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Abstract 
 

Background: The discovery and subsequent characterisation of adult human-derived stem cells 

appears poised to help revolutionise the fields of regenerative medicine and tissue engineering, 

offering clinicians the opportunity to develop fully functional replacement tissues, alongside 

holding significant promise as next generation gene or protein delivery vehicles. Despite their 

apparent potential however, current stem cell-based therapeutics typically rely on delivering 

massive doses of cells to sites of injury in order to help ensure adequate cell survival in the 

highly detrimental microenvironments presented by damaged and degrading biological 

material. In order to produce the cell numbers required for these types of treatments, relatively 

modest donor cell populations are subjected to extended periods of in vitro expansion, within 

highly regulated GMP culture conditions. One crucially important aspect of this manufacturing 

framework is the requirement for xeno-free expansion systems, including the use of serum-free 

culture medium. Unfortunately, whilst a number of functional serum-free media formulations 

are commercially available at the present time, their proprietary nature makes them both highly 

expensive and wholly unsuitable for use in academic research. 

 

Aims: The goal of this project is to begin development of a characterised cytokine-

supplemented serum-free medium formulation using a design of experiments-based 

methodology.  

 

Methods: Primary bone marrow-derived mesenchymal stromal cells (BM-MSCs) were 

isolated, characterised and used to screen a series of selected cytokines and growth supplements 

for their ability to successfully support cell proliferation and continued survival in the absence 

of serum. Cells cultured in the resultant serum-free formulation were then compared to those 

grown in conventional medium in regard to genetic, metabolic and morphological factors. In 

addition, the impact of batch-to-batch variability on BM-MSC growth and metabolic activity 

was assessed as a means of determining the potential impact of raw material variation on cell 

quality and any related manufacturing processes. Finally, a number of different extracellular 

matrix proteins were also screened for the purpose of mediating cell-surface interactions in 

serum-free conditions. 
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Results: We successfully identified a cytokine supplemented medium preparation capable of 

supporting the proliferation of BM-MSCs during serum-free culture. Evaluation of cells 

expanded in this medium provided evidence of altered secretory and genetic characteristics 

leading to shifted therapeutic potential. Furthermore, the identification of a combination of 

different extracellular matrix proteins able to enhance cell adhesion in the absence of serum 

served to provide the beginnings of a complete serum-free formulation. In addition, FBS batch 

variability was shown to have significant effects on cell proliferation and gene expression, 

including a number of genetic markers linked to differentiation potential and lineage 

specificity.  

 

Conclusions: We offer a new serum-free medium formulation for use in the expansion of 

primary BM-MSCs, alongside providing evidence of the impact of raw material variability on 

the therapeutically relevant characteristics of these cells.  
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1 Chapter 1: Introduction and Literature review 
 

1.1 Regenerative medicine 
 

1.1.1 A strategy of regeneration and repair 

 

Regenerative medicine is a multidisciplinary field combining together aspects of cell biology, 

genetics, engineering and biomaterials research in order to help repair and replace damaged 

and degrading tissues and organs. Unlike more conventional approaches, treatments utilising 

this type of strategy often seek to regenerate defective tissues through the application of novel 

biological or composite bio-synthetic constructs. Of all the various medicinal approaches 

typically encompassed under the banner of regenerative medicine, stem cell biotechnology 

represents one of the most highly publicised and potentially most promising. Stem cells are 

undifferentiated precursor cells which have the ability to transform into any one of a number 

of specific lineages, as defined by both their tissue of origin and genetic plasticity. Three 

primary sub-types of stem cell are commonly discussed in the relevant scientific literature; 

namely embryonic, foetal and adult, each of which is known to have its own specific set of 

therapeutically pertinent characteristics, as discussed further in section 1.2. Together with stem 

cells themselves, many regenerative approaches also utilise biomaterial scaffolds in the form 

of bio-synthetic constructs in order to provide enhanced therapeutic activity and mechanical 

stability, particularly within the dynamic environments presented by the human body. Such 

therapeutic strategies are not limited to use in regard to stem cells alone however, with various 

terminally differentiated somatic cell types such as fibroblasts, keratinocytes and a range of 

different immune cells, having also been utilised in order to treat damaged and degraded tissues 

in a regenerative manner (1, 2).  

 

1.1.2 The current state of the sector 

 

Since the early 1990s the tissue engineering and regenerative medicine sector has seen 

considerable growth, particularly following the advent of modern stem cell-based technologies 

(3). As of 2007 approximately 50 individual firms were recognised as supplying commercial 

regenerative products and services, generating an estimated 1.3 billion US dollars’ worth of 

sales annually (4). More recent figures have suggested that the top 20 regenerative medicine 
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companies around the world saw 40% growth in 2010 (5). Unfortunately, not all the associated 

statistics appear to be so positive, with annual sales of three of the highest profile regenerative 

treatments; namely Apligraf, Dermagraft, and Carticel, barely breaking even since their 

approval (4). Despite this, growth in the sector is predicted to continue, with the global market 

value of the industry projected to reach approximately 30 billion US dollars by 2022 (6). 

Between 2016 and 2022 the North American, European and Asian-Pacific regions are 

forecasted to see compound annual growth rates (CAGRs) of 32.5%, 31.2% and 39.9%, 

respectively (6). In terms of investment within the sector, the primary sources of funding appear 

to be almost exclusively derived from public and charitable organisations, which were 

estimated to have donated approximately £38 million and £200 million respectively in the UK 

alone between the years of 2003 and 2009 (7). Overall these figures seem to suggest that there 

is currently significant support for the regenerative medicine sector and that commercial 

investment within the industry could potentially lead to healthy returns in the not-to-distant 

future. 

 

1.1.3 Product development and regulatory approval 

 

Medicinal product development is a highly complex process, being made up of a series of 

distinct sub-stages, including initial research, pre-clinical studies, clinical trials, marketing 

approval and finally post-marketing follow-up. Underlying this process are a series of region-

specific regulatory bodies, who seek to ensure that products marketed within the scope of their 

influence maintain the highest possible production and safety standards, through the 

enforcement of specific sets of accompanying legislation.  Whilst a large range of such 

regulatory agencies exist throughout the world, here we will concentrate solely on two of the 

most sizable; namely the United States Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA).   

The FDA is responsible for the ensuring the safety and efficacy of all medicinal products 

entering the US marketplace, including potential regenerative therapies. Companies intending 

to apply for marketing approval for an advanced therapy medicinal product (ATMP) must first 

apply for classification of their invention, before continuing on through a strictly regulated 

process of pre-clinical and clinical testing. In order to begin clinical studies, the companies 

involved are required to file an investigational new drug (IND) application, detailing the 

specifics of their proposed trials together with the results of their work so far; commonly 
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including the findings of studies involving the use of animal-models. Following the multi-stage 

clinical trial process; generally made-up of three distinct phases (safety, efficacy and 

comparative performance), the parties involved may file for a license to market the product. 

As previously alluded to, the nature of this license is decided upon during product 

classification, with most stem cell-based products requiring a biologics license application 

(BLA) to be submitted prior to release. It should be noted, that the primary mechanism involved 

in the therapeutic activity of a given product is typically used as the deciding factor during its 

regulatory classification. Furthermore, those therapies that involve the use of cellular materials 

are always deemed to be primarily biological in nature, regardless of the importance of any 

additional elements. 

In Europe, the process of regulatory approval can appear somewhat more complex. Whilst the 

EMA is the primary agency responsible for this jurisdiction, each individual member state 

within the union has its own National Competent Authority (NCA); such as the Medicines and 

Healthcare Products Regulatory Agency (MHRA) in the United Kingdom for example. In 

addition, there are three separate methods through which products may be submitted for 

European-wide approval, namely the centralised, decentralised and mutual recognition 

procedures. ATMPs, including stem cell-based products, must be submitted for evaluation via 

the centralised procedure alone, potentially resulting in them being granted a single marketing 

authorisation which is valid in all EU member states; alongside a number of additional 

countries. Despite these differences however, the basic developmental process remains the 

same in both the US and the EU, with those companies wishing to enter a product into clinical 

testing requiring regulatory approval from the NCA under which the studies will be carried 

out. 

Finally, it should be noted that the process of regulatory approval is an extremely costly one, 

with marketing license applications alone costing anywhere upwards of £250,000 depending 

upon the region for which they are sort. Additionally, both pre-clinical and clinical trials can 

be considered prohibitively expensive to undertake, with an estimated twenty-five billion US 

dollars having been spent on clinical trials in the US alone during 2006 (8). As a result, a great 

deal of planning and forethought is required before any such studies can be undertaken, 

stressing the need for early contact between manufacturing companies and the appropriate 

regulatory bodies. 
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1.2 Stem Cells 

 

1.2.1 Embryonic stem cells 

 

Embryonic stem cell or ESC is a term used to describe a group of cells derived from the inner 

cell mass (ICM) of the mammalian pre-implantation blastocyst, as shown below in figure 1.1 

(9). If allowed to implant into the uterine wall this structure would eventually develop into the 

foetus, with the surrounding trophoblast becoming the placenta (10). Consequently, ESCs 

consistently display pluripotent behaviour, meaning that they are able to be differentiated into 

any non-placental cell type (11). In addition, the embryonic origins of these cells afford them 

seemingly unlimited proliferative potential due to their high telomerase activity maintaining 

telomere length and allowing them to remain essentially refractory to the effects of replicative 

senescence (12). 

 

 

Figure 1.1 The human pre-implantation blastocyst (206) 

ESCs are derived from the inner cell mass, a structure that would typically go on to form all of the non-placental 

tissues constituting a human foetus following endometrial implantation. The surrounding trophoblast would then 

go on to form the majority of the placenta. 
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As a result of their unique characteristics, ESCs have garnered considerable interest within the 

field of regenerative medicine, where a seemingly limitless supply of pluripotent material could 

be effectively utilised to treat a whole host of diseases by means of tissue replacement. To date 

ESCs have been utilised in clinical trials related to a broad range of indications, including Type-

1 diabetes, spinal cord injuries, macular degeneration and Stargardt’s macular dystrophy (13, 

14, 15) with promising early-stage safety and efficacy data having been reported. Furthermore, 

it has been shown that the therapeutic potential of these cells isn’t limited to the production of 

populations made up of a single cell type or the regeneration of only the most basic tissues. 

Recently, groups such as Sharon et al (2011) and Spence et al (2011) have demonstrated that 

ESCs can both differentiate into dedicated organizer cells and possess inherent self-

organization potential enabling the manufacture of complex three-dimensional structures (16, 

17). Given the findings of Jukes et al (2008) who reported bone formation via endochondral 

ossification following chondrogenic differentiation, such complex tissues could seemingly be 

produced using a single ESC line in a manner mechanistically equivalent to their generation 

during the natural developmental process (18). 

Despite these reassuring results, one of the most prominent concerns when utilising ESCs in 

the aforementioned manner stems from their two most attractive properties and the inherent 

similarity to cancer stem cells these characteristics confer. Due to the combination of their 

proliferative potential and pluripotency, teratomas are known to arise following the in vivo 

application of undifferentiated ESCs (19). Whilst these tumours are typically benign in nature, 

the potential for them to interfere with normal biological functionality is acutely apparent. 

Unfortunately, despite researchers and clinicians utilising differentiated cells derived from 

ESCs rather than the parent cells themselves, small populations of undifferentiated cells are 

known to persist within these manufactured tissues. In order to combat this issue, a number of 

different strategies have been proposed, chief among them being the application of 

fluorescence-assisted cell sorting (FACS) technologies or chemical selection, either 

individually or in combination with other methods. For example, Kahan et al (2010) developed 

a multi-stage protocol for the removal of tumorigenic cells from ESCs differentiated towards 

endodermal lineages (20). Initially, undifferentiated and partially converted cells were removed 

using a magnetic bead-based sorting system, before the population was enriched for definitive 

endodermal cells on the basis of positive epithelial cell adhesion molecule expression (20). On 

the other hand, Ben-David et al (2013), screened 52000 different small molecules, eventually 

identifying 15 pluripotent cell-specific inhibitors labelled as PluriSIns, one of which was shown 
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to be capable of preventing teratoma formation following subcutaneous implantation of cells 

into mouse models (21). Despite the apparent success of both of these strategies, their 

incorporation into existing manufacturing processes raises specific questions relating to 

increased production times, cell manipulation requirements and chemical safety, alongside 

more general concerns regarding method validation specifications.  

In addition to their tumorgenicity, ESCs also suffer from the problem of being inherently 

immunogenic. Early in vitro investigations into the impact of allogeneic ESCs on recipient 

immune activation demonstrated a level of immune privilege, with ESCs unable to induce the 

proliferation of human peripheral blood lymphocytes (22). However, it appears that this 

apparent privilege does not hold true in vivo, where inflammation-mediated interferon-gamma 

(IFN-γ) release is thought to increase surface expression of major histocompatibility complex-

1 (MHC-1) molecules leading to immune activation (23). Whilst it has been proposed that 

transient immune suppression could be utilised to alleviate these issues, experiments using 

conventional immune suppressants in animal models have been unable to demonstrate grafted 

cell survival past 28 days (24). Furthermore, this type of approach could potentially result in 

significant increases in the risk of tumour formation, as cells are able to evade immune 

surveillance during this time and migrate to new regions in an unchecked manner (25). Whilst 

more complex methods of preventing ESC immune activation have been suggested, including 

the use of genetically modified hypoimmunogenic ESC lines capable of overexpressing a 

variety of immunomodulatory proteins, the aforementioned interaction with cell tumorgenicity 

remains a significant concern (26).  

Regardless of the myriad of issues affecting the direct therapeutic application of these cells, 

human ESCs still hold significant promise in the realms of drug screening and developmental 

modelling. Interestingly, the similarities between ESCs and cancer cell progenitors provides 

researchers with a unique opportunity to accurately model a variety of different cancer types 

and screen potential therapeutic agents in a safe and reproducible manner. Avior et al (2017) 

utilised human ESCs to develop a platform with which to study the impact of the 

Retinoblastoma-1 (RB1) molecule on intraocular tumour formation (27). Intriguingly, 

teratomas formed by RB1-null ESCs displayed neural expansions potentially linked to the 

neural tumour formation commonly seen to accompany retinoblastoma development in vivo 

(27). In much the same manner, the biological origin of ESCs and their ability to form embryoid 

bodies, which precisely mimic early developmental processes, makes them an invaluable tool 
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in the study of mammalian development, alongside screening for teratogenic compounds which 

could negatively impact embryogenesis in humans (28). 

Finally, it is impossible to discuss ESCs without drawing attention to the ethical debate 

surrounding their isolation and use. The moral and ethical aspects of utilising embryonic tissues 

are far too wide reaching to be properly examined here but typically include discussions 

regarding subjects such as the sanctity of life and the moral status of the human embryo (29). 

Rather than ignore the therapeutic and diagnostic potential of ESCs, many experts have turned 

their attention to the generation of artificial pluripotent cell populations, through methods such 

as somatic cell nuclear transfer (SCNT), cell fusion or targeted genetic reprogramming (30). 

Fortunately, whilst SCNT and fusion-based methods are plagued by efficacy and chromosomal 

number issues respectively, the genetic reprogramming of somatic cells to produce so called 

induced pluripotent stem cell (IPSC) populations has seen significant success in recent years.    

 

1.2.2 Induced pluripotent stem cells 

 

First produced by members of Shinya Yamanaka’s Kyoto research group in 2006, IPSCs are 

considered by many to represent an ethically and intellectually sound alternative to the use of 

ESCs in regenerative medicine and related fields (31). Initially, IPSCs were formed by 

introducing over 20 different specially selected genes into murine skin fibroblasts using 

retroviral vectors (32). In the years since, this procedure has been repeated using cells derived 

from a myriad of different organisms, including humans and refined to require the insertion of 

only four fundamental transcription factors; namely Oct4, Sox2, KIf4 and c-Myc (33). 

Much like their biologically-derived cousins, IPSCs are functionally pluripotent and able to 

divide almost indefinitely. As a direct result, many research groups have sought to utilise these 

cells as a means of replacing damaged or degrading tissues following in vitro differentiation, 

with significant overall success. For example, Cai et al (2017) reported the generation of 

functional regulatory dendritic cells from murine IPSCs, capable of inhibiting T-cell mediated 

immune activation through the secretion of transforming growth factor-β1 (TGF-β1), providing 

a promising method of creating a patient-specific immunosuppressant therapy for use alongside 

allograft transplantation procedures (34). This is far from the only such example however, with 

groups having demonstrated activities as varied as the production of functional hepatocytes 
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able to alleviate signs of liver damage in animal models to HSC generation for use in bone 

marrow reconstitution following diagnosis with Fanconi anaemia (35, 36).  

Since the creation of human-IPSCs, one question has continued to plague the field: just how 

similar to ESCs are these cells? Unfortunately, many of the issues associated with the 

therapeutic application of embryonic cells are relevant here also. Of utmost importance is the 

tumorigenic nature of IPSCs, which are capable to teratoma formation in vivo when 

undifferentiated cells are transferred alongside differentiated material (37). In addition, IPSC-

derived tissues have been shown to be highly immunogenic when utilised in an allogeneic 

manner. It has been suggested that the targeted knock-out of MHC class-2 related genes could 

be used to remedy this problem, as this modification would be inherited by any material 

generated from the undifferenced cells (38). Regrettably, this solution would almost certainly 

exacerbate concerns regarding the aforementioned tumour-generating characteristics of these 

cells, allowing them to effectively evade immune destruction and migrate throughout the body 

unchecked.  

Interestingly, despite unwanted similarities to the cells on which they are modelled, IPSCs are 

surprisingly different from ECSs as a result of their origins. Kim et al (2010) showed that 

IPSCs retain an epigenetic memory of their somatic origins which acts, not only to restrict their 

differentiation potential but also to preferentially differentiate them towards specific lineages 

(39). This is not the only aspect of these cells carried over from their ancestries however, with 

evidence suggesting that characteristics such as donor gender can impact upon cell behaviour 

(40). One possible explanation for these observations is that current IPSC production methods 

result in only incomplete or partial reprogramming of somatic cells. Surprisingly it appears that 

time in subculture may alleviate some of the genetic instability inherent to these cells, with 

cells appearing to take on a more fully realised ESC-like pluripotent state following longer 

periods in culture (41). Unfortunately, even this aspect of IPSCs seems to encounter 

inconsistency issues and is heavily influenced by donor-related characteristics (41).   

Much like ESCs before them, the real potential of IPSCs may reside in the area of disease 

modelling and drug screening. Unlike embryonic cells however, these cells can be created from 

the tissues of adult individuals enabling clinicians to create bespoke screening platforms 

specific to an individual’s own cellular or metabolic idiosyncrasies. This could be of particular 

value when applied to diseases for which there are no representative animal models, such as 

certain mitochondrial conditions which can have very different genetic underpinnings when 
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compared to their human counterparts (42). These facts have not been lost by the industry, with 

IPSCs having been used to manufacture models for close to 70 different diseases between the 

years of 2007 and 2014 (43). For example, IPSCs have been used to generate complex models 

of indications such as Parkinson’s disease (PD), which is known to occur in individuals with 

no known family history as a result of one of a number of inherited or de novo mutations (44, 

45). One such model produced by Su and Qi (2013), helped uncover a hereto unknown link 

between leucine-rich repeat kinase 2 mutations (LRRK2), aberrant autophagy mechanisms and 

PD onset in later life (46). 

One important criticism that has been levelled at the use of IPSCs in disease modelling is their 

genetic immaturity, which could impact on the accuracy of any resultant models. Despite this, 

it has been suggested that this characteristic of the cells could actually be of benefit when 

investigating neonatal conditions or developmental defects. Rett syndrome for example, is an 

autism spectrum disease which manifests in infants at between 6 and 18 months of age (47). It 

has been shown that human IPSC-derived neurons can be utilised to develop representative in 

vitro models of the condition, displaying many characteristics consistent with cells seen in the 

brains of affected individuals, including reduced spine density (48).  

 

1.2.3 Foetal stem cells 

 

Before discussing the characteristics of foetal stem cells, it is first important that we address 

their similarities to stem cells isolated from the tissues of adult individuals. In fact, the specific 

types of cells and their respective tissues of origin can be seen to accurately mirror those 

observed in adults. Of particular interest however are MSCs, a class of multipotent progenitor 

capable of differentiating into any cell type of mesodermal origin and which have been isolated 

from a multitude of different foetal and adult tissues (49). In order to prevent repetition and 

despite their relevance to the discussion at hand, a more detailed examination of the specific 

properties of these cells can be found in section 1.2.5, of which they are the sole focus. 

As previously mentioned, in spite of the of vast potential offered by both ESCs and IPSCs their 

primitive nature and lack of genetic stability has led to serious concerns over the safety of their 

use, particularly in relation to their potent tumorigenic properties. As a middle ground between 

the use of embryonic cells and cells of adult origin, many groups have examined the possibility 

of utilising stem cells isolated from foetal tissues due to their relative immaturity and the 
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enhanced proliferative and differentiation-related potential this might offer. To date, foetal 

stem cells have been isolated from a wide variety of different tissues, including but not limited 

to; amniotic fluid, amniotic membrane, umbilical cord blood, the umbilical cord itself and even 

the placenta (50). In addition, human first-trimester bone marrow, liver, and blood and second-

trimester bone marrow, liver, lung, spleen, pancreas, and kidney have all been shown to be rich 

sources of MSCs (51). Of all the sources presented here however, the umbilical cord and the 

blood contained within it represent the most extensively researched, likely due to the non-

invasive nature of the associated cell isolation practices and the fact that these materials are 

commonly discarded following childbirth. Not only have UCB-MSCs seen extensive testing in 

animals as discussed by Yadav et al (2012), they have also been involved in over one hundred 

different registered clinical trials in the UK alone between 2007 and 2016 (52). The variety of 

different indications for which they have been investigated is vast, ranging from 

neurodegenerative disorders such as Parkinson’s disease, to autoimmune conditions including 

type-1 diabetes and rheumatoid arthritis (53, 54). What makes these particular cells so attractive 

to researchers and clinicians alike, aside from the straightforward isolation procedures 

associated with them, are their enhanced therapeutic characteristics when compared to adult-

derived MSCs. For instance, Lu et al (1996) demonstrated that whilst the total number of UCB-

MSCs following long-term culture was lower than that of adult bone marrow-derived MSCs, 

umbilical cord cells were significantly more proliferative during the early stages of growth 

(55). Intriguingly this could mean that UCB-MSCs are perfect for use in small scale 

applications or as a component of so-called ‘minimally manipulated’ cell-based therapeutics.  

Given the apparent popularity of UCB-MSCs within the medical field, one could be forgiven 

for thinking that foetal stem cells derived from other tissues are in some way less important or 

of lower quality. This could not be further from the truth however, with recent research 

suggesting that a distinct subpopulation of placental MSCs seen to express elevated CD200 

and HGF secretion promote significantly improved angiogenesis together with increased 

immunosuppressive function in vivo when compared to maternal MSCs (56). In fact, a study 

done by Loukogeorgakis et al (2017) uncovered a population of CD117(c-kit)1 positive cells 

within amniotic fluid that was capable of generating functional cells from all three 

developmental germ layers, much like ESCs but with no apparent indications of tumorgenicity 

(57). Interestingly, the differentiation-related properties of these cells were linked back to the 

stage at which they were isolated, with early trimester cells displaying a more primitive 

phenotype and related lineage potential (57).  
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It is important to remember that MSCs are not the only foetal stem cell type currently of interest 

to researchers and clinicians. Foetal HSCs, a type of multipotent progenitor capable of 

differentiating towards any haematopoietic lineage, may also represent a potent new tool for 

use in treating human disease. This is made even more likely given the greater repopulating 

ability demonstrated by these cells when used to help reconstitute bone marrow, a characteristic 

attributed to the relative immaturity of the cells when compared to their adult counterparts (58). 

Given the apparent therapeutic potential of stem cells derived from foetal tissues, it would 

appear that research into the clinical application of adult human-derived stem cells would be 

unwarranted, unfortunately this is not the case. Of primary concern, is the poor isolation 

efficiency connected to many of the types of foetal stem cell described here. Many groups have 

reported that the maximum achievable isolation efficiency for MSCs from umbilical cord blood 

is only 65% and that this is only achievable through extensive manipulation, such as with the 

addition of various cytokines following targeted lymphocyte depletion (59). Some research 

groups have even reported that MSCs are as rare as to be undetectable in umbilical cord blood, 

seriously limiting the scope of their potential (60, 61). In addition, whilst the therapeutic 

application of these cells is not as controversial as is the use of ESCs, their utilisation is not 

free from ethical scrutiny, particularly when dealing with material that is directly foetal in 

nature and not part of the supportive structures necessary only during the developmental 

process.  

 

1.2.4 Adult stem cells 

 

As previously alluded to in section 1.2.3, foetal tissues are not the only available source of non-

embryonic human stem cells. In fact, an emerging body of evidence suggests that distinct 

populations of stem cells can be located in the vast majority of mature mammalian tissues and 

are likely associated with both homeostatic maintenance and repair of the surrounding material 

when damaged (62). As in section 1.2.3, it is important to note from the outset that the topic of 

MSCs will not be covered in this particular section and as a result of its relative importance 

and the vast quantity of literature available in regard to the subject, it will be discussed 

subsequently within its own self-contained section. 

Typically, adult stem cell populations differ from their foetal and embryonic counterparts in a 

number of ways, primarily in relation to their proliferative potential, abundance and lineage 
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specificity. For instance, HSCs derived from foetal tissues have been shown to survive and 

proliferate more effectively following transplantation than comparable adult cells, producing 

larger numbers and more varied types of progeny after engraftment (63). One potential reason 

for this improved survival rate could be the inherent differences in regard to the 

immunogenicity between foetal and adult cells, with the expression of both MHC class 1 and 

class 2 molecules seemingly negative in foetal HSCs and increasing to high levels in adult cells 

(64). In addition, while researchers are generally divided over the relative levels of expression 

of MHC class 1 in foetal and adult MSCs, this same distinction is readily observed in relation 

to MHC class 2 expression in bone-marrow derived MSCs (65). In fact, MSCs represent an 

excellent example of abundancy differences between adult and foetal stem cell populations, 

with one study having found that one in ten-thousand mid-trimester fetal bone marrow cells 

displayed MSC-like characteristics, compared to only one in every two-hundred and fifty-

thousand in adult tissue (65). 

Even in the face of these critical distinctions, one fact remains that highlights the importance 

of adult stem cells in modern tissue engineering; their accessibility. Being able to source 

populations of progenitor cells from almost any given adult tissue, each of which having 

lineage-specificity relevant to the tissue from which it was isolated opens up a surprisingly 

straight-forward avenue of targeted tissue repair in the form of autologous stem cell treatments. 

The concept is simple, identify and isolate a specific type of stem cell from a given patient, 

culture those cells in vitro in order to bolster their number and therapeutic efficacy, before 

finally transferring them back into the individual from which they were taken, at the site of 

injury (66). Importantly, this method circumvents concerns over immunogenicity and human 

leukocyte antigen (HLA) matching for readily apparent reasons.   One example of this type of 

strategy in action, is the use of limbal stem cells (LSCs) for the treatment of limbal stem cell 

deficiency (LSCD) resulting from trauma, immunological issues or genetic disease, which 

inevitably leads to opacification of the corneal surface and subsequent loss of vision (67). LSCs 

represent a type of specialised epithelial stem cell located in the corneal limbus, an area found 

between the border of the cornea and sclera, known to be responsible for maintaining and 

regenerating the ocular surface (68). On this subject, Dua and Azuara-Blanco (2000) reported 

stable corneal autograft incorporation alongside substantial improvements in vision following 

the treatment of six patients presenting with unilateral LSCD as a result of a variety of different 

root causes including alkali burns and intraocular neoplasia (69). One aspect of autologous 

limbal stem cell transplantation that must be discussed is the problem posed by bilateral LSCD, 
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for which this treatment cannot be applied due to a lack of suitable material (70). While it is 

not a commonly encountered issue for other forms of autologous stem cell therapy, it should 

be recognised that similar issues can inhibit the use of such strategies particularly when stem 

cell loss or dysfunction is the root cause of the associated indication, such as in cases of 

Duchenne muscular dystrophy or during instances of widespread bone marrow destruction 

(71). 

Alongside the use of LSCs, adult-derived neural stem cells (NSCs) have also seen success 

when utilised autologously. NSCs are generally characterised as multipotent progenitors 

located in the subventricular (SVZ) and subgranular zones (SGZ) of the central nervous system 

(CNS) and are capable of differentiating into any cell type belonging to the CNS (72,73). 

Whilst some groups have located NSCs outside of these regions, a consensus cannot be reached 

in regard to whether they permanently reside within these areas providing a source of localised 

neurogenic potential or had simply migrated there under specific physiological pressure (72). 

Regardless of this, autologous NSCs derived from the adult CNS have been shown on multiple 

occasions to help promote improved neurological function upon transplantation following in 

vitro differentiation or culture conditioning. For example, Levesque et al (2009) transplanted 

autologous NSC-derived dopaminergic and GABAergic neurons into the putamen of a 

symptomatic Parkinson’s disease (PD) patient via microinjection after a nine-month period of 

in vitro expansion (74). In their five-year post-operative follow-up study the group went on to 

describe significant increases in dopamine uptake within the engrafted regions at three-months 

post transplantation, leading to substantially improved motor function (74).  

One prospective issue that must be addressed concerning the autologous use of both LSCs and 

NSCs, is donor site morbidity. When sampling tissue for the purpose of cell isolation it is 

necessary to remove material from the donor-area, causing localised damage and leading to the 

need for subsequent activation of endogenous repair mechanisms. While this issue effects all 

manner of autologous cell therapies; whether utilising stem cell or non-stem cell populations, 

it is especially relevant here due to the sensitivity and biological importance of the donor sites 

in question. One method of alleviating this concern is to utilise cells isolated from an entirely 

different tissue in order to treat damage or degradation, as the autologous use of adult stem 

cells is not restricted to the tissues from which they were sourced. An example of this comes 

in the form of stem cells derived from dental pulp matter (DPSCs), which due to the ectodermal 

origin of dental tissues, are capable of neurogenic differentiation as well as having access to 

mesenchymal lineages (75, 76). As a result, these cells have been proposed for use in the 
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treatment of a variety of both orthopaedic and neurological conditions, such as the non-union 

fracture of long bones and Alzheimer disease, respectively (77, 78). 

The use of adult stem cells outside of their in vivo niche has been shown to have therapeutic 

benefits, as well as the aforementioned safety advantages. Together with neurogenerative 

conditions such as PD and Alzheimer’s disease, autologous NSC therapies have also been used 

to begin addressing the symptoms of Type-1 and Type-2 Diabetes, which are now known to be 

associated with impaired hippocampal learning and reduced cognitive function (79). The 

precise mechanisms underlying this relationship remain elusive but the discovery of an 

interplay between insulin activity and NSC neuronal differentiation resulted in the idea of using 

these cells to treat the primary symptoms of diabetes. In relation to this, Kuwabara et al (2011) 

transplanted autologous olfactory bulb NSCs into the pancreatic tissues of diabetic rodents 

following conditioning with a combination of Wnt3a ligand and an anti-IGFBP-4 antibody in 

order to promote increased cellular insulin secretion (80). Promisingly, the grafted NSCs were 

shown to have survived up to 10 weeks after transplantation and to have generated neurons 

capable of bioactive insulin secretion, resulting in reduced blood glucose levels (80).  

As previously alluded to, autologous strategies can be utilised to treat conditions only when a 

suitable source of cells is available. Unfortunately, differences in donor-related factors such as 

age, gender, medical status and genetic make-up can seriously impact upon the proliferative 

and differentiation potential of various stem cell populations. As a direct result, many 

researchers and clinicians along with the vast majority of commercial enterprises are now 

focussing on allogeneic stem cell therapies, in which cells taken from a single donor are used 

to treat large numbers of recipients following extensive in vitro expansion processes. 

