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Abstract 

 

Relationships between air pollution, health and deprivation potentially result in the 

highest cost to both the public and the government in terms of increased mortality and 

morbidity; hence establishing links between them is important and justifiable. The 

concept of Environmental Justice (EJ) questions whether certain socio-economic groups 

bear a disproportionate burden of environmental externalities, and whether policy and 

practice are equitable and fair. 

 

This research presents an innovative air quality modelling framework to map the EJ of 

the spatial distribution of air quality; and the impact of air quality management 

measures on existing EJ concerns. To assist in this goal, a modelling approached has 

been developed which enables the assessment of traffic management solutions that may 

create only subtle changes in the traffic flow regimes; and accurately assesses the 

impact of a reduction in vehicle kilometres travelled (VKT). 

 

Strong evidence of environmental injustice in the current distribution and production of 

poor air quality has been provided in the literature.  However, the overwhelming 

majority of existing studies have concentrated on the analysis of current or historic 

associations. As a result their methodologies do not allow for the analysis of future 

strategies therefore, a gap exists in understanding the EJ implications of air quality 

strategies or schemes designed to improve air quality. 

 

Recent years have seen heightened political focus on policy and attempts to improve air 

quality.  Whilst it is broadly suggested in the literature that improving air quality also 

will improve existing EJ concerns, evidence to date shows that even in situations where 

air quality is improving, the rate of concentration improvement is lowest for the poor. 

 

This research presents a suite of linked models of traffic, emission, dispersion, and 

geodemographic models (the modelling framework) that together allow not only more 

accurate assessment of the existing EJ situation to be established over using traditional 

techniques, but also the assessment of future air quality strategies and schemes designed 

to improve air quality which may improve or exacerbate the existing EJ relationship.  
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The use of microsimulation traffic modelling in conjunction with an instantaneous 

emissions model (IEM) is a well-established emissions modelling technique. However, 

the use of IEMs is generally confined to exploration of emissions outputs and not the 

subsequent dispersion of emissions in order to determine air quality. This research 

successfully combines advanced microscale modelling techniques and applies them in 

the context of an EJ study in order to produce an original modelling framework capable 

of household level EJ analysis. 

 

This research has established that, at a city level, there is no linear relationship between 

air quality and deprivation in the North East cities of Durham, Newcastle and 

Gateshead. However, analysis of geodemographic data at the household and postcode 

levels has provided evidence of environmental injustice in air quality across all three 

study areas.  

 

Additionally, this research has explored the impact of reductions in VKT as a proposed 

air quality management measure. Thereby, the reductions required in VKT (over 2010 

traffic flows) in one study area, Durham, have been established in order to meet both 

EU air quality limits and future carbon targets.  

 

Incremented 5% VKT reduction changes were made to the base-case 2010 scenario 

until all considered targets were met. Based on a 2010 vehicle fleet, a 50% reduction in 

traffic through Durham’s AQMA is required to meet all EU air quality targets. 

Similarly, a 25% reduction in VKT is required assuming a 2020 vehicle fleet, and by 

2025 a 15% reduction in VKT would ensure Durham met its air quality targets. 

Moreover, a 10% reduction in VKT by 2020, and 25% reduction by 2025 would ensure 

carbon dioxide (CO2) reductions across the study area equal to those set out in the 

carbon budget. 

 

Furthermore, it has been established that the reductions in VKT to meet both EU air 

quality limits and future carbon targets eliminates the identified EJ issue in Durham. 

Moreover, if future VKT is constrained to 2010 levels, the spatial distribution of air 

quality will be environmentally just in both the 2020 and 2025 assessment years. 
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CHAPTER 1 

 

1. Introduction  

 

This research presents a robust air quality modelling framework to map the 

Environmental Justice (EJ) of the spatial distribution of air quality; and the impact of air 

quality management measures on existing EJ concerns. Whilst the concept of EJ has a 

significant history, it has gained in prevalence in recent years as social goals (e.g. 

equity, fairness, and justice) have themselves gained greater prominence through almost 

universal efforts to promote sustainable development (Namdeo and Stringer, 2008). The 

concept draws attention to the questions of whether certain socio-economic groups, 

including the economically and politically disadvantaged, bear a disproportionate 

burden of environmental externalities, and whether policy and practice are equitable and 

fair (Wilkinson, 1998; Stewart et al., 2015; Mitchell et al., 2015; Moreno-Jiménez et al., 

2016). 

 

Relationships between air pollution, health and deprivation potentially result in the 

highest cost to both the public and the government in terms of increased mortality and 

morbidity; hence establishing links between them is important and justifiable. Recent 

analysis of EJ at the national level in the UK has produced evidence of environmental 

injustice in the distribution and production of poor air quality (Mitchell et al., 2015). 

“Those living in the most deprived parts of England experience the worst air quality” 

(Pye et al., 2006). 

 

This research aims to map the EJ of the spatial distribution of air quality across the 

study area, the North East of England. Three case study North East cities, Durham, 

Newcastle and Gateshead have been compared and contrasted to allow more definitive 

findings and greater assurance that the established modelling framework can be applied 

across different locations and scales. The areas of study were predefined as a result of 

research links within the North East region, specifically, Durham, where funding to 

support the research was obtained through Durham County Council (DCC).  

Additionally, a North East context was present as a result of the researcher’s connection 

with the SElf Conserving URban Environments (SECURE) project.  The SECURE 

project sought to develop a Regional Urbanisation Model that synthesises resource-
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supply-demand-waste systems from city and local authorities to regional scales via the 

integration of three themes - Urbanisation (land use and transport), Building and Energy 

(supply and demand) and Ecosystem Services (the benefits humans receive from 

ecosystems).  Due to the timeframes of the project, this research was unable to utilise 

outputs from the project. However, connections with the work allowed access to the 

North East regional transport model (Section 3.4.1) gave the work a wider geographical 

background and an opportunity to test the framework in other North East cities. 

 

A nested modelling approach has been adopted to allow the EJ investigation to be 

conducted across scales, using microscale, mesoscale and strategic modelling (Section 

2.9). At the most detailed level to increase understanding of local level interactions, a 

finer microscale resolution has been undertaken in the City of Durham. 

 

In May 2011 an Air Quality Management Area (AQMA) was declared as a result of 

failure to meet the annual mean objective/ EU limit value for Nitrogen Dioxide (NO2). 

Consequently DCC worked to produce an Air Quality Action Plan, developing 

strategies to improve air quality within the AQMA.  The Air Quality Action Plan was 

approved in June 2016, after the scenario testing element of this research was 

completed.  The plan includes an action regarding the “introduction of a (Urban Traffic 

Management Control) UTMC or (Split Cycle Offset Optimisation Technique) SCOOT 

system to coordinate traffic through a network of junctions within Durham City and 

reduce congestion.” (Durham County Council, 2016).  The inclusion of this action was, 

in part, a result of this research, following a DCC review of the findings of the 

microscale scheme testing, which gave confidence that a SCOOT system could 

contribute to an overall reduction in oxides of nitrogen (NOx, the collective name for all 

compounds formed by the combination of oxygen with nitrogen when fuel is burnt) 

across the AQMA (Section 6.2.1). 

 

To compare and contrast findings from the Durham microscale study, a mesoscale study 

of Newcastle upon Tyne and Gateshead provided insight in to the EJ of these areas, as 

well as determining the suitability of the modelling framework at different scales. 

Finally, the results for the study of Newcastle upon Tyne and Gateshead allowed the 

most appropriate scale modelling approach to be identified, ensuring that the most 

appropriate methodology for modelling the remaining study areas was applied. 
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When analysing air quality and EJ it is important to consider other factors that may be 

relevant to the relationship.  For example, when considering the link between health and 

environmental justice, external factors such as air quality are an acknowledged and 

serious contribution to respiratory health (Walker, 2012). However, the mechanisms 

that lead to respiratory illness are vast, from early interactions with infectious agents 

such as viruses, bacterial infections, to an individual’s composition of the respiratory 

microbiome (Unger and Bogaert, 2017).  In combination with individual general health, 

lifestyle choices such as prevalence of smoking, and general population demographics 

including age and gender, the number of potential confounding factors of consideration 

is significantly beyond what could reasonably be expected to be explored; and the 

prevalence of suitable data is a substantial limitation should such work ever be 

attempted.  Furthermore, despite significant advances in medical research and 

understanding of respiratory illness, there are still significant knowledge gaps in 

understanding cause and effect. For example, the importance of other underlying health 

issues, including mental health, has only recently been understood; individuals with 

mental illness have an increased risk of a wide range of illness including respiratory 

disease (Chadwick et al., 2016). 

 

Similarly, evidence of historic pollution induced neighbourhood sorting has been 

presented for many UK and world-wide cities, for example, Heblich et al. (2016) 

analysed 10,000 industrial chimneys in 70 English cities around the year 1880 and used 

terrain and wind patterns to predict where their smoke would have drifted to show the 

presence of pollution induced neighbourhood sorting.  However, in reality the patterns 

that lead to areas of ‘poor’ and ‘wealthy’ areas in our urban spaces is hugely complex 

and varied, with geography (rivers, topography), natural resources (industry) and land 

type (building) among many contributing factors which determine where people live 

and the relationship between air quality and EJ. 

 

Finally, the interaction with wider environmental inequalities should be considered.  

Numerous physical and social barriers represent issues of EJ, for example, access to 

walkable streets and park areas; and proximity to hazardous waste facilities, 

contaminated food sources, and agricultural pesticides (Cutts et al., 2009; Fecht et al., 

2015).  These above points are expanded on in the literature review in Section 2.5.2. 
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However, despite this complex relationship, existing research has found that air quality 

is an EJ issue, with poorer neighbourhoods more likely to face greater pollution.  

Attempts to gain greater understanding of this relationship, and model strategies that 

may improve or exacerbate the existing EJ relationship are therefore very valid, with the 

potential to aid decision making and address inequality issues a valued goal. 

 

1.1 Rationale for the  research project 

 

The global increase in demand for road transport has resulted in the deterioration of air 

quality in the world’s cities (Mayer, 1999; DEFRA, 2011; World Health Organisation, 

2016). Today the major threat to clean air in urban areas is posed by traffic emissions 

(DEFRA, 2011; Kelly and Fussell, 2015). Petrol and diesel-engine vehicles emit a wide 

variety of pollutants, principally carbon monoxide (CO), oxides of nitrogen (NOx, the 

collective name for all compounds formed by the combination of oxygen with nitrogen 

when fuel is burnt), volatile organic compounds (VOCs) and particulate matter (PM) 

(DEFRA, 2011). 

 

Health has emerged as an important driver for air quality policy (DOH, 2010; Bell et al., 

2012; Cartier et al., 2015). Research which establishes links between air quality, health 

and EJ will enable a new emphasis on the importance of air quality policy. It is hoped 

that a renewed understanding of this relationship and EJ concepts can aid the step 

change in human behaviour that is required if current air quality and health policy 

aspirations are to be realised. 

 

In economic terms the Environmental Audit Committee (EAC) noted that failure to 

tackle current air quality issues is putting the NHS under unnecessary strain and the UK 

is exposed to the potential of fines that could reach £300 million, dependant on rulings 

from the European Court of Justice (ECJ) (EAC, 2010; Neslen, 2018). Therefore work 

to best derive air quality strategies is of real relevance. 

 

The impact of anthropogenic Greenhouse Gas (GHG) emissions on the Earth’s climate 

is also a significant environmental concern (IPCC, 2014). The 2014 report from the 

Intergovernmental Panel on Climate Change (IPCC) concluded that it is “extremely 

likely that more than half of the observed increase in global average surface temperature 
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from 1951 to 2010 was caused by the anthropogenic increase in GHG concentrations”. 

Unfortunately the road transport sector has seen a continued increase in GHG emissions 

in recent history (IPCC, 2014). Consequently governing bodies across the globe are, 

through legislation, obligated to develop and implement strategies to reduce air 

pollution and GHG emissions from all sources including road transport, for example, 

the Kyoto Protocol (UNFCCC, 1998). 

 

It is becoming increasingly apparent from recent policy that, while addressing the GHG 

abatement agenda, existing policies could be exacerbating local and regional air 

pollution (EC, 2015). This exacerbation can occur directly through ‘win-lose’ measures 

e.g. dieselisation of the UK vehicle fleet; diesel vehicles typically have lower carbon 

dioxide (CO2) emissions than petrol vehicles due to the lower carbon content of diesel 

fuel (Boultier et al., 2007). However, diesel vehicles are also generally associated with 

higher NOx, f-NO2 and PM2.5 emissions than petrol vehicles (f-NO2 is the fraction 

emitted directly as NO2, different vehicle types emit different proportions of NOx as 

NO2) (Rhys-Tyler et al., 2011). Alternatively, indirect exacerbation can occur as a result 

of emphasis on carbon and GHG emissions detracting from air quality agendas. 

 

Air quality has gained significant momentum in recent years as a political issue, largely 

as a result of the increased understanding of the health implications of air pollution, and 

also as a result of high profile news events such as the emissions scandal and London’s 

attempts to meet its statutory air quality targets (Section 2.2). However, there remains 

growing concern that losing sight of air quality goals through the prominence of CO2 

and climate change agendas may result in failure to meet targets in both areas (EAC, 

2010). A key provision of the Climate Change Act in 2008 was a legally binding target 

of at least an 80 percent cut in CO2 emissions by 2050. This is to be achieved through 

action in the UK against a 1990 baseline. Of particular importance to this research are 

interim targets proposed by the Committee on Climate Change (CCC) for 2020 and 

2025 (18 percent and 32 percent reductions in emissions from 2010 respectively) (CCC, 

2010). In light of this agenda, the focus of existing and emerging legislation has been 

placed on developing and implementing low carbon strategies across all sectors on a 

national scale (DECC, 2011; DfT, 2011; EC, 2011). Thereby, this research will look at 

the impact of targeting CO2 objectives as a transport strategy, and discuss whether this 

satisfies air quality goals in the study area. 



 

 

6 
 

The review of the implications of the UK’s likely exit from the European Union on air 

quality legislation in Chapter 2, Section 2.3 would suggest that there is limited risk of 

disruption given that even the UK’s existing Air Quality Objectives are  said to be at 

least as stringent as the limit values of the relevant EU Directives (Upton, 2017). 

 

Nonetheless, there is potential for focus to shift further away from meeting specific EU 

set air quality limit values, in favour of more objective regulation under the Air Quality 

(England) Regulations 2000.  Whilst it is vital that efforts to reduce air pollution are 

maintained, this represents an opportunity for new policy to provide renewed emphasis 

on objective goals which, it is argued in this research, should include a drive for 

promoting transport solutions and strategies which enhance social equality in the spatial 

distribution of air quality. 

 

1.2 Research questions, Aims and Objectives of the Research 

 

The research questions, specific aims, and detailed objectives of this research are 

described in the following two subsections. 

 

1.2.1 Research questions 

This research has two research questions: 

 

1. To what extent is the spatial distribution of air quality in the identified study 

areas environmentally just? 

2. To what extent do the modelled air quality and carbon reduction transport 

strategies improve or exacerbate existing EJ concerns? 
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1.2.2 Aims and Objectives  

 

This research has two aims: 

 

1. To establish a modelling framework to explore the research themes and test the 

EJ of the distribution of air quality across scales within the study area (develop 

the base-case). 

2. To apply the modelling framework to transport strategies and assess the extent 

to which these actions improve or exacerbate existing EJ concerns (scenario 

testing). 

 

The modelling framework is a series of linked traffic, emissions, air quality, and 

demographic models successfully incorporated into a bespoke tool capable of exploring 

the research themes.  The framework utilises varied methods and data sources to model 

across scales, including the use of an instantaneous emissions model (IEM) and bespoke 

programming to enable emissions outputs from microsimulation modelling to allow the 

assessment of air quality strategies that may create only subtle changes in the traffic 

flow regimes (Grote et al., 2016).  Moreover, the innovative use of geocoded 

geodemographic data in conjunction with the modelled air quality outputs has allowed 

the existing EJ situation to be established; and the impact of traffic flow regime change 

on EJ to be more accurately assessed than in previous EJ research.  The intention of this 

research is not to suggest a causal relationship between air pollution health and 

environmental injustice but to indicate the vulnerability of the populations encountering 

this environmental burden. 

 

Furthermore, the impact of both air quality management measures and required 

reductions in vehicle kilometres travelled (VKT) to meet proposed carbon targets on 

existing EJ concerns are to be assessed.  

 

In addition the research has the following objectives: 

 To establish a suitable modelling framework encompassing traffic, emissions 

and air quality stages to develop a base-case and allow exploration of the 

research themes; 
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 To apply the modelling framework to assess the EJ of the spatial distribution of 

air quality, across scales, within the study areas; 

 

 To investigate the impact of both air quality management measures and required 

reductions in VKT to meet future EU Air Quality and Low Carbon legislation; 

and 

 

 To assess the potential to meet both air quality and the proposed carbon targets, 

in addressing existing EJ concerns. 

 

1.3 Thesis Contents 

 

A brief outline of this thesis follows.  Chapter 2 introduces the key concepts of air 

pollution and the relationships between air quality, heath and EJ.  The remainder of the 

chapter provides an extensive literature review of air quality and the impact of road 

transport emissions to our environment; the role of transport in Greenhouse Emissions 

and Climate Change; and the EJ implications of transport including the health effects of 

major pollutants.  Additionally, the different methodologies for modelling road 

transport are discussed, including the distinction between strategic and microscale 

modelling.  The current availability of road transport emissions inventories is explored, 

and the suitability and accuracy of emissions models discussed.  The role of air quality 

models in predicting air pollutant concentrations is reviewed and commonly used 

Gaussian air quality dispersion models are critically evaluated.  Furthermore, the 

validation of modelling is discussed and suitable model performance analysis identified. 

Finally, thoughts are given to air quality and carbon management strategies, including 

reduction in VKT, aimed at reducing emissions for road transport. The specific 

importance and range of benefits of reducing the total amount of vehicle use is 

discussed in detail in Chapter 3. 

 

Following the provision of important background information on the areas of transport, 

emissions and dispersion modelling; EJ; and road emissions reduction strategies; 

Chapter 3 describes the methodological approach used in this research. The chapter 

begins by identifying the research study area and outlining the three North East of 

England case study cities of Durham, Gateshead and Newcastle.  The modelling 

framework adopted in this research is then documented, with sections on transport; 

emissions; dispersion; and EJ modelling, guiding the reader through the research 
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approach. The nested nature of the modelling is discussed and for each step of the 

framework the key data sources and software used are revealed.  

 

The application of the modelling methodology on a microscale case study centred in 

Durham is presented in Chapter 4. The existing EJ of the spatial distribution of Air 

Quality in Durham is established. A section on the performance of the models is also 

provided and a discussion on the impacts of meteorological data, background pollutant 

data, simulated traffic data, chemical reaction schemes and emissions factors on air 

quality model performance is presented.  Finally, the limitations of the approach are 

also presented. Chapter 5 provides the results of the mesoscale studies across all three of 

the study cities. The implications of the findings for the North East of England are 

discussed and the restrictions of assessing EJ across scales discussed. 

 

Chapter 6 investigates the impact of both air quality and carbon management measures 

on existing EJ concerns in one of the studied cities, Durham. The impact of reductions 

in VKT, as well as a traffic engineering scheme, are explored to determine the scale of 

actions needed to meet legislative targets in the city and the potential they have to 

alleviate identified environmental injustice in the spatial distribution of Durham’s air 

quality. 

 

Finally, Chapter 7 presents a general discussion on the scope of the research work. 

Conclusions are drawn on the current state of EJ in the wider North East of England 

region, and the potential for EJ to act as a mechanism to shape future sustainable policy 

is discussed. Moreover, recommendations for further research are suggested.
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CHAPTER 2 

 

2. Literature Review 

2.1 Introduction 

 

In order to provide background on this thesis a brief overview of the key themes is 

presented. The contribution to air pollution from road transport sources is discussed at 

the local, regional and global level; Greenhouse Emissions are discussed in relation to 

transport emissions; and the concept and history of EJ is established. Specific attention 

is given to a review of the literature surrounding the relationship between air quality, 

health and EJ, including a summary of the findings from previous EJ studies. Finally, a 

review of transport, emissions and dispersion modelling methodologies is presented in 

relation to air quality studies.  

 

2.2 Air Pollution from Road Transport 

 

Up until the 1950s the main air pollution problem in both developed and rapidly 

industrialising countries was typically high levels of smoke and sulphur dioxide emitted 

following the combustion of sulphur-containing fossil fuels such as coal, which were 

used for domestic and industrial purposes (Chen and Goldberg, 2009). However, today 

the major threat to clean air is posed by traffic emissions (DEFRA, 2011; Kelly and 

Fussell, 2015). Petrol and diesel-engined motor vehicles emit a wide variety of 

pollutants, principally CO, NOx, VOCs, which is the name given to a large number of 

chemicals such as methane (CH4), benzene (C6H6), 1,3-butadiene (C4H6), formaldehyde 

(CH2O) and polycyclic aromatic hydrocarbons (PAHs) (DEFRA, 2010a). Additionally  

particulate matter (PM) can comprise an array of chemicals including sodium chloride, 

black carbon, mineral dust, trace metals, water (taken up by a number of secondary 

particles), VOCs and secondary particles (Hueglin et al., 2005; Vallero, 2008). 

 

Whilst the majority of road transport emissions are from a vehicle tail pipe (Boultier et 

al., 2012), toxic air pollutants are also released into the atmosphere due to brake and 

tyre wear (Omstedt et al., 2005), resuspension, and evaporative processes, including 

leaks in engine casings and tubing (Boultier et al., 2012). Furthermore, some pollutants 

emitted from vehicles undergo chemical transformations in the atmosphere and are 
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converted to environmentally damaging gases or particles (Vallero, 2008). These 

emissions are commonly defined as ‘indirect emissions’ (Cairns, 2013). Indirect 

emissions, or secondary pollutants, are included in the detailed breakdown of transport 

related air pollutants found in Appendix A. This document provides information on the 

effects of each pollutant as well as the current policy limits. 

 

Improved road networks, increased car production, less expensive vehicles and 

increased road construction as a result of ‘predict and provide’ policy, has made on-road 

travel more accessible to the world’s population (DfT, 2009; Schmidt and Schäfer, 

1998). In addition urbanisation has increased and with it the number of people living in 

cities (UNFCCC, 1998; Fenger, 2009). As a result emissions from vehicles and human 

exposure to such pollutants have increased historically (World Health Organisation, 

2016). 

 

However, whilst the last few decades have seen consistent increases in road transport’s 

contribution to air pollution, there are recent signs of progress and some positivity for 

the future. 

 

In September 2015 the United States Environmental Protection Agency (EPA) gave a 

Notice of Violation of the Clean Air Act (CAA) to Volkswagen Group (VWG) stating 

that they had been using a device to circumvent the emissions tests on specific diesel 

engines between 2009 and 2015.  Whilst the engines passed all the type approval tests, 

the laboratory results fell considerably short of measured real-world emissions in 

relation to gkm NOx limit values.  As details of the scandal (also referred to as 

‘Dieselgate’ in the media) became more public, it emerged that a ‘cheat device’ had 

been installed across a wide range of vehicles, not just limited to the United States of 

America (USA).  It is estimated that the total number of vehicles affected by the scandal 

was approximately eleven million worldwide (Hotten, 2015). 

 

The fall out of this scandal has been vast, extending far beyond the financial implication 

for VWG, whose share value dropped by approximately 40% at the peak of the scandal; 

and outstanding legal claims against VWG exceed three billion Euros.  The scandal 

gave a voice to criticism of the standardisation of laboratory emissions tests throughout 

the worldwide automotive industry. 
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Whilst the use of a specific emissions cheat device was isolated to VWG, a number of 

significant inadequacies in the laboratory based tests used to regulate automotive 

emissions worldwide drew significant attention, including criticism of the New 

European Drive Cycle (NEDC) used in the UK and Europe.  Both the testing process, 

such as the selection of new or well-maintained vehicles chosen for tests; and the type 

of fixed drive cycle testing was shown to be not necessarily representative of all 

vehicles on the road or real-world driving conditions (Li et al., 2014).  Moreover, when 

compared to other vehicle marques it was identified that VWG vehicles were out-

performing eight of the manufacturers analysed (Carslaw and Rhys-Tyler, 2013).  

Whilst previous studies had already identified these trends, the scandal gave attention to 

the findings (See Carslaw and Rhys Tyler, 2013; Carslaw et al., 2013; Carslaw et al., 

2015). 

 

It should be noted that this same criticism was not drawn against the results of The 

Common ARTEMIS Drive Cycle (CADC), the chassis dynamometer drive cycle 

developed by the ARTEMIS project; and used to build the IEM Analysis of 

Instantaneous Road Emissions (AIRE) used in this research (See Section 2.7.1). 

 

Evidence suggests that demand for both new and used diesel vehicles has fallen 

markedly since the emissions scandal in September 2015, for example, diesel’s share of 

the new UK car market reduced to 35% from 44.5% between 2016 and 2017 (Society of 

Motor Manufacturers and Traders, 2018).  The longer term implication for diesel car 

sales is unknown, and direct evidence of a reduction of NO2 levels as a result of a 

reduction in the market share of diesel vehicles is difficult to quantify.  However, if a 

reversed trend away from the dieselisation of UK and world vehicle fleets continues it is 

likely to provide a positive contribution and provides some hope that transport’s 

contribution to poor air quality in our cities may diminish.  

 

Moreover, the details of London’s Ultra Low Emission Zone (ULEZ), due to come into 

force in April 2019, provide little doubt that diesel vehicles have been identified as a 

political target for change.  The ULEZ specifically requires diesel cars to be Euro 6 

compliant, in comparison to Euro 4 compliance for their petrol equivalent (TfL, 2018). 
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Considering the wider future air pollution from road transport there is considerable hope 

for favourable longer term improvement. Sales in hybrid and electric vehicles are at a 

critical stage with cumulative year-on-year uptake of such vehicles increasing from 

20,000 in 2013 to more than 135,000 in 2017 (DfT, 2017).  As a result the predictions 

for future vehicle fleets are likely to have a high margin of error, due to the level of 

uncertainty for continued future growth.  Furthermore, given the increased rate of 

increase in uptake of electric vehicles in very recent years it could be argued that the 

decision to review transport strategies that exercise VKT restraint risks become 

obsolete, as policy may instead look to promote electric vehicles at the expense of 

modal shift.  Future work to explore expansion of electric vehicles at the expense of 

VKT constraint should be completed.  However, there is a vast body of work in support 

of the wider benefits of modal shift (Mullen et al, 2015); and the author hopes that 

policy supporting soft measures and other non-polluting models continues to prevail. 

 

2.3 Air Pollution and health policy 

 

A wealth of literature and comprehensive reviews of the health impacts of both 

regulated and unregulated air pollutants can be found and the impacts of pollution 

episodes on human health in the UK and across Europe are well documented (e.g. 

Anderson, 2009; Balmes et al., 2010; DEFRA, 2011; COMEAP, 2013; COMEAP, 

2015).  There is clear evidence of the adverse effects of outdoor air pollution, especially 

for cardio-respiratory mortality and morbidity (Kapposa et al., 2004; Barceló et al 

2009). It is estimated that each year in the UK, short-term air pollution is associated 

with 50,000 premature deaths (EAC, 2010). In 2010 air pollution was estimated to 

reduce the life expectancy of every person in the UK by an average of 6 months 

(DEFRA, 2010a). A detailed breakdown on the impact of transport related air pollutants 

can be found in Appendix A. 

 

Current action to manage and improve air quality is largely driven by European (EU) 

legislation. The 2008 Ambient Air Quality Directive (2008/50/EC) sets legally binding 

limits for concentrations in outdoor air of major air pollutants that impact public health 

such as particulate matter (PM2.5 and PM2.5) and nitrogen dioxide (NO2). The 2008 

directive replaced nearly all the previous EU air quality legislation and was made law in 

England through the Air Quality Standards Regulations 2010, which also incorporates 
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the fourth air quality daughter directive (2004/107/EC) that sets targets for levels in 

outdoor air of certain toxic heavy metals and polycyclic aromatic hydrocarbons 

(DEFRA, 2011). 

 

Legislation exists for emissions of air pollutants with the main legislation being the 

UNECE Gothenburg Protocol which sets national emission limits (ceilings) for Sulphur 

Dioxide (SO2), NOx, Ammonia (NH3) and VOCs for countries to meet from 2010 

onwards.  Similar ceilings have been set in European law under the 2001 National 

Emission Ceilings Directive (2001/81/EC), which was subsequently made into UK law 

as the National Emission Ceilings Regulations 2002 (DEFRA, 2011). 

 

In the UK the Government is required under the Environment Act 1995 to produce a 

National Air Quality Strategy (NAQS) that contains standards, objectives and measures 

to improve air quality. At the local level, the Environment Act 1995 required local 

authorities to carry out a review of air quality, resulting in the regulatory regime Local 

Air Quality Management (LAQM). Since December 1997 each local authority in the 

UK has been carrying out a review and assessment of air quality in their area. Air 

pollution is measured and predictions have to be made on how it will change in the next 

few years. If a local authority finds any places where receptors are present (housing/ 

schools/ places of work etc.) where the objectives are not likely to be achieved, it must 

declare an Air Quality Management Area (AQMA) (Durham County Council, 2016). 

Then the local authority will put together a plan to improve the air quality - a Local Air 

Quality Action Plan (DEFRA, 2010b). The ‘Local Air Quality Management Policy 

Guidance (PG16)’ provides up to date statutory guidance for all relevant Local 

Authorities (both district and county level) regarding their obligations under the 

Environment Act 1995 (DEFRA, 2016). 

 

Despite existing air quality legislation, EU countries (including the UK) are failing to 

meet targets, particularly for NO2 (EAC, 2010). Political pressures for development and 

conflicts with short term economic objectives all impact on efforts to improve air 

quality. This reality comes despite guidance highlighting the economic benefit of 

improving air quality (DOH, 2010). 
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Given the overriding role of EU legislation in the UK’s air policy, it is possible to 

suggest that there is potential for focus to shift away from the issue as a result of the 

UK’s likely exit from the European Union.  However, a review of UK air quality law 

suggests that there is limited risk of disruption given that even the UK’s existing Air 

Quality Objectives are said to be at least as stringent as the limit values of the relevant 

EU Directives (Upton, 2017).  Nonetheless there is potential for air quality targets to 

move away from meeting specific EU set air quality limit values, in favour of more 

objective regulation under the Air Quality (England) Regulations 2000.  

 

Given that the UK has been in breach of the Air Quality Directive since 2010, it is also 

possible to speculate that the UK leaving the EU may avoid its obligations under the 

Directive, including the possibility of fines dependant on rulings from the ECJ.  

However, there is no certainty in this assumption.  The current ongoing negotiations 

regarding the UK’s likely exit from the European Union ensure that any resolute 

answers regarding the UK’s future obligations are not possible .  However, it has been 

reported that EU Environment Commissioner considers that the UK would still be liable 

to pay court fines handed down for offences committed when it was a member (Neslen, 

2018). 
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2.4 Greenhouse Emissions and Climate Change 

 

In 2014 the IPCC concluded that it is “extremely likely that more than half of the 

observed increase in global average surface temperature from 1951 to 2010 was caused 

by the anthropogenic increase in GHG concentrations” (IPCC, 2014) Human activity, 

including the burning of fossil fuels, land use change, and agriculture, has increased the 

concentration of GHGs in the earth’s atmosphere (IPCC, 2014). CO2 makes up almost 

eight percent of climate gases and is the most abundant greenhouse gas in the 

atmosphere (Pidwirny, 2006). The largest source of CO2 emissions is from the natural 

processes of plant respiration, biomass decay and bacterial activity. In addition, CO2 is 

emitted from a number of anthropogenic sources, namely transport, domestic and non-

domestic sectors, agriculture and deforestation, industry (e.g. cement and metal 

production) and energy generation (DEFRA, 2011). 

 

In the UK between 1990 and 2007 CO2 emissions reductions were documented for the 

domestic (3.5 percent), power generation (11.5 percent), industry and agriculture (15 

percent) and forestry sectors (17 percent) (DEFRA, 2010a). However, transport sector 

emissions increased by 18 percent between 1992 and 2004 (DEFRA, 2010a). 

Unfortunately the road transport sector has seen a continued increase in GHG emissions 

in recent history (IPCC, 2014). Consequently governing bodies across the globe are, 

through legislation, obligated to develop and implement strategies to reduce air 

pollution and GHG emissions from all sources including road transport, for example, 

the Kyoto Protocol (UNFCCC, 1998). 

 

There is a complex and dynamic relationship between air quality and climate change 

pollutants. They can share common sources, and some air quality pollutants, such as 

ozone and particulate matter, have a direct effect on climate (DOH, 2010). Recent 

literature has highlighted the need for a combined approach to tackling both air quality 

and GHG emissions (DOH, 2010). Ms Isabel Dedring, London Mayoral Adviser on the 

Environment concluded that there was “not enough tied-up thinking” between the two 

issues (EAC, 2010). Limited research has been conducted on measuring the effect that 

action to reduce GHG emissions has on air quality. In addition, any implications for EJ 

have been largely ignored. 
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2.5 Environmental Justice  

 

The term commonly used to express social equity in environmental legislation and 

policy is Environmental Justice (EJ) (Agyeman and Evans, 2004). Cutter (1995) defines 

EJ as equal access to a clean environment and equal protection from possible 

environmental harm irrespective of race, income, class, or any other differentiating 

feature of socio-economic status. Similarly, the UK Environmental Agency describe EJ 

as being “concerned with how environmental ‘bads’, such as pollution, and ‘goods’, 

such as access to green space, are distributed across society”. It also considers the equity 

of environmental management intervention and public involvement in decision making. 

Correspondingly, Friends of the Earth Scotland define EJ as “… the idea that everyone 

has the right to a decent environment and a fair share of the Earth’s resources” (cited in 

Walker, 2012). Furthermore, the US Environmental Protection Agency (EPA) defines 

EJ as the “fair treatment of all people with respect to environmental regulations and 

policies” (EPA, 1998). Fundamentally, the term is used widely to demonstrate a link 

within sustainable development between social justice and environmental issues. 

However, as Agyeman and Evans (2004) note, EJ is a contested concept with many 

possible definitions. 

 

John Rawls (1971) suggested that justice is about fairness; that a just society is one in 

which everyone receives a ‘fair’ share of the available resources. However, there is 

much disagreement about what counts as ‘fair’ (Davoudi and Brooks, 2012). A full 

account of philosophical and political theories addressing this question is beyond the 

scope of this research, however, by way of summary a distinction can be made between 

strict egalitarian, libertarian, and utilitarian theories. Egalitarian equality (everyone 

should receive the same amount regardless of their input or need); libertarian equity 

(what people receive from society should be based on what they contribute to it); and 

utilitarian welfare (what people receive should be based on their need) (Buttram et al.,, 

1995). Rawls’s ‘Difference Principle’ supports a welfare approach, proposing that 

inequalities are justifiable if they are “to the greatest benefit of the least advantaged 

members of society” (citied in Buttram et al.,, 1995). This implies that in contemporary 

unequal societies, such as ours, the needs of disadvantaged people should be given 

priority (Davoudi and Brooks, 2012). 
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Discussion on how a libertarian approach of minimising government intervention and 

control over individual choices extends to fairness in air quality, and particularly in 

terms of government action on reducing air pollution is complex and potentially 

contradictory.  Sovacool and Dworkin (2014) discuss energy subsidies, which receive 

funding from taxes, and are largely in place to ensure a ‘cleaner’ energy market. A 

libertarian could consider this an involuntary transfer of public money to chosen 

industries and producers. “To take this money for any reason, except to provide basic 

policing powers – the only legitimate governmental power, according to the libertarian 

– is to limit a person’s rights and freedom” (Sovacool and Dworkin, 2014).  

Furthermore, the International energy agency suggests that removing energy subsidies 

in a group of eight developing economies would reduce energy use by 13 percent, and 

reduce carbon dioxide emissions by 16 percent (cited in Sovacool and Dworkin, 2014).  

Following this context of libertarian equality tacking air quality issues through market 

intervention would seem unjustified. 

 

However, given that air pollution has a direct impact on health, a libertarian would also 

consider the problem as much an aggression as any other physically injury against an 

individual. The major function of government is to stop aggression; and the 

demonstration of injustice in air quality represents a failure to protect against air 

pollution.  For example, Germani et al. (2014) find that greater judicial inefficiency (or 

lenient law enforcement) is associated with higher levels of pollution.  In this analysis 

the government must act to tackle air pollution regardless of who is impacted or how 

much the individual has contributed to the issue.  

 

It can be argued that, in general, in the UK a market oriented, libertarian approach exists 

to wealth and economy (Fecht et al., 2015). Discussing the impact of political attitudes 

on the EJ of air pollution Fecht et al. (2015) suggest that the historical social contract 

that exists in society may have bearing on current spatial distribution of air quality. In 

contrasting two countries, they describe the Netherlands as being driven by an 

egalitarian approach which strives to eliminate any form of inequality in society, whilst 

concluding that a more traditional class system present in the UK’s housing market may 

contribute to the higher inequality observed in their findings when reviewing UK air 

pollution. 
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Discussing EJ in the UK, Mitchell and Dorling (2003) cites new European Community 

laws on enabling rights, driven by the 1998 Aarhus convention (United Nations 

ECE/CEP/43). The Aarhus convention aims to give substantive rights to all EU citizens 

on three principal environmental matters: 

 

- Public access to environmental information 

- Public participation in environmental decision making 

- Access to justice in environmental matters 

 

Directives on the first two matters are well advanced in the EU legislative process. The 

third concern has the objective of giving the public access to judicial and independent 

procedures to challenge acts or omissions by public authorities and private persons 

which contravene environmental laws (Mitchell and Dorling, 2003).  

 

It is recognised that the term ‘EJ’ stems from the American Civil Rights movements in 

the early 1960’s (Agyeman and Evans, 2004 and 2005; Mitchell and Dorling, 2003; 

Mitchell et al., 2015; Chakraborty, 2017). In recent years the concept of EJ has been 

growing in significance. For example, in the USA, the analysis of EJ has been 

integrated into environmental and public health policy assessment. The National 

Environment Policy Act (NEPA) addresses EJ within the planning and decision-making 

process, defining ‘fair treatment’, as that where no group of people bear a 

disproportionate share of the environmental and adverse health impact of development 

(EPA, 1998). 

 

However, in a UK context EJ is increasingly wrapped in the globalising cloak of human 

- rather than the Americanising one of civil - rights (Agyeman, 2012).  More recently, 

the idea of EJ has been extended beyond environmental burdens to include 

environmental benefits (Fecht et al., 2015). Whilst the UK does not have an EJ 

movement to compare with that of the USA, interest in the field has grown in the last 15 

years. Furthermore, this interest spans academics (Stevenson et al., 1998; Mitchell and 

Dorling, 2003; Agyeman and Evans, 2004; Agyeman, 2012; Mitchell et al., 2015); 

NGOs (Pye et al., 2006) and pressure groups (See Walker, 2012). 
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These activities have supported the strong policy guidance from the EU, leading 

government to voice strong support for the principle of EJ, although this has not yet 

been translated into significant activity at the regional and local levels (Mitchell and 

Dorling, 2003). 

 

Current impact assessment methods and their implementation in the UK are failing to 

provide an effective analysis of EJ issues in policy making and project approval 

(Walker et al., 2005). Therefore there is considerable scope for developing more 

effective EJ orientated distributional analysis. It is known that the quality of our 

environment in the UK is improving as a result of emissions regulations across all 

sectors; despite this the scale of improvement can differ amongst varying community 

areas and pollution hot spots remain a concern (DOH, 2010).  Nonetheless, new 

appraisal procedures for transport schemes do include an assessment of the impact on 

social equality as well as air quality (DfT, 2016).  

 

2.5.1 Deprivation and Health 

 

In order to understand links between deprivation, air quality and health it is important to 

consider the wider picture of social deprivation and health. Despite huge improvements 

in the health of people in England over the last 150 years, there are marked differences 

in the health of different groups (DOH, 2010). The most notable statistics for England 

relate to the life expectancy of different social groups; the higher an individual’s social 

group, the longer he or she is likely to live. The presence of inequalities in mortality 

according to socio-economic position is well known, and has been the subject of a 

number of studies (DOH, 2010; Acheson, 1998). The Department of Health (DOH) 

(2010) strategic review of health inequalities concluded that a social gradient in health 

persists and that action should focus on reducing it. In England, the many people who 

are currently dying prematurely each year as a result of health inequalities would 

otherwise have enjoyed, cumulatively, between 1.3 and 2.5 million extra years of life 

(DOH, 2010). Inequalities in any aspect of life leads to poorer overall health for the 

population (Walsh et al., 2010). At the global scale since the adoption of Agenda 21 at 

the UN Conference on Environment and Development, attention has been drawn to 

understanding the links between health and the environment by policy makers. 
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After a review on health inequality the DOH concluded that ‘social injustice is killing 

on a grand scale’. In England, people living in the poorest neighbourhoods, will, on 

average, die seven years earlier than people living in the richest neighbourhoods. Even 

more disturbing, the average difference in disability-free life expectancy is 17 years 

(DOH, 2010). 

 

Action taken to reduce health inequalities can benefit society in many ways. Economic 

benefits would arise from reducing losses from illness associated with such inequalities. 

It is estimated that inequality in illness accounts for productivity losses of £31-33 billion 

per year, lost taxes and higher welfare payments in the range of £20-32 billion per year, 

and additional NHS healthcare in excess of £5.5 billion per year (DOH, 2010). 

 

The Commission on Social Determinants of Health concluded that social inequalities in 

health arise because of inequalities in the conditions of daily life and the fundamental 

drivers that give rise to them: inequities in power, money and resources (CSDH, 2008). 

In summary, health inequalities result from social inequalities. Action on health 

inequalities requires action across all the social determinants of health. Focusing solely 

on the most disadvantaged will not reduce health inequalities sufficiently and in order to 

reduce the steepness of the social gradient in health, actions must be universal, but with 

a scale and intensity that is proportionate to the level of disadvantage. This is the 

concept of ‘proportionate universalism’ (DOH, 2010). 

 

The term ‘social deprivation’ lacks a universally identified definition. Various UK 

indices of deprivation, for example, Indices of Multiple Deprivation (IMD) are 

discussed in Chapter 3. In the context of efforts to tackle health inequality in 2004 as a 

result of the Spending Review the government identified ‘The Spearhead Group’ for the 

purpose of monitoring Public Service Agreement (PSA) targets. The targets aim to see 

faster progress compared to the average in the “fifth of areas with the worst health and 

deprivation indicators”. The Spearhead Group is made up of 70 Local authorities and 88 

Primary Care Trusts, based upon the Local Authority areas that are in the bottom fifth 

nationally for 3 or more of the following 5 indicators: Male life expectancy at birth; 

Female life expectancy at birth; Cancer mortality rate in under 75s; Cardio Vascular 

Disease mortality rate in under 75s; and Index of Multiple Deprivation 2004 (Local 

Authority Summary) average score (Syed, 2006). 
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Of relevance to this research is the fact that a steeper socio-economic gradient in health 

exists in some regions than in others. The National Statistics Socio-economic 

Classification (NS-SEC) is an occupationally based classification but has rules to 

provide coverage of the whole adult population. Since 2001 the National Statistics 

Socio-economic Classification (NS-SEC) has been used for all official statistics and 

surveys. Figure 1 shows that the North East has a steeper gradient for life expectancy 

than the South West, showing socio-economic classification has more influence on 

mortality rate, providing potential evidence of greater injustice. In fact, the North East 

has the unfortunate credit of having both the highest mortality rate in the UK and the 

steepest life expectancy gradient (DOH, 2010). 

 

Figure 1. Age standardised mortality rates by socio-economic classification (NS-SEC) 

in the North East and South West regions, men aged 25-64, 2001-2003 (citied from 

(DOH, 2010)). 

 

In 2010, the ONS reported that Mortality rates for the ‘Routine’ class declined on 

average by around 11 deaths per 100,000 population per year, almost double that of the 

‘Higher managerial and professional’ class. Absolute differences between the mortality 

of the least and most advantaged classes showed a small decline based on three different 

Socio-economic 

Classification 
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measures. Relative differences, however, increased over this period. In 2001 the 

mortality rate of those in routine and manual occupations was 2.0 times that of those in 

managerial and professional occupations. In 2008 that ratio had risen to 2.3 (Langford 

and Johnson, 2010). 

 

The Income Deprivation Affecting Children Index (IDACI) is a measure of the 

percentage of children (under 16) who live in income-deprived families. According to 

the Children's Index, Newcastle has 43 Super Output Areas (SOA) (out of 173) in the 

most deprived 10% of SOAs in England. The index illustrates Newcastle upon Tyne as 

a relatively deprived city. SOAs were designed to improve the reporting of small area 

statistics and are built up from groups of output areas (OA). Their boundaries can be 

downloaded from the ‘Open Geography Portal’ (Office of National Statistics, 2016). 

However, it remains important to note that children have become less deprived since the 

equivalent Index was produced in 2004, when 52 SOAs were in the 10% most deprived 

nationally (Office of National Statistics, 2016). 

