each

one of them represents a node of computation, and the edges can denote the task

dependencies between these tasks that specify the order in which they can be executed.

Figure 4.2 illustrates the Floodplain Mapping workflow that contains two nodes“ww3”

and “adcir” and their dependencies, where this description represents the abstract to

an executable synthetic workflow by WorkflowSim.

4.2.3 NGS Pipeline Dataset

We have used NGS pipeline execution information that is supported by ReComp team

[1] that included the Blocks names, Input data size, Output data size, and execution
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Figure 4.2: Part of the Floodplain Mapping workflow (XML with 3 tasks)

time. This information was collected from seven real runs of the NGS pipeline, where

these had different input samples 6, 10, and 12 on 12 VMs. We analysed this informa-

tion to extract the data that was indicated in Chapter 3, where these data are used

to generate the prediction equations that are required to build the estimation module.

The traces data and analyses are available in Appendix B for 6-sample NGS execution.

Prediction Mechanism: The prediction mechanism relies on both the training set

and the testing set. The training set can be constructed from the provenance data as

in Section 4.3 by considering only a small input sample of the NGS pipeline, where

the framework uses the training to produce a fairly accurate prediction of the runtime

of the NGS pipeline when one needs to test large input sample with a different VM’s

number. The testing set represents an operation of forecasting the runtime and the

resource numbers which are required to run the NGS pipeline on the cloud hence

the produced estimated time from the framework based on the training set can be

compared with an actual execution time of the NGS pipeline to test how accurate it

is.

4.3 Methodology

In this section, we demonstrate the stated methodology to simulate unlike Pegasus

workflow in the WorkflowSim and normalising this simulator as a framework which tar-
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gets for predicting the runtime execution of the NGS pipeline workflow. The method-

ology contains three basic phases:

(1-) modelling NGS to synthetic workflow.

(2-) building the estimation module.

(3-) extracting input parameters, these phases are shown in Figure 4.3.
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Figure 4.3: The methodology diagram of runtime prediction for the NGS pipeline using
WorkflowSim.

4.3.1 Phase 1 (Modelling NGS to Synthetic Workflow)

i- Modelling the Pipeline in WorkflowSim

Because, e-SC workflows can represent combinations of more fine-grained tasks, and

also due to the difference between the workflow model and possible invocation trace,

a way to map an e-SC workflow into one that WorkflowSim could enact had to be

found. The chosen approach was to represent the actual invocation trace of an e-SC

workflow as a compatible Pegasus workflow, which could be done for the NGS pipeline

using the provenance logs provided by e-SC. The provenance logs allow one to trace

the complete graph of tasks and workflows that were involved in producing a specific
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output. They include the block execution time and the amount of data transferred by

each block. These data were used to reconstruct the applied NGS pipeline workflow as

a WorkflowSim workflow. Each task in Pegasus may run on different VM, unless there’s

clustering turned on, so that is possible to model e-SC workflows as workflowSim tasks.

This seems to be an appropriate abstraction level; however, subworkflows in e-SC can

be enacted in the middle of the parent workflow. The mean that every e-SC workflow

has to be split into parts connected by the subworkflow submission blocks; this is

depicted in Figure 4.1. Following this approach, an execution trace can be mapped

on the NGS pipeline, which runs on e-SC as a WorkflowSim workflow descriptor.

Figure 4.4 illustrates this mapping. For different number of patient samples in the

batch, there is a differently sized DAX (DAG in XML) descriptor.

The next step in this phase is to fill out the synthetic pipeline template for the task list

and the dependencies of the task; such steps are summarised the constructed abstract

level of the workflow.

ii- WorkflowSim Input Synthetic Workflow

The function of this step is related to the conversion from e-SC provenance traces to

WorkflowSim workflow model, in order to complete the modelling approach. This is

done to fill out the synthetic workflow template, for the list of the tasks correctly, for

the dependencies of the tasks, for the input and output data relevant to the tasks.

The filling in the template depends on the provenance data and the NGS pipeline

invocation in the collection of manual data.

Firstly, all computation units in the NGS pipeline invocation (i.e. workflow and sub

workflow) need to be specified and identified with an abbreviated name (e.g., BWA-A1

Align, BWA-B1 Align, Picard1, VCF1, etc). These abbreviations are considered as

tasks in the abstract, where each task refers to a computation node. Secondly, however,

these tasks have a hierarchical order to organise their execution correctly. Therefore,

there is a need to extract this relationship between them as it appeared in the pipeline

invocation. Finally, to specify the data dependencies of these tasks, there is a need to

map the dependencies’ definitions by defining which task is a parent or child. To this

end, the constructed form is the synthetic workflow, which structurally identifies the

abstract but does not fully contain the information about the input and output data
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and the execution time of each task. The filling action of these parameters in the next

phase will be described. The approach taken here can be applied to other workflow

systems.

Accordingly, as was explained above about the description of the workflow execution

model, the NGS pipeline from an execution model in e-SC was converted to an exe-

cution model in Pegasus. Figure 4.4 shows the result of a hierarchical pipeline graph

that can be represented by DAG implementing a single NGS pipeline that represents

one possible execution path of the workflow schema, where an execution consists of all

nodes and edges within a workflow DAX beginning from the start node (i.e., 1-sample

input) to the end node. For running 6 samples NGS pipelines, the implementation is

part of 6 paths of the workflow schema (i.e., 6-sample input); for running N samples

pipeline , it will be implemented within N paths.

4.3.2 Phase 2 (Building Estimation Module)

An abstract template that was outputted from the previous phase is incomplete and

still needs the process to fill out missing information that is concerned with the exe-

cution of the tasks such as the required input data, expected output, and estimated

execution time. In this phase, the method of building an estimation module is de-

scribed. To achieve this action, we need to apply the following steps:

i- Data collection and analysis

The primary task for this step is to shed light on the estimation module, which includes

constructing and integrating it into WorkflowSim. This provides an approach for

filling out the missing parameters to complete the synthetic template. This can be

achieved by analysing and collecting information from the provenance file of the past

execution of the NGS pipeline; this information is required for extracting the prediction

equations.

Initially, the information (data) is usually downloaded in a CSV file by a Prolog pro-

gram as mentioned in Chapter 3. This needs to be arranged before extracting the

specific elements. In addition, the data file needs manipulation and analysis, there-

fore, it can be edited in Excel Spreadsheet, containing all relevant fields of information
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Figure 4.4: Invocation graph of the NGS pipeline with N samples; as in Figure 4.1
but in a form that would be acceptable to the WorkflowSim.
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Table 4.1: Basic characteristics of a selection of tasks of a 10-sample pipeline execution
extracted from its provenance trace.

Pipeline step
Input data

[MB]
Output

data [MB]
Run time

[s]

BWA1 FEL 15,862 11,336 18,807

BWA A1 AL 7,507 7,963 9,871

PICARD1 11,342 7,411 8,941

GATKP1 1 7,417 2,766 28,703

VARIANTA 344 344 23,792

GATK phase3 55 43 943

VCF1 55 43 175

COVERAGE1 2,766 16 280

ANNOTATE1 43 204 1,206

such as Invocation Id, Workflow Name, Block number, Block name, Start time, End

time, Input data size, and Output data size. The following steps describe a method of

extracting the above parameters from analytical provenance file:

� Sorting the information by an invocation Id and Start time. To obtain an or-

dering of the pipeline blocks as were executed in a real cloud. This helps easily

extract the actual execution time of each block.

� Extracting the runtime for each block, (i.e. runtime = End time − Start time).

� Specifying the input and output data volume of each block.

Table 4.1 gives an example of the provenance data pertaining to the runtime and

(input-output) data volume which is collected from an execution before the actual

simulation of a workflow is started. All extracted parameters play a significant role in

our experiments for time execution estimation of the task. This is also to derive the

output data volume that will be used as input for next task.

ii- Extracting prediction equations

In the previous step, a method of collecting and analysing a required data from the

e-SC provenance file was focused on. In this step, the extracted data is focused on by
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using the valuable factors to derive the prediction equations for building an estimation

module. The reasons that prompted us to build like this prediction model are:

(1) Running the NGS pipeline tasks in the WorkflowSim that takes into consideration

its structure, as in Figure 4.4 needs to know the execution time of each task before the

submission is done. This is one reason to complete the synthetic workflow template

with an expected runtime of each task. Therefore, a prediction model for estimating

the runtime needs to be built.

(2) The basic structure of the NGS pipeline is presented in Figure 4.4, which shows a

number of linked blocks. Each block can process a given amount of data, that means

the execution consumes data which takes time and then produces an output data. The

product data from the first block is then propagated to the second block of the NGS

pipeline; in a similar way for the second block, this will propagate amount of output

data for the third block until the last block. However, the synthetic workflow needs

to be filled out for the input and output data size for each task before the submission

to the WorkflowSim. Therefore, the prediction equations need to be setup prior to

the execution as it determines the output data size for missing information, eventually

that will lead to building a unit acting as a predictor.

To achieve the intended purpose, which is handling missing values, an estimation

module is established that is capable of prediction for both runtime and output data

size of each task. Through the analysis of data provenance, it is evident that input

data size and the execution time have a relation as a linear relationship of time and

data size. The relationship in identifiable in a linear regression. Providing an adequate

number (even less number) in association of the observed data between input data size

and execution time is relevant for this regression. For example, Figure 4.5 shows a

prediction equation of the BWAn FEL (The integer n is 1,2,..,6) for three 6-sample

input using a simple linear least squares regression model. Looking at Figure 4.5, the

table shows the number of observations of the execution block (BWAn FEL) while

looking at the same Figure (to the right) shows a linear regression line that has an

equation of the form: Y = bX + a, where X is the explanatory variable (e.g., represents

input data size) and Y is the dependent variable (e.g., representing n predicted time).

In the same Figure 4.5, the accurate indicator of a generated function can be controlled
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by the R2 that have values between 0 and 1, and the function is more accurate when

R2 is close to 1. Additionally, a same method is depended on that is used to obtain

further equations of the output data sizes.

It may be seen through an analysis of data provenance that the runtime does not scale

linearly with the input data size. In such cases, we need to find a solution, either

by using the upper or lower bounds on the execution time, if possible, or by using a

different factor, such as used in Haplotype workflows. Hence, the main indicator is

that the Haplotype workflows uses the same input data sizes of all patient samples

but is configured to read different chromosomal regions. Thus, the region’s length was

used as a division factor for different input sizes. Therefore, the region length was used

as a division row matrix factor to compute function for the same input sizes (e.g., the

interval row matrix such as [“chrX:1-77635280”], [“chrX:77635281-155270560”], etc.,

where there is the same input value “1.8767E+10” ). For completion, building an

estimation module is used to extract two type of the prediction equations that are

described as follows:

1- Runtime prediction model

Execution time prediction is an important factor in cloud computing and in simulation

[58]. To support completion of building an estimation module, a set of predictions for

the equations (each block in the pipeline needs equation, see 4.1) that work as an

execution time estimation model, which statistically estimates the runtime of the tasks

using past observations by using past information [82]. Where these data exist, these

equations in the estimation module help to estimate runtime of the task as a function

of one input parameter which is the data size.

A least squares linear regression method as a solution to address this estimation is

used. This approach manages the relationship between two variables, size, which

represents an input data volume, and runtime, which represents a runtime to extract

runtime from size. Following the structure of NGS pipeline as in figure 4.4, each set

of tasks represents a group of observations, which have one set of prediction equations.

These observations should be under the same name and may be collected from one

or more invocation. For example, the tasks (Picard1, Picard2,.., Picard6) are in the

6-sample input pipeline; they have one prediction equation as follows:
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runtime = 8.95734E − 07 ∗ size− 1840.06; (4.1)

Thus, it is a necessary that such type of estimation in the framework supplies expected

execution time of each task in the synthetic pipeline. Concurrently, the prediction

equations can be used to extract runtime of large-scale input data when the framework

is used for a training test.

2- Output data volume prediction model

The approach taken by runtime prediction method to generate a model is followed

in this method as well. However, the difference lies in two considered variables, that

is the size input variable (i.e. input data volume) and output, which is a dependent

output variable (i.e. output data volume) to extract output from size. For example,

the tasks the tasks (Picard1, Picard2,.., Picard6) are in the 6-sample input pipeline,

and they have one prediction equation as follows:

output = 0.981865508 ∗ size− 1220190052; (4.2)

In addition, to support completion of building an estimation module by adding a set

of prediction equations, each block in the pipeline needs equation as the equation (

4.2 ) that work as an output data size estimation model. The volume of data plays

a crucial role for modelling execution time estimation. This parameter is gathered

from real data in the provenance file where it is linked to the front line of the tasks

(i.e. the first tasks that the pipeline execution is started). In the NGS pipeline, every

task generates output data required by its child as input. This method is required for

constructing a model and integrating it into WorkflowSim for output data estimation

which is required to complete our models.

3- Managing the same input of the Workflows issue

In particular, there is a case where using data input size to generate estimation equa-

tions was inadequate for the Haplotype workflows that was the entry-point to the part

of the pipeline that runs under the chromosome-split regime. This indicates that the

Haplotype workflow as the input uses data of all patient samples but is configured to
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read different chromosomal regions. Thus, the region’s length was used as a division

factor for different input sizes. The region length was used as a division row matrix

factor to compute function for the same input sizes (e.g., the interval row matrix such

as [“chrX:1-77635280”], [“chrX:77635281-155270560”], etc., where there is the same in-

put value “1.8767E+10” ).

Figure 4.5: Linear model of equation prediction of the BWAn−FEL workflow that
extracted from three runs of the NGS pipeline 6-sample1, 6-sample2 and 6-sample3;
where n is from 1 to 6, Y is a predicted runtime, x is an input data size.

iii- Integrating the derived equations phase

In this step, the equations extracted in the previous step are gathered in an estimation

module that supports the framework for prediction. This module should be integrated

and work in coordination with the other WorkflowSim equipment, i.e. it works in

coordination with the parser. The existence of such a mechanism in the framework

carried out a function of filling in missing parameters in the synthetic pipeline according

to the prediction sequence (i.e., using first the output data set and second the execution

time). There is then a framework that can then predict information about the pipeline

without consulting the provenance file to explore the runtime and output data size.

This facility should be available in the framework because its functionality is testing

a pipeline with a large input data set that has no information on the provenance file

at this point.

- 76 -



Chapter 4: NGS pipeline performance

Some operational preparations for the framework need to be undertaken, including a

working method of this estimation module predicting the relevant parameters of the

WorkflowSim environment. In the next phase, this is presented.

4.3.3 Phase 3 (WorkflowSim for Extracting Input Param-
eters)

i- Filling in Runtime and input/output Data Size

The output of phase 1 is describing and presenting an abstract of the pipeline with a

new XML file format that is not composed of all parameters (i.e., it lacks the param-

eters such as execution time, output data size, and the input data size). For example,

the following is a brief record on XML file of the NGS pipeline that represents the

“PICARD1” workflow (task) with the missing parameters.

<task id= "PICARD" namespace= "NGSprocessingPipeline" name= "Picard -

Tools -Workflow" runtime= "---">

<uses file= "BWA1_FEL_out.dat" link="input" size="----"/>

<uses file="PICARD1_out.dat" link="output" size"----"/>

</task>

As indicated earlier, the remaining structure of the whole pipeline as presented in

Figure 4.4 was constructed manually as an XML file. Since the node represents in-

dividual workflow/subworkflow that identified the tasks abbreviation (id), where the

logical identifiers with the task should be invoked, that contains a list of input and

output file names which are relevant to the task. To complete the XML file and make

it ready to simulate what is needed to fill out the parameters runtime, input size and

output size with their estimated values are used.

Through the WorkflowSim running steps, the parsing is the first step in which the

proceeding is being of syntax analysing the XML file. However, the original parser

module of the WorflowSim cannot parse the uncompleted XML file of NGS pipeline.

Therefore, we have modified a new version of the parser which is working under the

coordination of the proposed estimation module to overcome this problem and com-

plete the missing parameters. At the beginning of the operation of the parser, two

- 77 -



Chapter 4: NGS pipeline performance

matters are considered: a runtime estimation should be given for each task before

the simulating; the output data volume should be with a predefined execution time

because the execution time depends on the input data size. The following segment of

Java code shows a method of filling in the “Picard” node in the XML with input and

output data sizes before moving into populating the execution time stage.

i f (GetBlockName .PICARD. conta in s (nodeName) ) {

L i s t l i s t = node1 . getChi ldren ( ) ;
Element f i l e 0 = ( Element ) l i s t . get (0 ) ;
Element f i l e 1 = ( Element ) l i s t . get (1 ) ;
S t r ing inout = f i l e 0 . getAttr ibuteValue ( ” l i n k ”) ;
Att r ibute a t t r i b u t e = f i l e 0 . g e tAt t r ibute ( ” s i z e ”) ;
a t t r i b u t e . setValue (BWA FEL common. get (BWA FEL count) ) ; // Get the parent output

data
BWA FEL count++;
f i l e S i z e 1 = f i l e 0 . getAttr ibuteValue ( ” s i z e ”) ;
s i z e 1 = Double . parseDouble ( f i l e S i z e 1 ) ;
s i z e 1 = data1 . getOutputData (nodeName , inout , s i z e 1 ) ; // est imated input data s i z e
NumberFormat formatte r = new DecimalFormat ( ”##############”) ;
S t r ing est imatedValue = formatte r . format ( s i z e 1 ) ;
Att r ibute a t t r i bu t e 1 = f i l e 1 . g e tAt t r ibute ( ” s i z e ”) ;
a t t r i bu t e 1 . setValue ( est imatedValue ) ;
PICARD common . add ( est imatedValue ) ; // Save est imated data in XML

}

In the case of runtime parameters, each is assigned by the value of predicted execution

time that will be extracted by the estimation module from input data size.

ii- Extracting Input Parameters

There will be several sets of parameters with a required value to operate the Work-

flowSim; this step represents a description of the execution environments, where the

NGS pipeline needs to be simulated and extract execution time for each task. Then

we will be able to conduct a realistic simulation of scenarios like in a real cloud within

the simulation environment.

The main target of the framework is to gain a better simulation time to predict the

whole runtime of the pipeline with different sample input sizes. For this purpose, we

can submit the pipeline to our framework with only the size of the input sample (small

size of the input sample). However, as yet we have no idea about the parameters of

the execution environment (e.g., MIPs and bandwidth). This step can be considered

as an important step towards building a generic training set that will be used for the

testing set.
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As a solution to the above, an approach to allocate the capacity of the computation

and transmission units is proposed by driving the framework to construct the train-

ing set in an empirical method (the description of this mission was in Chapter 3).

The approach is, therefore, to gather provenance data from sample executions with

small input sample numbers (i.e., the actual execution time of the whole pipeline is

short), use this data as input to WorkflowSim to make a comparison with an estimated

simulation time, and find a relative error between them. This process is repeated a

couple of times that are identified across the two boundary values of both the MIPs

and bandwidth. As a result of running the framework many times, the relative error

matrix can be generated, which can determine the optimal values of the parameters

by searching the matrix for a minimum relative error.

The framework configuration is retrieved by tracing the simulator itself many times to

generate unknown parameters values (e.g., MIPs and BW), with the approach’s steps

summarised as follows:

1. Selecting minimum and maximum value of MIPs and BW parameters.

2. Running the WorkflowSim individually for each sample depending on the chosen

MIPs and BW values with defined range in step 1 to generate estimated runtime

of pipeline execution.

3. Applying an error function to find the error value between real time and esti-

mated time for each running input sample by implementing the following formula.

errorratio =
N∑
j=1

(RT − ET )2. (4.3)

Where RT and ET are Real time and Predicted time respectively. N is the

number of input sample in one training set.

4. Repeat step 2 and 3 with fixed skip of MIPs and BW values across a given range

and detect the minimum errorratio.
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4.4 Experiments and Evaluation

This section presents testing of the methodology with the NGS pipeline execution on

an adapted framework. A small data set is used that is supported by ReComp team

to run the experiments. In these experiments, we wanted to measure the capacity

values of the MIPs and BW parameters by following up on the methodology. We have

focused on finding these parameters values of the 6, 10, and 12-sample input data. As

a result of these experiments, we constructed two small training sets which are {6}

and {6 + 10}. Also, these training sets would enable us to test larger input data such

as 10 and 12-sample input on the small training set {6} or test 12-sample input on

the training set {6 + 10}. Finally, we discuss the evaluation of the estimated results

for relative errors between different running samples to derive the expectation of the

enhancement our framework.

4.4.1 Experiment setup

The NGS pipeline is composed of 8 tasks for each path and between them there are 53

common workflows (VARIANT-A, HAPLOTYPE-CLEAR, VARIANT-B, and GATK-

phase3). We ran the application with the size of Total Tasks = N × 8 + 53, where N

is the number of input samples. For example, if N = 6, then Total Tasks = 6×8 + 53.

So, when we have 6 input samples, the experiment consists of 101 tasks. For each

task, the estimation of the output data size and runtime using the simulation and

then using the output data size to generate the input data size for the subsequent task

is generated.

We configured WorkflowSim to simulate one datacentre and 12 virtual machines (VMs)

to represent three engines in the Azure cloud, each with four execution threads. The

capacity of the computation unit with MIPs and bandwidth (BW) values are derived

and allocated by using the application of an empirical method (see Chapter 3) in

running the framework multiple times. Moreover, for data transfer delay, a shared file

system is used for one datacentre, where the data transfer time is already considered

in the task execution time and there is a varying setting of a BW value depending on

which training set is used. The space shared mode of the VMs has been defined as
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only one VM can running one task at a time. We have used three different sizes of the

input sets with 6, 10, and 12 patient samples, based on the data we have available for

training and validation.

The size of the input sets was a trade-off between what is used in clinical practice (30-

40 patient samples) and the cost it takes to run the pipeline in the Cloud. And the

6-sample input set was the minimal size for which the pipeline completed successfully.

4.4.2 Experiment Training set

To create a training data set, firstly, we have to collect the operational characteristics

of this training data set on the framework. For example, finding the capacity of the

computation unit and transmission data unit values (i.e., MIPs and BW). There is

also the need to extract the real execution time of the NGS pipeline with the sample

input data. Knowing how long it takes to execute the process on the cloud and using

this time to be compared with estimated time is needed. This execution time is found

in the provenance file of the previous execution and can be extracted to be used for

comparing with an estimated time to find the relative errors. Following the completion

of extracting the parameters, we can use all sample data as the training set for the 6-,

10-, and 12-sample cases, each according to its set. In general, this experiment seems

to be an evaluation of the simulation permits prediction by implementing the case

study. This determines whether the methodology can predict a runtime and output

data sizes of the pipeline, with enough accuracy that is useful to scale up the number

of input samples.

We conducted our experiment by using the dataset on the previous seven executions for

three kinds of samples as input data to the pipeline, including 6-sample, 10-sample, and

12-sample (See Subsection 4.2.3). The runtime (whole execution time of the pipeline)

has to be extracted for each past execution from the provenance file and then used to

run our framework over the same input scale to give an estimated execution time to

compare with the real execution time. While running the simulation multiple times to

explore a minimum error, and after finding such value, we will rely on it to determine

both parameters values. Depending on a minimum relative error we can select MIPs

and BW values which have an optimal value at that point, i.e., when they were in
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the setting, and a minimum error was obtained. In this way we were able to find the

parameters’ value (i.e, MIPs and BW). The same process was replicated over all 6-,

10- and 12-sample input data.

The simulation environment is now ready for implementation; the pipeline to generate

an estimated time on a specific training set mentioned above can be implemented.The

6-sample would be trained on the training set {6}; the 10-sample would be trained

on the training set {6 + 10}; the 12-sample would be trained on the training set

{6 + 10 + 12}. As real executions potentially vary with each run and WorkflowSim

gives a single prediction, this predicted value will, therefore, be different to the real

times. The equation that has been used to calculate a relative error between estimated

time and real-time for each case is as follows:

RelativeError =

∑
|X − ET |∑N
j=1(RT )

(4.4)

Where RT and ET are Real time and Predicted time respectively. N is the number

of input sample in one training set.

Within scenario one, the 6-sample set parameters were found and used as training data

in predicting the 6-sample input case as shown in the Figure 4.6. Within scenario

two, the parameters of the 6- and 10-sample were found and set as training data to be

applied for prediction the 6- and 10-sample input case as shown in Figure 4.7. Finally,

within scenario three, the parameters of the 6-, 10-, and 12-sample set were found and

set as training data to be used for prediction of the 6-, 10-, and 12-sample input case

as shown in Figure 4.8.

In each case the values of MIPs and BW that gives the minimum error over the

training set are used to give the estimated time. The results in each case are shown

in Figures 4.6, 4.7, and 4.8. As expected the errors are relatively small (< 10%). It

might be slightly counter-intuitive that the error for the 6-sample (0.090) is larger than

that for either the 10-sample or 12-sample (0.071 and 0.075 respectively). However,

this is due almost entirely to one outlier in the measured execution times which has

a disproportionate effect on the 6-sample as there are fewer data elements in the

training set. Such experimental variance could clearly be reduced by ignoring the
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Figure 4.6: Scenario One: extracting parameters of 6-sample data and predicting itself
sample set; where on the left side MIPs and BW values; on the right side 6-sample
training set.
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Figure 4.7: Scenario Two: extracting parameters of (6+10)-samples data and predict-
ing itself sample set; where on the left side MIPs and BW values; on the right side
(6+10)-sample training set.
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Figure 4.8: Scenario Three: extracting parameters of (6+10+12)-samples data and
predicting itself sample set; where on the left side MIPs and BW values; on the right
side (6+10+12)-sample training set.
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outlying value. However, we have chosen not to manipulate our results in this way as

a) the outlying result is a genuine data point, and b) our number of data points in each

training set is so small that we have no statistical basis on which to say which result is

an outlier and which is not. However, as an aside, we have executed the experiments

without this data point and the results do improve considerably.

4.4.3 Prediction at Input Scalable

In the previous section, the accuracy of the prediction model by comparing the actual

and estimated runtime derived from the training sets was verified. This process was

self-reflective in that it included the provenance data from the sample size predicting

within the training set. We now wish to consider a pure prediction of the 12-sample

input by using the 6- and 10-sample sets as training data. This allows us to consider

whether our approach can indeed give rise to a useful prediction in this scenario which

might be used to procure infrastructure in the cloud. The results are shown in Figures

4.9 and 4.10.

Using the 6-sample data as the training set for the 12-sample case gave a relative error

of approximately 0.187 (18.7%, see Figure 4.9). Using the 6- and 10-sample data as

the training set for the 12-sample case gave a relative error of approximately 0.112

(11.2%, see Figure 4.10). In both cases the predictions under-estimate the execution

time. In the case of the 6-sample training set we already know that one outlying result

in the provenance data is having an adverse effect on prediction and this will have had

a greater effect here than in Figure 4.8. What also appears to be significant is that the

MIPs and BW estimations in WorkflowSim seem to be much larger for the 12-sample

case than in the other two cases (see Figure 4.8), presumably reflecting the increased

demands. Therefore, the under-estimation of MIPs and BW is causing an additional

error in the prediction for the 12-sample case.

Our framework emphasizes the need for more historical data to generate a better

prediction. However, based on a given data set, the framework was able to be about

80% accurate. Therefore, to increase the prediction accuracy, we need to collect more

historical data set of the NGS pipeline, which is costly. However, the aim was to use

a small dataset, hence, what was achieved in terms of accurately may be considered
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to be sufficient.
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Figure 4.9: The pure prediction of the 10- and 12-sample input by using the 6-sample
training set.