The earliest example of such a strategy can be seen in the therapeutic use of HSCs, which were 

the first tissue-specific stem cells to be isolated and have been in clinical use since the early 

1980s (81). These cells are readily isolated from bone marrow and are characterised as 

multipotent progenitors capable of differentiating into any known myeloid or lymphoid cell 

type, including all associated oligopotent precursors as seen below in figure 1.2 (82). Since 

their discovery, HSCs have been commonly used in the treatment of a wide range of blood cell 

related disorders, including leukaemia. In fact, the ability of engrafted HSCs to entirely 

reconstitute destroyed bone marrow, has enabled clinicians to utilise radiotherapy and 

chemotherapy doses at myeloablative levels in their quest to eradicate cancer, without 

permanently impacting upon the health of their patients (83). In addition, the use of HSCs to 
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produce cancer targeting immunotherapies has also generated promising results, suggesting 

that these cells may potentially have a more diverse use than first thought (84, 85). 

 

Figure 1.2 The differentiation hierarchy of human hematopoietic stem cells (207) 

Human HSCs are capable of differentiating into all known myeloid or lymphoid cell types, via the production of 

oligopotent common myeloid progenitors (CLPs) and common lymphoid progenitors (CLPs), respectively. 

Intermediate megakaryocyte–erythroid progenitors (MEPs) and granulocyte-macrophage progenitors (GMPs) are 

also generated during this process.  

 

 

 

 



16 
 

1.2.5 Mesenchymal stromal cells 

 

MSCs were first isolated almost fifty years ago by Friedenstein et al from the bone marrow of 

guinea-pigs and were described as non-phagocytic mononuclear cells with fibroblastic 

morphology, capable of adhering to culture surfaces to form a monolayer (86, 87). In regard to 

their characteristics, MSCs are best described as multipotent progenitors with limited in vitro 

proliferative potential and the ability to differentiate into any known mesenchymal cell type 

(88, 89). As has been previously mentioned, accessibility is one of the primary benefits of 

utilising stem cells derived from mature tissues. MSCs exemplify this quality, being readily 

isolated from trabecular bone, synovial fluid, synovial membrane, adipose tissue, skeletal 

muscle, the lungs, the heart and the peripheral circulation (90, 91, 92, 93, 94, 95, 96). As a 

result of the diverse range of tissues that are known to harbour these cells, the International 

Society for Cellular Therapy (ISCT) outlined a set of minimal criteria for the positive 

identification of MSCs (97). Three fundamental characteristics are described in these 

guidelines; namely fibroblastic morphology and plastic adherence, surface marker expression 

and tri-lineage differentiation potential, with this final point referring to the cell’s ability to 

undergo directed osteogenic, chondrogenic and adipogenic differentiation in vitro (97, 98).  

Following their initial characterisation, it became clear that MSCs could potentially be used to 

help generate replacement musculoskeletal tissues for use in reconstructive or regenerative 

procedures. Of particular interest was the idea of replacing damaged articular cartilage, which 

lines the internal surfaces of synovial joints creating a smooth low friction surface over which 

the bones can move (99). This material tends to become damaged over time as a result of 

trauma, life-style associated problems and inflammatory conditions such as osteoarthritis but 

due to its avascular nature has very limited endogenous healing potential (100). In order to 

circumvent this issue, groups such as Ghezzi et al (2015), Hofmann et al (2006) and Huang et 

al (2004) have generated cartilage or cartilage-like tissues using MSCs seeded onto collagen, 

silk and agarose scaffolds respectively (101, 102, 103). These studies highlight a trend typical 

of orthopaedic stem cell application but also true within other areas of regenerative medicine, 

namely the use of cells in combination with biomaterial scaffolds. It is important to note that 

cells are exposed to a variety of biomechanical and chemical stresses when transplanted into 

sites of injury. The use of specially formulated biomaterial constructs in situations such as those 

mentioned above can act to protect sensitive biological material, whilst at the same physically 

stabilising the injury site and even enhancing cell proliferation or differentiation. One area in 
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which this type of complex Advanced Therapy Medicinal Product (ATMP) is necessary, is 

bone restoration following non-union fracture. To this end, Quarto et al (2001) were able to 

demonstrate successful repair of five-centimetre bone defects using hBM-MSCs seeded onto 

ceramic scaffolds (104). Similarly, Maiti et al (2016) reported the production of well-

mineralised woven bone following the use cytokine-impregnated silica-coated calcium 

hydroxyapatite (HASi) scaffolds seeded with BM-MSCs in a rabbit model of super-critical 

sized radial defects (105).  

Intriguingly, despite their mesenchymal origins, a large number of independent sources have 

demonstrated the ectodermal and endodermal trans-differentiation of MSCs. For instance, 

Tondreau et al (2008) together with Zeng et al (2011) reported that MSCs have the ability to 

produce functional neurones capable of generating ion currents when exposed to specific 

neurogenic agents, such as nerve growth factor (NFG) and insulin (106, 107). In terms of 

endodermal lineage commitment, MSC have been shown to be able to develop into type-2 

alveolar epithelial cells, hepatocytes and pancreocytes when exposed to properly conditioned 

media together with a variety of different growth supplements (108, 109). 

The therapeutic potential of MSCs isn’t limited to the generation of replacement tissues. In 

addition to their differentiation potential, these cells also secrete a vast array of different 

cytokines, chemokines, growth factors and regulatory agents (110). This secretome/sheddome, 

as it’s known, acts as a multifunctional system utilising a combination of paracrine, exosomal 

and microvesicle-mediated systems for agent release (111). In regard to the specifics of its 

activity, the MSC secretome is known to include proliferative and regenerative factors such as 

HGF, VEGF, SDF-1, bFGF and MCP-1 alongside immunomodulatory cytokines such as IL-

10, IL-1a, IL-6, IL-17, GM-CSF and TSG-6 (112,113). This means that when utilised in an 

undifferentiated state, MSCs have the potential to initiate endogenous repair mechanisms 

whilst also reducing inflammatory responses and modulating immune activation. 

One of the earliest examples of MSCs being utilised in this manner is in the treatment of 

ischemic cardiac tissues following myocardial infarction, for which the application of 

undifferentiated MSCs was shown to activate revascularisation through the secretion of factors 

such as VEGF and bFGF (114). Interestingly, this may not be the only mechanism through 

which these cells act to restore cardiac function in vivo. For instance, MSCs have demonstrated 

the ability to produce HGF, TGF-β, IGF-1, and stanniocalcin 1, all of which are known to be 

potent anti-apoptotic molecules capable of promoting cell survival in harmful ischemic 
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microenvironments (115,116). As well as their use restoring cardiac function, MSCs have also 

been suggested as a method of treating auto-immune diseases such as aplastic anaemia, which 

is characterised by the cytotoxic T cell-mediated destruction of haematopoietic precursors from 

the patient’s bone marrow (117). Pang et al (2017) conducted a phase two clinical trial 

assessing the efficacy of utilising BM-MSCs to help support HSC recovery through 

microenvironmental reconstitution and immune modulation (118). Seventy-four patients 

presenting with aplastic anaemia refractory to immunosuppressive therapy were treated with 

four weekly does of allogenic BM-MSCs, resulting in an overall response rate of 28.4% and 

over 85% of the recipients still alive at the 17-month follow-up point (118). While these results 

are not startlingly positive, they do appear promising in regard to both the efficacy and safety 

of this method of treatment. 

In addition to the characteristics detailed above, MSCs also exhibit two further therapeutically 

relevant features; namely their ability to home-in on sites of injury and disease, and their anti-

bacterial properties. The homing abilities of MSCs are mediated by conventional chemotactic 

principles, with factors such as MCP-1 and Chemokine C-C motif ligand-5 (CCL5) regulating 

MSC tumour-tropic behaviour (119). When combined with their trans-differentiation potential 

and secretory abilities, this property makes MSCs an attractive prospect when treating spinal 

cord injuries, where localised transplantation may cause additional damage. In a proof of 

concept study, Ohta et al (2017) utilised intravenously applied AD-MSCs in a rat model and 

reported functional recovery as indicated by improved hind-limb motor function (121). These 

findings were determined to be the result of localised cytokine-induced neutrophil 

chemoattractant-1 (CINC-1) release following gradual accumulation of the AD-MSCs at the 

injury site (120). As with their regulation of the mammalian immune system and endogenous 

healing mechanisms, the anti-bacterial properties of MSCs result from their complex secretory 

profile. In a study using equine cells, Harman et al (2017) identified four distinct anti-microbial 

peptides capable of damaging the cell walls of both gram-negative and gram-positive bacterial 

species, the production of which could reveal an additional means through which these cells 

are capable of contributing to wound healing and tissue repair (121). 

In the face of all the evidence listed above it could appear that MSCs represent a ‘magic-bullet’-

type therapeutic, capable of helping to treat numerous distinct conditions without any 

associated efficacy or safety concerns. Unfortunately, this is not the case, with issues regarding 

cell heterogeneity and donor/tissue-related inconsistencies seriously affecting their use. For 

example, Amable et al (2014) described different functional profiles of protein secretion from 
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MSCs isolated from Warton’s jelly (WJ-MSCs) as compared to adipose-derived cells (122). 

Specifically, AD-MSCs showed increased production of pro-angiogenic factors, whilst WJ-

MSCs were seen to produce higher concentrations of chemokines, pro-inflammatory agents 

and growth factors, suggesting the need to tailor the origin of a given cell population to the 

condition it is being used to treat. Further research has suggested that metrics such as donor 

age, gender and health status can significantly impact on MSC behaviour (123). One method 

of addressing this concern is to utilise allogenic cell populations in therapeutic applications 

rather than providing autologous routes of stem cell delivery. In this way, cells selected from 

healthy donors can be utilised to treat a vast number of individuals without the need to worry 

about the aforementioned inconsistencies or donor site morbidity concerns discussed in the 

previous section. In fact, MSCs lend themselves well to use as part of allogenic strategies due 

to their lack of MHC class-2 expression and immunomodulatory secretions (124). In addition, 

the use of model stem cell populations would potentially enable clinicians to culture specific 

sub-populations of cells derived directly from heterogeneous primary isolates. One such cell 

type; multipotent adult progenitor cells (MASCs), have demonstrated mesodermal, ectodermal 

and endodermal differentiation similar to that of MSCs but with enhanced proliferative 

potential, being capable of expansion for over 100 population doublings without observable 

telomere shortening or karyotypic instability (125). 

As a direct result of the therapeutic potential displayed by adult MSCs, their use has been the 

focus of a vast number of clinical trials in the past decade. According to Trounson and 

McDonald (2016) the National Institute of Health (NIH) database listed 374 registered trials 

involving MSCs in 2015, a three-fold expansion over the number listed in 2011 (126). 

Interestingly, the relative composition of these studies marks a shift towards to the use of 

allogeneic strategies within the industry, with ClinicalTrials.gov listing 56 ongoing trials 

utilising allogeneic MSCs in 2016 alone, whilst only 32 included autologous cells (127). 

Regardless of the preferred cell source however, one factor which continues to affect the 

clinical application of MSCs is the need to supply very large numbers of cells in order to 

guarantee survival following in vivo transplantation, a fact illustrated by the one-hundred 

million cells currently required to produce an effective therapeutic dose (128). In the next 

chapter, we will explore clinical and commercial cell culture strategies alongside the issues 

currently impacting upon their success.  
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1.3 Stem cell expansion processes 
 

As of 2015, only four stem cell-based advanced therapy medicinal products were recognised 

as having been approved across the globe (within their respective jurisdictions), with this small 

list including both autologous and allogeneic examples (129). Holoclar® for instance, involves 

the treatment of moderate to severe limbal stem-cell deficiency through the use of autologous 

LSCs and represents the first approved example of an ATMP within the European Union (EU) 

(130). Prochymal® on the other hand, utilises allogeneic BM-MSCs to treat Graft versus Host 

Disease (GvHD) in paediatric patients and was itself Canada’s first approved ATMP (131). 

Irrespective of the associated indication or cell source, one common problem encountered 

during the development of each of these examples was the requirement for extremely large 

doses of cells. This is particularly true of products such as Prochymal® which rely on systemic 

delivery, following which large quantities of cells have been shown to become trapped in the 

lungs (132). There are currently two distinct methods of tackling this problem, namely; the use 

of high-frequency small-scale cell culture technologies or the application of low-frequency 

large-scale culture systems. The respective advantages and disadvantage associated with each 

of these methods will be explored in more detail within the following sections, with an explicit 

focus on their application to the expansion of adherent MSC populations. 

 

1.3.1 Small scale cell culture processes 

 

Tissue culture flasks represent the single most widespread method of expanding cells for both 

academic and medical purposes. Manufactured from polystyrene due to its optical clarity and 

the ease with which it can be accurately moulded and sterilised, these flasks provide a simple 

and readily available means with which to culture cells (133). Originally, the hydrophobic 

nature of the polymer used to produce the flasks resulted in highly restricted cell growth, even 

when compared to glass, which had seen heavy use during the early-to-mid 20th century (133). 

By the mid-1970s however, it had been discovered that treating the flask’s growth surface 

under vacuum with a gas-plasma could oxidise the material (134). As a direct consequence, 

functional carboxyl groups were deposited onto the surface, helping bind extracellular matrix 

proteins; either produced by the cells or available in the culture medium, facilitating enhanced 

cell adhesion and making the use of glass near obsolete (135).  
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Unfortunately, despite their prevalence, expansion within conventional monolayered flasks is 

far from ideal. One of the most problematic aspects of this particular culture method is the 

limited growth space available within each flask. With regard to MSCs specifically, it has been 

shown that confluence is reached at around 5 x 103 cells per cm2 and that whilst seeding the 

cells at lower starting densities can significantly improve productivity, the use of large numbers 

of flasks is seemingly unavoidable (136). In order to address this concern, companies such as 

Nunc® and Corning® developed multi-layered culture vessels providing significant increases 

in the surface area available for cell growth, without substantial increases in complexity or 

flask footprint. In fact, recent advances by Corning® have seen the introduction of 120-layer 

HYPERstack™ vessels made from a gas permeable polymer and capable of providing growth 

surfaces up to two and a half times larger than conventional multi-level flasks of comparable 

volume (137). Since their inception, these types of technologies have seen extensive use 

throughout the regenerative medicine field, from routine cell culture during research activities, 

to use as a primary expansion method when manufacturing for clinical trials (138). 

Interestingly, it appears likely that the mechanistic similarities between monolayered flask 

culture and multi-layered flask culture are the prime rationale for their use during clinical trials, 

as very limited optimisation work would need to be performed prior to scale-up and the 

resultant cell populations would likely remain consistent with those utilised during pre-clinical 

testing. 

Regrettably, despite technological advances, a number of the fundamental characteristics of 

this type of approach still limit its overall appeal and applicability. Firstly, the use of culture 

flasks typically requires extensive manual handling, making it necessary to train and employ 

appropriately skilled personal in order to undertake frequent subculture and media change 

activities. As such, this introduces an increased level of expenditure beyond that of the basic 

cost of goods associated with the process and also provides an additional avenue for culture 

contamination or product loss, as a direct result of human error. In response, a number of 

companies and research groups have explored the use of automation as a means of 

circumventing these concerns. Thomas et al (2007) for example, demonstrated the successful 

expansion of hBM-MSCs through the use of an automated cell culture platform and despite 

differences in cell number when compared to comparative manual methods, cells were seen to 

retain their ISCT-defined characteristics following automation (139). It should be noted 

however, that the capital costs involved in purchasing such systems may represent too greater 

investment for the majority of SMEs, academic institutions and medical service providers, 
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whilst also potentially introducing a major new source of variability within an expansion 

process that would have otherwise remained consistent. In addition to manual handling 

concerns, lack of process control is also a significant issue when dealing with flask-based 

culture strategies. Whilst the relative simplicity of expansion within static flasks does offer 

some notable advantages, the inability to accurately regulate the conditions to which cells are 

exposed seriously limits the adaptability of such processes and makes it almost impossible to 

accommodate unforeseen variability, including changes in raw material composition. 

Additionally, this problem also restricts efforts to optimise the process, severely limiting its 

long-term potential.  

Finally, it should be mentioned that as an alternative to the previously discussed strategies, 

many groups have investigated the use of micro-carriers during suspension culture in small 

volume spinner flasks (140, 141, 142). In much the same way as for the use of static flask-

based methods before them, these processes suffer from issues regarding manual handling 

requirements and lack of process control. Despite this, the application of microcarriers is an 

important concept when considering the large-scale expansion of adherent cell populations and 

as such will be explored in more detail within the following section. 

 

1.3.2 Large scale cell processes 

 

In order to discuss the manufacture of stem cells at large scale it is first necessary to explore 

the use of bioreactor technologies, which have seen widespread use throughout the mainstream 

biopharmaceutical industry. In this context, a bioreactor can be described as any device capable 

of providing a highly controlled non-static growth environment for the expansion of either 

eukaryotic or prokaryotic cells. Interestingly, the vast majority of antibody production 

processes utilise suspension-adapted cell types, such as Chinese Hamster Ovary (CHO) or 

murine myeloma (NS0), cultured in bioreactor systems in a fed-batch manner. Unfortunately, 

most types of adult-derived stem cell are adhesion-dependent and would be unable to survive 

in such conditions for even a relatively short length of time. MSCs for example have been 

shown to undergo anoikis, a form of programmed cell death resulting from lack of integrin-

mediated substrate attachment, due to down-regulated extracellular signal–regulated kinase-

1/2 (Erk1/2) and c-Jun N-terminal kinase (JNK) activity (143). The most common means of 

addressing this issue is the application of microcarriers within suspension culture, which were 

first utilised commercially by van Wezel in the manufacture of inactivated polio vaccine (IPV) 
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(144, 145). These fifty to hundred-micron sized beads are made from a variety of different 

materials, including synthetic and natural polymers together with bio-compatible ceramics and 

provide very large growth areas per unit volume due to their relative abundance (146). 

Schirmaier et al (2014) for example, successfully utilised microcarriers for the expansion of 

AD-MSCs within stirred tank bioreactors, reporting total cell numbers as high as 1x1010 

following culture at thirty-five litre scale (147). Similarly, Timmins et al (2012) demonstrated 

expansion of placental MSCs in two litre wave bags using commercially available 

microcarriers over four successive subcultures, without loss of tri-lineage differentiation 

potential or characteristic surface marker expression (148). Intriguingly, stirred tank vessels 

and disposable wave-bag systems represent the two most popular methods of large scale stem 

cell culture, likely due to their relative simplicity and accessibility. 

 Stirred tank reactors, as the name suggests, are an evolution of the classic spinner-flask and 

typically consist of a single rigid glass or plastic tank into which sits an impeller that acts to 

facilitate nutrient transport and mixing within the media. In addition, these vessels are 

connected to computerised control systems, which regulate pH, oxygen supply and temperature 

via a set of feedback loops. Wave reactors function in a very similar manner, with the exception 

that disposable polymer bags are used to house the culture and that mixing is performed through 

the action of a rocking platform, rather than direct contact-based agitation. Figures 1.3 and 1.4 

provide images of typical stirred tank and wave bioreactor set-ups for mammalian cell culture.  
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Figure 1.3 A typical stirred tank bioreactor system (208) 

Stirred tank reactors are generally made up of a large transparent vessel, into which a set of monitoring devices 

measuring pH, temperature and dissolved oxygen are placed. Alongside these are an impeller and a sparger, which 

ensure proper nutrient and gas dispersal throughout the culture. Computerised control systems regulate gas 

addition, pH and temperature based on a series of feedback loops linked to the aforementioned sensors. 

 

Figure 1.4 A typical wave bioreactor system (209) 

Wave bioreactors function in much the same way as stirred tank systems, with the exceptions that the culture is 

contained within a single-use polymer bag and that mixing is achieved through the action of a rocking platform 

rather than an impeller. 
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Despite the popularity of stirred vessels and wave bags, these systems both suffer from issues 

regarding shear stress and the impact this can have on stem cell viability. Due to their relatively 

large size when compared to microbial cells; together with their lack of a cell wall, eukaryotic 

cells remain vulnerable to the forces generated as a result of culture agitation, which is 

necessary in order to guarantee homogenous nutrient and gas dispersal during the process 

(149). The precise results of exposure to shear stresses have been shown to vary according to 

both cell type and the magnitude of the applied force but are known to include transient pore 

generation, cytoplasmic extrusions, altered metabolic output, reduced proliferation and even 

cell death (150, 151). In addition, this phenomenon may in fact be reinforced by the presence 

of high concentrations of microcarriers, which are likely to damage cells as a result of bead-to-

bead collisions and impacting with the impeller or vessel wall (152). Importantly, when 

considering the expansion of stem cells, shear stresses have also been demonstrated to initiate 

lineage-specific differentiation in a number of specific case, including the endothelial and 

osteogenic differentiation of BM-MSCs (153, 154). This type of behaviour is particularly 

pertinent given the apparent therapeutic potential of undifferentiated MSCs as a result of their 

distinct secretory profile, which would almost certainly be lost if differentiation were to occur. 

Intriguingly, it appears that bubbles produced during mixing and as a result of culture gassing 

using a sparger, may also cause significant damage to cultured cells when utilising 

conventional bioreactor systems (155). This impact is thought to primarily occur as a result of 

the so-called ‘air-liquid interfacial effect’, which refers to the massively destructive forces 

generated when a bubble ruptures at the surface of the culture medium. In many cases the 

impact of this phenomenon is thought to depend almost exclusively upon bubble size, with the 

presence of sub-2mm diameter bubbles leading to increased cell loss due to their decreased rate 

of climb through the liquid and likelihood of interacting with and carrying more cells to the 

surface (156). Additionally, smaller bubbles have a tendency to be retained at the air-liquid 

interface in the form of foam, which can trap cells within a nutrient-deprived environment 

(156). This is not to say that mechanical forces cannot have a beneficial impact on stem cell 

survival when applied in a highly controlled manner however. Luo et al (2011) demonstrated 

that laminar shear stresses of fifteen dyne/cm2 could suppress apoptosis in MSCs as a direct 

consequence of increased Bcl-2 expression, a potent anti-apoptotic gene (157). It should be 

noted that this effect coincided with cell cycle arrest and cells entering a quiescent-like state, 

limiting its immediate applicability but not undermining its overall relevance (157).  
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In order to address the concerns discussed above regarding microcarrier usage and shear-

induced cell damage, a number of low-force or microcarrier-free bioreactor alternatives have 

been developed. The rotating wall vessel bioreactor for instance, consists of a rotating cylinder 

of liquid in which cells or particles are constantly falling, causing them to remain suspended 

without the need for violent or turbulent mixing (158). In fact, the forces generated on 

microcarrier beads under these conditions can be as low as 1.8 to 3.2 dyne/cm2, well below the 

values referenced earlier in this section, that were seen to cause cell cycle arrest in BM-MSCs 

(159). Unfortunately, the mixing method employed in these types of vessels typically leads to 

cell aggregation or inhibition of growth as a direct result of the gravity-annulling environment 

produced within the reactor (158). Hollow fibre bioreactors also offer an interesting alternative 

to stirred tank or wave systems, negating the need for microcarriers due to the large surface 

area-to-volume ratio inherent to the design. These vessels are made up of a large tube 

containing a huge quantity of parallel capillaries arranged as a bundle. Cells can occupy either 

the extra-capillary or intra-capillary space depending upon the specific requirements of the 

cells, with no need for subculture or bulk-feeding due to the perfusion of medium through the 

fibres. Regrettably, issues with culture monitoring and scale-up seriously limit the use of this 

type of technology in a commercial setting (160). Additionally, due to difficulties regarding 

cell release following expansion, hollow fibre bioreactors are likely most useful in producing 

stem cell-derived products, such as conditioned media or exosomes, rather than bulk cell 

generation.  

 

1.4 Stem cell culture medium 
 

1.4.1 The importance of culture medium 

 

Culture medium represents one of the single most important and most variable components of 

any mammalian cell culture process. The primary responsibility of this solution is to provide 

cells with the nutrients they require in order to survive and proliferate in vitro. The fundamental 

components of any functional mammalian cell culture medium include a metabolic substrate; 

typically glucose, alongside various essential amino acids, vitamins, minerals and lipids, all 

helping to drive processes such as cellular respiration, protein production, cellular repair and 

ensure proper enzyme functionality (161). In the case of adherent cell populations, such as 

MSCs, medium also often contains various extracellular matrix (ECM) proteins, which act to 
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facilitate cell-substrate interactions. The inclusion of soluble matrix proteins can be substituted 

with the use of pre-coated surfaces if a more defined substrate composition or pattern of 

deposition are required, such as when spatially organising differentiation for the purposes of 

artificial tissue generation. Such surfaces can also be reused following harvest, making them a 

cost-effective alternative to soluble protein inclusion, despite increased preparation times prior 

to their initial use. While not directly relevant to most stem cell-based processes; within the 

biologics industry, medium may also be supplemented with additional non-essential amino 

acids for the purposes of accommodating the increased demands of antibody production. A 

strategy similar to this could potentially be adopted if stem cell bi-products, such as exosomes, 

became the primary target of future manufacturing efforts. Finally, it is important to note that 

cell culture medium often also contains various ancillary supplements, such as pH indicators 

(e.g. phenol red) and mechano-protectants (e.g. Pluronic ® F-68) (162).  

In the following sections, we will examine the primary components of mammalian cell culture 

medium in greater detail, with particular emphasis being paid to supplement origin, safety and 

consistency.   

 

1.4.2 Foetal bovine serum 

 

Mammalian cell culture medium is typically made up of three distinct elements; basal medium, 

which contains glucose alongside an array of different amino acids, minerals and vitamins, a 

primary growth supplement in the form of serum or an equivalent alternative, and finally any 

additional supplements absent from the other two components. Foetal bovine serum (FBS) 

represents the single most commonly utilised primary growth supplement for mammalian cell 

cultures and, as its name suggests, is derived from the processed and sterilised blood of foetal 

calves. The resultant solution contains a myriad of different amino acids, vitamins, minerals, 

cytokines, growth hormones and metabolic bi-products, which can adequately support the 

survival and proliferation of adult-derived stem cells in long-term culture (163). Alongside 

promoting cell growth, FBS also serves to facilitate cell-surface interactions by supplying a 

number of different ECM proteins, as well as acting as a potent mechano-protectant in dynamic 

culture environments (164). It is likely for these reasons that the United States Food and Drug 

Administration reported that over 80% of the MSC-based investigational new products in 2014 

utilised FBS during their manufacture (165). 
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Despite the extensive benefits of utilising FBS and its prevalence throughout the industry, a 

number of important factors impact upon its continued use within both the academic and 

commercial sectors, particularly when considering the manufacture of cell therapies for use in 

human patients. Firstly, the xenogeneic origin of the material must be considered, which brings 

with it the risk of both pathogen transfer and unwanted immunogenic reactions in human cell 

recipients. Whilst it is true that the use of FBS could result in products being contaminated with 

bacteria, fungi, mycoplasma or virus particles, the combined use of sub-micron filtration and 

radiation treatment is typically adequate to alleviate these concerns (166). Of greater 

importance, is the possibility of endotoxin or prion protein content, which can be addressed 

through heat-inactivation but only at the detriment of overall serum potency (166).  

When compared to the aforementioned contamination concerns, the immunogenic impact of 

FBS is a far more difficult problem to tackle. In fact, a number of ATMP-based clinical trials 

have reported some level of serum-elicited immune response in their associated human 

subjects. For example, Horwitz et al (2002) described antibody production against FBS 

components in one of six patients treated with BM-MSCs, with similar responses having also 

been seen in individuals treated with non-stem cell based cellular therapeutics (167, 168). 

Intriguingly, groups such as Cho et al (2009) have demonstrated that AD-MSCs retain their 

immunomodulatory functions following culture in FBS, with no apparent immune responses 

being reported following transfer to murine models (169). It has been suggested that FBS may 

be inherently less immunogenic to mice, limiting the applicability of these findings to human 

recipients, however to date this hypothesis remains unconfirmed (170). 

Given the biological source of FBS, serum variability is also an important concern. Despite 

having been utilised for over half a century, FBS remains very poorly characterised, with some 

reports suggesting that it may contain as many as 1800 different proteins and 4000 distinct 

metabolites (171). This compositional inconsistency has been seen to impact cell growth and 

differentiation by a number of different research groups, though only limited investigations 

have examined the extent with which these differences can affect adult-derived stem cell 

populations (172). One study, using adult retinal pigment epithelial cells, discovered that 

differences in cell growth between FBS batches correlated to variability in Insulin-like growth 

factor binding protein-4 (IBGFBP-4) and insulin-like growth factor-2 (IGF-2) concentrations 

within the supplement (173). In addition, batches of FBS most readily capable of supporting 

cell proliferation were seen to contain fibroblast FGF-2 and TGF-β1, which were absent from 

the low-growth samples and act as potent mitogens during mammalian cell culture (173). While 
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pooling of different serum batches during manufacture does go some way to alleviating this 

problem, factors such as cattle health, feed composition and sub-species related differences are 

unlikely to be accommodated for via this method due to current farming practices. 

Alongside the issues detailed above, the recent surge in interest for stem cell-based therapeutics 

has led to an increased demand for FBS, which the current market may not be able to adequately 

respond to. Serum manufacture is heavily dependent upon the state of the beef and dairy 

industries due to its status as a bi-product and as such does not operate independently based 

upon demand alone. In addition, the countries responsible for supplying the majority of the 

world’s FBS; namely New Zealand, Australia, Brazil and South Africa are distant from those 

that utilise it (the UK, Europe and the US), making interruption of supply a more likely 

occurrence (171). Poor regulation within the serum industry has also lead to cases of quality 

tampering and batch doping, such as with GE Healthcare in 2011 (171). When combined with 

the inherent variability of the product, the use of FBS for the production of human therapeutics 

seems thwart with problems. In fact, the regulatory requirements in regard to ATMP quality 

and consistency, along with difficulties concerning process scale-up and supply, make it 

increasingly difficult to justify the use of FBS when developing a new therapeutic. Finally, it 

is important to note that the use of FBS also raises a number of ethical concerns, primarily in 

regard to animal welfare and farming standards. Currently, calf foetuses are thought to 

suffocate as a result of their mother’s slaughter prior to serum extraction, however some 

individuals have suggested that due to their immature state, these animals are likely to survive 

much longer than originally suspected, indicating that conventional FBS production methods 

may require thorough reform should the industry continue to be supported.   

 

1.4.3 Non-defined alternatives to foetal bovine serum 

 

In order to address the xenogeneic nature of FBS, which can potentially lead to cross-species 

disease transmission or immune activation, a number of human-derived alternatives have been 

proposed. The most apparent substitute for FBS is the use of human serum (HS), which is 

typically produced via a process of chemically-induced clot formation followed by filtration 

(174). It is theorised that HS should be able to better support the growth of human-derived stem 

cells as a result of species compatibility and that the use of AB-serum, which lacks both A and 

B-type blood antigens, should minimise any associated immunoreactivity concerns (175). 

When utilising human AB-serum for the expansion of human MSCs, Marques dos Santos et al 
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(2017) reported maintained surface marker expression, immunomodulatory phenotype and 

karyotypic stability when compared to culture in FBS supplemented medium (174). In addition 

to its use as a nutrient source during growth, HS has also been shown to support cell survival 

during chilled transport, a role typically reserved for FBS. Mizuno et al (2017) demonstrated 

that synovial MSCs held at 4 °C and 13 °C in HS for up to 48 hours retained both their tri-

lineage differentiation potential and surface marker expression, alongside their proliferative 

capacity once re-seeded into conditions suitable for expansion (176). 

Alongside the use of human serum itself, many groups have examined the potential of a number 

of HS-derived products, produced via more extensive processing of the material prior to use. 