 

When assessing links between air quality and health it is clearly important to consider 

all drivers of health inequality. If a social gradient for air quality in the North East is 

identified in this research it must be considered against other social gradients that exist, 

from skills and education; employment; healthy standards of living and healthy and 

sustainable places (of which air quality has a bearing); and other social gradients in 

smoking, obesity, lack of physical activity and unhealthy nutrition. Failure to 

understand the wider issues in health, and other factors, for example, the ‘Scottish 

effect’, a term used to describe the higher levels of poor health experienced in Scotland 

over and above that explained by socio-economic circumstances, may lead to false 

conclusions and/or policy suggestions in this project (Walsh et al., 2010). 

 

It is hoped establishing links between deprivation, air quality and health will increase 

the profile and visibility of air quality issues in the UK and across the world. This 

expectation contributes to the justification of this PhD research. However, it must be 

noted that it is not proposed to investigate the causal factors behind these links. The 

fundamental issue of resolving EJ (and thereby resolving underlying social issues) falls 

significantly beyond the scope of this project. 
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2.5.2 Environmental Justice and Air Quality 

 

A link between deprivation and air quality has been established by a number of studies. 

Mitchell and Dorling (2003) completed a comprehensive review of UK air quality EJ 

studies and concluded that most research investigating the relationship between air 

quality and deprivation tended to show that air pollution is greater in more deprived 

communities (Mitchell and Dorling, 2003).  Furthermore, a more recent update by 

Mitchell et al. (2015) looking at the EJ of UK air quality 2001-2011, found that  

improvement in the UK’s air quality has been substantial but unequal, as whilst annual 

average NO2 concentrations have fallen, the rate of improvement has been slower in 

more deprived areas. Additionally, for pollutants where concentrations continue to rise, 

such as PM10, the rate of rise is highest for the poor. 

 

Pye et al. (2010) conclude that “those living in the most deprived parts of England 

experience the worst air quality” and Walker et al., 2005 presents evidence that people 

in the most deprived ten percent of areas in England experience the worst air quality, 

and 41 percent higher concentrations of NO2 from transport and industry than the 

average. This work does not consider the causes behind these findings or why these 

relationships should exist. Similarly, this research will not attempt to determine causal 

factors. Such a study would require the investigation of underlying social equity issues, 

the scope of which is considered too large due to the complexity of interlinking 

economic, social and environmental factors which act at all spatial scales. Nonetheless, 

the importance of incorporating EJ into wider environmental sustainability operations is 

acknowledged (Allu, 2016). Andrew Dobson’s (cited in Mitchell et al. 2015) ‘reluctant 

conclusion’, that environmental sustainability and social justice are not always 

compatible objectives is also acknowledged, and supported by research on 

environmental justice and air quality assessments such as Mitchell et al. (2015). 

 

As discussed in the introduction in Chapter 1 of this research, when analysing air 

quality and EJ it is also important to consider other factors that may be relevant to the 

relationship. 

 

The majority of EJ and air quality studies focus on the health impact of environmental 

inequality (e.g. Walker, 2012; Mitchell et al, 2015; Unger and Bogaert, 2017).  Air 
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quality has been directly linked as a serious contributor to respiratory illness (Walker, 

2012).  However, as discussed the causes and environments that lead to respiratory 

illness are numerous, from early interactions between infectious agents such as viruses, 

bacterial infections, to an individual’s composition of the respiratory microbiome 

(Unger and Bogaert, 2017). 

 

It is therefore logical that, on an individual level, air quality may have only limited 

relevance to a particular respiratory illness.  In combination with individual general 

health, lifestyle choices such as prevalence of smoking, the number of potential 

confounding factors of consideration is significantly beyond what could reasonably be 

expected to be explored; and the prevalence of suitable data is a substantial limitation 

should such work ever be attempted.  However, it is important to consider this weakness 

in the design of larger population based research.  The research refinement process for 

this work, particularly with regards the selection of statistical analysis better suited to 

the presence of confounding factors, is discussed in Section 3.3. 

 

Similarly, the relevance of historic, pollution induced neighbourhood sorting is 

introduced also in Chapter 1.  Heblich et al. (2016) analysed 10,000 industrial chimneys 

in 70 English cities around the year 1880 and used terrain and wind patterns to predict 

where their smoke would have drifted, and found evidence of pollution induced 

neighbourhood sorting.  As discussed, in reality the patterns that lead to areas of ‘poor’ 

and ‘wealthy’ areas in our urban spaces is hugely complex and varied, with geography 

(rivers, topography), natural resources (industry) and land type (building) among many 

contributing factors which determine where people live and the relationship between air 

quality and EJ.  Therefore, the presence of both historic and current factors place 

constraints on people’s choice of where to live, as land values prices place sections of 

society in different spatial locations, and influences environmental justice for the urban 

poor (Onstad, 1997).  In this wider context, the presence of more recent air quality 

issues, which are largely traffic driven (See Section 2.2), are unlikely to be the key 

driver, or a strong causal factor, which has led to the current observed patterns of 

injustice in the spatial distribution of air quality.  Nonetheless, despite this complex 

relationship existing research has found that air quality is an environmental justice 

issue, with poorer neighbourhoods more likely to face greater pollution.  Therefore, 
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attempts to understand and plan for scenarios which lessen or resolve the issue are 

nonetheless valid. 

 

A minority of more recent environmental justice papers use a broader, more integrated, 

multilevel approach in order to enhance our understanding of environmental inequalities 

and the related health effects in an attempt to address some of the above limitations 

(Fecht et al., 2015).  Conceptual papers have examined the role of structural drivers, 

social, economic, and political mechanisms, in the production of environmental 

inequalities (e.g. Solar and Urwin, 2010).  Similarly, attempts have been made to 

analyse the role of health related behaviour or lifestyle as a mediation between the 

environment and health inequalities, including diet, physical activity, smoking and 

alcohol consumption. (Cutts et al, 2009). 

 

However, whilst it is possible to strive for a holistic approach to wider EJ analysis, the 

conceptual analysis literature is met with the limitation that more empirical research is 

needed, as the individual interactions between determinants, such as air quality, and 

geography as still not accurately understood, requiring longitudinal environmental, 

health, and socio-demographic data (Fecht et al., 2015). 

 

2.5.3 Environmental Justice Studies  

 

As discussed in Section 2.5.2 Mitchell and Dorling (2003) and Mitchell et al (2015) 

completed a comprehensive review of UK air quality EJ studies which can be seen in 

Table 1. Furthermore, Bowen (2002) reviewed 42 EJ studies conducted in the USA 

since the early 1970s. This section makes reference to such reviews and provides an 

updated review of air quality EJ studies identified from the literature including a more 

global look at the present state of air quality EJ analysis. When considering EJ studies, 

an important consideration is the methodology adapted and the indicators used. Further 

to the discussion in Section  2.5 on what constitutes EJ, it is vital to understand that 

deprivation is not automatically the most appropriate demographic measure against 

which to assess environmental inequity (Mitchell et al., 2015; Andradea et al.; 2017). 

For example, as discussed by Mitchell et al. (2015), Stevenson et al., (1998) 

demonstrated a strong inequity in London air quality, with pollution highest in areas of 

low car-ownership. Moreover, more recently Rivas et al. (2017) demonstrated 
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inequalities among different socio-economic groups in exposure to air pollutants during 

commuting in London.  

 

Table 1 Air quality social equity studies (Adapted and expanded from Mitchell et al 

(2015). 

Socioeconomic 

Indicator 

Location Observed 

association with 

socio-economic 

indicator 

 

Reference 

Poverty 

Income; car 
ownership 

Wards in 
Greater 
London, UK 

Positive association 
between 
deprivation and NO2 
and 

respiratory diseases 

Stevenson et al., 
. 
(1998) 

Social class index Local 

authority 
districts, UK 

Weak positive 

association 
with PM2.5 and SO2 ; 
very 
weak positive 

association 
with NO2 . 
Negative association 
with 

NO2 and SO2 when 
population 
density accounted 
for. 

McLeod et al., 

 
(2000) 

Index of multiple 

deprivation 

Wards in 

five cities, UK 

Weak positive 

association 
with NO2 and PM2.5 
in three 
cities, inverse in two 

King and Stedman 

(2000) 

Index of multiple 
deprivation 

Qards in 
Bradford, UK 

Mapped data 
suggest that 

NO2 and PM2.5 
`̀ tends to be 
highest in the most 
deprived 

areas''. 

Pennycook et al., 
(2001) 

Index of multiple 

deprivation 

wards in 

London, 
Birmingham, 
Belfast, and 
Cardiff, UK 

Weak positive 

association 
with NO2 and PM2.5 
in all 
cities except Cardiff. 

Pye et al., (2001) 

Various indexes Enumeration 

districts in 
Birmingham, UK 

Strong positive 

relationship 
with poverty, but 

Brainard et al., 

(2002) 
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difficult to 

separate effect from 
ethnicity. 

Social class West 
Glamorgan, 
Wales 

No association with 
NO2 , 
but analysis of small 

sample 
(171 adults). 

Lyons et al., (2002) 

Townsend index Leeds, UK 
(3600 point 
observations) 

Strong positive 
correlation 
with NO2 . 

Mitchell (2002) 

Breadline Britain 
index 

All census wards in 
Britain 

No association with 
NO2 or CO emission 

for any age group 
Poorest wards emit 
least NOx from 
resident vehicles but 

have 
highest NO2 
exposure 
NO2 40–80% above 

mean for young 
children and 18–40 
yr 
olds, reflecting 

urban to rural life 
stage migration 

 
Mitchell and 

Dorling (2003) 

Carstairs 
deprivation index 

England and Wales Environmental 
inequity in England 
and Wales. 
associations are 

dependent on the 
environmental and 
deprivation 
measures under 

consideration 
 

Wheeler (2004) 

Household income Hamilton, Canada Differences in 
exposure to air 
pollution accounted 

for some of the 
socio-economic 
differences in 
circulatory disease 
(cardiovascular and 

stroke) mortality 

Finkelstein et al., 
(2005) 

College education, 
monthly income, 
and housing 

Six regions in Sa˜o 
Paulo, Brazil 

Socio-economic 
deprivation 
represents an effect 
modifier of the 

association between 

Martins et al., 
(2005) 
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air pollution and 

respiratory deaths. 

Townsend index 
Non car ownership 

Leeds, UK Inequity in 
residential NO2 
concentration in 
Leeds does occur 

Likely to contribute 
to above average 
respiratory disease 
burden in deprived 

communities 

Mitchell (2005) 

Multiple 

demographic and 
socio-economic 
variables 

Christchurch, New 

Zealand 

Levels of pollution 

are higher in more 
deprived 
communities. 
Deprived 

communities are 
exposed to a greater 
proportion of 
extreme pollution 

events 

Pearce et al., 

(2006) 

Index of multiple 
deprivation 
(Variations in 
analysis scale, 

deprivation 
measures) 

LSOAs, UK Inequalities in the 
distribution of 
pollutant 
concentrations for 

NO2 and PM2.5, and 
for SO2 in England 
and Northern 
Ireland. 

Pye et al., (2006) 

Census, educational, 
and death registries 

Oslo, Sweden PM2.5 was 
associated with most 

neighbourhood-level 
indicators of 
deprivation, as was 
most clearly seen for 

type of dwelling and 
ownership of 
dwelling. 

Ness et al., (2007) 

New Zealand census 
(income)/ New 

Zealand Deprivation 
Index 

Christchurch, New 
Zealand 

Mean exposure to 
pollution is highest 

in the most 
disadvantaged areas 
of the city. 
Furthermore, areas 
where car ownership 

levels are highest 
tend to have 
relatively low levels 
of pollution 

exposure. 

Kingham et al., 
(2007) 

British Household UK (longitudinal Strong evidence for Jones and Wildman 
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Panel Survey sample of over 

5000 households, 
containing over 
10,000 
adult individuals) 

the impact of 

income on self-
reported measures of 
health for men and 
women 

(2008) 

Cumulative 

deprivation index 
(CDI) and 
Cumulative Health 
Index (CHI) 

Leeds, UK Positive but weak 

relationship exists 
between air quality 
and social 
deprivation, 

and indicates that 
deprived population 
groups are 
disproportionately 

exposed to higher 
NO2 levels. 

Namdeo and 

Stringer (2008) 

Urban area gross 
domestic product 

22 provinces in 
China, where more 
than 85% of the 
national population 

reside 

Elderly 
residents living in 
areas with a higher 
gross 

domestic product 
(GDP) were more 
susceptible 
to the effects of air 

pollution than those 
living in low GDP 
areas 

Sun and Gu (2008) 

Dwelling value, 
Low income, 

Unemployment rate 

Hamilton, Canada Groups with lower 
socio-economic 

status are exposed to 
higher levels of 
ambient particulate 
air pollution 

Jerrett et al., (2009) 

Carstairs Index (plus 
additional variables)  

Leicester, UK Relationship 
between children's 

hospitalisation rates 
and socio-economic- 
status, ethnic 
minorities, and 

PM2.5 road-transport 
emissions within 
Leicester. 
Affluent intra-urban 

communities 
contribute the 
highest levels of 
emission, while 

residentially 
experiencing 
relatively low 
exposure of 

Jephcote and Chen 
(2011) 

Jephcote and Chen 
(2012) 
Jephcote and Chen 
(2013) 
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transport emissions. 

Area deprivation Urban parts of New 

Zealand for 
Which particulate 
air pollution data 
were available 

Socio-economic 

inequalities in 
respiratory disease 
mortality were not 
significantly 

elevated with PM2.5 
exposure. 

Richardson, 2011 

Census 
demographic data, 
2000 Census Block 
Group (BG) 

US regions, states, 
counties and urban 
areas. 

Inequality and 
injustice metrics 
vary by location. 
Non-white ethnic 

groups experience 
higher residential 
outdoor NO2 
concentrations than 

whites. 

Clark et al., 2014 

Social categories 
and gender 
composition. 

Italy, by provinces Pollution releases 
increase with 
income (then follow 
an inverse U-shaped 

environmental 
Kuznets curve); 
releases tend to be 
higher in provinces 

with high 
concentration of 
females as 
households' head 

and with high 
concentration of 
children; and greater 
judicial inefficiency 

(or lenient law 
enforcement) is 
associated with 
higher levels of 

pollution. 

Germani et al., 
2014 

2011 census from 

the Australian 
Bureau of Statistics 
(ABS Statistical 
Area Level 1 (SA1)) 

Major urban areas 

in Australia 

Environmental 

inequalities in 
ambient NO2 levels 
in the major urban 
areas of Australia 

between Indigenous 
and non-Indigenous 
persons. 

Knibbs and 

Barnett, 2015 

"Socio-economic 
Atlas 2006" 
prepared by the 

Metropolitan 
Regional 

Santiago, Chile The areas of the 
Santiago 
metropolitan region 

with the worst air 
quality have lower 

Rose- Pérez, 2015 
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government. socio-economic 

levels. Pollution in 
these areas reaches 
levels higher than 
the current Chilean 

24 hour standard for 
fine particles. These 
areas also have 
longer time periods 

of unhealthy air and 
21 % more days 
with unhealthy 
levels of air 

pollution. 

Geographically-
based health survey 
and neighbourhood 
characteristics 

Hartford, UK The effects of a 
given pollution level 
tend to be more 
serious for specific 

subgroups based 
upon sex, ethnicity, 
poverty, and age. 

Stewart et al, 2015 

Townsend index 
 

UK Improvements in 
GB’s air quality has 
been substantial but 

unequal. Annual 
average NO2 
concentrations have 
fallen, but the rate of 

improvement has 
been slower for the 
more deprived. 
Conversely annual 

average PM10 
concentrations 
have risen, and done 
so more quickly for 

the poor. 

Mitchell et al, 2015 

IMD and 2011 
Census Special 
Workplace Statistics 

London, UK The most deprived 
income group 
showed the overall 
highest 
concentrations of all 

PM fractions. 

Rivas et al., 2017 
 

Ethnicity 
Ethnicity 

Percentage of 
household heads 
from India and 
New 

Commonwealth 

Local 

authority 
districts, UK 

Positive association 

with 
NO2, SO2 and 
PM2.5 , not 
attributed to 

multicollinearity 
with deprivation 

McLeod et al., 

(2000) 
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measure. 

Percentage of self- 

reporting as white, 
Asian, or black 

Enumeration 

districts in 
Birmingham, UK 

Strong positive 

relationship 
with ethnicity but 
difficult to 
separate effect from 

poverty. 

Brainard et al., 

(2002) 

Demographic and 

socio-economic 
variables extracted 
from Census 2000 at 
the census tract 

level 

Florida, USA Race and 

ethnicity are 
significantly related 
to cancer risks in 
Florida, 

Gilbert and 

Chakraborty (2010) 

Age 
Pensioners , >60, 

< >65 years; 
<15 years 

Enumeration 

districts in 
Birmingham, UK 

No association with 

NO2 
or CO emission for 
any 
age group. 

Brainard et al., 

(2002) 

Time use 

surveys 

Germany and UK Age and gender at 

least as important in 
identifying EJ in 
urban areas as are 
income, education 

and employment 
situation. 

Gaffron (2011) 

 

An overarching conclusion from the review of findings in EJ literature would suggest 

that strong socio-environmental inequalities prevail throughout modern society. Poverty 

status may also involve increased susceptibility to environmental challenges by virtue of 

differences in underlying health status and access to medical care. For example, higher 

hospital admission-pollution risks were seen from patients described as meeting US 

poverty criteria (Walker, 2012). These relationships are complex due to variation in 

sensitivity to exposure, age, pre-existing health conditions accumulative and synergistic 

effects ‘double/triple jeopardy’ for vulnerable populations; poor socio-economic 

conditions interact with both poor health and a poor living environment (World Health 

Organisation, 2016; Ma et al., 2016). 

 

A key factor of consideration identified during the review of EJ studies was scale, or 

resolution at which the socio-economic characteristics are measured (Clark et al., 2014; 

Norman, 2016; Fernándeza and Wua, 2017). Finer measures of socio-economic status 

(e.g. individual-level or small geographical areas) have tended to find that socio-
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economic characteristics modify the relationship between air pollution and mortality 

(Walker, 2012).  

 

Both Stevenson et al., (1998); and Mitchell and Dorling (2003) conclude that since the 

mid-nineties transport is the main contributor to poor air quality in Air Quality 

Management Areas, and the main cause of respiratory illness and deaths amongst 

vulnerable groups such as young children. 

 

Moreover, as previously discussed, the updated research by Mitchell (2015) has shown 

that whilst improvement in the UK’s air quality has been substantial, it has also been 

unequal in the decade since 2001. Annual average NO2 concentrations have fallen 

markedly, but the rate of improvement has been slower for the more deprived (Mitchell 

et al., 2015). Additionally, annual average PM10 concentrations have risen, and done so 

more quickly, for the poor (Mitchell et al., 2015). 

 

2.6 Emissions Factor Collection Methods  

 

An accurate assessment of the level of air quality is a vital requirement for authorities to 

be able to develop new policies and strategies. The ability to identify those areas within 

a city or region that do not meet air quality standards is paramount if such policies are to 

be successful. In an ideal world pollution concentrations would be continuously 

measured and monitored everywhere throughout a conurbation. In reality this is neither 

physically or financially feasible (Smit et al., 2010). Instead policy makers must rely on 

air quality models (atmospheric dispersion models fed by emissions models) to predict 

the spatial distribution of pollutants over a given area. 

 

The calculation of road traffic emissions involves combining traffic data (e.g. distance 

travelled and speed) with details of the vehicle fleet (vehicle type, size, engine size, fuel 

type, Euro emissions standard, age and exhaust treatment technology) and emissions 

factors (g/km) (Barlow and Boultier, 2009; Boultier et al., 2012). The National 

Atmospheric Emissions Inventory (NAEI) defines an emissions factor as the 

“relationship between the amount of pollution produced and the number of vehicle 

miles travelled” (NAEI, 2012b).  
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Emissions models allow the emissions from a given geographical area including a 

stretch of road or road network to be estimated (e.g. Kassomenos et al.,2006; Kyle and 

Kim, 2011; Boultier et al., 2012). These estimates can be compiled using an emissions 

model to create an emissions inventory (NAEI, 2012a). A number of emissions 

modelling approaches have been developed. For example, average-speed, corrected 

average-speed, traffic situation, multiple linear regression and instantaneous models 

(Highways Agency, 2015).  

 

Given that emissions models are typically represented by emissions factors and 

emission factors are in turn dependent on several other factors (such as type of fuel, type 

of engine, age of the vehicle, driving cycle etc.) it is first necessary to document the 

methods by which emissions factors are developed (Cairns, 2013; Franco et al., 2013). 

 

Some alternatives to dynamometer experiments include on-board measurements (e.g. 

Huo., 2012) and remote sensing measurement (e.g. Guo and Zhang, 2007). It is these 

approaches that are the focus of the following sections. Other methods to estimate road 

emissions, such as tunnel experiments, inverse modelling, and mass balance are less 

commonly adopted (Cairns, 2013). 
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2.6.1 Dynamometer Tests 

 

Dynamometer emissions estimates are calculated by running a vehicle on a 

dynamometer under controlled conditions (Barlow and Boultier, 2009). Vehicle exhaust 

gases are simultaneously collected and subsequently quantified to provide emissions 

estimates (Carnes, 2013). The dynamometer test is the most widely used method of 

estimating emissions from road vehicles (Joumard et al., 2000). The vehicles are 

subjected to various driving cycles, which include changing the dynamics of the vehicle 

to reflect ‘real world’ driving conditions (Andre et al., 2006; Kamble et al., 2009).  

 

The primary advantage of dynamometer for recording emissions factors is that the tests 

are carried out in a controlled laboratory environment, ensuring the test procedures can 

be easily reproduced (Barlow and Boultier, 2009; Cairns, 2013). Current driving cycles 

are created using on-road driving data (e.g. ARTEMIS; Assessment and Reliability of 

Transport Emissions Models and Inventory Systems) rather than simulation methods 

(Kamble et al., 2009).  

 

However, the dynamometer (or driving) cycle is widely accepted as a major limitation 

of laboratory based emissions testing (See Jenkin et al., 2008; Carslaw et al., 2011). 

Variances are noted between the represented outputs of laboratory dynamometer driving 

cycles and on-road real world driving conditions (Joumard et al., 1999; Andre et al., 

2006; Smit et al., 2010; Grieshop et al., 2012).  The most widely accepted cause of these 

variances concerns the application of emissions factors developed from generic, or 

‘standard’ driving cycles (e.g. Joumard et al., 1999; Kamble et al., 2009). 

 

These cycles are typically the legislative cycles used for testing vehicles registered 

within a country or region (e.g. Europe).  Emissions factors developed from these 

standard driving cycles have been shown to substantially underestimate emissions (e.g. 

Carslaw et al., 2011; Joumard et al., 2000).  The majority of these underestimation 

discrepancies have been identified as being due to the inability of standard cycles to 

take into account the more aggressive acceleration behaviour that present at a local level 

(Durbin et al., 2002).  However, the development of local cycles is expensive and 

impractical, ensuring ‘standard’ driving cycles remain the only current practical solution 

(Cairns, 2013). 
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One of the most significant disadvantages of dynamometer tests is that road gradients 

can only be accounted for by varying engine load (Franco et al., 2013).  The impact of 

road gradient is discussed in Section 2.7.1. Additionally, other ‘real world’ variations 

such as ambient temperatures are poorly reflected. Finally, the sampling factors affect 

the accurate representation of vehicle fleets. For example, accuracy is dependent on the 

number of vehicles tested, and the absence of gross emitters (often poorly maintained 

vehicles; catalytically convert failures etc.) may also lead to emissions underestimations 

(Carslaw et al., 2015).  

 

2.6.2 Instrumented Vehicles 

 

Instrumented vehicles calculate emissions factors by measuring the rate of emissions 

using on-board devices. Other relevant parameters (e.g. engine load, gear change etc.) 

are also recorded whilst the vehicle in is operation in real world conditions (e.g. 

Lenaers, 1996; Chen and Yu, 2007).  

 

As the emissions are collected under real world conditions, external variables are 

accurately reflected in emissions estimates (Chen and Yu, 2007). Therefore, the 

measurements collected are regarded as being more representative of real world driving 

conditions than other, laboratory based methods (Chen and Yu, 2007). 

 

Some significant disadvantages of the instrumented vehicle approach are the effect of 

route choice and restricted sample size. These two factors produce outputs which are 

directly representative of the local environment but which may not be applicable to 

wider geography or vehicle fleets (Carslaw et al., 2011).  

 

2.6.3 Remote Sensing 

 

Remote sensing detectors (RSD) pass ultraviolet and infrared beams of light through a 

vehicle exhaust plume; as the light is absorbed by its constituent gases and particles, 

emissions estimates are produced (Guo and Zhang, 2007). 

 

RSDs can be used on the road side enabling large samples of vehicles driving in real 

world conditions to be gathered. Sample sizes from single research projects can be in 
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the tens of thousands (e.g. Carslaw et al., 2011). The resultant large emissions factor 

databases ensure accuracy across large vehicle fleets. Such comprehensive databases 

have highlighted the discrepancies between dynamometer based emissions factors and 

real world conditions (e.g. Smit et al., 2010; Carslaw et al., 2011). Rhys-Tyler et al. 

(2011) concluded that RSD derived emissions allow for the variability of individual 

driver behaviour, and interactions with other road users and highway infrastructure to be 

accounted for when determining emissions factors. 

 

However, there are significant drawbacks to using RSDs for calculating emission 

factors as they require daily multi-point calibration (Carslaw et al., 2011). The results 

are susceptible to local meteorological conditions, and there are current limitations on 

capturing vehicle emissions emitted from exhausts at varying heights (e.g. cars and 

HGVs are difficult to sample simultaneously) (Carslaw et al., 2011). Additionally, local 

road conditions and types affect results (i.e. gradient, number of lanes, urban 

environments) (Wyatt et al, 2014). 

 

2.7 Emissions Models  

 

A wealth of emissions models of varying complexity have been developed over the past 

20 years. The role of emissions models in air quality modelling is to apply emission 

factors to generate emissions predictions. It should be noted that these models are 

greatly influenced by the emissions factors they comprise (Cairns, 2013). 

 

Typically, emissions models used for air quality models rely on average speed based 

emission factors. The average speed and average flow of traffic on each road/link in a 

network is used in conjunction with a suitable emissions factor to calculate emissions 

estimates for the specific road/link. Outputs are provided based upon the principle that 

the average emissions for a certain pollutant and a given type of vehicle varies 

according to the average-speed during a trip (Barlow and Boultier, 2009). Therefore, a 

reasonable estimate of total emissions over an area can be given (Smit et al., 2010). This 

method is often adopted as the data requirements are often readily available (Barlow 

and Boultier, 2009). Their widespread use is ensured as they represent the traditional 

approach, they are comparatively easy to use, and their model input format is 

reasonably close to that of the data generally available to users (Boultier et al., 2007). 
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Examples of average speed based models include MOBILE (EPA), EMFAC (California 

Air Resources Board), COPERT (Ahlvik et al., 1997), PITHEM, (Namdeo et al 2002), 

and the average speed approach is exemplified by the model incorporated within the UK 

Design Manual for Roads and Bridges (DMRB). For example, PITHEM contains an 

integral emission model which calculates emissions and particulates using latest UK 

emission factors (i.e. National Atmospheric Emissions Inventory (NAEI)). National 

fleet emissions factors are determined as a function of vehicle type, age, emission 

control standard, engine size and fuel used. These factors are applied via PITHEM to 24 

hour traffic count and traffic speed data obtained for each link in a given network. 

PITHEM is currently under development to take in to account updated NOx Emission 

Factors taken from the latest DEFRA Emission Factor Toolkit - Version 5.1.3. 

 

However, it is recognised that average-speed emissions methods lead to significant 

underestimation of emissions on particular streets and junctions where congestion and 

queues build and prevail for a high proportion of the day (Boultier et al., 2007).  A key 

cause of this underestimation is that trips with very different vehicle dynamics and 

emissions can have the same average-speed (Barlow and Boultier, 2009).  For example, 

an average-speed of 60km/h on an arterial road could represent uncongested free-

flowing conditions, whereas the same speed on a motorway would represent more 

congested conditions (Cairns, 2013).  The presence of congested, stop-start conditions 

during a vehicle trip is of principle importance to the total emissions generated (Huo, 

2012). Such conditions result in very short, sharp increases in emissions (Grieshop et 

al., 2012).  

 

Average-speed average-flow emission factors for road vehicles are widely applied in 

regional and national inventories, and are currently used in a large proportion of local 

air pollution prediction models.  However, limitations associated with the average speed 

average flow approach for this purpose also are recognised in the literature.  These 

limitations are discussed in detail by Boultier et al. (2007) and include: the use of after-

treatment devices causing emissions to be released as short, sharp peaks, often occurring 

during gear changes and periods of high acceleration, reducing the reliability of average 

speed as an emissions estimation tool; failings in the representation of real-world 

driving conditions; and the low spatial resolution of average speed models presenting a 

significant drawback when using emissions estimates to inform dispersion modelling.  
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Several studies have concluded that emissions should be described in terms of engine 

speed, load and power not just relating to vehicle speed (Shaw, 2015). 

 

In recent years significant emphasis has been placed on the estimation of NOx 

emissions from road vehicles (Jenkin et al., 2008; Carslaw et al., 2011; Rhys-Tyler et 

al., 2011; Cairns, 2013; Carslaw et al., 2015).  This is because of the majority of the 

UK’s AQMAs are declared based on exceedances in NO2 concentrations, despite 

emissions standards set in the UK which show a significant decrease in NOx emissions 

from road transport (Mitchell and Dorling, 2003; Chatterton et al., 2008). 

 

The principle cause of increasing NO2 concentrations despite cited reductions in 

emissions standards is an increase in the proportion of NOx emitted as f-NO2 in vehicle 

exhaust fumes (Carslaw et al., 2015).  This increase in f-NO2 is due to increased 

proportion of diesel vehicles in the UK fleet as well as modern treatment technologies 

such as diesel particulate filters (DPF) (Jenkin et al., 2008).  Other reasons for the 

failure to reduce NO2 concentrations include higher real world catalyst failure and 

emissions degradation rates than estimated in the emissions standards, and inadequate 

test cycles which fail to reflect read world driving conditions (Carslaw et al., 2011).  

 

2.7.1 Instantaneous Emissions Models 

 

Instantaneous Emissions Models (IEMs) aim to address some of the limitations of 

average speed based models (Boultier et al., 2007).  The benefits of instantaneous 

emission models include: their inherent ability to take into account the dynamic nature 

of driving cycles and the variability in emissions associated with given average speeds; 

the ability for user defined fleet profiles to be specified; and detailed spatial resolution 

outputs enabling significant improvement in the prediction of air pollution (Boultier et 

al., 2007). 

 

Instantaneous emissions models methods have been explored for a number of years (e.g. 

Journard et al., 1995; Ahlvik et al., 1997; Shaw, 2015).  These methods rely on an 

information database which enables the volume of a specific emission type to be 

derived for a given set of instantaneous operational characteristics for each vehicle.  The 

database will typically provide information for differing vehicle types and engine sizes 
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to enable variations in the vehicle fleet to be reflected (SIAS, 2012). Thereby, the 

volume of emissions that would be produced by a specified vehicle travelling at a given 

speed and rate of acceleration can be estimated.  An emissions rate is calculated for each 

time period and the sum of all the time period rates is used as the overall link emissions 

value (Barlow and Boultier, 2009). 

 

In a review of IEMs by Boultier et al. (2007) the type of IEMs are split in to three 

distinct categories (Figure 2). 

 

 

Figure 2. Categorisation of IEMs. 

 

The simplest types of IEMs define emissions and fuel consumption rates for different 

combinations of instantaneous speed and acceleration, usually in a matrix of bin ranges 

(Boultier et al., 2007; Ropkins et al., 2007).  Other models have used factors of speed 

and acceleration instead of the acceleration rate alone (e.g. Joumard et al., 1995). Two 

examples of European IEM models are DGV (Digitised Graz model) and Modelling of 

emissions and fuel consumption in urban areas (MODEM) (Joumard et al., 1995). 

MODEM was first created during the European Commission’s DRIVE program.  The 

database for the model was developed from laboratory emission test data collected by 

various European laboratories, with an additional set of emission factors later developed 

by the Transport Research Laboratory (TRL).  Finally, a matrix with a finer resolution 

was developed for the extended version of MODEM (Boultier et al., 2007).  However, 

various sources of error in the unadjusted instantaneous modelling approach have been 

acknowledged (Zhu and Ferreira, 2013).  Examples of these errors include the types of 

drive cycle used; differences in the calculations of acceleration values; the grid size in 

the emissions matrix; and the type of interpolation scheme (Boultier et al., 2007). 

The Assessment and Reliability of Transport Emission Models and Inventory Systems 

(ARTEMIS) project provided key understanding into the emission behaviour of modern 

vehicles. The aim of the project was to produce an emission model for road, rail, air and 
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ship transport to provide consistent emission estimates at the national, international and 

regional level (Boultier et al., 2007).  Thereby, one of the main aims of ARTEMIS was 

to develop a model capable of modelling emissions for all types of vehicle under a 

variety of conditions.  The resulting tool was Passenger car and Heavy Duty Emissions 

Model (PHEM).  PHEM can be regarded as an ‘adjusted’ model as the passenger car 

part of the model includes a signal adjustment (Boultier et al., 2007).  However, the 

HDV part of PHEM does not include adjustments for the distortion of the emissions 

signal during measurement (Boultier et al., 2007).  PHEM has been developed by the 

Technical University (TU) of Graz.  PHEM is regarded as a powerful tool in emissions 

modeling and good accuracy is reached for most exhaust gas components (e.g. Boultier 

et al., 2007; Carslaw et al., 2012; Hirschmann et al., 2010; Anya et al., 2014). 

 

PHEM is a vehicle dynamics model using ‘engine power’ maps.  Emissions are 

calculated based on the instantaneous engine power demand and normalised engine 

speed during a driving pattern specified by the user (Boultier et al., 2007). From the 

input vehicle specification and speed (e.g. tyre size, gear ratio, weight, drag, etc.) 

PHEM determines the load on the engine, the engine speed and then the emissions 

(SIAS, 2012).  Furthermore, TRL created IEM tables (similar to those in MODEM) by 

feeding drive cycle information into PHEM and then analysing the results.  These 

detailed tables enable PHEM to provide information on a wider range of engines (From 

emissions EU standards 0 to 6), including a wide range of heavy vehicles (HGV’s/ 

buses).  Finally, the effects of vehicle load and gradient can be modelled by 

disaggregation of engine load data and subsequent emissions outputs.  Another key 

advantage of the PHEM based approach to emissions modelling is that detailed outputs 

from a microsimulation model can be used to produce a more refined estimate of 

vehicle emissions (Carslaw et al., 2012; Grote et al., 2016). 

 

AIRE (Analysis of Instantaneous Road Emissions) is an IEM designed to process the 

outputs from traffic microsimulation models (SIAS, 2012).  AIRE has been developed 

by SIAS Limited (SIAS) in collaboration with TRL. The software development was 

undertaken by SIAS with the calculated outputs from the program independently 

verified by TRL. Following this verification, further testing was undertaken making use 

of modelled and observed vehicle trace data. Emissions estimates from AIRE were also 
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independently compared against those obtained by traditional, average speed-based 

methods using real project examples (SIAS, 2012). 

 

The basis for the development of AIRE is the underlying database of emissions factors 

(by engine size, fuel type, vehicle type, emissions standard, gradient level, etc.). This 

information was derived by TRL using the PHEM model developed by TU Graz (SIAS, 

2012). To create a series of IEM tables, observed trace data from TRL drive cycles was 

fed into PHEM. These outputs were then collated and processed enabling the emissions 

to be established for each vehicle at a given speed and acceleration rate. Due to the large 

database and level of disaggregation in PHEM a total of 3129 IEM tables were created 

for use in the module (Shaw, 2015).  For comparison, this compares with 40 – 50 IEM 

tables in the original MODEM model (Boultier et al., 2007). 

 

AIRE can be used in conjunction with the outputs from any traffic microsimulation 

model, although it was specifically developed for use with S-Paramics (SIAS, 2012). 

Additionally, it could be used with driving patterns generated by GPS tracking of 

vehicles (SIAS, 2012; Gastaldi at al., 2014; Shaw, 2015). The module works by 

interrogating an output file called carpositions.csv which automatically produces the 

relevant output data required by the module including the vehicle type, speed, 

acceleration and gradient of each vehicle for every simulated timestep (0.5 seconds) 

(SIAS, 2012). Additional information including the network link, the grid co-ordinates 

and a unique vehicle tag is also produced to ensure that the outputs can also be 

examined on a link by link, vehicle by vehicle or on a geographical basis. 

 

The IEM tables within the AIRE module provide the emissions factors used in the 

program. However, additional information is required to ensure that the vehicle fleet is 

accurately represented. AIRE adopts vehicle fleet projections from the NAEI and HGV 

proportions from the Department for Transport (SIAS, 2012). However, in order to take 

account of the latest fleet projections it is possible to adjust the vehicle fleet projections 

using the vehicle fleet spreadsheet within the AIRE module. For this research 

adjustments were made so as to best match the latest NAEI vehicle fleet projections 

(COPERT 4v8.1). 
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AIRE produces outputs for three emission types; Oxides of Nitrogen (NOx); Particulate 

Matter (PM); and Total Carbon. This information can be output from the post-processor 

module for each vehicle individually (output as timestep emissions values or summary 

values for the whole vehicle trip). Emissions can be output for the entire modelled 

network or for a subset of links in the network thereby providing a great deal of 

flexibility for the user in terms of the outputs and their subsequent analysis (SIAS, 

2012). 

 

Similar modules are also available linking PHEM outputs with other microsimulation 

packages; for example, Hirschmann et al. (2010) created a toolbox linking PHEM with 

VISSIM; and VISSIM to MOVES (Abou-Senna and Radwan, 2013); and VISSIM to 

EnViVer Pro (Eijk et al., 2013).  However, the author deemed AIRE to be the most 

appropriate tool for this research as it was developed specifically for use with Paramics, 

and has been subject to more stringent checks. For example, calculated outputs from the 

program were independently verified by TRL, and following this verification further 

testing was undertaken making use of modelled and observed vehicle trace data (SIAS, 

2012).  Emissions estimates from AIRE were also independently compared against 

those obtained by traditional, average speed-based methods using real project examples 

(SIAS, 2012). 

 

2.7.2 Validation of Emissions Models 

 

Smit et al. (2010) highlighted that there was a lack of literature concerning emissions 

model validation.  Testing the accuracy of road traffic emissions models is problematic, 

as real world emissions values are unknown and it is neither financially or practically 

viable to measure fleet wide emissions values (Cairns, 2013).  Nonetheless it is 

important that attempts are made to validate emissions models so their accuracy can be 

estimated. 

 

Some of the modelling methodologies discussed in Section 2.6 can also be used to 

validate emissions models.  Examples of validation using instrumented vehicles (e.g. 

Joumard et al., 1995) and remote sensing (Carslaw et al., 2011) are typical of attempts 

to evaluate emissions models.  The advantages and disadvantages of these techniques 
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are one and the same as those considered and discussed in relation to methods for 

creating emissions inventories.  

 

The alternative approach to validating emissions inventories is to use air quality 

concentration measurements (Cairns, 2013).  This involves using emissions outputs in 

conjunction with an air quality model.  Predicted pollutant concentrations can be 

compared with observed data allowing the accuracy of the emissions model to be 

assessed.  Whilst this method has limitations, principally the accuracy of the air quality 

model, the technique is widely used and remains the most feasible methodology for 

emissions modelling validation due to the relatively low cost, and short timescales in 

which the assessments can be performed.  For example, Taghavi et al., (2005) used the 

Regional Atmospheric Modelling System (RAMS) to evaluate two emissions 

inventories compiled over southern France (Cairns, 2013). 
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2.8 Atmospheric Dispersion Modelling 

 

Air quality models are regularly used by UK local authorities for pollutant 

concentration forecasting and the review and assessment of air quality levels (Namdeo 

and Stringer, 2008).  An accurate assessment of the level of air quality is a vital 

requirement for authorities to be able to develop new policies and strategies. As 

discussed in Section 2.6 the ability to identify those areas within a city or region that do 

not meet air quality standards is paramount if such policies are to be successful. 

 

A wide variety and type of dispersion models have been developed for the purpose of 

air quality modelling. Examples of these can be found in Table 2 Common dispersion 

models (Adapted from Cairns, 2013).. 

 

Table 2 Common dispersion models (Adapted from Cairns, 2013). 

Model Type Example 

Statistical Stedman et al., 2001 

Numerical HIWAY series; Zimmerman and 

Thompson,1975 

Receptor COPREM; Wahlin, 2003 

Box STREET BOX; Johnson et al., 1973 

Street canyon OSPM; Hertel and Berkowicz, 1989) 

Microscale CFD (e.g. FLUENT; www.Fluent.com), 

Urban scale MEMO; see Moussiopoulous et al., 

, 1993 

Gaussian GFLSM; Luhar and Patil, 1989 

Lagrangian GEM-AG; see O’Neill et al., 2003 

Screening UK DMRB; Highways Agency, 2009) 

  

A comprehensive overview of the different approaches adopted by dispersion models 

was documented by Holmes and Morawska (2006) and Namdeo et al. (2002). 

It was discovered that in a UK research and governmental content Gaussian Dispersion 

Models are widely used due to their stability and the extensive validation performed on 

their outputs in recent years (Riddle et al., 2004). Thereby, these types of models are 

discussed in the following section. 
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2.8.1 Gaussian Dispersion Models 

 

A number of Gaussian dispersion based area quality packages are available and 

Gaussian dispersion theory is used for the majority of air quality modelling in the UK 

(Gurjar et al., 2010).  Gaussian models work based on the assumption that for a given 

wind direction pollutant concentrations are normally distributed in the vertical and 

horizontal planes.  Additionally, Gaussian plume formula assumes that wind speed and 

turbulence are vertically homogenous and that crosswind dispersion is assumed to be 

uniform over a given meteorological wind sector (Vallero, 2008; Gurjar et al., 2010). 

 

Gaussian models have been used in air quality modelling since the 1970s, for example 

the CALINE series (Benson, 1979).  These models used a simplistic dispersion 

methodology.  For example, these models did not take into account the effect of 

atmospheric chemistry or surface roughness on the dispersion of pollutants. Current air 

Gaussian air quality models use complex algorithms to calculate dispersion (CERC, 

2006). ADMS-Urban (CERC, 2006) can adopt algorithms for dry deposition, wet 

deposition, particle settling and chemical reaction schemes (for calculating boundary 

layer parameters).  The model also has an integral street canyon model for simulating 

air quality for a particular street segment surrounded by buildings (Namdeo et al., 

2002). 

 

Typically Gaussian air quality models distinguish between three types of emissions 

source: Line Sources; Point Sources; and Area/ Volume Sources (CERC, 2006).  Road 

or vehicular emissions sources may be treated differently depending on the model 

selected.  For example, in AERMOD road sources are modelled as a string of volume 

sources along a line segment (EPA, 2004). Whilst in ADMS-Urban and the Airviro 

Gauss mod, road sources are treated as a series of point sources (CERC, 2006).  

 

2.8.2 Limitations of Gaussian Air Quality Models 

 

Whilst modern Gaussian dispersion models ensure higher predictive power than that 

achieved with simplistic models, a multitude of input parameters are required.  

AERMOD requires upper air data, site-specific meteorological measurements, boundary 

layer height, surface albedo, surface roughness, cloud cover, Bowen ratio and a 
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geographically and temporally resolved emissions inventory to be input prior to 

dispersion modelling (EPA, 2004). This complexity can be regarded as a limitation, as a 

simpler screening model is less data intensive. 

 

Another limitation of Gaussian dispersion models is their performance when predicting 

concentrations in calm conditions (Vallero, 2008). Wind direction has an impact on 

model performance as predictive power is higher when air-flow is directed towards the 

receptor (Vallero, 2008). 

 

Arguably the most significant limitation of Gaussian dispersion models is their 

performance in street canyons (Chatterton et al., 2008). As a result many modern air 

quality models include internal street canyon models. However, these internal models 

are generally relatively basic.  ADMS-Urban, for example, comprises a simplified 

version of OSPM.  This model has been shown to poorly predict pollution 

concentrations in street canyons (Westmorelands et al., 2007). 

 

2.9 Transport Modelling 

 

Both Stevenson et al., (1998); and Mitchell and Dorling (2003) conclude that since the 

mid-nineties transport is the main contributor to poor air quality in the UK’s cities.  

 

Therefore, accurate transport data is vital if air quality concentrations are to be correctly 

predicted using an atmospheric dispersion modelling.  The calculation of road traffic 

emissions has been discussed in Section  2.7.  However, whilst it is possible that the 

traffic data used in emissions modelling may be obtained from ‘real-world’ 

measurement, e.g. flow data obtained from automatic traffic counts (ATC) or manual 

classified traffic counts (MCC); and speed data, obtained from speed surveys, it is often 

the case that traffic data is collected from a transport model.  

