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Abstract 

Due to their photosynthetic efficiency, microalgae tend to have high lipid content and growth 

rates, hence their importance to the biofuel sector. However, the viability of microalgae-derived 

biofuel is hindered by high capital and/or operating costs required for cultivation, harvesting, 

and drying. Harvesting the microalgae cells represents a substantial process cost, accounting 

for an estimated 30% of the total cost of production particularly because of the low 

concentration of microalgal biomass relative to water in the algae culture. 

Foam flotation can be utilised as an energy-efficient harvesting and enriching technique for 

microalgae biomass with the potential to significantly reduce the production cost of algal fuel. 

In this thesis, foam flotation was used for the first time in a continuous mode to harvest 

freshwater and marine microalgae species in an attempt to overcome the trade-off between 

recovery efficiency and enrichment in batch and semi-batch foam flotation. The influences of 

cell surface characteristics on flotation performance were investigated by quantifying 

hydrophobicity, zeta potential, and contact angle. Fractional factorial and response surface 

designs of experiment were used to determine the best operating conditions to achieve an 

effective combination of a high recovery efficiency (for greater biomass removal from the 

growth medium) and concentration factor (to lower downstream dewatering and drying costs). 

Tubular setups of different smooth-successive contraction and expansion ratios (foam riser) 

were used for the first time to enhance foam drainage. A recovery efficiency of 91% was 

obtained for Chlorella vulgaris with a concentration factor of 722. Foam flotation demonstrated 

a much lower power consumption (0.052 kWh m-3 of algae culture) in comparison to other 

flotation techniques including dissolved air flotation and electro-flotation. 

The algal biomass harvested by foam flotation was processed directly using hydrothermal 

liquefaction (HTL) without extra stages for dewatering and drying or intermediate storage. 

Thus, it can offer precise investigations on the process feasibility and it also represents a more 

realistic scenario for the application of HTL. The fate of surfactant in harvested microalgae and 

its effects on the HTL product yield and distribution were also investigated. HTL of C. vulgaris 

recovered by foam flotation demonstrated that the surfactant had additional benefits on HTL 

product yield, distribution, and composition.  

Overall, foam flotation is an effective, rapid, low cost, media (and arguably species) 

independent, scalable harvesting system which is able to operate continuously. Foam flotation 

also delivers algal biomass having additional advantages for biofuel production. 
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Chapter 1  

Introduction 

1.1 Project background 

Global challenges coincident with fossil fuels burning (energy security, environmental 

pollution, climate change) are some of the main drivers behind the ongoing search for 

affordable, reliable, and environmentally friendly fuels (Jing Lu et al., 2011; Pragya et al., 2013; 

Reyes and Labra, 2016). Microalgae have been called a “third-generation” source of biofuels 

that can play a vital role in the biofuel market due to their higher lipid content and high growth 

rate relative to terrestrial crops (Wenchao Yang et al., 2014). Microalgae can be cultivated on 

non-arable land and consequently avoid direct competition with agricultural crops. Moreover, 

many of the species of microalgae can be grown in wastewater by consuming inorganic nitrogen 

and phosphorus as nutrients to reduce the costs for commercialisation (F. Chen et al., 2012; 

Farid et al., 2013; C. Zhang et al., 2016a). Several downstream processing steps are required to 

produce and convert microalgae into biofuels comprising harvesting, further dewatering, 

drying, and lastly a conversion process of algal biomass into biofuel (Halim et al., 2012). 

However, microalgae-derived biofuel is not viable yet due to high capital and/or operating 

costs, including the energy input required for harvesting, dewatering, and drying. Harvesting of 

the algae biomass represents a substantial process cost, accounting for an estimated 20-30% of 

the total cost of production and it has been suggested up to 50% of algal biomass cost. For 

microalgae production in open systems, it has been estimated that 90% of the equipment cost 

may come from harvesting and dewatering (Molina Grima et al., 2003; Greenwell et al., 2010; 

Milledge and Heaven, 2012). Harvesting from dilute algae suspensions is challenging due to 

the small cell size translating to a low specific gravity, as well as the cell surface being 

negatively charged thereby maintaining a stable colloidal suspension. Other impediments stem 

from the ionic strength of the culture medium due to salinity, pH, and hydrophobicity of 

microalgae species (Milledge and Heaven, 2012; Udom et al., 2013). A wide range of solid-

liquid separation techniques have been trialled, both individually or in combination, such as 

coagulation and flocculation, followed by sedimentation, flotation, centrifugation, or filtration. 

Both efficiency and energy consumption of the harvesting technology have major impacts on 

the economic feasibility of microalgal derived biofuels. 

A successful harvesting system needs to be effective, rapid, low cost, species independent, 

scalable, and should be able to operate continuously if required. Adsorptive bubble separation 

is a process of separation and concentration based on differences in the physicochemical 
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properties of interfaces. Due to its simplicity and low capital and operating costs, it is widely 

used in industrial and domestic wastewater treatment, and in the mining, pharmaceutical, 

rubber, glass, plastics, and food industries (Jenkins et al., 1972; Rubio et al., 2002; Fuerstenau 

et al., 2007; Schramm and Mikula, 2012; Bu X, 2016). Foam flotation, which is a subclass of 

adsorptive bubble separation, is a selective separation process which shows notable promise as 

a microalgae biomass harvesting and enrichment method. Foam flotation columns have a 

number of advantages over other algal harvesting techniques including simple construction and 

lower capital, operating and maintenance costs when compared to centrifugation and filtration. 

It requires less time and floor space compared to that required for flocculation and 

sedimentation. Foam flotation processes have additional advantages such as the ability of the 

process to scale up and operate in a continuous mode. The majority of previously reported 

works on the bulk harvesting of microalgae have been adopted in a batch or semi-batch modes 

and consequently they focused only on the recovery efficiency or concentration factor of the 

harvested microalgae due to the trade-off between them, very few studies have considered both 

those effectiveness criteria. Achieving an effective combination of a high recovery efficiency 

(for greater biomass removal from the growth medium) and concentration factor (to lower 

downstream dewatering and drying costs) is pivotal for driving down the cost of handling and 

processing bulk quantities of microalgae. Therefore, research into an effective combination of 

high recovery efficiency and high concentration factor in a foam flotation column that operates 

in a continuous mode, at the same time determining the process economics, is highly important. 

Harvested microalgae can be converted chemically, thermo-chemically and biologically into a 

wide range of biofuel products such as biodiesel and bio-oils. However, due to the very high-

water content in algal biomass and to avoid the major costs and power consumption associated 

with dewatering and drying, hydrothermal liquefaction (HTL) of microalgal biomass is the most 

appropriate biomass into biofuel conversion process that allows microalgae to be processed wet 

with high water content (López Barreiro et al., 2013; Tian et al., 2014). Hydrothermal 

liquefaction is a technique for converting the whole microalgae biomass and is more rapid than 

other biomass to biofuel conversion processes such as the fermentation and in-situ 

transesterification. The majority of the previous HTL works on microalgal biomass has been 

carried out using pulverised-dried or freeze-dried microalgae mixed with deionised water. 

Using different microalgal physical state will probably affect the composition and yield of the 

bio-oil since the extractability of some constituents might be changed due to the pulverising 

and freeze-drying of harvested microalgae. Therefore, yield and chemical composition of bio-

oil from direct HTL of algae slurry recovered by any harvesting technique like foam flotation 
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in this work is more meaningful. Research into the influence of microalgae harvested by foam 

flotation on hydrothermal product yield and composition is required to observe any positive or 

negative implications that the harvesting process may have on both quantity and quality of 

biofuels.       

1.2 Project development 

The present work developed a foam flotation column to continuously harvest freshwater and 

marine microalgae species. The influence of controllable process variables on the recovery 

efficiency and concentration factor were evaluated and optimised. Attention was also paid to 

the harvesting economics including the power consumption and chemical costs to assess the 

economic feasibility of the process. Next, the influence of tubular inserts in the foam column, 

with smooth contraction and expansion profiles, on the draining of microalgae-containing foam 

was investigated. Lastly, the harvested microalgae from the foam flotation column were 

converted directly to bio-oil without extra stages of dewatering and drying, using a HTL 

process. Direct liquefaction of the harvested microalgae hydrothermally can offer precise 

investigations on the process feasibility and it represents a more realistic scenario for the 

application of HTL.           

1.3 Aims and objectives 

The foam flotation column, can be utilised as an effective harvesting and enriching technique 

for microalgae biomass. However, for foam flotation operating in batch or semi-batch modes, 

it is difficult to find an effective combination of high recovery efficiency and concentration 

factor. The aim of the work described in this thesis is therefore to develop a foam flotation 

column to continuously harvest microalgae species not only for high throughputs but also to 

attempt to overcome the barrier described above. This study also aims to demonstrate 

unambiguously the economic feasibility and the capability of continuous foam flotation to 

recover high microalgae biomass without any negative implications on the harvested algae for 

biofuel production. An understanding of the influences of process key factors on both 

microalgae recovery and enrichment can result in a pivotal combination between factors to 

achieve high recovery efficiency and concentration factor together. It is also imperative to 

understand the effect of the foam flotation process on biofuel yield and composition. 

Accordingly, the specific objectives of this research are: 

1- To review the current state of knowledge. 

2- To develop a foam flotation column to continuously harvest freshwater and marine 

microalgae species. 
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3- To investigate the effects of surface characteristics on microalgae flotation performance by 

quantifying the hydrophobicity, zeta potential, and the contact angle. 

4- To determine the significance of each individual process variable and the interactions among 

variables on the recovery efficiency and concentration factor of the harvested microalgae.  

5- To optimise the key process variables to achieve an effective combination of a high recovery 

efficiency (for greater biomass removal from the growth medium) and concentration factor 

(to lower downstream dewatering and drying costs). 

6- To compare the power consumption and chemical costs of the foam flotation column with 

the other commonly used harvesting techniques. 

7- To intensify the process by enhancing the drainage of the foam containing microalgae (i.e. 

increasing the concentration factor of the harvested microalgae) to lower downstream 

dewatering and drying costs. 

8-  To study the flotation kinetics and probabilities of bubble-microalgae cell collision, 

attachment, and detachment, for better understanding of this complex physicochemical 

process. 

9- To assess the direct conversion of the harvested microalgae into biofuel without extra stages 

for dewatering, drying, and storing using a hydrothermal liquefaction process. 

10- To understand the effect of the foam flotation process on the hydrothermal liquefaction 

product yield, quality and composition. 

1.4 Outline of the thesis  

This thesis is presented as a series of chapters formatted in the style of journal papers. All 

chapters were written by the primary author, Muayad Al-karawi, and edited by Dr Jonathan Lee 

and Dr Gary Caldwell. All experimental work was conducted by Muayad Al-karawi.   

This introduction is followed by a literature review (chapter two) in which microalgae as a 

sustainable source of biofuels is assessed. The review includes brief discussions on culturing 

systems, harvesting, drying techniques and biofuel production methods, with the focus on the 

advantages and disadvantages of commonly available harvesting technologies and conversion 

methods of algal biomass to biofuel. This demonstrates awareness about the research which has 

already been performed and identifies knowledge gaps to advance the scientific understanding 

in these areas. This chapter supports a platform for comparing the outcomes from the current 

research with the existing results. 

Chapter three describes the design of a continuous foam flotation column. The hydrophobicity 

of microalgae was enhanced at first using cationic, anionic, and non-ionic surfactants. The 
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effects of surface characteristics on microalgae flotation performance were then investigated by 

measuring the zeta potential and the contact angle. Fractional factorial and central composite 

design experiments were conducted to study the effect of individual variables and variables 

interactions on the effectiveness criteria of the harvest process (the current work focusses on 

both recovery efficiency and the concentration factor). Flotation process factors were then 

optimised to maximise microalgae recovery at a considerable concentration factor. The power 

consumption and chemical costs were also considered in this chapter and compared to those of 

commonly used harvesting techniques. 

Chapter four investigates the potential to intensify a continuous foam flotation column through 

enhancing microalgae-containing foam drainage. Tubular inserts with different contraction and 

expansion ratios were used for this purpose. The effect of the tubular inserts on concentration 

factor and recovery efficiency of harvested microalgae were studied only with key variables of 

the foam flotation process noted in chapter three. Liquid fraction in the rising foam containing 

microalgae was measured using the pressure profile in the foam column to examine the foam 

drainage upon using these drainage enhancer modules. 

Chapter five includes a theoretical study of the probabilities of collision, attachment, and 

detachment between microalgae cells and bubbles in the flotation column based on 

experimental measurements of bubble size, rise velocity, and microalgae cell size. This chapter 

also covers the kinetics models of foam flotation of microalgae and determines the flotation 

rate constant for continuous foam flotation under different experimental conditions. Foam 

flotation is a complex process that involves the interactions between three phases (solid, gas, 

and liquid) in the presence of surfactant chemicals; therefore, studying these phenomenological 

models (i.e. probabilistic and kinetic models) is important to better understand and develop the 

continuous foam flotation process. 

Chapter 6 investigates the use of microalgae harvested by a continuous foam flotation column 

as a feedstock for biofuel production. Direct hydrothermal liquefaction (HTL) of microalgae 

harvested by foam flotation and by centrifugation were carried out to observe any potential 

influences that harvesting via foam flotation may have on product yields and compositions. The 

direct HTL of algal biomass without extra stages for dewatering, drying and intermediate 

storage will yield information on the process feasibility and it represents a more realistic 

scenario for the application of the HTL process. Surfactants and three model compounds 

(starch, bovine serum albumin (BSA), and rapeseed oil) representing the three categories of 
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biochemical compounds present in microalgae (carbohydrate, protein, and lipid) were also 

liquefied hydrothermally in isolation to support interpretation of experimental data. 

The overall impact of the work described in the previous chapters is discussed and summarised 

in chapter 7. The recommendations for future work and projects are also discussed in this 

chapter including the potential of harvesting more freshwater and marine microalgae species in 

order to give foam flotation the advantage of being a species independent harvester. Continuous 

conversion of harvested microalgae into bio-oil is recommended through the connection of a 

continuous high-pressure reactor for the HTL with the continuous foam flotation column.
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Chapter 2  

Literature review 

Abstract 

In the last two decades, there has been massive interest from the research community in biofuel 

production due to the growing concerns associated with the sustainability of petroleum-based 

fuels as well as their contribution to atmospheric pollution and CO2 levels. Biofuels such as 

biodiesel and bioethanol are currently produced from food crops such as oil palm and 

sugarcane, however there are many economic and ethical concerns related to the use of food 

crops and large agrarian lands for fuel production. Second generation biofuels that utilise the 

whole plant bring more advantages than first generation; however, the lack of efficient 

technologies for large-scale production, the transportation of biomass, and high investment 

requirements are the major drawbacks associated with this generation. Third generation 

biofuels derived from microalgae are considered as the most promising alternative energy 

resource that can overcome the major drawbacks of first- and second-generation biofuels. 

Nevertheless, the production of algal biomass is still limited to approximately 10 to 20 thousand 

tons per year (dry weight basis). Microalgae-derived low value high demand products such as 

biofuels are currently not economically feasible due to the high capital and operating costs of 

cultivation, harvesting and drying stages. This chapter serves as a platform to present a 

comprehensive review on state-of-the-art production techniques for microalgae-based biofuels 

from species isolation to biofuel conversion technologies. In this review, foam flotation is 

highlighted as a promising technique for low-cost and rapid harvesting of microalgae. Apart 

from harvesting, this review also shows that hydrothermal liquefaction of algal biomass as has 

additional advantages for biofuel production. 

2.1 Introduction 

2.1.1 Energy crisis and biofuels 

Post the Industrial Revolution in 18th century, energy started to play an essential role in all life 

aspects including but not limited to transportation, heating, and electricity generation. Energy 

sources can be categorised into non-renewable fossil fuels and renewables like biomass. The 

term fossil fuel refers to coal, natural gas, and crude oil that were formed from buried plants 

and animals through different lysis processes under high pressure and temperature as well as 

bacterial action for millions of years (Ayhan Demirbas and Demirbas, 2010; Davudov and 

Moghanloo, 2017). Over the last two decades, massive attention has been given to renewable 
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energy resources due to the concerns about the sustainability of fossil fuel, fluctuating market 

price of fossil fuel, global climate change, and environmental pollution (Y. L. Cheng et al., 

2011; Pragya et al., 2013). According to expert’s reports, most fossil fuel reservoirs will be 

depleted over the next 50 years with the current consumption rate and consequently fossil fuels 

will become more expensive (Wilson, 2012). The overwhelming level of greenhouse gases 

(particularly CO2) emissions is another issue arising from the use of conventional fuels. CO2 

has a warming influence on the atmosphere due to its absorption and emission of infrared 

radiation. As a result, there is a continuous increase in global surface temperature and sea levels 

(F. Li, 2012). According to measurements made by the Mauna Loa observatory, Hawaii, the 

measured CO2 concentration at 2018 was 409 ppm while the suggested upper safety 

concentration is 350 ppm (Loa, 2018, July). Moreover, CO2 emissions are forecast to increase 

due to the growing demand of energy caused by the increase in the world’s population and 

increasing use of technology. In addition to CO2 emissions, a number of air pollutants emitted 

at the same time when fossil fuels (especially coal) are burnt, such as sulphur dioxide (SO2) and 

nitrogen oxides (NOx) which have many harmful impacts on public health and the environment. 

Additional water and air pollution come from the extraction, transportation and processing of 

fossil fuels (Perera, 2018).     

Renewable energy can be defined as the energy that relies mainly on natural sources such as 

wind power, biomass, hydropower, geothermal, solar and tidal. Currently, about 24% of the 

global electricity generation depends on renewable resources (World Energy Statistics, 2017). 

Among all renewable energies, biomass represents a promising energy source to produce 

biofuels that may substitute fossil fuels especially in the transportation sector since most 

renewable energies are exploited to supply fully or partly the demands of electric power and 

heating. In the future, it is expected that biomass will be at the top of sustainable energy sources 

with 3,271 million ton oil equivalent by 2040 (Ayhan Demirbas and Demirbas, 2010). Biomass 

is a term that refers to all biological substances derived from living or lately living plants (such 

as algae and agricultural crops) and their wastes (Tekin et al., 2014). Biomass can be processed 

thermo-chemically, chemically, or biologically to produce biofuels such as biodiesel, 

bioethanol, bio-methane, bio-oil, and bio-syngas (Uduman et al., 2010b). These biofuels are 

renewable resources and biodegradable (F. Li, 2012). Moreover, less emissions of CO, NOx, 

lower unburned hydrocarbon residues as well as lower smoke opacity were noticed from the 

combustion of microalgae oil methyl ester compared to those from the combustion of diesel 

(Satputaley et al., 2017). 
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2.1.2 Biomass sources and their potential for biofuel production 

First generation biofuels such as biodiesel and bioethanol derived from food crops like oil palm 

and sugarcane have shown potential as a viable alternative to liquid fuels. However, economic 

and ethical concerns come from using food crops and large agrarian lands for fuel production 

(A. J. Dassey, 2013). Although the growth in production and consumption of first generation 

biofuels is increasing, their potential to meet the overall energy demand particularly for the 

transport sector is still limited due to competition with food crops for the use of agricultural 

lands, otherwise they may cause food insufficiency as well as deforestation if mass production 

is applied (Noraini et al., 2014). For instance, about 220 trillion litres of diesel were consumed 

in US through 2010. Using soybeans as an example, with an average oil productivity of 600 

litres per hectare (l/Ha) per year, to yield this volume of diesel requires 367 million Ha whereas 

only 178 million Ha is currently available for culturing crops in the US (Leite et al., 2013). In 

the UK, only 6 million Ha of arable land is available and 2.4 million Ha is forest in contrast 

with the total land area of 24.3 million Ha. Consequently, to produce biodiesel to meet only a 

10% rapeseed methyl ester blend, 15 to 36% of the UK arable land is required (Thea Coward, 

2012). Second generation biofuels derived from inedible biomass like switch grass and wood 

have attempted to overtake these concerns by replacing agricultural crops with lignocellulosic 

materials due to their abundance worldwide. However, intense pre-treatment steps are required 

to decompose these types of biomass due to their lignin (a complex aromatic polymer) content 

and the crystalline structure of cellulose. Commercial production of second generation biofuels 

is currently limited (Xin Bei Tan et al., 2018). Other concerns are derived from both feedstock’s 

economics as well as their effects on nature. For instance, commercial scale production uses 

large amounts of water, nitrate fertilisers and agrochemical which may result in reduction in 

water availability and soil activity over time (D. P. Ho et al., 2014; Ullah et al., 2015).  

Algae have been classified as the third-generation source of biofuel that can overcome the major 

drawbacks associated with first- and second-generation sources. Algae are very diverse 

photosynthetic organisms growing in aqueous environments, soils, snow, and hot springs. They 

are broadly classified into microalgae and macroalgae (seaweed). Algae have sizes ranging 

from several microns to giant kelp which can extend up to 46 m. Microalgae are preferable over 

macroalgae due to the differences in their biochemical compositions especially lipid content 

which make the former more versatile. Microalgae are planktonic microorganisms which can 

grow under severe conditions owing to their simple structure. Over 35,000 microalgae species 

have been described and the real number will be significantly higher (Pahl et al., 2013; Xin Bei 

Tan et al., 2018). The use of algae goes back into ancient history; the Chinese first used the 



Chapter two 

 

10 

 

edible blue green algae, Nostoc (technically a cyanobacterium), as food to survive during a 

famine 2000 years ago (Spolaore et al., 2006). Currently, microalgae are highlighted as the 

most efficient photosynthetic organisms, which may play a vital role in the biofuel market due 

to their high lipid content and superior growth rate. Solid paleobotanical evidence demonstrated 

that microalgae are the main constituents of many of the fossil fuel hydrocarbon sources used 

today. For instance, Botryococcus was observed to be dominant in oil shale in Puertollano, 

Spain (Borrego et al., 1996). 

The growing interest in microalgae as a feedstock is due to their ability to fix CO2 and capturing 

the energy from sunlight 10-50 times more rapidly than other plants, which means they can be 

considered for carbon culture (Chinnasamy et al., 2010a; M. K. Lam and Lee, 2012). 

Microalgae have been reported to produce oil amounts larger than those produced from oil 

crops as illustrated in table 2.1 (Brennan and Owende, 2010; Lohrey, 2012; Cui, 2013). Most 

microalgae species have a high growth rate of about 0.54 day-1 and high lipid production 

without the need to provide large amount of raw materials in comparison to other plants 

(Andrew K. Lee et al., 2013; Coons et al., 2014). For instance, approximately 591-3650 kg of 

seawater is required for microalgae cultivation to produce 1 kg of biodiesel whereas 13676, 

14201, and 19924 kg of freshwater are required for the cultivation of soybean, rapeseed, and 

jatropha respectively to produce 1 kg of biodiesel (Gerbens-Leenes et al., 2009; Jia Yang et al., 

2011a). Unlike terrestrial plants, different microalgae have the remarkable ability to be 

cultivated in freshwater, seawater, brackish, municipal and agricultural wastewater where 

microalgae offer an additional benefit by contributing to the wastewater treatment process, as 

a cost-effective method, through absorbing the nitrates, phosphates, and other organic matters 

like organic dyes as nutrients (F. Chen et al., 2012; Farid et al., 2013; Pleissner and Rumpold, 

2018). Recently, many investigations have been conducted to study the capability of microalgae 

strains for removing pharmaceutical contaminants (PCs) and if so, this will increase the 

applications of microalgae for removing unwanted materials from industrial wastewater (Xiong 

et al., 2018). During the cultivation period, it is easy to control the cultivation conditions to 

enhance microalgae biomass yield or lipid content (Y. L. Cheng et al., 2011; Nurra et al., 2014). 

Some unicellular green microalgae have the capability to produce hydrogen (H2) photo-

biologically over the cultivation period (Wonjun Park and Moon, 2007; Ust’ak et al., 2007). In 

the case of microalgae biodiesel production, the residuals after lipid extraction can also be used 

as valuable co-products. These chemical compounds like pigments (β-carotenes, phycoerthrin, 

and astaxanthin) and vitamins can be exploited in the nutraceuticals, pharmaceuticals, and 

cosmetics fields (Spolaore et al., 2006). Microalgae are not a conventional food source like 
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corn, palm oil and soybean (but are used as nutritional supplements) and used as biomass 

feedstock for biofuel, it will not affect global food markets (A. J. Dassey, 2013). Lastly, 

microalgae can be used as enhancers in upgrading heavy oil under supercritical water conditions 

to lower coke formation and increased lighter products (Caniaz et al., 2018). 

Source 
Oil productivity per year 

l/Ha 

Corn 168 

Soybeans 449 

Camelina 580 

Sunflower 954 

Canola 1,187 

Jatropha 1,890 

Coconut 2,685 

Oil Palm 5,940 

Microalgae (based on 30% 

lipid content) 
58,707 

Table 2.1: Biodiesel productivity from different biomass sources (Brennan and Owende, 2010; 

Lohrey, 2012; Cui, 2013) 

2.2 Microalgae biomass cultivation technologies 

The selection of appropriate microalgae strains for biofuel production is the most important 

step before cultivation. Suitable species should have high growth rate, high ability to survive in 

different environments, high lipid productivity, and have ability to be cultivated under different 

production conditions i.e. photoautotrophy, heterotrophy, and mixotrophy. Throughout 

cultivation, water, light, CO2, nutrients (nitrogen, phosphorus, etc.), an appropriate temperature 

and mixing are required for sustained rapid growth. Light is the most important factor for 

growth and productivity since it provides the energy required for photosynthesis. Sunlight 

and/or artificial light (e.g. fluorescent lamps or multi-LED light) are used in microalgae 

cultivation systems. The latter is more efficient than sunlight for producing microalgae of high 

biomass and oil productivity. However, fluorescent lamps consume higher energy and therefore 

they are often replaced by multi-LED light sources or fibre optic lighting excited by solar 

energy (Qari et al., 2017). CO2 is the carbon source for algal biomass production that can be 

obtained directly from air as well as from industrial exhaust gases, which may contain around 

15% CO2. A previous study has demonstrated that 1.8 kg of CO2 (from atmosphere, industrial 

flue gases, or soluble carbonate) was required to produce 1 kg of microalgae indicating that 

cultivation represents an efficient and feasible path for carbon fixation (Abdel-Raouf et al., 

2012). Microalgae biomass comprises 30-50% dry weight basis (DW) carbon, 30-50% DW 
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oxygen, 3-7% DW hydrogen, and 4-9% DW nitrogen, and 1-3% DW phosphorus in addition to 

trace amounts of other elements such as sulphur, calcium, magnesium, and potassium. 

Therefore, it is essential to include all these nutrients in the culture medium to obtain maximum 

culture performance. The nutrients are supplied by dissolving them in the algae culture and CO2 

is supplied as a gas although only dissolved CO2 will be available for the cells as the carbon 

source (Acién et al., 2017). CO2 reacts with water and produces carbonic acid, carbonate, or 

bicarbonate according to the medium pH before being used by the microalgae. During 

photosynthesis, O2 is released and it can inhibit photosynthesis (photorespiration) when its 

concentration exceeds (0.2247 mole O2 m
-3 at 20 ˚C) (Ippoliti et al., 2016). Urea, nitrate, or 

ammonium are often the nitrogen source whereas phosphorus is usually provided as phosphate, 

for example as potassium or sodium phosphate (Acién et al., 2017). 

Many different algal biomass production systems such as open ponds and closed 

photobioreactors have been trialled at different scales to evaluate their efficiencies and 

economics (Thea Coward, 2012; Xin Bei Tan et al., 2018). Microalgae are cultivated in these 

systems under different production mechanisms including photo-autotrophy, heterotrophy, and 

mixotrophy. Photo-autotrophy is autotrophic photosynthesis, that is to say the microalgae use 

light as an energy source, CO2 as the carbon source, and other nutrients to grow whereas 

microalgae cultivated under heterotrophic conditions are independent of light energy and 

therefore the system does not need a high surface to volume ratio but does require an additional 

source of a substrate such as glucose or glycerol as the carbon and energy source to stimulate 

growth. The combination of these mechanisms is called mixotrophic cultivation (Brennan and 

Owende, 2010; Xin Bei Tan et al., 2018). In this production approach, microalgae are cultivated 

heterotrophically in the first stage to increase the growth rate due to high organic content before 

being diverted to the second stage where photosynthesis is induced by reducing the nutrient 

organic content to a certain level. Mixotrophy couples the pros of photo-autotrophy and 

heterotrophy production mechanisms as well as overcoming the cons of photo-autotrophy 

(Zhan et al., 2017).   

The photoautotrophic cultivation of microalgae is economically and technically feasible for 

large-scale production as this approach does not require any additional costly carbon source. It 

is the most dominant method commonly used for microalgal cultivation. Heterotrophic 

cultivation yields larger biomass productivity and accelerates lipid accumulation even though 

the oil productivity of microalgae varies for different microalgae species and consequently it 

reduces the harvesting costs. However, heterotrophic microalgae cultures are costly and easily 

contaminated by bacteria and hence it may affect microalgae productivity in large-scale 
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production systems. Moreover, there are a limited number of algal species that can utilize 

organic carbon sources (Kang et al., 2004; Qari et al., 2017). 

The technologies for algal biomass cultivation can be further categorised into suspended and 

non-suspended (attached) algae production. 

2.2.1 Suspended algal cultivation technologies 

In these cultivation systems, algae grow in suspension and are not attached to any solid carrier 

surface. Suspended culture is the most common type and consists of open systems where the 

culture is in direct contact with the environment and closed systems in which the medium is 

fully enclosed within culture vessels. The advantages, disadvantages, mass production rate, and 

cost of these production systems are summarised in table 2.2 (Brennan and Owende, 2010; 

Suali and Sarbatly, 2012; Aitken, 2014; Wenguang Zhou et al., 2014).  

2.2.1.1 Open system 

Historically, the first suspended culture systems were open pond systems that were used for 

small-scale production of microalgae around the 1950s. Later, large scale projects were 

developed in the USA between 1976 and 1980 to produce microalgae simultaneously with 

wastewater treatment due to the simplicity of the open pond system in addition to its lower 

construction and operating costs (Cui, 2013). For the cultivation of photoautotrophic 

microalgae at large scale, open systems including natural features (lakes, lagoons, and ponds) 

or artificial ponds are the preferred systems as the microalgae can use the sunlight directly as 

the energy source and CO2 from the atmosphere or submerged aerators as the carbon source, 

besides the other advantages set out in table 2.2. Circular central pivot, inclined (cascade) and 

raceway ponds are the most common types of open cultivation system as shown in figure 2.1. 

Circular central pivot has a rotating arm to agitate the culture whereas inclined systems combine 

both gravity and pumping flow. Among these types, raceway/oval-shaped pond types are 

widely used and comprise a closed loop lined recirculation channel with a typical depth of 

between 20 and 50 cm to increase light penetration. Paddlewheels or sometimes propellers are 

used to provide continuous circulation and mixing to the raceway pond with typical flow 

velocity of 20-30 cm s-1 to avoid sedimentation (Xin Bei Tan et al., 2018). Lower length to 

width channel ratio and lower number of bends are preferable to reduce imposing extra head 

losses. The surface to volume ratio in the open pond systems is low and therefore it is 

recommended that this production system be used with low depth of water to increase light 

penetration and the stability of the culture (Acién et al., 2017). Open ponds have a nearly 

constant average biomass concentration of around 0.5 g l-1 to enhance light penetration; 
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however, this adds additional duty to the harvesting stage and make the culture more likely to 

be contaminated by other microorganisms. 
C

u
lt

iv
a

ti
o

n
 

T
e
c
h

n
iq

u
e Biomass 

production 

rate, Cost 

Advantages Disadvantages 

O
p
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em
 

35-40 g m-3 day-1 

(it is considerably 

based on the 

microalgae 

strains, pond 

depth, and climate 

conditions) 

1 kg of algae oil: 

7.64 $ 

1 kg of algae 

biomass: 1.54 $ 

 Low capital cost (0.13-0.37) Million 

Euro/Ha at 100 Ha scale   

 Low operating energy inputs (0.25-

1.2) W m-2 

 Easy to maintenance and clean 

 Well understood 

 Lower oxygen accumulation 

 Easier to scale up 

 Low spatial efficiency due to the poor mixing and light 

penetration which leads to low biomass productivity rate. 

 Required large land area 

 Poor contact between gas and medium in channels and 

bends (mass transfer coefficient ≈ 0.7 h-1)  

 Dilute biomass due to slow growth rate translated to low 

oil productivity 

 Low light and CO2 absorbance 

 Easily contaminated by fungi and insects. 

 High CO2 losses due to the difficulties in maintaining the 

gas bubbles for a long time. 

 Suitable for a small number of microalgae species 

especially those have fast growth rates.  

 Lack of operational conditions control may lead to large 

difference in temperature between day and night 

 Low to mild surface to volume ratio 

 Other disadvantages arise from excessive water loss due to 

evaporation in addition to storm and rainfall events which 

may damage the culture system.  

C
lo
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d
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y
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200-800 g m-3 

day-1, (600 g m-3 

day-1 was obtained 

with Arthrospira 

platensis) 

1 kg of algae oil: 

24.6 $ 

1 kg of algae 

biomass: 7.32 $ 

 High biomass productivity rate 

 Concentrated biomass 

 Required small land area 

 Easy to control operational 

conditions 

 Low risk of contamination 

 High mass transfer coefficient 

between gas and medium even 

though it is lower into the loop than 

in the mixing unit  

 High surface to volume ratio (up to 

80 m-1) 

 Suitable for a wide range of 

microalgae strains 

 Very low water loss from 

evaporation 

 High capital costs 0.51 Million Euro/Ha at 100 Ha scale   

 High operating energy inputs (10-100) W m-2, total energy 

consumption for biomass production was determined to be 

approximately 15 kWh day-1 m-3 

 Some issues related to culture mixing, light penetration 

and gas exchange may be noticed with the large-scale 

production systems  

 

Table 2.2: The advantages, disadvantages, mass production rate and cost of open and closed 

cultivation systems (Weissman and Goebel, 1987; Brennan and Owende, 2010; Y. Chisti, 2012; 

Sompech et al., 2012; Suali and Sarbatly, 2012; Aitken, 2014; Wenguang Zhou et al., 2014; 

Acién et al., 2017)  
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Figure 2.1: Circular central pivot (upper left), inclined (cascade)(upper right) and raceway 

ponds, (Pahl et al., 2013). 

2.2.1.2 Closed systems 

Some of the drawbacks of open system ponds particularly culture contamination, low light 

penetration and CO2 absorbance are tackled by using closed photobioreactor systems, with 

consequent increased biomass growth rate and lipid productivity. Closed photobioreactors are 

typically sets of straight-parallel transparent plastic or glass tubes, with a typical diameter less 

than 10 cm, aligned vertically, horizontally, inclined, or helically. Tubular, flat plate and 

cylindrical are the most common types as shown in figure 2.2. Pumps provide circulation for 

the algal medium with typical velocity ranges of 10 to 80 cm s-1 to prevent sedimentation. 

Airlifts have also been employed to exchange CO2 and O2 between the culture and gas and 

deliver the required mixing. Closed photobioreactors have many merits over open systems as 

shown in table 2.2, particularly the ability to cultivate a single species and delivering better 

control of cultivation conditions such as temperature, pH, and CO2/O2 exchange. Tubular 

photobioreactors have been proposed to be more appropriate for large-scale cultivation of 

microalgae due to their high surface to volume ratio (Zhan et al., 2017). It was reported that 

cell concentrations of 20 g L-1 and biomass yield of 250-3640 g m-3 d-1 can be attained in flat 

Trebon, Czech Republic 



Chapter two 

 

16 

 

plate photobioreactors with a 1.2-12.3 cm light path (Xin Bei Tan et al., 2018). The high capital 

cost and operating energy are the main drawbacks that prevent scale up of these production 

systems for low-value products. In addition, there is a design limitation of the tube length for 

exchanging CO2 and O2 and pH control (Brennan and Owende, 2010; Suali and Sarbatly, 2012; 

Cui, 2013). Biomass washout in the closed photobioreactors is another problem that restricts 

the implementation of this cultivation system (Bilad et al., 2014). 

  

 

Figure 2.2: Tubular and flat plate photobioreactors respectively (top), tubular manifold 

photobioreactors (bottom) (The Different Kinds of Chlorella’s Production » Photobioreactor, 

2011; Photobioreactor, 2012; Acién et al., 2017) 

Floating closed photobioreactors, also known as Offshore Membrane Enclosures for Growing 

Microalgae (OMEGA) were proposed by NASA and used for microalgae cultivation in the Gulf 
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of California, US. Floating on the sea keeps temperature stable for the culture as well as 

providing mixing with the help of waves (Su et al., 2017).    

A “hybrid cultivation system” combining open and closed photobioreactors in a two-stage 

process, can reduce the overall microalgae production cost and enhance biomass and oil 

productivity. The first stage has a high biomass production rate and takes place in a highly 

controlled environment in a closed system to reduce any possible contamination of the culture. 

The culture of dense microalgae cells from the first stage is then diverted to the second stage 

which takes place in an open pond system for further biomass production. The second stage 

often comprises nutrient deficiency to promote lipid or astaxanthin production. An average oil 

productivity rate of 10 tonnes ha-1 annum-1 was achieved with Haematococcus pluvialis in a 

two stage system with an ability to gain 76 tonnes ha-1 annum-1 if a species with a high oil 

content is used (Huntley and Redalje, 2007; Brennan and Owende, 2010; Xin Bei Tan et al., 

2018). 

In general, the high water to algal biomass ratio is the main drawback with the cultivation 

regimes described above. In other words, huge amounts of water are required for the cultivation 

and consequently the cost for biomass production as well as downstream processes i.e. 

harvesting and drying costs are high.  

2.2.2 Non-suspended/immobilised/attached micro-algal cultivation technologies 

In these systems, microalgae grow on a solid carrier surface rather than being suspended in the 

culture as shown in figure 2.3. High long-term stability of biofilm, low risk of contamination 

in addition to low energy consumption are the main advantages of attached growth systems (Su 

et al., 2017). Attached cultivation technology has a moderate algal production rate of 71 g m-2 

day-1. A previous study demonstrated that biomass productivity of 50-80 g m-2 day-1 was 

obtained for Senedesmus obliguus by using an outdoor attached cultivation system.  

The attached cultivation technique is often adopted in two different approaches, the first is 

known as “non-enclosure” where microalgae form a biofilm on the surface by attaching 

microalgae cells to sets of vertical-arranged substratum with low water flow rate to maintain 

wet surfaces. The second is called “enclosure” in which algae is encapsulated to confine them 

using a polymeric matrix composite to restrict algal cells in a specific area. This technology has 

been applied extensively for enzyme, yeast, and bacteria medium. Highly controlled cultivation 

conditions can be obtained with the enclosure method. However, many studies have 

demonstrated the difficulty of separating algae from the matrix in addition to drawback of 

expensive scaling up due to the high cost of the polymer matrix (Tianzhong Liu et al., 2013b; 
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Katarzyna et al., 2015; Su et al., 2017). For non-enclosure cultivation, not all microalgae 

species are able to attach and grow on surfaces, for example Chlorella and Dunaliella species, 

and therefore binders are required. Aero-terrestrial microalgae like Coccomyxa sp. grow 

naturally on surfaces and hence they are more suitable for this type of cultivation system. Such 

cultivation systems may reduce the overall cost of microalgae production as well as downstream 

processes i.e. harvesting, as it is easier to harvest microalgae from surfaces due to their crowded 

accumulation in a small area. A lower footprint area and high CO2 mass transfer rate are other 

advantages in comparison to suspended cultivation. However, a cost-effective and simple 

design for attached cultivation system is not yet available (Xue-Qiao Xu et al., 2017).     

 

Figure 2.3: Non-suspended cultivation technologies (Johnson, 2009)  

The production of microalgae biomass represents a first obstacle in producing algal biofuel with 

a competitive price due to the cost of the nutrients (N, P and trace elements), and water for the 

cultivation of freshwater species. Katarzyna et al. (2015) have reported that approximately 3800 

kg of freshwater is required to produce 1 kg of biodiesel (Wenguang Zhou et al., 2014). 

However, other researchers have shown that the obstacles to cultivation can be overcome by 

recycling the spent culture medium after harvesting which provides about 84% and 55% of 

water and nutrients requirements respectively. In other words, the freshwater footprint can be 

reduced to 608 kg freshwater/kg of biodiesel if the freshwater discharged after harvesting is 

fully reused. 
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Seawater is a successful alternative due to the advantages that it has over freshwater, in 

particular it contains most of the nutrients required for microalgae cultivation such as MgSO4, 

NaCO3, and CaCl2 but not including phosphate. It reduces water requirement by about 90% (Jia 

Yang et al., 2011a). A variety of marine species have been investigated as promising feedstocks 

for the production of chemicals and biofuels. The profusion of microalgae species in the sea, in 

addition to its obvious abundance, makes seawater a promising cost-effective culture medium 

compared to freshwater.      

Industrial scale microalgae cultivation needs large quantities of nutrients, particularly nitrogen 

and phosphorus. Therefore, a rich nutrient source is required for large scale biofuel production. 

Alternatively, wastewater rich in organic matters or organic compost as the nutrient source can 

provide nutrients required for high microalgae growth rate and hence it may reduce the 

cultivation cost significantly (Wenguang Zhou et al., 2014). Microalgae also have the potential 

to adsorb heavy or trace metals from wastewater (Liandong Zhu, 2015). However, the 

microalgae strains should have specific characteristics to use wastewater as the nutrient source 

including high growth rate and high tolerance to potential contamination by toxic compounds 

and metal ions as well as high tolerance to variations in environmental conditions and salinity 

levels. Among different microalgae species, strains of the genera Scenedesmus and Chlorella 

have shown high ability to grow in various wastewater treatment ponds (Y. Wang et al., 2016b). 

A study by Li et al. (2011) demonstrated Chlorella sp. to grow in “centrate” municipal 

wastewater and remove nitrogen and phosphorus with efficacies of 89 and 81% respectively 

and chemical oxygen demand (COD) of 91% (Yecong Li et al., 2011b). Removal efficiencies 

of 72 and 28% for nitrogen and phosphorus respectively were observed by Aslan and Kapdan 

through growing Chlorella vulgaris in municipal wastewater (Aslan and Kapdan, 2006).  

For industrial wastewater, the potential of being a nutrient source is centrally dependant on the 

nature of the product. Industrial wastewater has adverse impacts on microalgae cultivation with 

a variety of toxic chemicals present in it and hence it may be considered an inappropriate 

nutrient source compared to municipal or agricultural wastewater. Therefore, most current 

studies have focused on eliminating heavy metals and toxic chemicals by using various species 

of microalgae instead of growing them for biofuel production. However, a recent study 

demonstrated the potential of untreated industrial wastewater produced from a carpet mill to 

grow different microalgae species including Botryococcus braunii, Chlorella saccharophila, 

Dunaliella tertiolecta, and Pleurochrysis carterae due to its low concentration of toxic 

components and sufficient amount of nitrogen and phosphorus. Algal biomass productivity (mg 

L-1 d-1), lipid content (% DW), and lipid productivity (mg L-1 d-1) were 34, 13.2%, 4.5 and 23, 
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18.1%, 4.2 and 28, 15.2%, 4.3 and 33, 12%, 4 respectively for the microalgae (in the same order 

above) (Chinnasamy et al., 2010b). Moreover, the ability of some microalgae species to treat 

the wastewater from an oil well was discovered by OriginOil Inc. According to the US 

Department of Energy (DOE), every barrel of oil produced from onshore drilling is 

accompanied with three barrels of wastewater. Therefore, large amounts of microalgae biomass 

can be produced daily if this huge volume of wastewater can be exploited for cultivation 

(Wenguang Zhou et al., 2014). Use of waste-based organic compost and livestock waste derived 

from animal manure as a nutrient source has exhibited promising outcomes in term of 

microalgae growth rate and lipid content (Agwa and Abu, 2014; Kumaran et al., 2016).           

However, high levels of chemical contaminations and inconsistent nutrient composition are the 

main drawbacks from adopting this wastewater as the nutrient source. For instance, high 

concentrations of trace metals such as copper can inhibit microalgae growth (M. K. Lam and 

Lee, 2012).      

2.3 Harvesting of microalgal biomass 

Following the cultivation of algal biomass and prior to any further processing into products 

including pigments, nutritional supplements, and biofuels, microalgae should be detached from 

the culture medium and this stage is referred to as harvesting. Despite extensive studies and all 

the advantages related to algal biomass described previously, the production of algal biomass 

is still limited to approximately 10 to 20 thousand tons per year (dry weight basis). Microalgae-

derived low-value products such as biofuels are currently not commercially viable due to the 

high capital and/or operating costs, partly due to the energy input required for the harvesting 

and drying stages (Muylaert et al., 2017).  

A wide range of solid-liquid separation techniques have been trialled to harvest microalgae 

from the culture medium (Figure 2.4) (Pahl et al., 2013). These techniques can be categorised 

into those that separate cells based on gravity or buoyancy such as centrifugation, 

sedimentation, and flotation (liquid constrained), whereas the other techniques separate cells 

mechanically by means of a screen or filter (solid constrained). Harvesting microalgae can be 

carried out in one- or two- step processes. In a two-step process, dilute microalgae culture is 

concentrated to a slurry of 2-7% dry-matter content and this can be achieved by using 

coagulation and flocculation processes followed by sedimentation or flotation. After that, the 

microalgae slurry can be further concentrated to a paste or cake of 15-25% dry-matter content 

using centrifugation or filtration. 
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Harvesting represents a substantial process cost, accounting for an estimated 20-30% of the 

total cost of production and possibly as high as 50% of algal biomass cost. For microalgae 

production in open systems, it has been estimated that 90% of the equipment cost may come 

from harvesting and dewatering (Molina Grima et al., 2003; Greenwell et al., 2010; Milledge 

and Heaven, 2012). 

 

Figure 2.4: Block diagram of algae biomass recovery stages (Pahl et al., 2013; Barros et al., 

2015). 

The challenges in separating microalgal biomass from the growth medium and the cause of the 

high microalgae recovery costs arise from several factors including: 

1- Microalgae cell nature: 

 Microalgae species have small cell size with an average diameter range of 2 to 30 µm. For 

instance, the average cell diameter for Chlorella vulgaris is 5 µm (Milledge and Heaven, 

2012) and 22 µm for Dunaliella Salina (Elena S. Barbieri, 2006). 



Chapter two 

 

22 

 

 Most microalgae species have a specific gravity close to that of the cultivation medium. For 

example, the density of Chlorella vulgaris is 1,070 kg m-3 whereas most marine species have 

densities of 1,030-1,230 kg m-3 (Milledge and Heaven, 2012; Farid et al., 2013). 

 Microalgae have high dispersion stability in suspension due to their negative surface charge. 

Zeta potential for most species is within the range of (-10 to -35) mV (Pranowo et al., 2013). 

In addition, a recent study has demonstrated the ability of microalgae to retrieve their 

negative charge after coagulation (Udom et al., 2013). 

2- Microalgae growth culture has low biomass concentration especially in large-scale 

production systems, typically with a range of 0.2-5 g L-1 dry weight basis due to the mutual- 

and self-shading of microalgae cells (F. Chen et al., 2012; Faried et al., 2017). 

3- Additional challenges in the harvesting stage may come from the salinity of the growth 

medium, culture pH, nutrients, and culture age (Pahl et al., 2013; Muylaert et al., 2017). 

Moreover, the presence of different concentrations and compositions of extracellular organic 

matter (EOM) excreted by microalgae into the culture medium may affect the efficiency of 

some harvesting techniques (Udom et al., 2013). Also, it is worth noting that the 

heterogeneity of microalgae species in terms of different cell size, shape, surface 

characteristics (e.g. hydrophobicity and charge), and wall rigidity may represent a major 

impediment in the way of adopting a universal harvesting technology.    

Coagulation and flocculation are often coupled with most harvesting technologies such as 

sedimentation, flotation and filtration to promote the aggregation of microalgae cells and 

therefore facilitate separation (Uduman et al., 2010a; Milledge and Heaven, 2012; Pahl et al., 

2013). The selection of the most appropriate harvesting technique depends on the microalgae 

species in addition to the desired product quality and concentration and the additional uses of 

the spent culture. Both efficiency and energy consumption of the harvesting technology have 

major impacts on the economic feasibility of microalgae-derived products. The most successful 

harvesting technique should have the capability to harvest large volumes of microalgae culture 

at low cost and energy demand. Open pond cultivation systems, for example, produce 

microalgae with a biomass concentration of approximately 0.5 g L-1 dry weight basis, therefore 

large volumes of water should be removed by the harvesting technique to thicken the biomass 

approximately 400-600 times into a paste of 200-300 g L-1 dry weight basis at least (Pahl et al., 

2013). 

The effectiveness of the harvesting process is determined by the concentration factor (CF) and 

the recovery efficiency (RE). The concentration factor is the ratio of the microalgae 
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concentration in the final product to the microalgae concentration in the culture as given in 

equation 2.1. 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐶𝐹) =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑐𝑢𝑙𝑡𝑢𝑟𝑒
   ⋯ (2.1) 

The recovery efficiency is the ratio of the microalgae cells/mass in the final product to the 

microalgae cells/mass in the culture as given in equation 2.2. 

 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑅𝐸) =
𝑚𝑎𝑠𝑠 𝑐𝑒𝑙𝑙𝑠⁄ 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑚𝑎𝑠𝑠 𝑐𝑒𝑙𝑙𝑠⁄ 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑐𝑢𝑙𝑡𝑢𝑟𝑒
100% ⋯ (2.2) 

2.3.1 Sedimentation 

Sedimentation is a simple solid-liquid separation technology which uses gravity to force solid 

particles to separate from the liquid phase in settling tanks. The main advantages of this method 

are the low infrastructure cost and power consumption. However, the long settling time is the 

major drawback of this method and accordingly a large area is required. Microalgae cells have 

an average sedimentation rate of (0.1-2.6) cm hr-1. For example, the sedimentation rate for 

Cyclotella is 0.04 m day-1 (Greenwell et al., 2010). Separation of microalgae by sedimentation 

needs large land areas if it is adopted for a large-scale harvesting. In addition, there is the 

potential of biomass deterioration in high temperature environments whilst the algae settle. 

Furthermore, water turbulence and microalgal cell motility can affect the sedimentation 

efficiency (Milledge and Heaven, 2012; Pahl et al., 2013). Gravity sedimentation produces a 

rather dilute slurry which increases the cost of further downstream processes and therefore 

should be used as a primary harvesting technology (T. Coward et al., 2013; Muylaert et al., 

2017).  

Nevertheless, for relatively large microalgae sedimentation is considered a suitable harvesting 

method (Moraes, 2013; Rawat et al., 2013), for instance, the filamentous Arthrospira 

(Siprulina) platensis (diameter of 10 µm and length of tens to hundreds of µm) has a theoretical 

settling rate of 0.64 m h-1 due to the high content of accumulated glycogen (more than 50% 

under nitrogen starvation conditions) giving it a specific density of 1.5 (Depraetere et al., 2015). 