4.5 Conclusion

The scientific data-intensive workflows are growing increasingly complex, often consist-

ing of a set of workflow and sub workflow with data dependencies in relations among

them often referred to as a pipeline. However, there are no appropriate means on how

well these pipelines can behave in a state of increasing the number of input samples.

On the other hand, measuring and testing of these pipelines are uncontrollable if it

could be done over computing system because it will be costly, time-consuming and

most often unsuccessful. Therefore, as a solution for this issue was, we have built the

framework that can predict an execution time of the pipeline in case of there is any

increased in the input samples.

In this chapter, we have considered this problem by implementing the NGS pipeline

workflow as a case study. The core function of the NGS pipeline is to discover vari-
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Figure 4.10: The pure prediction of the 12-sample input by using the 6- and 10-sample
training set.
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ants in patient’s exome. With limited funds, a near-optimal deployment can be found,

which minimises both the execution time and cost. This has been achieved by mod-

ifying a simulation platform to simulate the behaviour of the NGS pipeline. The

operation was conducted by proposed methodology for predicting the runtime and

output data size of the pipeline and integrating it with WorkflowSim and CloudSim

by taking advantage from the real data that was archived in the provenance file.

Some of the experiments were conducted with an available small dataset that performs

validation checks on the methodology results so that it indicated that it would enable

us to build a training set. Results of the pure prediction experiments for two training

data set are used to predict outside input data; these show that the framework’s

prediction is under-estimate for the real execution time, particularly for the 6-sample

data as the training set for the 12-sample resulted in a poor prediction. However, the

main role in our framework is minimising the number of training set while achieving

better accuracy. Therefore, to make good prediction accuracy, we have to investigate

a problem by examining a new dataset and give further consideration to the impact

on parameters which are reflecting runtime prediction. We will illustrate that in the

subsequent chapter.
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Summary

The adapted framework, together with a new dataset from a real execution, provides

an enhancement of the prediction for both runtime and the resource number associ-

ated with the NGS pipeline simulation. In this chapter, the challenge of determining

VMs numbers on the outside of the training set is addressed by the framework. It

demonstrates an interesting thing which is to how simulating the pipeline, particularly

over the framework, this enhances capability may be benefiting the pipeline workflow

at in many fields that are mentioned. How these enhancements work is shown with

implementing some of the experiments taking into account the new dataset.

5.1 Introduction

The primary key to several goals for critical system design and deployment decision

is a predictive analysis of resource usage [81]. There are different predictive resource

strategies presented in the previous works; a commonality is they find a precise predic-

tion about how many resources are probably required for executing the computational

tasks [21]. As far as our knowledge, no such strategy can predict the number of the

resources needed for running the NGS pipeline. Hence, the proposed prediction frame-

work uses a novel method which is able to speculate the increase of the execution time

requirement, enabling proactive scaling to handle increases in input samples.

To address this challenge, this chapter presents a way about how to enhance the pre-

dictive estimation module that was set out in the previous chapter. Such enhancement

is reflected positively on the entire methodology that is proposed in Chapter 4 and

presented in [104]; it also improves the quality of the prediction. This enhancement is

done through finding a new dataset to improve prediction and extend the ability of the

resource prediction (e.g., predicting the number of the VMs). However, in addition to

the main objective for collecting a new dataset, it is worth of increasing the number

of the observations which will be extracted and can eventually improve the quality of

the prediction by creating a new training set.

To this end, the question the framework answers is if the resources are sufficient for
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ensuring proper implementation of the NGS pipeline that can be deployed efficiently?.

Therefore, the interest is to see if the framework can be incurred to determine the

resource number of the target input samples. In other words, it is worth noting if

the new dataset with more and different observations can be beneficial to achieving

the target purpose. If this is the case, then we can eventually improve the prediction

model and the resulting framework in the next step.

To demonstrate our enhancement, we have collected a new dataset by running NGS

pipeline on the Azure cloud with a different number of both the input samples and

engines. During the implementation there was a failure of the pipeline execution in a

certain block. This problem led to finding a solution that enhanced the methodology

in a way that can make a prediction only partially according to the successful blocks

of the pipeline.

This chapter shows that our framework is not only able make a runtime prediction

but is also skilled enough to forecast resources requirements (i.e., the VMs number)

for projections that match the execution of the time.

The rest of this chapter is structured as follows: Section 5.2 presents in details the

requirements of the new dataset to enhance the framework in two aspects includ-

ing: adding a new prediction parameter (VM number) and improving the prediction.

Section 5.3 describes the pipeline failures in the cloud and how it is motivated for

flexibility for simulation that deals with an unsuccessful pipeline. In Section 5.4 the

partitioning pipeline workflow approach over the simulation prediction is presented.

Then the results and experiments are shown in Section 5.5. Finally, Section 5.6

summarises and concludes this chapter.

5.2 NGS Pipeline a New Dataset

During the building of the estimation module in the previous chapter, the dataset

with specified information about the resources number was used, because it ran on

three engines amounting to 12 VMs. This dataset was taken from the Recomp team.

Additionally, they have one observation that worked as an outliers in the measured

execution times effect on the 6-sample as the training set, as well there was an un-
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derestimation because fewer data elements in the training set were used. Therefore,

to overcome these obstacles, we decided to collect a new dataset by running the NGS

pipeline on the Azure cloud.

However, the proposed framework works based on the training dataset that predict

an execution time on the large data input sample and a significant progress in the

prediction is required. Therefore, there needs to be an improvement that can feed

a variety of information while building a training set; these can be collected from a

new dataset. For example, if the collected information contains a database on engine

numbers, then the framework can expect a runtime for the NGS pipeline to be the

difference in the number of engines. On the other hand, the prediction model is

evaluated based on the accuracy of the predicted results. Where, the reliability can

be measured by the outputs, that is if it is closer to the actual runtime, then it would

be more reliable. Thus this indicates that the accurate prediction is dependent on the

extracted information from the pipeline in the past.

Actually, the dataset is a collection of information through the execution of the pipeline

on the Azure cloud. We ran the NGS pipeline in e-SC deployed over 3, 6 and 12 VMs,

where each VM was of class D13 with 8-core CPU, 56 GiB of RAM and 400 GB of

local SSD storage and was used to run 4 concurrent workflow execution threads. The

purpose of this exercise is to focus on enhancing the quality and coverage of information

to cover instances that demonstrate a variety for the number of sources running the

results. The total runs of the NGS dataset are contained as 6-, 12-, and 24-sample

inputs, which were executed over 12, 24, and 48 cores. Table 5.1 shows the runs on

the NGS pipeline.

Table 5.1: The actual running of the NGS on Azure

The cores number 12 Cores 24 Cores 48 Cores
Input samples Success Failed Success Failed Success Failed
6-sample 3 1 3 6 3 3
12-sample 3 2 3 0 3 1
24-sample 3 0 3 0 4 0

Totally 41 times have been executed NGS pipeline
The number refers to replicate running (Number of times)

- 92 -



Chapter 5: Framework extension to cover enhancement

5.2.1 New Metrics prediction- VMs

Starting the application over the cloud requires the user or developer to choose the

number of resources that can be used. There is also a possibility of scaling up/down

these resources at run time. Resources prediction is guaranteed by the developed

framework; it helps in deployment decisions. It is, therefore, necessary to promote

measures to enhance the framework to tackle this issue. Here, the estimation focuses

on VMs prediction by comparing the number of cores and execution time of actual

runs and predictions. For example, a 6-sample training set on 12 cores as the cases of

data set can use 24 cores or 48 cores. Where the object of our prediction is the VM’s

number, so that there is prediction of two cases through changing parameters of the

simulation environment, the “VmNum” number and setting a value to either 24 or 48

for the prediction accuracy can be reported.

5.2.2 Improving Prediction

Improving prediction is based on certain assumptions, such as a normal distribution

for errors ranges. In such cases, assuming a normal distribution allows the use of

standard deviation values that enable a given probability for estimating estimates. In

the observed points, having a high R2 value in a linear prediction makes it possible

to predict with relatively low error using a linear model. In this case, the R2 limited

dispersion among values. However, when R2 is low in a linear least squares regression

method, the data fit is potentially not sufficient, where greater data disparity is evident.

This shows that the prediction method may be less effective in estimating what the

empirical value should be. Therefore, model improvement can be done by increasing

the R2 value. An improvement in the prediction model depends on the data focused

on. Therefore, collecting a new dataset provides an opportunity to make prediction

improvement. As seen in Chapter 4, the extracted R2 from previous data was 0.7416,

but with a new dataset, R2 raised to 0.889, as in Figure 5.1. This included the

improvement in the estimation module that led to the improvement of final prediction.

This improvement is made possible by a closer fit for the data to the linear model,

making it more predictable using this approach.
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Improving the data through other regression could potentially reflect improving the

runtime prediction of the pipeline. However, weighing observation of each workflow/-

subsorkflow will be increased (as seen in the results), where they are then reweighed

using a least squares regression to generate the prediction equations. There are still

potential for outliers points that cause inaccuracies in the prediction model so the

treatment may be assigned to find prediction through the new observations from both

datasets.

Figure 5.1: Improving the Linear model of equation prediction.

5.3 NGS Pipeline Failures in Cloud

In general, workflow execution failures may happen because resources are down due

to common reasons such as: data becoming unavailable, networks are down, bugs in

the system software or the application components appeared, and many other reasons.

The approach that is used by Pegasus is tightens collaboration between planning and

execution processes of the workflow. Although this method does not prevent failures,

it provides robust mappings by keeping track of the intermediate produced data and

by allowing for the presence of the latest information about resources [47]; this facility

will enable the process of the workflow to restart execution again at the breakpoint.

During the collection of information in running the pipeline, execution breaking be-

comes a notable problem. One of the main issues in the NGS pipeline execution is the

ability of failures to occur. As we cleared that up the NGS pipeline was deployed on
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Azure Microsoft cloud, it works as black box therefore there is no an explanation from

our side for why such breakings occur at that time. Common types of failures in the

NGS pipeline in Azure are listed below:

1) Azure VM failures; 2) JRE errors; 3) tool errors (Haplotype Caller, GATK ph3);

4) not enough memory; 5) not enough disk space; 6) I/O bottlenecks; 7) occasional

slow response from VMs (+24 vs 5 hrs); 8) misconfiguration of the tools (not enough

memory for BWA or samtools; not enough heap space for GATK).

Unfortunately, Pegasus’ recovery capability from failure mentioned above does not ex-

ist in the e-SC system. It means that once errors happen, we want to start a new

pipeline execution from the beginning instead of starting from the point of failure.

Therefore, the pipeline is restarted again with the same input sample from the begin-

ning. Based on our knowledge and what happened during the NGS implementation,

failures happened at blocks within the tail of the pipeline. Figure 5.2 defines most

block breaks happening.

Figure 5.2: NGS pipeline breaking points.

Motivation

Most current work in the cloud simulation focus on improving modelling to meet

the workflows’ simulation requirements, particularly when there is a workflow that is

changing; this workflow needs to test changes before putting it into practice. Based on

current work, no simulator has considered pipeline partitioning for performance pre-

diction over the simulation environment. In general, this potential becomes available

in the simulator tool, which may have the following benefit:

(1-) It can facilitate a task for finding a fault in the real workflow deployment; however,
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the complex data-intensive workflow typically takes a long time to execute up to days

or weeks. When the error happens within the real execution in a short time before

the successful completion, which is often reproducible; this will facilitate an approach

for the user/developer to monitor the pipeline execution at a specific time instead of

waiting and observing the whole execution.

(2-) Facilitate a potential for researchers who want to do their experiments of parti-

tioning a complex or even a simple workflow on such a framework that provides this

facility for simulating a workflow partition.

(3-) In the prediction framework, this facility will support the beneficiary to plan and

estimate a runtime performance for parts of the pipeline it depends on and what are

required.

5.4 Partitioning Pipeline Workflows Over Simula-

tion Prediction

The approach of dividing a workflow into many sub-workflows and submitting them

to different sites (or VMs) is called workflow partitioning [39]. Partitioning work-

flows helps to improve runtime performance because there will be more execution sites

available, thus parallelism is developed. However, this may not be the case where the

workflow platform is the simulator. Providing enhanced framework partitioning capa-

bilities when appropriately is constructed can increase simulation flexibility, resulting

in a significant performance increase concerning such aspects as designing experiments,

scheduling experiments, other experiments and simulations.

This section introduces a simulation pipeline partitioning, which provides automation

and flexibility in how simulation prediction experiments are conducted. These partic-

ular pipeline templates are typically stored as XML documents, which are discussed

in Chapter 4 in Section 4.3.1, in a pipeline that can be simulated by the framework.

On the other hand, this pipeline component is dependent of the successful parts of

any NGS run; the whole pipeline structure except the failed components can be used,

where they can be removed from the synthetic workflow with their dependencies.

Approach of Partitioning
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This step introduces the partitioning approach as follows:

1- Taking the original synthetic pipeline contianed as a while as described in Chapter

4 and cutting out only the broken componenets as well their dependencies, finally we

can obtain a particular pipeline. For example, if the fault was at the COVERAGE

block, this will then be removed until the end (i.e., ANNOTATE).

2- Extracting the actual execution time from the provenance data from the beginning

to the fault point. For example, if the fault point was at the VCF block, then the exe-

cution time will be accounted for all blocks except COVERAGE and the ANNOTATE

relevant blocks.

3- The simulation for testing is used to fill out missing values and to predict runtime,

finding the relative error comparison between the prediction’s time with extracted time

from step 2.

5.5 Results of experiments

This section presents testing of the methodology with the NGS pipeline execution

on an adapted framework, this time with a wide variety dataset. We have used a

new data set that was collected from a real execution on the Azure cloud to run

our experiments. In these experiments, the capacity values of the MIPs and BW

parameters were measured by following a stated methodology. We have focused on

finding these parameters values of the 6-sample input data set. As a result of these

experiments, we constructed one small training set which is {6}. This training set

would enable us to test of larger input data such as 6-sample input on 24 VMs or 48

VMs. Additionally, 12 and 24-sample input on 12, 24, and 48 VMs are tested on the

small training set. Finally, the evaluation of the estimated results for relative errors

between different running samples to derive the expectation of the enhancement of the

framework is applied.

5.5.1 Experiment setup

The dataset has resulted in candidate configurations of the D13 VM with 8-core CPU,

56 GiB of RAM and 400 GB of local SSD storage that was used to run four workflows
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concurrently as execution threads. The different running of the pipeline with 6, 12

and 24-Sample in e-SC executed in the Azure cloud over 12, 24 and 48 as the VMs’

simulation. These runs to collect the data have not been randomised because the order

of the runs was dictated by cost efficiency of running the experiment setup.

Because the pipeline is simulated based on the following formula: Total Tasks =

N × 8 + 53, where N is the number of input samples. In this experiment, 6-, 12-,

and 24-sample sets are applied; therefore, the number of tasks can be diverse as 101,

149, and 245 tasks respectively. Firstly, we have to run the framework to generate

the environmental parameters, that is MIPs and BW, after that these are used for

testing all input samples with various cores setting. Simultaneously, a stage creation

step provides the estimation module, generating runtime and input/output data size

for each task. The capacity of the computation unit with MIPs and bandwidth (BW)

values is allocated and derived by using the application of an empirical method that

runs the framework multiple times by setting the MIPs, which is arranged between

900-1500, and the BW arranged between 10-1000. As the training data we have used

the smallest executions of 6 patient samples ran on 3 engines (12 workflow execution

threads, equivalent to the 12 simulation VMs). Where, the training model produces

optimal simulation parameters of MIPs = 1430 and bandwidth = 50 Mb/s.

Also, one datacentre has been created, where the data transfer time is already con-

sidered in the task execution time and extracted BW value can be adopted within

each case training set. We will tune setting VM within three values such as 12 for the

training/testing data set, 24 or 48 for the other testing sets.

5.5.2 Experiment Training set and Input Scalable

Minimising the number of training data sets and achieving better prediction is an

important goal. For the NGS pipeline workflow, collecting more data points can help

to extract the better prediction equations, but has time and cost associated with the

data collection. For this reason, only the training data set for 6-sample data points is

considered; this gives the impression that the framework is applied for predicting the

large sample numbers.

- 98 -



Chapter 5: Framework extension to cover enhancement

This experiment shows three invocations of 6-sample were used as a training set. We

were planned to conduct experiments on the new dataset that consists of different

numbers of VMs (12, 24 and 48) driven by the NGS pipeline execution. There are

three scenarios: The first creates and configures the training set {6} with given a fixed

number of VMs (i.e., 12 VMs), and then testing the NGS pipeline with 12- and 24-

sample inputs on 12 VMs. The second uses the same training data set in increasing

the order of VMs to test 6-, 12-, and 24-sample on 24 VMs. The third scenario uses

the same training data set by increasing the order of VMs to 48 to train the 6-, 12-,

and 24-sample inputs again.

Figure 5.3 shows scenario one of an actual and predicted pipeline execution time with

different input samples. For this experiment, the small size input sample is the training

data for considering a pure prediction of the 12- and 24-sample input. It allows us

to verify whether the enhancement can indeed give rise to useful prediction in this

scenario that might be used to procure space resources forecast in the cloud.

Using the 6-sample data as the training set for the 12-sample input case gave relative

error of approximately 15.0%; using the same training set for the 24-sample input

case gave a relative error of approximately 16.0%, see Figure 5.3. Furthermore,

comparisons with results of past dataset, which were presented in Chapter 4 for the

12-sample input, clearly shows that time improvement in the prediction rose about

around 4.0%; however, it real time underestimates in large samples such as a 24-

sample set. Obviously, there needs to be improvement for the runtime prediction of

the pipeline supply through improved, collected information from the past.

The next experiment demonstrates how the prediction accuracy changes when sample

size and number of VMs are varied.

5.5.3 Prediction at Different VMs

In the previous section, we estimated different samples of the pipeline and compared

to actual runtime with predicted. In reality, the prediction may be used with some

large samples to predict the pipeline execution time for the number of VMs for which

there were no actual pipeline runs in the past. Such prediction may be important
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Figure 5.3: The Runtime Results Scenario 1; where (RT) is Real Time and (ET(6)) is
Estimated Time based on 6-Sample training set.

for determining, in a deployment-efficient manner the number of resources required to

execute the pipeline.

The accuracy of the estimation is evaluated across different sample numbers of all

implementation status’ of the pipeline and for a different number of VMs. Over the

evaluation, each test of predicted execution times was implemented by simulating a

pipeline with the specific considerations as follows:

1) The number of input samples; 2) The number of VMs; 3) The actual execution

time for which the pipeline runs on the Azure cloud were implemented, in addition to

relying on the training set configuration to set necessary variables for the framework.

The results are shown in Figure 5.4.

Figure 5.4 shows scenarios 2 and 3 indicating significant result in accuracy by using

only one evaluation point( 6-sample input over 12 VMs) as the training set. The

framework was able of predicting much larger experiments with relative error as small

as 5% for a 12-sample set on 24 VMs and a larger 22% error for 24-sample set on 24

VMs. Both situations underestimated real time. The largest error we observed was

from the sample running on 48 VM, where the evaluation point was the most distance

from the training set. Also to be noted in the graph, there are overestimation on the

real time for the 6-sample set on 24C and 6-sample set on 48C. The 12-sample set on
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48C was overestimated because the sample number used was small while using a large

number of resources in the execution.
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Figure 5.4: The Runtime Results Scenarios 2 and 3; where (RT) is Real Time and
(ET(6)) is Estimated Time based on 6-Sample training set.

5.5.4 Prediction at Particularly Point

As a proof of simulating a pipeline, particularly and also to provide the framework

flexibility, we experiment with varying only on pipeline broken situation. We chose real

broken executions because they have the deficiency in completion, pipeline execution

time, and to present results in a real situation. Figure 5.5 shows: First, the difference

between the pipeline execution time to VCF missing block.

As proof of simulating a pipeline and to demonstrate framework facility, broken pipeline

was tested. A real broken execution was chosen because it is an empirical case that

can be measured for what applied solution is faster. This allows different measures of

time to be taken on solutions to the broken pipeline using the framework. Figure 5.5

shows: the difference between the pipeline execution time to the VCF missing block.

The training set is also given. From this, it is evident that the 6S-12C-VCF application

achieves better time results. The difference between the real time (RT) and estimated

time (ET) is also smaller in the 6S-12C-VCF case. In effect, this demonstrates the best

results in the scenarios, whereas sets requiring greater resources such as 24S-24C-VCF

show greater gap between ET and RT. Additionally, these cases require noticeably

more time.
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Figure 5.5: The Runtime Results at Broken points; where (RT) is Real Time and
(ET(6)) is Estimated Time based on 6-Sample training set.

5.6 Conclusion

Predicting performance behavior is critical for scientists to enable the use of a frame-

work that creates an effective NGS pipeline workflow, where it allows better decision-

making in deployment. Therefore, an improvement of the prediction methodology is

needed, while the framework also needs to predict the resource number. In this chap-

ter, the new dataset was collected by running the NGS pipeline on the Azure cloud,

where the existence of such a dataset was necessary for improving the prediction and

predictability of resources.

Through a real implementation a broken NGS execution in some blocks is evident,

which motivated pipeline partitioning in the simulation as it has benefits that are

mentioned in this chapter. Some of the experiments were conducted with an extracted

dataset that performs validation checks of the enhancement. Results of the resources

prediction experiments for six testing data sets are used to predict the outside training

set; these show that the framework’s prediction is under-estimated for real execution

times; the largest error was observed for the sample running on 48 VMs because

of the evaluation point was most distant from the training set. Therefore, to make

good predictive accuracy, we have to investigate a problem by looking for simulation

environment and give further consideration to the impact of parameters which most

affect runtime prediction. We will illustrate that in the subsequent chapter.
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Summary

Modelling and simulation of Big Data analytics processes running in the cloud is a

difficult problem which introduces many challenges. The major one is the collection

of training data which is scarce and costly to obtain, due to the large-scale and long

runtime of those processes. In the previous chapter, we acquired a new dataset to

improve the accuracy of predicting runtime of the pipeline. Obviously, the emphasis

was focused towards improving the data that was used to construct the prediction unit,

but it is crucial that we now focus on developing the operational tools. To achieve

a major contribution of the simulation methodology is that it provides a reasonable

prediction of runtime for testing data much larger than the training inputs.

Therefore, in order to improve the effectiveness of estimation of framework, we present

now an extension of framework that can model cloud data storage. Our simulation

framework is based on CloudSim and WorkflowSim, to which we have added a shared

storage component. We present the design and implementation of the storage extension

together with an evaluation performed on selected scientific workflows: the Pegasus

Montage workflow and NGS pipeline implemented in e-Science Central. The evaluation

shows that the proposed extension works correctly and can improve prediction accuracy

for our largest 390 GB input dataset by about 16% when compared to previous results.

6.1 Introduction

Big Data simulation integrates existing simulation tools and performance characteris-

tics of Big Data workflows. The need for such integration is driven by the rise of Big

Data analytics in the cloud [68] as an answer to tackle increasingly large amounts of

data generated every day. One of the main advantages of accurate simulation of Big

Data workflows in the cloud is time and cost saving. Whilst tuning and optimisation

of the system configuration to match the requirements of the workflow has always been

difficult and time-consuming, considering pipeline workflow deployed in the cloud, this

process can become very costly.
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In the previous chapter, the framework has revealed to be a powerful tool to deal with

the challenges associated with pipeline workflow deployment. This solution is easy

and free of charge to monitor, expand, and optimise the pipeline workflow in term of

performance. However, the basic design of the framework was following a hierarchical

schema that includes modules, basic systems of the Pegasus and does not consider

the complexity of the e-SC system. Therefore, to further improve the accuracy of

the prediction we focus on developing the framework environment via presenting an

extension to the shared storage of the framework components that can model the I/O

contention. All of what has been stated in the paper [105] applies to developing the

framework and presents in this chapter.

Since, this approach to predict runtime performance of the NGS pipeline. Typically,

to find variants in a cohort of 24 patients the pipeline needs to process about 400 GB

of compressed data, which takes over thousand of CPU hours. Working with such

applications is difficult, not only because of the volume of input data and significant

time it takes to process them, but also due to intricate dependencies between tasks,

data and the cloud that can cause failures, lower performance of the system and

increase time and monetary cost [27].

In such a setting an accurate simulation framework can greatly help tune the con-

figuration of the processing platform. Using our simulation we were able to predict

runtime of the pipeline with accuracy close to 90%. However, due to limitations of the

underlying simulation toolkit (WorkflowSim/CloudSim), the predictions of runtime

for large problem sizes were less accurate. One of the contributing factors that caused

inaccuracies is the simplified network and data storage model of the toolkit. Neither

CloudSim nor WorkflowSim capture the network and I/O contention that occurs when

multiple VMs access shared cloud storage, although this is increasingly important dur-

ing the simulation of Big Data application where such contention is inevitable. In this

chapter we present our extension of the WorkflowSim/CloudSim environment to simu-

late contention in I/O operations against the shared cloud storage. We also show how

the extension improves the estimation of runtime performance of our Big Data NGS

workflow.

On the other hand, as a significant requirement of the pipeline running it is resolving
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block dependencies automatically, and the engines can do that. However, each work-

flow contains software/ libraries dependencies that must be deployed them. Therefore,

before running a workflow, any unavailable libraries should be downloaded from the

server on demand. This process requires time, which will be added to the whole exe-

cution time of the pipeline. The case to complete the pipeline workflow simulation in

the framework, we considered a library deployment time in this chapter.

The main contributions of this chapter are:

� a proposition of a simple model of a shared cloud storage together with its design

and implementation as an extension to WorkflowSim/CloudSim,

� an evaluation of the proposed storage component using a selected data-intensive

Pegasus workflow and runtime information collected from the actual execution

of the NGS pipeline in e-SC deployed on the Azure cloud,

� a demonstration of the improved accuracy of our runtime predictions and dis-

cussion about the advantages and limitations of the proposed component.

� a simulation of the library deployment time is demonstrated and to be considered

as a case in the methodology.

The remainder of this chapter is structured as follows: Section 6.2 identifies the prob-

lem through interpreting the experimental results to address the solution to improve

the accuracy. Section 6.3 will describe the I/O simulation model by focusing on the

shared storage and includes: a description of the pipeline I/O, enhanced I/O model,

and extending the simulation framework. In Section 6.4 the pipeline library deploy-

ment time will be demonstrated and considered in the prediction time of the entire

execution. Then the experiments and the results are shown in Section 6.5 as well the

correctness of the model implementation has been proofed in this section. Finally, the

section 6.6 has concluded this chapter.

6.2 Problem Formulation

As discussed earlier, in the previous chapter the method for predicting the runtime

performance of complex data-intensive workflows was proposed. The method is able to
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take into account two main factors that may affect the runtime of the applications: the

size of computational tasks vs CPU speed of the simulated environment and the size

of the input and output data vs network bandwidth. However, due to the nature of

the data intensive problems, the scarce availability of training data and limitations of

the simulation environment, our solution was able to produce predictions with limited

accuracy. Specifically, using a small 6-sample input datasets over 12 VMs our method

was able to predict runtime of 10-sample and 12-sample workloads with relative error of

about 15% and 19%, respectively; Figure 6.1 shows results for a training set consisting

of 6-samples.

Figure 6.1: The real and estimated time for different sizes of the training set.