 

This may be because ‘real-world’ data is incomplete or unavailable, or it is difficult to 

arrange the available data in the format required for emissions modelling. Additionally, 

the use of a transport model for traffic data provision may allow the assessment of the 

impact on air quality of future traffic conditions, or alternative scenarios, for which real 

data will inherently be unobtainable. 
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A transport model is a representation of a transport system, built to simulate existing or 

future traffic conditions in order to inform a decision making process (SIAS, 2012). 

Transport models are useful in a variety of circumstances, from the illustration of 

current transport problems, to the forecast of potential problems that will occur in the 

future. They can also be used for environmental impact assessment and to justify 

significant infrastructure investment by demonstrating that a proposed scheme will 

provide financial or time saving benefits (SIAS, 2012). 

 

Transport models are data intensive. They require information on the transport network; 

road/ junction characteristics, observations on the ground, details of driver behaviour, as 

well as traffic demand data, travel patterns, demographic data, public transport data, 

traffic signals information, growth forecasts, and development assumptions (DfT, 

2001). 

 

Transport modelling covers a significant scope of work which looks to cover public 

transport, walking and cycling as well as air, sea and freight. For the purpose of air 

quality modelling it is road transport which is responsible for the overwhelming 

majority of transport emissions (Stevenson et al., 1998; Mitchell and Dorling, 2003; 

Anderson, 2009; Balmes et al, 2010; COMEAP, 2010; DEFRA, 2011). 

 

Scale is also an important consideration when contemplating transport modelling (DfT, 

2001).  The scale and purpose of a project or research task will determine the type of 

transport model most suitable.  Whilst there is no coherent classification system for 

transport models, WebTAG (2014) recognises three different scales of transport 

modelling; micro-scale, meso-scale, and macro scale.  
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2.9.1 Micro-scale 

 

Microsimulation models model the movements of individual vehicles (Shaw, 2015). 

Examples of microsimulation models widely used in the UK include VISSIM (PTV, 

2016), S-Paramics (SIAS, 2012) and AIMSUN (TSS, 2016). 

 

Typical uses of micro-scale modelling include; junction design, network improvements, 

monitoring traffic behaviour, and visualising impacts. The principle advantage of 

microsimulation modelling over traditional mathematical transport models is their 

ability to realistically represent driver behaviour (PTV, 2016). Driver aggressiveness, 

head way, risk attitudes and lane change behaviour can all be specified within the model 

to provide an accurate range of driver behaviours across the modelled network. 

Microsimulation is regarded as the closest to real-world that can currently be achieved 

in transport modelling (Shaw, 2015). 

 

Microsimulation can be used to model individual junctions or a larger network. In 

reality programmes such as S-Paramics blur the lines between micro and meso-scale 

modelling and it is possible to model large areas including complete city road networks 

(SIAS, 2012).  However, due to the extremely data intensive nature of micro-scale 

modelling it is often not practical to build and validate larger networks. Other 

limitations include the inability to model ‘irregular’ driver behaviour, and the time and 

cost associated with even small projects (TSS, 2016). 

 

Due to the scale of area covered it is also possible to include Junction Modelling in the 

‘micro-scale’ category.  Examples of junction models include LINSIG (Moore, 2011), 

ARCADY, PICARDY and TRANSYT (TRL, 2012). However, whilst these models are 

more suited to modelling small areas, they are more traditional mathematical based 

models which do not consider individual vehicles, instead modelling traffic in an 

empirical manner (Highways Agency, 1996). 

 

Microsimulation models can be used directly to provide input parameters for emissions 

modelling. Examples of their use in this process can be found in Section  0. 
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2.9.2 Meso-scale 

 

As discussed the distinction between micro and meso-scale transport modelling is 

difficult to define (SIAS, 2012).  Similarly, there is the potential for overlap with 

macro-scale modelling depending on the application of the model.  Examples of where 

meso-scale modelling could be used include; determining changes in traffic routing, 

congestion mapping implementation, and municipal/ regional traffic control schemes. 

 

The benefits of meso-scale transport models include the ability to model congestion 

over a wide area, wider impact assessment, and optimisation of multiple signals over a 

larger area than would be practical to model using a true micro-scale model (Grote et 

al., 2016). However, their use is less suited to detailed design of junctions or multi‐

modal modelling (SIAS, 2012). 

 

Examples of meso-scale models are Aimsun (TSS, 2016), Dynameq (INRO, 2013) and 

Split Cycle Offset Optimisation Technique (SCOOT) (Moore, 2011).  As with Aimsun, 

S-Paramics could also be regarded as a meso-scale model dependant on the scale and 

objectives of its application (SIAS, 2012). 

 

As with microsimulation models, meso-scale models can provide outputs for emissions 

models.  Either directly, using an IEM, or alternatively they could be interrogated to 

provide manual outputs in a format suitable for emissions modelling input parameters. 

 

2.9.3 Macro-scale 

 

Macro-scale transport models, also known as ‘strategic models,’ are used for the 

analysis of large scale major schemes, often at a regional or national level.  Macro-scale 

modelling has the ability to illustrated wider changes in flow/delay and consider the 

consequences of strategic level planning.  The outputs from macro-scale models are 

often exported into GIS to allow spatial analysis of the output parameters.  They are 

able to process large amounts of demographic data, understand changes in demand, and 

provide exports for economic or environmental assessment (SIAS, 2012). 
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The majority of macro-scale transport models are made up of a number of sub models. 

For example, transport forecasting, accessibility, modal splits, public transport 

utilisation and the assignment of vehicles to the highway network (TSS, 2016).  It is 

typically possible to use all, or only one of the sub models depending on modelling 

purpose.  For example, for emissions modelling it would be expected that only a 

highway model would be used. 

 

Examples of macro-scale transport models include SATURN (Simulation and 

Assignment of Traffic to Urban Road Networks) (Atkins Limited, 2014), VISUM 

(PTV, 2016), and CUBE Voyager /TRIPS (Citilabs, 2012). 

 

Macro-scales models generally adopt a traditional travel demand forecasting model i.e. 

trip-based, using a hypothetical trip production-attraction (PA) matrix as the unit of 

travel analysis (Citilabs,2012).  Such models are also often referred to as “four-step” 

models because they consist of four general process steps; trip Generation; trip 

Distribution; mode split; and traffic Assignment (Martens and Hurvitz, 2009). 

 

The highways elements of macro-scale modelling usually include transport activity data 

and road vehicle fleet composition data. Typically activity variables include traffic 

flows, link and network speeds, road link delay, queue length and number of lanes on 

each link (Van Vliet, 1982). 

 

Macro-scales models provide a simplified model of the highway network.  They are not 

developed to include every link within the modelled area.  Only links considered to 

have strategic significance are included, and links with low traffic volumes are unlikely 

to be included in the modelling network (Highways Agency, 1996). 

 

Whilst macro-scale models can be used to provide traffic data for emissions modelling, 

there are limitations due to the nature of strategic level data.  Whilst a macro-scale 

model may be validated across the wider modelled area, there is significant scope for 

significant error when considering small areas or model cordons (SIAS, 2012).  

Similarly, detailed design of junctions or detailed modelling of local roads is not 

advisable with strategic modelling (Highways Agency, 1996). 
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2.10 Geo-demographic Data  

 

The IMD Geo-demographic Data used in this research were developed by the Social 

Disadvantage Research Centre at the University of Oxford, using 38 indicators which 

have been divided into 7 weighted domains including measures of income; 

employment; mortality; education; housing; crime; and living environment (Office of 

National Statistics, 2016).  This index is available to download for each Lower Super 

Output Area (LSOA) from the Office of National Statistics.  Data available includes the 

IMD score, rank of Index of IMD, and the individual score and rank of each domain 

with the IMD. 

 

Similarly, Hospital Episode Statistics (HES) database was used in this research for the 

study in Chapter 4.  HES data was obtained from the North East Public Health 

Observatory (NEPHO).  Suitable International Classification of Diseases (ICD) codes 

were selected so that respiratory and circulatory illness could be accurately represented 

in accordance with the Committee on the Medical Effects of Air Pollutants (COMEAP) 

(COMEAP, 2010).  All data was output at LSOA level.  Further segmentation of the 

data, for example by age, was avoided to reduce data suppression (Gilmore, 2011).    

Reasoning and restrictions of the data are discussed in Section 4.2.8.  

 

To complement micro-scale air quality modelling, household geodemographic data was 

obtained from Experian’s Public Sector Mosaic database (Section 2.10).  Household 

level Mosaic data was geocoded using OS Address-Point. 

 

Geodemographic classifications provide a tried and tested means of measuring and 

monitoring small area conditions.  They provide an accurate understanding of each 

citizen's demographics, lifestyles and behaviours by accessing a wealth of information 

on all UK individuals using more than 440 data elements (Experian, 2009).  62% of the 

data used comes from Experian’s Consumer dynamics database, which sources 

information from a variety of databases including the electoral roll, credit and car 

ownership reports, the shareholders register, house sale prices and council tax bands.  

The remaining 38% of the data is sourced from Experian’s current year estimates of the 

2001 census (Experian, 2009). 
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Mosaic is based on analysis of the latest trends in UK society, a wealth of high quality, 

comprehensive data sources and a sophisticated proprietary approach to cluster analysis, 

supported by analysis of market research to validate the classification.  Public Sector 

Mosaic customer profiling classifies all UK citizens into 15 groups (A to O) and 69 

types (A01 to O69) (Appendix C). The data typifies the Mosaic group or type and does 

not infer information of the individual household explicitly.  Thereby, Mosaic analysis 

provides a sharper definition of deprivation than can be obtained by using the Indices of 

Deprivation alone (Bhatt, 2013). 

 

Mosaic also contains health data within its demographic data element and is commonly 

used by health professionals (Gilmore, 2011).  Specifically, Mosaic contains data from 

the HES database (course health bands; cancers and others; and long term conditions); 

General Health Census data; a number of general health categories from the British 

Household Panel Survey (BHPS); and Sport England survey data.  However, whilst the 

inclusion of heath data within the Mosaic is acknowledged, it is important that its use is 

appropriately understood in the context of customer profiling.  Given that the database 

does not infer information of the individual household explicitly, assumptions on 

individual household parameters, such as health, should be avoided (Gilmore, 2011). 

 

2.11 Personal Air pollution Exposure Estimation Studies  

 

Personal air quality exposure monitoring studies aim to provide estimates for an 

individuals’ exposure to a given pollutant (Tonne et al, 2018).  Depending on the 

research aim, personal exposure studies could be generally categorised as measuring 

exposure to indoor and outdoor pollutants, although a number of studies explore 

exposure models covering both indoor and outdoor pollutants measurements (Freeman 

and Saenz de Tejada, 2002; Pérez Ballesta et al., 2008). 

 

Numerous types of personal air quality exposure monitoring options have been 

conducted from static monitoring campaigns which physically monitor individual 

participants (Matar, 2015); diary and questionnaire surveys (Gerharz et al., 2009); to 

personal exposure estimate modelling (Kousa et al, 2002; Smith et al., 2016). 
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A wide body of studies and evidence suggests that personal exposure to air pollutants is 

not adequately understood because individuals spend time in different locations, within 

the home, at work/school, and in different travel microenvironments (Watson et al, 

1988; Rotko et al, 2001; Rivas et al., 2017; Tonne et al, 2018). 

 

However, whilst it is acknowledged that activities vary dramatically with age, gender, 

occupation, and socio-economic status, when considering environmental inequalities 

very few examples are based on personal exposure, those that are have tended to 

consider inequalities at the neighbourhood or area-level, rather than using individual-

level socio-economic or ethnicity data (Hajat et al., 2015). 

 

Tonne et al, (2018) attempts to consider air pollution exposure inequalities both at 

residence and using modelled personal exposure by utilising the London Hybrid 

Exposure Model (LHEM).  This model is based on individuals who responded to the 

London Travel Demand Survey (LTDS), conducted by Transport for London to capture 

data on travel patterns and modal share.  Socio-economic data too was obtained from 

the LTDS.  This research found differences in inequalities in air pollution when 

estimated at residence versus personal exposure; and that exposure differed by age, 

income, and area-level income deprivation (Tonne et al, 2018). 

 

The scope for these types of studies providing a more accurate assessment of the EJ of 

air quality is discussed in Sections 2.13 and 3.3, along with a statement of their 

limitations in the context of the research questions of this work. 

 

2.12 Summary 

The literature review presented in this chapter has shown that there is existing evidence 

of environmental injustice in the distribution and production of poor air quality. 

Concentrations of most pollutants are higher in urban areas, where there is also more 

concentrated deprivation. Furthermore, not only are deprived communities likely to be 

disproportionately exposed to the risks of air pollution, they are also disproportionately 

vulnerable to its effects. 

 

However, whilst several studies suggest that low socio-economic status creates worse 

outcomes for exposure to air pollution, the association is not uniform.  There are many 
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sources and types of air pollution and policies around transport routes and green space 

can have important impacts. 

 

Generally, the relationship between deprivation and air quality is poorly understood.  In 

order to provide a detailed understanding of this relationship it is necessary to have a 

complete picture of air quality concentrations across an area. In an ideal world pollution 

concentrations would be continuously measured and monitored everywhere throughout 

a conurbation.  However, this is neither physically nor financially feasible. Instead 

policy makers must rely on air quality models to predict the spatial distribution of 

pollutants over a given area. 

 

Additionally, it is acknowledged that in the UK, since the mid-nineties transport is the 

main contributor to poor air quality in our cities, and the main cause of respiratory 

illness and deaths amongst vulnerable groups such as young children.  Kelly and Fussell 

(2015) provide a comprehensive review of current sources of global air quality, 

including coal combustion, shipping, power generation, the metal industry, biomass 

combustion and dessert dust episodes.  They conclude that road transport is the main 

source of urban air pollution throughout the worlds cities; and is also associated with 

the most serious health outcomes.  Similarly, Karagulian et al. (2015), considering PM, 

conclude that traffic is the single most important contributor globally, although the 

importance of local specific industry sources is also highlighted. Moreover, ‘domestic 

fuel burning’ is identified as the largest pollution source contributor in Africa; and 

‘industry’ has approximately twice the contribution than traffic in Turkey.  Therefore, 

global, regional and local information and context is required. 

 

Traffic data can be combined with emissions factors in a model to estimate the 

emissions from road traffic.  There are a number of different techniques to develop 

emissions factors, namely, dynamometer tests, and real-world measurements.  In the 

UK dynamometer tests are typically used to develop emissions factors. These factors 

are based on average-speed and vehicle type. It is widely acknowledged that there are 

major discrepancies between emissions factors and real world emissions. These 

differences have been attributed to, amongst others, the inability of the factors to take 

into consideration congested conditions.  IEMs are able to address some of the 

limitations of average speed based models. 
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Once calculated, emissions outputs can be entered in to a dispersion model in order to 

provide estimates of pollutant concentrations.  Commonly Gaussian dispersion models 

are used for the assessment and review of air quality in the UK.  Whilst Gaussian 

models comprise a number of assumptions and limitations, comprehensive model 

evaluation using statistical and graphical descriptors can provide confidence in their 

outputs. 

 

The interrogation of air quality outputs in conjunction with geo-demographic data can 

provide a detailed and diverse understanding of the EJ of the distribution of air quality 

across a study air.  By varying the types of models used, and carefully selecting 

appropriate data sets it is possible to explore these themes across geographical scales.  

 

2.13 Research Gap 

 

Strong evidence of environmental injustice in the current distribution and production of 

poor air quality exists within the literature.  However, the overwhelming majority of 

existing studies concentrate on the analysis of current or historic associations.  As a 

result their methodologies do not allow for the analysis of future air quality strategies or 

schemes designed to improve air quality.  A gap exists in understanding the EJ 

implications of air quality strategies or schemes designed to improve air quality. 

 

Recent years have seen heightened political focus on policy and attempts to improve air 

quality.  Whilst it is broadly suggested that improving air quality will also improve 

existing EJ concerns, evidence to date shows that even in situations where air quality is 

improving the rate of concentration improvement is lowest for the poor (Mitchell et al, 

2015).  

 

This research presents a suite of linked models of traffic, emission, dispersion, and 

geodemographic models (the modelling framework) that together allow not only the 

accurate assessment of existing EJ situation to be established, but also the assessment of 

future strategies and schemes designed to improve air quality, which may improve or 

exacerbate the existing EJ relationship.  
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Understanding the EJ implications of proposed air quality strategies or schemes has 

strong potential for aiding policy and decision making in this field.  Whilst it is 

recognised that it is far beyond the scope of this PhD to identify measures which might 

be effective in reducing vehicle traffic, identified in the literature as the primary source 

of air pollution in the present day, understanding the future implications of identified 

policy areas could help guide policy development towards solutions that minimise 

inequality.   

 

Moreover, the literature review has identified issues of geographical scale in 

understanding the relationship between the research themes.   Mitchell and Dorling 

(2003) and later Mitchell et al (2015) completed a comprehensive review of 

environmental inequality studies, and subsequent further review of literature revealed a 

reliance on larger geographical scale datasets, such as IMD or Carstairs Index for 

geographical based EJ studies (Section 2.5.3).  The limitations of larger scale datasets 

are discussed in Section 3.3 and stem from the granularity of the data when measured 

against the typical physical extents of areas with poorest air quality. 

 

Thereby, a second gap exists in addressing the issue of geographical scale in area based 

EJ studies.  The literature review identified that the use of microsimulation modelling in 

conjunction with an IEM model is now a well-established emissions modelling 

technique (Boultier et al., 2007).  Whilst the use of IEMs generally is confined to the 

exploration of emissions outputs and not the subsequent dispersion of emissions in 

order to determine air quality (See Anttila et al, 2010; SIAS, 2012; and Hernández-

Moreno and Mugica-Álvarez, 2014), there is identified scope for combining these 

techniques and applying them in the context of an EJ study in order to produce a 

modelling framework capable of household level EJ analysis of air quality strategies or 

schemes designed to improve air quality. 

 

Moreover, a review of recent DMRB modelling guidance (Highways Agency, 2015) 

identified that the traditional approach to the vehicle emissions modelling using Defra’s 

Emission Factor Toolkit was acknowledged to not accurately assess the impacts and 

benefits associated with introducing or removing periods of congestion within the air 

quality assessment.  This is identified as being due to the reliance only on average 

‘speed’ and flow to calculate emissions.  Whilst the document goes on to suggest a 
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Speed Pivoting Methodology which addresses some of their concerns, it concludes that 

even the revised DMRB air quality spreadsheet model (v1.03c) cannot be used to 

calculate emissions and concentrations in congested conditions.  Given IEMs offer a 

solution to this issue through combining speed, acceleration and flow in their emissions 

estimates (See Section 2.7.1) this provided further evidence that adopting their use 

within an air quality assessment should be explored in this research. 

 

It is recognised that even household level geographical EJ assessment has its 

limitations.  In reality an individual’s personal exposure to air pollution is governed by a 

multitude of factors beyond their home address (See Section 2.11).  It is possible to 

foresee that a ‘big data’ approach to large population personal air quality exposure may 

be possible in the future, however, limitations of current monitoring equipment and data 

collection methods ensure that such an approach is currently not feasible.  Such an 

approach would address these limitations and arguably provide a more accurate 

assessment of EJ.  

 

A large population, personal exposure based approach to air quality management may 

also have far wider implications for how air quality is managed throughout UK and the 

world, since AQMAs (or comparable areas such as Air Quality Management Districts 

such as in the U.S.A. are all geographically based, and linked to area receptors such as 

houses, schools or places of work (Durham County Council, 2016) (Section 2.3).  It is 

difficult to imagine how air quality could be managed based on actual individual 

population exposure; however, one would speculate that whilst the concept of receptors 

would remain, the relative importance of air quality at the home address versus in public 

spaces and places of work may shift. 

 

However, due to the aforementioned limitations of current technology, existing personal 

exposure studies are typically limited in sample size and duration, ensuring that current 

data sets are unlikely to represent a practical answer to assist strategy assessment or 

policy decision making.   Furthermore, whilst such a holistic dataset would undoubtedly 

provide a powerful tool, and alter the direction of this research, active monitoring is still 

limited to gaining understanding of the existing situation, ensuring an element of 

scenario modelling would still be required. 
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CHAPTER 3 

 

3. Methodology 

3.1 Introduction 

 

The literature review has identified established links between air quality, health and EJ. 

It has also identified numerous methodological issues associated with investigating 

these themes.  As discussed in Section 1.2.2, this research has two aims: 

 

1. To establish a modelling framework to explore the research themes and test the 

EJ of the distribution of air quality across scales within the study area (develop 

the base-case). 

2. To apply the modelling framework to transport strategies and assess the extent 

to which these actions improve or exacerbate existing EJ concerns (scenario 

testing). 

 

The aim and scope of this research has necessitated substantial modelling work.  An 

accurate assessment of the level of air quality is a vital requirement for assessing the EJ 

of the spatial distribution of air quality across scales.  Accurate air quality data is vital to 

be able to develop new policies and strategies.  The ability to identify the impact of 

transport schemes or policy is paramount if such policies are to be successful.   

 

This research seeks to enable the assessment of transport schemes or policy on air 

quality, as well as identify if those impacts improve or exacerbate the EJ of the spatial 

distribution of air quality.  The literature review has identified that the vast majority of 

existing EJ research has been completed using methodologies suitable for identifying 

links in the existing data, but entirely incapable of predicting the impact of schemes or 

strategy on those links. 

 

Therefore, an innovative framework has been developed in order to allow an assessment 

of the EJ impact of air quality management measures that may create only subtle 

changes in the traffic flow regimes. 
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3.2 Methodology framework 

 

The modelling structure adopted in this research can be broadly separated into four 

main processes; the basic architecture of the modelling approach is outlined in Figure 3. 

 

Figure 3. Modelling Outline Methodology. 

 

Figure 3 describes the methodology applied in investigating the research themes and the 

processes adopted in order to produce results.  The modelling framework is applicable 

across scales by varying the modelling processes at key stages.  For example, emissions 

modelling is performed at two levels dependent on spatial scale.  The use of 

microsimulation in conjunction with an IEM for case study work allows the greater data 

availability to be exploited. The use of PITHEM in conjunction with larger scale 

strategic models is suitable for wider mesoscale application.  

 

Figure 4 outlines the methodology framework, details the datasets used at each model 

step across the following three results chapters, and identifies the methods and 

processes described in the following sections. The colour coding highlights which 

chapters and studies within, address the two aims of this thesis.   
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 PhD 

Studies 

Chapter 4 

Pilot study to develop 

understanding of the 

research themes and 

modelling techniques.  

Chapter 5 

Comprehensive EJ 

assessment of air quality 

base case.  Testing of 

application of framework 

across scales. 

Chapter 6 

Application of the 

modelling approach on 

transport strategies. 

Impact of transport 

strategies on existing EJ 

concerns. 

 Traffic 

Modelling 

Macro scale TPM 

model 

Description: 

Section 3.4.1 

Micro scale S-Paramics  

Description: 

Section 3.4.2 

(Durham study) 

 

Macro scale TPM model  

Description: 

Section 3.4.1 (Newcastle 

& Gateshead studies) 

Micro scale S-Paramics 

Description: 

Section 3.4.2 

 Emissions 

Modelling 

PITHEM 

Description: 

Section 2.6 

Use: Section 4.2.2 

AIRE IEM 

Description: 

Section 2.7.1 

Use: Section 5.2.1 

AIRE IEM 

Description: 

Section 2.7.1 

Use: Section 6.2/6.3 

 Dispersion 

Modelling 

ADMS Urban  

Description: (Sections 4.2.3 to 4.2.7) 

 

 Health and 

EJ 

Modelling 

Health Data: 

Hospital episode 

statistics (HES) data / 

EJ Data: 

Indices of Multiple 

Deprivation (IMD) 

Description: 

Section 2.10/ 4.2.8 

Use: Section 4.3 

Health Data & EJ data: 

Mosaic Public Sector 

(Household Data) 

Description: 

Section 2.10 

Use: Section 5.2.1 

Health Data & EJ data: 

Mosaic Public Sector 

(Household Data) 

Description:  

Section 2.10 

Use: Section 6.4 

 

Scenarios: 

1.  (Durham Traffic 

Engineering Scheme) 

(Section 6.4.1) 

2. (VKT Reduction 

Scenarios 1-5) 

(Section 6.4.2) 

 

 

Figure 4. Methodology framework  
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Aim 2 

To apply the 

modelling 

framework to 
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and assess the 

extent to which 

these actions 
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exacerbate existing 

EJ concerns 

(scenario testing). 

Scenarios: 
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Engineering 

Scheme) 

2. (VKT Reduction 

Scenarios 1-5) 
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3.3 Methodology of this thesis 

 

This section explains which of the transport, emissions, dispersion, and health and EJ 

review methods discussed in the literature (Sections 2.6 to 2.11) were selected to 

address the aims of this research and why. 

 

During the literature and methodology review, it became clear that several modelling 

processes would need to be used to address the study’s aims.  The use of a pilot study 

(Chapter 4) allowed an understanding of the research themes and modelling techniques 

to be developed within the study areas as outlined in the introduction of Chapter 1.  The 

pilot study helped shape both the methodical approach and datasets utilised in the 

subsequent studies (Chapters 5 and 6); as well as identifying that a more novel approach 

to EJ modelling was required than those identified in the literature in order to 

adequately address the research aims. 

 

The Durham pilot study presented in Chapter 4 utilises a traditional macro-scale travel 

demand forecasting transport model, in conjunction with average speed based emission 

factors and an atmospheric dispersion model, to predict air quality concentrations across 

the study area.  These outputs where then analysed using linear regression to test for 

association with deprivation (IMD) and health (HES) data.  This approach was deemed 

appropriate following a review of the methodologies of similar studies by King and 

Stedman 2000; Pye et al 2001 and 2010; Linares et al 2004; and Namdeo and Stringer 

2008.  

 

Following the pilot study and further subsequent review of the literature a 

methodological review was performed and a number of modifications and additions 

where identified in order to address weaknesses in the traditional approach given the 

research aims.  These weaknesses are discussed in Section 4.3.3. 

 

In summary: 

 the scale of air quality issues in Durham ensured a microscale assessment was 

required, suitable for assessing the research themes at the household scale; and 

 there was evidence that the relationships between the themes were non-linear. 
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The implications of these findings for the subsequent EJ studies in Chapter 5 and 6 were 

as follows: 

 A micro-scale transport model was used in place of the macroscale TPM model. 

A micro-scale model was considered more appropriate for the study extents 

given the spatial extents of Durham’s air quality issues identified in the pilot 

study.  These extents were identified as primarily the city centre, and represented 

a complex road network of interlinked junctions for which microsimulation is 

the more appropriate tool (PTV, 2016).  

 

 Use of a micro-scale model would enable the use of an IEM to generate 

emissions outputs, enabling significant improvement in the prediction of air 

pollution (Boultier et al., 2007).  The full advantages of using an IEM are 

discussed in Section 2.7.1.  This variation in model approach was important for 

establishing the base case understanding of the EJ of the spatial distribution of 

air quality (Chapter 5).  Furthermore, the use of an IEM was critical given the 

research aim of allowing the assessment of the EJ impact of air quality 

management measures that may create only subtle changes in the traffic flow 

regimes (Chapter 6).  Particularly given the congested nature of the study area 

this benefit was of vital importance given the findings from the literature review, 

which acknowledged that the traditional approach to vehicle emissions 

modelling, using Defra’s Emission Factor Toolkit or other speed derived 

emissions factors, does not accurately assess the impacts and benefits associated 

with introducing or removing periods of congestion within the air quality 

assessment (Highways Agency, 2015) (See Section 2.13). 

 

 The large scale social demographic data (IMD) and health data (HES) used in 

the pilot were identified as unsuitable for use in a microscale study.  Alternative 

data sets were sought that would allow for household level analysis of the 

research themes.  A review of available household level data revealed a large 

focus on larger scale datasets in EJ and air quality research.  Mitchell and 

Dorling (2015) completed a comprehensive review of environmental inequality 

studies, and subsequent further review of literature revealed a reliance on larger 

scale datasets, such as IMD or Carstairs Index (Section 2.5.3) for geographical 

based studies.  Alternative approaches which regularly utilise household level 
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data include personal air pollution exposure research (Section 2.11).  However, 

this type of research generally involves original, single person data collection 

(e.g. Matar, 2015) and analysis of small data sets (e.g. Gerharz et al. 2009). 

Therefore, the use of geodemographic classification data was explored following 

discussion with health professionals (Gilmore, 2011).  The use of Public Sector 

Mosaic data was investigated and selected for subsequent studies in Chapters 5 

and 6, following licensing discussion with DCC and a review of suitability 

(Bhatt, 2013) (Section 2.10).  The use of this data in conjunction with the 

revised modelling approach enabled an innovative approach to addressing the 

aims of this research. 

 

 Finally, following the evidence that the relationships between the themes may be 

non-linear, an alternative statistical approach to exploring the relationships was 

investigated for the subsequent studies.  As discussed in Section 4.3.3 it is 

acknowledge that there is scope for additional nonlinear statistical analysis in the 

pilot study.  However, given the aforementioned weaknesses of the pilot with 

regards scale and dataset, it was deemed more appropriate to utilise resource to 

address those limitations through the development of more thorough subsequent 

studies with an enhanced dataset better suited to nonlinear statistical analysis.  

For example, the available social demographic data in the pilot study is at LSOA 

level (1500 mean number of residents; 52 LSOA’s in the study area); whereas 

the use of geodemographic classification data in the microscale EJ analysis in 

Chapters 5 and 6, utilises household level data across 7471 households in the 

study area, allowing for more robust statistical analysis of non-linear trends.  

Details of the revised statistical approach to assessing the data in Chapters 5 and 

6 can be found in Section 5.2. 

 

Exploring the connection between air quality and EJ has been explored by research in 

the past (Section 2.5).  However, only a minority of these studies utilise methodologies 

capable of exploring change in air quality distributions. 

 

For example, Mitchel et al, 2015; Pye et al 2010; and Davoudi and Brooks, 2012, use 

the UK’s air quality mapping provided by Ricardo-AEA Ltd under contract to the 

government (DEFRA) to meet EC statutory reporting.  Average outputs from this 



 

 

66 
 

dataset are subsequent compared against LSOA level social demographic.  These air 

quality maps use the national atmospheric emissions inventory to produce an aggregate 

map of existing atmospheric concentration, calibrated and verified against a network of 

air quality monitoring stations data (Mitchel et al, 2015). 

 

Utilising the UKs reported air quality mapping, or other existing air quality datasets, 

including the use of directly monitored air quality data (For example, see Miranda et al, 

2011) is a justifiable and valid methodology for exploring existing connections between 

air quality and environmental justice. 

 

However, the ability to consider change in existing air quality distribution is 

fundamental to answering the research questions posed in this research.  Namely, the 

impact of air quality strategies on existing EJ concerns.  Therefore, this research 

successfully combines a novel approach to air quality scenario modelling, with more 

traditional EJ statistical analysis techniques used to explore existing EJ relationships. 

 

One key example of a comparable study to this research is presented by Namdeo and 

Stringer, 2008.  This work used a series of linked models of traffic, emission and 

pollutant dispersion to explore the relationship between air pollution, social deprivation 

and health in the city of Leeds.  Furthermore, given that the air quality inputs in this 

research where based on linked modelling, the research was further able to examine this 

relationship under three further scenarios. Three distance-based road user charging 

(RUC) scenarios set at 2 pence, 10 pence and 20 pence/km were explored, and the result 

concluded that RUC scenarios result in reducing disparity between affluent and 

deprived populations (Namdeo and Stringer, 2008). 

 

This research can, to an extent, be regarded as an effort to build on the methods and 

findings of the previous work by Namdeo and Stringer (2008).  However, the modelling 

techniques used by Namdeo and Stringer (2008) vary significantly to those adopted for 

the final results chapters of this research; and the considered transport strategies differ 

substantially (i.e. RUC scenarios versus VKT reductions to meet EU air quality and 

carbon reduction targets; and a transport engineering scheme in Durham’s AQMA).  

Moreover, the latter of these differences necessitated the former.  Namely, the 
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requirement to consider air quality scenarios resulting from only subtle changes in 

traffic flow regimes.   

 

The modelling approach in Namdeo and Stringer (2008) involved the application of a 

chain of dynamic simulation models of traffic flow (SATURN, SATTAX), pollutant 

emission (ROADFAC) and dispersion (ADMS-Urban), integrated within a geographic 

information system model PITHEM (Namdeo et al., 2002). 

 

PITHEM was initially utilised in the pilot study in Chapter 4 of this research (Sections 

2.6 and 4.2.2).  However, as discussed earlier in this section, the specific requirements 

of this research led to the use of microsimulation modelling and an IEM to generate 

emissions prior to dispersion, in contrast to Namdeo and Stringer’s strategic level 

SATURN and PITHEM based approached.  Nonetheless, despite the significant change 

in approach, the concept of using a chain of dynamic simulation models to investigate 

EJ scenarios remains a common theme. 

 

Similarly, the use of microsimulation modelling in conjunction with an IEM model is 

now a well-established modelling technique (Boultier et al., 2007).  However, the 

author is not aware of this modelling approach being adopted for use in an EJ study.  

Moreover, the use of IEMs is generally confined to exploration of emissions outputs 

and not the subsequent dispersion of emissions in order to determine air quality (See 

Anttila et al, 2010; SIAS, 2012; and Hernández-Moreno and Mugica-Álvarez, 2014). 

 

It was therefore necessary to use bespoke programming to enable the IEM derived 

emissions outputs to be suitably formatted for use in the ADMS dispersion model.  

Given the vast amounts of data created when using an IEM, Microsoft Visual Basic for 

Applications (VBA) was used to develop a programme capable of processing the 

emissions data outputs in a manageable and timely manner.  This enabled the use of an 

IEM, in place of more traditional NAEI derived emissions factors, to be incorporated in 

to the modelling framework as described in Section 5.2.1.  Furthermore, this modelling 

technique required the development of a 24 hour microsimulation model in order to 

develop 24 hour emissions profiles as described in Section 3.4.2. 
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Whilst the process of model selection described above and detailed in the following 

sections evolved in order to allow the research questions to be better addressed, the 

overarching limitation described in the research gap review remains valid (Section 

2.13).  As discussed, even the developed household level geographical EJ assessment 

has its limitations given that an individual’s personal exposure to air pollution is 

governed by a multitude of factors beyond their home address (See Section 2.11). 

 

However, as discussed, due to the limitations of current monitoring equipment and data 

collection, existing personal exposure studies are typically limited in sample size and 

duration, ensuring that current data sets are unlikely to represent a practical answer to 

assisting in wider strategy assessment or policy decision making.  As such a population 

exposure based approach to EJ assessment remains an impractical approach for this 

research.  Furthermore, whilst such a holistic dataset would undoubtedly provide a 

powerful tool, and alter the direction of this research, monitoring is still limited to 

gaining understanding of the existing situation, ensuring an element of scenario 

modelling would be required. For these reasons, a geographical, or area based EJ 

assessment was identified as the most appropriate for this research. 

 

The following sections of this chapter provide details of the transport modelling 

performed in the thesis.  The selection and preparation of transport model was critical 

given the objective of assessing the extent to which transport schemes and policy 

address existing EJ concerns, careful consideration and preparation, calibration and 

validation was required to ensure suitability. 

 

The emissions, dispersion and EJ modelling processes were less onerous in terms of 

building and preparation. As such it was more appropriate to provide the details of their 

use within the discussion of the research.  Relevant sections to find relevant discussion 

can be found in Figure 4 of this section.  
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3.4 Transport Modelling 

 

The issue of scaling in this research is discussed in Section 2.9 and in the conclusions in 

Chapter 7.  Two separate modeling scales are explored in this study, namely, macro 

scale and micro scale.  

 

3.4.1 Macro scale TPM model 

 

The macro-scale transport model utilised for this research was a multi-modal model, 

referred to as the Transport Planning Model (TPM). This model was developed by 

Newcastle City Council (NCC) on behalf of the Tyne & Wear (also including 

Gateshead Council, North Tyneside Council, South Tyneside Council, Sunderland 

County Council and Nexus (The Passenger Transport Executive)) Joint Transport 

Working Group (JTWG).  The model was built following the completion of a Strategic 

Transport Model (STM) which was applied to support the Local Transport Plan (LTP2) 

developed by the Tyne and Wear JTWG. 

 

The TPM is a modern four-stage transport model which models trip generation, mode 

split, distribution and assignment.  The model was built based on the principles and 

guidance included in the DfT’s WebTAG.  Both highway and public transport networks 

were developed for three periods (morning peak, inter-peak and evening peak periods). 

The productions and attractions (Base matrices) were generated from national and local 

land-use data.  Base Year trip patterns are partly informed by trip data from traveller 

intercept surveys which provide details of movements and journey purposes, also by the 

local household interview survey and supported to an appropriate degree by matrix 

estimation processes to allow modelled flows to reflect traffic count data (NCC, 2012). 

 

The TPM was specified and built using two different software platforms: OmniTRANS 

mainly for Base matrix development and validation and CUBE/TRIPS for all other 

components to take advantage of the particular merits of both software suites.  Both 

software packages have been integrated into the TPM modelling system. 

 

The TPM geographically represents a significant part of North East England and in 

particular the Tyne & Wear (T&W) metropolitan area and wider region. The area 
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covered by the model includes the five T&W Districts (Gateshead, Newcastle, North 

Tyneside, South Tyneside and Sunderland), the remainder of the Study Area and then in 

decreasing detail neighbouring areas and the rest of Great Britain.  The Study Area 

relates to the Census Travel to Work area, the ‘catchment area’ of trips into T&W for 

work purposes. 

 

For this research two separate cordons of the model were utilised. Firstly, for the City of 

Durham EJ study; and secondly for the EJ studies of Newcastle and Gateshead.  

Specific details of these study areas can be found in Section 4.1 and Section 5.3 

respectively.  Both these cordons fell within the most detailed core area of the model 

(the TPM model comprises 504 zones, of which zones 1
 
to 88 are within the core Tyne 

and Wear County area, See Figure 5). 

 

The model is regarded as up-to-date with modern practice and among the most soundly-

based transport models of its type in the country providing a comprehensive and up-to-

date representation of the Tyne & Wear transport networks (NCC, 2012). 

 

Limitations of TPM (and macro modelling in general): 

 The highway assignments do not include the effects of queues blocking back to 

interfere with other junctions or of flow metering where congestion reduces 

downstream flows.  This is particularly limiting for emissions modelling. 

 The goods vehicle matrices reflect common practice but are certainly a weak 

reflection of reality. 

 Coarse matrices, household and RSI survey data 

 Due to the large scale of the model the accuracy of specific areas of interest 

cannot be assured despite validation against counts and / or journey speeds 

according to DMRB criteria.   
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Figure 5. TPM Study Area and Zoning System Newcastle City Council (NCC, 2012) 
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3.4.2 Micro-scale model 

 

Durham County Council’s (DCC) S-Paramics©) microsimulation model has been 

utilised for all micro-scale assessment work conducted for this research.  

 

The reasons for using microsimulation traffic modelling in this research are discussed in 

Section 2.9.1 and 2.7.1 which explore the benefits of microsimulation; and 

microsimulation in conjunction with an IEM respectively. In summary, microsimulation 

is regarded as the closest to real-world that can be achieved in transport modelling 

(Highways Agency, 1996); and, as microsimulation models can be used directly to 

provide input parameters for IEMs, the benefits of IEMs can be realised. These benefits 

over traditional average speed based approaches include their ability to capture the 

variability in emissions associated with both speed and acceleration; and detailed spatial 

resolution outputs enabling significant improvement in the prediction of air pollution 

(Boultier et at., 2007) (Section 2.7.1). 

 

The decision to use S-Paramics, as opposed to other examples of microsimulation 

models widely used in the UK, for example, VISSIM (PTV, 2016) and AIMSUN (TSS, 

2016) (Section 2.9.1), was made for two primary reasons.  Firstly, the availability of 

licensing and access to the model provided by Durham County Council made the 

research feasible. Whilst the Durham Paramics model required significant updating, 

recalibration and revalidation (See Sections 3.3, 3.4.2 and 3.5) it nonetheless provided a 

start point from which to develop an appropriate modelling tool. Secondly, the 

availability of licensing for AIRE IEM ensured its suitability. Whilst AIRE can be used 

in conjunction with the outputs from any traffic microsimulation model, it was 

specifically developed for use with S-Paramics (SIAS, 2012). 

 

The Durham model was developed by SIAS and Durham County Council covering the 

core area of Durham City in detail and significant sections of surrounding highway 

network including major routes incorporating the A1, A167, and A691.  

 

The model extents broadly include Chester-le-Street to the north; Stanley, Brandon and 

Crook to the west; Newton Aycliffe and Spennymoor to the south; and Peterlee, 

Seaham and Houghton-le-Spring to the east. The study area is defined in Figure 6. 
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Figure 6. Base Network Construction (Adapted from Durham County Council, 2007).  

 

The model is a full 4-stage transportation model which models trip generation, 

distribution and mode split based on the distribution of trip productions and attractions. 

These productions and attractions are generated from national and local land-use data; 

trip patterns are generated using trip data from intercept surveys which provide details 

of movement patterns and journey purposes. Where such data is not available, 

traditional matrix estimation processes are employed to match modelled flows to traffic 

count data. 

 

The primary model network was built based on digitised Ordnance Survey mapping, 

with an extensive survey completed to determine additional network operation 

information such as location of stop lines, lane markings and actual lane usage. 

 

All links within the study area were coded as either a major or a minor highway link. 

Minor links were coded where roads were classed as either local distributor roads, or 

residential access roads. 
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DCC provided signal timing data for all junctions and pedestrian crossings within the 

modelled area. Pedestrian crossing timing frequencies were selected to reflect high and 

low pedestrian demand as advised by DCC. 

 

Public transport information was supplied including: 

 Location of bus stops within the study area; 

 Dwell times at key Bus Stops (in the absence of dwell time data ‘high usage’ 

and ‘low usage’ times were selected of 20 and 10 seconds respectively. These 

values were agreed based on DCC engineering judgement and information from 

previous data collection exercises (Durham County Council, 2015); 

 Bus route information, including service and route number; and 

 Bus service frequency data. 

 

The model periods developed were AM Peak (06:30 - 09:30), and PM Peak (15:00 - 

18:30) as well as a build-up Interpeak model.  Each peak hour has been modelled with a 

‘warm up’ period to reflect the build-up of demand prior to the simulation model’s peak 

period.  This warm up period is not calibrated or reported, it populates the simulation 

with vehicles so the peak demand is based on an already active network rather than an 

empty network.  By the end of the warm up period, the simulated traffic demand has 

built up to a sufficiently realistic level to accurately represent the flow conflicts present 

during the core peak period. 

 

There are no requirements for the minimum length or volume of the warm up period, 

rather it is user defined and specific to the scheme.  The fundamental requirement is to 

ensure the warm up period achieves a realistic traffic demand for the beginning of the 

core peak period.  The warm up period for Durham model is determined by the length 

of time it takes a vehicle to travel between the furthest extents of the model.  A volume 

of 80% of the peak demand was used. 

 

An additional ‘warm down’ period has also been included for the Durham models to 

ensure all vehicles entering the network during the peak period leave via their 

destination during the simulation period, negating the potential for inaccurate results 

towards the end of the peak periods. 
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Trip Matrix Assignment 

 

The core area comprises 149 zones, based on Census output areas, and split as 

appropriate to provide a suitably disaggregate level of zoning including areas such as 

housing, industry and schools.  The core area zones are shown in Figure 7. 

 

 

Figure 7. Core Area Zones Durham Paramics (Adapted from Durham County Council, 

2007). 

 

A further 14 zones were defined to represent route zones on the 14 principal roads 

entering the modelled network as shown in Table 3.  These are larger zones, generally 

representing surrounding towns and villages such as Sunderland, Chester-le-Street and 

Washington to the north; Stanley, Brandon and Crook to the west; Newton Aycliffe, 

Spennymoor and Sedgefield to the south; and Peterlee, Seaham and Houghton-le-Spring 
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to the east.  The network coding for the travel to work area is derived from the Tyne & 

Wear Transport Planning Model. 

 

Table 3 Definition of Route Zones 

Route Zone Road 

901 A167 (South) 

902 A690 (South/West) 

903 Stonebridge 

904 Toll House Road 

905 A691 

906 B6532 

907 A1 (South) 

908 A167 (North) 

909 Red House 

910 A1 North 

911 Pittingdon Lane 

912 Front Street (Sherburn) 

913 A177 Shincliffe 

914 A690 (East) 

 

The origin-destination trip matrices used in the Durham model were constructed from 

an earlier CONTRAM (CONtinuous TRaffic Assignment Model) model. The existing 

CONTRAM model contained the A167, A181, A177 and A690 corridors along with a 

comprehensive cover of all distributor roads and minor residential access roads. 

CONTRAM is a Windows-based program jointly developed by Mott MacDonald and 

TRL for modelling traffic flows, queues and delays. CONTRAM models drivers’ route 

choice through urban or inter-urban networks and the consequent queues and delays 

they experience (Durham County Council, 2007). 

 

Sector analysis was used within Paramics to evaluate the CONTRAM Matrix. Zones are 

grouped in East/ West for example and the volume crossing the bridge can be assessed. 