Some species that naturally favour aggregation, such as Scenedesmus, are also suitable for 

gravity sedimentation (Zhaowei Wang et al., 2013c). The settling velocity of microalgae cells 

in the culture medium can be described by Stokes’ law as given in equation 2.3 (Wei et al., 

2014): 

𝑉 =
𝑔𝑑2(𝜌𝑠 − 𝜌𝑓)

18𝜇
   … (2.3) 
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where: 𝑉: is the settling velocity (m sec-1), 𝑑: microalgae diameter (m), 𝑔 is the acceleration 

due to gravity (9.18 m sec-1),  𝜌𝑠, 𝜌𝑓 are the microalgae cell and the liquid densities respectively 

(kg m-3), and 𝜇 is the fluid viscosity (kg m-1 sec-1). According to equation 2.1, it is obvious that 

microalgae cells have low settling velocity since the diameter of most microalgae is less than 

30 µm and the density difference between cells and culture medium is very small. Several 

studies have shown that gravity sedimentation can be enhanced by using inclined tubes, 

channels, or plates (for example lamella sedimentation tank), such that microalgae cells do not 

need to travel long distances like in conventional tanks and the inclined tubes or plates can 

shorten the distance for cells to hit the wall surface and then glide down as illustrated in figure 

2.5. However, this gravity separator is not able to overcome most of the sedimentation 

drawbacks (Show et al., 2013; Benjamin T. Smith and Davis, 2013). 

Gravity sedimentation is rarely used alone for harvesting microalgae, therefore coagulation and 

flocculation processes are often used prior to the sedimentation step to increase the settling 

efficiency by increasing the size of the particles that are settling (Uduman et al., 2010b; 

Benjamin T. Smith and Davis, 2012). Kavithaa et al. (2018) reported that a coagulation-

flocculation-sedimentation process using FeCl3 as coagulant and chitosan as flocculant gave 

better removal efficiency (98%) with a reduced settling time of five minutes in comparison to 

individual coagulation or flocculation (Loganathan et al., 2018). 

  

Figure 2.5: Separation of microalgae cells by conventional settling tanks (left), and lamella 

separator (right) (Muylaert et al., 2017)   

2.3.2 Coagulation and flocculation 

Due to their negative surface charge and density that is similar to that of the growth medium, 

microalgae have high dispersion stability. Although this stable dispersion is vital during the 

https://www.sciencedirect.com/science/article/pii/S0011916417324359#!
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growth phase to reduce the dark region and thus increase the photosynthesis efficiency, it is a 

dilemma through the harvesting phase since it represents a barrier against self-aggregation in 

the suspension (Greenwell et al., 2010). Nevertheless, this drawback can be overcome using 

coagulation and flocculation processes. In coagulation, chemical compounds (coagulants) are 

added to destabilise the cells by neutralising their negative charge which results in the formation 

of small clumps of cells (Udom et al., 2013). Flocculation involves adding natural or synthetic 

high molecular weight polymers to promote the aggregation of the small clumps destabilised 

by coagulation with the flocculants and form masses called floc as shown in figure 2.6 

(Zemmouri et al., 2012; L. Chen et al., 2013). The time required for coagulation is shorter than 

for flocculation. Coagulation takes place typically in less than 10 seconds whereas flocculation 

needs a longer time (typically 20-40 minutes) (Crittenden, 2012). 

 

Figure 2.6: Coagulation and flocculation of microalgae (Laurent, 2010). 

Many inorganic and organic compounds are utilised to initiate coagulation and flocculation for 

example, aluminium and ferric salts, lime, chitosan, Magnafloc, Praestol, Aminoclay, and 

cationic starch (Ahmad et al., 2011; Milledge and Heaven, 2012; Anthony et al., 2013; Pahl et 

al., 2013; Alam et al., 2014; Gerde et al., 2014). Increasing the particle size by agglomeration 

due to coagulation and flocculation can improve microalgae separation from culture by 

sedimentation, flotation, and filtration separation techniques. For example, according to Stokes’ 

law, to achieve a settling rate of 1 m h-1 of a diatom Cyclotella (average diameter of 6 μm and 

density of 1,114 kg m-3), flocs of 88 μm diameter are required at the same density (JK Edzwald, 

1993). The ideal flocculant must be biodegradable, non-toxic, inexpensive, efficient at low 
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concentrations, and appropriate for a wide range of environmental conditions (e.g. pH and ionic 

strength) (Milledge and Heaven, 2012). Using coagulation and flocculation in microalgae 

recovery is dependent on species, surface charge, concentration in the growth culture, coagulant 

and flocculant type and dosage, degree and time of mixing, in addition to salinity, pH, and 

temperature of the growth media (Pahl et al., 2013).           

2.3.2.1 Inorganic coagulants (metal salts) 

Inorganic coagulants are often used to reduce or neutralise microalgae surface charge for 

subsequent processing by flocculation or other harvesting techniques such as dissolved air 

flotation. Inorganic multivalent cations such as aluminium sulphate, ferric chloride, ferric 

sulphate, and ferrous sulphate are widely used in different industries and particularly in 

wastewater treatment. When metal salts are dissolved in water, the positively charged metal ion 

interacts with microalgae, therefore neutralising their negative surface charge. The 

effectiveness of metal salts varies based on their ionic strength (Pragya et al., 2013). The 

recovery efficiency of microalgae is affected by the anion of metal salts. Chloride salts of iron, 

zinc, and aluminium are more effective than sulphate salts for recovering freshwater Chlorella 

minutissima (Papazi et al., 2010). Use of inorganic coagulants at high dosages results in the 

precipitation of inorganic metal hydroxides, such as aluminium hydroxide and ferric hydroxide 

which clump making a mesh-like structure trapping microalgal cells (Thea Coward, 2012; 

Muylaert et al., 2017).  

One of the disadvantages of using inorganic coagulants for pre-treating microalgae prior to 

harvesting is their relatively high cost because of the large amount needed, particularly in saline 

solutions. Therefore, they are frequently used in wastewater treatment and water purification 

systems due to their low salinity. The Aquatic Species Program (ASP) reported that using 

inorganic metals for algal biofuels production was not viable due to cost (Sheehan et al., 2009). 

Additionally, the optimal dosage of chemicals for coagulation is highly influenced by the ionic 

strength (salinity) of the growth medium. Sukenik et al. (1988) reported that the optimal 

coagulation dosage of alum increased from 75 to 225 mg L-1 when the medium ionic strength 

was altered from 0.2 to 0.7M (the ionic strength of natural seawater) at pH of 5.5 (Sukenik et 

al., 1988).  

Another drawback arises from contamination of the growth medium with residual metals which 

may limit the recycling of the growth medium. Moreover, dissolved salts may be recovered 

with the harvested microalgae and consequently affect the biomass quality. For example, 

coagulation of microalgae with high dosage of alum produces biomass with high aluminium 
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concentrations, consequently making the biomass unsuitable for use as an animal feed. The 

coagulation process using inorganic coagulants is highly sensitive to the pH level of the growth 

medium which may result in additional costs for pH adjustment, as shown in table 2.3 (the 

optimum pH range for various inorganic coagulants) (Pahl et al., 2013). Finally, inorganic-

based coagulants may work efficiently with some microalgae species, but not with others unless 

the dosage is increased. 

Metal salts Formula Optimal pH range 

Alum Al2(SO4)3.18H2O 4.0 – 7.0 

Ferric chloride FeCl3 3.5-6.5 and > 8.5 

Ferric sulphate Fe2(SO4)3.3H2O 3.5-7 and > 9 

Ferrous sulphate FeSO4.7H2O > 8.5 

Table 2.3: Common inorganic coagulants used in wastewater treatment and optimum pH range, 

(Pahl et al., 2013) 

2.3.2.2 Organic flocculants 

Organic flocculants are synthetic or natural high molecular weight polymers and can be divided 

broadly into ionic and non-ionic types. Ionic flocculants have ionisable functional groups such 

as carboxyl, amino or sulphonic structures. Ionisable flocculants (known as polyelectrolytes) 

are categorised into cationic, anionic, or ampholytic. Although organic-based flocculants can 

be used to enhance microalgae separation by neutralising or reducing their negative surface 

charge, they are used more often in combination with coagulation processes to aid the linking 

between the coagulated cells and flocculants by electrostatic or chemical forces to produce 

larger particles in a process known as inter-particle bridging (Uduman et al., 2010a). Most 

cationic polyelectrolytes are non-toxic and biodegradable. They are widely used in low dosage 

(2-25 mg L-1) in the flocculation of freshwater species which effectively facilities microalgae 

separation with a concentration factor up to 35. However, poor flocculation efficiency was 

noticed using anionic polyelectrolytes even though they could destabilise negative colloids 

(Granados et al., 2012; Milledge and Heaven, 2012). Chitosan, which is commercially produced 

by the deacetylation of the naturally abundant polymer chitin, is a linear polysaccharide used 

widely as a cationic flocculant (Rehn et al., 2013). Beach et al. (2012) induced the flocculation 

of the freshwater microalga Neochloris oleoabundans using chitosan with an optimum dosage 

of 100 mg L-1. The flocculation process demonstrated a high flocculation rate and efficiency 
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over inorganic coagulants such as alum and ferric sulphate (Beach et al., 2012). Cationic starch 

is another efficient organic flocculant which has been demonstrated to possess advantages over 

inorganic coagulants. It does not contaminate the growth medium, lower doses are required, it 

is cheap, and its efficiency is pH-independent (Vandamme et al., 2010). 

In a similar way to inorganic coagulants, polyelectrolyte effectiveness dramatically decreases 

when the ionic strength (salinity) of the growth medium is increased and more flocculant is 

required. For example, recovery efficiencies of between 70 and 95% were obtained for marine 

species with a chitosan dosage of between 40 and 150 mg L-1 (Pahl et al., 2013). It is essential 

to apply the optimum dosage for flocculation of microalgae as lower dosage of organic 

flocculants may result in weak bridging whereas higher dosage may hinder the bridging process 

due to electrostatic/static hindering (Thea Coward, 2012). Knuckey et at (2006) reported that 

the flocculation of microalgae was inhibited at a salinity above 5 g L-1 (seawater salinity = 35 

g L-1) when an organic polymer was used (Knuckey et al., 2006). Organic flocculants are 

expensive compared to inorganic coagulants and using them to harvest microalgae, especially 

marine species, for low-value products is not economically viable even though smaller amounts 

of flocculants than coagulants are usually required. Suali and Sarbatly (2012) reported that extra 

organic flocculants dosage had negative effects on the efficiency of filter media in downstream 

filtration processes (Suali and Sarbatly, 2012). Therefore, flocculation by organic polymers is 

not a good choice for pre-treating marine microalgae. 

2.3.2.3 Integration of inorganic coagulants-organic flocculants 

Harvesting of some marine species by sedimentation and filtration was observed to be more 

efficient when the growth culture was pre-treated by a two-stage process of coagulation 

followed by flocculation rather than a one-stage process (Pragya et al., 2013). Integration of 

coagulation and flocculation also overcome the inhibition of the flocculation process due to 

medium salinity, however higher doses (approximately 5-10 times) were required for both 

processes (Knuckey et al., 2006).   

2.3.2.4 Auto-flocculation 

Microalgae flocculation may sometimes occur naturally in the cultivation medium whereby the 

cells self-combine at higher pH level resulting in agglomeration without the addition of 

chemicals. Naming the process auto-flocculation does not mean that microalgae flocculate by 

themselves at higher pH level, but that the flocculation is somehow induced by the precipitation 

of pH-dependent chemicals (Muylaert et al., 2017). Auto-flocculation processes are induced at 

elevated pH levels usually above 10 (i.e. outside ideal culture conditions) due for example to 
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reduction in dissolved CO2 concentration (Uduman et al., 2010a). It is also associated with the 

presence of divalent cations such as calcium and magnesium which have a positive charge and 

can induce flocculation by reducing or neutralising the microalgae surface charge (Vandamme, 

2013). In microalgae cultures, depletion of CO2 due to photosynthesis can cause the culture pH 

to increase to 8-9, the precipitation of Ca as calcium phosphates or calcium carbonates and Mg 

as magnesium hydroxide or brucite is induced at that pH level. Therefore, the auto-flocculation 

process is also affected by the concentrations of calcium and magnesium ions in the growth 

culture (Brady et al., 2014). This process has an advantage that both calcium and magnesium 

precipitates have lower toxicity than other metals in inorganic coagulation resulting in fewer 

problems with contamination of the biomass (Vandamme et al., 2015). 

Some researchers have stated that changing the temperature of the growth medium and its 

dissolved oxygen level may stimulate flocculation (Salim et al., 2011). Vandamme et al. (2012) 

achieved a recovery efficiency of 98% for Chlorella vulgaris at pH 10.8 using KOH, NaOH, 

and Ca(OH)2 and at pH 9.7 using Mg(OH)2 within 30 min (Vandamme et al., 2012). Similarly, 

Perez et al. (2014) stated that a recovery efficiency of 95% for C. vulgaris was achieved at pH 

10.5 using  Mg(OH)2 within 30 min (García-Pérez et al., 2014). On the other hand, other studies 

demonstrated that auto-flocculation can be induced at pH levels lower than 4 due to the 

protonation of carboxylic acid on the microalgae cell surface and consequently the surface 

charge of the cells becoming neutral. It was reported that denser and more compact flocculated 

microalgae cells (defined based on the dry weight and volume of the harvested biomass) were 

obtained at pH 4 with 95% recovery efficiency in comparison to those obtained at a pH greater 

than 10 (Jiexia Liu et al., 2013a; Pezzolesi et al., 2015). However, auto-flocculation is slow, 

dependent on microalgae species, and is difficult to control. It is also inappropriate for “semi-

continuous and continuous cultures” where maintaining neutral pH is required for maximum 

productivity. Given current levels of understanding, auto-flocculation is thought to be too 

unreliable for commercial use. 

2.3.2.5 Bio-flocculation 

Induced flocculation of microalgae occurs in rivers or lakes and it is achieved by the existence 

of biologically excreted organic compounds, known as extracellular polymer substances (EPS). 

EPS, which are usually high molecular weight polysaccharides of uronic or pyruvic acids, can 

be excreted into the growth medium by biological species such as microalgae, bacteria, and 

filamentous fungi during temperature, pH or nutrient stress (Andrew K. Lee et al., 2009b; 

Vandamme, 2013). Some studies demonstrated the importance of EPS compounds in the 

induction of flocculation of microbial organisms (Singh and Patidar, 2018). Ettlia texensis or 
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Pediastrum microalgae tend to aggregate spontaneously due to their excreted EPS (Salim et al., 

2014; Jason B. K. Park et al., 2015). The main EPS components are carbohydrates especially 

polysaccharides, however, they could be proteins, DNA, and humic substances as well. Lee et 

al. (2009) stated that depletion of an organic carbon source such as acetate or glucose from the 

growth medium induced EPS excretion. They succeeded in inducing flocculation of the marine 

microalga Pleurochrysis carterae using microbes and achieved recovery efficiencies up to 90% 

and a concentration factor of 226 (AK Lee et al., 2009a). Wan et al. (2013) harvested 

Nannochloropsis oceanica with 88% recovery efficiency using the bacterium (Solibacillus 

silvestris) (Wan et al., 2013). Botryococcus braunii, Scenedesmus quadricauda and 

Selenastrum capricornutum microalgae were harvested using bacteria (Paenibacillus sp.) with 

removal efficiencies ranging between 91-95% (Oh et al., 2001). Similarly, Chlorella vulgaris 

was harvested using filamentous fungi (Cunninghamella echinulata) and pellet forming fungi 

(Aspergillus oryzae) with recovery efficiencies of 97% (Xie et al., 2013; Wenguang Zhou et 

al., 2013). 

The induction of flocculation by other microorganisms may avoid algal biomass and growth 

culture from being contaminated by chemicals but it may result in other problems with 

contamination by fungi or bacteria. However, use of either crude or purified EPS may help in 

avoiding contamination by other organisms but renders the process uneconomical due to the 

high costs associated with EPS separation and purification (Pahl et al., 2013). Like auto-

flocculation, the performance of bio-flocculation process is also difficult to predict. Salim et al. 

(2012) reported that bio-flocculation is a highly species dependent process and produces 

biomass of low lipid content, therefore it is not recommended for bio-fuel production (Salim et 

al., 2012). Moreover, the excretion of EPS by microalgae usually takes place under non-ideal 

cultivation conditions, therefore bio-flocculation is unsuitable for “semi-continuous and 

continuous cultures” which are adopted for high throughput. However, bio-flocculation is a 

promising and simple harvesting technology in bacteria-microalgae wastewater treatment 

systems (Craggs et al., 2012).   

2.3.2.6 Electro-coagulation 

Electrolytic coagulation processes are considered among the most efficient methods and can 

reduce harvesting costs. It does not require the addition of coagulants, is fast, safe, cost 

effective, versatile, and requires low energy inputs (Muylaert et al., 2017). Electro-coagulation 

has been efficiently employed in wastewater treatment to enhance the quality of drinking water 

(Poelman et al., 1997). Harvesting is achieved by passing an electrical current through two 

sacrificial electrodes (e.g. aluminium or iron) or non-sacrificial electrodes (e.g. carbon) placed 
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vertically in the culture. Half reactions take place at each electrode as shown in equations 2.4, 

2.5, and 2.6 (Vandamme et al., 2011; Pahl et al., 2013):  

1- Half reactions on the anode (electrolytic oxidation): 

𝑀(𝑠) → 𝑀(𝑎𝑞)
𝑛+ + 𝑛𝑒−  …  2.4 

Where: 𝑀 is the metal anode, 𝑛 is the charge of the metal ion, for iron anode for example: 

𝐹𝑒(𝑠) → 𝐹𝑒(𝑎𝑞)
+2 + 2𝑒−     𝑜𝑟      𝐹𝑒(𝑠) → 𝐹𝑒(𝑎𝑞)

+3 + 3𝑒− 

A side reaction consists of the oxidation of water to produce oxygen: 

2𝐻2𝑂(𝑙) → 𝑂2(𝑔) + 4𝐻(𝑎𝑞)
+ + 4𝑒−  …  2.5 

2- Half reactions on the cathode (reduction): 

2𝐻2𝑂(𝑙) + 2𝑒− → 𝐻2(𝑔) + 2𝑂𝐻−  …  2.6 

The cations released from the anode by electrolytic oxidation serve as coagulants that can 

destabilise microalgae cells by reducing or neutralising their surface charge. This process 

allows for aggregation of the destabilised microalgae cells and consequently eases their 

separation from culture. Based on the design of the process, clumps once formed may move to 

the bottom of the tank due to their weight or attach to hydrogen bubbles generated by the 

reduction on the cathode electrode and float to the surface (Pahl et al., 2013; Vandamme et al., 

2013). This process is similar to the coagulation process using metal salts with the advantage 

that there are no anions (e.g. chloride or sulphate ions) introduced into the culture. Nevertheless, 

the aluminium/iron could be toxic to the microalgae biomass based on the electrical current 

density and operation time (Muylaert et al., 2017). Electrical current, voltage, anode material, 

residence time, microalgae concentration and the design of system are the main factors that 

affect the performance of the electro-coagulation process (Pahl et al., 2013; Singh and Patidar, 

2018). 

It was reported that approximately 1.5 wt.% of aluminium was present in the biomass after 

electro-coagulation with an electrical current density of 3 mA cm-2 for 10 min (Vandamme et 

al., 2011). More than 98% removal efficiency of Chlorococcum sp. was obtained in the 

laboratory using electro-coagulation (Uduman et al., 2011). Vandamme et al. (2011) evaluated 

this method to harvest freshwater and marine microalgae using aluminium and iron electrodes. 

The outcomes demonstrated that an aluminium anode was more effective than iron with energy 

consumption of 2 and 0.3 kWh kg-1 for freshwater and marine microalgae respectively 
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(Vandamme et al., 2011). Xu et al. (2010) showed the capability of electro-coagulation to 

harvest B. braunii with recovery efficiencies of 93 and 98% when it was coupled with gravity 

sedimentation for 30 min and dissolved air flotation for 14 min respectively (Ling Xu et al., 

2010). The energy consumption of electro-coagulation slightly increases when non-sacrificial 

electrodes are used. The optimum energy consumption of this process using non-sacrificial 

electrodes was 3.4 kWh kg-1 after adjusting the electrical current applied, culture pH, and 

addition of an electrolyte (NaCl) (Misra et al., 2015). 

However, the contamination of the growth medium and algal concentrate with metal ions from 

the sacrificial anode, the high cost of anode replacement and maintenance, the formation of an 

oxide layer on the anode and an increase in algae culture temperature are the main problems of 

using electro-coagulation for harvesting microalgae biomass. Moreover, the process may 

become expensive if scaled up as the energy consumption increases with the distance between 

the electrodes (Milledge and Heaven, 2012; Pahl et al., 2013; Singh and Patidar, 2018). 

2.3.2.7 Ultrasound-flocculation 

Sonication at low frequency can be implemented to stimulate flocculation of microalgae. 

Ultrasound can disrupt microalgae cells and induce flocculation but with concentration factors 

lower than other methods (Milledge and Heaven, 2012). In this method, microalgae are 

streamed into the resonator chamber and exposed to ultrasonic waves that disrupt the cells and 

induce the formation of aggregates. The aggregates sink to the bottom of the vessel due to their 

weight (Suali and Sarbatly, 2012). Harvesting using ultrasound offers additional advantages 

over other harvesting technologies including the fact that it can be carried out in a continuous 

mode resulting in a small footprint and it avoids addition of chemical coagulants which 

contaminate the recovered biomass and culture medium (Pahl et al., 2013). However, Bosma 

et al. (2003) reported that, despite the capability of ultrasound to successfully harvest Monodus 

subterraneus with high removal efficiency of about 92% and a concentration factor of 20, the 

energy required was too high at approximately 345 kW d-1. Additionally, they claimed that the 

resonator can only handle 1000 L d-1, therefore the process is not appropriate for large-scale 

microalgae production (Bosma et al., 2003). Furthermore, ultrasound can aggregate all matters 

present in the growth medium and if it is used to induce microalgae flocculation cultivated in 

wastewater open pond systems, it may recover most contaminants (e.g. mercury) with the 

harvested biomass (Suali and Sarbatly, 2012). Finally, ultrasonic waves at high frequency may 

promote the lysis of microalgae cells resulting in release of their internal contents into the 

growth medium (MUNIR et al., 2013). 
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2.3.2.8 Flocculation by magnetic nanoparticles 

Physical flocculation of microalgae using magnetic nanoparticles has been proposed as a 

technique that, like ultrasound and electro-coagulation, avoids contamination due to the 

addition of chemicals. In general, flocculation by magnetic particles is simple, fast, and has low 

operating costs (Ling Xu et al., 2011). This process involves adsorption of magnetic 

nanoparticles such as iron oxide (Fe3O4) or iron oxide coated with silica or cationic 

polyelectrolyte onto the microalgae cell surface due to electrostatic attraction forces. 

Flocculation is then induced using a magnetic field (Cerff et al., 2012; Lim Jit et al., 2012; Wan 

et al., 2014). Cerff et al. (2012) conducted experiments to magnetically harvest freshwater 

Chlamydomonas reinhardtii and Chlorella vulgaris and marine Phaeodactylum tricornutum 

and Nannochloropsis salina using silica-coated iron oxide nanoparticles with a maximum 

particle loading of 30 and 77 g/g for freshwater and marine microalgae respectively. Recovery 

efficiencies of more than 95% were obtained for all microalgae species (Cerff et al., 2012). 

Similarly, Hu et al. (2013) evaluated the efficiency of using uncoated magnetic nanoparticles 

(Fe2O3) to harvest marine Nannochloropsis maritime. A removal efficiency of 95% and a 

flocculation rate of 4 min were obtained with a Fe2O3 dosage of 120 mg L-1 (Y. R. Hu et al., 

2013).  

Nevertheless, the high cost of the magnetic nanoparticles and the lack of a practical method for 

recycling nanoparticles from the recovered biomass are the main drawbacks associated with 

this process. Moreover, the adsorption of Fe3O4 nanoparticles onto the cell surface seems to be 

species specific and the coating of the nanoparticles with cationic polymers to enhance the 

adsorption makes the harvesting process more expensive (Wan et al., 2014). It is worth noting 

that this process requires higher doses of magnetic nanoparticles for harvesting marine species 

due to the ionic strength (salinity) of seawater similar to flocculation using organic polymers. 

2.3.3 Centrifugation 

Centrifugation is a harvesting method which utilises centrifugal force to separate microalgae 

from the growth medium. Centrifugation is the most widely used separation technology for 

high-value products. The main advantages are its simplicity, rapidity, the lack of contamination 

by chemical coagulants, and its ability to harvest nearly all microalgae strains with high 

recovery efficiency and concentration factor. Moreover, due to its rapidity, centrifugation can 

avoid deterioration of the recovered biomass (Muylaert et al., 2017). Heasman, et al. (2002) 

harvested various microalgae species under centrifugal forces of 13,000, 6000 and 1300 G. 

Harvesting efficiencies of >95, 60, and 40% were obtained respectively and it was concluded 
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that the separation feasibility is centrally dependent on the microalgae species and type of 

centrifuges (Heasman et al., 2002). 

Different types of industrial centrifuges are used for harvesting microalgae including decanters, 

cyclones, solid bowl and disc stack centrifuges (Pahl et al., 2013). Decanter and disc stack 

centrifuges are efficient and widely used commercially in continuous mode to harvest 

microalgae biomass for high-value products. The decanter can handle high capacity with lower 

maintenance requirements, usually used to harvest microalgae from suspension with a higher 

solids content (from 10 to 50% algal dry weight) whereas a disc bowl centrifuge is used for 

suspensions with a low solids content (from 0.01 to 20% algal dry weight) (P. E. Wiley et al., 

2011; Milledge and Heaven, 2012). Hydro-cyclones, unlike other centrifuges, are cheap and do 

not have moving parts; however, they require precision engineering to be installed and are more 

suitable as a primary concentrator step (Pahl et al., 2013). 

Although harvesting by centrifugation is simple and has low footprint, the high capital and 

operating costs required for large centrifuges are the main disadvantage which limits its 

application to only higher-value products. It may also damage the cells due to high shear forces 

if it is used with high centrifugal force (Uduman et al., 2010a; Gouveia, 2011). Moreover, the 

sticky nature of microalgae biomass may make discharging the recovered cells difficult. 

Increasing the surface area (e.g. by using spiral plated) and flow rates through the centrifuge 

are other approaches adopted to reduce the energy consumption. Dassey and Theegala (2013), 

harvested algal biomass using a continuous centrifuge at a rate of 18 L min-1, a lower harvesting 

efficiency of 28.5% was obtained but with an 82% reduction in power consumption (Adam J. 

Dassey and Theegala, 2013). The different centrifuge types used for microalgae harvesting with 

their energy requirements are shown in table 2.4 (Pahl et al., 2013). 

Centrifuge type 
Energy requirement 

kWh m-3 

Biomass 

concentration % 

Decanter 8 22 

Hydro-cyclone 0.3 0.4 

Disc stacked 0.7-1.3 2-15 

Table 2.4: Typical centrifuge equipment summary 

Even if an energy-efficient harvesting technique is developed in the future, it is widely accepted 

that centrifugation will still play key role as a dewatering method for pre-concentrated algal 

slurry (Milledge, 2010; Gouveia, 2011; MUNIR et al., 2013). Pre-concentration of microalgae 
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biomass reduces the culture volume that needs to be processed, consequently the energy 

required for centrifugation will also be lower (Muylaert et al., 2017). 

2.3.4 Filtration 

Filtration techniques operating continuously or discontinuously under pressure, vacuum, 

magnetic fields or gravity fields, have been trialled to harvest microalgae using different filter 

media such as screens, filter cloths, and permeable membranes, which allow growth medium 

and small cells (less than filter pore size) to pass through while retaining the residual cells on 

the filter (Milledge and Heaven, 2012; Pahl et al., 2013; Hamawand et al., 2014). During 

filtration, the driving force (usually pressure drop) should be maintained across the surface of 

the medium to force fluid flow through it (Barros et al., 2015). Filtration is considered an 

effective harvesting technique for large or filamentous microalgae since the retained cells are 

less disrupted. It is a high rate technique with recovery efficiency of 70-89% and there is no 

contamination by chemicals (Leite et al., 2013; Singh and Patidar, 2018). It was reported that 

conventional filtration under gravity or low pressure (microstrainer) is often used to recover 

large or filamentous species like Coelastrum and Arthrospira. However, these species are 

unsuitable for biofuel production because of their low lipid content. Dense and impermeable 

cake on the filter media is often formed when very small particles like microalgae are filtered 

which may quickly clog the filter media (Christenson and Sims, 2011; Pahl et al., 2013; Xin 

Bei Tan et al., 2018). Clogging and fouling of the media can dramatically influence the filtration 

efficiency; for instance, very low concentrations (250-1000 cells ml-1) of the diatom Synedra 

acus were able to clog a filter and consequently reduce filter run time from 35 hrs to 23.5 hrs 

(Thea Coward, 2012). 

Tangential (cross) flow filtration (TFF) using reverse osmosis (< 0.001μm pore size), 

ultrafiltration (0.001–0.1μm pore size), microfiltration (0.1–10μm pore size), or macrofiltration 

(> 10μm pore size) membrane is a high rate filtration technique which is usually used for 

harvesting microalgae with small cell sizes. Nevertheless, frequent replacement of the 

expensive membranes is required (Milledge and Heaven, 2012; Pahl et al., 2013; Xin Bei Tan 

et al., 2018). In this filtration technique, shear force created by flowing microalgae culture 

parallel to the membrane surface is used to regularly clean the membrane surface, therefore 

eliminating cake formation. Membrane pore size, type, transmembrane pressure drop, feed flow 

rate and algae concentration are the main factors influencing permeate fluxes (the volume 

flowing through the membrane per unit area per unit time). However, high shear force may 

damage some microalgae cell membranes (Rossignol et al., 1999). Petrus̆evski et al. (1995) 

recovered freshwater Stephanodiscus hantzschii, S. astraea, Cyclotella sp., and Rhodomonas 
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minuta with efficiencies of 70 to 89% and concentration factors of 5 to 40 using tangential flow 

filtration equipped with a 0.45μm pore size membrane (Petrus̆evski et al., 1995). Similarly, 

Rossignol et al. (1999) recovered marine species (Haslea ostrearia and Skeletonema costatum) 

using cross flow filtration equipped with eight commercial microfiltration and ultrafiltration 

membranes. They estimated power consumption to be between 3-10 kWh m-3 and reported that 

membrane performance was centrally dependent on the hydrodynamic conditions, microalgae 

properties (e.g. age and shape) and concentration in culture (Rossignol et al., 1999). Danquah 

et al. (2009) harvested Tetraselmis suecica using tangential flow filtration. A concentration 

factor of 151 was obtained with an energy requirement of 2.15 kWh m-3 (Danquah Michael et 

al., 2009). Meanwhile, Bhave et al. (2012) succeeded in concentrating Nannochloropsis oculata 

75 times using hollow fiber and tubular membranes with an energy consumption of 0.3-0.7 

kWh m-3 (Bhave et al., 2012). However, membrane processes for harvesting microalgae cells 

less than 10µm are challenging and hindered by low throughput and rapid fouling (Milledge 

and Heaven, 2012). Process efficiency is improved by pre-treating the cultures using 

coagulation and/or flocculation (Barros et al., 2015). Direct flow filtration (DFF) is not 

economically feasible to harvest microalgae because of quick fouling of membranes due to the 

perpendicular flow of growth medium to the membrane (Singh and Patidar, 2018).  

Direct filtration by a microbial membrane which only allows microalgae cells to pass through 

is cheap but it needs a long time to process the medium. Additionally, the backwash of the 

membrane is regularly required to keep its efficiency but resulting in additional costs (Suali and 

Sarbatly, 2012).        

2.3.5 Flotation 

Flotation is a gravity separation method in which small air or gas bubbles collide and adhere to 

solid particles such as microalgal cells and carry them to the liquid surface where a scum is 

formed and skimmed off (Jing Lu et al., 2011; Laamanen et al., 2016). The basic process is 

called adsorptive bubble separation (ABS) which can be defined as the chemical and physical 

processes that take place at the gas-liquid interface to separate particles due to their surface 

activity. ABS has been widely used for decades in industrial and domestic wastewater 

treatment, mineral processing, the pharmaceutical industry, and the food industry due to its 

simplicity, rapidity, and relatively low operating cost (Odd, 2013). Large-scale froth flotation 

of ores is an application of ABS in mineral beneficiation to separate high-value minerals from 

undesirable ash and gangue materials (P. Stevenson and Li, 2014). ABS processes can be 

classified based on the method of bubble formation, mechanism of separation, operation mode, 

size and characteristic of materials separated, and the bubble size (Somasundaran and 
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Ananthapadmanabhan, 1987). For example, Stevenson and Li (2014) classified ABS based on 

the mechanism of separation and characteristics of the materials separated as shown in figure 

2.7 (P. Stevenson and Li, 2014).   

 

Figure 2.7: Adsorptive bubble separation hierarchy based on the characteristic of material 

separated and mechanism of separation  

Harvesting microalgae by flotation is faster and more effective than sedimentation due to the 

low density of microalgae. Some microalgae cells naturally float on the water surface when the 

lipid content is high (the density of lipid is 860 kg m-3 (Reynolds, 1984; Milledge and Heaven, 

2012)) or due to the presence of gas vesicles as found in Anabaena and Arthrospira (Thea 

Coward, 2012). Freshwater and marine microalgae species have been efficiently harvested via 

flotation processes (T. Coward et al., 2013; Garg et al., 2014; Garg et al., 2015). Whilst 

separation by flotation is centrally dependent on the physicochemical properties of microalgae 

in addition to culture pH and salinity, the size of microalgae cells and gas bubbles are also 

important. Smaller gas bubbles are more favourable since they have a larger specific surface 

area as well as lower buoyancy, therefore the probability of collisions between a gas bubble and 

a microalgae cell increases (Hanotu et al., 2012; Pahl et al., 2013). In contrast, larger microalgae 

cells offer higher collision probability with gas bubbles which results in higher removal 

efficiency even though smaller cells are easily carried by gas bubbles. Previous studies have 

demonstrated that microalgae cells of diameter between 10-30μm can be removed by flotation 

with 80-90% removal efficiency (Rashid et al., 2014). 
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Flotation processes are classified based on the method of bubble formation: dissolved air 

flotation (DAF), dispersed air flotation (DiAF), and electrolytic flotation (also called electro-

flotation) (Singh and Patidar, 2018). Coagulants, commonly aluminium and ferric salts, are 

usually used with DAF to induce microalgae aggregation for higher collision efficiency 

between microalgae aggregates and air bubbles whereas surface active materials (surfactants) 

are used with DiAF as foaming agents to stabilise foam in the system (the process is also known 

as foam flotation) and to increase hydrophobicity of microalgae cells for better attachment 

efficiency between microalgae cells and hydrophobic air bubbles. Moreover, drainage of 

interstitial water from the foam containing microalgae produces more-concentrated microalgae 

(Laamanen et al., 2016). A limited number of microalgae species have been harvested using 

DAF without the injection of a coagulant in optimal dose (Show et al., 2013). Ozone has also 

been used instead of air in flotation to harvest microalgae biomass. Ozone can promote 

microalgae cell lysis for the release of intracellular protein-like substances which play the role 

of bio-surfactants (Y. L. Cheng et al., 2010; Laamanen et al., 2016). Moreover, it was observed 

that ozonation of microalgae cells promoted the production of saturated fatty acids such as 

palmitic acid and stearic acid during the lipid extraction phase (Lin and Hong, 2013; 

Kamaroddin et al., 2016). 

2.3.5.1 Dissolved air flotation 

Dissolved air flotation (DAF) is commonly used as a clarification method in water and 

wastewater treatment. In DAF, air is compressed and dissolved in water under high pressure, 

typically > 500 kPa. When the pressure of the solution is reduced in a nozzle, the water is now 

supersaturated with air, small bubbles of diameters ranging from 10 to 100μm are formed in the 

flotation cell. The bubbles collide with the suspended particles and force them to float to the 

water surface where a scum is formed and skimmed off (J. K. Edzwald, 2010; X. Zhang et al., 

2012; Muylaert et al., 2017; Singh and Patidar, 2018). DAF is proven at large scale and is 

preferred over sedimentation to process microalgae-rich waters (Christenson and Sims, 2011). 

However, removing microalgae from water for wastewater treatment differs from removing of 

microalgae from growth medium for biomass production as the microalgae concentration in the 

latter is typically thousands of times greater than in wastewater (X. Zhang et al., 2014). 

Traditionally, coagulation and sometimes flocculation processes are used in conjunction with 

DAF to attain larger microalgae aggregates and increase the likelihood of collision between the 

aggregates and bubbles (Show et al., 2013). However, high dosage of coagulants and/or 

flocculants, clumps or flocs breakage due to large bubble size, and the possibility of bubble-

flocs detachment when flocs become too large are the main problems of combining 
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coagulation/flocculation with DAF (Ndikubwimana et al., 2016). Zhang et al. (2014) evaluated 

the harvesting of Chlorella zofingiensis using DAF. They demonstrated that the recovery 

efficiency increased with chemical dosage. When chitosan, Al3+, Fe3+, and 

cetyltrimethylammonium bromide (CTAB) were used at doses of 70, 180, 250, and 500 mg g-

1, recovery efficiencies of 81, 86, 91, and 87% were achieved respectively. They also reported 

that the process efficiency-coagulant dosage relationship was affected by microalgae growth 

culture conditions (X. Zhang et al., 2014).  

Zhang et al. (2016) recovered Chlorella zofingiensis using DAF with a recovery efficiency of 

> 90. They reported that a magnesium-based coagulant was more effective than chitosan, 

aluminium, and ferric salts. Moreover, the optimal coagulant dosage was observed to be 

affected by the growth culture; for example, Mg2+ dosage of 226 mg g-1 was required for 

harvesting an early exponential culture, whereas a late stationary culture required 36 mg g-1 

(Xuezhi Zhang et al., 2016b). Henderson et al. (2009) attempted to modify bubble 

characteristics by adding aluminium sulphate, a cationic surfactant (CTAB) and a cationic 

polymer (PolyDADMAC) into the saturator instead of microalgae culture attaining removal 

efficiencies of 60, 63 and 95% respectively (Rita K. Henderson et al., 2009).  

DAF is not an energy efficient harvesting technique with an energy requirement as high as 7.6 

kWh m-3 due to the energy required to compress the air. However, this high energy requirement 

may be avoided by using smaller bubble generation systems which may result in lower recovery 

efficiencies (Ndikubwimana et al., 2016).           

2.3.5.2 Electro-flotation 

In electro-flotation, small hydrogen bubbles are generated for the flotation at a cathode made 

from a non-sacrificial cathode (inactive metal) such as titanium alloy (Uduman et al., 2010a). 

Electro-flotation is often coupled with electro-coagulation by using a sacrificial anode to induce 

the coagulation process. Hydrogen bubbles generated by water electrolysis attach to the 

microalgae cells and their aggregates and carry them to the surface. Electro-flotation has many 

advantages over other harvesting techniques (especially for marine microalgae) because of the 

higher electrical conductivity of saltwater. It is not species-specific, is rapid, and able to produce 

bubbles which have high resistance to coalescence. Alfafara et al. (2002) evaluated electro-

flotation for the recovery of microalgae for both continuous and batch systems. A sacrificial 

polyvalent aluminium anode and a non-sacrificial titanium alloy cathode were used to induce 

coagulation and flotation simultaneously. The results showed that removal efficiency can be 

enhanced by increasing the power input. They also demonstrated that electro-flotation could 
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not be used alone as it attained a removal efficiency of only 40-50% (i.e. without electro-

coagulation) (Alfafara Catalino et al., 2002). Similarly, Ryu et al. (2018) demonstrated that an 

electro-coagulation-flotation process at 15 mA cm-2 for 40 min led to complete harvesting of 

Scenedesmus quadricauda (Ryu et al., 2018). However, the high energy requirements, the high 

costs for scaling electrodes, the increased medium temperature and increased pH during 

harvesting may limit electro-flotation application in large-scale systems (Pragya et al., 2013; 

Rashid et al., 2014; Barros et al., 2015).  

2.3.5.3 Dispersed air flotation 

In dispersed air flotation (DiAF), bubbles ranging from 700 and 1500μm are generated by 

passing gas continuously through a porous media (e.g. diffuser or sparger) or by using a high 

speed mechanical agitator (Singh and Patidar, 2018). DiAF (Figure 2.8) requires less power 

than DAF, however, the bubble size is larger. Natural and synthetic surface-active materials 

(surfactants), such as N-cetyl-N-N-N-trimethylammonium bromide (CTAB), sodium 

dodecylsulfate (SDS), saponin, and Triton X-100 have been employed to stabilise the foam in 

these systems (T. Coward et al., 2013; Truc Linh Nguyen et al., 2013; Kurniawati et al., 2014). 

Due to the hydrophilic nature of most microalgae cells, surfactants work to impart 

hydrophobicity to the cell surface and enhance their adsorption to the liquid-gas interface 

(Ozkan and Berberoglu, 2013b). Surfactants are amphiphilic molecules, that is to say they 

possess at least one hydrophilic head-group and one hydrophobic tail-group (Buga, 2005). 

Broadly, the adsorption mechanism of surfactant to particle surface is based on different 

interactive forces which act individually or in combination such as covalent or electrostatic 

attraction forces (Somasundaran and Ananthapadmanabhan, 1987). In the case of microalgae, 

the electrostatic attraction or dipole interaction may represent the strongest driving force for 

surfactant adsorption on their cell walls. The presence of surfactants in DiAF has an additional 

advantage through the production of stable bubbles which have high resistance to coalescence 

due to the decreased surface tension of air-liquid interface (T. Coward et al., 2013). 

Microalgae have a negative surface charge and therefore cationic surfactants such as CTAB 

have shown high efficiency for algal cell removal (up to 90%) (R. W. Smith et al., 1991; Y. M. 

Chen et al., 1998; J. C. Liu et al., 1999; Phoochinda and White, 2003). Anionic surfactants such 

as SDS can be used as effectively as cationic surfactants if the culture is pre-treated by 

coagulation and/or flocculation processes or the culture pH is adjusted to a more acidic pH to 

change the surface charge of the cells. Metal salts as well as cationic polymers can neutralise 

or reduce the negative surface charge of microalgae, therefore improving the absorption of 

anionic surfactants (Y. M. Chen et al., 1998; J. C. Liu et al., 1999). Some functional groups on 
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the surface of the cell wall such as amine (-NH2), carboxyl (-COOH), and hydroxyl (-OH) 

groups, can be protonated or deprotonated according to the culture pH (Ozkan and Berberoglu, 

2013b). For instance, when amine and hydroxyl groups on the cell surface get protonated, the 

residual surface charge is positive at acidic pH and anionic surfactants are adsorbed effectively 

(Huang et al., 1999). 

  

Figure 2.8: Dispersed foam flotation with rising foam (left), dispersed foam flotation reservoir 

after harvesting (right) 

Hydrophobicity is an important factor in DiAF processes. Hydrophilic molecules are usually 

polar molecules which tend to create bonds with water to reduce the surface energy (surface 

tension). Hydrophobic molecules, usually non-polar, tend to clump forming micelles to evade 

water molecules and decrease the entropy of the system due to the disruption of the strong 

hydrogen bonds between water molecules. In flotation processes, hydrophobic air bubbles 

attract other molecules due to their original or acquired hydrophobicity and then carry them to 

the surface. Furthermore, both microalgae cells and air bubbles have negative surface charge, 

therefore microalgae cells do not adhere and flotation does not operate well unless chemicals 

(e.g. surfactants) are employed (Garg et al., 2012). 

Smith et al. (1991) harvested Chlorella vulgaris using both cationic dodecylamine or anionic 

sodium dodecyl sulphate SDS with alum (R. W. Smith et al., 1991). Chen et al. (1998) 

conducted harvesting trials of Scenedesmus quadricauda using DiAF with three surfactants 

(cationic CTAB, anionic SDS, and non-ionic Triton X-100). Higher removal efficiency (90%) 

was obtained with CTAB at an optimum pH in the range of 5-8 (Y. M. Chen et al., 1998). 
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Similarly, Liu et al. (1999) employed DiAF to separate Chlorella sp. from water. In their 

harvesting trials using either CTAB or SDS. Removal efficiencies of 20 and 86% were achieved 

upon addition of 40 mg L-1 of SDS and CTAB respectively. However, recovery efficiency with 

SDS increased to 90% when 10 mg L-1 of the cationic polymer chitosan was added to the algal 

suspension prior to harvesting (J. C. Liu et al., 1999). Phoochinda and White (2003) examined 

DiAF as a function of the collector type, aeration rate and pH of the growth medium using 

CTAB, SDS and Triton X-100 to harvest microalgae S. quadricauda. CTAB and SDS were 

able to increase the aeration rates and reduce the size of air bubbles with removal efficiencies 

of 90 and 16%, respectively. With SDS, however, they found that decreasing pH of the growth 

medium increased removal efficiency to 80% but no increase in removal efficiency was 

observed for CTAB at lower pH (Phoochinda and White, 2003).  

Xu et al. (2010) integrated DiAF with electro-flocculation as an alternative to surfactants to 

harvest Botryococcus braunii. A recovery efficiency of 98.9% was achieved after a flotation 

time of 14 min (Ling Xu et al., 2010). Nguyen et al. (2013) examined the effects of pre-

oxidation of algal suspension by ozone and peroxone. They observed that 76.4% of cells were 

recovered at 40 mg L-1 CTAB and the recovery efficiency increased to 95% after 30min of 

ozonation (Truc Linh Nguyen et al., 2013). Likewise, Coward et al. (2013) used DiAF to 

harvest C. vulgaris. They studied the effects of different operational conditions on the 

concentration factor and yield of the harvested microalgae. Their model demonstrated that 

highest concentration factors were achieved with CTAB at low surfactant concentrations and 

high foam column heights (T. Coward et al., 2013). Their batch foam flotation column 

demonstrated low power consumption of 0.015 kWh m-3 and produced microalgae biomass 

which had high lipid content and enhanced lipid profile (T. Coward et al., 2014). These 

advantages make DiAF a promising technology for harvesting microalgae for low-value 

products. However, the performance of DiAF is sensitive to medium pH and is reduced when 

using marine microalgae due to the salinity of seawater (Garg et al., 2012). Recently, Garg et 

al. (2015) harvested marine microalgae (Tetraselmis sp. M8) using a pilot scale Jameson 

flotation cell with the cationic surfactant, dodecyl pyridinium chloride (DPC). Over 99% 

removal efficiency with a 23-fold increase in harvested microalgae concentration were reported 

(Garg et al., 2015). Csordas and Wang (2004) successfully harvested the marine diatom, 

Chaetoceros sp., by a foam fractionation column with a removal efficiency of 90% without the 

addition of flocculating agents or surfactants. Instead, they stabilised the foam by bio-

surfactants excreted naturally by the microalgae (Csordas and Wang, 2004). They also 

concluded that the flotation efficiency was unaffected by the ionic strength of the medium 
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unlike other reported works where synthetically produced surfactants were used (Y. M. Chen 

et al., 1998).  

Cheng et al. (2010) reported that high removal efficiencies of Chlorella sp. with 24% increase 

in the fatty acids fraction were achieved by using dispersed ozone flotation with an ozone 

dosage of 0.03 mg/mg biomass (Y. L. Cheng et al., 2010). Use of ozone as an alternative to air 

in dispersed flotation processes promotes microalgae cell lysis and releases EPS which can 

enhance the aggregation and removal of cells (Y. L. Cheng et al., 2011). However, the 

production of ozone is very expensive and using ozone instead of air will limit the scale at 

which the method can be used. 

All previous flotation-based harvesting has been conducted as a batch or semi-batch process. It 

is challenging to attain an effective combination of high recovery efficiency and concentration 

factor because the conditions required for a high recovery do not favour a high concentration 

factor. Very little work on flotation has focused on the recovery efficiency and concentration 

factor of the harvested microalgae together. For instance, Garg et al. (2013) recovered 85% of 

Tetraselmis sp. using mechanical flotation cells with dodecylammonium hydrochloride 

surfactant but at the expense of enrichment with the harvested biomass being only six-times 

more concentrated than the culture (Garg et al., 2013). 

DiAF consumes less energy than most other harvesting technologies. Wiley et al. (2009) 

reported that this method only required 0.003 kWh m-3 in comparison to 7.6 kWh m-3 for DAF 

(Patrick E. Wiley et al., 2009) and 0.105 kWh m-3 for a microbubble production system (T. 

Coward et al., 2015; Xin Bei Tan et al., 2018). DiAF can take place in a flotation column (foam 

flotation) or in mechanical flotation cell based on the method of bubble formation. A flotation 

column has many advantages over conventional flotation cells and other harvesting methods 

including: simple construction, lower capital and operating cost, improved recovery, higher 

grade products, less wear and tear due to the absence of moving parts, and a smaller footprint 

(Sastri, 1998). 

Foam flotation is a physicochemical separation technique which involves interaction between 

three phases which are solid (microalgae cell), gas (air bubble), and liquid (growth medium). 

Therefore, the efficiency of foam flotation is highly dependent on the shape, size, 

hydrophobicity, and zeta potential of the microalgae cells; the bubble size and flux, bubble zeta 

potential and coalescence rate in the column; growth pH, ionic strength; surfactant type and 

surfactant concentration (Chun Yang et al., 2001; J. K. Edzwald, 2010; T. Coward et al., 2013; 
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Ozkan and Berberoglu, 2013b; Garg et al., 2014; Bui et al., 2015; Ling Xia et al., 2016; Wen 

H, 2017; L. Xia et al., 2017a). 

2.4 Drying 

Harvesting and dewatering methods have the capability to increase dry weight content up to 

10-25%, leaving 90-75% water (Pahl et al., 2013). The conversion process for microalgae into 

biofuel, on a wet-basis such as hydrothermal liquefaction or a dry-basis such as pyrolysis, will 

determine the necessity for the energy-intensive process of drying after harvesting. Drying is 

an essential thermal process if downstream processes, such as lipid extraction, are influenced 

by the water content of the algal biomass. Some studies have stated the importance of this stage 

for the stability of the microalgae biomass as well as increasing the extraction efficiency of lipid 

and protein (Wahlen et al., 2011; Kim et al., 2013). Various techniques have been employed to 

dry harvested microalgae and eliminate deterioration of the biomass; such as solar dryers, spray 

dryers, drum dryers, fluidised bed dryers and freeze dryers. The solar dryer is a low cost drying 

method that uses natural sunlight to dry microalgae. Previous work succeeded in dehydrating 

Arthrospira at temperatures of 60-65 ˚C for 5-6 hrs to produce a dried product of 4-8 wt.% 

water content (Show et al., 2013). Nevertheless, this method requires a large area, is time 

consuming, is not consistent throughout the year due to its dependency on climate, and there is 

a potential risk of matter loss and fermentation. Therefore, other drying methods powered by 

natural gas or electrical energy are more appropriate for the continuous production of dried 

microalgae throughout the year, even though the energy input is higher (Pahl et al., 2013; Xin 

Bei Tan et al., 2018). 

Spray dryers are commonly utilised prior to extraction of high-value products (Brennan and 

Owende, 2010; Ayhan Demirbas and Demirbas, 2010). However, they may damage some 

intracellular microalgae contents such as pigments, particularly when high pressure atomisation 

of the microalgae slurry is used (Soeder, 1980; Xin Bei Tan et al., 2018). Freeze drying is very 

efficient in disrupting microalgae cells for lipid, protein, and enzyme extractions. In freeze 

drying, a temperature of less than -40 °C and a pressure of 1 kPa are applied to slowly freeze 

the microalgae and remove water by sublimation. Formation of large ice crystals causes cell 

walls to be more porous. However, freeze drying is time-consuming with high power and 

maintenance costs and is difficult to scale up (D’Hondt et al., 2017). Drum drying was observed 

to be more economically viable than spray dryer. Mohn and Soeder (1978) stated that drum 

dryer had lower energy demands and lower investment costs (Show et al., 2013). 
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The high energy demands of most drying methods, especially spray drying may result in a 

negative energy balance when producing low-value products such as biofuels since the drying 

stage may contribute up to 59% of the total energy required for the production of microalgae-

based biofuel (Yanfen et al., 2012; Abdelaziz et al., 2014). It was also reported that drying may 

constitute 70-75% of the processing cost (Show et al., 2013). Therefore, eliminating or 

optimising the microalgae drying stage can, to a certain extent, render the production of 

microalgae-based biofuel economically feasible. 