Human platelet lysate (hPL) for example, is manufactured through repeated freeze-thaw 

cycling of whole serum, resulting in the disruption of the platelet plasma membrane and 

subsequent release of a wide range of different cytokines and growth factors into the product 

(177). This platelet lysate step has been shown to lead to significant increases in FGF-2, TGF-

β1, IGF-1 and platelet-derived growth factor-AB (PDGF-AB) content in hPL when compared 

to FBS, all of which are known to readily support mammalian cell growth in vitro (178). This 

may explain the improved MSC proliferation reported by groups such as Matthyssen et al 

(2017) when using hPL (179). As with whole serum, surface marker expression and tri-lineage 

potential were retained following culture in PL (179). Furthermore, the use of lysate was not 

seen to bring about the senescence-like effects observed by some groups when utilising FBS, 

enhancing expression of various cyclin proteins and decreasing p21 and p27 cell cycle inhibitor 

activity in AD-MSCs following long term expansion (180, 181). 

As with animal-derived products, the use of supplements derived from human tissues brings 

with it serious risks of disease transmission, made even more concerning due to donor/patient 

species compatibility. Interestingly, the cyclic freeze-thaw step used to produce PL from whole 

serum samples may in fact act to eliminate many possible bacterial and fungal pathogens, 

improving product safety. Furthermore, the extensive pre-screening assays already associated 

with blood and serum donation, the chief sources of lysate, offer a robust layer of protection 

from a variety of pathogens, including hepatitis and HIV. Despite this promise however, it 

should be noted that the use of plasma lysate is not without issue. For instance, 

Oikonomopoulos et al (2015) reported that culture in hPL inhibited the immunosuppressive 

effects of both bone marrow and adipose-derived hMSCs (180). This phenomenon was seen to 

persist even when cells were pre-primed with Interferon gamma (IFN-γ), a pro-inflammatory 
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cytokine known to augment the immunomodulatory impact of MSCs when grown using FBS 

(182).  

In addition to platelet lysate, several other HS-derived supplements have also been proposed 

for use with adult stem cell populations, including platelet rich plasma (PRP) and platelet rich 

fibrin (PRF). PRP is produced through the biochemical activation of clot formation without 

platelet lysis and results in supplements containing growth factor and cytokine levels 

equivalent to those seen during natural wound healing processes (183). PRF on the other hand, 

is manufactured in a similar manner to PRP but the natural clotting mechanism is utilised to 

invoke cytokine secretion which is then followed by controlled clot compression in order to 

facilitate growth factor release (183). Due to the use of endogenous biochemical agents in PRP 

production and the need to ensure their removal from the resultant material, PRF is seen by 

many as more suitable for use in ATMP manufacture. Importantly, PRF has been seen to 

adequately support the expansion and possible osteogenic differentiation of dental pulp-derived 

MSCs in vitro (183). One factor to consider however, is that PRF has demonstrated the ability 

to successfully prime MSCs for chondrogenic differentiation in a dose dependant manner, 

making its use in the production of undifferentiated cells potentially problematic, particularly 

if likely to be exposed to additional chondrogenic stimuli (184).  

Unfortunately, the use of HS, PL, PRP and PRF do not address the consistency issues 

associated with FBS, due to their similar biological nature. In fact, due to the relatively small 

scale at which these human-based supplements are produced, manufacturing processes vary 

significantly between groups, potentially leading to inconsistencies in product quality and 

suitability. Additionally, supply is also a concern, with limited availability resulting from the 

therapeutic need for blood donations and while it is true that recent research has shown that PL 

derived from out-of-date blood samples is equally capable of supporting cell growth, supply 

shortages remain an ever-present threat (185). Finally, it is important to note that plant-derived 

alternatives have also been explored for use in stem cell expansion, with Lee et al (186) 

demonstrating that vegetable soy peptides are capable of supporting the growth of both AD-

MSCs and UCB-MSCs in serum-free conditions. As with serum-based supplements before 

them however, the lack of characterisation of such materials makes them potentially unsuitable 

for therapeutic manufacturing processes, despite being readily available and pathogen free.  
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1.4.4 Chemically defined serum-free medium 

 

As stated in the previous sections, inconsistency in raw material composition represents one of 

the single most important concerns regarding the use of biologically-sourced media 

supplements, whether they be of animal, human or even botanical origin. Whilst it is true that 

so called Quality by Design (QbD) strategies incorporating Process Analytical Technologies 

(PAT) can be utilised to help accommodate this inherent variability, the development of 

chemically defined media offers manufacturers a method of essentially eliminating this 

problem in its entirety. As its name suggests, chemically-defined medium is typically 

formulated from a basal mixture of selected amino acids, vitamins, minerals and metabolic 

substrates supplemented with a variety of different cytokines and growth factors. Importantly, 

these bioactive molecules are produced through biopharmaceutical processes, rather than being 

extracted from animal sources due to the unwanted variability and potentially dangerous 

immunogenicity issues that can occur as a result.  

In the decades since the initial isolation of MSCs, a number of compatible chemically defined 

media formulations have become commercially available, including Mesencult-XF (Stemcell 

Technologies) and Mosaic hMSC Serum Free Medium (Becton Dickinson), both of which have 

been shown to readily support the isolation of primary cells alongside their expansion (187, 

188). Unfortunately, despite the efficacy of these products, they remain prohibitively expensive 

when compared to the use of serum or serum-derived supplements. Furthermore, the 

combination of supply monopoly due to their proprietary nature and the strict regulatory 

guidelines relating to changes in ongoing production processes, could potentially lead to high 

price variability and market exploitation if left unchecked. In fact, whilst the secrecy 

surrounding the compositions of these media is entirely justified, it does raise concerns 

regarding their use in research, where uncovering causal relationships relies upon a thorough 

understanding of all the associated factors. 

In response to these issues, a limited number of research groups have developed chemically 

defined media formulations for use with MSCs, many choosing to utilise pre-existing media 

compositions originally developed for use with other types of stem cells in a quest to speed up 

this process. To this end, Rajala et al (2010), successfully expanded AD-MSCs in a modified 

version of a readily available ESC medium, reporting significantly higher rates of proliferation 

when compared to growth in allogeneic human serum (189). Similarly, Mimura et al (2010) 

reported the use of an adapted form of hESF9 ESC medium in the expansion of an immortalised 
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human MSC line. Troublingly, the cells grown in defined conditions displayed a substantially 

different surface marker profile than cells cultured in conventional serum-supplemented 

medium, with increased pluripotency-related marker expression (190). This type of observation 

exemplifies one of the most important criticisms of this kind of approach to medium 

development, namely that a lack of formulation specificity can potentially lead to altered cell 

behaviour or unwanted lineage transition following even short times in culture. In addition, the 

inclusion of unnecessary components within the medium carried over from its initial inception 

will likely lead to increased production costs, unless lengthy and convoluted re-optimisation 

processes are carried out in order to identify and eliminate these factors. 

In light of this, the development of entirely novel media formulations, tailored exclusively for 

the expansion of MSCs may represent a more promising strategy when moving forward. 

Unfortunately, the results of such activities to date have remained highly variable and typically 

lacking when compared to the use of serum. Liu et al (2006) for instance, reported the 

successful growth of umbilical cord-derived MSCs in defined conditions, with maintained tri-

lineage differentiation potential and marker expression but saw only one-fiftieth of the fold-

expansion demonstrated for similar cells in FBS supplemented medium over nine to ten total 

subcultures (191). More recently, Wu et al (2016) described the culture of UC-MSCs in a novel 

chemically-defined medium capable of preserving their unique immunomodulatory properties 

(192). Again however, the associated cell growth was seen to be noticeably poorer than in 

comparable serum supplemented cultures (192). Even one of the most encouraging 

investigations in recent years, described by Jung et al (2010) is not without its problems. In 

this study, the researchers developed a novel defined medium formulation capable of 

facilitating the rapid in vitro expansion of MSCs, maintaining their multipotency and even 

enabling isolation in serum-free conditions (193). Despite these promising results however, it 

is important to note that this research was conducted exclusively through the use of 

commercially-sourced cells derived from healthy donors, seriously limiting the applicability of 

these findings when considering autologous MSC-based therapies. Furthermore, the highly 

complex nature of the resulting formulation may eliminate any potential cost benefits arising 

from the use of non-commercial medium. 

As with conventional serum-supplemented culture medium, chemically defined medium has 

also been utilised as a foundation from which to differentiate stem cell populations towards 

selected lineages for the purposes of tissue replacement. Of particular interest, is the process of 

chondrogenesis, which has been shown to benefit from induction under serum-free conditions 
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as a result of the extracellular matrix damage associated with exposure to blood-derived 

products (194, 195). Finally, it is important to note that the activity of cryopreservation, which 

has typically relied upon the use of serum, has also been successfully demonstrated under 

chemically defined conditions. Lopez et al (2016), described the cryopreservation of adipose-

derived MSCs in a solution comprised of a combination of antioxidants, synthetic polymers 

and permeating protective agents, with cells retaining their multipotency and karyotypic 

stability following revival (196). 

 

1.5 Methods of media development and supplement screening 

 

As we have seen in the previous sections, the use of chemically-defined xeno-free medium for 

the expansion, differentiation and cryopreservation of cells is paramount to ensuring the safety, 

efficacy and cost-effectiveness of advanced MSC-based therapeutics. To date however, the 

research associated with medium development within this field has seen only limited success, 

with the most promising formulations having been applied solely to the culture of model cell 

lines derived from healthy donors, whilst also remaining prohibitively expensive due to their 

relative complexity. One factor which typically remains undiscussed in regard to this topic, is 

the choice of screening strategy utilised within the associated studies. In the following sections, 

we will briefly review the types of statistical approaches that can utilised when screening 

supplements for use in culture medium and highlight the respective benefits and shortcomings 

of each.  

 

1.5.1 One-factor-at-a-time screening methods 

 

As their name suggests, one-factor-at-a-time (OFAT) strategies involve examining 

experimental factors in isolation in a sequential manner and represent the most basic approach 

that can be applied to supplement screening activities. Whilst their relative simplicity has 

resulted in countless research groups employing this type of method in the past, the popularity 

of the OFAT approach has dropped significantly in recent years. The primary reason for this is 

that OFAT strategies fail to examine interactions between factors and as a result cannot identify 

potentially significant synergistic relationships amongst screened components (197). In 

addition, the process of assessing a large number of factors in this way can be both highly time-

consuming and, as a direct consequence, extremely expensive. 
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1.5.2 Design or experiments and multifactorial approaches 

 

In response to the issues described above concerning sequential supplement screening, many 

groups are now utilising Design of Experiments (DoE) or multifactorial statistical approaches 

during medium development. For instance, so called full factorial experimental designs involve 

looking at every possible combination of a set of factors and assessing not only their individual 

contributions to a given outcome but also any combined effects (198). Unfortunately, whilst 

this specific approach can provide researchers with an incredibly detailed understanding of a 

given process, the financial and time-related investments involved can be significant. Adding 

a single additional concentration value (level) and supplement type to a simple two-level two-

factor design for example, increases the number of experimental combinations from four to 

twenty-seven, requiring a massive increase in reagent costs and set-up time for only a small 

change in strategy. In order to circumvent these concerns, streamlined experimental designs 

can be employed, such as a Plackett-Burman approach. 

Developed by statisticians Robin L. Plackett and J.P. Burman in 1946, the appropriately named 

Plackett-Burman design, reduces the number of experimental runs or combinations to the 

absolute minimum required in order to accurately assess the impact of any main effects on an 

outcome of interest (199). This is achieved by implementing a complex aliasing system that 

confounds main effects with any associated higher order interactions, resulting in a condensed 

design (199). As can be expected of such an approach however, higher order interaction effects 

cannot be resolved, limiting the use of Plackett-Burman designs to settings in which the 

contribution of such effects is likely negligible. One possible alternative to this type of 

approach is the application of a fractional-factorial design, which function in a very similar 

manner but due to their flexibility can be tailored to resolve higher order interactions depending 

upon the scope of the activities in question. In fact, such designs are most applicable when 

dealing with relationships for which there is already a level of understanding, making it less 

likely that researchers will overlook any potential factor interactions and fail to design the 

associated investigation accordingly. Furthermore, it is important to note that following the use 

of a fractional factorial, researchers may wish to consider utilising a responsive surface 

methodology, such as a central composite design (CCD), to more accurately pin-point the 

optimal factor values required in order to achieve the desired cellular response (200). 
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1.5.3 Computational systems and random global searching 

 

In addition to sequential and multifactorial statistical approaches to component screening, the 

use of significantly more complex computational methods is also now being explored. One 

such strategy, is the application of genetic algorithms to medium development. As their name 

suggests, these models were initially developed as a means of solving optimisation-related 

problems using concepts borrowed from evolutionary biology (201). Unfortunately, despite 

promising results in related fields, very few papers have explored the use of these types of 

systems in the development of chemically-defined culture medium for use with mammalian 

stem cells (202, 203). This gap is likely a result of the very high skill threshold required in 

order to produce and properly utilise such models. Whilst it is possible that the 

multidisciplinary nature of regenerative medicine may in time facilitate the adoption of these 

techniques, at the present time they remain far too esoteric to see widespread use.  

 

1.6 Project overview and aims 
 

The change to chemically defined serum-free culture medium must be explored as early as 

possible within the typical ATMP developmental process. Despite the substantial advantages 

associated with this shift, commercially available formulations remain prohibitively expensive, 

whilst academic research has focused on the use of model cell populations, generating results 

that may not be applicable to primary autologous MSCs due to their widely varied in vitro 

culture potential (204, 205). Furthermore, many of these media have been built from existing 

non-MSC formulations or have included a wide range of expensive supplements, limiting both 

their specificity and cost-effectiveness. Here we developed a new minimal chemically-defined 

serum-free medium for use in the expansion of primary MSCs, after first demonstrating the 

impact of serum variability on cell growth and gene expression. In order to develop this 

medium, a two-step system was utilised. In the first step, a series of fractional factorial 

screening experiments were performed in order to rapidly assess the ability of various 

supplements to support MSC metabolism in serum-deprived conditions. In the second step, a 

full factorial formulation evaluation was performed as a means of understanding the relative 

contributions of each of the previously selected supplements. Additionally, a set of readily 

available extracellular matrix proteins were assessed for their ability to support MSC surface 
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adhesion in serum-free conditions, for use as part of a single complete chemically-defined 

culture process. 

 

Aims: 

1. Evaluate the comparability of primary BM-MSCs isolated from osteoarthritic patients 

and a model immortalised MSC cell line. 

2. Assess the impact of raw material variability on MSC proliferation and gene 

expression in regard to both foetal bovine and human serum. 

3. Begin development of a characterised cytokine-supplemented serum-free medium for 

use in the expansion of primary MSCs using a Design of Experiments-based 

methodology. 

4. Compare and contrast the characteristics of cells grown in serum-free medium with 

those cultured in conventional serum-supplemented conditions. 

5. Screen a series of extracellular matrix proteins for use in conjunction with the 

previously described serum-free medium, as a means of better facilitating cell/surface 

interactions. 
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2 Chapter 2: Materials and methods 
 

2.1 Cell culture 

 

2.1.1 Tissue collection and informed consent 

 

All of the human tissue samples processed during the course of this project were handled in 

accordance with the relevant rules and regulations as laid out in the UK Human Tissue Act 

2004, the UK Human Tissue (Quality and Safety for Human Application) Regulations 2007 

and the European Directives on Tissues and Cells (2004/23/EC, 2006/17/EC, 2006/86/EC). All 

related project activities were assessed and approved by the National Research Ethics 

Committee prior to commencement of the project (IRAS project ID: 166522). Informed 

consent was gathered for each of the specimens used and collection was carried out in 

accordance to Newcastle University ethical and technical regulations. Samples were 

anonymised in such a way as to ensure that those working directly with the material could not 

identify the individual from whom the tissue was taken, whilst still retaining a high level of 

obfuscated traceability. It should be noted that due to the limited availability of donor samples, 

no specific exclusion criteria were applied during the course of this investigation. 

 

2.1.2 Cell culture standards 

 

In order to help reduce the risks of bacterial and fungal contamination, both cell isolation and 

cell expansion were performed within a sterile class II biological safety cabinet. In addition, all 

materials and equipment, together with the safety cabinets themselves, were sterilised using a 

70% v/v ethanol solution. Cell culture media together with all other non-sterile liquid reagents 

were filtered through 0.22 µm syringe filters prior to use and all waste liquids, plastic 

disposables and cells were treated with Virkon (SP Services) before disposal. A suitably high 

standard of aseptic laboratory technique was maintained throughout the cell culture process, 

with cultures being routinely checked using an inverted phase contrast microscope. Liquid 

culture medium and wash buffers were stored at 4 °C and replaced every four weeks in order 

to minimise the impacts of nutrient degradation and contamination on cell quality. Finally, as 

a means of protecting cells from the potentially negative effects of cold-induced and pH-

induced stress, culture flasks were only removed from the incubators when absolutely 

necessary and all liquid reagents warmed to 37 °C in a water bath prior to use. 
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2.1.3 Primary cell isolation 

 

Human BM-MSCs were isolated based on a modified version of the method first described by 

Pittenger et al (1999) and then later used by groups such as Mareschi et al (2012) (210, 211). 

MSCs were separated out based upon a combination of density-based centrifugation and their 

plastic adherent nature, with figure 2.1 providing an overview of the isolation process. 

 

 

Figure 2.1 The hBM-MSC isolation process 

The process begins with trabecular bone removal and washing (a), followed by suspension on top of Ficoll-Paque 

centrifugation solution (b). After centrifugation a clear pattern of banding can be seen, with the MNC band 

residing between the plasma and ficoll layers (c). The MNC layer is then removed, washed in a dedicated buffer, 

resuspended in cell culture medium and seeded in a T-75 culture flask. 

 

To begin with, trabecular bone was removed from the neck of the femur and the inside of the 

femoral head, washed in 10 mL of unsupplemented MSC culture medium (as per table 2.1 

without the inclusion of FGF-2) and filtered in order to help remove any contaminating bone 

fragments or connective tissue from the resultant cell solution. The filtered bone wash was then 

suspended upon 10 mL of Ficoll-Paque Premium 1.073 (GE Healthcare Life Sciences) 
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centrifugation solution and centrifuged for 40 mins at 800 x g. Following centrifugation, the 

MNC layer was removed and resuspended in a solution of 5 mM ethylenediaminetetraacetic 

acid (EDTA, Sigma) and 0.2% w/v bovine serum albumin (BSA, Sigma); henceforth referred 

to as MSC wash buffer, before again being centrifuged at 800 x g at room temperature for 10 

minutes. Finally, the resultant supernatant was aspirated away, the cell pellet resuspended in 

unsupplemented MSC culture medium and the cell solution seeded into a plastic T-75 tissue 

culture flask (see 2.1.4). The flask was then placed into an incubator at 37 °C and 5% CO2 for 

two days. Following this two day period, the culture medium within the flask was aspirated 

away, the flask surface washed twice with sterile Dulbecco’s phosphate buffered saline (DPBS, 

Sigma) and the unsupplemented culture medium replaced.  

It is important to note that due to the propensity for hBM-MSCs to form tightly grouped 

colonies immediately following isolation, a single ‘lift and re-seed’ step was commonly 

included within the initial culture period in order to help redistribute the cells and prevent non-

specific differentiation. This process was performed in much the same manner as the passage 

procedure detailed below in section 2.1.4, with the exception that the cells were re-seeded into 

a single flask following trypsinization rather than being spread across multiple flasks. 

Additionally, the culture medium applied to the cells following this ‘lift and re-seed’ process 

was supplemented with FGF-2,(Peprotech) as per table 2.1.  

 

2.1.4 Primary cell expansion 

 

hBM-MSCs were cultured across a range of different sizes of Corning® vent capped tissue 

culture-treated flasks (Sigma) as appropriate, most commonly including the 75 cm2 (T-75) 

variant whenever possible. Cells were expanded in normoxic conditions at 37 °C and 5% CO2, 

using the standard MSC culture medium detailed below in table 2.1. The culture medium within 

each of the flasks was replaced every 2 to 3 days in order to ensure maximum nutrient 

availability. 
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Components Quantity/Concentration Supplier 

DMEM (low glucose/1x104 mg/mL) Dependant on volume Sigma 

Heat-treated batch-tested FBS 10% v/v Life Technologies 

GlutaMax (200mM) 1% v/v Life Technologies 

Penicillin-Streptomycin (10,000 U/mL) 1% v/v Life Technologies 

Fibroblast Growth Factor-2 (FGF-2) 8 ng/mL Peprotech 

 

Table 2.1 Standard MSC culture medium composition 

It should be noted that the FBS used to produce this medium, which was utilised in all subsequent experimental 

activities, was designated ‘FBS 1’ during the FBS variability assessment detailed in Chapter 4. 

 

Upon reaching between 70% and 80% confluence, the cell monolayers were subjected to 

substrate dissociation and re-seeding; henceforth referred to as cell passage or subculture. It 

should be noted that when exceeding 85% confluence MSCs have been observed to undergo 

osteogenic priming, taking on a distinctly altered morphological appearance. As a direct result 

of this phenomenon, all cell cultures were regularly checked through visual assessment as a 

means of ensuring that the aforementioned 80% confluence threshold was not exceeded. This 

was performed using a 0.5 g/L trypsin and 0.2 g/L EDTA solution (Sigma), which acts to 

disrupt integrin-mediated cell-substrate associations. Initially, the culture medium was 

aspirated away from the flasks and the cells washed with sterile DPBS. Next, trypsin/EDTA 

solution was applied to the flasks at a volume of 0.5 mL per 25 cm2 of total culture area. The 

cells were then incubated for 3 to 4 minutes, cell detachment verified using an inverted light 

microscope and the trypsin/EDTA solution neutralised using an excess volume of standard 

MSC culture medium. The resultant cell solution was then centrifuged at 1200 rpm for 5 

minutes before being resuspended in 30 mL of culture medium and split across three new T-

75 tissue culture-treated flasks 

 

2.1.5 Primary cell cryopreservation and recovery 

 

In order to ensure the long term preservation of isolated hBM-MSCs, a cryoprotectant solution 

made up of heat-treated FBS and 10% v/v dimethyl sulfoxide (DMSO, Sigma); henceforth 

referred to as freezing medium, was applied to cells immediately prior to cryopreservation.  
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To begin the process, cells were first passaged and then resuspended within chilled freezing 

medium at a density of 1x106 cells per mL, before being decanted into 1.2 mL Corning® 

cryogenic vials (Sigma). The vials were then cooled overnight at a controlled rate of 

approximately 1 °C/minute using an isopropyl alcohol-filled Mr. Frosty™ freezing container 

(ThermoFisher Scientific) stored at -80 °C. Following this time, the vials were transferred to 

liquid nitrogen for long-term storage and their details logged in an associated paper-based 

cataloguing system.  

Since DMSO has been shown to have significant cytotoxic effects, cell recovery was performed 

as rapidly as possible. The contents of the previously frozen vials were allowed to partially 

thaw whilst stored on ice, before being resuspended in 9 mL of standard MSC culture medium. 

The resultant cell suspensions were then centrifuged at 1200 rpm for 5 mins, the cell pellets 

resuspended in 10 mL of standard MSC culture medium and finally seeded into a single T-75 

tissue culture flask. The flasks were then incubated in standard culture conditions for 2 days, 

before the resulting cell monolayers were washed twice with sterile DPBS and the culture 

medium replaced. 

 

2.1.6 Cell line donation and culture 

 

Telomerase (hTERT) immortalised human MSCs, henceforth referred to as Y201s, were kindly 

donated by Dr Paul Genever of the University of York Department Of Biology. These cells, 

which have been shown to have consistent morphological and phenotypic characteristics even 

after extended periods of expansion, were utilised in the current investigation as a 

representative and readily available benchmark with which to compare the responses of 

primary patient-derived MSCs. 

The expansion, passage, cryopreservation and thawing practices associated with the Y201 cells 

were the same as those described for the primary hBM-MSCs in sections 2.1.4 and 2.1.5, with 

one noteworthy exception. Due to their rapid rate of growth, the culture medium used to expand 

the Y201 cell line was not supplemented with FGF-2 but was otherwise identical to the 

formulation given in table 2.1.  
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2.2 Quantification of cell number and metabolic activity 
 

2.2.1 Haemocytometer-based cell counting 

 

Manual cell enumeration was performed using a standard Neubauer haemocytometer, with two 

identical 20 µL counting chambers. Cells were counted whilst in suspension immediately 

following removal from their substrate via the use of trypsin (see 2.1.4), either as part of the 

regular passaging process or as part of a cell seeding exercise. The haemocytometer’s two 

counting surfaces were divided into 16 large squares, each of which was further subdivided 

into 16 smaller squares. Cell number was first determined by counting the amount of cells 

present within each of the 4 large corner squares of a single chamber and dividing that number 

by the number of squares countered. This average ‘per large square’ value was then divided by 

2 and multiplied by 1x104 in order to calculate the total number of cells per millilitre of solution. 

The requirement to divide the average number of cells per large square by 2 and then multiply 

by 1x104 was derived directly from the dimensions of the larger haemocytometer squares 

themselves, which hold a total volume of 2x10-4 mL (0.1 cm*0.1 cm*0.02 cm). This entire 

counting process was then repeated for the second chamber and an average of the two ‘per 

millilitre’ values used as the final estimate.  

In addition to simply counting cells, this haemocytometer-based process was also used to 

quickly assess the viability of cells when necessary. In order to do this, samples of the cell 

suspension were mixed 1:1 with a 0.25% v/v solution of trypan blue (Sigma) in DPBS before 

being loaded into the chambers. Cells seen to be stained blue were considered dead or 

irreparably damaged and hence discounted from the enumeration process.  

 

2.2.2 MTT assay 

 

In section 5.3.1, the metabolic activity of hBM-MSCs seeded into 24-well plates at a density 

of 2.5x103 cells per cm2 was determined using an MTT assay. In order to perform the assay, 

thiazolyl blue tetrazolium bromide powder (MTT, Sigma) was added to standard culture 

medium at a concentration of 0.5 mg/mL and the mixture sterile filtered using a 0.22 µm filter 

attached to an appropriately sized syringe. The sterile MTT solution was then applied directly 

to the cell monolayers at a volume of 500 µL per well. The plates were then incubated at 37 °C 

in 5% CO2 for 2 hours, before the MTT solution was removed and the cells washed twice in 
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DPBS. Undiluted DMSO was then applied to the cells in order to lyse them, releasing any 

formazan present within the cytoplasm. The plates were then returned to the incubator for 20 

minutes in order to ensure complete cell lysis and homogeneous dispersal of the formazan 

throughout the resultant solution. 200 µL samples of the DMSO solubilised formazan were 

then transferred to a transparent 96-well plate and the absorbance of the samples measured at 

570 nm using a Sunrise™ 96-well plate reader (Tecan). It should be noted that the absorbance 

values resulting from these analyses were normalised to DMSO-background controls prior to 

evaluation. Additionally, it should also be remarked that during each of the described 

incubation periods, the MTT and solubilised formazan solutions were shielded from 

unnecessary exposure to light due to their high level of sensitivity. 

 

2.2.3 PrestoBlue assay 

 

In sections 4.3.1 and 5.3.3, the metabolic activity of hBM-MSCs and Y201s seeded into 24-

well plates at a density of 2.5x103 cells per cm2 was determined using a PrestoBlue® assay. 

The assay was performed by first mixing the pre-made PrestoBlue® solution (Sigma) 1:10 with 

standard MSC culture medium as per the manufactures instructions. The cell monolayers were 

then washed using DPBS and the reagent mixture applied at a volume of 300 µL per well. The 

well plates were then wrapped in tin foil as a means of protecting the light sensitive 

PrestoBlue® reagent from unnecessary exposure and incubated for 2 hours at 37 °C and 5% 

CO2. Following incubation, 200 µL samples of the PrestoBlue® mixture were taken from each 

of the wells and transferred to a transparent 96-well plate for assessment. This was done using 

an LS 50 B luminescence spectrometer (Perkin Elmer) with excitation and emission 

wavelengths of 560 nm and 590 nm respectively. 

 

2.2.4 PicoGreen assay 

 

A Quant-iT™ PicoGreen® dsDNA assay (ThermoFisher Scientific) was used in order to 

quantify cell number following PrestoBlue® metabolic assessment in sections 4.3.1 and 5.3.3. 

In addition, the assay was also used independently in section 7.3.4 as a means of cell 

enumeration. Initially, cells seeded into 24-well plates at a density of 2.5x103 cells per cm2 

were lysed using a standard freeze-thaw methodology. In brief, the cell monolayers were 
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washed twice with DPBS and 300 µL of DNase-free water (Sigma) added to each of them. The 

plates were then stored at -80 °C for a minimum of 1 hour in order to fully freeze the liquid in 

each of the wells. Next the cells were rapidly thawed in an incubator at 37 °C; completing a 

single freeze/thaw cycle. Finally, the plates were subjected to two more freeze/thaw cycles in 

order to ensure complete cell lysis within each of the wells. 

During the final sample thaw, the PicoGreen® reagent and associated buffers were prepared 

according to the manufacturer’s instructions. To begin with, an appropriate amount of TE 

buffer was prepared by diluting the x20 concentrated buffer mixture provided in the assay kit 

1:20 in sterile DPBS. This buffer was then used to dilute the PicoGreen® reagent 1:200 to 

create a working solution of the dye. Both the TE buffer and PicoGreen® mixture were kept 

on ice until needed, with the PicoGreen® mixture being shielded from any unnecessary 

exposure to light given its high level of sensitivity. Immediately following lysis, 100 µL 

samples of the cell lysate were transferred into white opaque-walled 96-well plates, after which 

100 µL of the diluted PicoGreen® mixture was also added. The plates were then allowed to sit 

on ice for 5 minutes, before being read using a FLUOstar OPTIMA fluorescent spectrometer 

(BMG LABTECH) at excitation and emission wavelengths of 480 nm and 520 nm respectively.  

It should be noted that standard curves were produced for both the primary hBM-MSCs and 

the Y201 cell line, using cells seeded at known concentrations of 1.25x103, 2.5x103, 5x103, 

1x104, 2x104 and 4x104. In all cases appropriate control conditions were included within each 

of the plates as a means of measuring background fluorescence levels. Instrument gain was 

manually set using the most densely seeded samples taken from the standard curve plates and 

kept constant throughout the course of the investigation.    

 

2.2.5 Alkaline phosphatase activity assay 

 

Alkaline phosphatase (ALP) activity was determined using a p-nitrophenyl phosphate (pNPP) 

liquid substrate system (Sigma). Cells seeded into 24-well plates at a density of 2.5x103 cells 

per cm2 were washed in DPBS and fixed using a pre-warmed 4% w/v paraformaldehyde (PFA, 

Sigma) solution in DPBS for 20 minutes at room temperature. The PFA solution was then 

removed, the samples washed again using DPBS and incubated for a further 10 minutes in 0.1 

M TRIS (Sigma) buffered DPBS. Following this 10 minute period, the samples were again 

washed in DPBS and 250 µL of undiluted pNPP added to each well. The plates were wrapped 



46 
 

in tin foil to protect the light sensitive pNPP reagent from unwanted exposure and incubated at 

37 °C for 15 minutes. 200 µL samples were then taken from each of the wells and transferred 

into an appropriate number of transparent 96-well plates, which were measured for absorbance 

at 405nm using a Sunrise™ 96-well plate reader. All sample plates were run alongside 

appropriate background absorbance controls and normalised to cell number, which was 

determined using the PicoGreen® assay described in section 2.2.3.   

 

2.3 Directed tri-lineage differentiation 

 

2.3.1 Osteogenic differentiation 

 

The osteogenic differentiation process began by seeding either hBM-MSCs or Y201s at a 

density of 4x104 cells per well across an appropriate number of tissue culture-treated 24-well 

plates, using the supplemented osteogenic differentiation medium described below in table 2.2. 