Further groups of zones are sectored enabling a series of checks to be undertaken to 

highlight the volume of trips at key locations. The calibration and validation of vehicles 

flows across the network can be found in Section 3.5 and 3.7. 
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Vehicle Classifications 

 

Within microsimulation modelling the vehicle type assigned has an influence on 

acceleration, braking and the size of the vehicle (PTV, 2016). All these factors 

contribute to the behaviour of the vehicle within the simulation. 

 

Classified junction turning counts were used to derive global vehicle classifications for 

the Durham network. The vehicle classifications and percentages can be seen in Table 

4. 

 

Table 4 Vehicle classifications and Percentages 

Vehicle Class AM Period PM Period (and off-peak) 

Cars 82% 84% 

Light Goods Vehicles 12% 12% 

Heavy Goods Vehicles 6% 4% 

Passenger service vehicles 

(buses) 

Fixed route Fixed route 

 

The decision to use global vehicle classifications was made following earlier attempts to 

use vehicle class matrices in the Durham model. Whilst individual matrices would allow 

greater control over the fleet characteristics on individual routes their use in the 

modelling proved too cumbersome for the scale of the model.  Due to the large spatial 

extent of the model each additional classified matrix set slowed the running time by 

approximately half and the model became unreliable and prone to crashing. It was 

therefore decided to revert to using global vehicle classification figures.  

 

Due to the limited availability of off-peak classified data it was decided to use the PM 

period global figure as this most closely followed the few counts that were available.  

 

Demand Profile 

 

A series of demand profiles were applied to different origin- destination movements 

within the model. Demand profiles create the appropriate peak surges in key areas of the  

model resulting in suitable peak time queues. 
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Profiles were created from analysis of traffic data obtained from DCC.  Where possible, 

15 minute count data was used to enable a more accurate representation of peak surges. 

For movements where count data was not available, a general demand profile was used 

to complement the available data. This profile was based on traffic information from 

suitable primary routes as determined by DCC.  All 14 principal road entry zones were 

assigned individual demand profiles. Significant effort was sought in determining the 

accuracy of these profiles, as movement between these zones was responsible for 88% 

and 89% of AM and PM peak traffic respectively.  Flow profiles were not classified by 

vehicle type due to the limited availability of classified count data. 

 

Examples of the AM and PM peak general profile can be found in Figure 8 and Figure 

9. 

 

 

        

 

Figure 8. AM Peak Durham Profile  
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Figure 9. PM Peak Durham Profile  

 

Additionally, when adapting the model for use with gaining 24 hour emissions outputs 

it was necessary to create a series of 24 hour emissions profiles. A similar methodology 

was applied for creating these profiles although due to the limited availability of off 

peak traffic data only four Durham central zone profiles were created, as well as 

individual profiles for the 14 principal road entry zones.  The decision as to which of 

four Durham central zones profiles to apply to specific origin – destination movements 

was determined based on DCCs experience of flow regimes throughout the city area. 

 

Furthermore, the 24 hour profiles were only applied outside of the peak periods and 

only aggregated to an hour frequency. This was due to the limited availability of off 

peak 15 minute traffic counts.  

 

The four 24 hour Durham central zone profiles can be seen in Figure 10. 
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Figure 10. 24 hour Durham Central Zone profile 

 

Route Choice Methodology 

 

Within the Durham Paramics model each microsimulation vehicle has a choice of routes 

to its destination. SIAS (2012) assert the number of routes and the probability of a 

vehicle using a route is determined by the following factors: 

- Category as major/minor route 

- Familiarity 

- Time and distance coefficients 

- Perturbation; and 

- Dynamic feedback. 

 

The impact of major/ minor routes is influenced by familiarity.  ‘Familiar’ drivers see 

the links costs as they are calculated, whereas ‘unfamiliar’ drivers see the cost of all 

minor links factored by two.  This results in unfamiliar drivers preferring major routes 

to minor routes, whilst familiar drivers have no preference.  In the Durham model the 

proportion of familiar drivers was set to 60% (Cars and LGVs) and 85% (HGV and 

buses).  These figures were chosen after consultation with DCC and SIAS. 

 

The basic assignment model within Paramics is an All or Nothing routine whereby all 

vehicles will select the minimum cost path based upon the generalised cost criterion 

specified by the programme (SIAS, 2012).  Additionally, supplementary functions are 
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available within Paramics to enable a more realistic set of route choice decisions to be 

made. Dynamic re-routing has been used in Durham to allow drivers to react to 

congestion and delay on the network. Information on route delays is fed back in to the 

simulation to enable a reassessment of the optimum route to any given destination. This 

dynamic feedback allows a degree of variation between selected routes and ensures that 

not every vehicle will make the same route choice between a given origin-destination 

pair.  This route choice methodology could be described as multiple user class 

stochastic assignment (PTV, 2016). 

 

Traditional methods of model convergence as detailed in DMRB 12.1.2 are therefore 

inappropriate for assessing a Paramics model, since they were derived for, and only 

relevant to, equilibrium models such as TRIPS and SATURN (Citilabs, 2012). 

 

Further adaptions to ensure the model was suitable for use with an IEM included: 

 

 Gradient - The addition of gradients in the model ensured that the existing 

calibration/ validation was no longer valid. The model was therefore re 

calibrated/ validated as per IMDB Guidelines – See Sections 3.3, and 3.5-3.7; 

 

 Building of 24 hour matrix - A 24 hour matrix was built using traffic count data 

from 40 sites following IMDB Guidelines. Building and assigning the traffic 

matrix was required to capture emissions during off peak periods (Section 

3.4.2). 

 

 Traffic Signals - Signal timing specifications for all Durham City junctions were 

reviewed.  On peak signal timings were amended as necessary as part of the 

model update process; and off peak signal timing plans were added to ensure the 

model was representative of read world conditions during the additional off peak 

periods (Section 6.2). 

 

 Public transport data - Bus routing and timing data was updated to include off 

peak services.   
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 Proposed modelling (scenario testing) - Changes were made to reflect the VKT 

traffic reduction strategies; and proposed scheme detailed in Chapter 6. This 

included creating signal timings for two signalised roundabouts using LinSig v2 

Both peak and off peak signal timings were generated (Section 6.2). 

 

3.5 Durham Paramics Model Calibration 

 

Calibration is defined as “a process of tuning and refining the input data and parameters 

within the model in order to agree with real observed data, and then provide a tool 

which is reliable for forecasting” (DfT, 2001).  A key aspect of calibration is the 

comparison of simulated link flows outputted from the Paramics model to input link 

flows derived from the derived matrix. Model calibration is an iterative process 

requiring modifications to both the construction of the network, including calibration of 

parameters within the models, and to the input trip matrices.  Figure 11 summarises this 

iterative process.  
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Figure 11. Paramics Model Iterative Calibration 

 

The objective of model calibration is to ensure that the flow parameters entering the 

model are reflected in appropriate outputs, indicating the model is operating as desired.  

 

Model validation (See Section 3.7) is the next step and seeks to demonstrate that the 

base model is suitable for use in scenario testing mode by comparing the modelled 

outputs to independent empirical data.  During the Durham model update, calibration 

and validation have been considered in an integrated manner such that calibration and 

validation outputs have been generated for each model developed during this iterative 

process. 
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3.5.1 Flow Calibration Requirements  

 

In this Durham Paramics model, flow calibration is based on determining the ‘goodness 

of fit’ of modelled link flows outputted from the Paramics model to the corresponding 

spreadsheet derived matrix link flows.  Section 3.4.2 describes the trip matrix 

assignment process adopted for this modelling, highlighting the iterative process of 

assigning a trip matrix. 

 

The criteria used to assess whether the correspondence is satisfactory are those 

described in Chapter 4 of the Design Manual for Roads and Bridges (DMRB) Volume 

12, Section 2 and summarised below in Table 5. 

 

Table 5 DMRB Cross-Sectional Calibration/Validation Acceptability Guidelines 

Criteria Measures Acceptability 

Guidelines 

Modelled hourly flows compared with observed flows 

Individual flows within 100 for flows <700 vehicles per hour 

(vph) 

Individual flows within 15% for flows 700–2,700 vph 

Individual flows within 400 vph for flows >2,700 vph 

 

GEH Statistic: 

Individual flows: GEH < 5 

Total flows: GEH < 2 

Total flows: GEH < 4 

 

For 85% of cases 

For 85% of cases 

For 85% of cases 

 

 

For 85% of cases 

For 85% of cases 

For all cases 

Source: DMRB, Volume 12, Section 2 
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It can be seen from Table 5 that the criteria recommended in DMRB for link flow 

calibration relates to firstly the margin of error of individual flows, and secondly to the 

GEH statistic, where GEH is defined as: 

 

 

 

 

With:  O = Observed traffic flow 

M = Modelled traffic flow 

 

The reason for including the GEH statistic is the inability of either the absolute 

difference or relative difference to cope over a wide range of flows.  For example, an 

absolute difference of 100 vehicles per hour (vph) may be considered a big difference if 

the flows are of the order of 100vph, but would be unimportant for flows of the order of 

several thousand vph.  Equally, a 10% error in 100vph would not be important, whereas 

a 10% error in say 3,000vph might mean the difference between constructing an extra 

lane or not. 

 

Generally speaking, the GEH parameter is less sensitive to such problems since a 

modeller would probably feel that an error of 20 in 100 would be roughly as bad as an 

error of 90 in 2,000, and both would result in a GEH statistic of approximately 2.  As a 

rule of thumb, when comparing modelled traffic flows with observed traffic flows, a 

GEH statistic of 5 or less would indicate an acceptable fit, whilst links with a GEH 

statistic of greater than 10 would require closer attention (Highways Agency, 1996). 

 

3.5.2 Visual Calibration 

 

Throughout the model construction and calibration process there were ongoing visual 

assessments and reviews of the modelled network operation to refine and reinforce the 

accurate representation of the empirical network operation.  This comprised both 

internal and external reviews as described below. 
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3.5.3 Internal Review 

 

The internal review was undertaken during the model development as an ongoing 

process.  The qualitative information provided from onsite reconnaissance provided the 

basis for the majority of the initial review process. Particular attention was paid to 

identifying and addressing the following: 

 

 All priority rules have been correctly coded so that vehicles give way in an appropriate 

manner; 

 Lane utilisation at junctions is as observed during site visits; 

 Where restricted lane usage by vehicle type exists, this is correctly represented; 

 Observed driver behaviour and flow patterns are replicated at junctions and 

roundabouts; 

 Modelled queues are representative of observed queues and take place at locations and 

at times expected based on observational evidence; 

 Ensuring all banned and restricted turns are correctly modelled in all simulations; 

 Yellow box rules have been input into the simulation where appropriate so that vehicles 

do not pass through each other in simulations, but in particular to ensure that junctions 

do not gridlock at key locations when highly congested.  Such “gridlocking” cannot 

ever be entirely eliminated from a network for all possible patterns of traffic demand, 

since particular blocking problems only become apparent under particular patterns of 

trip matrix movements; and 

 Addressing “errors” or “warnings” such as vehicles not able to enter the network due 

to congestion. 

 

3.5.4 External Review 

 

As part of the calibration process, some of the simulation runs were demonstrated to 

staff from the DCC Traffic team.  This gave the opportunity for qualitative comments 

concerning the operation of the network and the realism of the simulated network in 

comparison to existing conditions regarding queuing patterns and congestion. This 

feedback proved invaluable with comments received forming part of the iterative 

calibration process. 
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3.5.5 Calibration Results – AM Peak 

 

3.5.5.1 Random Seed Variance Testing 

 

In order to provide statistical confidence in the Durham microsimulation model it was 

necessary to undertake several runs, each with different random seeds.  Ten different 

random seeds were run for the AM peak period, the results of which are detailed in 

Appendix B and summarised in Table 6 below. 

 

Table 6 Random Seed Variance Testing: AM Peak (0800-0900) Results 

Seed 

Sum of Absolute Difference to Average 

(aggregated results) 

Vehicles % 

1 124 1.9% 

2 77 1.2% 

3 103 1.6% 

4 71 1.1% 

5 103 1.6% 

6 88 1.4% 

7 100 1.5% 

8 84 1.3% 

9 117 1.8% 

10 62 1.0% 

 

It is evident from Table 6 that the Durham AM peak Paramics model produces 

consistent results with all 10 random seeds runs within 1.9% of the average for 

aggregated traffic flows. 
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3.5.5.2 Traffic Flow Calibration  

 

A key objective of the base model calibration process is to demonstrate that Paramics 

model achieves a similar throughput of traffic to the input flow data derived from the 

spreadsheet derived matrix. 

 

Table 7 summarises the results obtained for 26 traffic flows collected at sites around the 

modelled network for the AM time period (0800–0900). Modelled flows outputted from 

the Paramics model have been compared to input flows from the spreadsheet derived 

matrix against the DMRB criteria summarised in Table 5. 

 

It can be seen from Table 7 that the flow calibration results satisfy all DMRB count 

related criteria for all traffic flows during the morning peak period modelled hour. 

 

Table 7 Count-Related Traffic Flow Calibration: AM Peak 

Statistic 

Recommended 

Criteria 

Paramics Model 

Results 

0800-0900 

Number of counts compared n/a 26 

Maximum GEH for 85% of links <5 2.5 

Average GEH for 85% of links <2 1.1 

Average GEH for 100% of links <4 1.5 

counts <700 vph (Maximum 

Absolute difference of 85% of links) <100 vph 28 

counts between 700 to 2,700 vph 

(Maximum Absolute difference of 

85% of links) <15% 7.1% 

counts >2,700 vph (Maximum 

Absolute difference of 85% of links) <400 vph N/a 

 

Individual traffic flow calibration for the morning peak hour is summarised in Table 7. 

It is evident from the summary results that the Paramics model output traffic flows are 
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similar to the spreadsheet matrix model input traffic flows with 100% of the 26 traffic 

flows reviewed satisfying the criteria of GEH <5 for the AM peak period. 

 

3.5.6 Calibration Results – PM Peak 

 

3.5.6.3 Random Seed Variance Testing 

 

Ten different random seeds have been run for the PM peak period, the results of which 

are detailed in Appendix B  and summarised in Table 8. 

 
Table 8 Random Seed Variance Testing - PM Peak (1700-1800) Results 

Seed 
Sum of Absolute Difference to Average (aggregated results) 

Vehicles % 

1 88 1.3% 

2 185 2.7% 

3 140 2.0% 

4 100 1.4% 

5 99 1.4% 

6 73 1.0% 

7 113 1.6% 

8 144 2.1% 

9 104 1.5% 

10 115 1.6% 

 

It is evident from Table 8 that the Durham Paramics model produces consistent results 

with all 10 random seeds runs within 2.8% of the average for aggregated traffic flows. 

 

3.5.6.4 Traffic Flow Calibration – Traffic Flows 

 

Table 9 below summarises the results obtained for 26 traffic movements collected at 

sites around the modelled network for the PM time period (1700–1800). 
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It can be seen that the calibration satisfies the count related criteria set out in DMRB for 

modelled traffic flows. 

 

Table 9 Count-Related Traffic Flow Calibration - PM Peak 

Statistic 

Recommended 

Criteria 

Paramics Model 

Results 

1700-1800 

Number of counts compared n/a 26 

Maximum GEH for 85% of links <5 2.5 

Average GEH for 85% of links <2 1.6 

Average GEH for 100% of links <4 1.9 

counts <700 vph (Maximum 

Absolute difference of 85% of links) <100 vph 52 

counts between 700 to 2,700 vph 

(Maximum Absolute difference of 

85% of links) <15% 6% 

counts >2,700 vph (Maximum 

Absolute difference of 85% of links) <400 vph N/a 

 

Individual traffic flow calibration for the evening peak hour is summarised in Table 9.  

It is evident from the enclosures in Table 9 that the majority of sites satisfy the GEH <5 

criteria. The Paramics model output traffic flows are very similar to the spreadsheet 

matrix model input traffic flows with 100% of the 26 traffic flows reviewed satisfying 

the criteria of GEH <5 for the PM peak period.  

 

3.5.7 Parameter calibration 

 

Parameter calibration has also been considered in accordance with micro-simulation 

modelling guidelines set out by the Department for Transport (DfT) (2001). These 

guidelines describe the requirement to demonstrate that the parameters used in the 

microsimulation model (whichever software is used) are specifically tested and selected 

to produce the expected vehicle behaviour. 
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The key overall driver behaviour parameters are driver aggression and awareness 

distribution and network headway factor. In line with SIAS’s recommendations the 

Durham Paramics model did not require alterations to the global parameters affecting 

driver behaviour. Driver behaviour fluctuates in response to specific road 

circumstances, and network wide changes are not recommended unless a sound case can 

be made that drivers behave differently across the modelled area in its entirety (SIAS, 

2012). 

 

Table 7 and Table 9 summarises the parameter calibration undertaken as part of the 

Durham model build.  Included in Table 10 are details of the respective default 

parameters in Paramics, indicative ranges from the emerging HA guidelines, and an 

identification of the parameters adopted in the Durham Paramics model with an 

associated commentary. 
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Table 10 Parameter calibration 

Micro-Simulation 

Parameter 

(Table 2 in HA 

Guidelines) 

Criteria Unit of 

Measurement 

Default value 

in Paramics  

Guidance / Indicative 

Ranges from HA Micro-

Simulation Guidance 

Values used in 

Durham Paramics 

Model 

Comment 

Mean Headway 

(Mean headway between 

vehicles at differing traffic 

speeds) 

Motorway links 

Metres or 

Seconds 

0.9 seconds 

(CC1 

parameter) 

Cross reference defaults to 

mean headways (±10%) in 

Figure 5.1 in HA 

Guidelines. 
 

0.9 seconds 

 

 CC1 default parameter in Paramics 

is based on European driver 

behaviour so no justification to 

deviate from default. 

Freeway links 

Off-line highway links 

Urban links No default – 

speed dependant 

Speed dependant on 

local road network 

feeder link 

 

Minimum Gap 

(Minimum acceptable gap 

between vehicles) 

Merge 

Seconds 

No default – 

speed dependant 
Give way: 1.5 to 3.5 

seconds 

 

Roundabout 1.0 to 4.0 

seconds  

Speed dependant 
 Minimum gap parameters adjusted 

to reflect localised conflicts 

throughout the Durham Paramics 

model. 

Lane Change 

Give Way 3 seconds 

(controlled by 

priority 

markers) 

Modified based on site 

specific junction 

performance 

Roundabout 

Vehicle Dynamics 

(Acceleration and 

deceleration profiles and 

the impact of gradient on 

vehicle performance) 

Car & LGV - Acceleration 
m/s

2
 

3.5 

Cross reference defaults in 

HA Guidelines. 

 

Figures 5.2 and 5.3 for 

light vehicles. 

 

Figures 5.4 and 5.5 for 

HGV vehicles. 

3.5 

 The default power and weight 

distributions of MGVs and HGVs 

within Paramics were adjusted in 

accordance with UK MGV and 

HGV manufacturer specifications. 

 

Car & LGV - Deceleration 2.8 2.8 

Car & LGV - Power kW 50-120 50-120 

Car & LGV - Weight kg 700–1,500 700–1,500 

MGV - Acceleration 
m/s

2
 

3.5 3.5 

MGV - Deceleration 2.8 2.8 

MGV - Power kW 50-120 50-120 

MGV - Weight kg 700–1,500 1,500-7,500 

HGV - Acceleration 
m/s

2
 

2.2 2.2 

HGV - Deceleration 1.3 1.3 

HGV - Power kW 100–500 100-500 

HGV - Weight kg 2,800-40,000 7,500-42,000 
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Micro-Simulation 

Parameter 

(Table 2 in HA 

Guidelines) 

Criteria Unit of 

Measurement 

Default value 

in Paramics  

Guidance / Indicative 

Ranges from HA Micro-

Simulation Guidance 

Values used in 

Durham Paramics 

Model 

Comment 

Desired Speed 

Distribution 

(Desired speed from which 

the driver will sample on 

entry to the model) 

- 

N/a 

(specify desired 

speed 

distribution 

curve) 

Variable 

depending on 

link type 

Seek to replicate speed 

distribution curve shown 

in Figure 5.6 of HA 

Guidelines for a 70 mph 

Motorway 

Profiled in accordance 

with DfT transport 

statistics.  Each link 

within the Paramics 

model has been 

assigned the 

appropriate speed 

distribution. 

 Speed distribution curves for cars 

and HGVs produced in accordance 

with DfT statistics (2005) reflect 

the shape of the curves in Figure 

5.6 of HA Guidelines. 

 These speed distributions include a 

proportion of traffic which will not 

adhere to the 70mph speed limit 

(assuming free-flow conditions) 

therefore considered realistic.  

 
Driver awareness of 

vehicles around them 

(Number of vehicles that it 

is assumed that a driver 

observes ahead in making 

his decisions on lane 

changing etc) 

- 

Number of 

vehicles / 

distance 

2 vehicles and 

250m look 

ahead distance 

for all link types 

2 vehicles appears 

sensible, but can be 

increased to 5 vehicles 

with minor effects. 

Driver awareness 

adjusted to reflect link 

types: 

Freeway : 5 vehs, 

300m 

Motorway : 5 vehs, 

300m 

Rural : 5 vehs, 250m 

 

 Look ahead distances increased to 

300m and 5 vehicles for motorway 

links and merges/diverges (freeway 

links) to reflect the fact that 

motorway drivers will look further 

ahead and hence be more aware of 

other vehicles on the network. 

 

Influence of signing on 

the approach to a 

diverge on the motorway 

on lane selection 

(Modelling how vehicles 

move across and when to 

make the move in order to 

- 
Metres 

200m (although 

varies 

depending on 

network 

modelled) 

Recommended approach is 

to enable the probability of 

lane changing [to diverge 

off the mainline] to be 

spaced out along a stretch 

of the motorway. 

Typically set at 800-

1200 metres from 

junction diverge to 

reflect motorway 

signing. 

 Paramics adopts the recommended 

approach of enabling lane change 

to be spaced out, reflecting 

mainline signing. 

 Model performance has been 

observed through calibration to 

ensure that inappropriate weaving 

is not taking place and that 

excessive queuing does not occur in 

the nearside lane due to significant 
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Micro-Simulation 

Parameter 

(Table 2 in HA 

Guidelines) 

Criteria Unit of 

Measurement 

Default value 

in Paramics  

Guidance / Indicative 

Ranges from HA Micro-

Simulation Guidance 

Values used in 

Durham Paramics 

Model 

Comment 

leave the motorway) volumes of traffic seeking to move 

across early. 

 

Co-operative Merging 

(Treatment of merging 

traffic and the co-

operative nature of main 

line traffic) 

- 
N/a 

(behavioural 

action) 

No single 

parameter 

Incumbent on the modeller 

to state how this behaviour 

has been modelled. 

No specific values. 

 Co-operative merging (merge-in-

turn) is done automatically as part 

of the behaviour model 

 Priority rules (including replicating 

yellow box operation) have been 

used throughout the model, in 

particular at the boundary with the 

urban network in order to model 

co-operative merging. 

 

Implied capacity at 

roundabouts and signal 

stop lines 

(Replicating observed 

entry capacities at 

roundabouts and stopline 

saturation flows at traffic 

signalised junctions) 

- 
N/a 

(dependent on 

junction form) 

N/a 

Micro-

simulation 

models do not 

have input 

values for 

capacity and 

saturation flow 

Incumbent on the modeller 

to provide output data that 

shows the effective 

outturn capacity for key 

points and hence 

demonstrate that 

reasonable values have 

been used. 

 Empirical traffic signal 

timings have been 

used. 

 Headway and gap 

acceptance have been 

defined to reflect site 

specific geometry. 

  

 

Minimum distance 

between vehicles at 

standstill 

- 
metres 

1.5m for all link 

types 

(CC0 

parameter) 

1.5m between vehicles  

(range of 1.0m to 2.0m) 
1.5m for all link types 

 Through motorway slip road flow 

and queue calibration described 

above, Paramics default value of 

1.5m between vehicles is 

considered to be appropriate. 
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3.6 Calibration Summary 

 

The stability of the base AM and PM peak Durham Paramics models were tested using 

10 random seed runs during each peak period with the average of the ten used for 

reporting against the DMRB criteria.  At an aggregate level, Paramics outputs for traffic 

flows satisfied all DMRB criteria. 

 

Based on calibration results and iterative adjustments undertaken as part of the 

calibration process (including network and matrices modifications and adjustments to 

parameters), the base Durham Paramics model is considered to calibrate sufficiently to 

be taken forward for validation. 

 

Due to the 24 hour nature of pollution modelling it was necessary to expand the Durham 

Paramics model to cover a full 24 hour day as detailed in Section 3.4.2. To enable the 

expansion of the modelled period, off-peak matrices were developed based on scaled 

traffic factors and the peak matrices.  Full 24 hour calibration of the model was not 

deemed appropriate as the peak hour calibration provided confidence in the 

performance of the matrices when applied to the modelled network, and the off-peak 

matrices expansion was subject to separate checks (See Section 3.5). However, 24 hour 

validation of the model performance against independent empirical data was performed 

to provide confidence the model reflected real world conditions throughout the 

modelled day (See Section 3.7 and Appendix B). 

 

3.7 Validation 

 

Validation is defined as the qualitative comparison of data produced by the network 

model with data not used as a constraint in the model calibration or the direct estimation 

of the accuracy of the model data.  The principle behind it is to check that the 

calibration is valid and to assess the quality of the information provided by the model 

(Highways Agency, 1996).  

 

As described in Section 3.7, validation and calibration are integrated processes and as 

such have been considered at each stage of model development in order to understand 

model weaknesses. 
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It is important to recognise that the validation outputs from the Paramics model would 

not be expected to achieve the same level of agreement with independent data (in terms 

of DMRB criteria) as that achieved for calibration. 

 

The validation of the base Durham models focuses on comparing simulated Durham 

link flows to independent ATC link flow data, obtained from permanent traffic counters 

by DCC. Error messages outputted from Paramics have also been reviewed to ensure 

that all vehicles exist within the network and are not erroneously removed. 24 hour 

traffic flow validation was carried out across the modelled network to ensure the models 

suitability for emissions modelling using an IEM (Section 3.4.2.). 

 

3.7.1 Traffic Flow Validation 

 

To present a robust validation process 28 link flows were examined against available 

validation traffic flow data provided by DCC. 

 

Detailed hourly validation results are provided in Appendix B . Table 11, Table 12 and 

Table 13 provide a summary of the link flow validation results at 28 data collection sites 

for the AM Peak, PM Peak and complete 24 hour modelled period respectively. 
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Table 11 Link Flow Validation: AM Peak hour 

Statistic 

Recommended 

Criteria 

Paramics Model 

Results 

0800-0900 

Number of counts compared n/a 28 

Maximum GEH for 85% of links <5 1 

Average GEH for 85% of links <2 0.5 

Average GEH for 100% of links <4 0.7 

counts <700 vph (Maximum 

Absolute difference of 85% of links) <100 vph 23 

counts between 700 to 2,700 vph 

(Maximum Absolute difference of 

85% of links) <15% 2.6% 

counts >2,700 vph (Maximum 

Absolute difference of 85% of links) <400 vph 56 

 

Table 12 Link Flow Validation: PM Peak hour 

Statistic 

Recommended 

Criteria 

Paramics Model 

Results 

1700-1800 

Number of counts compared n/a 28 

Maximum GEH for 85% of links <5 1 

Average GEH for 85% of links <2 0.5 

Average GEH for 100% of links <4 0.7 

counts <700 vph (Maximum 

Absolute difference of 85% of links) <100 vph 23 

counts between 700 to 2,700 vph 

(Maximum Absolute difference of 

85% of links) <15% 2.6% 

counts >2,700 vph (Maximum 

Absolute difference of 85% of links) <400 vph 56 
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Table 13 Link Flow Validation: 24 hour Period 

Statistic 

Recommended 

Criteria 

Paramics Model 

Results 

24 hour period 

Number of counts compared n/a 28 

Maximum GEH for 85% of links <5 1 

Average GEH for 85% of links <2 0.5 

Average GEH for 100% of links <4 0.7 

counts <700 vph (Maximum 

Absolute difference of 85% of links) <100 vph 23 

counts between 700 to 2,700 vph 

(Maximum Absolute difference of 

85% of links) <15% 2.6% 

counts >2,700 vph (Maximum 

Absolute difference of 85% of links) <400 vph 56 

 

3.8 Application of modelling tools to research  

 

This section details how the modelling framework and modelling tools described in the 

wider chapter have been applied in order to explore the core research themes of this 

thesis. 

 

To provide assurance on the devised modelling framework’s suitability for investigating 

the research themes, the modelling framework has been applied in Durham at the meso-

scale in Chapter 4.  As well as testing the suitability of the core framework, applying it 

enabled an understanding of the EJ of the spatial distribution of air quality across 

Durham at the meso-scale. Furthermore, the pilot was used to identify limitations which 

were addressed in more detailed micro-scale assessments of EJ in subsequent chapters. 

 

Reflecting on the current literature and building upon the outcomes of Chapter 4, the 

second phase of the research aims to provide a comprehensive EJ assessment of air 

quality in the North East through two distinct studies presented in Chapter 5.  Firstly, to 

improve understanding of local level interactions, a fine spatial resolution case study 
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was conducted centred on the City of Durham.  Therefore, a nested modelling approach 

was adopted to allow the EJ investigation to be conducted across scales. The micro-

scale study aimed to address some of the shortcomings of a meso-scale study by 

addressing issues of scale and air quality model performance.  Secondly, to compare 

and contrast findings from the studies in the City of Durham, two further meso-scale 

studies of Newcastle upon Tyne and Gateshead provided insight into the EJ of these 

areas, as well as determining the suitability of the modelling framework in different 

areas within the north east of England. 

 

Finally, building on findings from the micro-scale study described in Chapter 5, which 

reveals that the adopted modelling approach significantly improves the performance of 

dispersion modelling when measured against monitored data, it was acknowledged that 

the performance enhancement came due to the ability to more accurately estimate 

vehicle emissions in congested traffic conditions.  Therefore, research is developed in 

Chapter 6 which aims to exploit this ability by completing a congestion sensitive 

assessment of traffic management solutions for air quality and low carbon goals that 

may create only subtle changes in traffic flow regimes.  Therefore, the application of the 

modelling approach was tested through investigations into two distinct transport 

strategies.  Firstly, the impact of a traffic engineering scheme aimed at reducing 

network emissions (specifically NO2), as well as congestion and delay, was tested. 

Secondly, reduced VKT strategies were tested to assess the reduction in traffic required 

to meet various carbon and air quality targets under varying fleet assumptions. 

 

Additionally, the impact of air quality and carbon management measures on existing EJ 

concerns were assessed using the methodology outlined in the ‘existing scenario’ micro-

scale EJ assessment presented in Chapter 5. As in the previous micro-scale study 

Durham was selected as an appropriate study area (Chapter 4). 

 

3.9 Accumulation of Errors 

 

It is important to consider the accumulation of errors when conducting any research. 

The scope for issues surrounding accumulation of errors increases when conducting 

research across multiple themes and modelling processes using large and varied data 

sources (Garnett, 2016).  In this research, deprivation data is analysed against modelled 
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air quality, based on modelled emissions outputs, themselves based on outputs from a 

traffic model.  Despite the presence of calibration and validation at each stage of the 

modelling framework, it could be considered that a risk of accumulation of errors exists. 

However, whilst a risk of accumulation of errors is present in this research, in reality the 

modelling framework presented is reliant on, and validated against, external empirical 

data at the key final step of the modelling process.  Base case modelled air quality 

outputs are validated directly against observed concentration values collected from 

diffusion tubes.  Statistical analysis, including use of fractional bias using the 

methodology of Chang and Hanna (2005), indicates no systematic under or over-

prediction for the modelled results (Section 4.3.1 and 5.2.2.1).  This provides resolute 

confidence that the air quality outputs are within an acceptable level of accuracy, 

despite any potential presence of accumulation of error in the preceding emissions and 

traffic modelling.   

 

The importance of the air quality modelling validation step is noted, as whilst validation 

at each step of the modelling framework is independent from the process that went 

before, the risk of accumulation of errors is present in the preceding steps to the air 

quality modelling (i.e. traffic and emissions modelling). This risk is present as whilst 

during the development of the IEM used in this research the emissions outputs produced 

were validated against laboratory derived emissions outputs during the PHEM project 

(Section 2.7.1), it was not deemed feasible to conduct independent validation of the 

specific emissions outputs generated in this study (i.e. independent validation against 

data from instrumented vehicles or similar (Section 2.7.2)). 

 

Overall, it is considered that the robust validation process adopted across the modelling 

framework developed in this research has successfully mitigated against the risk of 

accumulation of errors. 

  

3.10 Summary 

 

This chapter has provided an overview of the modelling framework developed in this 

research; and a comprehensive description of the modelling tools adopted, including the 

necessary calibration and validation techniques performed.   
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CHAPTER 4 

 

4. Application of Modelling Framework in Durham 

 

To provide assurance on the devised modelling frameworks suitability for investigating 

the research themes, the modelling framework has been applied in Durham at the meso-

scale in this chapter.  

 

4.1 Meso-scale Durham Pilot 

 

As highlighted in Chapters 1 and 3 and in Chapter 2, the Literature Review, there is a 

strong requirement for research into the EJ of the spatial distribution of air quality.  In 

addition, none of those studies have investigated this within the context of the North 

East region. 

 

Therefore, this chapter provides details of a pilot undertaken in the City of Durham 

aimed at satisfying two key objectives. Firstly, to provide assurance on the modelling 

framework’s suitability for investigating the research themes, the modelling framework 

described in Section 3.2 has been applied in Durham at the meso-scale. Secondly, an 

understanding of the EJ of the spatial distribution of air quality across Durham is sought 

at the meso-scale.  

 

Information on the City of Durham and its suitability for a case study area has been 

discussed in Chapter 1. In the context of this pilot, ‘City of Durham’ refers to an area 

shown in Figure 12 covering approximately 72 square miles stretching from Pittington, 

Sherburn and Ludworth in the east, to Bearpark and Witton Gilbert in the west and 

encompassing all of Durham City centre. The district was actually abolished as part of 

the 2009 structural changes to local government in England; all functions of principal 

authority local government are now administered by the unitary council DCC (Durham 

County Council, 2007). 

 

An overview of the methodology adopted for the pilot is given in Section 4.2 below.  

The results, discussions and conclusions are given in subsequent sections. 
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Figure 12. City of Durham Pilot Study Area. 
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4.2 Methodology 

 

The modelling structure presented in Chapter 3, Figure 3 has been expanded below to 

provide details of the modelling and data packages adopted for the meso-scale Durham 

pilot study. 

 

 

 

 

 

 

 

 

 

Figure 13. Meso-scale Durham Modelling Methodology 

 

4.2.1 Transport Data 

 

The traffic data used in this research was derived from the Transport Planning Model 

(TPM). The strategic TPM was built using CUBE Voyager (Citilabs, 2012).  The base 

year for the modelling was 2010.  Details of this highway model can be found in 

Section 3.4.1.  The TPM was cordoned using a sub-model within the CUBE program to 

reflect the size and shape of the City of Durham district (Atkins, 2012). After the cordon 

process a total of 5491 links were present in the modeled network. 

 

In order to ensure the traffic data from the TPM was suitable for emissions modelling, it 

was necessary to convert the modelled peak hour flows to provide 24 hour annual 

average hourly traffic flows.  DCC (2011) provided expansion factors to enable the 

calculation of annual average daily flow (AADF) and diurnal profiles (Table 14).  The 

 4. Health and Environmental Justice Modelling 

 
HES Data (Health) / IMD (Socio-

economics)  NEPHO, 2012 / Social Disadvantage 
Research Centre, Oxford, 2010 

 

3. Dispersion Model 

 ADMS-Urban  
CERC, 2006 

 

 

2. Emission Model 

 PITHEM  Namdeo et al, 2011 

 

1. Transport Model 

  CUBE  
TPM Model obtained from DCC 

(Citilabs, 2012) 
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expansion factors were derived from empirical traffic data and enabled the expansion of 

the peak hour and Inter peak (IP) values. Expansion factors are used to convert hour 

totals into flow figures that represent traffic in an average 24 hour period, or AADF. 

AADF represents the number of vehicles estimated to pass a given point on the road in 

a 24 hour period on an average day in the year (DfT, 2016). It is understood that in 

order to produce the provided expansion factors DCC followed a methodology similar 

to that described in the DfT’s “Road Traffic Estimates – Methodology Note” (DfT, 

2016). The AM, IP and PM expansion factors were applied to the corresponding peak 

flows obtained from CUBE.  

 

Table 14 Expansion factors provided by DCC (2011) used to calculate annual average 

hourly traffic flows. 

Period 
Factor 

 

AM Peak Period: 07:00-10:00 2.4 

IP Period: Pre 07:00, 10:00-16:00, Post19:00 6.5 

PM Peak Period: 16:00-19:00 2.6 

 

Total hourly traffic flows for each link were calculated. Completed profiles were then 

transformed to meet the input requirements of AMDS-urban on a link by link basis 

(profiles must average one and add up to 24; CERC 2006). 

 

Expansion factors that enabled the development of Saturday and Sunday profiles were 

also provided: 

• Weekday flow = 1.24 (adjusting factor) * (3*AM + 6*PM + 3*PM)  

• Weekend flow = 0.77 (adjusting factor) * (3*AM + 6*PM + 3*PM) 

It was assumed 253 weekdays, and 112 weekend days per year. Thus, 

• Annual traffic flow= 253* average weekday flow+112* average weekend flow. 

 

4.2.2 Emissions 

 

PITHEM (Namdeo and Goodman, 2012) was used to calculate emissions from road 

transport.  The methodology and calculations behind the emissions estimates produced 
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by this programme are described in detail in Sections 2.6 and 4.2.2.  PITHEM contains 

an integral emission model which calculates emissions and particulates using latest UK 

emission factors (i.e. National Atmospheric Emissions Inventory (NAEI)).  National 

fleet emissions factors are determined as a function of vehicle type, age, emission 

control standard, engine size and fuel used.  PITHEM is currently under development to 

take into account updated NOx Emission Factors taken from the latest DEFRA 

Emission Factor Toolkit - Version 5.1.3.  These factors are applied via PITHEM to the 

count and traffic speed data obtained for each modelled link.  Emissions estimates were 

produced for each link in the cordoned TPM model (Figure 14).  

 

    

 

Figure 14. Major road network emissions in the City of Durham 

 

AM, I\P and PM peak network speeds were used to calculate the average-speed for each 

link.  Vehicle fleet compositions were developed according to the structure of PITHEM 

using data from the TPM model.  

 

After discussion with DCC it was confirmed that no data existed regarding emissions 

from point or area sources in the area. Therefore, commercial and domestic 

contributions to local air pollution in Durham were obtained from DEFRA background 

Legend
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map sector data (Table 15).  This table provides details of the source components which 

were selected to comprise background emissions.  This selection was made following 

guidance from DEFRA’s Background Concentration Maps User Guide; and discussion 

with DCCs Air quality Officer, David Gribben (2012).  The source sectors include 

transport, industry and commercial.  The provision of individual sector data enables 

excluded sectors to be subtracted from the total background.  “This approach reduces 

the risk of double counting pollutant concentrations by avoiding the inclusion of both 

the estimated background component and the detailed sector component being 

evaluated” (DEFRA, 2017a).  
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Table 15 Point or area source data (DEFRA, 2012a).  

DEFRA Header Description 

Industry_in_10 Industry area in square sources 

(combustion in industry, 

energy production, extraction of fossil 

fuel, and waste) 

Industry_out_10 Industry area out square sources 

(combustion in industry, 

energy production, extraction of fossil 

fuel, and waste) 

Domestic_in_10 

 

Domestic, institutional and commercial 

space heating in square sources 

Domestic_out_10 

 

Domestic, institutional and commercial 

space heating out square sources 

Aircraft_in_10 Aircraft in square sources 

Aircraft_out_10 Aircraft out square sources 

Rail_in_10 Rail in square sources 

Rail_out_10 Rail out square sources 

Other_in_10 Other in square sources (ships, offroad and 

other emissions) 

Other_out_10 

 

Other out square sources (ships, offroad 

and other emissions) 

Point_Sources_10 Point sources 
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4.2.3 ADMS-Urban 

 

Emissions were dispersed using the Gaussian Dispersion Model ADMS (CERC, 2006) 

(See Section 3.8.1). A review of Gaussian Dispersion Models was provided in this 

section.  ADMS was identified as the most suitable program for this research due to the 

availability of licensing and widespread use by DCC (Durham County Council, 2016). 

The model set-up carried out in this work is documented in the following sections. 

 

4.2.4 Meteorological Data 

 

Meteorological data was obtained from an automatic weather station maintained by 

Durham University on behalf of the Met Office (UK's National Weather Service). 

Hourly data from 2010 was used in the modelling to match the traffic data base year.  

Meteorological data consisted of wind speed (m/s), wind direction (
o
), temperature (

o
C), 

precipitation rate (mm/h), relative humidity (%) and cloud cover (oktas). 

 

Table 16 Meteorological data used in this modelling study 

Source: Durham University, 2011 

Data Name Abbreviated name Units 

Wind Speed U m/s 

Wind Direction PHI Degrees 

Temperature T0C 
o
C 

Precipitation Rate  P mm/hour 

Relative Humidity RHUM % 

Cloud Cover CL oktas 

Hour THOUR - 

Day TDAY - 

Year YEAR - 
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It is accepted that meteorological conditions vary at the micro and meso-scale (Vallero, 

2008).  However, meteorological data at this scale was not available for the study area. 

Therefore, whilst the use of single point meteorological data is not representative of the 

meteorological conditions throughout the area, it was considered the best available. 

Furthermore, the collection of additional meteorological data was neither financially nor 

practically feasible within the timescale of this research. 

 

Table 17 and Table 18 provide a summary of the meteorological conditions for the city 

of Durham for the year 2010. 

 

Table 17 Summary of meteorological conditions for the city of Durham for the year 

2010 

 

Temperature 

(
o
C) 

Wind 

Speed 

(m/s) 

Precipitation 

(mm/h) 

Relative 

Humidity 

(%) 

Cloud 

Cover 

(Oktas) 

Average 10.14 2.62 0.08 80.23 3.76 

Maximum 37.24 11.37 10.40 99.90 8 

Minimum -6.00 0.00 0.00 0 0 

 

Higher temperatures were observed between the months of April and August which 

corresponds to British Summer Time (BST). The maximum wind speed (11m/s) was 

recorded on 11
th

 November at 23.00h.  The highest precipitation rate occurred on 1
st
 

November at 19.00h.  Finally, higher relative humidity and cloud cover values were 

observed between the months of August and March. 

 

The prevailing wind was from the south-south west and east direction which influences 

the dispersal of emissions across the study area (Table 18).  Prevailing wind can be 

observed as higher frequency wind directions over the observed time period have 

spokes with longer radial length (scale indicates hours in a year that the wind blows 

from that direction).  The wind orientation is of particular significance when 

considering the layout of Durham’s major road network as roads perpendicular to the 

prevailing wind are more likely to result in high pollution areas due to the effects of 

canyons (Section 2.8).  Yearly data was analysed to investigate whether there was any 

significance in wind direction variation across the year or seasons.  However, no 
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specific pattern or distribution was identified.  Wind speed is categorised into 

appropriate ranges and illustrated by colour for each directional spoke.  9% of the 

hourly sequential data exhibited wind speeds of ≤1m/s and 5% of the data exhibiting 

wind speeds of ≤0.75m/s.  As discussed in Section 2.8 dispersion modelling performs 

poorly in calm conditions.  However, the proportion of calm conditions presented in the 

data is relatively low and the majority of data can be successfully processed in 

subsequent model runs.  

 

Table 18 Wind rose (wind speed and wind direction) for the city of Durham  

Year 2010 

 

Radial scale (hours) 

 

Dry deposition (Fdry) and wet deposition (𝐹𝑤𝑒𝑡) was applied in ADMS-Urban for this 

pilot.  The requirement to take both processes into account in air quality modelling is 

identified in Section 2.8.1.  
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4.2.5 Background Data 

 

The use of background data from a rural monitoring station is appropriate if all local 

sources are explicitly modelled (DEFRA, 2017a).  Therefore, background data was 

obtained from rural monitoring stations for use in this investigation.  Background 

concentrations from two background monitoring sites, namely Byland Lodge and 

McNally Place were selected for NO2 and NOx for 2010.  These background sites were 

considered the most appropriate option for use in this research due to their location 

within the study area and their use in statutory air quality modelling by Durham County 

Council, for example, Air Quality Progress Report, Durham County Council, 2010a.  

 

Although the background data from the two identified sites met the requirements of 

ADMS-Urban, only annual mean concentrations were available.  The absence of hourly 

data restricted some of the evaluation statistics which could be applied to the modelling 

(CERC, 2006). 

 

4.2.6 Chemical Reaction Scheme 

 

ADMS-Urban contains a chemical reaction scheme known as The Generic Reaction Set 

(GRS) scheme that addresses a series of chemical reactions which define NOx 

chemistry.  Inputs of NOx, NO2 and O3 background concentrations are required prior to 

modelling this chemistry.  The GRS takes into account eight chemical reactions and as 

such does not extend to include all the chemical reactions that take place in the 

atmosphere (CERC, 2006).  

