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Abstract 

Bismuth bulk electrodes (BiBEs) have been suggested as possible replacements for 
mercury electrodes in electroanalytical studies in part because they are simply 
prepared by melting bismuth powder in a glass capillary and also because of the 
relative lack of toxicity of Bi. The double layer of BiBEs in aqueous media was 
studied using electrochemical impedance spectroscopy (EIS). The differential 
capacitance of BiBEs was determined in three aqueous electrolytes: sodium nitrate 
(NaNO3), sodium bromide (NaBr) and sodium chloride (NaCl) as well as the non-
aqueous electrolyte LiClO4/acetonitrile (AN). Comparative measurements were made 
with a polycrystalline platinum electrode. Up to 43 µF cm-2 were recorded for the 
double layer capacitance at the BiBEs in the aqueous electrolytes, while more typical 
capacitance values of <20 µF cm-2 were obtained for the Bi|AN/LiClO4 interface. 
Combined investigations by EIS and x-ray photoelectron spectroscopy (XPS) 
suggest the high values of capacitance in the aqueous electrolytes are due to 
pseudocapacitance effects, owing to adsorptions of bromide and chloride ions as well 
as the formation/reduction of a bismuth(III) oxide film at the electrode surface. The 
capacitance values of the Bi|AN/LiCO4 interface are consistent with the standard 
Gouy-Chapman-Stern model; ClO4

- anions are thought to be weakly adsorbing in 
non-aqueous media. The EIS measurements also enabled the determination of the 
potential of zero charge PZC of -0.49 V versus Ag/AgCl at BiBEs in the aqueous 
electrolyte mixture of NaNO3/NaCl. 

The differential capacitance studies provided an understanding of the nature of the 
BiBE interfaces required to interpret electron transfer measurements. Several redox 
couples were investigated by slow scan cyclic voltammetry (CV): ruthenium 
hexaammine, methyl viologen, sodium anthraquinone-2-sulfonate monohydrate, 
methylene blue, toluidine blue, hexaamminecobalt(III) chloride and cobaltocenium 
hexafluorophosphate. Many of these couples showed complex behaviour at Bi; either 
due to Bi oxidation or a lack of chemical reversibility and possible complications due 
to adsorption. However, ruthenium hexaamine showed reversible, uncomplicated 
CVs at the BiBE/KCl(aq) interface and therefore was selected for detailed study of 
the electron transfer kinetics by EIS.The standard rate constant (ko) and electron 
transfer coefficient (α) were determined for the outer-sphere one-electron transfer 
process for ruthenium hexaammine trichloride Ru(NH3)6Cl3 at BiBEs in KCl(aq) as 
supporting electrolyte. In contrast to previous work on viologen derivatives in AN in 
the literature, there was a marked difference between the ko values at BiBEs and Pt 
electrodes- the voltammetry and impedance spectra were found to be reversible at 
Pt. We ascribe this difference to the presence of a thin oxide layer on the BiBE at 
potentials near the standard potential for ruthenium hexaammine. Despite the 
presence of such an oxide layer, repeatable impedance spectra could be obtained for 
the system and the expected linear dependence of the charge transfer resistance on 
[Ru(III)] was observed. Further, the (dc) potential dependence of the EIS data 
allowed the determination of the potential dependence of the transfer coefficient. This 
data provided direct evidence of the importance of double layer corrections to ko 
because of the rapid variation of α observed near the potential of zero charge. In 
summary, BiBEs show somewhat complex behaviour in aqueous media; many redox 
couples cannot be easily studied because of the susceptibility of Bi to oxidation and 
complex adsorption effects, not well understood. However in the case of ruthenium 
hexaammine, precise voltammetric data can be obtained even though photoemission 
spectra and differential capacitance data indicates the presence of a thin oxide film. 
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The second part of the thesis concerns the detection of Ag(I) ions released by 
corrosion of silver nanoparticles (AgNPs) in aqueous media. Neither BiBEs nor Pt 
electrodes were found to be suitable for the detection of Ag(I), however 
straightforward anodic stripping voltammetry (ASV) at glassy carbon electrodes was 
successful. AgNPs were synthesized by the citrate reduction method and dialysed 
either in pure water, or different concentrations of chloride and sulphate to examine 
the effect of the medium on the release of Ag(I) ions. The importance of these 
studies relate to the fate of AgNPs in the environment; AgNPs are now widely 
employed for their antimicrobial activity, however it is not clear what their eventual 
fate is nor how much Ag(I), the putative agent is released. The experimental 
technique involved dialysis of the initial AgNP preparation against a particular 
aqueous medium and (i) analysis of the [Ag(I)] released from the dialysis membrane 
into the external medium and (ii) characterization of the aliquots of AgNPs remaining 
inside the dialysis membrane. Optical absorption spectra showed a redshift of the 
AgNP plasmon band throughout the dialysis, consistent with aggregation of the NPs. 
This is unexpected based on simple DLVO stabilization as the reduction in ionic 
strength against water should disfavour aggregation. However it was confirmed by 
dynamic light scattering (DLS) and atomic force microscopy (AFM) of drop-cast 
aliquots and probably arises from loss of citrate ligands. 

Release of Ag(I) ions was monitored by anodic stripping voltammetry at glassy 
carbon electrodes. The ASV data was calibrated by standard addition and indicated 
the presence of about 90 µM of Ag(I) ions in the initial preparation. Over time, the 
[Ag(I)] decreased until it reached a steady-state value of the order of a few µM. 
Unexpectedly, a similar steady-state concentration was observed in chloride or 
sulphate containing media. The presence of chloride does indeed reduce the 
concentration of Ag(I) in the initial preparation (to a value controlled by the solubility 
product of AgCl), however in that case a strong decrease in [Ag(I)] throughout the 
dialysis was not observed. A concentration of about 4 µM was still detected after 73 h 
of dialysis. This effect is interpreted in terms of the decrease in the electrode 
potential for the Ag/Ag(I) couple in the presence of Cl-; we suggest that the steady-
state concentration of Ag(I) is determined mainly by the corrosion of the AgNPs. 
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Chapter 1. Introduction  

1.1 Bismuth electrodes. 

In the search for an electrode material that will replace mercury in electroanalysis, 

research has centred on bismuth owing largely to its reputation as benign to the 

environment and to many species.1-8 A number of factors account for the 

environmental friendliness of bismuth. These include its extremely low toxicity 

compared to mercury and widespread pharmaceutical use. It can also form 

multicomponent, low melting temperature alloys with numerous heavy metals.1,4,6,8 

Other features of bismuth electrodes that are favourable for its use as an electrode 

material include low cost and ease of fabrication because of the relatively low melting 

point of the semi-metal as well as relative insensitivity to dissolved oxygen in 

aqueous solutions by comparison with mercury.2,6,9,10 

Bismuth electrodes can be broadly classified into bismuth bulk electrodes (BiBEs)11-13 

and bismuth film electrodes (BiFEs).14-16 Factors that are responsible for the 

differences between bismuth bulk and film electrodes include surface roughness or 

morphology12 and the substrate1 that forms the support for the electrode material. 

Whereas bismuth bulk electrodes are essentially made of polycrystalline bismuth, 

bismuth film electrodes constitute of a thin film of Bi(III) ions; by their in situ  reduction 

and deposition over a substrate such as glassy carbon or carbon paste1,7,10 as 

illustrated in equation 1.1. 

 

Other carbon substrates used in bismuth film electrodes include pencil-lead, wax 

impregnated graphite and screen-printed carbon ink.17 The conductivity of 

polycrystalline bismuth is lower than that of glassy carbon used as substrate in 

BiFEs.12 Consequently, BiBEs may exhibit lower responses than BiFEs. Bismuth film 

electrodes are often employed in stripping analysis and the use of a thin film 

increases sensitivity of the measurement. The low activity of BiBEs in 

electrochemical processes has also been attributed to their relatively low density of 

states (DOS); the carrier density is of the order of 3 x 1017 cm-3 eV-1 while that of 
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platinum, a typical metal is 1.2 x 1023 cm-3 eV-1. 18-20 This carrier density is typical of a 

semi-metal.20 In a semi-metal, one band is almost filled and another almost empty, 

e.g., as a result of the conduction edge being slightly lower than the valence band 

edge. The small overlap of the conduction and valence bands leads to a small 

density of states near the Fermi level and a small carrier density. Another implication 

of the small overlap of the conduction and valence bands is that, high energy 

electrons in the valence band can enter into the conduction band without excitation. If 

energy is supplied in the form of heat, more valence electrons will move to the 

conduction band, hence increase in conductivity. A diagram to illustrate the difference 

between a metal and a semi-metal in terms of density of states is shown in figure 1.1.  

 

Figure 1.1 Diagram to illustrate the variation in density of states near the Fermi level between metals 
and semi-metals. Filled states are shaded blue, while EF indicates the energy corresponding to the 
Fermi-level. The areas under the rectangles of width AB and CD clearly show how the concentration of 
electrons in the valence band in metals is higher than that in semi-metals.  

This partly explains the lower electroactivity of bismuth bulk electrodes compared to 

the noble metal electrodes and to bismuth film electrodes with glassy carbon as 

substrate. However, it should be noted that the surface of elemental Bi has different 
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properties from the bulk and there is evidence that the carrier density at the surface 

of BiBEs is comparable to metal electrodes.19 

Bismuth bulk electrodes also have  a very wide potential window in alkaline media: as 

large as  -0.47 V to -1.70 V in 0.1 M NaOH has been reported.12 The smooth surface 

of BiBEs can also be easily regenerated by polishing.1  

One major shortcoming of BiBEs however lies in their oxidation at high positive 

potentials10,12, although in compensation, their operational potential window usually 

extends towards more negative potentials than common electrode materials such as 

Pt, Au and C. 

The use of bismuth electrodes has covered measurements of differential 

capacitance, kinetic studies of reactions, monitoring of trace metal concentrations 

through different forms of stripping voltammetry, and applications in sensors.4,7,8,19,21 

In the rest of the chapter, some of the theoretical background to these aspects will be 

reviewed, focusing on those concepts of importance for the discussion of the results 

in Chapters 3-5. The known properties of various redox couples employed in 

Chapters 4-5 will also be discussed. Finally, there is a section on silver nanoparticles 

as preparation for chapter 6. This part of the work did not involve Bi electrodes (Ag(I) 

oxidises Bi), however electroanalytical techniques are employed in Chapter 6 to 

study the release of Ag(I) from nanoparticles although carbon-based electrodes were 

found to be superior for the purpose. 

1.1.1 Measurement of differential capacitance. 

The differential capacitance of bismuth bulk and film electrodes has been measured 

in aqueous21-23, ethanol24-26, methanol and propanol22 as well as in acetonitrile13,19 

electrolytes. As observed in this work as reported in chapter 3, the Cd – E curves for 

Bi in aqueous solutions yielded data with maxima rather than the minima expected on 

the basis of simple double layer theories. The maxima have been attributed to 

adsorption of the various halide ions of Cl , Br , and I  on the electrode surface. 

The irregular variation of differential capacitance with concentration presented in this 

work has also been reported elsewhere23, where it decreased with increasing 

concentration of 1,6-hexanediol (HD) in aqueous Na2SO4 but started to rise as the 

concentration of the HD exceeded 0.5 M. 
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Comparisons of the findings of this research with the works cited above indicate 

similar trends as regards the performance of the bismuth electrode in acetonitrile 

solutions. The Cd –E curves had minimum values, and their small sizes was 

explained to be due to weak adsorptions of the ClO4
- on the electrode surface as well 

as the relatively low dielectric constant of acetonitrile. 

In this work, the potential of zero charge, PZC at bismuth has been estimated to be   

-0.49 V vs aqueous Ag/AgCl in the electrolyte mixture of NaNO3/NaCl. This value 

compares favourably with the -0.5 ± 0.01 V vs aqueous saturated calomel electrode 

in LiClO4/AN reported by Vaartnou and Lust13 for the Bi(III) crystal plane. 

The similarity in the findings of this work with that of other researchers is an indication 

that electrochemical analyses at Bi could be reproducible, despite the different 

environments and reaction conditions. 

1.1.2 Kinetic studies at Bi 

Electron transfer rates of various analytes at the Bi electrode surface have been 

reported.19,27-29 Standard rate constants for stripping of Zn2+, Cd2+, and Pb2+  at 

bismuth film electrodes as reported by Mirceski et al29 indicate reproducibility as they 

range from 1 to 3 cm s-1 for solutions of all the three metal analytes. A detailed study 

of the reduction kinetics of cobalt hexaammine by rotating disc methods has been 

reported and the rate constants interpreted in terms of inner layer effects.30 Similarly, 

standard rate constants  (ko) and transfer coefficients (α) for the first one-electron 

reduction of methyl viologen and five derivatives at a bismuth bulk electrode as 

reported by Cook and Horrocks19 do not show marked differences compared to Pt 

electrodes, but do show strong double layer effects on the rates. While the values of 

transfer coefficient obtained by these authors are about 0.5 as expected for outer 

sphere reactions, a lower value of 0.34 for diazepam27 at a bismuth-pencil graphite 

electrode could be a result of the absence of a supporting electrolyte in the diazepam 

solutions. It is however worthy of note that bismuth electrodes have been 

successfully used in the measurement of rates of reactions.30 

1.1.3 Bismuth electrodes in stripping voltammetry 

Reports abound in the literature on the use of the various forms of bismuth based 

electrodes in the determination of trace metals. The different voltammetric techniques 
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employed include anodic stripping voltammetry (ASV) 4,10,12,14,31-34 and its variants of 

adsorptive stripping voltammetry (AdSV)9,35,36 which have been used in the 

determination of Co, Ni and Se(IV). Square wave anodic stripping voltammetry 

(SWASV)37,38 has been utilized for the determination of Cd(II) and Pb(II). Trace metal 

concentrations that have been monitored with bismuth electrodes include those of 

Cd, Pb, Zn, Tl, Ni, Cu, Co, Al, Fe, In, Cr1, while differential pulse voltammetry (DPV) 

has been used in the detection of organic compounds using bismuth film electrodes. 

As at the 10th anniversary of the use of bismuth electrodes in electroanalysis, about 

200 reports of analyses were published using the various voltammetric techniques.2 

This allows for a projection of more than double this value by the year 2020 when 

these electrodes would have been under investigation for 20 years. 

It is interesting to note that BiBEs which make up the main study of this work have 

also been used in trace analysis of Zn, Cd and Pb. However, they could not be 

utilized in the estimation of Ag(I) from dialysates of silver nanoparticles because of 

the high electrode potential of this noble metal (Chapter 6). In general, the anodic 

oxidation of bismuth appears to be an important limitation on its use in 

electroanalysis. 

1.1.4 Application of bismuth electrodes in sensors 

The environmentally benign characteristics of bismuth which include ease of 

handling, low toxicity hence safe disposal and low cost have been exploited in the 

production of sensors5,8,16,39,40 for sampling and monitoring of various products. An 

example is the bismuth-based sensor for the detection of hydrogen sulphide gas. 

This sensor with a wet, porous,  paper-like substrate coated with Bi(OH)3 is said to be 

suitable for testing human bad breath41 and its sensitivity is at least 2 orders of 

magnitude more than the commercial lead(II) acetate test paper. 

While many of these bismuth-based sensors use the technique of stripping 

voltammetry, it has become expedient to group these electrodes differently because 

of the precision and speed with which determinations are made. Worthy of note is the 

report by Jothimuthu et al 5 who affirm the precision of the low-cost based bismuth 

sensor that needs only about 2 drops of blood and provides results on the level of 

heavy metal in 10 minutes, compared to the mercury-based sensor which uses 5 mL 

of blood to deliver results in 48 h. With this relatively short time of operation, this 
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device has an additional advantage that it can be used to assess a large population 

of patients especially in rural but high risk areas that have limited access to analytical 

laboratories. 

In addition, the extended cathodic potential window of -0.3 to -1.9 V enabled the 

detection of electronegative manganese (Mn) with a stripping peak at -1.47 V vs 

Ag/AgCl(3 M KCl).5 

1.2 Electrical double layer and capacitance 

The electrical double layer is a term used to describe the ionic environment in the 

vicinity of an electrode|electrolyte interface. It may also be described as the array of 

charged particles and/or oriented dipoles present at a material interface.42  

Helmholtz was the first scientist who in 1853 proposed the existence of a defined 

order of negative and positive charges at interfaces.43 He likened the behaviour of 

the interface between a metallic electrode and an electrolyte solution to that of a 

parallel plate capacitor, a device that can store electric charge. This means that the 

stored charge density will vary with potential across the plates according to equation 

1.2 where      the dielectric constant (now more commonly referred to as the relative 

permittivity) and  o, the vacuum permittivity, while d is distance between the 

plates.

 

 

 dV

o

dC







   (1.2) 

σ is the charge density (C m-2), E the applied potential (V) and Cd is the differential 

capacitance per unit area (F m-2). This equation predicts the differential capacitance 

of the system to be independent of concentration and also of potential as neither the 

concentration of the medium nor the dc potential appear in equation 1.2. 

In this model, Helmholtz assumed that the electrode holds a charge (qm) which arises 

from either an excess or deficiency of electrons at the electrode surface and that this 

charge is balanced by an amount of equal but oppositely charged ions at a plane a 

fixed distance from the metal in solution (qs) so that the electrical neutrality of the 

interface is maintained. This means qm = -qs or qm + qs=0. 
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The solution side of the double layer is assumed to be made of several distinct 

parts.42,44 The inner layer closest to the electrode, known as the inner Helmholtz 

plane (IHP) contains solvent molecules and specifically adsorbed ions, which are not 

fully solvated. The next closest layer, the outer Helmholtz plane (OHP) is 

characteristic of solvated ions at their closest approach to the electrode surface. 

These solvated ions are non-specifically adsorbed hence are attracted to the metal 

surface by long-range electrostatic forces. The IHP and OHP together make up the 

compact layer.  

A sketch of the Helmholtz model is shown in figure 1.2 below.Figure.1 

 

Figure.1.2 Sketch of the Helmholtz model of the double layer showing (a) rigid arrangement of ions, X2 
being the distance of closest approach of the charges to the electrode (b) variation of Cd with applied 
potential. 

The shortcomings of this model are that (i) it assumes the electrode - electrolyte 

interface to be static, especially for ions further away from the electrode than the first 

layer as these solvated ions would have to approach the electrode through a 

distance limited by a monolayer of solvent molecules assumed to exist between them 

and the electrode (ii) it does not account for electrolyte concentration effects on the 

capacitance. (iii) it does not incorporate presence of a diffuse layer, i.e., counter 

charges not rigidly bound to the OHP. 

Gouy-Chapman Model 

Within the period of 1910-1913, Gouy and Chapman developed the double layer 

model which predicted the dependence of double layer capacitance on applied 

potential and electrolyte concentration. According to these authors, the double layer 
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would not be compact as in Helmholtz model43 but would be of variable thickness, 

with the ions being free to move. This diffuse double layer therefore allows for a 

distribution of counterions to extend from the OHP into the bulk solution due to 

thermal agitation, owing largely to the fact that the solvated ions are non-specifically 

adsorbed.42,44 The total charge of the compact and diffuse layers would be equal (but 

opposite in sign) to the net charge on the electrode side. 

Although a significant contribution, the Gouy-Chapman model failed to explain the 

experimental variations of the capacitance-potential curves for potentials far from 

PZC and at high electrolyte concentrations.44 Furthermore, measured capacitance 

values were found to be much lower than calculated values. In essence, the 

capacitance|potential curves could be said to be incorrect as the predicted 

dependence on concentration and potential was not completely observed. The 

source of these issues is the lack of accounting for the finite sizes of the ions which 

allows them to approach the electrode arbitrarily closely in the Gouy-Chapman 

model. The result is an overestimation of the capacitance at potentials far from that at 

which the electrode is uncharged (PZC, potential of zero charge). However, the 

model does provide a mechanism for concentration and potential dependence of Cd 

that is absent in the earlier Helmholtz model. 

 A sketch of the Gouy-Chapman model is presented in the figure below. 

 

Figure 1.3. Sketch of the Gouy-Chapman model showing (a) diffuse arrangement of ions and (b) 
variation of differential capacitance (Cd) with potential.                                                                                                         
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The Stern Model 

A further input into the nature of the double layer was made by Stern.45 He combined 

the two previous models of Helmholtz and Gouy-Chapman, by suggesting that the 

double layer was formed by a compact layer of ions next to the electrode, followed by 

a diffuse layer extending into the bulk solution. By identifying two distinct layers of the 

electrical double layer, Stern was able to account for the main experimental findings 

regarding metal electrode capacitance. The dependence of the double layer 

capacitance on electrode potential is caused by the compression of the diffuse layer 

as the charge on the electrode is increased in the manner described by Gouy and 

Chapman. However, the finite sizes of the ions are partly accounted for by including a 

distance of closest approach, the OHP. 

Another implication of the two distinct layers is that two capacitors must be 

operational in determining the total capacitance of the double layer interface. Stern 

was able to explain the experimental capacitance-potential curves in terms of the 

series combination of the Helmholtz and Gouy-Chapman capacitances and the 

applied potential with respect to the potential of zero charge, PZC. Far from the PZC, 

the electrode exerts a strong attraction towards the ions, which are attached rigidly to 

the surface, with the potential drop being restricted to the compact layer. Close to 

PZC however, there is diffuse distribution of ions - the diffuse layer. 43 

The foregoing analysis can be summed up in a statement that the capacitance of the 

double layer consists of a combination of the capacitance of the compact layer in 

series with that of the diffuse layer. For two capacitors in series, the total capacitance 

is given by equation 1.3 in which CH and CG represent the capacitance of the 

compact and diffuse layers after Helmholtz and Gouy-Chapman respectively. 

 
GH CCC

111
     (1.3) 

This finding proved to be significant since it indicates that the smaller of the two 

capacitances determines the observed or total capacitance.42,43 The value of CG is 

greatly affected by the electrolyte concentration whereas the compact layer is largely 

independent of concentration. This model predicts that, at high electrolyte 

concentrations, or at potentials far from PZC, most of the charge is accumulated near 
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the outer Helmholtz plane with little scattered diffusely into the solution. Under such 

conditions, 1/CH >>> 1/CG hence from equation (1.3),  

 1/C ≈1/CH or C ≈ CH   (1.4) 

Conversely, for dilute solutions (close to PZC according to Stern), there is diffuse 

distribution of ions and CG is very small compared to CH so 1/CG >>> 1/CH hence      

C ≈ CG.  

A sketch of the differential capacitance predicted by Stern model is shown in figure 

1.4.                                                                                                        

                      

Figure 1.4 Gouy-Chapman-Stern model showing variation of Cd with potential as concentration 
changes. 

The Grahame Model 

In 1947, Grahame46 after agreeing with Stern that some ions were adsorbed at the 

electrode surface and others diffusely dispersed in solution went further to identify the 

existence of specifically adsorbed ions. Specific adsorption is the adsorption of ions 

at the electrode surface after they have lost their solvation completely or partially43. 

These ions can have the same charge as the electrode or the opposite charge, yet 

chemical bonding of the ions with the electrode can still be very strong. This affects 

the capacitance because any change in the distance of closest approach (d in 

equation 1.2) affects the capacitance of the Helmholtz part. 
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The Bockris, Devanathan and Muller Model 

In 1963, Bockris et al 47 proposed a double layer model which takes into account, the 

role of the solvent. All the other models have considered the effect of electrolyte in 

terms of the ionic solutes. The fact that solvent concentration is always much higher 

than that of the solute underscores the significance of the contribution of Bockris and 

his co-workers

Double Layer Capacitance 

From the foregoing discussions, it can be summarised that the electrical double layer 

is made up of two layers of charge and a potential drop which varies across the 

Helmholtz plane into the bulk solution. The double layer therefore behaves much like 

a parallel plate capacitor.43,44 For such an ideal capacitor, the charge is directly 

proportional to applied potential in accordance with the equation, 

 ECd      (1.5)   

The charge on the capacitor arises due to an excess of electrons on one plate and a 

deficit of electrons on the other. The electrode|solution interface is no less different, 

for at any given potential, there exists a charge qm on the metal electrode and a 

charge qs in solution. The sign of the charge on the metal electrode with respect to 

the solution however depends on the potential across the interface and the solution 

composition. In any case, at every material time, qm + qs =0 for overall electrical 

neutrality of the solution. 

The charge on the metal, qm resides in a very thin layer on the metal surface whereas 

the charge, qs of the solution comprises of either an excess or deficiency of cations or 

anions in the vicinity of the electrode surface. To be able to account for the actual 

regions where these charges reside, they are often divided by the electrode area and 

expressed as charge densities such as 
A

qm
m   for the metal electrode, with units of 

µC cm-2. Therefore, at any given potential, the electrode -solution interface is 

characterized by a double layer capacitance Cd whose experimental values have 

been found to typically lie between 10 to 40 µF cm-2. 42,44 

Unlike real capacitors whose capacitances are independent of potential, double layer 

capacitance Cd varies with both applied potential and concentration as earlier 
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discussed under the Gouy-Chapman model. The capacitance of the interface is 

characterized by its ability to store charge in response to a change in applied 

potential. Therefore as the electrode becomes more highly charged due to an 

increase in potential, the diffuse layer would become more compact and Cd would 

increase. 

Furthermore, the electrostatic potential which gives rise to Cd varies linearly with 

distance from the electrode to the OHP then decreases exponentially into the bulk 

solution. Dependence of double layer capacitance on electrolyte concentration can 

likewise be explained in the light of the compression of the diffuse layer. With an 

increase in electrolyte concentration, the rate of diffusion will increase resulting into 

high adsorption (both specific and non-specific) onto the electrode surface with an 

overall increase in capacitance. 

Potential of Zero Charge 

The potential of zero charge PZC, also known as point of zero charge may be 

regarded as where the sign of the electrode charge is reversed and no net charge 

exists on the electrode.42 PZC is the value of potential at which an electrode surface 

will not acquire an electrical charge when in contact with an electrolyte. 