Moreover, considering the results of the experiment in chapter 5, when we used a

6-sample training data set as case 24-sample over 24 VMs our method was able to

predict with relative error of about 22%. See Figure 5.4. In all cases our predictor

underestimated the real execution time. The bigger the gap between the training

and testing set, the larger the underestimation. Each sample involving transfer and

processing of hundreds of gigabytes of data, which suggested that the I/O operations

were a major factor of inaccuracies.

Using WorkflowSim to calculate the transfer time of data between VMs only considers

the size of the data and network bandwidth, while CloudSim ignores any contention

that may arise from multiple VMs accessing the same shared data. Without analysing

the source code, we confirmed this by running a simple experiment in which 1–100

VMs executed a one-task workflow that accessed the same input file and produced one

output file. In all cases the execution time was the same, clearly indicating that no
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network contention model was in place.

On the other hand, the results have been obtained in chapter 5 showed that the

contention exists through actual execution of the pipeline in the cloud as a 6-sample

input on 12 cores was completed with an average 16 hours. But, when executing the

pipeline with the same 6-sample input on 24 cores was completed with an average 13

hours. The actual execution time for the second case (on 24 cores) was about 19% less

than the first execution (on 12 cores) for the same input samples, whereas the cores

were increased up to 2x times, and it had made little improvement in the runtime due

to the I/O shared storage bottlenecks, see Figure 5.4. This contention is introduced

by the blocks that require a data wherein all the engines from multiple workflows that

are run simultaneously need to read the input data from and write the outputs to the

same shared storage.

There are some approaches for modelling I/O contention such as prioritizing VM access

to the storage resource, using many shared storages, multiple queues for ordering the

read/write request and serialised storage with a single queue. We have chosen a simple

serialised storage model based on a single FIFO queue because this component can

accurately simulate the parallel blob storage in Azure stems by the fact that the

actual NGS pipeline implementation is very synchronous in nature and due to the

large amounts of data saturates the bandwidth available for a single cloud storage

account. Thus, although each pipeline step runs many sub-workflows in parallel across

multiple VMs, before moving to the following step the pipeline waits until all sub-

workflows complete. These synchronisation points at each step make the serialised

and parallel access to storage consume a similar amount of time. In fact, for this

reasons, we considered the simple serialised model which is perfectly appropriate to

our case but for other approaches might be considered as future work with different

cases.

Therefore, to address the problem of I/O contention that can be arisen from multiple

VMs accessing the shared storage the required I/O model to extent WorkflowSim

is proposed. To the best of our knowledge a simulation of the I/O contention that

arises from multiple request to the shared storage is novel and needs to be addressed,

as outlined in Chapter 2 the existing research in the cloud simulation falls short in
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treatment this problem.

6.3 I/O Simulation Model

As indicated above, one source of inaccuracy in our prediction method comes from a

simplistic model of network and storage in the simulation environment we used. To

address this problem we decided to design and implement a shared storage component

to simulate contention between VMs accessing data in CloudSim and WorkflowSim

simulation. Importantly, we focus this work on the shared storage only and do not

model aspects related to a shared network environment. Our goal is to cover both the

relevant network and storage issues under a single I/O contention model.

The existing I/O model for scientific workflows implemented by WorkflowSim approx-

imately follows the data transfer mechanisms of Pegasus. Briefly, each workflow task

requires all its input data to be staged in to the machine where the task is going to

execute, and then after the processing is finished, the output data is shared by the

workflow management system with the downstream tasks. This simple model, illus-

trated in Figure 6.2, involves three distinct periods in the task lifecycle following the

VM allocation event: data stage-in or (R)ead, (P)rocess, and data stage-out or (W)rite.

Notably, in Big Data workflows data stage-in and -out take significant amounts of time

and are the main source of contention between multiple VMs executing the pipeline.

VM allocation

Task Input File

Task Instruction Execution

Task Output File

CPU Activity I/O ActivityI/O Activity

Task Execution Time

R P W

Figure 6.2: Time task model before I/O response time considered

To model the data transfer speed between task VMs and shared storage WorkflowSim

uses single parameter – network bandwidth. By changing bandwidth the user can

influence the amount of time a task spends in the stage in/out periods. However, the
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stage in/out time is calculated simply as data size/bandwidth, and so no contention is

simulated at all.

6.3.1 Pipeline I/O

In the pipeline, the workflows have utility to import and export files that means to

transfer data from/to the shared data storage, for example, Blob storage is one service

of Azure storage service to store the files externally [31]. The data in the shared storage

is characterised by sharing and for the common use of the workflows. However, the

pipeline is more massive of the blocks that can be allocated to many engines and all

concurrent workflow use the I/O storage. Therefore, increasing the engines is the main

reason for increasing response time in the shared storage.

There are some important differences between both systems the e-SC and the Pegasus.

Specifically, e-SC workflows are more fine-grained and can operate at two levels: basic

and composite. A basic workflow may include many tasks, yet all of them run on the

same machine (workflow engine). That helps to optimise execution of small, short-

lived tasks because data transfer between them is local. A composite workflow also

consists of tasks but some of them invoke basic and/or composite subworkflows. Each

of these subworkflows may run on a different workflow engine, which helps handle data

and task parallelism that often occurs in scientific analyses.

The distinction between basic and composite workflows is especially important when

Big Data workflows are designed because it heavily affects how data is transferred

between tasks. Tasks of a basic workflow pass data via a local filesystem, whereas in

composite workflows data needs to be shared between VMs, and so transferred to/from

the shared storage provided by e-SC. Yet, finding a balance between effective parallel

execution across a number of machines and using fast local data transfer is not obvious,

as discussed in [27].

Another difference between the systems is that e-SC workflows give a lot of leeway

in how and at which stage workflows share their data. Similarly to Pegasus, they

may follow the read-process-write pattern where all input data is staged in before the

core tasks execute and then staged out afterwards. But they may also share data and

invoke subworkflows in the middle of the execution.
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Our NGS pipeline largely follows the read-process-write pattern, so at the end of

processing the outputs of a pipeline step are transferred to the e-SC storage and then

to the engine that is going to execute the following step. But in a few cases NGS

subworkflows break this rule, so we split their WorkflowSim models into parts such

that each part consists of the three (R)-(P)-(W) stages in order.

6.3.2 Enhanced I/O Model

To simulate I/O contention we propose a simple serialised storage model based on a

single FIFO queue (Figure 6.3). Following the existing task model, we assume that

before task execution all required input files have to be staged in from the shared

storage. That is collectively represented by a single read request (R). And, similarly,

upon task completion all output files are staged out to the shared storage, denoted by

a single write request (W). Then, using the queue we can introduce contention as the

calculated delay in response to read/write requests.

VM1

RRWWRRR

VM2

VM3

VMn

R 6GB W 50MR

Shared Storage

I/O Queue

3GB

In-Transfer

Figure 6.3: The VMs uses single queue to the shared storage.

In order to keep the enhanced I/O model simple we also use single parameter to

compute the storage response time. This time, however, bandwidth represents the

cumulative delays of network and storage elements involved in transfer and storing/re-

trieving data. This simplification follows the perception of the cloud user who has no

easy way to distinguish between these two types of delay in the real cloud environment.

To compute storage response time Tn of request n we use the following formula:
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Figure 6.4: Gantt chart of three tasks with I/O read and write operations.

Tn =
n∑

i=1

ti + r0 (6.1)

where ti is the transfer time of the i-th request in the queue, n is the length of the queue

after adding the new request and r0 is the remainder of transfer time t0 of the request

being in transfer. Briefly, remainder r0 ∈ 〈0, t0〉 indicates how much time is needed to

complete the request in transfer when a new I/O request arrives. As previously, the

data transfer time is calculated as:

ti =
data size

bandwidth
(6.2)

To illustrate the proposed enhancements we conducted a simple experiment with three

tasks running on three VMs and show the tasks’ life-cycle on the Gantt chart in

Figure 6.4. The figure explicitly highlights I/O delay time (D) which is the difference

between the response time returned by the shared storage and the data transfer time

as if there was no contention.

Initially, when the tasks are submitted, they are scheduled to run on three VMs in

parallel, and so all issue their read requests to the shared storage at the same time.

While Task 1 starts reading immediately, the other two are delayed such that Task 2

waits until Task 1 finishes reading and Task 3 waits until the other two finish. Similarly,

at the end the Task 3 write operation is delayed because it needs to wait for Task 2

write request to complete. Coincidentally, Task 1 ends execution close to the moment

when Task 2 issues a write requests, so the latter task experiences no delay in writing.
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The chart clearly shows the serialisation of the requests and the way we are going to

simulate I/O contention.

6.3.3 Extending the Simulation Framework

The implementation of the proposed shared storage mechanism involved extending the

WorkflowSim environment as well as modifying some components of CloudSim, such as

Cloudlet. Figure 6.5 shows an overview of our newly added component SharedStorage

which is highlighted in red and its communication with two other components from

the workflowSim layer: WorkflowDatacenter and WorkflowScheduler.

Workflow
DataCentre

Event 
Write

SharedStorage
Workflow
Scheduler

R/W request

Read Time

Figure 6.5: Relational Diagram of Shared Storage Model

The WorkflowDatacenter component is an extension of the Datacenter component in

CloudSim. They contribute a list of functions to process a Cloudlet submission and

verify if some Cloudlet inside in it already finished. WorkflowDatacenter has own func-

tions to calculate data transfer time, update the submission time of the Cloudlet and

register a file to the storage if it is an output file. The WorkflowScheduler component

is used to match a Cloudlet to a VM based on a user-defined scheduling algorithm.

It assigns VM management, as VM creation, submission of task to this VMs and

destruction of VMs. Finally, we focus on the SharedStorage component description

and its ability of associating and coordinating with other components. However, the

framework works based on the events which are generated dynamically and executed

chronologically. It supports modelling of Cloud entities such as Workflowdatacenter,

WorkflowScheduler, etc. Therefore, to enable this feature, we adopt an event-based

approach component. Where this component maintains itself, checks whether it has

received an event (i.e. Task status in-Write) and whether it should delay a task to

keep VM allocated until delay finishes, then send a task to the sender WorkflowSched-

uler. The function of our proposed model can be achieved by tracking the following
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mechanism:

� At a particular time, a WorkflowSim task scheduler decides which tasks can

be scheduled for execution on free VMs. While each scheduled task receives a VM

allocation it starts reading, then WorkflowDatacenter interacts with the SharedStorage

component to send (R) request to the I/O Queue (Storing the request at the Queue

End).

� Whenever SharedStorage receives a Read request it interacts with the Workflow-

Datacenter to add the required transfer and delay time of the task read operation (c.f.

grey and blue slices in the Gantt charts).

� At a specific time, a completed task is available inside WorkflowDatacenter compo-

nent, then it interacts with the SharedStorage component to send (W) request to the

I/O Queue (Storing the request at the Queue End).

� During the (R/W) requests are waiting in I/O Queue, the SharedStorage will pro-

cess them to calculate a transfer and delay time of the task, the process will repeatedly

be done as in Algorithm 1.

� When a task has completed, WorkflowDatacenter schedules it as an event to the

SharedStorage to change a task status from in-Execution to in-Write for delay

and consequently to extend VM allocation time.

� Immediately upon delay finishes the SharedStorage will send task completion to

the WorkflowScheduler.

The above mechanism steps must be performed iteratively until the simulation finished.

Algorithm 1: Process (R/W) Request in SharedStorage

1 QueueTime – the completion time of the last I/O request (0 at the simulation start) ;
2 Input: cl : Cloudlet ;
3 cl.setIOArrivalTime := CloudSim.Clock() ;
4 if CloudSim.Clock()>QueueTime then
5 QueueTime :=CloudSim.Clock();
6 end
7 cl.setIOStartTime := QueueTime;
8 FTT := compute file transfer time (see Eq. 6.2);
9 QueueTime := QueueTime + FTT;

10 cl.setIOEndTime := QueueTime;
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6.4 Pipeline Execution Model- Library Deployment

As discussed earlier in Chapter 4, e-SC has depended on a DAG to represent a data

flow model of the NGS pipeline since the pipeline is built as a set of connected blocks.

The edges describe the flow of data, and the vertices present the blocks see Figure 6.6.

There are multiple input and output ports in the blocks, multiple input properties and

an output status [28].

Figure 6.6: The NGS pipeline as Blocks.

In general, a pipeline is made up of a composition of configurable library packages and

tools that implement genome analysis algorithms, and which are expressed as blocks.

It can be classified into five different types: Java, R, Octave, GnuPlot and JavaScript,

each has a specific execution environment. For example, R blocks execute the code

that is written directly in R.

The dispatching operation can be summarised as that the pipeline invocation is sent to

a single message queue from which the engines acquire it. This work-stealing approach

fits better with the cloud platform than explicit task scheduling may be for two reasons.

Firstly, during the operation, the worker nodes may be restarted or taken offline. It

may be caused by the Azure self-heading service or automatic upgrade of the OS.

Secondly, there is a facility for adding or removing a node from the resource pool

during the execution. Therefore, there is no need for rescheduling tasks when the pool

size changes [28].

As a part of the smoothing-running of the pipeline that lies with the engines are capa-

ble of resolving block dependencies automatically; however, a block contains software

dependencies that must be found to start it, in addition to the declaration of input
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ports that needs to run. For example, the number of workflows in the pipeline need

to access the human genome (HG19 from UCSC) as a shared library, and this request

is defined in the block descriptor as a library dependency. Therefore, before running

a workflow (just for the first run of the pipeline), any unavailable libraries are down-

loaded from the server on demand. Once all software dependencies as the operational

conditions are fulfilled, the engines start execution the pipeline. This process needs

time, which is added to the pipeline execution time.

6.4.1 The New Dataset- aware Library Deployment Time

In general, for reviewing the deployment library time to ensure that most cases in

the pipeline can be considered and our Framework is accurately estimated. Thus,

the simulation methodology to predict the runtime of the NGS pipeline with library

deployment time needs to be applied. However, the previously collected dataset has not

considered a library deployment time for each NGS running on the cloud. Therefore,

to deal with such circumstance a new dataset is required; we decided to collect a

new dataset by running the NGS pipeline on the Azure cloud which exclusively aimed

to consider library deployment time and must be taken fully into account for each

execution. When the library deployment time is included in building a training set

must be matched by the testing sets that have to encompass the library deployment

time. The total runs of the NGS dataset are contained as 6-, 12-, and 24-sample

inputs, which were executed over 12, 24, and 48 cores. Table 6.1 shows the runs on

the NGS pipeline.

Table 6.1: The actual running of the NGS on Azure by considering library deployment

The Cores Number 12 Cores 24 Cores 48 Cores
Input Samples Success Failed Success Failed Success Failed
6-Sample 3 1 2 0 2 0
12-Sample 2 0 2 1 2 0
24-Sample 2 0 2 0 1 0
Totally 20 times have been executed NGS pipeline- with library deployment time

The number refers to replicate running (Number of times)
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6.4.2 The problem with Library Deployment Time

In an analysis of the new dataset to extract library deployment time, there was an

unexplained delay time in the NGS pipeline blocks; this time gap has happened be-

tween the End–Time of the prepare library block and the Start–Time of the next

block (BWA Mem). This time has appeared with BWA (Align lane) workflows in the

pipeline across all executions of the pipeline with deployment library that listed in the

Table 6.1. We were not able to determine an exact cause of this delay time, it seems

such as a technical bug in the pipeline.

However, this time gap was ranging between 1-5 hours, it is always changing and do not

have a similar pattern in the engine or cannot be fixed time for each block. Therefore,

this issue caused to generate the small values R-squared less than 1% for both BWA

(Align lane) and BWA (For each lane) workflows when there was an intention to extract

the prediction equations which are required for estimation module. For example, the

prediction equation of the BWA (For each lane) was plotted the regression line with

low R2= 0.0837 and the prediction equation of the BWA (Align lane) was plotted the

regression line with low R2=0.0182.

The Suggested Solutions

• Working on the same information that extracted from the dataset even there is a

time gap, i.e. with the bugs we will produce an inaccurate estimation.

• Removing the time gap that appeared as bugs from the extracted time for each

observation and then applying a regression model with a larger R2, for example, after

removing the time gap we were obtained R2=0.8175.

• Considering this issue as resource properties, therefore we need to apply a new model

that takes into account a waiting time for ordering the library storage requesting, where

this solution can be considered as future work.

6.5 Evaluation

To evaluate the proposed shared storage extension we conducted two experiments.

First involved the Pegasus Montage workflow [52] and allowed us to validate the cor-
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rectness of the implementation. In the second we used our NGS pipeline to observe

influence of the extension on the prediction accuracy.

6.5.1 Running the Montage workflow

To validate the correctness of the implementation we tested our shared storage exten-

sion by running the Montage workflow, a workflow far more complex than the initial

one used in the experiment presented earlier in Figure 6.4. The Montage workflow is

an astronomy application used to generate custom mosaics of the sky based on a set

of input images and is considered as data-intensive [50]. Most of the tasks in Montage

have little CPU needs and spend their execution mainly on file read and write opera-

tions. In our experiment we used the variety of the workflow consisting of 25 tasks, as

shown in Figure 6.8.

To run the simulation we used the latest available WorkflowSim 1.1.0 extended with

our shared storage component. The simulation environment included 5 VMs, each VM

had 1 CPU-core (MIPs = 1000) with 512 MB of RAM. Bandwidth was set to 1000.

The experiment results, presented in Figure 6.7, show the serialisation of the read and

write operations enforced by the storage component. The operations were delayed such

that they did not overlap with each other and once the current operation in-transfer

had completed, the next in the I/O queue was immediately taken over by the shared

storage. Given the results from the execution of a relatively complex workflow, we

were assured that the proposed implementation behaved as expected and could be

used in our prediction framework, as presented next.

6.5.2 Evaluation of Runtime Performance

The overall goal of this work is to improve the accuracy of runtime prediction of

complex Big Data workflows such as NGS pipelines. Analysing the past results of

our prediction experiments, we observed that the source of inaccuracies might stem

from WorkflowSim and CloudSim not being able to simulate I/O contention. Thus, we

added the shared storage extension to our prediction framework and re-executed our

earlier experiments with using the same dataset in Chapter 5. As mentioned before,
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Figure 6.7: The Gantt chart of the Montage workflow.

the new dataset was needed to increase the number of samples and enlarge the test

sets. That allowed us to test the prediction when changing both the number of samples

and the number of VMs.

6.5.2.1 Experiment setup.

The dataset has resulted in candidate configurations of the D13 VM with 8-core CPU,

56 GiB of RAM and 400 GB of local SSD storage that was used to run four workflows

concurrently as execution threads. The different deployment of the pipeline in e-SC

executed in the Azure cloud over 12, 24 and 48 as the VMs’ simulation. The tests

involved sequencing of 6, 12 and 24 patient samples with data size in range of 98–390

GB. As the training data we used the smallest executions of 6 patient samples ran on

3 VMs (12 workflow execution threads). For each evaluation point, a specific number

of VMs and input samples, we collected runtime information of three executions in

the cloud. The size of the input sets was a trade-off between what is used in clinical

practice (30–40 patient samples) and the cost it takes to run the pipeline in the cloud.

The smallest 6-sample training set was the minimal input size for which the pipeline

could complete successfully.
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The simulation environment was configured such that each simulated VM represented a

workflow execution thread in the real cloud. We trained our model on 12 WorkflowSim

VMs running 6 patient samples and then tested it on 12, 24 and 48 simulated VMs.

As one VM could run only one task at a time, we used the space shared mode for task

scheduling.

Both training and testing phases were performed with the shared storage component.

Training the model gave us the optimal simulation parameters of: MIPs = 1305 and

bandwidth = 985 Mb/s in simulation with I/O contention. Apparently, the value of

985 Mb/s × 12 is much closer to the maximum throughput of the Azure Cloud Storage

set at 10 and 15 Gb/s per storage account for ingress and egress access, respectively.

But the optimal simulation parameters that predicted in Chapter 5 by training were

different, MIPs= 1430 and bandwidth = 50 Mb/s because there was no I/O contention

consideration.

As outlined the original NGS pipeline is composed of three stages: the first and

last running in the sample-split mode and the middle one running in, so called,

chromosome-split mode. The sample-split stages are largely sequential and involve

eight and two tasks, respectively. Depending on the number of input samples, they

are replicated such that each input sample runs a separate sequence of tasks. The

chromosome-split stage includes one join task in front, then a fixed number of tasks

each running in parallel over a dedicated chromosomal region, and then two tasks at

the end. Overall, the pipeline consists of 8×N + 53 tasks, where N is the number of

input samples (see Figure 4.4). For example, in the biggest setting our WorkflowSim

simulation included 245 tasks. As mentioned earlier, however, in the real pipeline each

of the simulated tasks consists of a number of workflow blocks modelled in e-SC such

that the 24-sample run involves execution of thousands of tasks and requires thousands

of CPU hours to complete.

6.5.2.2 Results.

Analysing the provenance information collected by e-SC, we obtained the exact times

and data sizes of each task in the real pipeline workflow. We converted them into

the time and input/output data size of each simulated task and compared these real
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Figure 6.8: The structure of the 25-task Montage workflow.

execution times (RT) with estimated time simulated by the framework with shared

storage as in (ET+SS) and comparing it with estimated time simulated in Chapter 5

without shared storage as in (ET-CH5).The results are shown in Figures 6.9, 6.10, 6.11.

The graphs indicate significant improvement of accuracy when simulations used the

shared storage component. Using only one evaluation point (6-sample input over 12

VMs) as the training set, the framework was able to predict much larger experiments

with relative error as small as 2% for 12 and 24 samples running on 12 VMs. Whereas,

without the shared storage the error was over 15% for 12 samples running on 12 VMs

(See Scope from Figure 6.1 in Figure 6.9). There is a difference in the accuracy of

about 4% if compared with Figure 6.1 because we have used a new dataset.

Simulations with shared storage rendered prediction across all the testing set with

relative error no larger than 15%. The largest error we observed was for the samples

running on 48 VMs, the evaluation point most distant from the training set. Although

the results are much more promising than what we can achieve without the shared

storage component they still indicate some room for improvement.
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Figure 6.9: The Runtime Results with I/O Compared without I/O as in Chapter
5- Testing over 12 VMs; where (RT) is Real Time and (ET(6S)+SS) is Estimated
Time with Shared Storage based on (6S) 6-Sample training set and (ET(6S)-CH5) is
Estimated Time as resulted in Chapter 5
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Figure 6.10: The Runtime Results with I/O Compared without I/O as in Chapter
5- Testing over 24 VMs; where (RT) is Real Time and (ET(6S)+SS) is Estimated
Time with Shared Storage based on (6S) 6-Sample training set and (ET(6S)-CH5) is
Estimated Time as resulted in Chapter 5.
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Figure 6.11: The Runtime Results with I/O Compared without I/O as in Chapter
5- Testing over 48 VMs; where (RT) is Real Time and (ET(6S)+SS) is Estimated
Time with Shared Storage based on (6S) 6-Sample training set and (ET(6S)-CH5) is
Estimated Time as resulted in Chapter 5.
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In order to compare the NGS pipeline execution in the Azure cloud with that in our

Framework simulation, so from Figure 6.12 we can see that for all set of input samples

tested over 12 VMs behaved well as most likely Azure, but when tested them over 24

VMs behaved partially like Azure. A bit overestimation time against the real Azure

time when they were tested over 48 VMs because a larger sample input and many

VMs can cause congestion in the I/O Queue.

Figure 6.13 shows the Framework throughput (samples per day) about the number

of simulation VMs. It is compared with the Azure running time, from one point (6-

Sample, 12 VMs) we can predict an ideal linear speed-up and describes gains in the

processing by increasing VMs.

Finally, Figure 6.14 shows how well the different configurations scale when compared to

baseline with 12 VMs, using a measure of Relative Processing Effectiveness (RPE; the

higher, the better). With a particular input sample size s, the Ts(n) is an estimated

time for a configuration with n VMs, we define the RPE of the VMs configuration

relative to the baseline b-VM configuration as:

RPEs(b, n) =
bTs(b)

nTs(n)
(6.3)

100% effectiveness is achieved when Ts(n) = b
n
Ts(b). For example, resources are

perfectly utilised when doubling the number of VMs (n = 2b) results in the halving of

the estimated time relative to the baseline (Ts(2b) = 12Ts(b)) on the same input size.

In our experimental simulation, we have used baseline b=12, n=24 and n=48, and s

ranging from 6 to 24. In a case of comparing both configurations (n=24 and n=48)

with their actual and estimated time, as seen in our chart, are most similar behavior.

So, from this graph we can investigate how much running NGS faster when doubling

the number of engines on the s-sample input. For example, on of the estimated time

in our chart, RPE12(12, 24) = 70%, indicates that doubling the number of VMs on

the 12-sample input is only of about 1.4× faster than the baseline; ideally, it would

be 2times faster. These results show that for larger configurations the estimated time

grows slowly with the number of samples as in actual behavior of Azure cloud. For

the smallest, 6-sample, input we observed very little gain when increasing simulation
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VMs (c.f. throughput). Only for the biggest, 24-sample, input the pipeline showed

good effectiveness about 92% when running over 24 VMs (see Figure 6.14).

Thus, for a complex NGS pipeline, our Framework can deliver enough scalability infor-

mation to ensure that the application workload with appropriate resources deployment

in an efficient way.
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Figure 6.12: Estimated time and behavior of the pipeline with the increasing number
of input samples and different number of workflow engines in the system.
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Figure 6.13: Throughput of the pipeline with the increasing number of input samples
and different number of workflow engines in the system.

6.5.3 Evaluating and Analysis of Error Bars

Once the methodology is fitted for predicting runtime of the data-intensive workflows,

we assess it against the testing sets for much larger input data sizes, according to a
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Figure 6.14: The relative processing effectiveness of the pipeline with the increasing
number of input samples and different number of workflow engines in the system.

specific number of resources (See Figure 6.15), with prediction runtime X1..X28 and

measured actual time Y1..Y28. Hence, the error bars can be revealed for each of these

actual runtimes as a probabilistic prediction time that is, a mean of actual time f(Yi)

and standard deviation STD f(Yi). This is a way to show the error bars which help

to indicate estimated error or uncertainty to give a general overview of how precise

a predicted runtime is. We evaluate the error bars by counting the standard error of

the mean (SEM) for each chunk, where the chunk is three or four values of the actual

time that falls into the bars against of the estimated points might fall into the actual

bars confidence. This analysis of the predicted runtime is shown in Figure 6.15.

For actual performance, the figure shows the predictions are consistent with the ex-

pectation because the estimated time is inside the error range of the measured time.

For example, the predicted runtimes for 6-, 12-, and 24-sample over 12 cores, which

were enough to guarantee a confidence level. For the cases when the predictions are

outside the error bars that means the prediction is less reliable as an estimate of actual

time. For example, the predicted runtimes for the 6- and 12-sample over 12 cores and

6-, 12- and 24-sample over 48 cores.
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Figure 6.15: Predicted runtime versus measured actual runtime with presenting the
error bars for different input data sizes ranged as (6-, 12-, and 24-sample) over various
numbers of the cores ranged as (12, 24 and 48cores).

6.6 Conclusion

Cloud simulation remains an essential tool for providing decision makers with guid-

ance to implement applications into the cloud. In this chapter, we focused on the

development of deep in the framework components to simulate the I/O contention

problem.

Runtime prediction of Big Data analyses plays an important role in the design and

deployment of data analytics systems. Cloud platforms make it very easy to provision

virtually infinite resources, but they give little support in finding the optimal configu-

ration for a given user workload. In Big Data analyses that is particularly important

because such analyses consume significant amount of cloud time which directly trans-

lates into monetary cost, and so any mismatch between the provisioned resources and

actual workload is likely to increase the cost.