It should be noted that the cells were allowed to reach over 90% confluence on their previous 

substrate prior to seeding, as a means of priming them for osteogenic differentiation. Following 

this initial seeding process, the cells continued to be cultured for a further 14 days at 37 °C and 

5% CO2. Their medium was replaced every 3 days with fresh osteogenic differentiation 

medium, based upon a formulation by Wang et al (2016), and the cells regularly observed for 

any apparent morphological changes (212). 

Components Quantity/Concentration Supplier 

DMEM (low glucose) Dependant on volume Sigma 

Foetal bovine serum 10% v/v Life Technologies 

GlutaMax (200mM) 1% v/v Life Technologies 

Penicillin-Streptomycin (10,000 U/mL) 1% v/v Life Technologies 

Dexamethasone  100 nM Sigma 

Β-Glycerophosphate disodium salt 

hydrate 

10 mM Sigma 

L-Ascorbic acid 50 µg/mL Sigma 

 

Table 2.2 Osteogenic medium composition 
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2.3.2 Chondrogenic differentiation 

 

Chondrogenic differentiation was performed using a combination of pellet-cultured cells and a 

supplemented medium formulation based on the composition described by Meretoja et al 

(2012) (213). To begin with, either hBM-MSCs or Y201s were pelleted across an appropriate 

number of V-bottomed 96-well plates (Sigma) at a density of 2x105 cells per well. The cells 

were both seeded and then subsequently cultured using the chondrogenic differentiation 

medium detailed in table 2.3. The culture process proceeded for 14 days at 37 °C and 5% CO2, 

with medium changes being conducted every 3 days.  

Components Quantity/Concentration Supplier 

DMEM (high glucose/4.5x104 mg/mL) Dependant on volume Sigma 

GlutaMax (200mM) 1% v/v Life Technologies 

Penicillin-Streptomycin (10,000 U/mL) 1% v/v Life Technologies 

Dexamethasone  100 nM Sigma 

L-Ascorbic acid 50 µg/mL Sigma 

Proline 40 µg/mL Sigma 

Transforming growth factor beta-3 10 ng/mL Peprotech 

Insulin Transferrin Selenium (ITS) 1% v/v Sigma 

 

Table 2.3 Chondrogenic medium formulation 

 

2.3.3 Adipogenic differentiation 

 

The adipogenic differentiation process followed a similar methodology to that of the osteogenic 

differentiation procedure described above in section 2.3.1. Cells were seeded into tissue 

culture-treated 24-well plates at a density of 4x104 cells per well. The cells were then cultured 

for 14 days at 37 °C and 5% CO2
 using the adipogenic differentiation medium detailed in table 

2.4, which is based upon the formulation first published by Neubauer et al (2004) (214). 

Medium changes were performed every 3 days, alongside regular cell morphology checks. 
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Components Quantity/Concentration Supplier 

DMEM (low glucose) Dependant on volume Sigma 

Foetal bovine serum 10% v/v Life Technologies 

GlutaMax (200mM) 1% v/v Life Technologies 

Penicillin-Streptomycin (10,000 U/mL) 1% v/v Life Technologies 

Dexamethasone  1 µM Sigma 

Insulin 10 µg/mL Sigma 

Indomethacin 60 µM Sigma 

3-isobutyl-1-methylxanthine (IBMX) 50 µg/mL Sigma 

 

Table 2.4 Adipogenic medium composition 

 

2.4 Flow cytometry 
 

2.4.1 Cell staining and cytometric analysis 

 

Flow cytometry was utilised in sections 3.3.3, 3.3.4, 4.3.4 and 6.3.4 in order to characterise the 

surface marker profiles of the cells described there. To begin the staining and flow cytometry 

procedure, cells were manually counted (see 2.2.1) immediately following trypsinization (see 

2.1.4), with 3x104 cells being added to each of an appropriate number of Corning® Falcon® 

Round-bottom polystyrene tubes (Sigma). The cells were then washed in 1 mL of FACS buffer, 

made up of a sterile filtered solution of 1 mM EDTA and 10% v/v FBS in DPBS. It should be 

noted that following centrifugation, the liquid supernatant in the tubes was quickly tipped off 

rather than being aspirated away, due to the round-bottomed nature of the tubes offering no 

protection to any resultant cell pellet. 

Next, the cells were resuspended in 50 µL of FACS buffer and the required amounts of both 

the isotype or test antibodies added to each of the appropriate tubes, in accordance with the 

details given below in tables 2.5 and 2.6. The tubes were then wrapped in tin foil due to the 

light sensitivity of the fluorescent molecules and stored at 4 °C for 15 minutes. Following 

refrigeration, the cells were washed in 200 µL of FACS buffer, resuspended in 400 µL of FACS 

buffer, wrapped in tin foil and stored in the fridge until required. Immediately before the tubes 

were taken to the flow cytometer, 50 µL of a 10 µg/mL 4′,6-Diamidino-2-phenylindole 

dihydrochloride (DAPI, Sigma) solution was added to each of them. A FACSCanto II (BD 
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Biosciences) flow cytometer was used to analyse all of the samples, with the associated 

excitation wavelengths and emission filter values for each of the fluorochromes being given in 

table 2.7. 

 

Fluorochrome-Antibody name Volume Supplier 

PE-migG1 1 µL BD Biosciences 

APC-migG1 16 µL BD Biosciences 

FITC-migG1 4 µL BD Biosciences 

FITC-migG2b 2 µL BD Biosciences 

PerCP Cy5.5-migG1 8 µL BD Biosciences 

APC-H7-migG2a 1 µL BD Biosciences 

 

Table 2.5 Isotype control antibody list 

 

 

 

Fluorochrome-Antibody name Volume Supplier 

PE-CD73 4 µL BD Biosciences 

APC-CD105 2 µL BD Biosciences 

FITC-CD14 4 µL BD Biosciences 

FITC-CD19 4 µL BD Biosciences 

FITC-CD34 4 µL BD Biosciences 

FITC-CD45 4 µL BD Biosciences 

PerCP Cy5.5-CD90 2 µL BD Biosciences 

APC-H7-HLA-DR 4 µL BD Biosciences 

 

Table 2.6 Test condition antibody list 
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Fluorochrome name Excitation wavelength Emission filter values 

PE 488 nm 585/42 nm 

APC 635 nm 660/20 nm 

FITC 488 nm 530/30 nm 

PerCP Cy5.5 488 nm 670/LP nm 

APC-H7 635 nm 780/60 nm 

DAPI 405 nm 450/50 nm 

 

Table 2.7 Fluorochrome excitation and emission filter wavelength values 

Emission band pass (BP) filter wavelengths are displayed alongside their respective tolerance limits. The filter 

associated with PerCP Cy5.5 is labelled as long pass (LP) and permits all wavelengths above the listed value. 

 

Alongside the test and isotype runs, which were produced for each individual experimental 

condition, a single set of compensation controls was also created. These control tubes were 

produced in the same manner as the test and isotype runs, with two primary exceptions. Firstly, 

cells were not employed in these runs, with positive and negative compensation beads (BD 

Sciences) being used in their place at a volume of one drop each per tube in accordance with 

the manufacturer’s instructions. Secondly, the beads were individually stained for each of the 

markers, as opposed to being simultaneously stained, as were the test and isotype samples. 

Table 2.8 below provides details of the staining procedure used for the single-stained 

compensation controls. 

Fluorochrome-Antibody name Volume Supplier 

Unstained cells N/A N/A 

PE-CD73 4 µL BD Biosciences 

APC-CD105 4 µL BD Biosciences 

FITC-CD45 4 µL BD Biosciences 

PerCP Cy5.5-CD90 4 µL BD Biosciences 

APC-H7-HLA-DR 4 µL BD Biosciences 

 

Table 2.8 Compensation control and voltage calibration antibody list 
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Lastly, it is important to note that in order to initially calibrate the flow cytometer amplification 

voltages, a set of single stained primary hBM-MSCs and single stained Y201s were utilised. 

Again this process followed the same protocol as for the isotype and test conditions but with 

the cells again being stained with a single antibody per tube, as described in table 2.8. Unlike 

the isotype and compensation controls, the single stained voltage calibration runs were 

performed only once over the entire course of the investigation due to the relative stability of 

the flow cytometer’s settings. All data analysis was performed using the Flowing Software® 

flow cytometry data analysis software.     

 

2.4.2 Assessing the impact of FGF-2 supplementation on surface marker expression 

 

In section 3.3.4 as part of the cell characterisation process, the impact of FGF-2 

supplementation on the surface marker profile of hBM-MSCs was assessed using flow 

cytometry. Upon reaching 80% confluence following isolation (see 2.1.3), passage 0 cells were 

trypsinized and manually counted according to the instructions given in sections 2.1.4 and 2.2.1 

respectively. As per section 2.4.1,   samples of these cell populations were taken and their 

surface marker profiles assessed using flow cytometry. The remaining cells were re-seeded 

across two new T-75 flasks, one of which contained standard MSC culture medium complete 

with 8 ng/mL of FGF-2 (see table 2.1), whilst the other contained this same medium without 

the supplementary cytokine. The cells were then cultured for 6 days, with a single medium 

change being performed half way through this process. Following the 6 day period, the cells in 

both the FGF-2 supplemented and unsupplemented conditions were again trypsinized and 

manually counted, before being assessed using flow cytometry. The remaining FGF-2 

supplemented cells were then re-seeded across two new T-75 flasks, one of which continued 

to be treated with the supplemented medium, while the other contained unsupplemented 

medium only. These cells were then cultured for a further 6 days in the same manner as the 

previous culture step, before being trypsinized, manually counted and assessed using flow 

cytometry one final time. An overview of the culture process in given below in figure 2.2. 
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Figure 2.2 Culture process used in assessing the impact of FGF-2 supplementation on surface marker 

profile 

Upon either reaching 80% confluence or following 6 days in culture, samples from each of the cell populations 

were manually counted and assessed using flow cytometry. Unsupplemented P1 cells were not re-seeded 

following sample collection due to the poor growth seen in these populations.    

 

2.4.3 Identifying endothelial marker expression 

 

In section 6.3.4, hBM-MSCs and Y201s were assessed in regard to their expression of the 

endothelial surface marker CD31 in addition to the markers given in table 2.6. With the 

exception of the use of 4 µL of FITC-conjugated CD31 (BD Biosciences) in each of the test 

conditions, the assay was performed precisely as described in section 2.4.1.   

 

2.5  Cell staining procedures 

 

2.5.1 Cytoskeletal staining 

 

In sections 4.3.2 and 7.3.4 hBM-MSCs and Y201s were subject to cytoskeletal staining using 

a combination of Fluorescein Isothiocyanate-labelled Phalloidin (Sigma) and DAPI. To begin 

with, cells seeded into 24-well plates at a density of 5x103 cells per cm2 were fixed using a 4% 

PFA solution in DPBS for 20 minutes at room temperature. Prior to staining, the fixed cell 
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monolayers were washed twice with a 0.1% v/v solution of tween-20 (Sigma) in DPBS. Next, 

a 0.1% v/v solution of Fluorescein Isothiocyanate-labelled Phalloidin in DPBS was applied to 

the cells at a volume of 250 µL per well, the plates covered in tin foil and the samples left to 

sit at room temperature for 1 hour. Following this time, the cells were washed twice, again 

using the 0.1 % v/v solution of tween-20 in DPBS. Next, 250 µL of a 1 µg/mL solution of 

DAPI in DPBS was applied to each of the wells, the plates covered in tin foil and the samples 

left to sit at room temperature for 15 minutes. The cells were then washed twice using a 0.1% 

v/v solution of tween-20 in DPBS and covered in 1 mL of DPBS for storage. Finally, the cells 

were imaged using a Nikon TiE fluorescence wide-field inverted microscope. Images were 

taken from ten randomly selected points across the surface of each well and analysed using the 

procedure described in section 2.5.6. 

 

2.5.2 Acetylated low density lipoprotein uptake assay 

 

Cells grown in tissue culture-treated 24-well plates were incubated with 10 µg/mL of DiI-

complexed acetylated low density lipoprotein (DiI-acLDL, ThermoFisher Scientific) in 

standard culture medium (see 2.1.4) for 4 hours at 37 °C and 5% CO2. The plates were wrapped 

in tin foil during incubation due to the sensitivity of the fluorescent compound. Following 

incubation, the medium was removed from each of the wells, the cells washed twice with DPBS 

and fixed using a 4% v/v PFA solution for 20 minutes at room temperature. As with the staining 

process, the plates were again wrapped in tin foil during fixation. Finally, 1 mL of DPBS was 

added to each of the wells and the cells imaged using a Nikon TiE fluorescence wide-field 

inverted microscope. 

 

2.5.3 Staining for osteogenic differentiation 

 

Cells undergoing osteogenic differentiation as a result of the methodology detailed in section 

2.3.1 were identified using Alizarin Red-S histological staining. The plated cells and associated 

controls were fixed using a 4% PFA solution for 20 minutes at room temperature following the 

described 14 day culture period. A working solution of the stain was prepared by dissolving 2 

g of Alizarin Red-S (Sigma) into 100 mL of dH2O, before adjusting the pH to between 4.1 and 

4.3 using hydrochloric acid (HCL). To begin the staining process, the cell monolayers were 
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washed twice using DPBS and 250 µL of the 2% v/v Alizarin Red-S solution added to each of 

the wells. It should be noted that this solution was filtered through a 0.22 µm polyethersulphone 

(PES) syringe filter (Sigma) prior to use. The plates were then wrapped in tin foil and incubated 

at room temperature for 10 minutes. Following incubation, the excess stain was removed from 

the wells, the cell monolayers washed thoroughly using dH2O and then each of them covered 

in 0.5 mL of DPBS. The cells were imaged using a Nikon TiE fluorescence wide-field inverted 

microscope in phase-contrast mode. 

 

2.5.4 Staining for chondrogenic differentiation 

 

In order to identify cells undergoing chondrogenesis as a result of the differentiation procedure 

described in section 2.3.2, histological staining of pellet sections was performed using 

Toluidine Blue. The cell pellets were fixed overnight in a 10% formalin solution (Sigma), after 

being carefully washed using DPBS. The formalin solution was then removed from the plates 

and the pellets again washed in DPBS. Next, the pellets were incubated up through a series of 

graduated ethanol solutions, namely 25%, 50% and finally 75% v/v in dH2O. Each of the pellets 

was then removed from its well, wrapped in lint-free tissue paper, dipped in a 70% v/v ethanol 

solution, loaded into an appropriately labelled tissue cassette and stored in 70% v/v ethanol. 

The prepared cell pellets were then embedded in paraffin, sectioned at a thickness of 4 µm and 

attached to pre-charged VFM twinfrost microscope slides (CellPath). It should be noted that 

the aforementioned embedding and sectioning processes were undertaken by the staff at the 

Newcastle University Biobank service.   

Toluidine Blue staining was performed by first deparaffinising the pellet sections in a 100% 

v/v xylene solution for 4 minutes, followed by rehydration through a series of graded ethanol 

solutions for 2 minutes each. These solutions ranged from 100% v/v down to 50% v/v in 

increments of 10% and included a final dH2O hydration step. Next the sections were immersed 

in a 0.1% w/v solution of Toluidine Blue in dH2O for 10 minutes. The sections were then 

washed thoroughly using dH2O and quickly dehydrated by being dipped 10 times each in a 

95% v/v and then a 100% v/v ethanol solution. Finally, the sections were immersed briefly in 

a 100% v/v xylene solution in order to complete the dehydration process and a coverslip 

mounted to each of them using Fluoroshield™ mounting medium (Sigma). The cells were 

imaged using a Nikon TiE fluorescence wide-field inverted microscope in phase-contrast 

mode. 
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2.5.5 Staining for adipogenic differentiation 

 

Oil Red-O histological staining was used to identify adipogenesis in cells differentiated 

according to the methodology described in section 2.3.3. Immediately following the 14 day 

differentiation process, the plated cells and associated controls were fixed using a 4% PFA 

solution for 20 minutes at room temperature. A working Oil Red-O solution was prepared by 

mixing 30 mL of Oil Red-O (Sigma) with 20 mL of dH2O. The solution was then allowed to 

sit for 10 minutes at room temperature before being filtered. The previously fixed cells were 

washed twice using dH2O and incubated for 5 minutes in a 60% v/v isopropanol (Sigma) 

solution. The isopropanol was then aspirated away, 250 µL of the working Oil Red-O solution 

added to each of the wells and the plates left at room temperature for 10 minutes. Next, the 

excess Oil Red-O stain was removed and the cells again washed using 60% isopropanol. 

Finally, the cells were rinsed thoroughly in distilled water, before 0.5 mL of DPBS was added 

to each of the wells and the cells imaged using a Nikon TiE fluorescence wide field inverted 

microscope in phase-contrast mode. 

 

2.5.6 Automated image analysis 

 

Images produced according to the methodology detailed in section 2.5.1 were analysed using 

the built-in functions of the Nikon NIS Elements AR software. The DAPI-stained nuclei in 

each image were counted using bright-spot detection, whilst a combination of threshold and 

local-contrast pre-processing were used to accurately determine the FITC-stained area present 

within each image. A measure of the FITC-stained area per cell was then calculated by dividing 

the FITC-stained area for a given image by the associated number of nuclei. 

 

2.6 RNA extraction and gene expression analysis 
 

2.6.1 RNA extraction 

 

Cell lysis and subsequent ribonucleic acid (RNA) extraction were performed using 

QIAshredder homogenizer columns (Qiagen) and RNeasy® Minikits (Qiagen) respectively. 

Due the inherent compatibility of the homogenizer and extraction columns, both processes 
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were performed together in accordance with their shared manufacturer’s instructions. In order 

to begin the process, an appropriate amount of the supplied Buffer RLT lysis solution and 

Buffer RPE solution were prepared through the addition of 10 µL/mL of β-mercaptoethanol 

(β-ME) and 4 volumes of ethanol respectively. The cells were then trypsinized (see 2.1.4) and 

manually counted (see 2.2.1). Approximately 1.5x105 to 2x105 cells were used per sample 

whenever possible, while for smaller or less proliferative samples, the entire cell population 

was used whenever necessary. After being harvested, the cells were then lysed through the 

addition of 350 µL of the previously prepared Buffer RLT solution, which was then gently 

mixed in order to help disrupt the cells, before being transferred to a QIAshredder column and 

centrifuged for 2 minutes at full speed in a micro-centrifuge.  

Immediately following lysis, 350 µL of a 70% v/v ethanol solution was added to each of the 

lysate samples, the samples were then mixed well via pipetting and transferred in their entirety 

to a set of RNeasy® spin columns, each located within their own individual 2 mL collection 

tube. The columns were then centrifuged at 10000 x g for 15 seconds and the flow-through 

discarded. Next, the columns were subjected to a series of three individual wash steps, the first 

two of which again required centrifugation at 10000 x g for a further 15 seconds following the 

addition of 700 µL of the supplied Buffer RW1 solution and 500 µL of the previously prepared 

Buffer RPE solution respectively. The third wash step again saw 500 µL of the Buffer RPE 

solution being added to each of the columns, before the samples were centrifuged for 2 minutes 

at 10000 x g. Flow-through was discarded after each of the previously detailed wash steps.  

Next the columns were transferred to a new set of 2 mL collection tubes and centrifuged at full 

speed for 1 minute in order to dry the column membranes. Finally, the columns were transferred 

once more, this time to a set of 1.5 mL collection tubes and any associated RNA eluted. This 

was done by adding 30 µL of the supplied RNase-free water directly to the column membranes, 

before centrifuging them for 1 minute at 10000 x g. The column itself was then discarded and 

the quality of the resultant RNA-rich water solution evaluated using the methodology described 

below in section 2.6.2.   

 

2.6.2 RNA quality assessment 

 

The RNA solutions produced using the extraction procedure described in section 2.6.1 were 

evaluated using a NanoDrop 1000 spectrophotometer (Thermo Scientific). In order to perform 
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the analysis, a 20 µL sample of RNA solution was loaded onto the NanoDrop after the machine 

had first been ‘blanked’ using a 20 µL sample of RNase-free water (Sigma). The equipment 

was wiped clean with lint-free tissue paper and again ‘blanked’ to RNase-free water between 

each sample. In the event that a given sample contained too higher concentration of RNA for 

use in genetic characterisation, the solution would be diluted as required used RNase-free water 

and assessed again. Following evaluation, the RNA samples were stored in appropriately 

labelled 0.5 mL tubes at -80 °C until required. 

 

2.6.3 NanoString nCounter gene expression analysis 

 

All of the NanoString nCounter® data presented in sections 4.3.5 and 6.3.5 of this thesis was 

collected by Dr Kile Green of the Newcastle University Institute of Cellular Medicine, using 

nCounter® Stem Cell Gene Expression Codesets (NanoString Technologies). The full gene list 

for these stem cell expression panels can be found in Appendix A.  

The process of running an nCounter® panel can be split into three distinct phases; namely 

hybridization, purification/immobilisation and counting. The RNA samples used in this process 

were extracted via the methodology described in section 2.6.1, quality assessed using the 

technique detailed in section 2.6.2 and diluted to a concentration of 30 ng/mL prior to use. Both 

the hybridisation and purification/immobilisation steps were performed using an nCounter® 

Prep Station (NanoString Technologies) automated liquid handling unit, over the course of a 

2.5 hour period. During hybridization, capture and reporter probes were added to 5 µL volumes 

of each of the associated RNA samples and allowed to hybridize. Next, during the 

purification/immobilisation step, the excess probes were removed and the probe-transcript 

complexes aligned and immobilised in the supplied nCounter® cartridge. Finally, the cartridge 

was transferred to an nCounter® Digital Analyser unit (NanoString Technologies) for 

counting, where the barcoded molecules were imaged and raw expression data collected. The 

results of the nCounter® assay were then exported as a series of comma separated values 

(.CSV) files for subsequent analysis and evaluation.    
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2.7 Identifying and characterising cellular protein secretions 
 

2.7.1 Cell culture medium sample collection 

 

All of the collected medium samples were taken from cultures grown in T-75 flasks in 

accordance with the methodology described in section 2.1.4. Each of the 10 mL samples was 

collected in a 15 mL Corning® Falcon® centrifuge tube (Sigma) and centrifuged at 800 x g 

for 5 minutes, in order to remove any remaining cellular debris. Following centrifugation, the 

samples were each transferred to a new 15 mL centrifuge tube and stored at -80°C. Corning® 

Falcon® polypropylene tubes were specifically selected for sample collection due to their 

material composition, which resists protein adsorption helping to ensure that any proteins 

present within the samples remained in solution. 

Medium samples were collected from 7 different experimental conditions, the specifics of 

which are given below in table 2.9. Upon sample collection the cells in each condition were 

trypsinized (See 2.1.4) and counted using a haemocytometer (see 2.2.1) for use in data 

normalisation. It is important to note that the cells used in the ‘normal’ hBM-MSC condition 

at Passage 0 were re-seeded across three new flasks after being counted, for use in the Passage 

1 stage of the ‘Normal’, ‘S-F’ and ‘TNF’ conditions. The Passage 1 and 2 ‘Normal’ condition 

cells were similarly used to form the basis of the Passage 2 and 3 ‘Normal’, ‘S-F’ and ‘TNF’ 

conditions respectively. With the obvious exception of the ‘Serum-Free’ (S-F) samples, a 

single batch of FBS was used to prepare all of the culture medium collected throughout this 

process, as a means of eliminating the potential impact of batch-to-batch variability on cell 

behaviour or subsequent assay performance. The Tumour Necrosis Factor-α (TNF-α) and 

Lipopolysaccharide (LPS) used in the ‘TNF’ and ‘LPS’ medium preparations were purchased 

from Peprotech and Sigma respectively. It should be noted that these conditions were included 

within the study purely as a means of ensuring that the cells under investigation were capable 

of reactive protein secretion and to identify the profile of factors produced by these cells when 

exposed to an inflammatory (non-optimal) environment.   
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Condition Name Time in Culture Medium Formulation and Supplements 

MSC P0 5 Days Standard Culture Medium 

MSC P1/P2/P3 Normal 5 Days Standard Culture Medium 

MSC P1/P2/P3 S-F 5 Days See Section 2.10.2 (Table 2.13) 

MSC P1/P2/P3 TNF 2 Days Standard Medium + 50 ng/mL TNF-α 

MSC LPS Control 2 Days Standard Medium + 200 ng/mL LPS 

Y201 Normal 5 Days Standard Culture Medium 

Y201 S-F 5 Days See Section 2.10.2 (Table 2.13) 

FBS Control N/A N/A (FBS only) 

 

Table 2.9 Protein secretion culture details 

With the exception of the S-F and FBS Control conditions, the standard culture medium described in section 2.1.3 

was used as a basis for all of the culture processes described here. The FBS control condition samples were 

comprised of undiluted volumes of foetal bovine serum, which had not come into contact with cells of any kind.  

 

2.7.2 Meso Scale Discovery immunoassay 

 

The medium samples collected according to the process described above in section 2.7.1 were 

characterised using a V-PLEX Human Biomarker 40-Plex immunoassay (Meso Scale 

Discovery). This assay was performed in accordance with the manufacturer’s instructions and 

with the assistance of Mr John Butler. A full list of the 40 biomarkers assessed using this assay 

can be found in Appendix B. It should be noted, that due to the inclusion of FGF-2 in all of the 

medium formulations used during the course of this investigation, FGF-2 itself was excluded 

from the analysis process. Similarly, TNF-α concentrations were not assessed for the TNF-α 

treated cell populations given the relatively high concentrations used.  

In brief, the V-PLEX immunoassay was performed as follows. Initially, the plates were blocked 

using the supplied blocking reagent, sealed and incubated for 1 hour at room temperature on a 

shaking platform set at 800 rpm. Next, the plates were washed three times with the supplied 

buffer solution and 50 µL volumes of the diluted calibrator, control and sample solutions added 

to each of the appropriate wells. The plates were then sealed and incubated at room temperature 

for 2 hours on a shaking platform set at 800 rpm. Following this, the plates were again washed 

three times and 25 µL volumes of the appropriate detection antibodies added to each of the 

wells. As with the previous step, the plates were then sealed and incubated at room temperature 

for 2 hours on a shaking platform. Finally, the plates were again washed three times, before 
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150 µL of the supplied read-buffer was added to each well and the plates analysed using a 

Meso Scale Discover Sector Imager 6000.  

 

2.8 Preparing aminosilane functionalised glass surfaces 
 

2.8.1 Pre-preparation of glass surfaces 

 

Standard sized VFM twinfrost glass microscope slides (CellPath) were initially pre-cleaned 

using one of two different methods; the first consisted of emersion in a 1:1 solution of methanol 

(Sigma) and concentrated hydrochloric acid (Sigma) for 30 minutes prior to rinsing in de-

ionised water (dH2O) and drying under a steady stream of nitrogen gas. The second method 

utilised the exact same acid-solvent immersion protocol as the first but was immediately 

followed by a 3 minute exposure to air plasma within a PDC-32G plasma cleaner (Harrick 

Plasma). The treated slides were then stored in sealed containers under an inert atmosphere of 

nitrogen gas prior to use.  

 

2.8.2 Silanization of glass surfaces 

 

Glass slides pre-cleaned according to the procedure described in section 2.8.1 were aminosilane 

functionalized using either (3-aminopropyl)triethoxysilane (APTES, Sigma) or 3-

aminopropyl(diethoxy)methylsilane (APDEMS, Sigma) split across one of three different 

solution-based methods. Aqueous-APTES treated slides were functionalised as per the protocol 

proposed by Yadav et al (2014) (215). A stock solution of 50% v/v methanol (Sigma), 47.5% 

v/v APTES and 2.5% v/v ultrapure water was prepared and allowed to age at 4 °C overnight. 

Before use, the stock solution was further diluted 1:500 in methanol, in order to produce a 

working solution with an APTES concentration of 0.095% v/v. Pre-cleaned glass slides were 

then immersed in the aqueous APTES solution for 40 minutes at room temperature. 

Anhydrous-APTES and anhydrous-APDEMS treated slides were submerged in either a 0.1% 

v/v solution of APTES in anhydrous toluene or a 0.1% v/v solution of APDEMS in anhydrous 

toluene for 40 minutes. All of the aminosilane treated slides were then rinsed with anhydrous 

toluene and dried under a steady stream of nitrogen gas, before being heated to 110°C for 30 

minutes in a MINO 30 SS Laboratory Oven (Genlab). As with the cleaned glass slides before 
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them, the treated slides were stored in sealed containers under an inert atmosphere of nitrogen 

gas. 

 

2.8.3 Measuring water contact angle 

 

Static water contact angle measurements were taken at five different points across each of the 

prepared glass surfaces using a Cam 101 Tensiometer (KSV Instruments) and represented the 

average of the measured left and right angles for each of the assessed points. It should be noted 

that the droplets of liquid used to assess the water contact angles were allowed to sit for 40 

seconds prior to any measurements being taken, as a means of ensuring that they had settled 

into position and were hence representative of a truly static contact angle. 

 

2.8.4 Measuring surface amine content 

 

Acid orange-7 (AO-7) is an organic dye which binds to protonated amine groups and can be 

used to identify their presence and relative abundance on the surface of a given material. The 

AO-7 assay was performed by first exposing treated glass surfaces to a 500µM solution of 

orange-II sodium salt (AO-7, Sigma) in dH2O at pH 3 for approximately 24 hours at room 

temperature, after which the slides were rinsed three times in dH2O at pH 3 in order to remove 

any non-adsorbed dye. Following washing, the surfaces were immersed in dH2O at pH13 for 

15 minutes at room temperature as a means of releasing any bound dye, the level of which was 

quantified using a spectrophotometer reading absorbance at 482 nm with a 600 nm reference 

wavelength. 50 mL skirted Corning® Falcon® tubes (Sigma) were used to hold each of the 

individual glass slides during incubation with both the AO-7 solution and the alkaline dH2O 

solution, with 10 mL of each liquid being sufficient to cover an area of 7.65 cm2 at the bottom 

of each slide. The relative pH levels of the distilled water and AO-7 solutions were regulated 

using either a dilute hydrochloric acid solution or a dilute sodium hydroxide solution depending 

upon the required pH values. In addition to the samples themselves, a series of control solutions 

of known AO-7 concentrations were also tested as a means of developing a standard curve for 

the assay (Figure 2.3). This curve was then used to convert the experimental data values into 

‘amine groups per area squared’ measurements for the purposes of interpretation. 
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Figure 2.3 An AO-7 standard curve plated into 96-well plate format 

The plate contains samples of the AO-7 reagent at concentrations ranging from 100nM up to 500µM. Increases 

in the intensity of the yellow/orange colouration of the samples can be seen to correlate with the increase in reagent 

concentration. 

 

2.8.5 Surfaces characterisation via x-ray photoelectron spectroscopy  

 

X-ray photoelectron spectroscopic analysis of the aminosilane treated surfaces described in 

section 7.3.2 was carried out by the Nexus National EPSRC XPS Users’ Facility (Newcastle 

University) using a Thermo Scientific Theta Probe Angle-Resolved X-ray Photoelectron 

Spectrometer (ARXPS) System. The elemental composition of the slides was assessed at two 

different points across each of the surfaces, with analysis of the resultant spectra being carried 

out using the CasaXPS software package. 