When determined in relation to pH of an electrolyte, the PZC is the pH value at which 

a solid submerged in an electrolyte exhibits an electrical charge of zero on the 

surface48. The pH value is however used to describe PZC for systems in which 

H+|OH- are the only ions that determine the potential. According to IUPAC49, PZC is 

the value of electric potential of an electrode (measured against a stated reference 

electrode) at which one of the charges defined is zero. In terms of PZC therefore, 

IUPAC defines the electrode potential difference as 

 ΔE = E – Eσ=0     (1.6) 

where E is the potential of the electrode against a stated reference electrode and 

Eσ=0 or PZC is the potential of the electrode when the surface charge is zero. For 

systems characteristic of an excess in surface charge like the electrical double layer, 

the best way to identify the point of zero charge is the existence of a maximum in the 

surface tension of the metal|solution interface.44,48 The potential at which the surface 

tension is a maximum is called the electrocapillary maximum (ECM). The slope of the 
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curve of surface tension (ϒ) versus potential (E) at this point is zero; hence it‟s the 

potential of zero charge (PZC). Therefore, at the PZC, the surface tension is a 

maximum while the electrical capacitance at the boundary is a minimum. Of course 

the electrocapillary curves are not usually experimentally accessible for solid 

electrodes and the capacitance measurements are preferred in these cases. 

Another significance of PZC is that, it serves a source for further information as to the 

orientation of dipoles in a metal|solution interface. The metal surface is positively 

charged at potentials more positive than the PZC50 and water (or solvent molecules 

in general) will adsorb with a preferred orientation of the electronegative O atom 

directed towards the metal. If on the other hand, the electrode potential is negative 

with respect to PZC, then positive ions will be attracted to the metal surface. This 

knowledge is important in environmental studies as it helps determine how easily a 

substrate is able to adsorb potentially harmful ions such as Cd, Pb and Hg. 

PZC is also vital in the study of colloidal systems. At zero zeta potential, the colloidal 

particles of the system will remain stationary under an applied electric field, giving 

rise to maximum coagulation of particles in the solid phase and a high viscosity of the 

dispersion medium. 

1.3 Frumkin Correction 

Owing to the structure of the double layer, the concentration of ions taking part in 

charge transfer reactions is different from their concentration in the bulk solution. 

Only those close to the electrode surface can take part in the reaction.  

 

Figure 1.5. Potential profile illustrating electron transfer across the compact double layer at a plane 
distance x2 from the electrode. 
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In the Figure 1., the concentration of analyte at x2 where electron transfer is assumed 

to actually take place can be estimated from the Boltzmann distribution using 

equation 1.7 in which z is the charge on the species and F is Faraday constant. The 

plane of electron transfer x2 is considered in principle to be the same as the OHP but 

it may not be exactly so in practice. 
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The second factor affecting the rate of charge transfer because of double layer 

structure is the electrostatic potential (φ) which in general varies with distance away 

from the electrode surface. This means that in the figure 1.5, φ1 at the metal 

electrode will be different from φ2 at the outer Helmholtz plane (OHP). The value of 

electrostatic potential φ3 in the bulk solution will similarly be different from φ1 and φ2 

because of potential drop through the diffuse layer as well as adsorption of some 

ions.44,51 The effective driving force or potential difference at the site of electron 

transfer would be Δφ = φ1– φ2 instead of the whole potential drop between the 

electrode surface and the bulk solution (φ1 – φ3). The observed heterogeneous 

electron transfer constant has to be corrected to take into account the effects of these 

two factors of concentration and potential to give the true standard rate constant 

using equation 1.8. This is known as the Frumkin correction.44,51 
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1.4 Electron transfer reactions 

An electron transfer reaction may be defined as a reaction in which one or more 

electrons relocate from one species to another. An elementary reaction that is often 

used to illustrate electron transfer in the laboratory is that between a strip of Zn metal 

and Cu2+ ions as presented in equation 1.9 in which two electrons are transferred 

from 

           (1.9)     

Zn metal to copper(II) ions, leading to an increase in the oxidation state of the former 

and a decrease in the oxidation state of the latter. Marcus52 describes  such an 
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electron transfer reaction  between two different redox systems as electron transfer 

„‟cross sections‟‟ to distinguish between self-exchange electron transfer reactions, an 

example of the Co3+/2+ redox couple illustrated in equation 1.10   

      (1.10) 

Two things are evident in the self-exchange reaction52 (i) the products and reactants 

are identical and (ii) chemical bonds are neither broken nor formed in the electron 

transfer process, a characteristic property of outer-sphere electron transfer reactions. 

Electron transfer reactions may be broadly classified into inner-sphere and outer-

sphere transfer reactions.53 The inner-sphere mechanism is characterized by 

electron transfer via a covalently bonded bridging ligand while electron transfer by the 

outer-sphere mechanism does not require a covalent linkage between the reactants. 

Pioneers in the area of electrode kinetics i.e., rates of reactions at an electrode in 

solution, John Alfred Butler and Max Volmer, in 192454 formulated the model of 

equation 1.11 which predicts the exponential dependence of current on potential as 

well as its linear dependence on concentration.  
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It also brought to the fore, concepts of exchange current, charge transfer resistance 

and transfer coefficient. It is also consistent with thermodynamics for at equilibrium 

when the rates of forward and backward reaction are equal and there is no current    

(i = 0), it reduces to the Nernst equation (1.12) which links the electrode potential with 

bulk concentrations44. 
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 Although the Butler-Volmer equation is useful in the treatment of a majority of the 

problems relating to heterogeneous kinetics, it has some shortcomings e.g., is unable 

to predict the exact value of the charge transfer coefficient (α) but only assumes it to 

lie between 0 < α < 1. The transfer coefficient may be defined from the current-

overpotential plot of figure 1.6 as a measure of the symmetry of the energy barrier; 
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and stands for the reductive symmetry factor. The oxidative symmetry factor 

associated with the backward reaction would therefore be 1-α. 

The standard rate constant ko may be defined here in terms of the Faradaic current, 

the passage of which through a potential difference E results in the 

oxidation/reduction of material in accordance with Faraday‟s laws. It is the value of 

the rate constant when the applied potential E is equal to the formal potential Eo‟.  CO 

and CR stand for the concentrations of the oxidized species or reactant and of the 

reduced species or product respectively. These values are understood to be the 

concentrations near the electrode surface at the plane at which electron transfer 

occurs and are not in general equal to the values in the bulk solution.   

A plot illustrating the Butler-Volmer equation is shown in the figure below. 

 

Figure 1.6 Graphical representation of the Butler-Volmer equation showing the effects of changing the 
potential and the value of the transfer coefficient (α) on the current. The curve was constructed for 
one-electron transfer at 298 K, with a standard rate constant ko of 1 cm s

-1
. The concentrations of the 

oxidized and reduced species were the same, with a value of 1 x 10-6 mol cm
-3

. 

If the effect of changing the potential is identical on both sides of the energy barrier, 

then α = 0.5 = 1- α. This current-overpotential plot also enables the estimation of the 

charge transfer coefficient RCT; the negative reciprocal of the slope44 of the curve at 

low overpotential ( < 10 mV) where the curve passes through the origin. It is the far 

right end of equation 1.13 for a one-electron transfer process. Overpotential ( ) as 

indicated in the x-axis of the figure 1.6 is the difference between the potential at zero 

current (equilibrium) and the potential required to drive a current. 
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The exchange current oi may be taken to have the same magnitude as either the 

anodic or cathodic current, as these currents cancel each other to give the net 

current at equilibrium of zero. 

Marcus55 in the course of continuing investigations went further to quantify the rate of 

electron transfer in terms of a rate constant 

                   RTFZek /                                                                      (1.14) 

where   2mwF                                                                         (1.15) 

and     
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The parameter Z stands for the collision frequency of the particles in solution (or of a 

particle with the electrode) and w is the work done in bringing the two reactants (or 

reactant and electrode) together while wp is the work term for the products. oF  

stands for the standard Gibbs free energy of the electron transfer step in the reaction 

medium while its value for electron transfer at the electrode surface is anF  where 

n is the number of electrons transferred, while m is their mean mass and a  is the 

activation overpotential.  , the reorganization energy, defines the effects of changes 

in the bond lengths and bond angles in the coordination sphere of the reactants. 

Marcus‟ quantitative model was therefore able to predict a value of about 0.5 for the 

transfer coefficient as well as give insights for the estimation of the energy costs in 

bringing two reactants (or a reactant and electrode) together. 

Chapters 4 and 5 are primarily concerned with the study of redox couples in which 

electron transfer follows the heterogeneous outer-sphere mechanism in which 

electron(s) are exchanged between an analyte solution and the electrode surface. A 

few of those redox couples are therefore reviewed hereunder. 
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1.4.1 Methyl viologen 

Methyl viologen or paraquat, also known by the trade names of Gramoxone or 

Herboxone56 belongs to a class of 1, 1‟- disubstituted- 4- 4‟-bipyridinium salts known 

as viologens. Its IUPAC name is 1, 1 –dimethyl-4-4‟ –bipyridinium dichloride. The 

loss of the two chloride ions results in a dication (MV2+) which undergoes a two-step 

reduction, first to give the monocation radical (MV+) and then the neutral compound 

as the final product. The simple 2-step reduction process of the methyl viologen 

complex is illustrated below: 

    eMV 2    MV    step 1 

 This monocation complex is oxygen sensitive57,58 hence the solution  has to be 

purged with either argon or nitrogen gas to get rid of oxygen in the reaction vessel for 

consistent results to be achieved. 

                        eMV    oMV     step 2 

The neutral compound is of low solubility hence can adsorb on the electrode 

surface.59-61 The structure of the methyl viologen dication and its reduction to the 

monocation is also shown in scheme 1.1 

 

Scheme 1.1 The electron transfer process between MV
2+

 and MV
+
 

Continuing electrochemical investigations of the reduction of the monocation to the 

neutral compound are however limited because of dimerization19,62,63 of the 

monovalent compound. 

Paraquat is an interesting compound to study because of its toxicity and persistence 

in the environment56,62,64 occasioned by world-wide use as herbicide on a variety of 

crops. The very high solubility of MV2+ in water which facilitates its spray over crops 

lends credence to why water is a solvent of choice for this compound in 

electrochemical studies. However, because it is non-biodegradable, continued 

application of paraquat on food crops increases the health risk of the consumers due 

https://www.google.co.uk/imgres?imgurl=http://3.bp.blogspot.com/-GpBMePamVUA/VAsMjVSzHWI/AAAAAAAAACU/vm17RbqOqH4/s1600/iu-3.jpeg&imgrefurl=http://mrphillipsgcsechemistry.blogspot.ae/2014_02_01_archive.html?m=1&docid=etCaUA3o8nIeGM&tbnid=Il7vqeVFtNedZM:&vet=1&w=137&h=127&bih=955&biw=1347&ved=0ahUKEwij_YLHnrXSAhVqBsAKHYWRBtwQMwghKAAwAA&iact=c&ictx=1
https://www.google.co.uk/imgres?imgurl=http://3.bp.blogspot.com/-GpBMePamVUA/VAsMjVSzHWI/AAAAAAAAACU/vm17RbqOqH4/s1600/iu-3.jpeg&imgrefurl=http://mrphillipsgcsechemistry.blogspot.ae/2014_02_01_archive.html?m=1&docid=etCaUA3o8nIeGM&tbnid=Il7vqeVFtNedZM:&vet=1&w=137&h=127&bih=955&biw=1347&ved=0ahUKEwij_YLHnrXSAhVqBsAKHYWRBtwQMwghKAAwAA&iact=c&ictx=1
https://www.google.co.uk/imgres?imgurl=http://3.bp.blogspot.com/-GpBMePamVUA/VAsMjVSzHWI/AAAAAAAAACU/vm17RbqOqH4/s1600/iu-3.jpeg&imgrefurl=http://mrphillipsgcsechemistry.blogspot.ae/2014_02_01_archive.html?m=1&docid=etCaUA3o8nIeGM&tbnid=Il7vqeVFtNedZM:&vet=1&w=137&h=127&bih=955&biw=1347&ved=0ahUKEwij_YLHnrXSAhVqBsAKHYWRBtwQMwghKAAwAA&iact=c&ictx=1
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to bioaccumulation. This partly explains why the use of this herbicide is banned in so 

many countries including the UK. 

1.4.2 Sodium anthraquinone-2-sulfonate 

Sodium anthraquinone-2-sulfonate (AQS) is a member of the homologous series of 

substituted 9,10-anthraquinones that form a group of compounds that are used for 

the indirect cathodic reduction of vat dyes where they act as mediators.65,66 The 

structures of AQS and its reduction product, the dianion are shown in scheme1.2 

 

Scheme 1.2. The redox couple of AQS and its dianion AQS
2-. 

 It might appear from the redox equation that 2 electrons are transferred 

simultaneously but the product is actually formed as a result of 2 fast 1-electron 

transfers, in tune with the current IUPAC definition of the transfer coefficient in 

electrochemistry67 and explanation of associated terms. 

The search for mediators or electron shuttlers68, soluble and electrochemically active 

redox couples, arose from the behaviour of some redox systems that undergo very 

slow heterogeneous electron transfer at electrodes, occasioned by adsorption on the 

electrode surface. This often led to irreversible electrochemical behavior. Some 

reducing agents used to aid reduction also showed irreversible behavior. An ideal 

mediator should be stable in both oxidation states of the oxidized and reduced forms 

and its formal potential should be in close proximity with that of the redox system 

under study.68,69 

Reductants such as Na2S2O4 and glucose used on dyes as it applies to 

anthraquinones could not be regenerated as their oxidized forms could not be 

reversed to the reduced state, resulting in high costs of the dyeing process. To be 

used efficiently as a mediator for indirect cathodic dye reduction, a redox couple 
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should possess the desirable quality of being able to undergo regeneration several 

times without decomposition.65 The reduction potential of the mediator system should 

also be far more negative than that of the dye.70,71 For this reason, potential values of 

< -950 mV vs Ag/AgCl (3 M KCl) are recommended for reduction of vat dyes.72 For 

the indirect reduction of indigo and sulfur dyes, recommended potentials of < -750 

mV and < -600 mV respectively are required for optimum dye reduction.70,72-74 

Another important consideration is adsorption on the cellulose fabric during dyeing. A 

good mediator should exhibit very low substantivity or attachment on the fabric to 

avoid the shade of dyeing. Bailey and Ritchie71 have however confirmed that 

anthaquinone-2-sulfonate was not observed to undergo decomposition over the 

entire pH range of 0-14 of its investigation. 

In this work, cyclic voltammetry (CV), a good technique to use in assessing the 

viability of a redox couple to serve as a mediator for indirect cathodic reduction was 

used to study sodium anthraquinone-2-sulfonate in aq. KCl. The data which is 

presented in Chapter 4 shows good CVs within the cathodic potential range of -0.2 V 

to -1.0 V for all the concentrations of 2 to 10 mM investigated. In terms of the 

cathodic potential criterion therefore, AQS can be said to qualify to be used as a 

mediator for indirect reduction of dyes.  

In addition, the compound is completely soluble in the aqueous supporting electrolyte 

solution of KCl; and because it has been confirmed to work well without 

decomposition in both acidic and alkaline media, it is safe to conclude that AQS can 

serve as a mediator for indirect reduction of vat dyes. 

1.4.3 Cobaltocenium hexafluorophosphate 

Also known by the IUPAC name of bis(cyclopentadienyl)cobalt(III) 

hexafluorophosphate, this compound has the condensed formula of C10H10CoF6P. Its 

structural formula is shown in scheme 1.3. 
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Scheme 1.3. Structure of cobaltocenium hexafluorophosphate. 

The redox couple can be represented in either of the ways of scheme 1.4. 

 

 

or simply as [Co(C5H5)2]
+   + e-    [Co(C5H5)2] 

Scheme 1.4. The cobaltocenium/cobaltocene redox couple showing a one-electron transfer. 

The inclusion of cobaltocenium cation|cobaltocene in the search for reference redox 

couples followed the IUPAC recommendation75 that another metallocene, the 

ferrocene|ferricenium redox couple be used as a reference redox system for non-

aqueous solvents. 

 In their investigations, Stojanovic and Bond76 studied the voltammetric behaviour of 

cobaltocenium cation (CoCp2
+) reduction in the aprotic solvents of  acetonitrile (AN) 

and dichloromethane as well as the protic solvents of ethanol and water, using a 

variety of supporting electrolytes. The conventionally sized working electrodes they 

employed are hanging mercury drop electrode (HMDE), gold (Au), platinum (Pt) and 

glassy carbon (GC); as well as their microelectrodes. The voltammetric reduction 

behaviour of CoCp2
+ was not similar in the solvents and at the electrodes of 

investigation. Whereas the peak current ratios approximated to unity at the scan rate 

of 100 mV s-1 for all the electrodes in acetonitrile, dichloromethane and ethanol, 

values far less than one were recorded for water. In all cases of their investigation, 

the potential peak separation was in excess of the 59 mV expected of a one-electron 
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reversible process at 298 K. Unlike the measurements carried out in other solvents, 

much lower concentrations of CoCp2
+ and slow scan rates of the order of 10 mV s-1 

are to be used if the CoCp2
+/CoCp2 is to be used as a reference system for water. In 

spite of some identified shortcomings, the workers recommended the use of 

CoCp2
+/CoCp2 as a redox reference system „‟under certain specified conditions‟‟. 

Other researchers77-80 have studied the voltammetric reduction of CoCp2
+ in ionic 

liquids, salts that exist in the liquid phase at and around 298 K. Because the room 

temperature of most laboratory working environments is about 298 K, these 

compounds are popularly referred to as room temperature ionic liquids (RTILs). 

Rogers and co-workers77 are particularly interested in RTILs because of their very 

low volatility which makes their working environment relatively safe due to absence of 

organic vapours, and of their high conductivity which does not necessitate the use of 

supporting electrolytes, among others. Their main focus in the study of the 

CoCp2
+/CoCp2 is on diffusion coefficients and viscosity variations in RTILs in line with 

Stokes –Einstein equation (1.17) in which the diffusion coefficient D varies inversely 

as the viscosity . 

  
6

Tk
D B                                                                 (1.17) 

All these researchers recommended CoCp2
+/CoCp2 as a redox reference system 

based on the results of their investigations. 

In this work, cyclic voltammetry was used to study the CoCp2
+/CoCp2 couple in 

AN/TBAPF6 and the best voltammograms were obtained at scan rate of 10 mV s-1 at 

both Bi and Pt electrodes, as beyond this it became impossible to locate the cathodic 

and anodic peaks as the peaks disappeared. The peak current ratio was found to be 

far less than unity just as the potential peak separation was about 130 mV. 

Interestingly, TBAPF6 which was used as supporting electrolyte here did not feature 

in any of the research works cited, for a favourable comparison to be made. From 

these findings therefore, the CoCp2
+/CoCp2 redox couple falls short of being 

recommended as a reference system at Bi based on the conditions for a one-electron 

transfer process. In exceptional cases where there is no other reference electrode, 

the CoCp2
+/CoCp2 redox couple could be used as reference system at slow scan rate 

of 10 mV s-1 for electron transfer at bismuth. 
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1.4.4 Hexaammine cobalt(III) chloride 

Hexaammine cobalt(III) chloride whose structural formula is presented in scheme 1.5 

is an inorganic complex that contains six monodentate ammonia ligands attached to 

the central cobalt(III) ion with a configuration of [Ar]4so3d6. 

 

Scheme 1.5. Structure of hexaammine cobalt(III) chloride. 

From the spectrochemical series, ammonia (NH3) is a strong field ligand and their 

approach forces the unpaired electrons in the Co3+ together, resulting in a 

diamagnetic, low spin inner octahedral complex of d2sp3 hybridization. The 

interaction of the central metal ion with the ligands is illustrated in scheme 1.6. 

 

Scheme1.6. Structure of bonding in hexaammine cobalt(III) complex       

Furthermore, the central metal cation is said to obey the 18–electron rule81 which 

postulates that the valence shell of the metal consists of nine valence orbitals (1-s,  

3-p and 5-d orbitals) which all together can accommodate 18 electrons as either 
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bonding or antibonding pairs. It is these 9 atomic orbitals that combine with ligands to 

form 9 molecular orbitals. By obeying the 18- electron rule, [Co(NH3)6]
3+ is considered 

as an „exchange inert‟ metal complex more so that the strong field due to NH3 results 

in the   d-orbital splitting whereby all the six (6) electrons occupy the three t2g subset 

which are of lower energy for octahedral complexes. When the [Co(NH3)6]
3+ complex 

is to gain an electron, the electron enters in the higher energy eg which requires extra 

energy hence the relative inertness of the complex. The d-orbital splitting in the 

complex is illustrated in scheme 1.7. 

 

Scheme 1.7.  d-orbital splitting in hexaammine cobalt(III). 

The electron transfer process is therefore often irreversible, even though it is a simple 

outer sphere reaction as indicated in scheme 1.8. 

 

Scheme 1.8. Electron transfer in hexaammine cobalt (III). 

The electrochemical behaviour of hexaammine cobalt (III) has been investigated both 

at gold82-84 and bismuth11,30 electrodes in aqueous HClO4 solutions and in all these, 

the irreversible nature of electron transfer in the complex cation has been confirmed. 

Jager et al30 however went further to study the electroreduction kinetics of  the 

complex at Bi(001), Bi(111) and Bi(011) crystal planes using cyclic voltammetry and 

rotating disc electrode techniques. However, the values of corrected standard rate 

constants, ko
corr clearly varied with concentration which is not expected. This 

suggests that adsorption or other complications were present in the system. Apart 

from the evidence in the table of results, the authors also admit that „‟for more 

concentrated [Co(NH3)6]
3+ solutions of the order of  1 x 10-3 M, the value of ko

corr for 

the Bi(hkl) is somewhat lower and the weak adsorption of the [Co(NH3)6]
3+ seems to 

be possible‟‟. The value of experimental charge transfer coefficient αexp for the most 

active Bi(001) plane was found to be less than 0.5 and they admit this to be „‟a 

noticeable deviation of this interfacial process from classical outer-sphere charge 

transfer model‟‟. 
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Two years later, Hark and Lust11 which had been part of the team that worked on the 

electroreduction of [Co(NH3)6]
3+ at polished bismuth planes published another report 

but on Bi(hkl) electrodes in LiClO4 acidified with 1 x 10-3 M HClO4. The techniques of 

cyclic voltammetry and rotating disc electrodes were used. The report on the value of 

ko
corr at the concentration of [Co(NH3)6]

3+ around 1 x 10-3 M and at lower values, as 

well as its adsorption, is not different from the earlier one just as the irreversible 

electroreduction of the complex cation was confirmed. There is however an 

improvement in this data in the sense that the value of transfer coefficient αexp was 

reported to be „‟slightly higher‟‟ than 0.5, even as it depends on the crystallographic 

structure of the Bi plane. 

In this work, the eletroactivity of hexaammine cobalt(III) was investigated by CV at 

both bismuth and platinum electrodes but there were however great signs of 

adsorption at the bismuth electrode surface. These experimental findings are 

presented in Chapter 4. 

1.4.5 Hexaammine ruthenium(III) chloride 

 

Scheme 1.9. The structure of ruthenium hexaamine (hexaamine ruthenium (III) chloride). 

Hexaammine ruthenium(III) chloride whose structural formula is presented in scheme 

1.9 is an inorganic complex that contains six monodentate ammonia ligands attached 

to the central ruthenium(III) ion with a configuration of [Kr]5s04d5. In the same group 

as Fe, Ru(III) shares a preference for octahedral coordination geometry. In contrast 

to Co, the t2g orbitals are fully occupied in the Ru(II) or Fe(II) oxidation state and eg 

are empty (see scheme 1.7). The ligand exchange kinetics, as indicated by the rates 

of water ligand exchange are much slower in Ru: 10-2 s-1 for Ru(II) versus 106 s-1 for 

Fe(II); this is a typical result for second row transition elements and can be explained 

on the basis of the crystal field stablisation energy.85  
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The importance of the Ru(III) electronic structure and ligand exchange kinetics lies in 

the fact that Ru(NH3)6
3+ and Ru(NH3)6

2+ are both fairly stable species in aqueous 

media at neutral pH and the reduction involves addition of an electron to complete 

the t2g orbitals rather than to the higher energy eg orbitals. The aqueous Ru(NH3)6
3+/2+ 

couple is therefore widely used as a simple one-electron outer sphere test couple in 

electrochemistry.86,87  This behaviour was observed also at bismuth electrodes and in 

chapter 5 its voltammetry and electrode kinetics are investigated in detail. 

1.5  Silver Nanoparticles: detection of Ag(I) release by electroanalysis. 

A substance is considered to be „‟nano‟‟ if it has one dimension in the range 1 – 100 

nm. This size range is significant because it accounts for the many changes in the 

chemical and physical properties of the substance. Silver nanoparticles (AgNPs) may 

therefore be defined as nanoparticles of silver that are between 1 nm and 100 nm in 

diameter.  They are typically prepared by the reduction of silver salts. 

There has been a growing interest in the study of silver nanoparticles because of 

their very wide applications in almost all spheres of life. Silver nanoparticles (AgNPs) 

are applied in a variety of products such as socks88,89, sports wears and wound 

dressings90-93 to serve as antibacterials and to inhibit unwanted odours. Silver 

nanoparticles are also incorporated in such consumer products as toothpastes and 

washing machines and refrigerators.94,95 They are also adsorbed on the cellulose 

fibres of filter paper to work as antibacterial water filter in water and waste water 

treatment.96-98 Their antimicrobial effects have been demonstrated to work against S. 

aureus at a minimum inhibitory concentration (MIC) range of 0.2 nM to 3.3 nM while 

MIC of AgNPs against E. coli was estimated between 3.3 nM to 6.6 nM.99 Suchomel 

et al100 have been able to compare the efficacy of AgNPs and Ag(I) ion against 

certain bacteria and fungi. For most cases of bacteria that were tested including 

staphylococcus epidermidis (+) and staphylococcus aureus (+), AgNPs were more 

effective than Ag(I) ions. Silver ions were however observed to be more effective 

against the fungi of candida albicans I and candida tropicalis than silver 

nanoparticles. 