Big Data applications operate on an amount of data that is difficult to handle and

takes significant amount of time and cost to transfer and process. The influence

of these large amounts of data becomes even more apparent when the processing

nodes of the data analytics system work in parallel, which can generate significant

contention in access to the data storage. In this chapter we have presented a model

and implementation of a simple serialised shared storage component embedded into
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the WorkflowSim environment to simulate I/O contention.

The storage component is based on a single FCFS queue and handles one read/write

request at a time. Despite its simplicity the evaluation results show that the proposed

extension is a promising approach to improve the accuracy of the runtime prediction.

Using only a very small training set consisting of 3 measurements of the smallest

executions, we were able to predict runtime of much larger configurations with relative

error in the range of 0.4–15% and median 8%. That gives users the ability to tailor

the resource configuration to their workload and potentially save a lot of costs in

finding the configuration that matches their needs, i.e. can process the workload in a

predictable expected time.

Interestingly, the proposed simple storage component can simulate with good accuracy

much more complex data access mechanism of the real cloud. In Azure, where our

NGS pipeline was deployed, upload and download of blobs (data objects) is intrinsi-

cally parallel – each blob can be accessed independently of others [30]. The reason why

our serialised storage component can well simulate the parallel blob storage in Azure

stems from the fact that the actual NGS pipeline implementation is very synchronous

in nature and due to large amounts of data it saturates the bandwidth available for a

single cloud storage account. Thus, although each pipeline step runs many subwork-

flows in parallel across multiple VMs, before moving to the following step the pipeline

waits until all subworkflows complete. And these synchronisation points at each step

make the serialised and parallel access to storage consume similar amount of time.

Whether the proposed sequential read/write storage would be able to simulate more

sophisticated workflow enactment models is left for the future work. Nevertheless, as

shown in the previous work [27], asynchronous workflow enactment models can in-

troduce their own set of issues and not necessarily are the best to support Big Data

applications.

The results we achieved and presented indicate that there is still some room for im-

provement in the runtime prediction. Thus, an implementation of a more sophisticated

parallel storage component for WorkflowSim is on our list of future work. The source

code has been released as open source code and can be downloaded from [2].
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Summary

This chapter summarises the research work presented in this thesis. The following

section concludes the novel prediction technique we developed for estimating the run-

time and resource numbers of the data-intensive workflows, by emphasising the main

functions for each chapter. The last section describes future research avenues that are

worth further exploration.

7.1 Thesis Summary

This thesis concentrated on building a framework dedicated to the common goal which

is the performance prediction of complex data-intensive workflows that utilised in the

cloud. This work explores how the prediction technique has used many real cases in the

simulation tool to support an enhancement for prediction accuracy and the framework

development. A new performance estimation technique was proposed and evaluated

with actual data-intensive workflows.

Chapter 2 gave background information concerning the main topic of this thesis, in-

cluding Cloud computing, Big-Data application in the cloud, performance prediction

of cloud applications, and Cloud computing simulation. More details are given on

scientific workflows, which represent the pipeline workflow and their life-cycle. In ad-

dition, a method for capturing and recording the history of the workflow execution is

represented in the provenance section. Furthermore, the requirements and challenges

for Big-Data workflows were outlined regarding scalability, flexibility and variability

in challenges such as platform heterogeneity and resource selection. There is scarcity

of research on complex, data-intensive workflows that measure performance prediction

concerning required resources at deployment time. However, most existing techniques

and models had limitations and do not consider the complexity of the deployment

of Big-Data workflow workflows. These challenges were addressed by proposing and

developing new techniques to model and simulate the behaviour of this type of work-

flows and effectively support the deployment decision by estimating the runtime and

resource numbers.
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Chapter 3 introduced the simulation tools selected to build the framework and a

methodology was described largely in general terms. Additionally, the adaptation

steps of the selected simulators are outlined. The method to convert a workflow from

one system to another system to be accepted under some template was presented.

The method can extract the framework parameters and predict execution times, input

data size and output data size is showed. Because the methodology based on these

parameters’ values for filling out the synthetic workflow with data which are required

by WorkflowSim. Steps have been shown for the methodology to enable such complex

workflows to be simulated and predict their performance. Further, the case study

follows a proposed methodology that formed the basis to achieve runtime prediction

for deploying the workflows in the Cloud as described in Chapter 4.

Chapter 4 considered the NGS pipeline as the example to apply the thesis’ questions

and study related issues. In the case study, a near-optimal deployment is found to

minimize the execution time and the cost of implementing the pipeline on the cloud.

More details about modifying a simulation platform to simulate the behaviour of the

NGS pipeline were learned. A methodology for predicting runtime and output size of

the pipeline was conducted and integrated with the framework function. The problem

addressed in this chapter focused on two things: 1) how to configure a training set from

a small input sample, and 2) how to build a estimate module that predicts runtime

and output data sizes as a function of all blocks in the pipeline. For the cases, the

data collected during a prior run of the pipeline are insufficient as well as cases that

estimate the runtime is inaccurate due to less data overlap between the training set

and the testing set. The experiments showed the prediction of the framework is under-

estimated for the real execution time and further improvements are needed.

Chapter 5 intended to develop the framework by enriching the existing prediction

methodology and tool components with information that enables scientist to acquire

better decision-making in deployment. Collecting a new dataset by running the NGS

pipeline on the Azure cloud was applied, where having such prepared new data sets

helped improve the prediction and predictability of the VM numbers. Additionally,

the pipeline execution that was broken at some points motivated a consideration of the

pipeline workflow partitioning as a case to be simulated. This can be used for research
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purposes of the data-intensive workflows such as detecting a fault. The experiments

were conducted with a new dataset; the validation of the enhancement was checked.

Results were produced after improvement showed the prediction of the framework

was under-estimated for real execution time. The largest error was shown for the

sample running on large numbers of VMs. Therefore, there has been a trend towards

developing a framework tool after detecting the problem of I/O contention, which has

not been considered in the WorkflowSim. Chapter 6 takes responsibility to cover and

solve this issue.

Chapter 6 explained one of the enhancement works to improve the runtime prediction

of the pipeline through the development of the framework. The proposed simple

storage component is added to the framework that has introduced an improvement

with good accuracy of the estimation. We proved the correctness of a new component

by testing the Montage workflow and the Gantt chart showed the storage component

is based on a single FCFS queue to save the request read/write and handle them

correctly. Finally, a very small training set consisting of three measurements of the

smallest execution were able to estimate the performance.

7.1.1 Contributions of the Performance Simulation of Com-
plex Workflows

The collective result of the work in this thesis used and developed technology for the

existing simulations. The main innovative features of the new prediction technique is

summarised as follows: 1) rely on minimal information stored in the provenance to

generate a training set and extract the simulation environments. 2) Devise a method

to simulate the behaviour of big-data workflows which are from disparate systems;

there is difficulty when one wants to analyse them on real systems. 3) Fair runtime

prediction can be obtained from a framework for running complex Big-Data workflows

with scaling-up their input data size that can used to define sub-optimal deployment.

4) It will further help promote the predictability of the number of resources that can

be determined before their deployment. 5) It introduces a generic methodology that

applies to any workflow of parallel and/or serial processes when one wants to use

simulation tools for prediction.
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One important contribution of our framework was to accurately predict for large

datasets using only a small dataset to train and simulate the NGS pipeline workflow.

In order to prove that, we have conducted an experiment which used a small data set

(three invocations) as the training ones to generate and collect information about the

simulation environment. The derived parameters are then used to predict the runtime

for new large data sets. Therefore, there was a sensitivity analysis on different data

set sizes and resource numbers. Our framework demonstrates that there is flexibility

for the user to choose a better configuration for achieving optimal performance be-

fore deployment. Our framework can predict performance under different scenarios of

configuration and help the user to decide the appropriate resource configuration.

The results of the runtime prediction for the pipeline for the execution of the 6-sample

input datasets and 48-sample input datasets are plotted in Figure 7.1. We used 6-

Sample datasets, as a training set to generate the parameter’ values for configuration

the framework. They were MIPs= 995 and BW= 795; two tests have been done, with

the first was testing the 48-sample input on 12 cores and the second testing a 48-

sample input on 48 cores. It was observed that our framework can accurately predict

the execution time even when the input datasets became large, where it accurately

predicted about of 94% and 71% respectively, see Figure 7.1. Summarizing the figure,

we can see that this new technique consistently achieves predicted results in good

agreement with actual ones under different pipeline parameters such as dataset size

and number of clusters.

0

1000

2000

3000

4000

5000

6000

7000

6S-12C 6S-12C 6S-12C 48S-12C 48S-48C

Ti
m

e 
in

 M
in

u
te

s 

MIPs=995    BW=795 Real Time

Estimated Time

Training Set

Acc =94%

Acc =71%

Figure 7.1: The real and estimated time for large input sample.

- 133 -



Chapter 7: Conclusion

7.2 Future Research Directions

During the course of this thesis, a number of areas for future work have been identified.

7.2.0.1 Automatic Modelling of Big-Data Workflows into Simulation

One step of the prediction methodology is modelling the pipeline workflow to be ac-

cepted by the WorkflowSim as explained in Chapter 3 and 4. Synthetic workflow

supports the definition and description of the workflows for the simulator by using

templates. While the workflows differ from one type to another; therefore, the auto-

matic technique for modelling various workflows is needed to fill-out the template of

the synthetic workflow. The first phase of this technique is centred on the activities

in the workflow to be considered as a process/task. The next phase involves dealing

with gathering information, which is relevant to the processes/tasks. The third phase

focuses on identifying and addressing the needs of input and output files for each pro-

cess. These phases can be utilised to gather a workflow description that is composed

of tasks or even sub-workflows.

7.2.0.2 Method of Capturing Provenance Data and Keeping the Frame-
work Up to Date

In general, the applied prediction method used by framework was crafted for structur-

ing and characterising data-intensive workflow based on provenance data. Although

such methodology provides accurate predictions, it requires the supervision of efforts

for constructing and tuning the prediction module. Such requirement invalidates one

of the leading advantages of data-intensive workflows: simplicity for the user. There-

fore, the suggestion to automate a capability for constructing the prediction module

in future work is suggested. If such automated methods exist, then it will supply

the framework to be accessible from existing provenance data for any provider and

support it with prediction equations. Potentially, for many organizations which use

cloud solution decisions, it can be easier in relation to prediction of runtime, hiring

needed resources and developing an expectation of execution behavior for the complex

pipeline workflows based on input data size. Additionally, such benefits may mean

that these organisations may not hesitate in using cloud resources.
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7.2.0.3 Fault-Tolerance Prediction of Big-Data workflows Support the Frame-
work

The WorkflowSim promises to support an evaluation platform for study areas such as

fault tolerance of the Pegasus workflow; we have modelled e-SC workflow; therefore,

we can exploit this ability and employ it in developing the framework to predict the

fault in the cloud when the NGS pipeline is implemented. However, fault tolerance is a

significant issue in such type of the workflows, particularly in the deployment mission

because it takes a long time in execution. To address this issue, we must create a

failure predictor module in the framework that can estimate failures in the pipeline

when it will be implemented in the cloud. The predictor module must be provided

with most popular execution failures of the pipeline.

7.2.0.4 Solving the Problem of Congestion

The extension solved the problem of the I/O contention and produced a good estimate,

especially for those running with a large number of the data samples and resources.

On the other hand, it caused overestimation for the small input sample over small

resources due to congestion. One reason for the congestion was using one queue to

simulate the I/O contention. Therefore, it was suggested to double the number of

queues to tackle congestion, which means modelling more than one queue. In case of

using multiple queues, the scheduling algorithm that arrange the VMs’ requests are

needed. This solution, currently is difficult to apply with WorkflowSim.

7.3 Limitations

1- Within the original dataset, only input information for the framework was extracted

and a limited summary of the runtime prediction was obtained by simulating the NGS

pipeline. As outlined in Chapter 5, we extended the dataset by including VMs’ in-

formation in addition to information included to improve prediction equations. This

dataset was instrumental in achieving a number benefits. First, it provided greater

insight in the prediction enhancement over the datasets. Secondly, it enables focus on

the development of the tool to establish consistency between the simulated and empir-
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ical cloud environments. Finally, we extended the dataset to consider the deployment

libraries’ time in additionally predicting to collect a run time for the 48-sample. There-

fore, new datasets are always needed due to ongoing developments by cloud providers.

However, the pipeline with the 6-sample input was run in 2014 on an Azure cloud,

taking 21:31 hours to run. The same run of the same input was also executed on the

Azure cloud and took 18:51 hours. Therefore, no consideration to the cloud resources’

improvement was considered in our framework.

2- In this thesis, we presented a predictive framework for the NGS pipeline workflow.

Predicting the execution time of these types of workflow is particularly difficult as the

execution time is highly dependent on the input data size, but for different types, it

needs more care to investigate a suitable relationship between the input data and the

runtime for building the estimation model.

3- The training set and testing set always were small because we had limited funds

to run the NGS pipeline on the Azure cloud. Therefore, we tried to make a balance

between the training and testing sets and that was affected on the randomizing the

order of running our real experiments.
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8.1 Appendix -A

:− use module ( l i b r a r y ( csv ) ) .

t r a v e r s e w o r k f l o w i n v o c a t i o n (WfInv , Out) :−
hdb store 2 : wasAssociatedWith ( , WfInv , , WfDoc , ) ,
once ( hdb store 2 : program (WfDoc , WfDocProps ) ) ,
the HDB the c a l l to program must be wrapped in once /1
g e t d i c t ( ’ prov : l a b e l ’ , WfDocProps , WfName) ,
hdb store 2 : wasPartOf (SubEx , WfInv ) ,
hdb store 2 : execut ion (SubEx , St , Et , SubExProps ) ,
g e t d i c t ( ’ prov : type ’ , SubExProps , Types ) ,
( memberchk ( ”e sc : workf lowExecution ” , Types ) −>

t r a v e r s e w o r k f l o w i n v o c a t i o n (SubEx , Out)
;

hdb store 2 : wasAssociatedWith ( , SubEx , WfEng , ,
AssocAttrs ) ,

SubExProps >:< { ’ prov : l a b e l ’ : BlockLabel , ’ e s c : blockName ’
: BlockName , ’ e s c : dataConsumed ’ : InData , ’ e s c :
dataProduced ’ : OutData } ,

AssocAttrs >:< { ’ e s c : ConcurrentServiceRuns ’ : ConcurSrvs
} ,

%g e t d i c t ( ’ prov : l a b e l ’ , SubExProps , BlockLabel ) ,
%g e t d i c t ( ’ e s c : blockName ’ , SubExProps , BlockName ) ,
c sv wr i t e s t r eam (Out , [ row (WfInv , WfName, BlockName ,

BlockLabel , St , Et , InData , OutData , WfEng , ConcurSrvs )
] , [ ] ) ,

f a i l
) .

dump invocation data (WfInv , OutputFile ) :−
s e t u p c a l l c l e a n u p (

open ( OutputFile , wr ite , Out) ,
(

c sv wr i t e s t r eam (Out , [ row ( ”Invocat ion Id ” , ”Workflow
Name” , ”Block Name” , ”Block Label ” , ”Sta r t Time” , ”
End Time” , ”Data Consumed ” , ”Data Produced ” , ”
Workflow Engine ” , ”Concurrent Blocks ”) ] , [ ] ) ,

t r a v e r s e w o r k f l o w i n v o c a t i o n (WfInv , Out)
) ,
c l o s e (Out)

) .

dump toplevel :−
hdb store 2 : workflow (WfDoc , WfProps ) ,
g e t d i c t ( ’ prov : l a b e l ’ , WfProps , ”Top−l e v e l (Yaobo ) ”) ,
hdb store 2 : wasAssociatedWith ( , Ex , , WfDoc , ) ,
s p l i t s t r i n g (Ex , ”/ ” , ”/ ” , Tokens ) ,
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l a s t ( Tokens , InvId ) ,
dump invocations ( ”e sc : // recomp−e sc / invoca t i on / ” , [ InvId ] ) .

dump invocations ( Pre f ix , InvL i s t ) :−
member( InvId , InvL i s t ) ,
a t o m i c s t o s t r i n g ( [ ”inv−” , InvId , ” . csv ” ] , FileName ) ,
a t o m i c s t o s t r i n g ( [ Pre f ix , InvId ] , ExecId ) ,
dump invocation data ( ExecId , FileName ) .

batch 4 ( [ ”54039 ” , ”56126 ” , ”58213 ” , ”60301 ” , ”60708 ” , ”61115 ” , ”
61522 ” , ”61857 ” , ”62211 ” , ”62618 ” , ”63025 ” ] ) .

batch 5 ( [ ”63432 ” ] ) .
batch 6 ( [ ”63839 ” , ”64284 ” , ”64788 ” , ”65435 ” , ”66083 ” , ”67210 ” , ”

68338 ” , ”68673 ” , ”69081 ” , ”70857 ” , ”69729 ” ] ) .
batch 7 ( [ ”47171 ” , ”47578 ” , ”47985 ” , ”48392 ” , ”49129 ” , ”49537 ” , ”

50184 ” , ”50831 ” , ”51479 ” , ”52606 ” , ”63432 ” ] ) .

t e s t b a t c h ( [ ”62192 ” ] ) .

8.2 Appendix-B
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NodeId 334414

TYPE Workflow Run

invocationId 23689

name Top-level (Yaobo)

Invocation Id Engine IdWorkflow Name Block No. Block Name Start Time End Time Elapsed Time Start-Start Time

23689 Top-level (Yaobo) 1 GetFileReferences 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:02

23689 Top-level (Yaobo) 2 GetReferenceInfo 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:01

23689 Top-level (Yaobo) 3 GenerateRGData 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:01

23689 Top-level (Yaobo) 4 WorkflowPerFileWithRef 12/15/2014 7:24 12/15/2014 7:24 0:00:05 0:00:02

23689 Top-level (Yaobo) 125 WorkflowPerInvocation 12/15/2014 13:37 12/15/2014 13:37 0:00:05 0:00:04

23689 Top-level (Yaobo) 174 WorkflowPerInvocation 12/15/2014 16:38 12/15/2014 16:38 0:00:04 0:00:01

23689 Top-level (Yaobo) 259 SerializeCSV 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01

23689 Top-level (Yaobo) 260 WorkflowPerFile 12/16/2014 1:40 12/16/2014 1:40 0:00:03 0:00:02

23689 Top-level (Yaobo) 718 ColumnSelect 12/16/2014 5:12 12/16/2014 5:12 0:00:01 0:00:01

23689 Top-level (Yaobo) 719 WorkflowPerInvocation 12/16/2014 5:12 12/16/2014 5:12 0:00:02 0:00:01 TOTAL 22:11:30 1331:30:00