2.5 Lipid Extraction  

For biodiesel production, lipid extraction from the algal biomass is the next step after harvesting 

and drying. In a typical lipid extraction process, microalgae are disrupted using physical, 

chemical, or biological methods. Next, a chemical solvent is used to extract lipid. An efficient 

lipid extraction method should not damage the extracted lipid, be rapid and easily scalable, and 

has selectivity for the lipid fraction that can be converted into biodiesel (Pragya et al., 2013; 

Xin Bei Tan et al., 2018). In microalgae, the lipid fraction is a mixture of triglycerides (TAG), 

diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), in addition to polar 

lipids such as phospholipids (Rios et al., 2013). In most microalgae species, these molecules 

are surrounded by a thick and strong cell wall; therefore, the lipid extraction method should be 

effective at disrupting the cell wall and cell membrane (Steriti et al., 2014). A wide range of 

techniques are used for lipid extraction from microalgae including solvent extraction, bead-

beating, supercritical fluid extraction, microwave-assisted extraction, chemical cold press (cold 

press with solvent), freezing, osmotic shock, enzymatic extraction and ultrasound. Solvent 

extraction and supercritical fluid extraction are commonly employed to extract lipid from 

microalgae (Halim et al., 2012). Solvents such as hexane, chloroform, acetone, benzene, 

ethanol (96%), chloroform-methanol mixtures, and hexane-ethanol (96%) mixtures have been 

used. If only the algal lipids are required, ethanol is not a good choice as it can extract out 

molecules (contaminants to lipid) such as amino acids, salts, and hydrophobic proteins (Mata 

et al., 2010). The Folch and modified Bligh and Dyer are common solvent extraction methods 

as they are simple and can extract total lipids as well. These methods are widely used for the 

estimation of lipids in food, pharmaceutical, and biofuel laboratories. However, they have 

serious safety issues due to the high toxicity and carcinogenicity of chloroform, making them 

unsuitable for large-scale application (Breil et al., 2017). Solvent-based lipid extraction 

methods can extract lipid from microalgae with high moisture content (>85%); However, these 

methods use large volumes of solvents (Yusuf Chisti, 2007; Im et al., 2014). Solvent-based 
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lipid extraction methods require a solvent which is inexpensive, non-toxic, non-volatile, and 

non-polar (Rawat et al., 2011). 

Lipid extraction by a supercritical fluid like CO2 is an alternative method, it can extract 70-75% 

of microalgae oils with high selectivity and short processing time. CO2 has a relatively low 

critical pressure of 72.9 bar that allows for a moderate compression cost, whereas its low critical 

temperature (31.1 °C) allows for extraction of lipid fractions without degradation. However, 

the process is difficult to scale up (Santana et al., 2012).   

Microwaves generate high frequency waves which break the cell wall by thermal shock. It has 

recently received attention as an efficient method for disrupting oil-containing plant cells 

(Pragya et al., 2013). Sonication, widely used for microbial cells, disrupts both cell wall and 

membrane by cavitation. In liquid media, intense sonic pressure waves cause microbubbles to 

form and implode. Consequently, intense shock waves are generated due to the implosion which 

are enough to break cell walls. In bead-beating extraction, high-speed rotation of the biomass 

with fine beads causes mechanical disruption to the cells. Bead-beating has gained success, on 

both bench and industrial scales (Wahlen et al., 2011; Sathish and Sims, 2012; Pragya et al., 

2013; C. L. Teo and Idris, 2014a; Willis et al., 2014). Converti et al. (2009) combined 

ultrasound with solvent extraction by chloroform-methanol mixture, allowing for the complete 

extraction of the microalgae lipid fraction (Converti et al., 2009). Ultrasound extraction was 

found to be better than Soxhlet extraction in disrupting the rigid cell wall of the marine 

microalgae Crypthecodinium cohnii, in which an extraction yield of 25.9% was achieved 

compared to 4.8% by Soxhlet (Mata et al., 2010). 

Chemical cold press is a simple lipid extraction technology in which microalgae cells are 

mechanically pressed in the presence of solvent; such as hexane, ether, or benzene. 

Approximately 95% of the total oil content was extracted using this method (Oilgae; Xin Bei 

Tan et al., 2018). Enzymatic extraction is another bench scale method that uses enzymes to 

disrupt the cell wall with the ability to extract lipid from wet microalgae. Liang et al. (2012) 

extracted approximately 49.8% of total lipid from oleaginous alga utilising a combined 

sonication-enzyme treatment at pH 4 (Liang et al., 2012). Zuorro et al. (2016) successfully 

recovered 90% of lipids from Nannochloropsis using cellulase and mannanase with optimum 

dosages of 13.8 and 1.5 mg g-1 respectively, a temperature of 53 °C, pH of 4.4, and treatment 

for 210 min (Zuorro et al., 2016). 
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2.6 Conversion technologies of microalgae into biofuel                   

Currently, a range of processes are used to produce biofuels commercially. Fermentation of 

sugar crops and hydrolysis and fermentation of starch containing feedstocks are used to produce 

bioethanol. Acid/base/bio-catalytic transesterification of oily crops with an alcohol is used to 

produce biodiesel which is a mixture of fatty acid methyl esters (Laurens et al., 2012; Brown 

Tristan and Brown Robert, 2013; Adam F. Lee and Wilson, 2015). 

Microalgae biorefineries aim to develop sustainable production technologies for biofuels and 

the bioproducts from algae. Due to the versatile biochemical composition of microalgae (lipids, 

proteins, carbohydrates, other metabolites, and minerals), many technologies have been 

adopted to convert their biomass into biofuels such as biodiesel, bioethanol, bio-methane, bio-

oil, and syngas. These technologies involve different processes that can be categorised into 

chemical (i.e. transesterification), thermochemical, and biochemical conversion technologies 

as shown in figure 2.9 (S. N. Naik et al., 2010; Raheem et al., 2015). The chemical conversion 

technology involves the reaction, organic equilibrium exchange reaction, between algal lipids 

and alcohol (methanol or ethanol) to produce fatty acid alkyl ester which is termed as biodiesel. 

In thermochemical conversion technologies, microalgae are decomposed by heat with or 

without catalysts into intermediate products, which are processed into biofuels using additional 

chemical or biological processing steps. Biochemical conversion technologies involve, for 

example, the use of micro-organisms or enzymes to hydrolyse the pre-treated microalgae and 

attain fermentable sugars which can be converted into bioethanol (Raheem et al., 2018). 

Thermochemical conversion technologies are considered the most viable for overcoming some 

of the problems associated with biochemical conversion technologies including low conversion 

efficiency by micro-organisms and enzymes, long processing time, and high capital costs. In 

addition, thermochemical conversion technologies can produce several end products whereas 

biochemical conversion technologies only produce a single end product for each technology 

(Raheem et al., 2015). 

The selection of the most suitable technologies relies on the biomass feedstock (e.g. dry-matter 

content and microalgae species), the end-use of the bioenergy, and economic considerations 

(Brennan and Owende, 2010; D. P. Ho et al., 2014). A full summary of the microalgae 

conversion techniques into biofuels are shown in table 2.6. 
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Figure 2.9: The conversion methods of microalgae biomass into fuels (Brennan and Owende, 

2010; Suali and Sarbatly, 2012). 
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2.6.1 Thermochemical conversion technologies 

As mentioned previously, thermochemical conversion technologies involve thermal 

decomposition of the organic components in microalgae biomass into intermediate products, 

which are then converted into biofuels via chemical or biological processes. Hydrothermal 

liquefaction, pyrolysis, gasification, and even direct combustion are the main technologies used 

for this purpose (Brennan and Owende, 2010). These techniques are capable of converting 

whole microalgae biomass as well as the residue after lipid extraction (mainly comprised of 

carbohydrates, proteins, and non-extracted lipids) into gaseous, solid and liquid fuels (Pradhan 

et al., 2017). 

2.6.1.1 Hydrothermal liquefaction 

Hydrothermal liquefaction (HTL) or thermochemical liquefaction is a biomass-to-liquid 

conversion process conducted in water at a typical temperature range of 250-374 ˚C and high 

pressures 39-215 bar with or without a catalyst. The mass fraction of microalgae is within the 

range of 5–50% in the feed slurry (Wei-Hsin Chen et al., 2015). HTL keeps the water in its 

liquid state. As the water approaches its critical point (374 ˚C, 220.6 bar), it acts more like a 

non-polar solvent with lower density due to the significant changes in its density, dielectric 

constant, and reactivity. This change in properties makes the water have a higher affinity for 

organic compounds and consequently breaks them down into smaller and shorter molecular 

weight materials. Energy-dense bio-oil is the main product in the HTL reaction in addition to a 

gas consisting mainly of CO2, a nutrient-rich aqueous phase, and residual solid (Garcia Alba et 

al., 2011; López Barreiro et al., 2013; Anastasakis and Ross, 2015). Liquefying microalgae 

hydrothermally avoids the need for energy-intensive dewatering and drying stages. A 

considerable amount of attention has been given to hydrothermal liquefaction over the last 10 

years owing to its capability for converting wet microalgae into biofuels (Elliott, 2016; 

Chiaramonti et al., 2017). Lam and Lee (2012) reported that microalgae are a perfect feedstock 

for thermochemical liquefaction due to their small size which enables them to quickly attain 

the required reaction temperature (M. K. Lam and Lee, 2012). 

Through liquefaction, some compounds are extracted from microalgae biomass while others 

are depolymerised into oligomers and monomers by hydrolysis, which is the dominant process 

during liquefaction. If the liquefaction processing time is extended, these compounds are further 

decomposed through decarboxylation, dehydration, deamination, and cleavage reactions to 

produce smaller active fragments which re-react (repolymerise) by different reactions such as 
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condensation to form new compounds. For instance, ketone and aldehyde compounds are 

produced from the HTL of carbohydrates (Raheem et al., 2018). 

The effects of different HTL parameters including temperature, holding time, heterogenous and 

homogenous catalyst, percentage solid loading, co-solvent, and the diverse biochemical 

compositions of various algae species have been evaluated on the product yields (Table 2.5) 

(Fortier et al., 2014). Bio-oil yields of 9-65% were reported for Arthrospira and B. braunii 

respectively (Dote et al., 1994; Duan and Savage, 2011). Dote et al. (1994) successfully 

liquefied B. braunii at 300˚C and achieved a maximum bio-oil yield of 64% (DW) with higher 

heating value (HHV) of 45.9 MJ kg-1 (Dote et al., 1994). Similarly, Tomoaki et al. (1995) 

obtained a bio-oil yield of 37% (W.D.) with HHV of 36 MJ kg-1 by the HTL of Dunaliella 

tertiolecta at 340 ˚C reaction temperature and 10 MPa pressure for 60 minutes (Minowa et al., 

1995). Both studies reported positive energy balances (output/input ratio) of 6.67:1 and 2.94:1 

respectively. 

Species 

Biochemical composition Liquefaction conditions 
Bio-oil 

yield% 

(DW) 

HHV 

(MJ 

kg-1) 

Reference 
Carbohydrate Protein Lipid 

Temp. 

(˚C) 

Holding 

time 

(min) 

Catalyst 

Botryococcus 

braunii 
- - - 300 60 Na2CO3 64 45.9 

(Dote et al., 

1994) 

Dunaliella 
tertiolecta 

15.9 63.6 20.5 340 60 Na2CO3 37 36 
(Minowa et 
al., 1995) 

Chlorella 

vulgaris 
9 55 25 350 60 

- 

Na2CO3 

HCOOH 

37 

27 

25 

35.1 

37.1 

33.2 

(P. Biller and 

Ross, 2011b) 

Nannochloropsi
s oculata 

8 57 32 350 60 

- 

Na2CO3 

HCOOH 

36 

26 

24.6 

34.5 

35.5 

39 

(P. Biller and 
Ross, 2011b) 

Porphyridium 
cruentum 

40 43 8 350 60 

- 

Na2CO3 

HCOOH 

22 

26.5 

20 

35.7 

22.8 

36.3 

(P. Biller and 
Ross, 2011b) 

Arthrospira 

(Spirulina) 
20 65 5 350 60 

- 

Na2CO3 

HCOOH 

29 

17 

20 

36.8 

34.8 

35.1 

(P. Biller and 

Ross, 2011b) 

Desmodesmus 
sp. 

23-33 38-44 10-14 375 5 - 49.4 35.4 
(Garcia Alba 
et al., 2012) 

Microcystis 

viridis 
- - - 340 30 Na2CO3 33 31 

(Y. F. Yang 

et al., 2004) 

Enteromorpha 
prolifera 

- - - 300 30 Na2CO3 23 28-30 
(Dong Zhou 
et al., 2010) 

Table 2.5: Feedstock biochemical composition, hydrothermal conditions, bio-oil product 

yields, and HHV for different algae species. 
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Energy dense bio-oil is a viscous and dark liquid and its yield according to Biller and Ross is 

5-25% (W.D.) higher than the lipid content in the microalgae biomass, indicating that 

carbohydrates and proteins are also contributing to its fraction (P. Biller and Ross, 2011b). The 

bio-oil yield, composition, chemical and physical properties are strongly dependent on the 

biochemical composition of biomass feedstock as well as process parameters. Long-chain fatty 

acids, alkanes and alkenes, phenol and its alkylated derivatives, derivatives of phytol and 

cholesterol, and heterocyclic N-containing compounds are the main constituents of bio-oil 

(Brown et al., 2010). Nitrogen heterocycles, pyrroles, and indoles are produced from proteins, 

fatty acids from lipids, whereas cyclic ketones and phenols are produced from carbohydrates 

(P. Biller and Ross, 2011b; Wei-Hsin Chen et al., 2015). According to the results for HTL for 

diverse algae species at different operating conditions, bio-oil yield and HHVs are within the 

range of 20-65% (DW) and 20-46 MJ kg-1 (Table 2.5). 

The aqueous phase from the HTL of microalgae is rich in nutrients such as NH4
+, PO4

3−, 

CH3COO− in addition to metallic cations such as K+,  Ca2+, Na+, Mg2+. Therefore, it can be 

used as a nutrient source for cultivation since microalgae can assimilate organic and inorganic 

nutrients from a wide variety of sources. Gasification of the aqueous phase at supercritical 

conditions is an interesting route to produce gas rich in hydrogen while the residual from this 

process can be recycled to the growth medium as nutrients (López Barreiro et al., 2013). 

The gaseous products of the HTL comprise CO2, H2, CH4, CO, N2, C2H4, C2H6, and C3H6. CO2 

is the most abundant gas product with concentrations exceeding 90% followed by H2 and CH4 

(Brown et al., 2010). It was reported that the yield of light hydrocarbons such as CH4 increased 

whereas CO2 yield dropped off when liquefaction conditions surpassed the critical point of 

water (López Barreiro et al., 2013). Brown et al. (2010) suggested that the CO gas produced 

during the liquefaction process is probably utilised in the water gas shift and/or methanation 

reactions, subsequently low amounts of CO are often detected (Brown et al., 2010). However, 

others suggested that the high amount of CO2 gas compared to CO is due to the possibility that 

the deoxygenation reaction mainly takes place by decarboxylation instead of decarbonylation 

(Garcia Alba et al., 2012). HTL of microalgae also produces a solid residue having a high 

content of ash with small quantities of carbon, hydrogen, nitrogen, and sulphur (Wei-Hsin Chen 

et al., 2015). 

Although bio-oil produced by HTL can be used directly as a fuel, it has lower elemental oxygen 

content compared to the biomass feedstock, and has a HHV comparable to that of petroleum, it 

cannot be treated using conventional fossil fuel refineries due to high nitrogen content and 
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requires denitrification by a hydro-treating process (Wei-Hsin Chen et al., 2015). Nevertheless, 

according to Jena and Das (2011), bio-oil produced by the HTL of microalgae was reported to 

be more stable and have higher energy content compared to pyrolysis oil from the same 

microalgae species (Jena and Das, 2011). However, thermochemical liquefaction processes 

have high capital costs due to the high operating pressure. 

2.6.1.2 Gasification 

Gasification is a versatile thermochemical technology that can process a wide range of carbon 

feedstocks. Organic or fossil based carbonaceous materials are converted without combustion 

through partial oxidation at high temperature (700-850 ºC) to a mixture of gases including H2, 

CO, CO2, and CH4 (known as syngas). Further processing with temperatures up to 1000 ºC can 

produce 64% w/w methanol as reported by Hirano et al. (1998) when they gasified Arthrospira 

at this temperature (A. Hirano et al., 1998). Biomass with 15% moisture content is appropriate 

for gasification; however, some studies suggested that algal biomass with moisture content up 

to 40% are acceptable for gasification even though high moisture content reduces syngas energy 

content as well as the process efficiency (Raheem et al., 2015). Gasification temperature has a 

large effect on both process yield and selectivity. Demirbas (2009) succeeded in increasing the 

gasification yields of Cladophorafracta and Chlorella sp. from 28 to 57% through increasing 

reaction temperature from 552 to 952 ˚C (A. Demirbas, 2009). Syngas has low HHVs of 4-6 

MJ m-3 and is appropriate to be used as a fuel for heating and electricity generation (Raheem et 

al., 2018). Syngas can also be used to produce liquid fuels (e.g. gasoline and methanol) via the 

Fischer-Tropsch process and hydrogen via the water gas shift reaction (Sanchez-Silva et al., 

2013). The gasification of algal biomass occurs in three steps: drying, pyrolysis, and char 

combustion (Raheem et al., 2015). 

The selection of a gasifying agent such as steam-oxygen mixture, steam, or air has a pivotal 

influence on product composition. For instance, higher hydrogen yield was obtained with steam 

used as a gasifying agent compared to air when both agents were examined for the gasification 

of oil palm (Brennan and Owende, 2010; Motasemi and Afzal, 2013; Sanchez-Silva et al., 2013; 

López-González et al., 2014a; Tekin et al., 2014). Sanchez et al. (2013) reported that syngas 

rich in H2, CO and CO2 and low in CH4 was obtained from Nannochlorophsis gaditana using 

steam as the gasifying agent. This was likely due to the water gas shift and steam methane 

reforming reactions induced by the presence of steam (Sanchez-Silva et al., 2013). The use of 

air is not recommended as it yields higher tar content even though it is the cheapest gasifying 

agent (Raheem et al., 2018). Khoo et al. (2013) obtained 59 wt.% tar, 28 wt.% syngas and 14 
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wt.% bio-oil by the gasification of Nannochloropsis sp. in a fixed bed gasifier at 850 ˚C (Khoo 

et al., 2013). 

Accumulation of biomass residue is an issue often observed when gasifying microalgae with 

high ash content. However, elements such as K and Mg can catalyse the process and therefore 

enhance its yield. The presence of catalyst with high loading increases the gasification 

efficiency of algal biomass up to 85% (Chakinala et al., 2010). Steam gasification of 

Scenedesmus almeriensis, Nannochloropsis gaditana and Chlorella vulgaris were studied by 

López et al. (2014) (López-González et al., 2014b). They observed that CO2, H2, CO are the 

main products with lower amounts of CH4, C2H2 and C2H5. They concluded that the highest 

gasification yields obtained with S. almeriensis was due to its high content of catalytic elements 

(e.g. K and Mg). Chakinala et al. (2010) achieved complete gasification of C. vulgaris at 700 

˚C in the presence of Ru/TiO2 catalyst (Chakinala et al., 2010). Nickel-based catalysts were 

stated to be capable of decreasing tar formation at high temperatures (Asadullah et al., 2002). 

The most common catalysts used in the gasification processes are listed in table 2.6. 

A gasification process utilising water under supercritical conditions (SCWG) is another 

interesting conversion process working under high temperature (374-700 ºC) and sufficient 

pressure (22.1 MPa). This process is also called hydrothermal gasification (HTG) and is capable 

of converting wet algae biomass, 90% moisture, directly into syngas with high hydrogen and 

methane yields and low biochar content (Suali and Sarbatly, 2012; Guan et al., 2013). SCWG 

of microalgae is therefore a promising technology to produce gaseous fuels since it has an 

important advantage of avoiding the high energy requirements associated with the dewatering 

and drying stages in the conventional gasification process. 

2.6.1.3 Pyrolysis 

Pyrolysis is a thermochemical process that thermally decomposes biomass with up to 10% 

water content at temperatures of 200-700 ºC in the absence of oxygen, with or without catalyst 

into a low energy value gas (mainly composed of CH4 and CO2), bio-oil, and biochar. The bio-

oil is isolated by condensing the generated vapour, leaving behind biochar (Raheem et al., 

2018). Bio-oils produced from the pyrolysis of microalgae have been reported be more stable 

than those from lignocellulosic biomass but with a slightly lower HHV (Mohan et al., 2006). 

Pyrolytic bio-oils have caloric values ranging between 31 and 42 MJ kg-1, contain amounts of 

solids, chemically dissolved water, oxygen and nitrogen containing compounds which make 

them acidic and viscous. Catalytic upgrading of the oil via hydro-treating is required (Du et al., 

2011). 
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Heating rate and temperature are the most important parameters in pyrolysis. According to the 

process heating rate or vapour residence time, pyrolysis is categorised into slow pyrolysis (0.1-

1 ˚C s-1), fast pyrolysis (10-200 ˚C s-1) and flash pyrolysis (>1000 ˚C s-1). Tubular and fixed 

bed reactors are often employed to perform slow pyrolysis. Wire mesh, vacuum furnace, 

entrained flow, rotating, vortex, and circulating fluidised bed reactors are used for conducting 

fast pyrolysis. Special reactors such as fluidised bed reactors are used for flash pyrolysis (Goyal 

et al., 2008). Due to its low heating rate, slow pyrolysis is easier to perform, but it produces 

lower oil yields (Campanella et al., 2012; Chaiwong et al., 2013). Grierson et al. (2009) 

pyrolysed six microalgae species, Tetraselmis chuii, Chlorella sp., C. vulgaris, Chaetocerous 

muelleri, Dunaliella tertiolecta and Synechococcus sp. at slow heating rate and temperature of 

500 ˚C. Product yields of 24–43%, 13–25% and 30–63% for bio-oil, gas and biochar were 

obtained respectively. Fatty acids, alkenes, phenols and amides were the dominant compounds 

identified in the pyrolytic bio-oils (Grierson et al., 2009). Fast and flash pyrolysis can 

drastically reduce the amount of biochar, increase the amount of bio-oil and its caloric value as 

well as reducing the oxygen contents in the bio-oil (Dickerson and Soria, 2013; Raheem et al., 

2015). Miao and Wu (2004) stated that fast pyrolysis of microalgae, C. prothothecoides 

produced bio-oil yields of 19-57%. They concluded that bio-oil yield obtained by fast pyrolysis 

of C. prothothecoides produced heterotrophically were 3.4 times higher than that obtained from 

autotrophic cells (Miao and Wu, 2004). The temperature range of 200 to 520 ˚C is believed to 

be optimal for thermal decomposition of microalgae. Demirbas studied the effect of temperature 

on bio-oil yield through the pyrolysis of C. prothothecoides, finding that increasing temperature 

from 255 to 500 ˚C led to increased yield from 6-55% (Demirbaş, 2006). However, Peng et al. 

(2000) reported that pyrolysis temperatures in the range of 300-500 ˚C had no significant effect 

on yield at holding times above 20 min (Peng et al., 2000). High heating rates are required 

during flash pyrolysis and hence the biomass size should be very small, typically between 105–

250μm. According to these requirements, microalgae are seen as a promising biomass for this 

technology (Gerçel, 2002).   

The presence of catalyst was reported to improve the pyrolytic bio-oil quality through reducing 

oxygen contents as well as increasing HHV. Pan et al. (2010) observed lower oxygen content 

of 19 wt.% and a higher calorific value of 32.5 MJ kg-1 in the bio-oil produced by catalytic 

pyrolysis of Nannochloropsis sp. residue using zeolite, HZSM-5 catalyst in comparison to that 

produced by direct pyrolysis which had an oxygen content of 30 wt.% and a caloric value of 

24.6 MJ kg-1 (Pan et al., 2010). Na2CO3 catalyst was found to increase and reduce the yields of 
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gaseous and liquid products respectively during the pyrolysis of Chlorella sp. (Babich et al., 

2011). 

Pyrolysis by microwave-assisted heating has been performed on microalgae in a few studies 

(Du et al., 2011; Zhifeng Hu et al., 2012; Fernanda Cabral Borges et al., 2014). Microwave 

pyrolysis is operated at powers of 500-2250W, temperatures of 500-800 ˚C, and absorber 

contents of 5–30 wt.%. This technology produces bio-oil with yield and calorific values in the 

range of 18-59 wt.% and 30-42 MJ kg-1 respectively. Compared to pyrolysis by traditional 

heating methods, microwave pyrolysis offers quick heating, uniform internal heating of 

feedstock, no requirement for agitation by fluidisation, and less ash in the bio-oil (Wei-Hsin 

Chen et al., 2015). Absorbers such as chars, metallic oxides, activated carbon, ionic liquids, 

and sulfuric acid are usually blended with microalgae in microwave pyrolysis to enhance liquid 

product yield or quality (Salema and Ani, 2012). Du et al. (2011) achieved a maximum bio-oil 

yield of 28.6 wt.% through microwave pyrolysis of Chlorella sp. with char as absorber. They 

observed that the bio-oil obtained had lower oxygen contents and the gas product was mainly 

composed H2, CO, CO2, and light hydrocarbons (Du et al., 2011).  

2.6.1.4 Direct combustion 

The chemical energy stored in microalgae biomass can be directly converted into heat or power 

by combustion in the presence of excess air at temperature of around 850 ˚C; however, the heat 

yielded from this process cannot be stored and hence it is best to be used immediately (Raheem 

et al., 2015). The combustion process is practically viable when moisture content is less than 

50%, otherwise, a pre-treatment stage (i.e. drying) is required which in turn may render the 

process totally unfeasible due to the costs of drying the biomass (Goyal et al., 2008). There are 

a few reports on the technical viability of using microalgae for direct combustion; however, 

coal-algae co-firing was proven to produce lower GHG emissions and air pollution (Kadam, 

2002).   

2.6.2 Chemical conversion technologies (transesterification) 

Transesterification is the most commonly applied technology to produce biodiesel (Thea 

Coward, 2012). During transesterification, the lipid components especially triglycerides (TAG) 

from the extraction step react with alcohol (methanol or ethanol) catalysed by alkalis, acids, or 

enzymes to produce fatty acid alkyl ester which is termed as biodiesel (Raheem et al., 2018). 

Methanol is a simple polar solvent which is commonly used in the transesterification process 

due to its low cost, availability, and advantageous physical and chemical properties over other 

solvents (Thea Coward, 2012). Biodiesel produced from various biomass including microalgae 
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is compatible and has comparable properties to diesel such as cetane number, caloric value, 

flash point and viscosity, therefore, it can be used directly in conventional diesel engines (Azadi 

et al., 2014). Nevertheless, algal oils include higher polyunsaturated fatty acids than vegetable 

oils, and therefore it is more liable to oxidation during storage (Yusuf Chisti, 2007). Microalgae 

with high lipid contents are an appropriate source for biodiesel production. Moreover, algal 

biodiesel is more appropriate than 1st generation biodiesel for utilisation in the aviation industry 

due to its lower freezing point and high energy density (Brennan and Owende, 2010). High 

microalgae production costs especially cultivation, harvesting, and drying stages, scalability, 

microalgae diversion from growth regime to stress regime to improve lipid productivity which 

causes limited growth rates are the main drawbacks for large-scale biodiesel production from 

microalgae (Jing Lu et al., 2011). 

The selection of the catalyst type in the transesterification reaction depends on the content of 

free fatty acids (FFA) in the feedstock. Acidic catalysed reactions are less sensitive to the 

existence of water and FFA and consequently reduce the formation of soap and water and 

improve the product separation (Ruoyu Xu and Mi, 2010). Although acid catalysts (e.g. H2SO4) 

are preferable in the transesterification of various feedstocks, they have lower activity in 

comparison to alkaline catalysts. High reaction temperatures over 100 ˚C, long reaction times, 

corrosion risks to process equipment are the main drawbacks associated with acid catalysts 

(Raheem et al., 2018). Transesterification reactions using alkaline catalysts (e.g. NaOH and 

KOH) are approximately 4000 times faster than acid catalysed reactions (Thea Coward, 2012). 

However, as stated earlier, oil feedstocks with high FFA content (approximately above 0.5 

wt.%) prohibited such catalysts to be used for transesterification due to the reaction between 

FFA and base catalyst which forms soap, resulting in less biodiesel yield and difficulty in 

separating biodiesel from glycerol (co-product) (Ehimen et al., 2010). For instance, Naik et al. 

(2008) noticed a reduction in biodiesel yield from 97 to 6% in a KOH catalysed 

transesterification when FFA content in the feedstock increased from 0.3 to 5.3 wt.% (Malaya 

Naik et al., 2008). Alternatively, a two-step process comprising the use of acid and base 

catalysts together can be employed to overcome the drawbacks above. Oil feedstocks with high 

FFA content are initially treated with acidic catalyst to reduce FFA level before the alkaline 

catalysed reaction occurs. However, this process requires extra base catalyst to neutralise the 

acid catalyst during transesterification (M. K. Lam and Lee, 2012). Biocatalysts such as lipase 

used for the transesterification of triglycerides have shown attractive outcomes in comparison 

to conventional chemical catalysts. They require lower energy-input and ease the recovery of 
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co-products (e.g. glycerol). In addition, lipase catalyst is capable of aiding both 

transesterification of TAG and esterification of FFA (Khan et al., 2009; Guldhe et al., 2016). 

Conventional biodiesel production is performed over two distinct stages, lipid extraction 

followed by transesterification. In contrast, in-situ transesterification allows lipid extraction and 

transesterification to take place in one single stage (Takisawa et al., 2013; Chee Loong Teo and 

Idris, 2014b). The in situ transesterification process was developed by Harrington and D’Arcy 

in 1985 to produce biodiesel from biomass in a single step without prior isolation of oils (Leung 

et al., 2010). A chemical solvent has two substantial roles through in situ transesterification; 

first, it is used as a solvent to extract lipid/oil from biomass and second, as a reactant in the 

transesterification reaction (M. K. Lam and Lee, 2012). The one stage transesterification 

process has many advantages over the conventional process including it shortens processing 

time which results in lower overall production costs and also eliminates the solvent-lipid 

separation stage (Shuit et al., 2010). Ehimen et al. (2010) studied in-situ transesterification of 

dried Chlorella. They achieved a maximum biodiesel yield of 90 wt.% at a reaction temperature 

of 60 °C, methanol to lipid molar ratio of 315:1, H2SO4 concentration of 0.04 mol and reaction 

time of 4 h (Ehimen et al., 2010). However, methanol to lipid molar ratio has been observed to 

reduce if a co-solvent such as hexane, toluene, or chloromethane is introduced to the process 

(Ruoyu Xu and Mi, 2011). Velasquz-Orta et al. (2012) evaluated different controllable factors 

of the in-situ transesterification process of C. vulgaris including catalyst ratio, reaction time, 

and solvent ratio on FAME yield. The results revealed that a FAME recovery of 77.6% was 

obtained using alkaline catalyst, NaOH, whereas up to 96.8% conversion was attained using an 

acidic catalyst, H2SO4, but with a longer reaction time (Velasquez-Orta et al., 2012). In-situ 

transesterification for wet-paste microalgae biomass has additional advantages since it avoids 

drying stage of harvested biomass (Patil et al., 2013). Patil et al. (2013) successfully performed 

in-situ transesterification of wet Nannochloropsis salina with the aid of ethanol and microwave 

radiation and without a catalyst (Patil et al., 2013). Nevertheless, processing wet biomass has 

adverse influences on the process (Ehimen et al., 2010). Jin et al. (2014) examined several 

acidic catalysts in direct transesterification of Chlorella pyrenoidosa at 350 ˚C and different 

moisture contents in the presence of ethanol. They demonstrated that moisture content had 

negative effects on the yield and characteristics of the biodiesel (Jin et al., 2014). 

The supercritical extraction process of algal lipids can be combined with the transesterification 

reaction in a single step. It has some attractive advantages such as short reaction time and avoids 

the use of chemical catalysts (Raheem et al., 2018). Maira and Conzalo (2018) investigated the 

supercritical transesterification of Arthrospira oil with methanol and ethanol at different 
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temperatures and co-solvent (CO2) amounts. They found that biodiesel yield increased from 42 

to 65% at 200 °C and from 46 to 72% at 300 °C when the amount of CO2 increased from 0.0005 

to 0.003 g CO2/g methanol. They also concluded that using CO2 increased the reaction yield 

due to a reduction in the critical point of the reaction mixture (Tobar and Núñez, 2018). 

However, the high operating conditions of this process (usually >240 °C and >8.1 MPa) may 

degrade the biodiesel produced and promote undesired side reactions.   

2.6.3 Biochemical conversion technologies 

The biochemical conversion technologies involve the biological processing (degradation) of 

algal biomass into biofuels (e.g. methane and ethanol) and include anaerobic digestion, 

alcoholic fermentation and photobiological hydrogen production (Figure 2.9) (Chew et al., 

2017). However, thermochemical conversion technologies are preferable over biochemical 

conversion technologies due to the reasons aforementioned. 

2.6.3.1 Anaerobic digestion 

Anaerobic digestion (AD) is a biochemical process of converting organic matter into biogas by 

specialised anaerobic bacteria in an oxygen-free environment. The produced biogas typically 

contains CH4 (55–75%), CO2 (25–45%), traces of H2, H2S, CO and other permanent gases 

(Jankowska et al., 2017; Mohd Udaiyappan et al., 2017). Anaerobic digestion is a low cost 

conversion technology and capable of processing organic feedstocks with high water content 

of 80-90% (Raheem et al., 2018). In addition, it can process the whole microalgae cells as well 

as residuals from other biofuel production technologies (Jankowska et al., 2017). It has been 

employed in treating industrial wastewater, agricultural wastewater, solid wastes, and sludge 

from urban wastes and sewage treatment plants (Mohd Udaiyappan et al., 2017). The anaerobic 

digestion technology consists of multiple processes: hydrolysis, acidogenesis, acetogenesis and 

methanogenesis. Firstly, biomass (e.g. lipids, carbohydrates, proteins) are decomposed by 

hydrolysis into their respective soluble oligomers and monomers. After that, hydrolysed 

oligomers and monomers are converted by acidogenesis into simpler molecules (precursors for 

methane production), such as H2, CO2 and acetate by acetogenic bacteria. Finally, 

methanogenesis takes place to produce methane by methanogenic bacteria which are highly 

sensitive to oxygen (Man Kee Lam and Lee, 2011). The operating conditions, main and co-

products, and product properties of anaerobic digestion of microalgae are summarised in table 

2.6.   

Digester design, feedstock characteristics, and the process operational conditions are the main 

factors affecting the anaerobic digestion process. Temperature and pH are the most important 
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operational parameters in addition to solid and hydraulic retention time but with less 

importance. The optimum temperature and pH are 35 °C and 6.8–7.2 respectively (Cioabla et 

al., 2012). The C:N ratio is a key factor for an efficient and stable anaerobic digestion process. 

Anaerobic digestion of biomass having low C:N ratio produces high concentrations of dissolved 

ammonia (NH4) through the decomposition of protein which in turn inhibits methanogenesis 

(Hansen et al., 1998). To avoid nutritional imbalance for high biogas production, a C:N ratio 

within a range of 20:1 and 30:1 is preferable (Hidaka et al., 2014). However, for too low C:N 

ratio, co-digestion of algal biomass with a carbon rich organic feedstock, such as sewage sludge 

and paper waste can be adapted to increase production rate (Yen and Brune, 2007). Costa et al. 

(2012) achieved an increase of 26% in methane production when co-digesting Ulva sp. with 

sewage sludge and manure (Costa et al., 2012). 

The complex structural cell wall of microalgae is the main challenge for an efficient biogas 

production which causes limited accessibility of substrate to micro-organisms, therefore, pre-

treatment is often required to deconstruct the structure of the cell wall and increase bacteria 

activity (Raheem et al., 2018). Passos et al. (2013) obtained higher biogas production yields via 

microwave pre-treatment. The biogas yield of 307 mL g-1 volatile solid was attained in 

comparison to biogas yield of 172 mL g-1 volatile solid without any pre-treatment (Passos et 

al., 2013). Anaerobic digestion demonstrates many advantages over other technologies such as 

it is efficient for organic matter removal, applicable at any scale, capable of using a wide variety 

of substrates as feedstock, less expensive to build and it consumes less energy. Moreover, this 

technology can generate multi end-products such as biogas and digestate which are easily 

separated and used as a source of energy and fertilizers respectively. However, the degradation 

process of microalgae cell walls by extracellular enzymes of hydrolytic bacteria is too slow due 

to the reason mentioned earlier and consequently a limited hydrolysis rate renders the anaerobic 

digestion into a lengthy and inefficient bioprocess (Passos et al., 2014; Magdalena et al., 2018). 

2.6.3.2 Alcoholic fermentation  

Sugar (e.g. glucose and sucrose), starch, and cellulose stored in biomass can be converted via 

alcoholic fermentation into bioethanol. Initial product contains approximately 10-15% ethanol, 

consequently, further concentration and purification by distillation and rectification is required 

to remove water and impurities (C. H. Tan et al., 2015). Residuals from this process are still 

valuable to be processed by thermal conversion technologies such as HTL, pyrolysis, 

gasification, and anaerobic digestion into biofuels. Starch and cellulose are the most common 

carbohydrates exist in the microalgae that can be used to produce bioethanol (Shih-Hsin Ho et 

al., 2012). Traditional bioethanol production from microalgae typically takes place through 
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three steps. Firstly, algal biomass is pre-treated with acids or enzymes to deconstruct their cell 

walls and recover stored fermentable starch. After that, starch is hydrolysed using enzymes (e.g. 

α-amylases) to produce simple sugars which are then fermented into bioethanol using yeast 

strains. In the final stage, bioethanol separation and purification is performed (McKendry, 

2002). The most common microorganisms used for ethanolic fermentation are yeasts of the 

genus Saccharomyces or bacteria of the genus Zymomonas (de Farias Silva and Bertucco, 

2016). The operating conditions, main and co-products, and product properties of alcoholic 

fermentation of microalgae are summarised in table 2.6. 

Microalgae such as C. vulgaris are good candidates for bioethanol production due to their high 

starch content approximately 37% (DW), and bioethanol conversion of up to 65% has been 

reported (Atsushi Hirano et al., 1997). Scenedesmus obliquus are also able to accumulate about 

50-60% (DW) carbohydrates in normal medium after exhaustion of the nitrogen source (Shih-

Hsin Ho et al., 2013; Möllers et al., 2014). However, using nitrogen depletion strategy to 

increase the accumulation of carbohydrate has a drawback on the viability of the process due 

to the reduced algal biomass yield. Another route to produce bioethanol from microalgae is the 

use of metabolic path-ways in dark conditions, redirecting photosynthesis to produce acids, 

alcohols, and small amounts of hydrogen. Complex organic polymers are hydrolysed by 

fermentative and hydrolytic microorganisms into monomers, which are subsequently converted 

into a mixture of organic acids of low molecular weight and alcohols such as acetic acids and 

ethanol (de Farias Silva and Bertucco, 2016). Ueno et al. (1998) used dark fermentation to 

produce bioethanol from Chlorococcum littorale achieving a maximum ethanol productivity of 

450 µmol g-1 (DW) at 30 ˚C (Ueno et al., 1998). However, the literature has concluded that 

dark fermentation of microalgae is not an efficient process to produce bioethanol.  

Although the microalgae biomass seems to require mild conditions for hydrolysis and for 

fermentation in the traditional route of bioethanol production, this route has several drawbacks 

including the requirement of multistep processes which needs more energy and the use of 

enzymes and yeasts which accounts for a considerable portion of the costs. Moreover, 

microalgae are diverse in terms of their cellular structure (different biochemical compositions 

and type of carbohydrates) and therefore a specific enzyme is required to efficiently saccharify 

each microalgae species (de Farias Silva and Bertucco, 2016). 

2.6.3.3 Hydrogen production via photobiological process 

Hydrogen (H2), which is an efficient and clean energy carrier, can be produced from microalgae 

and cyanobacteria via a photo-biological process. Some species can produce hydrogen as an 
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electron donor by direct or indirect photolysis of water using light energy under anaerobic 

condition (Cantrell et al., 2008; Azwar et al., 2014). In photolytic biological systems, 

microalgae use sunlight to convert water molecules into hydrogen ions (H+) and oxygen during 

photosynthesis. Hydrogenase enzymes convert the hydrogen ions into hydrogen under 

anaerobic conditions. This technology has a long-term potential to sustainably produce 

hydrogen with low environmental impact. However, the oxygen formed during the process may 

represent the main problem due to its ability to inhibit hydrogenase enzymes (Suali and 

Sarbatly, 2012). Moreover, H2 production instead of fixing carbon is not the normal function 

of algal photosynthesis. The enzymes that produces H2 are not even synthesized under normal 

growth conditions. Finally, the high cost of photobioreactor materials and operation is also 

another challenge which may limit the commercial application of this technology (Ghirardi et 

al., 2008). 

2.7 Conclusion 

Microalgae are feasible as a biofuel feedstock which can meet the huge global fuel demand in 

a sustainable manner. However, there are some technical impediments that limit the commercial 

use of microalgae; especially for low-value products such as biofuels. Selection of suitable 

microalgae species, cultivation, harvesting, drying and conversion of biomass into biofuel are 

the main stages in the algal-based fuel production process. Efficient microalgae species should 

have rapid growth rate, the ability to survive in different environments, high lipid productivity, 

and high efficiency for the uptake of nutrients under different production conditions. Low 

biomass yield is the major challenge in current cultivation systems resulting in dilute growth 

culture. Microalgae harvesting and dewatering are major operational costs that hinder the 

development and expansion of the large-scale use of microalgae for biofuels. Harvesting 

represents a substantial process cost, accounting for an estimated 20-30% of the total cost of 

production. A cost effective and reliable technique for bulk harvesting has yet to be adopted 

across the microalgae sector. A successful harvesting technique needs have the following 

characteristics: 

 Have high recovery efficiencies and concentration factors; 

 Rapid; 

 Growth media and species independent; 

 Easy to scale up; 

 Able to operate continuously with high throughput; 

 Does not prevent the spent culture recycling; 



Chapter two 

 

62 

 

 Low cost. 

If such a harvesting technique is developed, an economically viable fuel could be achieved. The 

comparison of available harvesting technologies described in this chapter has shown that foam 

flotation and bio-flocculation can harvest a wide range of microalgae in an economical way. 

However, bio-flocculation is not recommended for biofuel production since it is a highly 

species dependent process and produces biomass of low lipid content. Flotation columns have 

simple construction, lower capital and operating costs, improved recovery and enrichment, and 

a smaller footprint.  

The drying stage has high energy demands which may result in a negative energy balance when 

producing microalgae-based biofuels since it broadly contributes up to 59% of the total energy 

consumption. Therefore, the better option is to process wet microalgae directly into biofuel to 

substantially reduce the energy consumption associated with dewatering and drying. However, 

processing wet microalgae has adverse effects on the in-situ transesterification process. 

Hydrothermal liquefaction takes place under high water content and seems to be a very 

promising technology for algal biofuel production but is at an early stage of development. 
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Parameter 

Conversion Process 

Transesterification Liquefaction Pyrolysis Gasification Fermentation Anaerobic Digestion 

Feedstock conditions 
Extracted algal lipid, mainly 

TAG, blended with alcohol 

Algal slurry with moisture content 

up to 95% 

Up to 10% water content algal 

biomass 

Less than 40% water content 

algal biomass 

Carbohydrate rich/pre-treated 

algae to release starch, sugar, 

and cellulose   

Algal biomass wastes from 

other conversion process or 

whole algae 

Operating conditions 

With methanol Temp.: 35-65 ˚C. 

With ethanol: Temp.: 35-78 ˚C  

Press.: 1 atm. 

For higher reaction temp., a 

pressure vessel is required.  

Sub or super-critical water  

Temp.: 250-374 ˚C 

Press.: 39-215 bar 

Temp.: 200-700 ˚C 

Press: 1 atm. 

absence of oxygen 

Temp.: 700-1000 ˚C 

Press: 1 atm. 

partial oxidation 

gasifying agent: air, steam, or 

steam-O2 mixture 

Temp.: 30-40 ˚C 

Press.: 1 atm. 

Temp.: bacteria working: 0-70 

˚C 

In literature: 25-37 ˚C 

Press.: 1 atm. 

Main product 

Biodiesel (Fatty acid methyl ester 

(FAME) 

Fatty acid ethyl ester (FAEE)) 

Bio-oil (cyclic nitrogenates such as 

pyrolle, indole, pyrazine, and 

pyrimidine, cyclic oxygenates like 

phenols and phenol derivatives 

with aliphatic side-chains and 

cyclic nitrogen and oxygen 

compounds like pyrrolidinedione 

and piperidinedione, esters, fatty 

acids, and hydrocarbons)  

flash pyrolysis: bio-oil 75% 

including (aliphatic and 

aromatic hydrocarbons like 

Cyclopropene, 1-butyl-2-

ethyl- and phenols, acids like 

Benzoic acids)   

Temp.: 700-850 ˚C 

Co: 9-50% 

H2: 5-56% Ethanol (C2H5OH) 
55-75%vol CH4 (productivity 

of 61-430 cm3 Total Solid-1) 

slow pyrolysis: syngas 25%, 

major components (CH4, CO2) 
Temp.: 850-1000 ˚C 

64% w/w methanol 

Products properties 

Energy content: 41 MJ/kg 

Density: 864 kg m-3  

Viscosity: 5.2*10-4 Pa s at 40 ˚C 

flash point: 371 K,  

pour point: 259 K, Cetane 

number: 52 min, ash content: 

0.21 wt.% 

Nitrogen content:  

0.002-0.007 wt.%  

 water content:0.02 vol.% 

Acid Number, mg KOH/g: 0.4-

0.45. Oxidation stability at 

110 °C: 90 min 

Energy content: 30-39 MJ/kg 

Density: 943 kg m-3  

Viscosity: 0.33382 Pa s at 40 ˚C 

Wt.%: Carbon content: 79.2t% 

Hydrogen content: 10% 

Nitrogen content: 4-8% 

Oxygen content: 5-18% 

Sulphur Content: 0.1-1.3% 

H/C molar ratio: 1.56 

water content:2.8 wt.% 

Acid Number, mg KOH/g: 68 

Bio-oil: 

Energy content: 28-41 MJ/kg 

Density: 920-980 kg m-3  

Viscosity: 0.02-0.061 Pa s at 

40 ˚C 

Wt.%, Carbon content: 59% 

Hydrogen content: 7.9% 

Nitrogen content: 8% 

Oxygen content: 25% 

Sulphur Content: <0.5 % 

water content:2% 

Syngas: 

Energy content: 1.2-4.8 MJ/kg 

Syngas: 

HHV: 3.338 MJ/kg, cold gas 

efficiency: 44.24% (30% 

moisture feedstock) 

HHV: 5.138 MJ/kg, cold gas 

efficiency: 73.81% (5% 

moisture feedstock) 

Energy content: 30 MJ/kg 

Density: 772 kg m-3  

Viscosity: 8.34*10-4 Pa s at 40 

˚C 

Caloric value: 11 MJ/m3 

Co-products Glycerol 

solid: 16%, gases: 30%, 6-20% 

methane, H2, > 90% CO2, aqueous 

phase 17% (water + dissolved 

organics)  

Bio-char: 2% with flash 

pyrolysis 

: 20% with slow pyrolysis  

Methane (2-25%) 

, CO2, other hydrocarbon 

(C2H4, C2H6, C2H2), tar: up to 

20%, and ash   

CO2 CO2, traces of H2, H2S, CO 

Catalysts 

Homogenous or heterogeneous  

Acid: sulphuric acid, FeCl3, 

ZnCl2 

Alkali: NaOH, CaO, KOH,  

Enzymatic: lipase, Rhizomucor 

mieher 

Homogenous or heterogeneous 

Na2CO3, KOH, CH3COOH, 

HCOOH 

NiO 

Co/Mo/Al2O3 

Zeolite like HZSM-5 

Na2CO3 

Metal oxide like ZnO, Al2O3 

K2CO3 

Ni–Pt/Al2O3 

Dolomite 

Hydrochloric, sulphuric acids 

Enzymatic catalysts 

Ethanol yeast 

Hydrochloric, sulphuric acids 

Enzymatic catalysts 

Acidogenic bacteria 

Methanogens bacteria 

Reference 

(Ramachandran et al., 2013) 

(Vijayaraghavan and Hemanathan, 

2009) 

(Suali and Sarbatly, 2012) 

(Velasquez-Orta et al., 2012) 

(Leung et al., 2010) 

(Nautiyal et al., 2014) 

(Suali and Sarbatly, 2012) 

(Bennion, 2014) 

(Tian et al., 2014) 

(Elliott et al., 2014) 

(Yunhua Zhu et al., 2013) 

(Elliott et al., 2013) 

(Zeng et al., 2013) 

(Babich et al., 2011) 

(Campanella and Harold, 2012) 

(Suali and Sarbatly, 2012) 

(Belotti et al., 2014) 

(Brennan and Owende, 2010) 

(Brennan and Owende, 2010) 

(Suali and Sarbatly, 2012) 

(López-González et al., 2014a) 

(Díaz-Rey et al., 2014) 

(Wu et al., 2014) 

(Brennan and Owende, 2010) 

(Suali and Sarbatly, 2012) 

(M. Wang et al., 2013a) 

(Rodriguez et al., 2015) 

(Kamat et al., 2013) 

(Astals et al., 2015) 

(Yuan et al., 2014) 

(Meng Wang and Park, 2015) 

(Mohd Udaiyappan et al., 2017) 

Table 2.6: Summary of the conversion techniques of microalgae biomass and their products
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Chapter 3  

Continuous harvesting of microalgae biomass using foam flotation 

Abstract 

Biomass harvesting and dewatering are major operational costs that constrain the development 

and expansion of the industrial use of microalgae; particularly low value biofuels. Flotation-

based technologies show promise as low cost, energy-efficient harvesters, producing a 

thickened algae slurry ahead of further dewatering steps. In this study we demonstrate, for the 

first time, a surfactant-aided foam flotation column that is designed and optimised for the 

continuous harvest of microalgae. The following operational parameters were optimised; 

surfactant concentration, air flow rate, feed flow rate, column height, liquid pool depth, and 

sparger type (i.e. bubble size). The effects of surface characteristics on Chlorella vulgaris 

flotation performance were investigated by quantifying the hydrophobicity, zeta potential, and 

the contact angle. The hydrophobicity of C. vulgaris was enhanced using three surfactants; the 

cationic cetyltrimethylammonium bromide (CTAB), the anionic sodium dodecyl sulfate (SDS), 

and the non-ionic TWEEN®20; with CTAB producing the greatest enhancement. Surfactant 

concentration, column height, and air flow rate had the greatest effect on the algae concentration 

factor and recovery efficiency. The optimised design (CTAB = 35 mg L-1, air flow rate = 1 L 

min-1, feed flow rate= 0.1 L min-1, column height = 146 cm, liquid pool depth = 25 cm, with a 

fine porous sparger) yielded recovery efficiencies of 95, 93, and 89% with 173, 271, and 143-

fold biomass enrichments for freshwater C. vulgaris and marine Isochrysis galbana and 

Tetraselmis suecica microalgae respectively. Achieving high recovery efficiencies for 

freshwater and in the case of marine microalgae (irrespective of ionic strength) at moderate 

surfactant dosages, gives foam flotation the advantage of being a growth media independent 

harvesting process. The process had a very low power consumption (0.052 kWh m-3 of algae 

culture). Our findings demonstrate the potential for continuous, low cost, scalable flotation 

microalgae harvesting that has particular relevance for the biofuels, water and wastewater 

treatment industries. 