Studies have also been conducted on the toxicity of AgNPs against a variety of 

aquatic organisms including fish.101-109 However in all these, the controversy of 

whether the toxic effect is mainly due to AgNPs or to Ag+ ions has not been resolved. 
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A comparison has however been made102 with the assertion that Ag+ exhibited higher 

toxicity than AgNPs by the inhibition of photosynthesis in Euglena gracilis. 

Nonetheless, this assertion is questionable as the alga was exposed to unequal 

concentrations (400 nM Ag+ and 40 µM AgNPs) of the reacting species.  

Toxicity effects of AgNPs to human health110,111 have also been investigated in which 

DNA damage has been prominently featured. DNA damage is characterized by an 

alteration in the chemical structure of DNA such as a break in its strand or helix.  

Damage could also be due to a missing base in the backbone of the DNA.112-115  

The various products of sports wears, socks, washing machines, cosmetics etc serve 

as entry routes of AgNPs into humans by absorption into the skin through sweat. As 

these products are washed or get into water bodies through disposal, the silver 

nanoparticles leach out, dispersing in water where they may release Ag(I) ions.116 

In this work, attempts have been made to estimate the amount of Ag(I) ions released 

into water bodies based on their sources of discharge. Details of the findings which 

are presented in Chapter 6 indicate that the final concentration of Ag+ in simulated 

aquatic systems is fairly constant, irrespective of the product from which the AgNPs 

have been released. 
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Chapter 2. Experimental 

2.1   Analyses at Bismuth Electrodes 

Bismuth powder (>99.999%) of particle size 150 μm was obtained from Goodfellow 

Cambridge Limited, England. Sodium nitrate (NaNO3) and sodium bromide (NaBr) 

were purchased from BDH Limited Poole, England while sodium chloride (NaCl) was 

obtained from Alfa Aesar, Lancaster, UK. 

Acetonitrile, CH3CN (AN) and lithium perchlorate, LiClO4 used in this research are 

products of Sigma Aldrich, Gillingham, UK.  AnaLAR grade ruthenium hexaammine 

trichloride (Ru(NH3)6Cl3), product of Strem Chemicals, Newburyport, USA was 

purchased from Sigma Aldrich, UK. Similarly, potassium chloride, KCl (≥99.5% purity) 

used as supporting electrolyte for this complex was obtained from Sigma Aldrich. 

Electrochemical grade tetrabutyl ammonium hexafluorophosphate, TBAPF6 (≥99.0% 

purity) also used as a solution in AN for an electrolyte as well as the redox couple, 

cobaltocenium hexafluorophosphate (98% purity), were purchased from Sigma 

Aldrich, UK and used as received.  

Bismuth electrodes were used as working electrodes (WE) in most of the 

electrochemical measurements carried out in chapters 3 to 5 of this work. Platinum 

(Pt) was also used as WE when it was desired to compare output of results at such a 

noble metal electrode with that of bismuth, in which case, gold disc electrode of outer 

diameter (OD) 6 mm and internal diameter (ID) 3 mm was used as the counter 

electrode (CE). Platinum disc electrodes, also of OD 6 mm and ID 3 mm and 

platinum wire were however mainly used as counter electrodes. The surface area of 

the 3 mm gold and platinum electrodes was 0.071 cm2.  An Ag/AgCl (1 M KCl) 

electrode (IJ Cambria, UK) served as the standard reference for aqueous 

electrolytes. In cases where the presence of excess chloride in the electrolyte was 

undesirable (Chapter 6), a Hg/Hg2SO4 (sat K2SO4) reference (IJ Cambria, UK) 

electrode was employed. 

In an experiment to trace the sources of peaks observed in the capacitance-potential 

curves at bismuth, high purity (99.99%) Ag wire of diameter 0.5 mm, purchased from 

Goodfellow Limited, Cambridge, England was used as reference. The non-aqueous 

Ag/AgNO3 (0.01 M) reference (IJ Cambria, UK) was accordingly used for analysis in 



30 

 

the AN/LiClO4 and TBAPF6/ electrolyte mixtures. The sources of the peaks were 

further confirmed by X-ray photoelectron spectroscopy (XPS) and this was done by 

NEXUS, Newcastle University. 

2.2   Preparation of Reagents  

Capacitance measurements were conducted separately in pure aq. NaNO3 solutions 

and in NaCl as supporting electrolyte. In each case, 100 mM concentration of the salt 

(molar mass 84.99 g mol-1) was prepared by dissolving 2.1248 g in 250 mL of 

solution. Nanopure water was used as electrolyte in one case while 0.1 M NaCl was 

used as supporting electrolyte in the other. The lower concentrations of 50 mM, 30 

mM and 10 mM were obtained by dilution. 

Similarly, 100 mM NaCl was prepared by dissolving 5.844 g of the salt (molar mass 

58.44 g) in enough of nanopure water to give 1000 mL of solution. Lower 

concentrations of 50 mM, 30 mM and 10 mM were obtained by dilution to 250 mL 

volumes.         

A similar approach was adopted for the preparation of NaBr electrolyte solutions. 

2.5725 g of the salt whose molar mass is 102.9 g mol-1 was dissolved in enough of 

nanopure water in a 250 mL volumetric flask to give a 100 mM solution. Lower 

concentrations of 50 mM, 30 mm and 10 mM were obtained by serial dilution in flasks 

of the same capacity. 

For lithium perchlorate LiClO4, 2.6597 g of the salt of molar mass 106.39 g mol-1 was 

dissolved in enough of acetonitrile CH3CN (AN), to give a 100 mM concentration in 

250 mL of solution. Lower concentrations of 50 mM, 30 mM and 10 mM were equally 

obtained by dilution using AN as supporting electrolyte. 

2.2.1 Ruthenium(III) hexaammine  

This compound has a molar mass of 309.61 g mol-1 so 0.3096 g of the complex was 

measured and dissolved in enough quantity of 0.1 M KCl to give a 10 mM stock 

solution of the redox couple of 100 mL volume. The lower concentrations of 8 mM,    

5 mM and 2 mM were obtained by dilution. In the experiment to determine the effect 

of ionic strength on electron transfer, 2 mM concentration was prepared in different 

KCl concentrations of 0.1 M, 0.5 M, 0.1 M, 0.05 M, 0.02 M and 0.01 M. 
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2.2.2 Methyl viologen dichloride 

Methyl viologen dichloride, also known as gramoxone or paraquat dichloride 

C12H14Cl2N2, with IUPAC name of 1, 1‟-dimethyl-4, 4‟-bipyridinium dichloride, and of 

98% purity was purchased from Sigma Aldrich, UK. It has molar mass of 257.16 g 

mol-1 and so to prepare 100 mL of a 10 mM solution, 0.2572 g of the compound was 

measured and dissolved in enough of 0.1 M KCl. As usual, the lower concentrations 

of 8 mM, 5 mM and 2 mM were obtained by dilution of the 10 mM stock solution. 

Experimental surveys revealed the H2O/CH3CN mixture as well as aq. NaCl to be 

good supporting electrolytes for this redox couple but KCl was given preference for 

purpose of comparison of kinetic data with those of other redox couples studied in 

the same electrolyte. 

2.2.3 Sodium anthraquinone-2-sulfonate monohydrate 

This sodium salt of anthraquinone-2-sulfonic acid C14H7NaO5.H2O, of 97% purity was 

purchased from Sigma Aldrich, UK. It has a molar mass of 328.27 g mol-1 hence to 

prepare 100 mL of its 10 mM concentration, 0.3283 g was weighed and dissolved in 

enough of 0.1 M KCl.  

2.2.4 Methylene blue hydrate 

AnaLAR grade methylene blue hydrate (97% purity), also called methylthioninium 

chloride hydrate C16H18ClN3S.xH2O was purchased from Sigma Aldrich, UK. It has 

molar mass of 319.85 g (anhydrous basis). For a 5 mM solution, 0.0799 g was 

weighed and dissolved in enough quantity of 0.1 M H2SO4 as supporting electrolyte. 

10 mL of the 1 M H2SO4 present on the bench was taken and added slowly to 50 mL 

of nanopure water in a 100 mL volumetric flask. After thorough mixing, the flask was 

made up to the mark with nanopure water. 

2.2.5 Toluidine blue 

AnaLAR grade toluidine blue dye (C15H16ClN3S.O.5ZnCl2 ) of Sigma Aldrich, UK has 

molar mass of 373.97 g mol-1. To prepare a 5 mM solution, 0.0935 g of the powder 

was measured and dissolved in enough quantity of ethanol to give a 50 mL solution. 
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2.2.6 Hexaammine cobalt(III)chloride  

This amine complex with formula Co(NH3)6Cl3 has a molar mass of 267.84 g mol-1.                            

A 5 mM solution was prepared by dissolving 0.0669 g of the substance in 50 mL of     

0.1 M HClO4 as electrolyte. The complex powder (of 99% purity) and density of     

1.71 g mL-1 at 25 oC was purchased from Sigma Aldrich, UK. 

The assay of perchloric acid indicates a specific gravity of 1.664, implying a density 

of 1.664 g cm-3, and molar mass of 100.46 g mol-1. The concentration of the pure 

product was given as 70% w/w which means the stock acid is 11.595 M. To prepare 

100 mL of a 0.1 M solution, 0.862 mL was taken and added to 25 mL of nanopure 

water and mixed thoroughly. The volume was then adjusted to the 100 mL mark by 

addition of more nanopure water. 

2.2.7 Cobaltocenium hexafluorophosphate 

Bis(cyclopentadienyl)cobalt(III) hexafluorophosphate  C10H10CoF6P, has a molar 

mass of 334.04 g mol-1. The supporting electrolyte for this redox couple is the 

AN/TBAPF6 mixture. 3.8743 g of TBAPF6 (molar mass of 387.43 g mol-1) was 

dissolved in 100 mL of AN to give a 0.1 M solution.  

Enough of this stock solution was used to dissolve 0.0835 g of cobaltocenium 

hexafluorophosphate to give 50 mL of a 5 mM solution. 

2.3   Preparation of Silver Nanoparticles 

ACS  grade silver nitrate, AgNO3 (≥99.0% purity) and AnaLAR grade  sodium 

borohydride (NaBH4) were both  purchased from Sigma Aldrich, UK while AnaLaR  

grade tri-sodium citrate dihydrate, Na3C6H5O7.2H2O (99.0%) was purchased from 

BDH Chemicals Limited Poole, England. 

The various concentrations of AgNO3 used in stripping analyses for calibration were 

prepared in 0.1 M NaNO3 as supporting electrolyte. 1 mM AgNO3 was prepared as 

stock solution by dissolving 0.0085 g of the salt in enough of 0.1 M NaNO3 in a 50 mL 

volumetric flask. This stock solution was diluted to give the lower micromolar (μM) 

and nanomolar (nM) concentrations as was desired. 
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Silver nanoparticles (AgNPs) studied in this research were synthesised by two main 

methods. In the Creighton method of borohydride reduction 117, 30 mL of 2 mM 

NaBH4, (molar mass 37.83 g) was prepared in a 50 mL conical flask by dissolving 

0.0023 g of the salt in enough of nanopure water to give the 30 mL solution. To this 

was added a magnetic stirrer after which the flask was placed in an ice bath that had 

already been placed on a magnetic stir plate. This reducing agent was stirred as it 

was being cooled in ice for about 20 minutes. 2 mL of 1 mM AgNO3 (molar mass 

169.87 g mol-1), prepared by weighing 0.0034 g/20 mL of solution was then dripped 

into the stirring NaBH4 at approximately one drop per second. Stirring was stopped 

as soon as all the AgNO3 was added. Upon complete addition of the 2 mL of silver 

nitrate, a yellow colouration was obtained, indicating the formation of silver 

nanoparticles (AgNPs). The equation for the borohydride reduction of silver nitrate is  

2AgNO3 + 2NaBH4 → 2Ag + H2 + B2H6 + 2NaNO3                                (2.1) 

However, it should be noted that the oxidation of borohydride is complex and other 

reduction products of boron (oxyhydrides, borates) are likely. In order to ensure the 

efficiency of the reduction process, the initial concentrations of sodium borohydride 

and silver nitrate were maintained in the ratio of 2:1 for the AgNPs to remain stable 

as the investigators117 confirmed a decrease in stability with alteration of the 

concentration ratio. The amount of sodium borohydride was also in a large excess of 

AgNO3 so that the nitrate was completely reduced as soon as it was added to the 

borohydride. AgNPs synthesised by borohydride reduction were characterised for 

stability by UV-Vis spectrophotometry. In spite of the precautionary measures put in 

place, the AgNPs soon lost their stability and began to aggregate shortly after 

commencement of dialysis. 

In another synthetic technique, the citrate reduction method of Lee-Meisel118 was 

adopted with modification by scaling it down by a factor of 5. Here, 18 mg or 0.018 g 

of AgNO3 was dissolved in 100 mL of nanopure water to give a 1.06 mM solution and 

brought to the boil. 2 mL of 1% tri-sodium citrate dihydrate, prepared by dissolving 

0.1 g of the salt in 10 mL of nanopure water was added to the boiling mixture. 

Greenish-yellow AgNPs were formed (photo in figure 2.1A) after about seven minutes 

of addition of the sodium citrate. The equation for the citrate reduction of silver nitrate 

is  
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  2Ag+ + C6H5O7
3- → 2Ag + C5H4O5

2- + H+ + CO2  (2.2) 

In the equation, C5H4O5
2- is the conjugate base of acetone dicarboxylic acid.119 

AgNPs prepared by the citrate reduction of silver nitrate were relatively stable as they 

showed neither aggregation nor colour change on standing after about three months. 

Silver nanoparticles were further incorporated with Cl  and 
2

4SO  in varying 

concentrations to see the effect of the ions and their concentrations on the release of 

Ag(I) ions from the nanoparticles. Pictures of freshly prepared AgNPs and of the 

apparatus for dialysis are shown in figure 2.1 and figure 2.2 respectively. 

 

Figure 2.1 Freshly prepared 10 mM AgNPs of (A) pure water and (B) NaCl(aq) contained in 250 mL 
conical flasks. The NaCl(aq)-AgNPs turned turbid after addition of NaCl crystals. The NPs were 

prepared by the citrate reduction method. 

In NaCl(aq)-AgNPs, three different concentrations of 10 mM, 30 mM and 50 mM 

were used. For the 10 mM NaCl(aq)-AgNPs, 0.0584 g of sodium chloride (molecular 

mass 58.44 g mol-1) was measured and infused into 100 mL of the AgNPs while 

0.5844 g/L of the solution was used as dialysate. In case of the 30 mM concentration, 

0.1753 g of the salt was infused into 100 mL of AgNPs while 1.7532 g/L of solution 

served as the dialysate. In as similar vein, 0.2922 g of NaCl was weighed and 

incorporated into 100 mL of AgNPs to give the 50 mM NaCl(aq)-AgNPs and       

2.922 g/L was prepared and used as the dialysate. 
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Figure 2.2 Apparatus showing dialysis of 10 mM NaCl(aq)-AgNPs contained in a 400 mL beaker. 

Only the 10 mM concentration of sodium sulphate, Na2SO4 was used to monitor the 

effect of sulphate ion on the release of Ag(I) ions from silver nanoparticles. This is 

because stripping peaks for Ag(I) ions could not be obtained even at this low 

concentration beyond the 2nd fraction of dialysate in spite of increased deposition 

time to 300 s.  

 0.142 g of the anhydrous salt, an ACS reagent of ≥99% purity and molar mass 

142.04 g mol-1, purchased from Sigma Aldrich UK, was weighed and incorporated 

into 100 mL of silver nanoparticles. The dialysate was prepared by dissolving    

1.4204 g of the salt in enough of nanopure water to give a one-litre solution. 

2.4.  Characterization of Silver Nanoparticles. 

Stability tests on silver nanoparticles (AgNPs) synthesised by both the Creighton and 

Turkevich (or citrate reduction) methods were done with the aid of Cary 100 Bio    

UV-Vis spectrophotometer of Agilent Technologies, USA while their particle sizes 

were estimated by dynamic light scattering (DLS) and atomic force microscopy 

(AFM).  

It is worthwhile to note that XPS was not used to characterize silver nanoparticles 

because by virtue of their preparation under atmospheric conditions, the presence of 

oxygen is obvious. In addition, the main aim of the research was to observe the 
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properties of AgNPs with respect to release of Ag(I) in solution, and not in the dry 

state. 

In the stripping voltammetric analyses of the silver nanoparticles (AgNPs) discussed 

in detail in Chapter 6, a glassy carbon microelectrode of outer diameter (OD) 3.0 mm 

and internal diameter (ID) 1.0 mm was used as the WE while platinum wire served as 

the CE and mercurous sulphate in saturated potassium sulphate worked as the 

reference electrode (RE) for pure water and sulphate AgNPs dialysates. The 

aqueous Ag/AgCl reference electrode was used in the stripping analyses of the 

NaCl(aq)-AgNPs dialysates. 

Dialysis cellulose membranes of average width diameter 35 mm (1.4 in), used in the 

purification of prepared metal nanoparticles were purchased from Sigma Aldrich, UK. 

The membranes which have an inflated diameter of approximately 21 mm (0.83 in) 

and length of 30 cm (12 in) have a pore size of 12,000 Da MWCO (molecular weight 

cut-off). This means that the membranes will retain particles with M.W>12,000 Da. 

Water used for preparation of electrolyte solutions, rinsing of electrodes and 

glassware as well as soaking of dialysis membranes  was collected directly from the 

purifying source, NANOpure RO operating at a resistivity of 18.2 MΩ.cm, model DH 

931 of Barnstead International, Dubuque, Iowa, USA. 

All the reagents were used as purchased without further treatments. 

2.5 Construction of Bismuth Electrodes. 

A soda-lime glass capillary of length 13 cm, 6 mm outer diameter and 1.92 mm bore 

(internal diameter) was sealed at one end in a blue flame. The cooled capillary was 

then filled with pure bismuth powder to about 3 cm of the glass length through the 

open end by means of an injection needle. Copper wire of diameter 1.13 mm was 

inserted into the soda-lime glass and made to penetrate 1 cm into the bismuth 

powder. The powder was then melted under vacuum by heating the sealed end of 

the capillary tube as the open end was connected to a vacuum pump. The aim of 

melting under vacuum was to avoid oxidation of the bismuth, after which the glass 

was cooled to room temperature. 
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The sealed end of the glass capillary was finally ground to provide a smooth surface, 

extreme care being taken to ensure that the copper wire was not exposed at the 

surface. The open end was glued with epoxy resin to prevent the copper wire from 

becoming loose due to mechanical stress when the electrode is connected to an 

external circuit. From the dimensions of the soda-lime glass, the surface area of the 

bismuth electrode was calculated to be 0.029 cm2. The surface areas of the working 

electrodes of bismuth and platinum have been used in computing the capacitance 

values. The set-up of the bismuth electrode is shown in the figure 2.3 below. 

 

Figure 2.3 Sketch diagram of a bismuth bulk electrode. 

2.6  Double Layer Capacitance at Bismuth Electrodes. 

Capacitance data were obtained at the Bi|solution interface for the aqueous 

electrolyte solutions of NaBr, NaCl and NaNO3 as well as the non-aqueous 

electrolyte solution AN/LiClO4 (AN denotes acetonitrile). Impedance (potential scan) 

measurements were made at various dc potential ranges in the concentration range 

of 10 mM to 100 mM but at fixed frequencies of 500 Hz, 1000 Hz and 2000 Hz for 

each concentration of analyte. The measurements were made using an Ivium 

compactstat model e 1030 (±10 V/±30 mA) (Ivium Technologies, The Netherlands) 

connected to a Dell Precision workstation. 

All the experiments were performed in a standard three-electrode cell containing         

18-20 mL of sample solution. The Bi electrode served as the WE and except 
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otherwise stated, the Pt and Ag/AgCl electrodes were used as counter and reference 

electrodes respectively. 

The electrochemical cell was purged with a stream of nitrogen gas for about 8-10 

minutes prior to every experimental run to remove traces of oxygen that may 

otherwise interfere with the electrode reactions.42-44 After each analysis, the working 

electrode was polished with a slurry of 0.05 μm alumina powder of Banner Scientific 

Ltd., Coventry, UK spread over an 8 inch Buehler microcloth surface and thereafter, 

rinsed with nanopure water.  

The structure of the three-electrode cell used for the experiments is shown in figure 

2.4. 

 

Figure 2.4 Structure of the three electrode cell. It has an external diameter of 3 cm with a height of 8 
cm and takes 18-20 mL of analyte solution. 

2.7   Standard Rate Constants. 

Standard rate constants for electron transfers in ruthenium hexaammine trichloride 

and cobaltocenium hexafluorophosphate at bismuth were estimated using 

electrochemical impedance spectroscopy (EIS) measurements. Even though the 

waveshapes of cyclic voltammograms of these complexes obtained at bismuth 

closely resembled those obtained at Pt, a noble metal electrode, the electrode 

kinetics were sufficiently slow to be determined at Bi. The rates were too fast to 

measure by cyclic voltammetry (CV) because the reactions were affected by 

uncompensated resistance, but impedance spectroscopy over the frequency range of 

101 - 105 Hz was sufficient. Voltammetric data that gave rise to this decision will be 

fully discussed in Chapters 4 and 5. 
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Some alternating current (AC) voltammetric measurements were conducted on these 

redox couples and the reversible potentials of the voltammograms therefrom formed 

the constant potentials for the impedance measurements; results of which have been 

presented and fully discussed in Chapters 4 and 5. 

2.8   Analytical and Characterisation Techniques. 

2.8.1  Cyclic voltammetry 

Cyclic voltammetry (CV) is a technique in which the potential of the working electrode 

is linearly scanned between two values in a triangular waveform.120 The voltage or 

potential is swept forth and back between two values, say from E1 where there is no 

reaction to E2 where reduction or oxidation of the analyte occurs, at a fixed rate. Due 

to its relative simplicity and richness in information content, cyclic voltammetry is 

widely used as to elucidate the mechanisms of reactions at the electrode|solution 

interface.  

The potential –time profile of cyclic voltammetry is shown in figure 2.5. 

   

                             Figure 2.5. Potential-time profile of a cyclic voltammogram. 

During the potential sweep, current that is generated because of the applied potential 

is recorded by the potentiostat. The plot of this current (I) versus potential (E) is 

called a cyclic voltammogram, CV. Such a current –potential (I –E) curve is shown in 

figure 2.6. 



40 

 

 

Figure 2.6. A typical cyclic voltammogram showing peak currents (Ipc, Ipa) and peak potentials (Epc, 
Epa) for the reduction of species present as the oxidized form in bulk solution and under conditions 
where the voltammetry is reversible. 

A typical cyclic voltammetric experiment is carried out in a three – electrode cell 

(figure 2.4) containing the working, reference and counter electrodes as well as the 

analyte solution and a supporting electrolyte121,122. The supporting electrolyte which 

should neither react with the analyte nor the electrode serves three main 

functions.121-124 Firstly, to increase the conductivity (or decrease the resistance) of the 

solution, second to maintain a high and constant ionic strength and thirdly to 

eliminate electromigration effects. Massive movement of charged reactants and 

products could also lead to complex and to adsorption on the electrode surface. 

A cyclic voltammogram has many parameters which could be used to characterize 

the reversibility or otherwise of an electrochemical process. These include the 

cathodic (Epc) and anodic (Epa) peak potentials as well as the cathodic (ipc) and 

anodic (ipa) peak currents which are in direct proportion to the square root of scan 

rate. The positions of peak potential do not alter with change in scan rate for a 

reversible process. 
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At 25oC, the peak current for a redox process is given by the Randles – Sevcik 

equation as 

  ip = (2.69 X 105)n3/2ACD 1/2v ½     (2.3) 

 where n = number of electrons transferred 

  A = area of electrode in cm2 

  C = concentration of analyte in mol cm-3 

  ѵ = scan rate in Vs-1 

  D = diffusion coefficient in cm2s-1 

Other tests for reversibility include3 a peak current ratio 
pc

pa

i

i
of unity while the potential 

peak separation is defined by  

ΔEp = |Epa - Epc| = 
n

059.0
V    (2.4) 

For a one–electron transfer process, the value of equation 2.4 simplifies to 59 mV         

at 298 K. Furthermore, the formal potential of a redox couple is expected to lie half-

way between the cathodic and anodic peak potentials and is given by  

2

pcpao
EE

E


      (2.5) 

2.8.2  Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) is an alternating current (AC) 

technique in which the impedance of an electrochemical system is measured as a 

function of frequency54. When a sinusoidal potential is applied to an electrochemical 

cell, a current is caused to flow through it, perhaps resulting in the formation of new 

chemical species owing to the faradaic reaction at the electrode.123  Because the 

potential is sinusoidal, it is time dependent and its value is given by 

   Et = Eo sin (ωt)    (2.6) 
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The current flowing as a result of the applied potential will also be sinusoidal and is 

defined by 

   It = Io sin (ωt + ϕ)    (2.7) 

where ω = 2 f expresses the relationship between angular frequency ω in radians s-1 

and linear frequency f, in Hertz while  ϕ is the phase angle and represents the 

observation that the current response is not always in phase with the applied 

potential. 