23689 Top-level (Yaobo) 729 CollectWFResults 12/16/2014 5:26 12/16/2014 5:26 0:00:01 0:00:01

23689 Top-level (Yaobo) 730 ParameterSweep 12/16/2014 5:26 12/16/2014 5:27 0:00:05 0:00:03

23689 Top-level (Yaobo) 767 WorkflowPerInvocation 12/16/2014 5:29 12/16/2014 5:29 0:00:05 0:00:00

23689 Top-level (Yaobo) 792 StringList 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:00:02

23689 Top-level (Yaobo) 793 ColumnJoin 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:00:01

23689 Top-level (Yaobo) 794 WorkflowPerInvocation 12/16/2014 5:35 12/16/2014 5:35 0:00:05 0:00:03

23690 BWA (For each lane) 6 GetFileReferences 12/15/2014 7:24 12/15/2014 7:24 0:00:02 0:00:01 2416 BWA1_FEL

23690 BWA (For each lane) 8 WorkflowPerFileWithRef 12/15/2014 7:24 12/15/2014 7:24 0:00:02 0:00:00 68

23690 BWA (For each lane) 87 CollectWFResults 12/15/2014 10:20 12/15/2014 10:30 0:10:04 0:01:39 15861953049 I

23690 BWA (For each lane) 95 SAMTools-Merge 12/15/2014 10:39 12/15/2014 11:27 0:48:10 0:00:19 15861972195

23690 BWA (For each lane) 106 SAMTools-Sort 12/15/2014 11:27 12/15/2014 12:26 0:59:34 0:01:35 Wait 2:56:16 11335839402 O

23690 BWA (For each lane) 113 SAMTools-Index 12/15/2014 12:26 12/15/2014 12:30 0:03:18 0:03:18 BWA_A 0:00:04 6242968

23690 BWA (For each lane) 114 ExportFiles 12/15/2014 12:30 12/15/2014 12:30 0:00:01 0:00:01 BWA_B 2:21:02 ???

23690 BWA (For each lane) 115 ExportFiles 12/15/2014 12:30 12/15/2014 12:41 0:11:45 0:00:32 TOTAL 5:17:22 ???

23691 BWA (For each lane) 5 GetFileReferences 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:00 2416 BWA2_FEL

23691 BWA (For each lane) 7 WorkflowPerFileWithRef 12/15/2014 7:24 12/15/2014 7:24 0:00:02 0:00:01 68

23691 BWA (For each lane) 96 CollectWFResults 12/15/2014 10:39 12/15/2014 10:50 0:10:52 0:01:02 17033454431 I

23691 BWA (For each lane) 99 SAMTools-Merge 12/15/2014 10:50 12/15/2014 11:41 0:51:12 0:03:19 17033452787

23691 BWA (For each lane) 108 SAMTools-Sort 12/15/2014 11:41 12/15/2014 12:46 1:05:04 0:24:51 Wait 3:14:49 12187484531 O

23691 BWA (For each lane) 119 SAMTools-Index 12/15/2014 12:46 12/15/2014 12:50 0:03:30 0:03:31 BWA_A 0:00:03 6253544

23691 BWA (For each lane) 120 ExportFiles 12/15/2014 12:50 12/15/2014 12:50 0:00:00 0:00:01 BWA_B 2:21:22 ???

23691 BWA (For each lane) 121 ExportFiles 12/15/2014 12:50 12/15/2014 13:00 0:10:40 0:31:55 TOTAL 5:36:14 ???

23692 BWA (For each lane) 9 GetFileReferences 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:01 2416 BWA3_FEL

23692 BWA (For each lane) 10 WorkflowPerFileWithRef 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:0:-1 68

23692 BWA (For each lane) 91 CollectWFResults 12/15/2014 10:30 12/15/2014 10:40 0:09:51 0:0:-1 15631861654 I

23692 BWA (For each lane) 97 SAMTools-Merge 12/15/2014 10:40 12/15/2014 11:28 0:48:25 0:04:50 15631835494

23692 BWA (For each lane) 107 SAMTools-Sort 12/15/2014 11:28 12/15/2014 12:30 1:01:49 0:12:38 Wait 3:05:59 11316144438 O

23692 BWA (For each lane) 116 SAMTools-Index 12/15/2014 12:30 12/15/2014 12:33 0:03:17 0:03:17 BWA_A 0:00:02 6432376

23692 BWA (For each lane) 117 ExportFiles 12/15/2014 12:33 12/15/2014 12:33 0:00:02 0:00:02 BWA_B 2:14:37 ???



23692 BWA (For each lane) 118 ExportFiles 12/15/2014 12:33 12/15/2014 12:45 0:11:12 0:12:34 TOTAL 5:20:38 ???

23693 BWA (For each lane) 11 GetFileReferences 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:01 2416 BWA4_FEL

23693 BWA (For each lane) 12 WorkflowPerFileWithRef 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:0:-2 68

23693 BWA (For each lane) 72 CollectWFResults 12/15/2014 9:41 12/15/2014 9:48 0:06:44 0:01:41 12113188483 I

23693 BWA (For each lane) 76 SAMTools-Merge 12/15/2014 9:53 12/15/2014 10:30 0:37:23 0:01:13 12113202634

23693 BWA (For each lane) 94 SAMTools-Sort 12/15/2014 10:30 12/15/2014 11:18 0:47:15 0:08:08 Wait 2:16:46 8788010149 O

23693 BWA (For each lane) 102 SAMTools-Index 12/15/2014 11:18 12/15/2014 11:20 0:02:32 0:00:55 BWA_A 0:00:02 6299848

23693 BWA (For each lane) 104 ExportFiles 12/15/2014 11:20 12/15/2014 11:20 0:00:03 0:00:03 BWA_B 1:47:03 ???

23693 BWA (For each lane) 105 ExportFiles 12/15/2014 11:20 12/15/2014 11:28 0:07:36 0:06:27 TOTAL 4:03:51 ???

23694 BWA (For each lane) 13 GetFileReferences 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:01 2416 BWA5_FEL

23694 BWA (For each lane) 14 WorkflowPerFileWithRef 12/15/2014 7:24 12/15/2014 7:24 0:00:02 0:00:01 68

23694 BWA (For each lane) 86 CollectWFResults 12/15/2014 10:19 12/15/2014 10:29 0:10:01 0:01:24 16216042490 I

23694 BWA (For each lane) 90 SAMTools-Merge 12/15/2014 10:29 12/15/2014 11:19 0:49:39 0:01:06 16216048444

23694 BWA (For each lane) 103 SAMTools-Sort 12/15/2014 11:19 12/15/2014 12:21 1:02:49 0:01:38 Wait 2:54:52 11733168987 O

23694 BWA (For each lane) 110 SAMTools-Index 12/15/2014 12:21 12/15/2014 12:25 0:03:24 0:03:24 BWA_A 0:00:03 6407800

23694 BWA (For each lane) 111 ExportFiles 12/15/2014 12:25 12/15/2014 12:25 0:00:01 0:00:01 BWA_B 2:18:30 ???

23694 BWA (For each lane) 112 ExportFiles 12/15/2014 12:25 12/15/2014 12:37 0:12:36 0:01:28 TOTAL 5:13:25 ???

23695 BWA (For each lane) 15 GetFileReferences 12/15/2014 7:24 12/15/2014 7:24 0:00:01 0:00:01 2416 BWA6_FEL

23695 BWA (For each lane) 16 WorkflowPerFileWithRef 12/15/2014 7:24 12/15/2014 7:24 0:00:02 0:00:00 68

23695 BWA (For each lane) 100 CollectWFResults 12/15/2014 10:53 12/15/2014 11:05 0:12:20 0:12:20 17858114745 I

23695 BWA (For each lane) 101 SAMTools-Merge 12/15/2014 11:05 12/15/2014 12:06 1:00:24 0:12:18 17858132616

23695 BWA (For each lane) 109 SAMTools-Sort 12/15/2014 12:06 12/15/2014 13:21 1:15:41 0:15:37 Wait 3:28:57 12587829996 O

23695 BWA (For each lane) 122 SAMTools-Index 12/15/2014 13:21 12/15/2014 13:25 0:03:50 0:03:50 BWA_A 0:00:03 6612096

23695 BWA (For each lane) 123 ExportFiles 12/15/2014 13:25 12/15/2014 13:25 0:00:01 0:00:01 BWA_B 2:43:58 ???

23695 BWA (For each lane) 124 ExportFiles 12/15/2014 13:25 12/15/2014 13:37 0:11:41 0:11:48 TOTAL 6:12:58 ???

23696 BWA (Align lane) 26 ImportDirectory 12/15/2014 7:24 12/15/2014 7:30 0:05:33 0:00:03 8056050385  I    BWA_A1_AL

23696 BWA (Align lane) 38 GZip 12/15/2014 7:30 12/15/2014 7:40 0:10:18 0:00:05 19831433538

23696 BWA (Align lane) 59 PrepareLibrary 12/15/2014 7:40 12/15/2014 7:40 0:00:02 0:00:02 4657

23696 BWA (Align lane) 60 BWA_Mem 12/15/2014 7:40 12/15/2014 9:54 2:14:04 0:00:19 23522125554

23696 BWA (Align lane) 78 SAMTools-SAM2BAM 12/15/2014 9:55 12/15/2014 10:22 0:26:49 0:00:25 8549708632 O

23696 BWA (Align lane) 93 ExportFiles 12/15/2014 10:30 12/15/2014 10:39 0:08:41 0:00:15 TOTAL 3:14:48 ???

23697 BWA (Align lane) 21 ImportDirectory 12/15/2014 7:24 12/15/2014 7:29 0:04:52 0:00:02 7507423824 I    BWA_B1_AL

23697 BWA (Align lane) 32 GZip 12/15/2014 7:29 12/15/2014 7:38 0:09:21 0:00:07 18502392392

23697 BWA (Align lane) 47 PrepareLibrary 12/15/2014 7:38 12/15/2014 7:38 0:00:02 0:00:02 4657

23697 BWA (Align lane) 48 BWA_Mem 12/15/2014 7:38 12/15/2014 9:35 1:56:17 0:00:00 21948489227

23697 BWA (Align lane) 70 SAMTools-SAM2BAM 12/15/2014 9:35 12/15/2014 9:59 0:24:44 0:02:55 7963230281 O

23697 BWA (Align lane) 81 ExportFiles 12/15/2014 9:59 12/15/2014 10:08 0:08:44 0:03:35 TOTAL 2:44:00 ???

23698 BWA (Align lane) 24 ImportDirectory 12/15/2014 7:24 12/15/2014 7:29 0:05:25 0:00:01 8000668868  I    BWA_A2_AL

23698 BWA (Align lane) 36 GZip 12/15/2014 7:29 12/15/2014 7:40 0:10:25 0:00:05 19687368280

23698 BWA (Align lane) 57 PrepareLibrary 12/15/2014 7:40 12/15/2014 7:40 0:00:01 0:00:01 4657

23698 BWA (Align lane) 58 BWA_Mem 12/15/2014 7:40 12/15/2014 9:53 2:12:52 0:0:-1 23352524680

23698 BWA (Align lane) 77 SAMTools-SAM2BAM 12/15/2014 9:54 12/15/2014 10:20 0:26:20 0:01:10 8483745799 O

23698 BWA (Align lane) 92 ExportFiles 12/15/2014 10:30 12/15/2014 10:39 0:08:30 0:00:08 TOTAL 3:14:28 ???

23699 BWA (Align lane) 23 ImportDirectory 12/15/2014 7:24 12/15/2014 7:29 0:05:21 0:0:-1 7386052462 I    BWA_B2_AL

23699 BWA (Align lane) 35 GZip 12/15/2014 7:29 12/15/2014 7:39 0:09:43 0:00:03 18352931750



23699 BWA (Align lane) 51 PrepareLibrary 12/15/2014 7:39 12/15/2014 7:39 0:00:02 0:00:03 4657

23699 BWA (Align lane) 52 BWA_Mem 12/15/2014 7:39 12/15/2014 9:42 2:03:19 0:00:06 21770360909

23699 BWA (Align lane) 73 SAMTools-SAM2BAM 12/15/2014 9:42 12/15/2014 10:07 0:24:39 0:02:54 7831858962 O

23699 BWA (Align lane) 83 ExportFiles 12/15/2014 10:07 12/15/2014 10:15 0:07:34 0:03:59 TOTAL 2:50:39 ???

23700 BWA (Align lane) 19 ImportDirectory 12/15/2014 7:24 12/15/2014 7:29 0:04:44 0:00:01 7452878642  I    BWA_A3_AL

23700 BWA (Align lane) 31 GZip 12/15/2014 7:29 12/15/2014 7:38 0:09:22 0:00:08 18362808298

23700 BWA (Align lane) 43 PrepareLibrary 12/15/2014 7:38 12/15/2014 7:38 0:00:02 0:00:02 4657

23700 BWA (Align lane) 44 BWA_Mem 12/15/2014 7:38 12/15/2014 9:34 1:55:29 0:00:06 21784127062

23700 BWA (Align lane) 69 SAMTools-SAM2BAM 12/15/2014 9:34 12/15/2014 9:58 0:24:40 0:00:54 7898722768 O

23700 BWA (Align lane) 80 ExportFiles 12/15/2014 9:58 12/15/2014 10:07 0:08:17 0:00:58 TOTAL 2:42:35 ???

23701 BWA (Align lane) 20 ImportDirectory 12/15/2014 7:24 12/15/2014 7:29 0:04:58 0:0:-1 7356633844 I    BWA_B3_AL

23701 BWA (Align lane) 33 GZip 12/15/2014 7:29 12/15/2014 7:40 0:10:33 0:00:00 18299259420

23701 BWA (Align lane) 55 PrepareLibrary 12/15/2014 7:40 12/15/2014 7:40 0:00:02 0:00:03 4657

23701 BWA (Align lane) 56 BWA_Mem 12/15/2014 7:40 12/15/2014 9:41 2:01:10 0:00:16 21707561700

23701 BWA (Align lane) 75 SAMTools-SAM2BAM 12/15/2014 9:48 12/15/2014 10:13 0:25:07 0:05:13 7800002692 O

23701 BWA (Align lane) 88 ExportFiles 12/15/2014 10:22 12/15/2014 10:30 0:08:02 0:04:29 TOTAL 3:05:57 ???

23702 BWA (Align lane) 18 ImportDirectory 12/15/2014 7:24 12/15/2014 7:28 0:04:08 0:0:-2 5727243157  I    BWA_A4_AL

23702 BWA (Align lane) 30 GZip 12/15/2014 7:28 12/15/2014 7:38 0:10:04 0:00:34 14195215904

23702 BWA (Align lane) 45 PrepareLibrary 12/15/2014 7:38 12/15/2014 7:38 0:00:02 0:00:02 4657

23702 BWA (Align lane) 46 BWA_Mem 12/15/2014 7:38 12/15/2014 9:14 1:35:38 0:0:-3 16837764904

23702 BWA (Align lane) 66 SAMTools-SAM2BAM 12/15/2014 9:14 12/15/2014 9:33 0:19:28 0:12:26 6083441789 O

23702 BWA (Align lane) 68 ExportFiles 12/15/2014 9:33 12/15/2014 9:40 0:06:34 0:00:16 TOTAL 2:15:54 ???

23703 BWA (Align lane) 17 ImportDirectory 12/15/2014 7:24 12/15/2014 7:28 0:03:45 0:00:01 5677081672 I    BWA_B4_AL

23703 BWA (Align lane) 29 GZip 12/15/2014 7:28 12/15/2014 7:37 0:09:07 0:00:23 14085154522

23703 BWA (Align lane) 41 PrepareLibrary 12/15/2014 7:37 12/15/2014 7:37 0:00:02 0:00:02 4657

23703 BWA (Align lane) 42 BWA_Mem 12/15/2014 7:37 12/15/2014 9:07 1:30:20 0:01:10 16707771454

23703 BWA (Align lane) 65 SAMTools-SAM2BAM 12/15/2014 9:07 12/15/2014 9:26 0:19:03 0:06:38 6029746694 O

23703 BWA (Align lane) 67 ExportFiles 12/15/2014 9:26 12/15/2014 9:32 0:05:49 0:07:02 TOTAL 2:08:08 ???

23704 BWA (Align lane) 27 ImportDirectory 12/15/2014 7:24 12/15/2014 7:30 0:05:28 0:00:00 7674281065  I    BWA_A5_AL

23704 BWA (Align lane) 37 GZip 12/15/2014 7:30 12/15/2014 7:39 0:09:43 0:00:02 19058807824

23704 BWA (Align lane) 53 PrepareLibrary 12/15/2014 7:39 12/15/2014 7:39 0:00:02 0:00:02 4657

23704 BWA (Align lane) 54 BWA_Mem 12/15/2014 7:39 12/15/2014 9:45 2:06:05 0:00:15 22608256865

23704 BWA (Align lane) 74 SAMTools-SAM2BAM 12/15/2014 9:45 12/15/2014 10:11 0:25:44 0:02:09 8146434485 O

23704 BWA (Align lane) 84 ExportFiles 12/15/2014 10:11 12/15/2014 10:19 0:07:45 0:01:32 TOTAL 2:54:48 ???

23705 BWA (Align lane) 25 ImportDirectory 12/15/2014 7:24 12/15/2014 7:30 0:05:36 0:0:-2 8490980528 I    BWA_B5_AL

23705 BWA (Align lane) 39 GZip 12/15/2014 7:30 12/15/2014 7:40 0:10:33 0:00:29 22202616440

23705 BWA (Align lane) 61 PrepareLibrary 12/15/2014 7:40 12/15/2014 7:40 0:00:01 0:00:02 4657

23705 BWA (Align lane) 62 BWA_Mem 12/15/2014 7:40 12/15/2014 9:55 2:14:53 0:00:14 26371087511

23705 BWA (Align lane) 85 SAMTools-SAM2BAM 12/15/2014 10:13 12/15/2014 10:45 0:32:03 0:06:15 8922975618 O

23705 BWA (Align lane) 98 ExportFiles 12/15/2014 10:45 12/15/2014 10:53 0:08:16 0:05:00 TOTAL 3:28:55 ???

23706 BWA (Align lane) 22 ImportDirectory 12/15/2014 7:24 12/15/2014 7:29 0:04:56 0:00:00 7602869847  I    BWA_A6_AL

23706 BWA (Align lane) 34 GZip 12/15/2014 7:29 12/15/2014 7:38 0:09:16 0:00:24 18901953208

23706 BWA (Align lane) 49 PrepareLibrary 12/15/2014 7:38 12/15/2014 7:38 0:00:02 0:00:02 4657

23706 BWA (Align lane) 50 BWA_Mem 12/15/2014 7:38 12/15/2014 9:37 1:59:10 0:00:49 22423059118

23706 BWA (Align lane) 71 SAMTools-SAM2BAM 12/15/2014 9:37 12/15/2014 10:03 0:25:24 0:03:20 8069608005 O



23706 BWA (Align lane) 82 ExportFiles 12/15/2014 10:03 12/15/2014 10:11 0:08:15 0:04:16 TOTAL 2:47:04 ???

23707 BWA (Align lane) 28 ImportDirectory 12/15/2014 7:24 12/15/2014 7:30 0:06:04 0:03:44 8503011732 I    BWA_B6_AL

23707 BWA (Align lane) 40 GZip 12/15/2014 7:30 12/15/2014 7:40 0:10:21 0:06:47 22205300398

23707 BWA (Align lane) 63 PrepareLibrary 12/15/2014 7:40 12/15/2014 7:41 0:00:02 0:00:03 4657

23707 BWA (Align lane) 64 BWA_Mem 12/15/2014 7:41 12/15/2014 9:56 2:15:01 1:26:45 26374822681

23707 BWA (Align lane) 79 SAMTools-SAM2BAM 12/15/2014 9:56 12/15/2014 10:26 0:30:53 0:02:46 8935139127 O

23707 BWA (Align lane) 89 ExportFiles 12/15/2014 10:26 12/15/2014 10:36 0:09:15 0:02:29 TOTAL 3:11:37 ???

23756 Picard-Tools 126 ImportDirectory 12/15/2014 13:37 12/15/2014 13:45 0:08:04 0:0:-1 11342082370 I   PICARD1

23756 Picard-Tools 138 PickFile 12/15/2014 13:45 12/15/2014 13:46 0:00:58 0:00:22 11335839402

23756 Picard-Tools 143 Picard-CleanSAM 12/15/2014 13:46 12/15/2014 14:19 0:33:14 0:22:55 11450605131

23756 Picard-Tools 145 Picard-MarkDuplicates 12/15/2014 14:19 12/15/2014 15:08 0:48:07 0:00:08 7315131348

23756 Picard-Tools 151 Picard-AddOrReplaceRG 12/15/2014 15:08 12/15/2014 15:36 0:28:00 0:04:58 7410818872 O

23756 Picard-Tools 159 SAMTools-Index 12/15/2014 15:36 12/15/2014 15:38 0:02:12 0:02:12 6235720

23756 Picard-Tools 160 ExportFiles 12/15/2014 15:38 12/15/2014 15:38 0:00:01 0:00:01 ???

23756 Picard-Tools 161 ExportFiles 12/15/2014 15:38 12/15/2014 15:44 0:06:21 0:04:54 TOTAL 2:06:59 ???

23757 Picard-Tools 127 ImportDirectory 12/15/2014 13:37 12/15/2014 13:45 0:07:23 0:00:02 12193738075 I   PICARD2

23757 Picard-Tools 134 PickFile 12/15/2014 13:45 12/15/2014 13:46 0:01:01 0:00:17 12187484531

23757 Picard-Tools 139 Picard-CleanSAM 12/15/2014 13:46 12/15/2014 14:21 0:35:39 0:00:10 12311571714

23757 Picard-Tools 148 Picard-MarkDuplicates 12/15/2014 14:21 12/15/2014 15:13 0:51:32 0:05:24 7872487516

23757 Picard-Tools 153 Picard-AddOrReplaceRG 12/15/2014 15:13 12/15/2014 15:43 0:29:53 0:02:38 7975311426 O

23757 Picard-Tools 162 SAMTools-Index 12/15/2014 15:43 12/15/2014 15:45 0:02:22 0:02:22 6246504

23757 Picard-Tools 163 ExportFiles 12/15/2014 15:45 12/15/2014 15:45 0:00:01 0:00:02 ???

23757 Picard-Tools 164 ExportFiles 12/15/2014 15:45 12/15/2014 15:52 0:07:04 0:02:09 TOTAL 2:15:01 ???

23758 Picard-Tools 128 ImportDirectory 12/15/2014 13:37 12/15/2014 13:45 0:07:38 0:0:-1 11322576814 I  PICARD3

23758 Picard-Tools 135 PickFile 12/15/2014 13:45 12/15/2014 13:46 0:00:57 0:0:-1 11316144438

23758 Picard-Tools 140 Picard-CleanSAM 12/15/2014 13:46 12/15/2014 14:20 0:33:47 0:00:01 11436941982

23758 Picard-Tools 146 Picard-MarkDuplicates 12/15/2014 14:20 12/15/2014 15:13 0:52:57 0:00:45 8962734019

23758 Picard-Tools 152 Picard-AddOrReplaceRG 12/15/2014 15:13 12/15/2014 15:47 0:34:43 0:00:17 9078276010 O

23758 Picard-Tools 165 SAMTools-Index 12/15/2014 15:47 12/15/2014 15:50 0:02:41 0:02:41 6428448

23758 Picard-Tools 166 ExportFiles 12/15/2014 15:50 12/15/2014 15:50 0:00:01 0:00:01 ???

23758 Picard-Tools 167 ExportFiles 12/15/2014 15:50 12/15/2014 15:58 0:08:28 0:01:19 TOTAL 2:21:14 ???

23759 Picard-Tools 129 ImportDirectory 12/15/2014 13:37 12/15/2014 13:43 0:05:24 0:00:00 8794309997 I  PICARD4

23759 Picard-Tools 132 PickFile 12/15/2014 13:43 12/15/2014 13:43 0:00:44 0:00:44 8788010149

23759 Picard-Tools 133 Picard-CleanSAM 12/15/2014 13:43 12/15/2014 14:09 0:25:49 0:01:14 8879132809

23759 Picard-Tools 144 Picard-MarkDuplicates 12/15/2014 14:09 12/15/2014 14:49 0:39:55 0:10:19 7057978345

23759 Picard-Tools 150 Picard-AddOrReplaceRG 12/15/2014 14:49 12/15/2014 15:16 0:26:59 0:18:32 7151140292 O

23759 Picard-Tools 155 SAMTools-Index 12/15/2014 15:16 12/15/2014 15:18 0:02:06 0:02:07 6297576

23759 Picard-Tools 156 ExportFiles 12/15/2014 15:18 12/15/2014 15:18 0:00:01 0:00:01 ???

23759 Picard-Tools 157 ExportFiles 12/15/2014 15:18 12/15/2014 15:25 0:06:36 0:17:12 TOTAL 1:47:35 ???

23760 Picard-Tools 130 ImportDirectory 12/15/2014 13:37 12/15/2014 13:45 0:07:38 0:00:01 11739576787 I  PICARD5

23760 Picard-Tools 136 PickFile 12/15/2014 13:45 12/15/2014 13:46 0:00:59 0:00:16 11733168987

23760 Picard-Tools 141 Picard-CleanSAM 12/15/2014 13:46 12/15/2014 14:20 0:34:31 0:00:20 11858587245

23760 Picard-Tools 147 Picard-MarkDuplicates 12/15/2014 14:20 12/15/2014 15:15 0:55:07 0:00:57 9409037758

23760 Picard-Tools 154 Picard-AddOrReplaceRG 12/15/2014 15:15 12/15/2014 15:51 0:35:49 0:00:34 9531142797 O

23760 Picard-Tools 168 SAMTools-Index 12/15/2014 15:51 12/15/2014 15:54 0:02:49 0:02:49 6403104



23760 Picard-Tools 169 ExportFiles 12/15/2014 15:54 12/15/2014 15:54 0:00:01 0:00:02 ???

23760 Picard-Tools 170 ExportFiles 12/15/2014 15:54 12/15/2014 16:03 0:08:53 0:29:08 TOTAL 2:25:50 ???

23761 Picard-Tools 131 ImportDirectory 12/15/2014 13:37 12/15/2014 13:45 0:07:52 0:05:23 12594442092 I   PICARD6

23761 Picard-Tools 137 PickFile 12/15/2014 13:45 12/15/2014 13:46 0:01:03 0:00:10 12587829996

23761 Picard-Tools 142 Picard-CleanSAM 12/15/2014 13:46 12/15/2014 14:27 0:40:33 0:00:05 12766210063

23761 Picard-Tools 149 Picard-MarkDuplicates 12/15/2014 14:27 12/15/2014 15:35 1:08:41 0:22:22 11643289399

23761 Picard-Tools 158 Picard-AddOrReplaceRG 12/15/2014 15:35 12/15/2014 16:23 0:47:54 0:00:14 11800280496 O

23761 Picard-Tools 171 SAMTools-Index 12/15/2014 16:23 12/15/2014 16:27 0:03:40 0:03:40 6613616

23761 Picard-Tools 172 ExportFiles 12/15/2014 16:27 12/15/2014 16:27 0:00:01 0:00:01 ???

23761 Picard-Tools 173 ExportFiles 12/15/2014 16:27 12/15/2014 16:38 0:10:39 0:10:45 TOTAL 3:00:24 ???

23786 GATK phase 1 177 GATK-ReadFilter-Init 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 47 GATKP1_1

23786 GATK phase 1 178 GATK-ReadFilter-BadCigar 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:0:-1 60

23786 GATK phase 1 188 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:00 4657

23786 GATK phase 1 193 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:00 4924

23786 GATK phase 1 199 ImportDirectory 12/15/2014 16:38 12/15/2014 16:43 0:04:44 0:0:-1 7417054592 I

23786 GATK phase 1 206 PickFile 12/15/2014 16:43 12/15/2014 16:43 0:00:38 0:00:06 7410818872

23786 GATK phase 1 209 GATK-RealignerTargetCreator 12/15/2014 16:43 12/15/2014 17:24 0:41:14 0:00:07 3597127

23786 GATK phase 1 218 GATK-IndelRealigner 12/15/2014 17:24 12/15/2014 18:11 0:46:14 0:02:01 7449553429

23786 GATK phase 1 223 GATK-BaseRecalibrator 12/15/2014 18:11 12/15/2014 19:01 0:50:06 0:02:57 916648

23786 GATK phase 1 228 GATK-PrintReads 12/15/2014 19:01 12/15/2014 20:25 1:24:28 0:01:32 12740661801

23786 GATK phase 1 236 GATK-ReduceReads 12/15/2014 20:25 12/15/2014 22:08 1:42:51 0:10:55 2766450004 O

23786 GATK phase 1 243 ExportFiles 12/15/2014 22:08 12/15/2014 22:11 0:02:53 0:02:53

23786 GATK phase 1 244 SAMTools-Index 12/15/2014 22:11 12/15/2014 22:12 0:00:48 0:00:48 6215392

23786 GATK phase 1 245 ExportFiles 12/15/2014 22:12 12/15/2014 22:12 0:00:02 0:14:57 TOTAL 5:34:10

23787 GATK phase 1 175 GATK-ReadFilter-Init 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 47 GATKP1_2

23787 GATK phase 1 176 GATK-ReadFilter-BadCigar 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:00 60

23787 GATK phase 1 187 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 4657

23787 GATK phase 1 191 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:02 4924

23787 GATK phase 1 200 ImportDirectory 12/15/2014 16:38 12/15/2014 16:43 0:04:50 0:00:02 7981557930 I

23787 GATK phase 1 207 PickFile 12/15/2014 16:43 12/15/2014 16:43 0:00:40 0:00:23 7975311426

23787 GATK phase 1 210 GATK-RealignerTargetCreator 12/15/2014 16:43 12/15/2014 17:26 0:43:07 0:00:13 3735131

23787 GATK phase 1 219 GATK-IndelRealigner 12/15/2014 17:26 12/15/2014 18:19 0:52:50 0:06:35 8016830706

23787 GATK phase 1 225 GATK-BaseRecalibrator 12/15/2014 18:19 12/15/2014 19:04 0:44:22 0:20:12 916539

23787 GATK phase 1 230 GATK-PrintReads 12/15/2014 19:04 12/15/2014 20:36 1:32:33 0:01:21 13276459043

23787 GATK phase 1 237 GATK-ReduceReads 12/15/2014 20:36 12/15/2014 22:27 1:50:34 0:42:28 2824430083 O

23787 GATK phase 1 246 ExportFiles 12/15/2014 22:27 12/15/2014 22:30 0:02:47 0:02:48

23787 GATK phase 1 247 SAMTools-Index 12/15/2014 22:30 12/15/2014 22:30 0:00:49 0:00:49 6224816

23787 GATK phase 1 248 ExportFiles 12/15/2014 22:30 12/15/2014 22:30 0:00:02 0:14:48 TOTAL 5:52:45

23788 GATK phase 1 180 GATK-ReadFilter-Init 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 47 GATKP1_3

23788 GATK phase 1 183 GATK-ReadFilter-BadCigar 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:0:-1 60

23788 GATK phase 1 192 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:0:-1 4657

23788 GATK phase 1 198 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:0:-1 4924

23788 GATK phase 1 202 ImportDirectory 12/15/2014 16:38 12/15/2014 16:44 0:05:48 0:00:00 9084704458 I

23788 GATK phase 1 212 PickFile 12/15/2014 16:44 12/15/2014 16:44 0:00:47 0:00:44 9078276010

23788 GATK phase 1 214 GATK-RealignerTargetCreator 12/15/2014 16:45 12/15/2014 17:33 0:48:32 0:00:21 4816333



23788 GATK phase 1 220 GATK-IndelRealigner 12/15/2014 17:33 12/15/2014 18:39 1:06:26 0:00:06 9126965264

23788 GATK phase 1 226 GATK-BaseRecalibrator 12/15/2014 18:40 12/15/2014 19:34 0:54:09 0:08:43 916757

23788 GATK phase 1 232 GATK-PrintReads 12/15/2014 19:34 12/15/2014 21:19 1:45:00 0:15:04 15308823442

23788 GATK phase 1 238 GATK-ReduceReads 12/15/2014 21:19 12/15/2014 23:33 2:14:10 0:15:54 3430581549 O

23788 GATK phase 1 250 ExportFiles 12/15/2014 23:33 12/15/2014 23:36 0:03:27 0:02:56

23788 GATK phase 1 252 SAMTools-Index 12/15/2014 23:36 12/15/2014 23:37 0:01:00 0:01:00 6405264

23788 GATK phase 1 253 ExportFiles 12/15/2014 23:37 12/15/2014 23:37 0:00:02 0:01:00 TOTAL 6:59:38

23789 GATK phase 1 179 GATK-ReadFilter-Init 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 47 GATKP1_4

23789 GATK phase 1 184 GATK-ReadFilter-BadCigar 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 60

23789 GATK phase 1 194 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 4657

23789 GATK phase 1 196 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 4924

23789 GATK phase 1 201 ImportDirectory 12/15/2014 16:38 12/15/2014 16:42 0:04:34 0:00:01 7157437868 I

23789 GATK phase 1 205 PickFile 12/15/2014 16:42 12/15/2014 16:43 0:00:37 0:00:09 7151140292

23789 GATK phase 1 208 GATK-RealignerTargetCreator 12/15/2014 16:43 12/15/2014 17:24 0:41:11 0:00:11 3994757

23789 GATK phase 1 217 GATK-IndelRealigner 12/15/2014 17:24 12/15/2014 18:14 0:49:25 0:00:13 7188890298

23789 GATK phase 1 224 GATK-BaseRecalibrator 12/15/2014 18:14 12/15/2014 19:02 0:48:43 0:05:40 916212

23789 GATK phase 1 229 GATK-PrintReads 12/15/2014 19:02 12/15/2014 20:24 1:21:17 0:01:19 12044923155

23789 GATK phase 1 235 GATK-ReduceReads 12/15/2014 20:24 12/15/2014 22:04 1:40:40 0:01:39 2787113930 O

23789 GATK phase 1 240 ExportFiles 12/15/2014 22:04 12/15/2014 22:07 0:02:41 0:02:42

23789 GATK phase 1 241 SAMTools-Index 12/15/2014 22:07 12/15/2014 22:08 0:00:48 0:00:48 6279120

23789 GATK phase 1 242 ExportFiles 12/15/2014 22:08 12/15/2014 22:08 0:00:02 0:00:20 TOTAL 5:30:09

23790 GATK phase 1 182 GATK-ReadFilter-Init 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:03 47 GATKP1_5

23790 GATK phase 1 186 GATK-ReadFilter-BadCigar 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:00 60

23790 GATK phase 1 189 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:02 4657

23790 GATK phase 1 195 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:01 4924

23790 GATK phase 1 204 ImportDirectory 12/15/2014 16:38 12/15/2014 16:44 0:05:44 0:04:35 9537545901 I

23790 GATK phase 1 211 PickFile 12/15/2014 16:44 12/15/2014 16:44 0:00:49 0:00:06 9531142797

23790 GATK phase 1 213 GATK-RealignerTargetCreator 12/15/2014 16:44 12/15/2014 17:33 0:48:45 0:00:07 4982446

23790 GATK phase 1 221 GATK-IndelRealigner 12/15/2014 17:33 12/15/2014 18:48 1:15:04 0:14:02 9581291374

23790 GATK phase 1 227 GATK-BaseRecalibrator 12/15/2014 18:48 12/15/2014 19:49 1:00:30 0:12:36 916212

23790 GATK phase 1 233 GATK-PrintReads 12/15/2014 19:49 12/15/2014 21:35 1:45:50 0:30:02 15893371461

23790 GATK phase 1 239 GATK-ReduceReads 12/15/2014 21:35 12/15/2014 23:36 2:01:12 0:29:44 3290229376 O

23790 GATK phase 1 251 ExportFiles 12/15/2014 23:36 12/15/2014 23:38 0:02:32 0:00:32

23790 GATK phase 1 254 SAMTools-Index 12/15/2014 23:38 12/15/2014 23:39 0:00:57 0:00:57 6378272

23790 GATK phase 1 255 ExportFiles 12/15/2014 23:39 12/15/2014 23:39 0:00:02 1:56:00 TOTAL 7:01:36

23791 GATK phase 1 181 GATK-ReadFilter-Init 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:0:-2 47 GATKP1_6

23791 GATK phase 1 185 GATK-ReadFilter-BadCigar 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:0:-1 60

23791 GATK phase 1 190 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:0:-2 4657

23791 GATK phase 1 197 PrepareLibrary 12/15/2014 16:38 12/15/2014 16:38 0:00:01 0:00:00 4924

23791 GATK phase 1 203 ImportDirectory 12/15/2014 16:38 12/15/2014 16:45 0:07:00 0:0:-2 11806894112 I

23791 GATK phase 1 215 PickFile 12/15/2014 16:45 12/15/2014 16:46 0:01:02 0:01:02 11800280496

23791 GATK phase 1 216 GATK-RealignerTargetCreator 12/15/2014 16:46 12/15/2014 17:47 1:01:18 0:38:21 5557020

23791 GATK phase 1 222 GATK-IndelRealigner 12/15/2014 17:47 12/15/2014 19:05 1:17:51 0:23:31 11855629971

23791 GATK phase 1 231 GATK-BaseRecalibrator 12/15/2014 19:05 12/15/2014 20:19 1:13:45 0:28:39 917288

23791 GATK phase 1 234 GATK-PrintReads 12/15/2014 20:19 12/15/2014 22:45 2:26:25 0:04:53 19968818285



23791 GATK phase 1 249 GATK-ReduceReads 12/15/2014 22:45 12/16/2014 1:35 2:50:04 0:47:39 3629593202 O

23791 GATK phase 1 256 ExportFiles 12/16/2014 1:35 12/16/2014 1:39 0:03:22 0:03:22

23791 GATK phase 1 257 SAMTools-Index 12/16/2014 1:39 12/16/2014 1:40 0:01:03 0:01:04 6600528

23791 GATK phase 1 258 ExportFiles 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:07 TOTAL 9:01:59

23824 Variant Calling with Chromosome Split261 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:02 4657

23824 Variant Calling with Chromosome Split262 GenerateIntervals 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01 1213