Keywords: Adsorptive bubble separation; Algae biofuels; Biodiesel; Hydrophobicity; 

Microalgae harvesting 

3.1 Introduction 

Concerns about the sustainable use of fossil fuels, fluctuating oil prices, environmental 

pollution, and global climate change are driving moves away from conventional fuels to 
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biofuels, including those derived from microalgae (Jing Lu et al., 2011; Pragya et al., 2013; 

Reyes and Labra, 2016). Microalgae are fast growing, photosynthetically efficient oleaginous 

organisms that can be cultivated in freshwater, brackish, and full-strength seawater, together 

with a range of nutrient impacted wastewaters. Microalgae have the potential (as yet unrealised 

due to lack of cost competitiveness) to play a vital role in the biofuels market (Brennan and 

Owende, 2010; Chinnasamy et al., 2010a; F. Chen et al., 2012; M. K. Lam and Lee, 2012; Farid 

et al., 2013; Andrew K. Lee et al., 2013; Coons et al., 2014). Biofuels aside, there are 

established markets for microalgae biomass and extracts in the cosmetics, nutraceuticals, and 

pharmaceuticals industries. Equally, microalgae are both a problem and an opportunity for 

water utilities and the wastewater industry. 

Harvesting and dewatering of the microalgae biomass represents a substantial process cost, 

accounting for an estimated 20-30% of the total cost of production (Molina Grima et al., 2003; 

Greenwell et al., 2010; Milledge and Heaven, 2012). Harvesting from dilute algae suspensions 

is challenging due to the small cell size translating to a low specific gravity, as well as the cell 

surface being negatively charged thereby maintaining a stable colloidal suspension. Other 

impediments stem from the ionic strength of the culture medium due to salinity, hydrophobicity, 

pH and culture age (Milledge and Heaven, 2012; Udom et al., 2013). Consequently, there are 

a number of challenges inherent in microalgae harvesting such as a low recovery efficiency 

and/or high capital and operating costs.   

A cost effective and reliable technique for bulk harvesting has yet to be adopted across the 

microalgae sector (Uduman et al., 2010a; Gouveia, 2011; Laamanen et al., 2016). A wide range 

of solid-liquid separation techniques have been trialled, both individually or in combination, 

such as coagulation and flocculation, followed by sedimentation, flotation, centrifugation, or 

filtration (Figure 3.1). Gravity sedimentation is a very simple solid-liquid separation method 

and commonly used to separate microalgae from water; however, it is a time-consuming process 

due to long settling time and needs higher resource efficiency (large land areas) for settling 

ponds. Moreover, the total suspended solid from sedimentation is low which increases the cost 

of further downstream processes (T. Coward et al., 2013). Therefore, sedimentation is rarely 

used alone to harvest algal biomass and it is therefore combined with coagulation and 

flocculation. However, flocculation is currently uneconomical as the amount, and hence costs, 

of flocculant necessary for large scale harvesting is prohibitive (Brennan and Owende, 2010). 

Centrifugation is the most rapid and suitable harvesting technique for a wide range of 

microalgae species. However, it is an energy-intensive method (requiring as much as 3000 kWh 

ton-1 (Benjamin T. Smith and Davis, 2013)). Filtration is another common harvesting technique 
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but it is highly dependent on the size of the microalgae, is abrasive to many species and is 

energy intensive due to pumping. Frequent replacement or backwash of filters are other 

disadvantages (Bilad et al., 2013). A successful harvesting system needs to be effective, rapid, 

low cost, species independent, scalable, and should be able to operate continuously if required. 

An added benefit would be the potential to partially process the biomass in situ, e.g. weakening 

of the cell wall prior to conversion into biofuel (Laamanen et al., 2016; Lananan et al., 2016). 

 

Figure 3.1: A summary of microalgae harvesting and dewatering methods by category; primary 

harvesting, algae slurry thickening, further dewatering, and drying. Redrawn from Barros et al. 

(2015) and Pahl et al. (2013) (Pahl et al., 2013; Barros et al., 2015). 

Due to its simplicity and low capital and operating costs, adsorptive bubble separation is widely 

used in industrial and domestic wastewater treatment, and in the mining, pharmaceutical, and 

food industries (Jenkins et al., 1972; Rubio et al., 2002; Fuerstenau et al., 2007; Schramm and 

Mikula, 2012). Foam flotation, which is a subclass of adsorptive bubble separation, shows 

considerable promise as a microalgae biomass harvesting and enrichment method. The flotation 

column has many advantages over conventional flotation cells including: simple construction, 

lower capital and operating cost, improved recovery, higher grade products, less wear and tear 

due to the absence of moving parts, and a smaller footprint (Sastri, 1998). It is energetically 
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unfavourable for hydrophobic particles to remain wholly within the liquid phase. They will 

adsorb onto the surface of bubbles which will transport them to the liquid surface for collection 

and removal (P. Stevenson and Li, 2014). Most microalgae species are weakly hydrophobic, 

especially those that are algaenan-free like Chlorella vulgaris (López Barreiro et al., 2013; Ling 

Xia et al., 2017b); therefore, surface-active materials (surfactants) are added not only to 

stabilise the foam in the system but also to enhance the hydrophobicity of the microalgae. The 

foam flotation process involves generating bubbles by gas flow, either through a porous or jet 

sparger. Destabilised microalgae and free surfactant will adsorb onto the bubbles and are 

removed from the column as foam (P. Stevenson and Li, 2012a). Foam is an effective medium 

to adsorb microalgae as it possesses a high specific surface area which results in a high recovery 

efficacy whilst only a small volume of interstitial liquid is collected, enabling good biomass 

enrichment. 

Previous surfactant-aided flotation harvesting research has been performed in batch or semi-

batch modes, with recovery efficiencies of up to 97% (Y. M. Chen et al., 1998; J. C. Liu et al., 

1999; Phoochinda and White, 2003; Phoochinda et al., 2005; Rita K. Henderson et al., 2008; 

Garg et al., 2013; Kurniawati et al., 2014; Alhattab and Brooks, 2017). When combined with 

electro-flocculation a recovery efficiency of 98.9% was achieved (Ling Xu et al., 2010). In a 

forerunner to the present study, Coward et al. (2013) harvested Chlorella vulgaris in batch 

mode, attaining a high concentration factor of almost 230 but at the expense of recovery 

efficiency (T. Coward et al., 2013). For most bulk harvesting techniques, especially flotation 

operating in batch or semi-batch modes, it is challenging to realise an effective combination of 

a high recovery efficiency (for greater biomass removal from the growth medium) and 

concentration factor (to lower downstream dewatering and drying costs). Very few reported 

works on bulk harvesting techniques have focused on the recovery efficiency and concentration 

factor of the harvested microalgae together due to the trade-off between them. For instance, 

Garg et al. (2013) recovered 85% of Tetraselmis sp. using mechanical flotation cells with 

dodecylammonium hydrochloride (DAH) surfactant but at the expense of enrichment in which 

only six-times more concentrated microalgae was obtained (Garg et al., 2013). However, this 

shortcoming may be overcome if a pivotal combination between the factors affecting both the 

recovery efficiency and concentration factor is achievable in a continuous foam flotation 

column. Continuous mode harvesters are also more suitable for high throughput applications 

such as biofuels production, whereas batch or semi-batch modes have more downtimes and 

typically need higher resource efficiency (i.e. space and energy). Furthermore, commercial 



Chapter three 

 

68 

 

scale algae production is typically continuous or semi-continuous; there is thus a demand for 

the capability to harvest continuously. 

The work presented in this chapter developed and optimised a foam flotation column to 

continuously harvest C. vulgaris, Isochrysis galbana and Tetraselmis suecica. This work also 

aimed to evaluate the effectiveness and economic feasibility of the process. To the best of our 

knowledge, this is the first study to demonstrate low cost and continuous microalgae harvesting 

using foam flotation with a focus on both biomass recovery and enrichment. 

3.2 Materials and methods 

3.2.1 Microalgae culture 

Freshwater C. vulgaris, and marine I. galbana and T. suecica were grown using BG-11 and F/2 

media in seven polycarbonate carboys (Nalgene 10 L) at 20 ± 2 ºC in a non-sterile environment. 

Photoperiod was 16L:8D using a combination of cold and warm fluorescent lights with an 

average illuminance of 2,500 lux. The cultures were agitated by aeration using an aquarium air 

pump (Koi Air, KA50, 0.032 mPa), and maintained semi-continuously. 

3.2.2 Surfactant types 

Three surfactants were used; the synthetic anionic foam stabiliser sodium dodecyl sulphate 

(SDS, CH3(CH2)11OSO3Na), (AMRESCO, USA); the non-ionic emulsifier and detergent 

TWEEN®20 (polysorbate 20, C58H114O26) , (Sigma-Aldrich, UK); and the common quaternary 

ammonium cationic surfactant hexadecyltrimethylammonium bromide (CTAB, 

CH3(CH2)15N(Br)(CH3)3), (G-Biosciences, USA). CTAB has been demonstrated as the most 

suitable surface-active material to remove algal biomass from wastewater (T. Coward et al., 

2013; Laamanen et al., 2016). It has also been used in wastewater treatment and in the 

extraction of DNA (Koner et al., 2010; Fu et al., 2017). Even though the cationic surfactant 

CTAB is harmful, especially to aquatic organisms, it can disrupt algae cell walls and promote 

cell lysis. Therefore, it may be used for simultaneous harvesting and cell disruption prior to 

lipid extraction or direct biofuel conversion. 

3.2.3 Hydrophobicity tests 

Hydrophobicity tests on C. vulgaris were carried out using a modified microbial adhesion to 

hydrocarbons method (Rosenberg et al., 1980; Garg et al., 2012), with or without the addition 

of 20 and 40 mg L-1 of CTAB, 20 and 40 mg L-1 of SDS, and 2 and 4 mL of TWEEN 20. 

Hydrophobicity was also measured after addition of 70 and 100 mg L-1 of trivalent aluminium 

chloride salt, AlCl3 (Sigma-Aldrich, UK) in the presence of 40 mg L-1 of SDS. In this method, 

https://en.wikipedia.org/wiki/Emulsifier
https://en.wikipedia.org/wiki/Surfactant


Chapter three 

 

69 

 

8 mL of microalgae culture, 0.46 ± 0.13 g L-1 concentration (dry weight equivalent to 9.58 × 

106 ± 1.1 × 106 cells mL-1, which approximates to cell densities within raceway based 

microalgae production systems (Y. Chisti, 2013)) was placed in a test tube, in duplicate. Two 

millilitres of n-hexane (95% purity, Sigma-Aldrich, UK) was then added to each tube and 

shaken vigorously for one minute; the resulting suspension was settled for two minutes. 

Afterwards, 2 mL was carefully drawn from the aqueous layer at the bottom of each tube, placed 

in a UV cuvette, and the absorbance read at 620 nm using a spectrophotometer (Jenway, Model 

7315, Bibby Scientific Ltd, UK); this allowed the proportion of cells that had moved to the 

water-hexane interface to be determined. The hydrophobicity (Hydro) of the algal suspension 

was calculated using equation 3.1: 

𝐻𝑦𝑑𝑟𝑜 =
𝐴𝑜 − 𝐴𝑎𝑞

𝐴𝑜
× 100%   ⋯ (3.1) 

where: 𝐴𝑜 is the absorbance of the microalgae suspension before n-hexane addition and 𝐴𝑎𝑞 is 

the absorbance of the aqueous phase after n-hexane addition. Based on the hydrophobicity data, 

only CTAB was carried forward for optimisation and harvesting trials. The data from the 

hydrophobicity experiment was compared using an ANOVA test with Dunnett comparison 

procedure with an alpha level of 0.05. 

3.2.4 Adsorption isotherm 

The concentration of CTAB adsorbed onto the C. vulgaris was determined by surface tension. 

A calibration curve was created for CTAB in the 0-20 mg L-1 range versus surface tension 

measurements using a microtensiometer (Kibron EZPiplus, Finland) when dissolved in 1 L of 

water separated from algae culture by centrifugation. Culture medium was used rather than 

deionised water due to the presence of ions in the medium which may alter surface tension 

readings. Two different concentrations of algae culture were used here which were 1.2±0.01 

and 0.68±0.01 g L-1 (equivalent to 24.1 × 106±2.6 × 104 cells mL-1 and 14.2 × 106 ±2.2 × 104 

cells mL-1 respectively). The mixture (20 mg of CTAB in 1 L of algae culture) was stirred 

continuously for 15 min using a magnetic stirrer. Two 10 mL samples were centrifuged for 30 

min at 15,000 rpm (25,155 RCF) to separate the algae from the medium. The supernatant was 

collected and the surface tension was measured to determine the concentration of un-adsorbed 

surfactant that remained in the medium.  

3.2.5 Zeta (ζ) potential experiments 

Colloidal systems such as microalgae suspensions consist of highly dispersed particles 

(discontinuous phase) distributed uniformly throughout a dispersion medium (continuous 



Chapter three 

 

70 

 

phase) (Pahl et al., 2013). The magnitude of the zeta potential (ζ) is a key characteristic in the 

colloidal system as it gives an indication of the suspension stability. The ζ-potential of C. 

vulgaris was measured herein with or without the addition of CTAB at different pH values (4, 

6, 8, and 10) using a Zetasizer Nano ZS ZEN3600 instrument, Malvern Instruments Ltd., UK. 

In a typical experimental trial with surfactant addition, l L of microalgae culture, 0.46 ± 0.13 g 

L-1 concentration dry weight (equivalent to 9.58 × 106 ± 1.1 × 106 cells mL-1), was mixed with 

approximately 35 mg L-1 of CTAB and the mixture was stirred continuously for 15 min using 

a magnetic stirrer. To study the effect of ions from the culture medium on microalgae zeta 

potential, more trial sets were performed after resuspension of microalgae in deionised water. 

Four 50 ml samples were collected from the mixture and the pH adjusted using NaOH and HCl 

solutions. To study of effect of culture ions on ζ-potential, 1 L of microalgae culture was 

centrifuged for 10 min at 4,000 rpm and re-suspended in deionised water. The ζ-potential 

measurements were carried out in triplicate.     

3.2.6 Measurement of the contact angle 

The contact angle of C. vulgaris cells, in the form of algal strata on membrane filters, was 

measured based on the sessile drop technique by using a goniometer (model 250, Rame-Hart, 

USA) with DROPimage advanced software. The contact angle measurements were performed 

with and without CTAB addition. Algae with a concentration of 0.46±0.13 g l-1 dry weight 

(equivalent to 9.58 × 106 ± 1.1 × 106 cells mL-1) were deposited on a filter (cellulose nitrate 

membrane, 1.25 μm pore size, 25 mm diameter, MFS) using a syringe filter. CTAB (20, 30, 

and 40 mg L-1) was dissolved in a 1 L algae culture and stirred continuously for 15 min using a 

magnetic stirrer prior to the filtration. The obtained algal mats were placed on an agar plate to 

prevent them from drying until the measurements were made. Contact angle measurements 

were performed in triplicate with deionised water as a probe liquid. Deionised water has been 

successfully employed in the contact angle measurements of various microorganisms including 

yeasts, bacteria, and algae. For the measurements, the filter papers were taken from the agar 

plate and fixed to glass slides, then dried in air for 50 min. After air-drying, the filter papers 

were stored in a desiccator over silica gel until use. Readings were recorded after 0.5 sec of the 

probe liquid deposition (volume of 5 μm), and each sample was tested ten times within 1 sec 

(Ozkan and Berberoglu, 2013a; Sirmerova et al., 2013). 

3.2.7 Foam column dimensions 

A bench scale flotation column was used as shown in figure 3.2. The column was constructed 

from poly(methyl methacrylate) with a 5.15 cm internal diameter. Column height could be 
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adjusted between 30-160 cm by attaching different tubular modules of 25, 30 or 50 cm lengths. 

The inlet mixture consisted of algae culture with added surfactant from a 25 L reservoir. The 

processed culture was discharged to waste from the outlet stream valve at the base of the 

column, 1 cm above the sparging media. A magnetic stirrer was used to mix the microalgae 

culture with the surfactant in the feed tank for 10 mins before and during the harvesting 

experiments. The feed flow rate was measured and controlled by a valve with an ultrasonic flow 

meter (Atrato, Titan, UK). Another valve was placed on the discharge stream to control the 

liquid depth in the column. The foam was collected at the top of the column using an annular 

trough of 30 cm in diameter and 15 cm deep. Low-flow air was fixed against foam flow at the 

outlet of the foam column to enhance foam collapse. Air bubbles (dispersed phase) were 

generated by introducing compressed air through a sparger. Two different spargers made from 

ultra-high molecular weight polyethylene were used with a thickness of 6.0 mm, a diameter of 

51.5 mm, and mean pore sizes of 30 and 158 µm for fine and coarse porosity respectively. The 

air flow rate for each trial was adjusted before the inlet mixture was fed to the column to prevent 

liquid weeping into the gas line. 

 

Figure 3.2: Schematic diagram of the continuous foam flotation column. A: Foam collecting 

cup, B: column tubular module (25, 30 or 50 cm) in height and 5.1 cm in diameter, C: inlet 

stream, D: inlet flow meter, E: outlet stream valve, F: underflow stream, G: air sparger, H: air 

input stream. 
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3.2.8 Harvesting effectiveness criteria  

The effectiveness of a solid-liquid separation process is determined by the concentration factor 

(CF) and the recovery efficiency (RE). The concentration factor is the ratio of the microalgae 

concentration in the final product to the microalgae concentration in the culture as given in 

equation 3.2. 

𝐶𝐹 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑖𝑛𝑙𝑒𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
=

(
𝑐𝑒𝑙𝑙
𝑚𝑙

)
𝑓𝑜𝑚𝑎𝑡𝑒

(
𝑐𝑒𝑙𝑙𝑠
𝑚𝑙

)
𝑖𝑛𝑙𝑒𝑡

   ⋯ (3.2) 

The recovery efficiency is the ratio of the microalgae cells in the final product to the microalgae 

cells in the culture as given in equation 3.3. 

 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑅𝐸) =
𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑖𝑛𝑙𝑒𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
100% ⋯ (3.3) 

In this work, the effectiveness of the harvesting process was determined by the concentration 

factor and the recovery efficiency. A calibration curve was constructed correlating cell density 

and their corresponding absorbance at 750 nm using a spectrophotometer (Jenway, Model 7315, 

Bibby scientific Ltd, UK), yielding an R2 of 100% (data not shown). The wavelength of 750 

nm was selected as the absorption by chlorophyll and most other pigments is at a minimum 

(Moheimani et al., 2013). Cell density was measured using an improved Neubauer 

hemocytometer, with a Leica DM 500 light microscope. 

The dry weight concentration of algae culture was measured by the following procedure: 

Whatman quantitative filter paper, grade 42, was dried at 103 ˚C for 3 hr then left to cool in a 

desiccator over silica gel until use. A pre-dried paper was weighed using a precision analytical 

balance (RadWag, model As220/C/2, Poland) to 4 decimal places accuracy. Known culture 

volume (𝑣), approximately 10 mL, was filtered after placing the pre-weighed paper in the filter 

unit then dried at the same conditions as above and stored in the desiccator overnight. The dried 

paper was weighed to 4 decimal places and the dry weight concentration 𝐷𝑊𝐶 determined 

according to equation 3.4: 

𝐷𝑊𝐶 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑝𝑎𝑝𝑒𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑎𝑒 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟 𝑝𝑎𝑝𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑣)
    … (3.4) 

3.2.9 Design of experiments 

Design of experiments (DOE) is a statistical and mathematical tool used to evaluate and 

optimise the direct and crossed relations between independent variables and system responses. 
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It is an advantageous method for minimising the number of experimental trials needed for 

process optimisation wherein rigorous modelling is intractable to apply due to the complexity 

of the system being investigated (Montgomery, 2012). 

3.2.9.1 Fractional factorial design  

A fractional factorial design approach using Minitab software (release 17, Minitab Inc., State 

College, PA) was applied as a screening tool prior to response surface methodology. The aim 

of performing the fractional design of experiments was to select the most appropriate sparger 

for subsequent use in the response surface design. Process variables were; surfactant 

concentration, airflow rate, column height, feed flow rate, liquid pool depth, and sparger type. 

Other factors such as pH were not studied, and thus kept constant. The screening trials were 

conducted on C. vulgaris only and the algae concentration in the inlet stream was held at 

0.46±0.13 g L-1 concentration dry weight (equivalent to 9.58 × 106 ±1.1 × 106 cells mL-1)  (Y. 

Chisti, 2013). A two-level fractional factorial of a resolution IV, (2(6−2)), plus two central points 

was adopted. The lower and higher values of the lower and upper levels for each factor are 

represented by -1 and +1 in Table 3.1. 

Independent variables Levels 

 -1 +1 

Surfactant concentration (mg L-1) 30 50 

Air flow rate (L min-1) 1 2 

Column height (cm) 71 122 

Inlet flow rate (L min-1) 0.2 0.6 

Liquid pool depth (cm) 7 20 

Sparger type coarse porous fine porous 

Table 3.1: Values of the independent variables for the fractional factorial design. 

3.2.9.2 Response surface design 

Once the factorial design evaluation had been completed, a five level half-unblocked Central 

Composite Design (CCD) with six central points was applied to identify the key process 

variables, their combinations, and to obtain an optimal higher degree model. CCD was adopted 

as it provides high quality predictions over the entire design space (Robert, 2012). The factors 

of interest were surfactant concentration, air flow rate, column height, feed flow rate, and liquid 

pool depth. CTAB and the fine porous sparger were used in the CCD trials based on results 

from the previous experiments. Other factors such as pH were kept constant. The harvesting 

trials were conducted on C. vulgaris only and the algae concentration in the inlet stream was 

held at 0.46±0.13 g L-1 concentration dry weight (equivalent to 9.58 × 106 ± 1.1 × 106 cells mL-
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1). Thirty-two experiments were generated and randomised with a repetition of factorial 

experimental runs i.e. 48 experiments. The five coded levels and their corresponding values of 

the factors are shown in Table 3.2. 

Independent variables Levels 

 -2 -1 0 +1 +2 

Surfactant concentration (mg L-1) 20 30 40 50 60 

Air flow rate (L min-1) 0.5 1 1.5 2 2.5 

Column height (cm) 46 71 96 122 146 

Inlet flow rate (L min-1) 0.05 0.2 0.4 0.6 0.8 

Liquid pool depth (cm) 0.5 7 13.5 20 26.5 

Table 3.2: Values of the independent variables for the central composite design. 

The concentration factor and recovery efficiency responses as a function of the independent 

variables above were fitted to polynomial quadratic regression models given in equation 3.5 

(Sanyano et al., 2013): 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑖,𝑗=1

 ⋯ (3.5) 

where: 𝑌 is the predicted response; 𝛽𝑜 is the intercept term; 𝛽𝑖 is the linear effect coefficient; 

𝛽𝑖𝑖 is the squared effect coefficient; 𝛽𝑖𝑗 is the interaction effect coefficient; and 𝑥𝑖 and 𝑥𝑗  are 

the independent variables. 

The goodness of fit of the obtained models was assessed by the lack-of-fit test and the 

coefficient of determination R2 and adjusted R2. Analysis of variance (ANOVA) was performed 

to determine the statistical significance of each independent variable, their combinations and to 

exclude insignificant variables at an alpha level of 0.05. A backward stepwise elimination 

regression was used to build up the quadratic model for the concentration factor and recovery 

efficiency responses. This technique starts with all candidate factors in the model, i.e. the full 

model, and then removes the least significant variable for each step based on a Significance 

Level to Stay (SLS) criterion (Rawlings et al., 1998). Factorial plots were also employed to 

study the effect of significant variables and their combinations on process responses. 

After the analysis of experimental data from the harvesting trials based on CCD design, the 

flotation process factors were optimised to maximise microalgae recovery at a considerable 

enrichment. Later, C. Vulgaris, I. galbana, and T. suecica were harvested continuously, in 

replicates of two, based on optimised conditions. Algae cell concentrations in the inlet stream 
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were held at 9.58 × 106 ± 1.1 × 106 cells mL-1, 1.01 × 107±1.29 × 104 cells mL-1 and 1.43 × 

106±7.97 × 104 cells mL-1 for C. Vulgaris, I. galbana and T. suecica respectively. 

3.2.10 Power consumption and harvesting economics 

Compression of the gas phase in a flotation column is essential for the sparging process. In 

other words, the gas should be compressed to overcome the pressure drop across the sparger, 

hydrostatic pressure of the liquid pool, and pressure drop because of friction due to flowing 

foam with the column wall. Total power consumption in the flotation column can be directly 

linked to the required work of the air compressor. The power required Wcomp for an isentropic 

compression of an ideal gas was calculated using equation 3.6 (P. Stevenson and Li, 2014): 

𝑊𝑐𝑜𝑚𝑝 =
𝑅𝑇𝑜

𝜂𝑖𝑠

𝛾 − 1

𝛾
[(

𝑃1

𝑃0
)

𝛾−1
𝛾

− 1] ⋯ (3.6) 

where: Wcomp is the compressor work (J mol-1); R is the universal gas constant (8.314 J mol-1 

K-1); To is the absolute initial temperature (298 ºK); ηis is the efficiency of air compressor; γ is 

the ratio of the isobaric to isochoric heat capacities (1.4 for dry air); P0 is the pressure upstream 

of the compressor; and P1 is the pressure of the compressed gas. A pressure gauge connected 

to the gas line was employed to measure the compressed gas pressure. The overall compressor 

efficiencies are within the range of 65-90% (Campbell, 2014). In this work, 70% air compressor 

efficiency was assumed.  

The unit of power consumption according to equation 3.6 is in J mol-1 of gas whereas the power 

consumptions of most harvesting techniques in the literature are reported in kWh m-3 of algae 

culture. Therefore, for ease of comparison with the power consumptions of other techniques, 

the calculated work value was converted to kWh m-3 of algae culture as elucidated later. The 

associated chemical cost for the foam flotation in US$ m-3 of algae culture was also calculated 

based on the chemical costs and chemical dosage required. Water loss due to evaporation was 

also determined in the current work by calculating the humidity of air.    

3.3 Results and discussion 

3.3.1 Hydrophobicity tests 

The hydrophobicity assay is a simple and rapid procedure to assess surfactant efficacy 

prior to foam flotation harvesting. The C. vulgaris hydrophobicity data using three surfactant 

types are shown in figure 3.3. C. vulgaris was weakly hydrophobic (24%) but the addition of 

20 mg L-1 of CTAB increased hydrophobicity to 97% (p =< 0.001). Most microalgae species 
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are negatively charged at typical culture pH; the zeta potential (ζ) of C. Vulgaris was -18.02 

mV at pH 7. Therefore, CTAB adsorbed onto the algae due to electrostatic interactions between 

the negatively charged cells and the cationic amphiphilic CTAB with the hydrocarbon tail 

increasing the alga’s hydrophobicity. There was no significant difference in hydrophobicity 

with 40 mg L-1 of CTAB. A slight hydrophobicity increase was observed with 20 (p = 0.771) 

and 40 (p = 0.734) mg L-1 of SDS. This was due to repulsive forces between the cell and the 

anionic amphiphilic SDS. The small increase was probably due to some algae cells becoming 

trapped in the foam generated during shaking of the sample, causing some cells to move away 

from the sample suspension. Similarly, a small rise in hydrophobicity was found after addition 

of 2 (p = 0.255) and 4 (p = 0.306) mL of non-ionic TWEEN 20; likely due to the same reasons 

as for SDS. The addition of 70 and 100 mg L-1 of AlCl3 with 40 mg L-1 of SDS increased the 

hydrophobicity to 50% (p = 0.001) and 98% (p =< 0.001) respectively (Figure 3.3). This was 

due to the charge neutralisation of the algal cells induced by Al3+ after dissociation of AlCl3 in 

water, thus enabling SDS to be adsorbed onto the cell surface and therefore increasing the 

hydrophobicity. However, the need for additional chemical treatment increases the harvesting 

cost. As such, only CTAB was carried forward for harvesting trials. 

 

Figure 3.3: The hydrophobicity (%) of Chlorella vulgaris with and without added surfactants 

(CTAB, SDS and TWEEN® 20). AlCl3 was added to two further SDS treatments to modify the 

surface charge of the algae cells. Means ± standard error, n = 2. 
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3.2 Adsorption isotherm  

Measuring the quantity of surfactant adsorbed onto the algae cells is essential to qualify 

the electrochemical surfactant adsorption hypothesis and to quantify surfactant adsorbed for 

further analysis. In froth flotation two chemicals are added to the feed. The first is called a 

frother which acts to reduce the surface tension of the gas-liquid interface and consequently 

stabilises the froth. The second is a collector which adsorbs to the particles’ surface, enhancing 

its hydrophobicity (P. Stevenson and Li, 2014). In the foam flotation column, surfactants are 

used for both purposes, i.e. as a foaming agent since the surfactants tend to adsorb at gas-liquid 

interfaces and as a collector because the surfactants adsorb onto algae cells due to the 

electrostatic forces of attraction. Therefore, calculating surfactant use for enhancing 

hydrophobicity and foam stabilisation is important. The CTAB concentration-surface tension 

calibration curve with the fitted polynomial model is given in figure 3.4. It can be seen from 

table 3.3 for the algae culture of 1.2 ± 0.01 g L-1 that 32.2 ± 0.2% of the added CTAB was 

retrieved from the supernatant i.e. adsorbed to the gas-liquid interface. It may therefore be 

inferred that 67.8 ± 0.2% of the CTAB was adsorbed onto algae cells. When algae biomass 

density was reduced to 0.68 ± 0.01 g L-1, the percentage of adsorbed CTAB decreased to 39.9 

± 1.3%, predicting a more stable foam. 

 

Figure 3.4: The relationship between CTAB concentration and surface tension, showing the 

calibration curve. Means ± standard error. 
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It is worth noting that the majority of the remaining free CTAB (non-adsorbed onto algae 

surfaces) that attached to the air bubbles and generate foam are recovered with the harvested 

microalgae. Despite the amount of CTAB in the discharge stream not being measured in the 

current work, this inference was made based on observations from second-stage harvesting 

trials conducted on samples collected from the discharge stream. A very thin layer of foam was 

noticed after bubbling air through the samples, indicating that only a small amount of surfactant 

remained unrecovered in the foamate. The small amount of CTAB in the discharge stream can 

be easily recovered by a flotation process, consequently, the surfactant-free water can be used 

for another cultivation cycle. 

Algae 

culture 
Cells mL-1 g L-1 Sample 

Surface 

tension 

(mM m-1) 

Mean surface 

tension 

(mN m-1) 

CTAB % in 

supernatant 

CTAB % 

adsorbed to 

algae 

1 
24.1 × 106 

±  

2.6 × 104 

1.2 ± 0.01 
1 52.51 

52.48 ± 0.04 32.2 ± 0.14 67.8 ± 0.14 
2 

52.44 

2 

14.2 × 106 

±  

2.2 × 104 

0.68 ± 

0.01 

1 48.03 

47.96 ± 0.07 60.1 ± 0.92 39.9 ± 0.92 
2 47.89 

Table 3.3: Percentage adsorption of CTAB onto algae cells. Means ± standard error. 

3.3.2 Zeta (ζ) potential experiments 

The measurements of ζ-potential for Chlorella with and without of CTAB addition and after 

resuspension in deionised water are shown in figure 3.5. The average magnitudes of the ζ-

potential were negative and within the range of -13.8 to -18.02 at the tested pH. The highest 

absolute average ζ-potential was -18.02 at pH ≈ 7. The measurements were in line with those 

conducted previously by Hao et al. (2017) (Hao et al., 2017) in which they reported that the 

absolute average ζ-potential was -16.88 for C. vulgaris at pH 7. CTAB showed an obvious 

capability to reduce the net charge of the algal cells upon the addition of ≈ 35 mg to the algae 

culture, therefore it perhaps eliminates their stable suspension. For instance, the average ζ-

potential at pH 8 reduced from -17.76 to -8.28 mV. The presence of ions in the microalgae 

culture had a negative effect on ζ-potential as shown in figure 3.5. The average ζ-potential, 

absolute value, increased when C. vulgaris was re-suspended in deionised water, e.g. at pH 8 

ζ-potential changed from -17.76 to -24.12 mV. The centrifugation of C. vulgaris and re-

suspension in deionised water resulted in the removal of the most positive ions in the BG11 

culture medium such as Na+, Mg2+, Ca2+, Cu2+, and K+. For the foam flotation process to recover 

microalgae successfully at higher recovery efficiency, the charge difference between the cell 

and surfactant should be high. This increases the capability of microalgae to capture surfactant 
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due to the electrostatic attractive forces between them. This observation was also validated by 

conducting some batch harvesting trials using the foam column on a microalgae culture that 

was centrifuged and re-suspended in deionised water. Wang et al. (2014) reported that the 

surface structures, in addition to extracellular products, are the main factors affecting the net 

charge of cell surfaces (J. Wang et al., 2014). These factors are directly related to the growth 

and metabolic level of the algae cells. Therefore, selection of the most suitable culture age in 

which medium ions are as low as possible is important for an efficient harvesting of microalgae 

by foam flotation. However, this may increase ash content in the harvested microalgae and thus 

reduce the biofuel yields. 

 

Figure 3.5: Zeta potential (ζ) of Chlorella vulgaris at different pH. Means ± standard error. 

3.3.3 Measurements of the contact angle 

The measured mean contact angles for C. vulgaris cells with and without CTAB are shown in 

figure 3.6. Due to the difficulties in getting an ideal surface because of the size and the shape 

of microalgae cells, the contact angle was measured over an algal mat according to Ozkan and 

Berberoglu (Ozkan and Berberoglu, 2013a). As seen from the contact angle measurements 

(Figure 3.6), Chlorella without any surfactant addition had hydrophilic surfaces (contact 

angle=30.17˚). This hydrophilicity was due to the surface functional groups present on the cell 

walls. C. vulgaris are algaenan-free species and the cell wall contains neutral sugars, proteins, 
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and uronic acids which have hydrophilic surface functional groups such as hydroxyl, carboxyl, 

and amine groups (Erbil, 2006; Ozkan and Berberoglu, 2013a). The contact angle value in this 

work was lower than that reported by Ozkan and Berberoglu (contact angle=42.7˚) which might 

be due to differences in the biochemical compositions between the algal samples. However, the 

stabilisation time for the probe liquid on the mats was 0.5 sec, a little longer than that adopted 

in Ozkan and Berberoglu’s work (0.2 to 0.3 sec) which might result in a higher contact angle.  

The low hydrophobicity of C. vulgaris increased after addition of 20 mg L-1 CTAB surfactant 

as the contact angle increased from 30.17 to 45˚. The increase was likely due to the attachment 

of long alkyl hydrophobic groups originating from CTAB after dissociation in water. When the 

CTAB concentrations increased to 30 and 40 mg L-1, the contact angles increased to 49.16 and 

53.87˚ respectively, indicating that the hydrophilicities of C. vulgaris reduced due to the 

additional attachments of hydrophobic alkyl groups as shown in figure 3.6. In contrast to the 

hydrophobicity test by the adhesion to hydrocarbons method, the contact angle method had a 

better capability to trace the influence of adding more CTAB on microalgae hydrophobicity 

while no significant increase was observed between 20 and 40 mg L-1 CTAB concentrations 

with the former method. 

 

Figure 3.6: Contact angle (degree) of Chlorella vulgaris at different CTAB concentrations. 

Means ± standard error.          
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3.3.4 Analysis of experimental design 

3.3.4.1 Fractional factorial design of experiments 

Factorial design of experiments (DOE) is often used as a screening test to differentiate the most 

significant factors from those of lesser importance (Montgomery, 2012). From the DOE 

screening trials, higher recovery efficiencies were achieved using the fine porous sparger. When 

the coarse porous sparger was used, the concentration factor increased; however, the recovery 

efficiency decreased. An estimation of the bubble size in the liquid pool was made based on 

Kutateladze and Styrikovich’s empirical formula, equation 3.7 (Wallis, 1969): 

𝑟𝑏 = [
𝜎𝑟𝑜

𝑔(𝜌𝑓 − 𝜌𝑔)
]

1
3⁄

 ⋯ (3.7) 

where 𝑟𝑏 is the bubble radius; 𝑟𝑜 is the sparger mean pore size (30 μm for fine porous and 154 

μm for coarse porous); 𝜎 is the fluid surface tension; 𝑔 is the acceleration due to gravity; and 

𝜌𝑓 and 𝜌𝑔 are the fluid and gas densities respectively. A bubble diameter of 1.02 mm is 

produced using the fine porous sparger at a CTAB concentration of 40 mg L-1, versus 1.76 mm 

with the coarse porous sparger. Smaller bubbles significantly improved the recovery efficiency 

(F = 25.08, p=0.001) but had no significant effect on the concentration factor. The concentration 

of algae in the foamate increased using the coarse porous sparger. Smaller bubbles provide a 

larger interfacial area for cell adsorption. They also have a longer residence time within the 

liquid pool, which increases contact time and adsorption resulting in a higher recovery 

efficiency. However, a drawback of smaller bubbles is the formation of a wetter foam due to a 

greater volume of interstitial liquid (of low algae concentration) trapped between the foam 

lamellae, combined with slower liquid drainage in the rising foam. Based on the DOE 

outcomes, the fine sparger was employed in all subsequent response surface experiments. 

3.3.4.2 Response surface design 

The design matrix and results obtained for the CCD are presented in table 3.4. The CCD data 

were evaluated to determine the statistical significance of each independent variable and the 

interactions among variables. 

The linear effects of all individual factors on concentration factor were significant (F = 216.18, 

P = < 0.001; Table 3.5). In addition, the square effects (i.e. square terms in the model) of 

surfactant concentration, air flow rate, and column height were also significant. The surfactant 

concentration had the largest effect on the concentration factor followed sequentially by air 

flow rate, column height, feed flow rate, surfactant concentration2, column height2, liquid pool 
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depth, and air flow rate2. There were significant interactions between: feed flow rate and 

surfactant concentration; feed flow rate and air flow rate; feed flow rate and column height; 

surfactant concentration and air flow rate; surfactant concentration and column height; air flow 

rate and column height; air flow rate and liquid pool depth; and column height and liquid pool 

depth (Table 3.5). Feed flow rate and surfactant concentration had the greatest effect on the 

concentration factor. 

Experimental 

trial number 

Variables Experimental results 

Feed 

flow rate 

Surfactant 

conc. 

Air 

flow 

rate 

Column 

height 

Liquid 

pool 

depth 

Concentration 

factor 

Recovery 

efficiency 

1 0 2 0 0 0 11 78 

2 1 1 -1 1 -1 59 23 

3 0 0 0 0 0 34 49 

4 0 0 0 0 0 37 51 

5 0 0 0 0 -2 65 34 

6 0 0 0 0 0 51 47 

7 0 0 2 0 0 10 59 

8 1 1 -1 -1 1 20 67 

9 0 0 0 -2 0 41 60 

10 0 0 0 0 0 53 37 

11 -1 1 1 -1 1 29 89 

12 -1 -1 -1 -1 1 63 49 

13 0 0 0 0 0 35 33 

14 -1 1 1 1 -1 30 63 

15 1 1 1 1 1 21 44 

16 -1 1 -1 -1 -1 49 56 

17 -2 0 0 0 0 23 43 

18 1 -1 -1 1 1 263 17 

19 1 -1 1 -1 1 30 21 

20 0 -2 0 0 0 156 7 

21 0 0 0 2 0 102 26 

22 0 0 0 0 2 27 90 

23 0 0 0 0 0 49 41 

24 -1 -1 -1 1 -1 121 23 

25 1 -1 1 1 -1 133 13 

26 -1 -1 1 1 1 40 43 

27 0 0 -2 0 0 90 26 

28 1 1 1 -1 -1 25 83 

29 1 -1 -1 -1 -1 154 12 

30 2 0 0 0 0 47 29 

31 -1 -1 1 -1 -1 52 39 

32 -1 1 -1 1 1 36 46 

33 -1 -1 1 -1 -1 53 41 

34 1 1 1 1 1 19 53 

35 1 1 1 -1 -1 27 86 

36 -1 -1 -1 1 -1 132 19 

37 1 1 -1 -1 1 18 68 

38 -1 1 -1 -1 -1 56 49 

39 1 1 -1 1 -1 43 21 

40 1 -1 1 1 -1 127 17 

41 -1 1 -1 1 1 35 51 
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42 1 -1 -1 -1 -1 168 11 

43 -1 1 1 1 -1 33 66 

44 -1 -1 1 1 1 47 13 

45 1 -1 1 -1 1 33 19 

46 1 -1 -1 1 1 241 15 

47 -1 1 1 -1 1 24 95 

48 -1 -1 -1 -1 1 59 28 
 

Table 3.4: Central composite design matrix and experimental results. 

All individual factors had a significant linear effect on recovery efficiency (Table 3.6). In 

addition, the square effect of the liquid pool depth was also significant. Surfactant 

concentration, column height, air flow rate, feed flow rate, liquid pool depth, and liquid pool 

depth2, in that order, most influenced the recovery of algal biomass. There were significant 

factor interactions between: surfactant concentration and air flow rate; surfactant concentration 

and column height; and air flow rate and liquid pool depth (Table 3.6), with the interaction 

between surfactant concentration and air flow rate or column height having the greatest effect 

on recovery efficiency. 

Source of variance 
Degree of 

freedom 

Adj. Sum of 

squares 

Adj. Mean 

square 
F-value P-value 

Model 16 148173 9261 101 <0.001 

   Linear 5 99374 19875 216 <0.001 
  Feed flow rate 1 8169 8169 89 <0.001 
  Surfactant conc. 1 54908 54908 597 <0.001 
  Air flow rate 1 22753 22753 248 <0.001 
  Column height 1 10304 10304 112 <0.001 
  Liquid pool depth 1 3240 3240 35 <0.001 

   Square 3 6845 2282 25 <0.001 
  Surfactant conc. * Surfactant conc. 1 4416 4416 48 <0.001 

  Air flow rate * Air flow rate 1 407 407 4 0.044 

      Column height * Column height 1 2487 2487 27 <0.001 

   2-way interactions 8 42102 5263 57 <0.001 
  Feed flow rate * Surfactant conc.                      1 12880 12880 140 <0.001 
  Feed flow rate * Air flow rate 1 2965 2965 32 <0.001 
  Feed flow rate * Column height                      1 3655 3655 40 <0.001 
  Surfactant Conc. * Air flow rate                  1 10440 10440 114 <0.001 
  Surfactant Conc. * Column height 1 6728 6728 73 <0.001 
  Air flow rate * Column height                      1 861 861 10 0.005 
  Air flow rate * Liquid pool depth                      1 1128 1128 12 0.001 
  Column height * Liquid pool depth                 1 3445 3445 38 <0.001 

Error 31 2850 92   

   Lack-of-Fit 26 2469 95 1 0.442 

   Pure Error 5 381 76   

Total 47 151023    

Table 3.5: ANOVA results for the central composite model for the concentration factor. 

The plots of the linear, square and interaction effects of the factors for concentration factor and 

recovery efficiency are shown in figures 3.7 and 3.8 respectively. Lower feed rates resulted in 
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lower concentration factors and higher recovery efficiencies (Figures 3.7A and 3.8A). This is 

due to the longer retention time of algae cells in the effervescent liquid which provides more 

contact time between bubbles and algae. As the feed flow rate increased, the concentration 

factor increased and the recovery efficiency decreased. According to the adsorption isotherm 

models for surface active materials such as the Langmuir isotherm model, it is clear that the 

surface excess, i.e. surface concentration, increases when the surfactant concentration in the 

bulk liquid increases (Eastoe and Dalton, 2000). Similarly, when the feed flow rate increases, 

the concentration of algae and free surfactant increases in the liquid pool at the base of the foam 

column, i.e. the concentration is slowly depleted and the surface concentration is 

correspondingly high. However, both microalgae and un-adsorbed surfactant concentrations in 

the liquid pool increase when the feed flow rate is increased. Consequently, the latter influences 

process responses similar to that of surfactant concentration in the feed stream and leads to a 

decrease in the influence of feed flow rate. 

Source of variance 
Degree of 

freedom 

Adj. Sum of 

squares 

Adj. Mean 

square 
F-value P-value 

Model 9 23791 2643 40 <0.001 

   Linear 5 20757 4151 63 <0.001 

      Feed flow rate 1 1320 1320 20 <0.001 

  Surfactant concentration 1 13032 13032 199 <0.001 

  Air flow rate 1 2190 2190 33 <0.001 

  Column height 1 3133 3133 48 <0.001 

  Liquid pool depth 1 1082 1082 17 <0.001 

   Square 1 521 521 8 0.008 

      Liquid pool depth* Liquid pool depth 1 521 521 8 0.008 

   2-way interactions 3 2502 834 13 <0.001 

      Surfactant Conc.*Air flow rate 1 861 861 13 0.001 

  Surfactant Conc.*Column height 1 861 861 13 0.001 

  Air flow rate* Liquid pool depth 1 780 780 12 0.001 

Error 38 2491 66   

   Lack-of-Fit 33 2235 68 1 0.412 

   Pure Error 5 256 51   

Total 47 26282    

Table 3.6: ANOVA results for central composite model for the recovery efficiency. 

Increasing CTAB concentration reduces the concentration factor, whereas it increases the 

recovery efficiency (Figures 3.7A and 3.8A). Thus, lower concentration factors and higher 

recovery efficiencies were obtained at higher CTAB concentrations. The surface tension of the 

effervescent liquid reduces when the concentration of surface-active materials increases. This 

causes a reduction in bubble size leading to a wetter foam (T. Coward et al., 2013; P. Stevenson 

and Li, 2014; T. Coward et al., 2015). Therefore, a wetter foam results in a lower concentration 

factor and a higher recovery efficiency. 
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Air flow rate negatively affected the concentration factor but improved the recovery efficiency. 

Thus, at higher air flow rates lower concentration factors and higher recovery efficiencies were 

observed. The amount of bubble surface available in a flotation column is crucial in collecting 

microalgae cells. The effect of air flow rate can be investigated by calculating the bubble surface 

area flux (𝑆𝑏) rather than gas hold-up. Bubble surface area flux can be evaluated from the bubble 

flow rate (𝑛𝑏), the mean or Sauter mean bubble diameter (𝑑𝑏), and the column cross sectional 

area (𝐴𝑐) as shown in equation 3.8 (Bouchard et al., 2009), where 𝐽𝑔 is the superficial gas 

velocity.  

𝑆𝑏 =
𝑛𝑏𝜋𝑑𝑏

2

𝐴𝑐
=  

6. 𝐽𝑔

𝑑𝑏
 … (3.8) 

Increasing the air flow rate will increase the bubble surface area flux resulting in higher 

recovery efficiencies. Furthermore, Stevenson and Li (Paul Stevenson and Li, 2012b) stated 

that in a porous medium the generated bubble size decreases with increasing gas flow rate. At 

lower gas rates, only bigger pores are active and generating mainly big bubbles. When the gas 

flow rate increases, most of the inactive small pores become active, leading to an increased 

number of smaller bubbles (L.K. Wang et al., 2010b), and thus a wetter foam. Saleh et al. (2006) 

stated that, in a foam fractionation column, increasing the volume of a wet foam with the gas 

flow rate was due to the short residence time for the rising foam to drain the liquid, resulting in 

a decrease in enrichment and an increase in recovery efficiency (Saleh et al., 2006). It seems 

possible that such a reason contributed to some extent to decreasing the concentration factor 

and increasing the recovery efficiency of the harvested algae. 

The effect of column height was comparable to that of the feed flow rate. An increasing column 

height positively influenced the concentration factor but at the expense of the recovery 

efficiency (Figures 3.7A and 3.8A). The fraction of interstitial liquid trapped between the foam 

lamellae was negatively related to the column height. This is due to the change in bubble size 

distribution in the zone beyond that where capillary forces become dominant (de Vries, 1972; 

Paul Stevenson and Li, 2012b). Also, the foam carrying microalgae dries as it rises up the 

column, consequently, microalgae cells stick on the column wall at the top resulting in a 

reduction in the recovery efficiency. This was observed clearly through the harvesting trials 

especially when low CTAB concentration and air flow rate were used. 

An increasing liquid pool depth had a negative effect on the concentration factor but increased 

the recovery efficiency. This was due to the longer retention time of algae cells and hence a 
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longer contact time. A deeper liquid pool also increases the gas residence time at the same 

bubble rise velocity i.e. more time for bubbles to adsorb cells. 

 

Figure 3.7: The main effects (A) and interaction plots (B) for the mean of concentration factor 

(CF) (α = 0.05). Where (a) is the feed flow rate, (b) is the surfactant concentration, (c) is the air 

flow rate, (d) is the column height, and (e) is the liquid pool depth. 
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Figure 3.8: The main effects (A) and interaction plots (B) for the mean of the recovery 

efficiency (RE) (α = 0.05). Where (a) is the feed flow rate, (b) is the surfactant concentration, 

(c) is the air flow rate, (d) is the column height, and (e) is the liquid pool depth. 

The contour plot for significant interactions affecting the concentration factor is shown in figure 

3.9 in which any two factors change within the design range while the other three factors are 

kept constant at their centre values. This reinforces the importance of the interaction between 

surfactant concentration and the feed flow rate. Concentration factors in the range of 250 to 300 

can be achieved by combining a high feed flow rate with a low surfactant concentration. 

Similarly, higher concentration factors were gained due to the interaction between the surfactant 

concentration with air flow rate and surfactant concentration with column height (Figures 3.9D 
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and E). Concentration factors between 150 and 200 can be achieved by combining a high feed 

flow rate with a low air flow rate and/or high column height (Figures 3.9B and C). Thus, 

increasing feed flow rate can counteract the negative effects of the high surfactant concentration 

and air flow rate on the concentration factor response. 

The quadratic model (equation 3.9) for concentration factor was significant (p = >0.05; Table 

3.5). The lack-of-fit compares the residual error to the pure error that was obtained from the six 

replicate runs at the centre points. In addition, high R2 and R2
adj values were achieved for the 

fitted model, 98.11 and 97.14% respectively, this is to say the model can explain more than 

98% of the total variability in the data. 

𝐶𝐹 = 442.1 + 387.3𝐹 − 9.83𝑆 − 142.4𝐴 − 1.07𝐻 − 7.83𝐷 + 0.13𝑆2 + 17.55𝐴2 + 0.02𝐻2

+ 0.08𝐷2 − 10.03𝐹𝑆 − 96.2𝐹𝐴 + 2.1𝐹𝐻 + 2.45𝐹𝐷 + 3.61𝑆𝐴 − 0.06𝑆𝐻

− 0.41𝐴𝐻 − 1.83𝐴𝐷

+ 0.06𝐻𝐷                                                                       ⋯ (3.9) 

 

Figure 3.9: Contour plots for the significantly interacting factors in the quadratic model for 

concentration factor (CF). Hold values: feed flow rate = 0.4 L min-1, surfactant concentration = 

40 mg L-1, air flow rate = 1.5 L min-1, column height = 96 cm, liquid pool depth = 13.5 cm. 

Where: 𝐹 is the feed flow rate; 𝑆 is the surfactant concentration; 𝐴 is the air flow rate; 𝐻 is the 

column height; and 𝐷 is the effervescent liquid depth. 