 

2.8.6 Assessing aminosilane layer stability in aqueous conditions 

 

With the intention of assessing the aqueous stability of the aminosilane layers formed as a result 

of using the three different silanization methodologies described in section 2.8.2, slides coated 

using each of these methods were incubated for either 0, 15, 30 and 60 minutes in dH2O at 

37°C. The aminosilane treated slides were each fully immersed in dH2O within individually 

allocated 50mL Corning® Falcon® centrifuge tubes and were dried under a stream of nitrogen 

gas immediately after removal from aqueous conditions. The slides were then stored in sealed 

containers under an inert atmosphere of nitrogen gas prior to assessment, which was performed 

using static water contact angle measurements. It should be noted that these measurements 
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were taken exactly as described in section 2.8.3 with the exception that only three points were 

measured per slide, due to the increased number of slides associated with this investigation. 

As a means of helping validate any potential links between diminished water contact angle and 

decreased aminosilane layer integrity, an AO-7 assay (see 2.8.4) was performed using only the 

methodology that appeared to produce the most stable layers as indicated by the associated 

water contact angle data. 

 

2.9 Screening selected extracellular matrix proteins in regard to cell adhesion and 

morphology 

 

2.9.1 Surface preparation 

 

The following procedure was used in order to prepare aminosilane coated surfaces for use in 

screening a selected set of extracellular matrix proteins. To begin with, a series of 13 mm 

diameter borosilicate glass coverslips (Scientific Laboratory Supplies) were APDEMS treated 

as per the process described in section 2.8.2. The coverslips were then transferred into an 

appropriate number of Corning® non-treated 24-well plates (Sigma), at one coverslip per well. 

Next, the plates were UV treated for 30 minutes using a bench-top sterilization unit. 250 µL 

volumes of a 25% v/v glutaraldehyde solution in dH2O were then added to each of the wells 

and the plates incubated for 30 minutes at room temperature. Following incubation, the wells 

and coverslips were washed three times each using DPBS and stored at 4 °C until required. 

 

2.9.2 Experimental set-up and cell seeding 

 

Plates produced according to the methodology described above in section 2.9.1 were used as a 

basis from which to screen an array of different combinations of ECM proteins in regard to 

their impact on both hBM-MSC and Y201 adhesion and morphology. Initially, the plates were 

removed from storage and washed twice with DPBS. Next, the various combinations of the 

different proteins were added across the plates at volumes of 500 µL per well and the plates 

incubated for 2 hours at 37 °C. A two-level three-factor (23) full factorial design was used to 

construct the experiment, an overview of which is given in table 2.10. It is important to note 

that the total amount of protein in each of the experimental conditions was kept constant, with 
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only the specific composition changing between runs. A single positive control condition of 

10% v/v FBS in Hank’s Buffered Saline Solution (Sigma, HBSS) and a single negative control 

condition of 0.5% w/v BSA in HBSS were also included. 

  

Run designation Fibronectin Vitronectin Fibrinogen Total Protein 

1 0 µg 0 µg 0 µg 0 µg 

2 10 µg 0 µg 0 µg 10 µg 

3 0 µg 10 µg 0 µg 10 µg 

4 0 µg 0 µg 10 µg 10 µg 

5 5 µg 5 µg 0 µg 10 µg 

6 5 µg 0 µg 5 µg 10 µg 

7 0 µg 5 µg 5 µg 10 µg 

8 3.3 µg 3.3 µg  3.3 µg 10 µg 

0 (Centre) 1.6 µg 1.6 µg 1.6 µg 5 µg 

 

Table 2.10 Overview of the 23 factorial design used for ECM protein screening  

The total protein content of each corner point was kept constant throughout the detailed design due to the 

substantial impact that protein concentration is known to have on cell-substrate interactions. A single literal centre 

point was included as a means of assessing curvature within the design, a clear indicator that the concentrations 

being employed are far higher than those actually required in order to illicit the observed effects. 

 

Following incubation, the protein solutions were aspirated from the wells and the wells washed 

twice with DPBS. Next, cells were trypsinized, manually counted and seeded across the plates 

at 1x104 cells per well, using standard MSC culture medium without the inclusion of FBS. The 

plates were then incubated for 4 hours at 37 °C and 5% CO2. After this period, the wells were 

washed with DBPS in order to remove any unattached cells and the cells fixed using a 4% w/v 

solution of PFA in DPBS for 20 minutes at room temperature. 500 µL volumes of DPBS were 

then added to each well and the plates stored at 4 °C until required for analysis. The cells were 

assessed using a combination of the PicoGreen® assay described in section 2.2.4 and the 

cytoskeletal staining procedure described in section 2.5.1. Due to the destructive nature of the 

PicoGreen® assay, separate plates were prepared for this purpose in which the cells were not 

fixed immediately following the screening process. 
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2.10 Design of experiments and statistical analyses 
 

2.10.1 Fractional factorial supplement screening 

 

Twelve different cytokines and commonly used culture supplements were screened across three 

individual sets of 24-1 fractional factorial experiments, with four factors being investigated per 

design (see table 2.11). The supplements were assessed on their ability to support the metabolic 

functions of hBM-MSCs in serum-deprived conditions. Cells were seeded at a density of 

2.5x103 cells per cm2 in 24-well plates using standard MSC culture medium and incubated 

overnight at 37 °C and 5% CO2. Following incubation, the cells were washed three times using 

DPBS and cytokine-supplemented serum-free medium solutions added to each of the 

appropriate wells in accordance with the design given in table 2.12. The basal medium used to 

produce the serum-free solutions was a commercially available 1:1 combination of DMEM and 

Ham’s F-12 Nutrient Mixture (DMEM/F-12, Sigma), supplemented with 1% v/v GlutaMax 

(200 mM) and 1% v/v Penicillin-Streptomycin (10,000 U/mL). The cells were then cultured 

for 5 days at 37 °C and 5% CO2, without media changes. Following this 5 day culture period, 

the metabolic activity of the cells was assessed using an MTT assay as described in section 

2.2.2. It should be noted that an FBS control condition, in which the cells were cultured for the 

5 day period in standard MSC culture medium, was also included in each of the experiments. 

 Designation Component 1 Component 2 Component 3 Component 4 

Name Screening 

Experiment 

1 

FGF-2 SITE PDGF-BB TGF-β1 

Concentration 25 ng/mL 1.75% v/v 5 ng/mL 2.5 ng/mL 

Supplier Peprotech Sigma Peprotech Peprotech 

Name  Screening 

Experiment 

2 

Ascorbic Acid SDF-1α IL-6 HB-EGF 

Concentration 80 µg/mL 50 ng/mL 10 ng/mL 100 ng/mL 

Supplier Sigma Peprotech Peprotech Peprotech 

Name Screening 

Experiment 

3 

BMP-3 VEGF ROCK Thy-β4 

Concentration 100 ng/mL 20 ng/mL 4 µg/mL 100 ng/mL 

Supplier Peprotech Peprotech Sigma Peprotech 

 

Table 2.11 Overview of the cytokines and culture supplements assessed over the course of three separate 

screening experiments 

The listed components are as follows: Fibroblast Growth Factor-2 (FGF-2), Selenium Insulin Transferrin 

Ethanolamine (SITE), Platelet Derived Growth Factor-BB (PDGF-BB), Transforming Growth Factor-β1 (TGF-
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β1), Ascorbic Acid (AA), Stromal Cell Derived Factor-1α (SDF-1α), Interleukin-6 (IL-6), Heparin Binding EGF-

like Growth Factor (HB-EGF), Bone Morphogenetic Protein-3 (BMP-3), Vascular Endothelial Growth Factor 

(VEGF), Rho-associated protein Kinase-inhibitor Y-27632 (ROCK) and Thymosin-β4 (Thy-β4). 

 

Run designation Component 1 Component 2 Component 3 Component 4 

1 - - - - 

2 + - - + 

3 - + - + 

4 + + - - 

5 - - + + 

6 + - + - 

7 - + + - 

8 + + + + 

0 (Centre) 0 0 0 0 

 

Table 2.12 Overview of the 24-1 fractional factorial experimental design used in supplement screening 

The experimental design detailed here was used across all three of the individual component lists given in table 

2.11. A ‘+’ symbol indicates the inclusion of a given component at the listed concentration, whilst a ‘-‘symbol 

indicates that the corresponding component was not included in a particular run.  

 

2.10.2 Full factorial formulation assessment 

 

Following the fractional factorial experiments described above in section 2.10.1, a set of full 

factorial designs were utilised in order to assess the suitability of a serum-free medium 

formulation derived from the most promising of the screened cytokines and growth 

supplements (see table 2.13). hBM-MSCs and Y201s were seeded at a density of 2.5x103 cells 

per cm2 in 24-well plates using standard MSC culture medium and incubated overnight at 37 

°C and 5% CO2. Following incubation, the cells were washed three times using DPBS and 

cytokine-supplemented serum-free medium solutions added to each of the appropriate wells in 

accordance with the design given in table 2.14. The basal medium used to produce these 

solutions was the same as the one used in the fractional factorial screening experiments (see 

2.10.1). The cells were then cultured for 5 days at 37 °C and 5% CO2, without media changes. 

Following culture, metabolic activity levels and total cell numbers were determined for each 

of the plates using PrestoBlue® and PicoGreen® assays respectively (see 2.2.3 and 2.2.4). It 



67 
 

should be noted that, as with the fractional screening experiments before them, an FBS control 

condition was also included in each of the full factorial designs. 

 

 Component 1 Component 2 Component 3 Component 4 

Name FGF-2 SITE PDGF-BB TGF-β1 

Concentration 25 ng/mL 1.75% v/v 5 ng/mL 2.5 ng/mL 

Supplier Peprotech Sigma Peprotech Peprotech 

 

Table 2.13 Overview of the cytokines and culture supplements used in the assessed serum-free medium 

formulation 

The listed components are as follows: Fibroblast Growth Factor-2 (FGF-2), Selenium Insulin Transferrin 

Ethanolamine (SITE), Platelet Derived Growth Factor-BB (PDGF-BB) and Transforming Growth Factor-β1 

(TGF-β1). 
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Run designation Component 1 Component 2 Component 3 Component 4 

1 - - - - 

2 + - - - 

3 - + - - 

4 - - + - 

5 - - - + 

6 + + - - 

7 + - + - 

8 + - - + 

9 - + + - 

10 - + - + 

11 - - + + 

12 + + + - 

13 - + + + 

14 + + - + 

15 + - + + 

16 + + + + 

0 (Centre) 0 0 0 0 

 

Table 2.14 Overview of the 24 full factorial experimental design used in formulation assessment 

The experimental design detailed here was used in conjunction with the component list given in table 2.13. A ‘+’ 

symbol indicates the inclusion of a given component at the listed concentration, whilst a ‘-‘symbol indicates that 

the corresponding component was not included in a particular run.  

 

2.10.3 Data handling and statistical analyses 

 

All of the experiments described in this investigation were independently repeated a minimum 

of three times, with at least three technical replicates being included for each individual 

condition. Biological replicates were conducted using either hBM-MSC populations isolated 

from distinct donors or individually thawed Y201 samples with different passage numbers. 

Parametric analyses were used whenever possible, with the associated non-parametric 

alternatives being applied only when data transformation was seen to be ineffective. All raw 

data was assessed in regard to the normality of the associated residuals and homoscedasticity, 

as appropriate. Literal centre points were included in all fractional and full factorial designs as 
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a means of assessing curvature within the resultant data set, a clear indicator of diminishing 

returns within the context of the associated design space. In addition, where appropriate 

experimental data sets were split into blocks based on primary cell donor or cell line passage 

number, in order to assess the impact of these factors on the cells responses to cytokine 

supplementation. Microsoft® Excel 2016 was used for data storage, graphical representation 

of data and descriptive analysis, whilst Minitab 16 was used in all instances of inferential 

analysis and factorial design. A critical value (α) of 0.05 was used throughout the entire course 

of this project.  
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3  Chapter 3: Primary mesenchymal stromal cell and cell line characterisation 
 

3.1 Introduction 

 

Different types of mammalian cells have been shown on numerous occasions to possess distinct 

metabolic, nutritional and micro-environmental requirements in order to ensure their continued 

growth and phenotypic stability in vitro. For instance, Kato & Gospodarowicz (1984) 

demonstrated that low density cultures of rabbit-derived chondrocytes require a complex 

combination of high-density lipoprotein, transferrin, FGF-2, hydrocortisone and epidermal 

growth factor in order to actively proliferate in serum-free conditions (216).  Conversely, whilst 

insulin was shown to have no beneficial effects on cell growth in the aforementioned study, 

this same supplement was demonstrated to significantly improve the proliferation of human 

umbilical vein endothelial cells (HUVECs) during prolonged in vitro expansion (217). 

In light of these substantial differences, it is apparent that any study utilising primary cells 

should include relevant characterisation activities, especially given the large amounts of 

variability inherent to both the proliferative and metabolic features of such cells. Here, we 

utilised The International Society for Cellular Therapy’s (ISCT) criteria for the identification 

of MSCs as the primary means by which to characterise the donor-derived cells used as part of 

this investigation. It was also important that cells belonging to the immortalised Y201 line were 

similarly assessed, as a means of evaluating their suitability for use as a consistent control 

group during subsequent activities. It should be noted that any significant deviations from the 

criteria laid out by the ISCT triggered further investigation, the results of which can be found 

within the confines of this chapter. 

 

3.2 Aims 
 

1. To assess the morphological, differentiation and surface marker properties of both the 

primary and immortalised cells used during the course of this investigation with respect 

to those typical for hBM-MSCs. 

2. To evaluate the potential impact of FGF-2 supplementation on surface marker 

expression in primary hBM-MSCs.  

 



71 
 

3.3 Results 
 

3.3.1 Morphological characterisation 

 

Human bone marrow-derived MSCs were commonly seen to adopt a classical spindle-like 

morphology following isolation, as shown below in figure 3.1. A range of additional 

morphological conformations were also observed during culture, with a general shift towards 

a more flattened and rounded shape becoming apparent over extended periods of expansion. 

Similarly, Y201 cells were also seen to adopt a spindle-like morphology but displayed little to 

no variability in regard to their shape despite prolonged time in culture. It should be noted 

however, that if allowed to reach confluence levels of over 90%, these cells began to display 

an almost cuboidal appearance, which persisted over subsequent sub-cultures. 

 

 

 

Figure 3.1 Representative phase contrast micrographs of cell belonging to the Y201 line together with 

primary hBM-MSCs  

All included scale bars are indicative of a 100 µm length. a) Y201s. b) hBM-MSC 

 

3.3.2 Tri-lineage differentiation potential 

 

Following 14 days of culture in adipogenic conditions, primary hBM-MSCs were seen to 

produce fat droplets, readily stained by Oil Red-O and considered indicative of directed 

adipogenic differentiation. Similarly, these same cells were seen to produce small Alizarin 

Red-S stainable mineral deposits typical of osteogenic differentiation following exposure to 

appropriate culture conditions. Despite the diffuse blue colouration seen across the embedded 
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sections following pellet culture and subsequent staining, no clear indications of directed 

chondrogenic differentiation were observed in regard to the hBM-MSCs utilised during the 

course of this investigation.  

As with the primary cells before them, cells belonging to the Y201 cell line were readily seen 

to generate fat droplets and mineralised deposits characteristic of adipogenic differentiation 

and osteogenic differentiation respectively. It should be noted that the osteogenic features 

displayed by these cells were substantially more pronounced than those seen in the primary 

hBM-MSCs. In addition, the adipogenic features of these cells were seen to be less distinct on 

visual evaluation than those of the patient-derived cells. Given the formative nature of this 

aspect of the investigation however, no further analysis was deemed necessary when going 

forward. Similar to the primary hBM-MSCs mentioned above, the toluidine blue stained Y201 

sections displayed only a subtle change in colouration following the chondrogenic 

differentiation process, suggesting a lack of phenotypic shift. Control groups grown in the 

absence of differentiation-induction media were included in both the hBM-MSC and Y201 

osteogenic, adipogenic and chondrogenic staining processes. No apparent morphological or 

phenotypic changes consistent with tri-lineage differentiation were observed within any of 

these control groups.   Representative images of the cells discussed here, alongside all 

associated contrls, can be found below in figures 3.2 and 3.3. 
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Figure 3.2 Phase contrast images of tri-lineage differentiated BM-MSCs 

All included scale bars are indicative of a 100 µm length. a) Oil Red-O stained fat droplets following adipogenic 

differentiation. b) Alizarin Red-S stained mineral deposits in osteogenically differentiated cells (as indicated by 

the associated arrows). c) A Toluidine Blue stained section of pellet cultured cells exposed to chondrogenic 

medium, with no clear indications of differentiation. 
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Figure 3.3 Phase contract images of tri-lineage differentiated Y201s 

All included scale bars are indicative of a 100 µm length. a) Oil Red-O stained fat droplets following adipogenic 

differentiation. b) Cells grown in standard culture conditions stained with Oil Red-O. c) Alizarin Red-S stained 

mineral deposits in osteogenically differentiated cells. d) Cells grown in standard culture conditions and stained 

with Alizarin Red-S. e) A Toluidine Blue stained section of pellet cultured cells exposed to chondrogenic medium, 

with no clear indications of differentiation. f) Cells grown in pellet culture without chondrogenic induction 

medium and stained with Toluidine Blue. 
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3.3.3 Surface marker expression 

 

Three different populations of cells isolated from human donor femoral heads were 

characterised using flow cytometry against the International Society for Cellular Therapy’s 

(ISCT) criteria for identifying MSCs. The gating strategy utilised during this process is detailed 

below in figure 3.4. Cells showed an average viability of 96.8% based on their DAPI staining 

profile, with 39.2% of this sub-population of living cells matching the MSC characterisation 

criteria on average. Investigation of the gating process revealed that a substantial proportion of 

viable cells were not identified as MSC-like on the basis of their positive expression of HLA-

DR. Exclusion of this marker was seen to boost the average number of MSC-like cells to 

97.4%, revealing a significant shift over the previous value (t(2)=4.55, P=0.045). 

 

 

Figure 3.4 Example dot plots and histograms representative of the typical gating strategy used to 

characterise BM-MSCs  

a) Cells were initially distinguished from cellular-debris on the basis of their SSC-A to FSC-A ratio. b) Living 

cells were then identified due to their lack of staining with DAPI. c-g) BM-MSCs were characterised based on the 

International Society for Cellular Therapy’s (ISCT) criteria for the identification of MSCs. Namely, the 

combination of their lack of expression of CD14, CD19, CD34 and CD45 (FITC), positive expression of CD73 

(PE), CD90 (PerCP-Cy55) and CD105 (APC), and finally the absence of HLA-DR (ACP-H7) expression. The 

black curves on each of the displayed histograms represent the plotted sample data, whilst the associated red 

curves correspond to the matching isotype controls. Blue gates signify the BM-MSC acceptance criteria using for 

characterisation based on the positioning of isotype control data. h) A dot plot of APC-H7 staining against FSC-

A is included due to the unusual pattern of HLA-DR expression seen in all of the cell populations assessed. 

 

Alongside the donor-derived cells, three different cultures belonging to the Y201 cell line were 

also evaluated, revealing an average viability of 95.7%. An example of the gating process 
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 )  )  )  ) 
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utilised during this activity is given below in figure 3.5. Unlike the primary cells before them, 

no significant shift in the proportion of living Y201s identified with or without the inclusion of 

the HLA-DR marker was seen (t(2)=0.08, P=0.943). It is thought that the overall reduction in 

the number of MSC-like cells identified in the Y201 cultures (89.6% pre HLA-DR and 89.6% 

post HLA-DR) when compared to the pre HLA-DR primary populations was brought about by 

the existence of a small sub-group of CD73 negative cells, which can clearly be seen in image 

d) of figure 3.5. 

 

 

Figure 3.5 Example dot plots and histograms representative of the typical gating strategy used to 

characterise cells belonging to the Y201 cell line 

a) Cells were initially distinguished from cellular-debris on the basis of their SSC-A to FSC-A ratio. b) Living 

cells were then identified due to their lack of staining with DAPI. c-g) As with the primary BM-MSCs, Y201s 

were characterised based on the International Society for Cellular Therapy’s (ISCT) criteria for the identification 

of MSCs. Namely, the combination of their lack of expression of CD14, CD19, CD34 and CD45 (FITC), positive 

expression of CD73 (PE), CD90 (PerCP-Cy55) and CD105 (APC), and finally the absence of HLA-DR (ACP-

H7) expression. The black curves on each of the displayed histograms represent the plotted sample data, whilst 

the associated red curves correspond to the matching isotype controls. Blue gates signify the BM-MSC acceptance 

criteria using for characterisation based on the positioning of isotype control data. h) A dot plot of APC-H7 

staining vs FSC-A is included for comparison to primary cells. 

 

3.3.4 Assessing the impact of fibroblast growth factor-2 supplementation on surface marker 

expression 

 

As a result of the high HLA-DR expression levels identified during primary MSC 

characterisation, an investigation was performed in order to assess the potential impact of FGF-
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2 supplementation on the expression of this marker over two successive subcultures following 

initial isolation. Flow cytometry data showed a significant reduction in the average percentage 

of MSC-like cells identified post HLA-DR when cultures were supplemented with bFGF at 

both passage 1 (t(3)=3.52, P=0.039) and passage 2 (t(3)=11.36, P=0.001), as seen below in 

figures 3.6 and 3.7. In addition, there was no significant reduction in the average percentage of 

MSC-like cells pre and post HLA-DR when bFGF was removed from previously supplemented 

cells, suggesting that any associated effect may potentially be reversible (t(3)=2.18, P=0.117). 

 

 

Figure 3.6 Representative dot plots showing the expression of HLA-DR in BM-MSCs following expansion 

in bFGF supplemented and un-supplemented media across three subsequent subcultures 

a) Cells cultured without supplementary bFGF showing negligible expression of HLA-DR at P0 b) Cells at P1 

continuing to display negligible levels of HLA-DR following expansion in un-supplemented media. c) Cells at P1 

cultured with supplementary bFGF expressing increased levels of surface-bound HLA-DR. d) Cells showing a 

decrease in HLA-DR expression at P2 following expansion in un-supplemented media. e) Cells at P2 cultured 

with supplementary bFGF again showing increased HLA-DR expression. 

 

 

 

 

 

 

a) 

b) 

c) 

d) 

e) 
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Figure 3.7 Mean percentages of living BM-MSCs remaining prior to and following selection based on lack 

of expression of HLA-DR 

Error bars indicate the standard error of the mean for n=4. Cells were cultured over a number of successive 

subcultures with or without bFGF supplementation as indicated. 

 

3.4 Discussion 
 

Over the course of this chapter, the two principle cell populations utilised during this 

investigation were characterised in regard to their morphology, tri-lineage differentiation 

potential and surface marker profiles. Upon visual examination, both primary BM-MSCs and 

Y201s were seen to display morphological characteristics typical of MSCs, possessing an 

elongated spindle-like morphology. Immortalised cells were seen to appear smaller in size than 

primary patient-derived cells and to display a substantially more consistent morphology 

between cultured populations. In regard to their tri-lineage differentiation, both cell types were 

capable of osteogenic and adipogenic differentiation, identified by the production of 

mineralized nodules and lipid droplets respectively. Conversely, neither Y201s nor primary 

cells were able to undergo chondrogenic differentiation following culture in appropriate 

conditions. Whilst it has been demonstrated that MSCs derived from aged osteoarthritic donors 

undergoing joint replacement surgery have significantly reduced chondrogenic potential, this 

should not be the case for cells belonging to the Y201 cell line (221). These results may suggest 

that rather than lacking in tri-lineage potential, the method of inducing chondrogenic 

differentiation utilised here was not compatible with these cells. It should be noted that, based 

upon visual assessment alone, primary cells appeared to show increased fat droplet formation 

when compared to Y201s, whilst Y201s had larger mineralised deposits on average than 
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patient-derived cells. It could be that this observation suggests some level of lineage bias 

between the two groups but this cannot be confirmed without the use of gene expression 

analysis or a similarly quantitative assessment. 

The results of the surface marker analysis for both cell types were consistent with the ISCT 

criteria for MSC identification, with the exception of HLA-DR, which was seen to be positively 

expressed in the primary cell populations. It should be noted that some groups have 

demonstrated increased HLA-DR expression in cells derived from diseased patients and that 

the pro-inflammatory conditions present within osteoarthritic synovial joints can also lead to 

aberrant expression of HLA class-II molecules (222). Despite this, no HLA-DR expression was 

seen in very early stage cultures, suggesting that some element of the expansion process itself 

was likely impacting upon the surface marker profile of these cells. FGF-2 was identified as a 

possible culprit, given its apparent ability to cause immunogenic activation of MSCs, in spite 

of its continued use throughout the industry as a mitogenic supplement (223, 224). The results 

of the associated investigation, revealed that expansion with FGF-2 did indeed lead to 

significant increases in HLA-DR expression over successive subcultures. Unfortunately, the 

primary cell populations utilised here were incapable of growing for more than a single passage 

without FGF-2 supplementation, necessitating its continued inclusion within the medium. 

Incidentally however, it was observed that the aforenoted increases in HLA-DR expression 

resulting from FGF-2 use were at least partially reversible and that removal of the cytokine 

from the medium would result in reduced expression. As a direct result, where appropriate cells 

were cultured without FGF-2 for a single passage immediately prior to experimental use, in 

order to help reduce the impact of this phenomenon on any subsequent investigations. 
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4 Chapter 4: Assessing the variability of foetal bovine serum as a cell culture 

supplement 
 

4.1 Introduction 
 

Foetal bovine serum represents one of the most commonly applied media supplements used 

within modern mammalian cell culture processes, particularly with regard to small scale 

research-related activities. This complex mixture of ions, amino acids, vitamins and proteins 

not only provides cells with the nutrients required for effective in vitro growth but also supplies 

additional buffering capacity and protection from shear forces. Despite these benefits however, 

the xenogeneic nature of FBS raises many questions regarding its safety and the reliability of 

supply, with its variable composition acting a main point of contention during process 

development and scale-up activities. Interestingly, whilst an overwhelming amount of 

anecdotal evidence exists regarding the potential impact of serum variability on cell 

proliferation and survival, very little experimental data can be found to support such claims. 

As a direct result of this gap in current knowledge, we chose to assess the impact of both batch 

to batch variability and variability between different serum types on the key phenotypic, 

metabolic and genetic characteristics of primary hBM-MSCs and Y201s. It is important to note 

that Y201s were included in this study chiefly as a means of helping to distinguish any apparent 

batch-related effects from those arising as an artefact of the donor variability inherent to 

primary cells. Similarly, a second type of serum was included within the investigation; namely 

human serum, in order to act as a reference point from which to assess the relative variability 

between different FBS batches. Finally, it is should also be noted that the batch of FBS 

designated here as ‘FBS 1’ was utilised in all activities requiring the inclusion of serum 

described outside of this chapter, including the isolation, expansion and cryopreservation of 

primary cell populations detailed in section 2.1. 

 

4.2 Aims 
 

1. To evaluate the impact of foetal bovine serum batch variability on hBM-MSC growth, 

metabolic activity and surface marker characteristics. 



81 
 

2. To assess whether the apparent effects of foetal bovine serum variability on cell 

proliferation and metabolic activity can be linked to altered gene expression in hBM-

MSCs and Y201s. 

 

4.3 Results 
 

4.3.1 Cell growth and metabolic activity 

 

Following five days of culture, both primary hBM-MSCs and Y201s were seen to display 

variable peak cell densities depending upon the batch and type of serum to which they were 

exposed, as seen below in figures 4.1 and 4.2. The results of a one-way ANOVA on the primary 

cell data revealed significant differences between the total cell counts recorded for day five 

(F(23)=6.00, P=0.001), with FBS 1 showing significantly reduced growth when compared to 

each of the three tested human serum (HS) batches. Analysis of the Y201 data at day five 

uncovered a similarly significant result (F(23)=231.44, P=0.000), with growth using FBS 

batches 2 and 3 resulting in a significant reduction in peak cell density when contrasted against 

the other six serum batches. Additionally, FBS 1; the use of which resulted in the highest 

recorded average day five Y201 cell count, gave rise to values that were statistically distinct 

from those of FBS 4, HS 1 and HS 2.   

Figures 4.3 and 4.4 show the normalised metabolic activity for each of the different serum 

groups displayed by primary hBM-MSCs and Y201s respectively. Despite a general trend 

towards reduced metabolic activity in cells exposed to serum with poor growth profiles, no 

statistically significant effects were identified.  

Utilising the growth curves seen in figures 4.1 and 4.2, a set of average doubling times were 

calculated for the two different cell types when cultured in each of the tested serum batches, 

using the equation Doubling Time (hrs) = (24*LOG(2))/(LOG(Cell Count on Day 3)-

LOG(Cell Count on Day 2)). Analysis of these results, which are given in figures 4.5 and 4.6, 

revealed significant differences within both the MSC (F(23)=3.82, P=0.013) and Y201 

(F(23)=26.77, P=0.000) data sets. For primary cells, growth in FBS 3 was seen to significantly 

increase doubling times when compared to all three of the human serum types used, whilst for 

the Y201s, FBS 2 and 3 were seen to promote increased doubling times when contrasted against 

all of the other tested batches of serum. 
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Figure 4.1 Mean hBM-MSC numbers across a 5 day culture period for each of the tested FBS and human 

serum types 

Error bars indicate the standard error of the mean for n=3. Day 0 cell numbers represent the seeding density 

(7.5x103 cells per well) used at the outset of this experiment. 
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Figure 4.2 Mean Y201 cell numbers across a 5 day culture period for each of the tested FBS and human 

serum types 

Error bars indicate the standard error of the mean for n=3. Day 0 cell numbers represent the seeding density 

(2x103 cells per well) used at the outset of this experiment. 
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Figure 4.3 Mean BM-MSC metabolic activity normalised to cell number across a 5 day culture period for 

each of the tested FBS and human serum types 

Error bars indicate the standard error of the mean for n=3. Metabolic activity rates could not be derived at the 

time of seeding (Day 0) due to the low numbers of cells present together with the relative sensitivity of the 

Alamar blue assay used. 
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Figure 4.4 Mean Y201 cell metabolic activity normalised to cell number across a 5 day culture period for 

each of the tested FBS and human serum types 

Error bars indicate the standard error of the mean for n=3. Metabolic activity rates could not be derived at the 

time of seeding (Day 0) due to the low numbers of cells present together with the relative sensitivity of the 

Alamar blue assay used. 
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Figure 4.5 Mean hBM-MSC doubling times during the exponential growth phase of a 5 day culture 

period for each of the tested FBS and human serum types 

Error bars indicate the standard error of the mean for n=3. The exponential growth phase of the cells was thought 

to reside between days 2 and 3 of the culture and was determined through visual examination of the cell numbers 

shown in figure 4.1 following log conversion (figure not included). 

 

 

 

Figure 4.6 Mean Y201 cell doubling times during the exponential growth phase of a 5 day culture period 

for each of the tested FBS and human serum types 

Error bars indicate the standard error of the mean for n=3. The exponential growth phase of the cells was thought 

to reside between days 1 and 4 of the culture and was determined through visual examination of the cell numbers 

shown in figure 4.1 following log conversion (figure not included). 
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4.3.2 Cell morphology 

 

Both MSCs and Y201s were seen to display growth-associated morphological features 

following five days of culture in a range of different types and batches of serum. Individual 

primary hBM-MSCs showed either pronounced elongation or an expanded circular shape when 

exposed to FBS seen to have negative effects on cell growth. Conversely, cells expanded in 

human or foetal serum seen to support cell growth displayed typical stromal cell morphology, 

similar to that documented in section 3.3.1. As with the primary cells before them, Y201s  

displayed a more flattened morphology when cultured in low-proliferation serum, whilst these 

same cells showed a standard spindle-like morphology when expanded in high-proliferation 

FBS. Unlike the donor-derived cells however, Y201s exposed to human serum took on a highly 

consistent flattened and circular morphology. 