23824 Variant Calling with Chromosome Split263 ImportFile 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:02 49

23824 Variant Calling with Chromosome Split264 ParameterSweep 12/16/2014 1:40 12/16/2014 1:40 0:00:20 0:00:01 Wait 3:30:13 588

23824 Variant Calling with Chromosome Split715 CollectWFResults 12/16/2014 5:11 12/16/2014 5:11 0:00:29 0:00:29 186484721

23824 Variant Calling with Chromosome Split716 GATK-CatVariants 12/16/2014 5:11 12/16/2014 5:12 0:00:43 0:00:43 185888349

23824 Variant Calling with Chromosome Split717 ExportFiles 12/16/2014 5:12 12/16/2014 5:12 0:00:14 0:00:16 TOTAL 3:32:04

23828 Haplotype Caller 265 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:03 4657

23828 Haplotype Caller 270 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:02 0

23828 Haplotype Caller 274 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01 49

23828 Haplotype Caller 281 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-1 158

23828 Haplotype Caller 290 CollectWFResults 12/16/2014 1:40 12/16/2014 1:59 0:18:25 0:00:02 18766501536

23828 Haplotype Caller 325 FileListJoin 12/16/2014 1:59 12/16/2014 2:01 0:02:25 0:00:01 18766501536

23828 Haplotype Caller 328 PickFiles 12/16/2014 2:01 12/16/2014 2:03 0:02:21 0:00:00 18728398144

23828 Haplotype Caller 340 GATK-HaplotypeCaller 12/16/2014 2:03 12/16/2014 2:04 0:01:02 0:00:00 50866

23828 Haplotype Caller 344 ExportFiles 12/16/2014 2:04 12/16/2014 2:04 0:00:02 0:00:01 TOTAL 0:24:25 ???

23829 Haplotype Caller 266 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 4657

23829 Haplotype Caller 271 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:01 0

23829 Haplotype Caller 275 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:0:-1 49

23829 Haplotype Caller 280 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-2 158

23829 Haplotype Caller 291 CollectWFResults 12/16/2014 1:40 12/16/2014 2:02 0:21:49 0:0:-2 18766501536

23829 Haplotype Caller 337 FileListJoin 12/16/2014 2:02 12/16/2014 2:05 0:03:10 0:00:00 18766501536

23829 Haplotype Caller 356 PickFiles 12/16/2014 2:05 12/16/2014 2:08 0:03:10 0:00:00 18728398144

23829 Haplotype Caller 365 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 3:19 1:10:38 0:00:00 6340750

23829 Haplotype Caller 527 ExportFiles 12/16/2014 3:19 12/16/2014 3:19 0:00:02 0:00:03 TOTAL 1:38:59 ???

23830 Haplotype Caller 267 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 4657

23830 Haplotype Caller 276 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:01 0

23830 Haplotype Caller 284 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 49

23830 Haplotype Caller 289 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-1 158

23830 Haplotype Caller 302 CollectWFResults 12/16/2014 1:40 12/16/2014 2:01 0:21:03 0:00:00 18766501536

23830 Haplotype Caller 331 FileListJoin 12/16/2014 2:01 12/16/2014 2:04 0:03:11 0:00:04 18766501536

23830 Haplotype Caller 345 PickFiles 12/16/2014 2:04 12/16/2014 2:08 0:03:10 0:00:04 18728398144

23830 Haplotype Caller 359 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 2:25 0:17:19 0:00:03 2917574

23830 Haplotype Caller 370 ExportFiles 12/16/2014 2:25 12/16/2014 2:25 0:00:02 0:00:04 TOTAL 0:44:53 ???

23831 Haplotype Caller 268 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:02 4657

23831 Haplotype Caller 278 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:02 0

23831 Haplotype Caller 287 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:0:-1 49

23831 Haplotype Caller 294 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-1 158

23831 Haplotype Caller 306 CollectWFResults 12/16/2014 1:40 12/16/2014 1:59 0:18:26 0:0:-1 18766501536

23831 Haplotype Caller 326 FileListJoin 12/16/2014 1:59 12/16/2014 2:01 0:02:24 0:00:02 18766501536

23831 Haplotype Caller 329 PickFiles 12/16/2014 2:01 12/16/2014 2:03 0:02:22 0:00:01 18728398144



23831 Haplotype Caller 342 GATK-HaplotypeCaller 12/16/2014 2:03 12/16/2014 2:44 0:40:40 0:00:59 4867783

23831 Haplotype Caller 433 ExportFiles 12/16/2014 2:44 12/16/2014 2:44 0:00:01 0:00:04 TOTAL 1:04:00 ???

23832 Haplotype Caller 269 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-3 4657

23832 Haplotype Caller 283 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:01 0

23832 Haplotype Caller 292 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:00 49

23832 Haplotype Caller 299 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 158

23832 Haplotype Caller 309 CollectWFResults 12/16/2014 1:40 12/16/2014 2:02 0:21:48 0:00:00 18766501536

23832 Haplotype Caller 336 FileListJoin 12/16/2014 2:02 12/16/2014 2:05 0:03:10 0:00:00 18766501536

23832 Haplotype Caller 355 PickFiles 12/16/2014 2:05 12/16/2014 2:08 0:03:10 0:00:00 18728398144

23832 Haplotype Caller 364 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 2:34 0:25:44 0:00:01 4111348

23832 Haplotype Caller 406 ExportFiles 12/16/2014 2:34 12/16/2014 2:34 0:00:03 0:00:06 TOTAL 0:54:03 ???

23833 Haplotype Caller 272 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-1 4657

23833 Haplotype Caller 286 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:00 0

23833 Haplotype Caller 296 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:0:-1 49

23833 Haplotype Caller 303 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-1 158

23833 Haplotype Caller 313 CollectWFResults 12/16/2014 1:40 12/16/2014 2:02 0:21:38 0:00:01 18766501536

23833 Haplotype Caller 334 FileListJoin 12/16/2014 2:02 12/16/2014 2:05 0:03:10 0:00:10 18766501536

23833 Haplotype Caller 352 PickFiles 12/16/2014 2:05 12/16/2014 2:08 0:03:04 0:00:09 18728398144

23833 Haplotype Caller 361 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 2:28 0:19:55 0:00:08 3044161

23833 Haplotype Caller 382 ExportFiles 12/16/2014 2:28 12/16/2014 2:28 0:00:02 0:00:04 TOTAL 0:47:58 ???

23834 Haplotype Caller 273 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01 4657

23834 Haplotype Caller 288 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:04 0

23834 Haplotype Caller 297 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:0:-1 49

23834 Haplotype Caller 305 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 158

23834 Haplotype Caller 315 CollectWFResults 12/16/2014 1:40 12/16/2014 1:59 0:18:26 0:00:03 18766501536

23834 Haplotype Caller 327 FileListJoin 12/16/2014 1:59 12/16/2014 2:01 0:02:23 0:02:22 18766501536

23834 Haplotype Caller 330 PickFiles 12/16/2014 2:01 12/16/2014 2:03 0:02:20 0:00:13 18728398144

23834 Haplotype Caller 341 GATK-HaplotypeCaller 12/16/2014 2:03 12/16/2014 2:42 0:38:12 0:00:01 3795361

23834 Haplotype Caller 424 ExportFiles 12/16/2014 2:42 12/16/2014 2:42 0:00:03 0:00:05 TOTAL 1:01:31 ???

23835 Haplotype Caller 277 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-2 4657

23835 Haplotype Caller 293 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 0

23835 Haplotype Caller 300 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-1 49

23835 Haplotype Caller 308 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 158

23835 Haplotype Caller 316 CollectWFResults 12/16/2014 1:40 12/16/2014 2:02 0:21:46 0:0:-1 18766501536

23835 Haplotype Caller 335 FileListJoin 12/16/2014 2:02 12/16/2014 2:05 0:03:10 0:00:01 18766501536

23835 Haplotype Caller 353 PickFiles 12/16/2014 2:05 12/16/2014 2:08 0:03:11 0:00:00 18728398144

23835 Haplotype Caller 363 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 2:31 0:23:08 0:00:00 3130472

23835 Haplotype Caller 394 ExportFiles 12/16/2014 2:31 12/16/2014 2:32 0:00:02 0:00:04 TOTAL 0:51:26 ???

23836 Haplotype Caller 279 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:02 4657

23836 Haplotype Caller 295 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:01 0

23836 Haplotype Caller 304 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:00 49

23836 Haplotype Caller 311 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-1 158

23836 Haplotype Caller 317 CollectWFResults 12/16/2014 1:40 12/16/2014 2:01 0:21:05 0:0:-1 18766501536

23836 Haplotype Caller 332 FileListJoin 12/16/2014 2:01 12/16/2014 2:04 0:03:10 0:00:11 18766501536

23836 Haplotype Caller 346 PickFiles 12/16/2014 2:04 12/16/2014 2:08 0:03:09 0:00:00 18728398144



23836 Haplotype Caller 360 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 2:26 0:18:32 0:00:27 3579073

23836 Haplotype Caller 376 ExportFiles 12/16/2014 2:26 12/16/2014 2:26 0:00:02 0:00:04 TOTAL 0:46:06 ???

23837 Haplotype Caller 282 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01 4657

23837 Haplotype Caller 298 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:04 0

23837 Haplotype Caller 307 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:03 49

23837 Haplotype Caller 312 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01 158

23837 Haplotype Caller 318 CollectWFResults 12/16/2014 1:40 12/16/2014 2:01 0:21:17 0:00:02 18766501536

23837 Haplotype Caller 333 FileListJoin 12/16/2014 2:01 12/16/2014 2:04 0:02:52 0:00:21 18766501536

23837 Haplotype Caller 343 PickFiles 12/16/2014 2:04 12/16/2014 2:06 0:01:53 0:00:03 18728398144

23837 Haplotype Caller 358 GATK-HaplotypeCaller 12/16/2014 2:06 12/16/2014 2:34 0:28:14 0:01:21 3651278

23837 Haplotype Caller 412 ExportFiles 12/16/2014 2:34 12/16/2014 2:35 0:00:02 0:00:04 TOTAL 0:54:26 ???

23838 Haplotype Caller 285 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:0:-1 4657

23838 Haplotype Caller 301 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:01 0

23838 Haplotype Caller 310 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:00 49

23838 Haplotype Caller 314 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:0:-2 158

23838 Haplotype Caller 319 CollectWFResults 12/16/2014 1:40 12/16/2014 2:02 0:21:46 0:00:07 18766501536

23838 Haplotype Caller 338 FileListJoin 12/16/2014 2:02 12/16/2014 2:05 0:03:10 0:0:-1 18766501536

23838 Haplotype Caller 357 PickFiles 12/16/2014 2:05 12/16/2014 2:08 0:03:11 0:01:03 18728398144

23838 Haplotype Caller 366 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 2:30 0:21:29 0:08:46 2921003

23838 Haplotype Caller 388 ExportFiles 12/16/2014 2:30 12/16/2014 2:30 0:00:02 0:00:05 TOTAL 0:49:47 ???

23839 Haplotype Caller 320 PrepareLibrary 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01 4657

23839 Haplotype Caller 321 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:02 0

23839 Haplotype Caller 322 ImportDirectory 12/16/2014 1:40 12/16/2014 1:40 0:00:01 0:00:01 49

23839 Haplotype Caller 323 ParseCSV-d 12/16/2014 1:40 12/16/2014 1:40 0:00:02 0:00:02 158

23839 Haplotype Caller 324 CollectWFResults 12/16/2014 1:40 12/16/2014 2:02 0:21:33 0:18:08 18766501536

23839 Haplotype Caller 339 FileListJoin 12/16/2014 2:02 12/16/2014 2:05 0:03:10 0:01:21 18766501536

23839 Haplotype Caller 354 PickFiles 12/16/2014 2:05 12/16/2014 2:08 0:03:04 0:00:02 18728398144

23839 Haplotype Caller 362 GATK-HaplotypeCaller 12/16/2014 2:08 12/16/2014 2:32 0:24:10 0:00:08 3335092

23839 Haplotype Caller 400 ExportFiles 12/16/2014 2:32 12/16/2014 2:33 0:00:16 0:00:19 TOTAL 0:52:19 ???

23840 Haplotype Caller 347 PrepareLibrary 12/16/2014 2:04 12/16/2014 2:04 0:00:02 0:00:02 4657

23840 Haplotype Caller 348 ImportDirectory 12/16/2014 2:04 12/16/2014 2:05 0:00:02 0:00:02 0

23840 Haplotype Caller 349 ImportDirectory 12/16/2014 2:05 12/16/2014 2:05 0:00:01 0:00:01 49

23840 Haplotype Caller 350 ParseCSV-d 12/16/2014 2:05 12/16/2014 2:05 0:00:01 0:00:01 158

23840 Haplotype Caller 351 CollectWFResults 12/16/2014 2:05 12/16/2014 2:17 0:12:34 0:00:26 18766501536

23840 Haplotype Caller 367 FileListJoin 12/16/2014 2:17 12/16/2014 2:19 0:02:20 0:02:21 18766501536

23840 Haplotype Caller 368 PickFiles 12/16/2014 2:19 12/16/2014 2:22 0:02:09 0:02:09 18728398144

23840 Haplotype Caller 369 GATK-HaplotypeCaller 12/16/2014 2:22 12/16/2014 2:45 0:23:15 0:03:16 3694312

23840 Haplotype Caller 441 ExportFiles 12/16/2014 2:45 12/16/2014 2:45 0:00:02 0:00:07 TOTAL 0:40:28 ???

23841 Haplotype Caller 371 PrepareLibrary 12/16/2014 2:25 12/16/2014 2:25 0:00:01 0:00:02 4657

23841 Haplotype Caller 372 ImportDirectory 12/16/2014 2:25 12/16/2014 2:25 0:00:02 0:00:02 0

23841 Haplotype Caller 373 ImportDirectory 12/16/2014 2:25 12/16/2014 2:25 0:00:03 0:00:03 49

23841 Haplotype Caller 374 ParseCSV-d 12/16/2014 2:25 12/16/2014 2:25 0:00:01 0:00:01 158

23841 Haplotype Caller 375 CollectWFResults 12/16/2014 2:25 12/16/2014 2:37 0:12:18 0:01:04 18766501536

23841 Haplotype Caller 418 FileListJoin 12/16/2014 2:37 12/16/2014 2:39 0:01:36 0:01:36 18766501536

23841 Haplotype Caller 419 PickFiles 12/16/2014 2:39 12/16/2014 2:41 0:01:36 0:00:26 18728398144



23841 Haplotype Caller 421 GATK-HaplotypeCaller 12/16/2014 2:41 12/16/2014 3:01 0:20:11 0:00:28 2815801

23841 Haplotype Caller 467 ExportFiles 12/16/2014 3:01 12/16/2014 3:01 0:00:02 0:00:06 TOTAL 0:35:52 ???

23842 Haplotype Caller 377 PrepareLibrary 12/16/2014 2:26 12/16/2014 2:26 0:00:02 0:00:02 4657

23842 Haplotype Caller 378 ImportDirectory 12/16/2014 2:26 12/16/2014 2:26 0:00:01 0:00:01 0

23842 Haplotype Caller 379 ImportDirectory 12/16/2014 2:26 12/16/2014 2:26 0:00:03 0:00:04 49

23842 Haplotype Caller 380 ParseCSV-d 12/16/2014 2:26 12/16/2014 2:26 0:00:02 0:00:03 158

23842 Haplotype Caller 381 CollectWFResults 12/16/2014 2:26 12/16/2014 2:39 0:13:02 0:01:37 18766501536

23842 Haplotype Caller 420 FileListJoin 12/16/2014 2:39 12/16/2014 2:41 0:01:38 0:01:10 18766501536

23842 Haplotype Caller 423 PickFiles 12/16/2014 2:41 12/16/2014 2:43 0:01:36 0:00:27 18728398144

23842 Haplotype Caller 431 GATK-HaplotypeCaller 12/16/2014 2:43 12/16/2014 3:02 0:19:28 0:00:30 2470320

23842 Haplotype Caller 474 ExportFiles 12/16/2014 3:02 12/16/2014 3:02 0:00:02 0:00:06 TOTAL 0:35:57 ???

23843 Haplotype Caller 383 PrepareLibrary 12/16/2014 2:28 12/16/2014 2:28 0:00:02 0:00:02 4657

23843 Haplotype Caller 384 ImportDirectory 12/16/2014 2:28 12/16/2014 2:28 0:00:01 0:00:01 0

23843 Haplotype Caller 385 ImportDirectory 12/16/2014 2:28 12/16/2014 2:28 0:00:02 0:00:02 49

23843 Haplotype Caller 386 ParseCSV-d 12/16/2014 2:28 12/16/2014 2:28 0:00:01 0:00:01 158

23843 Haplotype Caller 387 CollectWFResults 12/16/2014 2:28 12/16/2014 2:41 0:12:53 0:01:41 18766501536

23843 Haplotype Caller 422 FileListJoin 12/16/2014 2:41 12/16/2014 2:43 0:02:06 0:00:01 18766501536

23843 Haplotype Caller 432 PickFiles 12/16/2014 2:43 12/16/2014 2:45 0:01:37 0:00:51 18728398144

23843 Haplotype Caller 440 GATK-HaplotypeCaller 12/16/2014 2:45 12/16/2014 3:03 0:18:08 0:00:06 2613790

23843 Haplotype Caller 480 ExportFiles 12/16/2014 3:03 12/16/2014 3:03 0:00:01 0:00:04 TOTAL 0:34:53 ???

23844 Haplotype Caller 389 PrepareLibrary 12/16/2014 2:30 12/16/2014 2:30 0:00:01 0:00:02 4657

23844 Haplotype Caller 390 ImportDirectory 12/16/2014 2:30 12/16/2014 2:30 0:00:03 0:00:03 0

23844 Haplotype Caller 391 ImportDirectory 12/16/2014 2:30 12/16/2014 2:30 0:00:03 0:00:03 49

23844 Haplotype Caller 392 ParseCSV-d 12/16/2014 2:30 12/16/2014 2:30 0:00:02 0:00:02 158

23844 Haplotype Caller 393 CollectWFResults 12/16/2014 2:30 12/16/2014 2:43 0:12:32 0:01:23 18766501536

23844 Haplotype Caller 430 FileListJoin 12/16/2014 2:43 12/16/2014 2:44 0:01:37 0:00:02 18766501536

23844 Haplotype Caller 439 PickFiles 12/16/2014 2:44 12/16/2014 2:46 0:01:36 0:00:32 18728398144

23844 Haplotype Caller 448 GATK-HaplotypeCaller 12/16/2014 2:46 12/16/2014 3:04 0:18:06 0:01:31 2243047

23844 Haplotype Caller 487 ExportFiles 12/16/2014 3:04 12/16/2014 3:04 0:00:03 0:00:07 TOTAL 0:34:05 ???

23845 Haplotype Caller 395 PrepareLibrary 12/16/2014 2:32 12/16/2014 2:32 0:00:01 0:00:01 4657

23845 Haplotype Caller 396 ImportDirectory 12/16/2014 2:32 12/16/2014 2:32 0:00:02 0:00:02 0

23845 Haplotype Caller 397 ImportDirectory 12/16/2014 2:32 12/16/2014 2:32 0:00:02 0:00:02 49

23845 Haplotype Caller 398 ParseCSV-d 12/16/2014 2:32 12/16/2014 2:32 0:00:01 0:00:01 158

23845 Haplotype Caller 399 CollectWFResults 12/16/2014 2:32 12/16/2014 2:46 0:14:00 0:00:43 18766501536

23845 Haplotype Caller 447 FileListJoin 12/16/2014 2:46 12/16/2014 2:47 0:01:41 0:00:11 18766501536

23845 Haplotype Caller 449 PickFiles 12/16/2014 2:47 12/16/2014 2:49 0:01:49 0:00:02 18728398144

23845 Haplotype Caller 454 GATK-HaplotypeCaller 12/16/2014 2:49 12/16/2014 3:10 0:20:49 0:00:03 3442306

23845 Haplotype Caller 505 ExportFiles 12/16/2014 3:10 12/16/2014 3:10 0:00:01 0:00:06 TOTAL 0:38:30 ???

23846 Haplotype Caller 401 PrepareLibrary 12/16/2014 2:33 12/16/2014 2:33 0:00:01 0:00:01 4657

23846 Haplotype Caller 402 ImportDirectory 12/16/2014 2:33 12/16/2014 2:33 0:00:03 0:00:03 0

23846 Haplotype Caller 403 ImportDirectory 12/16/2014 2:33 12/16/2014 2:33 0:00:04 0:00:04 49

23846 Haplotype Caller 404 ParseCSV-d 12/16/2014 2:33 12/16/2014 2:33 0:00:03 0:00:03 158

23846 Haplotype Caller 405 CollectWFResults 12/16/2014 2:33 12/16/2014 2:47 0:14:36 0:01:12 18766501536

23846 Haplotype Caller 451 FileListJoin 12/16/2014 2:47 12/16/2014 2:49 0:01:47 0:00:43 18766501536

23846 Haplotype Caller 455 PickFiles 12/16/2014 2:49 12/16/2014 2:51 0:01:42 0:01:00 18728398144



23846 Haplotype Caller 458 GATK-HaplotypeCaller 12/16/2014 2:51 12/16/2014 3:11 0:19:42 0:01:14 3462913

23846 Haplotype Caller 511 ExportFiles 12/16/2014 3:11 12/16/2014 3:11 0:00:03 0:00:07 TOTAL 0:38:01 ???

23847 Haplotype Caller 407 PrepareLibrary 12/16/2014 2:34 12/16/2014 2:34 0:00:01 0:00:01 4657

23847 Haplotype Caller 408 ImportDirectory 12/16/2014 2:34 12/16/2014 2:34 0:00:02 0:00:02 0

23847 Haplotype Caller 409 ImportDirectory 12/16/2014 2:34 12/16/2014 2:34 0:00:02 0:00:02 49

23847 Haplotype Caller 410 ParseCSV-d 12/16/2014 2:34 12/16/2014 2:34 0:00:01 0:00:01 158

23847 Haplotype Caller 411 CollectWFResults 12/16/2014 2:34 12/16/2014 2:48 0:13:55 0:00:12 18766501536

23847 Haplotype Caller 452 FileListJoin 12/16/2014 2:48 12/16/2014 2:50 0:02:04 0:00:51 18766501536

23847 Haplotype Caller 456 PickFiles 12/16/2014 2:50 12/16/2014 2:52 0:01:55 0:00:22 18728398144

23847 Haplotype Caller 459 GATK-HaplotypeCaller 12/16/2014 2:52 12/16/2014 3:08 0:16:11 0:02:39 2070713

23847 Haplotype Caller 499 ExportFiles 12/16/2014 3:08 12/16/2014 3:08 0:00:02 0:00:09 TOTAL 0:34:14 ???

23848 Haplotype Caller 413 PrepareLibrary 12/16/2014 2:35 12/16/2014 2:35 0:00:02 0:00:02 4657

23848 Haplotype Caller 414 ImportDirectory 12/16/2014 2:35 12/16/2014 2:35 0:00:02 0:00:02 0

23848 Haplotype Caller 415 ImportDirectory 12/16/2014 2:35 12/16/2014 2:35 0:00:02 0:00:02 49

23848 Haplotype Caller 416 ParseCSV-d 12/16/2014 2:35 12/16/2014 2:35 0:00:01 0:00:02 158

23848 Haplotype Caller 417 CollectWFResults 12/16/2014 2:35 12/16/2014 2:47 0:12:45 0:02:43 18766501536

23848 Haplotype Caller 450 FileListJoin 12/16/2014 2:47 12/16/2014 2:49 0:01:36 0:00:03 18766501536

23848 Haplotype Caller 453 PickFiles 12/16/2014 2:49 12/16/2014 2:51 0:01:35 0:00:10 18728398144

23848 Haplotype Caller 457 GATK-HaplotypeCaller 12/16/2014 2:51 12/16/2014 3:07 0:16:17 0:00:20 2844295

23848 Haplotype Caller 493 ExportFiles 12/16/2014 3:07 12/16/2014 3:07 0:00:03 0:00:05 TOTAL 0:32:26 ???

23849 Haplotype Caller 425 PrepareLibrary 12/16/2014 2:42 12/16/2014 2:42 0:00:01 0:00:01 4657

23849 Haplotype Caller 426 ImportDirectory 12/16/2014 2:42 12/16/2014 2:42 0:00:03 0:00:03 0