The recovery efficiency interaction plots (Figures 3.8B and 3.10B) revealed that recovery 

efficiencies of over 90% can be achieved by combining high surfactant concentration and high 

air flow rate, due to smaller bubbles produced when the inlet surfactant concentration increases 
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resulting in a high specific surface area and a longer time for adsorption. On the other hand, 

increasing column height counteracts the positive effect of the high surfactant concentration 

(Figures 3.8B and 3.10A) due to the increased residence time and corresponding interstitial 

liquid drainage opportunities that a taller column provides.     

The regression model (equation 3.10) was significant (p = 0.412), explaining up to 90% of the 

total variability in the data. 

𝑅𝐸 = −50 − 29.07𝐹 + 2.21𝑆 − 6.2𝐴 + 0.47𝐻 + 044𝐷 + 0.098𝐷2 + 1.04𝑆𝐴 − 0.02𝑆𝐻

− 1.52𝐴𝐷                                                                                                        ⋯ (3.10) 

Where: 𝐹 is the feed flow rate; 𝑆 is the surfactant concentration; 𝐴 is the air flow rate; 𝐻 is the 

column height; and 𝐷 is the effervescent liquid depth. 

 

Figure 3.10: Surface plots for the significantly interacting factors in the quadratic model for 

recovery efficiency (RE). Hold values: feed flow rate = 0.4 L min-1, surfactant concentration = 

40 mg L-1, air flow rate = 1.0 L min-1, column height = 110 cm, liquid pool depth = 13.5 cm. 

3.3.5 Harvesting of freshwater and marine microalgae based on the optimised flotation 

factors 

The outcomes from the CCD design demonstrated that CTAB concentration, air flow rate, and 

column height had the strongest effects on biomass recovery. However, using a high CTAB 

concentration and a high air flow rate does not favor high concentration factor. Instead, 

prolonging the contact time for adsorption by increasing liquid pool depth and reducing feed 

flow rate with a moderate CTAB concentration and air flow rate is more desirable to achieve a 

good combination between recovery and enrichment of microalgae biomass. The factors from 

the CCD design were optimised by the response optimiser to achieve this objective. The values 

of factors under the optimised design were CTAB = 35 mg L-1, air flow rate = 1 L min-1, feed 

flow rate = 0.1 L min-1, column height = 146 cm, and liquid pool depth = 25 cm. C. vulgaris, I. 
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galbana, and T. suecica were then harvested continuously based on the above values. Results 

for recovery efficiency and the concentration factor are shown in figure 3.11. 

 

Figure 3.11: The recovery efficiency and the concentration factor plots for Chlorella vulgaris, 

Isochrysis galbana, and Tetraselmis suecica based on the optimised design. Means ± standard 

error.  

The results showed an excellent recovery efficiency of 95% and a final biomass 173-times more 

concentrated than the initial C. vulgaris culture. For marine microalgae, recovery efficiencies 

of 93% and 89% at 271 and 143 enrichment factors were obtained for I. galbana and T. suecica 

respectively. Even though the concentration factors for all harvested species were not similar, 

attaining similar recovery efficiencies for both freshwater and marine microalgae increases the 

potential of foam flotation becoming a media independent harvester as opposed to coagulation 

and flocculation processes where high amounts of coagulants and flocculants are required for 

harvesting marine microalgae due to the ionic strength of seawater. More stable foam was also 

noticed through the harvesting trials of the marine microalgae which is probably due to the ions 

in the seawater. 
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Very similar recovery efficiencies of C. vulgaris were observed in both the current work and 

that conducted by Kurniawati et al. (2014) (Kurniawati et al., 2014). They were able to achieve 

a separation efficiency of 93% using a foam flotation column operated in batch mode with 

natural saponin surfactant and chitosan flocculants together. Whilst their work has the 

advantage of using natural biochemicals to harvest microalgae, the need for additional chemical 

treatment increases the harvesting cost. In comparison to the batch flotation harvesting trials of 

C. vulgaris conducted by Liu et al. (1999), a lower recovery efficiency was gained in their work 

(90%) which was probably due to the lower air flow rate (0.114 L min-1) even though higher 

CTAB concentration (40 mg L-1) was used (J. C. Liu et al., 1999). The flotation recovery 

efficiencies obtained in this work for Chlorella and Tetraselmis species were close to those 

obtained previously by Garg et al. (2013) even though the differences between both 

experimental trials include surfactant types and dosage, the flotation apparatus type, and the 

operating mode (Garg et al., 2013). They used mechanical flotation cells with the addition of 

two surfactant types (tetradecyl trimethylammonium bromide, C14TAB and dodecylammonium 

hydrochloride, DAH). However, the enrichments gained herein for both species were many-

folds higher than those obtained by the Garg group. This was probably due to the significant 

interplay between the process factors, as well as the effect of column height as the foam carrying 

microalgae dries as it rises up the column. This presents another advantage to column flotation 

besides the simplicity of construction and low energy consumption. In comparison to other 

flotation harvesting trials, the percentage recovery obtained in this work for C. vulgaris (95%) 

was similar to that obtained by Henderson et al. (94.8%) (R. K. Henderson et al., 2010). 

However, they used dissolved air flotation (DAF) in a batch mode (10 min) with aluminium 

sulphate as a coagulant to harvest a culture of C. vulgaris of cell density of 5 × 105±5 × 104 

cells ml-1. Prior to their work above, Henderson et al. (2008) conducted harvesting trials also 

using DAF working in a batch mode but with different types of cationic and anionic surfactants 

instead of coagulants (Rita K. Henderson et al., 2008). The maximum removal efficiency of C. 

vulgaris obtained in their work (54%) was substantially lower than that obtained by the current 

work. This reduction in the percentage recovery was probably due to the addition of surfactants 

to the saturator rather than the microalgae culture which has advantages of reducing the bubble 

size and altering the bubble charge but it did not enhance the hydrophobicity of microalgae or 

compensate the absence of coagulant role on increasing the cell size due to the aggregation. 

With the exception of Garg et al.’s work, neither the concentration factors nor the harvesting 

economics were reported in the other works since their trials were performed for wastewater 

treatment rather than producing biomass for biofuel production. 
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On the other side, CTAB, can disrupt the algae cell wall and promote cell lysis. Coward et al. 

(2014) observed that the presence of CTAB in the harvested microalgae enhanced lipid 

recovery and profile as well as increased the solubility of some phospholipids in the cell 

membrane (T. Coward et al., 2014). The disruption of the algal cell wall and the enhancement 

in lipid recovery and profile due to the CTAB surfactant attached to the harvested microalgae 

offer additional advantages to the flotation technique to drive down the cost of processing and 

produce biomass which is more advantageous for liquid hydrocarbon biofuels.        

3.3.7 Power consumption and harvesting economics 

Selecting the optimal harvesting technique relies on the relationship between the efficiency of 

algal biomass recovery and the operational energy requirements. The inconsistency between 

harvesting efficiency and energy consumption is the major drawback in most harvesting 

techniques. The power consumption associated with bubble generation was calculated based on 

the pressure of the compressed air through the sparger plus other operating conditions. The 

compressor work 𝑊𝑐𝑜𝑚𝑝 (J mol-1) was calculated according to equation 3.6 after measuring the 

compressed gas pressure (P1) using the pressure gauge as shown in Table 3.7. Other work 

values were determined after converting joule to kilowatt-hour and calculating the number of 

moles to volume ratio of the gas using the ideal gas law (equation 3.11) at the conditions (𝑇𝑜 , 𝑃1) 

in table 3.7. Only one calculated value was reported herein even though all compressor works 

were calculated for both sparger types, liquid pool depths, and air flow rates. 

𝑛

𝑣
=

𝑝

𝑅𝑇
   … (3.11) 

The power consumptions of most harvesting techniques in the literature were reported in the 

units of kWh m-3 of algae culture. This can be determined if the calculated work value (kWh 

m-3 of gas) is multiplied by the ratio of the volumetric flow rate of the gas inlet to the volumetric 

flow rate of the medium inlet (feed) in the flotation process. The model values of air flow rate 

and feed flow rate used to harvest the three species of microalgae were of 1 L min-1 and 0.1 L 

min-1 (0.001 and 0.0001 m3 min-1) respectively; therefore, the ratio of the volumetric flow rate 

of gas to the volumetric flow rate of microalgae feed was 10. 

The calculations of the total cost of the foam flotation column including compressor work and 

chemicals to harvest 1 m3 of microalgae culture were also performed as shown in table 3.7. The 

continuous foam flotation (this work) had a low total harvesting cost of US$ 0.179 in 

comparison to that calculated by Coward et al. (US$ 0.915) to harvest the same volume of 

microalgae by dissolved air flotation using ferric chloride flocculants (T. Coward et al., 2015). 
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Condition 
𝑅 

J/mole.K 

𝑇𝑜 
K 

𝜂𝑖𝑠 𝛾 (air) 
𝑃1 

Kpa 

𝑃0 
Kpa 

𝑊𝑐𝑜𝑚𝑝 

J/mole 

of gas 

𝑊𝑐𝑜𝑚𝑝 

kWh/mol

e of gas 

𝑊𝑐𝑜𝑚𝑝 

kWh/m3 

of gas 

Fine porous 

sparger, 1 L 

min-1, air flow 

rate, and 25 cm 

liquid pool 

depth 

8.314 293.15 0.7 1.4 113.4 101.3 399.27 1.11*10-4 5.16*10-3 

 

Condition 

𝑊𝑐𝑜𝑚𝑝 

kWh/m3 of 

algae 

Energy cost 

US$ per 

kWh 

Chemical 

cost 

US$ kg-1 

Chemical 

additive 

g m-3 

Chemical 

cost 

US$ m-3 

Total cost 

US$ (to 

harvest 1 m3 

of 

microalgae) 

Fine porous 

sparger, 1 L 

min-1, air flow 

rate, and 25 cm 

liquid pool 

depth 

0.052a 0.004b 5c 35 0.175 0.179 

a The value was calculated based on the compressor work kWh per m3 of gas and the ratio of the inlet gas flow rate and feed 

flow rate in foam flotation process 

b Energy cost was calculated from the data prepared by U.S. Deparment of Energy based on average price of electricty to the 

US industrial sector as of November 2017-US$ 0.0679 per kWh (Hankey, 2018) 

C Based on a bulk price of US$ (1-5) per kg with a min. order of 1 metric ton (www.alibaba.com) 

  

Table 3.7: The compressor work 𝑊𝑐𝑜𝑚𝑝 and the predicated cost of harvesting 1 m-3 of algae 

culture. 

Water loss due to evaporation was determined in the current work by calculating the humidity 

of saturated air and the humidity of air. The humidity of the saturated air (𝐻𝑠) in 𝑘𝑔𝑤𝑎𝑡𝑒𝑟 per 

𝑘𝑔𝑑𝑟𝑦 𝑎𝑖𝑟 and the percentage humidity (𝐻%) can be calculated by the equations 3.12 and 3.13. 

𝐻𝑠 = (
𝑀𝑤

𝑀𝐴
) (

𝑃𝑠

𝑃 − 𝑃𝑠
) … (3.12) 

𝐻% = 100 (
𝐻

𝐻𝑠
) … (3.13) 

Where: 𝑀𝑤 is the molecular weight of water (18.016 g mol-1); 𝑀𝐴 is the molecular weight of 

air (28.84 g mol-1); 𝑃𝑠 is the vapour pressure of the water at system temperature (Pa); 𝑃 is the 

system pressure (Pa); and 𝐻 is the humidity of air in 𝑘𝑔𝑤𝑎𝑡𝑒𝑟 per 𝑘𝑔𝑑𝑟𝑦 𝑎𝑖𝑟. 

The vapour pressure of water at 18 ˚C is 2.0665 kPa (from steam table). Thus, using equation 

3.12, the humidity of saturated air is 0.013 𝑘𝑔𝑤𝑎𝑡𝑒𝑟𝑘𝑔𝑑𝑟𝑦 𝑎𝑖𝑟
−1 .  

http://www.alibaba.com/
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Assuming 100% relative humidity, the humidity of air is 0.013 𝑘𝑔𝑤𝑎𝑡𝑒𝑟𝑘𝑔𝑑𝑟𝑦 𝑎𝑖𝑟
−1 . During the 

optimised harvesting trials, the flow rate of air and culture feed were 1000 mL min-1 and 100 

ml min-1 respectively. The volume of water in the air 𝑉𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑎𝑖𝑟 is: 

𝑉𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑎𝑖𝑟 = 𝑄𝑎𝑖𝑟 ∗ 𝜌𝑎𝑖𝑟 ∗ 𝐻 ∗
1

𝜌𝑤𝑎𝑡𝑒𝑟
 

𝑉𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑎𝑖𝑟 = 1000
𝑚𝑙

𝑚𝑖𝑛
∗ 1.212 ∗ 10−6

𝑘𝑔

𝑚𝑙
∗ 0.013

𝑘𝑔𝑤𝑎𝑡𝑒𝑟

𝑘𝑔𝑑𝑟𝑦𝑎𝑖𝑟
∗

1

0.001
𝑘𝑔
𝑚𝑙

 

𝑉𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑎𝑖𝑟 = 0.0158 ml min-1 

Where: 𝑄𝑎𝑖𝑟 is the air flow rate (ml min-1), 𝜌𝑎𝑖𝑟 and 𝜌𝑤𝑎𝑡𝑒𝑟 are the densities of air and water 

(kg ml-1) respectively. Based on the calculated water fraction in air, it can be concluded that the 

water loss is negligible and does not affect the enrichment of the harvested microalgae.    

3.4 Conclusion 

In foam flotation, collectors (surfactants) are important to enhance the hydrophobicity of 

microalgae cells and create a metastable foam yielding high recovery efficiencies and biomass 

enrichment (concentration factor). The measurements of the surface characteristics of C. 

vulgaris demonstrated that this species has an electronegative and hydrophilic surface. CTAB 

was found to be the most appropriate surfactant due to the electrostatic interaction between it 

and the electronegative microalgae. Moreover, CTAB was able to reduce the net charge as well 

as the hydrophilicity of C. vulgaris, resulting in better harvesting performances. This was due 

to the attachment of the positive long hydrophobic alkyl groups originating from CTAB after 

dissociation in water. The harvesting trials demonstrated that the continuous foam flotation 

process operated at the optimised factors yielded recovery efficiencies of 95, 93, and 89% 

together with 173, 271 and 143-fold biomass enrichments for freshwater C. vulgaris and marine 

I. galbana and T. suecica respectively. However, the insignificant reduction in the recovery 

efficiencies of the marine species was likely due to the salinity of seawater or to some extent, 

the surface physicochemical properties of these species. Generally, within the flotation process 

there is a trade-off between attaining a high recovery efficiency and a high concentration factor 

(Alhattab and Brooks, 2017); however, the current continuous process has circumvented that 

particular compromise, representing a significant advance in foam flotation harvesting of 

microalgae biomass. What is more, our continuous foam flotation column demonstrated a very 

low power consumption, 0.052 kWh m-3, with a low total harvesting cost (including the 

chemical cost) of US$ 0.179 per 1 m3 of microalgae. Our findings demonstrate that foam 
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flotation is a very promising approach for the continuous bulk harvesting of microalgae 

biomass, whether it be for high-value fine chemicals or low-value biofuels. Indeed, the 

continuous harvesting approach may be especially relevant for the wastewater industry wherein 

microalgae are used as nutrient scrubbers, or in environmental management and remediation, 

e.g. the removal of harmful or toxic microalgae blooms from waterways, including municipal 

water supplies. 
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Chapter 4  

Continuous harvesting of microalgae by foam flotation: process 

intensification through enhanced drainage 

 

Abstract 

Foam flotation can be utilised as an energy-efficient harvesting and enriching technique for 

microalgae biomass with the potential to significantly reduce the production cost of algae 

derived biofuel. The concentration of algae in the foamate from a foam column is determined 

by a combined effect of interfacial adsorption and foam drainage. In this chapter, three tubular 

modules with differing smooth-successive contraction and expansion ratios were compared for 

drainage enhancement. These modules (hereafter called foam risers) had diameter ratios of 

0.25, 0.5, and 0.75, a transition section of 60˚ angle on both sides, and a 7 cm long throat section. 

The impact of the risers on drainage of the liquid fraction in the rising foam was measured 

according to the pressure profile across the column. Harvesting experiments were performed 

using Chlorella vulgaris at air flow rates of 1.0, 1.5, and 2.0 L min-1 and at four concentrations 

(20, 30, 40, and 50 mg L-1) of the cationic surfactant, hexadecyltrimethylammonium bromide 

(CTAB, CH3(CH2)13N(CH3)3-Br). Further trials were also conducted under the optimised 

design for the foam flotation process that delivered the best combination of microalgae recovery 

efficiency and concentration factor. The microalgae concentration in the foamate increased 

approximately 1.2 to 3 times using the risers. The highest concentration factors and recovery 

efficiencies were obtained under process conditions (CTAB = 35 mg L-1, air flow rate = 1 L 

min-1, feed flow rate = 0.1 L min-1, column height = 146 cm, liquid pool depth = 25 cm, fine 

porosity sparger). A recovery efficiency of 91% was obtained with a concentration factor of 

722, which was approximately 4.2 times greater than that obtained without a riser. The 

continuous foam flotation column fitted with a foam riser of 0.25 diameter ratio demonstrated 

a very low power consumption, 0.052 kWh m-3 of algae culture, with a total suspended solids 

yield of 14.6%; this compares favourably with other dewatering techniques such as 

centrifugation and filtration. The presence of the smooth-successive contraction and expansion 

risers engenders significant intensification of the foam flotation column and thus the process. 

Keywords: Foam flotation, Foam drainage, Algae biofuels, Microalgae harvesting, Process 

intensification 
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4.1 Introduction 

Global challenges coincident with fossil fuels burning (energy security, environmental 

pollution, climate change) are some of the main drivers behind the ongoing search for 

affordable, reliable and environmentally friendly fuels (Pragya et al., 2013). Within the 

transport industry biofuels play a central role in addressing demand for liquid fuels; however, 

environmental, economic and ethical problems continue to dog the expansion of biofuels 

(Muylaert et al., 2017). Microalgae have as yet unrealised potential as a third generation 

biofuels feedstock (Wenchao Yang et al., 2014). Mass microalgae cultures have low suspended 

solids content which necessitates extensive dewatering operations prior to downstream 

processing. The harvesting and dewatering stage can account for approximately one third of the 

production costs of biofuels from microalgae, and as such represents a logical target for 

efficiency gains through innovation. 

In addition to the dilute nature of algae cultures, the small cell size (the majority of strains being 

less than 30 μm), combined with a negatively charged cell surface, ensure that most harvesting 

techniques have a high energy requirement and are consequently not cost-effective (Milledge 

and Heaven, 2012). 

Among the many harvesting techniques that have been reported, flotation, which is an 

adsorptive bubble separation technique, shows genuine promise as a microalgae biomass 

harvesting and enrichment method (Ndikubwimana et al., 2016). Foam is highly concentrated 

dispersions of gas (dispersed phase) in a liquid (continuous phase) (Bhakta and Ruckenstein, 

1997). Foam generated by surface-active materials (surfactants) in foam flotation columns 

represents an effective medium to adsorb microalgae as it presents a high specific surface area, 

which results in a high recovery efficiency combined with the collection of only a small volume 

of interstitial liquid, enabling good biomass enrichment. During producing foam, different 

mechanisms either to form, stabilise, or destroy foam are involved including the formation of 

liquid films and foams, drainage, coarsening of foams, and rupture of liquid films (Jianlong 

Wang et al., 2016a). 

Although the foam flotation column can achieve a significant combination of high recovery 

efficiency and concentration factor, further enhancement in the concentration factor of 

microalgae is pivotal to markedly lower downstream dewatering and drying costs. In adsorptive 

bubble separation, the enrichment can be increased if the liquid quantity is minimised while 

maintaining the flux of bubble surfaces (Xueliang Li et al., 2011a). Chapter three demonstrated 

that the factors of foam flotation had opposing effects on both recovery efficiency and 
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concentration factor (see 3.3.4 analysis of experimental design). For example, a higher surface 

area for adsorption of microalgae can be obtained by increasing surfactant concentration, but 

simultaneously the interstitial liquid volume (of low algae concentration) will concomitantly 

increase, thus lowering the concentration factor.  

Foam drainage is the passage of liquid downward through a foam. It is a complex 

physicochemical hydrodynamic process governed by several factors including the 

hydrodynamic parameters of the foam system such as the shape and size of the Plateau borders, 

liquid hold-up in foam, gas–liquid interface properties, as well as the rate of foam destruction 

due to the bubble coalescence because of the inter-bubble gas diffusion or the rupture of liquid 

films between neighbouring bubbles; nevertheless, these simultaneous factors are yet to be fully 

understood (Kruglyakov et al., 2008).  

Several methods have been proposed to reduce the liquid volume within a foam column. The 

superficial drainage velocity in a vertical foam column ( 𝑗𝑑) can be calculated using the 

empirical equation 4.1: 

𝑗𝑑 =
𝜌𝑓𝑔𝑟𝑏

2

𝜇
𝑚𝜀𝑛 … (4.1) 

Where 𝜌𝑓 and 𝜇 are the density and viscosity of the interstitial liquid respectively; 𝑔 is 

gravitational acceleration; 𝑟𝑏 is an average bubble size; 𝑚 and 𝑛 are adjustable parameters 

which are constants for a given system (they are calculated by a forced drainage method); and 

𝜀 is the liquid fraction of the foam. It is clear from equation 4.1 that the only way to increase 

the superficial drainage velocity without changing liquid properties is by increasing the bubble 

size or liquid fraction (P. Stevenson and Li, 2014). 

Smaller bubbles offer a larger interfacial area for cell adsorption. They also have a longer 

residence time within the liquid pool, which increases contact time and adsorption resulting in 

a higher recovery efficiency. However, a drawback of smaller bubbles is the formation of a 

wetter foam due to a greater volume of interstitial liquid trapped between the foam lamellae, 

combined with slower liquid drainage in the rising foam. Bando et al. (2000) fabricated a 

flotation column to recover metal ions in a manner similar to that of an air-lift reactor by 

inserting a draft tube into the liquid pool and sparging gas bubbles through the tube. The smaller 

bubbles were recirculated to the bottom through the downcomer due to the liquid convection 

established by the draft tube. This resulted in a foam consisting mainly of large bubbles (Bando 

et al., 2000). However, even though they managed to gain a drier foam, a lower metal ions 

recovery rate was obtained. Similar results were obtained in Chapter three when a gas sparger 
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of a coarse porosity was used except that Bando achieved better adsorption rate when the draft 

tube was used. Aquayo and Lemlich (1974) succeeded in reducing the liquid fraction within a 

foam in a foam fractionation column at high superficial gas velocities using perforated plates 

with circular orifices of 2 mm diameter and a 3% perforation area (Aguayo and Lemlich, 1974). 

However, Aguayo and Lemlich also reported that a plate-less column running at low gas 

velocities performed better than the column with perforated plates. Wang et al. (2010) used a 

vacuum to enlarge the bubble size within the foam layer in a foam fractionation column, 

obtaining a higher concentration factor but at the expense of a lower recovery efficiency 

(Jianlong Wang et al., 2010a). 

Alternative approaches to enhance foam drainage by manipulating the foam flow through 

inclined plates have been proposed (Dickinson et al., 2010; Yong Wang et al., 2013b), as well 

as spiral internal structures (Q. W. Yang et al., 2011b), and via sudden contraction and 

expansion using a foam riser (Xueliang Li et al., 2011a). Wang et al. (2013) trialled an inclined 

foam channel to enhance foam drainage for protein recovery from wastewater. Under the best 

conditions, they achieved an enrichment of 10.2, which was 1.93 times that gained using a 

conventional vertical column (Yong Wang et al., 2013b).  Using internal spirals in the foam 

fractionation column increased the enrichment of sodium dodecyl sulphate to 15.7, which was 

2.5 times that obtained with a conventional column (Q. W. Yang et al., 2011b). However, both 

the inclined and spiral approaches suffered from reduced recovery efficiencies. 

In this Chapter, the drainage enhancement of foam carrying microalgae is investigated in a 

continuous foam column using sections with smooth-successive contraction and expansion. We 

offer a simple design foam riser that can easily be fitted into a foam column unlike other more 

complex drainage improvement methods such as spiral internal or inclined channels. To the 

best of our knowledge, this is the first study to attempt to intensify the foam flotation harvesting 

of microalgae biomass for biofuel production. 

4.2 Materials and methods 

4.2.1 Microalgae culture 

Non-axenic Chlorella vulgaris was grown in three 10 L Nalgene polycarbonate carboys using 

BG11 medium at 20 ± 2 ˚C with a 16L:8D photoperiod using a mix of cold and warm 

fluorescent lights with an average illuminance of 2,500 lux. The cultures were agitated by 

aeration using an aquarium air pump (Koi Air, KA50, 0.032 mPa), and maintained semi-

continuously. 
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4.2.2 Foam column dimensions 

A bench scale poly(methyl methacrylate) flotation column was used (Figure 4.1), of 51.5 mm 

internal diameter and a column height that could be adjusted between 30-160 cm by attaching 

additional tubular modules of 25, 30 or 50 cm lengths. The inlet mixture consisted of algae 

culture with added surfactant (CTAB: hexadecyltrimethylammonium bromide (CTAB, 

CH3(CH2)13N(CH3)3-Br)) from a 25 L reservoir. The processed culture was discharged to waste 

from the outlet stream valve at the base of the column, 1 cm above the sparging media. The 

microalgae culture and surfactant were mixed in the feed tank for 10 mins using a magnetic 

stirrer before and during the harvesting experiments. The feed flow rate was measured and 

controlled by a valve with an ultrasonic flowmeter (Atrato, Titan, UK). Another valve was 

placed on the discharge stream to control the liquid depth in the column. The foam was collected 

at the top of the column using an annular trough of 30 cm in diameter and 15 cm deep. Air 

bubbles (dispersed phase) were generated by introducing compressed air through a sparger. The 

sparger was made from ultra-high molecular weight polyethylene with a thickness of 6.0 mm, 

a diameter of 51.5 mm, and a mean pore size of 30 µm. The air flow rate for each trial was 

adjusted before the inlet mixture was fed to the column to prevent liquid weeping into the gas 

line. 

4.2.3 Drainage enhancer module   

The column described in figure 4.1 is a conventional foam flotation column. In this work, three 

foam risers of different smooth-successive contraction and expansion ratios were developed 

with a structure similar to a Venturi tube (Figure 4.2). These modules had 0.25, 0.5, and 0.75 

diameter ratios, a transition section of 60˚ angle on both sides, and a 7 cm long throat section. 

The risers were drawn in Google SketchUp 2015 and printed using a 3D printer (Stratasys, 

model uPrint SE Plus, USA). Each riser was individually inserted between two column tubular 

modules during harvesting trials. 

A smooth-successive rather than a sudden-successive contraction and expansion riser design 

was chosen as in preliminary trials we failed to obtain a sufficiently high algae recovery 

efficiency with the latter design whereupon the microalgae in the rising foam adhered to the 

clearance around the riser orifice. The position of the foam riser within the column was not 

studied as this was beyond the scope of this work plus the foam is wetter in the zone adjacent 

to the bubbly liquid-foam layer whereas it is drier at the top of the column. Therefore, as a 

compromise the riser was fitted to the middle of the column, 60 cm above the sparger. 
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Figure 4.1: Schematic and photo of the continuous foam flotation column. A: Foam-collecting 

cup, B: column tubular module (25, 30 or 50 cm) in height and 5.1 cm in diameter, C: inlet 

stream, D: inlet flow meter, E: outlet stream valve, F: underflow stream, G: air sparger, H: air 

input stream. 
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Figure 4.2: A foam riser with smooth-successive contraction and expansion diameter ratio of 

0.5 and photo of the continuous foam flotation column with the foam riser. 

4.2.4 Harvesting experiments  

The C. vulgaris harvesting trials were conducted at air flow rates of 1.0, 1.5, and 2.0 L min-1 

and different CTAB concentrations (20, 30, 40, and 50 mg L-1). These variables were chosen 

as we had previously shown that they had the greatest effects on both microalgae recovery and 

enrichment (see 3.3.4 analysis of experimental design). Other foam flotation variables were 

standardised during harvesting trials as following: column height = 122 cm, liquid pool depth 

= 20 cm, and inlet feed flow rate = 0.2 L min-1. The algae concentration in the inlet stream was 

0.46 ± 0.13 mg mL-1 (equivalent to 9.58 × 106 ± 1.1 × 106 cells mL-1). In Chapter three, CTAB 

produced the greatest enhancement in microalgae hydrophobicity, thus it was used again here. 

Each harvest experiment had two replicate runs. The effectiveness of the harvesting trials was 

determined by the concentration factor (CF) and the recovery efficiency (RE) as given in 

equations 4.2 and 4.3. 



Chapter four 

 

103 

 

𝐶𝐹 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑖𝑛𝑙𝑒𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
=

(
𝑐𝑒𝑙𝑙
𝑚𝑙

)
𝑓𝑜𝑚𝑎𝑡𝑒

(
𝑐𝑒𝑙𝑙𝑠
𝑚𝑙

)
𝑖𝑛𝑙𝑒𝑡

   ⋯ (4.2) 

𝑅𝐸 =
𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑓𝑜𝑚𝑎𝑡𝑒)

𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑖𝑛 𝑖𝑛𝑙𝑒𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
100% ⋯ (4.3) 

A calibration curve was constructed correlating cell density and their corresponding absorbance 

at 750 nm using a spectrophotometer (Jenway, Model 7315, Bibby scientific Ltd, UK), yielding 

an R2 of 100% (data not shown). Cell density was measured using an improved Neubauer 

hemocytometer, with a Leica DM 500 light microscope. 

4.2.5 Harvesting of microalgae based on optimised flotation factors 

Before being able to compare the effectiveness of our harvesting technique with those that have 

been reported previously (see Table 4.1 and references therein), extra harvesting trials with the 

foam riser were conducted under flotation factors optimised for a higher biomass recovery and 

concentration factor (CTAB = 35 mg L-1, air flow rate = 1 L min-1, feed flow rate = 0.1 L min-

1, column height = 146 cm, and liquid pool depth = 25 cm). Total suspended solids (TSS) were 

also measured for comparison with other methods. The harvested algae were placed in an 

aluminium dish and dried between 103 to 105 ºC for 24 hours. TSS was calculated using 

equation 4.4 (Patrick E. Wiley et al., 2009): 

𝑇𝑆𝑆 =
𝑊𝑡3 − 𝑊𝑡1

𝑊𝑡2 − 𝑊𝑡1
 100% ⋯ (4.4) 

Where: 𝑊𝑡1 is the aluminium dish weight (g); 𝑊𝑡2 is the wet sample and dish weight (g); and 

𝑊𝑡3 is the dry sample and dish weight (g). 

4.2.6 Liquid holdup profile in the foam 

In addition to the investigation of the foam riser impact on drainage of the liquid fraction in the 

pneumatic foam, liquid profile is of paramount importance to understand the liquid transport in 

the foam column (Jianlong Wang et al., 2016a). The pressure gradient in a vertical circular 

section foam column is due to the weight of the fluid in the column and the wall shear stress as 

described by equation 4.5 (P. Stevenson and Li, 2014): 

𝑑𝑝

𝑑𝑦
= 𝜌𝐿𝑔𝜀𝐿 + 𝜌𝑔𝑔(1 − 𝜀𝐿) −

4𝜏𝑤

𝐷
≈ 𝜌𝐿𝑔𝜀𝐿  … (4.5) 

Where: 𝑝 is the pressure (N.m-2); 𝑦 is the positive upward length (m); 𝜌𝐿 , 𝜌𝑔 are liquid and gas 

densities respectively (kg.m-3); 𝑔 is the acceleration due to gravity (m.s-2); 𝜀𝐿 is the liquid 
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fraction in the foam; 𝜏𝑤 is the wall shear stress (N.m-2); and, 𝐷 is the diameter of the foam 

column (m). However, the wall shear stress is insignificant in comparison to the hydrostatic 

pressure generated by the weight of water. Thus, the liquid fraction profile in the foam column 

can be determined by measuring the pressure gradient of the foam according to equation 4.6. 

As C. vulgaris has a density close to that of water, the density of C. vulgaris in the foam was 

assumed to be the same as that of water. 

𝜀𝐿 =
1

𝜌𝐿𝑔

𝑑𝑝

𝑑𝑦
 … (4.6) 

In this work at steady state conditions, the pressure gradient was measured at 5 cm intervals up 

the column using a high accuracy digital pressure meter (Kane 3500, UK) connected to a 0.9 

cm internal diameter glass tube. The tube was inserted into the foam to the desired depth during 

harvesting experiments at different CTAB concentrations (30, 60, and 80 mg L-1) and air flow 

rates (1 and 2 L min-1). The column height was held at 96 cm, the liquid pool depth was 20 cm, 

the feed flow rate was 0.2 L min-1 and the fine sparger was used. To examine the proposed foam 

risers for drainage enhancement, additional trials were performed in the presence of those risers 

at a CTAB concentration of 80 mg L-1 and an air flow rate of 1 L min-1. The foam risers were 

placed at the middle of the column and the pressure profile measurements were conducted in 

duplicate for each harvest trial.  

4.3 Results and discussion 

4.3.1 Effect of the foam riser on the concentration factor of the harvested microalgae 

4.3.1.1 Effect of the surfactant concentration 

CTAB, a quaternary ammonium cationic surfactant, has been widely used in wastewater 

treatment and in the extraction of DNA (Xinwei Cheng et al., 2014; T. Coward et al., 2014). In 

Chapter three, CTAB beneficially modified the surface physicochemical properties of C. 

vulgaris by increasing the hydrophobicity and reducing the net charge of the algae cells, 

resulting in improved flotation performance.  

The effect of CTAB concentration on concentration factor with and without a foam riser present 

under a stable continuous process is shown in figure 4.3 under operating conditions of air flow 

rate of 2 L min-1; column height of 122 cm; liquid pool depth of 20 cm; and feed flow rate of 

0.2 L min-1. Four CTAB concentrations were used in these trials and ranged from 20 to 50 mg 

L-1. The microalgae concentration factor decreased as CTAB concentration increased, 

regardless of whether the riser was present or not. This was studied during the screening of the 

foam flotation factors. Both creation and deformation of gas-liquid interfaces are involved 
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during bubble generation. The effect of surfactants on either bubble breakup or bubble 

coalescence rates can change the bubble size (Prince and Blanch, 1990). Bubble breakup can 

be assessed using Weber number (𝑊𝑒) which is a dimensionless ratio of the inertial force that 

causes the bubble deformation such as shear stress and pressure of turbulence to the surface 

tension that restores the bubble sphericity (equation 4.7). The surface tension of the bubbly 

liquid reduces when CTAB concentration increases. Larger inertial forces applied to the 

bubbles and/or lower surface tension makes this criterion number exceed its critical value, 

which exists at the point where inertial (disruptive) force balance surface tension (cohesive) 

force; consequently, promoting the bubble breakup process causing a reduction in bubble size 

which produces a wetter foam (Prince and Blanch, 1990; Jianlong Wang et al., 2016a). Also, 

higher CTAB concentration produces more stable bubbles and impedes bubble coalescence as 

well, resulting in a higher recovery efficiency and a lower concentration factor (Gupta et al., 

2007). 

𝑊𝑒 =
𝑢2𝑑𝑏𝜌𝑓

𝜎
… (4.7) 

Where: 𝑑𝑏 is the bubble diameter; 𝑢 is the velocity; 𝜌𝑓 is the density of liquid; and 𝜎 is the 

surface tension. With each foam riser, the microalgae concentration factor in the foamate 

increased but at differing ratios. The concentration factor was 228 under 20 mg L-1 CTAB 

without a riser. The 0.75 diameter ratio riser increased the concentration factor to 319, which 

was 1.4 times that obtained with the bare column. The concentration factor increased to 417 

and 444 with the 0.5 and 0.25 diameter ratio risers respectively, i.e. 1.8 and 1.9 times that 

obtained without a riser. When the CTAB concentration was increased to 30 mg L-1, the 

concentration factor decreased to 51 due to the increase in the wetness of the foam; however, 

when the 0.75, 0.5, and 0.25 diameter ratio risers were used, the concentration factor increased 

to 60, 88, and 153 respectively (1.2, 1.7, and 3 times that obtained without a riser). At CTAB 

concentrations of 40 and 50 mg L-1, the concentration factors of harvested microalgae were 30 

and 19 respectively, again increasing as smaller diameter ratio risers were used (Figure 4.3). 
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Figure 4.3: The concentration factor of the harvested microalgae under different CTAB 

concentrations and 2 L min-1 air flow rate with/without foam risers, error bars represent standard 

error. 

According to equation 4.1, the bubble size or liquid fraction within the foam layer needs to be 

increased to increase the superficial drainage velocity in the vertical foam column. Foam flow 

through the contraction and expansion may lead to changes in the bubble size distribution due 

to coalescence of bubbles because of the inter-bubble gas diffusion or the rupture of the foam 

lamella. A small increase in mean bubble size was observed by Li et al. (2011) when they used 

a foam riser with a sudden contraction and expansion in a foam fractionation column to 

concentrate a solution of SDS (Xueliang Li et al., 2011a). Measuring the bubble size 

distribution within the foam with or without the riser can provide evidence of any significant 

changes in bubble size; however, Stevenson stated that bubble size distribution measured 

through the column wall may not be representative of the distribution within the foam bulk 

because of bubble deformation by the column wall and also that smaller bubbles tend to thrust 

larger bubbles away from the column wall (P. Stevenson and Li, 2014). Lu et al. (2013) 

observed that the drainage velocity between the bubbles and the column was higher than that 

between the adjacent bubbles when they investigated the wall effect on drainage of SDS 

stabilised foam. This is another plausible explanation as the foam flow through the contraction 

of the riser increases the contact area between the wall and foam (Ke Lu et al., 2013). 
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The effect of bubble coarsening rate on the foam liquid fraction was observed by Vera and 

Durian (Vera and Durian, 2002). They dispersed nitrogen gas bubbles in an aqueous solution 

of alpha olefinsulfonate and measured the volume of liquid that seeped out from the foam 

against time. They concluded that the rate of foam drainage was significantly increased due to 

the evolution of foam structure by gas diffusion from high to low pressure (smaller to larger) 

bubbles. In other words, as the average bubble size becomes larger due to coarsening, the rate 

of drainage increases. Conversely, the foam drainage process is governed by the laminar flow 

driven by gravity and capillarity. Foam drainage causes a reduction in the liquid volume fraction 

through the column which leads to an increase in the capillary pressure. The latter in turn 

induces bubble coarsening and accelerates the coalescence (i.e. foam drainage is a key factor 

for coarsening and bubble coalescence) (Arnaud and Dominique, 2002; Saint-Jalmes, 2006; 

Kruglyakov et al., 2008). Both latter mechanisms (i.e. coarsening and bubble coalescence) 

govern the average bubble size within foam as well as its life. However, some previous studies 

have reported that adsorbed hydrophobic particles to the gas-liquid interface act as a barrier to 

impede coarsening and prevent bubble coalescence (Binks, 2002; Abkarian et al., 2007).       

In addition, when the foam containing microalgae flows upward through the contraction of the 

foam riser, the superficial gas and liquid velocities increase and consequently the liquid fraction 

within the foam increases as well. Again, the superficial drainage velocity will increase as the 

liquid fraction increases. Thus, as the mean bubble size and liquid fraction within the foam 

increased with the presence of the foam risers, the concentration factor for the harvested 

microalgae increased. 

Figure 4.3 shows that the microalgae enrichment ratios with the riser setups differ with CTAB 

concentration. For example, the 0.25 diameter ratio riser increased the concentration factor by 

a factor of 3 over that without a riser at 30 mg L-1 CTAB whereas the concentration factor 

increased about 1.9 times at 20 mg L-1. As the liquid fraction increased with CTAB 

concentration, the foam riser appeared to be more efficient at higher liquid fractions. This 

observation is in accord with the empirical equation 4.1, as the drainage velocity increases with 

higher liquid fractions, resulting in greater enrichment ratios. It is worth noting that with the 

structure of our foam riser, there is a path for interstitial liquid to be released downwards to the 

foam under the riser; this may engender internal reflux which promotes adsorption of more 

microalgae in the interstitial liquid onto bubbles even though that liquid has a low microalgae 

concentration. 
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4.3.1.2 Effect of the air flow rate 

The effect of air flow rate on concentration factor was investigated with and without foam riser 

present, as shown in figure 4.4 under operating conditions of cationic CTAB concentration of 

30 mg L-1; column height of 122 cm; liquid pool depth of 20 cm; and feed flow rate of 0.2 L 

min-1. Three air flow rates (1, 1.5, and 2 L min-1) were investigated in tandem with the risers.  

The microalgae concentration factor decreased as the air flow rate increased irrespective of 

foam riser usage (Figure 4.4). Increasing the air flow rate will increase the bubble surface area 

flux resulting in wet foam which has lower concentration factors. The microalgae concentration 

factor was 189 at air flow rate of 1 L min-1 without a riser, increasing to 347 with the 0.75 

diameter ratio riser and to 533 and 752 when the 0.5 and 0.25 diameter ratio risers were used. 

When the air flow rate was increased to 1.5 L min-1, the concentration factor without a riser fell 

from 189 to 89. The concentration factor increased to 134 with the 0.75 diameter ratio riser and 

further increased to 230 and 383 with the 0.5 and 0.25 diameter ratio risers, respectively. At 2 

L min-1 the concentration factor reduced further; 51 without a riser and 60, 88 and 153 with the 

0.75, 0.5 and 0.25 diameter ratio risers, respectively. 

 

Figure 4.4: The concentration factor of the harvested microalgae under different air flow rates 

and 30 mg L-1 CTAB concentration with/without foam risers, error bars represent standard 

error. 
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4.3.2 Harvesting of microalgae based on optimised flotation factors 

The greatest enhancement in algae concentration factor was achieved using the 0.25 contraction 

and expansion diameter ratio riser. Thus, C. vulgaris was harvested continuously based on the 

optimised process (CTAB = 35 mg L-1, air flow rate = 1 L min-1, feed flow rate = 0.1 L min-1, 

column height = 146 cm, and liquid pool depth = 25 cm) with and without the 0.25 diameter 

ratio riser (Figure 4.5). The purpose of harvesting microalgae under those conditions was to 

achieve an effective combination of a high recovery efficiency (for greater biomass removal 

from the growth medium) and concentration factor (to lower downstream dewatering and 

drying costs) which is pivotal for driving down the cost of handling and processing bulk 

quantities of microalgae. 

 

Figure 4.5: The concentration factor and recovery efficiency of the harvested microalgae under 

the most advantageous conditions with and without foam risers, error bars represent standard 

errors. 

The concentration of harvested microalgae was considerably enhanced under optimised 

conditions with the foam riser (Figure 4.5). The initial culture was concentrated by 

approximately 722-times when the foam riser was used compared with 173 without a riser. 

However, a small reduction in biomass recovery efficiency was observed (Figure 4.5), reducing 

to 91 from 95%. This was almost certainly a consequence of the adhesion of microalgae 

biomass to the riser wall (Figure 4.6). Relative to the improvement in overall biomass 
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enrichment, this minor reduction in biomass recovery is an acceptable trade-off. Furthermore, 

the recovery efficiencies in both columns (with and without risers) were similar when 

determined based on microalgae concentration in the discharge stream. Total suspended solids 

were also measured in the presence and absence of the riser. A total suspended solids yield of 

5.6% was obtained for the conventional foam column while it increased to 14.6% with the riser 

that compares favourably with other dewatering harvesting techniques. For example, a Nozzle 

discharge centrifuge was reported to yield a total suspended solids of 2-15% with power 

consumption of 0.9 kWh m-3 of microalgae, Scenedesmus (Molina Grima et al., 2003). Such a 

considerable increase in total suspended solids without additional costs is vital to lower 

downstream dewatering and drying costs. 

  

Figure 4.6: Foam riser of 0.25 successive contraction and expansion inserted in the foam 

column (left), algae biomass adhered to the inner wall of the foam riser (right).  

Energy consumption, total suspended solids, recovery efficiency, and concentration factor for 

various harvesting methods including the current method are presented in table 4.1. The 

concentration factor obtained with the 0.25 contraction and expansion ratio riser in the 

continuous foam column outperformed all those achieved by other harvesting techniques. A 

considerable gain in TSS was also achieved (14.6%), which was comparable to most dewatering 

techniques such as Nozzle discharge centrifuge even though the latter might be used to harvest 

and concentrate microalgae cultures of concentration several times higher than our initial 
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culture concentration. The process demonstrated a very low power consumption (0.052 kWh 

m-3 of algae culture) with no extra costs after applying the riser. Therefore, the continuous foam 

column fitted with a riser can eradicate some key challenges associated with the most 

commonly used bulk harvesting techniques. 

Harvest method 
Operational 

mode 
Microalgae 

Energy consumption 

(kWh m-3) 
TSS (%) 

CF and 

RE 

Chamber filter 

(Molina Grima et 

al., 2003) 

Discontinuous 
Coelastrum 

proboscideum 
0.88 22-27 245 

Vacuum filter; non-

pre-coat vacuum 

drum filter (Molina 

Grima et al., 2003) 

Continuous C. proboscideum 5.9 18 180 

Vacuum filter; 

suction filter 

(Molina Grima et 

al., 2003) 

Discontinuous C. proboscideum 0.1 8 80 

Tangential flow 

filtration (Danquah 

et al., 2009) 

Continuous 

Multi-strain 

Tetraselmis 

suecica/ 

Chlorococcum sp. 

0.38 N/A 48 

Vibrating screens 

(Uduman et al., 

2010a) 

N/A N/A 0.4 1-6 15-60 

Nozzle discharge 

centrifuge (Molina 

Grima et al., 2003) 

Continuous 
Scenedesmus, 

C. proboscideum 
0.9 2-15 20-150 

Decanter bowl 

centrifuge (Molina 

Grima et al., 2003) 

Continuous 
Scenedesmus, 

C. proboscideum 
8 22 11 

Hydro-cyclone 

(Molina Grima et 

al., 2003) 

Continuous C. proboscideum 0.3 0.4 4 

Electrolytic 

flocculation 
Batch 

Multi-strain 

algae/ diatoms 
0.33 N/A N/A 

Electrocoagulation 

(Uduman et al., 

2011) 

Batch, 15 min, 

10V 
Tetraselmis 2.75 N/A N/A 

Sedimentation 

Lamella separators 

(Shelef et al., 1984; 

Uduman et al., 

2010a) 

Discontinuous 

Multi-strain 

Chlorella/ 

Coelastrum 

0.1 0.1-1.5 16 

Dissolved air 

flotation (Patrick E. 

Wiley et al., 2009) 

Batch 
Multi-strain 

Chlorella/ 

Scenedesmus 

7.6 5 N/A (85) 

Suspended air 

flotation (Patrick E. 

Wiley et al., 2009) 

Batch 0.003 4.8 N/A (77) 
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Electro-flotation 

(Shelef et al., 1984) 
Batch 

Multi-strain 

Chlorella/ 

Coelastrum 

Very high, N/A 3-5 N/A 

Foam flotation by 

Jameson cell (Garg 

et al., 2015) 

N/A 
Tetraselmis sp. 

M8 
N/A N/A 23 (99) 

Foam flotation 

based on optimised 

factors without a 

foam riser 

Continuous Chlorella vulgaris 0.052 5.6 173 (95) 

Foam flotation (this 

study) based on 

optimised factors 

with a foam riser 

Continuous Chlorella vulgaris 0.052 14.6 722 (91) 

Table 4.1: Energy consumption, total suspended solids (TSS) and concentration factor (CF) of 

different microalgae harvesting techniques. Where reported, the recovery efficiency (RE %) is 

given in parentheses. 

4.3.3 Liquid holdup profile 

The liquid holdup is a relevant factor affecting the rate of foam drainage and can characterise 

the foam as well. It is the total liquid fraction existent in the foam per unit volume. In this work, 

the liquid holdup profiles in the foam were determined by measuring the pressure profile of the 

foam in the column. The harvesting trials were performed at different CTAB concentrations 

and air flow rates as those factors, in addition to the column height, had the greatest effect on 

the foam flotation efficiency as Chapter three revealed (see 3.3.4 analysis of experimental 

design). However, a taller column was not tested here as it proved logistically difficult to insert 

the glass tube from the column apex. 

The measured pressures and calculated liquid fraction profiles at different CTAB 

concentrations and air flow rates are shown in figure 4.7. The pressure gradients demonstrated 

sharper transitions at the pool/foam interface. Similarly, the liquid holdup profiles showed sharp 

transitions not only at the pool/foam interface but also in the onset zone of the wet foam. A 

previous hypothesis stated that the liquid fraction in the effervescent liquid phase and in the wet 

foam would be around 0.8 and 0.1 respectively (Kamalanathan, 2015). The liquid fraction for 

the wet foam beyond its beginning zone and the drier foam at the top of the column remained 

relatively constant; this was expected as the foam dries as it rises up the column. The initial 

liquid fraction for the generated foam were obviously much larger than that in the foam at the 

top of the column, demonstrating that foam is an effective medium for considerably 

concentrating the recovered microalgae biomass and this represents another advantage added 

to the foam flotation column over other flotation techniques. Moreover, when the foam becomes 
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drier at the top of the column, it will possess some preferable characteristics including more 

fragile structure with thinner liquid films which improve the foam collapse and will recover 

microalgae easily for further downstream processing. 

 

 

Figure 4.7: Pressure (top) and liquid holdup (bottom) profiles of the foam in the column when 

using CTAB (30, 60, and 80 mg/L) at two air flow rates (1 and 2 L/min). The liquid pool/foam 

interface occurs at 20 cm. 



Chapter four 

 

114 

 

The pressure and liquid profiles were shown to increase with increasing CTAB concentration. 

The surface tension of the effervescent liquid reduced as the CTAB concentration increased. 

This caused a reduction in bubble size, leading to a wetter foam. Moreover, the rising foam 

comprising smaller bubbles had a slower liquid drainage when the liquid holdup profile of the 

foam made from 80 mg L-1 CTAB was compared to 30 mg L-1 (Figure 4.7). The pressure and 

liquid holdup profiles also increased with increasing air flow rate. This is probably due to the 

short residence time and drainage opportunity for the rising foam with a higher air flow rate or 

due to the reduction in bubble size distribution as Stevenson and Li (Paul Stevenson and Li, 

2012b) previously stated. 