 

Two separate chemistry modules within ADMS-Urban make use of the GRS.  The 

simpler of the two modules assumes no spatial variation in the background pollutant 

levels.  However, the Chemical Reaction Scheme with Trajectory (CRST) model takes 

spatial variation into account through the use of a Lagrangian box model (CERC, 2006).  

 

The CRST was selected in this investigation to allow for spatial variability in 

photochemical reactions.  The module aggregates the emissions, meteorological 

conditions and deposition rates into 5km x 5km grid squares and then calculates local 

pollutant concentrations using the GRS.  
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4.2.7 Grids and Specified Points  

 

To model spatial variation point, area and road emissions, sources were aggregated to a 

grid source (200m x 200m resolution). Whilst a smaller grid size could potentially 

enhance the accuracy of the results, the grid size was deemed appropriate for this meso-

scale study due to the increase in run times associated with finer resolution grids. A 

much higher resolution grid output was explored for the micro-scale Durham study 

described in Chapter 6.  ‘Specified Points’ were also selected in the modelling to allow 

for outputs at monitoring stations (CERC, 2006). 

 

4.2.8 Health and Environmental Justice Modelling 

 

HES data has been obtained from the North East Public Health Observatory (NEPHO) 

(See Section 2.10).  Suitable ICD codes were selected so that respiratory and circulatory 

illness could be accurately represented in accordance with COMEAP. Health 

parameters reported on include respiratory associated illnesses including asthma 

(COMEAP, 2010; COMEAP, 2013; COMEAP, 2015).  Specific references relevant to 

the selected illnesses are detailed in Section 5.2.3.  

 

All data was output at LSOA level. Further segmentation of the data, for example by 

age, was avoided to reduce data suppression.  As the City of Durham AQMA was 

declared based on continued NO2 exceedance and research suggests that NO2’s primary 

health impact is adverse respiratory effects, the results of respiratory admissions are 

reported in this research (COMEAP, 2010; COMEAP, 2013; COMEAP, 2015).   

 

Despite assistance and support from NEPHO, the sensitivities around an individual’s 

health did lead to limitations in the data provided.  In order to protect anonymity it was 

not possible to obtain individual or household data.  Even at LSOA level the data 

provided does not represent actual admission rates, given that in instances where 

admission rates are low for a particular illness, the actual figure is supressed so as to 

protect anonymity.  Whilst still significant, admission rates for respiratory illness are 

generally fairly low in the UK, accounting for 5% of hospital admissions in 2011 

(British Lung Foundation, 2018).  
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Therefore, it is anticipated that data suppression will have had an impact on subsequent 

total admission rates, and it is assumed that rates across all hospital admissions differ 

slightly from reality.  However, whilst this limits some of the potential statistical 

methods that could be used to analyse the results, overall the data provides a valid 

understanding of health both in, and relative to, other LSOAs.  Moreover, in the context 

of an EJ study the effect of data suppression, whilst unquantifiable, is not deemed 

significant where HES data has been used (e.g. Gilmore, 2011). 

 

Finally, the IMD data have been used as a general measure of social deprivation in this 

study (See Section 2.9). To summarise, the IMD were developed by the Social 

Disadvantage Research Centre at the University of Oxford, using 38 indicators which 

have been divided into 7 weighted domains including measures of income; 

employment; mortality; education; housing; crime; and living environment (ONS, 

2010).  This index is available to download for each Lower Super Output Area (LSOA) 

from the Office of National Statistics.  Data available includes the IMD score, rank of 

Index of IMD, and the individual score and rank of each domain with the IMD.  For this 

investigation, results from the 2010 IMD are reported as these figures are most relevant 

for the air quality modelling base year of 2010. 

 

As with the available health data, the use of IMD data in the research provided 

limitations for the research.  Firstly, in terms of scale, the use of LSOA area data in the 

pilot study was largely determined by the availability of suitable deprivation data.  This 

limitation is discussed further in Section 4.4.2 and stems from the fact that each LSOA 

has a minimum population of 1000, and a mean population of 1500. In contrast, 

Durham’s AQMA covers a residential population of approximately 750. This makes 

obtaining a detailed understanding of the relative deprivation of those households 

subject to the very highest levels of air pollution in Durham impossible using this 

process and data source.  
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4.3 Results 

4.3.1 Air Quality Results 

 

The evaluation of the model performance against observed monitored data is discussed 

in detail Section 5.2.2.2.  The model evaluation is discussed in the context of a 

comparison between the relative performance of the meso-scale pilot model described 

in this chapter, and an alternative model derived from micro-scale emissions inputs 

discussed in Chapter 5.  Both models are then compared against observed data. 

Thereby, the meso-scale model performance and evaluation is not discussed in any 

detail in this chapter.  

 

To summarise the findings, an analysis of fractional bias (FB) using the methodology of 

Chang and Hanna (2005) found that FB values were within a factor of two of the 

observed, indicating no systematic under or over-prediction for the model.  FB is a 

measure of mean bias.  It indicates the mean under or over-prediction and is calculated 

according to the below equation: 

 

 

 

Where Co denotes the observed concentration values, and Cp  denotes predicted 

concentration values (C̅ denotes the average of the data set).  FB ranges from -2 

(extreme over-prediction) to +2 (extreme under-prediction) with a perfect model having 

an FB of zero.  FB is based on a linear scale and the systematic bias refers to the 

arithmetic difference between Cp  and Co. (Chang and Hanna, 2005). 

 

Furthermore, a review of the spatial distribution of air quality across the study area 

reveals a distinct pattern of high NO2 levels within the central City of Durham urban 

zone. This is consistent with smaller scale modelling produced by DCC during work 

completed prior to the declaration of an AQMA (Durham County Council, 2007). 
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4.3.2 Relationship between deprivation and health 

 

The existence of a complex relationship between deprivation and health is well 

documented in the literature review, Section 2.5.1. Prior to a review of the spatial 

distribution of Durham’s air quality, it is important to consider the base line make up of 

Durham’s deprivation standings relative to the wider area of England. Additionally, the 

relationship between deprivation and health data in Durham has been considered to 

provide further local context. 

 

 

Figure 15. Percentage of City of Durham LSOAs in each national deprivation decile  

 

Generally, Durham has a broad mix of both affluent and more deprived areas. Figure 15 

shows the percentage of City of Durham LSOAs in each national deprivation decile. 

The City of Durham comprises 54 LSOAs. The single most represented decile is the 

‘10% most deprived’ indicating a substantial presence of deprived areas within the 

study boundary.  However, there is strong representation across the deciles and overall 

41% of City of Durham LSOAs fall in the 50% least deprived deciles.  This indicates 

that the area as a whole contains a broad range of deprivation levels relative to the rest 

of the UK. 
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Figure 16. Indices of Multiple Deprivation Score for the City of Durham (LSOA) 

 

Figure 16 shows the IMD score mapped spatially for the City of Durham. Overall a 

pattern of a least deprived central area and a more deprived peripheral area is apparent. 

However, the single most deprived LSOA is contained within this central area (‘A’ 

Figure 16).  

 

The City of Durham AQMA was declared based on continued exceedance of NO2 

objectives. As discussed in Section 2.3, research suggests that NO2’s primary health 

impact is adverse respiratory effects (COMEAP, 2010; COMEAP, 2013; COMEAP, 

2015) (See also Appendix A). Therefore, respiratory admission data was investigated in 

this meso-scale study in order to determine if a relationship between deprivation and 

health was evident across the City of Durham.  
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Figure 17. Number of respiratory hospital admissions for the City of Durham (LSOA) 

 

Figure 17 shows the spatial distribution of total respiratory hospital admissions for the 

City of Durham from 2007 to 2010.  No succinct visual spatial pattern is evident in the 

results.  The highest total admissions were recorded in two LSOAs within the central 

City of Durham area.  The least number of admissions were recorded in two adjacent 

LSOAs approximately 2km north of Durham City centre. 

 

The lack of an identifiable pattern in the results is perhaps not surprising given that is 

recognised that there are an almost infinite set of circumstances that lead to an 

admission in to hospital.  Nonetheless this type of analysis is valid and of interest, for 

example, at the UK scale by Mitchell and Dorling (2003), and Mitchell et al. (2015) and 

a number of other studies detailed in Chapter 2, Table 1 in which LSOA hospital 

admissions data is reviewed. 

 

Considering respiratory illness, external factors such as environment are an 

acknowledged and serious contribution to respiratory health (Unger and Bogaert, 2017). 

However, as discussed in Section 2.5, the mechanisms that lead to respiratory illness are 

vast, from early interactions between infectious agents such as viruses, bacterial 

infections, to an individual’s composition of the respiratory microbiome (Unger and 

Bogaert, 2017).  In combination with individual general health, lifestyle choices such as 

prevalence of smoking, and general population demographics including age and gender, 
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the number of potential confounding factors of consideration is significantly beyond 

what could reasonably be expected to be explored; and the prevalence of suitable data is 

a substantial limitation should such work ever be attempted.  Furthermore, despite 

significant advances in medicinal research and understanding of respiratory illness, 

there are still significant knowledge gaps in understanding cause and effect. For 

example, the importance of other underlining health issues, including mental health, has 

only recently been understood as individuals with mental illness have an increased risk 

of a wide range of illness including respiratory disease (Chadwick, 2018).  

 

As discussed in Section 2.5.2, it must be noted that it is not proposed to investigate the 

causal factors behind the data.  Such a study, if achievable in any capacity, falls 

significantly beyond the scope of this project.  Instead, in keeping with the majority of 

work in the field of EJ, the challenge is to identify and understand links between the 

themes so as to highlight injustices and consider strategies which may resolve them. 

 

Figure 18. Relationship between deprivation (IMD) and health (respiratory admissions) 

in Durham. 

 

A scatter plot of deprivation and respiratory admissions shows the relationship between 

the two themes (Figure 18).  Using simple linear regression it is evident that there is a 

positive relationship between the variables, although an R
2 

value of 0.29 suggests this 

relationship is not particularly strong.  These findings are similar to those reported in 

other studies (See Namdeo and Stringer, 2008).  As discussed earlier in this section and 
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in work such as Namdeo and Stringer (2008) the prevalence of low R
2
 values is largely 

expected given the multitude of confounding factors that influence an individual’s 

personal health. 

 

4.3.3 Relationship between air quality, deprivation and health 

 

Following the modelling framework outlined in Section 4.2, mean modelled NO2 

outputs for each of the City of Durham’s LSOAs were paired with corresponding 

deprivation and health data. Analysis of these datasets allowed the EJ of the spatial 

distribution of City of Durham’s air quality to be identified. 

 

Scatter plots were produced to show the interrelationships between each of the themes 

(Figure 19 and Figure 20). The R
2 

values from the resultant scatter plots have been 

summarised in Table 19.  Linear regression was used, not to infer causality between the 

variables, instead to test for an association between them. 

 

The application of linear regression was deemed appropriate following a review of the 

methodologies adopted by King and Stedman 2000; Pye et al. 2001, 2010; Linares et al. 

2004; and Namdeo and Stringer 2008. 

 

King and Stedman (2000) used linear regression to identify a general positive 

correlation between PM10 and the Department of the Environment, Transport and the 

Regions (DETR) Index of Local Deprivation 1998; and NO2 and the DETR Index of 

Local Deprivation 1998 in London, Belfast and Birmingham.  

 

Similarly, Pye et al (2001) found evidence of a positive correlation between NO2 and 

PM10, and social deprivation (utilising the Index of Deprivation) for Greater London, 

Birmingham City District and Greater Belfast using linear regression.  In 2010 this 

work was revisited using updated social deprivation statistics, and the same application 

of linear regression.  Again, a positive correlation between air quality and social 

deprivation was identified. 

 

Linares et al 2004 used linear regression to analyse the effects of the principal urban 

pollutants (PM10, O3, SO2, NO2, and NOx) on daily emergency hospital admissions of 
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children less than ten years of age in Madrid, their findings indicated that the strongest 

association was with PM10.  

Finally, Namdeo and Stringer used (2008) UK Census 2001 data to derive indicators of 

health and deprivation levels of the population in a study area in Leeds. Cumulative 

deprivation index (CDI) and Cumulative Health Index (CHI) scores were plotted on a 

scatter plot and linear regression used to identify that social deprivation and health are 

strongly related in Leeds. 

 

 

Figure 19. Relationship between deprivation (IMD) and Air Quality (NO2) in Durham. 
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Figure 20. Relationship between health (respiratory admissions) and Air Quality (NO2) 

in Durham. 

 

No relationship was identified between either air quality and deprivation, or air quality 

and health using this technique. The fact both R
2 

values were negative for these 

relationships suggest a negative relationship between both air quality and health and air 

quality and deprivation. However, the low R
2 

values imply a low percentage of 

deviation can be explained by these relationships. 

 

Table 19 R
2 

values from scatter plots of the research themes 

 Deprivation Air Quality 

Deprivation  0.1093 

Health 0.2854 0.0427 

 

Quartile analysis was also conducted to investigate the relationship between the 

variables. The results show that the least deprived group (first quartile of deprivation 

index) experience higher NO2 concentrations compared to the most deprived group 

(third quartile of deprivation index) (Table 20).  These findings are in keeping with the 
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slope and R
2
 values and again imply a negative relationship between air quality and 

deprivation. 

 

These findings contradict those found by Mitchell and Dorling, 2003 and Namdeo and 

Stringer, 2008.  However, similar findings have been identified previously.  For 

example, King and Stedman (2000) found that whilst London, Birmingham and Belfast 

had higher concentrations of air pollutants in areas of greater social deprivation, Cardiff 

City did not appear to display any obvious correlation.  
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Table 20 NO2 and quartiles of deprivation and health 

Quartile Deprivation 

(IMD 

score) 

Health 

(Respiratory 

Admissions) 

Average of 

corresponding 

NO2 values 

(µg/m
3
) 

SD 

First quartile 

(25th percentile) 

7.53 48 25.45 1.54 

Second quartile 

(50th percentile) 

13.57 62 24.24 1.24 

Third quartile 

(75th percentile) 

25.20 85 24.31 1.77 

 

A surface plot of the results shows evidence of nonlinearity of the relationship between 

the variables (Figure 21).  Two distinct peaks are observed showing high NO2 and close 

to average respiratory admissions at both ends of the deprivation scale (# and ~). 

 

 

 

Figure 21. Surface plot of deprivation, health and average NO2 

 

The deprivation, health and air quality surface plot (Figure 21) provides strong evidence 

that the relationships between the themes are non-linear.  Furthermore, the constant 
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potential to apply other models to the data, for example, Poisson Regression (e.g. 

Schwartz, 1996); multiple linear regression (e.g. Wang and Chau, 2013); and 

multivariate regression (e.g. Walters, 1995).  The principle reason of adopting a 

nonlinear approach is to address the high number of variables that are likely present in 

the data.  One of the key variables included in the aforementioned studies are weather 

variables such as mean temperature, and mean humidity, given the impact of weather on 

common respiratory conditions such as asthma (Tosca et al, 2014).  Other variables 

likely to be present in the data and cited as independent variables in similar studies 

include information on seasonal influenza epidemics, season of admissions and sex and 

age groups (Wang and Chau, 2013). 

 

However, whilst it is acknowledged that there is scope for additional statistical analysis 

in the pilot study, a number of considerations led to the research developing in the 

direction of a microscale study, utilising a revised dataset, for the subsequent research.   

 

Firstly, the importance of scale in the findings. Namely, the use of LSOA level data in 

Durham leads to significant weaknesses as a result of the population size within a single 

LSOA (1500 mean number of residents), in relation to the physical size of the study 

area (52 LSOA’s), and particularly, the number of households identified as suffering 

exceedances in air quality targets (44 households). The impact of scale is discussed at 

length in Chapter 5 and 7.  These factors would limit the strength of further statistical 

analysis; and draw questions to the suitability of such work.  

 

Finally, the availability of health data suitable for use in a primarily geographical based 

research project.  The majority of the cited studies exploring links between air quality 

and health using Poisson Regression or similar techniques have access to large health 

datasets devoid of specific patient address information.  This type of data is readily 

available from appropriate institutions; and can be used in conduction with generalised 

air quality information, often at the city level, to explore links between the themes.   

However, given that this study is primarily focused on EJ and the spatial distribution of 

air quality, more specific patient address data was required in order to explore the 

spatial variations in the themes.  This limits data availability due to data protection 

conflicts. 
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Nonetheless, despite the recognised limitation of restricting the exploration of the pilot 

study data to an investigation of linear relationships, it was felt that the inclusion of 

linear regression analysis in the pilot was valuable.  This is as the identified weak 

relationships provided justification that further study was warranted, albeit at a more 

appropriate scale. 

 

4.4 Discussion 

 

4.4.1 EJ in City of Durham 

 

There is no evidence of environmental injustice in the distribution of air quality in the 

City of Durham at the meso-scale. Furthermore, whilst no linear relationship is evident, 

a review of the spatial patterns and quartiles of deprivation, health and air quality 

revealed some evidence of an inverse relationship. Some central Durham areas showed 

the lowest levels of deprivation, yet poor health and the poorest modelled air quality. In 

contrast a weak relationship between health and deprivation has been identified in City 

of Durham. 

 

Figure 22. Relationship between deprivation (IMD) and health (respiratory admissions) 

 

Additionally, evidence of clustering can be seen in the results. For example, a potential 

cluster of low deprivation, poor health LSOAs has been identified in Figure 22, 

indicated by the red points at the top left of the graph. A second cluster group has also 
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been identified in the bottom right of Figure 22. These data points represent LSOAs 

with lower respiratory admissions for their respective deprivation scores than appears to 

fit the general trend. 

 

Furthermore, when the identified clusters are viewed spatially, it is evident that this 

clustering has an apparent spatial dimension (Figure 23).  Cluster A, within the central 

area of the City of Durham study area could be characterised as an area of affluent 

central Durham, where health is poor and air quality relatively low.  In contrast, cluster 

B represents an opposing cluster of deprived, healthy areas in more peripheral locations. 

 

  

Figure 23. Spatial clustering in City of Durham 

A final consideration is the existence of confounding factors which may be influencing 

the results in a number of ways (Walker, 1992). Additionally, the impact of personal 

exposure to varying levels of air quality has an influence on health beyond an 

individual’s residential LSOA (Section 2.11).  The issue of confounding factors is 

discussed in Section 2.5.2.  

 

4.4.2 Limitations of Approach 

 

The accuracy of the air quality modelling used in this meso-scale pilot satisfies the 

recognised standard set of statistics under the European Initiative on Harmonisation 
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within Atmospheric Dispersion Modelling for Regulatory Purposes (Chang and Hanna, 

2005).  However, it is recognised that this accuracy could be improved further.  

Traditionally, fuel consumption and hence vehicle emissions, have been estimated by 

relating average vehicle speeds to fuel consumed per kilometre at that average speed.  

This is based on simple relationship “u-shaped” curve and is suitable for producing high 

level estimates in a strategic context (Walter, 1995).  Furthermore, this methodology 

fails to account for “congestion” emissions from stop-start traffic where fuel 

consumption and emissions will typically be higher.  This is a particularly significant 

omission as congested traffic is the major source of emissions in AQMAs (Chatterton, 

2008). 

 

The use of IEMs is explored in Chapter 5 to provide a more accurate estimation of 

traffic emissions in Durham at the micro-scale. 

 

Spatial scale has also emerged as a substantive limitation of this meso-scale study. 

Firstly, the size of the geodemographic boundary area is acknowledged to have a 

considerable impact on the results outcome of an EJ study.  For example, the IMD, used 

to characterise deprivation in this study is available at the LSOA level.  However, 

LSOAs cover a minimum population of 1000, and a mean population of 1500.  In 

contrast, Durham’s AQMA covers a residential population of approximately 750.  

Furthermore, according to the 2010 Detail Air Quality Assessment completed by DCC 

only 44 households in Durham are identified as being exposed to NO2 concentrations 

above 40µg/m
3
 (Durham County Council, 2010a).  Thereby, it is reasonable to conclude 

that LSOAs cover too large a population area to provide sufficient spatial detail for 

investigating relationships between deprivation and air quality.  However, IMD is 

widely used in EJ studies and air quality analysis research (See Table 1, Section 2.5.3). 

Secondly, the study area identified in this meso-scale study represents 54 LSOAs. This 

sample size limits the relevant statistical techniques which could be applied in this study 

(Walker, 2005). 

 

As discussed, a more detailed micro-scale study of Durham described in Chapter 5 and 

6 addresses some of the issues of spatial scale by using household level air quality and 

geodemographic data. Furthermore, the micro-scale study provides a more detailed 
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platform to explore the impact of results across spatial scales (e.g. household, postcode 

and LSOA). 

 

4.5 Summary 

 

This chapter has documented the successful application of the modelling framework 

described in Chapter 3 at the meso-scale.  The pilot, based in the City of Durham, 

provides assurance on the suitability of the framework for investigating the research 

themes identified in previous chapters. Furthermore, the pilot has identified limitations 

which will be addressed in a more detailed micro-scale assessment of EJ presented in 

Chapters 5 and 6. 

 

Moreover, an understanding of the EJ of the spatial distribution of air quality across 

Durham has been established at the meso-scale.  No evidence of environmental injustice 

has been identified using linear evaluation.  There is some evidence of spatial clustering 

in the results, including affluent central areas, where health is poor and air quality 

relatively low; and deprived, healthy areas in more peripheral locations.  The meso-

scale nature of the geodemographic data used in this study ensures further investigation 

into these findings should be conducted at the micro-scale.  Therefore, a more detailed 

micro-scale study was conducted and is presented in the following chapters.  

 

Health has emerged as an important driver for air quality policy (DOH, 2010).  

Research which establishes links between air quality, health and deprivation will enable 

a new emphasis on the importance of sustainable policy.  This research highlights the 

complexity of these relationships and the significance of spatial scale and local variation 

on any understanding of them.  It is hoped renewed understanding of this relationship 

and EJ concepts can aid step change in human behaviour, required if current sustainable 

policy aspirations are to be realised (Xenias, 2013). 
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CHAPTER 5 

 

5. Air Quality, Health and Environmental Justice  

 

5.1 Introduction 

The findings in Chapter 4 built upon the understanding that there is a complex 

relationship between air quality, health and EJ. 

 

Reflecting on the current literature and building upon the previous outcomes, this phase 

of the research aims to provide a comprehensive EJ assessment of air quality in the 

North East through two distinct studies.  Firstly, to improve understanding of local level 

interactions, a fine spatial resolution case study has been conducted centred on the City 

of Durham.  Therefore, a nested modelling approach has been adopted to allow the EJ 

investigation to be conducted across scales.  The micro-scale study will address some of 

the shortcomings of a meso-scale study by addressing issues of scale and air quality 

model performance.  Secondly, to compare and contrast findings from the studies in the 

City of Durham, two further meso-scale studies of Newcastle upon Tyne and Gateshead 

will provide insight into the EJ of these areas, as well as determine the suitability of the 

modelling framework in different areas within the North East of England. 

 

Whilst the EJ studies of Newcastle upon Tyne and Gateshead have been defined as 

‘meso-scale’ due to the size of the study areas, significant care has been taken to ensure 

the limitations identified in the City of Durham meso-scale trial described in Chapter 4 

are mitigated.  Therefore, despite the large study areas, fine postcode level 

geodemographic data has been used to enable a more comprehensive analysis of EJ at a 

scale better suited to the spatial variation of air quality within the city boundaries.  

 

5.2 Micro-scale Durham Environmental Justice Study 

Further to the meso-scale EJ study of the City of Durham described in Chapter 4 a 

micro-scale assessment has been completed.  This will shed light on the extent to which 

population groups across the area studied are equally likely to be exposed to the largely 

traffic related air pollution created by the public’s need for travel associated with goods, 

services, leisure and work (See Section 2.2 for discussion on the role of transport in air 

quality). 
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The key objectives of the micro-scale study are as follows: 

- To challenge and further explore the findings of the meso-scale study, which 

found no significant environmental injustice in the spatial distribution of 

Durham’s air quality; 

- To test the application of the modelling framework at a finer spatial scale, and 

address some of the highlighted limitations of analysing EJ at a typical meso-

scale level; 

- To determine whether the use of an IEM to calculate transport emissions as an 

input for air quality dispersion modelling has the potential to improve the 

performance of the dispersion modelling when measured against monitored data, 

and thereby increase the accuracy of the EJ assessment; 

- To investigate EJ using geodemographic data based on customer profiling in 

order to gain insight in to apparent spatial clustering of the EJ results in Durham. 

This represents an alternative approach to many EJ studies which traditionally 

use linear deprivation indices (See Section 3.3). 

 

5.2.1 Methodology 

The modelling structure presented in Chapter 3, Figure 3 has been expanded below to 

provide details of the modelling and data packages adopted for the micro-scale Durham 

study (Figure 24). 

 

 

 

 

 

 

 

 

Figure 24. Micro-scale Durham Modelling Methodology 

 4. Environmental Justice Modelling 

 Mosaic Public Sector (Household Data)  Experian, 2009 

 

3. Dispersion Model 

 ADMS  
CERC, 2006 

 

 

2. Emission Model 

 AIRE  SIAS, 2012 

 

1. Transport Model 

  S-Paramics  
Modified S-Paramics model adopted 

from DCC (SIAS, 2001) 
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The traffic data used in this micro-scale research was derived from an S-Paramics 

microsimulation model (SIAS, 2001).  Details of this model, the required amendments 

to ensure its suitability for providing data for emissions modelling, and the calibration 

and validation process undertaken to ensure reliability of results can be found in 

Sections 3.4 and 3.5. 

 

  

 

Figure 25. S-Paramics microsimulation model extents 

 

The Paramics model was cordoned within the emissions program to reflect the size and 

shape of Durham centre.  After the cordon process a total of 592 links were present in 

the modelled network (Figure 25).  This cordon represents a 4.0x2.5 km
2
 area of 

Durham, significantly smaller than the area covered in the meso-scale study described 

in Chapter 4.  In summary it encompasses Durham’s AQMA in its entirety and the 

majority of central Durham, including approximately 7500 residential properties. 

 

The IEM, AIRE (SIAS, 2012) was used to calculate emissions from road transport.  The 

methodology and calculations behind the emissions estimates produced by this 

programme are described in detail in Section 2.7.1, along with discussion on how this 

method has the potential to provide more accurate results than traditional average speed 

and flow based emissions estimates. Additionally, an exercise comparing the emissions 

results obtained using AIRE, with those obtained using the traditional average speed, 

average flow based method is presented in the following section. As discussed in 
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Chapter 4 no significant emissions from point or area sources were present in the area 

(See Section 4.2). 

 

The emissions were dispersed using the Gaussian Dispersion Model ADMS following 

the same procedure as for the Durham meso-scale study (CERC, 2006).  Similarly, 

identical meteorological and background data was applied in the modelling.  Finally, the 

same chemical reaction scheme settings were selected (Section 4.2.6) (Figure 26). 

       

24-hour microsimulation           Analysis of IEM Emissions results  Air Quality 

Modelling  

Figure 26. Outline of approach to modelling road networks. 

 

The selection of ‘Specified Points’ in the modelling allowed for air quality 

concentration outputs at monitoring stations, and enabled the comparison of results 

between this study and the meso-scale outputs discussed in the following section. 

Furthermore, ‘Specified Points’ were also used to output air quality concentrations for 

7500 residential property addresses examined in the EJ assessment for this chapter 

(Figure 27).  For illustrative purposes the variation point, area and road emissions 

sources were also aggregated to a shallow grid source (50m x 50m resolution).  Whilst 

this high resolution grid significantly increased run time, it remained acceptable due to 

the reduced size of the network when compared to the meso-scale study. 
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Figure 27. Location of 7471 residential property addresses in Durham study area 

 

To complement micro-scale air quality modelling, household geodemographic data was 

obtained from Experian’s Public Sector Mosaic database (Section 2.10).  Household 

level Mosaic data was geocoded using OS Address-Point to provide coordinate 

information for every address in the Durham study area. 

 

Geodemographic classifications provide a tried and tested means of measuring and 

monitoring small area conditions. They provide an accurate understanding of each 

citizen's demographics, lifestyles and behaviours by accessing a wealth of information 

on all UK individuals using more than 440 data elements (Experian, 2009). 62% of the 

data used comes from Experian’s Consumer dynamics database, which sources 

information from a variety of databases including the electoral roll, credit and car 

ownership reports, the shareholders register, house sale prices and council tax bands. 

The remaining 38% of the data is sourced from Experian’s current year estimates of the  

2001 census (Experian, 2009).  

 

Mosaic is based on analysis of the latest trends in UK society, a wealth of high quality, 

comprehensive data sources and a sophisticated proprietary approach to cluster analysis, 

supported by analysis of market research to validate the classification.  Public Sector 

Mosaic customer profiling classifies all UK citizens into 15 groups (A to O) and 69 

types (A01 to O69).  Thereby, Mosaic analysis provides a sharper definition of 
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deprivation than can be obtained by using the Indices of Deprivation alone (Bhatt, 

2013). 

 

Mosaic also contains health data within its demographic data element and is commonly 

used by health professionals (Gilmore, 2011).  Specifically, Mosaic contains data from 

the HES database (coarse health bands; cancers and others; and long term conditions); 

General Health Census data; a number of general health categories from the British 

Household Panel Survey (BHPS); and Sport England survey data.  

 

However, whilst health data is used in the Mosaic citizen classification system it must 

be recognised that it would be a misuse of the geodemographic database to analyse the 

predicted health of a household or postcode explicitly in comparative assessment with 

air quality (Gilmore, 2011).  This is because the data typifies the Mosaic group or type 

and does not infer information of the individual household explicitly.  This is 

recognised as a limitation in the dataset as discussed in Section 2.10.  Instead health and 

other data comparisons should be limited to inter type or group comparison.  Whilst it 

would be possible to compare household air quality data to a variety of HES health data 

sources of real relevance to a health and air quality study including, for example, acute 

and chronic upper and lower respiratory infection , this methodology fails to consider 

the outputs in the context of customer profiling.  Thereby, following discussion with 

NHS health professionals, this line of study was not pursued directly (Gilmore, 2011).  

Furthermore, as it was not possible to obtain micro-scale health data in the context of 

this research, this micro-scale study does not directly look at the relationship between 

health and air quality, or health and deprivation.  Nonetheless, comments are made on 

the predicted health of the Mosaic groups and types relative to other Mosaic 

classification following the findings of the EJ assessment. 

 

5.2.2 Micro-scale versus Meso-scale Comparison analysis  

 

Prior to the completion of a micro-scale EJ assessment in Durham it was necessary to 

review the performance of the air quality modelling.  The comparison was completed in 

two phases.  Firstly, a review of comparative AIRE emissions estimates was completed 

to review the emissions outputs compared to the meso-scale study based on NAEI 

average speed based emission factors.  This analysis was performed prior to expanding 
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the micro-scale model to cover a full 24 hour day, as a sense check to ensure the 

methodology yielded results broadly comparable to those from the more established 

method.  Therefore, for the AIRE based modelling only results for the AM and PM 

peaks are presented (07:00-09:30; and 15:00-18:30).  Secondly, after the emissions were 

dispersed, the resultant model output performance was reviewed relative to both 

monitored air quality data, and modelled outputs from the meso-scale study.  Clearly, 

this more in-depth analysis was performed after it was established the IEM based 

emissions outputs had proved to be within the expected magnitude.  

 

5.2.2.1 Comparative Emissions Results  

 

Analysis was performed to investigate the relationship between the NOx Emissions 

results derived from the traditional NAEI-based methodology and the AIRE derived 

IEM technique. Each network was split into approximately 30 road sections to aid 

comparison. 

 

 

Figure 28. Framwellgate north bound link emissions (NOx). 

 

Figure 28 shows a sample comparison of emission outputs for Framwellgate. Average 

speed NAEI emissions are presented for a full 24 hour period, at one hour resolution. 

IEM emissions outputs were aggregated into 15 minute averages, as well as hourly 

averages to compare directly with the average speed emissions results. A close 

correspondence between the two methodologies was identified on a number of links 

providing confidence in the techniques adopted. 
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However, further analysis of the traffic and related outputs revealed that a large number 

of links showed evidence of ‘congestion’ emissions in the AIRE results.  Figure 29 

shows the modelled shoulders either side of the peak periods which demonstrate good 

agreement between the two methodologies.  Conversely, during the peak, when 

congestion is highest, significant increases in emissions outputs derived using the AIRE 

methodology were found.  The 15 minute time resolution better indicated when, within 

the three hour peak period, the congestion ‘events’ occurred compared to the hourly 

modelling approach. 

 

 

Figure 29. Framwellgate south bound link emissions (NOx). 

 

Furthermore, an analysis of a number of arterial routes provided evidence of tidal 

congestion emissions. Figure 30 and Figure 31 show the Crossgate Peth area of Durham 

City.  During the morning peak the eastbound movement is congested with people 

travelling into Durham, with significant increase in emissions in the AIRE outputs 

compared to the average speed NAEI results. However, in the afternoon peak, when 

flows going in to Durham are lower, conditions were found to be less congested and the 

two methods were in better agreement.  

 

Conversely, for the westbound movement it is the afternoon peak when congestion is 

observed due to high volumes of traffic leaving Durham. Once again the AIRE 

emissions agreed well with the NAEI-based methodology except in the congested 

period. 
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Figure 30. Crossgate Peth east bound link emissions (NOx). 

 

 

Figure 31. Crossgate Peth west bound link emissions (NOx). 

 

Across the network, significant differences in modelled emissions between the two 

methodologies were observed.  The most heavily congested links revealed +200% 

higher emissions predicted using AIRE compared to the NAEI outputs.  The overall 

network results can be seen in Table 21. 
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Table 21 Overall network results, NAEI vs. AIRE (NOx). 

Peak NOx (mg) 

NAEI 

NOx (mg) 

AIRE 

Difference 

(mg) 

Difference 

(%) 

AM 10,782,900 17,454,206 6,671,306 62 

PM 19,261,700 26,830,555 7,568,855 39 
 

 

5.2.2.2 Air Quality Concentrations 

 

Following the emissions based comparison it was evident that the IEM base emissions 

approach has the potential to provide more accurate air quality modelling. Therefore, 

the existing micro-simulation model was extended to cover a full 24 hour period, in 

order to allow the build-up and dispersal of emissions throughout the day to influence 

concentrations (See discussion in Section 3.3).  

 

 

Figure 32. 24 hour emissions output for Framwellgate North (NOx). 

 

Figure 32 shows 24 hour minute by minute emissions output from AIRE for a typical 

link.  The ‘minute-by-minute’ emissions results were aggregated into hourly values for 

all links in the network.  In this assessment modelled NOx values were converted to 

NO2 using the DEFRA ‘NOx to NO2’ calculator version 3.1, published in September 

2012 (DEFRA, 2012b).  The year and region for which the modelling has been 

undertaken were specified, and local factors such as an appropriate factor of NOx 

emitted as NO2, have been used in the calculation.  These values were then fed onto a 

dispersion model enabling comparison of concentrations from the existing network 

compared to the proposed scheme. 
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In order to assess the relative success of the IEM derived dispersion model outputs, and 

those from the NAEI derived modelling, both outputs have been compared to observed 

data at sixteen monitor sites maintained by DCC (Table 22). 

 

Table 22 Annual mean concentration NO2 concentrations. 

   Annual mean concentration NO2 (µgm
-3

)   

ID Location                Observed   AIRE     NAEI     FB (AIRE)  FB (NAEI) 

1 Milburngate  34.5   27.88       25.90 0.21   0.28 
2 Highgate North 42.9   30.69       28.83 0.33   0.39 

3 Gilesgate  43.4   29.23       28.20  0.39   0.42 
4 Claypath  31.4   24.21       24.15 0.26   0.26 
5 Sherburn Road 25.2   26.9       28.42 -0.07   -0.12 
6 Dragon Lane  41.6   37.81       24.25 0.10   0.53 

7 121 Gilesgate  35.1   31.14       26.88 0.12   0.27 
8 The Gates  43.2   39.26       29.12 0.10   0.39 
9 Claypath  37.7   32.21       25.46 0.16   0.39 
10 Young Street  27.4   24.96       27.21 0.09   0.01 

11 56 McKintosh court 18.4   19.06       19.84 -0.04   -0.08 
12 56 McKintosh court 19.7   20.92       23.38 -0.06   -0.17 
13 49 Sunderland Road 18.3   20.25       21.60 -0.10   -0.17 
14 The Sands  17.7   18.56       18.28 -0.05   -0.03 

15 Monitor Gilesgate 1 22.2   27.26       26.25 -0.20   -0.17 
16 Monitor Gilesgate 2 21.8   27.26       26.25 -0.22   -0.19 

 
 

Figure 33 shows a scatter plot of observed versus predicted annual mean concentration 

NO2 µgm
-3

 for both modelling approaches. 

 

 

Figure 33. Observed versus predicted annual mean concentration NO2 µgm
-3.
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Linear regression shows that the AIRE linked with ADMS model produces an R
2
 value 

of 0.72, compared with 0.43 for the NAEI-ADMS model.  This suggests a good 

association between the variables for both models, particularly in the AIRE-ADMS 

model.  Though linear regression revealed the gradient of both lines to be different from 

1, an analysis of fractional bias (FB) using the methodology of Chang and Hanna (2005) 

did not produce evidence of a systematic under- or over- prediction in either model.  FB 

is a measure of mean bias.  It is documented in the literature as being a robust 

evaluation performance measure (Chang and Hanna, 2005).  It indicates the mean under 

or over-prediction (Hanna et al., 2004).  FB ranges from -2 (over-prediction) to +2 

(under-prediction) and a perfect model has an FB of zero (Hanna et al., 2004).  For both 

models FB values were within a factor of two (-2/3> FB <2/3) of the observed, 

indicating no systematic under or over-prediction for either model.  Furthermore, FB 

values were closer to zero for the AIRE-ADMS model at 12 of the 16 monitor sites.  

Moreover, a review of site specific results for both models shows that the AIRE-ADMS 

model more accurately predicted NO2 concentrations at 12 of the 16 sites when 

compared to the NAEI-ADMS model.  Additionally, at eight of the sites this enhanced 

accuracy was a result of a higher concentration prediction for the AIRE-ADMS model 

when compared to the NAEI-ADMS model.  Many of these sites were located in central 

areas of Durham including Milburngate, Highgate North, The Gates, and Gilesgate, 

where congestion and delay is highest.  This can be considered evidence that the AIRE-

ADMS approach allowed for better capture of ‘congestion’ emissions, highlighting the 

benefit of this approach to air quality modelling. 

 

This analysis has shown that the use of an IEM (AIRE) to derive emissions for use in a 

dispersion model (ADMS) more accurately reflects observed data, compared to the 

more traditional approach using average speed-based factors.  It is suggested that this 

enhanced accuracy comes from the ability of this approach to more accurately capture 

‘congestion’ emissions in critical locations.  Therefore, this modelling approach was 

adopted for the micro-scale EJ study presented in the following section. 
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5.2.3 Micro-scale Environmental Justice Results  

 

The meso-scale EJ study presented in Chapter 4 indicated that there was no evidence of 

environmental injustice in the distribution of air quality in the City of Durham.  This 

study provides an opportunity to review those findings at the micro-scale level.  The 

study was conducted in accordance with the methodology outlined in the previous 

sections. 

 

Analysis of Mosaic and air quality data revealed that, in agreement with the meso-scale 

study, there was no evidence of any significant relationship between air quality and 

deprivation.  This was confirmed by analysis of Mosaic deprivation score and predicted 

NO2 at each of the 7471 households (R
2
 = 0.002) (Figure 34). 

 

 

Figure 34. Mosaic Deprivation Score and NO2 for Durham households. 

 

Similarly, when analysing the data by group there was no linear relationship between 

the Mosaic deprivation score of a group and its mean air quality concentration (NO2) 

(Figure 35).  For example, the most deprived Mosaic group, Group O, had a mean NO2 

concentration of 18.43µgm
-3

 compared to the highest mean NO2 concentration of 

20.57µgm
-3 

for Group G.  
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Figure 35. Mosaic deprivation Index and Mean NO2. 

 

However, further analysis of group and type data revealed significant features in the 

groups subjected to poor air quality.  Households were classed as being exposed to air 

quality (NO2) ‘above 25 µgm
-3

’ or ‘25 µgm
-3

 and below’.  25 µgm
-3

 was chosen to 

divide the total household population for two reasons.  Firstly, the background NO2 in 

Durham is typically 17 µgm
-3

 (See Section 4.2.5) and 25 µgm
-3

 represents a value where 

air quality is being influenced by local pollution but falls well below the 40 µgm
-3

 EU 

limit; secondly, this value allowed for a sufficiently large cohort of households in the 

‘poorer’ air quality group.  The geo-demographic groups were themselves allocated into 

one of three groups; group C, Wealthy people living in sought after neighbourhoods ; 

group G, Young, well-educated city dwellers’; and Other (which refers to all those not 

in the previously defined groups).  These groups were based on the numbers falling into 

the ‘above 25 µgm
-3

’ category and each group was individually tested for significant 

variance. 

 

Chi squared analysis was performed to determine if the magnitude of discrepancy 

between the observed and expected data was significant.  Namely, were the groups that 

make up the population living in Durham’s poorest air quality areas over represented 

when compared to the expected representation of those groups, given their prominence 

in the UK population, based on nationwide Mosaic data. 
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Overall, chi squared analysis showed statistically significant differences at the 95% 

confidence level between the expected and observed values indicating significant over-

representation compared to the expected population of both group C and group G in the 

‘above 25 µgm
-3

’ category (Figure 36). Therefore, these results show that higher counts 

of both the identified groups are present in Durham’s poorest air quality areas than 

could be expected given their prominence in the UK population as a whole. 

 

Group G account for 9% of UK population and 30% of the Durham study area 

population (2209 of 7471 households). However, 73% of study area households with air 

quality above 25 µgm
-3

 (151 of 208 households) and 100% of study area households 

with air quality above 35 µgm
-3

 (40 households) where classified as Group G. 

Therefore, the only households subject to air pollution levels above the mandatory EU 

air quality limit value for NO2 of 40 µgm
-3

 belonged to this group. 

 

 

Group 

Total G Other 

Concentration 25 or 

Below 

Count 2059 5205 7264 

Expected 

Count 

2147.8 5116.2 7264.0 

Above 

25 

Count 150 57 207 

Expected 

Count 

61.2 145.8 207.0 

Total Count 2209 5262 7471 

Expected 

Count 

2209.0 5262.0 7471.0 
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 Value df 

Asymp. 

Sig. (2-

sided) 

Exact 

Sig. (2-

sided) 

Exact 

Sig. (1-

sided) 

Pearson Chi-Square 188.113 1 .000     

Continuity 

Correction
b
 

186.001 1 .000 
    

Likelihood Ratio 167.113 1 .000     

Fisher's Exact Test       .000 .000 

N of Valid Cases 7471         

χ² = 188.113, df = 1, p = 3.841 at 0.05 probability level 

Figure 36. Chi Squared result for Group G. 
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Concentration 

Total 

25 or 

Below 

Above 

25 

Group C Count 685 30 715 

Expected 

Count 

695.2 19.8 715.0 

Other Count 6579 177 6756 

Expected 

Count 

6568.8 187.2 6756.0 

Total Count 7264 207 7471 

Expected 

Count 

7264.0 207.0 7471.0 

 

 Value df 

Asymp. 

Sig. (2-

sided) 

Exact 

Sig. (2-

sided) 

Exact 

Sig. (1-

sided) 

Pearson Chi-

Square 

5.961 1 .015 
    

Continuity 

Correction
b
 

5.390 1 .020 
    

Likelihood Ratio 5.251 1 .022     

Fisher's Exact Test       .022 .013 

N of Valid Cases 7471         

χ² = 5.961, df = 1, p = 3.841 at 0.05 probability level 

Figure 37. Chi Squared result for Group C. 
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Concentration 

Total 

25 or 

Below 

Above 

25 

Group C Count 685 30 715 

Expected 

Count 

695.2 19.8 715.0 

G Count 2059 150 2209 

Expected 

Count 

2147.8 61.2 2209.0 

Other Count 4520 27 4547 

Expected 

Count 

4421.0 126.0 4547.0 

Total Count 7264 207 7471 

Expected 

Count 

7264.0 207.0 7471.0 

 

 Value df 

Asymp. 

Sig. (2-

sided) 

Pearson Chi-

Square 

217.870 2 .000 

Likelihood Ratio 216.716 2 .000 

N of Valid Cases 7471     

χ² = 217.870, df = 2, p = 5.991 at 0.05 probability level 

Figure 38. Overall Chi Squared result for Group C and G 
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Neither Group G, nor Group C could be regarded as deprived social groups (Experian, 

2009).  In terms of deprivation they are ranked 7 and 13 out of the 15 groups 

respectively (with 1 being the most deprived group) (Experian, 2009).  Mosaic 

‘imagery’ is presented in Figure 39.  Therefore, these findings are contrary to the 

perceived established relationship between air quality and socio-economic status 

identified in a number of UK EJ studies. 

  

Figure 39. Imagery from Mosaic Public Sector, Group G left, and C right. 