23849 Haplotype Caller 427 ImportDirectory 12/16/2014 2:42 12/16/2014 2:42 0:00:02 0:00:02 49

23849 Haplotype Caller 428 ParseCSV-d 12/16/2014 2:42 12/16/2014 2:42 0:00:01 0:00:01 158

23849 Haplotype Caller 429 CollectWFResults 12/16/2014 2:42 12/16/2014 2:55 0:13:06 0:00:55 18766501536

23849 Haplotype Caller 460 FileListJoin 12/16/2014 2:55 12/16/2014 2:57 0:01:44 0:01:44 18766501536

23849 Haplotype Caller 461 PickFiles 12/16/2014 2:57 12/16/2014 2:58 0:01:43 0:00:20 18728398144

23849 Haplotype Caller 464 GATK-HaplotypeCaller 12/16/2014 2:58 12/16/2014 3:23 0:24:14 0:01:04 3405218

23849 Haplotype Caller 539 ExportFiles 12/16/2014 3:23 12/16/2014 3:23 0:00:02 0:00:05 TOTAL 0:40:57 ???

23850 Haplotype Caller 434 PrepareLibrary 12/16/2014 2:44 12/16/2014 2:44 0:00:01 0:00:01 4657

23850 Haplotype Caller 435 ImportDirectory 12/16/2014 2:44 12/16/2014 2:44 0:00:03 0:00:03 0

23850 Haplotype Caller 436 ImportDirectory 12/16/2014 2:44 12/16/2014 2:44 0:00:01 0:00:02 49

23850 Haplotype Caller 437 ParseCSV-d 12/16/2014 2:44 12/16/2014 2:44 0:00:01 0:00:01 158

23850 Haplotype Caller 438 CollectWFResults 12/16/2014 2:44 12/16/2014 2:57 0:12:42 0:00:03 18766501536

23850 Haplotype Caller 462 FileListJoin 12/16/2014 2:57 12/16/2014 2:59 0:02:27 0:00:34 18766501536

23850 Haplotype Caller 465 PickFiles 12/16/2014 2:59 12/16/2014 3:02 0:02:45 0:00:40 18728398144

23850 Haplotype Caller 473 GATK-HaplotypeCaller 12/16/2014 3:02 12/16/2014 3:39 0:37:00 0:00:02 4103700

23850 Haplotype Caller 567 ExportFiles 12/16/2014 3:39 12/16/2014 3:39 0:00:02 0:00:02 TOTAL 0:55:03 ???

23851 Haplotype Caller 442 PrepareLibrary 12/16/2014 2:45 12/16/2014 2:45 0:00:02 0:00:02 4657

23851 Haplotype Caller 443 ImportDirectory 12/16/2014 2:45 12/16/2014 2:45 0:00:01 0:00:01 0

23851 Haplotype Caller 444 ImportDirectory 12/16/2014 2:45 12/16/2014 2:45 0:00:02 0:00:02 49

23851 Haplotype Caller 445 ParseCSV-d 12/16/2014 2:45 12/16/2014 2:45 0:00:02 0:00:02 158

23851 Haplotype Caller 446 CollectWFResults 12/16/2014 2:45 12/16/2014 2:57 0:12:20 0:00:34 18766501536

23851 Haplotype Caller 463 FileListJoin 12/16/2014 2:57 12/16/2014 3:00 0:02:30 0:00:49 18766501536

23851 Haplotype Caller 466 PickFiles 12/16/2014 3:00 12/16/2014 3:03 0:02:59 0:00:46 18728398144



23851 Haplotype Caller 481 GATK-HaplotypeCaller 12/16/2014 3:03 12/16/2014 3:24 0:20:33 0:00:01 3181198

23851 Haplotype Caller 546 ExportFiles 12/16/2014 3:24 12/16/2014 3:24 0:00:02 0:00:04 TOTAL 0:38:35 ???

23852 Haplotype Caller 468 PrepareLibrary 12/16/2014 3:01 12/16/2014 3:01 0:00:02 0:00:02 4657

23852 Haplotype Caller 469 ImportDirectory 12/16/2014 3:01 12/16/2014 3:01 0:00:02 0:00:03 0

23852 Haplotype Caller 470 ImportDirectory 12/16/2014 3:01 12/16/2014 3:01 0:00:02 0:00:02 49

23852 Haplotype Caller 471 ParseCSV-d 12/16/2014 3:01 12/16/2014 3:01 0:00:02 0:00:02 158

23852 Haplotype Caller 472 CollectWFResults 12/16/2014 3:01 12/16/2014 3:13 0:12:23 0:01:04 18766501536

23852 Haplotype Caller 517 FileListJoin 12/16/2014 3:13 12/16/2014 3:15 0:01:37 0:01:37 18766501536

23852 Haplotype Caller 518 PickFiles 12/16/2014 3:15 12/16/2014 3:17 0:01:36 0:00:03 18728398144

23852 Haplotype Caller 521 GATK-HaplotypeCaller 12/16/2014 3:17 12/16/2014 3:53 0:36:27 0:00:03 4253654

23852 Haplotype Caller 606 ExportFiles 12/16/2014 3:53 12/16/2014 3:53 0:00:02 0:00:04 TOTAL 0:52:14 ???

23853 Haplotype Caller 475 PrepareLibrary 12/16/2014 3:02 12/16/2014 3:02 0:00:01 0:00:01 4657

23853 Haplotype Caller 476 ImportDirectory 12/16/2014 3:02 12/16/2014 3:02 0:00:01 0:00:02 0

23853 Haplotype Caller 477 ImportDirectory 12/16/2014 3:02 12/16/2014 3:02 0:00:01 0:00:02 49

23853 Haplotype Caller 478 ParseCSV-d 12/16/2014 3:02 12/16/2014 3:02 0:00:01 0:00:01 158

23853 Haplotype Caller 479 CollectWFResults 12/16/2014 3:02 12/16/2014 3:15 0:12:44 0:00:36 18766501536

23853 Haplotype Caller 519 FileListJoin 12/16/2014 3:15 12/16/2014 3:17 0:01:36 0:01:28 18766501536

23853 Haplotype Caller 522 PickFiles 12/16/2014 3:17 12/16/2014 3:18 0:01:38 0:00:07 18728398144

23853 Haplotype Caller 525 GATK-HaplotypeCaller 12/16/2014 3:18 12/16/2014 3:41 0:22:55 0:00:22 2931491

23853 Haplotype Caller 574 ExportFiles 12/16/2014 3:41 12/16/2014 3:41 0:00:01 0:00:06 TOTAL 0:39:03 ???

23854 Haplotype Caller 482 PrepareLibrary 12/16/2014 3:03 12/16/2014 3:03 0:00:02 0:00:02 4657

23854 Haplotype Caller 483 ImportDirectory 12/16/2014 3:03 12/16/2014 3:03 0:00:03 0:00:03 0

23854 Haplotype Caller 484 ImportDirectory 12/16/2014 3:03 12/16/2014 3:03 0:00:02 0:00:02 49

23854 Haplotype Caller 485 ParseCSV-d 12/16/2014 3:03 12/16/2014 3:03 0:00:01 0:00:01 158

23854 Haplotype Caller 486 CollectWFResults 12/16/2014 3:03 12/16/2014 3:17 0:13:39 0:00:49 18766501536

23854 Haplotype Caller 523 FileListJoin 12/16/2014 3:17 12/16/2014 3:19 0:02:36 0:01:23 18766501536

23854 Haplotype Caller 533 PickFiles 12/16/2014 3:19 12/16/2014 3:22 0:02:11 0:00:22 18728398144

23854 Haplotype Caller 537 GATK-HaplotypeCaller 12/16/2014 3:22 12/16/2014 4:05 0:43:17 0:00:47 3923740

23854 Haplotype Caller 647 ExportFiles 12/16/2014 4:05 12/16/2014 4:05 0:00:03 0:00:04 TOTAL 1:01:57 ???

23855 Haplotype Caller 488 PrepareLibrary 12/16/2014 3:04 12/16/2014 3:04 0:00:01 0:00:01 4657

23855 Haplotype Caller 489 ImportDirectory 12/16/2014 3:04 12/16/2014 3:04 0:00:02 0:00:02 0

23855 Haplotype Caller 490 ImportDirectory 12/16/2014 3:04 12/16/2014 3:04 0:00:02 0:00:02 49

23855 Haplotype Caller 491 ParseCSV-d 12/16/2014 3:04 12/16/2014 3:04 0:00:01 0:00:01 158

23855 Haplotype Caller 492 CollectWFResults 12/16/2014 3:04 12/16/2014 3:17 0:12:21 0:02:44 18766501536

23855 Haplotype Caller 520 FileListJoin 12/16/2014 3:17 12/16/2014 3:18 0:01:37 0:00:05 18766501536

23855 Haplotype Caller 524 PickFiles 12/16/2014 3:18 12/16/2014 3:20 0:01:35 0:00:09 18728398144

23855 Haplotype Caller 534 GATK-HaplotypeCaller 12/16/2014 3:20 12/16/2014 3:43 0:23:06 0:00:49 4996005

23855 Haplotype Caller 580 ExportFiles 12/16/2014 3:43 12/16/2014 3:43 0:00:02 0:00:04 TOTAL 0:38:51 ???

23856 Haplotype Caller 494 PrepareLibrary 12/16/2014 3:07 12/16/2014 3:07 0:00:02 0:00:02 4657

23856 Haplotype Caller 495 ImportDirectory 12/16/2014 3:07 12/16/2014 3:07 0:00:02 0:00:02 0

23856 Haplotype Caller 496 ImportDirectory 12/16/2014 3:07 12/16/2014 3:07 0:00:02 0:00:02 49

23856 Haplotype Caller 497 ParseCSV-d 12/16/2014 3:07 12/16/2014 3:07 0:00:01 0:00:01 158

23856 Haplotype Caller 498 CollectWFResults 12/16/2014 3:07 12/16/2014 3:19 0:11:34 0:01:15 18766501536

23856 Haplotype Caller 526 FileListJoin 12/16/2014 3:19 12/16/2014 3:21 0:01:54 0:00:17 18766501536

23856 Haplotype Caller 535 PickFiles 12/16/2014 3:21 12/16/2014 3:23 0:02:00 0:00:12 18728398144



23856 Haplotype Caller 540 GATK-HaplotypeCaller 12/16/2014 3:23 12/16/2014 3:45 0:22:36 0:00:00 4417900

23856 Haplotype Caller 586 ExportFiles 12/16/2014 3:45 12/16/2014 3:45 0:00:02 0:00:04 TOTAL 0:38:14 ???

23857 Haplotype Caller 500 PrepareLibrary 12/16/2014 3:09 12/16/2014 3:09 0:00:02 0:00:02 4657

23857 Haplotype Caller 501 ImportDirectory 12/16/2014 3:09 12/16/2014 3:09 0:00:02 0:00:03 0

23857 Haplotype Caller 502 ImportDirectory 12/16/2014 3:09 12/16/2014 3:09 0:00:01 0:00:03 49

23857 Haplotype Caller 503 ParseCSV-d 12/16/2014 3:09 12/16/2014 3:09 0:00:01 0:00:02 158

23857 Haplotype Caller 504 CollectWFResults 12/16/2014 3:09 12/16/2014 3:21 0:12:07 0:01:21 18766501536

23857 Haplotype Caller 536 FileListJoin 12/16/2014 3:21 12/16/2014 3:22 0:01:36 0:00:49 18766501536

23857 Haplotype Caller 538 PickFiles 12/16/2014 3:22 12/16/2014 3:24 0:01:37 0:00:07 18728398144

23857 Haplotype Caller 552 GATK-HaplotypeCaller 12/16/2014 3:24 12/16/2014 3:53 0:28:48 0:00:23 4660487

23857 Haplotype Caller 599 ExportFiles 12/16/2014 3:53 12/16/2014 3:53 0:00:03 0:00:03 TOTAL 0:44:21 ???

23858 Haplotype Caller 506 PrepareLibrary 12/16/2014 3:10 12/16/2014 3:10 0:00:01 0:00:01 4657

23858 Haplotype Caller 507 ImportDirectory 12/16/2014 3:10 12/16/2014 3:10 0:00:02 0:00:03 0

23858 Haplotype Caller 508 ImportDirectory 12/16/2014 3:10 12/16/2014 3:10 0:00:04 0:00:04 49

23858 Haplotype Caller 509 ParseCSV-d 12/16/2014 3:10 12/16/2014 3:10 0:00:01 0:00:01 158

23858 Haplotype Caller 510 CollectWFResults 12/16/2014 3:10 12/16/2014 3:24 0:14:07 0:00:22 18766501536

23858 Haplotype Caller 553 FileListJoin 12/16/2014 3:24 12/16/2014 3:26 0:02:04 0:00:17 18766501536

23858 Haplotype Caller 555 PickFiles 12/16/2014 3:26 12/16/2014 3:28 0:01:40 0:00:13 18728398144

23858 Haplotype Caller 557 GATK-HaplotypeCaller 12/16/2014 3:28 12/16/2014 3:54 0:25:53 0:00:35 5656653

23858 Haplotype Caller 613 ExportFiles 12/16/2014 3:54 12/16/2014 3:54 0:00:02 0:00:04 TOTAL 0:43:56 ???

23859 Haplotype Caller 512 PrepareLibrary 12/16/2014 3:11 12/16/2014 3:11 0:00:02 0:00:02 4657

23859 Haplotype Caller 513 ImportDirectory 12/16/2014 3:11 12/16/2014 3:11 0:00:02 0:00:02 0

23859 Haplotype Caller 514 ImportDirectory 12/16/2014 3:11 12/16/2014 3:11 0:00:01 0:00:01 49

23859 Haplotype Caller 515 ParseCSV-d 12/16/2014 3:11 12/16/2014 3:11 0:00:01 0:00:01 158

23859 Haplotype Caller 516 CollectWFResults 12/16/2014 3:11 12/16/2014 3:25 0:13:49 0:02:33 18766501536

23859 Haplotype Caller 554 FileListJoin 12/16/2014 3:25 12/16/2014 3:27 0:01:59 0:01:47 18766501536

23859 Haplotype Caller 556 PickFiles 12/16/2014 3:27 12/16/2014 3:29 0:02:01 0:01:27 18728398144

23859 Haplotype Caller 558 GATK-HaplotypeCaller 12/16/2014 3:29 12/16/2014 3:57 0:27:54 0:02:42 4096182

23859 Haplotype Caller 625 ExportFiles 12/16/2014 3:57 12/16/2014 3:57 0:00:02 0:0:-2 TOTAL 0:45:54 ???

23860 Haplotype Caller 528 PrepareLibrary 12/16/2014 3:19 12/16/2014 3:19 0:00:01 0:00:01 4657

23860 Haplotype Caller 529 ImportDirectory 12/16/2014 3:19 12/16/2014 3:19 0:00:01 0:00:01 0

23860 Haplotype Caller 530 ImportDirectory 12/16/2014 3:19 12/16/2014 3:19 0:00:02 0:00:02 49

23860 Haplotype Caller 531 ParseCSV-d 12/16/2014 3:19 12/16/2014 3:19 0:00:01 0:00:01 158

23860 Haplotype Caller 532 CollectWFResults 12/16/2014 3:19 12/16/2014 3:31 0:12:18 0:00:18 18766501536

23860 Haplotype Caller 559 FileListJoin 12/16/2014 3:31 12/16/2014 3:33 0:01:51 0:01:52 18766501536

23860 Haplotype Caller 560 PickFiles 12/16/2014 3:33 12/16/2014 3:35 0:01:50 0:01:12 18728398144

23860 Haplotype Caller 562 GATK-HaplotypeCaller 12/16/2014 3:35 12/16/2014 4:03 0:27:26 0:00:24 5255692

23860 Haplotype Caller 640 ExportFiles 12/16/2014 4:03 12/16/2014 4:03 0:00:04 0:00:10 TOTAL 0:43:35 ???

23861 Haplotype Caller 541 PrepareLibrary 12/16/2014 3:23 12/16/2014 3:23 0:00:02 0:00:02 4657

23861 Haplotype Caller 542 ImportDirectory 12/16/2014 3:23 12/16/2014 3:23 0:00:02 0:00:02 0

23861 Haplotype Caller 543 ImportDirectory 12/16/2014 3:23 12/16/2014 3:23 0:00:02 0:00:02 49

23861 Haplotype Caller 544 ParseCSV-d 12/16/2014 3:23 12/16/2014 3:23 0:00:02 0:00:02 158

23861 Haplotype Caller 545 CollectWFResults 12/16/2014 3:23 12/16/2014 3:34 0:11:45 0:00:49 18766501536

23861 Haplotype Caller 561 FileListJoin 12/16/2014 3:34 12/16/2014 3:36 0:01:57 0:00:38 18766501536

23861 Haplotype Caller 564 PickFiles 12/16/2014 3:36 12/16/2014 3:38 0:01:50 0:01:00 18728398144



23861 Haplotype Caller 566 GATK-HaplotypeCaller 12/16/2014 3:38 12/16/2014 3:56 0:18:13 0:00:50 3768985

23861 Haplotype Caller 624 ExportFiles 12/16/2014 3:56 12/16/2014 3:57 0:00:03 0:00:09 TOTAL 0:33:56 ???

23862 Haplotype Caller 547 PrepareLibrary 12/16/2014 3:24 12/16/2014 3:24 0:00:02 0:00:02 4657

23862 Haplotype Caller 548 ImportDirectory 12/16/2014 3:24 12/16/2014 3:24 0:00:02 0:00:02 0

23862 Haplotype Caller 549 ImportDirectory 12/16/2014 3:24 12/16/2014 3:24 0:00:02 0:00:02 49

23862 Haplotype Caller 550 ParseCSV-d 12/16/2014 3:24 12/16/2014 3:24 0:00:01 0:00:02 158

23862 Haplotype Caller 551 CollectWFResults 12/16/2014 3:24 12/16/2014 3:36 0:11:46 0:00:16 18766501536

23862 Haplotype Caller 563 FileListJoin 12/16/2014 3:36 12/16/2014 3:37 0:01:55 0:00:55 18766501536

23862 Haplotype Caller 565 PickFiles 12/16/2014 3:37 12/16/2014 3:39 0:01:42 0:00:50 18728398144

23862 Haplotype Caller 568 GATK-HaplotypeCaller 12/16/2014 3:39 12/16/2014 3:51 0:12:10 0:00:01 2690337

23862 Haplotype Caller 592 ExportFiles 12/16/2014 3:51 12/16/2014 3:51 0:00:02 0:00:06 TOTAL 0:27:43 ???

23863 Haplotype Caller 569 PrepareLibrary 12/16/2014 3:39 12/16/2014 3:39 0:00:02 0:00:02 4657

23863 Haplotype Caller 570 ImportDirectory 12/16/2014 3:39 12/16/2014 3:39 0:00:02 0:00:02 0

23863 Haplotype Caller 571 ImportDirectory 12/16/2014 3:39 12/16/2014 3:39 0:00:02 0:00:02 49

23863 Haplotype Caller 572 ParseCSV-d 12/16/2014 3:39 12/16/2014 3:39 0:00:01 0:00:01 158

23863 Haplotype Caller 573 CollectWFResults 12/16/2014 3:39 12/16/2014 3:52 0:12:41 0:02:00 18766501536

23863 Haplotype Caller 598 FileListJoin 12/16/2014 3:52 12/16/2014 3:54 0:01:36 0:00:52 18766501536

23863 Haplotype Caller 612 PickFiles 12/16/2014 3:54 12/16/2014 3:55 0:01:35 0:00:29 18728398144

23863 Haplotype Caller 621 GATK-HaplotypeCaller 12/16/2014 3:55 12/16/2014 4:06 0:11:16 0:00:57 1877908

23863 Haplotype Caller 656 ExportFiles 12/16/2014 4:06 12/16/2014 4:06 0:00:02 0:00:06 TOTAL 0:27:17 ???

23864 Haplotype Caller 575 PrepareLibrary 12/16/2014 3:41 12/16/2014 3:41 0:00:01 0:00:01 4657

23864 Haplotype Caller 576 ImportDirectory 12/16/2014 3:41 12/16/2014 3:41 0:00:02 0:00:03 0

23864 Haplotype Caller 577 ImportDirectory 12/16/2014 3:41 12/16/2014 3:41 0:00:02 0:00:02 49

23864 Haplotype Caller 578 ParseCSV-d 12/16/2014 3:41 12/16/2014 3:41 0:00:01 0:00:01 158

23864 Haplotype Caller 579 CollectWFResults 12/16/2014 3:41 12/16/2014 3:53 0:11:32 0:01:25 18766501536

23864 Haplotype Caller 605 FileListJoin 12/16/2014 3:53 12/16/2014 3:55 0:01:42 0:00:04 18766501536

23864 Haplotype Caller 620 PickFiles 12/16/2014 3:55 12/16/2014 3:56 0:01:36 0:00:25 18728398144

23864 Haplotype Caller 623 GATK-HaplotypeCaller 12/16/2014 3:56 12/16/2014 4:13 0:16:31 0:00:09 1959426

23864 Haplotype Caller 674 ExportFiles 12/16/2014 4:13 12/16/2014 4:13 0:00:02 0:00:04 TOTAL 0:31:32 ???

23865 Haplotype Caller 581 PrepareLibrary 12/16/2014 3:43 12/16/2014 3:43 0:00:02 0:00:03 4657

23865 Haplotype Caller 582 ImportDirectory 12/16/2014 3:43 12/16/2014 3:43 0:00:02 0:00:02 0

23865 Haplotype Caller 583 ImportDirectory 12/16/2014 3:43 12/16/2014 3:43 0:00:02 0:00:02 49

23865 Haplotype Caller 584 ParseCSV-d 12/16/2014 3:43 12/16/2014 3:43 0:00:02 0:00:02 158

23865 Haplotype Caller 585 CollectWFResults 12/16/2014 3:43 12/16/2014 3:54 0:11:20 0:02:05 18766501536

23865 Haplotype Caller 619 FileListJoin 12/16/2014 3:54 12/16/2014 3:56 0:01:37 0:00:16 18766501536

23865 Haplotype Caller 622 PickFiles 12/16/2014 3:56 12/16/2014 3:58 0:01:37 0:00:15 18728398144

23865 Haplotype Caller 637 GATK-HaplotypeCaller 12/16/2014 3:58 12/16/2014 4:16 0:18:21 0:01:21 3495260

23865 Haplotype Caller 683 ExportFiles 12/16/2014 4:16 12/16/2014 4:16 0:00:02 0:00:03 TOTAL 0:33:08 ???

23866 Haplotype Caller 587 PrepareLibrary 12/16/2014 3:45 12/16/2014 3:45 0:00:01 0:00:01 4657

23866 Haplotype Caller 588 ImportDirectory 12/16/2014 3:45 12/16/2014 3:45 0:00:01 0:00:02 0

23866 Haplotype Caller 589 ImportDirectory 12/16/2014 3:45 12/16/2014 3:45 0:00:02 0:00:03 49

23866 Haplotype Caller 590 ParseCSV-d 12/16/2014 3:45 12/16/2014 3:45 0:00:01 0:00:01 158

23866 Haplotype Caller 591 CollectWFResults 12/16/2014 3:45 12/16/2014 3:57 0:12:04 0:05:55 18766501536

23866 Haplotype Caller 636 FileListJoin 12/16/2014 3:57 12/16/2014 3:59 0:01:36 0:00:15 18766501536

23866 Haplotype Caller 638 PickFiles 12/16/2014 3:59 12/16/2014 4:01 0:01:35 0:01:37 18728398144



23866 Haplotype Caller 639 GATK-HaplotypeCaller 12/16/2014 4:01 12/16/2014 4:31 0:29:51 0:01:52 2966339

23866 Haplotype Caller 701 ExportFiles 12/16/2014 4:31 12/16/2014 4:31 0:00:02 0:00:34 TOTAL 0:45:19 ???

23867 Haplotype Caller 593 PrepareLibrary 12/16/2014 3:51 12/16/2014 3:51 0:00:01 0:00:01 4657

23867 Haplotype Caller 594 ImportDirectory 12/16/2014 3:51 12/16/2014 3:51 0:00:02 0:00:02 0

23867 Haplotype Caller 595 ImportDirectory 12/16/2014 3:51 12/16/2014 3:51 0:00:02 0:00:02 49

23867 Haplotype Caller 596 ParseCSV-d 12/16/2014 3:51 12/16/2014 3:52 0:00:01 0:00:01 158

23867 Haplotype Caller 597 CollectWFResults 12/16/2014 3:52 12/16/2014 4:04 0:12:21 0:00:27 18766501536

23867 Haplotype Caller 646 FileListJoin 12/16/2014 4:04 12/16/2014 4:06 0:01:38 0:01:03 18766501536

23867 Haplotype Caller 653 PickFiles 12/16/2014 4:06 12/16/2014 4:07 0:01:37 0:00:27 18728398144

23867 Haplotype Caller 662 GATK-HaplotypeCaller 12/16/2014 4:07 12/16/2014 4:32 0:24:30 0:00:25 4038244

23867 Haplotype Caller 703 ExportFiles 12/16/2014 4:32 12/16/2014 4:32 0:00:01 0:00:36 TOTAL 0:40:15 ???

23868 Haplotype Caller 600 PrepareLibrary 12/16/2014 3:53 12/16/2014 3:53 0:00:02 0:00:02 4657

23868 Haplotype Caller 601 ImportDirectory 12/16/2014 3:53 12/16/2014 3:53 0:00:01 0:00:01 0

23868 Haplotype Caller 602 ImportDirectory 12/16/2014 3:53 12/16/2014 3:53 0:00:02 0:00:02 49

23868 Haplotype Caller 603 ParseCSV-d 12/16/2014 3:53 12/16/2014 3:53 0:00:01 0:00:02 158

23868 Haplotype Caller 604 CollectWFResults 12/16/2014 3:53 12/16/2014 4:06 0:13:19 0:00:02 18766501536

23868 Haplotype Caller 655 FileListJoin 12/16/2014 4:06 12/16/2014 4:08 0:01:37 0:00:06 18766501536

23868 Haplotype Caller 665 PickFiles 12/16/2014 4:08 12/16/2014 4:10 0:01:37 0:01:14 18728398144

23868 Haplotype Caller 668 GATK-HaplotypeCaller 12/16/2014 4:10 12/16/2014 4:50 0:40:46 0:00:36 7678349

23868 Haplotype Caller 710 ExportFiles 12/16/2014 4:50 12/16/2014 4:50 0:00:02 0:01:52 TOTAL 0:57:31 ???

23869 Haplotype Caller 607 PrepareLibrary 12/16/2014 3:53 12/16/2014 3:53 0:00:01 0:00:02 4657

23869 Haplotype Caller 608 ImportDirectory 12/16/2014 3:53 12/16/2014 3:53 0:00:01 0:00:01 0

23869 Haplotype Caller 609 ImportDirectory 12/16/2014 3:53 12/16/2014 3:53 0:00:02 0:00:02 49

23869 Haplotype Caller 610 ParseCSV-d 12/16/2014 3:53 12/16/2014 3:53 0:00:01 0:00:01 158

23869 Haplotype Caller 611 CollectWFResults 12/16/2014 3:53 12/16/2014 4:06 0:12:42 0:00:18 18766501536

23869 Haplotype Caller 654 FileListJoin 12/16/2014 4:06 12/16/2014 4:08 0:01:35 0:00:21 18766501536

23869 Haplotype Caller 663 PickFiles 12/16/2014 4:08 12/16/2014 4:09 0:01:37 0:00:04 18728398144

23869 Haplotype Caller 666 GATK-HaplotypeCaller 12/16/2014 4:09 12/16/2014 5:10 1:01:18 0:00:05 9054605

23869 Haplotype Caller 714 ExportFiles 12/16/2014 5:10 12/16/2014 5:11 0:00:03 0:00:03 TOTAL 1:17:22 ???

23870 Haplotype Caller 614 PrepareLibrary 12/16/2014 3:54 12/16/2014 3:54 0:00:02 0:00:02 4657

23870 Haplotype Caller 615 ImportDirectory 12/16/2014 3:54 12/16/2014 3:54 0:00:02 0:00:02 0

23870 Haplotype Caller 616 ImportDirectory 12/16/2014 3:54 12/16/2014 3:54 0:00:01 0:00:01 49

23870 Haplotype Caller 617 ParseCSV-d 12/16/2014 3:54 12/16/2014 3:54 0:00:01 0:00:02 158

23870 Haplotype Caller 618 CollectWFResults 12/16/2014 3:54 12/16/2014 4:08 0:13:23 0:00:14 18766501536

23870 Haplotype Caller 664 FileListJoin 12/16/2014 4:08 12/16/2014 4:10 0:02:36 0:00:20 18766501536

23870 Haplotype Caller 670 PickFiles 12/16/2014 4:10 12/16/2014 4:12 0:01:42 0:01:26 18728398144