From equations (2.6) and (2.7) above, 

   Z = 
t

t

I

E
 = 

 



tI

tE

o

o

sin

sin
   (2.8) 

 This can be simplified to read 

   Z = 
 



t

tZ o

sin

sin
    (2.9) 

Equation (2.7) gives the relationship between the applied potential and the current 

flow, known as impedance, which is analogous to the current–potential relationship of 

a d.c circuit defined by Ohm‟s law E = IR.125,126 It also serves to explain that the 

impedance has a magnitude Zo whose components of potential and current are 

separated by a phase angle ϕ. For a sinusoidal potential applied across a pure 

resistor R, the magnitude of the impedance will equal the resistance (Z =R) and the 

phase angle ϕ =0 at all frequencies. 

Impedance is therefore the proportionality factor between applied potential and 

current which expresses the ability of a circuit to resist the flow of current, but unlike 

resistance, it is applicable to more systems than those that obey the simple Ohms‟ 

law and is generally frequency dependent. 

In the absence of a faradaic process, the electrode|solution interface in an 

electrochemical cell  behaves like a capacitor, a device that stores charge according 

to the potential applied to it i.e.  

    q =KE                  (2.10a) 
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 where q is the stored charge in Coulombs, K the integral capacitance in Farads and 

E is the applied voltage or potential in volts (with respect to the potential of zero 

charge). 

In general, the capacitance  of an electrode is potential-dependent and therefore 

another, more general definition can be given in terms of small changes in charge 

and potential (dq, dE) which describes the differential capacitance C (also in Farads). 

Unless otherwise stated, capacitance in this thesis will refer to differential 

capacitance, C. 

     dq = CdE                              (2.10b) 

The flow of current is the change of charge with time, 

     I = 
dt

dq
    (2.11) 

Hence from equation (2.10b) by differentiation, 

     I = C
dt

dE
     (2.12) 

If we substitute the value of potential from equation 2.6 here and differentiate, we 

obtain the relation     

                  I = ωCE cos ωt = 2 fCE cos (2 ft)    (2.13)  

On application of Euler‟s relationship, exp (jϕ) = cosϕ +j sinϕ and by combining sines 

and cosines together and with j =      , equation (2.13) becomes 

   I = 2 fCE.j     (2.14) 

By analogy with Ohm‟s law, the ratio of potential to current yields 

  Z = 
I

E
 =  

jfC.2

1


   = 

C

j




    (2.15) 

This means that the impedance of a circuit in which the resistor and capacitor are in 

series will contain real and imaginary parts and can be expressed as  
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C

j
RZ


                                      (2.16) 

The real part Z‟ or ReZ = R while the imaginary part Z‟‟ or ImZ = 
C

1
 

There are various ways of presenting impedance data, the two most common are (i) 

the Bode plot of magnitude Z0 and phase ϕ against frequency f and (ii) the Nyquist 

plot in which - Z‟‟ is plotted against Z‟ in the complex plane. The Nyquist plot suffers 

the disadvantage that it hides the frequency dependence of the data; however it is 

often easier to read important values directly from the plot. For example, equation 

2.16 appears as a series of points parallel to the imaginary axis which accumulate at 

high frequency on the real axis at Z‟=R. In an electrochemical impedance spectrum, 

this value is usually the uncompensated resistance.  

In this work, a Randles circuit for mixed-kinetics diffusion including a constant phase 

element (CPE), shown in figure 2.7(a) was simulated to enable measurement of 

precise values of charge transfer resistance. Figure 2.7(b) is an impedance plot 

typical of the circuit, known as a Nyquist plot in which the imaginary and real parts of 

the impedance are displayed on the complex plane. 
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Figure 2.7(a) A Ranldes circuit for mixed – kinetics diffusion. RU is for uncompensated resistance, 
CPE stands for constant phase element which represents the non-ideality of the double layer 
capacitance in solution and RCT is for charge transfer resistance. The Warburg impedance which 
enables calculation of diffusion coefficients is indicated by W. (b) A Nyquist plot showing the real part 
of impedance as Z’ while the imaginary part is denoted by -Z’’. 

It is worthwhile to note that each point on the Nyquist plot corresponds to the 

impedance at a given frequency, with high frequency data on the left and low 

frequency data on the right-hand side of the plot – the magnitude of impedance 

decreases with frequency. The Warburg impedance dominates at low frequencies. 

The Warburg impedance is given by  

     jZW 


1
2/1

                                                    (2.17a) 

The Warburg coefficient can be estimated from equation 2.17b  
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The parameters have their usual meanings of: 

 ω = radial frequency 

 DO = diffusion coefficient of oxidized species 

 DR = diffusion coefficient of reduced species 

 A = surface area of the electrode 

 n = number of electrons transferred 

2.8.3 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) also known as electron spectroscopy for 

chemical analysis (ESCA) is a surface analysis technique that can be applied to a 

wide range of materials because of its ability to provide valuable quantitative and 

chemical state information from the surface of the material under investigation.127 The 

surface of the material can be analysed into about 5 nm of its depth by this 

technique. 

XPS is essentially achieved by exciting the surface of a sample with mono-energetic    

X-rays, e.g., Al kα, causing photoelectrons to be emitted from the core orbitals of 

near-surface atoms of the sample into the vacuum.128 The Einstein relation 

developed below allows the binding energy of the photoelectrons to be determined 

from measurements of their kinetic energy. From the values of binding energy and 

intensity of the photoelectron peaks or counts per second (cps), the elemental 

identity as well as chemical state and quantity of a detected element can be 

obtained. 

The intensity of the peaks is related to the concentration of the element in the 

sampled region hence XPS also provides a quantitative analysis of the sample 

composition. 

Theoretical Framework 

The energy of a photon emitted from all types of electromagnetic radiation is defined 

by Max Plank‟s equation as    
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                                                      E = hѵ     (2.18) 

The parameter h stands for Planck‟s constant with a value of 6.62 X 10 -34 J.s. and ѵ 

represents the frequency of the radiation in Hertz (Hz). In XPS, the photon is 

absorbed by an atom in a molecule or solid which results in ionisation and emission 

of a core electron. The kinetic energy distribution of the emitted photoelectron 

particles i.e. their number as function of kinetic energy can be measured with an 

appropriate electron energy analyser to record a photoelectron spectrum. 

The process of photo-ionisation of a metallic surface say A may be seen to follow the 

process  

         A + hѵ = A+ + e-               (2.19) 

By the principle of conservation of energy 

   E (A) + hѵ = E (A+) + E (e-)               (2.20) 

Equation 2.19 can also be written as  

E (e-) = hѵ – E (A+) + E (A)                (2.21) 

The main energy of the electron in this instance is kinetic energy, K. E hence 

equation 2.21 can be re-arranged to read   

K. E. = hѵ – [E(A+) –E (A)]    (2.22) 

Equation 2.22 can be further simplified to read 

  K. E. = hѵ – B. E.      (2.23) 

The difference between the ionized and neutral atom is called the binding energy 

(B.E.) of the electron hence equation 2.23 serves to also explain why XPS spectra 

could be analysed either in terms of kinetic energy (K.E.) or binding energy (B.E.) of 

the emitted photons with respect to intensity.  

XPS is useful for elemental analysis because the major determinant of the core 

electron energies is the atomic number of the atom. Information on oxidation state 

may also be obtained, because although core electrons are not involved in bonding, 

their binding energies will be shifted to slightly larger values as the oxidation state 
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increases. This effect can be rationalised as a simple electrostatic effect based on 

the partial charge of the atom. Large reference databases of atomic binding energies 

exist129 which aid in the assignment of XPS spectra. 

Finally, XPS is also „surface sensitive‟, which means that it provides information only 

on atoms within a few nanometres (nm) of the sample surface. Although the X-rays 

typically used (Al ka = 1.486 keV) may penetrate deeply into the sample, the 

photoelectrons generated at depths greater than a few nm are scattered before they 

reach the sample surface and are therefore not usually detected. Those at the 

surface also have very high probability to escape. 

2.8.4 Dynamic light scattering 

Dynamic light scattering (DLS) also known as quasi-elastic light scattering (QELS) 

and photon correlation spectroscopy (PCS) is a technique that measures the 

changes in the intensity of light scattered from a suspension or solution due to 

random (Brownian) motion of particles therein.130 The working principle of DLS 

involves the illumination of a sample by a laser beam whence the fluctuations of the 

scattered light are detected at a known scattering angle θ by a fast photon 

detector.131 The raw data collected by the instrument (intensity fluctuations versus 

time) is processed by the software to produce a correlogram (the correlation function 

of the intensity against lag time). A model for the intensity fluctuations produced by 

diffusing particles is then fitted to the correlogram to deduce the particle size 

distribution. In brief, rapid fluctuations of the intensity correspond to rapid movement 

of the scattering particles and therefore to large values of diffusion coefficient. 

Particle size for a sphere is determined from the diffusion coefficient a combination of 

the Einstein-Smoluchowski equation and Stokes‟ equation which includes the 

viscosity of the medium as  

t

B
h

D

Tk
D

3
             (2.24) 

The symbols take their usual meanings of: 

 Dh is the hydrodynamic diameter 

 Dt is the translational diffusion coefficient 

 kB is the Boltzmann‟s constant 
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 T is the absolute temperature 

   is the dynamic viscosity of the medium 

It is important to note here that this principle assumes diffusion to be the predominant 

motion of particles in the sample and the size measured is the diameter of a sphere. 

In general the analysis of the raw data is also complicated by sample heterogeneity; 

samples containing particles of different sizes produce a mixture of rapid and slow 

fluctuations that are analysed by the software to produce distributions of particles 

size rather than a single value. 

Another important parameter to be considered in the analysis of a sample by DLS is 

the polydispersity index (PdI) which is a measure of how wide the particle sizes are 

distributed.131 It is defined by the formula 

    PdI = 

2










d


    (2.25)   

where the symbols δ and d stand for standard deviation and mean diameter 

respectively. Samples with PdI values less than 0.1 are generally said to be 

monodisperse while those with values higher than 0.7 have a very wide size 

distribution, i.e., are polydisperse.132 

Dynamic light scattering (DLS) measurements were made using a Malvern high 

performance particle sizer (HPPS) incorporated with a non-invasive back scatter 

(NIBS) technology of Malvern Instruments Limited, Worcs, UK. This technology 

allows for high sensitivity measurement of samples as dilute as 0.1 ppm in 

disposable plastic or glass cuvettes while the back-scatter optics enables 

concentrated samples of the order of 100,000 ppm and particle size up to 10,000 nm 

to be measured. 

2.8.5 Atomic force microscopy 

Atomic force microscopy (AFM) is a scanning probe microscope (SPM) technique 

that is designed to measure sample properties such as height, friction, elastic 

modulus and magnetism, with a sharp probe.133 To acquire an image, the SPM scans 

the probe over a small area of the sample, measuring several properties at a time. 
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Atomic force microscopes (AFM) work by measuring the force between a probe and 

sample. The microscope uses a cantilever which has a very sharp tip fixed at one 

end to scan over a sample surface. As the tip approaches the surface, van der Waals 

attractive forces between the surface and the tip cause the cantilever to deflect 

towards the surface.134 However, a closer approach of the cantilever whence the tip 

makes contact with the surface results in repulsive forces which cause the cantilever 

to deflect away from the surface. These deflection of the cantilever and these forces 

on the tip are governed by Hooke‟s law 

F = -k.z     (2.26) 

where  F = the force measured  

k = the cantilever spring constant  

 z = the cantilever deflection in the direction normal to the sample surface.  

The deflection is monitored by a laser beam which is focused on the back of the 

cantilever; as the cantilever bends, the position of the laser beam also changes. The 

reflections from the laser beam are focused on a 4-quadrant position-sensitive photo 

detector. The instrument software compiles the deflections and the current lateral 

position as the tip is rastered across the surface. In this way, images of the 

topography of a sample surface are recorded as the cantilever is scanned over its 

selected areas of interest and based on the nature of the tip/sample interaction, other 

properties can be mapped across the image too. 

There are three basic modes of operation of the AFM. In the contact mode, the 

probe tip which senses surface properties and causes the cantilever to deflect is in 

contact with the surface. This mode operates better for solid surfaces which are not 

susceptible to damage by the large tip/sample force. In the non-contact mode, the 

tip vibrates at a constant frequency over the surface while in the tapping mode; the 

tip is closer to the surface than obtains in the non-contact mode but vibrates at high 

amplitude. 

The contact mode of imaging is susceptible to influences of adhesion and friction. 

Because the tip makes contact with the surface of sample, this scanning mode can 

lead to sample damage hence alter the image data.134 The non-contact scanning 
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mode has the demerit of low resolution as the probe tip vibrates at a relatively far 

distance away from the sample surface. The tapping mode resolves the problems of 

the contact and non-contact modes in that the tip makes contact with the surface at 

irregular intervals and the high amplitude of vibration does not allow for influences of 

adhesive forces from a possible contaminant layer. The intermittent contact of tip with 

sample also reduces sample damage. Tapping mode is therefore now the preferred 

technique for routine AFM imaging. It is especially suited to soft samples which often 

cannot be reliably imaged in contact mode. This mode is now employed almost as 

the standard method and is used in this thesis in Chapter 6. 

Samples for Atomic force microscopy (AFM) imaging were prepared by drop casting      

2 µL of aliquot on Si wafer that had been cleaned with acid piranha solution (3:1 

solution of concentrated sulphuric acid and hydrogen peroxide), rinsed with nanopure 

water and dried in a stream of nitrogen gas. The drop was allowed to dry after which 

AFM images were obtained in the tapping mode TM with a Dimension Nanoscope V 

atomic force microscope of Veeco Inc. Metrology group Brussels, Belgium using 

NanoProbe tips model TAP300 AI-G of Budget Sensors USA. The cantilever was of 

resonant frequency 300 kHz with a force constant of 40 N/m and length of 125 µm. 

Essential parts of an atomic force microscope are shown in Figur 2.8. 

 

Figure 2.8 Image of an atomic force microscope showing a sample placed on the AFM piezoelectric 
stage. 

Source: https://physik.uni-greifswald.de/en/biophysics-and-soft-matter-prof-christiane-
helm/methods/afm-atomic-force-microscope/ Accessed on 28th June, 2017. 

https://physik.uni-greifswald.de/en/biophysics-and-soft-matter-prof-christiane-helm/methods/afm-atomic-force-microscope/
https://physik.uni-greifswald.de/en/biophysics-and-soft-matter-prof-christiane-helm/methods/afm-atomic-force-microscope/
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2.8.6 Dialysis. 

Dialysis is a process that uses semi-permeable membranes in the separation of small 

and large particles in solution.135 In this technique, the sample is contained inside a 

dialysis membrane that is surrounded by a dialysate whose volume is usually a large 

multiple of the volume of the sample. This arrangement creates a concentration 

gradient that allows particles to diffuse into and out of the dialysis membrane until 

equilibrium is established. 

The dialysis time may be decreased by stirring and to maintain a high concentration 

gradient of diffusible particles across the membrane. The dialysate is also changed 

from time to time to re-create the concentration gradient that is necessary for the 

efficiency of the dialysis process. In Chapter 6 a dialysis experiment is used to allow 

the electrochemical measurement of Ag(I) produced by the corrosion of AgNPs 

without complications from oxidation of AgNPs at the electrode or of oxidation of the 

reducing agents used to prepare the nanoparticles. 

2.8.7 Stripping voltammetry 

Stripping voltammetry is an electroanalytical method that embraces all the techniques 

that incorporate deposition or pre-concentration of analyte onto or into the working 

electrode followed by their stripping or removal.42-44,136,137 In the deposition step, 

metal ions in the analyte solution are accumulated on the surface of the electrode. 

This process can be represented by the equation 

   M+n + ne-   → M    (2.27) 

The stripping or measurement step involves the reduction or re-oxidation of the metal 

in solution as applicable to the stripping technique. The re-oxidation step could be 

indicated as 

   M → M+n  + ne-      (2.28) 

The resulting stripping peak area or charge, idt , is proportional to the amount of the 

analyte on the electrode hence the concentration present in the solution. Stripping 

analysis has found wide application because it is extremely cheap as minute 
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quantities of materials are used and it has very low detection limits42-44,136 in the order 

of 10-10 M.  

In addition, several metals in their various oxidation states can be determined at the 

same time. The instrumentation is simpler and of lower cost than ICP-MS or AAS as 

well. Anodic stripping voltammetry (ASV) is the technique employed to determine 

Ag(I) present in preparations of AgNPs in Chapter 6. 
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Chapter 3. Capacitance Measurements 

3.1 Aims 

The main objective of the research study is to establish the use of bismuth electrodes 

as a potential replacement for mercury in electroanalysis. One of the steps taken to 

achieve this was to carry out impedance measurements in selected aqueous and 

non-aqueous solvents at bismuth. The results of differential capacitance obtained 

from the measurements were compared with those obtained at platinum, a noble 

metal electrode, since neither the dropping mercury electrode (DME) nor the hanging 

mercury drop electrode (HMDE) was used in the investigation. 

3.2 Capacitance Measurements at Bismuth in Aqueous Solutions 

Electrochemical impedance spectroscopy (EIS) measurements were carried out in 

different concentrations of the reagent but at fixed frequencies to check the effects of 

these parameters on the charge storage capacity of the bismuth electrode. Potentials 

were measured against the Ag/AgCl reference electrode in solutions of concentration 

ranging from 10 mM to 100 mM at fixed frequencies of 500 Hz, 1 kHz and 2 kHz. 

As these analyte solutions are not redox couples, the absence of electron transfer 

reactions across the electrode|solution interface was assumed. Values of differential 

capacitance, plotted against potential were obtained from the relation in equation 3.1 

in which f stands for the frequency of measurement and Z‟‟ is the imaginary part of 

the electrochemical impedance. 

    ''2

1

fZ
C




      (3.1) 

For capacitive systems, the imaginary part of impedance, Z‟‟is less than zero 

because the phase of the voltage lags the phase of the ac current by 90 degrees. 

Therefore, the value of capacitance described by equation 3.1 is real and positive. 

The real part of the impedance Z‟ contains information about factors such as solution 

resistance and charge transfer resistance, i.e., components in-phase with the applied 

ac signal.  

The results of capacitance measurements as shown in Figure 3.1 clearly indicate that 

the capacitance-potential (Cd – E) curves for the Bi|NaNO3 interface had maximum 
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values at all the frequencies (500 Hz, 1 kHz and 2 kHz) and electrolyte 

concentrations (10, 30, 50 and 100 mM) investigated.  

The measured differential capacitances are not quite in line with the frequency-

independence expected from equation 3.1. In fact, they decrease slightly with applied 

frequency (compare figure 3.1a, b and c).  

 

 

 

Figure 3.1. Combined capacitance at Bi in aq. NaNO3 at (A) 500 Hz (B) 1 kHz (C) 2 kHz 
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This is typical constant phase element behaviour as described by equation 3.2.  A 

constant phase element (CPE) is an electronic circuit that is characterised by a 

phase angle that is not changing with frequency hence the name „constant phase 

element‟54,137. The size of this phase angle is usually less than 90o but greater than 

zero as can be observed in the angle the red straight line makes with the Z‟ axis in 

the plane impedance plot of figure 3.2. 

 

Figure 3.2 Sketch for an impedance plane plot to illustrate a CPE 

The impedance of a CPE is defined by equation 3.2 in which at α = 1, the constant 

phase element Q becomes an ideal capacitor.19,54,137 

  Z = 
  Qi




1
       (3.2) 

Constant phase elements are characteristic of solid electrodes, often ascribed to 

surface roughness and adsorption effects. In general 0 < α < 1 and Q is strictly only a 

simple (frequency-independent) capacitance for α = 1. One can however define an 

effective capacitance at a given frequency using equation 3.1 even for a CPE and 

this is followed throughout the chapter.                  

The maxima in the capacitance-potential curves of figure 3.1 indicate the failure of 

the Gouy-Chapman model for Bi|aqueous electrolyte, which predicts a minimum in 

the dependence of capacitance on applied potential.  Electrocapillary maxima (ECM) 

are characteristic of surface tension-potential plots42-44 in which the potential of zero 

charge, PZC is estimated from the gradient of the slope. Estimation of PZC at the 

bismuth electrode surface therefore becomes difficult in this instance. 
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Capacitance measurements were also carried out in aqueous electrolyte solutions of 

sodium bromide (NaBr) and sodium chloride (NaCl). The capacitance-potential data 

obtained showed similarities to that obtained at bismuth in sodium nitrate, with 

maximum values of capacitance. Apart from a few cases of irregular behaviour, the 

variation of capacitance with concentration follows theoretical prediction as values 

generally increase with increase in concentration of the analyte solution.  The 

mathematical expression for this prediction is 

            
 

                      (3.3) 

In equation 3.3,    is the differential capacitance in μF cm
-2, C is the bulk 

concentration in mol dm-3, z is the charge of the ions and φo is the total potential drop 

across the solution side of the double layer.  In essence, the capacitance of the 

diffuse layer increases with concentration of ions because the average distance, as 

measured by the Debye length, between the counter charges and the electrodes 

decreases. The results of the capacitance measurements at the bismuth electrode 

surface can therefore be said to consistent with general expectations (see also 

section 1.2 and equation 1.3). 

The capacitance-potential data in NaBr is presented in Figure 3.3 while that obtained 

in NaCl is presented in figure 3.4.  
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Figure 3.3. Capacitance data at Bi in aq. NaBr at (A) 500 Hz (B) 1 kHz (C) 2 kHz 
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Figure 3.4. Capacitance data at Bi in aq. NaCl at frequencies of (A) 500 Hz (B) 1 kHz (C) 2 kHz 

The maxima in the capacitance-potential curves in the Bi|NaBr and Bi|NaCl 

interfaces have been attributed to adsorptions of bromide and chloride ions at the 

bismuth electrode surface.13,21,22 While the source of high values of differential 
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capacitance could be traced to adsorptions of the halide anions on the electrode 

surface, the peaks characteristic of the Bi|NaNO3 could not be easily accounted for. 

To eliminate the possibility of chloride ion Cl  interference by leaching into the 

NaNO3 from the Ag/AgCl reference electrode, separate experiments were conducted, 

but with pure Ag wire as the reference electrode. Capacitance-potential data 

obtained at bismuth in aqueous NaNO3 with Ag wire as reference is presented in 

Figure 3.5. 
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Figure 3.5. Capacitance data at Bi in NaNO3 at (A) 500 Hz (B) 1 kHz (C) 2 kHz with Ag wire RE 

The result was a shift in the capacitance maxima at potentials of about -0.5 V to more 

negative values of about -0.7 V vs Ag wire, but no other substantial change – this 

indicates a simple shift of the potential scale on changing the reference and not an 

effect on the Cl .The influence of negative potential was exerted more on the 100 
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mM concentration of the analyte where a value of -0.793 V was recorded at the 

frequency of 1 kHz. Interestingly, the second round of measurements at bismuth in 

aq. NaNO3 with the Ag/AgCl reference at 2 kHz yielded the same results when Ag 

wire was used as reference at the same frequency. 

Differential capacitance measurements alone were not sufficient to probe the 

Bi|electrolyte interface, therefore X-ray photoelectron spectroscopy (XPS) 

measurements were carried out to ascertain the source of the capacitance peaks. 

This data is presented in figure 3.6.  
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Figure 3.6. XPS (A) survey and (B) resolution spectra of the Bi|NaNO3 interface. 

The XPS survey and resolution spectra of all the analyte solutions of NaNO3, NaBr 

and NaCl indicate an abundance of bismuth in the 4f spectral line. The experimental 

values of lower binding energy (B.E) of 158.6 eV but higher stability for 4f7/2 has 

4
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been found to be due to bismuth metal138-146 while the higher B.E of 159.3 eV also of 

the 4f7/2 spectral line and 163.9 eV for 4f5/2 are characteristic of bismuth(III) oxide 

(Bi2O3) and O2/Bi adsorption146-151, respectively. The spin-orbit splitting of these 

bismuth peaks is in the intensity ratio of 4:3.This ratio is found as follows: 

For any electron with an orbital angular momentum, there is coupling between field of 

magnetic spin (s) and angular momentum (l). The total angular momentum (j) is 

defined by j =|l±s|; which provides for two energy states of l+s and l-s. For the Bi 4f 

orbital, the principal quantum number (n) is 4 while l = 3 and s = ±1/2. The values of 

total angular momentum are therefore 3+1/2 and 3 -1/2. This gives the energy states 

of 4f   
 

 
  or (4f 7/2) and 4f 2

 

 
  or (4f5/2) respectively. The intensity ratios therefore 

simplify to 2(7/2) + 1 and 2(5/2) +1 which is 4:3. 

The ratio of the Bi(III) to the Bi(0) peak as revealed by the fitting  programmes is        

97.2: 2.8 or 97:3. The thickness L of the bismuth oxide film was therefore estimated 

to be about 9 nm, using the equation 3.4 in which f stands for the electron inelastic 

mean free path (IMFP) of the oxide and r is the metal: oxide ratio of 97:3. 

 L = f x ln (1 +
r

1
)       (3.4) 

In the absence of standard data for the IMFP of bismuth(III) oxide in the literature, its 

value of 2.6 nm was estimated from the curve of  TPP-2M equation at five (5) valence 

electrons for bismuth152 and on the assumption that the inelastic mean free path of 

these electrons will not be too different from those of the metal. Other parameters 

used in the calculation are as reported elsewhere153 by the same authors. The value 

of 9 nm for the oxide film thickness is probably an overestimate as it would effectively 

block electron transfer to redox couples. It is noticeable that the dependence of the 

capacitance data on electrolyte concentration is somewhat irregular (see Figure3.1) 

and in many cases very low (< 5 μF cm-2) differential capacitances are observed. The 

most likely explanation is that the oxide film thickness depends on exposure time of 

the electrode to the atmosphere – XPS is an ex-situ technique. In Chapter 5 an 

alternative estimate of film thickness is made using the capacitance data directly 

which is more consistent with the observation of electron transfer at such electrodes. 
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However, the XPS data does establish the presence of a thin oxide film on the 

bismuth electrode. At more negative potentials, this oxide will be reduced to 

elemental bismuth and, in general, the differential capacitance increases at the most 

negative potentials.154,155 The unusually high values of capacitance at the peak    

near -0.7 V (figure 3.1 and figure 3.5) or near -0.5 V (figure 3.3 and figure 3.4)) reflect 

pseudocapacitance related to the charge stored in the form of faradaic processes 

involved in reduction of the oxide. A sketch to illustrate the effect of the oxide layer 

and its reduction back to the metal is shown in figure 3.7.  