Additional trials to determine the liquid holdup profiles in the foam were performed to examine 

the efficacy of the foam riser modules for drainage enhancement. These harvesting trials were 

conducted at a CTAB concentration of 80 mg L-1 and an air flow rate of 1 L min-1 as shown in 

figure 4.8. The values of the above factors were chosen to guarantee a stable continuous foam 

i.e. to obtain higher water content in the foam. Similar to the previous observations, all liquid 

fraction profiles in figure 4.8 showed a sharp transition not only at the pool/foam interface but 

also at the onset zone of the wet foam. The liquid fraction of the foam in all zones underneath 

the risers were a little higher than that in the column without a riser. This was probably due to 

the liquid drainage caused by the risers, leading to small increases in the water content of the 

foam. However, as the foam left the risers, the water content began to reduce (Figure 4.8), with 

the water content of the foam passing through the 0.25 contraction and expansion ratio riser 

being the lowest. This agreed with all previous outcomes that showed that the best drainage 

enhancement could be obtained with a riser of lower diameter ratio. 
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Figure 4.8: Pressure (top) and liquid holdup (bottom) profiles of the foam in the column with 

and without a foam riser under set CTAB (80 mg/L) and air flow rate (1 L/min) conditions. The 

liquid pool/foam interface occurs at 20 cm. 
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4.4 Conclusion 

In this chapter, the effect on the drainage of rising foam containing microalgae was investigated 

using three risers of different smooth-successive contraction and expansion ratios (0.25, 0.5, 

and 0.75), with different CTAB concentrations and air flow rates. Each riser enhanced the 

drainage due to the increase in the liquid fraction and likely by changing the bubble size 

distribution as the foam passed through contraction and expansion. A microalgae concentration 

factor (444) was achieved under the conditions of: air flow rate 2 L min-1; column height 122 

cm; liquid pool depth 20 cm; feed flow rate 0.2 L min-1; and 20 mg L-1 CTAB, with the 0.25 

contraction and expansion ratio riser - approximately double that attained without the riser. The 

highest microalgae concentration factor was attained with a CTAB concentration of 30 mg L-1 

and an air flow rate of 1 L min-1 - nearly four times higher than without the riser. Trials 

performed under the conditions for the best combination of microalgae recovery efficiency and 

concentration factor (CTAB = 35 mg L-1, air flow rate = 1 L min-1, feed flow rate = 0.1 L min-

1, column height = 146 cm, and liquid pool depth = 25 cm) revealed a recovery efficiency of 

91% and a final biomass 722-times more concentrated than the initial C. vulgaris culture. The 

liquid holdup of the foam for all risers was lower than that of the bare column, whereas it was 

higher before passing through the foam risers, which was probably due to the higher drainage 

velocity of the interstitial liquid. What is more, our continuous foam flotation column 

demonstrated a very low power consumption, 0.052 kWh m-3 of algae culture, with a total 

suspended solids yield (14.6%). Our findings demonstrate that foam flotation is a very 

promising approach for the continuous harvesting of microalgae biomass. 
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Chapter 5  

Modeling of a continuous foam flotation column used for algal biomass 

recovery based on flotation kinetic and probability models 

Abstract 

Foam flotation, which is a subclass of adsorptive bubble separation, is a selective separation 

process which shows notable promise as a microalgae biomass harvesting and enrichment 

method. A good mathematical model is a substantial tool for systematic and consistent process 

analysis. A wide range of flotation models have been developed based on the processes and 

sub-processes occurring in flotation. Therefore, to better characterise the harvesting process by 

flotation, the recovery rate of Chlorella vulgaris in continuous foam flotation was studied in 

this chapter based on the available phenomenological models (i.e. kinetics and probabilistic 

models). The available literature has concluded that the classical first order kinetic model is 

better than other flotation kinetic models. The effects of CTAB concentration and air flow rate 

on the flotation rate constant were investigated. The results demonstrated that the flotation rate 

constant increased with CTAB concentration and air flow rate. The efficiencies of collision, 

attachment, and detachment between microalgae cells and air bubbles in the flotation column 

were investigated based on experimental measurements of bubble size, bubble rise velocity and 

microalgae cell size. A wide bubble size distribution was generated within a size range of 204 

to 2909 µm and Sauter mean diameters ranging from 811 to 1713 µm under different surfactant 

concentrations and air flow rates. The collision, attachment, and collection efficiencies of 

microalgae were calculated for intermediate and potential flow conditions based on the bubble 

Reynolds number. The maximum collision, attachment, and collection efficiencies were 2.75, 

99.87, and 2.74% respectively. The low collection efficiency caused by the low collision 

efficiency of microalgae cell and bubble was largely attributed to the small cell size (C. 

vulgaris: 7.44 ± 0.42 μm). However, the recovery efficiencies obtained theoretically were not 

in agreement with the experimental recovery efficiencies, indicating that there are probably 

other mechanisms for interactions between microalgae particles and air bubbles that are not 

considered in the commonly used collision models. 

Keywords 

Kinetic order; foam flotation; ultimate recovery; collision efficiency; attachment efficiency; 

contact angle; Chlorella vulgaris 
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5.1 Introduction 

Adsorptive bubble separation is a process of separation and concentration based on differences 

in the physicochemical properties of interfaces such as hydrophobicity. Due to its simplicity 

and low capital and operating costs, it is widely used in industrial and domestic wastewater 

treatment, and in the mining, pharmaceutical, rubber, glass, plastics, and food industries, and 

removing radioactive contaminants from soil (Jenkins et al., 1972; Rubio et al., 2002; 

Fuerstenau et al., 2007; Schramm and Mikula, 2012; Bu X, 2016; Gharai and Venugopal, 2016). 

Foam flotation, which is a subclass of adsorptive bubble separation, is a selective separation 

process which shows notable promise as a microalgae biomass harvesting and enrichment 

method. In a foam flotation process, surfactant is added to stabilise the foam and enhance the 

hydrophobicity of microalgae. Small bubbles are generated which attach to the microalgae cells 

and cause them to rise to the surface where they are removed from the column in the foam.       

Unlike other separation processes foam flotation is a complex process involving the interactions 

between three phases (solid, gas, and liquid) in the presence of surfactant chemicals. Therefore, 

the development of mathematical models for the flotation process has proven difficult (Bu X, 

2016). Nevertheless, a remarkable number of empirical, probability, and kinetic models have 

been developed to better understand the flotation process. Most empirical models use a trial and 

error feedback approach for optimisation and they are very specific to their environment. Using 

statistical techniques to determine the empirical model parameters does not give them any 

physical significance and they do not provide any deep intuitive understanding of the flotation 

process. It is also difficult for the empirical models to offer more predictive capacity outside 

the conditions adopted in their calculations (A. V. Nguyen and Schulze, 2004). For instance, Li 

et al. (2016) developed an empirical model to relate the froth rheology to the process variables, 

however, their empirical model is only valid for the froth with a local shear rate of 2 s-1 (Chao 

Li et al., 2016). The authors also highlighted that the established empirical model is not 

applicable to other systems having different ore properties or flotation cell designs. 

Consequently, phenomenological models (i.e. probability and kinetic models) are only 

considered in this work. 

The efficient capture between a bubble and a hydrophobic particle occurs when they first 

undergo an adequately close encounter (within the range of attractive surface forces). This 

process is governed by the hydrodynamics controlling their approach in the bubbly liquid zone. 

Then, the intervening liquid film between the particle and bubble becomes thinner due to the 

surface forces between the particle and bubble leading to a critical thickness at which film 
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rupture takes place. This is followed by the establishment of a stable three-phase contact line 

(the boundary between the receding liquid phase, solid particle surface, and advancing gas 

phase). This sequence (drainage of intervening liquid, film rupture, and the formation of a stable 

three-phase contact line) represents the second process of collection (i.e. attachment). However, 

the particle can be forced out from that stable bubble-particle aggregate when sufficient kinetic 

energy (shear and gravitational forces) equal or exceeding the detachment energy is supplied to 

the particle and this represents the third part of collection (i.e. detachment). However, shear 

forces are lower in a foam flotation column than in mechanical flotation cells due to the absence 

of an impeller which is an advantage for the flotation column. The gravitational forces are also 

low for microalgae recovery owing to the small cell size of most microalgae species. This 

dissection of a bubble-particle capture efficiency into three process efficiencies was published 

by Derjaguin and Dukhin in 1961 (Derjaguin and Dukhin, 1961) and included the effect of 

hydrodynamics, surface forces, and diffusiophoresis. They proposed that the collection 

efficiency or probability (𝐸𝑐𝑜𝑙) of a particle and a bubble was equal to the product of three 

efficiencies or probabilities as presented in equation 5.1 (Ralston et al., 1999; Miettinen et al., 

2010): 

𝐸𝑐𝑜𝑙 = 𝐸𝑐 . 𝐸𝑎. 𝐸𝑠 … (5.1) 

Where: 𝐸𝑐 is the collision efficiency; 𝐸𝑎 is the attachment efficiency; and 𝐸𝑠 is the stability 

efficiency of the particle-bubble aggregate.  

Kinetic models of particles capture by bubbles are based on the analogy between collision of 

molecules in a chemical reaction and collision of hydrophobic or hydrophilic particles with gas 

bubbles in the bubbly liquid zone of a flotation process. Various differential equations of 

chemical reaction kinetics have been applied to describe the flotation process. Zuniga in 1935 

proposed a first-order differential equation to represent results obtained from laboratory batch 

flotation tests (Zuniga, 1935). The first order flotation kinetic model is based on theory and 

experiment which indicate that the collision rate between the bubbles and particles is first order 

with respect to the number of particles and that the bubble concentration remains constant 

(bubble concentration >>> number of particles) (Sutherland, 1948). Fifteen years later, Arbiter 

proposed a second order differential equation to correlate the published flotation recovery data 

as well as his own results (Arbiter, 1952). In contrast to the first order model, the bubble 

concentration in the second order kinetic model changes with time. The generalised form of the 

equations used by Zuniga and Arbiter can be written as in equation 5.2. 



Chapter five 

 

120 

 

𝑑𝐶

𝑑𝑡
= −𝑘𝐶𝑛 … (5.2) 

Where: 𝐶 is the concentration of particles in the bubbly liquid zone; 𝑘 is the flotation rate 

constant; 𝑡 is the flotation time; and 𝑛 is the order of flotation kinetics. 

Particle recovery in the foamate (𝑅) at flotation time (𝑡) is defined as: 

𝑅(𝑡) =
𝐶𝑖 − 𝐶(𝑡)

𝐶𝑖
= 1 −

𝐶(𝑡)

𝐶𝑖
… (5.3) 

where: 𝐶𝑖 is the initial concentration of particles in the bubbly liquid. The maximum recovery, 

𝑅∞ after infinite time can be calculated from equation 5.3 at 𝐶∞ (i.e. the concentration of 

particles remaining in the bubbly liquid after infinite time) as set out below: 

𝑅∞ = 1 −
𝐶∞

𝐶𝑖
… (5.4) 

Substituting from equations 5.3 and 5.4 into equation 5.2 gives: 

𝑑𝑅

𝑑𝑡
= 𝑘(𝑅∞ − 𝑅)𝑛 … (5.5) 

The distribution of values for the rate constant (𝑓(𝑘)) is often used instead of a single value for 

𝑘 to represent the distribution of floatability for particles in a bubbly liquid (Yianatos, 2007). 

The floatability of particles is the percentage of floating particles (Corona-Arroyo et al., 2018) 

or the tendency of particles to float (Runge et al., 2003). It is a function of particle 

characteristics that influence the flotation rate constant such as particle geometry (shape and 

size), surface energy, hydrophobicity, and liberation properties of particles as well as liquid 

surface tension and pH (Leroy et al., 2011; Guerrero-Pérez and Barraza-Burgos, 2017; 

Wencheng Xia, 2017; Corona-Arroyo et al., 2018). Therefore, this concept was introduced to 

extend the applicability of kinetic models for the heterogeneity of particles (Bu X, 2016) and 

equation 5.5 can be written as below: 

𝑑𝑅

𝑑𝑡
= 𝑓(𝑘)(𝑅∞ − 𝑅)𝑛 … (5.6) 

The available literature has concluded that the classical first order kinetic model is better than 

other flotation kinetic models and can be used to optimize the process since it can be applied to 

both batch and continuous flotation processes with high confidence level (Gharai and 

Venugopal, 2016). Moreover, Nguyen and Schulze (2004) stated that the flotation kinetic is 

first order for dilute pulp or flotation of single minerals (A. V. Nguyen and Schulze, 2004).  
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The first order recovery of microalgae in a batch flotation process can be described by general 

equation 5.7 (Bu X, 2016). Some first-order models and their continuous and discrete 

distribution functions are summarized in Table A.1 (appendix 1). 

𝑅(𝑡) = 𝑅∞ [1 − ∫ 𝑒−𝑘𝑡𝑓(𝑘)𝑑𝑘

∞

0

] … (5.7) 

Where 𝑓(𝑘) is the continuous distribution of the rate constant or 𝑘 spectrum, which is 

normalized ∫ 𝑓(𝑘)𝑑𝑘 = 1
𝑘

0
. For continuous flotation, the recovery of microalgae can be 

described by the following equation (Yianatos, 2007): 

𝑅 = 𝑅∞ ∫ ∫ (1 − 𝑒−𝑘𝑡)𝑓(𝑘)𝐸(𝑡)𝑑𝑘𝑑𝑡

∞

0

∞

0

… (5.8) 

where: 𝐸(𝑡) is the residence time distribution function for continuous flotation process with 

different mixing characteristics. The continuous recovery of microalgae from the growth 

culture depends on the flotation rate distribution of microalgae, the actual mean residence time, 

and the mixing region in the collection zone. 

To better characterise the harvesting process, the recovery rate of Chlorella vulgaris in 

continuous foam flotation was studied in this chapter based on the available phenomenological 

models (i.e. kinetics and probabilistic models) with the aid of experimental measurements of 

the recovery efficiency, bubble size, gas holdup, bubble rise velocity and microalgae cell size. 

5.2 Materials and methods 

5.2.1 Microalgae culture 

The growth conditions for C. vulgaris used herein have been described previously (see 3.2 

materials and methods). 

5.2.2 Flotation tests for kinetic study 

The schematic diagram of the foam flotation column is shown in figure 5.1. The column was 

constructed from poly(methyl methacrylate) cylindrical sections with a 5.15 cm internal 

diameter. The column height was adjusted by bolting together cylindrical sections of different 

lengths. The inlet mixture consisted of algae culture mixed with surfactant in a 25 L reservoir. 

The spent culture was discharged to the tailing tank from the outlet stream valve at the base of 

the column, 1 cm above the sparging media. A magnetic stirrer was used to mix the microalgae 

culture with the surfactant in the feed tank for 10 mins prior to and during the flotation tests. 
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The feed was pumped to the column by a peristaltic pump (Masterflex L/S, model 07554-95, 

Cole-Parmer, UK). A valve was placed on the culture discharge stream to control the liquid 

depth in the column. Air bubbles (dispersed phase) were generated by introducing compressed 

air through a sparger made from ultra-high molecular weight polyethylene with a thickness of 

6.0 mm, a diameter of 51.5 mm, and mean pore sizes of 30 µm. The flotation tests were 

conducted using C. vulgaris and the algae concentration in the inlet stream was held at 

0.46±0.13 g L-1 concentration dry weight (equivalent to 9.58 × 106 ± 1.1 × 106 cells mL-1). 

Cationic hexadecyltrimethylammonium bromide (CTAB, CH3(CH2)13N(CH3)3-Br), G-

bioscience, USA, was used as a foaming agent at three different concentrations (20, 30, and 40) 

mg L-1. Evaluation of the most important factors in the foam flotation process (see 3.3 results 

and discussion) had shown that surfactant concentration and air flow rate had the largest effects 

on the process performance, therefore, the flotation kinetics were also studied at different air 

flow rate magnitudes (1 and 2) L min-1. The other process factors (column height, inlet stream 

flow rate, and liquid pool depth) were held constant at 96 cm, 0.15 L min-1, and 25 cm 

respectively. The foam and the processed culture from the discharge stream were collected over 

time until reaching steady-state. Then, feed and discharge streams valves were turned off 

simultaneously. The microalgae remaining in the column was collected and counted to 

determine the cell residence times. Each continuous flotation test was conducted with three 

replicates. 

In this work, the recovery of C. vulgaris was determined using equation 5.3. A calibration curve 

was constructed correlating cell density and their corresponding absorbance at 750 nm using a 

spectrophotometer (Jenway, Model 7315, Bibby scientific Ltd, UK), yielding an R2 of 100% 

(data not shown). Cells density was measured using an improved Neubauer hemocytometer, 

with a Leica DM 500 light microscope. 
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Figure 5.1: Schematic diagram of the continuous foam flotation column. A: Foam-collecting 

cup, B: column tubular module (25, 30 or 50 cm) in height and 5.1 cm in diameter, C: inlet 

stream, D: inlet flow meter, E: outlet stream valve, F: underflow stream, G: air sparger, H: air 

input stream. 

5.2.3 Analytical methods (algal cell size, bubble size and rising velocity). 

Bubble size distribution (BSD) and rising velocity in the bubble swarm were measured in the 

liquid pool of the foam flotation column (Figure 5.1) at three CTAB concentrations (20, 30, and 

40) mg L-1 and four air flow rates (0.5, 1, 1.5, and 2) L min-1. During all the experiments, the 

liquid pool depth, column height, and inlet stream flow rate were held constant at 25 cm, 96 

cm, and 0.15 L min-1 respectively. To avoid the presence of additional surfactants from previous 

tests, the system was flushed before each trial. The most common methods adopted to measure 

the bubble size distribution are optical and acoustical techniques. Bubble characterisation by 

photography has been described as a tiresome and time-consuming method; however, it is able 

to measure both bubble size and distribution in addition to track individual bubbles through a 

sequence of photographs to determine the bubble rise velocity (T. Coward et al., 2015), 

therefore it was employed in this work.  

A high-speed camera (Photron FASTCAM SA3) connected to a computer were used to 

photograph the bubbles generated in the foam column. The images were calibrated (pixels to 

millimetres) by placing one ruler on the outside wall and one inside the flotation column and 
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focusing the camera on them. Besagni et al. (2016) evaluated the conversion factor by placing 

a ruler in the centre of a bubble column for different radial positions (Besagni et al., 2016). 

They found that the maximum difference in the conversion factor was 0.5 pixel/mm and the 

influence of optical distortion was negligible. In this work, the conversion factors at different 

radial positions were determined by a method similar to that adopted by Besagni’s group. The 

maximum difference in the conversion factor was 0.64 pixel/mm in this work. The high-speed 

camera was run at 2000 frames per second (fps) and a minimum of 250 high quality images 

were taken for each experimental trial. The back-light method was employed to illuminate the 

experimental trials using (Nebula4) hydroponic plant lights which were fitted with four Philips 

55W florescent lamps. 

The open source image analysis software, ImageJ, version 1.51j (National Institutes of Health, 

Bethesda, Maryland, USA) was used to determine the bubble size distribution. To achieve a 

reliable BSD, between 300-350 bubbles were analysed for each experimental trial. Bubble rise 

velocity was determined by tracking individual bubbles over a sequence of photographs. 

Several bubble rise velocities obtained by the above method were also validated using Photron 

FASTCAM Analysis software (PFA-Demo version). 

Microalgae size (minimum of 10 readings) was measured microscopically using a Leica DM 

500 light microscope with ImageJ. 

Lastly, the gas holdup in the bubbly liquid pool at different air flow rates was measured 

according to Besagani and Inzoli’s method (Besagni and Inzoli, 2016). The procedure involves 

measuring the height of the liquid free surface before and after air aeration. The gas holdup was 

then determined using equation 5.9: 

𝜀𝐺 =
𝐻𝐷 − 𝐻𝑜

𝐻𝐷
… (5.9) 

where: 𝐻𝑜 and 𝐻𝐷 are the heights of the liquid free surface before and after air aeration 

respectively. 

5.3 Results and discussion 

5.3.1 Bubble size distribution and rise velocity  

Bubble size distribution (BSD) and bubble rise velocity were measured optically in the liquid 

pool of the foam flotation column. During these experimental trials, only tap water with CTAB 

were fed into the foam column due to the high optical density of microalgae cultures. However, 

slightly larger bubble sizes with a slower rise velocity are expected in the presence of 
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microalgae cells. Vazirizadeh et al. (2016) studied the impact of introducing 4% (w/w) (40% 

talc and 60% quartz solid) on the bubble size distribution in a flotation column. They found that 

the presence of solids increased the bubble size (Vazirizadeh et al., 2016). Similar observations 

were reported by Kuan and Finch (2010) when they studied the effect of talc on pulp and froth 

properties. They suggested that the coalescence between bubbles due to the presence of particles 

was responsible for this phenomenon. In froth flotation, frother is present to stabilize bubbles 

against coalescence and the adsorption of frother by talc would drive the system back to the 

water only case. However, the reduction in frother concentration due to adsorption did not offer 

a complete explanation since the frother remaining in the pulp exceeded the critical coalescence 

concentration. Therefore, they suggested that talc can remove frother directly from the bubble 

surface and increase coalescence rate (Kuan and Finch, 2010). Like the retardation of bubbles 

by the presence of surface active materials, the rise velocity of bubbles is more likely reduced 

owing to the presence of microalgae cells. The Sauter mean bubble diameter (𝑑32) has been 

widely used with the superficial gas rate (𝐽𝑔) to describe the dispersion efficiency of the gas 

phase in flotation machines (Leiva et al., 2010); therefore, Sauter mean bubble diameter was 

adopted in this work as the mean bubble diameter and calculated by equation 5.10. The bubble 

Reynolds number (𝑅𝑒𝑏) was calculated using equation 5.11: 

𝑑32 =
∑ 𝑛𝑖𝑑𝑖

3

∑ 𝑛𝑖𝑑𝑖
2 … (5.10) 

𝑅𝑒𝑏 =
𝑉𝑏𝑑32𝜌𝑓

𝜇
… (5.11) 

In equations 5.10 and 5.11, 𝑛 is the number of bubbles; 𝑑 is the bubble diameter; 𝑉𝑏 is the 

bubble rise velocity; 𝜌𝑓 is the fluid density (= 998.2 kg m-3 at 18 ˚C); and 𝜇 is the fluid viscosity 

(= 1.053 mPa.s at 18 ˚C). Contour plots for Sauter mean bubble diameter, bubble rise velocity, 

and bubble Reynolds number within the liquid pool for different CTAB concentrations and air 

flow rates are presented in Figure 5.2. Surfactant concentration and air flow rate are the most 

important factors in foam flotation as our previous investigations have demonstrated (see 3.3 

results and discussion), therefore, evaluating their effects on bubble size distribution and bubble 

rise velocity and consequently the hydrodynamic condition of foam is essential to improve 

flotation performance. A wide range of bubble sizes were generated with Sauter mean diameters 

ranging from 811 to 1713 µm under different CTAB concentrations and air flow rates as shown 

in figure 5.2a. Nearly all bubbles generated in this work were spherical as shown in figure 5.3. 

With increasing CTAB concentration, the Sauter mean bubble diameter decreased for all air 
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flow rates, dropping from 1713 to 1210 µm; 1238 to 924 µm; 1111 to 816 µm; and 876 to 811 

µm when CTAB concentration was increased from 20 to 40 mg L-1 at air flow rates of 2, 1.5, 

1, and 0.5 respectively. 

a 

 

 

b 

 

 

c 
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Figure 5.2: Contour plots for the (a) Sauter mean bubble diameter, (b) bubble rise velocity, 

and (c) bubble Reynolds number within the liquid pool of the foam flotation column under 20, 

30, and 40 mg L-1 CTAB concentrations and 0.5, 1, 1.5, and 2 L min-1 air flow rates. 

    

a b c d 

Figure 5.3: Clouds of spherical bubbles generated using a sparger made from ultra-high 

molecular weight polyethylene with a thickness of 6.0 mm, a diameter of 51.5 mm, and mean 

pore sizes of 30 µm at 30 mg L-1 CTAB concentration and different air flow rates (a) 0.5 L min-

1 with Sauter mean bubble diameter of 849 µm, (b) 1 L min-1 with Sauter mean bubble diameter 

of 1097 µm, (c) 1.5 L min-1 with Sauter mean bubble diameter of 1166 µm, and (d) 2 L min-1 

with Sauter mean bubble diameter of 1245 µm. 

The surface tension between the gas and liquid reduces when the concentration of CTAB 

increases and therefore causes a reduction in the mean bubble size. However, increasing the air 

flow rate led to an increase in the Sauter bubble size under all surfactant concentrations, 

increasing from 876 to 1713 µm; 849 to 1245 µm; and 811 to 1210 µm when air flow rate was 

increased from 0.5 to 2 L min-1 at CTAB concentrations of 20, 30, and 40 mg L-1 respectively. 

In contrast, Stevenson and Li (Paul Stevenson and Li, 2012b) stated that in a porous medium 

the generated bubble size decreases with increasing gas flow rate. At lower gas rates, only 

bigger pores are active and generating mainly big bubbles. When the gas flow rate increases, 

most of the inactive small pores become active, leading to an increased number of smaller 
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bubbles (L.K. Wang et al., 2010b). However, many other operating parameters beside air flow 

rate govern the process of bubble formation and subsequently affect the bubble size including 

static/flow condition of the liquid phase, physicochemical properties such as liquid density, 

viscosity, surface tension, and the polar or non-polar nature of the liquid phase. In addition, the 

dimensions of the pores, pore configuration, and material (Kulkarni and Joshi, 2005) will affect 

the size. Smaller bubbles have a longer residence time in the bubbly liquid due to its slower rise 

velocity which leads to a longer contact time between gas and solid phases and consequently 

enhances the collection efficiency of microalgae particles. Moreover, the rise velocity of a 

spherical bubble in a liquid is retarded by the existence of surface active materials in which 

small amounts are enough to render the bubble surface more rigid (Manica et al., 2016). The 

smallest average bubble size produced had a Sauter mean diameter of 811 µm at 0.5 L min-1 air 

flow rate and 40 mg L-1 CTAB concentration, while the largest had a Sauter mean diameter of 

1713 µm at 2 L min-1 air flow rate and 20 mg L-1 CTAB concentration. 

The effect of both surfactant concentration and air flow rate on the bubble rise velocity is shown 

in figure 5.2b. Higher bubble rise velocity was observed at higher air flow rate and lower 

surfactant concentration. This was due to the larger superficial gas velocity and bubble size 

produced at these operating conditions which also increased the Reynolds number as shown in 

figure 5.5c. A range of Reynolds number between 79 and 334 was determined in this work 

which allowed for different flow regimes of liquid flow around the rising bubbles. The 

minimum bubble Reynolds number was 79 at a bubble rise velocity of 9.5 cm sec-1, surfactant 

concentration of 20 mg L-1, and air flow rate of 0.5 L min-1 whereas the maximum bubble 

Reynolds number was 334 at a bubble rise velocity of 20.6 cm sec-1, surfactant concentration 

of 20 mg L-1, and air flow rate of 2 L min-1. 

The recovery of microalgae by bubbles depends greatly on the amount of bubble surface 

available. Therefore, the effect of air flow rate on the particle collection rate can be assessed 

based on the specific bubble surface which is similar to the specific area used in heat and mass 

transfer studies. The ratio between the superficial gas velocity (𝐽𝑔) and the Sauter mean bubble 

diameter (𝑑32) is known as the bubble surface area flux (𝑆𝑏) and can be calculated according to 

equation 5.12 (Bouchard et al., 2009). 𝑆𝑏 has been widely used for describing the dispersion 

efficiency of the gas phase in flotation machines and advocated as a key process factor (Leiva 

et al., 2010). 

𝑆𝑏 =
6. 𝐽𝑔

𝑑32
 … (5.12) 
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The contour plot for the bubble surface area flux at different CTAB concentrations and air flow 

rates is shown in figure 5.4. From this figure, it can be seen that both higher air flow rate and 

CTAB concentration produce larger bubble surface area fluxes.   

 

Figure 5.4: Contour plots for the bubble surface area flux within the liquid pool of the foam 

flotation column under 20, 30, and 40 mg L-1 CTAB concentrations and 0.5, 1, 1.5, and 2 L 

min-1 air flow rates 

5.3.2 Collection efficiency of microalgal strains in foam flotation column 

It was proposed by Derjaguin and Dukhin in 1961 that the collection or capture efficiency (𝐸𝑐𝑜𝑙) 

of a particle by a gas bubble in the collection zone of a flotation machine was equal to the 

product of bubble-particle collision (𝐸𝑐), attachment (𝐸𝑎), and the stability of particle-bubble 

aggregate (𝐸𝑠) efficiencies as given previously by equation 5.1 (Derjaguin and Dukhin, 1961). 

The collection efficiency of microalgae cells by air bubbles was studied theoretically in this 

chapter based on experimental measurements of bubble size, bubble rise velocity and 

microalgae cell size for better understanding of the flotation process and to compare the 

experimental and theoretical recovery efficiencies. 

5.3.2.1 Bubble-particle collision efficiency 

Before particle and bubble attachment can occur, they first should undergo an adequately close 

encounter (within the range of attractive surface forces). This process is governed by the 

hydrodynamics controlling their approach in the bubbly liquid zone. Inertial, gravitational, and 

hydrodynamic drag forces are the main forces in addition to Brownian diffusion that influence 
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the motion of particles in their trajectories and may deviate them from fluid streamlines. Figure 

5.5 shows four particle-bubble collision mechanisms including gravity, inertia, interception, 

and Brownian diffusion. For coarse particles which have densities greater than that of the fluid 

surrounding the rising bubbles, particles have a certain settling velocity and cannot follow fluid 

streamlines. Therefore, the trajectory of particles deviates from fluid streamlines as in the inertia 

collision mechanism or after a very short time as in the gravity collision mechanism and collide 

directly with the bubble surface. On the other hand, the collision mechanism by interception 

occurs when a flow of liquid surrounding the rising bubbles carries the fine particles along the 

fluid streamlines and causes the collision between particles and bubbles due to the former finite 

size. The last mechanism, Brownian diffusion, is only significant for particles with sizes smaller 

than several microns that move randomly in the bubbly liquid (Ralston et al., 1999; Dai et al., 

2000; Miettinen et al., 2010).      

 

Figure 5.5: Schematic representation of four particle-bubble collision mechanisms, (a) inertia, 

(b) gravity, (c) interception, and (d) Brownian diffusion. The particle trajectories are in thick 

lines whereas the fluid streamlines are in thin lines   

Derjaquin et al. (1984) stated that the inertial forces and the long-range hydrodynamic 

interaction i.e. hydrodynamic drag forces, mainly govern the transfer of small particles to the 

bubble surface (Derjaguin et al., 1984). However, the inertial forces, as described earlier, 

dominate in the case of large and dense particles. The dimensionless Stokes number (𝑆𝑡) which 

is calculated according to equation 5.13, can be used to illustrate the shape of the particle 

trajectory in the fluid flow and discriminate between collision mechanisms. 
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𝑆𝑡 =
𝜌𝑝𝑢𝑏𝑑𝑝

2

9𝑑𝑏𝜇
… (5.13) 

In equation 5.13, 𝜌𝑝 and 𝑑𝑝 are the density and diameter of the particle; 𝑢𝑏 and 𝑑𝑏 are the 

velocity and diameter of the bubble respectively; and 𝜇𝑓 is the viscosity of the fluid. As C. 

vulgaris has a small average particle size (7.44 ± 0.42 μm), the calculated Stokes number for 

all bubble sizes and rise velocities was in the range of 6.3 × 10-4 to 1.1 × 10-3 (i.e. 𝑆𝑡 << 1) and 

consequently it was concluded that inertial forces had no effect on the motion of microalgae 

particles and interception was the dominant collision mechanism. 

Inside flotation cells, the process of collecting particles by bubbles occurs under a complex flow 

and in an intensively agitated environment. However, the efficiency of particle-bubble collision 

can be calculated using stream functions when the fluid streamlines around the bubble are 

considered to be at more quiescent conditions, for example potential flow, rather than highly 

turbulent conditions. The turbulent flow makes the motion of particles and bubbles inside the 

flotation machine more complicated and hence difficult to analyse. Moreover, such quiescent 

conditions are more acceptable in column flotation since no external mixing is used. The 

streamlines are the trajectories that fine particles follow through encounter with bubbles. The 

stream functions under different flow conditions including Stokes, intermediate or potential 

flow conditions can be determined by solving the Navier-Stokes equation analytically. The 

general bubble-particle collision efficiency model (𝐸𝑐) is shown in equation 5.14, where 𝑑𝑝 is 

the particle diameter; 𝑑𝑏 is the bubble diameter; 𝑛 and 𝐴 are parameters that depend on the flow 

conditions which can be evaluated by the bubble Reynolds number as given in table 5.1 

(Miettinen et al., 2010; Shahbazi et al., 2010). 

𝐸𝑐 = 𝐴 (
𝑑𝑝

𝑑𝑏
)

𝑛

… (5.14) 

No. Flow regime Flow condition 𝑨 𝒏 

1. Stokes 𝑅𝑒𝑏 << 1 
3

2
 2 

2. Intermediate 1 < 𝑅𝑒𝑏 < 100 
3

2
+

4𝑅𝑒𝑏
0.75

15
 2 

3. Potential 100 < 𝑅𝑒𝑏 < 500 3 1 

Table 5.1: 𝐴 and 𝑛 values for different flow regimes. 

The bubble-particle collision efficiency was calculated at different CTAB concentrations (20, 

30, and 40 mg L-1) and air flow rates (0.5, 1, 1.5, and 2 L min-1) using equation 5.14 with the 
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values of parameters 𝑛 and 𝐴 from table 5.1. The bubble Reynolds number obtained previously 

had a range from 79 to 334, therefore, the flow regimes of liquid around a rising bubble were 

of the intermediate and potential types. The contour plot of the bubble-particle collision 

efficiency is shown in figure 5.6 for different CTAB concentrations and air flow rates. The 

smallest collision efficiency was 0.062% and was observed under intermediate flow conditions 

with a bubble Reynolds number of 79, CTAB concentration of 20 mg L-1, and air flow rate of 

0.5 L min-1, whereas the largest collision efficiency was 2.75% and was observed under 

potential flow conditions with a bubble Reynolds number of 109, CTAB concentration of 40 

mg L-1, and air flow rate of 0.5 L min-1. 

 

Figure 5.6: Contour plots for the bubble-particle collision efficiency within the liquid pool of 

the foam flotation column under 20, 30, and 40 mg L-1 CTAB concentrations and 0.5, 1, 1.5, 

and 2 L min-1 air flow rates 

From equations 5.11, 5.13 and 5.14, it is obvious that both particle and bubble sizes are the 

main factors affecting the collision efficiency in addition to the particle density as well as 

bubble rising velocity. Higher collision efficiency favours smaller bubble sizes and higher 

particle sizes. Therefore, the largest collision efficiency herein was obtained at higher CTAB 

concentration and lower air flow rate as both variables at these conditions produced smaller 

bubble sizes (Figure 5.6). Potential flow, with a collision efficiency of 2.75%, appears to be 

more advantageous over the intermediate flow in which collision efficiency is 0.062%. Particle 

density and bubble rise velocity increase the Stokes number and consequently will change the 

dominant collision mechanism from interception to inertia or gravity. Bubble rise velocity also 
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has the ability to change the liquid flow conditions at the bubble surface. The present work did 

not illustrate the effect of microalgae cell size on the collision efficiency since only the average 

value of microalgae cell size was used. However, some aggregations among microalgae cells 

were noticed under the microscope after CTAB addition. This might be due to the charge 

neutralisation of the algal cells induced by the cationic surfactant. Nevertheless, the effect of 

the microalgae cell aggregations did not significantly increase the bubble-particle collision 

efficiency. 

5.3.2.2 Bubble-particle attachment efficiency 

Bubble-particle attachment efficiency has generally been studied and modelled regarding 

contact and induction times in which the attachment of a bubble to a particle takes place when 

the contact time between the bubble and particle is longer than the induction time. In 

comparison with the available collision models, the number of bubble-particle attachment 

models is very limited owing to the difficulties in measuring the quantities used in attachment 

models such as the induction time. In the flotation process, when a particle and a bubble are in 

close vicinity, an intervening liquid film is formed between them. This film is usually unstable 

when the particle is hydrophobic and therefore it tends to become thinner until a stable three-

phase contact line is formed. The contact time (𝑡𝑐𝑜𝑛) is defined as the time when both the 

particle and the bubble are in contact after their collision, whereas the induction time (𝑡𝑖𝑛𝑑) is 

defined as the time required for the thinning of the liquid film between the bubble and particle, 

film rupture, and the formation of the equilibrium three-phase contact line (A. V. Nguyen et al., 

1997; Dai et al., 1999; Miettinen et al., 2010). Yoon and Luttrell in 1989 reported that the 

formation of the stable three-phase line of contact is very short for hydrophobic and fine 

particles. They also assumed that the time for liquid film rupture is of 10-9 s order (Yoon and 

Luttrell, 1989). Therefore, only the first part in the above sequence that is the time for the liquid 

film to thin is the most important component of time induction 

Previous studies have demonstrated that induction time decreases with decreasing particle size 

and increasing surface hydrophobicity of the particle. Experimental as well as theoretical 

studies showed that the induction time (sec) varied with particle size according to a power 

function relationship as shown in equation 5.15 (Ye and Miller, 1988; Dai et al., 1999).        

𝑡𝑖𝑛𝑑 = 𝐴𝑑𝑝
𝐵 … (5.15) 

Where: 𝐴 is a parameter that depends inversely on the particle contact angle; and 𝐵 is a 

parameter, with a value of 0.6, independent of bubble size, particle size and contact angle. Based 

on the results from Dai et al. (Dai et al., 1999), the parameter 𝐴 was considered by the present 
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researchers to have the following relation with the particle contact angle (𝐴 = 6 𝜃𝑐𝑎⁄ ), where: 

𝜃𝑐𝑎 is the contact angle of C. vulgaris in degrees. The contact angle of C. vulgaris, in the form 

of algal strata on membrane filters, was measured based on the sessile drop technique as 

described previously (see 3.2 materials and methods). The contact angle value was used to 

calculate the induction time. The measured contact angles of C. vulgaris cells and the calculated 

induction times at different CTAB concentrations are shown in figure 5.7. 

 

Figure 5.7: The contact angle of Chlorella vulgaris and induction time at different CTAB 

concentrations. 

On the other hand, the contact time is linked to the bubble-particle collision. When a particle 

with high kinetic energy impacts a bubble surface, it may cause a significant distortion on the 

bubble surface and consequently the particle may rebound from the bubble surface because of 

the elastic energy of the deformed part of the surface. However, it has been suggested that the 

rebound of particle from bubble surface was negligible for small particles (< 100 µm) due to 

their very small kinetic energy (Dobby and Finch, 1987). After impact, the particle slides along 

the bubble surface. In essence, the contact time is the sum of the impact time and sliding time. 

However, the impact time for small sized particles is smaller than the sliding time (Schulze and 

Gottschalk, 1981; Schulze, 1989), thus this work suggested that the effects of bubble surface 

distortion and rebound of particle from the bubble surface was small, therefore, the contact time 

was equal to the sliding time. The sliding time (𝑡𝑠𝑙) in seconds can be determined according to 

the model derived by Dobby and Finch in 1986 (Dobby and Finch, 1986). 
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𝑡𝑠𝑙 = −
𝑑𝑝 + 𝑑𝑏

2(𝑢𝑝 + 𝑢𝑏) + 𝑢𝑏 (
𝑑𝑏

𝑑𝑝 + 𝑑𝑏
)

3 ln (𝑡𝑎𝑛
𝜃𝑐

2
) … (5.16) 

Where: 𝑢𝑝 is the particle settling velocity, calculated using Stokes’ law (equation 5.17); 𝜃𝑐 is 

the angle of collision, calculated using equation 5.18 (Nguyen-Van, 1994; Anh V. Nguyen et 

al., 1998). 

𝑢𝑝 =
(𝜌𝑝 − 𝜌𝑓)𝑔𝑑𝑝

2

18𝜇
… (5.17) 

𝜃𝑐 = 𝑐𝑜𝑠−1 (
√(𝑋 + 𝐶)2 + 3𝑌2 − (𝑋 + 𝐶)

3𝑌
) … (5.18) 

Where: 𝑋, 𝑌, 𝐶 are dimensionless parameters and only dependent on the bubble Reynolds 

number; 𝑔 is the acceleration due to gravity. 𝑋, 𝑌, 𝐶 are calculated using the following 

relationships:  

𝑋 =
3

2
+

9𝑅𝑒

32 + 9.888𝑅𝑒0.694
 

𝑌 =
3𝑅𝑒

8 + 1.736𝑅𝑒0.518
 

𝐶 =
𝑢𝑝

𝑢𝑏
(

𝑑𝑏

𝑑𝑝
)

2

 

Another model can be used to determine the bubble-particle collision angle for bubble Reynolds 

number range between 20 and 400 as shown in equation 5.19. 

𝜃𝑐 = 78.1 − 7.37 log(𝑅𝑒𝑏) … (5.19) 

The collision angle between bubbles and particles varies between 60 and 64. It increased as the 

air flow rate and bubble Reynolds number decreased. The maximum collision angle was 64˚, 

obtained under intermediate flow conditions with bubble Reynolds number of 79, CTAB 

concentration of 20 mg L-1, and air flow rate of 0.5 L min-1 whereas the minimum collision 

angle was 60˚, obtained under potential flow conditions with bubble Reynolds number of 334, 

CTAB concentration of 20 mg L-1, and air flow rate of 2 L min-1.    

According to equation 5.16, the calculated sliding times or contact times for all CTAB 

concentrations and air flow rates were longer than the corresponding induction times indicating 

that the attachment of bubble-particle would take place under all operating conditions, that is 
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to say the thin film would rupture and the stable three-phase contact line would form between 

the microalgae particle and air bubble. The shortest sliding time of 0.9 millisecond was obtained 

at a CTAB concentration of 40 mg L-1 and air flow rate of 1 L min-1 whereas the longest sliding 

time of 1.5 millisecond was obtained at a CTAB concentration of 20 mg L-1 and air flow rate 

of 0.5 L min-1.  

Bubble-particle attachment efficiency (𝐸𝑎) can be approximated using the generalised model 

proposed by Nguyen et al. (1998) (Anh V. Nguyen et al., 1998) as presented in equation 5.20.  

𝐸𝑎 = 𝑠𝑒𝑐ℎ2 (
2𝑢𝑏𝐴𝑡𝑖𝑛𝑑

𝑑𝑝 + 𝑑𝑏
) … (5.20) 

Where: 

𝐴 =
𝑢𝑝

𝑢𝑏
+ 1 +

1

2
(1 +

𝑑𝑝

𝑑𝑏
)

−3

 

Attachment efficiencies close to unity were obtained under all experimental conditions 

demonstrating that microalgae-bubble attachment would occur as the comparison between the 

contact time and induction time had showed. The maximum attachment efficiency occurred 

under intermediate flow conditions with a bubble Reynolds number of 79, CTAB concentration 

of 20 mg L-1, and air flow rate of 0.5 L min-1. 

5.3.2.3 Bubble-particle stability efficiency 

Particle size, particle hydrophobicity, and external detaching forces such as inertial and 

gravitational forces are the main factors that affect the stability of bubble-particle aggregates. 

For flotation of fine particles in flotation machines, the stability efficiency of bubble-particle 

aggregate is often considered as negligible (Miettinen et al., 2010). Therefore, for the flotation 

of C. vulgaris in a foam column, the stability efficiency of bubble-particle aggregate was 

neglected, i.e. 𝐸𝑠 = 1 as Chlorella species have small cell sizes and no intensive turbulent 

agitation existed in the foam column. 

After calculating the collision and attachment efficiencies between microalgae particles and air 

bubbles, the collection efficiencies of microalgae particles by air bubbles at different 

experimental conditions were calculated using equation 5.1. According to figure 5.8, the 

collection efficiencies demonstrated that it was difficult to float microalgae particles due to the 

low collision efficiencies between microalgae particles and bubbles. The largest collection 

efficiency was 2.74% and obtained under potential flow conditions with a bubble Reynolds 

number of 109, CTAB concentration of 40 mg L-1, and air flow rate of 0.5 L min-1 whereas the 
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smallest collection efficiency was 0.06% and obtained under intermediate flow conditions with 

a bubble Reynolds number of 78, CTAB concentration of 20 mg L-1, and air flow rate of 0.5 L 

min-1. These results showed that the effect of surfactant concentration on the microalgae 

recovery was higher than the effect of air flow rate. CTAB has a pronounced influence on the 

air bubble size as well as particle surface forces i.e. hydrophobic and electrostatic forces (see 

3.3 results and discussion) and consequently it affects both the collision and attachment 

efficiencies. 

 

Figure 5.8: The contour plot for the collection efficiency of microalgae particle by air bubble 

within the liquid pool of the foam flotation column under 20, 30, and 40 mg L-1 CTAB 

concentrations and 0.5, 1, 1.5, and 2 L min-1 air flow rates 

5.3.3 Calculation of the flotation rate constant for continuous flotation of microalgae 

As mentioned in section 5.1, kinetic models for flotation processes are based on analogy with 

chemical reaction kinetics. In this work, the recovery of microalgae in the bubbly liquid zone 

is modelled by a first-order rate process using previous empirical correlations. It is a function 

of three parameters: flotation rate constant (𝑘), microalgae particle retention time, and degree 

of axial mixing; that is to say, it generally takes the form of equation 5.21 (Dobby, 1984). 

𝑅 = 𝑅∞𝑓(𝑘, 𝜏𝑝, 𝑃𝑒𝑝) … (5.21) 

Where: 𝜏𝑝 is the particle residence time (s) and 𝑃𝑒𝑝 is the equivalent particle Peclet number (S. 

Dobby and A. Finch, 1986). 
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𝑃𝑒𝑝 =
(𝐽𝑙 + 𝑢𝑝)ℎ

𝐷𝑖
… (5.22) 

Where: 𝐽𝑙 is the liquid superficial velocity (cm s-1), ℎ is the liquid pool depth (cm), and 𝐷𝑖 is 

the axial dispersion coefficient (cm2 s-1). The particle settling-velocity (𝑢𝑝) can be calculated 

using Masliyah’s relationship (Masliyah, 1979). 

𝑢𝑝 =
𝑔𝑑𝑝

2(1 − 𝜀𝐺)2.7(𝜌𝑝 − 𝜌𝑙)

18𝜇(1 + 0.15𝑅𝑒𝑝
0.687)

… (5.23) 

The particle Reynolds’ number (𝑅𝑒𝑝) can be calculated using equation 5.24: 

 𝑅𝑒𝑝 = 𝑑𝑝𝑢𝑝𝜀𝑙
𝜌𝑝−𝜌𝑙

𝜇
… (5.24) 

Where: 𝜀𝑙, 𝜀𝐺 are the liquid and gas holdup in the liquid pool. The gas holdup measurements 

are shown in figure 5.9. 

The flotation rate for the microalgae cells since they have, to a certain extent, a narrow size 

distribution, and similar shape and maybe surface properties, is expected to remain constant 

during the tests and a single value for 𝑘 can be used instead of the distribution function of 𝑘. 

The particle residence time is dependent on the operation mode. If flotation operates in a 

continuous mode, it is the average retention time of the particle in the flotation environment. In 

this work, it is calculated according to equation 5.25 as well as 5.26 (Dobby, 1984; Kaya and 

Laplante, 1986).    

 

Figure 5.9: Gas holdup measurements  
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𝜏𝑝 =
𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 𝑝𝑜𝑜𝑙 (𝑐𝑒𝑙𝑙𝑠)

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑒𝑙𝑙 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑐𝑒𝑙𝑙𝑠/𝑚𝑖𝑛)
… (5.25) 

𝜏𝑝

𝜏𝑙
=

𝐽𝑙

𝐽𝑙 + 𝑢𝑝
… (5.26) 

Where: 𝜏𝑙 is the liquid residence time and equal: 

𝜏𝑙 =
ℎ(1 − 𝜀𝐺)

𝐽𝑙
 

However, both residence times (i.e. for particle and liquid) can be determined from residence 

time distribution experiments using particle and liquid tracers (Dobby and Finch, 1991). From 

equation 5.26, the particle residence time increases with decreasing particle size, to come close 

the liquid phase residence time. 

The mixing characteristics within a flotation column are crucial in predicating recovery. There 

are two extremes of mixing which are plug flow and perfect mixing or fully mixed reactor. In 

plug flow, particles pass unmixed through the column meaning that the residence time of all 

elements of the fluid including the particles is the same. Therefore, a concentration gradient of 

floatable particles along the axis of the column exists (Dobby, 1984; Mills and O'Connor, 1990; 

Dobby and Finch, 1991; Mankosa et al., 1992). 

For a first order rate flotation system exhibiting plug flow and a retention time 𝜏𝑝, the recovery 

is given by equation 5.27: 

𝑅 = 1 − 𝑒−𝑘𝜏𝑝 … (5.27) 

In the other extreme (perfect mixing), there is a distribution of retention time (commencing 

with time zero) and the concentration is the same throughout the reactor. The recovery of a first 

order rate flotation system exhibiting perfect mixing is described by equation 5.28: 

𝑅 =
𝑘𝜏𝑝

1 + 𝑘𝜏𝑝
… (5.28) 

In the continuous mechanical flotation cells, the flow condition approximates perfect mixing 

where the discharge stream is considered to have the same concentration as the cell itself. In a 

laboratory flotation column, the flow condition would approximate plug flow while the liquid 

and solids in plant columns are transported under conditions between plug flow and perfectly 

mixed (Dobby, 1984). However, the difference in recovery between the two flow conditions is 

significant. For example, when 𝑘𝜏𝑝 = 2.5, a recovery of 92% was obtained under plug flow 
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condition compared to 71% for perfectly mixed. Using a recovery model that comprises the 

liquid or particle degree of mixing is more precise. Therefore, the recovery model by Wehner 

and Wilhelm (1956) (equation 5.29), which is the analytical solution of the axial dispersion 

model was used in this work to calculate the flotation kinetic constants (Wehner and Wilhelm, 

1956; Satterfield, 1973). 

𝑅 = 1 −
4𝑎𝑒

𝑃𝑒𝑝

2

(1 + 𝑎)2𝑒
𝑎𝑃𝑒𝑝

2 − (1 − 𝑎)2𝑒
−𝑎𝑃𝑒𝑝

2

… (5.29) 

Where:  

𝑎 = √1 +
4𝑘𝜏𝑝

𝑃𝑒𝑝
 … (5.30) 

Equation 5.29 can be simplified to 7.25 and 7.28 when the Peclet number approaches infinity 

(plug flow) and zero (perfect mixing) respectively. It is clear from equation 5.29 that both the 

kinetic rate constant and the mixing conditions are crucial factors to be considered to scale up 

flotation columns. 

Dobby and Finch’s model (1986) (equation 5.31) was used in this work for calculating Peclet 

number (S. Dobby and A. Finch, 1986). This model was used rather than conducting 

experiments to obtain our own model because it can estimate the Peclet number for a wide 

range of column diameters, column heights, superficial gas and liquid velocities. It is typical 

for the current column dimensions and operating conditions. 

𝑃𝑒 = 18.28
ℎ

𝐷
[

𝐽𝑙

1 − 𝜀𝑔
+ 𝑢𝑝] 𝐽𝑔

−0.3 … (5.31) 

Where: 𝐷 is the column diameter (cm). The equation 5.29 was then solved to determine 

flotation rate constants at different air flow rates and CTAB concentrations. The relationships 

between the air flow rate and CTAB concentration with the recovery efficiency and flotation 

rate constant are shown in figures 5.10 and 5.11 respectively. As the previous results have 

shown, the recovery efficiency of microalgae cells increases with increasing air flow rate and 

CTAB concentration. The positive effect of the air flow rate and CTAB concentration on the 

recovery of microalgae (Figure 5.10) is due to higher bubble surface area flux (𝑆𝑏) for 

adsorption rather than bubble size as discussed earlier. 
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Figure 5.10: The recovery efficiency of microalgae particle by air bubbles under 20, 30, and 

40 mg L-1 CTAB concentrations and 1 and 2 L min-1 air flow rates. 

 

Figure 5.11: flotation rate constant in continuous flotation under 20, 30, and 40 mg L-1 CTAB 

concentrations and 1 and 2 L min-1 air flow rates. 
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The flotation rate constant also increases as air flow rate and CTAB concentration increases. 

The increase in the flotation kinetic rate constant is probably due to the same reason above (i.e. 

the increase in the total bubble surface area flux). 

To compare between the recovery efficiencies obtained experimentally and theoretically, the 

calculated collection efficiencies were converted to recovery efficiencies using Nguyen’s 

model (equation 5.32) (A. V. Nguyen and Schulze, 2004). 