 

Furthermore, analysis of Mosaic type data shows that only two types within Group G 

were over-represented in their exposure to poor air quality.  Type 32 ‘Students and 

other transient singles in multi-let houses’ account for 18% of the Durham study area 

population (1344 of 7471 households); yet represent 45% of study area households with 

air quality above 25 µgm
-3

 (93 of 208 households) and 75% above 35 µgm
-3

.  Similarly, 

Type 34 ‘Students involved in college and university communities’ account for 18% of 

Durham study area population (1344 of 7471 households); but represent 24% of study 

area households with air quality above 25 µgm
-3

 (49 of 208 households) and 25% above 

35 µgm
-3

.  Whilst the existence of this relationship is likely to be due to the historic 

nature of Durham and the location of Durham University, it is nonetheless an important 

finding and consideration should be given to this when deciding on improvement 

options for air quality in Durham. 

 

As described in Section 2.10, whilst health data is used in the Mosaic classification, due 

to the typified nature of the data, Mosaic parameters do not explicitly infer a direct 

household level result. Therefore, it was not deemed appropriate to perform a detailed 

comparative assessment comparing the predicted health of a household and its predicted 

air quality concentration (Gilmore, 2011). (See Section 5.2.1).  However, comments on 

the specific health of the Mosaic groups and types are provided.  Specifically, a review 
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of the predicted health of the significantly over-represented groups in the ‘above 25 

µgm
-3

’ category is presented (Group G, and C), along with predicted health information 

for the identified types identified in the EJ analysis (Type 32 and 34). 

 

Firstly, the Mosaic ‘General Health’ parameter was selected in the Mosaic database to 

provide an overview of the health of the over-represented groups.  Group G, was ranked 

6/15 for ‘General Health’, with 1 being the healthiest, indicating it as a comparably 

healthy group.  Group C, was ranked 1/15 identifying it as being the healthiest overall 

group. 

 

Table 23 shows the Mosaic index scores, mean percentage of Groups C and G, and 

Types 32 and 34 for a variety of health parameters identified in Section 2.3 (See also 

Appendix A) as having an association with air pollution. For comparative purposes the 

mean percentage score for the UK population across all groups is also provided, along 

with the group and type ranking for the individual health parameters.  It was not 

possible to directly match relevant HES codes recommended by COMEAP (2013) due 

to limitations in the Mosaic dataset.  Health parameters reported on include respiratory 

associated illnesses including asthma; and cardiovascular related illness (COMEAP, 

2010; COMEAP, 2013; COMEAP, 2015).  COMEAP provides independent advice to 

the government on the impact of air pollution on health.  Guidance from COMEAP is 

supported by a large body of research with its members encompassing a range of 

specialist fields such as air quality science, atmospheric chemistry, toxicology, 

physiology, epidemiology, statistics, paediatrics and cardiology.  Directly relevant 

research includes Atkinson et al (2014) which provides evidence of links between 

chronic asthma and air pollution; Atkinson et al (2001) which reports on the effects of 

air pollution on respiratory admissions; Checkoway et al (2000) who produced analysis 

of the impact of air pollution on cardiovascular illness; and Hedley et al (2002) who 

explore air pollutions impact on cardiorespiratory and all-cause mortality.  

 

Index scores are calculated by dividing the mean group percentage by the mean 

percentage across all groups, times 100. All results provided refer to averages across the 

UK, and are not region specific.  Whilst analysis of regional variation in health 

parameters may influence the results, it was not possible to complete this analysis due to 

limitations in the Mosaic licensing available for this research.  
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Table 23 Mosaic Health Data (Group C and G) – Relevant to Durham study area 

population. 

Group 

/ Type 

Health Parameter Index Mean 

(%) 

Mean (all 

groups / 

types) (%) 

Rank (1 

= 

highest) 

C Acute upper respiratory infections 50 0.12 0.24 14/15 

 Chronic lower respiratory diseases 35 0.20 0.57 15/15 

 Lung diseases due to external agents 112 0.05 0.04 4/15 

 Other acute lower respiratory infections 65 0.20 0.31 14/15 

 Other diseases of upper respiratory tract 74 0.14 0.19 15/15 

 Other forms of heart disease 87 0.59 0.68 8/15 

 Pulmonary heart disease 72 0.06 0.08 12/15 

 Cancers of resp/ intrathoracic organs 51 0.12 0.24 13/15 

 J45-46 Asthma 49 0.08 0.16 15/15 

G Acute upper respiratory infections 66 0.16 0.24 11/15 

 Chronic lower respiratory diseases 57 0.32 0.57 12/15 

 Lung diseases due to external agents 75 0.03 0.04 12/15 

 Other acute lower respiratory infections 61 0.18 0.31 15/15 

 Other diseases of upper respiratory tract 87 0.16 0.19 12/15 

 Other forms of heart disease 58 0.39 0.68 13/15 

 Pulmonary heart disease 63 0.06 0.08 13/15 

 Cancers of resp/ intrathoracic organs 54 0.13 0.24 12/15 

 J45-46 Asthma 79 0.13 0.16 9/15 
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G32 Acute upper respiratory infections 86 0.21 0.24 34/69 

 Chronic lower respiratory diseases 57 0.37 0.57 55/69 

 Lung diseases due to external agents 79 0.04 0.04 48/69 

 Other acute lower respiratory infections 70 0.21 0.31 59/69 

 Other diseases of upper respiratory tract 85 0.16 0.19 53/69 

 Other forms of heart disease 57 0.39 0.68 58/69 

 Pulmonary heart disease 65 0.06 0.08 54/69 

 Cancers of resp/ intrathoracic organs 58 0.14 0.24 52/69 

 J45-46 Asthma 88 0.15 0.16 37/69 

G34 Acute upper respiratory infections 50 0.12 0.24 57/69 

 Chronic lower respiratory diseases 21 0.12 0.57 69/69 

 Lung diseases due to external agents 18 0.01 0.04 68/69 

 Other acute lower respiratory infections 25 0.08 0.31 69/69 

 Other diseases of upper respiratory tract 45 0.09 0.19 69/69 

 Other forms of heart disease 19 0.13 0.68 68/69 

 Pulmonary heart disease 19 0.02 0.08 68/69 

 Cancers of resp/ intrathoracic organs 11 0.03 0.24 69/69 

 J45-46 Asthma 41 0.07 0.16 67/69 

 

A number of interesting findings can be attained from a review of Table 23. It is evident 

that both Group C and Group G are relatively healthy groups when considering health 

parameters associated with air pollution.  The Mosaic ‘index’ scores are less than 100 

for all health parameters with the exception of “Lung diseases due to external agents”  

(Index = 112) discussed below.  This indicates that these groups and types are 

underrepresented when measured against the UK population as a whole. 
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Group C’s lowest ranking relevant health parameter is “Lung diseases due to external 

agents” (Ranked 4/15). Significantly, the mean percentage of Group C citizens 

suffering from “Lung diseases due to external agents” (0.05), is higher than the 

national average across all groups (0.04).  This is a surprising result given the relative 

health of the group across the majority of reviewed parameters.  Whilst it fits logically 

with the results of this research, given that in Durham Group C is identified as being 

over represented in poor air quality areas, it was anticipated that this finding was unique 

to Durham; and this explanation is not valid for Group C across the UK.  The result is 

discussed further in the EJ assessment of Newcastle and Gateshead. 

 

However, with the exception of the aforementioned health parameter, Group C recorded 

a lower mean percentage of respondents for all the other considered health parameters 

when compared to the UK population at large.  Similarly, Group G’s lowest ranking 

parameter is “J45-46 Asthma” (9/15).  However, Group G citizens are still 0.03% less 

likely to suffer from this illness when compared to the national average.  Furthermore, 

both Group C and Group G are actually identified as the healthiest overall groups for 

some relevant health parameters with a known association with air pollution (e.g. Group 

C: Chronic lower respiratory diseases; J45-46 Asthma; and Group G: Other acute 

lower respiratory infections) (See Section 2.3; Appendix A). 

 

Table 23 also reveals that the two Mosaic types identified as being overexposed to 

Durham’s poorest air quality are also relatively healthy when considering relevant 

health parameters.  Type G34 is identified as the overall healthiest type for 4 of the 9 

health parameters most relevant to air pollution available in the Mosaic database.  For 

example, when considering Chronic lower respiratory diseases, 0.12% of Type G34 

citizens are identified as suffering this ailment, compared to 0.57% of the UK total 

population.  The lowest ranking score, for “Acute upper respiratory infections” (57/69) 

still records a mean percentage value half that of the national average.  Whilst, Type 

G32 does not rank as highly across the majority of health parameters, the mean 

percentage of respondents for both types is lower than that of the UK population for all 

the considered parameters. 
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Whilst this data is not intended to contribute to the understanding of the relationship 

between health and air quality, it is nonetheless of direct relevance to EJ.  It is 

encouraging to note that the distribution of air pollution in Durham, whilst unjust, does 

not act to inversely impact any vulnerable groups or types.  This is in contrast to the 

findings in Gateshead, discussed in Section 5.3.  It is suggested that this information 

should be considered by engineers and planners tackling air quality issues so they may 

be aware of the EJ implications of the distribution of air pollution across their cities.  

 

5.2.4 Summary 

 

When considering health, the results from the Durham study reflect the extremely 

complex relationship between health; and the potential impact of air quality (Walker, 

2012).  The type of analysis performed in this research provides further evidence of the 

need for epidemiology studies when investigating links between air quality and health 

(Namdeo and Stringer, 2008). 

 

5.3 Newcastle upon Tyne and Gateshead Environmental Justice Study 

 

5.3.1 Study Areas 

 

As discussed in Chapter 1 and Section 3.4, three case study North East cities have been 

considered in this research.  In addition to the Durham investigations, EJ assessments of 

Newcastle and Gateshead have been conducted and findings compared and contrasted to 

allow more definitive findings and greater assurance that the established modelling 

framework can be applied across different locations and scales. 

 

Newcastle and Gateshead were selected as suitable study areas for two key reasons. 

Firstly, the author had previous involvement with Newcastle/Gateshead Low-Emission 

Zone Feasibility Study: Vehicle Emissions and Air Quality Modelling (Goodman et al.,, 

2013), which ensured familiarity with the area and that air quality modelling was 

readily available.  Secondly, both Newcastle and Gateshead have significant air quality 

issues and both councils are actively monitoring and reviewing air quality levels, 

ensuring data availability.  As a result of identified air quality issues, historically 

AQMAs have been declared by both Newcastle City Council and Gateshead Council.  
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In Newcastle: the City Centre, Quayside, adjacent to the A1058 Jesmond 

Road/Cradlewell, Blue House Roundabout, and parts of the A189 and B1318 Gosforth 

High Street (Goodman et al.,, 2013).  More recently, the three former, and the two latter 

AQMA boundaries have been altered to form two larger AQMAs, both declared for 

exceedance of the Nitrogen Dioxide annual mean standard.  Within this study, the two 

areas are referred to as the Newcastle City Centre and Gosforth AQMAs.  Gateshead 

has currently declared two AQMAs, Gateshead Town Centre and an area adjacent to 

services on the A1M at Birtley.  As with Newcastle, the Gateshead AQMAs were 

declared for exceedance of the Nitrogen Dioxide annual mean standard.  Within this 

study the two areas are referred to as the Gateshead and Birtley AQMAs (Goodman et 

al., 2013).  
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The location of the AQMAs within the Tyne and Wear region is shown in Figure 40.

 

Figure 40. Location of Declared Newcastle and Gateshead Air Quality Management 

Areas (AQMAs) within Tyne and Wear Region. Major motorways, A-roads and B-

roads are also shown (Adapted from Goodman et al., 2013). 

 

The study areas selected for inclusion in the EJ assessment follow the postcode 

boundary for Newcastle and Gateshead (Figure 41). Following consultation with 

Newcastle and Gateshead councils, it was decided that despite their geographical 

proximity the EJ assessment of the two cities should be completed individually.  This 

was due to the significant contrast between the socio-economic make-up of the two 

cities; and the disaggregated approach the cities have to tackling air quality issues 

(Section 5.3.3). 

Birtley 

Crown Copyright all rights reserved Newcastle City 
Council 100019569 2012 
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Figure 41. Newcastle and Gateshead postcode boundaries and study area.

Crown Copyright all rights reserved Newcastle City 

Council 100019569 2012 
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5.3.2 Methodology Summary 

 

As with the Durham meso-scale and micro-scale studies described in Chapter 4 and 

Section 5.2 respectively, the modelling framework outlined in Chapter 3 was revisited 

and revised to ensure its suitability for investigating EJ in both Newcastle and 

Gateshead.  The modelling structure presented in Chapter 3, Figure 3 has been 

expanded below to provide details of the modelling and data packages adopted for the 

Newcastle and Gateshead study.  The models, processes and structures behind each 

stage of framework are discussed in detail in Chapter 3. 

 

 

 

 

 

 

 

 

 

Figure 42. Newcastle and Gateshead Modelling Methodology 

 

Three fundamental variations in methodology should be noted when considering the 

results of the EJ assessment in Newcastle and Gateshead.  Firstly, the increased size of 

the study areas meant the micro-scale modelling approach, adopted during the micro-

scale Durham study for obtaining emissions and subsequent air quality concentration 

values was not appropriate (Section 2.9).  Therefore, in line with the meso-scale 

Durham pilot study, strategic level traffic modelling was used to provide necessary 

transport data.  Furthermore, strategic level traffic modelling necessitated a suitable 

emissions calculation methodology.  Thereby, PITHEM was used to calculate emissions 

from road transport in line with the pilot study presented in Chapter 4.  Finally, when 

considering Environmental Justice Modelling it was necessary to address the limitations 

 4. Environmental Justice Modelling 

 Mosaic Public Sector (Postcode Data)  Experian, 2009 

 

3. Dispersion Model 

 ADMS-Urban  
Version 3.1.0 (CERC, 2012) 

 

 

2. Emission Model 

 PITHEM  
Emissions factors (EFT version 5.1.3 (DEFRA, 2012)) applied 

using PITHEM (Namdeo and Goodman, 2012). 

 

1. Transport Model 

 TPM  
Modified model from Newcastle/Gateshead LEZ (Goodman et al, 

2013). 
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identified in the pilot study of using LSOA scale geodemographic data.  Finer resolution 

data was sought to enable a more comprehensive EJ assessment of the spatial 

distribution of air quality.  Whilst household level data was not available to the author, 

postcode level data from the Public Sector Mosaic database was obtained (Experian, 

2009) (See Section 2.10).  In total 5841 and 4846 postcode areas were considered in 

Newcastle and Gateshead respectively.  Finally, the EJ assessment was completed by 

comparing NO2 outputs and Mosaic data, for all postcode areas across the two cities, 

using the analytical methods applied in the Durham study (Section 5.2.3). 

 

5.3.3 Environmental Justice Results 

 

As with the previous studies described in this research, air quality and Mosaic data were 

analysed to determine if there was any significant linear relationship between air quality 

and deprivation in both Newcastle and Gateshead.  Mosaic deprivation scores and 

predicted NO2 for all postcodes were plotted to explore the relationship between the 

variables (Newcastle: R
2
 = 0.037; Gateshead: R

2
 = 0.017) (Figure 43 and Figure 44). 

 

 

Figure 43. Mosaic Deprivation Score and NO2 for Newcastle postcodes 
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Figure 44. Mosaic Deprivation Score and NO2 for Gateshead postcodes 

 

The regression analysis revealed that, as in Durham, there is no evidence of a significant 

linear relationship between air quality and deprivation. Nonetheless, further analysis of 

group and type data was completed following the procedure set out in the Durham study 

(Section 5.2.3).  Once again, through the application of chi squared analysis significant 

features were discovered in the types and groups subjected to poor air quality. 

 

In the Durham study, households were classed as being exposed to air quality (NO2) 

‘above 25 µgm
-3

’ or ‘25 µgm
-3

 and below’ (Section 5.2.3).  The 25 µgm
-3

 level was 

selected to disseminate the total household population in Durham as it represented a 

value where air quality is being influenced by local pollution but fell below the            

40 µgm
-3

 EU limit; and the value allowed for a sufficiently large cohort of households 

in the ‘poorer’ air quality group (Section 5.2.3).  

 

The dissemination level was reviewed for its suitability in Newcastle and Gateshead.  

Firstly, background levels of NO2 were reviewed for the two cities.  For the Newcastle 

and Gateshead modelling, background pollutant levels and non-transport sources were 

taken directly from the latest DEFRA source-apportioned background maps (DEFRA, 

2016).  Annual mean values for 2010 were 18.2 and 16.8 µgm
-3

 (NOx as NO2) for 

Newcastle and Gateshead respectively.  These values are considered broadly in line 

y = -0.0315x + 29.935 
R² = 0.017 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

N
O

2
 (
u

g
/m

3
) 

Mosaic Deprivation Score 



 

 

159 
 

with the background concentration in Durham.  However, when reviewing the modelled 

air quality concentrations across the two cities, it was found that there was a far greater 

sample of higher NO2 concentrations than in the Durham study.  For example, in 

Durham the ‘above 25 µgm
-3

’ group accounted for 208 households out of a sample of 

7471.  However, in Newcastle and Gateshead, over half the considered postcode areas 

fell in to the ‘above 25 µgm
-3

 category.  As this study is focused on reviewing the 

geodemographics of the poorest air quality areas for the respective cities it was decided 

to set the segregation level at ‘above 35 µgm
-3

.  This level ensured that in Newcastle, 

287 of 2481 postcode areas would be classed in the poorer air quality group; and in 

Gateshead 153 of 1743 fell in to the same group.  It is noted that the segregation levels 

are set below the 40 µgm
-3

 EU limit value for NO2.  However, in the context of EJ the 

value considered is of little consequence, given that in this instance NO2 is effectively 

being used as a proxy for poor air quality, due to its relevance in the study areas; and 

that more recent air quality research suggests that there are no safe limits for some 

pollutants (COMEAP, 2013; Buonanno et al., 2017). 

 

Following the procedure set out in the Durham study, the geo-demographic groups were 

then reviewed and allocated into appropriate groups based on the numbers falling into 

the poorer air quality category.  Firstly, considering Newcastle, it was evident that it 

was most appropriate to apportion the population into two groups, group G, Young, 

well-educated city dwellers’; and Other (which refers to all other groups).  Individually, 

group G accounted for 69% of study area postcodes with air quality above 35 µgm
-3

 

(197 of 287 postcode areas).  No other group accounted for more than 6% of study area 

postcodes with air quality above 35 µgm
-3

.   

 

The groups were tested for significant variance. Chi squared analysis showed 

statistically significant differences at the 95% confidence level between the expected 

and observed values indicating significant over representation compared to the expected 

population of group G in the ‘above 35 µgm
-3

’ category (Figure 45).  Furthermore, 

Group G accounts for 9% of UK population and 31% of the Newcastle study area 

population (774 of 2481 postcode areas).  However, 69% of study area households with 

air quality above 35 µgm
-3

 (197 of 287 postcode areas) and 84% of study area 

households with air quality above 40 µgm
-3

 (the mandatory EU air quality limit value 

for NO2) were classified as Group G.  
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Concentration 

Group 

Total 0 35 

Group G Count 197 577 774 

Expected 

Count 

89.5 684.5 774.0 

Other Count 90 1617 1707 

Expected 

Count 

197.5 1509.5 1707.0 

Total Count 287 2194 2481 

Expected 

Count 

287.0 2194.0 2481.0 

 

 

 
Value df 

Asymp. Sig. 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-Square 211.990
a
 1 .000   

Continuity 

Correction
b
 

210.022 1 .000 
  

Likelihood Ratio 194.568 1 .000   

Fisher's Exact Test    .000 .000 

N of Valid Cases 2481     

χ² = 211.990, df = 1, p = 3.841 at 0.05 probability level 

Figure 45. Chi Squared result for Newcastle 

 

Following the chi squared analysis of Newcastle; the procedure was repeated for the 

Gateshead study area.  A review of the data in the poorer air quality category revealed it 
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was most appropriate to apportion the population into four groups: group G, ‘Young, 

well-educated city dwellers’; group N, ‘Young people renting flats in high density social 

housing’; group M, ‘Elderly people reliant on state support’; and Other (which refers to 

all other groups). 

 

Individually, group G, N and M accounted for 12%, 22% and 20% of study area 

postcodes with air quality above 35 µgm
-3

 respectively (18, 33 and 31 of 153 postcode 

areas).  No other individual group accounted for more than 7% of study area postcodes 

with air quality above 35 µgm
-3

.  The identified groups were tested for significant 

variance.  Overall, chi squared analysis showed statistically significant differences at the 

95% confidence level between the expected and observed values indicating significant 

over representation compared to the expected population of groups N, M and G in the 

‘above 35 µgm
-3

’ category (Figure 46; Figure 47; and Figure 48 respectively). 
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 ConcentrationGro

up 

Total 

.00 35.00 

Group 

N 

Count 33 150 183 

Expected 

Count 

16.1 166.9 183.0 

Other 

Count 120 1440 1560 

Expected 

Count 

136.9 1423.1 1560.0 

Total 

Count 153 1590 1743 

Expected 

Count 

153.0 1590.0 1743.0 

 

 

 Value df Asymp. Sig. 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-Square 21.871
a
 1 .000   

Continuity 

Correction
b
 

20.599 1 .000   

Likelihood Ratio 17.811 1 .000   

Fisher's Exact Test    .000 .000 

N of Valid Cases 1743     

 χ² = 21.871, df = 1, p = 3.841 at 0.05 probability level 

Figure 46. Chi Squared result for Group N in Gateshead. 
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 ConcentrationGro

up 

Total 

.00 35.00 

Group 

M 

Count 31 187 218 

Expected 

Count 

19.1 198.9 218.0 

Other 

Count 122 1403 1525 

Expected 

Count 

133.9 1391.1 1525.0 

Total 

Count 153 1590 1743 

Expected 

Count 

153.0 1590.0 1743.0 

 

 

 Value df Asymp. Sig. 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-Square 9.216
a
 1 .002   

Continuity 

Correction
b
 

8.456 1 .004   

Likelihood Ratio 8.089 1 .004   

Fisher's Exact Test    .004 .003 

N of Valid Cases 1743     

χ² = 9.216, df = 1, p = 3.841 at 0.05 probability level 

Figure 47. Chi Squared result for Group M in Gateshead. 
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 ConcentrationGro

up 

Total 

.00 35.00 

Group 

G 

Count 18 53 71 

Expected 

Count 

6.2 64.8 71.0 

Other 

Count 135 1537 1672 

Expected 

Count 

146.8 1525.2 1672.0 

Total 

Count 153 1590 1743 

Expected 

Count 

153.0 1590.0 1743.0 

 

 Value df Asymp. Sig. 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-Square 25.391
a
 1 .000   

Continuity 

Correction
b
 

23.280 1 .000   

Likelihood Ratio 17.988 1 .000   

Fisher's Exact Test    .000 .000 

N of Valid Cases 1743     

 

χ² = 25.391, df = 1, p = 3.841 at 0.05 probability level 

Figure 48. Chi Squared result for Group G in Gateshead. 
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 ConcentrationGro

up 

Total 

.00 35.00 

Group 

G 

Count 18 53 71 

Expected 

Count 

6.2 64.8 71.0 

M 

Count 31 187 218 

Expected 

Count 

19.1 198.9 218.0 

N 

Count 33 150 183 

Expected 

Count 

16.1 166.9 183.0 

Other 

Count 71 1200 1271 

Expected 

Count 

111.6 1159.4 1271.0 

Total 

Count 153 1590 1743 

Expected 

Count 

153.0 1590.0 1743.0 

 

 Value df Asymp. Sig. 

(2-sided) 

Pearson Chi-

Square 

68.166
a
 3 .000 

Likelihood Ratio 57.617 3 .000 

N of Valid Cases 1743   

 

Figure 49. Overall Chi Squared results for Gateshead 

 

A further interesting observation from the Mosaic data review was the relative lack of 

Group G citizens in Gateshead when compared to the national levels, and those for 
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Durham and Newcastle. Group G accounts for 9% of UK population, 32% and 31% of 

the Durham and Newcastle study area populations.  Conversely, only 4% of the 

Gateshead study area population are classed as group G (71 of 1743 postcode areas).   

This result is likely to reflect the fact that Gateshead does not have a university, 

reducing its student population.  Nonetheless, 12% of study area postcodes with air 

quality above 35 µgm
-3

 where classified as Group G providing further evidence of 

injustice for this group across all study areas despite the relatively small population size 

in this instance.  

 

Conversely, whilst Group N accounts for 5.5% of UK population, 10.5% of Gateshead’s 

postcodes are allocated to this group.  Furthermore, 21.6% of study area postcodes with 

air quality above 35 µgm
-3

 were classified as Group N.  Again, this provides evidence 

behind the statistically significant over-representation of Group N identified in the chi 

squared analysis.  Finally, Group M accounts for 5.3% of UK population and 12.5% of 

Gateshead’s postcodes.  Whilst 20.3% of the poorer air quality category are represented 

by this group confirming over-representation of the group in its exposure to Gateshead’s 

poorer air quality. 

 

The statistically significant over-representation of Mosaic groups in Gateshead is in 

contrast to that identified in Durham and Newcastle.  In both Durham and Newcastle the 

over-represented groups subject to poorer air quality are relatively affluent (Section 

5.2.3).  Conversely, in Gateshead the most significant over-represented groups are 

classed as deprived.  This identified EJ concern in Gateshead follows the more 

established pattern regarding the distribution of air quality relative to social deprivation 

(Mitchell and Dorling, 2003; Mitchell et al, 2015). 

 

Group N and group M are both deprived social groups according to the Experian 

Mosaic database.  Group N is ranked as the second most deprived of the 15 Mosaic 

groups; Group M is the fifth most deprived (See Experian, 2009).  Mosaic ‘imagery’ is 

presented in Figure 50.  Therefore, these findings suggest the relationship between air 

quality and socio-economic status identified in a number of UK EJ studies is present in 

Gateshead (Section 2.5.3). 
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Figure 50. Imagery from Mosaic Public Sector, Group N left, and M right 

 

In addition to the analysis of Mosaic group data, Mosaic type data was reviewed as part 

of the EJ assessment.  This revealed that in Newcastle, whilst Group G was over-

represented as an overall group, only two of the nine types within Group G were subject 

to unjust exposure to poor air quality.  Type 31 ‘Owners in smart purpose built flats in 

prestige locations, many newly built’ accounts for 2% of the Newcastle study area 

population (62 of 2481 postcode areas), yet represent 22% of postcode areas with air 

quality above 35 µgm
-3

 (62 of 287 postcode areas).  Therefore 100% of postcode areas 

classed as type 31 are found in areas with NO2 concentrations above 35 µgm
-3

.  

Similarly, Type 34 ‘Students involved in college and university communities’ account 

for 7% of Durham study area population (166 of 2481 postcode areas); but represent 

17% of postcode areas with air quality above 35 µgm
-3

 (50 of 287 postcode areas).  This 

information provides a critical understanding of the people being affected by poor air 

quality in Newcastle and confirms the EJ concern raised in the Mosaic group level 

analysis. 

 

Mosaic type data analysis in Gateshead identified similar instances which could be 

regarded as a concern when considering the EJ of the spatial distribution of Gateshead’s 

air quality. Firstly, within the over-represented Group G, it was identified that a single 

type within the group, type 32 ‘Students and other transient singles in multi-let houses’ 

was over-represented in its exposure to poorer air quality.  This group accounts for 3% 

of the Gateshead study area population (58 of 1743 postcode areas); yet represent 11% 

of postcode areas with air quality above 35 µgm
-3

 (17 of 153 postcode areas).  

Additionally, within group M, type 57 ‘Old people in flats subsisting on welfare 

payments’ was over-represented (6% of Gateshead study area population; 17% of 

postcode areas with air quality above 35 µgm
-3

).  And within group N, type 66 

‘Childless, low income tenants in high rise flats’ was over-represented in its exposure to 
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poorer air quality (2% of Gateshead study area population; 11% of postcode areas with 

air quality above 35 µgm
-3

). These findings show that the people suffering from the 

poorest air quality in Gateshead belong to relatively narrow and specific socio-

demographic groups.  

 

The EJ assessment in Durham presented earlier in this chapter considered the health of 

Mosaic groups identified as being over-represented in their exposure to poorer air 

quality.  Further to this, the predicted health of over-represented groups in both 

Newcastle and Gateshead is presented.   

 

Firstly, Group G was identified as being over-represented in poorer air quality areas 

across both Newcastle and Gateshead.  However, this group was previously identified 

as being subject to an EJ issue in Durham.  Therefore the health of group G, and in 

particular the assessment of health in relation to diseases and illnesses with known 

associations with air quality, is discussed in detail in Section 5.2.3 and is not repeated in 

this section.  To provide a brief summary, Group G was ranked 6/15 for ‘General 

Health’, with 1 being the healthiest, indicating it as a comparably healthy group.  

Furthermore, the group recorded lower than mean national results for all air quality 

related health parameters which were available in the Mosaic database. 

 

As no further Mosaic groups were identified as being significantly over-represented in 

Newcastle’s poorer air quality areas, no further health analysis is presented in 

Newcastle.  Conversely, in Gateshead, as previously discussed, two further Mosaic 

groups were identified as having disproportionately high exposure to the poorest air 

quality areas (Group N and M).  Therefore, the health parameters of these groups are 

analysed to complete the EJ assessment of the spatial distribution of Gateshead’s air 

quality, in accordance with the methodology outlined in Chapter 3.  

 

Firstly, the Mosaic ‘General Health’ parameter was selected in the Mosaic database to 

provide an overview of the health of the identified over-represented groups.  Group N, 

was ranked 14/15 for ‘General Health’, with 1 being the healthiest, indicating it as a 

comparably unhealthy group.  Furthermore, Group M was ranked 15/15 identifying it as 

being the least healthy overall group. 
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Table 24 shows the Mosaic index scores, mean percentage of groups N and M, and 

Types 31, 57, and 66 for a variety of health parameters identified in Section 2.3 as 

having an association with air pollution.  This data in conjunction with data from Table 

23, which contains data on group G and types 32 and 34 (i.e. Groups and types also 

subject to exposure to poor air quality in Durham), ensures data for all over-represented 

Mosaic groups across the two study areas is provided.  For comparative purposes the 

mean percentage score for the UK population across all groups is also provided, along 

with the group and type ranking for the individual health parameters.  As discussed in 

the Durham study, it was not possible to directly match relevant HES codes 

recommended by COMEAP (2013) due to limitations in the Mosaic dataset. 

 

Table 24 Mosaic Health Data (Groups N and M and Types G31, M57 and N66) – 

Relevant to Gateshead and Newcastle study area population.  

Group 

/ Type 

Health Parameter Index Mean 

(%) 

Mean (all 

groups / 

types) 

(%) 

Rank (1 

= 

highest) 

Groups relevant to Gateshead study area population 

N  Acute upper respiratory infections 119 0.30 0.24 6/15 

 Chronic lower respiratory diseases 137 0.78 0.57 5/15 

 Lung diseases due to external agents 101 0.05 0.04 6/15 

 Other acute lower respiratory infections 109 0.33 0.31 6/15 

 Other diseases of upper respiratory tract 122 0.23 0.19 2/15 

 Other forms of heart disease 79 0.53 0.68 11/15 

 Pulmonary heart disease 90 0.08 0.08 9/15 

 Cancers of resp/ intrathoracic organs 103 0.24 0.24 7/15 

 J45-46 Asthma 153 0.25 0.16 3/15 

M Acute upper respiratory infections 123 0.15 0.24 5/15 
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 Chronic lower respiratory diseases 385 2.20 0.57 1/15 

 Lung diseases due to external agents 281 0.13 0.04 1/15 

 Other acute lower respiratory infections 244 0.73 0.31 1/15 

 Other diseases of upper respiratory tract 90 0.17 0.19 11/15 

 Other forms of heart disease 297 2.12 0.68 1/15 

 Pulmonary heart disease 237 0.21 0.08 1/15 

 Cancers of resp/ intrathoracic organs 278 0.65 0.24 1/15 

 J45-46 Asthma 123 0.20 0.16 5/15 

Types relevant to Newcastle study area population 

G31 Acute upper respiratory infections 53 0.13 0.24 56/59 

 Chronic lower respiratory diseases 46 0.26 0.57 58/69 

 Lung diseases due to external agents 52 0.02 0.04 60/69 

 Other acute lower respiratory infections 46 0.13 0.31 66/69 

 Other diseases of upper respiratory tract 88 0.17 0.19 48/69 

 Other forms of heart disease 39 0.26 0.68 64/69 

 Pulmonary heart disease 49 0.04 0.08 63/69 

 Cancers of resp/ intrathoracic organs 45 0.11 0.24 60/69 

 J45-46 Asthma 59 0.10 0.16 56/69 

Types relevant to Gateshead study area population 

M57 Acute upper respiratory infections 83 0.21 0.24 37/69 

 Chronic lower respiratory diseases 402 2.29 0.57 2/69 

 Lung diseases due to external agents 256 0.11 0.04 5/69 

 Other acute lower respiratory infections 210 0.63 0.31 3/69 
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 Other diseases of upper respiratory tract 115 0.22 0.19 15/69 

 Other forms of heart disease 212 1.44 0.68 5/69 

 Pulmonary heart disease 203 0.18 0.08 5/69 

 Cancers of resp/ intrathoracic organs 305 0.72 0.24 2/69 

 J45-46 Asthma 150 0.25 0.16 10/69 

N66 Acute upper respiratory infections 116 0.29 0.24 16/69 

 Chronic lower respiratory diseases 209 1.20 0.57 6/69 

 Lung diseases due to external agents 97 0.04 0.04 31/69 

 Other acute lower respiratory infections 136 0.41 0.31 13/69 

 Other diseases of upper respiratory tract 131 0.25 0.19 4/69 

 Other forms of heart disease 118 0.80 0.68 17/69 

 Pulmonary heart disease 136 0.12 0.08 13/69 

 Cancers of resp/ intrathoracic organs 165 0.39 0.24 10/69 

 J45-46 Asthma 137 0.23 0.16 17/69 

 

A number of interesting findings can be attained from a review of health parameter data 

presented in Table 24.  It should be noted that, as in the deprivation discussion for 

Newcastle and Gateshead, health data analysis for Mosaic groups and types identified as 

being subject to environmental injustice, which were previously identified and 

discussed in the Durham study, has not been repeated in this section (See Section 5.2.3 

in these instances). 

 

It is evident that, in keeping with the general health scores, Group N and Group M are 

relatively unhealthy groups when considering health parameters associated with air 

pollution.  
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Group N’s lowest ranking relevant health parameter is “Other diseases of upper 

respiratory tract” (Ranked 2/15). The mean percentage of Group N citizens suffering 

from “Other diseases of upper respiratory tract” (0.23%), is higher than the national 

average across all groups (0.19%).  Furthermore, Group N has higher than average 

scores for 6 of the 9 considered parameters when compared to the UK population at 

large.  

 

The health of Group M is of particular concern when examining diseases with a known 

association with air pollution.  Group M is ranked the least healthy group for 6 of the 9 

considered health parameters.  Furthermore, Group M has higher than average scores 

for 7 of the 9 considered parameters when compared to the UK population at large.  

Group M has a particularly large index score for “Chronic lower respiratory diseases” 

(Index 385).  This represents a mean percentage score of 2.20, 1.63% higher than the 

mean percentage score for the UK population.  Across the UK, Group M citizens have 

the highest incidences of Chronic lower respiratory diseases; Lung diseases due to 

external agents; Other acute lower respiratory infections; Other forms of heart disease; 

Pulmonary heart disease; and Cancers of respiration/ intrathoracic organs.   All these 

diseases have known associations with air pollution; and in many cases are known to be 

exacerbated by exposure to air pollution (See Section 2.3; and Appendix A).  

Therefore, it is of considerable concern and perversity that the most vulnerable 

population group should be over-represented in Gateshead’s most polluted areas.  This 

finding provides new emphasis on the importance of solving the air quality problems in 

Gateshead; and addressing the environmental injustice in the distribution of clear air. 

 

Table 24 also reveals three Mosaic types identified as being overexposed to the poorest 

air quality. Firstly, G31 relates to a type over-represented in Newcastle’s poorest air 

quality areas.  In line with the data on Group G, and other types within the group 

discussed in Section 5.2.3, type 31 is also relatively healthy when considering health 

parameters relevant to air pollution. Type G31 ranks lowest for “Other diseases of 

upper respiratory tract” (48/69). However, this still represents a mean percentage value 

below the national average, ensuring the mean percentages are lower than that of the 

UK population for all considered parameters. 
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The remaining Mosaic types, M57 and N66 relate to types identified as being 

overexposed to the poorest air quality in Gateshead.  In line with the group results for M 

and N respectively, these types record substantially higher results.  Both M57 and N66 

have above mean UK average percent scores for 8 of the 9 health parameters related to 

air pollution.  M57 is ranked second for “Cancers of resp/ intrathoracic organs” with a 

mean percentage value 0.48% above the UK population at large.  Finally, N66 is ranked 

fourth for “Other diseases of upper respiratory tract” with a mean percentage value 

0.06% above the UK average.  

 

Further to earlier discussion in this chapter, the nature of Mosaic data, obtained using 

customer profiling, ensures it is unsuitable for reviewing direct relationships between 

health and air quality. Therefore, this type of analysis is not intended for, and not 

suitable for, researching direct links between the research themes. However, the results 

are nonetheless valid, interesting and provide an important contribution to the 

understanding of the implications of uneven spatial distributions of air quality across 

our cities. For example, the identification of an over-representation of Group M in the 

areas of Gateshead with the lowest air quality is a critical finding with a strong 

implication for EJ. 

 

Similarly, whilst the EJ concern in Newcastle could be regarded as less critical, due to 

the higher health scores associated with the group and types which are over-represented 

in Newcastle’s poorest air quality areas, a final consideration is the age profile of the 

identified groups.  For example, group M has the oldest age profile of all Mosaic 

groups; whilst group G has the youngest age profile (Figure 51).  
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Figure 51. Mean percentage of group respondents falling within age categories for 

Mosaic Group G and M (Relevant to Newcastle and Gateshead study area population). 

 

Therefore, as there is a relationship between age and many of the considered illness, it is 

important to consider age when interpreting current health data (See Walker, 2012). 

Nonetheless, the limitations surrounding causal factors are discussed in Section 2.5.2. 

Furthermore, the presence of poor air quality amongst areas with higher age groups, 

who are recognised as being more susceptible to pollutant related illnesses is an EJ 

concern (Davoudi and Brooks, 2012; Walker, 2012). 

 

5.3.4 Limitations of Approach 

 

Previous studies, existing literature and findings from this research indicate significant 

benefits in using IEMs to create emissions outputs, as opposed to using traditional 

average speed/ average flow derived emissions factors.  However, analysis of 24 hour 

minute by minute emissions outputs has revealed some limitations. 

 

Minute average speed, flow and NOx emissions were plotted for individual links of the 

modelled network. Typical results can be seen in Figure 52. The graphs show two 

significant clusters of results broadly defined as ‘free flow’ and ‘congested’ traffic 

conditions. 
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Figure 52. Analysis of minute-by-minute speed, flow and emissions.  

 

Comparing these results to a similar graph from real world Motorway Incident 

Detection and Automatic Signalling (MIDAS) system data (Figure 52) (Bell et al., 

2006), it is evident from analysis of a number of links that the microsimulation may not 

be correctly simulating the variations in the traffic speeds during the transition phase 

between traffic states. Whilst it is appreciated not all traffic links will follow the distinct 

pattern identified in Figure 53, examples of real world emissions analysis following the 

distinct ‘two state’ pattern identified in the microsimulation have not been found in the 

literature.  It appears that whilst ‘free flow’ and ‘congested’ conditions are accurately 

represented, the microsimulation model struggles to represent driver behaviour as traffic 
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accelerates/ decelerates in transition to and from congested conditions.  As these modes 

have a first order effect on emissions this is likely to lead to underestimation. 

 

Figure 53. Classification of traffic states on speed flow plot (Bell et al., 2006). 

 

Other limitations include accurate representation of gear changing behaviour which can 

contribute significantly to overall emissions outputs, and contributes to substantial 

variation in emissions outputs according to individual driving style (Bell et al., 2006). 

However, whilst these limitations are acknowledged it is recognised that obtaining 

direct real world emissions calculations is unlikely to be an achievable goal, particularly 

in the context of scheme appraisal, and IEMs remain the most accurate way forward for 

estimating traffic emissions. 

 

5.4 Summary 

 

In addition to the Durham investigations, EJ assessments of Newcastle and Gateshead 

have been conducted and findings compared and contrasted to allow more definitive 

findings and greater assurance that the established modelling framework can be applied 

across different locations and scales. 
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CHAPTER 6 

 

6. Impact of Air quality and Carbon management measures on existing EJ 

concerns 

6.1 Introduction 

 

Findings from the micro-scale study described in Chapter 5 have revealed that the 

adopted modelling approach significantly improved the performance of dispersion 

modelling when measured against monitored data. Furthermore, it was acknowledged 

that the performance enhancement came due to the ability to more accurately estimate 

vehicle emissions in congested traffic conditions. The research presented in this chapter 

aims to exploit this ability by completing a congestion sensitive assessment of traffic 

management solutions for air quality and low carbon goals that may create only subtle 

changes in traffic flow regimes. 

 

In this chapter the application of the modelling approach has been tested through 

investigations into two distinct transport strategies. Firstly, the impact of a traffic 

engineering scheme aimed at reducing network emissions (specifically NO2) as well as 

congestion and delay, has been tested.  Secondly, reduced VKT strategies have been 

tested to assess the reduction in traffic required to meet various carbon and air quality 

targets under varying fleet assumptions. 

 

Additionally, the impact of air quality and carbon management measures on existing EJ 

concerns have been assessed using the methodology outlined in the ‘existing scenario’ 

micro-scale EJ assessment presented in Chapter 5.  As in the previous micro-scale 

study, Durham was selected as an appropriate study area (Chapter 4). 

 

Finally, discussions on the limitations of the modelling approach for the assessment of 

traffic management solutions, and conclusions from the study are provided. 
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6.2 Durham Traffic Engineering Scheme 

 

As discussed in Section 2.3, in accordance with the Environment Act 1995, DCC were 

required to produce an AQMA Action Plan (DEFRA, 2010) to address identified air 

quality issues with the AQMA (Figure 54).  Air Quality Action Plans must consider a 

wide range of emissions reduction strategies and technologies when determining and 

prioritising Action Plan options.  Guidance from DEFRA (LAQM.PG(03) and 

LAQM.PGA(05)) issued under the Environment Act 1995, provides detailed direction 

on the preparation and appraisal of Action Plan measures. 

 

Figure 54. Extent of Air Quality Management Area in Durham. 

 

As transport is the main contributor to poor air quality in 89% of the UK’s AQMAs 

(Chatterton, 2008), understandably, typical Action Plan Options include Public 

Transport provision; Cycling and Walking Initiatives; Travel Plans; Road User 

Charging; Demand Management strategies; as well as other non-transport based 

emission controls (Durham County Council, 2016).  

 

This section presents the results of a comprehensive study of the feasibility of a traffic 

engineering scheme proposed in Durham.  This scheme was developed by DCC traffic 

team and was under consideration as an Air Quality Action Plan Option during this 

research.  Firstly, the proposed scheme has been described and the methodological 

approach adopted in the research has been elaborated upon.  Next the results are 
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presented in terms of improvement to air quality.  Discussion and conclusions follow in 

subsequent sections. 

 

The stated aims of the scheme are to reduce network emissions (specifically NO2) and 

reduce congestion and delay.  Key features of the scheme include the introduction of 

traffic signals at two roundabouts (Gilesgate and Leazes Bowl Roundabouts); amending 

the layout of the Leazes Bowl Roundabout; and co-ordination of the timing of the traffic 

signals between both the roundabouts and across adjacent junctions. 

 

Key features of the scheme are outlined below: 

- Signalising the Gilesgate Roundabout 

- Amending and signalising the layout of the Leazes Bowl Roundabout 

- Network co-ordination between the roundabouts and across five adjacent 

junctions and one Puffin crossing. 

 

Initial microsimulation runs of the proposed scheme layout confirmed the importance of 

co-ordination of traffic signals across the network to prevent queues from one junction 

interfering with the operation of another upstream. 

 

Co-ordination is possible using the signal controller ‘cableless linking facility’ (CLF) 

which operates each junction to rigid timings but has little scope to deal with abnormal 

traffic conditions or incidents.  Alternatively, the Split Cycle Offset Optimisation 

Technique (SCOOT) could be used to deliver a more dynamic and responsive approach 

to area control automatically adjusting timings when incidents and events occur in the 

city that change normal traffic flows and patterns (Chen and Yu, 2007).  However, 

outside of peak traffic periods, e.g. late evening and overnight where flows are at their 

lowest, SCOOT/CLF is not appropriate because activity in one part of town can lead to 

unnecessary delays in another part, and without dominant traffic flows, signal co-

ordination along routes is not warranted (Chen and Yu, 2007). 

 

With reference to Figure 54 the junctions considered for co-ordination are: 

- Church Street / Hallgarth Street Junction (‘T’ junction with pedestrian facilities) 

- Elvet Puffin Crossing  

- Elvet Junction (‘T’ junction with pedestrian facilities) 
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- A690 Leazes Bowl Roundabout (existing 4 leg roundabout with all four entries 

within 180°) 

- A690 Gilesgate Roundabout (existing 5 leg roundabout) (Figure 55) 

- A690/A691 Millburngate Roundabout (4 leg signal controlled roundabout with 

pedestrian facilities and an entry which includes all buses leaving the bus 

station) (Figure 56). 