 

Figure 3.7. Sketch illustrating XPS data showing pseudocapacitance owing to presence of bismuth oxide 
layer. 

Adsorption of halide ions on the electrode surface also appear to contribute to the 

effect because of the difference observed between NaBr, NaCl and NaNO3 

electrolytes. 

XPS measurements were also conducted on the bismuth electrode in aqueous NaCl 

to evaluate the extent of adsorption of chloride ions at the bulk bismuth electrode 

surface. The bulk bismuth electrode differs from the bismuth film and the bismuth 

crystal plane surfaces owing to their Fermi-level density of states.156 The XPS data 

obtained at bismuth in aq. NaCl is shown in figure 3.8. 
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Figure 3.8. XPS (A) survey and (B) Cl-2p resolution spectra of the Bi|NaCl interface.  

The photoemission spectrum of the Cl-2p region shows a doublet of closely spaced 

peaks which result from spin-orbit splitting, with values of binding energy 198.5 eV 
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and 200.2 eV in the spectral lines of 2p3/2 and 2p1/2 respectively, with an intensity 

ratio of 2:1 and are assigned to chloride anions. These binding energies and 

experimental findings are in agreement with other researchers157-160 in the field. 

Similarly, XPS data generated of bromide anion adsorption at bismuth in aqueous 

sodium bromide, shown in figure 3.9 indicate weak and strong adsorptions with 

binding energies of 68.2 eV in the 3d5/2 and 69.3 eV in the 3d3/2 spectral lines, with 

intensity ratio of 3:2. This finding is also not too far from what other workers140,161,162 

have found in their investigations and confirm bromide anion adsorption. 
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Figure3.9. (A) XPS survey (B) Br-3d resolution spectrum of the Bi|NaBr interface. 
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3.2.1 The double electrolyte effect 

Sodium nitrate is itself an electrolyte, but to further investigate into the adsorption 

behaviour of the nitrate ion, the salt was prepared in aqueous sodium chloride 

solution as supporting electrolyte. The output of data presented in figure 3.10 yielded 

curves with minimum values from which the potential of zero charge, PZC was 

estimated to have a value of -0.49 V. Herein lies the significance of the NaNO3/NaCl 

electrolyte mixture. 

 

Figure 3.10. Capacitance data at Bi at in the NaNO3/NaCl electrolyte mixture at frequency of 1 kHz 
showing the pzc of -0.49 V. 

3.3 Capacitance Measurements at Platinum in Aqueous Solutions 

Electrochemical impedance spectroscopy measurements were also performed at the 

disc platinum electrode of dimensions as described in chapter 2 in the aqueous 

solutions of NaBr, NaNO3 and NaCl, with the Ag/AgCl electrode as reference. In 

contrast to the data obtained at bismuth, the capacitance-potential curves resulting 

from these experiments had minimum values at all analyte concentrations and 

frequencies of measurement, i.e., they behave much more in line with expectations 

from the double layer theories discussed earlier in the introductory chapter.  The set 

of data acquired in NaBr(aq) has been captured in figure 3.11.   
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Figure 3.11. Capacitance data at Pt in aq. NaBr at (A) 500 Hz (B) 1 kHz (C) 2 kHz 

As observed from the data, values of double layer capacitance decrease with 

increase in frequency as predicted by equations 3.1 and 3.2. The potential of zero 
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charge, PZC at Pt could be estimated from the mean of the minimum values at all the 

frequencies to be -0.32 V with respect to the Pt|NaBr interface. 

The capacitance-potential data curves of Pt in aqueous NaCl show semblance with 

those obtained in NaBr solution in terms of decrease with frequency as is observable 

in figure 3.12. In addition, increase in capacitance with concentration is reflected in 

this electrolyte.  
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Figure 3.12. Capacitance data at Pt in aq. NaCl at (A) 500 HZ (B) 1 kHz (C) 2 kHz frequencies. 

The capacitance-potential curves of platinum in aqueous NaNO3/NaCl electrolyte 

mixture however do not show a definite pattern at the three frequencies of 

measurement especially with respect to variation with concentration of analyte. The 

data, presented in figure 3.13 clearly shows that the electrolyte mixture has no 
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significant influence on the electrochemical activity of the platinum electrode. This 

could be one way to distinguish a noble metal electrode from that of a semimetal. 

 

 

 

Figure 3.13. Capacitance data at Pt in the NaNO3/NaCl electrolyte mixture at frequencies of (A) 500 

Hz (B) 1 kHz and (C) 2 kHz.  
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3.4 Capacitance Measurements at Bismuth in Non-aqueous Solvents 

The charge storage capacity of the bismuth electrode surface was also investigated 

in the non-aqueous electrolyte mixture of acetonitrile (AN) and lithium perchlorate. 

While the former is adjudged to be an excellent polar organic solvent and ideal for 

analysis owing to its relatively high dielectric constant and dipole moment, the latter is 

a very good inorganic electrolyte that ionizes completely in solution. Acetonitrile has a 

dipole moment of 3.44 D and a dielectric constant of 37.5 at 20 0C.163 This value of 

dielectric constant, considered to be high in some circumstances is still lower than 

that of water which is 80.1 at the same temperature of 20 0C. 

Values of double layer capacitance of the Bi | acetonitrile (AN) interface are 

presented in Figure  and as can be clearly observed, all lie below 20 µF cm-2 at the 

three frequencies of measurement. The very low capacitance of the Bi | AN interface 

could be attributable to the relatively low dielectric constant of acetonitrile13 as well as 

the weak adsorption of the ClO4
- at the bismuth electrode surface in ethanol.26 

Lithium perchlorate LiClO4 is believed to exhibit low surface activity in non-aqueous 

solutions. An un-usual behaviour of the bismuth electrode in these non-aqueous 

solvents is the steady decrease of stored charge as the concentration of analyte 

increases. This could be due to increased surface activity of lithium perchlorate as 

the concentration increases. 

Apart from  the 100 mM concentration with about 43 µF cm-2 effective capacity at       

500 Hz, values of double layer capacitance at bismuth for all the other interfaces of 

NaBr, NaCl and NaNO3 generally fell within the standard range42,44 of 10-40 µF cm-2. 

This implies that the bismuth electrodes can safely replace noble metal electrodes in 

the measurement of differential capacitance. The high values of differential 

capacitance recorded in the 100 mM concentration could be attributed to adsorption 

at the surface associated with high analyte concentrations. 

 The capacitance values however increased in the order of electrolyte solutions 

LiClO4<NaNO3<NaCl<NaBr. In principle the capacitance is expected to increase as the 

solvated ionic radius decreases. However anions, such as Br-, which have a strong 

tendency to specifically adsorb (i.e., lose part of their solvation shell) may not follow this 

simple trend. 
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Figure 3.14 Capacitance data at Bi in the non-aqueous AN/LiClO4 at (A) 500 Hz (B) 1 kHz (C) 2 kHz 
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3.5 Capacitance Measurements at Platinum in Non-aqueous Solvents 

By way of comparison, impedance measurements were also carried out with platinum 

as the working electrode in the non-aqueous electrolyte of acetonitrile/lithium 

perchlorate. Data obtained from the investigation is presented in Figure 3.15 below. 

 

 

 

Figure 3.15. Capacitance data at Pt in AN/LiClO4 at (A) 500 Hz (B) 1 kHz (C) 2 kHz 
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Values of differential capacitance recorded at the platinum electrode surface in the 

non-aqueous medium are lower than at the bismuth electrode surface in aqueous 

media. This is due to the lower relative permittivity of the non-aqueous electrolyte and 

the much greater tendency for halides to specifically adsorb than perchlorate. This 

can be further explained in terms of constant phase element behaviour. The physical 

roughness of the Bi electrode allows for more adsorption of charges than the 

relatively smoother surface of the platinum electrode. 

The sizes of the capacitance values however show a general decrease with 

increasing magnitude of frequency of measurement, and this is in agreement with 

theoretical prediction. 

3.6 Conclusions 

Bismuth electrodes show complex differential capacitance-potential curves in 

aqueous electrolytes which are not in line with expectations of the standard double 

layer theories. The curves generally show a sharp maximum which is suggested to 

result from pseudocapacitance effects related to the presence of an oxide film at 

potentials positive of the maximum and its reduction to elemental bismuth at 

potentials negative of the maximum. Electrochemical impedance spectroscopy (EIS) 

measurements performed as described in the foregoing sections enabled the 

determination of potential of zero charge PZC, at the bismuth and platinum 

electrodes surfaces in two cases. A value of -0.49 V was obtained at bismuth in the 

aqueous NaNO3/NaCl electrolyte mixture while -0.32 V was the determination made 

at platinum in aqueous NaBr. 

Findings from EIS and XPS experiments put together indicate that the capacitance 

peaks at bismuth in aqueous solutions are due to adsorption of anions as well as 

pseudocapacitance contributions of the redox processes of the bismuth oxide film 

and the metal at this electrode surface.  On the other hand, the low values of double 

layer capacitance (<20 µF cm-2) in the non-aqueous electrolyte of AN/LiClO4 is as a 

result of the relatively low dielectric constant of AN as well as the weak adsorption 

capacity of the ClO4
- anion. This finding is broadly consistent with the Gouy-

Chapman-Stern theory.  
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Bismuth electrodes have also been used to study the electron transfer process of the 

redox couple of ruthenium hexaamine trichloride (Chapter 5) and this has at a formal 

potential of -0.217 V vs Ag/AgCl (1 M KCl). The significance of the differential 

capacitance measurements in this chapter is that they show electron transfer reaction 

for this couple takes place at an oxide-covered electrode. 

The irregular variation of capacitance with concentration and frequency only goes to 

confirm that the bismuth and platinum electrode surfaces are not ideal capacitors. 

These surfaces should therefore be seen to be behaving as constant phase elements 

(CPEs) or non-ideal capacitors.  
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Chapter 4. Electrochemical Behaviour of Selected Redox Couples at 

Bismuth Electrodes 

4.1  Synopsis 

A series of redox couples were chosen and their electrochemical behavior at bismuth 

electrodes was investigated in a qualitative manner. Attempts were also made to 

compare the electroactivity of the redox couples at the semi-metallic bismuth bulk 

electrodes with that of platinum, a noble metal electrode more commonly used in 

electroanalytical chemistry. The redox couples chosen include: ruthenium(III) 

hexaammine, methyl viologen, anthraquinone-2-sulfonate, methylene blue, toluidine 

blue, hexaammine cobalt(III) and cobaltocenium. This large array of redox couples 

was chosen to establish the suitability of bismuth electrodes as potential 

replacements in electroanalysis and to determine a suitable test case for detailed 

electrode kinetics. They couples were selected because they are known to show 

straightforward voltammetry at noble metal electrodes under appropriate conditions. 

The aim of the present chapter is to investigate the redox reactions of the couples 

and establish which show simple, uncomplicated voltammetry that is suited for a 

deeper study of the electrode kinetics in Chapter 5. 

4.2   Ruthenium(III) hexaammine 

Preliminary investigations on this complex were carried out in analyte solutions 

prepared in 0.1 M KCl as supporting electrolyte. Cyclic voltammetric measurements 

performed with different concentrations of 10 mM, 8 mM, 5 mM and 2 mM to check 

the effect of concentration on the shape of the voltammograms showed 

reproducibility. A CV of the 5 mM concentration is shown in figure 4.1 for illustration. 
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Figure 4.1. CV of 5 mM ruthenium(III) hexaammine at scan rate of 25 mV/s at bismuth in 0.1 M KCl. 
The potentials were measured against an Ag/AgCl (1 M KCl) reference electrode. 

The peak potential differences ranged from 80 mV for the lower concentrations to   

88 mV for the 10 mM concentration. Although the CV of figure 4.1 shows a peak 

separation greater than the 60 mV for a reversible process, the peak potential is 

linear with square root of scan rate. The unusually high value of peak separation is 

not expected for a quasi-reversible process. Instead it is more likely that the 

voltammetry is reversible but that uncompensated resistance effects increase the 

peak separation. This is consistent with the observation of larger pE  at higher 

concentrations of ruthenium hexaammine. A plot of peak currents against scan rate 

showed a near 100% correlation as can be seen in the figure 4.2. The absence of 

deviations from the regression line also shows that adsorption effects (peak current 

proportional to scan rate) are negligible. 
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Figure 4.2.Variation of peak currents with scan rate for 5 mM ruthenium(III) hexaammine in 0.1 M KCl at Bi. 

An electrochemical process is reversible if the electron transfer at the electrode 

surface is so fast that the local concentrations immediately adjust to establish local 

equilibrium in response to changes in potential. Precisely, the surface concentrations 

(not the bulk values) obey the Nernst equation at all points in the experiment. 

Ruthenium hexaammine showed electrochemical behaviour that is close to that of a 

reversible process; with a peak potential difference of 88 mV at scan rate of 5 mVs-1, 

a peak current ratio of unity and a symmetrical shape for the cyclic voltammograms. 

The electrode kinetics of the redox couple was therefore investigated in detail and 

the results are presented in chapter 5. 

4.3  Methyl Viologen or Paraquat 

Paraquat is an interesting compound to study because of its toxicity and persistence 

in the environment56,62,64 occasioned by world-wide use as herbicide on a variety of 

crops. Because it is non-biodegradable, continued application on food crops 

increases the health risk of the consumers due to bioaccumulation. It is known to 

undergo two one-electron reductions to the radical cation and then to the neutral 

species. 

The first step in the kinetic studies of the compound was to run cyclic voltammograms 

of its samples to check if they satisfy the conditions of a reversible electron transfer 

process. Cyclic voltammograms (CVs) were run with analyte concentrations of        

10 mM, 5 mM and 2 mM, prepared in 0.1 M KCl(aq) as supporting electrolyte but the 

characteristic two-step-two-electron voltammogram was not achieved. A CV of the    
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2 mM concentration is presented in figure 4.3 for illustration. The solid line indicates 

increase in the cathodic currents, occasioned by accumulation of adsorbed material; 

hence the reduction peaks suggest adsorption. 

 

Figure 4.3. CV of 2 mM methyl viologen at Bi at scan rate of 25 mV/s in 0.1 M KCl(aq). The reference 
electrode was Ag/AgCl (1 M KCl). 

 

Methyl viologen undergoes a 2-step reduction process: 

  MV2+ + e-   MV+                    step 1 

This monocation complex is oxygen sensitive57,58 hence the solution was argon 

purged. 

                        MV+   + e-  MVo     step 2 

The neutral compound has low solubility and may adsorb on the electrode surface.59-61 

Two reduction peaks were obtained in the cyclic voltammogram of the 5 mM 

concentration, at scan rate of 25 mV s-1; shown in figure 4.4. 

https://www.google.co.uk/imgres?imgurl=http://3.bp.blogspot.com/-GpBMePamVUA/VAsMjVSzHWI/AAAAAAAAACU/vm17RbqOqH4/s1600/iu-3.jpeg&imgrefurl=http://mrphillipsgcsechemistry.blogspot.ae/2014_02_01_archive.html?m=1&docid=etCaUA3o8nIeGM&tbnid=Il7vqeVFtNedZM:&vet=1&w=137&h=127&bih=955&biw=1347&ved=0ahUKEwij_YLHnrXSAhVqBsAKHYWRBtwQMwghKAAwAA&iact=c&ictx=1
https://www.google.co.uk/imgres?imgurl=http://3.bp.blogspot.com/-GpBMePamVUA/VAsMjVSzHWI/AAAAAAAAACU/vm17RbqOqH4/s1600/iu-3.jpeg&imgrefurl=http://mrphillipsgcsechemistry.blogspot.ae/2014_02_01_archive.html?m=1&docid=etCaUA3o8nIeGM&tbnid=Il7vqeVFtNedZM:&vet=1&w=137&h=127&bih=955&biw=1347&ved=0ahUKEwij_YLHnrXSAhVqBsAKHYWRBtwQMwghKAAwAA&iact=c&ictx=1
https://www.google.co.uk/imgres?imgurl=http://3.bp.blogspot.com/-GpBMePamVUA/VAsMjVSzHWI/AAAAAAAAACU/vm17RbqOqH4/s1600/iu-3.jpeg&imgrefurl=http://mrphillipsgcsechemistry.blogspot.ae/2014_02_01_archive.html?m=1&docid=etCaUA3o8nIeGM&tbnid=Il7vqeVFtNedZM:&vet=1&w=137&h=127&bih=955&biw=1347&ved=0ahUKEwij_YLHnrXSAhVqBsAKHYWRBtwQMwghKAAwAA&iact=c&ictx=1
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Figure 4.4. CV of 5 mM methyl viologen at Bi at scan rate of 25 mV/s in 0.1 M KCl(aq).The smaller 
peak is indicated in red. 

 The smaller peak disappeared as the scan rate was increased, suggesting 

dimerization19,62,63 of the monovalent compound. The dimer is believed to result from 

an interaction of the neutral molecule MVo at the electrode with the divalent complex 

MV2+ from the bulk solution 

  MVo + MV2+    (MV)2
2+                        (4.1)    

This radical-cation dimer is spin-coupled164and is electro-inactive164,165 therefore the 

voltammetry is irreversible and interpretations of its electrochemical behaviour 

become complicated.                                                                                      

Electrochemical impedance spectroscopy (EIS) measurements were made at various 

concentrations; the semi-circular Nyquist plots (figure 4.5 and figure 4.6) point to 

kinetic control and the Warburg impedance (figure 4.6) to  diffusion diffusion 

control60,166 at lower frequencies and larger overpotentials. Selected data for the       

2 mM concentration are presented in figure 4.5 and figure 4.6 below which indicate 

kinetic behavior at potential of -0.58 V but a Warburg impedance at the more 

negative potential of -0.67 V. This is quite expected, but it should be noted that the 

data at -0.67 V show almost purely diffusion control and we could not extract the 

charge transfer resistance from the data.  
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Figure 4.5. Nyquist plot of 2 mM methyl viologen at bismuth at -0.58 V in 0.1 M KCl(aq). The reference 
electrode was Ag/AgCl (1 M KCl). 

 

Figure 4.6. Nyquist plot of 2 mM methyl viologen at bismuth at -0.67 V in 0.1 M KCl versus Ag/AgCl (1 M 
KCl). 

Upon comparison of the curves of figure 4.5 and figure 4.7 however, the data is seen 

not to be so clear. Both datasets show semi-circular Nyquist plots and were 

generated at very close potentials, however the impedance is observed to increase 

with concentration. This is unexpected and is likely a result of electrode fouling by the 

reduction products noted in the cyclic voltammetric data. 
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Figure 4.7 Nyquist plot of 10 mM methyl viologen at bismuth at -0.56 V in 0.1 M KCL versus Ag/AgCl (1 M 
KCl). 

Some kinetic information was obtained by fitting the data to a Randles equivalent 

circuit.  Figure 4.8 shows the variation of the charge transfer (RCT) with dc potential 

for 2 mM and 10 mM methyl viologen in 0.1 M KCl(aq). Normally the RCT – E plot is 

U-shaped as the increase in electron transfer rate with overpotential is opposed by 

the decrease in surface concentration of reactant according to the Nernst equation. 

This is not observed in the 10 mM data, although the 2 mM data shows 

approximately normal behaviour. Such a concentration dependence is typical of 

second order processes such as dimerization or adsorption. In addition, RCT should 

decrease with increase in concentration (they are inversely proportional) but the 

reverse is the case here. 

 

Figure 4.8. Variation of charge transfer resistance with potential for methyl viologen at bismuth in 0.1 M 
KCl(aq). 
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The differential capacitance was also extracted from the fitted equivalent circuit and 

the Cd –E profile presented in figure 4.9 shows even more complex behaviour. There 

is no correspondence between the two datasets and this argues that adsorption 

phenomena are significant.  

 

Figure 4.9. Variation of differential capacitance with potential for methyl viologen at bismuth in 0.1 M 
KCl(aq). 

Further work on methyl viologen was therefore suspended on account of the 

following: (i) possible dimerization of the monocation MV+ as the product is 

irreversible and therefore electro-inactive. 

(ii) Bold solid lines in the reduction peaks and the dependence of the impedance 

spectroscopy on concentration suggest strong adsorption of the products at Bi.  

4.4  Sodium Anthraquinone-2-sulfonate Monohydrate 

An enormous amount of data has been generated on this compound. The reduction 

occurs by a two electron mechanism to the phenolate or, with addition of two protons, 

to the corresponding phenols. The structure of the compound is shown in scheme 4.1 

in which the anthraquinone part is enclosed in the dotted rectangle. 

   

Scheme 4.1 Structure of sodium anthraquinone-2-sulfonate monohydrate 
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Good CVs of samples of the compound were obtained from solutions purged with 

nitrogen and later with argon gas. The best shape of a reduction CV was obtained at 

scan rate of 200 mV s-1. Good CVs were obtained for all the concentrations of 

analyte. An example of a voltammogram for the 2 mM concentration is shown in 

figure 4.10 below. Below, the compound is denoted as AQS. 

 

Figure 4.10 CV of 2 mM AQS at Bi at scan rate of 200 mV/s in argon- purged 0.1 M KCl solution. An 
Ag/AgCl (1 M KCl) reference electrode was used. 

A plot of peak currents against square root of scan rates shown in figure 4.11 yielded 

a perfect straight line, an indication that the redox process is diffusion controlled.44 

 

Figure 4.11 Variation of peak currents with scan rate for 10 mM AQS at Bi. 

This plot satisfies one condition for a simple reversible electrochemical process even 

though the least value of potential peak separation is 88 mV. Following the nature of 
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the CVs and plot of peak currents against square root of scan rates, AC voltammetry 

was carried out to obtain the formal potential Eo that would serve as the reversible 

potential for EIS measurements and because simple CV is often not able to 

distinguish closely overlapping redox processes. 

The AC voltammogram of the 10 mM concentration is also shown in the figure 4.12 

and it reveals an incomplete curve as well as presence of two peaks which creates 

uncertainties as to which peak parameters would be used as guide for further 

investigations. We suggest the following mechanism takes place at the first cathodic peak: 

  

And at the second peak, 

 

Previous workers suggested the formation of a charge transfer complex167 that arises 

because of the electron-withdrawing nature of the sulfonate group. Different positions 

of the sulfonate group on the complex can give rise to multiple peaks. 

 

Figure 4.12. AC voltammogram of 10 mM AQS at bismuth in 0.1 M KCl solution. An Ag/AgCl (1 M KCl) 
reference electrode was used. The scan rate was 25 mV/s with amplitude of 10 mV at frequency of 
1000 Hz. The green and red arrows point to the 1st and 2nd peaks respectively. 

2nd 

pe

ak 

1st 
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Impedance measurements at various dc potentials were subsequently made at 

potentials of ±30, ±60, ±90 and ±120 mV with respect to the formal potential to give a 

total of nine (9) spectra for each concentration. The frequency range was 101 - 105 Hz. 

Most of the spectra showed Warburg impedance and for these, no values of RCT 

were obtained. Some spectra presented evidence of kinetic limitations and values of 

RCT were extracted by fitting a Randles equivalent circuit. Sample impedance spectra 

are shown in figure 4.13 and figure 4.14. 

 

Figure 4.13 Nyquist plot of 2 mM AQS at bismuth at -0.78 V Vs Ag/AgCl (1 M KCl) in 0.1 M KCl. 

 

 

Figure 4.14 Nyquist plot of 2 mM AQS at bismuth at -0.89 V Vs Ag/AgCl (1 M KCl) in 0.1 M KCl. 

The kinetic data generated from the impedance spectra are as presented in figure 

4.15 below. 
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Figure 4.15. Charge transfer profile of AQS at Bi in 0.1 M KCl as supporting electrolyte. 

The quality of the impedance data was adjudged to be insufficient for a detailed 

kinetic analysis because the charge transfer resistance profile did not yield the U-

shape characteristic of a simple redox process and the variation of RCT with 

concentration is complex. 

A potential scan was also performed at values of the potential gap with a potential 

step of 20 mV, after the electrodes had been cleaned and the analyte solution purged 

again with argon gas for a minimum of 10 minutes. The overlaid impedance spectra 

of the 2 mM concentration are shown in figure 4.15. Spectra near the formal potential 

are dominated by the Warburg impedance and measurable charge transfer 

resistances are only obtained at large overpotentials. 
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Figure 4.16. Overlay of impedance spectra at various dc potentials for 2 mM AQS at Bi in 0.1 M KCl 
solution as supporting electrolyte. The frequency range of 10

1
 Hz -10

5
 Hz (41 frequencies per 

spectrum) and the dc potential range was -0.66 V to -0.90 V in steps of 20 mV. 

Evidence for adsorption effects was obtained when recording voltammograms at 

rates of 200 mV s-1 as in figure 4.17.The data of figure 4.17 at scan rate of 2500 mV s-1 

shows an unusual-shaped reduction peak more characteristic of a surface-bound 

reactant. For such an absorbed species, the peak current is directly proportional to 

the scan rate, and it will therefore dominate at the higher scan rate over contributions 

from freely diffusing AQS which vary with the square root of scan rate.  

Although AQS satisfies some of the criteria necessary to obtain good quality kinetic 

data, it is a much less favourable case than ruthenium hexaammine and suffers from 

some of the same complications as methyl viologen. 
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Figure 4.17. CV of 2 mM AQS at a bismuth electrode at scan rate of 2500 mV s-1 in 0.1 M KCl. The 
reference electrode was Ag/AgCl (1 M KCl). 