𝑅 = 1 − exp [−𝐸𝑐𝑜𝑙 ∗ (1 +
𝑢𝑝

𝑢𝑏
)] … (5.32) 

The obtained theoretical recovery efficiencies were not in agreement with the experimental data 

for the recovery efficiencies as set out in table 5.2. High cell recovery efficiencies were obtained 

indicating that there may be other forces between microalgae particles and air bubbles such as 

electrostatic forces not considered in the published collision models used in this work. For 

example, the collision model proposed by Reay and Ratcliff in 1973 and 1975 (Reay and 

Ratcliff, 1973; Reay and Ratcliff, 1975) which is similar to the general collision model 

presented in equation 5.14 only worked well for electrically uncharged particles such as glass 

beads. The model has 𝑛 and 𝐴 values of 1.9 and 1.25 when both particle and liquid densities 

are similar and 𝑛 and 𝐴 values of 2.05 and 3.6 when particle to liquid density ratio is of 2.5. 

Therefore, long-range interaction forces between particle and bubble surfaces may need to be 

taken into account in the collision models for algae cells with bubble surfaces. Moreover, 

microalgae are deformable and can also support mobile surface charge distribution. Therefore, 

the nature of the interaction between microalgae and gas-liquid interfaces is distinctly different 

from hard spheres with uniform charge distribution. Furthermore, the measurements of the 

liquid holdup in the rising foam (see chapter 4.3 results and discussion) demonstrated that the 

onset zone of the foam (10 cm above the pool/foam interface) was very wet with a liquid holdup 

range of 0.9 to 0.1. Consequently, and owing to more quiescent conditions at that foam zone 

than those in the bubbly liquid, the trajectories that microalgae cells in the liquid accompanying 

the rising foam (i.e. hydraulically entrained cells) follow through encounter with foam bubbles 

are probably different and lead to improved collision efficiencies. This is another possible 

explanation to elucidate the distinction between experimental and theoretical recovery 

efficiencies (Table 5.2). 

Another evidence that supports the experimental recovery efficiencies achieved in this work 

can be introduced through calculating bubble coverage by particles. The gas holdup in the 

bubbly liquid at an air flow rate of 2 L min-1 was 0.1. The number of gas bubbles (𝑁𝑏) at an air 
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flow rate of 2 L min-1 can be then calculated based on the total gas volume (𝑉𝑔) and the volume 

of a gas bubble (𝑉𝑏). 

Experimental trial conditions Experimental 

recovery efficiency 

% 

theoretical 

recovery efficiency 

% 
CTAB Conc. mg/L Air flow rate L/min 

20 1 60.3 2 

20 2 69.8 1.3 

30 1 78.4 2.2 

30 2 83.6 1.9 

40 1 84.1 2.4 

40 2 96 1.9 

Table 5.2: Comparison between the experimental and theoretical recovery efficiencies at 

different experimental conditions. 

𝑉𝑔 = 𝑁𝑏 ∗ 𝑉𝑏 … . (5.33) 

𝜋𝑟𝑐
2ℎ𝑔 = 𝑁𝑏 ∗

4

3
𝜋𝑟𝑏

3 

Where: 𝑟𝑐 is the radius of the flotation column (2.58 cm); ℎ𝑔is the gas height in the flotation 

column (2.78 cm) and it was calculated from the gas holdup (𝜀𝐺 = 0.1); and 𝑟𝑏 is the average 

radius of bubbles generated at an air flow rate of 2 L min-1 and a CTAB concentration of 40 mg 

L-1 (0.12 cm). 

𝑁𝑏 = 8.03 ∗ 103 𝑏𝑢𝑏𝑏𝑙𝑒𝑠 

Total surface area of gas bubbles (𝐴𝑔) can be calculated using equation 5.34 

𝐴𝑔 = 𝑁𝑏 ∗ 4 ∗ 𝜋 ∗ 𝑟𝑏
2 … (5.34) 

𝐴𝑔 = 1.45 ∗ 103 𝑐𝑚2 

During the foam flotation process, the total number of microalgae cells entering the column 

(𝑁𝑚𝑓) is equivalent to the summation of cells attached to gas bubbles (𝑁𝑚𝑔) and cells dispersed 

in liquid (𝑁𝑚𝑙) as presented in equation 5.35. 

𝑁𝑚𝑓 = 𝑁𝑚𝑔 + 𝑁𝑚𝑙 … (5.35) 

At an air flow rate of 2 L min-1 and a CTAB concentration of 40 mg L-1, a recovery efficiency 

of 96% was obtained which means 9.2×108 cells were in touch with the gas bubbles compared 

to 3.82×107 cells dispersed in liquid. The total cross-sectional area of microalgae cells of 

average radius of 3.72*10-4 cm (𝑟𝑚) can be written using the bubble coverage (𝐵𝑐) as follows: 
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𝑁𝑚𝑔 ∗ 𝜋 ∗ 𝑟𝑚
2 = 𝐵𝑐 ∗ 𝐴𝑔 

𝐵𝑐 =
9.2 ∗ 108 ∗ 𝜋 ∗ (3.72 ∗ 10−4)2

1.45 ∗ 103
= 0.28 

The maximum theoretical bubble coverage of a flat surface by particles of equal sizes is 0.906 

and it is considerably larger than the calculated bubble coverage by microalgae cells (0.28), 

indicating that the gas bubbles produced at the operating conditions of air flow rate of 2 L min-

1 and CTAB concentration of 40 mg L-1 can recover that percentage of microalgae cells (96%). 

5.4 Conclusion 

Foam flotation is an attractive technique for recovering and concentrating algal biomass from 

culture medium. However, the development of mathematical models for the flotation process 

has proven difficult due to interactions between solid, gas, and liquid phases within the process. 

Therefore, kinetic models and probability models were adopted in this work to get a better 

insight into the events in the flotation process of microalgae. A wide range of bubble sizes were 

generated with Sauter mean dimeters ranging from 811 to 1713 µm under different CTAB 

concentrations and air flow rates. The smallest bubble size of 811 µm was obtained at a CTAB 

concentration of 40 mg L-1 and an air flow rate of 0.5 L min-1 whereas the largest bubble size 

of 1713 µm was obtained at a CTAB concentration of 20 mg L-1 and an air flow rate of 2 L min-

1. The Sauter mean bubble diameter decreased with increasing CTAB concentration whereas it 

increased with increasing air flow rate. Based on the calculated bubble Reynolds number under 

different operating conditions, the flow of liquid around the rising bubble surface either obeyed 

intermediate or potential flow conditions. The calculations for collision, attachment, and 

detachment efficiencies between C. vulgaris and air bubbles demonstrated that microalgae cells 

had low collision efficiencies due to the small cell size resulting in low collection efficiencies. 

The bubble-microalgae particle attachment and stability efficiencies were at or close to unity 

due to the surface forces between air bubbles and cells, including electrostatic and 

hydrophobicity forces as well as small cell size. High attachment efficiencies were also 

predicted based on comparison between the contact time and induction time in which the latter 

was longer under all experimental trials. The recovery of microalgae and the flotation rate 

constant increased with air flow rate and CTAB concentration. This was probably due to the 

increase in the total bubble surface area flux. Good agreement between the theoretical and the 

experimental recovery efficiencies was not obtained in this work indicating that there may be 

other forces between microalgae particles and air bubbles not considered in the commonly used 

collision models.
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Chapter 6  

Direct hydrothermal liquefaction of microalgae Chlorella vulgaris harvested 

by foam flotation 

Abstract 

Direct hydrothermal liquefaction (HTL) of algal biomass without extra stages for dewatering 

and drying or intermediate storage can yield detailed information about the feasibility of this 

process as it represents a more realistic scenario for the application of HTL. Therefore, HTL of 

C. vulgaris recovered by the foam flotation process with solid loading of approximately 15% 

was accomplished directly at different temperatures and holding times. The fate of the cationic 

surfactant (CTAB) as well as its influence on the HTL product yield and distribution were also 

investigated and compared to those from the HTL of C. vulgaris recovered by centrifugation, 

which was adopted as a benchmark. CTAB in addition to three model compounds (starch, 

bovine serum albumin (BSA), and rapeseed oil) representative of the three macronutrients 

present in C. vulgaris (carbohydrate, protein, and lipid) were also liquefied individually to 

support interpretation of the results. CTAB was almost entirely converted into bio-oil by the 

HTL with a maximum yield of 98.97% at 320˚C.  

Generally, higher bio-oil yields and lower water-soluble organics, solid residue, and gas product 

yields were obtained from the HTL of microalgae harvested by foam flotation compared to the 

centrifugation control. A maximum bio-oil yield of 50.54% was obtained at 300˚C reaction 

temperature and 10 min holding time. Direct HTL of harvested microalgae rather than 

pulverised or freeze-dried microalgae enhanced the conversion of biomass and increased the 

bio-oil yield at mild conditions when compared to literature values. Elemental CHN analysis, 

GC-MS identification, and FTIR spectra indicated that there was a reduction in nitrogen content 

in the bio-oil from the HTL of algal biomass recovered by foam flotation whereas hydrogen 

content was increased. Identified compounds included esters, fatty acids, hydrocarbons, 

ketones, aldehyde, and N-containing compounds. The recovery energy in the bio-oil from the 

HTL of microalgae harvested by foam flotation (73.5%) was higher than that for the 

centrifugation control (51.4%). Finally, different reaction pathways were also proposed and 

discussed in this work based on compounds and their chemical classes identified by the GC-

MS analysis. 
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6.1 Introduction 

The growing demand for and non-sustainability of conventional transportation fuels are major 

issues of global concern affecting energy security and the environment. Replacing petroleum 

fuels and products with similar products generated from renewable sources should eliminate 

most of these issues. Among several types of renewable energy resources such as solar energy, 

hydro and wind energy, biomass such as microalgae is plentiful, diverse, and considered a 

unique renewable source of energy that can be processed into liquid hydrocarbons. It can be 

converted chemically, thermo-chemically, and biologically into a wide range of biofuel 

products such as biodiesel and bioethanol (Pragya et al., 2013; Shakya et al., 2017). Microalgae 

have been branded as a third-generation source of biofuels and are considered a valuable 

biomass. Microalgae can play a vital role in the biofuel market due to their simple structures, 

fast growth rate, and higher lipid content. Microalgae do not occupy arable land and do not 

compete with food crops. They can be cultivated in freshwater, brackish, and seawater all year 

round (Wenchao Yang et al., 2014; Golzary et al., 2015). Obtaining an economic extraction of 

the lipid from the wet microalgae is one of the main challenges for microalgae-based biodiesel. 

The conventional approach for producing biofuels from algal biomass has been to select high-

lipid yielding microalgae strains, which are subjected to an energy intensive drying, solvent 

extraction, and transesterification process to produce biodiesel. These steps are expensive and 

use organic solvents that are potentially toxic and which are produced using non-sustainable 

resources. The transesterification process requires high-lipid microalgae strains, which are 

slower growing than other strains, thus limiting the potential productivity of algal biomass and 

biofuels. Thermochemical conversions like hydrothermal liquefaction (HTL) are faster than the 

biochemical conversions (P. Biller and Ross, 2011a; López Barreiro et al., 2013). 

Amongst all processes for converting biomass into biofuels, HTL appears a promising 

technique that offers the advantage of being able to convert the entire biomass into a range of 

biofuels with oil productivity of a desirable quantity, compared to transesterification which only 

converts the lipids. For example, a bio-oil yield of 64% (DW) was obtained from the HTL of 

Botryococcus braunii at 300 ˚C (Dote et al., 1994). HTL can be used to process biomass with 

a high water content, thus microalgae recovered by most dewatering harvesting techniques can 

be processed directly or only partial drying of the algal biomass may be required unlike 
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traditional thermochemical processes such as gasification and pyrolysis. This removes the 

major energy consumption associated with drying the biomass. This process is a synonym of 

hydrous pyrolysis; however, HTL is performed at lower temperatures and heating rates than 

pyrolysis. Low oxygen content and tar yield, and high-energy efficacy are other advantages of 

HTL over pyrolysis. On the other hand, bio-oils from HTL cannot be treated using conventional 

fossil fuel refineries due to their high nitrogen content and a hydro-treating process is necessary 

to upgrade the bio-oil and remove the nitrogen (Patrick Biller et al., 2013; Wagner et al., 2016; 

Gollakota et al., 2018). 

HTL is a biomass-to-liquid conversion process conducted in water temperatures typically in the 

range of 250-374 ˚C and high pressures in the range of 39-215 bar with or without the presence 

of a catalyst. HTL can also be performed at temperatures higher than the critical point of water 

(374 ̊ C) but it has been found that the oil yield is reduced above the critical temperature (López 

Barreiro et al., 2013). The density and dielectric constant of water changes when it is heated 

under pressure as shown in figure 6.1 (data was adopted from the steam table). As the water 

approaches its critical point, it acts more like a non-polar solvent with lower density, resulting 

in different properties that make the water more affinitive to organic compounds. The products 

from HTL are an energy-dense bio-oil, some gas which consists mainly of CO2, a nutrient-rich 

aqueous phase, and residual solid. The bio-oil is of high energy density similar to that of fossil 

petroleum but it cannot be treated directly within a conventional oil refinery as mentioned 

earlier (Garcia Alba et al., 2011; López Barreiro et al., 2013; Anastasakis and Ross, 2015). 

 

Figure 6.1: Water properties (density and dielectric constant) under different temperatures and 

pressures 
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In the last decade, interest in HTL of microalgae has increased significantly. A substantial 

number of papers have investigated the technology parameters such as temperature and reaction 

time on bio-oil yields and the other phases produced. Temperatures covering the entire HTL 

range and holding times in the range of 5-120 min have been investigated for different 

microalgae species including Nannochloropsis sp, Botryococcus brabunii, and C. vulgaris. The 

use of catalyst in this thermochemical process (including homogenous and heterogeneous 

catalysts) has also been studied (P. Biller et al., 2011a; Duan and Savage, 2011). 

Other researchers have studied the relationship between bio-oil yields from HTL of microalgae 

and the biochemical composition of the microalgae by studying and comparing HTL of various 

model compounds that represent the carbohydrate, protein, and lipid fractions of microalgae 

and HTL of three microalgae strains (N. Oculata, C. Vulgaris, and P. Cruentum). The authors 

proposed that the conversion efficiencies of different biochemical fractions to bio-oil were 55 

to 80% for lipids, 11 to 18% for protein, and 6 to 15% for carbohydrate (P. Biller and Ross, 

2011a). However, these outcomes were contradicted by the results from other researchers who 

obtained high bio-oil yields when low-lipid strains were used (Yu et al., 2011). Vardon et al. 

(2011) investigated the relationship between bio-oil yields and the biochemical composition of 

Arthrospira (Spirulina). Again, the results confirmed the strong relationship between bio-oil 

yield and microalgae lipid content (Vardon et al., 2011). 

The majority of the previous HTL work, even if not stated explicitly, has been performed using 

pulverised-dried or freeze-dried microalgae mixed with deionised water (Shuping et al., 2010; 

P. Biller et al., 2011a; P. Biller and Ross, 2011a). Very few HTL trials were conducted with 

intact algal biomass as obtained from the culture medium (Valdez et al., 2011; Vardon et al., 

2011; López Barreiro et al., 2013). However, some have stored the wet algae as frozen slurry 

until it was used. Using microalgae in different physical states will probably affect the bio-oil 

composition and yield since the extractability of some constituents might change due to the 

pulverising and freeze-drying. Therefore, bio-oil yield and composition obtained from direct 

HTL of algae paste recovered by any harvesting technique without drying and storing is more 

meaningful. 

Foam flotation, which is a subclass of adsorptive bubble separation, shows considerable 

promise as a microalgae biomass harvesting and enrichment method. Foam generated by 

surface-active materials (surfactants) represents an effective medium to adsorb microalgae as it 

possesses a high specific surface area, which results in a high recovery efficiency whilst only a 
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small volume of interstitial liquid is collected, enabling good biomass enrichment. In Chapter 

four, an average total suspended solid (TSS) of approximately 14.6% has been achieved by 

developing a continuous and low cost foam flotation harvester. Cationic 

hexadecyltrimethylammonium bromide (CTAB) was used as a surfactant during the harvesting 

trials (see 4.3 results and discussion).  

Coward et al. (2014) investigated the effect of CTAB on the lipid content and fatty acid profiles 

of C. vulgaris harvested by a batch foam flotation column. They observed an increase in the 

total extractable lipid due to the solubilisation of the phospholipid bilayer by CTAB (T. Coward 

et al., 2014). Borges et al. (2011) noticed higher percentages of C16:0, C16:1, and C20:5 fatty 

acids were recovered from both N. oculata and T. weissflogii after harvesting using anionic and 

cationic flocculants. They also noticed an increase of C14:0 and a decrease of C20:5 in the lipid 

recovered from N. oculata when an anionic flocculant was used (Lucelia Borges et al., 2011). 

The aims of this study are to investigate, for the first time, the direct HTL of microalgae 

harvested by foam flotation without extra stages for dewatering or drying and without biomass 

storage. This provides detailed information about the feasibility of the process and it represents 

a more realistic scenario for the application of HTL. An additional advantage of this work is 

that it will investigate the influence of CTAB, which is attached to microalgae biomass, on the 

bio-oil product yield and composition. HTL of microalgae recovered by centrifugation was 

performed as a benchmark (control). Model compounds (starch, bovine serum albumin (BSA), 

and rapeseed oil) representative of the three categories of biochemical compounds present in 

microalgae (carbohydrate, protein, and lipid) were processed individually by HTL to support 

interpretation of the results. Due to the absence of algaenan in C. vulgaris (an insoluble macro-

polymer of hydrocarbons), the HTL processing of this compound in isolation was not performed 

in this study. 

6.2 Materials and methodology 

6.2.1 Microalgae culture 

The growth conditions used for C. vulgaris have been described previously (see 4.2 materials 

and methods). 
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6.2.2 Harvesting experiments 

The harvesting experiments for C. vulgaris have been described previously (see 4.2 materials 

and methods). 

6.2.3 Materials and chemicals 

The model lipid (rapeseed oil) was purchased from Henry Colbeck, UK. All other materials 

including starch, bovine serum albumin (BSA), CTAB, lab solvents, and chemicals for 

measuring total carbohydrate, protein, and lipids contents were purchased from Sigma-Aldrich, 

UK and used as received. 

6.2.4 Characterisation methods 

Higher Heating Values (HHV) of the biomass feedstock and bio-oils were measured by a Parr 

bomb calorimeter. Microalgae feedstock and bio-oils were also analysed for CHN content using 

an elemental analyser (Vario MACRO cube, UK). Sulphur content was assumed negligible due 

to its relatively small amount and oxygen content was calculated by difference. The ash content 

of the feedstock, model compounds, and bio-oils was measured as the residual fraction after 

combustion at 575 ˚C using a muffle furnace with a ramping program. 

Total carbohydrate content for the microalgae feedstock was determined by the phenol-sulfuric 

acid method optimised by Mercz (1994) (Mercz, 1994). Total protein content for the microalgae 

was determined using the Lowery method and the total lipid content was determined 

gravimetrically using the Bligh and Dyer method (Moheimani et al., 2013). 

Total suspended solids (TSS) were measured for C. vulgaris harvested by both techniques to 

adjust the feed concentration (≈15%) before loading to the reactor. The harvested microalgae 

were placed in an aluminium dish and dried between 103 to 105 ºC for 24 hours. TSS was 

calculated using equation 6.1: 

𝑇𝑆𝑆 =
𝑊𝑡3 − 𝑊𝑡1

𝑊𝑡2 − 𝑊𝑡1
 100% ⋯ (6.1) 

Where: 𝑊𝑡1 is the aluminium dish weight (g); 𝑊𝑡2 is the wet sample and dish weight (g); and 

𝑊𝑡3 is the dry sample and dish weight (g). 

6.2.5 Apparatus and experimental procedure 

HTL experiments were performed in a batch tubular reactor of 75 ml internal volume similar 

to those reported in the literature (Wagner et al., 2016). The reactor was fabricated from 
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Swagelok stainless tubing and fitted with a pro K-type thermocouple (RS, UK), a vent valve, a 

pressure gauge, and a pressure relief valve as shown in figure 6.2; all were purchased from 

Swagelok, UK. In a typical HTL experiment, 20 ml of harvested microalgae slurry, 

approximately 15% total solid content, was charged to the reactor. Then, the reactor was 

securely sealed and inserted into a vertical tube furnace (Carbolite Gero, EVT 1200, UK), which 

was already preheated to 800 ˚C to achieve high heating rate. For the HTL of the model 

compounds and CTAB, 3 g of compound was mixed with 17 g of deionised water giving a mass 

fraction of 15%. Three different reaction temperatures (280, 300, and 320 ˚C), two holding 

times (0 and 10 min), and a heating rate of 32 ˚C/min were used to investigate the effect of 

reaction temperature and holding time on product yields. However, for the HTL of the model 

compounds and CTAB, only two reaction temperatures (300 and 320 ˚C) with no holding time 

were used. Previous work on the HTL of model compounds representative of those found in 

microalgae was performed at different batch holding times ranging from 10 to 60 mins. 

Therefore, in this work, the model compounds were processed with no holding time. All HTL 

reactions for the harvested microalgae and model compounds were carried out in duplicate. 

Mean values were reported in the results and the standard deviation was used as the uncertainty 

of the experimental trial. Batch holding time in the work (10 min) did not include the heating 

or cooling periods.  

  

Figure 6.2: The batch HTL reactor (left) and the reactor inside the vertical tube furnace (right)   
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During the process, the pressure was autogenous due to the partial vaporisation of water and 

was monitored using the pressure gauge. According to the steam table of the saturated liquid 

water and pressure gauge readings, the maximum pressure was in the range of 63-112 bar under 

various trial sets. Following each trial, the reactor was washed and then further cleaned by 

heating 25 ml of deionised water to 230˚C and venting the produced steam through the vent 

valve. After completion of the HTL reaction, the reactor was removed from the furnace and 

allowed to cool to room temperature. The gas fraction was vented through the vent valve into a 

Tedlar gas sampling bag (Sigma-Aldrich, UK). Then, the reactor contents were poured through 

filter paper (Whatman, grade 42, Sigma-Aldrich, UK) using a vacuum filtration unit to recover 

water-soluble organics (can pass through the filter). The oil phase product was then separated 

by repeatedly washing out the reactor and solid residue with dichloromethane until the solvent 

remained clear. The oil-solvent mixture was decanted into a pre-weighed round bottom flask. 

Thereafter, the solvent was evaporated in a rotary evaporator and the flask was left overnight 

in a fume cupboard to eliminate any remaining solvent within the purified bio-oil. Filter paper 

with the solid residue was dried overnight in an oven (Memmert, Germany) and then stored in 

a desiccator over a desiccant (Silica Gel) until it was weighed.    

6.2.6 Product yields and analysis 

The chemical composition of the bio-oil fraction was analysed by gas chromatography-mass 

spectrometry (GC-MS, PerkinElemer Clarus500-560D) using an Elite-5MS capillary column, 

30m length and 0.25mm inner diameter, and 0.25µm film thickness. The carrier gas was helium 

with flow rate set at 1.0 ml/min. The oven temperature was set at 40 ˚C, maintained for 5 min, 

and then increased at a rate of 5 ˚C min-1 to 250 ˚C with a final hold of 5 min. Mass detector 

inlet line and ion source temperatures were set to 150 and 180 ˚C respectively. The mass 

spectrometer was run in positive ionisation mode at 70 electron energy in m/z scan range of 30-

600. Compounds were identified by comparing chromatogram spectra peaks with a mass-

spectral library using NIST (National Institute of Standards and Technology). 

The gas fraction composition was analysed in a gas chromatograph Varian 450-GC equipped 

with an Alltech Hayesep column (1.5m length and 2mm inner diameter), a thermal conductivity 

detector (TCD), and a flame ionisation detector (FID). Argon gas (mobile phase) was used as 

carrier gas through the column. Gas compositions were normalised after gas analysis to subtract 

oxygen and nitrogen gases that were not generated during the HTL reaction but likely 

introduced during feedstock loading to the reactor and/or when the gas products were sampled. 
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Fourier-transform infrared (FTIR) spectroscopic analysis was performed on model compounds 

(starch, BSA, and rapeseed oil), all microalgae feedstocks harvested by centrifugation and foam 

flotation, and bio-oils produced by the HTL of C. vulgaris harvested as above, as well to 

characterise their chemical functional groups. FTIR spectra herein were used as supporting data 

to the GC-MS analysis of HTL bio-oils. A FT-IR spectrophotometer (Agilent, Cary 630, UK) 

was used in absorbance mode over a range of 4000-650 cm-1 wavelengths. Each spectrum was 

collected after 50 scans at a resolution of 4 cm-1 in two replicates for each sample.              

The product yields of the hydrothermal reaction were calculated using equation 6.2 except for 

water-soluble organic yield, which was calculated instead by difference. This was because of 

the difficulty in obtaining an accurate overall mass balance closure due to the design of the 

reactor (figure 6.2) when the water-soluble compound fraction was measured. The water phase 

yield was only determined with the HTL trials for starch due to difficulty in recovering all solid 

residue from the reactor. All product yields were determined on an ash-free dry basis (daf). 

HTL conversion was calculated according to equation 6.3, where 𝑀𝑆𝑅, 𝑀𝐴𝑠ℎ, and 𝑀𝑎𝑙𝑔𝑎𝑒 are 

the masses of solid residue, ash in microalgae, and algal feedstock respectively. 

𝑌𝑖𝑒𝑙𝑑𝑠 (𝑤𝑡. %) =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝑑𝑟𝑦 𝑏𝑎𝑠𝑖𝑠)

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒 (𝐴𝑠ℎ 𝑓𝑟𝑒𝑒 𝑑𝑟𝑦 𝑏𝑎𝑠𝑖𝑠)
… (6.2) 

𝐿𝑖𝑞𝑢𝑒𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) = (1 −
(𝑀𝑆𝑅 + 𝑀𝐴𝑠ℎ)

𝑀𝑎𝑙𝑔𝑎𝑒
) ∗ 100% … (6.3) 

6.3 Results and discussion 

6.3.1 HTL of the model compounds and cationic surfactant (CTAB)  

The product yields (bio-oil, water-soluble organics, solid residue, and gas) from the HTL of 

starch, BSA, rapeseed oil, and CTAB are shown in figure 6.3 in term of weight percentage. The 

ash content for the three model compounds were 0, 0.84, and 0.27% for starch, BSA, and 

rapeseed oil respectively compared to 8.56% for the microalgae biomass (see table 6.1). 

The product distributions from the HTL of the model compounds (Figure 6.3) were not in 

accord with those from previous works conducted by Biller and Ross (2011) (P. Biller and Ross, 

2011a) and Teri et al. (2014) (Teri et al., 2014). This is likely due to differences in the 

operational conditions (temperatures and holding times) among these studies. The bio-oil, 

water-soluble organic, solid, and gas yields from the HTL of starch were 3.17, 3.61, 63.03, and 

6.57% respectively at 300 ˚C. When the temperature increased to 320 ˚C, the bio-oil, water-
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soluble organic, and gas yields increased to 3.79, 4.35, and 7.71% while solid yield reduced to 

61.9%. However, the actual values of solid yield from starch were higher than the values 

measured. This was due to difficulties in recovering all solids from the reactor wall. Thus, the 

mass balance closures from the HTL of starch were not 100% as the yields of the water-soluble 

organic were not calculated by difference but measured directly instead. From the HTL of 

rapeseed oil, the bio-oil, water-soluble organic, solid, and gas yields were 94.67, 4.13, 1.2, and 

0% respectively at 300 ˚C. The yields of bio-oil and gas fractions increased to 95.3 and 0.9% 

while the yields for water-soluble organic and solid fractions reduced to 2.79 and 1.01% 

respectively at 320 ˚C. Hydrothermal treatment of BSA at 300 ˚C showed that bio-oil, water-

soluble organic, solid, and gas yields were 17.73, 68.32, 6.63, and 7.31% respectively. When 

BSA was treated hydrothermally at 320 ˚C, the yields of bio-oil and gas fractions increased to 

23.4 and 9.1% while the yields of water-soluble organic and solid fractions reduced to 62.61 

and 4.89%. It is clear from the hydrothermal processing of the model compounds that starch 

favours the formation of solids, rapeseed oil favours the formation of bio-oil, and BSA favours 

the formation of water-soluble organics. These outcomes were in line with those obtained 

previously despite the differences in the operating conditions of the trial sets such as 

temperature, holding time, and heating rate (P. Biller and Ross, 2011a; Teri et al., 2014; Wagner 

et al., 2016). 

Figure 6.3 shows that bio-oil yield is in the order of lipid > protein >carbohydrate for the HTL 

of the model compounds at both 300 and 320 ̊ C without holding time. This order was consistent 

with those of Biller and Ross (2011) and Teri et al. (2014). However, the bio-oil yields gained 

in this work, except for rapeseed oil, were lower than those obtained by the above researchers 

for starch and BSA. This is likely due to differences in the experimental operating conditions. 

Biller and Ross (2011) and Teri et al. (2014) performed their HTL trials at 350 ˚C and holding 

time ranged from 10 to 60 min.  

The HTL of CTAB demonstrated that it is almost entirely converted into bio-oil with a very 

little solid fraction (Figure 6.3). Neither water-soluble organics nor gas fractions were obtained 

at either HTL temperatures. The bio-oil yields were 98.53 and 98.97% at 300 and 320 ˚C while 

the solid residues were 1.43 and 1.2% at 300 and 320 ˚C respectively. CTAB is a quaternary 

ammonium salt with a long tail of alkyl, hexadecyl C16H33, derived from natural fatty acid. 

Thus, as the hydrothermal treatment of vegetable oil produces mainly bio-oil, hydrothermal 

treatment of CTAB does too. It is essential in this work to identify the main compounds of bio-

oil from the HTL of CTAB to understand the contributions that it makes to the bio-oil produced 
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by the HTL of microalgae harvested by foam flotation, therefore the identification of bio-oil 

from HTL of CTAB was pursued. 

 

Figure 6.3: Product distribution from the HTL of three model compounds and CTAB at two 

temperatures; 300 and 320 ˚C, 32 ˚C/min heating rate, and no holding time. 

The identification of the main compounds in the bio-oils from the HTL of the model compounds 

was not performed herein since the results of this work have already been published by other 

researchers even though the operational conditions including temperature, holding time, and 

heating rate in their work are different from those in our experimental trials. Therefore, the bio-

oil from the HTL of CTAB at 320˚C was only analysed by GC-MS to identify the most 

abundant compounds. N, N-dimethyl-1-hexadecanamine; 2-methyl-1-hexadecanol; 2-

hexadecanol; 2 methyl-2-heptanamine; 1-hexadecene; and N, N-dimethyl-1-heptadecanamine 

in this order were the main compounds identified. The dissociation constant of water (𝑘𝑤) 

increases from 10-14 to 10-11 under HTL conditions which promotes the splitting of water 

molecules into hydrogen and hydroxide ions (H+ and OH-). These ions can help catalyse 

different reactions (like hydrolysis, base-catalysed, and acid-catalysed reactions) during the 

process (J. Zhang et al., 2013; Gai et al., 2014). However, Teri et al. (2014) observed 

interactions between different model compounds during the HTL reaction at 350 ˚C for 60 min 
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(Teri et al., 2014). In other words, various compounds may be obtained due to the reactions 

between the hydrolysed components of CTAB, protein, lipid, and carbohydrate. The identified 

compounds demonstrated that a C16 amine is likely to be a good identifier for the contribution 

of CTAB to the bio-oil. 

The reaction temperature affected all product yields from the HTL of model compounds. When 

the temperature increased, bio-oil and gas fraction yields increased while water-soluble 

organics and solid residue yields decreased. The temperature influence on the bio-oil yield from 

the BSA was higher than other model compounds in which the bio-oil yield increased by about 

7% when the temperature increased only 20 degrees, while no higher than a 1% raise were 

observed for starch or rapeseed oil. This is likely due to the higher temperature promoting 

protein degradation thereby increasing bio-oil yield at the expense of water-soluble organics 

and solid residue. 

6.3.2 Microalgae characterisation 

The characterisation of the C. vulgaris used in this work is presented in table 6.1. The proximate 

analysis demonstrated that the ash content was 8.56% (daf). C. vulgaris were cultivated at high 

growth rate leading to high protein and carbohydrate and low lipid content (table 6.1). Such a 

biochemical composition is advantageous for investigating the influence of the type of flotation 

process and CTAB presence on the HTL product distribution especially after the observations 

of Coward et al. (2014). The elemental composition (daf) of the biomass was 52.21±0.1% 

carbon, 7.65±0.04% hydrogen, 9.01±0.07% nitrogen, and 31.17±0.21% oxygen. The empirical 

formula of C. vulgaris was C6.76H11.88NO3.02. The H/C and O/C molar element ratios (daf) were 

determined from the elemental composition as 1.76 and 0.45 respectively. 

Properties  C. vulgaris 
Higher heating value (HHV) MJ/kg 24.31 

Empirical formula (daf) C6.76H11.88NO3.02 

Molar element ratio (daf) H/C 1.76 

O/C 0.45 

Elemental analysis wt.% (daf) Carbon 52.21±0.1 

 Hydrogen 7.65±0.04 

 Nitrogen 9.01±0.07 

 Oxygen (by difference) 31.17±0.21 

Proximate analysis wt.% Moisture - 

 Ash 8.56±0.53 

Biochemical composition (daf) Carbohydrate 28.3±1.6 

 Protein 55.7±2.2 

 Lipid 11.9±1.1 

Table 6.1: Characterisation of the C. vulgaris feedstock. 
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6.3.3 HTL of C. vulgaris harvested by centrifugation and foam flotation 

6.3.3.1 Temperature effect on product distribution and process conversion  

The product yields (bio-oil, water-soluble organics, solid residue, and gas) from the HTL 

treatment of C. vulgaris harvested by foam flotation and centrifugation techniques at three 

different reaction temperatures (280, 300 and 320 ˚C), a heating rate of 32 ˚C/min, and no 

holding time are shown in figure 6.4. HTL at high heating rates and no holding time is an 

opportunity to study the process at circumstances near to continuous processing mode with low 

residence time. This will provide information that may aid subsequent intensification of the 

process. The bio-oil, water-soluble organic, solid, and gas yields from the HTL of C. vulgaris 

recovered by centrifugation were 13.11, 43.41, 41.39, and 2.09% respectively at 280 ˚C. When 

the temperature increased to 300 ˚C, the bio-oil and gas yields increased to 23.15 and 3.75% 

while the water-soluble organic and solid residue yields dropped to 35.99 and 37.29%. Torri et 

al. (2012) reported that HTL of microalgae species which accumulate algaenan at temperatures 

beyond 300˚C, boosts full extraction of the algaenan and its derivatives into the bio-oil phase 

(Torri et al., 2012). However, C. vulgaris is an algaenan-free species and the increase in bio-

oil yield with temperature was most likely due to the increasing conversion of intermediate 

water-soluble organics into the bio-oil fraction and thermal cracking of more protein and 

carbohydrate compounds at higher temperatures. In microalgae, triglycerides (TGA) are the 

main constituent of lipids and can be converted hydrothermally to fatty acids and glycerol. In 

general, fatty acids contribute to the bio-oil fraction while the glycerol contributes to the water-

soluble organic fraction. A previous study observed that the maximum glycerol yield by HTL 

of microalgae was 4-6 wt. % at 260 ˚C and this amount decreased as reaction temperature 

increased. This observation may support the reduction in water-soluble organic yield at higher 

temperature due to the conversion of intermediate water-soluble organics into a bio-oil product 

(Shakya et al., 2017). 

Again, when the HTL treatment temperature increased to 320˚C, the bio-oil and gas yields 

increased to 26.73 and 4.89% whereas the water-soluble organic and solid residue yields 

reduced to 35.24 and 33.14%. The measurements of C. vulgaris biochemical compositions 

harvested by centrifugation demonstrated that protein, carbohydrate, and lipid contents were 

55.7±2.2, 28.3±1.6, and 11.9±1.1%. The higher water-soluble organic and solid residue yields 

from the HTL of microalgae harvested by centrifugation, especially at a lower reaction 

temperature (280 ˚C), were due to the high protein and carbohydrate contents before water-
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soluble organics and solid residue were converted into bio-oil or degraded at higher 

temperatures. Ross et al. (2010) reported that the HTL of protein produced amino acids and 

peptides, thus the increase in water-soluble product yield at lower temperature was likely due 

to the presence of high amounts of amino acids and peptides before they undergo further 

decomposing and repolymerising into bio-oil at higher temperatures (Ross et al., 2010). The 

HTL of starch (as model carbohydrate compound) produced approximately 4 wt.% water-

soluble organic yield, thus this might contribute to the water-soluble organic fraction as C. 

vulgaris has high carbohydrate content. The low bio-oil yields, especially at lower reaction 

temperature (280 ˚C), were due to the low lipid content of C. vulgaris recovered by 

centrifugation. 

 

Figure 6.4: Product distribution from the HTL of microalgae harvested by foam flotation and 

centrifugation at three temperatures (280, 300, and 320 ˚C), a heating rate 32 ˚C/min, and no 

holding time. 
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When C. vulgaris harvested by foam flotation was treated by hydrothermal processing at 280 

˚C, the bio-oil yield increased to 32.27% while it was 13.11% for the centrifugation control. 

The biochemical composition of C. vulgaris harvested by foam flotation was 55.9±1.9, 23.9, 

and 19.6±2.2% for protein, carbohydrate, and lipid respectively. The increase in lipid content 

was 7.7% compared to centrifugation. The increase in bio-oil yield from the foam flotation 

treatment was 19.16% which is not explained even if complete conversion of lipid into bio-oil 

is considered.  It is worth noting that not only CTAB adsorbed onto the microalgae cells are 

recovered with the harvested microalgae but also the remaining free CTAB that attaches to the 

air bubbles and generates the foam as well, resulting in an increase in the long chain 

hydrocarbon content. However, the amount of free CTAB which accompanies the harvested 

microalgae slurry was not enough to increase the bio-oil product to the obtained yield. 

On the other hand, the yields of water-soluble organics, solid residue, and gas products dropped 

to 34.51, 30.92, and 2.31% compared to the centrifugation control (Figure 6.4). The reduction 

in the water-soluble organic yield might be linked to the higher yield of the bio-oil product and 

could be explained by the hydrolysed proteins and amino acids being converted into bio-oil at 

lower temperatures (Torri et al., 2012). CTAB can disrupt the cell wall and promote cell lysis 

especially when it is used in high concentration. This enhances the recovery of internal cell 

contents like DNA and lipid and increase the solubility of some phospholipids in the cell 

membrane as well (T. Coward et al., 2014), thereby enhancing bio-oil yield.  

The lower solid residue yield from the foam flotation harvested C. vulgaris compared to the 

centrifugation treatment at 280 ˚C was undoubtedly due to the reduction in the carbohydrate 

content of the former microalgae feedstock. The presence of CTAB with the harvested C. 

vulgaris did not likely promote more carbohydrate degradation resulting in lower gas yield. 

Teri et al. (2014) observed that the interactions between biochemical components of microalgae 

(protein, carbohydrate, and lipid) might also be responsible for higher bio-oil yield and not the 

sole influence of each biochemical component in isolation (Teri et al., 2014).     

The trends in the yield for all products from the HTL of C. vulgaris with CTAB were similar 

to those without CTAB (i.e. the bio-oil and gas yields increased while the water-soluble organic 

and solid residue yields decreased) as the reaction temperature increased to 300 and 320˚C 

(Figure 6.4). It is worth noting that the enhancement in the bio-oil yield when temperature 

increased from 280 to 300 ˚C was more than twice as large as the increase in bio-oil yields 
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when temperature increased from 300 to 320 ̊ C for both feedstocks. However, the bio-oil yields 

at 320 ˚C were higher than those at lower temperatures. 

The conversions from the HTL of both C. vulgaris harvested by centrifugation and foam 

flotation at 32 ˚C/min heating rate and no holding time are shown as a function of temperature 

in figure 6.5. The reaction temperature showed a remarkable effect on the process conversion 

for both feedstocks. For the HTL of C. vulgaris harvested by centrifugation, the process 

conversion increased from 58.5 to 66.8% as the temperature rose from 280 to 320 ˚C while the 

process conversion increased from 69 to 82% for C. vulgaris harvested by foam flotation across 

the same temperature range. In general, increasing reaction temperature offers higher energy 

for cracking more carbohydrate, protein, and lipid into small fragments, resulting in higher 

conversions. However, the liquefaction conversions of C. vulgaris harvested by foam flotation 

were higher than those for the liquefaction of C. vulgaris harvested by centrifugation (Figure 

6.5). This was likely due to the capability of CTAB in enhancing the decomposition of 

microalgae and consequently promoting the depolymerisation of long chain and high molecular 

weight polysaccharides, hemicellulose and protein into small fragments even at lower 

temperatures. The capability of CTAB to enhance the depolymerisation reaction was observed 

by Vanini et al. (2013) when they investigated the influence of CTAB on the depolymerisation 

reaction of post-consumption bottle-grade polyethylene terephthalate (PET) in alkaline 

solution. They reported that the presence of CTAB increased the reaction performance by 85%, 

while the reaction time was decreased from 6 to 2h (Vanini et al., 2013).   
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Figure 6.5: HTL conversions of C. vulgaris harvested by foam flotation and centrifugation at 

three temperatures (280, 300, and 320 ˚C), a heating rate of 32 ˚C/min, and no holding time. 

6.3.3.2 Holding time effect on product distribution  

The yields of bio-oil, water-soluble organics, solid residue, and gas products from the HTL 

treatment of C. vulgaris harvested by foam flotation and centrifugation at two holding times of 

0 and 10 min, reaction temperature of 300 ˚C, and heating rate of 32 ˚C/min are shown in figure 

6.6. Batch holding time in the current work did not include the heating or cooling periods. For 

the HTL of C. vulgaris harvested by centrifugation at 300 ˚C with no holding time, the bio-oil, 

water-soluble organics, solid residue, and gas yields were of 23.15, 35.99, 37.29, and 3.57% 

respectively. When the batch holding time changed to 10 min at the same temperature, the bio-

oil and gas yields increased to 36.52 and 5.5% respectively whereas water-soluble organics and 

solid residue yields reduced to 34.88 and 23.1%. The effect of holding time on the bio-oil and 

solid residue yields were higher than its effect on the yields of water-soluble organic and gas 

fractions. Teri et al. (2014) observed that the holding time parameter in the hydrothermal 

liquefaction of soy protein, cornstarch, and sunflower oil at 350 ˚C had little effect on both bio-

oil and solid residue yields (Teri et al., 2014). However, the yield results in this work 

demonstrated that the increase in batch holding time at mild temperature favored the conversion 

of algal biomass into the bio-oil fraction. The increase in the batch holding time likely promotes 

more carbohydrate and protein degradation and converts more intermediate water-soluble 

organics into bio-oil. This explanation can be concluded from the increase in gas fraction yield 

when a longer residence time was adopted. 

Biller and Ross (2011) conducted HTL on freeze-dried C. vulgaris strains at a reaction 

temperature of 350˚C, holding time of 60 min, and two heating rates of 10 and 25 ˚C/min (P. 

Biller and Ross, 2011a). The maximum bio-oil yield obtained in their trials was 36%, which 

was comparable to the yield gained here but at lower reaction temperature and holding time. It 

is worth noting that the biochemical composition of C. vulgaris liquefied by Biller and Ross 

was 55% protein, 9% carbohydrate, and 25% lipid (P. Biller et al., 2011b) whereas the C. 

vulgaris used in this work had 55.7±2.2% protein, 28.3±1.6% carbohydrate, and 11.9±1.1% 

lipid (daf). Although the heating rate used in this work (32 ˚C/min) might increase the bio-oil 

yield slightly, the researchers believed that direct HTL of harvested microalgae rather than 

pulverised or freeze-dried microalgae enhanced the conversion of biomass and increased the 
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bio-oil yield at mild conditions. This is undoubtedly an advantage of direct HTL of algal 

biomass as it can minimise the cost of the process. 

 

 

Figure 6.6: Product distribution (top) and process conversion (bottom) from the HTL of C. 

vulgaris harvested by foam flotation and centrifugation at two holding times (0 and 10) min, a 

reaction temperature of 300˚C, and a heating rate of 32 ˚C/min. 
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For the HTL of C. vulgaris harvested by foam flotation at 300 ˚C with no holding time, the bio-

oil, water-soluble organic, solid residue, and gas yields were 41.5, 34.21, 21.21, and 3.08% 

(Figure 6.6). The yields of bio-oil and gas fractions increased to 50.54 and 4.64% while the 

yields of water-soluble organics and solid residue dropped to 32.5 and 12.32% when the holding 

time changed to 10 min at the same reaction temperature. Like the HTL of C. vulgaris without 

CTAB, the effect of the batch holding time on the bio-oil and solid residue yields were higher 

than its effect on the yields of water-soluble organic and gas fractions. The lower solid residue 

yield from the HTL of C. vulgaris with CTAB compared to that from the HTL of C. vulgaris 

without CTAB was probably because of the reduction in the carbohydrate content of the former 

feedstock and cell lysis due to the presence of CTAB which made the breaking of carbohydrate 

easier at mild HTL conditions. 

The conversions for the HTL of both feedstocks were also determined at different holding time 

trials. With longer reaction times increasing the liquefaction conversion (Figure 6.6). Similarly, 

the prolongation of the reaction time led to higher bio-oil yields due to the promotion in 

converting more intermediate water-soluble organics; it also enhanced thermal cracking of 

protein and carbohydrate compounds, resulting in higher HTL conversions.           

6.3.4 Energy recovery 

Higher heating values (HHV) for the bio-oils from the HTL of C. vulgaris harvested by 

centrifugation and flotation at 300 ̊ C and 10 min holding time were determined using an oxygen 

bomb calorimeter. HHV were then used to calculate the energy recovery which is an important 

parameter to assess the feasibility of a biomass to biofuel conversion process. However, it does 

not include any processing energy used during the conversion reaction (P. Biller and Ross, 

2011a). Energy recovery (ER) is the ratio of the bio-oil HHV multiplied by its mass to the 

feedstock HHV multiplied by its mass; it is calculated according to equation 6.4: 

ER % =
𝐻𝐻𝑉𝑏𝑖𝑜 𝑜𝑖𝑙 𝑥 𝑚𝑎𝑠𝑠𝑏𝑖𝑜 𝑜𝑖𝑙

𝐻𝐻𝑉𝑎𝑙𝑔𝑎𝑙 𝑓𝑒𝑒𝑑 𝑥 𝑚𝑎𝑠𝑠𝑎𝑙𝑔𝑎𝑙 𝑓𝑒𝑒𝑑
𝑥100% … (6.4) 

Few previous studies have included the energy content of the gas product as well (Brown et al., 

2010), however, the energy stored in the bio-oil fraction was only considered in this work. 

The measurement results showed that HHVs for the bio-oils from the HTL of C. vulgaris 

harvested by centrifugation and flotation were 33.99 and 35.07 MJ/kg respectively, whereas the 

HHV for the algal feedstock was 24.13 MJ/kg (daf). This is another advantage for the bio-oil 
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produced by the HTL of C. vulgaris recovered by foam flotation. Higher heating of combustion 

was probably due to higher amounts of hydrocarbons originating from CTAB. The energy 

recovery was calculated by substituting the HHV and the bio-oil yield in equation 6.4. Higher 

energy (73.45%) was recovered from the HTL of C. vulgaris harvested by foam flotation 

compared to that from the HTL of C. vulgaris harvested by centrifugation (51.41%). Higher 

energy recovery was undoubtedly due to the higher yield and heating value for the bio-oil of 

microalgae from flotation. Moreover, C. vulgaris harvested by foam flotation had a HHV of 

26.88 MJ/kg compared to 24.13 MJ/kg for C. vulgaris harvested by centrifugation due to the 

higher lipid content which had a HHV of 42.83 MJ/kg (measured in the current work) resulted 

in higher energy recovery. These outcomes also indicated that HTL of microalgae harvested by 

foam flotation produced fuel which had a stored energy closer to that of dry algal feedstock 

than the fuel produced from microalgae harvested by centrifugation. 

6.3.5 Gas fraction analysis 

The analysis of the gas produced by the HTL of C. vulgaris showed that CO2 was the main gas 

product and, in most cases, represented more than 90% wt. of the gas. CO was also present but 

in low amounts. This is an indication that the removal of O2 in the HTL reaction mainly occurs 

by decarboxylation rather than decarbonylation. The rest of the gas fraction consisted of small 

quantities of CH4, H2, N2, C2H4, C2H6, C3H6, and C3H8 as shown in figure 6.7 as an example. 

The gas analysis also demonstrated that the composition of CO2 increased when increasing the 

reaction temperature and holding time. This might be due to the gas-water shift reaction 

between CO and water to produce H2 and CO2. This reaction might occur since little increase 

in the H2 composition was observed. The concentration of small hydrocarbons increased 

slightly with higher reaction temperature and longer residence time. 

The gaseous products from the HTL of C. vulgaris harvested by foam flotation contained less 

CO2 and more CO, H2, and smaller hydrocarbons (Figure 6.7). This is another advantage for 

the foam flotation harvesting technique in producing biomass more valuable for the biofuel 

sector. The increase in the compositions of hydrocarbon gases is probably due to disruption of 

the algae cell wall by CTAB which enhances the thermal cracking of hydrocarbons without the 

need to increase the reaction temperature or residence time. 
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Figure 6.7: Gaseous product compositions from the HTL of C. vulgaris harvested by foam 

flotation and centrifugation at 320 ˚C, a heating rate 32 ˚C/min, and no holding time. 

6.3.6 Analysis of bio-oil fraction  

6.3.6.1 Elemental analysis and composition of bio-oils 

The proximate and ultimate analysis of C. vulgaris and the bio-oils from the HTL technology 

at a reaction temperature of 320 ̊ C with no holding time are presented in table 6.2. In this work, 

sulphur content was assumed negligible and oxygen content was calculated by difference. 

Compared with the microalgae feedstock, both carbon and hydrogen content of the bio-oils 

increased while the nitrogen and oxygen content decreased; demonstrating the effectiveness of 

the hydrothermal process to increase the carbon and hydrogen content in the bio-oil fraction. 

Maximum increase was observed in the carbon content whereas oxygen content was 

significantly reduced. Oxygen was probably removed during the HTL of microalgae by 

dehydration, deoxygenation, and decarboxylation reactions. Both bio-oils had lower nitrogen 

content compared to the microalgae with the minimum average content for the bio-oil from the 

HTL of C. vulgaris with CTAB. This is another advantage added to the foam flotation 

harvesting technique over centrifugation as the nitrogen content dropped from 7.37 to 5.46%. 

The study of temperature effect on the bio-oil yield demonstrated that the production of bio-

oils increased with the temperatures while the water-soluble organic yields reduced. However, 
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the reduction in water-soluble organic amount with increasing temperature in the HTL of C. 

vulgaris recovered by foam flotation was small compared to centrifugation. This indicated that 

the contribution of carbohydrate into bio-oil at higher temperature was greater than protein in 

the presence of CTAB with the harvested microalgae, resulting in higher hydrogen and oxygen 

contents and lower nitrogen content. This was probably due to the efficiency of CTAB in 

enhancing the cellulose and hemicellulose decomposition. The slightly higher oxygen content 

in the bio-oil produced by the HTL of C. vulgaris with CTAB was expected based on the 

analysis of gaseous products as the CO2 reduced while CO increased. This is further evidence 

that the removal of O2 in the HTL reaction mainly occurs by decarboxylation rather than 

decarbonylation. A higher H/C ratio of the bio-oil from C. vulgaris harvested by foam flotation 

compared to centrifugation might indicate that the latter bio-oil contains slightly higher 

amounts of unsaturated compounds.        