23870 Haplotype Caller 673 GATK-HaplotypeCaller 12/16/2014 4:12 12/16/2014 4:38 0:26:13 0:00:58 3822407

23870 Haplotype Caller 705 ExportFiles 12/16/2014 4:38 12/16/2014 4:38 0:00:02 0:02:07 TOTAL 0:44:03 ???

23871 Haplotype Caller 626 PrepareLibrary 12/16/2014 3:57 12/16/2014 3:57 0:00:01 0:00:01 4657

23871 Haplotype Caller 627 ImportDirectory 12/16/2014 3:57 12/16/2014 3:57 0:00:02 0:00:02 0

23871 Haplotype Caller 628 ImportDirectory 12/16/2014 3:57 12/16/2014 3:57 0:00:02 0:00:02 49

23871 Haplotype Caller 629 ParseCSV-d 12/16/2014 3:57 12/16/2014 3:57 0:00:01 0:00:01 158

23871 Haplotype Caller 630 CollectWFResults 12/16/2014 3:57 12/16/2014 4:09 0:12:33 0:00:02 18766501536

23871 Haplotype Caller 667 FileListJoin 12/16/2014 4:09 12/16/2014 4:12 0:02:23 0:00:19 18766501536

23871 Haplotype Caller 671 PickFiles 12/16/2014 4:12 12/16/2014 4:13 0:01:40 0:00:15 18728398144



23871 Haplotype Caller 680 GATK-HaplotypeCaller 12/16/2014 4:13 12/16/2014 4:46 0:32:58 0:00:15 9852787

23871 Haplotype Caller 709 ExportFiles 12/16/2014 4:46 12/16/2014 4:46 0:00:03 0:04:04 TOTAL 0:49:44 ???

23872 Haplotype Caller 631 PrepareLibrary 12/16/2014 3:57 12/16/2014 3:57 0:00:01 0:00:02 4657

23872 Haplotype Caller 632 ImportDirectory 12/16/2014 3:57 12/16/2014 3:57 0:00:02 0:00:02 0

23872 Haplotype Caller 633 ImportDirectory 12/16/2014 3:57 12/16/2014 3:57 0:00:03 0:00:03 49

23872 Haplotype Caller 634 ParseCSV-d 12/16/2014 3:57 12/16/2014 3:57 0:00:02 0:00:02 158

23872 Haplotype Caller 635 CollectWFResults 12/16/2014 3:57 12/16/2014 4:10 0:13:17 0:00:35 18766501536

23872 Haplotype Caller 669 FileListJoin 12/16/2014 4:10 12/16/2014 4:12 0:01:42 0:00:02 18766501536

23872 Haplotype Caller 672 PickFiles 12/16/2014 4:12 12/16/2014 4:14 0:01:40 0:00:01 18728398144

23872 Haplotype Caller 681 GATK-HaplotypeCaller 12/16/2014 4:14 12/16/2014 4:52 0:38:39 0:02:28 4695939

23872 Haplotype Caller 711 ExportFiles 12/16/2014 4:52 12/16/2014 4:52 0:00:03 0:02:15 TOTAL 0:55:32 ???

23873 Haplotype Caller 641 PrepareLibrary 12/16/2014 4:03 12/16/2014 4:03 0:00:01 0:00:01 4657

23873 Haplotype Caller 642 ImportDirectory 12/16/2014 4:03 12/16/2014 4:03 0:00:02 0:00:03 0

23873 Haplotype Caller 643 ImportDirectory 12/16/2014 4:03 12/16/2014 4:03 0:00:02 0:00:02 49

23873 Haplotype Caller 644 ParseCSV-d 12/16/2014 4:03 12/16/2014 4:03 0:00:01 0:00:02 158

23873 Haplotype Caller 645 CollectWFResults 12/16/2014 4:03 12/16/2014 4:16 0:13:11 0:01:01 18766501536

23873 Haplotype Caller 682 FileListJoin 12/16/2014 4:16 12/16/2014 4:18 0:01:40 0:00:02 18766501536

23873 Haplotype Caller 689 PickFiles 12/16/2014 4:18 12/16/2014 4:19 0:01:40 0:00:30 18728398144

23873 Haplotype Caller 691 GATK-HaplotypeCaller 12/16/2014 4:19 12/16/2014 4:40 0:21:00 0:00:05 3454972

23873 Haplotype Caller 707 ExportFiles 12/16/2014 4:40 12/16/2014 4:40 0:00:02 0:02:41 TOTAL 0:37:43 ???

23874 Haplotype Caller 648 PrepareLibrary 12/16/2014 4:05 12/16/2014 4:05 0:00:01 0:00:01 4657

23874 Haplotype Caller 649 ImportDirectory 12/16/2014 4:05 12/16/2014 4:05 0:00:02 0:00:02 0

23874 Haplotype Caller 650 ImportDirectory 12/16/2014 4:05 12/16/2014 4:05 0:00:03 0:00:03 49

23874 Haplotype Caller 651 ParseCSV-d 12/16/2014 4:05 12/16/2014 4:05 0:00:01 0:00:01 158

23874 Haplotype Caller 652 CollectWFResults 12/16/2014 4:05 12/16/2014 4:18 0:13:06 0:00:24 18766501536

23874 Haplotype Caller 690 FileListJoin 12/16/2014 4:18 12/16/2014 4:20 0:01:56 0:01:10 18766501536

23874 Haplotype Caller 693 PickFiles 12/16/2014 4:20 12/16/2014 4:22 0:01:39 0:01:36 18728398144

23874 Haplotype Caller 695 GATK-HaplotypeCaller 12/16/2014 4:22 12/16/2014 5:05 0:42:59 0:01:54 4674642

23874 Haplotype Caller 713 ExportFiles 12/16/2014 5:05 12/16/2014 5:05 0:00:02 0:05:39 TOTAL 0:59:52 ???

23875 Haplotype Caller 657 PrepareLibrary 12/16/2014 4:07 12/16/2014 4:07 0:00:01 0:00:01 4657

23875 Haplotype Caller 658 ImportDirectory 12/16/2014 4:07 12/16/2014 4:07 0:00:02 0:00:02 0

23875 Haplotype Caller 659 ImportDirectory 12/16/2014 4:07 12/16/2014 4:07 0:00:01 0:00:01 49

23875 Haplotype Caller 660 ParseCSV-d 12/16/2014 4:07 12/16/2014 4:07 0:00:01 0:00:02 158

23875 Haplotype Caller 661 CollectWFResults 12/16/2014 4:07 12/16/2014 4:19 0:12:52 0:00:31 18766501536

23875 Haplotype Caller 692 FileListJoin 12/16/2014 4:19 12/16/2014 4:22 0:02:18 0:00:42 18766501536

23875 Haplotype Caller 694 PickFiles 12/16/2014 4:22 12/16/2014 4:24 0:01:57 0:00:04 18728398144

23875 Haplotype Caller 696 GATK-HaplotypeCaller 12/16/2014 4:24 12/16/2014 4:43 0:19:20 0:02:20 1703470

23875 Haplotype Caller 708 ExportFiles 12/16/2014 4:43 12/16/2014 4:43 0:00:02 0:03:12 TOTAL 0:36:37 ???

23876 Haplotype Caller 675 PrepareLibrary 12/16/2014 4:13 12/16/2014 4:13 0:00:01 0:00:01 4657

23876 Haplotype Caller 676 ImportDirectory 12/16/2014 4:13 12/16/2014 4:13 0:00:02 0:00:02 0

23876 Haplotype Caller 677 ImportDirectory 12/16/2014 4:13 12/16/2014 4:13 0:00:02 0:00:02 49

23876 Haplotype Caller 678 ParseCSV-d 12/16/2014 4:13 12/16/2014 4:13 0:00:01 0:00:01 158

23876 Haplotype Caller 679 CollectWFResults 12/16/2014 4:13 12/16/2014 4:26 0:13:02 0:00:17 18766501536

23876 Haplotype Caller 697 FileListJoin 12/16/2014 4:26 12/16/2014 4:29 0:02:30 0:02:30 18766501536

23876 Haplotype Caller 698 PickFiles 12/16/2014 4:29 12/16/2014 4:31 0:02:32 0:00:06 18728398144



23876 Haplotype Caller 702 GATK-HaplotypeCaller 12/16/2014 4:31 12/16/2014 4:54 0:23:21 0:00:31 1649343

23876 Haplotype Caller 712 ExportFiles 12/16/2014 4:54 12/16/2014 4:55 0:00:02 0:10:21 TOTAL 0:41:34 ???

23877 Haplotype Caller 684 PrepareLibrary 12/16/2014 4:16 12/16/2014 4:16 0:00:01 0:00:02 4657

23877 Haplotype Caller 685 ImportDirectory 12/16/2014 4:16 12/16/2014 4:16 0:00:02 0:00:02 0

23877 Haplotype Caller 686 ImportDirectory 12/16/2014 4:16 12/16/2014 4:16 0:00:01 0:00:01 49

23877 Haplotype Caller 687 ParseCSV-d 12/16/2014 4:16 12/16/2014 4:16 0:00:02 0:00:02 158

23877 Haplotype Caller 688 CollectWFResults 12/16/2014 4:16 12/16/2014 4:29 0:12:26 0:01:29 18766501536

23877 Haplotype Caller 699 FileListJoin 12/16/2014 4:29 12/16/2014 4:30 0:01:49 0:01:49 18766501536

23877 Haplotype Caller 700 PickFiles 12/16/2014 4:30 12/16/2014 4:32 0:01:45 0:00:04 18728398144

23877 Haplotype Caller 704 GATK-HaplotypeCaller 12/16/2014 4:32 12/16/2014 4:40 0:08:00 0:05:53 817530

23877 Haplotype Caller 706 ExportFiles 12/16/2014 4:40 12/16/2014 4:40 0:00:02 0:00:10 TOTAL 0:24:09 ??? TOTAL Ha=

23980 GATK phase 3 720 PrepareLibrary 12/16/2014 5:12 12/16/2014 5:12 0:00:02 0:00:02 4657

23980 GATK phase 3 721 PrepareLibrary 12/16/2014 5:12 12/16/2014 5:12 0:00:09 0:00:10 14247

23980 GATK phase 3 722 PrepareLibrary 12/16/2014 5:12 12/16/2014 5:12 0:00:03 0:00:04 4982

23980 GATK phase 3 723 ImportDirectory 12/16/2014 5:12 12/16/2014 5:12 0:00:08 0:00:08 185888349 I

23980 GATK phase 3 724 GATK-VariantRecalibrator 12/16/2014 5:12 12/16/2014 5:14 0:01:17 0:01:18 6300068

23980 GATK phase 3 725 GATK-VariantRecalibrator 12/16/2014 5:14 12/16/2014 5:24 0:10:12 0:10:14 46653308

23980 GATK phase 3 726 GATK-ApplyRecalibration 12/16/2014 5:24 12/16/2014 5:25 0:01:09 0:01:09 209954106 O

23980 GATK phase 3 727 GATK-ApplyRecalibration 12/16/2014 5:25 12/16/2014 5:26 0:01:03 0:01:03 212984157

23980 GATK phase 3 728 ExportFiles 12/16/2014 5:26 12/16/2014 5:26 0:00:16 0:00:18 TOTAL 0:14:24

23983 VCF Filters 732 PrepareLibrary 12/16/2014 5:26 12/16/2014 5:27 0:00:02 0:00:02 4657 VCF1

23983 VCF Filters 738 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:02 0:00:01 12069334

23983 VCF Filters 743 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:09 0:00:01 212984157

23983 VCF Filters 748 GATK-SelectVariants 12/16/2014 5:27 12/16/2014 5:28 0:01:26 0:0:-7 46576188 I

23983 VCF Filters 756 GATK-SelectVariants 12/16/2014 5:28 12/16/2014 5:29 0:00:35 0:00:00 37136921 O

23983 VCF Filters 762 ExportFiles 12/16/2014 5:29 12/16/2014 5:29 0:00:03 0:00:00 TOTAL 0:02:17 ???

23984 VCF Filters 731 PrepareLibrary 12/16/2014 5:27 12/16/2014 5:27 0:00:01 0:0:-2 4657 VCF2

23984 VCF Filters 736 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:02 0:0:-1 12069334

23984 VCF Filters 749 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:11 0:00:08 212984157

23984 VCF Filters 754 GATK-SelectVariants 12/16/2014 5:27 12/16/2014 5:28 0:01:28 0:01:14 46920150 I

23984 VCF Filters 759 GATK-SelectVariants 12/16/2014 5:28 12/16/2014 5:29 0:00:35 0:00:00 37171640 O

23984 VCF Filters 766 ExportFiles 12/16/2014 5:29 12/16/2014 5:29 0:00:04 0:00:05 TOTAL 0:02:24 ???

23985 VCF Filters 733 PrepareLibrary 12/16/2014 5:27 12/16/2014 5:27 0:00:01 0:0:-1 4657 VCF3

23985 VCF Filters 739 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:02 0:00:01 12069334

23985 VCF Filters 745 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:10 0:00:02 212984157

23985 VCF Filters 751 GATK-SelectVariants 12/16/2014 5:27 12/16/2014 5:28 0:01:17 0:00:02 51741463 I

23985 VCF Filters 755 GATK-SelectVariants 12/16/2014 5:28 12/16/2014 5:29 0:00:35 0:00:07 37711895 O

23985 VCF Filters 761 ExportFiles 12/16/2014 5:29 12/16/2014 5:29 0:00:04 0:00:07 TOTAL 0:02:09 ???

23986 VCF Filters 734 PrepareLibrary 12/16/2014 5:27 12/16/2014 5:27 0:00:01 0:00:02 4657 VCF4

23986 VCF Filters 741 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:02 0:00:02 12069334

23986 VCF Filters 744 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:09 0:00:00 212984157

23986 VCF Filters 750 GATK-SelectVariants 12/16/2014 5:27 12/16/2014 5:28 0:01:25 0:00:01 46760185 I

23986 VCF Filters 757 GATK-SelectVariants 12/16/2014 5:28 12/16/2014 5:29 0:00:35 0:00:03 36702782 O

23986 VCF Filters 763 ExportFiles 12/16/2014 5:29 12/16/2014 5:29 0:00:05 0:00:03 TOTAL 0:02:18 ???

23987 VCF Filters 735 PrepareLibrary 12/16/2014 5:27 12/16/2014 5:27 0:00:02 0:00:01 4657 VCF5



23987 VCF Filters 742 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:02 0:0:-1 12069334

23987 VCF Filters 746 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:09 0:0:-1 212984157

23987 VCF Filters 752 GATK-SelectVariants 12/16/2014 5:27 12/16/2014 5:28 0:01:29 0:0:-1 50714303 I

23987 VCF Filters 760 GATK-SelectVariants 12/16/2014 5:28 12/16/2014 5:29 0:00:35 0:00:21 38144466 O

23987 VCF Filters 765 ExportFiles 12/16/2014 5:29 12/16/2014 5:29 0:00:05 0:00:01 TOTAL 0:02:23 ???

23988 VCF Filters 737 PrepareLibrary 12/16/2014 5:27 12/16/2014 5:27 0:00:01 0:0:-1 4657 VCF6

23988 VCF Filters 740 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:02 0:0:-1 12069334

23988 VCF Filters 747 ImportFile 12/16/2014 5:27 12/16/2014 5:27 0:00:09 0:00:07 212984157

23988 VCF Filters 753 GATK-SelectVariants 12/16/2014 5:27 12/16/2014 5:28 0:01:24 0:00:02 65603496 I

23988 VCF Filters 758 GATK-SelectVariants 12/16/2014 5:28 12/16/2014 5:29 0:00:35 0:00:04 38746310 O

23988 VCF Filters 764 ExportFiles 12/16/2014 5:29 12/16/2014 5:29 0:00:04 0:00:04 TOTAL 0:02:18 ???

24001 Coverage 768 PrepareLibrary 12/16/2014 5:29 12/16/2014 5:29 0:00:01 0:00:04 4964 COVERAGE1

24001 Coverage 781 ImportDirectory 12/16/2014 5:29 12/16/2014 5:32 0:02:42 0:02:39 2766450004 I

24001 Coverage 783 Bedtools-Coverage 12/16/2014 5:32 12/16/2014 5:34 0:02:25 0:-2:-39 16125251 O

24001 Coverage 788 ExportFiles 12/16/2014 5:34 12/16/2014 5:34 0:00:02 0:00:20 TOTAL 0:05:11

24002 Coverage 769 PrepareLibrary 12/16/2014 5:29 12/16/2014 5:29 0:00:00 0:0:-1 4964 COVERAGE2

24002 Coverage 774 ImportDirectory 12/16/2014 5:29 12/16/2014 5:31 0:02:03 0:00:01 2824430083 I

24002 Coverage 776 Bedtools-Coverage 12/16/2014 5:31 12/16/2014 5:34 0:02:30 0:-2:-5 16126851 O

24002 Coverage 786 ExportFiles 12/16/2014 5:34 12/16/2014 5:34 0:00:03 0:00:12 TOTAL 0:04:38

24003 Coverage 772 PrepareLibrary 12/16/2014 5:29 12/16/2014 5:29 0:00:01 0:00:01 4964 COVERAGE3

24003 Coverage 784 ImportDirectory 12/16/2014 5:29 12/16/2014 5:32 0:03:11 0:03:12 3430581549 I

24003 Coverage 785 Bedtools-Coverage 12/16/2014 5:32 12/16/2014 5:35 0:02:57 0:01:22 16132338 O

24003 Coverage 791 ExportFiles 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:00:03 TOTAL 0:06:12

24004 Coverage 770 PrepareLibrary 12/16/2014 5:29 12/16/2014 5:29 0:00:01 0:00:02 4964 COVERAGE4

24004 Coverage 777 ImportDirectory 12/16/2014 5:29 12/16/2014 5:31 0:02:20 0:00:02 2787113930 I

24004 Coverage 779 Bedtools-Coverage 12/16/2014 5:31 12/16/2014 5:34 0:02:26 0:00:01 16126073 O

24004 Coverage 787 ExportFiles 12/16/2014 5:34 12/16/2014 5:34 0:00:03 0:00:18 TOTAL 0:04:51

24005 Coverage 771 PrepareLibrary 12/16/2014 5:29 12/16/2014 5:29 0:00:01 0:0:-1 4964 COVERAGE5

24005 Coverage 778 ImportDirectory 12/16/2014 5:29 12/16/2014 5:32 0:02:34 0:02:19 3290229376 I

24005 Coverage 782 Bedtools-Coverage 12/16/2014 5:32 12/16/2014 5:34 0:02:51 0:00:03 16123415 O

24005 Coverage 790 ExportFiles 12/16/2014 5:34 12/16/2014 5:35 0:00:02 0:00:43 TOTAL 0:05:29

24006 Coverage 773 PrepareLibrary 12/16/2014 5:29 12/16/2014 5:29 0:00:01 0:00:00 4964 COVERAGE6

24006 Coverage 775 ImportDirectory 12/16/2014 5:29 12/16/2014 5:31 0:02:20 0:02:03 3629593202 I

24006 Coverage 780 Bedtools-Coverage 12/16/2014 5:31 12/16/2014 5:34 0:03:03 0:-2:-24 16090846 O

24006 Coverage 789 ExportFiles 12/16/2014 5:34 12/16/2014 5:34 0:00:02 0:00:03 TOTAL 0:05:26

24019 Annotate Sample 796 StringList 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:00:01 56 ANNOTATE1

24019 Annotate Sample 801 ImportDirectory 12/16/2014 5:35 12/16/2014 5:35 0:00:04 0:00:03 37136921 I

24019 Annotate Sample 806 ANNOVAR 12/16/2014 5:35 12/16/2014 5:50 0:15:00 0:00:00 37136921

24019 Annotate Sample 814 IGM-AnnoTool 12/16/2014 5:50 12/16/2014 5:51 0:01:03 0:00:19 67761043

24019 Annotate Sample 820 ParseCSV 12/16/2014 5:51 12/16/2014 5:52 0:00:10 0:00:10 179873014

24019 Annotate Sample 822 ColumnSelect 12/16/2014 5:52 12/16/2014 5:53 0:01:28 0:00:10 203018676

24019 Annotate Sample 832 ExonicFilter 12/16/2014 5:53 12/16/2014 5:54 0:01:21 0:00:27 194904501 O

24019 Annotate Sample 838 SerializeCSV 12/16/2014 5:54 12/16/2014 5:55 0:00:15 0:00:15 31993390

24019 Annotate Sample 840 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:03 0:00:03 29676207

24019 Annotate Sample 842 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:04 0:00:14 TOTAL 0:19:30



24020 Annotate Sample 795 StringList 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:0:-2 56 ANNOTATE2

24020 Annotate Sample 799 ImportDirectory 12/16/2014 5:35 12/16/2014 5:35 0:00:03 0:00:01 37171640 I

24020 Annotate Sample 805 ANNOVAR 12/16/2014 5:35 12/16/2014 5:51 0:15:49 0:0:-2 37171640

24020 Annotate Sample 817 IGM-AnnoTool 12/16/2014 5:51 12/16/2014 5:52 0:01:04 0:00:03 67773669

24020 Annotate Sample 827 ParseCSV 12/16/2014 5:52 12/16/2014 5:52 0:00:10 0:00:03 180391240

24020 Annotate Sample 829 ColumnSelect 12/16/2014 5:52 12/16/2014 5:54 0:01:29 0:00:03 203553561

24020 Annotate Sample 835 ExonicFilter 12/16/2014 5:54 12/16/2014 5:55 0:01:22 0:00:07 195438989 O

24020 Annotate Sample 849 SerializeCSV 12/16/2014 5:55 12/16/2014 5:56 0:00:15 0:00:08 31903616

24020 Annotate Sample 851 ExportFiles 12/16/2014 5:56 12/16/2014 5:56 0:00:04 0:00:04 29598059

24020 Annotate Sample 852 ExportFiles 12/16/2014 5:56 12/16/2014 5:56 0:00:04 0:00:05 TOTAL 0:20:26

24021 Annotate Sample 797 StringList 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:00:00 56 ANNOTATE3

24021 Annotate Sample 803 ImportDirectory 12/16/2014 5:35 12/16/2014 5:35 0:00:03 0:0:-1 37711895 I

24021 Annotate Sample 809 ANNOVAR 12/16/2014 5:35 12/16/2014 5:51 0:15:19 0:00:02 37711895

24021 Annotate Sample 816 IGM-AnnoTool 12/16/2014 5:51 12/16/2014 5:52 0:01:02 0:00:30 68946224

24021 Annotate Sample 824 ParseCSV 12/16/2014 5:52 12/16/2014 5:52 0:00:10 0:00:11 183815048

24021 Annotate Sample 825 ColumnSelect 12/16/2014 5:52 12/16/2014 5:54 0:01:38 0:00:00 207447678

24021 Annotate Sample 834 ExonicFilter 12/16/2014 5:54 12/16/2014 5:55 0:01:24 0:00:23 199171146 O

24021 Annotate Sample 844 SerializeCSV 12/16/2014 5:55 12/16/2014 5:55 0:00:15 0:00:14 32799538

24021 Annotate Sample 846 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:03 0:00:01 30423869

24021 Annotate Sample 848 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:06 0:00:04 TOTAL 0:20:06

24022 Annotate Sample 798 StringList 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:00:02 56 ANNOTATE4

24022 Annotate Sample 804 ImportDirectory 12/16/2014 5:35 12/16/2014 5:35 0:00:04 0:00:05 36702782 I

24022 Annotate Sample 808 ANNOVAR 12/16/2014 5:35 12/16/2014 5:50 0:14:58 0:00:01 36702782

24022 Annotate Sample 813 IGM-AnnoTool 12/16/2014 5:50 12/16/2014 5:51 0:01:03 0:00:01 67069287

24022 Annotate Sample 819 ParseCSV 12/16/2014 5:51 12/16/2014 5:52 0:00:11 0:00:01 178263299

24022 Annotate Sample 821 ColumnSelect 12/16/2014 5:52 12/16/2014 5:53 0:01:27 0:00:00 201181335

24022 Annotate Sample 831 ExonicFilter 12/16/2014 5:53 12/16/2014 5:54 0:01:21 0:00:01 193152468 O

24022 Annotate Sample 837 SerializeCSV 12/16/2014 5:54 12/16/2014 5:55 0:00:15 0:00:00 31987892

24022 Annotate Sample 839 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:03 0:00:01 29666177

24022 Annotate Sample 841 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:04 0:00:00 TOTAL 0:19:29

24023 Annotate Sample 800 StringList 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:0:-3 56 ANNOTATE5

24023 Annotate Sample 807 ImportDirectory 12/16/2014 5:35 12/16/2014 5:35 0:00:04 0:00:01 38144466 I

24023 Annotate Sample 810 ANNOVAR 12/16/2014 5:35 12/16/2014 5:51 0:15:50 0:0:-4 38144466

24023 Annotate Sample 818 IGM-AnnoTool 12/16/2014 5:51 12/16/2014 5:52 0:01:04 0:00:08 69423203

24023 Annotate Sample 828 ParseCSV 12/16/2014 5:52 12/16/2014 5:53 0:00:11 0:00:08 184954222

24023 Annotate Sample 830 ColumnSelect 12/16/2014 5:53 12/16/2014 5:54 0:01:34 0:00:31 208765193

24023 Annotate Sample 836 ExonicFilter 12/16/2014 5:54 12/16/2014 5:56 0:01:24 0:00:19 200422039 O

24023 Annotate Sample 850 SerializeCSV 12/16/2014 5:56 12/16/2014 5:56 0:00:15 0:00:07 32138763

24023 Annotate Sample 853 ExportFiles 12/16/2014 5:56 12/16/2014 5:56 0:00:04 0:00:04 29813642

24023 Annotate Sample 854 ExportFiles 12/16/2014 5:56 12/16/2014 5:56 0:00:05 TOTAL 0:20:34

24024 Annotate Sample 802 StringList 12/16/2014 5:35 12/16/2014 5:35 0:00:01 0:0:-1 58 ANNOTATE6

24024 Annotate Sample 811 ImportDirectory 12/16/2014 5:35 12/16/2014 5:35 0:00:04 0:00:05 38746310 I

24024 Annotate Sample 812 ANNOVAR 12/16/2014 5:35 12/16/2014 5:51 0:15:14 0:14:54 38746310

24024 Annotate Sample 815 IGM-AnnoTool 12/16/2014 5:51 12/16/2014 5:52 0:01:04 0:00:02 70539351

24024 Annotate Sample 823 ParseCSV 12/16/2014 5:52 12/16/2014 5:52 0:00:12 0:00:01 189485156



24024 Annotate Sample 826 ColumnSelect 12/16/2014 5:52 12/16/2014 5:54 0:01:33 0:00:20 213871485

24024 Annotate Sample 833 ExonicFilter 12/16/2014 5:54 12/16/2014 5:55 0:01:27 0:00:05 205326140 O

24024 Annotate Sample 843 SerializeCSV 12/16/2014 5:55 12/16/2014 5:55 0:00:15 0:00:02 31951423

24024 Annotate Sample 845 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:03 0:00:02 29651358

24024 Annotate Sample 847 ExportFiles 12/16/2014 5:55 12/16/2014 5:55 0:00:06 0:00:02 TOTAL 0:20:01
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