4.5   Methylene Blue Hydrate 

Methylene blue (MB) hydrate is also known as methylthioninium chloride hydrate 

(C16H18ClN3S.XH2O). Solutions of the compound were prepared in 0.1 M aqueous 

sulphuric acid as supporting electrolyte. The shapes of CVs of methylene blue at 

bismuth were not as good as those at platinum electrodes. Examples are given in 

figure 4.18 and figure 4.19. 
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Figure 4.18. CV of 5 mM methylene blue at Bi at scan rate of 25 mV/s in 0.1 M aq. H2SO4 

 

Figure 4.19. CV of 5 mM methylene blue at Pt at the scan rate of 25 mV/s in 0.1 M aq. H2SO4 against 
the potential of an Ag/AgCl reference electrode. 

The voltammetry at platinum is consistent with a simple, reversible two-electron 

couple, however the peak potential is much more negative at bismuth and the 

reverse waves are complex. Plots of cathodic peak current against square root of 

scan rate were however made (Figure 4.20 and Figure 4.21) and showed the 
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expected linear trend, although the data is rather scattered about the regression line 

for the bismuth electrode (Figure 4.20). 

  

Figure 4.20 Variation of peak currents with scan rate for 5 mM methylene blue at Bi in 0.1 M aq. 

H2SO4  

 

Figure 4.21. Variation of peak currents with scan rate for 5 mM methylene blue at Pt in 0.1 M aq. 

H2SO4 

The linearity in the data of figure 4.21 confirms that even at platinum metal electrode 

surface, electron transfer from the dye molecules is diffusion controlled; the plot of 

peak current against scan rate is a near perfect straight line. 

 AC voltammetry was also run for methylene blue at Pt and the curve had peak 

parameters of 0.002 V and 66.9 µA. This voltammogram is shown in Figure  4.22. 
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Figure 4.22. AC voltammogram of 5 mM methylene blue at Pt in 0.1 M aq. H2SO4. The scan rate was 
25 mV/s with amplitude of 10 mV at frequency of 1000 Hz. 

However, a good ACV could not be obtained at Bi even with the parameters of       

AC voltammetry obtained with the Pt electrode. In summary, the voltammetry of MB 

at bismuth is entirely unsuited for a kinetic study. The reason for the difference in 

behavior at bismuth is not certain, but in view of the more positive formal potential of 

this couple compared to others in this chapter, the reason is likely to be due to anodic 

oxidation of the bismuth electrode. 

4.6  Toluidine Blue 

5 mM solutions of the sample were prepared separately in 0.1 M NaCl and              

0.1 M KCl, both identified as good supporting electrolytes for the compound. Cyclic 

voltammetric measurements were carried out with these analyte solutions, with both 

bismuth and platinum electrodes. These however gave data (see figure 4.23 and 

figure 4.24) that had no analytical significance and work on toluidine blue was halted. 
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Figure 4.23. CV of 5 mM toluidine blue in 0.1 M KCl at scan rate of 25 mV/s at Bi against the potential 
of an Ag/AgCl (1 M KCl) reference electrode. 

 

Figure 4.24. CV of 5 mM toluidine blue in 0.1 M KCl at scan rate of 25 mV/s at Pt against the potential 
of an Ag/AgCl (1 M KCl) reference electrode. 

4.7  Hexaammine Cobalt(III) Chloride 

CV experiments were carried out at both bismuth and platinum electrodes. The 

bismuth electrode had to be polished after each change of scan rate because there 

were visible signs of adsorption at the surface. The shape of the voltammetric waves 

were imperfect, an example is given in figure 4.25. 
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Figure 4.25. CV of 5 mM hexaammine cobalt(III) chloride at bismuth. The scan rate was 20 mV/s in 
0.1 M HClO4 as electrolyte against an Ag/AgCl (1 M KCl) reference electrode. 

A plot of peak currents against scan rate shown in figure 4.25 further shows the 

complexity of the electron transfer process as there is no correlation between 

faradaic current and scan rate. Work on hexaammine cobalt(III) was therefore halted. 

 

Figure 4.26. Variation of peak current with scan rate for 5 mM hexaammine cobalt(III) at Bi in                     
0.1 M aq. HClO4. 

4.8  Cobaltocenium Hexafluorophosphate 

Known by the IUPAC name of bis(cyclopentadienyl)cobalt(III) hexafluorophosphate, 

this compound has the structure shown in scheme 4.2 and a condensed formula of 

C10H10CoF6P with a molar mass of 334.08 g mol-1. The cation is denoted CoCp2
+. 
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Scheme 4.2 Structure of cobaltocenium hexafluorophosphate. 

Solutions of the compound were prepared with tetrabutylammonium 

hexafluorophosphate in acetonitrile (0.1 M TBAPF6/AN) as supporting electrolyte. 

Experimental investigations revealed that the best cyclic voltammograms at both 

bismuth and platinum electrodes could be obtained at the scan rate of 10 mV s-1 in 

the potential range of -0.6 V to -1.1 V as can be observed in figure 4.27 and figure 

4.28 respectively. The non-aqueous reference electrode Ag/Ag+ (0.01 M AgNO3 in 

AN) was used instead of Ag/AgCl because AgCl is soluble in AN. 

 

Figure 4.27. CV of 2 mM cobaltocenium at Bi at scan rate of 10 mV/s in 0.1 M TBAPF6/AN. The non-
aqueous Ag/Ag+ reference electrode was used here. 
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Figure 4.28. CV of 2 mM cobaltocenium at Pt at scan rate of 10 mV/s in 0.1 M TBAPF6/AN against the 
potential of an Ag/Ag+ reference electrode. 

A lot of data was generated using different concentrations of the analyte, ranging 

from   2 mM to 10 mM. The CVs clearly confirm the CoCp2(III/II) couple to be quasi-

reversible in agreement with previous reports.168,169 As the CV results were 

promising, with no evidence of electrode fouling/absorption, we attempted to 

determine the electrode kinetics by impedance spectroscopy. Impedance 

measurements at constant dc potentials were carried out at potential values of 0, 

±30, ±60, ±90 and ±120 mV away from the formal potential obtained of each analyte 

concentration.  

Some consistent impedance spectra datasets as a function of potential were 

obtained at the various concentrations. These spectra are shown in figure 4.29. 
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Figure 4.29. Impedance spectra at different dc potentials for 5 mM cobaltocenium 
hexafluorophosphate at Bi. The potential range was -0.72 to -0.92 V in steps of 20 mV. The analyte 
solution which was prepared in 0.1 M TBAPF6/AN was purged with argon gas for 15 minutes prior to 
scanning. 

Impedance spectra fitting by complex non-linear least squares was carried out using 

EISanalyzer.170 In general, a good fit of the simulated Randles impedance to the 

experimental data was seen. Examples are given in the spectra of figure 4.30 and 

figure 4.31. 

 

Figure 4.30. EIS fitted spectrum of 2 mM cobaltocenium hexafluorophosphate at Bi at -0.89 V. The 
green line is the simulated data while the red points are the experimental data. 
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Figure 4.31. EIS fitted spectrum of 8 mM cobaltocenium hexafluorophosphate at Bi at -0.87 V. The red 
points are the experimental data fitted into the simulated green line. 

Ultimately, a total of nine estimates for values of standard rate constants (ko) were 

obtained for each of the analyte concentrations, the mean of which is presented in 

table 4.1. Ideally, ko values should not vary with concentration but the data presented 

in the table clearly indicates that electron transfer does not reflect a simple electrode 

process. Although the CV data shows no evidence of complications, the impedance 

data is not as consistent, especially when compared to ruthenium hexaammine 

(Chapter 5). 

 

Table 4.1 Mean values of standard rate constants for CoCp2
+3/+2

 at bismuth. 

In spite of the good quality of individual spectra, the charge transfer resistance profile 

of the compound was too complex to analyse as seen in figure 4.32 and this led to 

stoppage of further work on cobaltocenium hexafluorophosphate. 
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Figure 4.32. Variation of charge transfer resistance with potential for 2 mM to 10 mM cobaltocenium 
hexafluorophosphate at bismuth. 

It is however worthwhile to conclude that bismuth electrodes have been successfully 

tested to confirm the quasi-reversible behavior of cobaltocenium 

hexafluorophosphate. 

4.9  Conclusion 

In summary, a range of redox couples were tested at bismuth electrodes in the 

search for a suitable candidate for a detailed electrode kinetic investigation. The four 

most promising (on the basis of simple cyclic voltammetry) were ruthenium 

hexaammine, methyl viologen, anthraquinone-2-sulfonate and cobaltocenium. 

However, a more stringent test is whether the couple remains stable, i.e. show no 

electrode fouling during the time taken to collect a series of impedance spectra. From 

this point of view, ruthenium hexaammine was clearly the most promising and was 

studied in detail in the work presented in Chapter 5. Methyl viologen has been 

studied previously19 at bismuth, but only in acetonitrile and the compound is much 

less well-behaved in aqueous media. AQS and cobaltocenium are sufficiently stable 

to allow collection of impedance spectra, but the data quality is not sufficient to reveal 

anything about the potential dependence of the rate analogous to the analysis 

possible for ruthenium hexaammine. 
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Chapter 5. Kinetic Studies of Ruthenium(III) Hexaammine at Bulk 

Bismuth Electrodes. 

5.1 Introduction 

Bismuth bulk11-13 and film14-16 electrodes have been investigated as alternatives to Hg 

and noble metal electrodes for electroanalytical applications. Stripping voltammetry at 

bismuth electrodes has been reviewed.7 Their favourable characteristics compared to 

other solid metal electrodes include a low melting point, which facilitates electrode 

fabrication, and a lower cost than noble metals. Bismuth also has much lower toxicity 

than mercury hence is environmental friendly.2 Bismuth electrodes are also of 

interest for fundamental studies of heterogeneous electron transfer because of the 

unusual electronic properties of bismuth. In particular, the electronic properties of 

bulk bismuth are those of a semi-metal with a carrier density in the order of                

3 x 1017 cm-3 18,20, much lower when compared to Pt, Au or Hg. Electron transfer at 

materials with low densities of states is of current interest because of attempts to test 

the adiabaticity of outer-sphere electrode reactions. In the nonadiabatic case, the 

reaction rate should  depend on the density of states at the Fermi energy and in the 

adiabatic case the rate should be independent of the density of states.171 

In this chapter, we study the reduction of ruthenium(III) hexaammine at bismuth bulk 

electrodes in aqueous KCl electrolytes as a typical example of an outer sphere 

reaction uncomplicated by adsorption or coupled chemical processes. Despite the 

fact that the formal potential lies in a region where the Bi is partially oxidised, we 

show that electrochemical impedance spectroscopy provides precise electron 

transfer resistance data as a function of the dc potential. Fitting a nonlinear 

regression model to the potential dependence of the charge transfer resistance 

allowed estimation of the transfer coefficient at each dc electrode potential without 

making any assumption about the inherent potential dependence of the transfer 

coefficient. Finally, we show that the measured potential dependence of the transfer 

coefficient arises mainly from double layer effects as postulated in the classical 

Frumkin correction. 
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5.2 Cyclic Voltammetry 

Cyclic voltammograms of Ru(NH3)6
3+ at Pt electrodes in aqueous KCl under Ar 

showed uncomplicated one-electron behaviour with a formal potential of -0.217 V vs 

Ag/AgCl (1 M KCl(aq)) (figure 5.1 a). At Bi electrodes, the voltammogram is very 

similar and can be superimposed on the Pt voltammogram, though a small additional 

current at more positive potentials can be seen in figure 5.1a. We attribute the extra 

anodic current to oxidation of the Bi surface. The peak current at Bi electrodes varied 

approximately linearly with scan rate (figure 5.1b) and the anodic and cathodic peak 

currents were equal. The peak separation is slightly greater than expected for a 

reversible one-electron process (about 80 mV at 50 mV s-1; figure 5.2). The 

behaviour is that of a reversible system with some influence of uncompensated 

solution resistance. Slow scan cyclic voltammetry is not a suitable method for 

investigating the electrode kinetics, but it is an important check on the nature of the 

redox process; it demonstrates that adsorption and coupled chemical processes do 

not affect the measured currents.  
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Figure 5.1. Cyclic voltammograms at Pt (blue) and Bi (orange) electrodes of Ru(NH3)6Cl3 in 0.1 M 
KCl(aq). (a) The scan rate was 50 mV s-1, [Ru(NH3)6Cl3] = 10 mM and the reference electrode was 
Ag/AgCl in 1M KCl(aq). (b) Cathodic peak current (absolute value) against square root of scan rate for 
2 mM Ru(NH3)6Cl3 in 0.1 M KCl(aq) at a Bi electrode. The precision of the current values was better 
than 1% and y-error bars are not plotted, because they are not visible on the graph. 

Figure 5.2 shows the variation of cathodic peak potential and the peak separation 

with scan rate. Above about 200 mV s-1 the cathodic peak potential starts to change 

to more negative values. This suggests that electrode kinetic limitations become 

important at these scan rates, however at the mm-size electrodes employed, 

uncompensated resistance effects will also contribute. 
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Figure 5.2. Slow scan cyclic voltammetric peak potential data for 2 mM Ru(NH3)6Cl3 in 0.1 M KCl(aq) at a 
Bi electrode. (a) Cathodic peak potential against ln(scan rate) and (b) Peak separation against ln(scan 
rate). 

5.3 Electrochemical Impedance Spectroscopy (EIS) 

Impedance spectroscopy was chosen as a tool with which to evaluate the kinetics of 

ruthenium(III) hexaammine because the electrochemistry of the redox couple was 

observed to be stable; without adsorption nor fouling effects over the times required 

to collect a complete spectrum at each dc potential chosen. When this is possible, 

impedance spectroscopy can produce higher precision data than large amplitude 

techniques such as fast scan voltammetry. It also enabled a simultaneous 

determination of the differential capacitance of the Bi | KCl(aq) interface. EIS has the 

additional advantage that the estimation of uncompensated resistance and double 

layer charging contributions is straightforward and the integration of the signal over 

many cycles of the ac perturbation improves the signal-to-noise ratio. 

The Ru(NH3)6
3+/2+ redox couple showed fast electrode kinetics at Pt and we observed 

reversible behaviour – a Warburg impedance – at frequencies up to the maximum of 
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105 Hz. However, the impedance spectra at Bi showed clear evidence of charge-

transfer limitations. A typical impedance spectrum for 2 mM Ru(NH3)6Cl3 in 0.1 M 

KCl(aq) at a Bi electrode is presented in figure 5.3.  

 

Figure 5.3. Nyquist plot of the impedance spectrum at a Bi electrode (symbols) and complex least 
squares fit (solid line) of the modified Randles circuit. The electrolyte contained 2 mM Ru(NH3)6Cl3 in 
0.1 M KCl(aq). Applied dc potential = -0.21 V vs Ag/AgCl (1M KCl). Frequency range 101 – 105 Hz. 
Statistical uncertainties on the values of RCT obtained from the fit were about 0.2%. 

Although bulk Bi has a much lower density of states than Pt, comparable rates for 

electron transfer to a series of viologen derivatives from Pt and Bi electrodes in 

acetonitrile after application of the Frumkin correction have been reported.19 

Differential capacitance measurements indicated that the density of states at the Bi 

surface is greater than in bulk Bi and closer to that of Pt. It is also possible that the 

electron transfer process is in the adiabatic regime where the density of states effect 

is absent.171 The large difference observed between Pt and Bi in the present case 

therefore suggests an additional barrier to electron transfer at Bi is present for 

aqueous electrolytes; we ascribe the origin of this barrier to the formation of a thin 

anodic film at Bi and provide some evidence for it using ex-situ X-ray photoelectron 

spectroscopy and differential capacitance measurements (figure 5.8 and figure 5.10). 

In all cases reported, the impedance spectrum at Bi was well-fitted by the model 

represented by a Randles equivalent circuit, but allowing for constant - phase 

element (CPE) behaviour of the interface instead of a pure capacitance.  The 

Randles circuit on which the data is based is illustrated in figure 5.4. 
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Figure 5.4. Diagram of a Randles circuit for mixed kinetics-diffusion behaviour showing: 
uncompensated or solution resistance (Ru), constant phase element (CPE) in place of a perfect 
capacitor for values of differential capacitance, charge transfer resistance (RCT) and the Warburg 
impedance (W) which depends on the concentration and the diffusion coefficient. 

The constant phase element has impedance given by equation (5.1): 

                                 
 

      
        (5.1)  

When n = 1, the impedance of the CPE reduces to that of a simple capacitor and the 

equivalent circuit reduces to the original Randles model. For an electrolyte 

comprising between 2 - 10 mM RuHex and 0.1 M KCl we found 0.87 < n < 0.90 and n 

was independent of potential over the range -0.37 V < E < -0.11 V which spans the 

formal potential of -0.217 V. The Bi | KCl(aq) interface therefore approximates a 

capacitor quite closely.  

The dependence of charge transfer resistance RCT at the formal potential on the 

concentration of Ru(NH3)6Cl3 is shown in Figure 5.5. The expected linearity is roughly 

observed; this rules out possible complications in the data arising from a rate 

determining step in which electrons are transferred to a surface state in an anodic 

film rather than directly to the Ru(NH3)6
3+  ions. Some scatter about the line is 

observed, which could be due to small changes in the condition of the electrode as it 

was emersed from one solution, washed and immersed in the next solution. This 

scatter was not observed when the charge transfer resistance was recorded as a 

function of potential in the same solution. The potential dependence of RCT in 2 mM 

Ru(NH3)6
3+ is therefore analysed in more detail. 
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Figure 5.5. RCT
-1

 against [Ru(NH3)6Cl3] in 0.1 M KCl(aq). The values of charge transfer resistance 
plotted are those at a dc potential equal to the formal potential.  

Figure 5.6 shows typical plots of charge transfer resistance RCT against the dc 

potential E and three different regression models. Values of RCT were extracted from 

the fit of the modified Randles equivalent circuit to the data. The plots show the 

characteristic U-shape produced by two factors: the increase in heterogeneous rate 

constant with increasing overpotential and the decrease in surface concentration of 

the reactant with overpotential. However, it can clearly be seen that the data is not 

precisely symmetric about the minimum of the U as it would be for a constant value 

of transfer coefficient α = 0.5. In fact, the data cannot be fitted satisfactorily by any 

constant value of the charge transfer coefficient (figure 5.6a, regression model 

appropriate to standard Butler-Volmer theory) nor by a linear variation of transfer 

coefficient with potential (figure 5.6b, regression model appropriate to Marcus-Hush 

theory). In both cases (figure 5.6a and figure 5.6b) there are small, but systematic 

deviations of the fits from the data and the residuals,    √∑                 are 

of the order of kΩ. The fit shown in figure 5.6c is much superior (x106); the SSR is of 

order mΩ. The regression model of figure 5.6c makes no a priori assumption 

regarding the potential dependence of the transfer coefficient, except that it is regular 

in a sense described below. Instead, the potential dependence was obtained directly 

from the regression and then interpreted in terms of the properties of the Bi | KCl(aq) 

interface. 
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Figure 5.6. Charge transfer resistance against dc potential at a Bi electrode with 2 mM Ru(NH3)6Cl3 in   

0.1 M KCl(aq). The difference between data and fit measured as     √∑                 was (a) 

SSR = 3.4 kΩ; (b) SSR = 2.6 kΩ and (c) SSR = 2.7 mΩ. The RCT versus E data was obtained using 
the instrument software to record a sequence of impedance spectra at different values of E 
automatically and we found a statistical uncertainly of about 0.2% on each value of RCT. 
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5.4 Data Analysis 

5.4.1 Charge transfer resistance and transfer coefficient 

Below we developed the equations for charge transfer resistance for an arbitrary 

potential-dependence of the transfer coefficient and show that the observed 

potential-dependence can be interpreted in terms of a combination of two effects: the 

double-layer effect on the charge transfer coefficient predicted by the Frumkin 

correction and the presence of a thin anodic film which is reduced at sufficiently 

negative potentials.  

For a one-electron outer sphere redox couple: 

                      (5.2)  

In our experiments, the bulk O concentration is C* and the bulk R concentration is 

zero. In order to make the notation used for the transfer coefficients clear, the well-

known Butler-Volmer equation is quoted in the form: 

 
 

  
   [   

   (     )     
      (     )]    (5.3)  

where f = F/RT and CO and CR are the concentrations of the oxidised (O) and 

reduced (R) forms of the couple at the outer Helmholtz plane – assumed in the 

standard treatment of double-layer effects to also be the plane at which electron 

transfer occurs. The values of CO and CR are fixed by the dc potential and change 

according to the Nernst equation (ignoring activity coefficients): 

R

Oo

C

C

nF

RT
EE ln'                                                                                (5.4) 

The Butler-Volmer equation can be rewritten in terms of the deviation from 

equilibrium (overpotential, η):  

 
 

  
                     (5.5)  
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Finally, the charge-transfer resistance is obtained from the slope of the Butler Volmer 

equation (5.5) at the origin as |
  

  
|
   

     
 

   
 and CO and CR are related by the 

Nernst equation to the bulk O concentration, C*. 

     
  

       

    (     )

       (     )
       (5.6)  

This derivation is quite standard44, but it is repeated here to illustrate that it does not 

make any assumption about the potential-dependence of the transfer coefficient, α 

because the derivative is evaluated at η=0. A potential-dependent transfer coefficient 

can be simply accommodated by writing α(E) in the final expression for RCT given in 

equation (5.6). 

The formal potential     was estimated from slow scan cyclic voltammetry at Pt and 

Bi electrodes as -0.217 V. Equation (5.6) was then fitted to the charge transfer 

resistance data as a function of dc potential using a least squares method in which ko 

and the values of α at each dc potential were floated. This procedure includes too 

many floated parameters to be carried out directly. To avoid the appearance of badly-

behaved terms of the form expressed in equation 5.7, a regularization was employed 

with   as a small constant. 

     
     

                      (5.7)  

These terms are associated with arbitrary constant factors multiplying the effective 

value of ko. The regularization chosen was to minimize simultaneously the sum of 

squares of the second order finite differences Δ2α(E). i.e., to bias α(E) to functions 

that are piecewise linear. 

    ( (     
          

      [     ])
 
         

 )                 (5.8) 

A suitable starting guess of α(E) = 0.5 was made and it was useful to enforce 

piecewise linearity on the optimized solution with a large initial value of λ = 106 and 

then re-optimize with a reduced value of λ = 10. The optimization procedure was 

conveniently carried out using the generalised reduced gradient method for nonlinear 

programming available as part of the „Solver‟ add-in of MSExcelTM 2013. 
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Figure 5.7. Variation of apparent transfer coefficient α(E) at Bi with with dc potential E. The data was 
obtained by the regularized least squares procedure defined by equations (5.6) and (5.8). The 
electrolyte contained 2 mM Ru(NH3)6Cl3 in various concentrations of KCl(aq). The statistical 
uncertainties on each value of transfer coefficient are of order 1% or less. 

Figure 5.7 shows the apparent transfer coefficients α(E) for the reduction of 2 mM 

Ru(NH3)6Cl3 in various concentrations of KCl(aq). The uncertainties on each value of 

α was estimated by repeating the minimization of equation (5.8) with values of RCT 

varying by random amounts consistent with the 0.2% uncertainties estimated from 

the fit of the Randles circuit to the experimental data. In general the uncertainties on 

α computed in this way were very low, <1% in all cases. This represents the precision 

of our estimates of α from the minimization and indicates that trends in α with 

potential E are sufficiently reliable to be analysed. The increase in apparent transfer 

coefficient at the most negative potentials in figure 5.7 is more prominent at high ionic 

strength. We suggest that its origin is related to the anodic film on the Bi electrode 

surface. Comparisons of different ionic strengths involve experiments in which the 

electrode was emersed from the solution between measurements and only qualitative 

differences are considered below because the variability in measurements of RCT is 

greater in those cases. 

The potential dependence α(E) is quite complex; in low ionic strength electrolytes, 

the transfer coefficient decreases as the potential becomes more negative, however 

at [KCl] higher than about 0.1 M it increases as the potential becomes more negative. 
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This increase is also evident at low ionic strength at the most negative potentials. We 

suggest that the behaviour can be understood in terms of two competing factors: the 

Frumkin effect44, which dominates at the lowest ionic strengths and the properties of 

the Bi/Bi2O3 film which are responsible for the increase in transfer coefficient at the 

most negative potentials. 

A potential-dependent transfer coefficient can arise in several ways. Simple 

applications of Marcus theory predict a linear dependence of α on E. However, 

double-layer effects (known variously as the Frumkin correction, φ2-effect or Ѱ-effect) 

are clearly also potential-dependent and therefore appear as a variation in α with 

potential when the voltammetric data is analysed in the standard Butler-Volmer 

framework.19 

If φ2 is the potential dropped between the outer Helmholtz plane and the bulk 

solution, then the corrected, kFC, and conventional, ko, standard rate constants are 

related by: 

              
(     )                        (5.9)                                                                            

where z+ is the charge on the reactant. This can be absorbed into equation (5.5) by 

defining.51,172 

                         
 

 

    

  
         + 

   

  
                                 (5.10)  

where    is a constant denoting the “true” transfer coefficient and η is the 

overpotential. When the Gouy-Chapman-Stern model of the double layer applies, the 

variation of φ2 with overpotential may be written: 

                                  
   

  
 

  

      
                                                       (5.11)   

where cH and cDL are the differential capacitances of the compact and the diffuse 

layers. The Frumkin correction44 assumes that the electron transfer occurs at a 

plane, often taken to be the outer Helmholtz plane, but several authors have 

considered how this is modified when account is taken of the possibility of tunnelling 

from distances further away from the electrode surface.173-177 We have considered 

this possibility, but our data appears to be in the regime where the reactant 



117 

 

accumulates weakly at the interface and the classical Frumkin correction applies.174 

Evidence for this has been provided from the ionic strength effect on the charge 

transfer resistance in figure 5.9. 