Image analysis for primary hBM-MSCs revealed that expansion in HS 1 promoted the highest 

level of overall growth (F(23)=9.85, P=0.000)), with an associated average cell number 

significantly distinct from that of any of the bovine-derived serum batches used. In contrast to 

the results given above in section 4.2.1, the use of FBS 1 did not result in a rapid decline in cell 

density following 2 days of culture. As with cell number, a significant effect was also identified 

in regard to cell area (F(23)=20.22, P=0.000). hBM-MSCs grown in any of the three human-

derived serum batches used, showed a significant decrease in area when compared to those 

cultured in serum of bovine origin. 

For cells belonging to the Y201 lineage, serum batch and type were again seen to have a 

significant effect on cell growth (F(23)=17.36, P=0.000). HS 1 was observed to promote the 

highest average overall growth, being significantly greater than that seen for FBS 1, 2, 3 and 

4. Conversely, the use of FBS 3 resulted in the lowest average cell count, being defined as 

statistically distinct from each of the other recorded values with the exception of FBS 2, which 

was similarly poor. A significant effect was also identified in regard to Y201 area (F(23)=2.50, 

P=0.026), with the per cell area of HS 1 cultured cells being shown to be significantly different 

from that of cells grown in FBS 3, which was associated with one of the lowest recorded 

average cell densities. 
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Figure 4.7 Fluorescent microscopy images of Phalloidin and DAPI stained hBM-MSCs following culture 

in a series of different FBS and human serum batches 

All included scale bars are indicative of a 100 µm length. a) FBS Batch 1. b) FBS Batch 2. c) FBS Batch 3. d) 

FBS Batch 4. e) FBS Batch 5. f) Human Serum Batch 1. g) Human Serum Batch 2. h) Human Serum Batch 3. 
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Figure 4.8 Fluorescent microscopy images of Phalloidin and DAPI stained Y201s following culture in a 

series of different FBS and human serum batches 

All included scale bars are indicative of a 100 µm length. a) FBS Batch 1. b) FBS Batch 2. c) FBS Batch 3. d) 

FBS Batch 4. e) FBS Batch 5. f) Human Serum Batch 1. g) Human Serum Batch 2. h) Human Serum Batch 3. 
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Figure 4.9 Fluorescent microscopy image of Phalloidin and DAPI stained Y201s alongside the same image 

overlaid with an analysis mask used to quantify cell number and area 

All included scale bars are indicative of a 100 µm length. a) Phalloidin and DAPI stained cells. b) Analysis 

mask with red coloured nuclei and purple coloured bodies. 

 

 

Figure 4.10 Mean total hBM-MSC numbers on the final day of culture (day 5) for each of the tested FBS 

and human serum batches 

Error bars indicate the standard error of the mean for n=3. Cell numbers were calculated from counts of the DAPI 

stained nuclei taken using dedicated image analysis software. 
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Figure 4.11 Mean total Y201 cell numbers on the final day of culture (day 4) for each of the tested FBS 

and human serum batches 

Error bars indicate the standard error of the mean for n=3. Cell numbers were calculated from counts of the DAPI 

stained nuclei taken using dedicated image analysis software. 

 

 

 

 

Figure 4.12 Mean hBM-MSC area per cell on the final day of culture (day 5) for each of the tested FBS 

and human serum batches 

Error bars indicate the standard error of the mean for n=3. Per cell areas were calculated by measuring the total 

phalloidin stained area for a given image and then dividing this value by the total number of DAPI stained nuclei 

present. 
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Figure 4.13 Mean Y201 area per cell on the final day of culture (day 4) for each of the tested FBS and 

human serum batches 

Error bars indicate the standard error of the mean for n=3. Per cell areas were calculated by measuring the total 

phalloidin stained area for a given image and then dividing this value by the total number of DAPI stained nuclei 

present. 
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four (F(23)=8.52, P=0.000) and day five (F(23)=11.91, P=0.000). On each of these days, 

expansion in FBS batches 2 and 3 was seen to result in significantly reduced ALP activity, 

specifically when compared to all other serum batches on day three, batches FBS 5, HS 1, HS 

2 and HS 3 on day four and batches FBS 1, FBS 4, HS 1, HS 2 and HS 3 on day five. 

Data associated with Y201 cell growth showed no similar trend, despite the identification of 

significant differences on both day three (F(23)=28.61, P=0.000) and day four (F(23)=24.74, 

P=0.000). On day three, growth in FBS 1, 4 and 5 was shown to result in significantly reduced 

ALP activity when compared to all other batches, whilst expansion in HS 1 led to a significant 

increase in ALP activity when contrasted against all other batches with the exception of FBS 2 

and 3. On day four, HS 1 was again seen to result in the highest level of ALP activity when 

0

500

1000

1500

2000

2500

FBS 1 FBS 2 FBS 3 FBS 4 FBS 5 HS 1 HS 2 HS 3

A
V

ER
A

G
E 

A
R

EA
 P

ER
 C

EL
L 

(U
M

^2
)

SERUM TYPE/BATCH



93 
 

compared to all other conditions except HS 3, whilst FBS 1 and 4 were seen to significantly 

reduce ALP activity when contrasted against all of the other groups. 

 

 

Figure 4.14 Mean alkaline phosphatase activity as indicated by fluorescence per 105 hBM-MSCs on day 3 

of culture for each of the tested FBS and human serum batches 

Error bars indicate the standard error of the mean for n=3. The fluorescence values indicated here were calculated 

for a 20 minute assay incubation time.  

 

 

 

 

Figure 4.15 Mean alkaline phosphatase activity as indicated by fluorescence per 105 hBM-MSCs on day 4 

of culture for each of the tested FBS and human serum batches 
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Error bars indicate the standard error of the mean for n=3. The fluorescence values indicated here were calculated 

for a 20 minute assay incubation time.  

 

 

 

Figure 4.16 Mean alkaline phosphatase activity as indicated by fluorescence per 105 hBM-MSCs on the 

final day of culture (day 5) for each of the tested FBS and human serum batches 

Error bars indicate the standard error of the mean for n=3. The fluorescence values indicated here were calculated 

for a 20 minute assay incubation time.  

 

 

 

 

Figure 4.17 Mean alkaline phosphatase activity as indicated by fluorescence per 105 Y201s on day 3 of 

culture for each of the tested FBS and human serum batches 
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Error bars indicate the standard error of the mean for n=3. The fluorescence values indicated here were calculated 

for a 15 minute assay incubation time.  

 

 

Figure 4.18 Mean alkaline phosphatase activity as indicated by fluorescence per 105 Y201s on the final of 

culture (day 4) for each of the tested FBS and human serum batches 

Error bars indicate the standard error of the mean for n=3. The fluorescence values indicated here were calculated 

for a 15 minute assay incubation time.  

 

4.3.4 Surface marker expression 
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the apparent negative impact of FBS 1 on the growth of primary cells, the rapid decline in cell 

number observed when utilising this serum appeared suspicious, leading the use of FBS 3 as a 

suitable alternative. For Y201s, expansion in FBS 1 was seen to produce the highest peak cell 

densities, whilst the use of FBS 3 was seen to result in the lowest.  

Analysis of the resultant data revealed no significant differences in marker expression between 

cells grown in high-growth versus low-growth foetal bovine serum for either of the two tested 

cell types when utilising the standard ISCT stromal cell panel described in section 2.4.1. 
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4.3.5 Gene expression analysis 

 

hBM-MSCs cultured in high and low-growth batches of serum were shown to display 2-fold 

or greater differences in the expression of twenty-six individual stem cell-associated genes, 

with the relative log2 expression values and directionality of each, displayed below in figure 

4.19. Of this number, twenty-one were found to be statistically significant, including a variety 

of key lineage specific genes such as PPARG, COL1A1 and IGF1, as shown in table 4.1. Serum 

batch variability was also seen to impact upon Y201 gene expression (see Figure 4.20), with a 

total of seven different genes displaying a 2-fold or greater shift; of which five; namely 

NOTCH3, RAB23, PPARG, LDLR and FZD8, were shown to be statistically significant during 

subsequent analysis (table 4.2). 

 

 

Figure 4.19 Mean expression levels for BM-MSC-derived gene transcripts showing a minimum of 2-fold 

change following culture in high-growth rate FBS (FBS 4) when compared to low-growth rate FBS (FBS 

3) presented in the form of log2 transformed count data 

Error bars indicate the standard error of the mean for n=3. Pairs of bars coloured light blue and grey represent 

those genes for which expression was seen to increase following culture in a high-growth rate batch of FBS, whilst 

the opposite is true for those shown in green and dark blue. Bars on the left of each pair (light blue/green) are 

indicative of values associated with culture in a batch of FBS resulting in lower levels of cell proliferation, whereas 

those on the right (grey/dark blue) are linked to a batch of FBS seen to improve cell growth rates. 
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Gene Name P-value t-statistic 

PPARG 0.02 4.93 

LOC400927 0.03 4.70 

FZD5 0.00 19.49 

CXCL12 0.00 48.25 

FRAT1 0.03 3.53 

SFRP4 0.00 28.46 

CCNE1 0.02 -5.37 

FOSL1 0.05 -4.03 

MYC 0.02 -6.18 

NCAM1 0.04 -4.74 

WNT5A 0.00 -55.5 

RAB23 0.01 -4.84 

LFNG 0.01 -10.00 

WIF1 0.03 -5.12 

COL1A1 0.00 -27.49 

HES1 0.00 -8.15 

IGF1 0.00 -9.63 

CCNA2 0.02 -7.47 

PLAU 0.00 -54.49 

CDH2 0.00 -25.92 

CDK1 0.00 -15.40 

 

Table 4.1 P-values and t-statistics associated with all genes seen to display a minimum of 2-fold change in 

expression at statistically significant levels in BM-MSCs following culture in high-growth rate FBS (FBS 

4) when compared to low-growth rate FBS (FBS 3) 

The twenty-one genes listed here were seen to display significant differences in expression when cells were grown 

in high-growth rate FBS when compared to low-growth rate serum. 
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Figure 4.20 Mean expression levels for Y201-derived gene transcripts showing a minimum of 2-fold 

change following culture in high-growth rate FBS (FBS 1) when compared to low-growth rate FBS (FBS 

3) presented in the form of log2 transformed count data 

Error bars indicate the standard error of the mean for n=3. Pairs of bars coloured light blue and grey represent 

those genes for which expression was seen to increase following culture in a high-growth rate batch of FBS, whilst 

the opposite is true for those shown in green and dark blue. Bars on the left of each pair (light blue/green) are 

indicative of values associated with culture in a batch of FBS resulting in lower levels of cell proliferation, whereas 

those on the right (grey/dark blue) are linked to a batch of FBS seen to improve cell growth rates. 

 

 

Gene Name P-value t-statistic 

NOTCH3 0.00 32.90 

RAB23 0.02 5.99 

PPARG 0.01 6.51 

LDLR 0.01 5.43 

FZD8 0.01 -7.70 

 

Table 4.2 P-values and t-statistics associated with all genes seen to display a minimum of 2-fold change in 

expression at statistically significant levels in Y201s following culture in high-growth rate FBS (FBS 1) 

when compared to low-growth rate FBS (FBS 3) 

The five genes listed here were seen to display significant differences in expression when cells were grown in 

high-growth rate FBS when compared to low-growth rate serum. 

 

4.4 Discussion 

 

FBS variability constitutes one of the single most compelling reasons for utilising serum-free 

medium during mammalian cell culture processes. Despite this however, the extent to which 

the variability effects cell behaviour has not been extensively researched. To this end, we 
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assessed the extent to which both batch variability and supplier variability impacted upon MSC 

and Y201 proliferation, metabolism, morphology, surface marker profile and gene expression. 

In addition, a series of different batches of human serum were also included within the study, 

as a means of comparing the efficacy of the two supplements in light of the growing popularity 

of human-derived alternatives to FBS.  

If we begin by examining cell growth and metabolic activity data, the results of the 

investigation clearly demonstrate that FBS variability can seriously impact upon cell growth, 

with the use of batches 2 and 3 resulting in significantly reduced cell densities at each stage 

during the culture process. These two batches were derived from a different supplier than the 

remaining three, suggesting that supplier variability may impact on serum performance more 

than lot-to-lot variation. This would make sense given that companies typically source FBS 

from different countries, which utilise distinct sub-species of cattle and have unique regional 

feed compositions. Intriguingly, no significant batch variability was seen within either of the 

two suppliers, both for human and foetal serum. It is likely that modernised production 

processes together with pooling of batches have reduced the impact of lot-to-lot variability on 

cell growth. It is possible that the cells experience and respond only to broad differences in 

serum composition due to the very high concentrations of many of the key nutrients within the 

supplement, which are likely far in excess of the levels required by the cells. One interesting 

distinction between the two cell types, is their response to the use of human serum. Whilst the 

primary cells appear to grow best in HS; with the efficacy of FBS appearing to decline at around 

day 3 of culture in most cases, Y201 expansion was equivalent in both supplements. It is 

important to note that the improved proliferation seen in the primary cell populations may 

represent a transient artefact of the change to human serum that will not persist through long-

term culture. In regard to the metabolic activity data associated with these cultures, no 

consistent impact of serum type, batch or supplier could be identified.  

The above-mentioned results were corroborated by those of the morphology assessment and 

related image analysis activities. Both primary MSCs and Y201s were seen to display 

significantly poorer growth in FBS batches 2 and 3, with the cells grown using these 

supplements displaying morphological features representative of increased cellular stress. 

Intriguingly, Y201s cultured in human serum demonstrated a shift in morphology, distinct from 

that seen when using any of the included batches of FBS. One possible suggestion, is that the 

cells could be responding to differences in extracellular matrix composition within the two 
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types of serum, which has been suggested as an explanation of similar morphological changes 

in MSC populations when cultured in HS (225).   

In regard to alkaline phosphatase, primary cells showed increased levels of expression when 

cultured in serum more capable of supporting growth, an observation consistent with the use 

of high density culture as an osteogenic priming method for these cells. It is likely that 

increased levels of cells confluence in these cultures led to increased inter-cell interaction and 

some level of osteogenic priming. Interestingly, the inverse relationship was displayed by the 

Y201s and whilst the mechanisms underpinning this remain a mystery, it does suggest that 

these cells are not entirely representative of the populations from which they were derived. 

The impact of FBS batch variation on gene expression revealed a number of intriguing results, 

again suggesting that a certain level of distinction exists between the two cell types utilised 

here. Beginning with the primary cells, a total of twenty-one genes showed statistically 

significant 2-fold or greater differences in expression when cells were cultured in low-growth 

versus high-growth serum. These genes; given below in table 4.3, can be seen to fall into a 

number of broad categories based on the direction of the observed change in expression. For 

instance, those genes which underwent increased expression in high-growth FBS were most 

commonly linked to general cell signalling processes, together with adipogenic differentiation. 

Interestingly, CDH2; which here showed a reduction in activity, is known to be linked to MSC 

adipogenesis when displaying diminished expression, corresponding to the above observation 

(226). Conversely, RAB23, IGF1, COL1A1 and CDH2 which have all been linked to 

chondrogenic differentiation in MSCs, were seen here to decrease in expression following cell 

culture in high-growth serum compared to low (227, 228, 226). Additionally, reductions in 

WNT5A and CDH2 activity are known to correspond to decreased osteogenic activity, 

potentially suggesting that growth in high-proliferation serum may result in decreased osteo-

chondral potential in primary cells (229, 226).  
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Gene Name Directionality Function 

PPARG Increased Fatty acid storage and adipogenesis 

LOC400927 Increased Cell signalling 

FZD5 Increased Receptor for the Wnt5A ligand 

CXCL12 Increased Angiogenesis, stem cell recruitment and migration 

FRAT1 Increased Wnt/β-catenin signalling, tumorigenesis 

SFRP4 Increased Insulin secretion, apoptosis, cell signalling 

CCNE1 Reduced Cell cycle regulation 

FOSL1 Reduced Regulation of proliferation and differentiation 

MYC Reduced Cell cycle regulation, proliferation, apoptosis, stem 

cell renewal 

NCAM1 Reduced Differentiation, cell adhesion 

WNT5A Reduced Proliferation, differentiation, inflammatory disease 

RAB23 Reduced Differentiation, chondrogenesis 

LFNG Reduced Development, cell fate 

WIF1 Reduced Inhibits Wnt/β-catenin signalling 

COL1A1 Reduced Type-1 collagen formation, chondrogenesis 

HES1 Reduced Differentiation 

IGF1 Reduced Proliferation, chondrogenesis 

CCNA2 Reduced Cell cycle regulation 

PLAU Reduced Migration, extracellular matrix degradation 

CDH2 Reduced Cell-cell interactions/adhesion 

CDK1 Reduced Cell cycle regulation 

 

Table 4.3 The directionality of change and general functions of genes showing a statistically significant 2-

fold or greater change in expression following BM-MSC culture in high-growth rate FBS (FBS 4) when 

compared to low-growth rate FBS (FBS 3). 

 

Unlike primary MSCs before them, Y201s showed changes in expression for only a limited 

number of genes when cultured in high-growth serum, as seen below in table 4.4. Intriguingly, 

increases in both osteo-chondral and adipogenic genes were observed when utilising these cells 

(227, 230). It is unlikely that changes in the activity of a single gene per lineage would 

significantly impact upon cell phenotype or differentiation potential, however the stark contrast 

in response between the immortalised and primary cells does suggest that serum variability can 

impact even related cell types in very different ways. 
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Table 4.4 The directionality of change and general functions of genes showing a statistically significant 2-

fold or greater change in expression following Y201 culture in high-growth rate FBS (FBS 1) when 

compared to low-growth rate FBS (FBS 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Name Directionality Function 

NOTCH3 Increased Osteogenesis 

RAB23 Increased Differentiation, chondrogenesis 

PPARG Increased Fatty acid storage and adipogenesis 

LDLR Increased Endocytosis 

FZD8 Reduced Receptor for the Wnt ligands 
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5 Chapter 5: Supplementing medium for improved cell growth and 

survivability in nutrient-deprived conditions 
 

5.1 Introduction 
 

In light of the findings presented in the previous chapter, the continued use of FBS as a primary 

media supplement in mammalian cell culture appears potentially ill-advised. Of particular 

concern is the apparent impact of batch to batch variability on cell proliferation and gene 

expression.  

In order to help eliminate the need for serum, work began on the development of a novel serum-

free medium for use in the expansion of hBM-MSCs and MSC-derived cell lines. A two-tiered 

design of experiments approach was utilised in order to screen components for the liquid 

portion of the media. In the first round of the investigation, a set of 12 different commonly used 

cytokines, growth factors and supplements were screened in sets of four for their ability to 

maintain cell growth in serum-deprived conditions. In the second round of testing, the most 

promising candidates from the initial screening were assessed in combination, using both total 

cell number and normalised metabolic activity, as a means of identifying the most effective 

formulation for use in serum-free culture.  

 

5.2 Aims 
 

1. To utilise a Design of Experiments methodology to evaluate the potential of twelve 

different cytokines, growth factors and commonly used medium supplements to assist 

in hBM-MSCs and Y201 survival in serum-deprived conditions. 

2. To identify the most effective formulation of the previously screened components for 

use in forming the basis of a novel serum-free medium.   
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5.3 Results 
 

5.3.1 Supplement screening 

 

Twelve different cytokines and commonly used growth supplements were screened over the 

course of three separate fractional factorial investigations, having been separated into the three 

distinct groups detailed below in table 5.1. This table also includes the primary references 

associated with each of the molecules’ initial choice and final concentrations. It should be noted 

that the concentrations utilised here were in many instances higher than those listed in the 

associated literature as a means of helping to ensure that any related effects would be detected 

by the employed experimental designs, despite increasing the likelihood of significant 

curvature effects also being included. Analysis of the data generated for group 1 revealed main 

effects for bFGF (F(26)=20.09, P=0.000), SITE (F(26)=32.71, P=0.000), PDGF-BB 

(F(26)=7.84, P=0.013) and TGF-β1 (F(26)=17.36, P=0.001), with each of these supplements 

being shown to significantly increase primary MSC metabolic activity in serum-deprived 

conditions. In addition, three individual two-way interaction effects were also identified, 

namely between bFGF and SITE (F(26)=8.76, P=0.009), bFGF and PDGF-BB (F(26)=8.43, 

P=0.010) and lastly bFGF and TGF-β1 (F(26)=6.14, P=0.025). Each of the associated 

supplements was seen to have a positive synergistic effect on cell metabolic activity when used 

as part of its identified pair.  It should be noted that due to the confounding strategy applied 

here, no additional two-way or three-way interactions were examined as part of the 

implemented design. Finally, a significant curvature effect (F(26)=19.70, P=0.000) was also 

revealed, suggesting that the supplement concentrations used here were in excess of the 

minimal values required to impact upon MSC behaviour.  

Across supplement groups 2 and 3, three significant main effects were identified, the first for 

IL-6 (F(26)=7.42, P=0.013), the second for HB-EGF (F(26)=10.61, P=0.004) and the third for 

ROCK (F(26)=5.98, P=0.025). The inclusion of either IL-6 or ROCK at the tested 

concentrations was shown to significantly reduce MSC metabolic activity in serum-deprived 

conditions. Despite the apparent positive impact of HB-EGF supplementation, a combination 

of the small associated effect size (see figure 5.1 below) and lack of reproducibility during 

subsequent testing (data not included) resulted in its exclusion from all later investigations.  
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Figure 5.1 Mean 570nm absorbance values for each of the three fractional factorial investigations used to 

screen potential serum-free medium supplements  

Error bars indicate the standard error of the mean for n=3. The coded designations of the supplements used in 

each of the three experimental rounds are described below in table 5.1. Centre point conditions represent the use 

of a combination of all the associated supplements at half the concentrations seen in the other factorial groupings 

and act as a means of assessing curvature within the design, a clear indicator that the concentrations being 

employed are far higher than those actually required in order to illicit the observed effects. 

 

 

 

 Component A Component B Component C Component D 

Group 1 FGF-2 (231) SITE (231) PDGF-BB (193) TGF-β1 (232) 

Group 2 Ascorbic Acid (233) SDF-1α (234) IL-6 (235) HB-EGF (236) 

Group 3 BMP-3 (237) VEGF (238) ROCK (239) Thy-β4 (240) 

 

Table 5.1 Coded designations used for the supplements investigated in each of the three rounds of 

fractional factorial screening experiments, alongside the key references used to determine supplement 

inclusion and concentration. 

 

 

 

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

5
7

0
N

M
 A

B
SO

R
B

A
N

C
E

FACTORIAL CONDITION/SUPPLEMENT COMBINATION

Group 1

Group 2

Group 3



106 
 

 

5.3.2 Full factorial formulation assessment 

 

Following on from the results of the screening process described above in section 5.3.1, a 2-

level full factorial formulation investigation was undertaken using the factors associated with 

screening group 1, as shown in figure 5.1. The highest level of cell growth in serum-deprived 

conditions was associated with the use of all four factors in combination at their maximum 

respective concentration values (22.2x103 cells). Analysis of the total cell number data for 

hBM-MSCs revealed four significant main effects, five significant two-way interactions and 

two significant three-way interactions, each of which are described in table 5.2. As with the 

analysis of the screening data for group 1, a significant curvature effect was also revealed, 

again suggesting that the supplement concentrations utilised were well above the minimal 

values required to impact cell behaviour in the manner described. In addition, a substantial 

block-based effect was also identified with regard to this data set, highlighting the existence of 

significant between-donor hBM-MSC variability. 

Analysis of the Y201 cell number data for this same group of factors, revealed a similar set of 

four significant main effects alongside a pair of significant two-way interactions and a single 

four-way interaction, all of which are described below in table 5.3. Again, significant curvature 

and block effects were identified during the analysis, with the highest average cell number 

being associated with the use of factors A, B and D in combination (35.3x103 cells). It is 

important to note, that the total cell number value associated with this grouping is almost 

identical to that seen when using all four of the tested factors in combination (35.1x103 cells), 

as seen in figure 5.3. 

As with the cell number data before it, examination of the normalised-metabolic activity data 

revealed an array of significant main effects and interaction effects for the hBM-MSC 

investigation. These results followed the same trend as seen for the total cell number values 

from the same data set, with four significant main effects, five significant two-way interactions 

and two significant three-way interactions alongside significant curvature and block-related 

effects, as shown in table 5.4. Interestingly, the Y201 data was not seen to follow a similar 

trend to the associated cell number data, with only a single main effect and block-related effect 

being identified, as displayed below in table 5.5. 
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Figure 5.2 Mean BM-MSC numbers for each of the supplement combinations included within the full-

factorial formulation assessment 

Error bars indicate the standard error of the mean for n=3. The coded designations of the supplements used in 

each of the three experimental rounds are as described in the Group 1 row of table 5.1. Centre point conditions 

represent the use of a combination of all the associated supplements at half the concentrations seen in the other 

factorial groupings and act as a means of assessing curvature within the design, a clear indicator that the 

concentrations being employed are far higher than those actually required in order to illicit the observed effects. 
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Factor/Source F-statistic P-value 

Main Effects 

bFGF 78.21 0.000 

SITE 26.36 0.000 

PDGF-BB 62.10 0.000 

TGF-β1 60.43 0.000 

Two-way Interactions 

bFGF*SITE 10.47 0.003 

bFGF*PDGF-BB 7.72 0.009 

bFGF*TGF-β1 28.90 0.000 

SITE*TGF-β1 10.33 0.003 

PDGF-BB*TGF-β1 15.12 0.000 

Three-way Interactions 

bFGF*SITE*TGF-β1 8.98 0.005 

bFGF*PDGF-BB*TGF-β1 5.17 0.029 

Additional Effects 

Blocks 12.76 0.000 

Curvature 93.90 0.000 

 

 

Table 5.2 Main effects and interactions table for hBM-MSC total cell number data  

The displayed values represent all of statistically significant main effects and interaction effects identified 

during analysis of the total cell number data associated with primary MSC factorial formulation experiment 

described in section 2.2.2. The total degrees of freedom for this analysis was 50. 
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Figure 5.3 Mean Y201 cell number for each of the supplement combinations included within the full-

factorial formulation assessment 

Error bars indicate the standard error of the mean for n=3. The coded designations of the supplements used in 

each of the three experimental rounds are as described in the Group 1 row of table 5.1. Centre point conditions 

represent the use of a combination of all the associated supplements at half the concentrations seen in the other 

factorial groupings and act as a means of assessing curvature within the design, a clear indicator that the 

concentrations being employed are far higher than those actually required in order to illicit the observed effects. 

 

Factor/Source F-statistic P-value 

Main Effects 

bFGF 94.48 0.000 

SITE 17.33 0.000 

PDGF-BB 7.01 0.012 

TGF-β1 12.34 0.001 

Two-way Interactions 

bFGF*SITE 9.17 0.005 

bFGF*TGF-β1 15.75 0.000 

Four-way Interactions 

bFGF*SITE*PDGF-BB*TGF-β1 4.53 0.041 

Additional Effects 

Blocks 4.04 0.027 

Curvature 6.95 0.013 

 

Table 5.3 Main effects and interactions table for Y201 total cell number data 

The displayed values represent all of statistically significant main effects and interaction effects identified during 

analysis of the total cell number data associated with the Y201 factorial formulation experiment described in 

section 2.2.2. The total degrees of freedom for this analysis was 50. 
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Figure 5.4 Mean BM-MSC metabolic activity normalised to total cell number for each of the supplement 

combinations included within the full-factorial formulation assessment 

Error bars indicate the standard error of the mean for n=3. The coded designations of the supplements used in 

each of the three experimental rounds are as described in the Group 1 row of table 5.1. 
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Factor/Source F-statistic P-value 

Main Effects 

bFGF 76.16 0.000 

SITE 26.98 0.000 

PDGF-BB 60.33 0.000 

TGF-β1 58.69 0.000 

Two-way Interactions 

bFGF*SITE 9.87 0.003 

bFGF*PDGF-BB 8.11 0.007 

bFGF*TGF-β1 29.54 0.000 

SITE*TGF-β1 9.74 0.004 

PDGF-BB*TGF-β1 15.63 0.000 

Three-way Interactions 

bFGF*SITE*TGF-β1 9.40 0.004 

bFGF*PDGF-BB*TGF-β1 4.77 0.036 

Additional Effects 

Blocks 12.69 0.000 

Curvature 92.76 0.000 
 

 

Table 5.4 Main effects and interactions table for hBM-MSC normalised-metabolic activity data 

The displayed values represent all of statistically significant main effects and interaction effects identified during 

analysis of the cell number-normalised metabolic activity data associated with the primary MSC factorial 

formulation experiment. The total degrees of freedom for this analysis was 50. 
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Figure 5.5 Mean Y201 metabolic activity normalised to total cell number for each of the supplement 

combinations included within the full-factorial formulation assessment 

Error bars indicate the standard error of the mean for n=3. The coded designations of the supplements used in 

each of the three experimental rounds are as described in the Group 1 row of table 5.1. Centre point conditions 

represent the use of a combination of all the associated supplements at half the concentrations seen in the other 

factorial groupings and act as a means of assessing curvature within the design, a clear indicator that the 

concentrations being employed are far higher than those actually required in order to illicit the observed effects. 

 

 

Factor/Source F-statistic P-value 

Main Effects 

bFGF 77.28 0.000 

Additional Effects 

Blocks 4.27 0.020 

 

 

Table 5.5 Main effects and interactions table for Y201 normalised-metabolic activity data 

The displayed values represent all of statistically significant main effects and interaction effects identified during 

analysis of the cell number-normalised metabolic activity data associated with the Y201 factorial formulation 

experiment. It should be noted that no significant interaction effects were revealed during this analysis, for which 

the total degrees of freedom was 50. 
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5.4 Discussion 
 

Here we examined the impact of twelve different cytokines and growth supplements on the 

metabolic activity of primary human-derived MSCs in serum deprived conditions, using a 

series of three fractional factorial investigations.  It is important to note that whilst increased 

metabolic activity does not necessarily correlate directly to increased proliferation, this method 

of assessing supplement efficacy represented the most cost-effective and efficient technique 

available. The results of this investigation revealed seven supplements to possess statistically 

significant main effects. Of these six, the impact of HB-EGF was found to be unconfirmable 

in subsequent follow-up experiments, whilst the use of IL-6 and ROCK had significant 

detrimental effects on cell metabolism. The remaining four, namely FGF-2, SITE, PDGF-BB 

and TGF- β1, were observed to support continued cellular activity in the absence of serum both 

individually and in any one of the three possible two-way combinations. Importantly, overall 

metabolic activity levels were seen to remain lower than those of cells grown in FBS-

supplemented medium, suggesting but not necessarily indicating, reduced proliferation in 

cytokine-supplemented serum-deprived conditions. 

Following on from the results of the fractional screening experiments, a full factorial 

formulation assessment of a medium made up of the group 1 supplements was performed. The 

results of this experiment confirmed those of the earlier screening activities, with each of the 

four factors having a statistically significant effect on cell proliferation in nutrient-deprived 

conditions. Again, all associated two-way interactions were shown to be positively synergistic, 

alongside two of the possible three-way interactions. These results correspond to the findings 

of groups such as Ng et al (2008), who demonstrated that interruption in any one of the FGF-

2, PDGF-BB and TGF- β1 associated signalling pathways was sufficient to inhibit MSC 

growth, while the combination of these three molecules was capable of supporting continued 

cell survival in the absence of serum when utilising a commercially available serum-free basal 

medium (231). These findings are then further reinforced by the apparent interaction between 

FGF-2 and insulin-related signalling, with insulin-like growth factors having been seen to 

enhance the mitogenic impact of FGF-2 in umbilical cord-derived MSCs (241). 

Alongside the primary cell work detailed above, a full factorial assessment was also performed 

using cells belonging to the immortalised Y201 cell line. The results of this experiment were 

similar to those observed for the primary MSCs, with all four of the group 1 supplements 

significantly improving cell proliferation in serum-deprived conditions. Interestingly, the 
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impact of PDGF-BB on cell growth appeared reduced when compared to primary cells. This 

effect may explain the lack any three-way interaction effects in the Y201 data group, with the 

two-way interactions mimicking the three-way interactions of the MSC-related results without 

PDGF-BB involvement. 