Condition Moisture Ash 
Elemental distribution (daf) Element ratio 

HHV 

MJ/kg 

C % H % N % Oa % H/C O/C  

Bio-oil from 

HTL of 

microalgae 
harvested by 

centrifugation 

0 ≈ 0 69.94±0.16 8.27±0.08 7.37±0.09 14.43±0.17 1.42 0.15 36.31 

Bio-oil from 
HTL of 

microalgae 

harvested by 
flotation 

0 ≈ 0 69.68±0.35 9.22±0.48 5.46±0.09 15.65±0.76 1.59 0.17 37.73 

 a: calculated by difference. 

Table 6.2: Proximate, ultimate analyses, and energy content of microalgae and HTL bio-oils.       

6.3.6.2 Composition of bio-oil fraction 

Bio-oil from the HTL of biomass is a complex mixture of compounds and its composition is 

strongly influenced by the feedstock biochemical composition and the HTL operating 

conditions (Torri et al., 2012). The precise pathways or mechanisms for the HTL of microalgae 

are still ambiguous due to the complexity of both feedstock and HTL products. In general, 

microalgae are first depolymerised into small active fragments such as amino acids and 

monosaccharides by hydrolysis, these fragments are then further decomposed into smaller 

compounds by different reactions like dehydration and decarboxylation (decomposition). Most 

these compounds are highly soluble in water. Lastly, these compounds are often repolymerised 

until the process is stopped, resulting in more complex compounds including hydrocarbon, 

ester, ketone, and N-containing compounds (Gollakota et al., 2018). The bio-oils produced by 

the HTL of microalgae were analysed using GC-MS with the maximum oven temperature set 
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to 250 ˚C. The identified compounds were then grouped into their chemical classes as shown 

in table 6.3 (chromatograms not shown). The previous analyses of HTL bio-oils by 

thermogravimetric analysis (TGA) have indicated that the bio-oil from the HTL of microalgae 

has a high molecular weight, thus around 50% of the bio-oil fraction (higher boiling 

compounds) cannot be analysed by GC-MS due to their incapability of elution from the GC 

column (Anastasakis and Ross, 2011; P. Biller and Ross, 2011a). The original GC-MS spectra 

identified more than 100 compounds but the majority had low abundance, therefore only peaks 

with very low abundance (area% < 0.1) were excluded during qualitative analysis. 

Bio-oil produced by the HTL of microalgae harvested by centrifugation Bio-oil produced by the HTL of microalgae harvested by flotation 

Chemical 

class 
Area% Identified compounds 

Chemical 

class 
Area% Identified compounds 

Esters 3.51  Esters 11.43  

C13H24O2 0.44 
3-Cyclopentylpropionic acid, 3-methylbutyl 

ester 
C26H50O2 0.81 

Cyclopropanetetradecanoic acid, 2-octyl-, 

methyl ester 

C11H18O3 0.46 4-Hydroxy-non-2-ynoic acid, ethyl ester C21H38O2 0.73 
[1,1'-Bicyclopropyl]-2-octanoic acid, 2'-hexyl-, 

methyl ester 

C22H36O2 0.16 Benzeneacetic acid, 4-tetradecyl ester C12H22O2 0.54 10-Undecenoic acid, methyl ester 

C12H24O2 0.92 Heptanoic acid, 3-methylbutyl ester C17H30O2 3.44 7,10-Hexadecadienoic acid, methyl ester 

C17H34O2 1.16 Hexadecanoic acid, methyl ester C19H34O2 4.00 9,12-Octadecadienoic acid, methyl ester, (E,E)- 

C11H22O2 0.38 Hexanoic acid, 1,1-dimethylpropyl ester C11H22O2 0.22 Hexanoic acid, 1,1-dimethylpropyl ester 

Fatty acids 6.24  C21H40O2 0.10 Octadecanoic acid, 2-propenyl ester 

C12H24O2 6.24 Undecanoic acid, 2-methyl- C16H32O2 1.13 Pentadecanoic acid, methyl ester 

Hydrocarbo

ns 
10.83  C15H30O2 0.46 Methyl tetradecanoate 

C18H28 2.60 1H-Indene, 2,3-dihydro-1,1-dimethyl- Fatty acids 6.87  

C26H48 0.51 Anthracene, 9-dodecyltetradecahydro- C18H34O2 0.88 trans-13-Octadecenoic acid 

C26H46 0.13 Benzene, (1-hexylheptyl)- C9H14O3 0.53 
2,4-Octadienoic acid, 7-hydroxy-6-methyl-, [r-

[r*,s*-(E,E)]]- 

C13H16 0.19 Naphthalene, 1,2-dihydro-1,1,6-trimethyl- C10H18O2 0.20 3-Decenoic acid, (E)- 

C11H22 7.40 Cyclohexane, (1,1-dimethylpropyl)- C12H24O3 4.43 Dodecanoic acid, 3-hydroxy- 

ketones 25.28  C14H26O2 0.32 E-9-Tetradecenoic acid 

C8H12O2 0.42 1,3-Cyclobutanedione, 2,2,4,4-tetramethyl- C18H34O4 0.27 Octadecanedioic acid 

C9H14O 19.48 2-Cyclohexen-1-one, 3,5,5-trimethyl- C14H28O3 0.23 Tetradecanoic acid, 2-hydroxy- 

C11H18O 5.28 
2-Cyclohexen-1-one, 3,6-dimethyl-6-(1-

methylethyl)- 

Hydrocarbo

ns 
20.43  

C12H22O2 0.11 2H-Pyran-2-one, 6-heptyltetrahydro- C16H32 4.00 1-Hexadecene 

Aldehydes 0.16  C11H22 0.16 3-Undecene, (E)- 

C10H20O2 0.16 Octanal, 7-hydroxy-3,7-dimethyl- C14H28 0.71 7-Tetradecene 

Alcohols 4.28  C16H34 3.97 Hexadecane 

C20H40O 3.69 Isophytol C15H32 2.86 Pentadecane 

C10H20O 0.59 2-Octen-1-ol, 3,7-dimethyl- C15H30 1.90 
Cyclohexane, 1,1,3-trimethyl-2-(3-

methylpentyl)- 

Nitrogenous 

compounds 
43.37  C14H30 6.83 Dodecane, 4,6-dimethyl- 

C17H22N4O

2 
2.35 

N-(3-Imidazol-1-yl-propyl)-N'-(4-

isopropyl-phenyl)-oxalamide 
ketones 9.60  

C18H37NO 3.75 Octadecanamide C8H16O 0.16 2-Heptanone, 5-methyl- 

C12H25NO 7.03 Dodecanamide C15H30O 0.71 2-Pentadecanone 

C4H7N 0.27 Butanenitrile C18H36O 4.00 2-Pentadecanone, 6,10,14-trimethyl- 

C12H11N 0.10 [1,1'-Biphenyl]-4-amine C8H12O2 0.18 3-Ethoxy-2-cyclohexen-1-one 

C10H17NO3 2.02 
1,2-Pyrrolidinedicarboxylic acid, 1-(1,1-

dimethylethyl) ester, (S)- 
C16H30O2 0.40 Oxacycloheptadecan-2-one 

C12H29N3 0.16 
1,4-Butanediamine, N'-[4-

(dimethylamino)butyl]-N,N-dimethyl- 
C13H24O2 0.14 Oxacyclotetradecan-2-one 

C11H23N 13.63 1-Butanamine, N-(1-propylbutylidene)- C19H38O 4.00 2-Nonadecanone 

C6H12N2O 1.55 1H-Azepine, hexahydro-1-nitroso- Aldehydes 3.33  

C4H6N2 0.13 1H-Imidazole, 1-methyl- C18H34O 0.90 10-Octadecenal 

C9H9N 0.16 1H-Indole, 6-methyl- C5H8O 0.44 2-Butenal, 2-methyl- 

C11H12N2O

2 
2.46 2,5-Piperazinedione, 3-(phenylmethyl)- C8H14O 0.27 2-Hexenal, 2-ethyl- 

C12H22N2O

2 
0.28 

2,5-Piperazinedione, 3,6-bis(2-

methylpropyl)- 
C7H12O 0.58 2-Hexenal, 2-methyl- 

C15H17NO5 0.17 
2H-Pyran-2,4(3H)-dione, dihydro-3,3,5,5-

tetramethyl-6-(4-nitrophenyl)- 
C5H10O 1.01 Butanal, 3-methyl- 

C11H22N2 0.38 3-(t-Octylamino)propionitrile C10H14O2 0.12 
Cyclopentaneacetaldehyde, 2-formyl-3-methyl-

α-methylene- 

C5H5NO2 0.19 3-Hydroxypyridine-N-oxide Alcohols 10.10  

C4H5N3 0.25 4-Aminopyrimidine C20H40O 9.39 Isophytol 
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C14H19NO5 0.28 
4-Benzyloxy-3-nitromethyl-pentanoic acid, 

methyl ester 
C8H18O 0.22 4-Heptanol, 2-methyl- 

C8H14N2O 1.03 5-Pyrrolidino-2-pyrrolidone C8H14O 0.49 3-Octyn-1-ol 

C16H21NO6 0.16 
6-Benzyloxy-5-nitromethyl-3-oxoheptanoic 

acid, methyl ester 

Nitrogenous 

compounds 
30.55 

 

C9H18N2O3 0.11 dl-Alanyl-l-leucine C18H37NO 4.00 Octadecanamide 

C14H11N3O

2 
0.66 

Furan-2-carbohydrazide, N2-(3-

indolylmethylene)- 

C14H24N2O

8 0.34 1,6-Diaminohexane-N,N,N',N'-tetraacetic acid 

C12H27N 0.18 N,3-Diethyl-3-octanamine C18H39N 0.83 1-Octadecanamine 

C9H20N2 1.01 N,N-Diethyl-N'-propylacetamidine C19H41N 0.28 1-Octadecanamine, N-methyl- 

C13H21N 0.51 p-Heptylaniline C17H37N 18.62 1-Pentadecanamine, N,N-dimethyl- 

C3H5NO 0.21 Propanenitrile, 3-hydroxy- 
C19H32N2O

3 

0.63 

2H-Benzo[f]oxireno[2,3-E]benzofuran-8(9H)-

one, 9-[[[2-

(dimethylamino)ethyl]amino]methyl]octahydro-

2,5a-dimethyl- 

C12H19N3O

4 
0.41 

Pyrimidin-2,4-dione, 1,2,3,4-tetrahydro-5-

methyl-1-[[2-hydroxymethyl-3- 
C9H15NO 

0.34 2H-Inden-2-one, octahydro-, oxime 

C22H39NO 0.19 Pyrrolidine, 1-(1-oxo-9,15-octadecadienyl)- C12H11N 0.16 4-(4-Methylphenyl)pyridine 

C19H37NO 1.28 Pyrrolidine, 1-(1-oxooctadecyl)- 
C20H26N2O

2 1.69 Dasycarpidan-1-methanol, acetate (ester) 

C9H16N2O 1.06 Pyrrolidine, 2α-[1-pyrrolidinoformyl]- C19H41N 3.67 Ethylamine, N-methyl-N-hexadecyl- 

C11H18N2O

2 
0.42 

Pyrrolo[1,2-a]pyrazine-1,4-dione, 

hexahydro-3-(2-methylpropyl)- 
Others 0.78  

C14H16N2O

2 
0.86 

Pyrrolo[1,2-a]pyrazine-1,4-dione, 

hexahydro-3-(phenylmethyl)- 
C8H16O 0.78 Furan, 2-butyltetrahydro- 

C9H11NO4 0.15 
Pyrrolizin-1,7-dione-6-carboxylic acid, 

methyl(ester) 
   

Others 2.30     

C14H22O 0.54 Phenol, 2,6-bis(1,1-dimethylethyl)-    

C12H14O2 1.33 1-Naphthalenol, 1,2,3,4-tetrahydro-, acetate    

C8H16O 0.42 Furan, 2-butyltetrahydro-    

total 95.97   93.09  

Table 6.3: Identified compounds in the bio-oils produced by the HTL of C. vulgaris at 320 ˚C. 

The identification of compounds in the bio-oil product revealed that it is a complex mixture of 

various compounds including fatty acids, esters, hydrocarbons, ketones, aldehydes, alcohols, 

and nitrogenous compounds. 

Table 6.3 includes six ester compounds with a total peak area of 3.51% for bio-oil from C. 

vulgaris without CTAB whereas it includes nine compounds grouped under the ester chemical 

class with a total peak area of 11.43% for bio-oil from C. vulgaris with CTAB. In the HTL of 

microalgae, ester formation is likely due to the condensation (dehydration) reaction on the lipid 

precursors (Ahmed and Bernd, 2004). The greater amount of ester compounds in the bio-oil 

from microalgae harvested using the foam column is in accordance with the higher lipid content 

in its microalgae feedstock as explained earlier. GC-MS spectra detected different 

hydrocarbons in both bio-oils. The bio-oil from the HTL of C. vulgaris harvested by foam 

flotation having the higher percentage area. Different aliphatic hydrocarbons (alkanes and 

alkenes) were observed in the bio-oil from the HTL of C. vulgaris with CTAB while aromatic 

hydrocarbons were most abundant in the bio-oil from the HTL of C. Vulgaris without CTAB, 

which is favorable. Aliphatic hydrocarbons would likely arise from the decarboxylation or 

pyrolysis of the corresponding fatty acid with the possibility that the reaction was catalysed by 

the minerals available in the algal biomass (López-González et al., 2014b). If the proposed 

pathway was true, this indicated that the bio-oil from C. vulgaris with CTAB had higher fatty 
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acid amounts before they underwent further reactions. However, Wang et al. (2008) observed 

some long-chain alkanes in the bio-oils from sawdust and stalks which means the possibility of 

other pathways for formation of alkanes during the HTL reaction as these biomass feedstocks 

do not contain appreciable amount of fatty acids (Chao Wang et al., 2008). Another likely 

reaction pathway for the aliphatic hydrocarbons present in the bio-oil is the hydrolysis of 

CTAB, especially the portion adsorbed onto the air bubbles and recovered with microalgae.   

Only one fatty acid compound was identified in the bio-oil produced by the HTL of C. vulgaris 

without CTAB in comparison to seven fatty acid compounds in the bio-oil with CTAB. 

However, total peak areas for the fatty acid compounds of both bio-oils were very close. Fatty 

acids are likely produced from the hydrolysis of lipids. For instance, triglyceride is hydrolysed 

to produce three fatty acid molecules and one glycerol molecule. Generally, fatty acids 

contribute to the bio-oil fraction whereas glycerol contributes to the water-soluble organic 

fraction. A recent study observed that maximum glycerol yield by the HTL of microalgae was 

4-6 wt.% at 260˚C and this amount decreased as reaction temperature increasd (Shakya et al., 

2017). Some microalgae species such as C. vulgaris contain sporopollenin, a refractory 

component in the cell wall, which is extremely resistant to chemicals. Sporopollenin is a chain 

of related biopolymers derived from highly saturated precursors like fatty acids. Various 

quantities of oxygenated compounds such as ester, ketone, hydroxyl, ether, and carboxylic acid 

groups are present in the biopolymers. Therefore, some fatty acid compounds in the bio-oil 

from the HTL of algae of a low lipid content are likely due to the decomposition of this 

refractory biopolymer at high temperatures (Guilford et al., 1988). 

Ketones were also present in both bio-oils but in different amounts. Total peak area of the 

ketone compounds in the bio-oil from the HTL of C. vulgaris without CTAB was 25.28% 

compared to only 9.6% for that with CTAB. Biller and Ross (2011) identified four ketone 

compounds from the hydrothermal liquefaction of a carbohydrate model compound (glucose) 

at 350 ˚C for 60 min while no ketones were identified from protein and lipid model compounds 

(P. Biller and Ross, 2011a). Teri et al. (2014) also identified one ketone compound from the 

HTL of corn starch at 350 ˚C for 60 min (Teri et al., 2014). Carbohydrates are polyhydroxy 

ketones or aldehydes or substances that produce such compounds upon hydrolysis (David and 

Michael, 2000). Therefore, ketone compounds are likely to be produced by the decomposition 

of carbohydrates although the exact pathway is still unclear. The ketone amounts in the bio-oils 

were consistent with the carbohydrate contents of both microalgae feedstocks. In other words, 

lower ketone amount in the bio-oil from C. vulgaris with CTAB was probably due to the 
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reduction in carbohydrate content after harvesting using the foam column. Lower ketone 

quantity in the bio-oil from the HTL of microalgae is more desirable due to the high reactivity 

of ketone oxygenated groups which increase the oil instability (Su-Ping, 2003).  

Because of their higher reactivity compared to ketones, very small amounts of aldehyde 

compounds are rarely detected by GC-MS analysis of the bio-oil fraction. Nevertheless, small 

amounts of aldehydes were identified in this work due to the low retention time (zero or 10 

minutes). The Maillard reaction, for instance the reaction between aldehyde and amino acid, is 

favoured by longer residence times which lead to the formation of complex compounds that 

make up the bio-oil by repolymerisation. Table 6.3 shows that the relative amount of aldehyde 

compounds in the bio-oil from the HTL with CTAB is a little higher than that in the bio-oil 

without CTAB.  

The qualitative analysis also identified isophytol in both bio-oils, more so from the HTL of C. 

vulgaris with CTAB. Phytol and its derivatives are generally accepted to be derived from the 

carotenoids (organic pigments) at lower HTL temperatures or from sporopollenin at higher 

HTL temperatures (Torri et al., 2012). Regardless of the exact source, even though the 

researchers are satisfied that the derivation from carotenoids was more fortunate, the presence 

of CTAB with the liquefied biomass enhanced the cell wall lysis, facilitated the extraction of 

such compounds, and consequently increased the amount of the acyclic diterpene alcohol, 

isophytol. Other alcoholic compounds were also observed in both bio-oils; however, the relative 

amount was a bit higher in the bio-oil without CTAB due to their higher content of 

carbohydrate. 

The elemental analysis of both bio-oils demonstrated previously the advantage of using algal 

biomass recovered by the foam flotation column as an HTL feedstock for lowering the nitrogen 

content. These outcomes were consistent with the relative amounts of nitrogenous compounds 

identified from the GC-MS spectra as shown in table 6.3. A wide range of N-containing 

compounds including pyrazines, amines, pyrroles, pyridines, fatty amides, and indoles were 

observed from both bio-oils with total peak areas of 30.55 and 43.37% for C. vulgaris harvested 

by foam flotation and centrifugation respectively. However, the bio-oil from algae harvested 

by foam flotation mostly contained amides and amines with very small amounts of amino acids. 

The identified nitrogenous compounds were categorised into groups and the possible reaction 

pathway for each group was elucidated as following (Chiavari and Galletti, 1992; Yaylayan and 

Kaminsky, 1998; Torri et al., 2012): 
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1- Fatty amide and nitriles: these compounds are produced by the condensation/amination 

reaction between fatty acids as electrophile and ammonia as nucleophile. 

2- Amine: these products are formed by the decomposition of amino acids. 

3- Pyrroles and pyrroles derivatives: formed by the decomposition of proteins. 

4- Pyrazines compounds: these compounds are the hydrothermal products from the Maillard 

reaction, the chemical reaction between the reducing sugars and amino acids. The reactive 

group of the reducing sugars, the carbonyl, and the nucleophilic amino group of the amino 

acids react to form such compounds. 

5- Pyridines and pyrimidine: they are in general products from the pyrolysis of proteins; 

however, pyrimidine is produced particularly by the pyrolysis of DNA and RNA. The latter 

was not seen in the bio-oil from the HTL of C. vulgaris with CTAB. 

6- Piperazine derivatives: they are most likely produced by the Maillard reaction. 

7- Indoles and aromatic amides (e.g. imidazole): they are the products from the 

decomposition of side chain amino acids. 

8- Alkyl aniline: they are possibly produced by the reaction of ammonia and phenol. 

More generally, the N-containing heterocyclic compounds might be also formed by the 

cyclisation reaction between amino acids (W. Wang et al., 2017). The reduction in nitrogen 

content in the bio-oil produced by the HTL of C. vulgaris with CTAB was probably due to the 

superior activity of CTAB in promoting cell wall lysis and enhanced the temperature effect to 

pyrolyse more of the protein fraction into smaller fragments which favour the water-soluble 

phase rather than bio-oil phase. Obtaining more N atoms in the water-soluble organic fraction 

would be beneficial as an efficient nutrient source for microalgae growth. Additionally, 

hydrogen gas, which had higher yield in the HTL of microalgae harvested by foam flotation, 

may also contribute to a certain extent in capping some free radicals to form more stable 

compounds of low nitrogen content. 

6.3.7 Characterisations by Fourier transform infrared (FTIR) spectroscopy 

6.3.7.1 Composition of the model compounds by FTIR 

FTIR spectra of the model compounds (starch, bovine serum albumin (BSA), and rapeseed oil) 

were carried out to characterise functional groups for the carbohydrate, protein, and lipid 

present in microalgae in isolation which, in conjunction with literature (Gai et al., 2014; Feng 

Cheng et al., 2017; Shakya et al., 2017; Song et al., 2017), can improve band assignments and 

interpretation of microalgae and bio-oil spectra. FTIR spectra for the model compounds are 
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shown in figure 6.8. In the starch spectrum, the main peaks include O-H stretching (3305 cm-1) 

which is much broader than N-H stretching (3280 cm-1) in protein, C-O-C stretching (1147, 

989, and 926 cm-1) and C-H bending vibration (1076 cm-1). The BSA spectrum shows five main 

bands which are N-H stretching (3280 cm-1), C=O stretching (amide I band, 1636 cm-1), N-H 

bending/C-N stretching (amide II band, 1508 cm-1), N-O2 stretching (1398 cm-1) and C-N 

stretching/N-H bending (amide III band, 1239 cm-1). In the rapeseed FTIR spectrum, the main 

peaks include C-H stretching (3006, 2922, and 2853 cm-1), C=O stretching (1744 cm-1), C-H 

bending (1458 and 1376cm-1), C(O)-O stretching (1235 cm-1), and C-O stretching (1159 cm-1).  
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Figure 6.8: FTIR spectra of starch, BSA, and rapeseed oil respectively from top to bottom 

6.3.7.2 Composition of algal biomass by FTIR 

FTIR spectra for C. vulgaris harvested by the centrifugation and foam flotation techniques are 

shown and compared in figure 6.9. FTIR analysis of the harvested microalgae was carried out 

to study their functional group characteristics and follow any potential structural change in algal 

biomass because of the presence of CTAB with the microalgae harvested by foam flotation. 
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CTAB has been used in the extraction of DNA and found to promote algae cell lysis and 

enhance lipid recovery and profile as demonstrated earlier (T. Coward et al., 2014). 

For C. vulgaris harvested by centrifugation, the main peak distributions which indicate the 

presence of protein are N-H stretching vibration (3280 cm-1), C=O stretching (amide I band, 

1636 cm-1), and N-H bending (amide II band, 1524 cm-1). The C-H stretching (2922 and 2851 

cm-1), C-H bending (1450 and 1398 cm-1) and C(O)-O/P=O stretching (1238 cm-1) indicate the 

presence of lipid, and finally, the C-O-C stretching (1144 cm-1) and C-H bending vibration in 

sugar (1033 cm-1) which indicate the presence of carbohydrate. The P=O stretching (1341-1188 

cm-1) is ascribed to the phosphodiester in the algal nucleic acid and phospholipids.  

Significant differences were observed in the relative intensity of some peaks in addition to some 

peak shifting for C. vulgaris harvested by flotation (Figure 6.9) particularly within the lipid 

peaks which was validated hereafter by quantifying the biochemical composition of C. vulgaris 

harvested by centrifugation and flotation. These differences were likely due to the attachment 

of long alkyl groups originated from CTAB after dissociation in water. The FTIR spectra of 

both C. vulgaris feedstocks (harvested by centrifugation and flotation) also demonstrated that 

the adsorption of CTAB onto microalgae was a chemisorption process since some changes were 

observed, indicating that new chemical groups were introduced on the surface of C. vulgaris. 

Small increase in the intensity of C(O)-O/P=O stretching (1238 cm-1) was observed as well and 

it would be due to the capability of CTAB to promote algae cell lysis and hence enhance 

recovery of the phospholipids. 
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Figure 6.9: FTIR spectra of C. vulgaris harvested by centrifugation and flotation under a CTAB 

concentration of 35 mg L-1 of algae culture. 

The biochemical composition of C. vulgaris harvested by centrifugation was of 55.7±2.2% 

protein, 28.3±1.6% carbohydrate, and 11.9±1.1% lipid. However, measuring the carbohydrate 

content for C. vulgaris harvested by foam flotation using the conventional method did not give 

an accurate value due to the alteration in the sugar-extract colour after treatment with the H2SO4 

solution which might occur because of CTAB presence on the microalgae cell wall whereas no 

problem was noticed with lipid and protein content measurements. The lipid content of C. 

vulgaris harvested by foam flotation was found to be increased, 19.6±2.2%, while no significant 

change was observed for the protein content, 55.9±1.9%. The carbohydrate content was solely 

calculated by difference and was found to be 20.4%. 

It is obvious that there was a reduction of the carbohydrate content in C. vulgaris harvested by 

foam flotation while the lipid content increased. The increase in the lipid content can be 

explained based on two points: firstly, CTAB can disrupt algae cell wall and promote cell lysis. 

Thus, it enhances the recovery of internal cell contents like lipid and increases the solubility of 

some phospholipids as well (T. Coward et al., 2014). Secondly, CTAB is a fatty amine salt and 

quaternary ammonium with one long chain of the alkyl type and is often produced from natural 

fatty acids (Salager J. L., 2002); this is seen in the FTIR spectrum for CTAB (Figure 6.10), 

therefore, adsorbed CTAB on the algae cell wall increases the lipid content in C. vulgaris 

harvested by foam flotation. It is worth noting that not only the CTAB adsorbed onto microalgae 

cell wall is recovered with the harvested microalgae but also the remaining free CTAB used to 

generate the foam. Both sources will increase the long chain hydrocarbon content. 
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Figure 6.10: FTIR spectrum of cetyltrimethylammonium bromide (CTAB). 

Polyanionic polysaccharides (carbohydrates), like those found in microalgae biomass, complex 

with CTAB due to the electrostatic interaction between them and the reduction in carbohydrate 

content may be due to the cell wall lysis caused by CTAB or because of the impediments in 

detecting the stretching vibration of carbohydrate by the FTIR spectrum due to the carbohydrate 

complexing with the surfactant. 

6.3.7.3 Composition of algal biomass and bio-oils by FTIR 

The FTIR spectra for the bio-oil produced by the HTL of C. vulgaris harvested by centrifugation 

and the C. vulgaris feedstock are shown in figure 6.11. It can be seen from the figure for the 

bio-oil that N-H stretch (3280 cm-1), C=O stretching (amide I band, 1636 cm-1), and N-H 

bending (amide II band, 1525 cm-1), C(O)-O/P=O stretching (1238 cm-1), and C-O-C stretching 

(1144 cm-1) disappear as most groups comprising heteroatoms are processed and eliminated. 

Simultaneously, a broad band O-H stretching/N-H stretching (3400-3200 cm-1), C-H stretching 

(2954, 2922, and 2852 cm-1), C=O stretching (1702, 1697, 1670, 1663, and 1624 cm-1), C-H 

bending (1457 cm-1), C=C stretching (aromatic with amine group, 1654, 1618, and 1438 cm-1), 

C=C stretching (1570 and 1577 cm-1), and C-H bending (1457, 1376 cm-1) appear to increase. 

The band (3400-3200 cm-1) is more likely from O-H stretching rather than N-H stretching 



Chapter six 

 

177 

 

vibration since the former is very broad than the latter which is usually less broad and sharper. 

Some peaks with small intensities with N(O)-O and N=N stretching (1566-1535 cm-1), C-N 

stretching (amide III in aromatic, 1272 cm-1), C-O stretching (1169 cm-1), =C-H bending (1406, 

1413, and 1420 cm-1), and C-H bending (1400 cm-1) appear to grow as well. The FTIR spectrum 

for the bio-oil reveals the formation of fatty acids and heteroatoms containing saturated and 

unsaturated aliphatic and cyclic compounds. This inference is strongly supported by the 

previously described possible HTL pathways which involve hydrolysis, dehydration, 

decarboxylation, decarbonylation, deamination, amination, rearrangement, and aromatisation 

(Feng Cheng et al., 2017).    

 

Figure 6.11: FTIR spectra of microalgae (C. vulgaris) harvested by centrifugation and bio-oil 

produced under 320 ˚C, 32 ˚C/min heating rate, and no holding time.   

The FTIR spectra for the bio-oil produced by the HTL of C. vulgaris harvested by foam 

flotation and the C. vulgaris feedstock are shown in figure 6.12. Small differences in the peak 

distribution were found in the FTIR spectra for the bio-oils produced from the HTL of C. 

vulgaris harvested by foam flotation and centrifugation. Peaks include N(O)-O and N=N 

stretching (from 1535 to 1566 cm-1), C-N stretching (amide III in aromatic, 1272 cm-1), C-O 

stretching (1169 cm-1), =C-H bending (1406, 1413, and 1420 cm-1), and C-H bending (1400 

cm-1) look to have disappeared. Moreover, some peaks of low intensities including C=O 

stretching (1701 and 1629 cm-1), aromatic ring vibration (1591 cm-1) appear to grow, which 

again reveals the formation of more carboxylic acid and aromatic hydrocarbons. It is worth 
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mentioning that C=O stretching in 1701 cm-1 region may be attributed to the presence of other 

compounds having C=O stretching such as aldehydes and ketones. 

 

Figure 6.12: FTIR spectra of C. vulgaris harvested by flotation and bio-oil produced under 320 

˚C, heating rate 32 ˚C/min, and no holding time. 

The FTIR spectra for the bio-oil produced by the HTL of C. vulgaris harvested by foam 

flotation and centrifugation are shown in figure 6.13. The intensities and areas of the FTIR 

spectra revealed that the bio-oil from the HTL of C. vulgaris harvested by flotation had little 

stronger C-H stretching (2954, 2921, and 2851 cm-1) than the bio-oil from the HTL of C. 

vulgaris harvested by centrifugation. This was probably due to the higher number of alkyl 

groups in the fatty acid and/or more aliphatic hydrocarbons in the bio-oil from the HTL of C. 

vulgaris harvested by foam flotation. 

Figure 6.13 also shows that C=O stretching (amide I band, 1636 cm-1) and C=C stretching 

(aromatic with amine group, 1654, 1618, and 1438 cm-1) in the bio-oil from the HTL of C. 

vulgaris harvested by centrifugation are larger than the peaks of the same wavenumber in the 

bio-oil from the HTL of C. vulgaris harvested by foam flotation. This outcome suggests more 

abundance of amides, amine and unsaturated cyclic structure in the former bio-oil. Both bio-

oils had obvious C-H bending peaks (1457 and 1376 cm-1) which are sharper for the bio-oil 

from the HTL of C. vulgaris harvested by flotation. The bands in the region from 1100-1040 

cm-1 were larger in the bio-oil from the HTL of C. vulgaris harvested by flotation and they were 

likely attributed to C-O stretching vibration, indicating the possible presence of alcohol or acid 
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in the bio-oil. For both bio-oils, some peaks were observed at (739, 721, and 700 cm-1) as well, 

possibly attributed to the C-H bending from alkene and aromatic and their derivatives. The out-

plane C-H vibration of peak at 721 cm-1 was slightly stronger in the bio-oil from the HTL of C. 

vulgaris recovered by flotation, showing more alkenes in this oil relative to that from the HTL 

of C. vulgaris harvested by centrifugation. The FT-IR spectra for both bio-oils were consistent 

with the outcomes from the GC-MS analysis.  

 

Figure 6.13: FTIR spectra of the bio-oils produced by the HTL of C. vulgaris harvested by 

flotation and centrifugation under reaction temperature of 320 ˚C, heating rate of 32 ˚C/min, 

and no holding time. 

6.4 Conclusion 

This work explored the direct hydrothermal liquefaction of microalgae (C. vulgaris) harvested 

by foam flotation and centrifugation. The HTL of C. vulgaris harvested by flotation yielded a 

larger amount of bio-oil than that from the HTL of C. vulgaris harvested by centrifugation. This 

is probably due to the ability of CTAB to disrupt the algae cell wall and promote cell lysis that 

in turn enhances the recovery of internal cell contents such as lipid, and increases the solubility 

of the phospholipids bilayer in the cell membrane. Additionally, CTAB that adsorbs onto 

microalgae cells and the remaining free CTAB that attaches to the air bubbles is recovered with 

the harvested microalgae resulting in an increase in the long chain hydrocarbon content and 

consequently greater bio-oil quantities. However, the amount of non-adsorbed CTAB 
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accompanying the algal slurry was not enough to increase the bio-oil in the products to the yield 

observed in these experiments. Approximately, seven litres of microalgae culture were 

harvested to produce the required biomass (3 g) for each HTL experiment and if the total 

amount of CTAB used to harvest the microalgae culture (0.035×7 = 0.245 g) was considered to 

accompany the algal slurry, it only represented 8% of the total biomass. Nevertheless, it will 

contribute to increasing the bio-oil yield to some extent. The increase in the bio-oil yield is 

likely due to the capability of CTAB in enhancing the disruption of the algal cell wall and 

promoting cell lysis. This enhances the recovery of internal cell contents like DNA and lipid 

and increase the solubility of some phospholipids in the cell membrane as well, thereby 

enhancing bio-oil yield. 

Beside higher bio-oil yields, lower amounts of water-soluble organic, solid residue, and gas 

products were observed. Use of C. vulgaris recovered by foam flotation as a feedstock for HTL 

technology reduced the nitrogen content in the bio-oil fraction as shown by CHN elemental 

analysis, and GC-MS and FTIR spectra. Analysis by GC-MS indicated higher relative amounts 

of esters and hydrocarbons in contrast to lower amounts of ketones in the bio-oil from the HTL 

of C. vulgaris with CTAB in comparison to that from the HTL of C. vulgaris without. Using C. 

vulgaris harvested by foam flotation as a feedstock for HTL enhanced the bio-oil quality by 

promoting the yield of light-fraction and hence reduced the viscosity. It also increased the 

conversion of the liquefaction reaction from 76.8 to 87.6%. However, a slight increase in acidity 

occurred due to the increase of oxygen content. The outcomes from the energy recovery 

measurements indicated that the HTL of C. vulgaris harvested by the foam flotation column 

produced fuel which had a stored energy closer to that of dry algal feedstock than the fuel 

produced from C. vulgaris harvested by centrifugation. 
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Chapter 7  

Conclusions and recommendations for future work 

7.1 Conclusions 

A successful harvesting technique for microalgae needs to be: effective, rapid, low cost, 

species independent, scalable, and should be able to operate continuously if required. 

Although a wide range of microalgae culture separation technologies are available, none of 

them have shown any economic feasibility to recover microalgae for biofuel production. Foam 

flotation has been branded a promising low-cost technique for physical separation of 

microalgae from its culture medium. Therefore, in this thesis, the feasibility of using a 

continuous foam flotation column as a unique harvesting technology that possesses most of the 

characteristics expected of a successful harvester, was investigated for the first time. Low cost 

and readily available materials were used to construct the flotation column, with a configuration 

that could be easily cleaned and changed to fulfil various experimental requirements. 

The most important conclusion is that the continuous foam flotation column delivers 

advantages in terms of both cost and efficiency compared to other commonly used harvesting 

techniques, as it harvests both freshwater and marine species at low capital and operating costs 

as well as eliminates the trade-off between high recovery efficiency (for greater biomass 

removal) and concentration factor (to lower downstream dewatering and drying costs).  

The effects of cell surface characteristics were investigated on Chlorella vulgaris flotation 

performance by quantifying the hydrophobicity, zeta potential, and contact angle. The cationic 

hexadecyltrimethylammonium bromide (CTAB) enhanced the low hydrophobicity and reduced 

the net charge of the cells; likely due to the attachment of positive long alkyl hydrophobic 

groups originating from CTAB after dissociation in water. The amount of surfactant adsorbed 

onto the cells was determined by surface tension to calculate the surfactant quantity remaining 

for foam induction in the column. Foam stability was influenced by the algal biomass 

concentration due to the adsorption of surfactant onto the cells. Fractional factorial and central 

composite design experiments showed that surfactant concentration, column height, and air 

flow rate had the greatest effect on harvesting effectiveness criteria (recovery efficiency and 

concentration factor); the process variables were then optimised to achieve an effective 

combination of a high recovery efficiency and a high concentration factor – a pivotal step 

forward in flotation harvesting of microalgae. The optimised variables (CTAB = 35 mg L-1, air 
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flow rate = 1 L min-1, feed flow rate = 0.1 L min-1, column height = 146 cm, liquid pool depth 

= 25 cm, with a fine porous sparger) were subsequently used to harvest freshwater C. vulgaris 

and marine Isochrysis galbana and Tetraselmis suecica microalgae, yielding high recovery 

efficiencies of 95, 93, and 89% together with 173, 271 and 143-fold biomass enrichments, 

respectively (the improvement in harvesting performance of marine species in particular is 

noteworthy). Compared to commonly used harvesting techniques, the continuous foam 

flotation column had a very low power consumption, 0.052 kWh m-3, with a low total harvesting 

cost (including the chemical cost) of US$ 0.179 per 1 m3 of microalgae culture. 

Besides the bulk harvesting of microalgae, further dewatering and drying are other impediments 

to producing algal biofuel at competitive prices. Therefore, the possibility of intensifying the 

continuous foam flotation column by enhancing the foam drainage (i.e. increasing the 

enrichment of the harvested microalgae) was also evaluated. Drainage enhancement was 

facilitated by inserting three foam risers with 0.25, 0.5, and 0.75 smooth-successive contraction 

and expansion diameter ratios into the foam column. Each riser increased the drainage of 

interstitial water from the foam and increased the concentration of the harvested microalgae. A 

high concentration factor (722) and total suspended solid yield (14.6%) were achieved with the 

0.25 riser, delivering a highly concentrated slurry with a total suspended solid comparable to or 

better than that achieved by other dewatering techniques such as centrifugation and filtration at 

lower cost. However, a minor reduction in the recovery efficiency of C. vulgaris was observed, 

from 95 to 91%, potentially due to the adhesion of dry microalgae biomass onto the foam riser 

wall. 

The development of mathematical models for foam flotation has proven difficult due to the 

interactions between solid, gas, and liquid phases within the process. Instead, kinetic and 

efficiency models were adopted to better understand the process for microalgae. Bubble size is 

a crucial factor in foam flotation as it determines the final performance of the process in terms 

of recovery efficiency and concentration factor. A wide bubble size distribution was generated 

(204 to 2909 µm) and Sauter mean dimeters ranging from 811 to 1713 µm under different 

experimental conditions. The Sauter bubble diameter decreased with increasing CTAB 

concentration but increased with air flow rate. Smaller bubbles have longer residence times in 

the liquid due to their slower rise velocity, leading to a larger contact time between gas and 

solid phases and consequently enhancing microalgae collection efficiency. The slower bubble 

rise velocity at high CTAB concentrations was due to the retardation that occurred when the 
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CTAB and microalgae adsorbed onto the bubble surface. Theoretically, low microalgae 

collection efficiencies were observed which were undoubtedly due to the low collision 

efficiencies between microalgae and bubbles. The theoretical recovery efficiencies did not 

agree with the corresponding experimental recovery efficiencies. The obtained high 

experimental recovery efficiencies indicate that there are other forces acting between 

microalgae and bubbles not considered in the commonly used collision models. The bubble-

microalgae attachment and stability efficiencies were at, or close to unity due to the surface 

forces between bubbles and cells such as electrostatic forces, hydrophobicity, and the small 

algal cell size. 

Hydrothermal liquefaction (HTL) of model compounds (starch, bovine serum albumin (BSA), 

and rapeseed oil) in isolation showed that the bio-oil yield was in the order of lipid > protein > 

carbohydrate. CTAB was almost entirely converted into bio-oil with very little solid fraction. 

The direct HTL of C. vulgaris recovered by foam flotation and centrifugation (control) were 

performed. HTL at high reaction temperatures (> 370 ˚C) produced a high gas yield whereas 

low temperatures (< 250 ˚C) were not sufficient; therefore, a mild temperature range (between 

280 and 320 ̊ C) was adopted. The HTL of C. vulgaris harvested by foam flotation yielded more 

bio-oil than cells harvested by centrifugation; likely due to CTAB disrupting the cell wall and 

promoting cell lysis thereby increasing the solubility of the cell membrane phospholipids 

bilayer; a further advantageous feature for CTAB aided foam flotation. Moreover, the increases 

in bio-oil yield might occur in part due to the selective separation of higher lipid content cells 

which are floated more easily due to their low density. The HTL of C. vulgaris harvested by 

foam flotation also offered lower water-soluble organic, solid residue, and gas product yields, 

with a lower bio-oil nitrogen content, and higher relative amounts of esters and hydrocarbons 

and lower amounts of ketones, with an overall increased conversion efficiency of 87.6% versus 

76.8% in the control. The energy recovery calculations indicated that HTL of C. vulgaris 

harvested using the foam column produced fuel with a stored energy closer to that of dry algal 

feedstock than the fuel produced from C. vulgaris harvested using centrifugation. 

Overall, this piece of work adds several contributions to the literature: 

Firstly, it demonstrates that the continuous foam flotation column is a low cost, rapid, and an 

effective harvesting technology for recovering microalgae with high recovery efficiency and 

concentration factor. In comparison to centrifugation and filtration, the continuous foam 

flotation column offers lower construction, energy, and maintenance costs with comparable or 
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better biomass yield. It also offers a shorter harvesting time and a lower floor space compared 

to coagulation and/or flocculation followed by sedimentation, therefore lending itself to be 

scalable. What is more, other characteristics of the successful harvester were noticed in our 

foam flotation column such as it is growth media and apparently species independent 

(harvesting freshwater and marine species) and able to operate continuously. Apart from the 

microalgae harvesting for biofuel production, the continuous foam flotation (this work) has 

other applications (e.g. in water and wastewater treatment industries). If the foam column is 

used as a separation and purification technology for wastewater instead of dissolved air 

flotation, it will remove microalgae as well as their excreted EPS (comprising mainly 

carbohydrates and proteins) and reduce the operating cost by about US$ 0.736 m-3 with a 

remarkable reduction in capital and maintenance costs due to its simplicity. Moreover, foam 

flotation can potentially improve water and chemical recycling since it can recover nearly whole 

chemicals (i.e. surfactant) from the processed water. 

Secondly, compared to the dissolved air flotation and electro-flotation techniques, the foam 

flotation column with foam riser (this work) can lower the energy consumption required for 

drying 1 kg of microalgae to produce biomass suitable for syngas (approx. 15% saving) and 

pyrolytic oil (approx. 10% saving) production. Whereas it can lower the energy consumption 

required for drying the same quantity of microalgae by approximately 20 and 13% to produce 

the same products when compared to lamella separators. 

Thirdly, foam flotation yields algal biomass suitable to produce larger quantities of HTL oil 

(about 8-14% larger than what has been reported in the literature) at lower temperatures and 

holding times. By subtracting the energy required to heat the reactor to the desired temperature, 

this will reduce the energy consumption for converting microalgae into bio-oil by 

approximately 83-100% if only the difference between holding times is considered (this work 

had 0 - 10 min holding time and the work reported in the literature had 60 min). Also, foam 

flotation yields algal biomass typical of that needed to produce higher HTL oil quality. It has a 

lower nitrogen content, higher relative amounts of esters and hydrocarbons and lower amounts 

of ketones. Consequently, this will reduce the costs of downstream processes required for 

upgrading the bio-oil.  

Fourth, achieving high bio-oil yields at low holding times with the HTL of microalgae 

recovered by foam flotation can engender significant intensification of the HTL process. In 

other words, to hydrothermally liquefy algal biomass not harvested by foam flotation in a 
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continuous mode at high bio-oil productivity and yield, high feed flow rates and residence times 

are required, therefore reactors with large volumes would be required. This increases the 

constructional costs as well as energy consumption for heating the reactor. Moreover, high 

pressure reactors are not easy to scale up since the allowable operating pressure reduces as the 

reactor diameter increases and consequently the reactor wall thickness should be increased to 

compensate the reduction in the allowable operating pressure. These drawbacks will make the 

continuous HTL process unfavourable for processing microalgae harvested by the available 

harvesting techniques except for foam flotation. 

Fifth, delivering a highly concentrated slurry with a total suspended solids content of 14.6% 

(besides the capability of CTAB to influence the cell wall and facilitate the extraction of lipids 

from microalgal biomass, i.e. coupling of dewatering and cell disruption) can undoubtedly 

advance the other techniques for converting wet biomass into biofuel such as in-situ 

transesterification, especially that microalgae phospholipids can also be converted into FAME. 

Such a total suspended solids content should reduce, to some extent, the extra volumes of 

solvent and homogenous catalyst used to overcome the low biodiesel yields due to high 

moisture content.   

Sixth, HTL of microalgae has a lower environmental impact than that of pyrolysis. Firstly, a 

rough estimate of a reduction of 48% in the total energy needed for bio-oil production was 

made; this is due to avoiding the need to dry the feedstock and operating at a lower reaction 

temperature. Secondly, it has been reported that the greenhouse gas (CO2) emissions are less 

than 221.4 g CO2eq per MJ biodiesel when the HTL technique is used instead of pyrolysis. 

Higher CO2 emission associated with pyrolysis is attributed to combustion of co-products to 

reduce process energetics. However, HTL of microalgae does not yet have net energy ratio 

(energy consumed to energy produced) close to that of diesel (0.2) but it has the potential to 

become a viable process if the energy required by the other microalgae production phases (e.g. 

cultivation) is reduced. 

7.2 Recommendations for future work 

Although the current study has attempted to consider the continuous foam flotation column and 

direct HTL conversion of harvested microalgae into bio-oils from different aspects, further 

research projects on the continuous foam flotation and direct HTL are still required. Microalgae 

are very diverse. To date, around 35,000 species have been described and the real number will 

be considerably higher. This work only investigated the harvesting of three species; freshwater 
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Chlorella vulgaris and marine Isochrysis galbana and Tetraselmis suecica. To examine the 

extent of its species independence will require a broader approach to harvesting, covering a 

range of taxa and growth forms (unicells, chains, and colonies). Moreover, foam flotation is 

highly dependent on the physicochemical properties of interfaces. Therefore, the 

physicochemical surface properties of each chosen species must be studied based on the surface 

free energy and zeta potential with and without the presence of surface active materials prior to 

the harvesting trials. This will provide crucial information regarding algal cell-to-cell and algal 

cell-to-bubble interactions and enable the best selection of surfactant even though surface 

charge can significantly determine their interactions.  

The effects of growth phase and growth medium are of high importance, not only on the 

biochemical composition of microalgae but also on their surface characteristics. Therefore, 

investigations on these factors need to be considered for a wide range of microalgae species 

including those with resistant hydrophobic biomacromolecules in their cell walls (e.g. algaenan, 

such as Nannochloropsis gaditana, Dunaliella tertiolecta and Scenedesmus sp.). Separate to 

harvesting from defined media, continuous harvesting of species cultivated in wastewater is 

strongly recommended.   

Attempts to develop a collision model for the microalgae particle-air bubble system in both 

liquid and foam zones is crucially important. Some assumptions must be considered such as the 

microalgae particle inertia is negligible due to its small cell size and the bubble surface is 

completely retarded i.e. an immobile surface, due to the presence of surfactants. Also, the 

number of bubble-particle attachment models is very limited due to the difficulties in measuring 

some quantities in attachment models such as induction time. Therefore, developing an 

attachment model for microalgae particles and bubbles as well as empirical correlation for 

induction time calculation is recommended. 

Direct conversion of the harvested microalgae into HTL oils must be considered for a wide 

range of species with differing biochemical compositions (both freshwater and marine). The 

mechanisms and kinetics of the HTL reaction are still unclear and much research is required by 

hydrothermally liquefying various model compounds in isolation and in mixture under different 

operating conditions. Research into upgrading the produced microalgae bio-oils is also needed 

to evaluate the upgrading process with the enhancements occurred on the bio-oil from the HTL 

of microalgae with CTAB. Trials on upgrading the HTL oils using the vis-breaking process are 

also required. Research on the utilisation of microalgae harvested by foam flotation should not 
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be limited to biofuels, but should expand to include producing high-value products like those 

used in the health food and pharmaceutical industries.
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Appendix 1 

Most common first order flotation kinetic models 

Table A.1: Description of the most common first order flotation kinetic models 

No. Model Formula Comment 

1. First order model 𝑅 = 𝑅∞[1 − 𝑒−𝑘𝑡] 

The standard classical first order flotation kinetic 

model reported to fit the experimental data well 

when the particle recovery is low. The first order 

flotation kinetic is the most widely accepted model 

and is based on theory and experiment which 

indicate that the collision rate between the bubbles 

and particles is first order with respect to the number 

of particles and that the bubble concentration 

remains constant (bubble concentration >>> number 

of particles) (Sutherland, 1948).        

2. 
First order model with 

rectangular distribution 
𝑅 = 𝑅∞ {1 −

1

𝑘𝑡
[1 − 𝑒−𝑘𝑡]} 

The rectangular distribution of floatability was 

introduced into the classical first order kinetic model 

to give the model more flexibility and applicability. 

3. 
Fully mixed reactor 

model 
𝑅 = 𝑅∞ [1 −

1

1 + 𝑡/𝑘
] 

This model is also described as first order model 

with exponential distribution of floatability. This 

model was introduced by Imaizumi and Inoue in 

1963 to give the classical first order model added 

flexibility which enables it to fit the flotation data 

well (IMAIZUMI and INOUE, 1963).  

4. 
First order model with 

sinusoidal distribution 
𝑅 = 𝑅∞ [1 −

1 − 2𝑘𝑡
𝑒−𝑘𝑡

𝜋

(1 +
2𝑘𝑡

𝜋
)

2 ] 

The first order model with sinusoidal distribution of 

floatability was developed by Diao et al. (1992) 

(DIAO et al., 1992). 

5. 
First order model with 

gamma distribution 
𝑅 = 𝑅∞ [1 − (

𝜆

𝜆 + 𝑡
)

𝑃

] 

This model contains a continuous distribution 

function (gamma). It was proposed, like others 

above, to account for the variability in the rate 

constant. 

6.  
First order model with 

triangular distribution 
𝑅 = 𝑅∞ [1 −

1 + 𝑒−2𝑘𝑡 − 𝑒𝑘𝑡

(𝑘𝑡)2
] 

This model contains a continuous distribution 

function (triangular). It was proposed, like others 

above, to account for the variability in the rate 

constant. 

7. Modified Kelsall model 
𝑅 = 𝑅∞[(1 − 𝜑)(1 − 𝑒−𝑘𝑓𝑡)

+ 𝜑(1 − 𝑒−𝑘𝑠𝑡)] 

This model is the modified version of the Kelsall 

model after adding the effect of ultimate 

recovery 𝑅∞. It is a first order kinetic model with 

discretised distribution that incorporates two 

fractions and two rate constants for slow and fast-

floating particles instead of one rate constant. In 

other words, it describes the recovery as the sum of 

slow and fast-floating particles. 

Note: 𝑅: is the flotation recovery at time 𝑡 (%), 𝑅∞: is the ultimate flotation recovery at infinite time 𝑡∞ (%), 𝑘: is 

the rate constant (min-1), 𝜆: is the inverse of the rate constant in the first order model with gamma distribution, 

𝜆 =
1

𝑘
 (min), 𝑃: is the exponential number in the first order model with gamma distribution, 𝜑: the fraction of 

flotation particles which have slow rate constant, 𝑘𝑓: the rate constant of fast-floating particles, 𝑘𝑠: the rate constant 

of slow-floating particles. 