The model could be easily modified to describe Bi electrodes covered with a thin, 

insulating oxide layer by including the differential capacitance of the oxide in series 

with the compact layer as part of cH. The diffuse layer effect on the apparent transfer 

coefficient is always positive in this model for reduction of a cation such as 

Ru(NH3)6
3+. The magnitude of the effect may increase or decrease with potential 

depending on whether the potential of zero charge is more positive or negative than 

the formal potential of the couple. 

5.4.2 Differential capacitance 

A typical measurement of the potential-dependence of the differential capacitance of 

the Bi | KCl(aq) interface is shown in figure 5.8 (more details are given in Chapter 3).  

 

Figure 5.8. Effective differential capacitance at 1 kHz for a Bi electrode in 10 mM NaCl(aq) against dc 
potential. 

The differential capacitance plotted is actually an effective value at the given 

frequency (-1/ωZ''), because the interface shows constant phase element behaviour 

and is close to (n~0.9), but not exactly described by a pure capacitor. Nevertheless it 

is clear that the potential dependence of this effective differential capacitance is 

much more complex than the Stern model and the potential of zero charge cannot be 

reliably determined from the data. 
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The sharp peak at about -0.6 V indicates a sudden change in the state of the Bi 

surface at more negative potentials which may be due to reduction of an oxide film 

and possibly desorption of adsorbed Cl-.  On either side of the peak, the differential 

capacitance of Bi electrodes in the aqueous chloride is much more weakly dependent 

on potential, but it is higher at negative potentials and lower at potentials positive of 

the peak. We interpret this change as the reduction of a thin anodic film; the potential 

at which it occurs is similar to previous reports of the reduction of anodic films on 

Bi.154,155 At potentials <-0.6 V the electrode surface is elemental bismuth, but at 

potentials >-0.6 V the electrode is covered by an anodic film of thickness L which 

contributes an addition series capacitance per unit area of  r 0/L. The film thickness 

may be estimated from the change in potential-independent capacitance on either 

side of the peak. Using a relative permittivity of 40 for the oxide film178, we estimated 

its thickness to be about 1.5 nm based on a simple parallel plate capacitor model for 

the oxide. 

The approximately potential-independent value of capacitance at strongly negative 

potentials is clearly substantially larger than that at potentials positive of the 

differential capacitance peak; this is also consistent with the formation of a thin oxide 

layer at E > -0.6 V. The standard potential of the [Ru(NH3)6]
3+/2+ couple is much more 

positive than the peak in the differential capacitance data and therefore the slow 

electrode kinetics at Bi compared to Pt are simply explained by the presence of a 

tunnelling barrier due to the thin oxide film.  

Although the differential capacitance-potential curve is complex, values of charge 

transfer resistance can be used to estimate φ2 in a relative sense from 

measurements of impedance spectra as a function of ionic strength. For example, if 

φ2 is negative at the formal potential, the rate of reduction will increase at lower ionic 

strength because of accumulation of Ru(NH3)6
3+ at the interface and the charge 

transfer resistance will decrease at low ionic strength. Impedance spectroscopy is 

particularly advantageous for this purpose because the uncompensated resistance, 

which also varies with [KCl], is easily distinguished from the charge transfer 

resistance as a simple shift of the data along the real axis in the Nyquist plot. At a 

given dc potential the ratio of charge transfer resistance to the value at a chosen 

reference ionic strength gives the change in φ2 potential: 
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              (
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                                                    (5.12)   

Since the diffuse layer capacitance increases with ionic strength, we chose the 

reference ionic strength to be 2 mM Ru(NH3)6Cl3 + 0.2 M KCl. 

The potential range of direct relevance to our electrode kinetics is positive of the 

capacitance peak, -0.4 V < E < -0.1 V. In this range the electrode is covered by a thin 

oxide film, but very close to the foot of the capacitance peak there is a small increase 

in capacitance which suggests incipient reduction of the oxide. We suggest that the 

rate of reduction of Ru(NH3)6
3+ is sensitive to the changing oxide thickness and that 

this causes an increase in the apparent transfer coefficient in this region as the oxide 

becomes thinner at more negative potentials. A crude model of the effect can be 

obtained by writing the electron transfer rate constant as a function of layer thickness L: 

                       -                                                             (5.13)       

where we ignore the term related to the potential dropped across the barrier because 

of the small potential range involved and because the potential of zero charge is not 

known. We also neglect possible band-bending effects on the grounds that the oxide 

thickness is very small. The contribution to the apparent transfer coefficient is then 

obtained by differentiation. 
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If we treat the oxide as a uniform thin film capacitor in series with the Helmholtz 

capacitance,  

                                -  
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                                            (5.15)                                 

we obtain: 

                          
     

   

  

  
                                                      (5.16)                  

where c is the overall differential capacitance of the interface and we have neglected 

the contribution from the potential dependence of the diffuse layer. Equation (5.16) 

can be applied to estimate roughly the effect of the film reduction on the apparent 
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transfer coefficient using the experimental differential capacitance in figure 5.8. This 

effect is illustrated in figure 5.9 below. 

 

Figure 5.9.Contribution of (Δα) to the measured transfer coefficient α(E) (Fig.5.7) arising from the 
reduction of the anodic film. The data was calculated according to equation (5.16) using the 
experimental differential capacitance of Fig.5.8. 

5.4.3 Double layer effects. 

Figure 5.10 shows estimates of the φ2 potential from a series of impedance spectra 

for 2 mM Ru(NH3)6Cl3 in various [KCl].  

 

Figure 5.10.Values of relative φ2 estimated from the variation of charge transfer resistance with ionic 
strength according to equation (5.12). The data was obtained for a Bi electrode in 2 mM Ru(NH3)6Cl3 
(aq). The reference ionic strength was chosen to be the highest employed (electrolyte = 0.2 M 
KCl(aq)) at which φ2 is expected to be small. 
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There is considerable scatter on the plot and one obvious outlier because the values 

are all only a few mV. However, it is also clear that φ2 is negative; there is a definite 

trend to lower RCT at lower ionic strength. This data suggests the potential of zero 

charge is more positive than the formal potential of -0.217 V. This is unexpected for a 

bare Bi surface where much more negative potentials of zero charge have been 

reported30. However near the formal potential for Ru(NH3)6
3+, the Bi surface is 

covered with a thin oxide film. Ex-situ photoemission spectra show direct evidence for 

the oxide (figure 5.11a) and for the presence of adsorbed Cl- (figure 5.11b).  

 

Figure 5.11. Ex-situ photoemission spectra of Bi electrodes emersed from 0.1 M NaCl(aq) electrolyte.    
(a) Bi 4f spectra and (b) Cl 2p spectra. 

The Cl2p binding energies of 198.5 eV (2p3/2) and 200.2 eV (2p1/2) are assigned to 

the -1 oxidation state, i.e., chloride, and are consistent with the 2p3/2 data for NaCl 

(198.3eV)158. The Bi 4f binding energies of 159.4 eV (4f7/2) and 164.7 eV (4f5/2) are 
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much closer to those observed for pure Bi2O3 and Bi2O3 films on Bi (160.1 eV,     

165.4 eV) than they are to elemental Bi (156.9 eV, 162.2 eV).146 Adsorbed Cl- anions 

explain the negative values of φ2 and are consistent with the discussion of the 

impedance data at varying ionic strength. 

5.5 Conclusions 

The electrode kinetics of the reduction of Ru(NH3)6
3+ at polycrystalline Bi electrodes 

in aqueous solution have been analysed by impedance spectroscopy. The rates were 

much slower than at Pt electrodes because of the presence of a thin oxide film at 

potentials in the vicinity of the formal potential of the couple. Differential capacitance 

and ex-situ photoemission spectra provide evidence for the presence of the thin 

oxide layer, in the order of 1.5 nm on the Bi surface near the formal potential of           

-0.217 V vs Ag/AgCl/1 M KCl(aq). Despite the presence of this oxide, reproducible 

impedance spectra near the formal potential were obtained for Bi/Ru(NH3)6
3+ that 

could be analysed using a Randles circuit modified to incorporate a constant phase 

element. 

 The value of standard rate constant corrected for diffuse layer effects was                 

1.47 ± 0.44 x 10-3 cm s-1. Under the same conditions, impedance spectra for 

Pt/Ru(NH3)6
3+ were reversible up to the highest frequencies (105 Hz) employed.  It is 

therefore safe to state that the voltammetric behaviour of Ru(NH3)6
3+ at Bi is that of 

an uncomplicated outer-sphere electron transfer and impedance spectra were 

obtained over a range of dc potentials from -0.1 to about -0.35 V and at electrolyte 

concentrations from 0.01 M KCl to 0.5 M KCl(aq). 

The charge transfer resistances obtained from the impedance spectra were fitted by 

a new method in which the regression model allowed estimation of the transfer 

coefficients at each dc potential without any a priori assumption about the potential 

dependence of the transfer coefficient. This procedure may be generally useful for 

heterogeneous electrode kinetics investigations, because precise values of transfer 

coefficient (uncertainty 1% or better) are obtained as long as the electrode remains 

immersed in the electrolyte during the experiment. 

The measured transfer coefficients showed clear evidence of diffuse layer effects, but 

in addition an increase in transfer coefficient at the most negative potentials studied 
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was observed and interpreted in terms of the reduction and thinning of the anodic 

oxide. In the particular case of Ru(NH3)6
3+ reduction at Bi, the potential dependence 

of the transfer coefficient can be interpreted in terms of two factors: (i) the well-known 

diffuse layer contribution arising from the Frumkin correction and (ii) the thinning of 

the tunnelling barrier due to reduction of the anodic oxide at negative potentials. 
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Chapter 6. Preparation and Characterization of Silver Nanoparticles 

(AgNPs) 

6.1  Introduction 

Silver nanoparticles (AgNPs) have found wide applications in a variety of products 

such as socks88,89, sports wears and wound dressings90-93 where they serve as 

antibacterials and inhibit unwanted odours. Silver nanoparticles have been 

incorporated in such consumer products as toothpastes and washing machine 

detergents.94 AgNPs are also adsorbed on the cellulose fibres of blotting paper to 

work as antibacterial water filters in water and waste water treatment.96-98 When 

these products are washed, the silver nanoparticles leach out and disperse in the 

waste water where they can release silver(I) ions.116 Although the only 

contraindication of high levels of silver in humans is argyria179, it is known to be very 

toxic to aquatic organisms that constitute the base of a series of food chains.180,181 

The action of AgNPs is partially related to the release of Ag(I) ions, therefore it is 

important to understand the factors that control the rate and extent of release of 

Ag(I). Although the electrode potential of the Ag/Ag(I) half-cell is high, about +0.8 V182 

it may be very substantially reduced by the complexation of Ag(I) or the precipitation 

of AgX salts. This can affect the release of Ag(I) ions in two ways: by facilitating the 

oxidation of AgNPs by dissolved O2 or by suppressing the Ag(I) concentration via 

solubility equilibria. Electroanalytical methods can determine low levels of Ag(I) in a 

straightforward manner, but in the present case care must be taken because the 

standard preparations of AgNPs may contain either excess Ag(I) reagents or traces 

of the reducing agent before any corrosion or release of Ag(I) from the NPs 

themselves. In this chapter a simple dialysis experiment is employed in order to 

resolve some of these issues. AgNPs were dialysed against a variety of electrolytes 

and pure water; Ag(I) was determined in the dialysate and aliquots of the sample 

were taken for analysis of the remaining AgNPs.  

Silver nanoparticles were synthesized by the method of Lee and Meisel118,  infused 

with and dialysed against various concentrations of chloride and sulphate salts to 

determine the effect of the medium on the release of Ag(I). The AgNPs were 

characterised by UV-Vis spectrometry, dynamic light scattering (DLS) and atomic 

force microscopy (AFM) while the concentration of Ag(I) ions released was monitored 
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by anodic stripping voltammetry (ASV). The chapter is organised in the following way: 

first the preparation of the various AgNP samples is described, followed by a brief 

overview of colloid stability. Next the changes in the AgNP optical spectra and 

particle size as a result of aggregation or corrosion during dialysis are discussed and 

finally we analyse the electrochemical data for the release of Ag(I) in the dialysate.  A 

flow chart that summarizes the procedure of the experiment is shown in scheme 6.1. 

 

Scheme 6.1. Schematic diagram of the dialysis experiment with silver nanoparticles. The NaCl- 
AgNPs did not however undergo absorption spectroscopic characterization. 

6.2   Preparation of Silver Nanoparticles 

The Creighton or sodium borohydride reduction method after Solomon et al 117 as 

well as the citrate reduction method of Lee and Meisel118 were both used in the 

preparation of silver nanoparticles. However, because of the relative instability of the 

AgNPs prepared by the Creighton method, the nanoparticles studied here were 
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synthesized by the citrate reduction and stabilization method fully described in 

chapter 2. 

Briefly, 18 mg or 0.018 g of AgNO3 was dissolved in 100 mL of nanopure water to 

give a 1.06 mM solution and brought to the boil. 2 mL of 1% tri-sodium citrate 

dihydrate, prepared by dissolving 0.1 g of the salt in 10 mL of nanopure water was 

added to the boiling mixture. A greenish-yellow sol was formed about seven minutes 

after the addition of the sodium citrate. The equation for the citrate reduction of silver 

nitrate is  

  2Ag+ + C6H5O7
3- → 2Ag + C5H4O5

2- +H+ + CO2   (6.1)  

 where C5H4O5
2- is the conjugate base of acetone dicarboxylic acid.119 Depending on 

the temperature, the oxidation may proceed further to acetone, or to formaldehyde 

and formic acid. The essential steps of the process are a Kolbe-type electrolytic 

decarboxylation (RCOO- -> R. + CO2 + e-) and oxidation of the radical R. to form the 

carbonyl group. AgNPs prepared by the citrate reduction of silver nitrate were 

relatively stable: they showed neither obvious aggregation nor colour change upon 

standing for about three months. 

Different electrolytes were added to the as-prepared dispersions of AgNPs in order to 

study the effect of the anions and their concentrations on the release of Ag(I) ions 

from the nanoparticles. In NaCl-AgNPs, three different concentrations of aqueous 

NaCl; 10 mM, 30 mM and 50 mM were used. 

For the 10 mM NaCl-AgNPs, 0.0584 g of sodium chloride (molecular mass 58.44 g 

mol-1) was measured and infused into 100 mL of the AgNPs while 0.5844 g/L of the 

NaCl(aq) solution was used as dialysate. In case of the 30 mM concentration, 0.1753 g 

of the salt was infused into 100 mL of AgNPs while 1.7532 g/L of solution served as 

the dialysate. In a similar vein, 0.2922 g of NaCl was weighed and incorporated into 

100 mL of AgNPs to give the 50 mM NaCl-AgNPs and 2.922 g/L of the NaCl(aq) 

solution was prepared and used as the dialysate. 

Only a 10 mM concentration of sodium sulphate, Na2SO4 was used to monitor the 

effect of sulphate ion on the release of Ag(I) ions from silver nanoparticles. This is 

because stripping peaks for Ag(I) ions could not be obtained even at this low 
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concentration beyond the 2nd fraction of dialysate in spite of increasing the deposition 

time to 300 s.  

Anhydrous Na2SO4, an ACS reagent of ≥99% purity and molar mass 142.04 g mol-1 

was purchased from Sigma Aldrich UK. 0.142 g of the salt was weighed and 

incorporated into 100 mL of silver nanoparticles. The dialysate was prepared by 

dissolving 1.4204 g of the salt in enough of nanopure water to give a one-litre 

solution. 

Stability tests on the AgNPs were made with optical spectroscopy using a Cary 100 

Bio UV-Vis spectrophotometer from Agilent Technologies, USA while their particle 

sizes were estimated by dynamic light scattering (DLS) and atomic force microscopy 

(AFM). 

It is to be noted that where applicable, the AgNPs were not washed prior to dialysis 

as cleaning would give a false picture of the concentration of Ag(I) released from the 

preparation into the environment. The dialysis process itself removes the free Ag+ 

remaining after the preparation. A simple wash would not suffice. It is also worth 

noting that Ag(I) is continually released by the AgNPs and therefore the dialysis 

process must be carried out continuously and the dialysate monitored for the [Ag(I)]. 

6.3   Characterization Techniques 

6.3.1 Ultraviolet-visible (UV-Vis) spectroscopy. 

UV-Vis spectroscopy is concerned with the difference in electronic energy states of 

molecules/nanoparticles upon excitation. When a molecule absorbs sufficient energy, 

an excited electron from an occupied orbital will jump to an unoccupied orbital. This 

transition often takes place between the highest occupied molecular orbital (HOMO) 

and the lowest unoccupied molecular orbital (LUMO) which correspond to the 

ultraviolet (UV) or visible (VIS) regions of the electromagnetic spectrum. The nature 

of the transition in metallic nanoparticles is different: the excited state responsible for 

the intense absorbance of AgNPs is a plasmon. The plasmon corresponds to the 

motion of the valence electrons with respect to the ion cores (Ag+). The displacement 

of the valence electrons results in a restoring force arising from the electrostatic 

interaction of the displaced electron density and the positive ions cores. Adsorption of 

light in metal particles sets up an oscillation that is often compared to the tidal motion 
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of the earth‟s oceans induced by the moon. In this analogy, the water of the oceans 

correspond to the valence electrons of the metal. The surface plasmon is the 

quantum of energy associated with the motion. Unlike the molecular case, where the 

absorbed photon causes a large change in the motion of a single electron by 

promoting an electron from HOMO to LUMO with minor effects on other electrons, 

the plasmon corresponds to the small displacement of all the valence electrons. The 

plasmon energy is sensitive to particle size; smaller particles give a blue-shift of the 

plasmon peak and larger particles or aggregates of smaller particles produce a red-

shift. 

The surface plasmon resonance (SPR) peak of the pure water AgNP preparation was 

observed at 445 nm and a peak absorbance of 0.76. This spectrum is presented in 

figure 6.1. 

 

Figure 6.1.UV-Vis absorption spectrum of pure water AgNPs before dialysis. 

After dialysis however, the surface plasmon peak wavelength was observed to 

decrease to 423 nm but the absorbance increased to 1.28. This is clearly observable 

in the spectrum of figure 6.2. 
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Figure 6.2.UV-Vis absorption spectrum of AgNPs after dialysis against pure water for 73 h. 

This hypsochromic effect (blue-shift) can be explained on the basis of a reduction in 

particle size due to corrosion of the AgNPs by dissolved O2. In a similar manner to 

quantum confinement, the plasmon energy increases with decreasing size.183 

The optical absorption spectra of the sodium chloride and Na2SO4-AgNPs however 

showed a red-shift in the surface plasmon band, indicating aggregation94,100,117,184-191 

of the nanoparticles and an increase in their effective size by interparticle coupling of 

the plasmons. This effect that is due to the sulphate ions is shown in figure 6.3.  

 

Figure 6.3.UV-Vis absorption spectrum of 10 mM Na2SO4-AgNPs before dialysis run 1 with a peak 
wavelength of 420 nm and a peak absorbance of 1.06. 

6.3.2 Colloid stability and aggregation 

Aggregation of AgNPs may be understood on the basis of the DLVO theory of colloid 

stability.192 Essentially, the DLVO theory presupposes that the total potential energy 

of interaction of charged colloidal particles in an electrolyte is the sum of an attractive 
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van der Waals force and the repulsive electrostatic force arising from the overlap of 

double layers between them. For agglomeration to take place, the maximum energy 

barrier called the primary maximum must be overcome. The DLVO potential V(s)190 

comprises an attractive van-der Waal‟s interaction and a repulsive electrostatic 

interaction which arises from the double layers of the two particles (or a particle and a 

surface). In general V(s) is complex and geometry-dependent, but for the purposes of 

this chapter it is enough to represent it as the sum of these two terms: 

   elecs VvdWV                                                              (6.2) 

In which the separation s is the distance between the points of closest approach of 

the particles (s = r-2a), r is the centre-centre distance and a is the particle radius. The 

van-der Waal‟s interaction depends inversely on separation (   
 

   
) and the 

Hamaker constant AH. The dependence on separation is weaker than for interactions 

between atoms because the interaction is summed over pairs of atoms in the volume 

of each particle. The Hamaker constant AH can be evaluated from equation 6.3 in 

which C is the coefficient appearing in the atom-atom interaction, e.g., for the van der 

Waal‟s interaction potential,      
 

   and ρ is the atomic number density. 

                            (6.3) 

Its value is a characteristic property of the material comprising the colloidal particles. 

For AgNPs, the Hamaker constant for Ag in water has been estimated to be          

3.35 X 10 -19 J.193 The electrostatic term Velec depends on the inverse of the Debye-

Huckel screening function κ which in turn depends on the ionic strength, I of the 

solution. This part of the theory accounts for the effect of inert salts on the 

aggregation of the colloids. k is given by equation 6.4 in which   stands for the 

permittivity of the medium which in this case is NaCl(aq) and may be taken as that of 

water, i.e., 78.5 x εo where εo = 8.854 x 10-12 F m-1, the vacuum permittivity. k is the 

Boltzmann constant. 
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The ionic strength is nowadays defined in a dimensionless manner as 
i o
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where zi  is the charge number of ion i, ci  is the concentration of ion i in mol dm-3 and 

the standard concentration co = 1 mol kg-1 . In aqueous media at 298 K, where the 

density is close to 1 g cm-3, co = 1 mol dm-3. The factor of 1000 arises from a unit 

conversion between dm3 and m3. Depending on the value of κa, there are two cases 

illustrated in figure 6.4. κa << 1 corresponds to relatively thick double layers around 

the particles and a large potential barrier that maintains the separation of the 

particles. In the contrary case, the double layers are relatively thin compared to the 

particle radius a and a new feature appears – the shallow secondary minimum into 

which aggregation is reversible (known as flocculation). 

      

Figure 6.4.Interparticle interaction potential according to the DLVO theory for two identical spherical 
particles.  

In summary, the stability of AgNP sols is favoured by high particle charges and low 

ionic strength media. In the absence of other effects, the dialysis of AgNP sols should 

result in lower ionic strength and favour stability of the dispersion. However, corrosion 

and other chemical processes can strongly affect the particle charge. 
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6.3.3 Dynamic light scattering (DLS) 

As discussed in Chapter 2, dynamic light scattering measures the hydrodynamic size 

of the particles and not directly their physical sizes. This implies that the diameter 

measured by this technique may include the hydration layer for pure water AgNPs or 

the adsorbed anions in the aqueous NaCl and Na2SO4 preparations of AgNPs as well 

as any ligands bound to the particle surface during the preparation. In general, it is 

expected that DLS will estimate larger particle sizes194,195 than other size 

measurement techniques (AFM, SEM, XRD/Scherrer analysis) which are mainly 

sensitive to the metallic Ag core of the particles. However, this is not always the case 

because local heating effects and multiple scattering can cause DLS to 

underestimate the hydrodynamic diameter. While the method has advantages of 

simplicity, quick measurements as well as the ability to access a large quantity of 

particles194,196, DLS may be ineffective in distinguishing between particles of varying 

sizes. In a mixture of small and large particles, the intensity of scattering by the small 

particles may be overwhelmed by that from the larger ones because scattered 

intensity depends on diameter197 D as D6. It is also worth noting that DLS may suffer 

artefacts at low apparent hydrodynamic diameter because of impurities in the 

solutions or indeed any extraneous source of scattering. 

There is a general increase in mean sizes of nanoparticles as measured by DLS 

before and after dialysis. While the increase in diameter from 31.1 nm to 34.2 nm 

may be regarded as marginal for pure water AgNPs, the difference is pronounced in 

the NaCl-AgNPs signifying the effect of the medium on the extent of aggregation. 

This increase of nanoparticle sizes as influenced by different media and exposure 

over a long period of time has been reported by other researchers94 in the field. The 

DLS analysis data of pure water AgNPs before and after dialysis are shown in figure 

6.5 and figure 6.7. 
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Figure 6.5. DLS analysis of pure water AgNPs before dialysis showing particles with a mean diameter 
of 31.1 nm and a PDI of 0.26. The peak for particles at size 1-10 nm is probably an artefact resulting 
from impurities or other extraneous scattering sources, while the lower intensity of 30% is for particles 
of sizes ranging from 10-100 nm. 

Plots with multiple peaks indicate presence of both isolated and aggregate particles, 

the latter appearing at longer wavelengths. A clearer picture of this is presented in 

the analysis histograms of Figure 6.6, where PdI refers to polydispersity index (see 

equation 2.25). 

 

Figure 6.6. DLS analysis histogram of pure water AgNPs before dialysis showing the size ranges of 
the isolated and aggregate particles. 

Similarly, the particle size distribution of the pure water nanoparticles after dialysis is 

as shown in figure 6.7. 

PDI 0.26 
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Figure 6.7. DLS analysis of pure water AgNPs after dialysis. They are more populated with particles 
about 100 nm in size with a light scattering intensity of 79%. 

A histogram of the distribution is also presented in figure 6.8. 

 

Figure 6.8. DLS analysis histogram of pure water AgNPs after dialysis with a PDI value of 0.72 
indicating that the particles are highly polydisperse.  

The increase in particle sizes in NaCl-AgNPs is more pronounced than what has 

been observed in pure water silver nanoparticles, the effect being due to the added 

ligand and this increases with concentration. Data for the silver nanoparticles infused 

with 10 mM NaCl are presented in figure 6.9. 

PDI 0.72 
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Figure 6.9. DLS analysis of 10 mM NaCl-AgNPs particles before dialysis with diameter of 102 nm and 
polydispersity index of 0.50. 

Particles of size 100 nm and above are clearly in excess in this mixture, with a better 

picture of the scenario presented in figure 6.10. 

 

Figure 6.10. DLS analysis histogram of 10 mM NaCl-AgNPs before dialysis. 

A summary of the size measurement data as obtained by DLS is presented in table 6.1. 