Finally, if we examine the normalised metabolic activity data for both cell groups, we can see 

that per cell metabolic activity decreases in serum-free conditions as proliferation increases. 

The normalised metabolic activity of cells cultured in a combination of all four of the assessed 

supplements can be seen to be lower than that of any other experimental group for the primary 

cells, whilst it remains one of the lowest for the Y201s. These observations are particularly 

interesting when comparing the earlier screening study and the full factorial investigation. It 

was unknown following the fractional factorial study, whether FBS was outcompeting the most 

effective combination of serum-free supplements in regard to metabolic activity alone or cell 

number. It appears now, that the high normalised metabolic activity of primary cells grown in 

the presence of FBS resulted in the aforementioned disparity, and that the serum-free medium 

described here is capable of generating higher cell densities than growth in comparable serum-

supplemented conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

6 Chapter 6: Investigating the characteristics of cells following expansion in 

supplemented serum-free medium 
 

6.1 Introduction 
 

Following on from the findings of the previous chapter in which an effective serum-free 

medium formulation was identified, it became necessary to determine whether cells grown in 

this medium would retain their distinctive and highly desirable MSC-related characteristics 

over time. Two key features of the cells were of primary concern, namely their ability to 

undergo tri-lineage differentiation and their unique secretory profiles, both of which have been 

directly linked to the therapeutic potential of MSCs.  

Many research groups have sort to utilise the differentiation potential of MSCs to help replace 

damaged or degrading tissues via integration with native material. For example, Chen et al 

(2006) were able to differentiate cells from the same canine donor population into both 

osteoblasts and chondrocytes through the use of a synthetic biphasic biomaterial scaffold in an 

attempt to treat osteochondral defects (218). In regard to their distinctive secretory behaviours, 

it has been suggested that MSCs can be successfully utilised for purposes such as assisting in 

the re-establishment of cardiac function following myocardial infarction and aiding in the 

regeneration of transected rodent spinal cords, solely as a result of this phenomenon alone 

without the need for local engraftment (219, 220).  

It should be noted that whilst the majority of the assays used in this section directly reflect 

those initially utilised to characterise the cells in chapter 3, additional attention was paid to 

both the genetic and secretory profiles of the cells in order to help properly ascertain the 

medium’s potential impact on the two key therapeutic features mentioned above.  

 

6.2 Aims 

 

1. To determine the extent to which hBM-MSCs and Y201s grown in serum-free medium 

retain the characteristic morphological, differentiation and surface marker properties of 

their cell type. 

2. To assess whether the documented morphological changes occurring as a result of 

serum-free culture are indicative of endothelial differentiation. 
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3. To identify and characterise any differences in hBM-MSC and Y201 gene expression 

or secretory profile between cells grown in serum-free versus serum-supplemented 

conditions. 

 

6.3 Results 
 

6.3.1 Morphological characterisation 

 

Following culture in serum-free conditions both hBM-MSCs and Y201s displayed a 

morphology distinct from that of comparable cells grown in serum-supplemented medium. 

Numerous clumped cell masses became apparent within the cultures after as little as 3 days, 

whilst individual cells were seen to take on elongated shapes with lengthy processes joining 

together the aforementioned aggregates. Figures 6.1 and 6.2 display representative images of 

the cells described here. 

 

 

Figure 6.1 Phase contrast images of hBM-MSCs grown in serum-free conditions alongside those grown in 

standard serum-supplemented medium 

All included scale bars are indicative of a 100 µm length. a) Cells grown in serum-free conditions displaying 

altered morphological traits. b) Cells grown in serum-supplemented medium (included for reference). 
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Figure 6.2 Phase contrast images of Y201s grown in serum-free conditions alongside those grown in 

standard serum-supplemented medium 

All included scale bars are indicative of a 100 µm length. a) Cells grown in serum-free conditions displaying 

altered morphological traits. b) Cells grown in serum-supplemented medium (included for reference). 

 

6.3.2 Tri-lineage differentiation potential 

 

hBM-MSCs grown in serum-free conditions were seen to display fat droplet and mineral 

deposition following culture in adipogenic and osteogenic medium respectively. As with the 

serum supplemented cells discussed in section 3.3.2, no clear signs of chondrogenic 

differentiation were seen following pellet culture in appropriate medium and subsequent 

staining with Toluidine Blue. 

Y201 cells cultured in serum-free medium displayed similar levels of adipogenic and 

osteogenic differentiation as their serum-supplemented counterparts, discussed in section 3.3.2. 

Again, cells undergoing adipogenic differentiation were seen to produce fat droplets consistent 

with such behaviour, whilst those undergoing the osteogenic differentiation process formed 

deposits of mineralised material. In keeping with the results described in chapter 3, no apparent 

signs of chondrogenic differentiation were seen when utilising Y201s grown in the absence of 

serum. Control groups, cultured in standard FBS supplemented conditions following initial 

growth in serum-free medium were included for reference. No observable indications of 

differentiation were seen in any of these control conditions after appropriate histological 

staining. Representative images of the cells described here can be found below in figures 6.3 

and 6.4.  
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Figure 6.3 Phase contrast images of tri-lineage differentiated hBM-MSCs following culture in serum-free 

conditions 

All included scale bars are indicative of a 100 µm length. a) Oil Red-O stained fat droplets following adipogenic 

differentiation of cells grown in serum-free medium. b) Alizarin Red-S stained mineral deposits in osteogenically 

differentiated cells (as indicated by the associated arrows) following serum-free culture. c) A Toluidine Blue 

stained section of pellet cultured serum-free conditioned cells exposed to chondrogenic medium, with no clear 

indications of differentiation. 
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Figure 6.4 Phase contract images of tri-lineage differentiated Y201s following culture in serum-free 

conditions 

All included scale bars are indicative of a 100 µm length. a) Oil Red-O stained fat droplets following adipogenic 

differentiation. b) Cells grown in standard conditions following serum-free culture and stained with Oil Red-O. 

c) Alizarin Red-S stained mineral deposits in osteogenically differentiated cells. d) Cells grown in standard 

conditions following serum-free culture and stained with Alizarin Red-S. e) A Toluidine Blue stained section of 

pellet cultured cells exposed to chondrogenic medium, with no clear indications of differentiation. f) Cells grown 

in pellet culture without chondrogenic induction medium and stained with Toluidine Blue. The artefacts present 

within this image represent pockets of trapped air which do not impact upon the value of the micrograph. 
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6.3.3 Cellular ac-LDL uptake 

 

No fluorescent signal was detected in any of the ac-LDL treated cell cultures following growth 

in serum-free conditions. Similarly, no staining was observed in any of the associated control 

samples, cultured in standard serum-supplemented medium.  

 

6.3.4 Surface marker expression 

 

Analysis of the surface marker profiles of both primary hBM-MSCs (t(2)=14.14, P=0.005) and 

Y201s (t(2)=11.38, P=0.008) revealed significant decreases in CD105 expression for cells 

grown in serum-free medium when compared to standard FBS-supplemented conditions. 

Despite appearances, no significant differences were seen with regard to any of the other tested 

markers; including HLA-DR, which appeared to display subtly reduced expression in serum-

free conditions as shown below in figures 6.5 and 6.6. 

 

 

 

Figure 6.5 Representative dot plots indicative of BM-MSC CD105 and HLA-DR expression following 

expansion in serum-supplemented and serum-free conditions 

Gate positioning for negative populations was determined using associated isotype control data. a) CD105 

expression as determined by APC staining in BM-MSCs expanded in standard serum-supplemented conditions. 

b) CD105 expression in BM-MSCs cultured using serum-free medium. c) HLA-DR expression as determined by 

APC-H7 staining in BM-MSCs expanded in standard serum-supplemented conditions. d) HLA-DR expression in 

BM-MSCs cultured using serum-free medium. 

 

 

 )  )  )  ) 
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Figure 6.6 Representative dot plots indicative of Y201 CD105 and HLA-DR expression following 

expansion in serum-supplemented and serum-free conditions 

Gate positioning for negative populations was determined using associated isotype control data. a) CD105 

expression as determined by APC staining in Y201s expanded in standard serum-supplemented conditions. b) 

CD105 expression in Y201s cultured using serum-free medium. c) HLA-DR expression as determined by APC-

H7 staining in Y201s expanded in standard serum-supplemented conditions. d) HLA-DR expression in Y201s 

cultured using serum-free medium. 

 

6.3.5 Gene expression analysis 

 

hBM-MSCs cultured using the serum-free medium formulation identified above in chapter 5 

were seen to display 2-fold or greater changes in the expression of twenty-four different stem 

cell-associated genes, of which only a single sequence was shown to display a statistically 

significant shift. Y201s grown in these same conditions displayed 2-fold or greater changes in 

the expression of twenty individual genes, with fourteen showing a statistically significant 

difference when compared to culture using standard serum-supplemented medium. The log2 

expression values and relative directionality of each of the associated changes for the two data-

sets can be found below in figures 6.7 and 6.8, whilst the respective P-values and t-statistics 

are located in tables 6.1 and 6.2.   

 

 

 )  )  )  ) 
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Figure 6.7 Mean expression levels for all hBM-MSC-derived gene transcripts showing a minimum of 2-

fold change following expansion in serum-free media when compared to standard serum-supplemented 

conditions presented in the form of log2 transformed count data 

Error bars indicate the standard error of the mean for n=3. Pairs of bars coloured light blue and grey represent 

those genes for which expression was seen to increase following growth in the serum-free conditions, whilst the 

opposite is true for those shown in green and dark blue. Bars on the left of each pair (light blue/green) are indicative 

of values associated with growth in standard serum-supplemented media, whereas those on the right (grey/dark 

blue) are linked to serum-free culture. 
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Gene Name P-value t-statistic 

LOC400927 0.01 6.67 

WNT2B 0.08 2.38 

NCAM1 0.09 2.42 

BMP2 0.53 0.74 

HES1 0.16 1.73 

PRKCH 0.34 1.19 

FGF1 0.07 2.55 

WNT5B 0.18 1.65 

MAML3 0.25 1.38 

CCND2 0.41 0.93 

MME 0.57 0.62 

FZD8 0.19 -1.84 

MAP3K7IP1 0.13 -1.96 

ALDH2 0.09 -2.77 

ALDH1A1 0.54 -0.73 

ISL1 0.17 -1.68 

CCNE1 0.19 -1.67 

TCF7 0.46 -0.82 

IGF1 0.18 -1.74 

WNT2 0.18 -2.04 

COL1A1 0.07 -2.55 

PRKCB 0.06 -2.93 

CCNA2 0.09 -2.99 

CDK1 0.12 -2.18 

 

 

Table 6.1 P-values and t-statistics associated with all genes seen to display a minimum of 2-fold change in 

expression in hBM-MSCs following culture in serum-free medium when compared to a standard serum-

supplemented formulation 

The twenty-three genes highlighted in bold were associated with P-values above the 0.05 threshold, suggesting a 

lack of statistical significance with regard to the changes in expression seen. The single remaining gene showed 

significant differences in expression when cells were expanded using serum-free medium rather than in serum-

supplemented conditions 
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Figure 6.8 Mean expression levels for all Y201-derived gene transcripts showing a minimum of 2-fold 

change following expansion in serum-free media when compared to standard serum-supplemented 

conditions presented in the form of log2 transformed count data 

Error bars indicate the standard error of the mean for n=3. Pairs of bars coloured light blue and grey represent 

those genes for which expression was seen to increase following growth in the serum-free conditions, whilst the 

opposite is true for those shown in green and dark blue. Bars on the left of each pair (light blue/green) are 

indicative of values associated with growth in standard serum-supplemented media, whereas those on the right 

(grey/dark blue) are linked to serum-free culture. 
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Gene Name P-value t-statistic 

WNT7B 0.00 8.38 

BMP2 0.07 2.81 

POU5F1 0.00 17.67 

NANOG 0.03 3.79 

DTX3L 0.00 36.28 

BMP3 0.03 3.42 

ADAR 0.00 42.78 

WNT11 0.13 2.21 

MME 0.00 46.06 

PRKX 0.00 6.69 

WNT9A 0.03 4.15 

FZD6 0.00 13.38 

DLL4 0.28 1.48 

JUN 0.00 25.01 

TERT 0.09 2.46 

COL1A1 0.00 -21.53 

DTX1 0.13 -2.49 

ISL1 0.08 -2.50 

HHIP 0.05 -3.39 

MFNG 0.01 -9.33 
Table 6.2 P-values and t-statistics associated with all genes seen to display a minimum of 2-fold change in 

expression in Y201s following culture in serum-free medium when compared to a standard serum-

supplemented formulation 

The six genes highlighted in bold were associated with P-values above the 0.05 threshold, suggesting a lack of 

statistical significance with regard to the changes in expression seen. The remaining fourteen genes showed 

significant differences in expression when cells were expanded using serum-free medium rather than in serum-

supplemented conditions 

 

6.3.6 Identifying and characterising cell protein secretions 

 

Of the forty factors included within the panel, a total of twenty-five were seen to be expressed 

at measurable levels within the primary hBM-MSC associated media samples (see figure 6.9). 

Activity from the remaining fifteen stayed below the threshold of measurement for the MSD 

assay, resulting in their exclusion from all subsequent analyses. Similarly, cells belonging to 

the Y201 lineage were seen to exhibit poor expression across all forty of the investigated factors 

and as such were also excluded from all later analyses. Due the multi-dimensional nature of 

the data set, Principle Component Analysis (PCA) was performed on the relative expression 

values for each of the experimental groupings, following normalisation to total cell number. 

PCA condenses complex data sets into a limited number of overarching variables, known as 

principle components, defined by their ability to adequately convey the maximum about of 

variability within the source data, whilst allowing reconstruction of the original values if 
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necessary. In essence, these principle components accurately summarise the original data set 

in the most concise way possible. In this particular instance, a total of ten principle components 

(PCs) were extracted from the data, an overview of which can be seen across table 6.3 and 

figure 6.10. Importantly, over 70% of the observed variability associated with the data set was 

seen to be explained utilising the first 2 principle components alone, the respective elements of 

which are summarised in tables 6.4 and 6.5. When plotted as a score plot, as seen in figure 

6.11, the experimental groups displayed a distinct pattern of clustering, with the first PC 

separating the TNF-α treated cells from the untreated cells, whilst the serum-free and serum-

supplemented groups were distinguished based upon their interaction with PC2. Finally it is 

important to note that, whilst no passage-related effects were identified, analysis of the LPS 

control data did show that both IL-8 and sVCAM-1 secretion increased considerably when 

compared to all of the other measurable factors with the exception of IP-10, MCP-1 and VEGF 

(F(23)=3.79, P=0.000), each of which showed relatively high levels of expression following 

exposure of cells to LPS (see figure 6.12). 

 

 

 

 

 

 

Figure 6.9 Overview of the V-PLEX Human biomarker panel 

All entries highlighted in green were seen to display a measurable level of expression in some or all of the 

experimental groups and as a direct result, were included in all subsequent analyses. 
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Figure 6.10 Scree plot corresponding to the analysis of the combined serum-free, serum-supplemented 

and TNF-treated data sets 

The plot shows a rapid early decent followed by a gradual slop downwards, indicating that the first two principle 

components likely correspond to the vast majority of the variability present within the data, as would be expected 

when utilising PCA on an appropriately structured data set. 

 

 

 

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Eigenvalue 11.839 5.113 2.540 1.985 1.097 0.591 0.467 0.236 0.133 0.000 

Proportion 0.493 0.213 0.106 0.083 0.046 0.025 0.019 0.100 0.006 0.000 

Cumulative 0.439 0.706 0.812 0.895 0.941 0.965 0.985 0.994 1.000 1.000 

 

Table 6.3 Overview of the first 10 principle components identified for the combined serum-free, serum-

supplemented and TNF-treated data sets.  

Eigenvalues, proportion of explained variability and cumulative proportion of variability are each included within 

their respective rows. 
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Figure 6.11 Score plot for the first two identified principle components 

Circled collections of data points indicate the impact of PC1 and PC2 on the various experimental groupings. 

PC1 can be seen to help distinguish between TNF-treated and untreated cells, whilst the serum-free and serum-

supplemented conditions can be separated based upon their interaction with PC2.   

 

Principle Component 1 

Positive Negative 

Eotaxin-3 MCP-4 

IL-8 PIGF 

IP-10 Tie-2 

MIP-1α VEGF 

MIP-1β VEGF-C 

TARC VEGF-D 

GM-CSF IL-16 

sICAM-1 IL-7 

IL-12 P70 sVCAM-1 

IL-13  

1L-6  

 

Table 6.4 Experimental factors seen to contribute to Principle Component 1 

Factors were distinguished as positive or negative depending upon whether they were seen to increase or 

decrease in-line with the stated principle component. 
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Principle Component 2 

Positive Negative 

Eotaxin PIGF 

Eotaxin-3 IL-7 

MCP-1  

MIP-1β  

TARC  

sFlt-1  

Tie-2  

VEGF  

VEGF-C  

VEGF-D  

IL-16  

 

 

Table 6.5 Experimental factors seen to contribute to Principle Component 2 

Factors were distinguished as positive or negative depending upon whether they were seen to increase or 

decrease in-line with the stated principle component. 

 

 

Figure 6.12 Log10 transformed normalised expression data for LPS treated hBM-MSCs 

Error bars indicate the standard error for n=3. hBM-MSCs can be seen to readily secrete a wide range of 

different factors in response to LPS exposure. 
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6.4 Discussion 
 

Following on from the findings of the previous chapter, in which it was shown that primary 

and immortalised MSCs could be successfully expanded in a serum-free medium supplemented 

with FGF-2, SITE, PDGF-BB and TGF-β1, the characteristics of these cells were assessed. 

Both MSCs and Y201s were seen to undergo a significantly shift in morphology following five 

days in serum-free culture. The specifics of this change appeared endothelial in nature, due to 

the elongated tube-like protrusions seen between larger cell aggregates. As a direct result, 

CD31 was included within the subsequent surface marker analysis, whilst an ac-LDL uptake 

assay was also performed. Interestingly, no fluorescence was detected following treatment of 

the cells with fluorophore-conjugated ac-LDL, nor was any expression of CD31. In fact, the 

only surface marker-related distinction between the serum-free and serum-supplemented cell 

groups, came in the form of significantly reduced CD105 expression, which was observed 

across both of the tested cell types. This decrease, is consistent with the findings of Lee et al 

(2017) and Brohlin et al (2017), and is thought to have a detrimental effect on the therapeutic 

potential of these cells in the treatment of myocardial infarction (242, 243, 244). It is important 

to note however, that CD105 negative murine MSCs have been shown to better regulate 

immune system activation as a result of increased IL-6 secretion, potentially suggesting altered, 

rather than diminished, clinical relevance following serum-free expansion (245). Intriguingly, 

the HLA-DR expression profiles of Y201s grown in serum-free medium containing high 

concentrations of FGF-2 remained negative for HLA-DR expression, implying that some 

element of cell origin is likely involved in the interaction explored earlier in section 3.3.4. 

Despite differences in cell morphology and marker expression, no readily apparent changes in 

the differentiation potential of the cells grown in serum-free medium were detected. Again, no 

chondrogenic differentiation was observed in either of the tested cell groups, reaffirming the 

hypothesis that either a protocol or cell-related issue was to blame. In regard to gene expression, 

whilst only a single cell-signalling related gene saw significant changes in expression for the 

primary MSCs (table 6.6), a total of fourteen genes displayed significant 2-fold or greater 

change for the Y201 cell group. As can be seen below in table 6.7, increases in expression 

occurred for a range of genes linked to cell self-renewal, stemness, proliferation and DNA 

repair. These findings support those of Lotz et al (2013), who reported that supplementation 

with FGF-2 helped to maintain the IPSC undifferentiated phenotype in prolonged culture 

through interactions with stemness-related genes such as nanog (246). It is important to note 
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that only a very limited number of genes showing 2-fold or greater change irrespective of 

significance were consistent between the two cell groups, again indicating a distinct lack of 

similarity between the primary and immortalised cells. 

Gene Name Directionality Function 

LOC400927 Increased Cell signalling 

 

Table 6.6 The directionality of change and general functions of genes showing a statistically significant 2-

fold or greater change in expression following BM-MSC culture in serum-free medium when compared to 

serum-supplemented conditions. 

Gene Name Directionality Function 

WNT7B Increased Proliferation, differentiation 

POU5F1 Increased Self-renewal, osteogenesis 

NANOG Increased Self-renewal, stemness 

DTX3L Increased DNA repair 

BMP3 Increased Proliferation, inhibition of osteogenesis 

ADAR Increased Purine metabolism 

MME Increased Peptide cleavage 

PRKX Increased Differentiation 

WNT9A Increased Proliferation, differentiation 

FZD6 Increased Receptor for the WNT4 ligand 

JUN Increased Cell cycle regulation, anti-apoptotic 

COL1A1 Reduced Type-1 collagen formation, chondrogenesis 

HHIP Reduced Developmental processes 

MFNG Reduced Developmental processes 

 

Table 6.7 The directionality of change and general functions of genes showing a statistically significant 2-

fold or greater change in expression following Y201 culture in serum-free medium when compared to 

serum-supplemented conditions. 

 

Finally, as can be seen from the protein analysis data displayed in section 6.3.6, the secretory 

profile of primary cells cultured in serum-free medium is quite distinct from that of cells 

expanded in FBS-supplemented conditions. Of primary importance is the apparent reduction 

in angiogenic potential displayed by cells grown in serum-free medium, which appeared to 

express reduced PIGF and increased sFlt-1 activity, which are known to promote and inhibit 

vascularisation respectively. These findings support earlier indications of reduced therapeutic 

potential in ischemia-related conditions, in which the activation of neo-vascularisation is 

known to play an important role. Intriguingly, in contrast to related reports regarding CD105-

reduced cells, primary MSCs displayed increased expression of molecules responsible for the 

recruitment of immune cells such as Eotaxin, Eotaxin-3, IL-16, TARC and MCP-1, the vast 
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majority of which are linked to eosinophil and monocyte enlistment. Taken together, these 

results suggest that cells cultured in the medium described here could be of use in the treatment 

of conditions linked to infection with multicellular parasites. 
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7 Chapter 7: Screening extracellular matrix proteins for enhanced cellular 

adhesion and viability 
 

7.1 Introduction 
 

In chapter 5, a medium formulation was identified that effectively supported the proliferation 

of MSCs in serum-deprived conditions. However, due to the multifaceted nature of foetal 

bovine serum, which provides both nutritional support and the proteins required for cell-

substrate adhesion, it became necessary to screen extracellular matrix proteins for inclusion 

within the formulation as a means of completely eliminating the need for serum. 

As with the liquid components before them, a design of experiments approach was utilised in 

order to screen selected ECM proteins in regard to their ability to support cell adhesion in the 

absence of serum. Unlike the previous system however, a single set of factorial experiments 

was performed due to the limited number of proteins being investigated, with these specific 

molecules having been selected based on a combination of availability, cost and literature 

investigation (247, 248, 249). Prior to beginning the screening process a series of aminosilane 

functionalised glass surfaces were produced and characterised, in order to provide a suitable 

substrate on which to assess protein efficacy in a consistent and controlled manner. 

 

7.2 Aims 
 

1. To produce and characterise aminosilane functionalised glass surfaces for use in protein 

screening. 

2. To screen a selected set of different extracellular matrix proteins in regard to their 

effects upon cell adhesion and viability, utilising a factorial design of experiments 

methodology. 
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7.3 Results 
 

7.3.1 Surface cleaning and pre-functionalisation 

 

Contact angle measurements of glass slides cleaned using the two different methods described 

above in section 2.8.1 were seen to be significantly reduced when compared to those of 

comparable untreated surfaces (F(8)=117.07, P=0.000). Subsequent pairwise analyses showed 

that slides treated with the combined acid/solvent and plasma cleaning regimes had 

significantly lower static contact angles than those subjected to the acid/solvent mixture alone 

(P<0.05). Images of the water contact angles displayed by each of the tested surfaces are 

provided below in figure 7.1. Figure 7.2 contains a graphical representation of the mean contact 

angles and associated standard error values for each of the methods used. 

 

 

Figure 7.1 Representative images of static water contact angles taken on each of the cleaned surfaces 

along with uncleaned controls 

a) Uncleaned glass. b) Acid/solvent cleaned glass. c) Acid/solvent and plasma cleaned glass. 
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Figure 7.2 Mean contact angle values for each of the cleaning methods used and associated controls 

Error bars indicate the standard error of the mean for n=3. 

 

7.3.2 Characterisation of aminosilane functionalised surfaces 

 

Evaluation of the average contact angles of glass slides following one of three different 

animosilane functionalisation techniques revealed a statistically significant effect 

(F(11)=1655.59, P=0.000), with all three methods resulting in substantially increased angles 

when compared to toluene-treated controls. In addition, the average contact angles for each of 

the three treatment processes were significantly different from each other; as shown in figures 

7.3 and 7.4, suggesting possible changes in surface quality depending upon the method used. 

In accordance to the contact angle data, the results of a subsequent AO-7 assay confirmed the 

presence of significant differences between the amine-group content of aminosilane treated 

slides and associated controls (F(11)=29.60, p 0.000). The highest recorded amine-group 

content was attributed to anhydrous APTES coated surfaces, coinciding with the high average 

contact angle value associated with these slides (figure 7.5). 

Alongside contact angle and amino-group content assessment, the elemental composition of 

the treated surfaces was also evaluated, the results of which are summarised across figures 7.6, 

7.7, 7.8 7.9 and 7.10. Significant differences in nitrogen (F(7)=46.24, P=0.001), carbon 

(F(7)=104.87, P=0.000), oxygen (F(7)=128.53, P=0.000) and silicon (F(7)=43.49, P=0.002) 

content were identified between the coated slides and any associated toluene-treated controls. 

Significant increases in nitrogen and carbon content consistent with aminosilane 
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functionalisation were seen across all of the treated groups when contrasted against untreated 

controls. Conversely, significant reductions in oxygen and silicon content were revealed, likely 

due to masking of the underlying glass surfaces by layers of aminosilane. A number of 

differences between the various treatment types were also identified, with aqueous APTES 

treated substrates displaying significantly increased nitrogen, oxygen and silicon at the same 

time as significantly lower carbon content than surfaces coated using either of the other two 

tested treatment methods. No significant differences were seen between either of the two 

anhydrous treatment methods for any of the assessed elements. 

Finally, the stability of the aminosilane coatings produced using the three different treatment 

processes were assessed in heated aqueous conditions via both contact angle and AO-7 

measurements. The results of this evaluation can be seen below in figures 7.11 and 7.12, with 

all of the treated surfaces showing a decline in average contact angle and amine-group content 

over time. Anhydrous APDEMS treated surfaces were revealed to retain the highest average 

contact angle and amine-group content following prolonged exposure to an aqueous 

environment. 
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Figure 7.3 Representative images of static water contact angles taken on each of the aminosilane 

functionalised surfaces alongside appropriate controls 

a) Toluene control. b) Aqueous APTES. c) Anhydrous APTES. d) Anhydrous APDEMS. 
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Figure 7.4 Mean contact angle values for each of the aminosilane functionalisation methods used and 

associated controls 

Error bars indicate the standard error of the mean for n=3. 

 

 

Figure 7.5 Mean 482nm absorbance values for alkaline washes taken for each of the assessed aminosilane 

functionalisation methods and associated controls following treatment with Acid Orange-7 

Error bars indicate the standard error of the mean for n=3. 
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Figure 7.6 Representative XPS survey spectra showing increased carbon and nitrogen presence on 

aminosilane functionalised glass surfaces versus controls 

a) Aqueous APTES. B) Anhydrous APTES. C) Anhydrous APDEMS d) Untreated Control. 

 

 

Figure 7.7 Mean percentage surface nitrogen (N1s) content for each of the aminosilane functionalisation 

methods used and associated controls 

Error bars indicate the standard error of the mean for n=3. 
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Figure 7.8 Mean percentage surface oxygen (O1s) content for each of the aminosilane functionalisation 

methods used and associated controls 

Error bars indicate the standard error of the mean for n=3. 

 

 

Figure 7.9 Mean percentage surface carbon (C1s) content for each of the aminosilane functionalisation 

methods used and associated controls 

Error bars indicate the standard error of the mean for n=3. 
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Figure 7.10 Mean percentage surface silicon (Si 2p) content for each of the aminosilane functionalisation 

methods used and associated controls 

Error bars indicate the standard error of the mean for n=3. 

 

 

Figure 7.11 Mean contact angles of aminosilane functionalised surfaces following water-mediated 

degradation for 0, 15, 30 and 60 minutes 

Error bars indicate the standard error of the mean for n=3. A toluene treated control is included for reference. 
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Figure 7.12 Mean 482nm absorbance values for each of the tested aminosilane functionalisation methods 

following water-mediated degradation for 0, 15, 30 and 60 minutes 

Error bars indicate the standard error of the mean for n=3. A toluene treated control is included for reference. 

 

7.3.3 Screening of extracellular matrix proteins 

 

The morphological characteristic of primary  hBM-MSCs exposed to fibronectin, vitronectin 

and fibrinogen individually and in combination were/ consistent with both the characterisation 

images displayed in section 3.3.1 and the FBS controls detailed here (figures 7.13 and 7.14). 

Cells exposed to untreated and bovine serum albumin-coated controls appeared smaller and 

less spread-out than those grown on protein-treated surfaces. Y201s showed a similar shift in 

morphology under these same conditions, with cells grown on ECM protein-coated substrates 

continuing to display classic MSC-like morphology irrespective of the specific protein or 

proteins to which they were exposed (figures 7.15 and 7.16). 

Analysis of the primary cell retention data for each of the protein combinations utilised here 

revealed a single significant main effect and a single significant 2-way interaction. The use of 

fibrinogen was shown to significantly reduce the ability of these cells to adhere to glass surfaces 

when compared to all other conditions (F(26)=12.94, P=0.002), whilst the combination of 
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cells retained (F(26)=25.98, P=0.000) giving rise to values equivalent to those recorded for the 

associated FBS-controls. 