 

 

Figure 55. A181 Gilesgate Roundabout – Proposed Traffic Signal Layout. 
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Figure 56. A690 Leazes Bowl Roundabout – Proposed Traffic Signal Layout. 

 

Following the micro-scale findings from Chapter 5 it was concluded that the impacts of 

Durham Traffic Engineering Scheme would be more accurately assessed using an IEM 

approach to emissions modelling.  As a number of key areas of Durham’s AQMA are 

congested for significant periods of the day, congestion sensitive modelling was deemed 

vital for estimating the potential benefits of the scheme. 

 

In order to model the proposed scenarios, appropriate changes were made to the existing 

Durham S-Paramics (SIAS, 2001) microsimulation model described in Chapter 5.  Prior 

to modelling the scheme in microsimulation, the traffic signal design package Linsig v3 

(Moore, 2011) was used to develop and optimise the signal operation of the proposed 

network (Optimised for 'Practical Reserve Capacity' (PRC)).  The timings obtained from 

Linsig v3 were then transferred to the S-Paramics model and coded as fixed time 

signals.  It is anticipated that some additional benefits either side of the peak network 

operation could be derived as a result of further optimisation using additional dynamic-

signalisation tools such as PCMOVA or attempts to imitate SCOOT operation in the 

microsimulation.  Such work could be incorporated into a future detailed design process 

should the scheme gain support for further development and inclusion in the Air Quality 

Action Plan. 
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Existing and proposed scheme microsimulation models were run for both AM and PM 

peak periods.  Each microsimulation model was run ten times (total 40 runs), the 

resulting output files were processed through AIRE, and subsequently analysed using a 

bespoke software program (Section 3.3).  The number of runs was chosen following 

variance analysis which showed the outputs stabilised within ten model runs (HCM, 

2010).  The overall average network results from both of the modelled peaks can be 

seen in Figure 57, Figure 58, and Table 25. 

 

 

Figure 57. AM Peak Emissions Results (NOx) for existing situation and proposed 

scheme. 

 

 

 
Figure 58. PM Peak Emissions Results (NOx) for existing situation and proposed 

scheme. 
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Table 25 Results from scheme appraisal, NOx emissions from AM and PM peak 

periods. 

Peak NOx (mg) 

Existing 

NOx (mg) 

Proposed 

Difference 

(mg) 

Difference 

(%) 

AM 47,387,363 43,913,854 
-3

,473,510 -7 

PM 51,235,115 50,594,357 -640,759 -1 
 

The results suggest that whilst the scheme shows a reduction of 7% in NOx emissions 

during the morning peak, the benefits are much lower at 1% for the evening peak.  This 

may be due to the fact that the morning trips into the city are more constrained to the 

start times of employment and schools. The peak period during the evening peak is less 

stressed during the afternoon peak due to greater flexibility at the end of the day for 

businesses, industry and the school run. 

 

6.2.1 Air Quality Concentrations 

 

The emissions based approach to modelling air quality provided insight into the sources 

of air pollution and relative success of the traffic scheme.  However, as in the previous 

micro-scale study it was important to gain an understanding of how those emissions 

interact with local topography, built environment and meteorology (Gastald et al., 

2014).  Therefore, ADMS dispersion modelling was again used to simulate the complex 

relationship between emissions estimates and outdoor air pollutant concentration (Hirtl 

and Baumann-Stanzer, 2007). 

 

As with the micro-scale modelling in Chapter 5, 24 hour emissions estimates were 

produced for modelling, in order to allow the build-up and dispersal of emissions 

throughout the day to influence concentrations. Therefore, the existing and proposed 

scenario micro-simulation models were extended to cover a full 24 hour period and 

‘minute-by-minute’ emissions results were aggregated into hourly values for all links in 

the network (Section 3.4.2).  NOx values were converted to NO2 using the ‘NOx to 

NO2’ calculator version 3.1, published in September 2012 and these were then fed onto 

a dispersion model enabling comparison of concentrations from the existing network 

compared to the proposed scheme.  The performance evaluation of the existing model is 

discussed in Section 5.2.2. 
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Analysis of annual mean NO2 concentrations across key Durham receptors show that 

despite reporting an overall network reduction in emissions, the proposed scheme does 

not improve air quality across large areas of the study area (Figure 59). 

 

    

Figure 59. ADMS output (NO2 µgm
-3

) for ‘existing’ top, and ‘proposed’ bottom, 

scenarios.  

 

However, there were improvements in air quality levels at 15 of Durham’s 25 key 

receptors identified from the Durham County Council Local Air Quality Management 

Durham City Further Assessment report 2012 (See Table 26). 
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Table 26 Predicted Annual Mean NO2 Concentrations, 2010, µgm
-3

 across key Durham 

receptors. 

   Modelled Air Quality   

ID Location 

Within 

AQMA? Existing Proposed Diff. % 

1 45 Highgate Yes 31.91 33.08 1.17 4 

2 

Government Offices, 

Milburngate Yes 30.28 60.68 30.4 100 

3 

Durham University 

(Gilesgate) Yes 31.14 32.00 0.86 3 

4 81 Gilesgate Hill Yes 23.82 22.51 -1.31 -5 

5 15 MarshallTerrace Yes 20.34 20.44 0.1 0 

6 97 Claypath (Rear) Yes 23.96 23.64 -0.32 -1 

7 

22 Leazes Court (Leazes 

Road) Yes 27.83 28.14 0.31 1 

8 

Ravensworth Terrace (Leazes 

Road) Yes 30.33 39.84 9.51 31 

9 

57 Gilesgate (Gilesgate 

Roundabout) Yes 56.79 33.24 

-

23.55 -41 

10 

5 Gilesgate (Gilesgate 

Roundabout) Yes 27.50 25.96 -1.54 -6 

11 150 Gilesgate Yes 22.03 21.16 -0.87 -4 

12 Greenlane (Sunderland Road) Yes 22.81 22.43 -0.38 -2 

13 

1 Young Street (Sunderland 

Road) Yes 21.38 21.23 -0.15 -1 

14 10 Sunderland Road Yes 19.37 19.30 -0.07 0 

15 37 Sunderland Road Yes 19.33 19.28 -0.05 0 

16 1 Sunderland Road Yes 24.96 25.49 0.53 2 

17 10 Sunderland Road Yes 22.38 22.67 0.29 1 

18 Dragon Lane Junction Yes 26.09 26.68 0.59 2 
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19 121 Gilesgate Yes 29.92 28.56 -1.36 -5 

20 Highgate Yes 28.30 30.17 1.87 7 

21 Gilesgate Yes 28.59 26.13 -2.46 -9 

22 Claypath No 31.93 30.86 -1.07 -3 

23 56 McKintosh Court No 19.06 18.99 -0.07 0 

24 49 Sunderland Road No 20.17 20.14 -0.03 0 

25 AQMA Monitor Gilesgate Yes 26.46 25.25 -1.21 -5 

 

The overall impact on air quality was varied due to the critical location of some 

increases in emissions, particularly in the Milburngate area, which suffers from high 

concentrations of NO2 in the existing scenario. However, other areas, for example, 

Gilesgate were significantly improved as a result of the Durham traffic engineering 

scheme (Table 26). 

 

These results were presented to and acknowledged by DCC who utilised the findings in 

support of a DfT Local Major Transport funding application for the signalisation of 

Gilesgate and Leazes Bowl roundabouts. 

 

6.3 Durham VKT Air Quality and Carbon targets  

 

Recent research on the impact of road transport strategies on pollutant and carbon 

dioxide (CO2) emissions has highlighted that substantial and arguably radical capacity 

restraint is required if UK air quality and climate change limit values and targets are to 

be achieved.  

 

Given the growing concern that losing sight of air quality goals through the prominence 

of CO2 and climate change agendas may result in failure to meet targets in both areas, 

this section explores the impact of reductions in VKT as both an air quality and carbon 

management strategy (EAC, 2010).  Section 1.1 provides further background on the 

Climate Change Act in 2008 with respect to (CO2) emissions and the interim targets 

proposed by the Committee on Climate Change. 
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The reductions required in VKT (over 2010 traffic flows) in Durham were investigated 

in order to meet both EU air quality limits and future carbon targets. 

 

It is acknowledged that even maintaining VKT at 2010 levels is unlikely to happen and 

reductions from 2010 levels are improbable. However, it was the intention of this work 

to investigate, to the best of current knowledge, the level of VKT reductions which 

would be required to meet the various selected targets across the study area. This type of 

information is valuable in ensuring transport planners and network operators understand 

the true scale of the tasks in meeting legally bound targets.  

 

The existing base-case was edited to reflect VKT restraint strategies imposed across the 

vehicle fleet.  Emissions of CO2, NOx and NO2 were calculated and comparisons 

between the base-case and strategy were made in each case.  In total five VKT restraint 

strategies were tested.  Two of these strategies explored the fleet reduction required to 

meet legally binding future year CO2 targets set out in the UK’s carbon budgets; three 

strategies test the constraint required to meet the EU national annual mean NO2 

objective air quality target currently being exceeded in Durham under a variety of fleet 

emissions assumptions (Table 27).  As CO2 is not an air pollutant, its dispersion within 

the study area is not considered.  Therefore CO2 targets were assessed based on the 

analysis of emissions outputs from AIRE.  Air quality targets required accurate 

assessments of air quality concentrations.  Therefore, concentrations were obtained 

using dispersion modelling outputs following the method described in previous sections.  

It should be noted, strategies aimed at meeting air quality targets were recognised as 

being met when all key receptors recorded concentrations <40 µgm
-3

.  Therefore, whilst 

some areas of the network may still exceed 40 µgm
-3

 this would not be considered an 

exceedance as per DEFRA guidance (DEFRA, 2016) 
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Table 27 VKT restraint strategies 

 VKT restraint strategy Target 

1 CO2 2020  37% Reduction relative to 1990 (18.5% 

relative to 2010 base-case) 

2 CO2 2025 50% Reduction relative to 1990 (32% 

relative to 2010 base-case) 

3 EU NO2  (2010 Fleet) Annual average mean NO2 <40 µgm
-3 

(assuming 2010 base-case vehicle fleet) 

All key receptors 

4 EU NO2 (2020 Fleet) Annual average mean NO2 <40 µgm
-3 

(assuming 2020 vehicle fleet (COPERT 

4v8.1)) 

All key receptors 

5 EU NO2 (2025 Fleet) Annual average mean NO2 <40 µgm
-3 

(assuming 2025 vehicle fleet (COPERT 

4v8.1)) 

All key receptors 

 

Figure 60 shows a flow diagram of the method used to model the strategies in this 

research. All strategies were modelled using the micro-scale modelling framework.  

VKT restraint strategies were implemented in 5% increments (e.g. 5%, 10%, 15% etc. 

total vehicle fleet reductions until targets are met) to allow the relationship between 

strategy and emissions or concentration change to be identified.  
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Figure 60. Strategy modelling method flow diagram. 

 

The required reduction in vehicle fleet was identified for each of the VKT restraint 

strategies. The strategies that ensured all targets were met were identified; these 

strategies could be regarded as a win-win for air quality improvement and CO2 

reduction.  Finally, those strategies that resulted in a trade-off were discussed. 

 

Strategies 1 and 2, relating to carbon targets assumed the projected impact of a change 

in technology, fuel and vehicle type on emissions by adopting the projected vehicle 

fleets for the future target years. These assumptions were based on COPERT 4v8.1. 

Discussion on the accuracy of these future assumptions is discussed in the review of 
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‘Future Work’, Section 7.5.  As Strategies 3-5 relate to a current air quality issue in 

Durham it was decided to model the VKT reduction required to meet the EU targets in 

the base-year, as well as in future years, harmonized with carbon targets so any 

synergies could be identified. 

 

6.3.1 VKT Strategy Results  

 

The results of the incremented VKT restraint strategy testing are presented in this 

section.  Table 28 summarises the required vehicle fleet restraint in Durham if the 

considered targets are to be met. The results show the fleet reductions required to meet 

the targets, measured against both the 2010 base year traffic; as well as against 

projected traffic levels, given four of the five strategies refer to future year targets. 

 

Predicted traffic growth was examined to establish the current best projections for future 

traffic growth in Durham. National Trip End Model (NTEM) (Version 6.2) forecasts 

and TEMPro (Trip End Model Presentation Program) (Version 6.2) software was used 

to obtain growth factors for the future target years examined in the research (Years 

2020; 2025) (DfT, 2013). TEMPro and NTEM obtain growth projections using data 

from the National Transport Model (NTM).  Following guidance from the DfT (2013) 

suitable settings were selected in TEMPro and ‘all purpose’ average weekday, origin/ 

destination, ‘combined modes’ traffic growth was identified for the Durham TEMPro 

geographical ‘ward’.  These growth rates are presented in Table 28 along with the 

impact on required VKT restraint.  

 

The current positive traffic growth rates provided in Table 28 show the true level of 

restraint required to meet the considered future targets; and highlight how fundamental 

planning and transport policy change is required if the investigated environmental 

targets are to be met.  
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Table 28 VKT restraint strategy results 

VKT strategy VKT restraint to meet 

target against 2010 base 

year (fleet % reduction) 

VKT restraint to meet 

target against projected 

traffic growth (Growth rate 

in parenthesis) 

1 CO2 2020  10% 14%        (4.7%) 

2 CO2 2025 25% 32%        (7.0%) 

3 EU NO2  (2010 Fleet) 50% 50%        (0.0%) 

4 EU NO2 (2020 Fleet) 25% 30%        (4.7%) 

5 EU NO2 (2025 Fleet) 15% 22%        (7.0%) 

 

As expected, the highest level of VKT restraint was required to meet the base year air 

quality (NO2) target.  Failures to meet this target in 2010 (Annual average mean NO2 

<40 µgm
-3

) prompted the declaration of an AQMA in Durham in 2011.  The results 

show that a dramatic 50% reduction in vehicle traffic would be required to meet this 

target in the 2010 base year (VKT Strategy 3).  However, it is recognised that a plethora 

of alternative methods for meeting these targets could be considered at the local level; 

including, for example, variation in vehicle fleet compositions via a low emission zone 

(LEZ) (Holman et al, 2015).  Strategies to meet some of these targets are currently 

under discussion; for example, by Durham’s Air Quality Technical Working Group. 

 

The most achievable target proved to be the 2020 CO2 target set out in the UK Carbon 

Budget (37% Reduction relative to 1990 (18.5% relative to 2010 base-case)). However, 

as traffic growth in Durham (2010-2020) is currently predicted to rise by 4.7%, an 

overall net 14% VKT restraint still represents a significant turnaround in projected 

traffic growth figures. 
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Figure 61. VKT Restraint to meet targets 1 and 2 (UK Carbon Budget CO2 targets for 

years 2020/ 2025; assuming appropriate year vehicle fleet) 

 

Figure 61 shows the results of the increment tests for Targets 1 and 2 (UK Carbon 

Budget CO2 for years 2020/ 2025; assuming appropriate year vehicle fleet).  The figure 

highlights that change to predicted vehicle fleet emissions between the years 2020-2025 

has a relatively minor impact on total CO2 outputs (<1%).  It is also evident that due to 

reductions in congestion related emissions (and to a lesser extent due to predicted 

advancements in vehicle emissions output technology; based on analysis of the 2010 

vehicle fleet result which showed <1% variation against 2020 outputs) predicted CO2 

emissions reductions are greater than their associated VKT restraint (i.e. 2020: 10% 

VKT reduction yields a 18.5% CO2 reduction relative to 2010 base-case).  However, the 

congestion impact lessens as the network becomes quieter with each incremented 5% 

VKT reduction.  To meet the 2025 target a 25% VKT reduction is required to reduce 

CO2 by 32% relative to the 2010 base-case. 
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Figure 62. VKT Restraint to meet Targets 3-5 (NO2 below 40µgm
-3 

across all key 

receptors assuming 2010; 2020; 2025 vehicle fleets) 

 

The VKT restraint required to meet Targets 3 to 5 is presented in Figure 62.  In contrast 

to the CO2 target results, the modelled vehicle fleet year has a substantial impact on the 

emissions, and consequent NO2 concentration outputs.  This finding is in agreement 

with a number of emissions inventories including COPERT 4v8.1.  However, Carslaw 

and Rhys-Tyler (2013) and Anttila et al (2010) discuss the impact of primary NO2 

vehicle emissions on NO2 concentrations and suggest caution in the prediction of future 

reductions in NO2 emissions from road vehicles. Nonetheless the results are valid given 

the current limitations in predicting future year vehicle fleet emissions. 

 

6.4 Discussion 

 

This section deliberates the impact on EJ of both the Durham Traffic Engineering 

Scheme, and the VKT reduction strategies described in previous sections. 

 

6.4.1 Impact of Durham Traffic Engineering Scheme on existing EJ concerns  

 

Chapter 5, Section 5.2.3 provides the results from a micro-scale EJ study in Durham.  

The previous study by O’Brien et al (2013a) indicated that whilst there was no linear 

relationship between deprivation and air quality in Durham, there was evidence of 

environmental injustice in the distribution of air quality across 7471 households in the 

study area.  It was found that the existing pattern of poor air quality in Durham 
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negatively impacts two specific social groups as defined by Experian Mosaic data, 

namely student elements of Group G, ‘Young, well-educated city dwellers’; and Group 

C, Wealthy people living in sought after neighbourhoods .  

 

These findings were determined by classifying households in Durham as being exposed 

to air quality (NO2) ‘above 25 µgm
-3

’ or ‘25 µgm
-3

 and below.’ 25 µgm
-3

 was chosen to 

disseminate the total household population for two reasons.  Firstly, as monitored data 

from DCC revealed the background NO2 in Durham to be approximately 17 µgm
-3

, 25 

µgm
-3

 represents a value where air quality is being influenced by local pollution but 

falls below the 40 µgm
-3

 EU limit; secondly, this value allowed for a sufficiently large 

cohort of households in the ‘poorer’ air quality group.  The Mosaic geo-demographic 

groups were then analysed to determine if there were was any evidence of 

environmental injustice amongst Mosaic groups. 

 

Neither Mosaic Group G, nor Group C can be regarded as deprived social groups.  In 

terms of deprivation they are ranked 7 and 13 out of the 15 groups respectively (with 1 

being the most deprived group).  However, whilst the findings are contrary to the 

perceived established relationship between air quality and socio-economic status, the 

findings are still representative of an environmental injustice.  For example, Cutter 

(1995) defines EJ as equal access to a clean environment and equal protection from 

possible environmental harm irrespective of race, income, class, or any other 

differentiating feature of socio-economic status. 

 

This section tests the impact of the Durham Traffic Engineering Scheme on the 

identified EJ concern, using an identical methodology to that applied in the existing 

scenario.  Details of the methodology are omitted from this section and can be found in 

Section 5.2. 

 

In keeping with the existing scenario Durham study analysis, household level Mosaic 

data was geocoded using Ordnance Survey Address-Point (Ordnance Survey, 2014) to 

provide coordinate information across 7471 households in the Durham study area 

(Figure 63).  These data were entered in to ADMS-Urban to enable air quality 

concentrations to be generated for each address. This generated dataset was 
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subsequently analysed to review the relationships between air quality and 

geodemographic status under the impact of the Durham traffic scheme.  

 

 

Figure 63. Location of 7471 residential property addresses in Durham study area 

 

When investigating the impact of the Durham Traffic Engineering Scheme on EJ, chi 

squared statistics were again applied to the Mosaic geo-demographic group data to 

establish whether the proposed scheme influenced the environmental injustice amongst 

Mosaic groups (In the existing scenario Groups G and C were significantly over-

represented in the ‘above 25 µgm
-3

’ NO2 in group). 

 

Generally, the proposed traffic scheme had a negative impact in terms of EJ.  Whilst no 

impact was seen on Group G households, the number of Group G households suffering 

from air quality levels above 35 µgm
-3

 increased by 28% (from 39 to 50).  However, the 

number of Group C households in the ‘above 25 µgm
-3

 category was not affected by the 

scheme.  Furthermore, chi squared analysis showed statistically significant differences 

at the 95% confidence level between the expected and observed values indicating 

significant over-representation compared to the expected population of Group G (Table 

29).  Conversely, Group C was not significantly over-represented compared to the 

expected value.  The result for Group C is in contrast to the existing scenario in 

Durham. 
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Chi squared results for the Existing network and Durham Traffic Engineering Scheme 

are summarised in Table 29. 

Table 29 Chi squared results for ‘existing’ and ‘Durham Traffic Engineering Scheme’ 

scenarios 

 Chi squared test (Group verses ‘Other’) 

Scenario Group C (df 

= 1) 

Group G (df 

= 1) 

Group C and 

G (df = 2) 

Existing Network 

 

5.961 188.113 217.870 

Air Quality management 

Traffic Engineering Scheme  

3.796 235.592 263.710 

df = 1, p = 3.841 at 0.05 probability level 

df = 2, p = 5.991 at 0.05 probability level 

 

Three marked findings are evident from the analysis presented in Table 29.  Firstly; in 

contrast to the base-case existing scenario, Group C did not show statistically significant 

differences at the 95% confidence level between the expected and observed values 

following the introduction of the proposed Durham Traffic Engineering Scheme.  This 

indicates that the significant over-representation of Group C in the base-case is 

eliminated as a result of the scheme improving NO2 concentrations across the study 

area.  In contrast, Group G showed statistically significant differences at the 95% 

confidence level between the expected and observed values.  This represents over 

representation of Group G in both the existing and proposed scenario.  This result 

reveals that the identified instance of environmental injustice in the base-case remains, 

and the distribution of Durham’s air quality does not meet Cutter’s (1995) definition of 

equal access to a healthy environment.  Finally, this statistically significant finding is 

also valid when considering the overall three group result. 
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6.4.2 Impact of VKT strategies on existing EJ concerns  

 

This section considers the impact of the VKT reduction strategies on the spatial 

distribution of air quality in Durham.  Details of the five VKT strategies are provided in 

Section 6.3. 

 

Once again the approach used in the previous study by O’Brien et al.,, (2013a), was 

used to analyse the Mosaic geodemographic data and predicted NO2 concentrations at 

7471 households in the Durham study area.  This analysis was completed for each of the 

five VKT strategy scenarios.  

 

Within the Mosaic Public Sector database each of the 15 groups are assigned a Mosaic 

deprivation score (ranked 1 to 15, with 1 being the least deprived).  Therefore, initial 

analysis of Mosaic deprivation score and modelled NO2 at each of the households was 

performed to establish if a linear relationship existed between deprivation and air 

quality.  As with the base-case Durham scenario presented in O’Brien et al.,, (2013a), 

R
2
 values for each of five scenarios were found to be in the range 0.002 (+/- 0.001) 

confirming no significant relationship between deprivation and NO2 level. 

 

Following the initial analysis, households in Durham were again classed as being 

exposed to air quality (NO2) ‘above 25 µgm
-3

’ or ‘25 µgm
-3

 and below’.  In contrast to 

the base-case study the data showed that with any of the VKT strategies in place <50 

households belonged to the ‘above 25 µgm
-3

 cohort (base-case >250 households).  This 

was due to area wide reductions in NO2 levels as a result of the reduced traffic levels 

across all scenarios. Nonetheless, chi squared statistics were applied to the Mosaic geo-

demographic group data for each of the scenarios to establish whether the proposed 

strategies influenced the environmental injustice amongst the Mosaic groups. 

 

To enable the chi squared analysis Mosaic group outputs were themselves categorised 

into one of three groups; C, Wealthy people living in sought after neighbourhoods; G, 

Young, well-educated city dwellers’; and Other. These groups were based on the 

numbers falling into the ‘Above 25 µgm
-3’ 

category and each group was individually 

tested for significant variance. The results of the chi squared analysis for each of the 

five strategies are summarised in Table 30. 
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Table 30 Chi squared results for the VKT reduction strategies 

  Chi squared test (Group verses ‘Other’) 

 VKT reduction strategy Group C 

(df = 1) 

Group G  

(df = 1) 

Group C & G 

(df = 2) 

1 CO2 2020  0.001 31.853 33.242 

2 CO2 2025 0.742 2.558 2.846 

3 EU NO2  (2010 Fleet) 0.360 8.118 9.627 

4 EU NO2 (2020 Fleet) 0.742 2.558 2.846 

5 EU NO2 (2025 Fleet) 0.204 11.821 11.899 

 

df = 1, p = 3.841 at 0.05 probability level 

df = 2, p = 5.991 at 0.05 probability level 

A number of interesting findings are evident from the analysis presented in Table 30. 

Firstly, in contrast to the base-case result, Group C did not show statistically significant 

differences at the 95% confidence level between the expected and observed values.  

This indicates that the significant over-representation of Group C in the base-case is 

eliminated as a result of the VKT reductions improving NO2 concentrations across all 

strategies. 

 

In contrast Group G showed statistically significant differences at the 95% confidence 

level between the expected and observed values.  This represents over-representation of 

Group G in three of the five strategies (Strategies 1, 3 and 5;Table 30).  This result 

reveals that in these scenarios the identified instance of environmental injustice in the 

case-base remains, and the distribution of Durham’s air quality does not meet Cutter’s 

(1995) definition of equal access to a healthy environment.  

 

Interestingly, Strategy 3, a 50% VKT reduction to meet an annual average mean NO2 

<40 µgm
-3 

(assuming a 2010 base-case vehicle fleet), does not eliminate the identified 

EJ issue despite requiring the largest VKT reduction to meet the associated target.  This 

shows the extent of the current EJ concern given current vehicle fleet emissions. 
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Furthermore, it reveals the dependence on projected improvements in NO2 emissions 

from updated vehicle fleets to provide the solution to Durham’s air quality issues. 

 

Encouragingly two of the five strategies result in an environmentally just air quality 

distribution in Durham.  Firstly, Strategy 2 UK’s Carbon Budget CO2 2025 target, 

which requires a 50% reduction in CO2 relative to 1990 (32% relative to 2010 base-

case).  In order to meet this target a 25% VKT reduction is necessary, assuming 

emissions estimates from the predicted 2025 vehicle fleet materialise. This level of 

VKT reduction also surpasses the reduction required in meeting the NO2 target, 

assuming the correct vehicle fleet year.  Similarly, Strategy 4, a 25% VKT reduction to 

meet an annual average mean NO2 <40 µgm
-3 

(assuming a 2020 vehicle fleet), also 

proves to be an environmentally just target in terms of distribution of Durham’s air 

quality. 

 

Strategy 5 does not eliminate the identified environmental injustice in Durham’s air 

quality.  This result highlights a limitation of the increment testing which can be 

observed in Figure 61.  The Strategy 4 result shows that a 20% VKT reduction fails to 

meet the annual average mean NO2 <40 µgm
-3 

(assuming a 2020 vehicle fleet), as 

assuming this level of traffic reduction, a single key receptor records a concentration 

value of 40.23 µgm
-3

.  Therefore, following the 5% increment testing methodology the 

Strategy 4 target is only met with a 25% reduction, which results in the same receptor 

recording a concentration value of 38.51 µgm
-3

 (over 1 µgm
-3

 <40 µgm
-3

).  Therefore, 

due to the increment boundary, air quality across the study is higher than in Strategy 5, 

where a 15% VKT reduction results in a highest receptor concentration value of 39.68 

µgm
-3 

narrowly meeting the target concentration (0.32 µgm
-3

 <40 µgm
-3

).  As a result 

finer increment testing may have a significant impact on the EJ assessment of the VKT 

strategies as more accurate reduction requirements are recorded. 

 

6.5 Summary 

 

A novel approach to modelling road networks has been successfully applied to test air 

quality and carbon management VKT strategies in Durham. 
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The results of this research show that the Durham Traffic Engineering Scheme proposed 

by DCC does not significantly improve air quality in Durham.  Furthermore, the 

introduction of the scheme would exacerbate an existing EJ issue identified in the 

distribution of Durham’s air quality.  

 

Additionally, substantial levels of VKT restraint are required if the considered targets 

are to be met.  This is of considerable concern given current predictions of further traffic 

increases in Durham for the foreseeable future, which will only exacerbate the existing 

failings. 

 

A considerable 50% reduction in VKT would be required to meet the air quality (NO2) 

target in the 2010 base year.  By 2025, assuming an optimistic attitude to the success of 

future technology in reducing vehicle fleet emissions, a 15% VKT reduction would be 

required to meet the annual mean objective for NO2 concentrations in Durham.  

However, given predicted traffic growth of a further 7%, a net 22% VKT reduction is 

needed. 

 

Given current planning and transport policy regarding demand management it is 

unlikely that this level of VKT reduction will be achieved. Nonetheless this research has 

resulted in a greater understanding of the extent of the problems faced in managing the 

air quality issue in Durham.  Furthermore, it is hoped this information may influence the 

outcomes of Durham’s Air Quality Action Plan by working with Durham’s Air Quality 

Technical Working Group of which the author is a member. 

 

Similarly, whilst the 2020 UK Carbon Budget target was highlighted as the most 

achievable of the considered targets, a net 14% VKT reduction is still required (with a 

further 18% VKT reduction to ensure the 2025 UK Carbon Budget target is met). 

 

Additionally, it has been established that the required reductions in VKT to meet two of 

the five considered targets eliminates an identified EJ issue in the existing spatial 

distribution of Durham’s air quality.  Overall, assuming an optimistic attitude to the 

success of future vehicles fleet technology, a 25% reduction in 2010 traffic levels by 

2025 can be regarded as the most positive target for Durham’s transport planners.  This 

level of traffic eliminates the identified EJ issue in Durham, and meets both air quality 
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and future carbon targets ensuring a synergised strategy for a sustainable future. This 

level of VKT restraint is also required to meet these requirements in 2020. 

 

Finally, given current concerns over the ability of future technologies to reduce 

emissions from vehicular transport, it should be noted that alternative solutions to 

solving current environmental goals are likely to be required, even if dramatic VKT 

restraints are achieved in Durham. 
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CHAPTER 7 

 

7. Summary and Conclusions 

 

In this chapter a summary of the research is presented. Conclusions are drawn from the 

work conducted and future research is suggested. 

 

7.1 Summary 

 

This research presents a robust air quality modelling framework to map the EJ of the 

spatial distribution of air quality; and the impact of air quality management measures on 

existing EJ concerns.  To assist in this goal, a modelling approach has been developed 

which enables the assessment of traffic management solutions that may create only 

subtle changes in the traffic flow regimes; and accurately assesses the impact of a 

reduction in vehicle kilometres travelled (VKT).  The use of microsimulation traffic 

modelling in conjunction with an instantaneous emissions model (IEM) allows a 

congestion sensitive analysis of the network to be performed (Atjay et al., 2008). 

Findings from micro-scale modelling have revealed that the use of an IEM to calculate 

emissions as an input for air quality dispersion modelling significantly improved the 

performance of the dispersion modelling when measured against monitored data.  

 

Utilising these advances in emissions and air quality modelling in conjunction with the 

innovative use of Mosaic Public Sector profile data has enabled a more accurate picture 

of the existing EJ of the spatial distribution of air quality to be established than in 

previous EJ studies.  Furthermore, using these processes in a modelling framework has 

enabled the impact of air quality management measures on addressing EJ concerns to be 

more accurately assessed than using traditional methods.  

 

This research has established that, at a city level, there is no linear relationship between 

air quality and deprivation in the North East cities of Durham, Newcastle and 

Gateshead.  However, analysis of geodemographic data at the household and postcode 

levels has provided evidence of environmental injustice in air quality across all three 

study areas.  
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Additionally, this research has explored the impact of reductions in VKT as a proposed 

air quality management measure.  Thereby, the reductions required in VKT (over 2010 

traffic flows) in one study area, Durham, have been established in order to meet both 

EU air quality limits and future carbon targets.  

 

Incremented 5% VKT reduction changes were made to the base-case 2010 scenario 

until all considered targets were met.  Based on a 2010 vehicle fleet, a 50% reduction in 

traffic through Durham’s AQMA is required to meet all EU air quality targets.  

Similarly, a 25% reduction in VKT is required assuming a 2020 vehicle fleet, and by 

2025 a 15% reduction in VKT would ensure Durham met its air quality targets.  

Moreover, a 10% reduction in VKT by 2020, and 25% reduction by 2025 would ensure 

carbon dioxide (CO2) reductions across the study area equal to those set out in the 

carbon budget. 

 

Furthermore, it has been established that the reductions in VKT to meet both EU air 

quality limits and future carbon targets eliminates the identified EJ issue in Durham. 

Moreover, if future VKT is constrained to 2010 levels, the spatial distribution of air 

quality will be environmental just in both the 2020 and 2025 assessment years. 

 

7.2 Conclusions and Recommendations  

 

The following key findings can be drawn from the research carried out: 

 

1. There is evidence of environmental injustice in air quality across all three study 

areas (Significant over representation of key Mosaic groups in areas of higher air 

pollution). 

 

2. There is no significant linear relationship between air quality and deprivation in 

cities of Durham/ Gateshead/ Newcastle. 

 

3. Durham’s air quality problem cannot be solved by signalising Gilesgate and 

developing a signals strategy to ‘gate’ traffic.  Whilst the scheme led to a 

reduction in overall vehicle emissions, the effect on air quality was not 
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significant due to the spatial location of the emissions reductions and the 

presence of ‘hot spots’ of pollution in Durham’s AQMA.  Similarly, this 

proposed scheme did not significantly influence environmental justice. 

 

4. Durham County Council’s traffic scheme to signalise Gilesgate does have a 

recordable impact on overall emissions for the study area, with total NOx 

reductions of 7% and 1% across the AM and PM peak traffic periods. 

 

5. The use of an IEM to model emissions increases the accuracy of air quality 

predictions when compared to traditional average speed based approaches. 

 

6. A 50% reduction in 2010 traffic levels is required to meet all air quality EU 

criteria in Durham based on current vehicle fleet.  This reduction also eliminates 

the identified EJ issue. 

 

7. A 25% reduction in 2010 traffic levels is required to meet all air quality EU 

criteria in Durham based on 2020 vehicle fleet.  This reduction also eliminates 

the identified EJ issue. 

 

8. A 15% reduction in 2010 traffic levels is required to meet all air quality EU 

criteria in Durham based on 2025 vehicle fleet.  This reduction also eliminates 

the identified EJ issue. 

 

9. A 10% reduction in 2010 traffic levels is required to meet 2020 CO2 target in 

Durham based on 2020 vehicle fleet.  This reduction also eliminates the 

identified EJ issue BUT fails to meet all air quality EU criteria. 

 

10.  A 25% reduction in 2010 traffic levels is required to meet 2025 CO2 target in 

Durham based on 2025 vehicle fleet.  This reduction also eliminates identified 

EJ issue AND meets all air quality EU criteria.  Thereby, assuming an optimistic 

attitude to the success of future vehicle fleet technology a 25% reduction in 

2010 traffic levels can be regarded as the most positive target for Durham’s 

transport planners. 
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11.  The majority of previous EJ studies in the UK examine EJ using socio-economic 

indexes and other data sources which ensure it is only practical to analyse data 

in terms of linear relationships between the variables. This research highlights 

the importance of considering nonlinear relationships. This expands on findings 

by Mitchell at al. (2015) who discussed that deprivation is not automatically the 

most appropriate demographic measure against which to assess environmental 

inequity. In addition to supporting this conclusion, this research adds that it is 

also important to assess environmental inequalities specific to key population 

types not defined by conventional linear indexes. 

 

7.3 Policy Implications of the Research 

 

It is important to consider the policy implications of the findings presented in this 

research.  Additionally, given the successful application of a modelling framework able 

to assess the EJ implications of air quality strategies that may create only subtle changes 

in the traffic flow regimes, consideration of how government, local authorities and other 

practitioners should look to adopt these methods to assist in the development of future 

air quality guidance and strategy is sought. 

 

In the UK, legislation is already in place that requires the assessment of equality in 

transport.  The Equality Act (2010) combined a number of current laws and provided a 

single piece of legislation designed to provide protection against direct and indirect 

discrimination in a number of areas, including transport.  Of most direct relevance to 

this research is the requirement to have due regard to reducing the inequalities of 

outcome which result from socio-economic disadvantage during strategic decision 

making.  The Equality and Human Rights Commission has published guidance for 

service users about transport and travel which provides information on how the Equality 

Act (2010) applies to transport users as a member of the public (Equality and Human 

Rights Commission, 2016a and 2016b).  This guidance covers equality discrimination 

for direct users, as well as outlining the strategic aim of tackling inequalities in access to 

appropriate transport. 

 

The Department for Transport, Transport Analysis Guidance (TAG) TAG UNIT A3 

Environmental Impact Appraisal (DfT, 2015a) provides direct guidance on assessing air 
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quality impacts in acknowledgement of the requirement to tackle air pollution and 

inequalities.  This guidance is aimed directly at local authorities and practitioners and 

largely governs the approach and level of work conducted to satisfy the Department for 

Transport when assessing a new transport scheme.  In keeping with the majority of 

transportation guidance the primary focus of the assessment is on the quantification and 

monetarisation, so as to capture the economic disbenfit of the air pollution, particularly 

in recognition of its impact on health.  However, separate WebTAG guidance TAG 

UNIT A4.2 also includes consideration of the distributional impacts of changes in air 

quality.  This guidance directly acknowledges that “poor air quality problems are often 

experienced in areas of deprivation, in which people already suffer relatively poor 

health, health problems can be exacerbated for such deprived communities” (DfT, 

2015b).  Furthermore, the guidance briefly outlines some of the EJ themes discussed in 

Section 2.5 of this thesis, namely that “the poor air quality experienced in some areas of 

low car ownership is a clear issue of social justice as these people experience the 

impacts of car use, but do not themselves have access to a car”  (DfT, 2015b).  The 

guidance concludes that the user should concentrate the analysis of changes in air 

quality on the impacts on households in areas of relatively high income deprivation as a 

proxy. 

 

The presence of existing guidance in this field reflects the large body of work described 

throughout this thesis and highlights the importance of being able to address these 

issues with greater accuracy and understanding. Three key findings from this research 

have direct implications for the current distributional assessment guidance. 

 

Firstly, the guidance suggests that the analyst should map, using GIS, variations in 

socio-demographic data using a variety of traditional sources at the LSOA and ward 

level e.g. Census 2011, Index of Multiple Deprivation (IMD), and the Income 

Deprivation domain of the English Indices of Deprivation (IoD) 2010.  As highlighted 

in the literature review, the majority of previous EJ studies in the UK examine EJ using 

socio-economic indices and other data sources at the LSOA level (Mitchell et al, 2015).  

However, as discussed in the pilot study in Chapter 4 (Section 4.4.2) LSOAs cover a 

minimum population of 1000, and a mean population of 1500.  In contrast, Durham’s 

AQMA covers a residential population of approximately 750.  Furthermore, according 

to the 2010 Detail Air Quality Assessment completed by DCC only 44 households in 



 

 

207 
 

Durham are identified as being exposed to NO2 concentrations above 40µg/m3 (Durham 

County Council, 2010a).  Whilst it is acknowledged that LSOA scale analysis may be 

more appropriate for some of the UKs larger cities, typically the number of receptors 

within the UKs AQMAs is in the order of 10 to 50 houses or other area of interest 

(Chatterton, 2008).  In this context the use of comparatively large area LSOAs appears a 

relatively blunt tool for assessing deprivation.  This research has highlighted EJ 

concerns present in the population which could not be identified through analysis at the 

LSOA level.  The importance of appropriate scale in assessing EJ concerns is therefore 

a key note for guidance and policy implementation.  

 

Secondly, in common with the majority of previous EJ studies highlighted in Section 

2.5.3, WebTAG assessment guidance is limited to the analysis of linear relationships, 

often between a single suggested variable (e.g. income).  This research highlights the 

importance of considering nonlinear relationships and assessing environmental 

inequalities specific to key population types not defined by conventional linear indexes 

such as the IMD.  Whilst it is acknowledged that it is often difficult to obtain socio-

economic data, guidance and policy must be broad enough to recognise the complex 

interlinked impacts of transport and air quality issues and the diversity of those groups 

who may be disadvantaged or impacted negatively as a result of associated problems.  

 

Finally, under current WebTAG guidance, whilst the base case analysis of 

environmental distributional impacts suggests a quantitative review of the available 

data, the suggested appraisal methodology when determining the impact of the 

intervention is entirely qualitative.  For example, the analyst is provided with a general 

system for grading of distributional impacts for each of the identified social groups 

(Figure 64).  
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Figure 64. General system for grading of distributional impacts (TAG Unit A4.2, (DfT, 

2015b).  

 

It is recognised that given current guidance must reflect a workable approach and 

available resource, a simple qualitative assessment of the likely impact of a transport 

strategy or scheme on the population has advantages in avoiding complexity and 

allowing for quick comparisons across options.  Additionally, the local authority or 

practitioner must also consider other issues when completing a distributional impact 

assessment, for example, user benefits, noise, affordability, accessibility.  In this context 

constructing a matrix, qualitative approach to the assessment is a logical and valid 

attempt to address the issues.  

 

However, given the importance of air quality as a problem, and the extents of the EJ 

issues in exposure to air pollution described in this research and the wider body of 

work, there is strong justification for a need for additional quantitative work in 

assessing distributional impacts when making important decisions on future transport 

schemes and strategies.  This is a key policy recommendation identified as a result of 

this research. 

 

Whilst, in its current form, the modelling framework described in this research is both 

data and time intensive, with further additional research, programming, licensing and 

resource, it would doubtlessly be possible to create a modular based programme to 

mechanise the bespoke links between the utilised software programmes and data 

sources.  Such a tool could provide a practical, quantitative approach for local 
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authorities and other practitioners to assess the EJ of the spatial distribution of air 

quality for typical transport schemes.  It is suggested that this work should be 

completed, either in the research environment, or through industry, to the benefit of 

local authorities. 

 

When considering how government should use the information from this thesis for 

policy implementation it is also important to consider the wider complexity of transport 

equity analysis (Litman, 2012). 

 

As discussed in Section 2.5, there are several interpretations of what constitutes equity 

and a wide number of interlinked impacts to consider.  For example, this research has 

identified that in order to meet the air quality targets and establish an environmentally 

just distribution of air quality in Durham, significant reductions in traffic levels are 

required.  However, this result or research does not provide answers to how a reduction 

should be brought about, and indeed, if doing so is achievable in an equitable way. 

 

Access to transport is in itself a basic human provision, and often one subject to 

unfairness (Walker, 2012).  Discussing equality and the elimination of road deaths, 

Acheson (1998) suggests that seeking elimination of deaths from collisions and 

transport related pollution might involve travel restrictions, creating a new set of deaths 

associated with a lack of available transport needed for accessing goods and services 

such as healthcare.  Similarly, policy objectives for air quality must consider the wider 

transport planning context and recognise that, whilst an important indirect health 

impact, solutions to air quality problems may exacerbate other issues or inequalities. 

 

Exploring this subject Mullen et al. (2014) present an outline for the application of 

equal concern to transport policy, planning and law state.  Their account of equality 

applied to transport involves two non-hierarchical priorities. Firstly, “that deaths 

associated with transport should be minimised, subject to the condition of avoiding 

inequalities in life-threatening risk” (Mullen et al., 2014), and secondly, that people are 

entitled to access to a means of travel.  However, this paper also identifies that focusing 

on minimising death may not be sufficient unless we also consider whether some 

defined groups of people (e.g. in particular geographical locations or age groups) will be 

more exposed than others to risks of death.  Therefore, a further condition is suggested 
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that attempts to reduce inequalities in the levels of physical risk to which different 

people are subject are also required.  

 

Following these priorities in the application of equal concern in an air quality context 

leads to many of the same conclusions.  Namely, that access to means of transport does 

not mean that all modes should be protected by policy; and one individual’s entitlement 

may be limited by the equal entitlement of others (Mullen et al., 2014). Policy which 

supports fewer deaths and great equality associated with transport could be regarded as 

the ultimate goal, and recognising that there is both individual and collective 

responsibility to use less polluting nodes in addressing air pollution and wider transport 

issues the ultimate solution.  

 

It is recognised that it is far beyond the scope of this PhD to identify measures which 

might be effective in reducing vehicle traffic.  However, the research findings can be 

used to identify relevant policy areas and to further guide policy development towards 

solutions that minimise inequality.  If social justice is to be the real driver for air quality 

improvement its assessment must be completed with this goal in mind, and 

interventions suitably scored against these wider objectives of equality in transport 

model planning and policy. 

 

This research suggests a 25% reduction in 2010 traffic levels can be regarded as the 

most positive target for Durham’s transport planners.  The above understanding should 

be applied in achieving this target. Namely, solutions to this reduction should be sought 

that minimise inequality.  This, it is suggested, requires the promotion of use less 

polluting modes including walking and cycling (Higgins, 2005; Mullen et al., 2014). 

 

In recent years air quality has gained significant momentum as a political issue, largely 

as a result of the increased understanding of the health implications of air pollution, and 

also as a result of high profile news events such as the emissions scandal and London’s 

attempts to meet its statutory air quality targets (Section 2.3). 