 

Table 6.1. Summary of DLS data on particle sizes for pure water and NaCl-AgNPs. 

PDI 0.50 
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From the table, it can be observed that there is a general increase in polydispersity 

with increasing concentration of NaCl as well as aggregate sizes, and this trend has 

been reported elsewhere198 with sizes of up to 700 nm. The data, especially size 

distributions (see figure 6.9) strongly suggests that the presence of aggregates is 

responsible for the apparent increase in mean particle diameter with dialysis. 

6.3.4 Atomic force microscopy (AFM) 

Alongside DLS analysis of particle size, AFM measurements of drop cast aliquots of 

AgNPs were also performed as an independent check because of the well-known 

limitations of DLS mentioned at the start of section 6.3.2. AFM measurements 

involved drop casting 2 µL of sample on Si wafer which had been cleaned with acid 

piranha solution (3:1 mixture of concentrated sulphuric acid and hydrogen peroxide), 

rinsed with nanopure water and dried with a stream of nitrogen gas. The aliquot was 

then left on the substrate to dry after which straightforward AFM images (tapping 

mode) were made to estimate the particle sizes from both height and diameter as 

described in figure 6.11. 

 

Figure 6.11. Schematic diagram of the AFM measurement of AgNPs. The blue circles represent individual 
AgNPs and the curves with arrows indicate the path of the AFM tip as it passes over the sample (ignoring 
the tapping motion for simplicity). (a) Samples comprising well-separated AgNPs give roughly the same 
particle size whether it is obtained from the height of the feature or its lateral dimension (denoted diameter). 
(b) If monolayer islands of AgNPs form on the surface, the feature height will roughly match the diameter 
from DLS, but the feature diameter will be much larger. (c) The formation of clusters of AgNPs is also 
possible and this will result in feature heights larger than individual particle diameters and possibly larger 
than DLS sizes. 
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As can be seen in figure 6.11, interpretation of the AFM images requires a 

consideration of the form in which the AgNPs lie on the surface. In general, we find 

much larger diameters of the features than heights, but the heights are in rough 

agreement with DLS – this is consistent with monolayer island formation as AgNPs 

aggregate during deposition in the manner of figure 6.11 (b). 

As earlier reported in chapter 2, imaging was done in the tapping mode and the 

images obtained therefrom were processed and analysed using Nanoscope TM 

software version 1.4. Apart from the standard flattening of the raw images in software 

to remove artefacts related to drift, all the images are presented as acquired. 

The sizes of particles in terms of both height and diameter were observed to 

decrease after dialysis for both 10 mM and 50 mM NaCl-AgNPs. Sample AFM 

images of the 10 mM concentration of AgNPs before and after dialysis, together with 

their grayscales and some line profiles are shown in figure 6.12. The rest of the data 

on particle sizes is summarized in table 6.2. 
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Figure 6.12. (A) AFM image of 10 mM NaCl-AgNps before dialysis (B) the line profile of 03 particles along 
the white line in A (C) 10 mM NaCl-AgNPs after dialysis and (D) a line profile along the white line in (C).The 
scale bars are as indicated on the images. The sample aliquot was drop cast on Si wafer that had been 
cleaned with acidic piranha solution, thoroughly rinsed with nanopure water and dried with a stream of 
nitrogen gas.  

Sample diameter histograms of the 10 mM NaCl-AgNPs are also presented in Figure 

6.13 to give a clearer picture of the size distributions of the particles before and after 

dialysis. 
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Figure 6.13. (A) Diameter histogram of 10 mM NaCl(aq)-AgNPs before dialysis showing 19 particles 
with a mean size of 451 nm and standard deviation of 385 nm. (B) Diameter histogram of 10 mM 
NaCl(aq)-AgNPs after dialysis showing 126 particles with a mean size of 199 nm and standard 
deviation of 102 nm. 
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The decrease in size is consistent with corrosion of the AgNPs. In spite of 

aggregation, nanoislands about 1 particle in height deposit on the AFM substrate of 

silicon wafer. The tip therefore recognizes the height of these islands as, on average, 

that of single particles. 

An unusual behaviour was however observed with the 30 mM NaCl(aq)-AgNPs  

which showed increases in size after dialysis. Sample images of this concentration 

are also shown in the figure 6.14 below. 

 

Figure 6.14. AFM images of 30 mM NaCl(aq)-AgNPs (A) showing single particles before dialysis and 
(B) aggregates after dialysis. The sample aliquot was drop cast on Si wafer that had been cleaned with 
acidic piranha solution, thoroughly rinsed with nanopure water and dried with a stream of nitrogen gas.  

This may be due to the adsorption of AgCl on the surface of the AgNPs. However, 

owing to repulsive forces between Ag+ as they go into solution, the sizes of the 

AgNPs decrease. Figure 6.14(B) clearly shows the presence of larger aggregates 

after drop casting on the Si substrate for AFM. 

Height histograms of the 30 mM NaCl(aq)-AgNPs as they indicate apparent increase 

in sizes is presented in figure 6.15. 
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Figure 6.15. (A) Height histogram of 30 mM NaCl(aq)-AgNPs  before dialysis showing 43 particles with 
a mean size 10.9 nm and a standard deviation of 2.7 nm. (B) Height histogram of 30 mM NaCl(aq)-
AgNPs after dialysis showing 09 particles with mean size of 135 nm and a standard deviation of 81.7 
nm. 
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A summary of results for AFM images of NaCl-AgNPs is presented in table 6.2 

 

Table 6.2. Summary of AFM data obtained for NaCl-AgNPs. SD is the standard deviation of the 
feature height (Ht) or of the feature lateral diameter (dia) in nm. 

The Na2SO4(aq)-AgNPs also showed a general decrease in size, both in terms of 

height and diameter as was the case with NaCl(aq)-AgNPs. The particles of 

Na2SO4(aq)-AgNPs are however much larger than those of the NaCl(aq)-AgNPs. 

This could be due to adsorption of sulphate ions on the surface of the AgNPs. The 

solubility product value of 1.4 X 10-5 at 25 oC as well as a standard reduction 

potential of 0.653 V for Ag2SO4 suggests that the Ag(I) ions have relatively low 

affinity for sulphate ions. This partly explains why a high concentration of Ag+ ions 

were released upon dialysis of the Na2SO4(aq)-AgNPs. 

The solubility product of AgCl is 1.8 X 10-10 at 25 oC and with a relatively low 

electrode potential for Ag/AgCl of 0.222 V, the interaction between Ag+ and Cl- is 

much stronger. 
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Sample AFM images of the Na2SO4(aq)-AgNPs are shown in figure 6.16. 

 

Figure 6.16. AFM images of 10 mM Na2SO4(aq)-AgNPs (A) before dialysis and (B) after dialysis; all 
with scan size of 4 µm and scale bars as indicated on the images. The sample aliquot was drop cast 
on Si wafer that had been cleaned with acidic piranha solution, thoroughly rinsed with nanopure water 
and dried with a stream of nitrogen gas. 

Diameter histograms of the 10 mM Na2SO4(aq)-AgNPs are also presented in figure 

6.17 to show the size distribution of the particles more clearly. 
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Figure 6.17. (A) Diameter histogram of 10 mM Na2SO4(aq)-AgNPs before dialysis showing 30 particles 
with a mean size of 254 nm and a standard deviation of 121 nm. (B) Diameter histogram of 10 mM 
Na2SO4(aq)-AgNPs after dialysis showing 42 particles with a mean size of 100 nm and a standard 
deviation of 25.1 nm. 
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A summary of AFM data obtained for Na2SO4(aq)-AgNPs is presented in table 6.3. 

 

Table 6.3. Summary of AFM data for 10 mM Na2SO4(aq)-AgNPs. SD is the standard deviation of the 
feature height (Ht) or of the feature lateral diameter (Dia) in nm. 

It is to be observed that in all cases of NaCl(aq)- and Na2SO4(aq)-AgNPs, the lateral 

diameters of the particles are larger than their heights. Although small differences 

between diameter and height could be attributed to tip dilation which brings about an 

extended diameter size199-202, the effects here are large and best understood in terms 

of aggregation of AgNPs on the Si substrates. The height is less influenced by tip or 

probe effects and related directly to the particle diameter in the case of island 

formation of AgNPs on the substrate. 

A comparison of the DLS data of figure 6.5 – figure 6.10 and the AFM images of 

figure 6.11 – figure 6.17 leads to the following conclusions: the size of individual 

particles reduces during dialysis in most cases. The mean particle size obtained from 

DLS typically increases; however this reflects aggregation of the individual particles – 

evidenced by the bimodal size distribution in DLS and the observation of height 

decreases in AFM, where AFM heights of particle islands match approximately the 

individual particle diameters. 

6.3.5 Anodic stripping voltammetry (ASV) 

The amount of Ag(I) ions released from the nanoparticles through the dialysis 

membrane was monitored by stripping voltammetry at glassy carbon, with 
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Hg/Hg2SO4 as reference electrode for an accumulation time of 30 s. The 

accumulation time was increased to 300 s for dialysate fractions in which a stripping 

curve was not observable after 30 s of pre-concentration time. In such cases, the 

signal was scaled by a factor of 10 to take account of the change in deposition time. 

Values of Ag(I) ion concentration were obtained using the baseline corrected 

calibration equation 6.5 obtained by standard addition measurements using 

AgNO3(aq) standards. 

 Qp = 0.00106[Ag(I)] – 0.00355 (R2 = 0.946)                              (6.5) 

Qp is the integral of the stripping peak in µC and [Ag(I)] is the Ag(I) concentration in 

µM.  

The calibration curve for this data is shown in figure 6.18. 

 

Figure 6.18. Baseline corrected calibration curve for stripping at AgNO3(aq). 

The result showed a substantial amount of 90 µM Ag(I) ions present in the initial 

nanoparticle preparation in the absence of any deliberately added electrolyte. After 

73 h of dialysis, about 4 µM of Ag(I) ions could be detected. Almost the same 

concentration of Ag(I) was observed in experiments with deliberately added 

NaCl(aq), irrespective of the concentration of chloride ions present. The 

concentration of Ag(I) ions in the dialysate from the experiments with pure water and 

NaCl(aq)-AgNPs is presented in figure 6.19. 
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Figure 6.19. Variation of [Ag(I)] with time of dialysis for four different sets of experiments to show the 
composition of the medium against which the sample was dialysed.  

An example of anodic stripping voltammogram from the calibration set is shown in 

figure 6.20. A linear baseline was subtracted from the ASVs and the data integrated 

numerically on a spreadsheet. 

 

Figure 6.20. Anodic stripping voltammogram for 20 μM AgNO3(aq) in 0.1 M NaNO3(aq). The data is 
presented as was acquired, before baseline correction. The Ag stripping peak is observed just below 
0.1 V and the scan rate was 1 V s

-1
. 

Examples of stripping curves that were integrated to arrive at the data of figure 6.21 

are shown below, for the 1st and 5th fractions of dialysates of 50 mM NaCl-AgNPs. 
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Figure 6.21. (A) Anodic stripping voltammogram for 1st fraction of 50 mM NaCl(aq)-AgNPs dialysate at 
glassy carbon. (B) Anodic stripping voltammogram for 5th fraction of 50 mM NaCl(aq)-AgNPs 
dialysate at glassy carbon. The data is presented as was acquired, before baseline correction. The Ag 
stripping peaks are observed just below 0.2 V and the scan rate was 1 V s

-1
. 

For Na2SO4(aq)-AgNPs, only two fractions of dialysates yielded stripping peaks as 

none was noticed even at the extended deposition time of 300 s. Baseline correction 

data from these fractions gave Ag(I) ion concentrations of 61.8 µM and 14.7 µM for 

the 1st and 2nd fractions respectively.  

Previous workers have used anodic stripping voltammetry to quantify Ag in NPs.203 

Complications in the analysis due to aggregation of the AgNPs and effects of the 

capping ligand were reported. In the experiments described in this chapter we took a 

different approach and aimed to measure the free Ag(I) in solution produced by 

corrosion of AgNPs under ambient conditions in various aqueous electrolytes. To 
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avoid issues related to oxidation of AgNPs and unreacted material (citrate) we 

employed a dialysis technique in which the dialysate was analysed by anodic 

stripping voltammetry. The data of figure 6.17 shows that, perhaps surprisingly, the 

concentration of dissolved Ag(I) is of the same order in the presence or absence of 

chloride. It might have been expected that Cl- would precipitate AgCl and therefore 

reduce the freely-dissolved Ag(I) concentration. In fact the data shows that at long 

durations, the concentrations of Ag(I) released are of the order of μM even in 50 mM 

NaCl(aq). The reduction in standard potential for Ag/Ag(I) in the presence of Cl- 

appears to compensate approximately for the reduced solubility of Ag(I) in chloride 

media. This result is of relevance to the fate of AgNPs in marine environments 

6.4   Conclusions 

From the findings carried out on silver nanoparticles, the following conclusions can 

be made: 

The surface plasmon resonance (SPR) of the AgNP sols was blue-shifted for pure 

water – AgNPs, suggesting corrosion and reduction in particle size. The SPR peak 

for Na2SO4 – AgNPs was red-shifted suggesting aggregation. 

Taken together, AFM and DLS data show that the AgNPs aggregate during dialysis 

and that the mean particle size appears to increase because of this. 

However, a more detailed analysis of the DLS and AFM data shows that the size of 

individual nanoparticles generally decreased with time of dialysis. 

The dialysis experiment shows the steady release of micromolar [Ag(I)] in the 

presence of up to 50 mM NaCl(aq) because of corrosion of the AgNPs. 

The concentration of chloride in a water sample has little influence on the release of 

Ag(I) from AgNPs. 

Presence of sulphates does not exert significant influence on the release of Ag(I) 

ions from a product or substrate. 
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Chapter 7. Conclusions and Future Work. 

The research work reported in this thesis is made up of two parts: the first part 

continues investigations with bismuth electrodes as possible replacements for 

mercury in electroanalyses because of their ease of preparation and relative the lack 

of toxicity of bismuth. The second part concerns the detection of Ag(I) ions released 

by corrosion of silver nanoparticles (AgNPs) in aqueous media, where anodic 

stripping voltammetry (ASV) at glassy carbon electrodes was used for the detection 

of Ag(I) ions released from AgNPs. Glassy carbon electrodes were preferred for this 

work as neither bismuth nor platinum electrodes were found to be suitable. 

Conclusions are therefore made on these two aspects separately.  

7.1 Bismuth Electrodes. 

Bismuth bulk electrodes (BiBEs) were used in this research to measure differential 

capacitance in aqueous and non-aqueous media as well as study the electroactivity 

of a variety of redox couples, as summarized below. 

7.1.1 Capacitance measurements. 

Electrochemical impedance spectroscopy (EIS) measurements showed that the 

potential dependence of the differential capacitance of Bi in aqueous electrolytes was 

complex. In particular a capacitance peak was observed near -0.6 V vs Ag/AgCl (1 M 

KCl) depending on the nature of the electrolytes (Cl-, Br-) and concentration. This 

peak was attributed to reduction of the anodic oxide formed at more positive 

potentials, but appears also to contain a contribution from adsorbed anions. 

Ex-situ photoemission spectroscopy was used to provide direct evidence of the 

presence of a thin oxide film at bismuth electrodes and of the adsorption of halide 

anions at the oxide surface. 

On the other hand, the low values of differential capacitance (<20 µF cm-2) in the 

non-aqueous electrolyte of AN/LiClO4 is as a result of the relatively low dielectric 

constant of AN as well as the weak adsorption capacity of the ClO4
- anion. This 

interface displays simple capacitance-potential curves that are approximately 

consistent with the Gouy-Chapman-Stern theory. However, the irregular variation of 

capacitance with concentration and frequency confirms that the bismuth and platinum 
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electrode surfaces are not ideal capacitors. These surfaces should therefore be seen 

to be behaving as constant phase elements (CPEs) or non-ideal capacitors.  

Next, several redox couples were studied by cyclic voltammetry with a view to 

selecting one or more for detailed analysis of the electron transfer rates at Bi 

electrodes in aqueous electrolytes. 

7.1.2 Anthraquinone-2-sulfonate (AQS)  

The data showed good CVs within the cathodic potential range of -0.2 V to -1.0 V for 

all the concentrations of 2 mM to 10 mM investigated. In terms of the cathodic 

potential criterion therefore, AQS can be said to qualify to be used as a redox 

mediator. However, at higher scan rates evidence of adsorption on the bismuth 

electrodes was observed and AC voltammetry indicated the simple cyclic 

voltammogram hides a more complex reduction process. 

Impedance spectra were also collected on this compound but the quality of the 

spectra was not good enough to be used for detailed kinetic studies and ruthenium 

hexaammine was the preferred choice. 

7.1.3 Cobaltocenium  

Cyclic voltammetry was used to study the CoCp2
+/CoCp2 couple in AN/TBAF6. The 

peak current ratio was found to be far less than unity just as the potential peak 

separation was about 130 mV. From these findings therefore, the CoCp2
+/CoCp2 

redox couple falls short of being recommended as a reference system at Bi based on 

the conditions for a one-electron transfer process. Bismuth electrodes were however 

used here successfully to confirm the quasi-reversible behaviour of cobaltocenium. 

 Estimates of standard rate constants (ko) were made from electrochemical 

impedance spectroscopy (EIS) measurements but the apparent values of the rate 

constant varied with concentration. The highest value of 1.39 x 10-3 cm s-1 was 

observed for the 2 mM concentration and the lowest value of 2.59 x 10-4 cm s-1 for 

the 10 mM concentration. Therefore the potential dependence of the rate of electron 

transfer in this compound cannot be reliably measured at bismuth electrodes and the 

electron transfer process appears more complex than an outer sphere reaction. The 



153 

 

decrease in apparent rate constant with concentration suggests an electrode fouling 

effect due to adsorbed reaction products. 

7.1.4 Methyl viologen  

Although methyl viologen has been previously studied19 in acetonitrile, its 

electrochemical behavior in aqueous media was not satisfactory. Cyclic voltammetric 

data showed failure of the plot of peak current against square root of scan rate to 

meet the standard criterion of a straight line for freely diffusing molecules. The 

symmetric shape of the reduction peak and the dependence of the impedance 

spectroscopy on concentration suggest strong adsorption of the products at Bi. There 

were also obvious signs of dimerization of the monocation MV+ as the product was 

observed to be irreversible and therefore electro-inactive. 

7.1.5 Ruthenium(III) hexaammine204 

The electrode kinetics of the reduction of Ru(NH3)6
3+ at polycrystalline Bi electrodes 

in aqueous solution have been analysed by impedance spectroscopy. The rates were 

much slower than at Pt electrodes because of the presence of a thin oxide film at 

potentials in the vicinity of the formal potential of the couple. Differential capacitance 

and ex-situ photoemission spectra provided evidence for the presence of the thin 

oxide layer, in the order of 1.5 nm on the Bi surface near the formal potential of          

-0.217 V vs Ag/AgCl/1 M KCl(aq). Despite the presence of this oxide, reproducible 

impedance spectra near the formal potential were obtained for Bi/Ru(NH3)6
3+ that 

could be analysed using a Randles circuit modified to incorporate a constant phase 

element. 

The value of standard rate constant corrected for diffuse layer effects was                  

1.47 ± 0.44 x 10-3 cm s-1. Under the same conditions, impedance spectra for 

Pt/Ru(NH3)6
3+ were reversible up to the highest frequencies (105 Hz) employed.  The 

voltammetric behaviour of Ru(NH3)6
3+ at Bi is that of an uncomplicated outer-sphere 

electron transfer and impedance spectra were obtained over a range of dc potentials 

from -0.1 V to about -0.35 V and at electrolyte concentrations from 0.01 M KCl to 0.5 

M KCl(aq). 

The charge transfer resistances obtained from the impedance spectra were fitted by 

a new method in which the regression model allowed estimation of the transfer 
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coefficients at each dc potential without any a priori assumption about the potential 

dependence of the transfer coefficient. This procedure may be generally useful for 

heterogeneous electrode kinetics investigations, because precise values of transfer 

coefficient (uncertainty 1% or better) are obtained as long as the electrode remains 

immersed in the electrolyte during the experiment. 

The measured transfer coefficients showed clear evidence of diffuse layer effects, but 

in addition an increase in transfer coefficient at the most negative potentials studied 

was observed and interpreted in terms of the reduction and thinning of the anodic 

oxide. Therefore in the reduction of Ru(NH3)6
3+ at Bi, the potential dependence of the 

transfer coefficient can be interpreted in terms of two factors: (i) the well-known 

diffuse layer contribution arising from the Frumkin correction and (ii) the thinning of 

the tunnelling barrier due to reduction of the anodic oxide at negative potentials. 

7.2 Silver Nanoparticles  

The importance of the study conducted on silver nanoparticles (AgNPs) relates to the 

fate of their release in the environment; AgNPs are now widely employed in many 

substrates for their antimicrobial activity. However, it is not clear what their eventual 

fate is nor how much Ag(I), the putative active agent is released. From our 

experimental findings, it is safe to conclude as follows: 

The surface plasmon resonance (SPR) of the AgNP sols was blue-shifted for pure 

water – AgNPs, suggesting corrosion and reduction in particle size. The SPR peak 

for Na2SO4(aq) – AgNPs was red-shifted suggesting aggregation. 

Taken together, AFM and DLS data show that the AgNPs aggregate during dialysis 

and that the mean particle size appears to increase because of this. 

However, a more detailed analysis of the DLS and AFM data shows that the size of 

individual nanoparticles generally decreased with time of dialysis. 

The dialysis experiment shows the steady release of micromolar [Ag(I)] in the 

presence of up to 50 mM NaCl(aq) because of corrosion of the AgNPs. 

The concentration of chloride in a water sample has little influence on the release of 

Ag(I) from AgNPs. 
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Presence of sulphates does not exert significant influence on the release of Ag(I) 

ions from AgNPs. 

7.3 Future Work 

The search for a possible replacement for mercury electrodes in electrochemical 

studies has not been concluded, and in consideration of the environmentally benign 

nature of bismuth, investigations at this semi-metal electrode surface could still be 

carried out on the aforementioned redox couples; with a variation of the experimental 

conditions and analytical techniques. 

There are other redox couples that have not been studied at bismuth and published 

in the literature. These could form virgin areas of research, with the hope to replacing 

mercury electrodes with their potential toxicity. 

In Nigeria where I am expected to put the knowledge and skills acquired in this 

training into practice, water treatment and purification is still a major challenge. 

Future work in this regard will involve the application of silver nanoparticles in the 

treatment and purification of potable drinking water. Research will also be conducted 

to find the suitability of other metal nanoparticles in water treatment, with emphasis 

on cost and effects on the environment upon discharge. 
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APPENDIX I: Glossary of Abbreviations. 

AAS  atomic absorption spectroscopy 

AC  alternating current 

ACS  American Chemical Society 

ACV  alternating current voltammetry 

AdSV  adsorptive stripping voltammetry 

AFM  atomic force microscopy 

AgNPs silver nanoparticles 

AN  acetonitrile 

AQS  sodium anthraquinone-2-sulfonate 

ASV  anodic stripping voltammetry 

SWASV square wave anodic stripping voltammetry 

B.E  binding energy 

BiBEs  bismuth bulk electrodes 

BiFEs  bismuth film electrodes 

CE  counter electrode 

CPE  constant phase element 

cps  count per second 

CV  cyclic voltammetry 

DLS  dynamic light scattering 

DLVO  Derjaguin, Landau, Verwey and Overbeek (theory of) 

DME  dropping mercury electrode 

DNA   deoxyribonucleic acid 

DOS   density of states 

DPV   differential pulse voltammetry 

ECM  electrocapillary maximum 

EIS  electrochemical impedance spectroscopy 

ESCA  electron spectroscopy for chemical analysis, another name for XPS 

GC  glassy carbon (electrode) 

HD  hexanediol 

HMDE  hanging mercury drop electrode 

HOMO highest occupied molecular orbital 

ICP-MS inductively coupled plasma-mass spectroscopy 
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ID  internal diameter 

IHP  inner Helmholtz plane 

IMFP  inelastic mean free path 

IUPAC International Union of Pure and Applied Chemistry 

K.E  kinetic energy 

LUMO  lowest unoccupied molecular orbital 

MIC  minimum inhibitory concentration 

MV  methyl viologen 

MWCO molecular weight cut-off 

NPs  nanoparticles 

OD  outer diameter 

OHP  outer Helmholtz plane 

PCS  photon correlation spectroscopy, another name for DLS 

PdI  polydispersity index 

PZC  potential of zero charge 

QELS  quasi-elastic light scattering, yet another name for DLS 

RE  reference electrode 

RTILs  room temperature ionic liquids 

RuHex ruthenium hexamine 

SEM  scanning electron microscopy 

SPR  surface Plasmon resonance 

SSR  sum of squared residuals (residual sum of squares) 

SWASV square wave anodic stripping voltammetry 

TBAPF6 tetrabutyl ammonium hexafluorophosphate 

UV-Vis ultraviolet-visible spectroscopy 

WE  working electrode 

XPS  X-ray photoelectron spectroscopy 

XRD  X-ray diffraction (analysis) 
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APPENDIX II: Symbols.  

AH  Hamaker constant 

Cd  differential capacitance of the double layer 

CO  concentration of oxidized species 

CoCp2  cobaltocene 

CoCp2
+ cobaltocenium cation 

CR  concentration of reduced species 

ΔEP or |Epa - Epc| peak potential separation 

Epa  anodic peak potential 

Epc  cathodic peak potential 

Eo  formal potential 

ipa  anodic peak current 

ipc  cathodic peak current 

ko  standard rate constant 

qm  charge on metallic electrode 

qs  charge in solution 

RCT  charge transfer resistance 

W  Warburg impedance 

Z  impedance 

Z‟ or ReZ real part of impedance 

Z‟‟ or ImZ imaginary part of impedance 

α  charge transfer coefficient 

 

 

 

 