Unlike with the donor-derived cells before them, no significant main effects or interactions 

were identified with regard to the Y201 cells groups, with all experimental conditions and 

associated centre points displaying similar levels of cell retention.  
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Figure 7.13 Fluorescent microscopy images of Phalloidin and DAPI stained hBM-MSCs following 8 hours 

of culture on aminosilane coated glass functionalised with different combinations of extracellular matrix 

proteins 

All included scale bars are indicative of a 100 µm length. a) No supplementary proteins. b) 10 µg/mL fibronectin. 

c) 10 µg/mL vitronectin. d) 10 µg/mL fibrinogen. e) 5 µg/mL fibronectin and 5 µg/mL vitronectin. f) 5 µg/mL 

fibronectin and 5 µg/mL fibrinogen. g) 5 µg/mL vitronectin and 5 µg/mL fibrinogen. h) 3.3 µg/mL each of 

fibronectin, vitronectin and fibrinogen. 
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Figure 7.14 Fluorescent microscopy images of Phalloidin and DAPI stained hBM-MSCs following 8 hours 

of culture on aminosilane coated glass functionalised with different combinations of extracellular matrix 

proteins 

All included scale bars are indicative of a 100 µm length. a) DoE centre point treated with 1.6 µg/mL each of 

fibronectin, vitronectin and fibrinogen. b) 0.5% w/v BSA-treated negative control. c) FBS-treated positive control. 
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Figure 7.15 Fluorescent microscopy images of Phalloidin and DAPI stained Y201s following 8 hours of 

culture on aminosilane coated glass functionalised with different combinations of extracellular matrix 

proteins 

All included scale bars are indicative of a 100 µm length. a) No supplementary proteins. b) 10 µg/mL fibronectin. 

c) 10 µg/mL vitronectin. d) 10 µg/mL fibrinogen. e) 5 µg/mL fibronectin and 5 µg/mL vitronectin. f) 5 µg/mL 

fibronectin and 5 µg/mL fibrinogen. g) 5 µg/mL vitronectin and 5 µg/mL fibrinogen. h) 3.3 µg/mL each of 

fibronectin, vitronectin and fibrinogen. 
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Figure 7.16 Fluorescent microscopy images of Phalloidin and DAPI stained Y201s following 8 hours of 

culture on aminosilane coated glass functionalised with different combinations of extracellular matrix 

proteins 

All included scale bars are indicative of a 100 µm length. a) DoE centre point treated with 1.6 µg/mL each of 

fibronectin, vitronectin and fibrinogen. b) 0.5% w/v BSA-treated negative control. c) FBS-treated positive control. 
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Figure 7.17 Mean BM-MSC numbers retained on surfaces coated with each of the extracellular matrix 

protein combinations included within the full-factorial functionalisation assessment 

Error bars indicate the standard error of the mean for n=3. The coded designations of the proteins used in this 

investigation were as follows: A) Fibronectin, B) Vitronectin, C) Fibrinogen. Included centre point conditions 

represents the use of a combination of all the associated supplements at half the concentrations seen in the other 

factorial groupings. BSA and FBS conditions were included as negative and positive controls respectively. 
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Figure 7.18 Mean Y201 cell numbers retained on surfaces coated with each of the extracellular matrix 

protein combinations included within the full-factorial functionalisation assessment 

Error bars indicate the standard error of the mean for n=3. The coded designations of the proteins used in this 

investigation were as follows: A) Fibronectin, B) Vitronectin, C) Fibrinogen. Included centre point conditions 

represent the use of a combination of all the associated supplements at half the concentrations seen in the other 

factorial groupings. BSA and FBS conditions were included as negative and positive controls respectively. 

 

7.4 Discussion 
 

In this chapter, we successfully produced aminosilane coated glass surfaces capable of 

tolerating extended exposure to aqueous conditions for the purposes of ECM protein screening. 

It was determined that of the three methods used, anhydrous treatment with APDEMS was the 

most stable, coinciding with the findings of Yadav et al (2014) (250). This enhanced stability 

ensured coating retention following aldehyde functionalisation and subsequent protein binding.  

Results from the primary MSC extracellular matrix protein screening revealed that the use of 

a combination of fibronectin and vitronectin was most effective at assisting cell adhesion in the 

absence of serum. This finding is supported by high levels of β1, α4, α5, α8, α9 and αV 

expression seen in MSCs, which are known to directly mediate binding to fibronectin and 

vitronectin RGD sequence motifs (247). Intriguingly, an apparent reduction in cell attachment 

was observed when utilising fibrinogen, even in combination with the other two proteins. It is 

likely that this is the direct result of limited β2 and β3 expression by these cells, with groups 
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such as Majumdar et al (2000) reporting only 2.4% β2 expression in passage-zero adipose-

derived MSCs when compared to 87.5% β1 activity (251). It is important to note that no 

apparent differences in cell morphology were observed between any of the tested protein 

combinations (excluding the untreated surfaces and negative controls), all of which appeared 

consistent with those of the FBS-control. 

With regard to the Y201 data set, no significant effects were seen in relation to cell retention 

or morphology across any of the tested protein groups. It is thought that the rapid generation 

of ECM proteins by these cells is likely to have rendered them refractory to the different surface 

treatments under examination; including the untreated and BSA-control conditions, and that a 

shortened incubation period would be required in order to properly highlight any potential 

interactions. 
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8 Chapter 8: Discussion and conclusions 
 

8.1 Summary of Results 

 

At the outset of this thesis, variability in the composition of foetal bovine serum was shown to 

significantly impact the proliferation of both primary and immortalised MSCs. Additionally, 

gene expression was also seen to be affected, whilst common quality-attributes such as 

morphology and surface marker profile remained unchanged. As a result of this, a novel 

defined serum-free medium formulation was developed, based on an initial screening of twelve 

different cytokines, growth factors and commonly used culture supplements. This medium, 

which was formulated from a combination of DMEM and Ham’s F12 nutrient mix 

supplemented with FGF-2, SITE, PDGF-BB and TGF-β1, was shown to support cell growth 

in the absence of serum, leading to the generation of cell numbers in excess of those observed 

for comparable FBS-supplemented cultures. Cells retained their inherent differentiation 

potential and expressed an MSC-like surface marker profile, with the exception of reduced 

CD105 expression. Despite this, both primary and immortalised cells underwent significant 

morphological changes following growth in serum-free conditions, with the secretory profile 

of primary MSCs showing a marked increase in immune-cell recruitment proteins together with 

a decrease in angiogenic potential. Cells belonging to the immortalised Y201 line on the other 

hand, were seen to undergo increased expression of self-renewal and stemness-related genes 

when cultured in the serum-free medium formulation described here. This disparity may 

highlight a distinct difference in the responses of model healthy cell populations and patient-

derived cell populations, with donor variability significantly impacting upon the efficacy of 

novel serum-free medium formulations and the characteristics of cells expanded using them. 

Finally, screening of extracellular matrix proteins revealed that a combination of fibronectin 

and vitronectin was sufficient to promote primary cell adhesion in serum-free conditions, 

producing a straight-forward surface treatment for use in combination with the medium 

formulation described here. 
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8.2 Discussion 
 

8.2.1 Cell Characterisation 

 

The primary MSCs isolated and described in this work appeared to display many of the 

identifying characteristics of model mesenchymal stromal cells, with the exception of their lack 

of chondrogenic differentiation and increased HLA-DR expression. The first of these 

deviations is likely due to either a lack of compatibility between the cells and the chondrogenic 

differentiation method used or the osteoarthritic nature of the donor material itself. It has been 

demonstrated that MSCs derived from the bone marrow of patients with advanced osteoarthritis 

have substantially reduced chondrogenic potential (221). Intriguingly, this phenomenon was 

coupled with a decline in adipogenic potential, an effect which was not documented here due 

to a lack of comparable healthy donor cells from which to develop a baseline. In fact, the stark 

lack of chondrogenic differentiation in both the primary and immortalised cells, which have 

previously been shown to be capable of producing cartilage, suggests that the induction method 

used here was likely insufficient to initiate change and may have led to this lack observable 

chondrogenesis. Ideally, it would be of interest to trial a number of alternative methods using 

these cells, as well as testing the efficacy of the original method using a model cell population 

isolated from a healthy donor as a means of pin pointing the root cause of this issue.  

The second deviation relating to the characterisation of the primary cells utilised here was 

associated with their abnormal expression of HLA-DR. It was initially assumed that, as with 

the lack of chondrogenic differentiation, this phenomenon was a direct result of the 

osteoarthritic nature of the patients from which the cells were isolated, with a number of groups 

having observed increased HLA-DR expression in individuals suffering from 

lymphoproliferative, connective or inflammatory disorders (222, 252). Upon further 

investigation however it was shown that the increased HLA-DR expression described here was 

likely due to the use of supplementary FGF-2 during in vitro expansion of the donor cell 

populations. These findings make this one of only a handful of studies to have demonstrated 

this possible link and the only one to have done so in primary bone marrow-derived MSCs. It 

is important to note however, that the functionality of this surface marker has not been 

investigated and that its increased expression cannot be assumed to have altered the 

immunogenic properties of the cells in this particular instance. Further study in the form of T-
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helper cell activation assays would be required in order to draw any firm conclusions regarding 

the functionality of this marker. 

8.2.2 Foetal bovine serum batch variability 

 

Despite the discrepancies discussed above, the use of the primary cells characterised here was 

continued throughout the remainder of this work due to the limited supply of suitable cell 

populations available alongside their cost-effective nature and reliability of supply. Following 

directly on from this, these cells were utilised to demonstrate for the first time, the impact of 

FBS batch variability on MSC proliferation and gene expression. It is important to note that at 

this time the specific effects of the variable genes highlighted here are unknown with regards 

to MSC therapeutic efficacy but it is likely that at least some of them are linked to the changes 

in proliferation that were documented alongside them. Intriguingly, the morphology and 

surface marker profiles of these cells showed little variation when exposed to high versus low 

proliferation serum. Not only do these findings suggest that FBS is not a suitable supplement 

for the production of MSCs in a consistent and reproducible manner, it also suggests that two 

of the key quality parameters used to determine cell suitability prior to academic or clinical 

use, namely morphology and surface marker profile, are unlikely to highlight important shifts 

in cell behaviour as a result of seemingly subtle changes in raw material source.  

 

8.2.3 Supplement screening for serum-free medium development 

 

 Following the conclusion of the supplement screening investigations detailed in chapter 5 it 

was revealed that contrary to the findings of previous studies (see table 5.1) none of the group 

two or group three molecules were seen to significantly improve MSC growth in serum-

deprived conditions. Not only did many of these supplements have little to no effect on cell 

survival, but IL-6 and ROCK were seen to significantly inhibit proliferation in the tested 

conditions. It is possible that the combinations of supplements utilised here had a negative 

impact upon the group two and group three molecules but re-testing each of these factors in 

combination with each other, together with the group one supplements would be in direct 

opposition to the time-saving reasoning behind utilising a grouped fractional factorial design. 

More importantly, this departure from the expected may suggest that a literature review was 

not the most appropriate method of selecting molecules for inclusion within the study and that 
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an alternative process should have been undertaken. One possible approach would be the use 

of a dedicated-depletion study, in which the components of fresh human serum are compared 

to those of culture-conditioned human serum as a means of identifying what factors are being 

utilised by the cells and hence what they require in order to proliferate in vitro. This particular 

type of method does require access to an array of analytical techniques capable of accurately 

characterising the composition of the liquid medium, such as mass spectrometry, which is 

typically considered both an expensive and technically demanding method to use, and remained 

outside the scope of the present investigation. 

In contrast to the results referenced above, FGF-2, ITSX, PDGF-BB and TGF-β1 were seen to 

synergistically improve MSC proliferation in serum-deprived conditions in-line with the 

findings of previous groups. Additionally, the curvature effect seen in the associated design 

suggests that the lower concentrations used in the literature may in fact be sufficient to elicit 

the desired response. Unfortunately, these cells displayed significant changes in morphology, 

CD105 expression, gene expression and cytokine secretion in response to expansion within the 

described medium. Whilst it appeared at first glance that the cells could have been 

differentiating towards an unknown endothelial lineage based on their morphological shift, the 

lack of ac-LDL staining and CD-34 expression together with a decrease in overall 

vascularisation-related cytokine secretion suggested that this was likely not the case.  It is 

interesting to note that the differences in gene expression and secretory profile observed 

following serum-free culture did not overlap with those seen when cells were cultured in a low-

growth batch of FBS or when undergoing an immune response (as when treated with TNF). It 

is possible that these differences were the result of the cells entering some sort of stressed state 

as a direct result of the removal of serum however the author hypothesises that the changes in 

morphology and gene expression described here are linked to detachment from the surfaces 

onto which the cells were initially seeded. This phenomenon may have occurred as a result of 

the limited nature of the initial surface coating (treatment with FBS), which may have been 

sufficient for immediate attachment but limited following extensive cell proliferation. It would 

be interesting to see whether the use of the surfaces identified in chapter 7 of this investigation 

would alleviate the documented effects or whether the inclusion of further supplements to the 

mixture could act to bring these cells back in-line with their serum-cultured counterparts. 

Alternatively, it should be noted that MSCs as we know them are an artefact of their original 

isolation and culture methods, with our current criteria for identification being based upon these 

factors. It may be that the cells described here simply represent are distinct sub-type of MSC 
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arising from this method of culture with unique therapeutic properties. As documented earlier, 

the re-vascularisation potential of these cells is likely to be reduced when compared to those of 

serum-cultured populations due to their reduced PIGF and increased sFlt-1 production, 

however their adipogenic, osteogenic and immunomodulatory properties are likely intact. 

Interestingly this decreased angiogenic potential is also coupled with increased VEGF-C and 

VEGF-D production. Whilst these factors do have some limited angiogenic properties, they are 

primarily associated with lymphangiogenesis, particularly when in the presence of inhibitors 

such as sFlt-1, which would significantly reduce the impact of the VEGF-A also being 

produced by these cells (253). When taken in combination with the recruitment of monocytes 

as a consequence of secreted IL-16 and MCP-1, which themselves play an important role in 

lymphangiogenesis, it appears likely that these cells could potentially be utilised in the 

treatment of conditions characterised by impaired lymphatic vessel formation and oedema 

(253). 

Alongside the aforementioned changes in secretory profile, a significant reduction in CD105 

expression was also observed in cells grown using the current serum-free medium formulation. 

These findings coincide with those of Anderson et al (2013) who identified a subpopulation of 

CD105 negative cells showing increased osteogenic and adipogenic differentiation potential 

following growth in serum-free conditions (245). Similarly Brohlin et al (2017) observed 

reduced expression of CD105 in MSC populations cultured in defined serum-free conditions 

and whilst this change also coincided with an alteration in cell morphology, this was not 

consistent with the changes documented here (243). It is important to mention that 

differentiation was not quantified during the course of the current investigation, making it 

impossible to accurately gauge whether the cells were capable of increased osteogenic and 

adipogenic differentiation following serum-free culture. 

One issue that must be highlighted here is the relative cost of the serum-free medium 

formulation described in this study, which was calculated at £57.46 per 500 mL at the time of 

writing. When compared to standard FBS-containing medium at £155.25, HS-containing 

medium at £882.25 and finally commercially available serum-free medium at £182.90, it is 

clear that the current approach has the potential to be the one of the most cost effective means 

of culturing MSCs in vitro. It is of course important to note that this estimate does not take into 

account the costs of the ECM proteins required in order to facilitate serum-free cell attachment, 

as it is difficult to accurately estimate the functional surface area associated with a fixed volume 

of liquid media given the vast array of different culture systems available. It is likely that a 
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proportion of this expensive will be offset by the refinement of the medium however, as it 

appears from the significant curvature effect seen within the experimental design that the 

concentrations of each of the included components are capable of being reduced without 

impacting the efficacy of the formulation. Of course, it is also likely that additional factors will 

need to be included within the medium in order to bring the characteristics of the cultured cells 

back in line with those of FBS-supplemented populations, assuming that the inclusion of the 

ECM-treated surfaces described in chapter 8 does not alleviate these concerns. 

8.2.4 Screening of ECM Proteins for enhanced cell adhesion in serum free conditions 

 

The final component of this study which must be discussed is the aforementioned ECM 

screening investigation, from which we can see that for primary MSCs a combination of 

vitronectin and fibronectin resulted in the best overall cell attachment. It is likely that this effect 

occurred as a direct consequence of the types of integrins possessed by these cells and their 

respective binding properties when associated with the three investigated ECM proteins. MSCs 

have been shown to widely express a variety of integrin subunits with affinity for fibrinogen 

and vitronectin, such as β1α3, β1α5 and β1αV but little to no expression of fibrinogen-specific 

subunits such as β2αX or β2αM (247). It may be that the inclusion of fibrinogen reduces the 

overall amount of protein accessible for integrin binding due to a lack of fibrinogen-specific 

subunits and significant overlap in binding with both fibronectin and vitronectin. The subunits 

displayed by the cells however, have greater or lesser affinity to fibronectin and vitronectin 

respectively, limiting the amount of overlap and providing a surface with more available 

attachment points per unit weight of total protein when this combination is used. It should be 

noted that the associated Y201 screening experiment likely failed to reveal any significant 

effects due to the length of time the cells were allowed to attach to the surfaces for before 

assessment. Ideally this experiment should be repeated with a shortened initial binding time.  

It is at this point that it is necessary to comment on the suitability of the Y201 cell line as a 

model for primary cells during media development. As has clearly been demonstrated over the 

course of this investigation, the responses of these cells to both cytokine supplementation and 

culture in serum-free conditions differ substantially from those of isolated primary MSCs. In 

fact, in many cases the highly proliferative nature of the Y201s confers them a level of 

resilience to supplementation with potentially inhibitory factors, whilst masking the impact of 

anything but the most pronounced positive effects. Overall, whilst the use of immortalised cell 

lines in media screening can represent a highly cost effective approach, the lack of similarity 
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between Y201s and primary bone marrow-derived MSCs severely limits their usefulness in 

this particular case.  

 

8.3 Conclusions 
 

1. Variability inherent to the composition of foetal bovine serum is capable of impacting 

the proliferation and gene expression of both primary and immortalised MSCs. 

2. Basal medium supplemented with FGF-2, SITE, PDGF-BB and TGF-β1 is able to 

support the proliferation of primary and immortalised MSCs in the absence of serum, 

generating total cell numbers in excess of those recorded using FBS-treated cultures. 

3. Expansion in the serum-free medium described here, resulted in altered cell 

morphology, CD105 expression and secreted protein production in primary human 

MSCs, potentially altering their therapeutic potential. 

4. Immortalised MSCs were seen to undergo similar changes in morphology and surface 

marker profile to primary cell populations when cultured in serum-free medium but 

with increased expression of self-renewal and stemness related genes. 

5. A combination of fibronectin and vitronectin was capable of supporting primary and 

immortalised cell adhesion in serum-free conditions, with morphology comparable to 

that of serum-supplemented cells. 

 

8.4 Future Directions 
 

1. Optimise the formulation of the serum-free medium by reducing the concentration of 

each of the included supplements, eliminating curvature within the associated 

experimental design and producing a more cost effective solution.  

2. Combine the fibronectin and vitronectin functionalised surfaces with the serum-free 

medium formulation over multiple successive passages, assessing cell proliferation, 

metabolic activity, tri-lineage differentiation potential and surface marker profile. 

3. Attempt to isolate primary cells into the combined serum-free system, with the 

potential of screening an array of additional supplements in order to help better 

support this activity. 

4. Incorporate primary cells isolated from healthy donors into the existing investigation 

as an additional control element. 
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Appendix A 

Appendix A 

nCounter Gene List 

Official 

Symbol 

Alias / Previous Symbol Official Full Name 

ABCG2 
 

ATP-binding cassette, sub-family G (WHITE), member 2 

ACTC1 ACTC actin, alpha, cardiac muscle 1 

ADAM17 TACE ADAM metallopeptidase domain 17 

ADAR IFI4, G1P1 adenosine deaminase, RNA-specific 

ALDH1A

1 

PUMB1, ALDH1 aldehyde dehydrogenase 1 family, member A1 

ALDH2 
 

aldehyde dehydrogenase 2 family (mitochondrial) 

APC 
 

adenomatous polyposis coli 

APH1A 
 

anterior pharynx defective 1 homolog A (C. elegans) 

ASCL2 
 

achaete-scute complex homolog 2 (Drosophila) 

AXIN1 
 

axin 1 

BMP1 PCOLC bone morphogenetic protein 1 

BMP2 BMP2A bone morphogenetic protein 2 

BMP3 
 

bone morphogenetic protein 3 

BTRC 
 

beta-transducin repeat containing 

CCNA2 CCNA, CCN1 cyclin A2 

CCND1 BCL1, D11S287E, PRAD1 cyclin D1 

CCND2 
 

cyclin D2 

CCND3 
 

cyclin D3 

CCNE1 CCNE cyclin E1 

CD3D T3D CD3d molecule, delta (CD3-TCR complex) 

CD4 
 

CD4 molecule 

CD44 MIC4, MDU2, MDU3 CD44 molecule (Indian blood group) 

CD8A CD8 CD8a molecule 

CD8B CD8B1 CD8b molecule 

CDC2 
 

cell division cycle 2, G1 to S and G2 to M 

CDC42 
 

cell division cycle 42 (GTP binding protein, 25kDa) 

CDH1 UVO cadherin 1, type 1, E-cadherin (epithelial) 

CDH2 NCAD cadherin 2, type 1, N-cadherin (neuronal) 

CIR1 
 

corepressor interacting with RBPJ, 1 

COL1A1 
 

collagen, type I, alpha 1 

COL2A1 SEDC collagen, type II, alpha 1 

CREBBP RSTS CREB binding protein 

CSNK1A

1 

 
casein kinase 1, alpha 1 

CSNK1A

1L 

 
casein kinase 1, alpha 1-like 



183 
 

CSNK1D 
 

casein kinase 1, delta 

CSNK1E 
 

casein kinase 1, epsilon 

CSNK1G

1 

 
casein kinase 1, gamma 1 

CSNK1G

2 

 
casein kinase 1, gamma 2 

CSNK1G

3 

 
casein kinase 1, gamma 3 

CSNK2A

1 

 
casein kinase 2, alpha 1 polypeptide 

CTBP1 
 

C-terminal binding protein 1 

CTBP2 
 

C-terminal binding protein 2 

CTNNA1 
 

catenin (cadherin-associated protein), alpha 1, 102kDa 

CTNNB1 CTNNB catenin (cadherin-associated protein), beta 1, 88kDa 

CXCL12 SDF1A, SDF1B, SDF1 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 

1) 

DHH 
 

desert hedgehog homolog (Drosophila) 

DLL1 
 

delta-like 1 (Drosophila) 

DLL3 
 

delta-like 3 (Drosophila) 

DLL4 
 

delta-like 4 (Drosophila) 

DTX1 
 

deltex homolog 1 (Drosophila) 

DTX2 
 

deltex homolog 2 (Drosophila) 

DTX3 
 

deltex homolog 3 (Drosophila) 

DTX3L 
 

deltex 3-like (Drosophila) 

DTX4 
 

deltex homolog 4 (Drosophila) 

DVL1 
 

dishevelled, dsh homolog 1 (Drosophila) 

DVL2 
 

dishevelled, dsh homolog 2 (Drosophila) 

DVL3 
 

dishevelled, dsh homolog 3 (Drosophila) 

EP300 
 

E1A binding protein p300 

FBXW11 FBXW1B F-box and WD repeat domain containing 11 

FBXW2 
 

F-box and WD repeat domain containing 2 

FGF1 FGFA fibroblast growth factor 1 (acidic) 

FGF2 FGFB fibroblast growth factor 2 (basic) 

FGF4 HSTF1 fibroblast growth factor 4 

FGFR1 FLT2, KAL2 fibroblast growth factor receptor 1 

FOSL1 
 

FOS-like antigen 1 

FOXA2 HNF3B forkhead box A2 

FRAT1 
 

frequently rearranged in advanced T-cell lymphomas 

FOXD3 
 

forkhead box D3 

FURIN PCSK3, FUR, PACE furin (paired basic amino acid cleaving enzyme) 

FZD1 
 

frizzled homolog 1 (Drosophila) 

FZD10 
 

frizzled homolog 10 (Drosophila) 

FZD2 
 

frizzled homolog 2 (Drosophila) 

FZD3 
 

frizzled homolog 3 (Drosophila) 

FZD5 
 

frizzled homolog 5 (Drosophila) 

FZD6 
 

frizzled homolog 6 (Drosophila) 

FZD7 
 

frizzled homolog 7 (Drosophila) 
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FZD8 
 

frizzled homolog 8 (Drosophila) 

FZD9 
 

frizzled homolog 9 (Drosophila) 

GAS1 
 

growth arrest-specific 1 

GDF3 
 

growth differentiation factor 3 

GJB1 CMTX1, CMTX gap junction protein, beta 1, 32kDa 

GLI1 GLI GLI family zinc finger 1 

GLI2 
 

GLI family zinc finger 2 

GLI3 GCPS, PHS GLI family zinc finger 3 

GSK3B 
 

glycogen synthase kinase 3 beta 

HDAC1 RPD3L1 histone deacetylase 1 

HDAC2 
 

histone deacetylase 2 

HES1 HRY hairy and enhancer of split 1, (Drosophila) 

HHIP 
 

hedgehog interacting protein 

IGF1 
 

insulin-like growth factor 1 (somatomedin C) 

IHH 
 

Indian hedgehog homolog (Drosophila) 

ISL1 
 

ISL LIM homeobox 1 

JAG1 AGS, JAGL1 jagged 1 (Alagille syndrome) 

JAG2 
 

jagged 2 

JUN 
 

jun oncogene 

KAT2A GCN5L2 K(lysine) acetyltransferase 2A 

KRT15 
 

keratin 15 

LDLR 
 

low density lipoprotein receptor 

LFNG 
 

LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase 

LOC4009

27 

 
TPTE and PTEN homologous inositol lipid phosphatase 

pseudogene  

LOC6527

88 

 
PREDICTED: Homo sapiens similar to dishevelled 1 isoform a 

LRP2 
 

low density lipoprotein-related protein 2 

MAML1 
 

mastermind-like 1 (Drosophila) 

MAML2 
 

mastermind-like 2 (Drosophila) 

MAML3 TNRC3 mastermind-like 3 (Drosophila) 

MAP3K7 TAK1 mitogen-activated protein kinase kinase kinase 7 

MAP3K7I

P1 

 
mitogen-activated protein kinase kinase kinase 7 interacting 

protein 1 

MAPK10 PRKM1 mitogen-activated protein kinase 10 

MAPK9 PRKM9 mitogen-activated protein kinase 9 

MFNG 
 

MFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase 

MME 
 

membrane metallo-endopeptidase 

MYC 
 

v-myc myelocytomatosis viral oncogene homolog (avian) 

MYOD1 MYF3 myogenic differentiation 1 

NANOG 
 

Nanog homeobox 

NCAM1 
 

neural cell adhesion molecule 1 

NCOR2 
 

nuclear receptor co-repressor 2 

NCSTN 
 

nicastrin 

NLK 
 

nemo-like kinase 

NOTCH1 TAN1 Notch homolog 1, translocation-associated (Drosophila) 
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NOTCH2 
 

Notch homolog 2 (Drosophila) 

NOTCH3 CADASIL Notch homolog 3 (Drosophila) 

NOTCH4 INT3 Notch homolog 4 (Drosophila) 

NUMB 
 

numb homolog (Drosophila) 

NUMBL 
 

numb homolog (Drosophila)-like 

PAFAH1

B1 

MDCR, MDS platelet-activating factor acetylhydrolase, isoform Ib, subunit 1 

(45kDa) 

KAT2B PCAF K(lysine) acetyltransferase 2B 

PDX1 IPF1 pancreatic and duodenal homeobox 1 

PLAU 
 

plasminogen activator, urokinase 

POU5F1  OCT3, Oct4, MGC22487, 

OTF3 

POU class 5 homeobox 1 

PPARD 
 

peroxisome proliferator-activated receptor delta 

PPARG 
 

peroxisome proliferator-activated receptor gamma 

PPP2CA 
 

protein phosphatase 2 (formerly 2A), catalytic subunit, alpha 

isoform 

PPP2R5C 
 

protein phosphatase 2, regulatory subunit B', gamma isoform 

PPP2R5E 
 

protein phosphatase 2, regulatory subunit B', epsilon isoform 

PRKACA 
 

protein kinase, cAMP-dependent, catalytic, alpha 

PRKACB 
 

protein kinase, cAMP-dependent, catalytic, beta 

PRKACG 
 

protein kinase, cAMP-dependent, catalytic, gamma 

PRKCA PKCA protein kinase C, alpha 

PRKCB PRKCB2, PKCB, 

PRKCB1 

protein kinase C, beta 

PRKCD 
 

protein kinase C, delta 

PRKCE 
 

protein kinase C, epsilon 

PRKCG PKCG, SCA14 protein kinase C, gamma 

PRKCH PRKCL protein kinase C, eta 

PRKCI DXS1179E protein kinase C, iota 

PRKCQ 
 

protein kinase C, theta 

PRKCZ 
 

protein kinase C, zeta 

PRKD1 PRKCM protein kinase D1 

PRKX 
 

protein kinase, X-linked 

PRKY 
 

protein kinase, Y-linked 

PSEN1 AD3 presenilin 1 

PSEN2 AD4 presenilin 2 (Alzheimer disease 4) 

PSENEN 
 

presenilin enhancer 2 homolog (C. elegans) 

RAB23 
 

RAB23, member RAS oncogene family 

RAC1 
 

ras-related C3 botulinum toxin substrate 1 (rho family, small GTP 

binding protein Rac1) 

RB1 OSRC retinoblastoma 1 

RBPJ IGKJRB1, RBPSUH recombination signal binding protein for immunoglobulin kappa J 

region 

RFNG 
 

RFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase 

RHOA ARH12, ARHA ras homolog gene family, member A 

S100B 
 

S100 calcium binding protein B 

SFRP4 
 

secreted frizzled-related protein 4 
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SHH HPE3, HLP3 sonic hedgehog homolog (Drosophila) 

SMAD4 MADH4 SMAD family member 4 

SMO SMOH smoothened homolog (Drosophila) 

SNW1 SKIIP SNW domain containing 1 

SOX1 
 

SRY (sex determining region Y)-box 1 

SOX2 
 

SRY (sex determining region Y)-box 2 

STK36 
 

serine/threonine kinase 36, fused homolog (Drosophila) 

SUFU 
 

suppressor of fused homolog (Drosophila) 

T 
 

T, brachyury homolog (mouse) 

TCF7 
 

transcription factor 7 (T-cell specific, HMG-box) 

TERT 
 

telomerase reverse transcriptase 

TLE1 
 

transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila) 

WIF1 
 

WNT inhibitory factor 1 

WNT1 INT1 wingless-type MMTV integration site family, member 1 

WNT10A 
 

wingless-type MMTV integration site family, member 10A 

WNT10B 
 

wingless-type MMTV integration site family, member 10B 

WNT11 
 

wingless-type MMTV integration site family, member 11 

WNT16 
 

wingless-type MMTV integration site family, member 16 

WNT2 INT1L1 wingless-type MMTV integration site family member 2 

WNT2B WNT13 wingless-type MMTV integration site family, member 2B 

WNT3 INT4 wingless-type MMTV integration site family, member 3 

WNT3A 
 

wingless-type MMTV integration site family, member 3A 

WNT4 
 

wingless-type MMTV integration site family, member 4 

WNT5A 
 

wingless-type MMTV integration site family, member 5A 

WNT5B 
 

wingless-type MMTV integration site family, member 5B 

WNT6 
 

wingless-type MMTV integration site family, member 6 

WNT7A 
 

wingless-type MMTV integration site family, member 7A 

WNT7B 
 

wingless-type MMTV integration site family, member 7B 

WNT8A 
 

wingless-type MMTV integration site family, member 8A 

WNT8B 
 

wingless-type MMTV integration site family, member 8B 

WNT9A WNT14 wingless-type MMTV integration site family, member 9A 

WNT9B WNT15 wingless-type MMTV integration site family, member 9B 

ZIC2 
 

Zic family member 2 (odd-paired homolog, Drosophila) 

Internal Reference Genes 

CLTC CLTCL2, Hc clathrin, heavy chain (Hc) 

GAPDH GAPD,  glyceraldehyde-3-phosphate dehydrogenase 

GUSB 
 

glucuronidase, beta 

HPRT1 HPRT, HGPRT hypoxanthine phosphoribosyltransferase 1 

PGK1 
 

phosphoglycerate kinase 1 

TUBB OK/SW-cl.56, 

MGC16435, M4, Tubb5 

tubulin, beta 
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Appendix B 

 

MSD V-PLEX Human Biomarker 40-Plex Analytes List 

IFN-γ GM-CSF Eotaxin VEGF-C 

IL-1β IL-1α MIP-1β VEGF-D 

IL-2 IL-5 Eotaxin-3 Tie-2 

IL-4 IL-7 TARC SAA 

IL-6 IL-12/IL-23p40 IP-10 CRP 

IL-8 IL-15 MIP-1α VCAM-1 

IL-10 IL-16 IL-8(HA) ICAM-1 

IL-12p70 IL-17A MCP-1 Flt-1 

IL-13 TNF-β MDC PlGFl 

TNF-α VEGF-A MCP-4 FGF (basic) 

 

 

 

 

 

 