 

Low Emission Zones (LEZs) are one measure identified by the UK government’s air 

quality plan to reduce harmful emissions in specific areas by discouraging more 

polluting vehicles from entering areas where air quality is poor.  In much the same way, 
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LEZs have proliferated throughout Europe, particularly during the past decade 

(Charleux, 2014). 

 

However, whilst there is strong evidence that the introduction of LEZs has brought 

positive effects on reducing air pollutant concentrations (Holman et al, 2015; Jiang et al, 

2017), recent analysis using household-travel survey data to assess how a projected LEZ 

in Grenoble, France could affect individuals’ mobility, has found evidence that the 

probability that people will be affected by the LEZ is related to their social group 

(Charleux, 2014).  Charleux (2014) concludes that his findings may represent social 

injustice dependant on interpretations in terms of social justice and, on the reference 

population considered.  Similarly, Cesaroni et al. (2012) found that whilst the LEZ 

traffic policy in Rome was effective in reducing traffic-related air pollution, most of the 

health gains were found in well-off residents. 

 

Research in this area highlights that despite the propagation of LEZs, there is disparity 

in policy designed to improve air quality; and suggests a need for renewed attention in 

understanding the wider policy implications with regards to social justice.   

 

In the UK a review of The London Low Emission Zone Feasibility Study, prior to the 

introduce of London’s LEZ, reveals that whilst there was some discussion of the 

potential of a low emission zone to affect car ownership for low-income groups as a 

result of the exclusion of older vehicles, there is no specific evidence of impact analysis 

regards social exclusion or exacerbation of social injustice (Watkiss et al., 2003).  

 

Given its successful testing of a range of transport schemes and strategies, the 

modelling framework presented in this research could doubtlessly be utilised to model 

the implementation of a LEZ.  This work could be used to assess how an LEZ could be 

implemented to provide a positive impact to both air quality and social justice.  

Government should work to ensure that air quality policy gives greater consideration of 

social justice, and guidance for local authorities is extended require more robust 

quantitative assessment of social justice impacts so that transport schemes which benefit 

EJ may be prioritised. 
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Finally, giving thought to the future of UK air quality policy, there is little doubt that 

the rise and momentum behind air quality as an important UK and global issue has 

reached an important stage in more recent years, arguably following decades of reduced 

attention since the relative success of the Clean Air Act 1956, following a similar phase 

of sustained media and public attention. 

 

The review of the implications of the UK’s likely exit from the European Union for air 

quality legislation (Section 2.3) would suggest that there is limited risk of disruption 

given that even the UK’s existing Air Quality Objectives are said to be at least as 

stringent as the limit values of the relevant EU Directives (Upton, 2017). 

 

Nonetheless, there is potential for focus to shift further away from meeting specific EU 

set air quality limit values, in favour of more objective regulation under the Air Quality 

(England) Regulations 2000.  Whilst it is vital that efforts to reduce air pollution are 

maintained, this represents an opportunity for new policy to provide renewed emphasis 

on objective goals which, it is argued and demonstrated by this research, should include 

a drive for promoting transport solutions and strategies which enhance social equality in 

the spatial distribution of air quality. 

 

7.4 Contribution to Academic Research and Practice  

 

1) The strategy modelling approach developed in this research allowed substantive 

conclusions to be drawn.  The findings of this study clearly identified evidence 

of environmental injustice in air quality across all three study areas.  The 

majority of previous EJ studies in the UK examine EJ using socio-economic 

indices and other data sources which ensure it is only practical to analyse data 

in terms of linear relationships between the variables. This research highlights 

the importance of considering nonlinear relationships. 

 

2) The modelling methodology developed in this research provided a quantified 

increase in the accuracy of air quality predictions when compared to traditional 

average speed based approaches. 
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3) The conclusion of this research provided evidence that Durham’s Air Quality 

problem cannot be solved by signalising Gilesgate and developing a signals 

strategy to ‘gate’ traffic.  Nonetheless, a quantified benefit to air quality was 

identified.  

 

4) The conclusion of this research represents an evidence base on which to build 

new and more aggressive traffic reduction strategies in Durham if 2025 CO2 

targets are to be met. 

 

5) The importance of this research was acknowledged by Durham County Council 

who used the findings in support of a DfT Local Major Transport funding 

application for the signalisation of Gilesgate and Leazes Bowl roundabouts.  

Whilst independent modelling was conducted by commissioned Consultants in 

respect of traffic journey time benefits delivered as a result of the scheme; the 

council also wanted to explore the impact on air quality of signalising a key part 

of the network, particularly given its location within Durham’s AQMA. 

 

Whilst the findings of this research demonstrated that the overall impact of the 

scheme on air quality was variable depending on the location of some increases 

in emissions, it was able to demonstrate reductions of 7% and 1% in NOx 

emissions during the morning peak and evening peaks respectively, and 

improvements in air quality at 15 out of 25 of the identified receptors (Section 

6.2). 

 

Similarly, DCC considered the research findings with regards to the impact of 

Durham Traffic Engineering Scheme on existing EJ concerns (Section 6.4).  

However, given that the findings indicated the scheme did not significantly 

improve (or exacerbate) the EJ of the spatial distribution of air quality, the 

contribution to an enhanced understanding of the scheme outcomes was 

acknowledged, but the results were not used specifically in the funding bid. 

 

Following the completion of the research work the Local Major Transport bid 

subsequently proved successful.  As of September 2017 the newly upgraded and 

signalised Gilesgate roundabout was switched on as part of the installation of the 
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SCOOT system works.  Work currently programmed in 2018 should see the 

completion of the scheme including the signalisation of Leazes Bowl 

roundabout (Durham County Council, 2017).  This project demonstrates the 

successful application of the modelling framework and underlines the novelty 

and importance of the findings reported in this thesis.  In addition the impact of 

this research has been immediate given how the outputs already have been used 

in the real world environment.  It is hoped that with additional support this work 

can be repeated for future projects as discussed in the following section. 

 

7.5 Future Work 

 

1) The emissions factors used in this research have since been updated as they were 

considered not to be representative of real world emissions.  For example, AIRE, 

does not contain factors for Euro 5 or 6 vehicles. New factors released are 

considered interim by the UK government, and a number of uncertainties are in 

existence.  The Emissions Factor Toolkit (EfT) received a relatively significant 

update in November 2017, in part in response to the emissions scandal related to 

Volkswagen Group although much of the work in response to this is still 

ongoing (Section 2.2) (DEFRA, 2017b).  Updates that have been made include 

emission rates changes for year 2005-2030 including increase in emissions rates 

for diesel cars and vans; fleet composition updates to reflect new vehicle sales; 

emissions scaling factors; and technology conversions for hybrid vehicles.  More 

specific updates to NOx and PM speed emission coefficient equations are taken 

from the EEA COPERT 5 emissions calculation tool, along with better 

representation of failure rates; and outputs of fraction of primary NO2 of NOx 

emissions where input f-NO2 data is provided. 

 

Also, COPERT 5 was released in November 2015 (COPERT 4v8.1 was used in 

this research).  Whilst the updates from COPERT 4 are not expected to have 

significant impact on the overall outputs of this research, particularly given that 

significant fuel/ energy consumption and emissions factor updates are still under 

development, the results from this research should be updated and adjusted as 

required.  This could be achieved via correction factors in most instances. 
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However, it should be noted that AIRE itself, which was used to calculate 

emissions in Chapter 5 and 6 of this research has not received further update.  

Given AIRE’s reliance on PHEM based lookup tables; a substantial update 

would require funding for a large scale project, similar to the original ARTEMIS 

project, to obtain updated dynamometer data.  Alternatively, data could be 

sought from a rolling programme adding new vehicle types/emission point maps 

into the databases as they appear.  However, a more practical approach to 

updating AIRE, could involve applying ‘conformity/ adjustment factors’ and 

create new AIRE tables.  It is suggested that this process should be carried out to 

allow for more accurate future assessments as the presence of Euro 5 and 6 

vehicles increases with time.  The resources to perform this work and recalibrate 

the model using supplementary on-road results is significantly outside what 

could be deemed achievable in this research. 

 

2) Advances in other areas, particularly work concerning emissions rates for 

hybrid, plug-in-hybrid, diesel-hybrid, and electric cars could eventually alter the 

course of the findings of this research.  Sales in hybrid and electric vehicles are 

at a critical stage with cumulative year-on-year uptake of hybrid and electric 

vehicles increasing from 20,000 in 2013 to more than 135,000 in 2017 (DfT, 

2017).  As a result, the predictions for future vehicle fleets are likely to have a 

high margin of error.  Furthermore, given the increased rate in uptake of electric 

vehicles in very recent years it could be argued that the decision to review 

transport strategies that exercise VKT restraint risks becoming obsolete, as 

policy may instead look to promote electric vehicles at the expense of modal 

shift.  Future work to explore expansion of electric vehicles at the expense of 

VKT constraint should be completed.  However, there is a large body of work in 

support of the wider benefits of modal shift and the author hopes that policy 

supporting soft measures and other none polluting modes continues to prevail 

(Higgins, 2005; Mullen et al, 2013). 

 

3) If this research was to be repeated, the 2010 base year could be revised provided 

that suitable data is made available across all subject areas (e.g. transport/ air 

quality / health and environmental justice modelling). 
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4) The use of national data to define vehicle fleet composition in this is considered 

a limitation. The outcome of the application of local fleet data would provide an 

interesting comparator. 

 

5) Additional research, programming, licensing and resource would enable the 

creation of a modular based programme to mechanise the bespoke links between 

the software programmes and data sources used in this research.  Such a tool 

could provide a practical, quantitative approach for local authorities and other 

practitioners to assess the EJ of the spatial distribution of air quality for typical 

transport schemes. 

 

6) Further to discussion on personal air quality exposure studies in Section 2.11, it 

is recognised that existing air quality policy, which identifies specific receptors 

as geographical locations, such as houses or schools, leads itself to geographical 

based research such as that conducted in this thesis.  However, in reality 

personal exposure to air quality is influenced by significantly more than home 

address or place of school or occupation.  This is noted as an area of weakness 

for this work.  Future work to try to incorporate personal exposure experiments 

to social justice studies should be explored given the limits of science and 

monitoring mean there are significant uncertainties in the air quality people 

actually experience (Walker 2012). 
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9. Appendices  

9.1 Appendix A 

Table A1 Types of Air Pollutant 

 



 

 

238 
 

 

 

 

 

 



 

 

239 
 

 

 

 

 

 



 

 

240 
 

 

 

 



 

 

241 
 

 

 

 



 

 

242 
 

 

 

 



 

 

243 
 

 

 

 



 

 

244 
 

 

 

 



 

 

245 
 

 

 

 



 

 

246 
 

  



 

 

247 
 

9.2 Appendix B 

B1. Durham Paramics Flow Calibration Tables  
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Table PM Calibration Flow 
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B2. Durham Paramics Flow Validation Tables  

Table AM Peak Link Flows 

 

 

Table PM Peak Link Flows 

 

 

 

 

 

1 Millburngate Bridge EB 2112 1901 -211 Flow within 15% Yes 4.7

2 Millburngate Bridge WB 1741 1653 -88 Flow within 15% Yes 2.1

3 Hallgarth Street NB 352 323 -29 Flow within 100vph Yes 1.6

4 Hallgarth Street SB 420 411 -9 Flow within 100vph Yes 0.4

5 Gilesgate WB 725 722 -3 Flow within 15% Yes 0.1

6 Gilesgate EB 780 728 -52 Flow within 15% Yes 1.9

7 Framwellgate NB 1117 1049 -68 Flow within 15% Yes 2.1

8 Framwellgate SB 1448 1458 10 Flow within 15% Yes 0.3

9 St Godric's Road WB 592 571 -21 Flow within 100vph Yes 0.9

10 St Godric's Road EB 756 744 -12 Flow within 15% Yes 0.4

11 Sherburn Road EB 623 649 26 Flow within 100vph Yes 1.0

12 Sherburn Road WB 562 534 -28 Flow within 100vph Yes 1.2

13 New Elvet 783 764 -19 Flow within 15% Yes 0.7

14 Leazes Road EB 1569 1639 70 Flow within 15% Yes 1.7

15 Leazes Road WB 1563 1670 107 Flow within 15% Yes 2.7

16 A690 NB 941 952 11 Flow within 15% Yes 0.4

17 A690 SB 1142 1043 -99 Flow within 15% Yes 3.0

18 Crossgate Peth WB 485 500 15 Flow within 100vph Yes 0.7

19 Crossgate Peth EB 1102 1068 -34 Flow within 15% Yes 1.0

20 Sunderland Road EB 312 287 -25 Flow within 100vph Yes 1.4

21 Sunderland Road WB 289 333 44 Flow within 100vph Yes 2.5

22 Milburngate NB 178 203 25 Flow within 100vph Yes 1.8

23 Church Street NB 658 624 -34 Flow within 100vph Yes 1.3

24 Church Street SB 459 444 -15 Flow within 100vph Yes 0.7

25 Claypath EB 217 169 -48 Flow within 100vph Yes 3.5

26 Claypath WB 80 75 -5 Flow within 100vph Yes 0.6

Link Description Matrix Flow
Modelled 

Flow
Difference Requirement (based on flows)

Is this criteria 

fulfilled?
GEH Statistic

1 Millburngate Bridge EB 1725 1640 -85 Flow within 15% Yes 2.1

2 Millburngate Bridge WB 2312 2286 -26 Flow within 15% Yes 0.5

3 Hallgarth Street NB 265 278 13 Flow within 100vph Yes 0.8

4 Hallgarth Street SB 402 348 -54 Flow within 100vph Yes 2.8

5 Gilesgate WB 541 524 -17 Flow within 100vph Yes 0.7

6 Gilesgate EB 513 546 33 Flow within 100vph Yes 1.4

7 Framwellgate NB 1204 1153 -51 Flow within 15% Yes 1.5

8 Framwellgate SB 1153 1123 -30 Flow within 15% Yes 0.9

9 St Godric's Road WB 756 752 -4 Flow within 15% Yes 0.1

10 St Godric's Road EB 540 545 5 Flow within 100vph Yes 0.2

11 Sherburn Road EB 612 544 -68 Flow within 100vph Yes 2.8

12 Sherburn Road WB 625 623 -2 Flow within 100vph Yes 0.1

13 New Elvet 714 675 -39 Flow within 15% Yes 1.5

14 Leazes Road EB 1802 1725 -77 Flow within 15% Yes 1.8

15 Leazes Road WB 1745 1689 -56 Flow within 15% Yes 1.4

16 A690 NB 1295 1379 84 Flow within 15% Yes 2.3

17 A690 SB 1245 1193 -52 Flow within 15% Yes 1.5

18 Crossgate Peth WB 732 678 -54 Flow within 15% Yes 2.0

19 Crossgate Peth EB 682 692 10 Flow within 100vph Yes 0.4

20 Sunderland Road EB 142 150 8 Flow within 100vph Yes 0.7

21 Sunderland Road WB 145 133 -12 Flow within 100vph Yes 1.0

22 Milburngate NB 192 189 -3 Flow within 100vph Yes 0.2

23 Church Street NB 421 387 -34 Flow within 100vph Yes 1.7

24 Church Street SB 435 462 27 Flow within 100vph Yes 1.3

25 Claypath EB 265 271 6 Flow within 100vph Yes 0.4

26 Claypath WB 95 82 -13 Flow within 100vph Yes 1.4

Link Description Matrix Flow
Modelled 

Flow
Difference Requirement (based on flows)

Is this criteria 

fulfilled?
GEH Statistic
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Table 24 hour Link Flows 

 

GEH 

Site Direction Traffic Count Paramics Model Difference

1 9994 South 00:00 28 2 -26 Yes 6.7

Dragon Lane 01:00 16 3 -13 Yes 4.1

02:00 8 2 -6 Yes 2.7

03:00 18 8 -10 Yes 2.8

04:00 19 5 -14 Yes 4.0

05:00 62 33 -29 Yes 4.2

06:00 135 191 56 Yes 4.4

07:00 271 363 92 Yes 5.2

08:00 414 365 -49 Yes 2.5

09:00 224 292 68 Yes 4.2

10:00 267 251 -16 Yes 1.0

11:00 273 228 -45 Yes 2.8

12:00 314 274 -40 Yes 2.3

13:00 340 275 -65 Yes 3.7

14:00 350 281 -69 Yes 3.9

15:00 365 322 -43 Yes 2.3

16:00 356 387 31 Yes 1.6

17:00 389 285 -104 No 5.7

18:00 427 259 -168 No 9.1

19:00 342 210 -132 No 7.9

20:00 274 135 -139 No 9.7

21:00 222 85 -137 No 11.1

22:00 141 50 -91 Yes 9.3

23:00 40 16 -24 Yes 4.5

2 9994 North 00:00 14 9 -5 Yes 1.5

Dragon Lane 01:00 13 6 -7 Yes 2.4

02:00 11 4 -7 Yes 2.5

03:00 10 2 -8 Yes 3.4

04:00 22 8 -14 Yes 3.7

05:00 66 15 -51 Yes 8.0

06:00 140 130 -10 Yes 0.9

07:00 323 266 -57 Yes 3.3

08:00 219 265 46 Yes 3.0

09:00 212 127 -85 Yes 6.5

10:00 263 124 -139 No 10.0

11:00 278 135 -143 No 10.0

12:00 244 134 -110 No 8.0

13:00 275 147 -128 No 8.8

14:00 263 185 -78 Yes 5.2

15:00 307 228 -79 Yes 4.8

16:00 342 259 -83 Yes 4.8

17:00 379 259 -120 No 6.7

18:00 274 155 -119 No 8.1

19:00 219 102 -117 No 9.2

20:00 189 88 -101 No 8.6

21:00 152 56 -96 Yes 9.4

22:00 96 40 -56 Yes 6.8

23:00 38 9 -29 Yes 6.0

3 2185 East 00:00 36 14 -22 Yes 4.5

A181 Dragonville 01:00 14 11 -3 Yes 0.9

02:00 15 6 -9 Yes 2.8

03:00 7 11 4 Yes 1.3

04:00 14 17 3 Yes 0.8

05:00 62 58 -4 Yes 0.5

06:00 150 375 225 No 13.9

07:00 429 664 235 No 10.1

08:00 475 665 190 No 8.0

09:00 413 628 215 No 9.4

10:00 428 527 99 Yes 4.5

11:00 498 507 9 Yes 0.4

12:00 513 548 35 Yes 1.5

13:00 492 574 82 Yes 3.5

14:00 612 545 -67 Yes 2.8

15:00 685 598 -87 Yes 3.4

16:00 786 658 -128 No 4.8

17:00 773 569 -204 No 7.9

18:00 539 519 -20 Yes 0.9

19:00 430 444 14 Yes 0.7

20:00 289 313 24 Yes 1.4

21:00 208 207 -1 Yes 0.1

22:00 127 125 -2 Yes 0.1

23:00 68 46 -22 Yes 3.0

4 2185 West 00:00 26 24 -2 Yes 0.5

A181 Dragonville 01:00 7 12 5 Yes 1.7

02:00 11 11 0 Yes 0.1

03:00 13 8 -5 Yes 1.5

04:00 21 17 -4 Yes 0.8

05:00 85 42 -43 Yes 5.4

06:00 192 313 121 No 7.6

07:00 535 646 111 No 4.6

08:00 617 531 -86 Yes 3.6

09:00 539 293 -246 No 12.1

10:00 479 314 -165 No 8.3

11:00 470 336 -134 No 6.7

12:00 469 350 -119 No 5.9

13:00 483 364 -119 No 5.8

14:00 474 407 -67 Yes 3.2

15:00 480 477 -3 Yes 0.1

16:00 530 471 -59 Yes 2.6

17:00 507 382 -125 No 5.9

18:00 496 326 -170 No 8.4

19:00 319 264 -55 Yes 3.2

20:00 186 215 29 Yes 2.1

21:00 126 144 18 Yes 1.5

22:00 84 105 21 Yes 2.2

23:00 51 22 -29 Yes 4.8

Time

Is this 

criteria 

fulfilled?

Flow (Veh)
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5 2505 East 00:00 19 9 -10 Yes 2.7

Sunderland Road 01:00 11 3 -8 Yes 3.1

02:00 6 1 -5 Yes 2.8

03:00 11 3 -8 Yes 3.0

04:00 16 6 -10 Yes 2.9

05:00 72 19 -53 Yes 7.8

06:00 101 100 -1 Yes 0.1

07:00 249 243 -6 Yes 0.4

08:00 337 240 -97 Yes 5.7

09:00 321 251 -70 Yes 4.2

10:00 343 252 -91 Yes 5.3

11:00 348 250 -98 Yes 5.7

12:00 353 270 -83 Yes 4.7

13:00 362 237 -125 No 7.2

14:00 328 186 -142 No 8.8

15:00 381 110 -271 No 17.3

16:00 361 182 -179 No 10.8

17:00 326 150 -176 No 11.4

18:00 311 153 -158 No 10.4

19:00 221 255 34 Yes 2.2

20:00 148 159 11 Yes 0.9

21:00 134 110 -24 Yes 2.2

22:00 69 64 -5 Yes 0.6

23:00 35 20 -15 Yes 2.9

6 2505 West 00:00 21 3 -18 Yes 5.1

Sunderland Road 01:00 9 4 -5 Yes 2.0

02:00 9 0 -9 Yes 4.2

03:00 6 3 -3 Yes 1.5

04:00 9 3 -6 Yes 2.3

05:00 23 14 -9 Yes 2.0

06:00 71 56 -15 Yes 1.9

07:00 178 249 71 Yes 4.8

08:00 289 244 -45 Yes 2.7

09:00 301 168 -133 No 8.7

10:00 353 129 -224 No 14.4

11:00 400 113 -287 No 17.9

12:00 425 128 -297 No 17.9

13:00 415 128 -287 No 17.4

14:00 421 140 -281 No 16.8

15:00 410 134 -276 No 16.7

16:00 376 186 -190 No 11.4

17:00 407 133 -274 No 16.7

18:00 422 122 -300 No 18.2

19:00 332 113 -219 No 14.7

20:00 190 67 -123 No 10.8

21:00 120 42 -78 Yes 8.7

22:00 108 27 -81 Yes 9.9

23:00 40 8 -32 Yes 6.6

7 1078 South 00:00 18 7 -11 Yes 3.1

Hallgarth Street 01:00 7 5 -2 Yes 0.8

02:00 5 6 1 Yes 0.4

03:00 2 9 7 Yes 2.8

04:00 8 9 1 Yes 0.3

05:00 27 41 14 Yes 2.3

06:00 107 140 33 Yes 2.9

07:00 276 335 59 Yes 3.4

08:00 368 491 123 No 6.0

09:00 245 311 66 Yes 3.9

10:00 196 245 49 Yes 3.3

11:00 209 222 13 Yes 0.9

12:00 238 247 9 Yes 0.6

13:00 223 269 46 Yes 3.0

14:00 224 307 83 Yes 5.1

15:00 264 394 130 No 7.1

16:00 328 363 35 Yes 1.9

17:00 296 348 52 Yes 2.9

18:00 240 293 53 Yes 3.3

19:00 176 297 121 No 7.8

20:00 113 181 68 Yes 5.6

21:00 98 118 20 Yes 2.0

22:00 53 85 32 Yes 3.9

23:00 38 24 -14 Yes 2.5

8 1078 North 00:00 10 2 -8 Yes 3.3

Hallgarth Street 01:00 7 1 -6 Yes 3.1

02:00 5 4 -1 Yes 0.3

03:00 4 2 -2 Yes 1.0

04:00 5 7 2 Yes 1.0

05:00 26 18 -8 Yes 1.6

06:00 98 164 66 Yes 5.8

07:00 370 393 23 Yes 1.2

08:00 346 263 -83 Yes 4.7

09:00 265 303 38 Yes 2.3

10:00 207 256 49 Yes 3.2

11:00 203 231 28 Yes 1.9

12:00 223 243 20 Yes 1.3

13:00 214 259 45 Yes 2.9

14:00 210 255 45 Yes 3.0

15:00 264 289 25 Yes 1.5

16:00 349 232 -117 No 6.8

17:00 336 278 -58 Yes 3.3

18:00 252 229 -23 Yes 1.5

19:00 152 208 56 Yes 4.2

20:00 129 145 16 Yes 1.4

21:00 82 99 17 Yes 1.8

22:00 52 69 17 Yes 2.2

23:00 26 21 -5 Yes 1.0
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9 2048 East 00:00 25 35 10 Yes 1.8

A690 Nevilles Cross Bank 01:00 13 18 5 Yes 1.2

02:00 17 13 -4 Yes 1.0

03:00 12 13 1 Yes 0.4

04:00 24 18 -6 Yes 1.2

05:00 140 50 -90 Yes 9.2

06:00 478 548 70 Yes 3.1

07:00 993 990 -3 Yes 0.1

08:00 993 927 -66 Yes 2.1

09:00 718 789 71 Yes 2.6

10:00 683 536 -147 No 6.0

11:00 673 531 -142 No 5.8

12:00 680 598 -82 Yes 3.2

13:00 606 600 -6 Yes 0.2

14:00 655 675 20 Yes 0.8

15:00 702 756 54 Yes 2.0

16:00 701 752 51 Yes 1.9

17:00 701 773 72 Yes 2.7

18:00 603 734 131 No 5.1

19:00 411 441 30 Yes 1.5

20:00 238 339 101 No 5.9

21:00 193 250 57 Yes 3.9

22:00 119 173 54 Yes 4.5

23:00 78 50 -28 Yes 3.5

10 2048 West 00:00 44 22 -22 Yes 3.9

A690 Nevilles Cross Bank 01:00 29 16 -13 Yes 2.7

02:00 17 10 -7 Yes 1.8

03:00 17 17 0 Yes 0.0

04:00 24 27 3 Yes 0.6

05:00 62 81 19 Yes 2.2

06:00 190 356 166 No 10.0

07:00 610 657 47 Yes 1.9

08:00 625 710 85 Yes 3.3

09:00 641 688 47 Yes 1.8

10:00 579 666 87 Yes 3.5

11:00 643 656 13 Yes 0.5

12:00 649 717 68 Yes 2.6

13:00 642 723 81 Yes 3.1

14:00 695 742 47 Yes 1.8

15:00 763 780 17 Yes 0.6

16:00 957 1045 88 Yes 2.8

17:00 963 1082 119 Yes 3.7

18:00 719 707 -12 Yes 0.5

19:00 554 533 -21 Yes 0.9

20:00 390 319 -71 Yes 3.8

21:00 292 246 -46 Yes 2.8

22:00 215 152 -63 Yes 4.7

23:00 133 50 -83 Yes 8.6

11 2050 South 00:00 36 14 -22 Yes 4.3

New Elvet 01:00 23 9 -14 Yes 3.5

02:00 21 10 -11 Yes 2.8

03:00 7 12 5 Yes 1.6

04:00 16 17 1 Yes 0.3

05:00 54 65 11 Yes 1.5

06:00 230 294 64 Yes 4.0

07:00 516 686 170 No 6.9

08:00 639 769 130 No 4.9

09:00 501 596 95 Yes 4.1

10:00 405 442 37 Yes 1.8

11:00 467 406 -61 Yes 2.9

12:00 496 478 -18 Yes 0.8

13:00 486 450 -36 Yes 1.7

14:00 510 578 68 Yes 2.9

15:00 605 827 222 No 8.3

16:00 662 759 97 Yes 3.7

17:00 606 767 161 No 6.1

18:00 487 585 98 Yes 4.2

19:00 372 446 74 Yes 3.7

20:00 266 325 59 Yes 3.4

21:00 236 185 -51 Yes 3.5

22:00 135 136 1 Yes 0.1

23:00 89 36 -53 Yes 6.7

12 2050 North 00:00 33 13 -20 Yes 4.2

New Elvet 01:00 19 7 -12 Yes 3.3

02:00 19 11 -8 Yes 2.1

03:00 8 8 0 Yes 0.0

04:00 13 13 0 Yes 0.0

05:00 56 42 -14 Yes 2.0

06:00 184 322 138 No 8.7

07:00 547 817 270 No 10.3

08:00 636 846 210 No 7.7

09:00 494 743 249 No 10.0

10:00 429 537 108 No 4.9

11:00 426 509 83 Yes 3.8

12:00 437 528 91 Yes 4.1

13:00 464 534 70 Yes 3.1

14:00 447 579 132 No 5.8

15:00 543 650 107 No 4.4

16:00 604 639 35 Yes 1.4

17:00 596 670 74 Yes 3.0

18:00 484 526 42 Yes 1.9

19:00 306 455 149 No 7.6

20:00 241 281 40 Yes 2.5

21:00 193 214 21 Yes 1.5

22:00 136 151 15 Yes 1.3

23:00 77 48 -29 Yes 3.7
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13 2138 South 00:00 34 30 -4 Yes 0.6

A167 01:00 23 22 -1 Yes 0.2

02:00 16 16 0 Yes 0.0

03:00 14 22 8 Yes 2.0

04:00 29 30 1 Yes 0.2

05:00 103 109 6 Yes 0.6

06:00 309 495 186 No 9.3

07:00 813 959 146 No 4.9

08:00 871 910 39 Yes 1.3

09:00 739 853 114 No 4.0

10:00 676 768 92 Yes 3.4

11:00 704 752 48 Yes 1.8

12:00 780 780 0 Yes 0.0

13:00 785 807 22 Yes 0.8

14:00 813 790 -23 Yes 0.8

15:00 921 865 -56 Yes 1.9

16:00 955 906 -49 Yes 1.6

17:00 945 770 -175 No 6.0

18:00 766 696 -70 Yes 2.6

19:00 577 756 179 No 6.9

20:00 392 514 122 No 5.7

21:00 269 334 65 Yes 3.7

22:00 180 220 40 Yes 2.8

23:00 103 76 -27 Yes 2.9

14 2138 North 00:00 45 24 -21 Yes 3.6

A167 01:00 21 16 -5 Yes 1.2

02:00 25 15 -10 Yes 2.2

03:00 19 14 -5 Yes 1.2

04:00 23 20 -3 Yes 0.6

05:00 104 55 -49 Yes 5.5

06:00 452 432 -20 Yes 1.0

07:00 902 857 -45 Yes 1.5

08:00 828 832 4 Yes 0.2

09:00 826 700 -126 No 4.5

10:00 750 542 -208 No 8.2

11:00 757 560 -197 No 7.7

12:00 775 581 -194 No 7.4

13:00 784 574 -210 No 8.1

14:00 802 655 -147 No 5.4

15:00 829 766 -63 Yes 2.2

16:00 841 838 -3 Yes 0.1

17:00 858 838 -20 Yes 0.7

18:00 744 681 -63 Yes 2.4

19:00 461 481 20 Yes 0.9

20:00 303 330 27 Yes 1.5

21:00 266 236 -30 Yes 1.9

22:00 172 160 -12 Yes 0.9

23:00 91 51 -40 Yes 4.8

15 2382 East 00:00 58 23 -35 Yes 5.5

A181 Gilesgate 01:00 22 12 -10 Yes 2.4

02:00 25 6 -19 Yes 4.8

03:00 17 10 -7 Yes 2.0

04:00 17 21 4 Yes 0.8

05:00 101 62 -39 Yes 4.3

06:00 191 394 203 No 11.9

07:00 447 709 262 No 10.9

08:00 470 689 219 No 9.1

09:00 570 761 191 No 7.4

10:00 629 712 83 Yes 3.2

11:00 638 665 27 Yes 1.1

12:00 644 729 85 Yes 3.2

13:00 656 697 41 Yes 1.6

14:00 668 622 -46 Yes 1.8

15:00 749 608 -141 No 5.4

16:00 817 649 -168 No 6.2

17:00 766 578 -188 No 7.2

18:00 650 601 -49 Yes 2.0

19:00 462 605 143 No 6.2

20:00 326 421 95 Yes 4.9

21:00 268 275 7 Yes 0.4

22:00 174 183 9 Yes 0.7

23:00 98 71 -27 Yes 2.9

16 2382 West 00:00 47 19 -28 Yes 4.9

A181 Gilesgate 01:00 18 13 -5 Yes 1.3

02:00 20 10 -10 Yes 2.7

03:00 21 9 -12 Yes 3.2

04:00 24 17 -7 Yes 1.5

05:00 58 52 -6 Yes 0.8

06:00 215 299 84 Yes 5.3

07:00 494 810 316 No 12.4

08:00 348 789 441 No 18.5

09:00 545 596 51 Yes 2.1

10:00 616 569 -47 Yes 1.9

11:00 624 573 -51 Yes 2.1

12:00 687 613 -74 Yes 2.9

13:00 652 602 -50 Yes 2.0

14:00 674 665 -9 Yes 0.3

15:00 651 744 93 Yes 3.5

16:00 595 652 57 Yes 2.3

17:00 554 571 17 Yes 0.7

18:00 616 601 -15 Yes 0.6

19:00 504 516 12 Yes 0.5

20:00 327 340 13 Yes 0.7

21:00 263 221 -42 Yes 2.7

22:00 186 157 -29 Yes 2.2

23:00 90 38 -52 Yes 6.5
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17 3032 South 00:00 9 1 -8 Yes 3.6

Margery Lane 01:00 5 0 -5 Yes 3.1

02:00 2 1 -1 Yes 1.0

03:00 2 2 0 Yes 0.2

04:00 1 2 1 Yes 1.2

05:00 10 3 -7 Yes 2.7

06:00 28 29 1 Yes 0.2

07:00 179 72 -107 No 9.5

08:00 267 83 -184 No 13.9

09:00 136 76 -60 Yes 5.8

10:00 119 38 -81 Yes 9.1

11:00 121 40 -81 Yes 9.1

12:00 145 34 -111 No 11.7

13:00 124 30 -94 Yes 10.7

14:00 136 53 -83 Yes 8.5

15:00 178 71 -107 No 9.6

16:00 198 82 -116 No 9.8

17:00 223 73 -150 No 12.3

18:00 149 29 -120 No 12.7

19:00 93 37 -56 Yes 6.9

20:00 77 23 -54 Yes 7.6

21:00 47 18 -29 Yes 5.1

22:00 30 11 -19 Yes 4.2

23:00 13 4 -9 Yes 3.0

18 3032 North 00:00 9 1 -8 Yes 3.5

Margery Lane 01:00 4 0 -4 Yes 2.7

02:00 1 1 0 Yes 0.4

03:00 1 0 -1 Yes 1.4

04:00 1 1 0 Yes 0.4

05:00 10 2 -8 Yes 3.2

06:00 22 23 1 Yes 0.2

07:00 122 33 -89 Yes 10.1

08:00 228 26 -202 No 17.9

09:00 99 20 -79 Yes 10.2

10:00 97 17 -80 Yes 10.6

11:00 94 19 -75 Yes 10.0

12:00 105 12 -93 Yes 12.2

13:00 97 12 -85 Yes 11.5

14:00 120 7 -113 No 14.2

15:00 175 71 -104 No 9.4

16:00 239 104 -135 No 10.3

17:00 222 72 -150 No 12.4

18:00 116 20 -96 Yes 11.6

19:00 76 8 -68 Yes 10.5

20:00 47 7 -40 Yes 7.7

21:00 39 6 -33 Yes 6.9

22:00 25 4 -21 Yes 5.5

23:00 17 2 -15 Yes 4.8

19 3972 South 00:00 21 10 -11 Yes 2.9

Church Street 01:00 13 6 -7 Yes 2.4

02:00 13 5 -8 Yes 2.8

03:00 7 5 -2 Yes 0.9

04:00 5 7 2 Yes 1.0

05:00 22 26 4 Yes 0.9

06:00 92 152 60 Yes 5.5

07:00 254 378 124 No 7.0

08:00 300 431 131 No 6.8

09:00 269 314 45 Yes 2.7

10:00 232 219 -13 Yes 0.9

11:00 285 209 -76 Yes 4.8

12:00 303 238 -65 Yes 4.0

13:00 291 213 -78 Yes 4.9

14:00 326 307 -19 Yes 1.1

15:00 409 454 45 Yes 2.2

16:00 424 447 23 Yes 1.1

17:00 421 462 41 Yes 2.0

18:00 286 311 25 Yes 1.4

19:00 212 194 -18 Yes 1.3

20:00 163 152 -11 Yes 0.9

21:00 160 83 -77 Yes 7.0

22:00 100 55 -45 Yes 5.1

23:00 54 12 -42 Yes 7.3

20 3972 North 00:00 21 14 -7 Yes 1.7

Church Street 01:00 11 8 -3 Yes 0.9

02:00 11 6 -5 Yes 1.7

03:00 6 7 1 Yes 0.5

04:00 6 7 1 Yes 0.3

05:00 34 27 -7 Yes 1.3

06:00 100 192 92 Yes 7.6

07:00 309 550 241 No 11.6

08:00 394 752 358 No 15.0

09:00 267 422 155 No 8.4

10:00 233 291 58 Yes 3.6

11:00 263 285 22 Yes 1.3

12:00 251 288 37 Yes 2.3

13:00 275 295 20 Yes 1.2

14:00 265 335 70 Yes 4.0

15:00 291 374 83 Yes 4.5

16:00 292 431 139 No 7.3

17:00 286 387 101 No 5.5

18:00 262 313 51 Yes 3.0

19:00 174 276 102 No 6.8

20:00 101 154 53 Yes 4.7

21:00 93 127 34 Yes 3.2

22:00 61 76 15 Yes 1.9

23:00 37 33 -4 Yes 0.7
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21 9991 East 00:00 16 0 -16 Yes 5.7

North Road 01:00 8 0 -8 Yes 4.0

02:00 6 0 -6 Yes 3.5

03:00 5 0 -5 Yes 3.3

04:00 7 0 -7 Yes 3.7

05:00 17 0 -17 Yes 5.8

06:00 46 0 -46 Yes 9.6

07:00 120 39 -81 Yes 9.1

08:00 123 46 -77 Yes 8.4

09:00 127 54 -73 Yes 7.6

10:00 123 21 -102 No 12.0

11:00 119 19 -100 No 12.1

12:00 115 18 -97 Yes 11.9

13:00 114 20 -94 Yes 11.5

14:00 114 19 -95 Yes 11.6

15:00 126 21 -105 No 12.3

16:00 134 50 -84 Yes 8.7

17:00 141 49 -92 Yes 9.4

18:00 117 37 -80 Yes 9.1

19:00 88 0 -88 Yes 13.3

20:00 71 0 -71 Yes 11.9

21:00 51 0 -51 Yes 10.1

22:00 42 0 -42 Yes 9.1

23:00 32 0 -32 Yes 8.0

23 9992 South 00:00 18 19 1 Yes 0.2

A167 Darlington Road 01:00 10 19 9 Yes 2.3

02:00 12 9 -3 Yes 0.8

03:00 8 13 5 Yes 1.5

04:00 17 17 0 Yes 0.1

05:00 64 69 5 Yes 0.6

06:00 215 303 88 Yes 5.5

07:00 554 647 93 Yes 3.8

08:00 569 648 79 Yes 3.2

09:00 498 589 91 Yes 3.9

10:00 382 451 69 Yes 3.4

11:00 409 420 11 Yes 0.5

12:00 474 461 -13 Yes 0.6

13:00 444 476 32 Yes 1.5

14:00 495 463 -32 Yes 1.5

15:00 565 501 -64 Yes 2.8

16:00 559 548 -11 Yes 0.5

17:00 554 519 -35 Yes 1.5

18:00 421 425 4 Yes 0.2

19:00 326 507 181 No 8.9

20:00 209 365 156 No 9.2

21:00 166 226 60 Yes 4.3

22:00 102 153 51 Yes 4.5

23:00 51 55 4 Yes 0.5

24 9992 North 00:00 31 9 -22 Yes 4.9

A167 Darlington Road 01:00 16 5 -11 Yes 3.3

02:00 17 9 -8 Yes 2.1

03:00 13 11 -2 Yes 0.6

04:00 14 9 -5 Yes 1.6

05:00 50 28 -22 Yes 3.6

06:00 230 288 58 Yes 3.6

07:00 666 832 166 No 6.1

08:00 773 791 18 Yes 0.7

09:00 527 468 -59 Yes 2.6

10:00 446 308 -138 No 7.1

11:00 448 309 -139 No 7.1

12:00 463 283 -180 No 9.3

13:00 461 317 -144 No 7.3

14:00 500 346 -154 No 7.5

15:00 560 441 -119 No 5.3

16:00 629 899 270 No 9.8

17:00 647 875 228 No 8.3

18:00 489 405 -84 Yes 4.0

19:00 276 253 -23 Yes 1.4

20:00 195 158 -37 Yes 2.8

21:00 169 109 -60 Yes 5.1

22:00 125 80 -45 Yes 4.4

23:00 71 29 -42 Yes 5.9
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25 9993 South 00:00 39 10 -29 Yes 5.8

Alexandria Crescent 01:00 21 10 -11 Yes 2.7

02:00 11 3 -8 Yes 3.0

03:00 12 10 -2 Yes 0.6

04:00 16 16 0 Yes 0.1

05:00 41 42 1 Yes 0.1

06:00 124 220 96 Yes 7.3

07:00 424 436 12 Yes 0.6

08:00 475 549 74 Yes 3.3

09:00 350 503 153 No 7.4

10:00 358 400 42 Yes 2.1

11:00 370 416 46 Yes 2.3

12:00 360 455 95 Yes 4.7

13:00 390 454 64 Yes 3.1

14:00 413 528 115 No 5.3

15:00 448 565 117 No 5.2

16:00 536 612 76 Yes 3.2

17:00 566 677 111 No 4.5

18:00 426 438 12 Yes 0.6

19:00 334 359 25 Yes 1.3

20:00 259 195 -64 Yes 4.3

21:00 222 148 -74 Yes 5.5

22:00 168 95 -73 Yes 6.4

23:00 93 23 -70 Yes 9.2

26 9993 North 00:00 34 21 -13 Yes 2.5

Alexandria Crescent 01:00 17 10 -7 Yes 1.8

02:00 13 8 -5 Yes 1.5

03:00 11 10 -1 Yes 0.3

04:00 19 14 -5 Yes 1.2

05:00 98 30 -68 Yes 8.5

06:00 285 423 138 No 7.3

07:00 778 1063 285 No 9.4

08:00 867 1026 159 No 5.2

09:00 683 656 -27 Yes 1.1

10:00 587 382 -205 No 9.3

11:00 559 387 -172 No 7.9

12:00 549 374 -175 No 8.1

13:00 534 415 -119 No 5.4

14:00 540 456 -84 Yes 3.7

15:00 601 580 -21 Yes 0.9

16:00 649 728 79 Yes 3.0

17:00 671 746 75 Yes 2.8

18:00 572 534 -38 Yes 1.6

19:00 412 340 -72 Yes 3.7

20:00 264 247 -17 Yes 1.1

21:00 217 171 -46 Yes 3.3

22:00 148 131 -17 Yes 1.4

23:00 88 42 -46 Yes 5.7

27 2499 East 00:00 23 1 -22 Yes 6.4

CLAYPATH DURHAM [Bet A690 & UNC] RSI01:00 18 3 -15 Yes 4.6

02:00 10 0 -10 Yes 4.5

03:00 6 1 -5 Yes 2.6

04:00 6 3 -3 Yes 1.3

05:00 7 7 0 Yes 0.0

06:00 27 32 5 Yes 0.9

07:00 135 40 -95 Yes 10.2

08:00 224 38 -186 No 16.2

09:00 222 74 -148 No 12.2

10:00 239 90 -149 No 11.6

11:00 250 91 -159 No 12.2

12:00 281 108 -173 No 12.4

13:00 271 97 -174 No 12.8

14:00 274 181 -93 Yes 6.1

15:00 324 348 24 Yes 1.3

16:00 367 344 -23 Yes 1.2

17:00 350 271 -79 Yes 4.5

18:00 205 157 -48 Yes 3.5

19:00 152 71 -81 Yes 7.7

20:00 121 53 -68 Yes 7.3

21:00 78 34 -44 Yes 5.9

22:00 75 21 -54 Yes 7.8

23:00 55 4 -51 Yes 9.4

28 2499 West 00:00 10 3 -7 Yes 2.7

CLAYPATH DURHAM [Bet A690 & UNC] RSI01:00 6 0 -6 Yes 3.5

02:00 5 1 -4 Yes 2.2

03:00 4 2 -2 Yes 1.2

04:00 1 1 0 Yes 0.3

05:00 7 8 1 Yes 0.4

06:00 28 76 48 Yes 6.6

07:00 132 189 57 Yes 4.5

08:00 218 190 -28 Yes 1.9

09:00 176 135 -41 Yes 3.3

10:00 139 62 -77 Yes 7.7

11:00 129 65 -64 Yes 6.5

12:00 137 76 -61 Yes 5.9

13:00 118 69 -49 Yes 5.1

14:00 123 83 -40 Yes 3.9

15:00 123 87 -36 Yes 3.5

16:00 139 100 -39 Yes 3.5

17:00 129 82 -47 Yes 4.5

18:00 105 68 -37 Yes 3.9

19:00 77 52 -25 Yes 3.2

20:00 52 48 -4 Yes 0.5

21:00 44 27 -17 Yes 2.9

22:00 31 13 -18 Yes 3.8

23:00 27 6 -21 Yes 5.2
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9.3 Appendix C 

Public Sector Mosaic Groups and Types (Experian, 2009).  

 


